

Third Edition
Build fast web applications for handling any kind of data

Bruno Joseph D'mello

Mithun Satheesh

Jason Krol

Web Development with MongoDB and Node

BIRMINGHAM - MUMBAI

Third Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Second edition: October 2015

Third edition: September 2017

Production reference: 1260917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-508-3

www.packtpub.com

Web Development with MongoDB and Node

http://www.packtpub.com

Credits

Authors

Bruno Joseph D'mello

Mithun Satheesh

Jason Krol

Copy Editor

Charlotte Carneiro

Reviewer

Alex Bachuk

Project Coordinator

Sheejal Shah

Commissioning Editor

Smith Thakkar

Proofreader

Safis Editing

Acquisition Editor

Reshma Raman

Indexer

Rekha Nair

Content Development Editor

Jason Pereira

Graphics

Jason Monteiro

Technical Editor

Surabhi Kulkarni

Production Coordinator

Melwyn D'sa

About the Authors
Bruno Joseph D'mello works at Yapsody as a software engineer. He has possesses almost 5
years of experience in web application development, serving industries such as entertainment,
social media, enterprise, and IT services. He is a JavaScript enthusiast and dedicatedly worked
on it for the past 4 years. Apart from rare commits, he believes in contributing to open source by
actually mentoring new technologies to beginners and involving them in open source
communities. Bruno follows Kaizen and enjoys the freedom of architecting new things on the
web. He also contributed his knowledge by authoring books such as Web Development in
Node.js and Mongodb second edition, What You Need to Know About Node.js (Free ebook), and
by being a reviewer.

You can connect with Bruno at: bron1010@gmail.com

"Thanks to my family for patience and encouragement, especially Erina..."

Mithun Satheesh is an open source enthusiast and a web developer who resides in India. He has
more than 5 years of experience in web development and specializes in JavaScript, Ruby, PHP,
and other frontend engineering technologies. He is the author of a couple of libraries on Node.js,
which are available open source via npm. One of these, called node-rules, is a forward-chaining
rule engine implementation written initially to handle transaction risks on bookmyshow, one of
his former employers. Node-rules have a considerable user following both on npm and GitHub.

Apart from this, he has also served as an individual contributor in many open source projects on
GitHub.

He is a regular on programming sites, such as Stack Overflow, and loves contributing to the open
source world. Apart from programming, he is also interested in experimenting with various cloud
platform solutions. He has a number of applications listed in the developer spotlight of Platform-
as-a-Service providers, such as RedHat's OpenShift.

Jason Krol is a passionate web developer with over 15 years of professional experience creating
highly interactive web applications using the latest in both client and server technologies.

Over the past few years, Jason has been focusing on developing Single-Page Applications using
JavaScript in the full stack with Node.js, MongoDB, and Backbone.js. After co-owning and
running a successful web development agency for a number of years, Jason recently joined
AWeber Communications, an e-mail marketing service provider in the suburbs of Philadelphia.

About the Reviewer
Alex Bachuk is a web developer with over 9 years of experience and specializes in custom
JavaScript web applications. Currently, Alex leads the Rental Cars Web UX team at
priceline.com and runs JavaScript and React workshops in NYC area along with the
EcmaStack.com team.

Alex organizes and talks at JavaScript, Meteor.js, and GraphQL meetups in the New York City
area. In his free time, he likes to spend time with his family and also travel the world.

http://priceline.com
http://EcmaStack.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books
and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process.
To help us improve, please leave us an honest review on this book's Amazon page at
https://www.amazon.com/dp/1788395085.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in
exchange for their valuable feedback. Help us be relentless in improving our products!

https://www.amazon.com/dp/1788395085

Table of Contents
Preface

What this book covers What
you need for this book Who
this book is for Conventions
Reader feedback Customer
support

Downloading the example code
Errata
Piracy
Questions

1. Welcome to JavaScript in the Full Stack
A short introduction to Node.js

The advantage that the V8 engine brings in
Node.js is single-threaded!
Non-blocking asynchronous execution

npm - the Node Package Manager
Sharing and reusing JavaScript

Not just for building web servers!Real-
time web application with Socket.io
Networking and file IO
Microservices

Internet of things (IoT)
A simple server with Node.js
When to use Node.js

The NoSQL movement
A short introduction to MongoDB

JSON-friendly database
Schema-less design
Various performance facets

Node.js and MongoDB in the wild
What to expect from this book
Summary

2. Getting Up and Running
Installing Node.js

Mac OS X
Windows
Linux
Testing that Node.js is installed properly
Online documentation

Installing MongoDB
Mac OS X installation instructions
Windows 7/Windows 8 installation instructions
Linux installation instructions
Confirming successful MongoDB installation
Bookmarking the online documentation

Writing your first app
Creating the sample application
Getting the dependent modules in place

Adding the application code
Understanding the code
Launching the sample app
Checking the actual database

Summary
3. Node and MongoDB Basics

A JavaScript primer
Introducing es6
Syntax basics
Understanding the scope of variables
Data types
Operators and flows Understanding
objects Understanding arrays
Understanding functions Anonymous
functions and callbacks JSON

The basics of Node.js
Node.js architecture
Event-driven
Asynchronous execution
The module system The
Node.js core

HTTP
Net
Streams

Installing modules using npm
The basics of MongoDB

The Mongo shell
Inserting data
Querying
Updating data
Deleting data

Additional resources
Summary

4. Introducing Express
Web application frameworks What
is Express.js?
Building a complete web application

Designing the web application
Organizing the files
Creating the application's entry point
Booting up the application

Middlewares
Creating custom middleware

Order of middlewares The
configure module

Activating the configure module

Routers and controllers
Handlebars as View engines
Summary

5. Templating with Handlebars
Templating engines
Server-side and client-side templating

Client-side templating
Server-side templating The

basics of Handlebars
Binding an object to the template
Embedding presentation logic

Views
Layouts
Partial views
Handlebars helpers

Global helpers
View-specific helpers

Rendering the views
Summary

6. Controllers and View Models
Controllers
View models
Updating the home controller
Updating the image controller

Displaying an image
Uploading an image

Helpers for reusable code
The sidebar module
The stats module
The images module
The comments module
Testing the sidebar implementation

Iterating on the UI
Summary

7. Persisting Data with MongoDB
Using MongoDB with Node.js

Connecting to MongoDB
Inserting a document
Retrieving a document

Introducing Mongoose
Schemas Models
Built-in validation
Static methods
Virtual properties

Context of method (this)
Connecting with Mongoose

Defining the schemas and models
The models index file

Adding CRUD to the controllers
The home controller

The image controller
Index - retrieving an image model
Create - inserting an image model
Testing everything out so far
The like button and updating an image model
Comment - inserting a comment model
Wrapping it up

Helpers
Introducing the async module
The comments helper The
sidebar helper
Troubleshooting
The stats helper
The popular images helper

Iterating by adding an image removal capability
Adding a route
Adding a controller handler
Updating the Handlebars image page template
Updating jQuery

Refactoring and improvements
Summary

8. Creating a RESTful API
What is an API?
What is a RESTful API?
Introducing Postman REST Client

Installation instructions
A quick tour of Postman REST Client
Using the JSONView Chrome extension

Creating a basic API server
Creating sample JSON data

Responding to GET requests
Receiving data - POST and PUT requests
Removing data - DELETE
Consuming external APIs from Node.js

Consuming an API endpoint using request
Summary

9. Testing Your Code
The tools of the trade

Running tests with the Mocha framework
Asserting tests with Chai.js
Getting started with Chai
Spies and stubs with Sinon.js
Stubbing node modules with Proxyquire

Writing and running your first test
Writing a test helper

Testing the application
Testing the routes
Testing the server
Testing a model
Testing a controller

Spy and stub everything!

Automating everything
Summary

10. Deploying with Cloud-Based Services
Cloud versus traditional hosting

Infrastructure as a Service versus Platform as a Service
An introduction to Git
Deploying your application

Nodejitsu
Heroku
Amazon Web Services

Creating a MongoLab account and database
Create and configure the AWS environment

Microsoft Azure
Digital Ocean

Summary
11. Popular Node.js Web Frameworks

Koa
Meteor
Sails
Flatiron
total.js
LoopBack
Hapi

Kick starting Hapi.js
Scaffolding the Hapi app
Setting up a server
Creating APIs
Creating a configuration-based architecture

Summary
12. Single Page Applications with Popular Frontend Frameworks

Why use a frontend framework?
What is a single page application?

The TodoMVC project
Backbone.js
Ember.js
React.js
Angular

Scaffolding the Angular app
Understanding TypeScript and es6
Modules and components Angular
data flow architecture Services
Forms

Component communication
Frontend development tools

Automated build task managers
Dependency management
Modularity
HTML template-rendering engines
CSS transpiling

Testing and test-driven development
PhantomJS headless browser

Summary

Preface
With the advent of ECMAscript 6, the usability of Node.JS has a great scope for future and has
already been implemented today. The need of learning es6 syntactic sugar and inclusion of most
of the cross-technology features inspires different technological communities to learn JavaScript.

The high performance and scalability of Node.js and open source NoSQL database solution
called MongoDB cater to building fast, scalable network applications easily. This combination
makes managing any form of data easy and ensures its delivery speed.

This book aims to provide different facets of web application development with Node.JS and
MongoDB that is used to build an isomorphic server-side rendering web application. This books
also guides us in creating a configurable Node.JS server using hapi.js and learning to develop a
single-page frontend app using Angular 4.

This book will begin by introducing you to the groundwork needed to set up the development
environment and a comparative study on how the new ECMAscript is different from the
traditional JavaScript. Once the base is ready, we will quickly run through the steps necessary to
get the main application server up and running and to learn the Node.JS core.

Further, we will move toward advanced coding techniques using controllers and ViewModels to
generate reusable code that reduces development time. The development ends with learning
proper testing concepts and how to automate them for reusability and maintainability.

By the end of the book, you will be connected with JavaScript ecosystem and will go through the
trendy JavaScript frontend and backend frameworks.

What this book covers
Chapter 1, Welcome to JavaScript in the Full stack, provides an introduction on Node.js and
MongoDB. In addition to this, it will explain the overall architecture of the application you will
build using this book.

Chapter 2, Getting Up and Running, explains how to set up the development environments for
Node.js and MongoDB. You will also verify that everything is set up properly by writing a
sample app and running it.

Chapter 3, Node and MongoDB Basics, is about learning JavaScript at base. Further, going
through need to know concepts of NodeJS and basic CRUD operations on MongoDB.

Chapter 4, Introducing Express, introduces you to the Express framework and its various
components. It also walks you through organizing the basic application that you are building
with this framework. It will also give you a detailed overview of the MVC components of
Express.

Chapter 5, Templating with Handlebars, introduces you to the concept of using a templating
engine and handlebars. Also, it shows you how to use handlebars in your application as a
templating engine.

Chapter 6, Controllers and View Models, shows you how to organize the code for the sample
application you build into the controllers and view of the Express framework. It will introduce
you to the MVS concepts indirectly via introducing the need of separating the code into various
modules and utilizing the Express framework.

Chapter 7, Persisting Data with MongoDB, shows you how to connect to the MongoDB server
from the Node.js application you are building. It will also introduce you to the concept of ODM,
the most popular one being Mongoose.

Chapter 8, Creating a RESTful API, introduces you to RESTful APIs. Also, it shows you the
importance of RESTful wrapper for the application. Then, it will teach you how to change the
current application to a REST API-based application.

Chapter 9, Testing Your Code, shows you why you need testing incorporated with your
application and also what you should keep in mind for the testability of the code written in the
chapter.

Chapter 10, Deploying with Cloud-Based Services, discusses the options for hosting the Node.js
MongoDB application that you are building. It also compares the various PaaS solutions
available in the market.

Chapter 11, Popular Node.js Web Frameworks, covers the various web frameworks available on
Node.js, other than Express, which you will use to build the application in this book. You will
analyze various web frameworks, such as Meteor, Sails, Koa, Hapi, and Flatiron. You will also
learn one of the distinct type of framework, that is, hapi.js, in more detail by creating an API
server.

Chapter 12, Single page Applications with Popular Frontend Frameworks, provides a

comparative study of single-pages applications with popular frontend frameworks, such as
backbone.js, ember.js, react.js, and Angular. You will learn one of the trending framework--
Angular4--in detail. Also, you will analyze popular frontend aspects, such as the automation
tools and transpilers available.

What you need for this book
A basic understanding of JavaScript and HTML is the only requirement for this book. However,
the design of this book also helps a beginner with a basic programming knowledge and cross-
platform developer to learn JavaScript and its frameworks.

Who this book is for
The book is designed for JavaScript developers with the following criteria:

Those who wants to learn JavaScript at backend
Those who knows es5 and want to start with the new ECMAscript
Those who has an intermediate knowledge of JavaScript and wants to explore new
frameworks, such as Angular 2, hapi, and Express

Lastly, it is designed for any cross-platform developer who are keen to learn JavaScript and
wanted to build interactive web applications in Node.js and MongoDB.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows:

"In the preceding case, the setTimeout() method is provided by JavaScript (Node.js) API."

A block of code is set as follows:

var http = require('http');

http.createServer(function(req, res) {

 res.writeHead(200, { 'Content-Type': 'text/plain' });

 res.end('Hello World\n');

}).listen(8080, 'localhost');

console.log('Server running at http://localhost:8080');

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

app.engine('Handlebars', exphbs.create({

 defaultLayout: 'main',

 layoutsDir: app.get('views') + '/layouts',

 partialsDir: [app.get('views') + '/partials'],

 helpers: {

 timeago: (timestamp)=> {

 return moment(timestamp).startOf('minute').fromNow();

 }

 }

}).engine);

Any command-line input or output is written as follows:

$ sudo apt-get install python-software-properties

$ sudo curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

$ sudo apt-get install nodejs

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this:
A great alternative on the Mac is iTerm2.

Warnings or important notes appear in a box like this.
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles that
you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a
topic that you have expertise in and you are interested in either writing or contributing to a book,
see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://GitHub.com/PacktPublishing/Web-Development-with-MongoDB-and-Node-Third-
Edition. We also have other code bundles from our rich catalogue of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://GitHub.com/PacktPublishing/Web-Development-with-MongoDB-and-Node-Third-Edition
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will appear under
the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com,
and we will do our best to address the problem.

Welcome to JavaScript in the Full Stack
What was once only considered a language to add enhancements and widgets to a web page has
since evolved into its own fully-fledged ecosystem. As of the survey of year 2017 (
https://insights.stackoverflow.com/survey/2017), it stands as the most popular language in terms
of usage on stack overflow with around a million questions tagged on it. There are tons of
frameworks and environments to make it possible to run JavaScript almost anywhere. I believe
Atwood's law says it best:

"Any application that can be written in JavaScript will eventually be written in JavaScript!"

While this quote dates back to 2007, it's never been truer than today. Not only can you use
JavaScript to develop a complete single-page application such as Gmail, but you will also see
how we can use it to achieve the following projects in the coming chapters of the book:

Completely power the backend using Node.js and Express.js
Persist data with a powerful document oriented database such as MongoDB
Write dynamic HTML pages using Handlebars.js
Deploy your entire project to the cloud using services such as Heroku and Amazon Web
Services (AWS)

With the introduction of Node.js, JavaScript has officially gone in a direction that was never
even possible before. Now, you can use JavaScript on the server and you can also use it to
develop full-scale, enterprise-level applications. When you combine this with the power of
MongoDB and its JSON-powered data, you can work with JavaScript in every layer of your
application.

Let's quickly go through some basic concepts of Node.js and MongoDB, which will help you in
following the rest of the chapters in this book.

[1]

https://insights.stackoverflow.com/survey/2017

A short introduction to Node.js
One of the most important things that people get confused about while getting introduced to
Node.js is understanding what, exactly, it is. Is it a different language altogether, is it just a
framework on top of it, or is it something else? Node.js is definitely not a new language, and it is
not just a framework on JavaScript. It can be considered as a runtime environment for JavaScript
built on top of Google's V8 engine. So, it provides us with a context where we can write
JavaScript code on any platform where Node.js can be installed. Anywhere!

Now, a bit about its history! Back in 2009, Ryan Dahl gave a presentation at JSConf that
changed JavaScript forever. During his presentation, he introduced Node.js to the JavaScript
community. He concluded it after a roughly 45-minute talk, receiving a standing ovation from
the audience in the process. He was inspired to write Node.js after he saw a simple file upload
progress bar on Flickr, the image-sharing site. Realizing that the site was going about the whole
process the wrong way, he decided that there had to be a better solution.

Now let's go through the features of Node.js, which make it unique from other server-side
programming languages.

[2]

The advantage that the V8 engine brings in
The V8 engine was developed by Google and was open sourced in 2008. As we all know,
JavaScript is an interpreted language and it will not be as efficient as a compiled language, as
each line of code gets interpreted one by one while the code gets executed. The V8 engine brings
in an efficient model, where the JavaScript code is first interpreted and then compiled into
machine-level code.

The new V8 5.9 provides a stable release that introduces TurboFan compiler which provides
performance and mass optimization benefits. It also launches Ignition interpreter which is quiet
efficient for all the small and big devices like servers or IOT devices etc that varies on memory
spectrum. Due to such low memory footprint it delivers fast startup of an application. We can
study benchmarks in following link : https://goo.gl/B15xB2

With two powerful updates, the v8 team is also working on Orinoco, which is a garbage collector
that works on mechanism of parallel and concurrent compacting.

Such a high performance with promising results was the reason to push the node 8(LTS) launch
date from may 2018 to october 2018. Currently we are using node 8 with a non-LTS version. It
provides clean replace for users using node v4.x.x and above with no broken library. The version
8 also has various inbuilt features like buffer improvements and inbuilt promisify methods etc.
We can study them in following link : https://goo.gl/kMySCS

[3]

https://goo.gl/B15xB2
https://goo.gl/kMySCS

Node.js is single-threaded!
With the advent of the web, the traditional JavaScript was intended to add simple functionality
and minimal runtime in the browser. Thus, JavaScript was kept as a single-threaded scripting
language. Now, just to get a brief idea regarding single-threaded model, let's consider the
following diagram:

A single-threaded model creates a single Callstack in an execution context. In the preceding
code, when the function getData() is invoked, the function is pushed in the stack for execution
sequentially.

In the context of Node.js, JavaScript is the base scripting language, hence, Node.js is single-
threaded. You might be asking, how does a single-threaded model help? Typical PHP,
ASP.NET, Ruby, or Java-based servers follow a model where each client request results in the
instantiation of a new thread or even a process.

When it comes to Node.js, requests are run on the same thread with shared resources. A question
that is often asked is, what will be the advantage of using such a model? To understand this, we
should understand the problem that Node.js tries to resolve. It tries to do asynchronous
processing on a single thread to provide more performance and scalability for applications that
are supposed to handle too much web traffic. Imagine web applications that handle millions of
concurrent requests; if the server makes a new thread for handling each request that comes in, it
will consume a lot of resources and we will end up trying to add more and more servers to
increase the scalability of the application.

The single-threaded, asynchronous processing model has its advantage in the previous context,
and you can process much more concurrent requests with fewer server-side resources. However,
there is a downside to this approach; Node (by default) will not utilize the number of CPU cores
available on the server it is running on, without using extra modules like pm2.

The point that Node.js is single-threaded doesn't mean that it doesn't use threads internally. It is
just that the developer and the execution context that the code has exposure to have no control
over the threading model internally used by Node.js.
If you are new to the concept of threads and process, I would suggest you go through some
preliminary articles about these topics. There are plenty of YouTube videos on the same topic as
well.

[4]

The following reference could be used as a starting point:
http://www.cs.ucsb.edu/~rich/class/cs170/notes/IntroThreads/

[5]

http://www.cs.ucsb.edu/~rich/class/cs170/notes/IntroThreads/

Non-blocking asynchronous execution
One of the most powerful features of Node.js is that it is both event-driven and asynchronous.
So, how does an asynchronous model work? Imagine you have a block of code and at some nth

line you have an operation that is time consuming. What happens to the lines that follow the nth

line while this code gets executed? In normal synchronous programming models, the lines that
follow the nth line will have to wait until the operation at that line completes. An asynchronous
model handles this case differently.

Let us visualize this scenario with the help of the following code and diagram:

In the preceding case, the setTimeout() method is provided by JavaScript (Node.js) API. Hence,
this method is recognized as synchronous and is executed in a different execution context.
According to functionality to setTimeout() , it executes the callback function after a specified
duration, in our case after three seconds.

Further, the current execution is never blocked for a process to complete. When Node.js API
determines that the completion of an event has been fired, it will execute your callback function
at that moment.

In a typical synchronous programming language, executing the preceding code will yield the
following output:

If you are still interested in learning more about asynchronous models and the callback concept
in JavaScript, Mozilla Developer Network (MDN) has many articles that explain these concepts
in detail.

[6]

npm - the Node Package Manager
Writing applications with Node.js is really enjoyable when you realize the sheer wealth of
information and tools at your disposal! Using Node.js's built-in package manager, npm, you can
find literally tens of thousands of modules that can be installed and used within your application
with just a few keystrokes! One of the biggest reasons for the success of Node.js is npm, which is
one of the best package managers out there, with a very minute learning curve. If this is the first
ever package manager that you are getting exposed to, you should consider yourself lucky!

On a regular month, npm handles more than a billion downloads, and it has around 150,000
packages currently available for you to download. You can view the library of available modules
by visiting www.npmjs.com. Downloading and installing any module within your application is
as simple as executing the following command:

npm install package

Have you written a module that you want to share with the world? You can package it up using
npm and upload it to the public registry at www.npmjs.org just as easily! If you are not sure how
a module you installed works, the source code is right there in your project's node_modules/ folder
waiting to be explored!

Package versions of modules in npm follow semantic versioning, such as major.minor.patch
order.

[7]

https://www.npmjs.com/
https://www.npmjs.com/

Sharing and reusing JavaScript
While you develop web applications, you will always end up doing the validations for your UI,
both at the client and server sides, as the client-side validations are required for better UI
experience and server-side validations are needed for better security of the app. Think about two
different languages in action: you will have the same logic implemented in both the server and
client sides. With Node.js, you can think of sharing the common function between server and
client, reducing the code duplication to a large extent.

Ever worked on optimizing the load time for client-side components of your Single-Page
Application (SPA) loaded from template engines such as Underscore? You would end up
thinking about a way we could share the rendering of templates in both server and client at the
same time; some call it hybrid templating.

Node.js resolves the context of duplication of client templates better than any other server-side
technologies, just because we can use the same JS templating framework and the templates both
at server and client.

If you are taking this point lightly, the problem it resolves is not just the issue of reusing
validations or templates on the server and client. Think about an SPA being built; you will need
to implement the subsets of server-side models in the client-side MV* framework also. Now,
think about the templates, models, and controller subsets being shared on both client and server.
We are solving a higher scenario of code redundancy.

[8]

Not just for building web servers!
Node.js is not just to write JavaScript in the server-side. Yes, we have discussed this point
earlier. Node.js sets up the environment for the JavaScript code to work anywhere it can be
installed. It can be a powerful solution to create command-line tools, as well as fully featured,
locally run applications that have nothing to do with the web or a browser. Grunt.js is a great
example of a Node-powered command-line tool that many web developers use daily to automate
tasks such as build processes, compiling CoffeeScript, launching Node.js servers, running tests,
and more.

In addition to command-line tools, Node.js is increasingly popular among the hardware crowd
with the Node.js bots movement. Johnny-Five and Cylon.js are two popular Node.js libraries that
exist to provide a framework to work with robotics. Just search on YouTube for Node.js robots
and you will see a lot of examples. Also, there is a chance that you might be using a text editor
developed on Node.js. GitHub's open source editor named Atom, which is hugely popular, is an
example.

[9]

Real-time web application with Socket.io
One of the important reasons behind the origin of Node.js was to support real-time web
applications. Node.js has a couple of frameworks built for real-time web applications which are
hugely popular: Socket.io and Sock.JS. These frameworks make it very simple to build instant,
collaboration-based applications such as Google Drive and Mozilla's together.js. Before the
introduction of WebSockets in the modern browsers, this was achieved via long polling, which
was not a great solution for real-time experience. While WebSockets is a feature that is only
supported in modern browsers, Socket.io acts as a framework, which also features seamless
fallback implementations for legacy browsers.

If you need to understand more on the use of WebSockets in applications, here's a good resource
on MDN that you can explore:
https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications.

[10]

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_client_applications

Networking and file IO
In addition to the powerful non-blocking asynchronous nature of Node.js, it also has robust
networking and filesystem tools available via its core modules. With Node.js's networking
modules, you can create server and client applications that accept network connections and
communicate via streams and pipes. Node contains a module named as fs or filesystem which is
totally responsible for all kind of read write operations performed on files. It also takes an
advantage of streaming feature of node to perform those operations.

[11]

Microservices
Dividing the app with respect to a functionality unit is called a microservice. Each microservice
becomes the self contained unit of deployment. Node.js is based on the common JS modules
pattern which provides modularity in structure of an application. Such a pattern is used to create
the microservices. With the increase of functionality, the number of microservices increases. To
manage those services, the Node.js ecosystem provides powerful libraries like pm2. Therefore, it
enables the elements of an application to be updated and scaled separately.

[12]

Internet of things (IoT)
With the advent of Internet of things (IoT), the Node.JS ecosystem provides amazing library
support for various devices like sensors, beacons, wearables, and so on. Node.js is considered as
an ideal technology for managing the request made by those devices via its powerful backbone of
streams and non-blocking I/O. Popular IoT board variants like Arduino, Raspberry Pi, and so on,
have more than 300 Node.js packages. The developers building data-intensive, real-time
applications often find Node.js as a natural fit.

[13]

A simple server with Node.js
To see an example of how lightweight Node.js can be, let's take a look at some sample code that
starts up an HTTP server and sends Hello World to a browser:

var http = require('http');

http.createServer(function(req, res) {

 res.writeHead(200, { 'Content-Type': 'text/plain' });

 res.end('Hello World\n');

}).listen(8080, 'localhost');

console.log('Server running at http://localhost:8080');

A few basic lines of code are all it takes to write a complete Node.js application. Running it with
a simple Node.js app.js command will launch an HTTP server that is listening on port 8080.
Point any browser to http://localhost:8080, and you will see the simple output Hello World on
your screen! While this sample app doesn't actually do anything useful, it should give you a
glimpse of the kind of power you will have while writing web applications using Node.js. If you
don't have the initial Node.js development environment set up, we will discuss it in the next
chapter.

[14]

When to use Node.js
You may have heard of this proverb by an american psychologist, Abraham Maslow:

"If all you have is a hammer, everything looks like a nail!"

This makes a lot of sense in this context. Node.js is not a technology to depend for on all the
application problems that you intend to solve, and if not chosen wisely, the decision to use it will
backfire. Node.js is well suited for applications that are expected to handle a huge amount of
concurrent connections. Also, it should be noted, it is most suited for applications where each
incoming request requires very few CPU cycles. This means that if you intend to do
computation-intensive tasks upon request, it will end up blocking the event loop, thereby
impacting other requests concurrently processed by the web server. Node.js is well suited for
real-time web applications, such as chat rooms, collaboration tools, online games, and so on. So,
when deciding whether or not to use Node.js, we should analyze the application context seriously
and figure out whether Node.js really suits the context of the application.

It is quite hard to debate over the use cases of Node.js in a detailed manner. However, the
following Stack Overflow thread does this effectively, and I strongly recommend you to go
through the answers on this post if you are more interested in the use cases of Node.js:
http://stackoverflow.com/questions/5062614/how-to-decide-when-to-use-node-js.

As we have briefly gone through the concept and features of Node.js, now let's look into the
NoSQL and MongoDB side.

[15]

http://stackoverflow.com/questions/5062614/how-to-decide-when-to-use-node-js

The NoSQL movement
Let's start by exploring the answers to the question: What exactly is a NoSQL database? NoSQL
is a common term for database technologies that deviate from the traditional Relational
Database Management System (RDBMS) concepts. The common reason for these database
solutions to deviate from RDBMS database standards is to achieve and set better standards of
availability and partitioning capabilities than traditional RDBMS solutions.

To introduce you to this concept, we should have a look at the Brewer's theorem, which is
otherwise known as the CAP theorem:

"It is impossible for a distributed computer system to simultaneously provide all three of the
following guarantees: Consistency, Availability, and Partition Tolerance."

Traditional RDBMS solutions are good at consistency, but compromise a little once it comes to
providing better availability (data reads) and partitioning capabilities. Most of the NoSQL
solutions have been evolved in this direction to achieve better heights in data availability and
partitioning.

As this is a common term for any database technology that deviates from the concepts followed
by RDBMS solutions such as MySQL, PostgreSQL, and so on, there are various subsets for
NoSQL databases. Most popular subsets of NoSQL are document stores, key-value stores, and
graph-based database solutions. MongoDB, which is the one we are going to try out, falls into
the document store category. There are many more NoSQL solutions available in the market
apart from MongoDB, such as Cassandra, Redis, Neo4j, HBase, and so on.

[16]

A short introduction to MongoDB
As we discussed in the previous paragraph, MongoDB falls into the document store category of
NoSQL databases. MongoDB is being actively developed by 10gen, which has been renamed to
MongoDB Inc. MongoDB is open source and its source is available on various platforms, such
as GitHub.

We will look at the following various features of MongoDB:

JSON-friendly database
Schema-less design
Various performance facets

[17]

JSON-friendly database
One of the most important reasons for the popularity of MongoDB is that it is a JSON-friendly
database. This means that documents are stored and retrieved from MongoDB as JavaScript
objects. Internally, this JSON data gets converted to BSON format while getting persisted to the
system. So, this gives extreme flexibility, where we can use the same data format from client to
server and eventually to the database.

A typical document (record) in a MongoDB collection (table) might look like the following
code:

$ mongo

> db.contacts.find({email: 'jason@kroltech.com'}).pretty()

{

 "email" : "jason@kroltech.com",

 "phone" : "123-456-7890",

 "gravatar" : "751e957d48e31841ff15d8fa0f1b0acf",

 "_id" : ObjectId("52fad824392f58ac2452c992"),

 "name" : {

 "first" : "Jason",

 "last" : "Krol"

 },

 "__v" : 0

}

After examining the preceding output, we can see a key called _id. It is a MongoDB ID which
must be encoded as a binary JSON objectID(BSON). If failed to encode, MongoDB won't be able
to retrieve or update an object.

[18]

Schema-less design
Another important feature of MongoDB is its schema-less nature. With a relational database, you
are required to define the exact structure of the data being stored ahead of time, which is termed
as the schema. This means that you must have defined the exact number of columns, the length,
and the data type for every field in a table, and that each field must always match that exact set of
criteria. Mongo provides a flexible nature where the documents that you store into the database
need not follow any schema unless the developer enforces it through the application level. This
makes MongoDB a great fit for Agile-based development, as you could carry out modifications
on the application schema on the fly.

[19]

Various performance facets
Other than the JavaScript-friendly nature, one other resemblance between MongoDB and Node.js
is that MongoDB is also designed with highly concurrent applications with heavy read operations
in mind.

MongoDB also introduces the concept of sharding, which makes it possible to scale the database
horizontally as well as vertically. If the application owner needs to increase the database
capabilities, they could add more machines into the stack. This is a cheaper option compared to
investing in the RAM of a single machine, which will be the case in RDBMS solutions.

The process of Indexing created a list of values called index for a chosen field. These indexes are
used to query larger chunks of data. Using indexes accelerates the data retrieval speed and
performance. The MongoDB client provides various methods like ensureIndex to create an index
only if one doesn't exist.

Additionally, MongoDB has various commands to allow aggregation of data, such as group,
count, and return distinct values.

All the advantages that we discussed come with some impact on the consistency, as MongoDB
does not strictly adhere to the RDBMS standards like ACID transactions. Also, if you end up
creating a data model that might need too many JOIN operations, then MongoDB won't make a
good fit as it is not designed with too many aggregations, even though the aggregations are
possible via the MongoDB aggregation framework. MongoDB may or may not be the right
solution for your application. You should truly weigh the pros and cons of each technology
before making a decision to determine which technology is right for you.

[20]

Node.js and MongoDB in the wild
Both Node.js and MongoDB are extremely popular and active in the development community.
This is true for enterprises as well. Some of the biggest names in the Fortune 500 space have
fully embraced Node.js to power their web applications.
This is due in large part to the asynchronous nature of Node.js, which makes it a great alternative
for high traffic, high I/O applications such as e-commerce websites and mobile applications.

Here's just a small list of some big companies that are working with Node.js:

PayPal
LinkedIn
eBay
Walmart
Yahoo!
Microsoft
Dow Jones
Uber
New York Times

MongoDB's use in the enterprise sector is equally as impressive and widespread, with an
increasing number of companies adopting the leading NoSQL database server. Here's just a small
list of some big companies that are working with MongoDB:

Cisco
Craigslist Inc.
Forbes
FourSquare
Intuit
McAfee
MTV
MetLife
Shutterfly
Under Armour

[21]

What to expect from this book
The remainder of this book is going to be a guided tour that walks you through the creation of a
complete data-driven website. The website we create will feature almost every aspect of a typical
large-scale web development project. The app will be developed using a popular Node.js
framework called Express, and it will persist data using MongoDB. In the first few chapters, we
will cover the groundwork involved in getting the core of the server up and serving content. This
includes configuring your environment so you are up and running with Node.js and MongoDB,
and a basic introduction to the core concepts of both technologies. Then, we will write a web
server powered by ExpressJS from scratch, which will handle serving all of the necessary files
for the website. From there, we will work with the Handlebars template engine to serve both
static and dynamic HTML web pages. Diving deeper, we will make the application persistent by
adding a data layer where the records for the website will be saved and retrieved via a MongoDB
server.

We will cover writing a RESTful API so that other people can interact with your application.
Finally, we will go into the details to see how to write and execute tests for all of your code. A
summary is given in the following section.

Wrapping up, we will take a brief detour as we examine some popular, merging frontend
technologies that are becoming increasingly popular while writing SPAs. These technologies
include Backbone.js, Angular, and Ember.js.

Last but not least, we will go into detail about how to deploy your new website to the Internet
using popular cloud-based hosting services such as Heroku and Amazon Web Services.

[22]

Summary
In this chapter, we reviewed what is to be expected throughout the rest of this book. We
discussed the amazing current state of JavaScript and how it can be used to power the full stack
of a web application. Not that you needed any convincing in the first place, but I hope you're
excited and ready to get started writing web applications using Node.js and MongoDB!

Next up, we will set up your development environment and get you up and running with Node.js,
MongoDB, and npm, as well as write and launch a quick Node.js app that uses MongoDB!

[23]

Getting Up and Running
In this chapter, we will cover the necessary steps to set up your development environment. These
will include the following:

Installing Node.js on your machine
Installing MongoDB on your machine
Verifying that everything is set up properly

Follow these sections carefully, as we need the development environment to be up and running
before we jump into the chapters where we dive into actual coding. For the remainder of this
book, it's going to be assumed that you are using either a Mac with OS X, Linux, or Windows
7/Windows 8. You will also need super user and/or administrator privileges on the computer, as
you will be installing the Node and MongoDB server. The code and examples after this chapter
will all be OS agnostic and should work in any environment, assuming you have taken the steps I
outlined earlier to be prepared ahead of time.

You will need a proper text editor to write and edit the code. While any text editor you choose
will serve this purpose, choosing a better text editor will hugely improve your productivity.
Sublime Text 3 appears to be the most popular text editor, regardless of the platform, at this
moment. It is a simple, lightweight editor with unlimited plugins made available by developers
around the world. If you are on a Windows machine, then Notepad++ is also a good candidate.
Also, there are JavaScript-based open source editors such as Atom and Brackets, which are also
worth a try.

Finally, you're going to need access to the command line. Linux and Mac have access to the
command line via the terminal program. A great alternative on the Mac is iTerm2
(http://iterm2.com). For Windows, the default command-line program works but isn't the best. A
great alternative there is ConEmu (http://conemu.codeplex.com).

For the remainder of this book, any time I reference a command line or command prompt, it will
look like the following:

$ command -parameters -etc

[24]

http://iterm2.com
http://conemu.codeplex.com

Installing Node.js
The Node.js installer can be easily obtained by visiting the official Node website and accessing
the downloads section. Once there, be sure to download the correct version depending on your
OS and CPU (32-bit or 64-bit). As an alternative, you can also use OS-specific package
managers to install this. Depending on the OS you are using, just jump into the specific
subsection to get more details on the steps to be followed.

You can jump into the Node.js download sections by following this link:
https://nodejs.org/en/download.

[25]

https://nodejs.org/en/download

Mac OS X
There is a universal installer available from the Node website specifically for OS X.

We need to follow these steps to install Node.js on a Mac:

1. Visit the download page of the Node.js official website as mentioned earlier and click on
the Mac OS X installer, which is independent of the processor type (32 or 64-bit).

2. Once the download is complete, double-click on the .pkg file, which will launch the Node
installer.

3. Proceed through each step of the wizard, which should be fairly self-explanatory.

Also, if you have any of the OS X package managers installed, then you don't need to manually
download the installer.

You may install Node.js via the respective package manager.

Installation using Homebrew:

 brew install node

Installation using Mac ports:

 port install nodejs

The installation of Node.js via either an installer or via the package managers will include npm
alongside. So, we don't need to install it separately.

[26]

Windows
To install Node.js on Windows, we will follow these steps:

1. We need to determine your processor type, 32-bit or 64-bit. You can do this by executing
the following command at the command prompt:

 $ wmic os get osarchitecture

The output is as follows:

 OSArchiecture

 64-bit

2. Download the installer depending on the result of this command.
3. Once the download is complete, double-click on the .msi file, which will launch the Node

installer.
4. Proceed through each step of the wizard.
5. When you get to the custom setup screen, you should notice that the installation wizard

will install not only the Node.js runtime, but also the npm package manager, and configure
a path variable.

6. So once the installation is done, Node and npm can be executed from any folder via the
command line.

Also, if you have any of the Windows package managers installed, then you don't need to
manually download the installer. You may install Node.js via the respective package manager:

Using chocolatey:

 cinst nodejs.install

Using scoop:

 scoop install nodejs

[27]

Linux
Because there are so many different flavors and distributions of Linux available, installing Node
isn't quite as straightforward. However, if you're running Linux to begin with, then you are more
than aware of this and probably comfortable with a few extra steps.

Joyent has an excellent wiki on how to install Node on Linux using the many different package
manager options available. This covers almost all the popular deb and rpm-based package
managers. You can read that wiki by visiting https://github.com/joyent/node/wiki/Installing-
Node.js-via-package-manager.

For Ubuntu 14.04 and preceding as an example, the steps to install Node would be as follows:

$ sudo apt-get install python-software-properties

$ sudo curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

$ sudo apt-get install nodejs

Once these steps have been completed, both Node and npm should be installed on your system.

[28]

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Testing that Node.js is installed properly
Now that Node has been installed on your system, let's run a quick test to ensure everything is
working properly.

Access a command line via your terminal program and execute the following command:

 $ node --version

 v8.4.3

 $ npm --version

 5.3.0

Assuming that your Node installation was successful, you should see the version number that
was installed as an output on the screen, right under the command you executed.

Your version numbers will most likely be more recent than those printed earlier.

You can also launch the Node repl, a command-line shell that lets you execute JavaScript
directly:

 $ node

 > console.log('Hello world!')

 Hello World!

 Undefined

 [press Ctrl-C twice to exit]

[29]

Online documentation
You'll want to be sure to point your browser to the online documentation for Node and bookmark
it, as it will undoubtedly become a resource that you will want to access on a regular basis. It is
not mandatory that you should go through each and every section of it, but once you start writing
code in Node.js, you will need to refer to this document frequently to understand more on the
APIs exposed by Node.js. The document is available at http://nodejs.org/api/.

Also, check out the npm registry available at http://npmjs.com, where you can find tens of
thousands of modules available for Node developers.

[30]

http://nodejs.org/api/
http://npmjs.com

Installing MongoDB
MongoDB can also be easily downloaded by visiting the official MongoDB website and
accessing the downloads section from http://www.MongoDB.org/downloads. Once there, be sure
to download the correct version depending on your OS and CPU (32-bit or 64-bit).

For Windows users, you can opt to download the MSI installer file, which will make the
installation much simpler.

Depending on the version of MongoDB you downloaded, you will want to replace <version> in
the following sections with the appropriate version number that matches your file.

[31]

http://www.mongodb.org/downloads

Mac OS X installation instructions
If you are using the Homebrew package manager, MongoDB can be installed using the following
two commands:

 $ brew update

 $ brew install MongoDB

The remainder of this chapter assumes you are not using Homebrew and need to install
MongoDB manually. If you are installing MongoDB via Homebrew, you can proceed directly to
the Confirming successful MongoDB installation section.

After completing the download, open and extract the contents of the .tgz file. You will want to
move the extracted contents to a destination folder, /MongoDB. You can do this either via the finder
or the command line, whichever you prefer, as follows:

 $ mkdir -p /MongoDB

 $ cd ~/Downloads

 $ cp -R -n MongoDB-osx-x86_64-2.4.9/ MongoDB

You will want to ensure that the locations of the MongoDB binaries are configured in your
environment path so that you can execute MongoDB and Mongo from any working directory. To do
this, edit the .profile file in your home folder (~/) and append the location for MongoDB to it.
Your .profile file should look something like the following:

export PATH=~/bin:/some/of/my/stuff:/more/stuff:/MongoDB/bin:$PATH

If you don't have this line or are missing .bash_profile completely, you can create one easily by
executing the following command:

 $ touch .bash_profile

 $ [edit] .bash_profile

 export PATH=$PATH:/MongoDB/bin

You will more than likely have a lot more than what I have in the preceding lines of code. The
important thing is that you append :/MongoDB/bin before the $PATH at the end. The : is a delimiter
between different paths (so it's likely that you will be adding your path to the end of an existing
list, but before the trailing $PATH).

Here, mongod refers to the MongoDB server instance that you need to invoke, and mongo refers to
the Mongo shell, which will be the console through which you will be interacting with the
database.

Next, you need to create a default data folder, which MongoDB will use to store all data
documents. From the command line, execute the following:

 $ mkdir -p /data/db

 $ chown `id -u` /data/db

Once the files have been properly extracted to the /MongoDB folder and the data folders created,
you can then start the MongoDB database server by executing the following command from the
command line:

 $ mongod

[32]

This should dump a bunch of log statements while the server starts up, but ultimately ends with:

2017-08-04T10:10:47.853+0530 I NETWORK [thread1] waiting for connections on port 27017

That's it! Your MongoDB server is up and running. You can type Ctrl-C to cancel and shut down
the server.

[33]

Windows 7/Windows 8 installation
instructions
After completing the download, the MongoDB website will automatically redirect you to a
landing page with a link to a Windows Quick Start guide at:

http://docs.MongoDB.org/manual/tutorial/install-MongoDB-on-windows/.

It is highly recommended that you follow that guide, as it will be the most up-to-date and will
generally be more detailed than what I can provide here.

Extract the ZIP file that was downloaded to the root c:\ destination. By default, this should
extract a folder named MongoDB-osx-x86_64-2.4.9. Depending on the tool you are using for
extraction, you can leave this as it is or change the destination folder to simply MongoDB. If you
don't change the destination during extraction, you should rename the folder once it is complete.
Either way, be sure that the files that are extracted reside in a folder named c:\MongoDB.

Next, you need to create a default data folder, which MongoDB will use to store all the data
documents. Using Windows Explorer or Command Prompt, whichever you are most comfortable
with, create the c:\data folder and then c:\data\db by using the following command:

 $ md data

 $ md data\db

Once the files have been properly extracted to the c:\MongoDB folder and both the data folders
subsequently created, you can then start the MongoDB database server by executing the
following command from a prompt:

$ c:\MongoDB\bin\mongod.exe

This should dump a bunch of log statements while the server starts up, but will ultimately end
with:

2017-08-04T10:10:47.853+0530 I NETWORK [thread1] waiting for connections on port 27017

That's it! Your MongoDB server is up and running. You can type Ctrl-C to cancel and shut down
the server.

[34]

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

Linux installation instructions
Once again, we will face a slightly more challenging installation process with Linux versus
Windows or Mac. The official website http://docs.MongoDB.org/manual/administration/install-
on-linux/ has great instructions on how to install MongoDB on a number of different Linux
distributions.

We will continue to use Ubuntu as our flavor of choice and use the APT package manager for the
installation:

 $ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

 7F0CEB10

 $ echo 'deb http://downloads-distro.MongoDB.org/repo/ubuntu-upstart

 dist 10gen' | sudo tee /etc/apt/sources.list.d/MongoDB.list

 $ sudo apt-get update

 $ sudo apt-get install MongoDB-10gen

Once these steps are completed, MongoDB should be installed and ready to run on your system.
Execute the following command in the terminal to be sure. This gets the MongoDB daemon up
and running, listening for connections:

 $ mongod

 2017-08-04T10:10:47.853+0530 I NETWORK [thread1] waiting for

 connections on port 27017

Success! Your MongoDB server is up and running. You can type Ctrl-C to cancel and shut down
the server.

As you are performing local development on your development machine and not a production
server, you don't need the MongoDB server to always be up and running. This will be an
unnecessary strain on your machine for the majority of the time you're not developing against the
server. Because of this, throughout the remainder of this book, it will always be a requirement
that you manually launch the server every time you launch code that expects to connect to a
MongoDB server. If you want, you can certainly configure MongoDB to run locally as a service
and always be up, but the instructions to do so are beyond the scope of this chapter.

[35]

http://docs.mongodb.org/manual/administration/install-on-linux/

Confirming successful MongoDB installation
Now that MongoDB has been installed on your system, let's run a quick test to ensure everything
is working properly.

Access a command line via your terminal program and execute the following command:

 $ mongod --version

 db version v3.4.4

 $ mongo --version

 MongoDB shell version v3.4.4

Assuming that your MongoDB installation was successful, you should see the version number
that was installed as an output on the screen, right under the command you executed.

Your version numbers will most likely be more recent than those printed earlier.

[36]

Bookmarking the online documentation
You'll want to be sure to point your browser to the online documentation for MongoDB available
at http://docs.MongoDB.org/manual/ and bookmark it, as it will undoubtedly become a resource
that you will want to access on a regular basis.

[37]

http://docs.mongodb.org/manual/

Writing your first app
Now that you have everything installed and confirmed that it's all working, you can write your
first quick app that will use both Node and MongoDB. This will prove that your environment is
good to go, and that you're ready to get started. In addition, it will give you a brief taste of the
world of Node and MongoDB development! Don't worry if a lot of the following is confusing or
just doesn't make sense to you, it will all be made clear throughout the rest of the book!

To begin with, we need to create a folder for our application where this application's specific
code will reside, as follows:

 $ mkdir testapp

 $ cd testapp

[38]

Creating the sample application
The testapp folder that we just created will be the root of our sample Node application. Even
though it's not necessary, it's important and also best practice that we should create the
package.json file for our Node app, which will hold the necessary data regarding the application
such as its version, name, description, development, and runtime dependencies. This can be done
by issuing the following command from the testapp folder root:

 $ npm init

This command will follow up by asking you a few questions, such as the name and version
number of your newly created application. It is not necessary that you fill in all the details in one
go, and you can skip the steps by pressing Enter and the default values will be entered, which
you may update later.

[39]

Getting the dependent modules in place
Before we start to write any Node.js code, we need to get our dependencies in place by using npm.
Since this is a basic app, we will be using it to test our Node.js connectivity with the MongoDB
server. So, the only dependent module that we need is the native MongoDB client for Node.js.
We can easily install that by executing the following command:

 $ npm install MongoDB --save

After npm installs the MongoDB driver, you can list the contents of the directory and you will
notice that a new folder was created, node_modules. This is where, surprisingly enough, all Node
modules are stored whenever you install them from npm. Inside the node_modules folder, there
should be a single folder named MongoDB. Also, you will notice that the package.json file of our
sample application will be updated by this new dependency entry.

[40]

Adding the application code
Now, let's write the simple application code to test things out. This app is going to basically
connect to our locally running MongoDB server, insert a few records as seed data, and then
provide the output on whether or not the data was inserted properly into MongoDB. You can
download a Gist of the code via this URL: http://bit.ly/1JpT8QL.

Using your editor of choice, create a new file named app.js and save it to the application root,
which is the testapp folder. Just copy the content of the preceding Gist on to the app.js file.

[41]

http://bit.ly/1JpT8QL

Understanding the code
Now, let's go through and explain what each section of the code is doing.

 //require the mongoClient from MongoDB module

 var MongoClient = require('MongoDB').MongoClient;

The preceding line requires the MongoDB Node driver that we installed via npm. This is the
required convention used in Node.js for bringing in external file dependencies to the current file
in context.

We will explain more about this in the coming chapters.

//MongoDB configs

var connectionUrl = 'MongoDB://localhost:27017/myproject',

 sampleCollection = 'chapters';

In the preceding code, we declare the variables for the database server information and collection
we want to work with. Here, myproject is the database we want to use and chapters is the
collection. In MongoDB, if you reference and try to use a collection that doesn't exist, it will
automatically be created.

The next step would be to define some data that we can insert into MongoDB to verify that
everything is fine. So, we create an array of chapters here, which can be inserted into the
database and collections we set up in the previous steps:

//We need to insert these chapters into MongoDB

var chapters = [{

 'Title': 'Snow Crash',

 'Author': 'Neal Stephenson'

},{

 'Title': 'Snow Crash',

 'Author': 'Neal Stephenson'

}];

Now, we can take a look at the rest of the code where we insert this data into the MongoDB
database:

MongoClient.connect(connectionUrl, function(err, db) {

 console.log("Connected correctly to server");

 // Get some collection

 var collection = db.collection(sampleCollection);

 collection.insert(chapters,function(error,result){

 //here result will contain an array of records inserted

 if(!error) {

 console.log("Success :"+result.ops.length+" chapters

 inserted!");

 } else {

 console.log("Some error was encountered!");

 }

 db.close();

 });

});

Here, we initiate a connection with the MongoDB server, and if the connection was proper, the
db variable will have the connection object that we can use for further operations:

MongoClient.connect(url, function(err, db) {

[42]

Look at the preceding code closely - do you remember something that we learned in Chapter 1,
Welcome to JavaScript in the Full Stack? We are using a callback for the connection call that we
are making here. As discussed in the first chapter, this function will be registered as a callback to
trigger once the connection attempt is completed. Upon connection completion, this will be
triggered by either an error or a db object, depending on whether we were able to make proper
connectivity or not. So, if you look at the code in the callback function, we are not checking
whether any error was raised in the connection attempt before logging connected correctly to the
server. Now, that's your task to add and check while we try to run this app! Take a look at the
following code block in this section:

var collection = db.collection(sampleCollection);

collection.insert(chapters,function(error,result){

This does nothing but use the db object we got in the connection call and get the collection
named chapters. Remember, we set that value to sampleCollection at the beginning of the code.
Once we get the collection, we make an insert call to put the chapters we have defined in the
array chapters. As you can see, this insert call is also done via an asynchronous call by attaching
the callback function. This callback function will be triggered once the insert operation is
completed by the code residing inside the MongoDB native client, which we required as a
dependency.

Next, we will take a look at the code inside the callback function, which we passed to the insert
function call:

if(!error) {

 console.log("Success :"+result.ops.length+" chapters

 inserted!");

} else {

 console.log("Some error was encountered!");

}

db.close();

Here, we process the values passed via the callback to find out whether the insert operation
succeeded or not and if the data related to the records that have been inserted. So, we check
whether there was an error, and, if not, proceed to print the number of records that got inserted.
Here, the result array will contain the records that we inserted into MongoDB if the operation
was a success.

Now we can go ahead and try to run this code, as we have understood what it does.

[43]

Launching the sample app
Once you have the complete code saved to app.js, it's time to execute it and see what happens.
However, before you can launch an app that clearly relies on a connection to MongoDB, you
need to first boot up the MongoDB daemon instance:

 $ mongod

In Windows, if you haven't set a PATH variable for mongod, you may need to use the full path while
executing MongoDB, which is c:\MongoDB\bin\mongod.exe. For your needs, the remainder of this
book will refer to the mongod command, but you may always need to execute the full path in each
instance.

Now, to launch the app itself, execute the following command after moving to the root folder
where app.js is located:

 $ node app.js

When the app first executes, you should see the following:

 Connected correctly to server

 Success :2 chapters inserted!

[44]

Checking the actual database
Let's take a quick look at the database itself to see what happened during the execution of the
app. Since the server is currently up and running, we can connect to it using the Mongo shell-a
command line interface to the MongoDB server. Execute the following commands to connect to
the server using Mongo and run a query against the chapter's collection. As you can see in the
upcoming code, Mongo shell connects to a default database named test initially. We need to
manually specify the database name to switch to if it's something other than test:

 $ mongo

 MongoDB shell version: 2.4.8

 connecting to: test

 > use myproject

 > show collections

 chapters

 system.indexes

 > db.chapters.find().pretty()

Here, pretty is used as part of the command to format the result from the find command. This is
used only in a shell context. It does more of a prettification task for the JSON.

You should see something similar to the following output:

{

 'id' : ObjectId("5547e734cdf16a5ca59531a7"),

 'Title': 'Snow Crash',

 'Author': 'Neal Stephenson'

},

{

 'id' : ObjectId("5547e734cdf16a5ca59531a7"),

 'Title': 'Snow Crash',

 'Author': 'Neal Stephenson'

}

If you run the Node app again, the records will be inserted into the Mongo server again. So, if
you repeat the command multiple times, the result will have more records in the output. We are
not handling this case in this chapter as we intend to have only specific code, that will be simple
enough to understand.

[45]

Summary
In this chapter, we took time to make sure your development environment was properly
configured with both the Node runtime environment and the MongoDB server. After making
sure both were properly installed, we wrote a basic app that utilized both technologies. The app
connected to a locally running MongoDB server, and inserted sample records.

Now that the tedious but necessary tasks of setup and installation are out of the way, we can
move on to some fun and start learning!

In the next chapter, we will review a primer on the JavaScript language and understand the basics
of Node. Then, we will review the basic CRUD (create, read, update, delete) operations with
MongoDB using the Mongo shell.

[46]

Node and MongoDB Basics
Before we dig in and start building a full-blown web application using Node and MongoDB, it's
important that we review some of the basics. This chapter will give you a crash course on syntax
and important topics. It is broken down into two parts, where the first half focuses on JavaScript
or Node, and the second half covers MongoDB. You will gain insight into some of the more
common and powerful tools available to you, and a lot of sample code will be reviewed to get
you up to speed.

In this chapter, we will cover the following topics:

Fundamentals of the JavaScript language
The basics of Node.js
Node's package manager, npm
The basics of MongoDB

By the end of this chapter, you should have a solid understanding of the syntax and how to use
both Node and MongoDB. There's a lot to cover, so let's get started.

[47]

A JavaScript primer
As we already know, Node.js is not just another language, but JavaScript. The language syntax
and tools you used while coding JavaScript on the browser will work verbatim on the server.
Node.js has additional tools that are only available on the server, but the language and syntax are
again the same as JavaScript. I'm assuming you have a general understanding of the basic
JavaScript syntax, but I will introduce JavaScript to you with a very brief primer on the
language, just in case.

In general, JavaScript is a fairly simple language when it comes to syntax, and you only need to
know a few important elements.

[48]

Introducing es6
The es6, or ECMAScript, 2015 is a JavaScript language update for all types, values, object
literals, properties, functions, and program syntaxes. The whole new semantics of es6 (which is
similar to other languages like Java, C#, and so on) invites cross-platform developers to learn
JavaScript with ease. Not only it improve the languages in syntactical aspects, it also provides
new inbuilt tools, such as promises, proper tail calls, destructuring, modules, and so on. As we
have already installed Node version 8, all the ECMAScript 6 features or es2017 till date are
inclusive. If you are using a Node version less than 4.3.2, you will need to install trans-
compilation tools like babel.js. We will be learning es6 by making a gradual implementation in
code and a comparative study as well.

[49]

Syntax basics
The most basic thing you can do in pretty much any programming language is declare a variable.
Unlike most other languages, JavaScript is a dynamically-typed language, which means when
you declare a variable, its value can be of any type and can change during the course of its
lifetime. However, in contrast, a strongly-typed language dictates that a variable defined as a
string type must always be a string and must always have a value of a string. The strong typed
feature is included in es6 which we are going to learn next. For now, to declare a variable in
JavaScript, simply use the var keyword before your variable name:

var myVariable; // declaring a variable with no value

var myFirstName = "Jason";

var myLastName = "Krol";

var myFullName = myFirstName + ' ' + myLastName;

// => Jason Krol

The preceding code snippet shows how we declare variables and define them with initial values
alongside their declarations. The + operator is used for string concatenation.

Also, we use camel case for the variable names. It is not mandatory that you use camel case for
variable naming, but it is more common in object-oriented languages to follow camel case as
opposed to the underscore-based approach.

JavaScript won't complain if you forget to put a semicolon at the end of each statement. Instead,
it will attempt to put the semicolons for you if there are proper statement terminations missing.
This can lead to unexpected results. The rules of semicolon insertion are explained in this article
at http://bclary.com/2004/11/07/#a-7.9.1.

Since, es6 has introduced two more keywords for variable declarations, namely let and const,
has made JavaScript a lot more elegant. First, lets learn const by considering the following
example:

const loopOver = [1,2,3];

The usage of const is same as var. Declaring a variable with const makes itself immutable and it
cannot be used for reassigning new content in itself.

One more distinction about the const keyword that it does not mean something is constant but it
emphasizes one time assignment.

Let's test it by adding the following line:

loopOver = [4,5,6];

It throws the following error:

Uncaught TypeError: Assignment to constant variable

Well, Why is it needed? The recommended practice for coder is to keep things simple which
means using a single variable to represent a single value for a time. However, we discussed about
the dynamicity of the variable earlier which has its own advantages, sometimes there is need to
represent a data which is immutable itself. Like store some credentials of server configuration or

[50]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

the Node packages itself. The usage can vary but will be applied with a single rule of one time
assignment.

To study the let keyword, we need to know about the scope of variables first which is covered in
the following section.

[51]

Understanding the scope of variables
Understanding the scope of variables is very important in JavaScript to gain a better hold of the
language. Scope may be referred to as a bucket in which your variable or your function exists.
Unlike Java and other popular languages, JavaScript follows function-level scoping as opposed
to block-level scoping (which is now introduced in es6). So, this means that the variables you
define will be limited to a scope that is bound to its parent function.

Consider the following code snippet:

var outer = 10;

function myFunction() {

 var inner = 2;

 console.log(inner);// 2

 console.log(outer);// 10

}myFunction();console.log(inner);

When you run the preceding code, we can see the scope of the inner variable is limited to the
parent function named myFunction. It won't be accessible outside it and will provide a
referenceError notification. Also, the variables available in outer scopes are available in function
scopes, and you don't need to make any extra effort to access them, as you have seen with the
variable named outer in the preceding example.

An important thing to discuss in this context is the use of the var keyword. JavaScript won't
complain if you miss var while declaring a new variable. But things can get really bad if that
happens. See the following example:

(function (){

 (function (){

 a = 10;

 })();

})();

console.log(a);// 10

Here, as the var keyword was skipped along with the variable declaration inside the inner
function, JavaScript considered that this variable should be searched in its parent scopes, then
attached it to the global scope, and ended up making it available everywhere. So, to avoid such
issues with the code, it is always useful if you pass your code through code quality tools such as
JSHint. The preceding code structure may have confused you, as it used self-invoked functions
just to induce scopes.

Now with the arrival of es6, you can declare variables with the block scope rather than only the
function scope. To understand the block level scoping, let's go through the following example:

for(let i=0;i<loopOver.length;i++){

console.log(`Iteration : ", i)

}

Console.log(`Let value of ${ i}`)

for(var i=0;i<loopOver.length;i++){

console.log(`Iteration : ", i)

}

Console.log(`Let value of ${ i}`)

The only difference in preceding snippets is the declaration of variable i. The i variable is not
accessible outside the for loop block.

[52]

For more details regarding let refer the link:
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let

So that was all about scope of variables. JavaScript supports a number of data types. Let's take a
look at them.

[53]

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let

Data types
Data types are the base of any language. The data types available in JavaScript are
as follows:

Number
String
Boolean
Object
Null
Undefined
Symbol (new in es6)

In our code, every variable we declare will contain values that belong to any of the preceding
types. Number, String, and Boolean types are quite straightforward to understand. These comes
under the primitive data types supported by the language. Here, one important point is to note
that JavaScript has no distinction between integers or floating points at its type level.

Types such as array, function, regex, and date come under the object data type.
They are considered to be composite data types. So the functions that you define
in your code will also be nothing but objects.

Null and undefined are two special types supported by JavaScript. Null points
to a deliberate non-value, whereas undefined points to an uninitialized value. So, when you just
declare a variable and haven't yet initialized it with a value, the variable will be of undefined
type. Last but not least, es6 has introduced a new primitive data type of symbol. They are used
for unique property keys and constants representative concepts.

We are not using them in context of our book, however you can visit the following link for more
details http://exploringjs.com/es6/ch_symbols.html.

So before we understand various ways to define functions, arrays, and objects, lets go through
operators and flows.

[54]

http://exploringjs.com/es6/ch_symbols.html

Operators and flows
JavaScript supports similar control structures to other languages in the C family. Conditional
statements are written with if and else, and you can chain together the statements using else-if
ladders.

var a = "some value";

if(a === "other value") {

 //do something

} else if (a === "another value") {

 //do something

} else {

 //do something

}

Control statements can be written using while, do-while, for, and switch statements. One
important thing to consider while writing conditions in JavaScript is to understand what equates
to true and/or false. Any value greater or less than zero, not null, and not undefined equates to
true. Strings such as 0, null, undefined, or empty strings equate to false.

Some sample examples using while, do-while, for, and switch statements are as follows:

// for loop example

var myVar = 0;

for(let i = 0; i < 100; i += 1) {

 myVar = i;

 console.log(myVar); // => 0 1 ... 99

}

// do while example

var x = 0;

do {

 x += 1;

 console.log(x); // => 1 2 ... 100

} while (x < 100);

// while example

while (x > 90) {

 x -= 1;

 console.log(x); // => 99 98 ... 90

}

//switch example

var x = 0;

switch(x) {

 case 1 :

console.log(""one"");

break;

 case 2 :

console.log("two"");

break;

 default:

console.log("none");

} // => "none"

Another important thing will be to understand the basic difference between
the comparisons using == and ===. The == comparisons should be used where
the type of variable is not your concern; and if the data type of the variables also should be
compared, then you should opt for a === comparison symbol as given in the following code:

const a = '5';

const b = 5;

[55]

if(a == b) {

 //do something

}

if(a === b) {

 //do something

}

Here in the code snippet, the first condition evaluates to true while the second doesn't. So while
you code, it's always safer to depend on strict (===) equality checks as a best practice.

It's always advised to run your code through code quality tools such as JSHint before you
approve them for your application. You can automate the code quality checks via task runners
such as Grunt so that each time we make a change in our code, the code quality tool runs and
presents if there are any potential issues with the code that has been written.

[56]

Understanding objects
In JavaScript objects, the arrays and even functions we create fall into the same data type: Object.
Declaring an object is a fairly straightforward process:

var myObject = {}; // that's it!

You may add properties or attributes to this object, which may belong to any type. It means you
can add arrays, functions, or even other objects as properties of this object. Adding a new
property to this object can be done in any of the two ways shown here:

var person = {};

person.firstName = 'Jason'; // via dot operator

person['lastName'] = 'Krol'; // via square brackets

Let's look at an example where we add arrays and functions as properties of this object:

var person = {};

person.firstName = 'Jason'; // properties

person.lastName = 'Krol';

person.fullName = function() { // methods

 return this.firstName + ' ' + this.lastName;

};

person.colors = ['red', 'blue', 'green']; // array property

You can see in the preceding code that we defined a basic object called person and assigned it
some properties and a function. It's important to note that the use of the this keyword in the
fullName function. The this keyword refers to the object that the function is a part of. So via the
this keyword, the function will be able to access the other properties that are part of the object it
belongs to.

Apart from the approach of adding properties after the object creation, we can also attach the
initial object properties as part of its creation, as follows:

// define properties during declaration

var book = {

 title: 'Web Development with MongoDB and NodeJS',

 author: 'Jason Krol',

 publisher: 'Packt Publishing'

};

console.log(book.title);

// => Web Development with MongoDB and NodeJS

book.pageCount = 150; // add new properties

In the preceding example, we are creating objects without specifying any class from which they
should be created by using {}. So, this results in the creation of this new object from the Object
base class from which other composite types such as arrays and functions are extended. So, when
you use {}, it is equivalent to a new Object().

Here, the objects we create via the use of the object literal {} are instances of the Object class. To
define custom classes for our application, we will need to use functions and prototypes. Mozilla
has a fairly good tutorial on introducing this whole point, available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-
Oriented_JavaScript. The es6 has enhanced the object properties by adding various features as:
First and foremost of all is property shorthand. Now with es6 we can assign property using a
variable. Lets understand this using the following example:

[57]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

let publisher = 'Packt Publishing';

let book = { publisher };

console.log(book.publisher);

In the preceding snippet, the variable value is implicitly assigned to object property and there is
no need to have a property specified while declaring an object.

The next amazing feature is computation of property key in object literals. To learn this feature,
let's add a property to the preceding object called book.

let edition = 3;

let book = {publisher,[`Whats new in ${edition} ? `] : "es6 and other improvisation"}

The es6 introduces us to one of the most awaited feature called the template literals. You may
have noticed a kind of interpolation operation used in preceding snippets with placeholder ${}. It
is nothing but a concatenation of variable in string without using any operator, such as +. The
template literal enhances the feature of readability in JavaScript which is quite essential. For
more information follow the link
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals.

Once we run the preceding code, we note that es6 enables us to perform any computation for
property names using a square bracket. Lastly, we can follow an elegant feature of the method
notation in the object property for all functions. This can be seen in the following example:

var person = {

 firstName : 'Jason',

 lastName : 'Krol', // properties

 fullName() { // method notation

 return this.firstName + ' ' + this.lastName;

}

};

Always remember that objects are nothing but an address of a memory location and not actual
storage. For instance, firstName: 'Jason' is stored in memory location with address
person.firstName. Until now, we have learned about a single point of storage called as variables,
moving further let's learn multiple point of storage.

[58]

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

Understanding arrays
Arrays work the same way in JavaScript as they do in pretty much any other language. They are
zero indexed, and you can declare a variable as an empty array or a pre-populated array. You can
manipulate the items in an array, and arrays are not fixed in length:

var favFoods = ['pizza', 'cheeseburgers', 'french fries'];

var stuff = []; // empty array

var moreStuff = new Array(); // empty array

var firstFood = favFoods[0]; // => pizza

// array functions:

favFoods.push('salad'); // add new item

// => ['pizza', 'cheeseburgers', 'french fries', 'salad']

favFoods.pop(); // remove the last item

// => ['pizza', 'cheeseburgers', 'french fries']

var first = favFoods.shift(); // remove the first item

// => first = 'pizza';

// => favFoods = ['cheeseburgers', 'french fries']

To be more precise, you can consider arrays as extended child classes of the base Object class
with extra implementations of Array functions.

[59]

Understanding functions
Functions are first-class citizens in JavaScript. What this means is that a function by itself is an
object, so it can be treated as such and extended with properties and additional functions to the
base Object class. We will see a lot of situations where we pass functions as parameters to other
functions and return functions from other function calls.

Here, we will take a standard function (in this case, myFunction). We will assign this function a
timesRun property, just like we do for any other object during its execution, and see how to refer
to that property later:

var myFunction = function() {

 if(this.timesRun)

 this.timesRun += 1;

 else

 this.timesRun = 1;

 // do some actual work

 console.log(this.timesRun);

};

myFunction();

// => 1;

myFunction();

// => 2;

myFunction();

// => 3;

As we have seen in the preceding example, by using the var keyword, we can define functions in
the same way as variables:

function sayHello() {

 console.log('Hello!');

}

// or

var sayHello = function() {

 console.log('Hello!');

};

Both methods are almost identical in the preceding sample code. The first method is the most
common way to define a function, and is called the named function approach. The second
method discussed here is the function expression approach, where you assign the unnamed
function as a reference to a variable and keep it unnamed.

The single most important difference between these two approaches is related to a concept called
JavaScript hoisting. Basically, the difference is that when you adopt a function expression
strategy, the function will not be available in its containing scope till the point, its definition
statement gets executed. In the named function approach, regardless of the position you define it
at, the function will be available throughout the containing scope as given in the following code:

one();//will display Hello

two();//will trigger error as its definition is yet to happen.

function one() {

 console.log('Hello!');

}

var two = function() {

 console.log('Hello!');

};

two ();//will display Hello

[60]

In the preceding sample code snippet, function one can be invoked from anywhere in its parent
scope. But function two will not be available before the point where its expression is evaluated.

JavaScript hoisting is the process by which the function definitions and variable declarations are
moved to the top of the containing scope by the JS interpreter before the script is executed. So, in
the previous case of named functions, the definition was moved to the top of the scope. However,
for the function expression, only the declaration of the variable moved to the top of the scope,
setting it to undefined till the point in the script where it was actually executed. You can read
more about the concept of hoisting at http://code.tutsplus.com/tutorials/JavaScript-hoisting-
explained--net-15092.

[61]

http://code.tutsplus.com/tutorials/javascript-hoisting-explained--net-15092

Anonymous functions and callbacks
Often, you will need to use a temporary function that you don't necessarily want to declare ahead
of time. In this type of scenario, you can use an anonymous function, which is simply a function
that is declared at the time you need it. This is similar to the function expression context we
explored earlier, with a simple difference that the function isn't assigned to a variable so it has no
way of being referenced to later. The most common use of anonymous functions is when they are
defined as a parameter to another function (most notably when used as a callback).

One of the most common places to use an anonymous function (which also acts as a callback
even if you didn't realize it) is with setTimeout or setInterval. These are two standard JavaScript
functions that will execute code after a specified delay (in milliseconds) or repeat the execution
of code after a specified delay. Here is an example of one of them, setTimeout, using an
anonymous inline function:

console.log('Hello...');

setTimeout(function() {

 console.log('World!');

}, 5000);

// => Hello...

// (5000 milliseconds i.e. 5 second delay)

// => World!

You can see that the anonymous function was passed as the first parameter to setTimeout because
setTimeout expects a function. You can, if you desire, declare the function ahead of time as a
variable and pass that to setTimeout instead of the inline anonymous function:

var sayWorld = function() {

 console.log('World!');

}

setTimeout(sayWorld, 5000);

// (5 second delay)

// => World!

The anonymous function just acts as a clean inline disposable function.

Callbacks are important because one of the most powerful (and confusing) features of JavaScript
is that it's asynchronous. This means that every line executes sequentially, but it doesn't wait
around for code that might be taking longer than it should (even if by design). We have explored
this via an example in the first chapter while looking into the asynchronous nature of Node.js.

Mozilla has a detailed tutorial on JavaScript concepts, which we advise you to go through once
you finish this chapter. The tutorial includes highly advanced concepts, such as closures, that
were not covered in this chapter due to the depth of the topic. So refer to this Mozilla
Development Network article at https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-
introduction_to_JavaScript.

[62]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript

JSON
JavaScript Object Notation (JSON) is the standard syntax used when dealing with data in
JavaScript as well as most other languages and web services. The basic premise of JSON is that
it looks exactly like a standard JavaScript object with a few strict exceptions:

JSON is pure text. There are no data types with properties; that is, date values are stored as
strings and so on
All names and string values must be in double quotes
There can be no functions as properties

Let's take a quick look at a pretty standard JSON object:

{

 "title": "This is the title",

 "description": "Here is where the description would be",

 "page-count": 150,

 "authors": [

 { "name": "John Smith" },

 { "name": "Jane Doe" },

 { "name": "Andrea Johnson" }

],

 "id": "1234-567-89012345"

}

If you are at all familiar with XML, JSON is somewhat similar, except it is much easier to read
and make sense out of. As described best by the ECMA, "JSON is a text format that facilitates
structured data interchange between all programming languages".

[63]

The basics of Node.js
With the basics of JavaScript out of the way, let's focus on some of the basics of Node. We will
start by understanding the node.js core architecture. The significance of different node features
lies in its architecture and way it works. Let us study it carefully in the following section.

[64]

Node.js architecture
The web application normally follows three tier web architecture consisting of client, web server,
and data source. In our context, we have created a web app server using Node.js. As we
discussed in chapter 1, Welcome to JavaScript in The Full Stack, Node.js follows a single
threaded architectural model. To reduce the memory leak and understand asynchronousity while
writing the code, we need to understand how Node.js works.

The following diagram depicts a visual representation of code:

Every processing component is sequenced in the following order"

1. The client sends a request (consider an HTTP request).
2. The Chrome's v8 engine is a just-in-time (JIT) compiler. Once the request is received at

the server, v8 converts the JavaScript code to the machine code.
3. The C++ APIs within the Node.js core provide a binding for other system-level

components. Binding is basically a wrapper library so that a code written in one language
can communicate with a code written in another language. This API is responsible for
emitting an event.

4. Once the event is emitted, it is stored in the event queue.
5. The eventloop is responsible for fetching the event from the queue and executing it in the

callstack.

6. If an event requires an asynchronous operation to be done, such as using database files, it
switches its execution context to another worker thread and gets executed. This is done by
libuv. The libuv library is responsible for handling the asynchronous behavior of an event
life cycle in the system. It is written in C. It maintains a pool of threads to handle

[65]

asynchronous requests such as I/O and network-related operations.
7. Once the asynchronous operation is completed, it returns the callback. The callback

remains in the event queue until the callstack gets empty.
8. Once the callstack is empty, the eventloop pulls the callback from the event queue and

executes it in the callstack.
9. Eventually, the event returns the data to the Node API.

10. In each loop, it performs a single operation. Though the operations are performed
sequentially, this single-threaded mechanized eventloop is so fast that it provides an
illusion of concurrency. A single thread can utilize a single core of the system; hence, it
provides better performance and minimal response time to client.

[66]

Event-driven
At its core, one of the most powerful features of Node is that it is event-driven. This means that
almost all the code you write in Node is going to be written in a way that is either responding to
an event or is itself firing an event (which in turn will fire other code listening for that event).

Let's take a look at the code that we'll write in a later chapter that handles connecting to a
MongoDB server using Mongoose, a popular Node.js MongoDB Object Document Mapper
(ODM) module:

mongoose.connect(');

mongoose.connection.on('open', function() {

console.log("Connected to Mongoose...");

});

First, we tell our mongoose object to connect to the server provided as a string parameter to the
function. Connecting will take an undetermined amount of time though, and we have no way of
knowing how long. So, what we do is bind a listener to the open event on the mongoose.connection
object. With the use of the on keyword, we are indicating that when the mongoose.connection
object triggers an open event, it executes the anonymous function that was passed in as the
parameter.

[67]

Asynchronous execution
Earlier, we reviewed the idea of asynchronous JavaScript code in the browser using setTimeout;
the principles apply more strongly in the world of Node. As you may be making a number of
network-dependent connections to different REST API services, database servers, and anything
else, it is important that your code can be executed smoothly and has proper callback usage in
place whenever each service responds.

[68]

The module system
In an effort to make the code as modular and reusable as possible, Node uses a module system
that allows you to better organize your code. The basic premise is that you write a code fulfilling
a single concern, and export this code using module.exports (or simply exports) as a module that
serves that single purpose. Whenever you need to use that code elsewhere in your code base, you
will require that module:

// ** file: dowork.js

module.exports = {

 doWork: function(param1, param2) {

 return param1 + param2;

 }

}

// ** file: testing.js

var worker = require('./dowork'); // note: no .js in the file

var something = 1;

var somethingElse = 2;

var newVal = worker.doWork(something, somethingElse);

console.log(newVal);

// => 3

Using this system, it is simple to reuse the functionality in a module (in this case, the dowork
module) in a number of other files. Furthermore, the individual files of a module act as a private
namespace, which means every file defines a module and is executed separately. Any variables
declared and used within the module file are private to that module and not exposed to any code
that uses the module via require(). The developer has control over which part of module will be
exported or not. Such implementation of modules is called as the commonJs modules pattern.

Before we conclude module system in Node.js, we need to learn about the require keyword. The
require keyword accepts an address of a file as string and provides it to JavaScript engine to
compile it into a method Module._load. The Module._load method is executed for first time, it
actually loads from the exported file and further it is cached. Caching is done so as to reduce the
number of file reads and can speed up your application significantly. In addition, when a module
is loaded next time, it provides an instance of that loaded module from cache. This allows
sharing of modules across the project with the state of singleton. At the end, the Module._load
method returns the module.exports property of the addressed file on their respective execution.

The module system extends infinitely as well. Within your modules, you can require other
modules and so on and so forth. Make sure while importing it, do not cause so called a cyclic
dependency.

Cyclic or circular dependency is a situation when a module requires itself directly or indirectly.
We can learn about this more from the discussion in the following link :
https://stackoverflow.com/questions/10869276/how-to-deal-with-cyclic-dependencies-in-node-
js.

[69]

https://stackoverflow.com/questions/10869276/how-to-deal-with-cyclic-dependencies-in-node-js

The Node.js core
The Node.js core literally has hundreds of modules available for you to use while writing your
applications. These modules are already compiled into binary and are defined within Node.js
source code. These include the following:

Events
Filesystems

Just like other languages, the Node.js core also provides an ability to interact with filesystem
using the fs module. This module is equipped with different methods for performing different
operations on file synchronously as well as asynchronously. Refer chapter 1. Welcome to
JavaScript in The Full Stack to learn more about the difference of sync and async. The
synchronous methods of fs are suffixed by the keyword Sync for instance readFileSync. For all
reviewing the module in depth refer the following link : https://nodejs.org/api/fs.html.

[70]

https://nodejs.org/api/fs.html

HTTP
An HTTP module is one of the most important module in Node.js core. HTTP module provides
functionality to implement an HTTP client as well as server.

Following is the minimum code required to create a basic server and a client:

HTTP Server HTTP Client

const http = require('http');

//create a server object

http.createServer((req, res)=>{

 res.write('Hello Readers!'); //write a response to the client

 res.end(); //end the response

}).listen(3000); //the server object listens on port 3000

const http = require('http');

http.get({

 hostname: 'localhost',

 port: 3000,

 path: '/'

}, (res) => {

 res.setEncoding('utf8');

 res.on('data', (chunk)=>{

 console.log(`BODY: ${chunk}`);

 });

});

Considering the preceding code, once the module is required, we use an instance of the HTTP
Object to either create a server or to request a server on the other side. The createServer method
requires a callback as a parameter. This callback is called whenever the server is hit by an HTTP
request. Further, it also provides a response object as a parameter to handle the response back
accordingly.

[71]

Net
The preceding HTTP module is wired using the net module. According to documentation of the
node.js api, the net module provides an asynchronous network API for creating stream-based
TCP or IPC servers. This is one of the compiled binary library of core Node, which interacts with
the internal C library called libuv. The libuv library is responsible for handling asynchronous
request such as I/O and network-related operations. The best documentation to refer is Node's
own documentation: https://nodejs.org/api/net.html.

[72]

https://nodejs.org/api/fs.html

Streams
The stream is one of the most significant module among the core modules. To define the stream
in simple words, it is the flow of data received as small data chunks from a particular source. At
the receiver's end, it might neither have all the stream data nor it will have to fit it memory all at
once. This allows us to handle a large amount of data with limited resources. We can visualize
the stream by an analogy given by Dominic Denicola. According to him:

"Streams are to asynchronous iterables as arrays are t synchronous iterables".

Consider if we need to read a large file of data in the environment where multiple read/write
operations takes place. In such cases, streams provides a powerful abstraction to handle the low-
level I/O system calls while still providing performance benefits.

The internal stream module should not be used directly so as to avoid the behavioral changes
between Node versions. However, we can use the wrapper modules like readable-streams on the
npm.

Although, streams are not extensively used in context of our book, it is one of the backbone
feature of Node.js core used by its internal modules itself and has always been a big part of
Node.js ecosystem. To learn more about streams follow the link:
https://community.risingstack.com/the-definitive-guide-to-object-streams-in-node-js/.

Definitely make sure to check out the online docs on Node at: http://nodejs.org/api, to see the full
list of modules available in Node's core and see plenty of sample code and explanations.

[73]

https://community.risingstack.com/the-definitive-guide-to-object-streams-in-node-js/
http://nodejs.org/api

Installing modules using npm
The module system in Node is very powerful that consuming a third-party module written by
other developers is a piece of cake. Node includes its own package manager called npm, which
is a registry that currently contains over 475,000 modules written in Node. These modules are
completely open source and available to you via a few short commands. In addition, you can
release your own personal modules via npm and allow anyone in the world to use your feature!

Let's say you want to include a popular web framework, express, in your project (the one we will
be using later in this book). There are two simple steps required to download a module and use it
in your code:

 $ npm install express

 // ** file: usingnpm.js

 var express = require('express');

And that's it! Literally, it's that simple! From the command line of the folder where your project
is located, simply execute npm install package-name, and the package will be downloaded from
npm and stored in a folder called node_modules within your project. If you browse through the
node_modules folder, you will find a folder for the package you installed, and within that folder,
you will find the raw source code for the package itself. Once the package is downloaded, it's as
simple as using require() within your code.

There may be times when you want to install a Node package globally, for example, when using
a popular command-line build tool called Grunt.js. To install an npm package globally, simply
include the -g or --global flag, and the module will be installed as a global executable instead.
When installing npm packages globally, the source files for the package are not stored within the
node_modules folder of a specific project, but instead within a node_modules folder in a system
directory of your machine.

A really powerful feature of npm is that it allows a quick, easy, and consistent way for other
developers to boot up your code in their local environment. Node projects, typically, include a
special file called package.json that contains information about the project as well as a list of all
npm packages that the project depends on. A developer with a copy of your local code can
simply execute npm install to have every dependency downloaded and installed locally using
this file.

The npm install flag --save or --save-dev is required if you want the dependency that you are
installing to be saved to the package.json file. If you are starting a new project and don't want to
create a package.json file by hand, you can simply execute npm init and answer a few quick
questions to get a default package.json file quickly set up. You can leave every question blank
during init and accept the default values if you want:

 $ npm init

 $ npm install express --save

 $ npm install grunt --save-dev

 $ cat package.json

 {

 "name": "chapter3",

 "version": "0.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

[74]

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "express": "^3.5.1"

 },

 "devDependencies": {

 "grunt": "^0.4.4"

 }

 }

The dependencies and devDependencies sections have express and grunt listed. The difference
between these two sections is that the dependencies section is absolutely critical for the app to
function properly and the devDependencies section has only packages that need to be installed for
a developer to use during the development of the project (such as Grunt for various build steps,
testing frameworks, and so on). If you are confused about the use of the ^ symbol in the package
versions, it's used to update the dependency to the most recent minor version or patch version
(the second or third number). ^1.2.3 will match any 1.x.x release including 1.3.0, but will hold
off on 2.0.0. So, in our case ^3.5.1 of Express.js will look for the most recent minor version of
express.js but will not take 4.0.0, as it's a major version.

[75]

The basics of MongoDB
Since MongoDB is largely powered by JavaScript, the Mongo shell acts as a JavaScript
environment. In addition to being able to execute regular Mongo queries, you can also execute
standard JavaScript statements. Most of the items mentioned earlier in the JavaScript primer
apply directly to the Mongo shell as well.

In this section, we will primarily focus on the various ways to perform standard CRUD
operations via the Mongo shell.

[76]

The Mongo shell
To access the Mongo shell, simply execute mongo from any terminal. The Mongo shell requires
the mongod server to be currently running and available on the machine, as the first thing it does is
connect to the server. Use the following command to access the Mongo shell:

 $ mongo

 MongoDB shell version: 2.4.5

 connecting to: test

 >

By default, when you first launch Mongo, you are connected to the local server and set to use the
test database. To display a list of all databases on the server, use the following command:

 > show dbs

To switch databases to any of those listed in the output of show dbs, use the following command:

 > use chapter3

 switched to db chapter3

An interesting thing to note is that if you use use on a database that doesn't exist,
one will be created automatically. If you are using an existing database and want to view a list of
collections in the database, execute the following command:

 > show collections

In this case of my chapter3 database, I had no existing collections since it was automatically
generated as a new database for me. Collections in MongoDB are similar to the tables in a
relational database.

[77]

Inserting data
Since we are working with the chapter3 database, which is a brand new database, there are
currently no collections in it. You can use any collection (table) you want by simply referring to
a new collection name with the db object:

> db.newCollection.find()

>

Performing a find operation on an empty collection simply returns nothing. Let's insert some data
so we can experiment with some queries:

> db.newCollection.insert({ name: 'Jason Krol', website:

 'http://kroltech.com' })

> db.newCollection.find().pretty()

{

 "_id" : ObjectId("5338b749dc8738babbb5a45a"),

 "name" : "Jason Krol",

 "website" : "http://kroltech.com"

}

After we perform a simple insertion (basically of a JavaScript JSON object), we will perform
another find operation on the collection and get our new record returned, this time with an
additional _id field added. The _id field is Mongo's method for tracking a unique identifier for
every document (record). We also chained the pretty() function to the end of the find(), which
outputs the results a little more nicely.

Go ahead and insert a few more records, so you have some data to play with for the next section
when we go over querying.

[78]

Querying
Querying and searching for documents in a MongoDB collection is pretty straightforward. Using
the find() function by itself with no parameters will return every document in the collection. To
narrow down the search results, you can provide a JSON object as the first parameter with as much
or as little specific information to match against as you wish, as shown in the following code:

> db.newCollection.find({ name: 'Jason Krol' })

{ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason

 Krol", "website" : "http://kroltech.com" }

You can include additional parameters to make the search more precise:

> db.newCollection.find({ name: 'Jason Krol', website:

 'http://kroltech.com'}){ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason

 Krol", "website" : "http://kroltech.com" }

With each result set, every field is included. If you want to only return a specific set of fields
with the result, you can include map as the second parameter to find():
> db.newCollection.find({ name: 'Jason Krol' }, { name: true })

{ "_id" : ObjectId("533dfb9433519b9339d3d9e1"), "name" : "Jason Krol"

 }> db.newCollection.find({ name: 'Jason Krol' }, { name: true, _id:

 false })

{ "name" : "Jason Krol" }

The _id field will always be included by default, unless you specifically state that you don't want
it included.

Additionally, you can use query operators to search for things that are within ranges. These
include greater than (or equal to) and less than (or equal to). If you want to perform a search
against a collection of homework, and you want to find every document with a score within the
B range (80-89), you can execute the following search:

> db.homework_scores.find({ score: { $gte: 80, $lt: 90 } })

Finally, you can use regex while performing a search to return multiple matching documents:

> db.newCollection.find({ name: { $regex: 'Krol'} })

The preceding query will return every document that contains the word Krol. You can get as
advanced as you want with regex statements.

If you know that you are going to be returning multiple documents on a query and only want the
first result, use findOne() in place of a regular find() operation.

[79]

Updating data
To update a record, use the update() function, but include a find query as the first parameter:

> db.newCollection.update({ name: 'Jason Krol' }, { website:

 'http://jasonkrol.com' })

There's a bit of a catch here. If you perform a new find({ name: 'Jason Krol' }) operation,
something strange happens. No data is returned. What happened? Well, the second parameter in
the update() function is actually the new version of the complete document. Since, you only
wanted to update the website field, what actually happened was that the document that was found
was replaced with the new version that consists of only the website field. To reiterate, the reason
this happens at all is because with NoSQL such as MongoDB, the document does not have a set
number of fields (as a relational database does). To fix this problem, you should use the $set
operator instead:

> db.newCollection.update({ name: 'Jason Krol' }, { $set: { website:

 'http://jasonkrol.com'} })

There may be a time when you want to update a document, but the document itself may or may
not exist. What happens when the document does not exist, and you'd like a new one to be
created instantly based on the updated values you provide? Well, there's a handy function just for
that. Pass {upsert: true} as the third parameter to the update() function:

> db.newCollection.update({ name: 'Joe Smith' }, { name: 'Joe Smith',

 website: 'http://google.com' }, { upsert: true })

If we have a document with a name field that matches Joe Smith, the website
field will be updated (and the name field preserved). However, if we do not have
a matching document, a new one will be created automatically.

[80]

Deleting data
Deleting documents works almost exactly like find(), except instead of finding and returning
results, it deletes those documents that match the search criteria:

> db.newCollection.remove({ name: 'Jason Krol' })

If you want the nuclear option, you can use the drop() function, which will remove every
document in a collection:

> db.newCollection.drop()

[81]

Additional resources
For additional learning with JavaScript, I suggest you check out some of the following resources:

Mozilla Developer Network at https://developer.mozilla.org/en-US/docs/Web/JavaScript
Secrets of the JavaScript Ninja, John Resig, Bear Bibeault, Manning
Learning JavaScript Design Patterns, Addy Osmani, O'Reilly
JavaScript: The Good Parts, Douglas Crockford, O'Reilly

The Node API online documentation is going to be your best bet for fully understanding
everything that's available within the Node core set of modules. The Node API docs can be
found at http://nodejs.org/api.

Additionally, there is a great website that teaches Node using actual programming problems that
you must solve. The emphasis with these exercises is to understand the nuts and bolts of how
Node works and get down into the fundamentals of working with streams, asynchronous I/O,
promises, and more. Node school can be found at http://nodeschool.io.

Finally, the creators of MongoDB offer an amazing 7-8 week online training and certification
program completely free of charge, where you will learn everything you need to be a true
MongoDB master. This can be found at MongoDB University at
https://university.mongodb.com.

Now it's time to dive in and start writing some real code!

[82]

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://nodejs.org/api
http://nodeschool.io
https://university.mongodb.com

Summary
In this chapter, you took a crash course on the basics of JavaScript, Node.js, and MongoDB. In
addition, you learned about Node's package manager, npm. For further learning, additional
resources were provided for JavaScript, Node.js, and MongoDB.

In the next chapter, you will write your first Node web server using Express.js and get started
with creating a complete web application.

[83]

Introducing Express
When we need to build a full-fledged web application, writing the whole application from
scratch is not the best approach to take. We can use a well-maintained and well-written web
application framework to build our application to reduce development effort and increase
maintainability.

In this chapter, we will cover the following topics:

Explore the Express.js web application framework
Explore the various elements of Express.js
Develop the necessary code to bootstrap a web application using Express

[84]

Web application frameworks
Simply put, a web framework makes it easier to develop a web application. Consider the aspect
of breaking down commonly used functionality into reusable modules. That is exactly what
frameworks do. They come with a lot of reusable modules and enforce a standard structure for
the code so that it will be easier for developers across the world to go through and understand the
application.

Apart from all these advantages, web frameworks mostly get maintained by a lot of developers
across the world. So, the effort of developers to incorporate the newer bug fixes and features of
underlying languages is minimized to a point where we just need to upgrade the framework
version which is being used by the application. So, the use of web frameworks for building web
applications brings a lot of advantages to the development and maintenance phases of a web
application.

The Express.js framework that we are going to use throughout this book is a Model-View-
Controller (MVC) based web application framework. MVC is just an architectural design
pattern:

Models: Models are used to represent the data or entities of the web application.
They align more closely with the instances, which store the data of the application—
typically a database or a web service.
Views: Views are responsible for how the application gets presented to the end user. So, a
View can be considered as the presentation layer of the application.
Controllers: Now, you may be wondering about the role of controllers in the web
application. Well, the role of controllers is to just glue together the models with the
respective Views and to take care of the request from the user for a particular web page in
our application end to end.

This may be a bit hard for you to grasp if you are hearing this concept for the first time. But after
going through this chapter, you will get used to these concepts while we present various
examples to you.

[85]

What is Express.js?
As described perfectly on its home page, Express is a minimal and flexible Node.js
web application framework, providing a robust set of features for building single, multipage, and
hybrid web applications. In other words, it provides all the tools and basic building blocks you
need to get a web server up and running by writing very little code. It puts the power in focusing
on writing your application and not worrying about the nuts and bolts that go into making the
basic stuff work in your hands.

The Express framework is one of the most popular Node-based web frameworks and one of the
single most popular packages available in npm. It is built based on the Sinatra web framework,
which is quite popular in the Ruby world. There are a lot of frameworks across languages that
take inspiration from Sinatra's simplicity, such as PHP's Laravel framework. So, Express is the
Sinatra-based web framework in the Node.js world.

If you look at a sample piece of code, one of the most basic implementations of Express, you can
see how easy it is to get a web server up and running, for example:

const express = require('express');

const app = express();

app.get('/', (req, res)=>{

 res.send('Hello World');

});

app.listen(3300);

The beauty of Express is that it makes building and maintaining the server code for a website
simple.

[86]

Building a complete web application
Beginning with this chapter, we are going to build a complete web application.
The web application that we are going to build will be a clone of a popular social image sharing
site, imgur.com. We'll call our site imgPloadr.io.

[87]

http://imgur.com

Designing the web application
The requirements of the site are as follows:

The home page will allow visitors to upload an image as well as browse the existing
uploaded images, which will be sorted from newest to oldest.
Each uploaded image will be presented via its own page that shows its title, description,
and a large image display. Visitors will be able to like the image and post comments.
A consistently shared sidebar will be visible on both pages and will showcase some
general statistics about the site, the most popular images, and the most recent comments.

The site will use Bootstrap so that it has a nice professional design and is responsive on any
device.

The following screenshot is from the home page of the completed site:

[88]

The following screenshot is an image's details page from the site:

[89]

[90]

Organizing the files
Before you start writing any code, we want to make sure that you have a project folder set up
correctly, with the proper folder structure to house all of the various files that you will be
creating. Get started by creating a new folder for your project, and name it anything you like.
Then, inside that folder, create additional folders to match the following structure:

/(project root)

---/helpers

---/controllers

---/public

------/css

------/img

------/js

------/upload

---/server

---/Views

------/layouts

------/partials

Each of these folders will contain important modules that we will write throughout the remainder
of this chapter and this book.

If you use an Express-based generator through Yeoman, you will get the necessary folder
structure and the dependencies imported with the boilerplate code. However, as our intention is
to understand this framework, we will skip this. Visit http://yeoman.io/ for more information on
the features of Yeoman.

You are going to need a package.json file for this project, and the easiest way to create one of
these is by simply executing the following command from the root of the project folder:

$ npm init

Respond to each of the questions as you are prompted, or simply press Enter repeatedly to accept
the default values. Now, let's install Express and its necessary dependencies via npm:

$ npm install express morgan body-parser cookie-parser method-

override errorhandler express-handlebars --save

This will install the Express framework in the node_modules folder and also add Express to the
package.json file in the dependencies section. Note that at the time of writing this book,
Express.js is in its 4.x.x versions. Here, as you can see, Express is a completely decoupled
framework that doesn't come with a lot of packaged modules within itself. Instead, you can
figure out the dependencies of your application and plug in and out of the application anytime. If
you have been following Express development from the beginning, you must have noticed that
these changes were introduced as a part of the Express 4.x.x versions. Prior to this version,
Express used to come with a lot of built-in modules bundled within it. Here, the modules we
install alongside Express are the various dependencies our application has when we start building
the complete web application. We will discuss the use of each module in a later section of this
chapter.

[91]

http://yeoman.io/

Creating the application's entry point
After installing Express and the necessary dependencies, the next step in developing the
application will be to create a file which will serve as the default entry point of this application.
We will be executing this file to start our web application, and it will contain the necessary code
to require dependent modules and boot up the application to listen to a specified port on the
development server.

We are going to name the entry point file server.js for now and will keep it pretty lean so that its
content is quite self-explanatory. Any major logic that is going to be executed within this file will
actually be deferred to external modules hosted within other files.

Before we can do anything within server.js, we require a few modules that we're going to work
with, specifically Express:

const express = require('express');

// config = require('./server/configure');

let app = express();

In the preceding code, we are assigning the express module to the express variable. The config
module is actually going to be our own module that we will write shortly, but for now, since it
doesn't exist, we will leave that line commented out. Finally, we will declare a variable called app
that is actually what the Express framework returns when it is executed. This app object powers
our entire app application, which is how it was so cleverly named.

Throughout this chapter and the remainder of the book, I may include commented out code in the
samples (code that starts with //). This is so that following along will be easier when we use the
commented lines as reference points, or when we enable those features by simply uncommenting
the code.

Next up, we will set a few simple settings via the app object using the app.set() function. These
settings are really just a way for us to define some app-level constants that we can use throughout
the rest of our code as handy shortcuts:

app.set('port', process.env.PORT || 3300);

app.set('Views', `${__dirname}/Views`);

// app = config(app);

The code is explained as follows:

The first two lines of the preceding code use built-in constants in Node. The
process.env.PORT constant is an environment setting that is set on the actual machine for the
default port value to the server. If no port value is set on the machine, we will hardcode a
default value of 3300 to use in its place.
After that, we set the location of our Views (HTML templates) to
${__dirname}'/Views, or using another Node constant, the /Views
folder within the current working directory.
The third line of code is referencing the config module, which we haven't written yet, so
that the line is commented out.
Last but not least, we will create a HTTP server using our app object and tell it to listen for
connections:

[92]

app.get('/', (req, res) => {

 res.send('Hello World');

});

app.listen(app.get('port'), () => {

 console.log(`Server up: http://localhost:${app.get('port')}`);

});

Here, we set a route in our application to respond with a Hello World message. If any user
requests for the root of our application, it will respond with a Hello World message. The last
section of the code is to call the listen() function on our app that tells it which port to listen to,
and to pass in a simple anonymous callback function that will execute once the server is up and
listening by executing a simple console.log() message. That's it! Again, make sure to save this
file with the name server.js within the root of the project. You're ready to run your server and
see if it works.

[93]

Booting up the application
Let's take your server for a spin and see how you're doing so far:

$ node server.js

Server up: http://localhost:3300

Perfect! At this point, your server doesn't actually do anything great. Try pointing your browser
to http://localhost:3300. You should receive a pretty basic message that says Hello World! If you
request any other routes on the port, such as http://localhost:3300/, it will respond with a cannot
get response. This is because you haven't configured any routes or any actual logic in your server
to say how to handle certain requests, but only a GET request to the default route of /.

Before you set up your routes, we should understand the concept of middleware in Express,
which will be essential to understand how the modules that are custom dependencies of our
application get integrated with our normal application flow.

You can set any number of environment variables right from the command line before you run
your server by executing something like the following command:

$ PORT=5500 node server.js

Server up: http://localhost:5500

You can also set environment variables in your environment settings permanently. This can be
done typically by editing your .profile file or equivalent.

[94]

Middlewares
One of the most powerful features available with Express is the concept of middleware. The idea
behind middleware is that it acts like a stack of filters that every request to your server passes
through. Every request passes through each filter and each filter can perform a specific task
against the request before it passes through to the next filter.

To understand it better, here is a diagrammatic view of middlewares:

Typically, these filters are used for tasks such as cookie parsing, form-field handling, session
handling, authentication, and error handling and logging. The list goes on and on. You can use
hundreds of third-party modules as well as simply write your own custom middleware.

[95]

Creating custom middleware
Undoubtedly, there will be a time when you want to write your own custom middleware in
addition to the existing middleware provided by Connect or any other third party. Before you
write your own custom middleware in Node, make it a habit to search through
https://www.npmjs.org/ first, as there's a fairly big chance someone else has already done the
work.

Writing your own custom middleware is pretty simple. While using an Express framework, it
documents various types of middleware that we would simply categorize into two types, that is,
application-based and route-based middlewares.

Here is a super basic example of application-based middleware:

app.use((err, req, res, next)=> {

 // do whatever you want here, alter req, alter res, throw err etc.

 return next();

});

The app.use function allows us to register as a middleware. At its basic level, it is a function that
is called on receiving a request in the http.createServer method. Further, we need to write a
function that accepts four parameters: err, req, res, and next.

The first parameter is an error object, and if there were any stack errors prior to your
middleware running, that error would be passed to your middleware so that you can handle
it accordingly. This is an optional parameter; hence, we can skip it if no error handling is
required for the specific implementation of functionality.
You are already familiar with the req and res parameters, having written your routes.
The fourth parameter is actually a reference to a callback. This next parameter is how the
middleware stack is able to behave like a stack—each executing and ensuring that the next
middleware in the pipeline is returned and called via next.

An app.use method also accepts the first parameter as a route or an endpoint. This forms the
second type of middleware called the route-based middleware that was mentioned earlier. Here
is the syntax:

app.use('/get_data', (err, req, res, next)=>{

 console.log('Hello world!')

 return next();

}, (err, req, res, next)=>{

 console.log('Hello world Again!')

 return next();

});

So, this depicts that instead of applying a middleware to all the incoming requests, we make it
specific to a route and call on the route match.

The only important thing to keep in mind while writing your own custom middleware is that you
have the correct parameters and you return next(). The rest is completely up to you!

[96]

https://www.npmjs.org/

Order of middlewares
The order that the middleware is called in is very important. Again, using the concept of filters as
a request that passes through each filter, you want to be sure that they are performing their
responsibilities in the correct order. A great example of this is implementing a cookie parser
before a session handler, since sessions typically rely on cookies to maintain states with a user
between requests.

Another great example of how the order of middleware is important involves error handling. If
any of your middleware encounters an error, they will simply pass that error along to the next
middleware in the stack. If the last middleware, regardless of what it is, doesn't gracefully handle
that error, it will basically show up in your application as a stack trace (and that's bad). Having
an error handler configured as one of the last middleware is like saying "if everything else fails,
and at any point in the previous middleware a failure occurs, deal with it gracefully."

The various dependencies we have installed to use in this application are going to be integrated
into our code as middlewares. We are going to carry out this task of integrating the various
middlewares through the config module, as it will help us to make our server.js file leaner and
add more readability to the code base.

[97]

The configure module
Since, we are keeping our server.js file very lean, there is still a fair amount of logic that is
required in configuring our server. For this, we will defer to a custom module that we'll create
called configure. To get started, create a configure.js file in the server folder. We have already
installed the custom dependencies when we were installing Express in the first place.

Now that the module is installed and ready to be used, let's start writing the configure.js file.
First, like any of our modules, we will declare our dependencies:

const path = require('path'),

 routes = require('./routes'),

 exphbs = require('express-handlebars'),),

 express = require('express'),

 bodyParser = require('body-parser'),

 cookieParser = require('cookie-parser'),

 morgan = require('morgan'),

 methodOverride = require('method-override'),

 errorHandler = require('errorhandler');

module.exports = (app)=>{

 app.use(morgan('dev'));

 app.use(bodyParser.urlencoded({'extended':true}));

 app.use(bodyparser.json());

 app.use(methodOverride());

 app.use(cookieParser('some-secret-value-here'));

 routes(app);//moving the routes to routes folder.

 app.use('/public/', express.static(path.join(__dirname,

 '../public')));

if ('development' === app.get('env')) {

 app.use(errorHandler());

}

 return app;

};

In the preceding code, we declared const for each of the modules that we will be using in our
custom configure module. Then, we defined the actual module that will be exported by this code
file, more specifically a function that accepts our app object as a parameter, as well as returns that
same object (after we make some configuration modifications to it).

You should see that we require Connect, which is actually installed by default with Express.js as
one of its core dependencies. Connect is a popular third-party middleware framework that we
will learn more about later in this chapter.

Let's take a look at each of the Connect middleware we have used in the preceding code:

morgan: This is the module responsible for logging. This is very helpful for debugging your
Node server.
bodyParser: This helps to facilitate the packing of any form fields that are submitted via a
HTML form submission from a browser. Form fields that are submitted via a POST request
will be made available via the req.body property.
methodOverride: For older browsers which don't support REST HTTP verbs properly, such
as UPDATE and PUT, the methodOverride middleware allows this to be faked using a special
hidden input field.
cookieParser: This allows cookies to be sent and received.
errorHandler: This handles any error that occur throughout the entire middleware process.

[98]

Typically, you would write your own custom errorHandler that might render a default 404
HTML page, log the error to a data store, and so on.
handlebars: This is the templating engine we are going to use with the Views. We will
explain more about integrating it in the upcoming sections.

The routes(app) line is a special component of Express that says you are actually using a router
with your server, and you can respond to requests such as GET, POST, PUT, and UPDATE. Since you are
using the Express router as one of the last middleware, we will also define the actual routes in the
next section.

Finally, the express.static() middleware is used to render static content files to the browser from
a predefined static resource directory. This is important so that the server can serve up static
files, such as .js, .css, images, and regular.html, as well as any other files you might need to
serve up. The static middleware will serve up any static files from the public directory, like the
following code:

http://localhost:3300/public/js/somescript.js

http://localhost:3300/public/img/main_logo.jpg

It's important that your static middleware is defined after app.router(), so that static assets aren't
inadvertently taking priority over a matching route that you may have defined.

[99]

Activating the configure module
Now that your configure.js file is complete, you're ready to call it from your main server.js file.
If you recall, we included two lines of code that were commented out for our configure module.
It's time to uncomment these two lines so that when you run your server, your configure module
will do its part. The two lines should now look like this:

config = require('./server/configure'),

app = config(app);

Boot up your server again by executing the server.js node and everything should still be running
smoothly. Now, it's time to incorporate more routes into our application in addition to the Hello
World route we added earlier.

[100]

Routers and controllers
So far, you have your server.js file and a configure module that is used to wire up all of the
necessary middleware for the application. The next step is to implement proper routers and the
necessary controllers.

The router is going to be a map of each of the available URL paths for the app. Every route on
the server will correspond to a function in a controller. Here is what our routes table will look
like for the particular application we are writing:

GET /(index) - home.index (render the homepage of the site)

GET /images/image_id - image.index (render the page for a specific

 image)

POST /images - image.create (when a user submits and uploads a new

 image)

POST /images/image_id/like - image.like (when a user clicks the Like

 button)

POST /images/image_id/comment - image.comment (when a user posts a

 comment)

You can see that we are handling two different GET requests and three different POST requests. In
addition, we have two main controllers: home and image. Controllers are really just modules with
different functions defined that match up with the corresponding routes. As pointed out earlier,
they are called controllers in MVC design patterns. Typically, every route will correspond to a
controller. This controller will more than likely render a View, and that View will more than
likely have its own model (any data that is displayed in the View).

Let's write our router as its own module matching the table outlined. First, create a routes.js file
within the server folder. The routes file is going to be pretty simple, and the only dependencies it
requires will be the controllers we define:

const express = require('express'),

 router = express.Router(),

 home = require('../controllers/home'),

 image = require('../controllers/image');

module.exports = (app)=>{

 router.get('/', home.index);

 router.get('/images/:image_id', image.index);

 router.post('/images', image.create);

 router.post('/images/:image_id/like', image.like);

 router.post('/images/:image_id/comment', image.comment);

 app.use(router);

};

Right off the bat, we declare a router variable and require the controllers folder to assign each
application route (we haven't yet created these files, but that's coming up next). Here, we are
assigning each route to its corresponding function in the controllers. Then, we export a module
that, when invoked by itself, will attach all these routes to the app instance.

The first parameter for a route is the string value of the route itself, which can contain variable
values as subpaths. You can see with the second router.get, that we assign a route value of
/images/:image_id that basically equates to /image/ANYVALUE in the browser address bar. When we
write the image.index controller, you will see how to retrieve the value for :image_id and use it
within the controller function itself.

The second parameter for a route is a callback function. You can completely omit the idea of

[101]

using controllers and just define your callbacks as inline anonymous functions; however, as your
routes grow, this file will get larger and larger, and the code will start to become a mess. It's
always a good practice to break your code up into as many small and manageable modules as
possible to keep yourself sane!

The first two router.get routes are typical routes that would be called whenever a visitor points
their browser to yourdomain.com/routepath—the browser sends a GET request to the server by
default. The other three router.post routes are defined to handle when the browser posts a
request to the server, typically done via a HTML form submission.

With all of our routes defined, let's now create the matching controllers. Within the controllers
folder, create both the home.js and image.js files. The home.js file is very basic:

module.exports = {

 index(req, res){

 res.send('The home:index controller');

 }

};

With this module, we are actually exporting an object that has a single function called index. The
function signature for index is the signature that is required for every route using Express. A first
parameter is a request object and a second parameter is a response object. Every detail specific to
the request that the browser sent to the server will be available via the request object.

In addition, the request object will be modified using all of the middleware that was declared
earlier. You will use the response object to send a response back to the client—this may be a
rendered HTML page, static asset, JSON data, an error, or whatever you determine. For now, our
controllers just respond with a simple text so you can see that they are all working.

Let's create an image controller that has a few more functions. Edit the /controllers/image.js file
and insert the following code:

module.exports = {

 index(req, res) {

 res.send(`The image:index controller ${req.params.image_id}`);

 },

 create(req, res) {

 res.send('The image:create POST controller');

 },

 like (req, res) {

 res.send('The image:like POST controller');

 },

 comment(req, res) {

 res.send('The image:comment POST controller');

 }

};

Here, we defined the index function, just like we did in the home controller, except that we will
also display image_id, which is set in the route when this controller function is executed. The
params property was added to the request object via the urlencoded feature, which is a part of the
body parser module!

Note that the controller currently doesn't require any dependencies (there were no require
declarations defined at the top of the file). This will change as we actually flesh out the controller
functions and start to do things such as inserting records into our MongoDB database and using
other third-party npm modules.

Now that your controllers are created and ready to be used, you just need to activate your routes.

[102]

To do this, we will insert one last line of code into our configure.js file, right above the return
app; line:

routes(app);

Don't forget to uncomment the routes = require('./routes') line at the top of the file as well.
What we're doing here is using the routes module we defined and executing the initialize
function, which will actually wire up our routes via our app object. We will need to comment out
the redundant code that we just moved to routes, which is still present in server.js.

As a recap of each of the files you have created so far, here are the uninterrupted files listed so
you can view the full code:

First, we need to boot up with server.js

const express = require('express');

const config = require('./server/configure');

let app = express();

app.set('port', process.env.PORT || 3300);

app.set('Views', `${ __dirname }/Views`);

app = config(app);

//commenting out following snippet that is not required

// app.get('/', function(req, res){

// res.send('Hello World');

// });

const server = app.listen(app.get('port'), ()=>{

 console.log(`Server up: http://localhost:${ app.get('port')}`);

});

Next, we will configure the server with server/configure.js:

const path = require('path'),

 routes = require('./routes'),

 exphbs = require('express-handlebars'),

 express = require('express'),

 bodyParser = require('body-parser'),

 cookieParser = require('cookie-parser'),

 morgan = require('morgan'),

 methodOverride = require('method-override'),

 errorHandler = require('errorhandler');

module.exports = (app)=>{

 app.use(morgan('dev'));

 app.use(bodyParser.json());

 app.use(bodyParser.urlencoded({

 extended: true

}));

 app.use(methodOverride());

 app.use(cookieParser('some-secret-value-here'));

 routes(app);

 app.use('/public/', express.static(path.join(__dirname,

 '../public')));

 if ('development' === app.get('env')) {

 app.use(errorHandler());

 }

 return app;

};

Then, we have our routes defined in server/routes.js:

const express = require('express'),

 router = express.Router(),

 home = require('../controllers/home'),

 image = require('../controllers/image');

module.exports = (app)=>{

[103]

 router.get('/', home.index);

 router.get('/images/:image_id', image.index);

 router.post('/images', image.create);

 router.post('/images/:image_id/like', image.like);

 router.post('/images/:image_id/comment', image.comment);

 app.use(router);

};

Finally, we will define our controllers with controllers/home.js:

module.exports = {

 index(req, res) {

 res.send('The home:index controller');

 }

};

Furthermore, we will also define our controllers with controllers/image.js:

module.exports = {

 index(req, res) {

 res.send(`The image:index controller ${req.params.image_id}`);

 },

 create(req, res) {

 res.send('The image:create POST controller');

 },

 like (req, res) {

 res.send('The image:like POST controller');

 },

 comment(req, res) {

 res.send('The image:comment POST controller');

 }

};

Let's fire up the server one last time and check if it's all working.

Execute the server.js node, and this time point your browser to http://localhost:3300. Now, you
should be seeing some responses in the browser. Go to http://localhost:3300/images/testing123.
You should see the following message on the screen:

 The image:index controller testing123

[104]

Handlebars as View engines
By default, Express can and will happily render static HTML documents and serve them back to
the client. However, unless you're building a purely static, content-driven site, which is doubtful,
you're more than likely going to want to render your HTML dynamically. That is, you want to
generate portions of HTML on the fly as pages are requested, perhaps using loops, conditional
statements, data-driven content, and so on. In order to render dynamic HTML pages, you need to
use a rendering engine.

This is where Handlebars comes in. The rendering engine is given its name because of the syntax
it uses to display data, namely, double pairs of braces, {{ and }}. Using Handlebars, you can have
sections of your HTML pages that are determined at run time based on data passed to it.
Consider the following example:

<div>

 <p>Hello there {{ name }}! Todays date is {{ timestamp }}</p>

</div>

The actual HTML that would wind up on a visitor's browser would be:

<div>

 <p>Hello there Jason! Todays date is Sun Apr 13</p>

</div>

The first thing we want to take care of in our configure module is to register Handlebars as the
default View rendering engine. In the configure.js file, above the return(app); line, you should
insert the following code:

app.engine('handlebars', exphbs.create({

 defaultLayout: 'main',

 layoutsDir: `${app.get('Views')}/layouts`,

 partialsDir: [`${app.get('Views') }/partials`]

}).engine);

app.set('View engine', 'handlebars');

First, using the Express app object that was passed into the configure function, we define our
rendering engine of choice by calling the engine function of app. The first parameter to the engine
function is the file extension that the rendering engine should look for, namely, handlebars.

The second parameter builds the engine by calling the express-hbs module's create function. This
create function takes an options object as a parameter, and this options object defines a number
of constants for our server. Most importantly, we will define which layout is our default layout
and also where our layouts will be stored. If you recall, in server.js we used app.set to set a
Views property of our app that pointed to the current working directory +/Views. This setting is
used when we configure the options for our rendering engine as well. You'll notice that the
partialsDir property uses an array (with a single item) and a single string value for layoutsDir.
Both of these methods are interchangeable, and I just wanted to demonstrate that you could have
more than one partial directory, and it could just be an array of string values.

With that set, our server now knows that any time we try to render a HTML page that has a file
extension of handlebars, it will use the Handlebars engine to perform the rendering. This means
that we need to be sure to use Handlebars-specific syntax in our dynamic HTML pages.

[105]

We will be learning more about Handlebars and how to write dynamic HTML pages in the next
chapter.

Using .handlebars as a file extension was purely a personal choice. Some people prefer .hbs, and
if you want, you can use anything you like. Just make sure that the first parameter in the
app.engine() function and the second parameter in the app.set('View engine') function are
identical.
To learn more about the many template engines available with Express.js, check out this link
https://github.com/expressjs/express/wiki#template-engines.

[106]

https://github.com/expressjs/express/wiki#template-engines

Summary
In this chapter, we learned about the Express web framework for Node and wrote a basic web
server using Express that will act as the foundation for the image uploading website that we will
build throughout the remainder of the book.

The web server you wrote handles requests to specific routes, uses controllers to handle the logic
for those routes, and supports all of the standard requirements a typical web server should.

In the next chapter, we will cover the Handlebars template engine to write each of the dynamic
HTML pages that the website needs. In addition, we will update the image and home controllers
to include the necessary logic to properly render these HTML pages.

[107]

Templating with Handlebars
The JavaScript template engines are the reason why node.js proves to be an isomorphic
technology. It adds a server-side UI rendering functionality in node.js, stimulating its client-side
rendering performance. Next, it also eases the maintenance of client-side code as it is tightly
coupled in server-side code. Lets understand it more clearly in this chapter by exploring the
following topics:

The Handlebars templating framework
The steps to develop the templates necessary to build the presentation layer of our
application

Before we start exploring the capabilities of Handlebars, we need to have an idea of what a
templating framework generally does.

[108]

Templating engines
As we already know, an MVC application framework divides the application-specific code into
models, views, and controllers. Controllers are supposed to be handling the task of binding the
appropriate data to its relevant views to generate the output for an incoming web application
request. So, views are supposed to be independent of the data and only contain code relevant to
the presentation of the data, which will be mostly HTML. Apart from HTML, views will need to
contain presentation logic, which will be conditions written on the data passed to them via
controllers. Then, the main task that templating frameworks do in this case is that they make this
process of embedding presentational logic simpler and readable. Also, they attempt to segregate
the views into more understandable subcomponents.

[109]

Server-side and client-side templating
Templating solutions can be generally classified as client-side and server-side templating
solutions. The web applications we build usually follow a server-side or client-side templating
approach or a hybrid of both.

[110]

Client-side templating
Imagine a case where the web application, after loading the page, makes an API call via AJAX
and gets a JSON response in return. How will it render the data it received into its corresponding
HTML? Client-side templates are required in this case to keep our JavaScript code neat and
clean, or else we will end up putting too much unreadable HTML code as strings inside the
JavaScript code. Client-side templating frameworks allow us to dump the templates
corresponding to the components of a page in the markup inside specific tags and render them
via JavaScript code whenever necessary. The common disadvantage of following a client-side
approach is the impact it has on the initial render time of this page.

Another important advantage of using client-side templating is that it helps to offload the
templating effort from the server to the client. This helps to reduce the computational load on
your server to a great extent, as the templating logic is executed only in the browser via
JavaScript.

[111]

Server-side templating
Server-side templating is where we will render the markup via calling the corresponding views
before sending the HTML response back to the web browser. This is what we will explore in this
chapter via Handlebars.

Many different rendering engines are available that can be used with Node and Express. The
most popular among them are Jade, EJS, and Handlebars. The particular engine we will explore
in this book is Handlebars.js.

[112]

The basics of Handlebars
Handlebars is a really simple and easy-to-use templating framework. It works on the principle
of interpolation of data within the template. To get an overview of Handlebars, consider the
following block diagram:

Here, the compile method accepts the HTML expression templates and results in a function with
a parameter.

Let's go through and explore the basic syntax of writing a Handlebars template.

[113]

Binding an object to the template
Let's assume that the following JavaScript object is passed to a Handlebars template:

 let context = {

 name: 'World'

 };

The template file itself will contain the following markup:

 let source = `<div>

 Hello {{ name }}!

 </div>`

The preceding markup contains name as the HTML expression that will be interpolated by its
context object.

We need to write the JavaScript method that makes it work, as follows:

 let template = Handlebars.compile(source);

 let output = template(context);

This output variable will contain the following HTML code:

 <div>

 Hello World!

 </div>

[114]

Embedding presentation logic
Of course, there's a lot more that you can do than just this! Handlebars also supports conditional
statements:

 let model = {

 name: 'World',

 description: 'This will only appear because its set.'

 };

 <div>

 Hello {{ name }}!

 {{#if description}}

 <p>{{description}}</p>

 {{/if}}

 </div>

Using an if block helper, as shown in the preceding code, you can check for true conditionals
and only display HTML and/or data if the condition is true. Alternatively, you can use the unless
helper to do the opposite and display HTML only if a condition is false:

 let model = {

 name: 'World'

 };

 <div>

 Hello {{ name }}!

 {{#unless description}}

 <p>NOTE: no description found.</p>

 {{/if}}

 </div>

You can use both if and else as well as unless the same way you would use conditional if/else
in other programming languages. So that's it! These were all the basics that we need to know to
resume our application.

[115]

Views
A view is what we refer to an HTML page as. They are called views because of the MVC design
pattern. As we already discussed, a model is a data that will be displayed on a page, the view is
the page itself, and the controller is the brain that communicates between the model and the
view.

Our particular application is going to need two views. The first view is the home page and the
second view is the image page.

The HTML in the following section relies heavily on Bootstrap, a popular HTML framework
created by Twitter, which provides a standard set of user interface elements. These include
buttons, fonts, layout grids, color schemes, and a whole lot more. Using Bootstrap allows us to
not only present our application with a nice clean UI but also build it so that it is responsive and
will look correct on any device that is viewing it. You can learn more about Bootstrap by visiting
http://getbootstrap.com.

Let's start by creating the home page view. Create a new file within the views folder, name it
index.Handlebars, and insert the following HTML code:

 <div class="panel panel-primary">

 <div class="panel-heading">

 <h3 class="panel-title">

 Upload an Image

 </h3>

 </div>

The reason we named our file index.Handlebars is a purely personal choice, but it is also based on
common naming conventions on the web. Typically, an HTML page that acts as the root file for
any website is named index.whatever (.php, .aspx, .html, and so on). Again, this is just a common
convention and not something you need to specifically adhere to.

Create a basic HTML form and set method to post and action to /images. Ensure that you set the
enctype attribute of the form, since we will be uploading files as well as submitting data via form
fields:

 <form method="post" action="/images" enctype="multipart/form-

 data">

 <div class="panel-body form-horizontal">

 <div class="form-group col-md-12">

 <label class="col-sm-2 control-label"

 for="file">Browse:</label>

Here, we have included a standard HTML input field for the file to be uploaded:

 <div class="col-md-10">

 <input class="form-control" type="file"

 name="file" id="file">

 </div>

 </div>

 <div class="form-group col-md-12">

 <label class="col-md-2 control-label"

 for="title">Title:</label>

 <div class="col-md-10">

Another standard HTML input field for the title of the file can be whatever the user wants, as
shown in the following code:

[116]

http://getbootstrap.com

 <input class="form-control" type="text"

 name="title">

 </div>

 </div>

 <div class="form-group col-md-12">

 <label class="col-md-2 control-label"

 for="description">Description:</label>

 <div class="col-md-10">

A standard HTML textarea input field to allow for a description is as follows:

 <textarea class="form-control"

 name="description" rows="2"></textarea>

 </div>

 </div>

 <div class="form-group col-md-12">

 <div class="col-md-12 text-right">

A standard HTML button is provided that will submit the form to the server. Using Bootstrap
classes, we provide btn and btn-success to make this look like a Bootstrap-style button with the
default color for success (green):

 <button type="submit" id="login-btn"

 class="btn btn-success" type="button">

 <i class="fa fa-cloud-upload ">

 </i> Upload Image</button>

 </div>

 </div>

 </div>

 </form>

</div>

After the upload form section, we will display a list of the newest images uploaded to the
website. Refer to the each block in the code snippet that follows. It is a keyword supported by
Handlebars to loop over the data provided to the template in case of reusable HTML blocks. We
will discuss this in detail in the following code:

<div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">

 Newest Images

 </h3>

 </div>

 <div class="panel-body">

 {{#each images}}

 <div class="col-md-4 text-center" style="padding-bottom:

 1em;"><img

 src="/public/upload/{{filename}}" alt="{{title}}"

 style="width: 175px; height: 175px;" class="img-

 thumbnail"></div>

 {{/each}}

 </div>

</div>

There are two important sections in the main home page HTML code. The first is
the form we define, which will be the main way in which users will upload images to the
website. As we will be accepting image files as well as details of the image (title, description,
and so on), we need to ensure that the form is set up to accept multipart data. We also set the
form action to point to the /images route we defined earlier in our routes and image controller
modules. When a user completes the form and clicks on the Submit button, the form will send a
POST request to http://localhost:3300/images and our router will catch that and forward it to our
image controller. From there, the image controller will handle the processing of the data and will
save it to the database, saving the image file to the filesystem, and redirecting to the image
details page. We will actually be writing this logic in the next chapter. For now, nothing will
actually happen if you submit the form.

[117]

Below the main image uploading form on the home page, we also have a section that performs a
Handlebars loop using each and iterates through an image collection, displaying each image as a
thumbnail and the link to the image page. The images collection will be populated from our home
controller. It's important to note here that when you are inside a {{#each}} loop in a Handlebars
template, your context changes. That is, the path you use to access data inside each is now based
on each item in the collection. Here, our object, which will be bound to the view, will have an
image collection, and each item in the image collection will have a property for uniqueid,
filename, and title. With the home page view out of the way, let's set up the view for the image
page.

Create another file in the views folder and name it image.Handlebars. This file is going to have a
bit more functionality, so I'm going to break it down into chunks so that you can review each
section. First, insert the following block of code:

<div class="panel panel-primary">

 <div class="panel-heading">

 <h2 class="panel-title">{{ image.title }}</h2>

 </div>

 <div class="panel-body">

 <p>{{ image.description }}</p>

 <div class="col-md-12 text-center">

 <img src="/public/upload/{{image.filename}}"

 class="img-thumbnail">

 </div>

 </div>

 <div class="panel-footer">

 <div class="row">

 <div class="col-md-8">

 <button class="btn btn-success" id="btn-like"

 data-id="{{ image.uniqueId }}"><i class="fa fa-

 heart"> Like</i></button> <strong class="likes-count">{{

image.likes }}

 - <i class="fa fa-eye">

 </i> {{ image.views }} -

Posted: <em class="text-muted">{{

 timeago image.timestamp }}

 </div>

 </div>

 </div>

</div>

This block of code defines the bulk of the content that will be displayed on the page for a specific
image. The viewModel for this page is going to consist of an image object that has various
properties defined that you see being used throughout the code; properties such as title,
description, filename, likes, views, and the timestamp of when the image upload was performed.

You may have noticed a slightly different piece of syntax in the code specific to the {{ timeago
image.timestamp }} timestamp. That is actually a Handlebars helper.
It is a custom function we will write shortly, which will perform some special string formatting-
specifically, converting a timestamp string to how long it was some time ago (that is, 2 days ago,
12 hours ago, 15 minutes ago, and so on).

We want to allow users to post comments to images, so let's include a simple form for that:

<div class="panel panel-default">

 <div class="panel-heading">

 <div class="row">

 <div class="col-md-8">

 <strong class="panel-title">Comments

 </div>

 <div class="col-md-4 text-right">

 <button class="btn btn-default btn-sm" id="btn-

 comment" data-id="{{ image.uniqueId }}">

 <i class="fa fa-comments-o"> Post

[118]

 Comment...</i></button>

 </div>

 </div>

 </div>

 <div class="panel-body">

 <blockquote id="post-comment">

 <div class="row">

The following is another standard HTML form with the method and action set. This form allows
a user to enter, via standard HTML input fields, their name, email address, and comments.
Another Submit button is provided to save the comment:

 <form method="post" action="/images/{{

 image.uniqueId }}/comment">

 <div class="form-group col-sm-12">

 <label class="col-sm-2 control-label"

 for="name">Name:</label>

 <div class="col-sm-10">

 <input class="form-control"

 type="text" name="name">

 </div>

 </div>

 <div class="form-group col-sm-12">

 <label class="col-sm-2 control-label"

 for="email">Email:</label>

 <div class="col-sm-10">

 <input class="form-control"

 type="text" name="email">

 </div>

 </div>

 <div class="form-group col-sm-12">

 <label class="col-sm-2 control-label"

 for="comment">Comment:</label>

 <div class="col-sm-10">

 <textarea class="form-control"

 name="comment" rows="2"></textarea>

 </div>

 </div>

 <div class="form-group col-sm-12">

 <div class="col-sm-12 text-right">

 <button type="submit" id="comment-btn"

 class="btn btn-success" type="button">

 <i class="fa fa-comment"></i>

 Post</button>

 </div>

 </div>

 </form>

 </div>

 </blockquote>

The form action for comments is set to /images/{{ image.uniqueid }}/comment. Again, if you recall
from the routes we set up, we specifically defined a route to handle this.

Finally, we want to display any comments that have been submitted for this image. Our viewModel
includes a collection of comments in addition to the image details, so we can simply iterate over
that collection using the Handlebars #each block helper:

 <ul class="media-list">

 {{#each comments}}

 <li class="media">

 <img class="media-object img-circle"

 src="http://www.gravatar.com/avatar/

 {{gravatar}}?d=monsterid&s=45">

 <div class="media-body">

 {{ comment }}

<strong class="media-heading">{{ name

 }} <small class="text-muted">{{

 timeago timestamp }}</small>

 </div>

[119]

 {{/each}}

 </div>

</div>

Much like the loop, which we performed on the home page to display a collection of images,
here, we simply iterate through every comment in the comments collection and display the
comment and string-formatted timestamp (again using our timeago global helper). We also use
Gravatar to display universal avatar images for users who have commented (assuming that they
have provided their email addresses).

Gravatar is a service provided by https://wordpress.com/ that allows a user's personal profile
image to be provided via his/her email address. Many popular web services rely on Gravatar as a
quick and easy way to display a user's personal profile image, without requiring the additional
functionality to support such a feature. You can learn more about Gravatar at http://gravatar.com.

[120]

https://wordpress.com/
http://gravatar.com

Layouts
So far, we've created two specific views for our website: one for the home page and one for the
details of an image. However, there's no consistent UI wrapping both of these pages together. We
have no consistent navigation or logo. There's no common footer with standard copyright or
additional information.

Usually, with any website that you create, you're going to want to have some form of a standard
layout or master template that every page will use. This layout typically includes the website
logo and title, main navigation, sidebar (if any), and the footer. It would be bad practice to
include the HTML code for the layout in every single page on the website because if you wanted
to make even the smallest change to the main layout, you would have to edit every single page as
a result. Fortunately, Handlebars helps lessen the work of utilizing a layout file.

Let's create a layout file for our app by creating a new file named main.Handlebars within the
views/layouts folder and inserting the following HTML code:

<!DOCTYPE HTML>

<html lang="en">

 <head>

 <title>imgPloadr.io</title>

 <link

 href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/

 bootstrap.min.css" rel="stylesheet"> <link

href="//netdna.bootstrapcdn.com/font-awesome/

 4.0.3/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet"

type="text/css"

 href="/public/css/styles.css">

 </head>

 <body>

 <div class="page-header">

 <div class="container">

 <div class="col-md-6">

 <h1>imgPloadr.io</h1>

 </div>

 </div>

 </div>

 <div class="container">

 <div class="row">

 <div class="col-sm-8">

 {{{ body }}}

 </div>

 <div class="col-sm-4">

 {{> stats this }}

 {{> popular this }}

 {{> comments this }}

 </div>

 </div>

 </div>

 <div style="border-top: solid 1px #eee; padding-top:

 1em;">

 <div class="container">

 <div class="row">

 <div class="col-sm-12 text-center">

 <p class="text-muted">imgPloadr.io |

 © Copyright 2017, All Rights

 Reserved</p>

 <p class="text-center">

 <i class="fa fa-twitter-square fa-2x

 text-primary"></i> <i class="fa fa-

facebook-square fa-2x

 text-primary"></i>

 </p>

[121]

 </div>

 </div>

 </div>

 </div>

 <script src="//ajax.googleapis.com/ajax/libs/jquery/

 1.11.0/jquery.min.js"></script> <script type="text/javascript"

 src="/public/js/scripts.js"></script>

 </body>

</html>

Most of the preceding code is just HTML and a lot of it uses Bootstrap for the actual physical
layout of the page as well as a few other UI-related elements. The most important part is the
highlighted section in the middle with {{{ body }}} and the few lines below that, as they pertain
to the use of Handlebars.

The {{{ body }}} is a reserved word in Handlebars that is used specifically for layouts. What we
are basically saying is that any page we render that uses our default layout file will have its
content inserted into the area where {{{ body }}} is defined. If you recall from the configure
module we created earlier, we defined our default layout file when we set up Handlebars as our
rendering engine. The slightly odd use of {{{ and }}} around the body is due to the fact that
Handlebars escapes HTML by default when using {{ and }}. Since our views contain mostly
HTML, we want this to stay intact so that we use {{{ and }}} instead.

The other three lines that use the {{ > ... }} render Handlebars partials, which are like the
shared HTML code blocks, and will be covered next.

[122]

Partial views
So far, we created a view, which acts as the bulk of the HTML for a specific page, and a layout,
which acts as the wrapper for the consistent parts of the website on every page. Next, let's take a
look at creating partials, which are really just small views that we can reuse and inject inside our
layouts or views.

Partials are a terrific way to create reusable components in a website and reduce code
duplication. Consider the comments in our application. We have an HTML form defined that a
user uses to submit a comment, but what if we wanted to allow users to post comments from a
number of different areas throughout the website? This type of scenario is a great candidate for
moving our comment form out to its own partial and then just including that partial anywhere we
want to display the comment form.

For this app, we're using partials specifically for the sidebar in the main layout.
With every view's viewModel, we will include a JavaScript object called sidebar
that will contain the data specifically for the stats, popular images, and recent comments found
within the sidebar partial.

Let's create the HTML for each of the partials. First, create a file named stats.Handlebars within
the views/partials/ path and include the following HTML code:

<div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">

 Stats

 </h3>

 </div>

 <div class="panel-body">

 <div class="row">

 <div class="col-md-2 text-left">Images:</div>

 <div class="col-md-10 text-right">{{

 sidebar.stats.images }}</div>

 </div>

 <div class="row">

 <div class="col-md-2 text-left">Comments:</div>

 <div class="col-md-10 text-right">{{

 sidebar.stats.comments }}</div>

 </div>

 <div class="row">

 <div class="col-md-2 text-left">Views:</div>

 <div class="col-md-10 text-right">{{

 sidebar.stats.views }}</div>

 </div>

 <div class="row">

 <div class="col-md-2 text-left">Likes:</div>

 <div class="col-md-10 text-right">{{

 sidebar.stats.likes }}</div>

 </div>

 </div>

</div>

Next, create views/partials/popular.Handlebars and insert the following HTML code into it:

<div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">

 Most Popular

 </h3>

 </div>

 <div class="panel-body">

[123]

 {{#each sidebar.popular}}

 <div class="col-md-4 text-center" style="padding-

 bottom: .5em;"> <img

 src="/public/upload/{{filename}}"

 style="width: 75px; height: 75px;"

 class="img-thumbnail">

 </div>

 {{/each}}

 </div>

</div>

Finally, create views/partials/comments.Handlebars and insert the following HTML code into it:

<div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">

 Latest Comments

 </h3>

 </div>

 <div class="panel-body">

 <ul class="media-list">

 {{#each sidebar.comments}}

 <li class="media">

 <a class="pull-left" href="/images/{{

 image.uniqueId }}"> <img class="media-object" width="45"

 height="45" src="/public/upload/

 {{ image.filename }}">

 <div class="media-body">

 {{comment}}

 <strong class="media-heading">

 {{name}} <small class="text-muted">

 {{timeago timestamp }}</small>

 </div>

 {{/each}}

 </div>

</div>

[124]

Handlebars helpers
Handlebars supports the idea of helpers, which are special custom functions you can write to
perform some special logic from within the template during runtime. This will encourage
developers to migrate the common presentation logic present in views into helpers and reuse
them, thereby adding much more readability to the views. A great example of a helper would be
the date string formatter we've been using. Helpers can be registered globally and made available
to every template file, or they can be defined per view and passed to the template on an as-
needed basis as part of the viewModel.

[125]

Global helpers
First, let's create a global helper that will be available to every Handlebars template we render.
The global helper that we will create will be used to format a timestamp so that it is worded
according to how long ago the event occurred. We will use this throughout our application for
things such as comments and image timestamps.

The first thing we need to do is update our server/configure.js module, where we originally
configured Handlebars as our rendering engine. We will add the following section to define our
helpers:

app.engine('Handlebars', exphbs.create({

 defaultLayout: 'main',

 layoutsDir: app.get('views') + '/layouts',

 partialsDir: [app.get('views') + '/partials'],

 helpers: {

 timeago: (timestamp)=> {

 return moment(timestamp).startOf('minute').fromNow();

 }

 }

}).engine);

As you can see from the additional code we added (highlighted in the preceding code), we
defined the helpers property of the configuration options within create(). Inside the helpers
property, we can define any number of functions we want. In this case, we defined a simple
timeago function that actually uses another npm module called moment. The moment module is a great
library for performing numerous different types of date string formatting. As we are using a new
module, we need to be sure to perform require() at the top of our configure module:

const path = require('path'),

 routes = require('./routes'),

 exphbs = require('express-Handlebars'),

 bodyParser = require('body-parser'),

 cookieParser = require('cookie-parser'),

 morgan = require('morgan'),

 methodOverride = require('method-override'),

 errorHandler = require('errorhandler'),

 moment = require('moment');

Also, we need to actually install it via npm:

 $ npm install moment --save

[126]

View-specific helpers
While defining helpers globally is nice because they are available to every view that's rendered,
sometimes you might only need to define a helper for use within a single view. In this case, you
can include the helper with the model itself when calling res.render(), as shown in the following
code:

var viewModel = {

 name: 'Jason',

helpers: {

 timeago: (timestamp) =>{

 return 'a long time ago!';

 }

}

};

res.render('index', viewModel);

Not only are we defining a custom helper that can be used specifically from this view in its
model object but, in this particular instance, we are overriding the existing timeago global helper
with a slightly different version that is perfectly valid.

[127]

Rendering the views
Let's take a minute to do a quick recap and see what we've done up to this point. So far, we have
done the following:

We created index.Handlebars and image.Handlebars, the views for the two main pages of the
application
We created layouts/main.handelbars, the main layout file for every page in the application
We created partials/comments.Handlebars, popular.Handlebars, and stats.Handlebars
We created a global timeago Handlebars helper

So far, so good; however, none of these views actually do anything, receive any viewModels, or
even appear when you run the application! Let's make a few quick minor modifications to our
controllers to get our views to render properly.

Open /controllers/home.js so that you can edit the home controller module.
Update the contents of that file so that it looks identical to the following block of code:

module.exports = {

 index: (req, res)=> {

 res.render('index');

 }

};

Instead of performing res.send, which just sends a simple response, we are calling res.render and
passing in the name of the template file we want to render as the only parameter (for now). Using
the defaults that were defined in our configure module, the index file will be loaded from our
views folder. Again, also using the defaults, we configured the default layout of main that will be
applied to this view in our configure module.

Let's update the image controller to do the same thing as well. Edit /controllers/image.js and
change the index function so that it looks identical to the following block of code:

index: (req, res)=> {

 res.render('image');

},

And that's it! Let's fire up the server, open the app in our browser, and see how
it looks:

 $ npm start

 $ open http://localhost:3300

 $ open http://localhost:3300/images/1

The preceding command uses npm start to start the application. Please note that this command
will work only if you have the application entrypoint file configured in the package.json file. If
this is not working, then you have to set the main attribute in the package.json and set it to the
server.js file. Also, as an alternative, you can manually invoke the server.js file by using node
server.js.

Success! Hopefully, you see something that closely resembles the following screenshot of the
home page:

[128]

Additionally, if you provide a random URL to a specific image, for example,
http://localhost:3300/images/1, you should see the following screenshot:

[129]

Summary
In this chapter, the Handlebars template-rendering engine was introduced,
following which we reviewed the syntax used when creating dynamic HTML
pages. We created the main layout for our app as well as the home page and image page views.
We included partial views for the sidebar in the layout and created a global Handlebars helper to
display custom formatted dates.

Even though none of the views are currently displaying any data (because we aren't passing
models to the views yet), you can see that things are starting to come along nicely! In the next
chapter, we will wire up the actual logic in the controllers for each page and build up the model
objects so that we start seeing some actual content on our screens.

[130]

Controllers and View Models
Up until this point, the controllers we wrote for our application were extremely basic. They were
started with the simple task of sending text responses to the client. In the preceding chapter, we
updated the controllers so that they render an HTML view and send the HTML code to the client
instead of a simple text response. The primary job of a controller is to act as an entity which
holds the logic that makes all of the necessary decisions to properly render a response to the
client. In our case, this means retrieving and/or generating the data necessary for a page to appear
completely.

In this chapter, we will discuss the following topics:

Modifying the controllers so that they generate a data model and pass it to a view
Including logic to support uploading and saving image files
Updating the controllers to actually render dynamic HTML
Including helpers for the partials that generate the website statistics
Iterating on the UI to include improved usability via jQuery

[131]

Controllers
A controller can be defined as an entity that will be responsible for manipulating models and
initiating the View render process with the data received from the corresponding models. In the
code we have developed so far, we can see that the express router instance is used to tie functions
to a corresponding route. These functions are nothing but controllers.

For every route that we create in our router, the following two parameters are necessary:

The first parameter is the string for the route itself, which is /images/:image_id
The second parameter is a controller function that will be executed when that route is
accessed

For any route that has anything to do with images, we rely on the image controller. Likewise, any
route that has anything to do with the home page relies on the home controller, and so on.

The steps we will take to define our controllers in our app are purely organizational and based on
personal preference. We created our controllers as modules so that our router isn't a big, long,
convoluted mess of spaghetti code. We could have just as easily kept all of the logic contained in
our controllers as functions directly within the routes themselves, but this would have been an
organizational mess and made way for a very hard-to-read code to be maintained later on.

As our sample app is fairly small, we currently have only two controllers: home and image. It is
the responsibility of these controllers to build the appropriate View models for our HTML pages
and to render the actual pages also. Any logic that is required to execute per page and build the
View model will be done so via our controllers.

[132]

View models
Given that there is a single HTML View in our app, we will need to attach data to that page so
that the template that is being rendered can be included in such a way that the dynamic areas of
the page are replaced with the real content. To do this, we will need to generate a View model.
During the rendering, the template engine will parse the template itself and look for a special
syntax that indicates that specific sections should be replaced with values from the View model
itself at runtime. We saw examples of this when we explored the Handlebars template framework
in the preceding chapter. Think of this as a fancy runtime find and replace of your HTML
templates--finding variables and replacing them with values stored in the View model sent to the
template.

This process happens at the server, and the result is only sent as a response to the HTTP request
that our application receives.

A View model is typically just a single JavaScript object that can be passed to the template. The
template contains all of the necessary logic we will need to properly render the page. It is the task
of the templating engine to produce the corresponding HTML by processing the templates with
the associated models. The View model for a page will typically contain all of the data necessary
to render the content-specific portions of that page. Using our application as an example, the
View model for a specific image's page might contain the title of the image, its description, the
information necessary to display the image, and various stats, such as number of likes, Views,
and a collection of comments. A View model can be as simple or as complex as you like.

The term View model is used here to refer to the data form of the model, which will be tied to
the template while rendering the HTML via any templating framework.

[133]

Updating the home controller
If you take a look at our current home controller (controllers/home.js), you can see that the index
function barely has any code in it whatsoever:

res.render('index');

The first thing we want to do is build a basic View model using sample data so that we can see
our View model at work. Replace that single res.render call with the following updated code:

const ViewModel = {

 images: [

 images: [{

 uniqueId: 1,

 title: 'Sample Image 1',

 description: '',

 filename: 'sample1.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 }, {

 uniqueId: 2,

 title: 'Sample Image 2',

 description: '',

 filename: 'sample2.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 }, {

 uniqueId: 3,

 title: 'Sample Image 3',

 description: '',

 filename: 'sample3.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 }, {

 uniqueId: 4,

 title: 'Sample Image 4',

 description: '',

 filename: 'sample4.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 }]

 };

res.render('index', ViewModel);

In the preceding code, we built a basic JavaScript collection of objects. The constant we declared
is called ViewModel, but the name of this constant doesn't actually matter and can be whatever you
want. The const ViewModel is an object that contains a single property called images, which is in
itself an array.

The images array contains four sample images, each with a few basic properties--the most
obvious properties were decided when deciding what kind of information we wanted per image.
Each image in the collection has a uniqueId, title, description, filename, Views, likes count, and a
timestamp property.

Once we set up our ViewModel, we simply pass it as the second parameter to the res.render call.
Doing this while rendering a View makes the data in it available to the View itself. Now, if you
recall from some of the template code we wrote for the home index.Handlebars View, we had a
{{#each images}} loop that iterated through each image in the image collection of the View model

[134]

passed to the template. Taking another look at our View model we created, we see that it only
has a single property named images. The HTML code inside the Handlebars loop will then
specifically reference the uniqueId, filename, and title properties for each image in the images
array.

Save the changes to the home controller, launch your app again, and navigate to
http://localhost:3300. You should see the four images that now appear on the home page in the
Newest Images section (although, as you can see in the following screenshot, the images are still
broken, as we didn't actually create any image files):

[135]

http://localhost:3300

The home page has a fairly simple controller and View model, and you might have noted that the
sidebar is still completely empty. We'll cover the sidebar a little later in this chapter.

[136]

Updating the image controller
Let's create the controller and View model for the image page. The controller for the image will
be a little more complex, as we'll write the logic to handle the uploading and saving of the image
files via the form on the home page.

[137]

Displaying an image
The index function in the image controller will look almost identical to the index function from
the home controller. The only difference is that instead of generating an array of images, we will
build a ViewModel for a single image. However, the ViewModel for this image will have a little more
information than the one from the home page since we are building a page that renders a more
detailed view of an image (versus the thumbnail collection on the home page). The most
noteworthy inclusion is that of a comments array for the image.

Taking another look at the original index function in our controllers/image.js file, we can see the
simple existing res.render line of code:

res.render('image');

We want to replace this line with a ViewModel and an updated res.render statement using the
following code:

const ViewModel = {

 image: {

 uniqueId: 1,

 title: 'Sample Image 1',

 description: 'This is a sample.',

 filename: 'sample1.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 },

 comments: [{

 image_id: 1,

 email: 'test@testing.com',

 name: 'Test Tester',

 gravatar: 'http://lorempixel.com/75/75/animals/1',

 comment: 'This is a test comment...',

 timestamp: Date.now()

 }, {

 image_id: 1,

 email: 'test@testing.com',

 name: 'Test Tester',

 gravatar: 'http://lorempixel.com/75/75/animals/2',

 comment: 'Another followup comment!',

 timestamp: Date.now()

 }]

};

res.render('image', ViewModel);

Here, we declare a new ViewModel constant again--this time with an image property that contains
the properties for the single image. In addition to the image property, there is also a comments
property, which is an array of comment objects. You can see that each comment has various
properties specific to a comment for each image. This JavaScript object is actually a pretty good
preview of what our real data will wind up looking like once we include logic to connect our app
to MongoDB.

After we build our sample image object and its collection of comments, we pass that to our
res.render call, thus sending this new ViewModel directly to our image's Handlebars template.
Again, if you review the HTML code in the image.Handlebars file, you can see where each
property of the ViewModel is being displayed.

Again, let's run the application and make sure that our image page appears properly:

[138]

$ node server.js

Once the app is running and you've launched it in your browser, click on any of the images that
are listed in the Newest Images section of the home page.

This should take you to an individual image page where you will see something like the page
shown in the following screenshot:

Note that Title, Description, Likes, Views, and timestamp (converted to a different format for
user readability) are all now appearing on the page. In addition, you can see a few comments
listed near the image as well!

[139]

Uploading an image
The next feature we will need to implement in our image controller is the logic to handle when a
user submits an image Upload Image on the home page. Even though the form is on the home
page of our app, we decided to house the logic to handle uploading within our image controller
because logically, this makes the most sense (since this feature primarily has to do with images,
and not the home page per se). This was purely a personal decision, and you can house the logic
wherever you please.

You should note that the HTML for the form on the home page has its action set to /images, and
its method is post. This perfectly matches the route we set up previously, where we listen for a
post to the /images route and call the image controller's create function.

The create function in our image controller will have a few key responsibilities:

It should generate a unique filename for the image, which will also act as an identifier
It should save the uploaded file to the filesystem and ensure that it is an image file
Finally, it should redirect the control to the image/image_id route once its task is complete,
to display the actual image

As we will work with the filesystem in this function, we will need to include a few modules from
the Node.js core set of modules, specifically the filesystem (fs) and the path (path) modules.

Before we begin adding the necessary code for the Upload Image section, we will need a small
fix to be applied on the configuration of the application. Further, we will need to add an extra
module in the configure file to support the file uploads, namely multer. Add it as a dependency to
our application using the following command:

npm install multer --save

Now, go to the configuration file that is server/configure.js and require it via:

multer = require('multer');

You can place this under the initially required modules in the file. Then, insert the following
snippet under the Handlebars engine method:

app.use(multer({

 dest: path.join(__dirname, 'public/upload/temp')

}));

Now, our upload actions will work fine, as expected.

Let's begin by first editing the controllers/image.js file and inserting the two new require
statements at the very top of the file:

const fs = require('fs'),

path = require('path');

Next, take the create function's original code:

res.send('The image:create POST controller');

res.redirect('/images/1');

[140]

Replace this original code with the following code:

const saveImage = function() {

// to do...

};

saveImage();

Here, we created a function called saveImage and executed it immediately after we declared it.
This might look a little odd, but the reason for this will become clear when we implement
database calls in the following chapter. The main reason is that we will call saveImage repeatedly
to ensure that the unique identifier we generated is in fact unique and doesn't already exist in the
database as a previously saved image's identifier.

Let's review a breakdown of the code that will be inserted in the saveImage function (replacing the
// to do... comment). I will cover each line of code for this function and then give you the
entire block of code at the end:

let possible = 'abcdefghijklmnopqrstuvwxyz0123456789',

imgUrl = '';

We will need to generate a random, six-digit alphanumeric string to represent a unique identifier
for an image. This identifier will work in a similar fashion to other websites that provide short
URLs for unique links (for example, bit.ly). To do this, we will first provide a string of possible
characters that can be used while generating the random string:

for(let i=0; i < 6; i+=1) {

 imgUrl += possible.charAt(Math.floor(Math.random() *

possible.length));

}

Then, loop-over for six times and randomly pull out a single character from our string of possible
characters, appending it in each cycle. By the end of this for loop, we should have a string that
consists of six random letters and/or numbers, for example, a8bd73:

const tempPath = req.files.file.path,

ext = path.extname(req.files.file.name).toLowerCase(),

targetPath = path.resolve(`./public/upload/${imgUrl}${ ext}`);

Here, we declare three constants: where our uploaded files will be stored temporarily, the file
extension of the file that was uploaded (for instance, .png, .jpg, and so on), and a destination
where the uploaded image should ultimately reside.

For both the latter variables, we will use the path node module, which works great while dealing
with filenames and paths and getting information from a file (such as a file extension). Next, we
will move the image from its temporary upload path to its final destination:

if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' || ext ===

 '.gif') {

 fs.rename(tempPath, targetPath, (err) => {

 if (err) throw err;

 res.redirect(`/images/ ${imgUrl}`);

 });

} else {

 fs.unlink(tempPath, () => {

 if (err) throw err;

 res.json(500, { error: 'Only image files are allowed.' });

 });

}

The preceding code performs some validation. Specifically, it conducts checks to make sure that
the uploaded file extension matches a list of allowable extensions, namely known image file

[141]

types. If a valid image file was uploaded, it is moved from the temp folder via the filesystem's
rename function. Note how the filesystem (fs) rename function takes three parameters: the original
file, the new file, and a callback function.

The callback function is executed once the rename is complete. If the node doesn't work this way
(always relying on callback functions), it's quite likely that your code will execute immediately
following the execution of the rename function and try to work against a file that doesn't exist yet
(that is, the rename function doesn't even finish doing its work). Using a callback function, we
effectively tell the node that once the rename of the file is finished and the file is ready and placed
where it should be, then it can execute the code in the callback function.

The else condition that follow handles the situation when the uploaded file was invalid (that is,
not an image), so we call the unlink function of the fs module, which will delete the original file
(from the temp directory it was uploaded to) and then send a simple JSON 500 with an error
message.

Here is the complete saveImage function (again, the following code will replace // to do... from
earlier):

const possible = 'abcdefghijklmnopqrstuvwxyz0123456789',

 imgUrl = '';

for (let i = 0; i < 6; i += 1) {

 imgUrl += possible.charAt(Math.floor(Math.random() *

 possible.length));

}

const tempPath = req.files.file.path,

 ext = path.extname(req.files.file.name).toLowerCase(),

 targetPath = path.resolve(`./public/upload/${ imgUrl }${ ext }`);

if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' || ext ===

 '.gif') {

 fs.rename(tempPath, targetPath, (err) => {

 if (err) throw err;

 res.redirect('/images/${ext}');

 });

} else {

 fs.unlink(tempPath, () => {

 if (err) throw err;

 res.json(500, { error: 'Only image files are allowed.' });

 });

}

With this new code in place, we can now successfully upload an image file via the form on the
home page. Give it a try by launching the app and opening it in a browser. Once there, click on
the Browse button in the main form, and select an image file from your computer. If successful,
the image file should exist within the public/upload folder of your project with a new random
filename.

Ensure that you have the public/upload folders created in your project, or you will get runtime
errors when you attempt to write files to a location that doesn't exist. The write permissions
might need to be set on the folder, depending on your OS and security access.

After the upload form completes and the create controller function does its work, it will redirect
you to the individual image page for the image that was uploaded.

[142]

Helpers for reusable code
So far, each of the pages that we have rendered display their ViewModel data perfectly, but that
pesky sidebar still remains blank. We will fix this by creating a few modules for the sidebar
content by implementing them as helper modules. These helper modules will be used repeatedly
by various parts of our application and don't necessarily belong to the controller folder or the
server folder. So, we'll just create a new home called helpers and store these modules there.

As we are just loading temporary fixture data into our ViewModels, the data we set up in the
helpers and the controllers will all be replaced with actual live data once we implement
MongoDB; we will do this in the next chapter.

[143]

The sidebar module
First, we will create a module for the entire sidebar. This module will be responsible for calling
multiple other modules to populate ViewModel for each section of the sidebar. As we will be
populating each page's own ViewModel with data specifically for the sidebar, the sidebar module's
function will accept that original ViewModel as a parameter. This is so that we can append data to
the existing ViewModel for each page.

Here, we will be appending a sidebar property (which is a JavaScript object) that contains
properties for each of the sections of the sidebar.

To get started, first create a file named helpers/sidebar.js, and insert the following code:

const Stats = require('./stats'),

 Images = require('./images'),

 Comments = require('./comments');

module.exports = (ViewModel, callback) => {

 ViewModel.sidebar = {

 stats: Stats(),

 popular: Images.popular(),

 comments: Comments.newest()

 };

 callback(ViewModel);

};

In the preceding code, you can see that you first required a module for each section of the
sidebar. The existing ViewModel for any given page that displays the sidebar is the first parameter
of the function. We added a sidebar property to ViewModel and set values for each property by
calling the module for each section of the sidebar. Finally, we executed a callback that was
passed in as the second parameter to the sidebar module. This callback is an anonymous function
that we will use to execute the rendering of the HTML page.

Let's update the home and image controllers to include a call to the sidebar module, as well as to
defer rendering the HTML template for each page to the callback for the sidebar module.

Edit controllers/home.js and consider the following line of code:

res.render('index', ViewModel);

Replace it with this new block of code:

sidebar(ViewModel, (ViewModel) => {

 res.render('index', ViewModel);

});

Make the exact same changes to the controllers/image.js file, replacing index with image:

sidebar(ViewModel, (ViewModel) => {

 res.render('image', ViewModel);

});

Again, note how we executed the sidebar module and passed the existing ViewModel as the first
parameter and a basic anonymous function as a callback for the second parameter. What we did
was wait to render the HTML for the View until after the sidebar completed populating
ViewModel. This is because of the asynchronous nature of Node.js. Suppose that we wrote the code
in the following way instead:

[144]

sidebar(ViewModel);

res.render('index', ViewModel);

Here, it's quite likely that the res.render statement will execute before sidebar has even finished
doing any work. This will become very important once we introduce MongoDB in the next
chapter. Additionally, as we are now using the sidebar module in each controller, ensure that you
require it at the top of both controllers by including the following code:

const sidebar = require('../helpers/sidebar');

Now that our sidebar module is complete, and it's being called from both controllers, let's
complete the sidebar by creating each of the submodules that are required.

[145]

The stats module
The stats module will display a few random pieces of statistics about our app. Specifically, it will
show the count for the total number of images, comments, Views, and likes for the entire website.

Create the helpers/stats.js file and insert the following code:

module.exports = () => {

 const stats = {

 images: 0,

 comments: 0,

 Views: 0,

 likes: 0

 };

 return stats;

};

This module is pretty basic, and all it does is create a standard JavaScript object with a few
properties for the various stats, each set initially to 0.

[146]

The images module
The images module is responsible for returning various collections of images. Initially, we will
create a popular function that will be used to return a collection of the most popular images on
the website. Initially, this collection will simply be an array of image objects with the sample
fixture data present.

Create the helpers/images.js file, and insert the following code:

module.exports = {

 popular() {

 let images = [{

 uniqueId: 1,

 title: 'Sample Image 1',

 description: '',

 filename: 'sample1.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 },

 {

 uniqueId: 2,

 title: 'Sample Image 2',

 description: '',

 filename: 'sample2.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 },

 {

 uniqueId: 3,

 title: 'Sample Image 3',

 description: '',

 filename: 'sample3.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 },

 {

 uniqueId: 4,

 title: 'Sample Image 4',

 description: '',

 filename: 'sample4.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now()

 }

];

 return images;

 }

};

[147]

The comments module
Similar to the image's helper module, the comments module will return a collection of the newest
comments posted to the site. An idea of particular interest is that each comment also has an
image attached to it, so that the actual image for each comment can be displayed as a thumbnail
when displaying the list of comments (otherwise, we lose context when we see a random list of
comments with no related image).

Create the helpers/comments.js file, and insert the following code:

module.exports = {

 newest() {

 let comments = [{

 image_id: 1,

 email: 'test@testing.com',

 name: 'Test Tester',

 gravatar: 'http://lorempixel.com/75/75/animals/1',

 comment: 'This is a test comment...',

 timestamp: Date.now(),

 image: {

 uniqueId: 1,

 title: 'Sample Image 1',

 description: '',

 filename: 'sample1.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now

 }

 }, {

 image_id: 1,

 email: 'test@testing.com',

 name: Test Tester ',

 gravatar: 'http://lorempixel.com/75/75/animals/2',

 comment: 'Another followup comment!',

 timestamp: Date.now(),

 image: {

 uniqueId: 1,

 title: 'Sample Image 1',

 description: '',

 filename: 'sample1.jpg',

 Views: 0,

 likes: 0,

 timestamp: Date.now

 }

 }];

 return comments;

 }

};

Again, this is just a basic JavaScript array of objects with a few properties for each comment, one
of which is an actual image and its properties (the image property should look familiar, since it's
the same as one of the items in the image's helper module).

[148]

Testing the sidebar implementation
Now that our sidebar module is completed along with its dependent submodules for the various
stats, images, and comments, it's time to give our application another test run. Launch the node
server, and open the application in your browser.

You should now see the sidebar, complete with content, on both the home page and the image
landing page.

[149]

Iterating on the UI
Now that we have our application working fairly well and can actually interact with it, it's time to
step back and take a look at some of the areas we might be able to improve.

One area is the Post Comment form on the image page. I don't think it's necessary that this form
is always visible, but instead it should be made available only when someone actually wants to
post a comment.

Additionally, I'd love the Like button to not have to post a full form submission to the server and
cause the entire page to reload (just as the form on the home page does when it uploads an
image). We will use jQuery to submit an AJAX call to the server to handle the likes and send and
retrieve data in real time without ever reloading the page.

To make these tweaks, we will need to introduce a small amount of JavaScript on the page to add
a little interactivity. To make things even easier, we'll use the popular jQuery JavaScript library
to make creating interactive features a breeze.

The jQuery has been around for a number of years and has been explosively popular in frontend
development. It allows you to manipulate the Document Object Model (DOM), that is, the
HTML structure of any page, extremely easily, which you will see in the next section. You can
learn more about jQuery at http://jquery.com.

You might not have noticed, but in the HTML code that was provided for the main.Handlebars
layout file, jQuery was already included as an external script tag (referencing jQuery hosted on a
CDN). Additionally, a local scripts.js tag is also included, where we will put our custom jQuery
JavaScript code for the changes we will make to the UI. When you look at the very bottom of
main.Handlebars, you can see the following code:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>

<script type="text/javascript" src="/public/js/scripts.js"></script>

The first script tag points to Google's code Content Delivery Network (CDN), which means
that we don't have to worry about hosting that file with our code. The second file, however, is
our own file, so we will need to make sure that exists.

CDN is a means of delivering a file from a globally distributed network of caching servers. What
this means, generally speaking, is that files that are very commonly downloaded by web visitors
(such as jQuery) can be loaded much quicker via a regionally closer download source as well as
improved caching. If multiple websites use the same CDN URL to host jQuery, for example, it
stands to reason that a visitor to your website might have already downloaded jQuery when
visiting a previous unrelated website. Therefore, your website will load that much quicker.

Create the public/js/scripts.js file, and insert the following code:

$(function(){

// to do...

});

This is a standard code block that you'll see almost every time anyone uses jQuery. What this
code does is execute an anonymous function within the $() jQuery wrapper, which is shorthand

[150]

http://jquery.com

for writing the following code:

$(document).ready(function(){

// to do...

});

The preceding code basically means that the callback function will wait until the page is fully
loaded and ready before executing. This is important because we don't want to apply UI event
handlers and/or effects to DOM elements that don't actually exist yet because the page is still
loading. This is also another reason why the script tags in the main.Handlebars layout file are the
last lines of the page; it is so that they are the last to load, ensuring that the document has already
been fully downloaded and is ready to be manipulated.

First, let's address the post-comment functionality. We want to hide the comment form by default,
and then display it only when a user clicks on the Post Comment button under an image (to the
right of the Like button). Insert the following code inside the callback function where the // to
do... comment exists:

$('#post-comment').hide();

$('#btn-comment').on('click', function(event) {

 event.preventDefault();

 $('#post-comment').show();

});

The first line of code executes the hide function on the HTML div that has a post-comment ID. We
then immediately apply an event handler to the HTML button with a btn-comment ID. The event
handler we apply is for onClick, because we want it to execute the anonymous function we
provided whenever a user clicks on that button. That function simply prevents the default
behavior (the default behavior for that particular element; in this case, a button) and then calls the
show jQuery function, which reveals the post-comment div that was previously hidden. The
event.preventDefault() part is important because if we didn't include it, the action of clicking on
the button would do what a browser expects it to do and try to execute our custom JavaScript
function at the same time. If we didn't include this, it's likely that our UI would behave in ways
that are less than ideal. A good example of this is that if you want to override the default
behavior of a standard HTML link, you can assign an onClick event handler and do whatever you
want. However, if you don't perform event.preventDefault(), the browser will send the user to the
HREF for that link, regardless of what your code is trying to do.

Now, let's add some code to handle the Like button functionality. We will add an event handler
for the button, the same way we did for the Post Comment button, using jQuery's .on function.
After the code that you added previously, insert this additional block of code inside the ready
statement:

$('#btn-like').on('click', function(event) {

 event.preventDefault();

 let imgId = $(this).data('id');

 $.post('/images/' + imgId + '/like').done(function(data) {

 $('.likes-count').text(data.likes);

 });

});

The preceding code attaches an onClick event handler to the btn-like button. The event handler
first retrieves the data('id') attribute from the Like button (assigned via the image.Handlebars
HTML template code and ViewModel) and then performs a jQuery AJAX post to the
/images/:image_id/like route. Recall the following line from our Node server/routes.js file:

app.post('/images/:image_id/like', image.like);

[151]

Once that AJAX call is done, another anonymous callback function will be executed that will
change the text of the HTML element with a likes-count class and replace it with the data that
was returned from the AJAX call--in this case, the updated total count of likes (typically, it
would be whatever it was previously plus one).

In order to test this functionality, we will need to implement some fixture data in our like
function inside the image controller. Edit controllers/image.js, and within the like function,
replace the existing res.send function call with the following code:

like(req, res) {

 res.json({ likes: 1 });

},

All this code does is return JSON to the client with a simple object that contains a single likes
property with a value of 1. In the next chapter, when we introduce MongoDB to the app, we'll
update this code to actually increase the count of likes and return the true value for the liked
image.

With all of those changes in place, you should be able to relaunch the node server and open the
website in your browser. Click on any image on the home page to view the image page and then
click on the Like button to see it change from 0 to 1. Don't forget to check out the fancy new Post
Comment button too; clicking on this should reveal the comment form.

[152]

Summary
At the beginning of this chapter, we had some basic HTML pages that appeared in a browser via
our application, but they contained no content and no logic whatsoever. We implemented the
logic for each of our controllers and discussed the ViewModel and how to populate pages with
content.

In addition to displaying content on our pages via a ViewModel, we also implemented the code
to handle uploading and saving image files to the local filesystem.

We tweaked the UI slightly to include some subtle enhancements using jQuery by revealing the
comment form and used AJAX to track likes instead of relying on a full page postback.

Now that the groundwork has been laid for our ViewModels and controllers, let's tie it all
together using MongoDB and start working with real data. In the next chapter, we will update the
controllers once again, this time implementing the logic to read from and save data to our
MongoDB server.

[153]

Persisting Data with MongoDB
With almost any application written for the web nowadays, a highly interactive application is of
limited value if the interaction between its users isn't permanently saved. You have to integrate
your application with a proper database to solve this issue. Imagine a case where all of the data
for your application (registered users, order transactions, and social interactions) was stored
within the temporary memory of the server the application is running on. The moment that server
was turned off or rebooted, all of your application data would be lost. Relying on a database to
store this data permanently is crucial to any dynamic application.

In this chapter, the following topics will be covered:

Connecting to MongoDB
An introduction to Mongoose
Schemas and models
Adding CRUD to our controllers

In the previous chapter, we wrote and accounted for the actual logic of our application. The next
step in building our application is to connect it to a database so that our users' interactions and
data can be permanently saved and retrieved. Technically, we can get around this by storing data
in the memory, but the moment our web server restarts or crashes, all of that data will be lost.
Without connecting our application to a database server to persist data, every input interacted by
a visitor will be obsolete. Without some kind of database server to store our data, most of the
websites we interact with on a daily basis wouldn't even exist.

Here is a general breakdown of how our data is going to be persisted for every visitor interaction
in our app:

Consider the preceding diagram, which reflects the typical life cycle of a web application
request:

1. A visitor submits a request to view a page on our application via their web browser.
2. The Node.js server receives this request and queries a MongoDB server for any data.
3. The MongoDB server returns the queried data back to our Node.js server.
4. The Node.js server takes that data, builds it into the view model, and then sends the

rendered HTML page back to the browser.
5. The web browser receives the response from our Node.js server and renders the HTML.
6. This cycle typically repeats for every interaction by every visitor.

For the purposes of this book, we are using MongoDB as our primary data store, but the reality is
that we can use any of the following to store data: MySQL, PostgreSQL, MS SQL, the
filesystem, and so on.

[154]

Using MongoDB with Node.js
Before we officially implement MongoDB into our actual application, let's first take a look at
some basic examples of connecting to a MongoDB server from within Node.js.

Create a new project folder to store some sample code to experiment with. I'll call my folder
mongotest. Inside this folder, create a new file called test.js. In this file, we will play around with
some code to test how to connect to MongoDB and how to insert and retrieve some data. The
first thing we need to do in order to connect to a MongoDB server from Node.js is to require a
mongodb module.

To get started, change directories into the new mongotest folder and install the mongodb module
using npm:

 $ cd mongotest

 $ npm install mongodb

Don't be confused by the module's name. The mongodb npm module isn't MongoDB itself, but
rather a third-party npm module that facilitates communicating to a MongoDB server from
within Node.js. Also, because this is just a sample project to experiment with, we don't require
the --save flag with npm install, since we aren't maintaining a package.json file.

[155]

Connecting to MongoDB
Now that the mongodb module is installed, we can use it in our experimentation file. Boot up your
editor and create a file named test.js. Insert the following block of code into it:

const MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest',

 (err, db)=>{

 console.log('Connected to MongoDB!');

 db.close();

 });

Executing the preceding code should log Connected to MongoDB! to your screen.

The first thing you'll notice is that we require the mongodb module, but we specifically use the
MongoClient component of the module. This component is the actual interface we use to actively
open a connection to a MongoDB server. Using MongoClient, we pass the
mongodb://localhost:27017/mongotest string URL to our local server as the first parameter. Notice
that the path in the URL points to the server and then the name of the database itself.

Remember to make sure you have your local MongoDB server instance running in another
terminal for the duration of this chapter. To do so, open a command-line terminal window and
execute $ mongod. Your server should launch and log information to the screen, ending with
[initandlisten] waiting for connections on port 27017.

You might find that when you run your application, you receive a stack trace error with
something like the following code:
events.js:72

thrower; // Unhandled 'error' event

^Error: failed to connect to [localhost:27017]

If this happens, you should realize that it failed to connect to the localhost on port 27017, which is
the port that our local mongod server runs under.

Once we have an active connection to our database server, it's as if we are running the Mongo
shell command. The MongoClient callback function returns a database connection object (that
we named db in our code, but could have named anything), which is exactly the same object we
work with in the Mongo shell when we execute use <databasename>. Knowing this, at this point,
we can use the db object to do anything we can do via the Mongo shell. The syntax is slightly
different, but the idea is generally the same.

[156]

Inserting a document
Let's test out our new db object by inserting a record into a collection:

const MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest', (err, db)=>{

 console.log('Connected to MongoDB!');

 var collection = db.collection('testing');

 collection.insert({'title': 'Snowcrash'}, (err, docs)=>{

 /**

 * on successful insertion, log to the screen

 * the new collection's details:

 **/

 console.log(`${docs.ops.length} records inserted.`);

 console.log(`${docs.ops[0]._id} - ${docs.ops[0].title}`);

 db.close();

 });

});

In the preceding code, we establish a connection to the database and execute a callback once the
connection is complete. That callback receives two parameters, the second of which is the db
object itself. Using the db object, we can get a collection we want to work with. In this case, we
save that collection as a variable so that we can work with it throughout the rest of our code more
easily. Using the collection variable, we execute a simple insert command and pass the JSON
object we want to insert into the database as the first parameter.

The callback function executes after insert accepts two parameters, the second of which is an
array of documents affected by the command; in this case, it is an array of documents that we
inserted. Once insert is complete and we are inside the callback function, we log some data. You
can see that the length of the docs.ops array is 1, as we only inserted a single document.
Furthermore, you can see that the single document in the array is the document we inserted,
although now it has an extra _id field since MongoDB handles that automatically.

[157]

Retrieving a document
Let's prove our code a little bit more by adding the findOne function call to look up the document
we just inserted. Change the code in test.js to match the following example:

const MongoClient = require('mongodb').MongoClient;

MongoClient.connect('mongodb://localhost:27017/mongotest', (err, db)=>{

 console.log('Connected to MongoDB!');

 var collection = db.collection('testing');

 collection.insert({'title': 'Snowcrash'}, (err, docs)=>{

 console.log(`${docs.ops.length} records inserted.`);

 console.log(`${docs.ops[0]._id} - ${docs.ops[0].title}`);

 collection.findOne({title: 'Snowcrash'}, (err, doc)=>{

 console.log(`${doc._id} - ${doc.title}`);

 db.close();

 });

 });

});

In this code, we insert a record in exactly the same way as before; only this time,
we perform findOne on title. The findOne function accepts a JSON object to match against (this
can be as precise or loose as you want) as its first parameter. The callback function that executes
after findOne will contain the single document that was found as its second parameter. If we
executed a find operation, we would have received an array of matching documents based on the
search criteria.

The output of the last mentioned code should be:

 $ node test.js

 Connected to MongoDB!

 1 record inserted.

 538bc3c1a39448868f7013b4 - Snowcrash

 538bc3c1a39448868f7013b4 - Snowcrash

In your output, you might notice that the _id parameter being reported on insert doesn't match
the one from findOne. This is likely the result of running the code multiple times, which results in
multiple records with the same title being inserted. The findOne function will return the first
document found in no particular order, so chances are the document returned might not be the
last one inserted.

Now that you have a basic understanding of how to easily connect and communicate with a
MongoDB server from Node.js, let's take a look at how we can work with MongoDB in a way
that's a little less raw.

[158]

Introducing Mongoose
While working directly with the mongodb module is great, it's also a bit raw and lacks any sense of
the developer friendliness that we've come to expect when working with frameworks such as
Express in Node.js. Mongoose is a great third-party framework that makes working with
MongoDB a breeze. It is an elegant mongodb object modeling for Node.js.

What that basically means is that Mongoose gives us the power to organize our database using
schemas (also known as model definitions) and provides powerful features to our models, such
as validation, virtual properties, and more. Mongoose is a great tool, as it makes working with
collections and documents in MongoDB feel much more elegant. The original mongodb module is
a dependency of Mongoose, so you can think of Mongoose as being a wrapper on top of mongodb,
much like Express is a wrapper on top of Node.js--both abstract away a lot of the raw feeling and
give you easier tools to work with directly.

It's important to note that Mongoose is still MongoDB, so everything you're familiar with and
used to will work pretty much the same way; only the syntax will change slightly. This means
that the queries, inserts, and updates that we know and love from MongoDB work perfectly fine
with Mongoose.

The first thing we need to do is install Mongoose so that it's available to use within our mongotest
project:

 $ npm install mongoose

After installation, let's take a look at some of the features that Mongoose has to offer and that
we'll take advantage of to make our lives easier when developing apps that rely heavily on a
MongoDB database.

[159]

Schemas
In Mongoose, schemas are what we use to define our models. Visualize the schemas as the
blueprints which are used to create the models. Using schemas, you can define much more than
the simple blueprint of a MongoDB model. You can also take advantage of the built-in validation
that Mongoose provides by default, adding static methods, virtual properties, and more.

The first thing we do while defining a schema for a model is build a list of every field we think
we will need for a particular document. The fields are defined by type, and the standard data
types you would expect are available, as well as a few others:

String: This type stores a string value.
Number: This type stores a number value, with restrictions.
Date: This type holds a date and time object.
Buffer: This type provides the storage for binary data. For instance, it can include images
or any other files.
Boolean: This type is used to store a Boolean (true/ false) value.
Mixed: This is basically an unstructured object that can contain anything. Consider this
when storing JSON type data or data that is arbitrary and
can literally be any JSON representation. It doesn't need to be predefined.
ObjectID: This is typically used when you want to store the ObjectID of another document
in a field, for example, when defining a relationship.
Array: This is a collection of other schemas (models).

Here is an example of a basic Mongoose schema definition:

const mongoose = require('mongoose'),

 Schema = mongoose.Schema;

var Account = new Schema({

 username: { type: String },

 date_created: { type: Date, default: Date.now },

 visits: { type: Number, default: 0 },

 active: { type: Boolean, default: false }

});

Here, we define our schema for an Account collection. The first thing we do is require Mongoose
and then define a Schema object using mongoose.Schema in our module. We define a schema by
creating a new Schema instance with a constructor object that defines the schema. Each field in the
definition is a basic JavaScript object with its type and then an optional default value.

[160]

Models
A model in Mongoose is a class that can be instantiated (defined by a schema).
Using schemas, we define models and then use them as regular JavaScript objects.
The benefit is that the model object has the added bonus of being backed by Mongoose, so it also
includes features such as saving, finding, creating, and removing. Let's take a look at defining a
model using a schema and then instantiating a model and working with it. Add another file called
test2.js to your experimentation folder, mongotest/test2.js, and include the following block in
it:

const mongoose = require('mongoose'),

 Schema = mongoose.Schema;

mongoose.connect('mongodb://localhost:27017/mongotest');

mongoose.connection.on('open', function() {

 console.log('Mongoose connected.');

});

var Account = new Schema({

 username: { type: String },

 date_created: { type: Date, default: Date.now },

 visits: { type: Number, default: 0 },

 active: { type: Boolean, default: false }

});

var AccountModel = mongoose.model('Account', Account);

var newUser = new AccountModel({ username: 'randomUser' });

console.log(newUser.username);

console.log(newUser.date_created);

console.log(newUser.visits);

console.log(newUser.active);

Running the preceding code should result in something similar to the following:

 $ node test2.js

 randomUser

 Mon Jun 02 2014 13:23:28 GMT-0400 (EDT)

 0

 false

Creating a new model is great when you're working with new documents and you want a way to
create a new instance, populate its values, and then save it to the database:

var AccountModel = mongoose.model('Account', Account);

var newUser = new AccountModel({

 username: 'randomUser'

});

newUser.save();

Calling .save on a mongoose model will trigger a command to MongoDB that
will perform the necessary insert or update statements to update the server. When you switch
over to your mongo shell, you can see that the new user was indeed saved to the database:

> use mongotest

switched to db mongotest

> db.accounts.find()

{ "username" : "randomUser", "_id" : ObjectId("538cb4cafa7c430000070f66"), "active" : false,

"visits" : 0,

"date_created" : ISODate("2014-06-02T17:30:50.330Z"), "__v" : 0 }

Without calling .save() on the model, the changes to the model won't actually be persisted to the
database. Working with Mongoose models in your Node code is just that--code. You have to

[161]

execute MongoDB functions on a model for any actual communication to occur with the
database server.

You can use AccountModel to perform a find operation and return an array of AccountModel objects,
based on some search criteria that retrieves results from the MongoDB database:

// assuming our collection has the following 4 records:

// { username: 'randomUser1', age: 21 }

// { username: 'randomUser2', age: 25 }

// { username: 'randomUser3', age: 18 }

// { username: 'randomUser4', age: 32 }

AccountModel.find({ age: { $gt: 18, $lt: 30 } }, function(err, accounts) {

 console.log(accounts.length); // => 2

 console.log(accounts[0].username); // => randomUser1

 mongoose.connection.close();

});

Here, we use the standard MongoDB commands $gt and $lt for the value of age when passing in
our query parameter to find documents (that is, find any document where the age is above 18 and
below 30). The callback function that executes after find references an accounts array, which is a
collection of AccountModel objects returned from the query to MongoDB. As a general means of
good housekeeping, we close the connection to the MongoDB server after we are finished.

[162]

Built-in validation
One of the core concepts of Mongoose is that it enforces a schema on top of a
schema-less design, such as MongoDB. In doing so, we gain a number of new features, including
built-in validation. By default, every schema type has a built-in required validator available.
Furthermore, numbers have both min and max validators, and strings have enumeration and
matching validators. Custom validators can also be defined via your schemas. Let's take a brief
look at some validation added to our example schema from earlier:

var Account = new Schema({

 username: { type: String, required: true },

 date_created: { type: Date, default: Date.now },

 visits: { type: Number, default: 0 },

 active: { type: Boolean, default: false },

 age: { type: Number, required: true, min: 13, max: 120 }

});

The validation we added to our schema is that the username parameter is now required, and we
included a new field called age, which is a number that must be between 13 and 120 (years). If
either value doesn't match the validation requirements (that is, the username is blank or the age is
less than 13 or greater than 120), an error will be thrown.

Validation will fire automatically whenever a model's .save() function is called; however, you
can also manually validate by calling a model's .validate() function with a callback to handle the
response. Building on the example, add the following code, which will create a new mongoose
model from the schema defined:

var AccountModel = mongoose.model('Account', Account);

var newUser = new AccountModel({ username: 'randomUser', age: 11 });

newUser.validate(function(err) {

 console.log(err);

});

// the same error would occur if we executed:

// newUser.save();

Running the preceding code should log the following error to the screen:

{

 message: 'Validation failed',

 name: 'ValidationError',

 errors: {

 age: {

 message: 'Path '

 age ' (11) is less than minimum allowed value (13).',

 name: 'ValidatorError',

 path: 'age',

 type: 'min',

 value: 11

 }

 }

}

You can see that the error object that is returned from validate is pretty useful and provides a lot
of information that can help when validating your model and returning error messages back to
the user.

Validation is a very good example of why it's so important to always accept an error object as
the first parameter to any callback function in Node. It's equally important that you check the
error object and handle it appropriately.

[163]

Static methods
Schemas are flexible enough so that you can easily add your own custom static methods to them,
which will then become available to all of your models that are defined by that Schema. Static
methods are great for adding helper utilities and functions that you know you're going to want to
use with most of your models. Let's take our simple age query from earlier and refactor it so that
it's a static method and a little more flexible:

var Account = new Schema({

 username: { type: String },

 date_created: { type: Date, default: Date.now },

 visits: { type: Number, default: 0 },

 active: { type: Boolean, default: false },

 age: { type: Number, required: true, min: 13, max: 120 }

});

Account.statics.findByAgeRange = function(min, max, callback) {

 this.find({ age: { $gt: min, $lte: max } }, callback);

};

var AccountModel = mongoose.model('Account', Account);

AccountModel.findByAgeRange(18, 30, function(err, accounts) {

 console.log(accounts.length); // => 2

});

Static methods are pretty easy to implement and will make your models much more powerful
once you start taking full advantage of them!

[164]

Virtual properties
Virtual properties are exactly what they sound like--fake properties that don't actually exist in
your MongoDB documents, but that you can fake by combining other, real properties. The most
obvious example of a virtual property would be a field for fullname, when only firstname and
lastname are actual fields in the MongoDB collection. For fullname, you simply want to say,
return the model's first and last name combined as a single string and label it as fullname:

// assuming the Account schema has firstname and lastname defined:

Account.virtual('fullname')

 .get(function() {

 return this.firstname + ' ' + this.lastname;

 })

 .set(function(fullname) {

 var parts = fullname.split(' ');

 this.firstname = parts[0];

 this.lastname = parts[1];

 });

We call the .get() and .set() functions. It's not required to provide both, although it's fairly
common.

In this example, our get() function simply performs basic string concatenation and returns a new
value. Our .set() function performs the reverse splitting of a string on a space and then assigning
the model's firstname and lastname field values with each result. You can see that the .set()
implementation is a little flaky if someone attempts to set a model's fullname with a value of, say,
Dr. Kenneth Noisewater.

It's important to note that virtual properties are not persisted to MongoDB, since they are not real
fields in the document or collection.

There's a lot more you can do with Mongoose, and we only just barely scratched the surface.
Fortunately, it has a fairly in-depth guide that you can refer to at the following link:
http://mongoosejs.com/docs/guide.html.

Definitely spend some time reviewing the Mongoose documentation so that you are familiar with
all of the powerful tools and options available.

That concludes our introduction to Mongoose's models, schemas, and validation. Next up, let's
dive back into our main application and write the schemas and models that we will be using to
replace our existing sample ViewModels and for connecting with Mongoose.

[165]

http://mongoosejs.com/docs/guide.html

Context of method (this)
Before getting started with our next sections, the readers may have noticed that we have not used
a fat arrow function as a replacement for the callbacks in all cases. This is because we will be
using the context of a function (this) widely. There is a difference in implementation between
flat arrow functions and regular functions when it comes to context. The differential statement is
that the context of function (this) doesn't depend on where it is declared, but from where it is
called. To understand this, let's consider the following example:

function getData() {

 console.log(this.a); // global

}

getData.a = 'hello';

var a = 'world';

getData();

On running the preceding snippet, we will get the output 'world'; this is because the foo function
is called in a global scope, hence the context is global and we receive the value of the global
variable. To restrict this behavior, we can use the bind method or es6 arrow functions.
Now, we convert the preceding get virtual method as follows:

Account.virtual('fullname')

.get(()=>{

return this.firstname + ' ' + this.lastname;

})

The context inside the preceding arrow function won't refer to the Account schema, and will thus
get undefined. To avoid this behavior, we will continue with regular functions. Get to know more
about the lexical scoping mechanism of the arrow function in the following link:
https://goo.gl/bXvFRM. More details on how to handle this issue with different methods are
posted in the following link: https://github.com/Automattic/mongoose/issues/5057.

[166]

https://goo.gl/bXvFRM
https://github.com/Automattic/mongoose/issues/5057

Connecting with Mongoose
The act of connecting to a MongoDB server with Mongoose is almost identical to the method we
used earlier when we used the mongodb module.

First, we need to ensure that Mongoose is installed. At this point, we are going to be using
Mongoose in our main app, so we want to install it in the main project directory and also update
the package.json file. Using your command-line terminal program, change locations to your
projects folder, and install Mongoose via npm, making sure to use the --save flag so that the
package.json file is updated:

 $ cd ~/projects/imgPloadr

 $ npm install mongoose --save

With Mongoose installed and the package.json file updated for the project, we're ready to open a
connection to our MongoDB server. For our app, we are going to open a connection to the
MongoDB server once the app itself boots up and maintains an open connection to the database
server for the duration of the app's lifetime. Let's edit the server.js file to include the connection
code we need.

First, include Mongoose in the app by requiring it at the very top of the file:

cons express = require('express'),

config = require('./server/configure'),

mongoose = require('mongoose');

var app = express();

Then, insert the following code right after the app = config(app); line:

mongoose.connect('mongodb://localhost/imgPloadr', {

 useMongoClient : true

});

mongoose.connection.on('open',()=>{

 console.log('Mongoose connected.');

});

That's it! Those few simple lines of code are all it takes to open a connection to a MongoDB
server, and our app is ready to start communicating with the database. The parameter we pass to
the connect function of Mongoose is a URL string to our locally running MongoDB server with a
path to the collection we want to use. The `useMongoClient` is used to opt the new connection
method as the default method but will be deprecated once we start using Mongo version 4.11.0
and above. Further, we add an event listener to the open event of the mongoose.connection object,
and when that fires, we simply log an output message that the database server has connected.

[167]

Defining the schemas and models
For the purposes of the application we are building, we're going to have only two different,
unique schemas and associated models: an Image model and a Comment model. If we were to take
this application to production and really build it out with all of the necessary features, we would
expect to have many more models as well.

First, create a new directory labeled models in your project, and we will store the Node.js modules
for each of our models here. Create three files named image.js, comment.js, and index.js in this
directory. Let's take a look at the Image model first. Copy the following block of code into the
models/image.js file:

const mongoose = require('mongoose'),

 Schema = mongoose.Schema,

 path = require('path');

const ImageSchema = new Schema({

 title: { type: String },

 description: { type: String },

 filename: { type: String },

 views: { type: Number, 'default': 0 },

 likes: { type: Number, 'default': 0 },

 timestamp: { type: Date, 'default': Date.now }

});

ImageSchema.virtual('uniqueId')

.get(function() {

 return this.filename.replace(path.extname(this.filename), '');

});

module.exports = mongoose.model('Image', ImageSchema);

First, we define our ImageSchema with the various fields that we are going to store in MongoDB
for each of the images. We created a virtual property of uniqueId, which is just the filename with
the file extension removed. As we want our Image model to be available throughout the rest of
our app, we export it using module.exports. Note that we are exporting the model, not the schema
(as the schema itself is fairly useless to us). Let's set up a similar model for comments. Copy the
following block of code into the models/comment.js file:

const mongoose = require('mongoose'),

 Schema = mongoose.Schema,

 ObjectId = Schema.ObjectId;

const CommentSchema = new Schema({

image_id: { type: ObjectId },

email: { type: String },

name: { type: String },

gravatar: { type: String },

comment: { type: String },

timestamp: { type: Date, 'default': Date.now }

});

CommentSchema.virtual('image')

.set(function(image){

 this._image = image;

})

.get(function() {

 return this._image;

});

module.exports = mongoose.model('Comment', CommentSchema);

There are a few important things to take note of with this model. First, we have

[168]

a field labeled image_id, which has an ObjectId type. We're going to use this
field to store the relationship between the comment and image that it was posted to.
The ObjectId that gets stored in this field is the _id of the related image document from
MongoDB.

We also define virtual on the comment schema labeled image, which we provide a getter and setter
for. The image virtual property will be how we attach the related image when we retrieve
comments later in our controllers. For every comment, we are going to iterate through and look
up its associated image and attach that image object as a property of the comment.

Handling the name of collections
You name your models using singular terms, and Mongoose will recognize this and create your
collections using pluralized model names. So, a model defined as Image will have a collection in
MongoDB named images. Mongoose tries to be smart about this; however, a model defined as
Person will have a corresponding collection named people, and so on. (And yes, octopus will
result in octopi!)

[169]

The models index file
There's one last file in the models folder that we haven't yet touched on in our project. The
index.js file within any folder in Node.js acts as an index file for the modules within it. This is by
convention, so you don't have to adhere to this if you don't want to.

Since our models folder will contain a number of different files, each a unique module for one of
our models, it would be nice if we could just include all of our models in a single require
statement. Using the index.js file, we can do so pretty easily too. Copy the following block of
code into the models/index.js file:

module.exports = {

 'Image': require('./image'),

 'Comment': require('./comment')

};

The index.js file inside the models directory simply defines a JavaScript object that consists of a
name-value pair for each module in our directory. We manually maintain this object, but this is
the simplest implementation of the concept. Now, thanks to this basic file, we can perform
require('./models') anywhere in our application and know that we have a dictionary of each of
our models via that module. To reference a specific model in that module, we simply refer to the
specific model as a property of the module. If we only wanted to require a specific model
somewhere in our app instead, we could perform require('./models/image') just as easily! You
will see more of this a little later, and it will become much clearer.

Because our two models are so closely related, we are typically always going to require the
models dictionary using require('./models') throughout our application.

[170]

Adding CRUD to the controllers
CRUD stands for Create, Read, Update, and Delete. Now that our schemas are defined and our
models are ready, we need to start using them throughout our application by updating our
controllers with various CRUD methods where necessary. Up until this point, our controllers
have consisted of only fixture, or fake, data, so we can prove that our controllers are working and
our view models were wired up to our templates. The next logical step in our development is to
populate our View models with data directly from MongoDB. It would be even better if we could
just pass our Mongoose models right to our templates as viewModel itself.

[171]

The home controller
If you recall from the Updating the home controller section of Chapter 6, Controllers and View
Models, we originally created viewModel, which consisted of an array of JavaScript objects that
were just placeholder fixture data in our home controller:

var viewModel = {

images: [

 {

uniqueId: 1,

title: 'Sample Image 1',

description: '',

filename: 'sample1.jpg',

views: 0,

likes: 0,

timestamp: Date.now()

 }, {

uniqueId: 2,

title: 'Sample Image 2',

description: '',

filename: 'sample2.jpg',

views: 0,

likes: 0,

timestamp: Date.now()

 }, {

uniqueId: 3,

title: 'Sample Image 3',

description: '',

filename: 'sample3.jpg',

views: 0,

likes: 0,

timestamp: Date.now()

 }, {

uniqueId: 4,

title: 'Sample Image 4',

description: '',

filename: 'sample4.jpg',

views: 0,

likes: 0,

timestamp: Date.now()

 }

]

};

We are going to replace that viewModel with a very stripped-down version that we will then
populate with real data from our Mongoose models:

var viewModel = {

 images: []

};

Before we can populate that viewModel with real data, we need to first make sure our home
controller can use our models. To do so, we must require the models module. Include this at the
very top of the controllers/home.js file:

const sidebar = require('../helpers/sidebar'),

ImageModel = require('../models').Image;

We could have required the full models module and had access to both the Comment model and the
Image model; however, for the home page, we really only need to use the Image model. Now, our
mongoose model for Image is available to our home controller, and we can perform a find operation
to retrieve a list of the newest images to display on the home page. Replace the existing sidebar()
call in your home controller with this updated version of the code:

[172]

ImageModel.find({}, {}, { sort: { timestamp: -1 } },

 (err, images) => {

 if (err) { throw err; }

 viewModel.images = images;

 sidebar(viewModel, (viewModel) => {

 res.render('index', viewModel);

 });

 });

Using ImageModel, we execute a MongoDB find query, but we provide no specifics for the actual
query (a blank JavaScript object), which means it will return every document. The second
parameter is also a blank JavaScript object, which means we aren't specifying how to map the
results, so the full schema will be returned. The third parameter is an options object, where we
can specify things such as the sort field and order. In this particular query, we are retrieving
every single image in the images collection sorted by timestamp in descending order (ascending
order would have a value of 1 instead of -1).

The callback function that executes after a successful find query to the MongoDB database
server will return both an error object and an images array of matching models; in our case, it is
with every image in the database. Using the array that's returned from the query, we simply
attach it to our viewModel via its images property. Then, we call our sidebar function exactly as we
did previously.

At this point, we are no longer populating viewModel with fixture data, but are instead populating
it with exactly what is returned from the database when we perform a basic find query using our
Mongoose Image model. The home page for the application is officially data driven. Here is a
recap of the entire controllers/home.js file:

const sidebar = require('../helpers/sidebar'),

 ImageModel = require('../models').Image;

module.exports = {

 index: (req, res)=>{

 var viewModel = {

 images: []

 };

 ImageModel.find({}, {}, { sort: { timestamp: -1 }}, (err, images)=>{

 if (err) { throw err; }

 viewModel.images = images;

 sidebar(viewModel, (viewModel)=>{

 res.render('index', viewModel);

 });

 });

 }

};

If you were to run the app and open it in a browser, you wouldn't actually see anything on the
home page. That's because we haven't actually inserted any data yet. That's coming up next.
However, note that the page itself still works and you don't get any errors. This is because
MongoDB is simply returning an empty array from the find on ImageModel, which the Handlebars
home page template is handling fine because it's performing an each operation against an empty
array, so it's displaying zero images on the home page.

[173]

The image controller
The image controller is by far the biggest component of our application. It contains most, if not
all, of the logic that's powering our app. This includes displaying all of the details for an image,
handling the uploading of images, and handling likes and comments. There's a lot to cover in this
controller, so let's break it down by each section.

[174]

Index - retrieving an image model
The primary responsibility of the index function in our image controller is to retrieve the details
for a single, specific image, and display that via its viewModel. In addition to the details for the
actual image, the comments for an image are also displayed on the page in the form of a list.
Whenever an image is viewed, we also need to update the view count for the image and
increment it by one.

Begin by editing the controllers/image.js file and updating the list of required modules at the
top, to include our models module:

const fs = require('fs'),

path = require('path'),

sidebar = require('../helpers/sidebar'),

Models = require('../models');

We also want to strip viewModel down to its most basic form, exactly as we did in the home
controller. Replace the existing viewModel object variable with this new, lighter version:

var viewModel = {

image: {},

comments: []

};

After defining a blank viewModel, let's include a find call on the Image model so that we can look
up an image specifically by its filename:

Models.Image.findOne({

 filename: { $regex: req.params.image_id }

 },

 (err, image) => {

 if (err) { throw err; }

 if (image) {

 // to do...

 } else {

 res.redirect('/');

 }

 });

In the preceding code, we are using the Models module's Image model and performing findOne,
which is identical to find, except it will only ever return a single document (matching or not),
instead of an array like find returns. By convention, we use a singular variable name in our
callback's second parameter versus a plural one, just so we, as developers, can easily tell whether
we are working with a single object or an array/collection of objects.

The query object we provide as the first parameter matches the filename field of an image
document using MongoDB's regex filter and compares this to req.params.image_id, which is the
value of the parameter in the URL as defined in our routes file. The URL for an image page will
always be http://localhost:3300/images/abcdefg, where abcdefg will be the value of
req.params.image_id. If you recall, we are randomly generating this value in the create function
when an image is uploaded.

After checking to make sure our err object isn't null, we then check to make sure our image object
is also not null. If it's not null, that means a model was returned from MongoDB; so, we found
our image, and we're good to go. If an image model wasn't returned, because we tried searching
for an image by a filename that doesn't exist, we simply redirect the user back to the home page.

[175]

Let's now populate our viewModel by inserting the following lines into the area where we have the
// to do... placeholder comment:

image.views = image.views + 1;

viewModel.image = image;

image.save();

We attach the image model that was returned from findOne to our viewModel.image property, but not
before incrementing the views property of that model by 1 (so that we represent our actual plus
one view as we load the page). Since we modified the model (by incrementing its view count),
we need to ensure that it's saved back to MongoDB, so we call the model's save function.

Now that viewModel has been updated with the image model and the view
count has been incremented and saved, we need to retrieve a list of comments associated with the
image. Let's include a little bit more code to query the Comment model and find any comments that
belong to the image. Insert the following block of code immediately after image.save(); from
earlier:

Models.Comment.find({ image_id: image._id }, {}, {

 sort: {

 'timestamp': 1

 }

 },

 (err, comments) => {

 if (err) { throw err; }

 viewModel.comments = comments;

 sidebar(viewModel, (viewModel) => {

 res.render('image', viewModel);

 });

 }

);

Using find on our Comment model, we can pass in an object that contains our query as the first
parameter; in this case, we are specifying that we want all comments where the image_id field is
equal to the _id property of the main image model
we attached to our viewModel earlier.

That code might look a little odd, so let's elaborate. Remember that the image object that is
returned from the original Models.Image.findOne() call is available throughout the entire scope of
that callback function. No matter how deep we get nesting callback functions, we will always
have access to that original image model. Therefore, we can access it and its properties inside the
callback function that fires when our Model.Comment.find() has executed.

Once inside the find callback of Comment, we attach the comments array that was returned to our
viewModel and then call our sidebar function exactly as we did when we first opened the controller
and started editing this index function.

As a review, here is the entire index function inside the controllers/image.js file after it's been
completely updated:

index: (req, res)=>{

 var viewModel = {

 image: {},

 comments: []

 };

 Models.Image.findOne({ filename: { $regex: req.params.image_id } },

 (err, image)=>{

 if (err) { throw err; }

[176]

 if (image) {

 image.views = image.views + 1;

 viewModel.image = image;

 image.save();

 Models.Comment.find(

 { image_id: image._id},

 {},

 { sort: { 'timestamp': 1 }},

 (err, comments)=>{

 viewModel.comments = comments;

 sidebar(viewModel, (viewModel)=>{

 res.render('image', viewModel);

 });

 }

);

 } else {

 res.redirect('/');

 }

 });

 }

Let's quickly recall all of the index controller's responsibilities and tasks:

1. Create a new empty viewModel object.
2. Create the findOne imagefindOneimage model, where the filename is a regex match to the

URL image_id parameter.
3. Increment the found views of the image by one.
4. Attach the found image model to viewModel.
5. Save the image model since its views have been updated.
6. Find all comments with the image_id property equal to the _id of

the original image model.
7. Attach the array of found comments to viewModel.
8. Render the page using sidebar, passing in the viewModel, and the

callback function.

[177]

Create - inserting an image model
We already have the functionality in place in our create function to handle randomly naming and
uploading an image file. Now, we need to save that information to MongoDB for the uploaded
image.

Let's update the original saveImage function inside controllers/images.js:create and include the
functionality to tie it into the database.

Our goal with the saveImage function is twofold. First, we want to make sure
that we never save an image with the same randomly generated filename as an already existing
image to the database. Second, we want to ensure that we only insert the image into the database
after it has been successfully uploaded, renamed, and saved to the filesystem. We are going to
make two modifications to the existing code to achieve this.

The first modification is to wrap the bulk of the logic with find against the randomly generated
filename, and if any documents are returned as a match from MongoDB, to start the process over
and repeat this as many times as necessary until we achieve a truly unique filename. The code to
perform the search is as follows:

Models.Image.find({ filename: imgUrl }, (err, images)=>{

if (images.length> 0) {

saveImage();

 } else {

 // do all the existing work...

 }

});

If an images array that is returned from find has a length greater than zero, it means at least one
image was found to have the same filename as was generated with our random for loop. If that's
the case, we want to call saveImage again, which will repeat the whole process (randomly
generate a new name and perform a find on the database for that new name). We do this by
previously defining the saveImage function as a variable, so that within the saveImage function
itself, we can execute it again by calling the original variable as the function.

A function that calls itself is called a recursive function.

Originally, the last step of the create function was to redirect the visitor to the image's page
within the callback that fired when the filesystem rename was finished. This is where we're going
to want to create a new Mongoose image model. We should redirect only when the database
server has finished saving the image (again relying on a callback function). Consider the
following line in the original function: assuming no images were returned from find, it means we
have generated a truly unique filename for our image and we are safe to rename the file and
upload it to the server, as well as save a record to the database:

res.redirect('/images/${ imgUrl}');

Replace this with this new block of code:

var newImg = new Models.Image({

 title: req.body.title,

 description: req.body.description,

 filename: imgUrl + ext

});

[178]

newImg.save((err, image) => {

 console.log('Successfully inserted image: ' + image.filename);

 res.redirect(`/images/${image.uniqueId}`);

});

Here, we create a brand new Image model and pass in the default values via its constructor. The
title and description fields get set right from the values passed in via the HTML form using
req.body and the form field names (.title and .description). The filename parameter is built the
same way as when we originally we set its destination for renaming it, except we don't include
the path and directory names, just the randomly generated filename and the image's original
extension.

We call the model's .save() function (just as we did earlier, when we updated the image's views
property in the index controller function). The save function accepts a second parameter in its
callback, which will be the updated version of itself. Once the save is completed and the image
has been inserted into the MongoDB database, we then redirect to the image's page. The reason
the callback returns the updated version of itself is because MongoDB automatically includes
additional information, such as _id.

As a review and sanity check, here is the complete code for the saveImage function in
controllers/image.js:create, with the new lines of code clearly highlighted:

var saveImage = function() {

 var possible = 'abcdefghijklmnopqrstuvwxyz0123456789',

 imgUrl = '';

 for (var i = 0; i < 6; i += 1) {

 imgUrl += possible.charAt(Math.floor(Math.random() *

 possible.length));

 }

 /* Start new code: */

 // search for an image with the same filename by performing a find:

 Models.Image.find({ filename: imgUrl }, (err, images) => {

 if (images.length > 0) {

 // if a matching image was found, try again (start over):

 saveImage();

 } else {

 /* end new code:*/

 var tempPath = req.files.file.path,

 ext = path.extname(req.files.file.name).toLowerCase(),

 targetPath = path.resolve(`./public/upload/${imgUrl}${ext}`);

 if (ext === '.png' || ext === '.jpg' || ext === '.jpeg' || ext ===

 '.gif') {

 fs.rename(tempPath, targetPath, (err) => {

 if (err) { throw err; }

 /* Start new code: */

 // create a new Image model, populate its details:

 var newImg = new Models.Image({

 title: req.body.title,

 filename: imgUrl + ext,

 description: req.body.description

 });

 // and save the new Image

 newImg.save((err, image) => {

 res.redirect(`/images/${image.uniqueId}`);

 });

 /* End new code: */

 });

 } else {

 fs.unlink(tempPath, () => {

 if (err) { throw err; }

 res.json(500, { error: 'Only image files are allowed.' });

 });

 }

 /* Start new code: */

 }

[179]

 });

 /* End new code: */

};

saveImage();

Don't forget to initially execute saveImage() right after the function is defined; otherwise, nothing
will happen!

[180]

Testing everything out so far
At this point, we have most of the key functionalities wrapped with MongoDB integration, and
our app should really feel like it's coming together. Let's give it a test run and make sure all of
our endpoints are working so far. Launch the app and open it in a browser:

 $ node server.js

 Server up: http://localhost:3300

 Mongoose connected.

Open up a browser, point it to http://localhost:3300, and you should see your application up and
running, as shown in the following screenshot:

Go ahead and use the form on the home page to search for an image file on your computer and
select it. Provide an input for Title and Description and click on the Upload Image button. You
should be taken directly to the image page, with the details for your uploaded image displayed:

[181]

Go back to the home page, and you should now see your new image displayed under the Newest
Images section:

[182]

[183]

The like button and updating an image model
Next, let's add support for the Like button. Remember that our Like button works a little
differently. It uses AJAX with jQuery so that data can be sent and received in real time without
reloading the entire page. The experience for the user is seamless and enjoyable, as they don't
lose their scroll place on the page or experience any other jarring UI-related issues.

The endpoint that the Like button hits is /images/:image_id/like, so we are going to use the value
in the URL for image_id to find and retrieve the image in MongoDB, increment its likes value by
1, and then return the new total number of likes for the image (so that the UI can update with the
new value).

Currently, the like function in controllers/image.js only does a simple JSON response with a
hardcoded value of 1:

res.json({likes: 1});

Let's replace that original code with new code that will use the Mongoose Image model to find an
image with a filename that matches the image_id passed in via the URL:

Models.Image.findOne({

 filename: { $regex: req.params.image_id }

 },

 (err, image) => {

 if (!err && image) {

 image.likes = image.likes + 1;

 image.save((err) => {

 if (err) {

 res.json(err);

 } else {

 res.json({ likes: image.likes });

 }

 });

 }

 });

Assuming the callback function receives a valid image model response from the query, we'll then
increment its likes property, and since the model is then modified, we need to execute its save
function. Inside the save function's callback, we send a JSON response with the real current value
of the image's likes back to the browser.

Sometimes, we will use shorthand in JavaScript and write something similar to the following:
if (!err && image)

In the if statement in the preceding example, we are saying, if the err object is false (that is null)
and the image object is true (that is not null), then we're good to go!

With this code in place, you can run the app again and test out the Like button by viewing the
image that you uploaded earlier and simply clicking on Like. If it worked, the counter next to the
button should increase by one. Refresh the page, and the likes count should remain as the new
value.

[184]

Comment - inserting a comment model
Inserting comments will work almost exactly the same way as the likes for an image. The only
difference is that we are creating a new comment model, instead of updating an image model. The
original code we had in our comment function was:

res.send('The image:comment POST controller');

Let's replace this with some code that will find the image by image_id in the URL again, but this
time, instead of updating its likes, we are going to create a new comment and assign the
comment's image_id value with the _id of the image we are currently viewing (this is to attach a
relationship to the comment so that it actually belongs to an image). Replace the entire comment
function in controllers/image.js with the following block of code:

Models.Image.findOne({

 filename: { $regex: req.params.image_id }

 },

 (err, image) => {

 if (!err && image) {

 var newComment = new Models.Comment(req.body);

 newComment.gravatar = md5(newComment.email);

 newComment.image_id = image._id;

 newComment.save((err, comment) => {

 if (err) { throw err; }

 res.redirect(`/images/${image.uniqueId}#${comment._id}`);

 });

 } else {

 res.redirect('/');

 }

 });

Here, you can see that we are using the same code from the like function to query MongoDB and
find the image with the matching filename from the URL.

Assuming a valid image is returned as a match, we create a new comment object called newComment
and actually pass the entire HTML form body into the constructor. This is a bit of a cheat, as it's
a coincidence that our HTML form uses form fields that have the same name and structure as that
of a comment model. If you were to perform the console.log operation on the req.body object, you
would see something like the following:

{

name: 'Jason Krol',

email: 'jason@kroltech.com',

comment: 'This is what a comment looks like?!'

}

That's identical to what we would have built manually anyway, so we just take a shortcut and
pass the whole thing in as it is! After that, we update a few more properties on the newComment
model. First, we manually set a gravatar property, which is where we will store the MD5 hash
value of the commenter's email address so that we can retrieve their Gravatar profile picture.
Gravatar is a universal avatar service that stores profile pictures based on a user's email address.
However, the unique ID they use for each profile is an MD5 hash value, which is why we have to
store that value.

As we are relying on the third-party MD5 module, we need to ensure that it's installed in our
project and saved to our package.json file as a dependency. From your project's root folder,

[185]

execute the following command:

 $ npm install md5 --save

In addition, we need to require the module in the controllers/image.js file at
the very top, along with the other modules we are requiring:

const fs = require('fs'),

path = require('path'),

sidebar = require('../helpers/sidebar'),

Models = require('../models'),

md5 = require('md5');

Finally, we set the image_id property of newComment to the _id property of the image we found at
the beginning of the function. Then, we call the comment model's .save() function and redirect the
user back to the image page. For convenience, we append a bookmark to the new comment's _id
to the URL so that when the page loads it will automatically scroll down to the users' comments
that have just been posted.

With that functionality in place, go ahead and fire up the app and open it in your browser. Visit
the image page for any images you've uploaded, and post a comment. Once the comment posts
and the page reloads, you should see something like the following screenshot under an image:

We could have chosen to handle comments using jQuery and AJAX, the same way we handled
the Like button. However, this introduces a bit more complexity, because if we were to do that,
we would have needed a slightly more sophisticated way to display that inserted comment to the
screen. This would have involved relying heavily on jQuery to do some advanced DOM
manipulation to display the comment after it was posted using AJAX.
In a later chapter, when we review Single Page Applications, we will take a brief look at some
JavaScript frameworks that perform this kind of functionality and a lot of other advanced
features that concludes the code and functionality for the image controller.

[186]

Wrapping it up
Let's do a quick recap of all of the changes we've made to this controller:

We updated the index function to retrieve an image from MongoDB and populate viewModel
with the details of the image model. We also found
all the comments related to that image and attached an array of those to viewModel as well.
We tweaked the create function to insert a new image model into the database once it has
been successfully renamed and saved to the filesystem.
The like function was updated to actually increment the value of an image's likes property
and save that value to the database, as well as to return the new value via a JSON response.
Comments are now inserted for a particular image via the comment function. Not only is a
comment model inserted into the database, but its corresponding image is also found and the
image model's _id value is attached to the comment to solidify a relationship.

[187]

Helpers
The last piece of the puzzle, and the last area we need to tie into MongoDB is the sidebar. To do
this, we are going to need to update each of the helpers we created previously . Most of the
helpers that we write code for will be using the concepts and functionality that we've already
covered in this chapter. However, there is the addition of one new concept that I want to focus on
before we take a look at the code.

[188]

Introducing the async module
As JavaScript is asynchronous by its very nature, there will undoubtedly come a time when we
will need a way to handle executing a number of different asynchronous functions at the same
time. The big issue here is that if we try to perform three different queries on a MongoDB server,
for example, how will we know when all three are finished before we move on and do work with
the results? Up until this point, we've simply been relying on a single callback function, which
works great for a single call. How can we assign a single callback function to multiple
asynchronous calls?

The answer is, we can not directly anyway. You can use a lot of nested callbacks to achieve this,
but that is generally considered bad practice and will significantly reduce the readability of your
code. You can use a third-party module, however, that was designed very specifically for this
exact need. async is a powerful node module that can be downloaded and installed via npm and
which provides a number of extremely useful utility functions, all designed to help when
working with a series of asynchronous functions. Two functions that we are going to work with
in this chapter are series and parallel. The series function allows us to execute asynchronous
functions sequentially, each waiting until the previous function finishes before executing a single
callback function at the end. The parallel function allows us to do the opposite--execute a
number of asynchronous functions simultaneously, waiting until they are all complete, then
executing a single callback function when the last function is finished.

How does a single callback function handle the responses of a number of different asynchronous
functions, you ask? The answer is:

by accepting an array of the responses of each function as a parameter!

Since we are going to use async for our project, let's install it via npm and make sure our
package.json file is updated as well. Within the root of your project folder, execute the following
from the command line:

 $ npm install --save async

[189]

The comments helper
Let's take a look at the first use of async in one of our helpers, the comments helper. Originally,
helpers/comments.js was a module that had a newest function that returned an array of fixture data
with some sample comments.
We are going to completely remove this code and instead query MongoDB for the newest
comments and return those as an array. Start by clearing the comment helper module and starting
from scratch (note that we included a new callback parameter to the newest function):

var models = require('../models'),

async = require('async');

module.exports = {

newest: (callback)=>{

 // to do...

 }

};

Notice that we added the additional require statements at the top of the file for our models and
async. Within the newest function, let's replace the // to do... comment with code to query
MongoDB and find the five most recent comments:

models.Comment.find({}, {}, {

 limit: 5,

 sort: { 'timestamp': -1 }

 },

 (err, comments) => {

 // to do - attach an image to each comment...

 });

Note that the first parameter in the find query is an empty JavaScript object, meaning we will
retrieve every comment in the database. For the third parameter, however, we're using limit and
sort so that we limit the number of records returned to five, and we sort the query by timestamp in
descending order.

Now that we have an array of comments, we'd ideally like for the image that each comment
belongs to to be returned as well. Typically, this would be accomplished by using an aggregate
query in MongoDB to join different collections together (such as a JOIN in SQL). We will see
aggregate in more detail in the next chapter.
For the purposes of our code, we're going to instead query MongoDB separately for each
comment and retrieve the image associated with the comment's image_id value.

First, let's define a function that will query MongoDB and retrieve and attach an image model to a
comment model:

var attachImage = (comment, next) => {

 models.Image.findOne({ _id: comment.image_id },

 (err, image) => {

 if (err) throw err;

 comment.image = image;

 next(err);

 });

};

This function will accept a comment model as the first parameter and a callback function (named
next) as the second parameter . Having the next callback as the second parameter is important,
because it's the key to how async is able to function. Imagine that the next callback acts as a chain
link. Since the same function is going to be called for every item in a collection, there needs to be

[190]

a way to daisy-chain the calls together. This is performed via the callback.

Basically, every time the callback is called for an item in the array, it performs its work and then
executes the same callback with the next item in the array, and so on and so forth, which is why
we named the callback function parameter next.

Another important element to point out with this function is that when we attach the image model
to the comment's image property, we are using the virtual property we set up earlier in the main
comment's schema. If you recall, when we set the image property, we were actually setting the
private _image property. Likewise, when we get the image property, we are actually retrieving the
private _image property.

After we define the attachImage function, we need to use the each function of async to apply that
function to every item in the comments collection:

async.each(comments, attachImage,

 (err) => {

 if (err) throw err;

 callback(err, comments);

 });

The each function of async will loop through every item in the collection in the first parameter,
and send each item as a parameter to a callback function in the second parameter. The third
parameter is the final callback function that is executed once the entire series is finished with the
collection. In this case, every comment in the comment's array will be passed individually to the
attachImage function. When the entire collection has been iterated through, the final callback
will execute, which basically fires the very first callback function that was passed into the newest
function as its only parameter. Boy, that was a mouthful! Let's try to break this down a little
further, so it makes a bit more sense:

The newest function of the comment helper module accepts a single parameter named
callback- -this is the function that will be called
once all of the work in this entire function is finished.
The first thing the newest function does is find the latest five comments
and return them as an array to an anonymously defined inline function.
First, we define a function and store it in a variable named attachImage.
The attachImage function accepts two parameters: an individual comment model, and a
callback function that we named next.
The attachImage function will query MongoDB to find an image with
an _id value that is the same as the image_id property of the comment
that was passed into it as the first parameter.
Once that image is found, it is attached to the comment via its image property and then the
next callback function is executed.
We use async.each to loop through every comment in the comments array that was passed as
the first parameter to each.
Pass the attachImage function as the second parameter, which is the function that will be
called for every comment in the comment's array.
Finally, define an inline anonymous function that will be executed once the last item in the
comments collection has been iterated on. This inline function itself only accepts an error
object as its parameter. Assuming every iteration of the comments collection was successful,
this function will be executed with no error. Inside this function, we execute the original
function named callback that was the only parameter to the newest function, and callback is
called with the newly updated comment's array as its second parameter.

[191]

Okay, the hardest part is over! You survived a crash course on the async module and came out,
hopefully unscathed! Just to be safe, here is the code for the helpers/comments.js module file in
its entirety:

/* jshint node: true */

"use strict"

var models = require('../models'),

 async = require('async');

module.exports = {

 newest: (callback)=>{

 models.Comment.find({}, {}, { limit: 5, sort: { 'timestamp': -1 } },

 (err, comments)=>{

 //console.log("COCOCO");

 //console.log(comments);

 var attachImage = (comment, next)=>{

 models.Image.findOne({ _id : comment.image_id},

 (err, image)=>{

 if (err) throw err;

 comment.image = image;

 next(err);

 });

 };

 async.each(comments, attachImage,

 (err)=>{

 if (err) throw err;

 callback(err, comments);

 });

 });

 }

};

Callbacks, callbacks, callbacks everywhere!
At this point, it's probably getting a little confusing with the number of callbacks we've been
dealing with. A part of the problem is the terminology we've been using. Any function that is
passed as a parameter and only executed after certain conditions are met, typically as the end
result of the original function, is referred to as a callback. The popular convention with
JavaScript is to label a callback function in a parameter literally with the variable name callback,
so that it's obvious. This works great when you are reading code, but not so much when you are
explaining code and referring to a function named callback that's also known as the callback!

[192]

The sidebar helper
Okay! So of course, there's a catch, right!? Well, kind of. Since we introduced async in our
Comments helper module, we now need to introduce it in our sidebar helper. This is because of the
simple fact that our Comments helper is now really asynchronous, so anything that uses our
Comments module needs to deal with that. As our sidebar module currently stands, it's just
expecting the comments helper module to return an array instantly; so, it's not expecting to have to
wait around for the actual data. Because of this, if we ran our code as is, our comments sidebar
would remain blank (because the sidebar would have rendered the page before the MongoDB
calls were even finished thinking within the comments module). Let's fix this by updating our
sidebar helper module to use async as well.

First, let's edit the helpers/sidebar.js file and replace its entire contents with this slightly
modified version that uses async.parallel:

const Stats = require('./stats'),

 Images = require('./images'),

 Comments = require('./comments'),

 async = require('async');

module.exports = (viewModel, callback) => {

 async.parallel([

 (next) => {

 next(null, Stats());

 },

 (next) => {

 next(null, Images.popular());

 },

 (next) => {

 Comments.newest(next);

 }

], (err, results) => {

 viewModel.sidebar = {

 stats: results[0],

 popular: results[1],

 comments: results[2]

 };

 callback(viewModel);

 });

};

The first thing we did was make sure async was included as a required module at the top of the
file. Inside the primary exports function, we basically wrapped our existing code and integrated it
into async.parallel so that we could easily tweak it a little later as we updated each section of the
sidebar helpers. Since we've only completed the comments helper module so far, that's the only one
that's actually been changed. The other Stats and Images.popular calls are being forcibly used
with async.parallel, even though it doesn't quite make sense to do that right now. It will once
those two sections become more asynchronous in the next sections.

The parallel function of async works in a similar way to its each function that we used earlier.
The main difference is that parallel isn't performing the same function in a loop through a
collection, but is instead performing a series of unique functions all at the same time. If you look
closely, you can see that the first parameter to parallel is actually an array, and each item in the
array is a unique function. Every function in the array accepts a next callback parameter function,
which is executed at the conclusion of each of the functions. The second parameter in the next
callback is the result of the work that was performed within the function itself. In the case of

[193]

Stats and Images.popular, those two functions simply return values instantly, with no
asynchronous calls to anything else, so we just expect the results to be returned by executing
them directly.

However, as you can see with the Comments.newest section, we are passing in the next callback
function as a parameter because we want its execution to be deferred until the last second (until
Comments.newest has completed all of its work). Once that next callback function is called, it is
passed the results of all of its work.

The last parameter to the parallel function is an inline function that accepts a results array as its
second parameter. This array is a collection of the results that were returned from each of the
functions in the array in the first parameter. You can see that when we build viewModel now, we
are referring to indexes in the results array. The index order is the order that the functions were
defined in the original array. We know that the first function was to retrieve Stats, the second
function was to retrieve Images.popular, and the third function was to retrieve Comments.newest. So,
we can reliably assign results[0] to viewModel.Stats, and so on. As a reference, here is what the
viewModel definition originally looked like in the sidebar module:

viewModel.sidebar = {

 stats: Stats(),

 popular: Images.popular(),

 comments: Comments.newest()

};

You can compare this with the updated version that uses async:

viewModel.sidebar = {

 stats: results[0],

 popular: results[1],

 comments: results[2]

};

Now that the sidebar is set up to properly handle the helper modules that are (and eventually will
be) asynchronous, we can run the application and test it to ensure that our sidebar is properly
displaying the top five most recent comments on the website. Run the application and launch it in
a browser. If you haven't already posted any comments to an image, do so now, so that you can
see those comments appearing in the sidebar along with a thumbnail of the image they belong to.

[194]

Troubleshooting
At this point, we've covered and implemented a large number of changes to our application. It's
understandable that something might be broken for you, so let's run through a quick checklist to
make sure we haven't missed any trouble spots that might be preventing your app from running
properly:

Make sure you've installed all of the required modules for this chapter and that they are
saved to your package.json file. This includes mongoose, async, and md5.
Make sure the appropriate dependency modules are being required at the top of each of the
module files they are used in.
Make sure you remember to launch mongod in another terminal instance whenever you run
the application.
When in doubt, pay attention to the stack trace output that Node is giving you in your
terminal when it fails, as it is typically pretty obvious what's wrong.
It will also give you the filename and line number of the offending module.
When all else fails, execute console.log everywhere!

Next up, let's update the stats helper module to use it parallel as well, so we can get some real
stats for the application.

[195]

The stats helper
The primary responsibility of the stats helper module is to gather some totals for our application.
These stats are for things such as the total number of images uploaded, the total number of
comments, the total views for all the images combined, and the total likes for all the images
combined. Your first inclination might be to assume that we are going to query MongoDB for all
the images and loop through every image to track all of the views and totals. That's one way to
do it, but it's pretty inefficient. Fortunately, MongoDB has some built-in functionalities which
make generating these kinds of values a snap.

As we are going to be making a number of calls to MongoDB, we are going to rely
on the async.parallel function again, much like we did in the sidebar module. The original
helpers/stats.js file was very bare bones, so let's completely replace that file with this new
version, which uses parallel:

const models = require('../models'),

 async = require('async');

module.exports = (callback) => {

 async.parallel([

 (next) => {

 next(null, 0);

 },

 (next) => {

 next(null, 0);

 },

 (next) => {

 next(null, 0);

 },

 (next) => {

 next(null, 0);

 }

], (err, results) => {

 callback(null, {

 images: results[0],

 comments: results[1],

 views: results[2],

 likes: results[3]

 });

 });

};

This code does exactly what the module originally did, only it's a little more verbose! I'm pretty
sure we don't want to just return 0 for all of our stats forever, though, as that'd be pretty useless
and unimpressive, to say the least! Let's update the each function to properly query MongoDB
and get some stats. Looking at the object returned in the callback in the last function, we can see
that we already defined the order of the functions that are being executed in parallel. Let's start
with images. Replace the next(null, 0); line in the first function with the following code snippet:

models.Image.count({}, next);

Easy! Just use MongoDB's count method to find the total number of documents in the images
collection matching any criteria (the first parameter). Then, we just pass the next function as the
callback, because coincidentally enough, the parameter signatures match. If we didn't want to use
shorthand here, we could write this the long way, as follows:

models.Image.count({}, (err, total) => {

 next(err, total);

});

[196]

However, who feels like typing all that when you don't have to! Let's do the same thing for the
second function in the parallel array for total comments. Replace the next(null, 0); line in the
second function with the following line of code:

models.Comment.count({}, next);

Again, this was a piece of cake!

Now, the next two functions are going to be a little different, but they are almost identical to each
other. What we want to do with next is get the total views and likes for every image. We can't use
MongoDB's count method, because that only counts individual documents in a collection. We
need to use MongoDB's aggregate functionality instead.

Using aggregate, we can perform a mathematical operation, such as $sum, to tally results for us.
Replace the next(null, 0); line in the third function with the following code snippet:

models.Image.aggregate({

 $group: {

 _id: '1',

 viewsTotal: { $sum: '$views' }

 }

}, (err, result) => {

 var viewsTotal = 0;

 if (result.length > 0) {

 viewsTotal += result[0].viewsTotal;

 }

 next(null, viewsTotal);

});

Using MongoDB's aggregate function, we are telling MongoDB to group every document
together and sum up all of their views into a single new field called viewsTotal. The resulting
collection that is returned to the callback function is an array of documents with the _id and
viewsTotal fields. In this case, the results array will only contain a single document with the
grand total, because we weren't that tricky with our aggregate functionality. If there aren't any
images in the collection at all, we need to handle that and check accordingly. Finally, the next
callback function is called with the actual value for viewsTotal.

Let's use the same exact functionality to total up the likes for all images. Replace the next(null,
0); line of code in the fourth and final function in parallel with the following code snippet:

models.Image.aggregate({

 $group: {

 _id: '1',

 likesTotal: { $sum: '$likes' }

 }

}, (err, result) => {

 var likesTotal = 0;

 if (result.length > 0) {

 likesTotal += result[0].likesTotal;

 }

 next(null, likesTotal);

});

Now that the sidebar helper module has been updated and is complete with the async.parallel
functionality, let's make a minor tweak to our sidebar module to ensure we are calling the Stats
module correctly so that it's properly asynchronous. The original line in helpers/sidebar.js was:

next(null, Stats());

Replace that line of code with this slightly different version:

[197]

Stats(next);

Last but not least, let's take care of the most popular helper module for the images sidebar.

[198]

The popular images helper
Again, the original helpers/images.js file was mostly filled with fixture data and placeholder
code that's fairly useless. Let's replace the entire file with this new version that's actually pretty
tame in comparison to all of the other helper modules:

var models = require('../models');

module.exports = {

 popular: (callback) => {

 models.Image.find({}, {}, { limit: 9, sort: { likes: -1 } },

 (err, images) => {

 if (err) throw err;

 callback(null, images);

 });

 }

};

At this point, this code should be pretty familiar to you. We just query MongoDB and find the
top nine most liked images by sorting the images by total, such as by count in descending order,
and then limiting the results to nine documents.

Let's edit the helpers/sidebar.js file again to include the updated call to the Images.popular
function. Consider the original code:

next(null, Images.popular());

Replace this with the following slightly newer version:

Images.popular(callback);

Now the sidebar is completely finished and completely dynamic. With no more fixture data or
placeholder variables anywhere. Running the application should yield a fully functional website
with all of the features we set out to implement working perfectly! Give it a spin and make sure
it's working correctly.

[199]

Iterating by adding an image removal
capability
At this point, I think our application is pretty awesome, but there's something missing that's
nagging me. During testing, I've been creating all kinds of new images and uploading them to the
application, but it's starting to get a bit cluttered and messy.
It dawned on me that the most obvious thing that's missing is the ability to delete an image!

In reality, I left out this feature on purpose so that we could use this opportunity to incorporate a
completely new functionality that touches almost every area of the application. This seemingly
simple addition is actually going to require the following changes:

Update routes.js to include a new route to handle Delete requests
Update controllers/image.js to include a new function for the route
This should not only remove the image from the database, but also delete the file and all
related comments
Update the image.handlebars HTML template to include a Remove button
Update the public/js/scripts.js file with an AJAX handler for the Remove button

[200]

Adding a route
The first thing we need to update in order to add this new functionality is the main routes list.
Here, we will add a new endpoint that handles the delete function and points to a function within
the image controller. Edit the server/routes.js file and insert the following new line of code:

router.delete('/images/:image_id', image.remove);

[201]

Adding a controller handler
Now that we have added a new route, we need to create the controller function that it's using as
its callback (image.remove). Edit controllers/image.js and add the following new function code
after the existing comment: function(req, res){} operation (don't forget to add a trailing comma
after the comment function, since you are adding a new function):

remove: (req, res) => {

 Models.Image.findOne({

 filename: { $regex: req.params.image_id }

 },

 (err, image) => {

 if (err) { throw err; }

 fs.unlink(path.resolve(`./public/upload/${image.filename}`),

 (err) => {

 if (err) { throw err; }

 Models.Comment.remove({ image_id: image._id },

 (err) => {

 image.remove((err) => {

 if (!err) {

 res.json(true);

 } else {

 res.json(false);

 }

 });

 });

 });

 });

}

This function performs four primary functions (and as such, nests four layers deep with
callbacks--we could have used the async's series method here to prevent the crazy amount of
nesting). The first task is to find the image that we are attempting to remove. Once that image is
found, the file associated with the image should be deleted. Next, find the comments associated
with the image and remove them. Once they have been removed, the last step is to remove the
image itself. Assuming all of that was a success, simply send a true Boolean JSON response
back to the browser.

[202]

Updating the Handlebars image page
template
Now that we have a route and controller function to support deleting an image, we need a way
for the UI to send the request. The most obvious solution is to add a Delete button somewhere on
the page. Edit the views/image.handlebars file and, after the existing HTML, where we had the
Like button, add new HTML for a Delete button:

<div class="col-md-8">

<button class="btnbtn-success" id="btn-like" ...

 // existing HTML for Like button and misc details

</div>

<div class="col-md-4 text-right">

<button class="btnbtn-danger" id="btn-delete" data-id="{{

 image.uniqueId }}">

<i class="fafa-times"></i>

</button>

</div>

Here, we just include a new div that's set to four right aligned columns using Bootstrap. The UI
here is that the Like button and the stats are the leftmost portion of the row, and the Delete button
(an X icon from Font Awesome) is all the way to the right of the same row (and red since we use
Bootstrap's danger color class).

[203]

Updating jQuery
Finally, we are going to tie it all together by implementing code similar to the Like button, where
we send an AJAX delete method with the URL and the image ID to the server when the button is
clicked on. To be safe, we display a standard JavaScript confirmation dialog to ensure the button
wasn't clicked on by accident.

Assuming the server responds with a true value, we will turn the button green and change the
icon to a checkmark with the word Deleted! in place. Edit public/js/scripts.js and insert the
following block of code after the existing code (be sure to insert the new code inside the
$(function(){ ... }) jQuery function):

$('#btn-delete').on('click', function(event) {

 event.preventDefault();

 var $this = $(this);

 var remove = confirm('Are you sure you want to delete this image ? ');

 if (remove) {

 var imgId = $(this).data('id');

 $.ajax({

 url: '/images/' + imgId,

 type: 'DELETE'

 }).done(function(result) {

 if (result) {

 $this.removeClass('btn-danger').addClass('btn-success ');

 $this.find('i').removeClass('fa -times ').addClass('fa - check ');

 $this.append(' Deleted!');

 }

 });

 }

});

Let's test this brand new functionality by launching the application, loading it up in a browser,
finding an image we no longer want, and viewing its image page.
The Delete button should now show up in place.

[204]

Refactoring and improvements
At this point, the application that we've been building is pretty much complete! Before we iterate
anymore on the project and continue to build it out and make it ready for production, we should
probably consider some refactoring and/or general improvements. Some areas that I would
personally take a look at to refactor and/or rewrite to improve the application's performance and
overall sanity are as follows:

I might rethink working directly with models within the controllers so much, and instead
create a utility that I can wrap a lot of that noise in, and rely on more basic CRUD calls to
my models and provide only a callback to each. This is most visible in the image controller,
with like, comment, and remove.
There is literally no validation in the project that we wrote, and that's mostly for brevity. In
reality, we should have included validation on any input fields a user interfaces with.
Validation should be provided on both the frontend via jQuery or plain old vanilla
JavaScript and on the backend with Node. The validation should protect users from
submitting invalid and/or malicious code (that is, XSS or Cross-Site Scripting).
Right now, our application is open to the general public, which means any visitor that
comes along can upload images as well as delete them! It would be fairly simple to include
a user authentication process within our application. Passport.js is a great third-party
module to integrate user authentication into Node.js applications.
Instead of attaching images to comments for the purposes of the sidebar (the newest
comments), we should consider creating a more robust aggregate query using MongoDB
to retrieve a hybrid collection of comments that includes the image provided directly from
MongoDB.

[205]

Summary
This chapter was a monster, but was also the last piece of the puzzle to complete our app and
have a fully dynamic, database-driven Node.js app that uses MongoDB. Congratulations on
making it this far and sticking with it! You're well on your way to being a true full-stack
JavaScript developer.

In the next chapter, we'll step away from our application for a bit as we take a look at working
with REST APIs using Node.js.

[206]

Creating a RESTful API
Now that your application is complete and ready for the world to see, you can start thinking of
ways to make it more popular. What if you want to allow external systems access rights to your
data in a way such that they can mass produce inserts to your website without the need for users
to visit the actual website?
One example that comes to mind almost immediately is how users of another website, say
www.facebook.com, could upload an image to Facebook and have it automatically uploaded to
your website as well.

The only way to make a scenario like this possible is by providing an API to your data and the
code that gives external developers access to a suite of tools that will allow them to perform
actions without the need to interact with the actual web pages.

In this chapter, we will review the following topics:

Introducing RESTful APIs
Installing a few basic tools
Creating a basic API server and sample JSON data
Responding to GET requests
Updating data with POST and PUT
Removing data with DELETE
Consuming external APIs from Node.js

[207]

http://www.facebook.com

What is an API?
An Application Programming Interface (API) is a set of tools that a system makes available so
that unrelated systems or software have the ability to interact with each other. Typically, a
developer uses an API when writing software that will interact with a closed, external software
system. The external software system provides an API as a standard set of tools that all
developers can use. Many popular social networking sites provide developers access to APIs to
build tools to support those sites. The most obvious examples are Facebook and Twitter. Both
have a robust API that provides developers with the ability to build plugins and work with data
directly, without them being granted full access, as a general security precaution.

As you will see with this chapter, providing your own API is not only fairly simple, but it also
empowers you to provide your users with access to your data. You also have the added peace of
mind of knowing that you are in complete control over what level of access you can grant, what
sets of data you can make read-only, and what data can be inserted and updated.

[208]

What is a RESTful API?
Representational State Transfer (REST) is a fancy way of saying CRUD over HTTP. What
this means is, when you use a REST API, you have a uniform means to create, read, and update
data using simple HTTP URLs with a standard set of HTTP verbs. The most basic form of a
REST API will accept one of the HTTP verbs at a URL and return some kind of data as a
response.

Typically, a REST API GET request will always return some kind of data, such as JSON, XML,
HTML, or plain text. A POST or PUT request to a RESTful API URL will accept data to create or
update. The URL for a RESTful API is known as an endpoint, and when working with these
endpoints, it is typically said that you are consuming them. The standard HTTP verbs used while
interfacing with REST APIs include:

GET: This retrieves data
POST: This submits data for a new record
PUT: This submits data to update an existing record
PATCH: This submits a date to update only specific parts of an existing record
DELETE: This deletes a specific record

Typically, RESTful API endpoints are defined in a way such that they mimic the data models
and have semantic URLs that are somewhat representative of the data models. What this means
is that to request a list of models, for example, you would access an API endpoint of /models.
Likewise, to retrieve a specific model by its ID, you would include that in the endpoint URL via
/models/:Id.

Some sample RESTful API endpoint URLs are as follows:

GET http://myapi.com/v1/accounts: This returns a list of accounts
GET http://myapi.com/v1/accounts/1: This returns a single account
by Id: 1
POST http://myapi.com/v1/accounts: This creates a new account
(data submitted as a part of the request)
PUT http://myapi.com/v1/accounts/1: This updates an existing
account by Id: 1 (data submitted as part of the request)
GET http://myapi.com/v1/accounts/1/orders: This returns a list of orders for account Id: 1
GET http://myapi.com/v1/accounts/1/orders/21345: This returns the details for a single order
by Order Id: 21345 for account Id: 1

It's not a requirement that the URL endpoints match this pattern; it's just common convention.

[209]

Introducing Postman REST Client
Before we get started, there are a few tools that will make life much easier when you're working
directly with APIs. The first of these tools is called Postman REST Client, and it's a Google
Chrome application that can run right in your browser or as a standalone, packaged application.
Using this tool, you can easily make any kind of request to any endpoint you want. The tool
provides many useful and powerful features that are very easy to use, and best of all, free!

[210]

Installation instructions
Postman REST Client can be installed in two different ways, but both require Google Chrome to
be installed and running on your system. The easiest way to install the application is by visiting
the chrome web store at https://chrome.google.com/webstore/category/apps.

Perform a search for Postman REST Client, and multiple results will be returned. There is the
regular Postman REST Client that runs as an application built into your browser, and then a
separate Postman REST Client (packaged app) that runs as a standalone application on your
system in its own dedicated window. Go ahead and install your preference. If you install the
application as the standalone packaged app, an icon to launch it will be added to your dock or
task bar. If you install it as a regular browser app, you can launch it by opening a new tab in
Google Chrome, going to Apps, and finding the Postman REST Client icon.

After you've installed and launched the app, you should be presented with an output similar to
the following screenshot:

[211]

https://chrome.google.com/webstore/category/apps

A quick tour of Postman REST Client
Using Postman REST Client, we're able to submit REST API calls to any endpoint we want, as
well as modify the type of request. Then, we can have complete access to the data that's returned
from the API, as well as any errors that might have occurred. To test an API call, enter the URL
to your favorite website in the Enter request URL here field and leave the dropdown next to it as
GET. This will mimic a standard GET request that your browser performs anytime you visit a
website. Click on the blue Send button. The request is made and the response is displayed at the
bottom half of the screen.

In the following screenshot, I sent a simple GET request to http://kroltech.com and the HTML was
returned as follows:

If we change this URL to that of the RSS feed URL for my website, you can see the XML
returned:

[212]

http://kroltech.com

The XML view has a few more features, as it exposes the sidebar to the right that gives you a
glimpse at the tree structure of the XML data. Not only that, but you can now see a history of the
requests we've made so far along the left sidebar. This is great when we're performing more
advanced POST or PUT requests and don't want to repeat the data setup for each request while
testing an endpoint.

Here is a sample API endpoint that I submitted a GET request to that returns the JSON data in its
response:

[213]

A really nice thing about making API calls to endpoints that return JSON using Postman Client
is that it parses and displays the JSON in a very nicely formatted way, and each node in the data
is expandable and collapsible.

The app is very intuitive, so make sure you spend some time playing around and experimenting
with different types of calls to different URLs.

[214]

Using the JSONView Chrome extension
There is one other tool I want to talk to you about that (while extremely minor), is actually a
really big deal. The JSONView Chrome extension is a very small plugin that will instantly convert
any JSONView directly into a more usable JSON tree via the browser (exactly like in Postman
Client). Here is an example of pointing to a URL that returns JSON from Chrome before
JSONView is installed:

Here is that same URL after JSONView has been installed:

You should install the JSONView Google Chrome extension the same way you installed Postman
REST Client: access the Chrome Web Store and perform a search for JSONView.

Now that you have the tools to be able to easily work with and test API endpoints, let's take a
look at writing your own and handling the different request types.

[215]

Creating a basic API server
Let's create a super basic Node.js server using Express that we'll use to create our own API.
Then, we can send tests to the API using Postman REST Client to see how it all works. In a new
project workspace, first install the npm modules that we're going to need in order to get our server
up and running:

 $ npm init

 $ npm install --save express body-parser underscore

Now that the package.json file for this project has been initialized and the modules installed, let's
create a basic server file to bootstrap an Express server. Create a file named server.js and insert
the following block of code:

const express = require('express'),

 bodyParser = require('body-parser'),

 _ = require('underscore'),

 json = require('./movies.json'),

 app = express();

app.set('port', process.env.PORT || 3500);

app.use(bodyParser.urlencoded({ extended: false }))

app.use(bodyParser.json());

let router = new express.Router();

// TO DO: Setup endpoints ...

app.use('/', router);

const server = app.listen(app.get('port'), ()=>{

 console.log(`Server up: http://localhost:${app.get('port')}`);

});

Most of this should look familiar to you. In the server.js file, we are requiring the express, body-
parser, and underscore modules. We're also requiring a file named movies.json, which we'll create
next.

After our modules are required, we set up the standard configuration for an Express server with
the minimum amount of configuration needed to support an API server. Notice that we didn't set
up Handlebars as a view-rendering engine because we aren't going to be rendering any HTML
with this server, just pure JSON responses.

[216]

Creating sample JSON data
Let's create the sample movies.json file that will act as our temporary data store (even though the
API we build for the purpose of demonstration won't actually persist data beyond the app's life
cycle):

[{

 "Id": "1",

 "Title": "Aliens",

 "Director": "James Cameron",

 "Year": "1986",

 "Rating": "8.5"

},

{

 "Id": "2",

 "Title": "Big Trouble in Little China",

 "Director": "John Carpenter",

 "Year": "1986",

 "Rating": "7.3"

},

{

 "Id": "3",

 "Title": "Killer Klowns from Outer Space",

 "Director": "Stephen Chiodo",

 "Year": "1988",

 "Rating": "6.0"

},

{

 "Id": "4",

 "Title": "Heat",

 "Director": "Michael Mann",

 "Year": "1995",

 "Rating": "8.3"

},

{

 "Id": "5",

 "Title": "The Raid: Redemption",

 "Director": "Gareth Evans",

 "Year": "2011",

 "Rating": "7.6"

}]

This is just a really simple JSON list of a few of my favorite movies. Feel free to populate it with
whatever you like. Boot up the server to make sure you aren't getting any errors (note that we
haven't set up any routes yet, so it won't actually do anything if you try to load it via a browser):

 $ node server.js

 Server up: http://localhost:3500

[217]

Responding to GET requests
Adding a simple GET request support is fairly simple, and you've already seen this before in the
app we built. Here is some sample code that responds to a GET request and returns a simple
JavaScript object as JSON. Insert the following code in the routes section where we have the //
TO DO: Setup endpoints ... comment waiting:

router.get('/test', (req, res)=>{

 var data = {

 name: 'Jason Krol',

 website: 'http://kroltech.com'

 };

 res.json(data);

});

Just like how we set up viewModel in Chapter 5, Templating with Handlebars, we create a basic
JavaScript object that we can then send directly as a JSON response using res.json instead of
res.render. Let's tweak the function a little bit and change it so that it responds to a GET request
against the root URL (that is /) route and returns the JSON data from our movies file. Add this
new route after the /test route added previously:

router.get('/', (req, res)=>res.json(json));

The res (response) object in Express has a few different methods to send data back to the
browser. Each of these ultimately falls back on the base send method, which includes header
information, statusCodes, and so on. res.json and res.jsonp will automatically format JavaScript
objects into JSON and then send them using res.send. res.render will render a template view as a
string and then send it using res.send as well.

With that code in place, if we launch the server.js file, the server will be listening for a GET
request to the / URL route and will respond with the JSON data of our movies collection. Let's
first test it out using the Postman REST Client tool:

[218]

GET requests are nice, because we could have just as easily pulled that same URL via our browser
and received the same result:

[219]

However, we're going to use Postman for the remainder of our endpoint testing, as it's a little
more difficult to send POST and PUT requests using a browser.

[220]

Receiving data - POST and PUT requests
When we want to allow those using our API to insert or update data, we need to accept a request
from a different HTTP verb. When inserting new data, the POST verb is the preferred method to
accept data and know it's for an insert. Let's take a look at some code that accepts a POST request
and data along with the request, inserts a record into our collection, and returns the updated
JSON.

Insert the following block of code after the route you added for GET previously :

router.post('/', (req, res)=>{

 // insert the new item into the collection

 if(req.body.Id && req.body.Title && req.body.Director && req.body.Year && req.body.Rating)

{

 json.push(req.body);

 res.json(json);

 } else {

 res.json(500, { error: 'There was an error!' });

 }

});

The first thing we do in the POST function is check to make sure the required fields were
submitted along with the actual request. Assuming our data checks out and all the required fields
are accounted for (in our case, every field), we insert the entire req.body object into the array as
is, using the array's push function. If any of the required fields aren't submitted with the request,
we return a 500 error message instead. Let's submit a POST request to the same endpoint this time
using the Postman REST Client. (Don't forget to make sure your API server is running with node
server.js.):

[221]

First, we submitted a POST request with no data, so you can clearly see the 500 error response that
was returned:

[222]

Next, we provided the actual data using the x-www-form-urlencoded option in Postman and
provided each of the name/value pairs with some new custom data. You can see from the results
that the STATUS was 200, which is a success, and the updated JSON data was returned as a
result. Reloading the main GET endpoint in a browser yields our original movies collection with
the new one added:

[223]

PUT requests will work in almost exactly the same way, except traditionally, the Id property of the
data is handled a little differently. In our example, we are going to require the Id attribute as a
part of the URL and not accept it as a parameter in the data that's submitted (since it's usually not
common for an update function to change the actual Id of the object it's updating). Insert the
following code for the PUT route after the existing POST route you added earlier:

router.put('/:id', (req, res)=>{

 // update the item in the collection

 if(req.params.id && req.body.Title && req.body.Director && req.body.Year &&

req.body.Rating) {

 _.each(json, (elem, index)=>{

 // find and update:

 if (elem.Id === req.params.id) {

 elem.Title = req.body.Title;

 elem.Director = req.body.Director;

 elem.Year = req.body.Year;

 elem.Rating = req.body.Rating;

 }

 });

 res.json(json);

 } else {

 res.json(500, { error: 'There was an error!' });

 }

});

This code again validates that the required fields are included with the data that was submitted
along with the request. Then, it performs an _.each loop (using the underscore module) to look
through the collection of movies and find the one whose Id parameter matches that of the Id
included in the URL parameter. Assuming there's a match, the individual fields for that
corresponding object are updated with the new values that were sent with the request. Once the

[224]

loop is complete, the updated JSON data is sent back as the response. Similarly, in the POST
request, if any of the required fields are missing, a simple 500 error message is returned. The
following screenshot demonstrates a successful PUT request updating an existing record:

[225]

The response from Postman, after including the value 1 in the URL as the Id parameter, which
provides the individual fields to update as x-www-form-urlencoded values, and finally sends as PUT,
shows that the original item in our movies collection is now the original Alien (not Aliens, its
sequel, as we originally had).

[226]

Removing data - DELETE
The final stop on our whirlwind tour of the different REST API HTTP verbs is DELETE. It should
be no surprise that sending a DELETE request should do exactly what it sounds like. Let's add
another route that accepts DELETE requests and deletes an item from our movies collection. Here is
the code that takes care of the DELETE requests, which should be placed after the existing block of
code from the previous PUT:

router.delete('/:id', (req, res)=>{

 let indexToDel = -1;

 _.each(json, (elem, index)=>{

 if (elem.Id === req.params.id) {

 indexToDel = index;

 }

 });

 if (~indexToDel) {

 json.splice(indexToDel, 1);

 }

 res.json(json);

});

This code will loop through the collection of movies and find a matching item by comparing the
values of Id. If a match is found, the array index for the matched item is held until the loop is
finished. Using the array.splice function, we can remove an array item at a specific index. Once
the data has been updated by removing the requested item, the JSON data is returned. Notice that
in the following screenshot the updated JSON that's returned is in fact no longer displaying the
original second item we deleted:

[227]

The ~ use in JavaScript! That's a little bit of JavaScript black magic! The tilde (~) in JavaScript
will bit flip a value. In other words, it will take a value and return the negative of that value
incremented by one, that is ~n === -(n+1). Typically, the tilde is used with functions that return -1
as a false response. By using ~ on -1, you are converting it to 0. If you were to perform a Boolean
check on -1 in JavaScript, it would return true. You will see that ~ is primarily used with the
indexOf function and jQuery's $.inArray(); both return -1 as a false response.

All of the endpoints defined in this chapter are extremely rudimentary, and most of these should
never see the light of day in a production environment! Whenever you have an API that accepts
anything other than GET requests, you need to be sure to enforce extremely strict validation and
authentication rules. After all, you are basically giving your users direct access to your data.

[228]

Consuming external APIs from Node.js
There will undoubtedly be a time when you want to consume an API directly from within your
Node.js code. Perhaps your own API endpoint needs to first fetch data from some other,
unrelated third-party API before sending a response. Whatever the reason, the act of sending a
request to an external API endpoint and receiving a response can be done fairly easily by using a
popular and well-known npm module called request. The request module was written by Mikeal
Rogers and is currently the third most popular (and most relied upon) npm module, after async and
underscore.

Request is basically a super simple HTTP client, so everything you've been doing with Postman
REST Client so far is basically what Request can do, only the resulting data is available to you in
your Node code, as well as the response status codes and/or errors, if any.

[229]

Consuming an API endpoint using request
Let's do a neat trick and actually consume our own endpoint as if it was some third-party external
API. First, we need to ensure we have request installed and can include it in our app:

 $ npm install --save request

Next, edit server.js and make sure you include request as a required module
at the start of the file:

const express = require('express'),

 bodyParser = require('body-parser'),

 _ = require('underscore'),

 json = require('./movies.json'),

 app = express(),

 request = require('request');

Now, let's add a new endpoint after our existing routes, which will be an endpoint accessible in
our server via a GET request to /external-api. This endpoint, however, will actually consume
another endpoint on another server, but for the purposes of this example, the other server is
actually the same server we're currently running!

The request module accepts an options object with a number of different parameters and settings,
but for this particular example, we only care about a few. We're going to pass an object that has a
setting for the URL of the endpoint we want to consume. After the request is made and a
response is received, we want an inline callback function to execute.

Place the following block of code after your existing list of routes in server.js:

router.get('/external-api', (req, res)=>{

 request.get({

 uri: `http://localhost:${(process.env.PORT || 3500)}`

 }, (error, response, body)=>{

 if (error) { throw error; }

 var movies = [];

 _.each(JSON.parse(body), (elem, index)=>{

 movies.push({

 Title: elem.Title,

 Rating: elem.Rating

 });

 });

 res.json(_.sortBy(movies, 'Rating').reverse());

 });

});

The callback function accepts three parameters: error, response, and body. The response object is
like any other response that Express handles and has all of the various parameters as such. The
third parameter, body, is what we're really interested in. That will contain the actual result of the
request to the endpoint that we called. In this case, it is the JSON data from our main GET route
we defined earlier that returns our own list of movies. It's important to note that the data returned
from the request is returned as a string. We need to use JSON.parse to convert that string to actual,
usable JSON data.

We manipulate the data that came back from request to suit our needs. In this example, we took
the master list of movies and just returned a new collection that consists of only the Title and
Rating of each movie and sorts the results by the top scores.

[230]

Load this new endpoint by pointing your browser to http://localhost:3500/external-api, and you
can see the newly transformed JSON output to the screen.

Let's take a look at another example that's a little more real-world. Let's say that we want to
display a list of similar movies for each one in our collection, but we want to look up that data
somewhere, such as on www.imdb.com. Here is the sample code that will send a GET request to
IMDB's JSON API, specifically for the word aliens, and returns a list of related movies by the
Title and Year. Go ahead and place this block of code after the previous route for external-api:

router.get('/imdb', (req, res)=>{

 //console.log("err1")

 request.get({

 uri: 'http://sg.media-imdb.com/suggests/a/aliens.json'

 }, (err, response, body)=>{

 let data = body.substring(body.indexOf('(')+1);

 data = JSON.parse(data.substring(0,data.length-1));

 let related = [];

 _.each(data.d, (movie, index)=>{

 related.push({

 Title: movie.l,

 Year: movie.y,

 Poster: movie.i ? movie.i[0] : ''

 });

 });

 res.json(related);

 });

});

If we take a look at this new endpoint in a browser, we can see that the JSON data that's returned
from our /imdb endpoint is actually retrieving and returning data from some other API endpoint
itself:

The JSON endpoint I am using for IMDB isn't actually from their API, but rather what they use
on their home page when you type in the main Search box. This would not really be the most
appropriate way to use their data, but it's more of a hack to show this example. In reality, to use
their API (like most other APIs), you would need to register and get an API key that you would

[231]

http://www.imdb.com

use so that they could properly track how much data you were requesting on a daily or hourly
basis. Most APIs will require you to use a private key with them for this reason.

[232]

Summary
In this chapter, we took a brief look at how APIs work in general, the RESTful API approach to
semantic URL paths and arguments, and how we create a bare bones API.
We used Postman REST Client to interact with the API by consuming endpoints and testing the
different types of request methods (GET, POST, PUT, and so on). You also learned how to consume
an external API endpoint by using the third-party node module request.

In the next chapter, we will revisit our original application as we implement best practices by
introducing testing in Node.js. We'll take a look at popular testing frameworks and write tests for
the application to prove that our code works as expected.

[233]

Testing Your Code
Up until this point, we've been pretty much flying by the seat of our pants when it comes to the
code we've been writing. We literally had no way of knowing whether the code worked until we
tested it out in an actual browser.

In this chapter, we will cover the following topics:

Running tests with the Mocha test framework
Writing tests with the Chai.js assertion library
Spies and stubs with Sinon and Proxyquire
Writing your first test
Testing your application

Tests are great for ensuring that your code functions properly, but they're also awesome for
preventing new, unexpected bugs from suddenly popping up because of an innocent little change
you made to some unsuspecting code.

[234]

The tools of the trade
Let's start by taking a look at the various tools and libraries we will use to run and write our tests.
There are three main concepts that we will need to cover before we can actually start writing real
tests.

The first is a test runner, or the framework we use to run our suite of tests.

Most of the frameworks follow Test Driven Development (TDD), and their process relies on
the following steps:

1. It defines a unit test.
2. It implements the unit.
3. It executes the test and verifies that the test passes.

The second concept is the assertion library itself--the language we use to write our tests. A
special version of using assertion language to design and build pieces of functionality
incrementally, guided by an expected behavior, is Behavior Driven Development (BDD).

For both TDD and BDD, we can use the Mocha testing framework; however, we will be writing
assertions using a special assertion library called Chai.js.

Finally, we'll take a look at the idea of spies and stubs, which are fake representatives of certain
parts of our code that are relied on when we need to track function calls to ensure an expected
behavior.

[235]

Running tests with the Mocha framework
When writing tests for an application, you typically write them in batches that are module
specific. These batches are referred to as suites or specs. Each suite typically contains a batch of
tests organized in a way that almost mirrors the application itself. With Node, the idea is no
different in that each suite of tests we write will be specific to an individual module. You'll
require the module you want to test against and write a collection of tests for each part of the
module's functionality.

Since you'll have many different test files testing each and every component of your application,
you'll want a way to quickly execute all of the tests. This is where the test runner comes in. The
test runner that we've decided to use is called Mocha. You can install Mocha globally, like any
other npm package, as follows:

 $ npm install -g mocha

You might require security privileges when installing on Linux or OS X, which can done simply
using sudo before npm.

Once installed, the Mocha command-line tool is now available. Simply executing mocha from a
command line will execute the test run with a few default options.

The test runner will look for a folder named test and any .js file within. In our case, we haven't
actually set up any tests yet, so executing mocha alone won't accomplish anything; instead, it will
throw the following error:

 cannot resolve path

When the Mocha test runner does find .js files, it executes them like any other Node file, except
it looks for a few specific keywords within the file.

Here is some sample code for a typical test block:

const expect = require('chai').expect;

describe('The code', ()=>{

 beforeEach(()=>{

 // optional preparation for each test

 });

 afterEach(()=>{

 // optional cleanup after each test

 });

 it('should test something', ()=>{

 const something = 1;

 // here we "expect" some condition to declare our test

 // in this case, we expect the variable to exist

 // more on the assertion syntax a little later

 expect(something).to.exist;

 });

 it('should test something_else', ()=>{

 const something_else = false;

 // now we test a different variable against its value

 // and expect that value to equal false

 expect(something_else).to.equal(false);

 });

});

The first thing Mocha will scan the file for is a describe block. A describe block is a way to

[236]

define a specific group of test cases in a single line. You can have many describe blocks in a test
file, and each describe block can have many specific tests. In addition, describe blocks can be
nested as deeply as you like to better organize your tests.

Once a describe block is found, a few other items are executed within it. A beforeEach and
afterEach block is checked to see whether there is any pretest work that needs to be executed
before each test is executed. Likewise, any clean up that needs to occur between tests can be
taken care of within the afterEach block.

Both of these blocks are optional and therefore, not required. A good example of when you
would want to use a beforeEach block is if you need to instantiate an object that you will be
testing--you would want to create a new instance before every single test. This way, whatever
changes a test might push to the object will be reset and will not inadvertently affect any other
tests. Likewise, any changes you've made during a test to any other related objects can be reset
during an afterEach block.

Within the describe block, defining individual tests is done with it statements. Within each it
statement, it's generally considered good practice to include a single expect to assert the actual
test (although you can include as many expect function calls as you like, it's still only considered
a single test because of the single it).

We're using the BDD style syntax when writing our suites, which allows our tests to read like
user stories. Using the preceding test snippet, you can read the tests as The code should test
something and The code should test something_else. In fact, if we ran the previous tests, we would
see the following output:

 The code

 should test something

 should test something_else

 2 passing (5ms)

[237]

Asserting tests with Chai.js
As you saw in the preceding unit test example, we used special blocks to define our test groups
with Mocha, but we used a separate language when defining our actual individual tests. These
tests are called assertions, and we chose to use the Chai.js library. This is purely a personal
preference, as there are a number of different assertion libraries that exist. Each library does
basically the same thing, with slight variations on the syntax and style of actually writing the
tests. Since Chai.js is project specific and based on a personal preference, we will install it as a
project dependency (instead of installing it globally). In addition, as our tests are not actually
required for our application to run, we'll include Chai.js under the devDependencies list in our
package.json file.

Performing npm install on the developer 's machine will yield all packages under normal
dependencies, as well as devDependencies from package.json. When the environment changes to
production, we will need to execute npm install --prod to specify the environment.

This will help npm to install packages under dependencies and not devDependencies from
package.json. In order to include Chai.js in our project as a devDependency, we will use the --save-
dev flag instead of --save when performing the npm install:

 $ npm install --save-dev chai

[238]

Getting started with Chai
Chai itself has a few different flavors of API styles that can be used when writing tests. The BDD
API, which is what we will use for the tests we write, uses expect and should. There's also the
assert API, which is more of a TDD style. The benefit of using the BDD style with expect/should
is that you can chain the assertion methods to improve readability of the tests.

You can learn more about BDD and TDD by accessing the following Wikipedia page:
http://en.wikipedia.org/wiki/Behavior-driven_development

Using the BDD assertion API with Chai.js provides a number of methods at our disposal, such as
to, be, is, and many more. They have no testing capability, but instead they improve the assertion
readability. All the getters are listed at http://chaijs.com/api/bdd/.

All of these getters will follow an expect() statement and can be coupled with not, in case we
want to flip the assertion negatively.

The preceding getters are combined with the chai assertion methods, such as ok, equal, within,
and so on, to determine a test's outcome. All those methods are listed at
http://chaijs.com/api/assert/.

Let's start constructing simple assertions.The chai provides three different assertion styles:
expect, should, and assert. Consider the following simple illustration:

const chai = require('chai');

const expect = chai.expect;

const should = chai.should();

const assert = chai.assert;

const animals = { pets: ['dog', 'cat', 'mouse'] };

const foo = 'bar';

expect(foo).to.be.a('string').and.equal('bar');

expect(animals).to.have.property('pets').with.length(4);

animals.should.have.property('pets').with.length(4);

assert.equal(foo, 'bar', 'Foo equal bar');

As you can see, the expect/should function is based on self-descriptive language chains. Both
differ in their way of declaration--the expect function provides a starting point for a chain,
whereas the should interface extends an Object.prototype.

The assert interface provides simple but powerful TDD style assertions. Apart from the
preceding example that yields a deep equality assertion, exception testing, and instance are also
available. For more in-depth learning, refer to the Chai documentation at http://chaijs.com/api.

[239]

http://en.wikipedia.org/wiki/Behavior-driven_development
http://chaijs.com/api/bdd/
http://chaijs.com/api/assert/
http://chaijs.com/api

Spies and stubs with Sinon.js
Testing your code will prove to be extremely difficult if there isn't an easy way to spy on
functions and know whenever they are called. Additionally, when one of your functions is called,
it will be nice to know what arguments were passed to it and what was returned. In testing a spy
is a special placeholder function that replaces an existing function when you want to check
specifically if/when it was called. Spies track a number of properties for a function when it's
called, and they can also pass through the expected functionality of the original function. The
Sinon.js library provides both spy and stub functionalities and is quite extensive. For a complete
list of the different options available with this powerful framework, I strongly recommend that
you spend some time reading the documentation at http://sinonjs.org/docs.

Since we will use Sinon.js with our tests, we should install it as another devDependency, exactly
the same way we did with Chai.js. In addition, we should also install the sinon-chai helper,
which provides additional chai assertion verbs, specifically for use with Sinon:

 $ npm install --save-dev sinon sinon-chai

The inclusion of sinon-chai allows us to write special assertions, such as to.be.calledWith, which
would otherwise not work with chai alone.

Imagine that you have a function that simply adds two numbers together and returns the sum:

let sum = (a, b) => {

 return a + b;

}

let doWork = () => {

 console.log("asdasd")

 const x = 1,

 y = 2;

 console.log(sum(x, y));

}

When writing a test for the doWork function, we want to assert that the sum function was called.
We don't necessarily care what the function does or whether it even works; we just want to make
sure--since doWork relies on sum--that it's actually calling the function() function. In this scenario,
the only way we could be sure is if we had a way to spy on the sum function and know whether it
was ever called. Using spy, we can do just that:

const chai = require('chai');

const expect = chai.expect;

const sinon = require("sinon");

const sinonChai = require("sinon-chai");

chai.use(sinonChai);

describe('doWork', ()=>{

 let sum;

 it('should call sum', ()=>{

 sum = sinon.spy();

 doWork();

 expect(sum).to.be.calledWith(1,2);

 });

});

In the preceding scenario, the sum function is replaced with a spy function. So its actual
functionalities will no longer exist. If we want to ensure that the sum function is not only spied on
but still functions the way we expect, we will need to attach .andCallThrough() after sinon.spy():

[240]

http://sinonjs.org/docs

describe('doWork', ()=>{

 let sum;

 console.log = sinon.spy();

 it('should call sum', ()=>{

 sum = sinon.spy().andCallThrough();

 doWork();

 expect(sum).to.be.calledWith(1,2);

 expect(console.log).to.be.calledWith(3);

 });

});

Note that by including andCallThrough on our sum spy, we're able to not only spy on it and assert
that it was called, but also spy on the console.log function and assert that it was called with the
correct value returned by sum.

Where a spy is typically just a watcher of a function and only reports whether the function was
called, a stub allows you to provide custom functionalities for a function on the fly during test
execution. Test stubs are said to be preprogrammed behavioral functions that are used to test
wrapped boilerplate code required as a module dependency in an application.

Think of stub as a super spy, where it reports the same things that a spy does, but also performs
whatever specific tasks you want as well. Using the same example, let's stub the sum function to
always return the same value:

it('should console.log sum response', ()=>{

 // replace the existing sum function with a new stub,

 // a generic function that does exactly what we specify

 // in this case always just return the number 2

 sum = sinon.stub(()=>{

 return 2;

 });

 // lets replace the standard console.log function

 // with a spy

 console.log = sinon.spy();

 // call our doWork function (which itself uses console.log)

 doWork();

 // and if doWork executed the way its supposed to, console.log

 // should have been called and the parameter 2 passed to it

 expect(console.log).to.be.calledWith(2);

});

Stubbing a function is great when a function performs work that might yield unexpected results,
and you just want to force the response for the purposes of your test. Stubbing is also handy
when you're doing TDD and you're testing against a function that you haven't even written yet.

[241]

Stubbing node modules with Proxyquire
Spies and stubs are great when writing tests against code within the same module, but when you
need to spy on or stub a module required within another Node module, things get a little trickier.
Fortunately, there's a tool called Proxyquire that will allow you to stub modules that are
required from your code.

Examine the following code sample:

// google.js

const request = require('request'),

 sinon = require("sinon"),

 log = sinon.spy();

module.exports =()=>{

 request('http://www.google.com', (err, res, body)=>{

 log(body);

 });

}

You can see that we require the request module. The request module accepts two parameters, one
of which is a callback function. This is where things start to get tricky. How are we going to
implement spies and/or stubs in this type of scenario? Furthermore, how can we prevent our tests
from explicitly making a network call to fetch google.com? What if google.com is down (ha!) when
we run our tests?

In order to be able to spy on the request module, we will need a way to intercept actual require
and attach our own stubbed version of request instead. The request module is actually a great
example of a module that you would want to stub, because request is used to make a network
call, and that's something that you want to ensure that your tests never actually do. You don't
want your tests relying on an external resource, such as a network connection or being dependent
on the data returned from a live request.

Using Proxyquire, we can actually set up our tests in a way that they'll intercept the require
module and replace what gets executed with our own stub. Here's an example of a test file
written against the module we created earlier:

//google.spy.js

const sinon = require("sinon"),

proxyquire = require('proxyquire'),

log = sinon.spy(),

requestStub = sinon.stub().callsArgWith(1, null, null, 'google.com'),

google = proxyquire('./google', { 'request': requestStub });

describe('google module', ()=>{

 beforeEach(()=>{

 google();

 });

 it('should request google.com', ()=>{

 expect(reqstub).to.be.called();

 });

 it('should log google body', ()=>{

 expect(callback).to.be.calledWith(null, null, 'google.com');

 });

});

The first thing the test suite does is set up a spy and a generic stub function that will be used as
the request module. Then, we include our google module, but we do it using proxyquire instead of

[242]

a typical require module. Using proxyquire, we pass the path to the module the same way we
would with require, except the second parameter is the module that would be required within that
module and the stub function to use in its place.

Before each test, we will execute the original google module and assert against our stub that it
was, in fact, called. Additionally, we assert that the log spy was called with whatever data was
returned from the request module. Since we are in control of that module, we can test, quite
literally, that the string google.com was returned when a request was made to http://google.com
(which we know for a fact is not true--not only that, but we know that a network call was never
sent to www.google.com, either).

We're using a special power of a stub that allows us to execute a particular parameter to the
stubbed function, assuming that it was a callback function. Here, we're using callsArgWith and
including the argument index (zero based) as the first parameter; in this case, one of the two
parameters that were passed to the request, the first (index 0), was the URL itself, and the second
(index 1) was the callback function. Using callsArgWith, we can execute the callback function
and specifically provide its parameters, in this case, null, null, and a string. Like Sinon.js and
Chai.js, proxyquire will also need to be included in our project as devDependency:

 $ npm install --save-dev proxyquire

[243]

Writing and running your first test
Up to this point, all of the test code we've seen were just demos and examples, and we haven't
actually run any tests. Let's set up the basic structure of our application so that we can start
writing real tests.

The first thing to do is to set up the folder structure that will house all of our tests. Consider the
following steps:

1. Within the root of the application project folder, create a folder named tests.
2. Within the tests folder, create three more folders for controllers, models, and server:

/(existing app root)

tests/

----/controllers/

----/models/

----/server/

[244]

Writing a test helper
Before we start writing the tests for our application, there's a small amount of overhead that we
will need to take care of to prepare for our tests. To take care of this overhead, we will write a
testhelper file that will be included and run with every test file we execute via Mocha.

Create a file named testhelper.js within the tests folder, and insert the following block of code:

const chai = require('chai'),

 sinon = require('sinon'),

 sinonChai = require('sinon-chai');

global.expect = chai.expect;

global.sinon = sinon;

chai.use(sinonChai);

This is code that we would typically need to include at the top of every one of our test files;
however, by including it in a single file, we can instruct Mocha to automatically require this file
for every test file that is run. The file itself just includes the chai and sinon modules and defines a
few global variables as shortcuts for our test writing. Additionally, it instructs chai to use the
sinonChai module so that our syntax is extended and we can write Sinon-specific Chai assertions.
The command to actually run our suite of tests is as follows:

 $ mocha -r tests/testhelper.js -R spec tests/**/*.test.js

Remember that we installed Mocha globally earlier so that we can execute the mocha command
from anywhere.

Based on the path to our tests in the preceding command, it's assumed that the command will be
executed from the root of the application project folder. The -r flag instructs Mocha to require
the testhelper.js module. The -R flag is an option to define the style of the test reporting output.
We chose to use the spec style, which lists our report in a nested indentation style with each
describe and it statement, along with a green checkmark for the passed tests. Finally, the last
argument is the path to our test files; in this case, we provided wildcards so that all of our tests
will run.

Mocha has a few different reporting styles that you can choose from. These include dot
(repeating dots for each test), list, progress (a percentage bar), JSON, and spec. One of the more
interesting, albeit somewhat useless, is the -R nyan reporting style.

Let's write a quick sample test to make sure that our project is properly set up. Within the tests
folder, create a new file named mocha.test.js and include the following code:

describe('Mocha', ()=>{

 'use strict';

 beforeEach(()=>{});

 describe('First Test', ()=>{

 it('should assert 1 equals 1', ()=>{

 expect(1).to.eql(1);

 });

 });

});

[245]

The preceding test is pretty straightforward and simply asserts that 1 is equal to 1. Save this file
and run the Mocha test command again, and you should get the following output:

 $ mocha -r tests/testhelper.js -R spec tests/mocha.test.js

 Mocha

 First Test

 should assert 1 equals 1

 1 passing (5ms)

You might find it tiresome and frustrating to remember and execute that long, convoluted
command for Mocha. Fortunately, there's a pretty easy solution. Edit the package.json file in the
application, and add the following section:

"scripts": {

 "start": "node server.js",

 "test": "mocha -r tests/testhelper.js -R spec

 tests/**/*.test.js"

 },

By making this tweak in the package.json file, you can now simply execute npm test from a
command line as a quick and easy shortcut. This is a standard convention with the package.json
file, so any developer will know how to simply execute npm test:

 $ npm test

 > chapter9@0.0.0 test /Users/jasonk/repos/nodebook/chapter9

 > mocha -r tests/testhelper.js -R spec tests/**/*.test.js

 Mocha

 First Test

 should assert 1 equals 1

 1 passing (5ms)

Now that our project is set up to properly run and execute tests, let's start writing some real tests
for the application.

[246]

Testing the application
With all of that background information out of the way, let's focus on writing some real tests for
the application we've built. In the following sections, we will write tests for the routes, servers,
models, and controllers in our application.

[247]

Testing the routes
Let's start things a little slowly by taking a look at one of the most basic files in our application,
the routes.js file. This file simply defines the number of routes that the application should
respond to. This will be one of the easiest files to write tests for.

Since the routes.js file is in the server folder within our main application, let's put its
corresponding test file in a similar location. Within the tests/server folder, create a file named
routes.test.js. Since the routes.test.js file will be testing the functionalities of our routes.js
file, we will need it to require the same modules.

Include the following code in test/server/routes.test.js:

const home = require('../../controllers/home'),

 image = require('../../controllers/image'),

 routes = require('../../server/routes');

Note that the paths are different since we require modules from within our test/server folder, but
we also require app-specific modules. Also, note that in addition to the modules that our original
routes.js file requires, we also require the routes module itself. How else will we be able to test
the functionalities of the module if it isn't included? Next, let's set up the structure of the test
suite and create a few spies. Include this new block of code following the previous code within
tests/server/routes.test.js:

describe('Routes',()=>{

 let app = {

 get: sinon.spy(),

 post: sinon.spy(),

 delete: sinon.spy()

 };

 beforeEach(()=>{

 routes.initialize(app);

 });

 // to do: write tests...

});

If you recall, the routes module's initialize function accepted a single parameter, an app object.
In our tests, we defined app as a simple, anonymous object with three functions-- get, post, and
delete; each of these is a spy. We include a beforeEach block to execute the initialize function
before every one of our test runs.

Now, let's include some tests. First, we'll test that the GET endpoints are configured correctly.
Immediately after the // to do: write tests... comment, place the following block of code:

describe('GETs',()=>{

 it('should handle /', function(){

 expect(app.get).to.be.calledWith('/', home.index);

 });

 it('should handle /images/:image_id', ()=>{

 expect(app.get).to.be.calledWith('/images/:image_id',

 image.index);

 });

});

Then, test the POST endpoints:

describe('POSTs', ()=>{

[248]

 it('should handle /images', ()=>{

 expect(app.post).to.be.calledWith('/images', image.create);

 });

 it('should handle /images/:image_id/like', ()=>{

 expect(app.post).to.be.calledWith('/images/:image_id/like', image.like);

 });

 it('should handle /images/:image_id/comment', ()=>{

 expect(app.post).to.be.calledWith('/images/:image_id/comment', image.comment);

 });

});

Finally, test the DELETE endpoint:

describe('DELETEs', ()=>{

 it('should handle /images/:image_id', ()=>{

 expect(app.delete).to.be.calledWith('/images/:image_id', image.remove);

 });

});

Each of these tests asserts the same thing, that is, that app object's corresponding get, post, or
delete function was executed with the correct parameters for each route. We were able to test
against the parameters because the app object we used was a spy.

If you run the mocha command to execute the suite of tests, you should see the following output:

 $ npm test

 Routes

 GETs

 should handle /

 should handle /images/:image_id

 POSTs

 should handle /images

 should handle /images/:image_id/like

 should handle /images/:image_id/comment

 DELETEs

 should handle /images/:image_id

 6 passing (14ms)

[249]

Testing the server
Testing the server.js file will be slightly different than any of our other files. The file runs as the
root of our application, so it doesn't export a module or any object that we can directly test. Since
we launch our server using server.js, we will need to emulate launching our server from our
code. We'll create a function called server, which will require the server.js file using proxyquire,
and stub each of the modules that it requires. Executing the server() function will be exactly the
same as executing node server.js from a command line. All of the code within the file will
execute via that function, and then we can test against each of the calls that are made using stubs
from within proxyquire.

Create a file named server.test.js within the tests/server/ folder and insert the following block
of code:

let proxyquire, expressStub, configStub, mongooseStub, app,

 server = function() {

 proxyquire('../../server', {

 'express': expressStub,

 './server/configure': configStub,

 'mongoose': mongooseStub

 });

 };

describe('Server',()=>{

 beforeEach(()=>{

 proxyquire = require('proxyquire'),

 app = {

 set: sinon.spy(),

 get: sinon.stub().returns(3300),

 listen: sinon.spy()

 },

 expressStub = sinon.stub().returns(app),

 configStub = sinon.stub().returns(app),

 mongooseStub = {

 connect: sinon.spy(),

 connection: {

 on: sinon.spy()

 }

 };

 delete process.env.PORT;

 });

 // to do: write tests...

});

Before each test is run for our server, we reset the stubs for all of the major components of the
server. These stubs include the app object, express, config, and mongoose. We're stubbing each of
these modules since we want to spy on them (and we use a stub because some of them need to
return objects that we'll work with in our file). Now that we have all of our spies in place and our
app object scaffold set up, we can start testing the main functionalities of our code.

We will need to check whether the following conditions pass:

An application is created

The views directory is set
The port is set and can be configured and/or set to default
The app itself is configured (config is called with it)

[250]

Mongoose connects to a database URI string
The app itself is launched

Replace the // to do: write tests... comment in the earlier code with the following block of
code:

describe('Bootstrapping', ()=>{

 it('should create the app', ()=>{

 server();

 expect(expressStub).to.be.called;

 });

 it('should set the views', ()=>{

 server();

 expect(app.set.secondCall.args[0]).to.equal('views');

 });

 it('should configure the app', ()=>{

 server();

 expect(configStub).to.be.calledWith(app);

 });

 it('should connect with mongoose', ()=>{

 server();

 expect(mongooseStub.connect).to.be.calledWith(sinon.match.string);

 });

 it('should launch the app', ()=>{

 server();

 expect(app.get).to.be.calledWith('port');

 expect(app.listen).to.be.calledWith(3300, sinon.match.func);

 });

});

In the preceding group of tests, we test the bootstrapping of our server, which are all of the
functionalities that initially run within server.js. The names of the tests are pretty self-
explanatory. We're checking against the various methods of the app object, ensuring that they're
called and/or that the correct parameters were passed in. For the tests, we want to test that a
specific type of parameter was called, not what the parameter value was literally; we use Sinon's
match element, which allows our tests to be a little more generic. We wouldn't want to hardcode
the MongoDB URI string in our tests, because that's just another place we would have to
maintain--although you could very well do this if you wanted your test to be that strict (that is, to
assert that the exact URI string was passed quite literally).

In the second set of tests, we want to ensure that the port is set, that it defaults to 3300, and that it
can be changed via the use of a node environment variable:

describe('Port', ()=>{

 it('should be set', ()=>{

 server();

 expect(app.set.firstCall.args[0]).to.equal('port');

 });

 it('should default to 3300', ()=>{

 server();

 expect(app.set.firstCall.args[1]).to.equal(3300);

 });

 it('should be configurable', ()=>{

 process.env.PORT = '5500';

 server();

 expect(app.set.firstCall.args[1]).to.equal('5500');

 });

});

With these tests in place, run the npm test command again, and you should get the following
output:

 $ npm test

 Server

 Bootstrapping

 should create the app (364ms)

[251]

 should set the views

 should configure the app

 should connect with mongoose

 should launch the app

 Port

 should be set

 should default to 3300

 should be configurable

[252]

Testing a model
When testing our models, we want to include the model module itself and then write tests against
it. The easiest solution here is that we create a test model object and then assert that the model has
all of the fields that we expect, as well as any virtuals we might have created.

Create the tests/models/image.test.js file and insert the following code:

let ImageModel = require('../../models/image');

describe('Image Model',()=>{

 var image;

 it('should have a mongoose schema',()=>{

 expect(ImageModel.schema).to.be.defined;

 });

 beforeEach(()=>{

 image = new ImageModel({

 title: 'Test',

 description: 'Testing',

 filename: 'testfile.jpg'

 });

 });

 // to do: write tests...

});

First, we include ImageModel using require (note the path for the require statement). The very first
test we run is to make sure that ImageModel has a mongoose schema property. After this test, we
define the beforeEach block that we'll rely on for the remainder of our tests. Before every test, we
will want to instantiate a new ImageModel object that we can test against. We can do this in a
beforeEach block so that we're sure that we're dealing with a fresh object in every test and that it
hasn't been tainted by any tests that were previously run. It's also important to note that the order
of the first test and the beforeEach block doesn't actually matter, as the beforeEach block will run
before every test in its parent describe function, regardless of the order it was defined in.

Include the following suite of tests replacing the placeholder // to do: write tests... comment:

describe('Schema', ()=>{

 it('should have a title string', ()=>{

 expect(image.title).to.be.defined;

 });

 it('should have a description string', ()=>{

 expect(image.description).to.be.defined;

 });

 it('should have a filename string', ()=>{

 expect(image.filename).to.be.defined;

 });

 it('should have a views number default to 0', ()=>{

 expect(image.views).to.be.defined;

 expect(image.views).to.equal(0);

 });

 it('should have a likes number default to 0', ()=>{

 expect(image.likes).to.be.defined;

 expect(image.likes).to.equal(0);

 });

 it('should have a timestamp date', ()=>{

 expect(image.timestamp).to.be.defined;

 });

});

Here, we will check to ensure that each property that we expect an ImageModel instance to have is

[253]

defined. For the properties that have default values set, we also check to ensure that the default
values are set as well.

Next, we will test against the virtuals that we expect ImageModel to have, and verify that they
function the way they're supposed to:

describe('Virtuals', ()=>{

 describe('uniqueId', ()=>{

 it('should be defined', ()=>{

 expect(image.uniqueId).to.be.defined;

 });

 it('should get filename without extension', ()=>{

 expect(image.uniqueId).to.equal('testfile');

 });

 });

});

When testing the uniqueId virtual, it should return the image model's filename without the
extension. As the beforeEach defines our image model with a filename of testfile.jpg, we can
assert with our test that the uniqueId returned is equal to testfile (the filename without the
extension).

Running the tests for our model should provide the following results:

 $ npm test

 Image Model

 should have a mongoose schema

 Schema

 should have a title string

 should have a description string

 should have a filename string

 should have a views number default to 0

 should have a likes number default to 0

 should have a timestamp date

 Virtuals

 uniqueId

 should be defined

 should get filename without extension

[254]

Testing a controller
Last but not least, let's take a look at the image controller, and specifically test for the main index
function. Since the index function does a lot of work and performs a number of different tasks,
the test file will make extensive use of stubs and spies. The first thing we need to do before any
tests is declare a number of global variables for our tests, as well as set up all of our stubs, spies,
and placeholder objects for use with proxyquire. Then, we require the actual image controller
using proxyquire. Create a file named tests/controllers/image.test.js and insert the following
code:

let proxyquire = require('proxyquire'),

 callback = sinon.spy(),

 sidebarStub = sinon.stub(),

 fsStub = {},

 pathStub = {},

 md5Stub = {},

 ModelsStub = {

 Image: {

 findOne: sinon.spy()

 },

 Comment: {

 find: sinon.spy()

 }

 },

 image = proxyquire('../../controllers/image', {

 '../helpers/sidebar': sidebarStub,

 '../models': ModelsStub,

 'fs': fsStub,

 'path': pathStub,

 'md5': md5Stub

 }),

 res = {},

 req = {},

 testImage = {};

With this code, we define a number of global variables, such as spies, stubs, or empty
placeholder JavaScript objects. Once our stubs are prepared, we will call proxyquire to include
our image controller (ensuring that the required modules within the image controller are actually
replaced with our various stubs and spies). Now that all of our globals, stubs, and spies are
prepared, let's include some tests.

Include the following code after the preceding block of code:

describe('Image Controller', function(){

 beforeEach(()=>{

 res = {

 render: sinon.spy(),

 json: sinon.spy(),

 redirect: sinon.spy()

 };

 req.params = {

 image_id: 'testing'

 };

 testImage = {

 _id: 1,

 title: 'Test Image',

 views: 0,

 likes: 0,

 save: sinon.spy()

 };

 });

 // to do: write tests...

});

[255]

Once again, we will build up some setup using a beforeEach block for our tests. This sets spies on
each of the res object's functions, including render, JSON, and redirect (each of these are used
throughout the image controller). We fake the query string parameter by setting the req.params
object with an image_id property. Finally, we will create a test image object that will be used by
our fake mongoose image model stub to emulate a database object being returned from
MongoDB:

describe('Index',()=>{

 it('should be defined', ()=>{

 expect(image.index).to.be.defined;

 });

 it('should call Models.Image.findOne', ()=>{

 ModelsStub.Image.findOne = sinon.spy();

 image.index(req, res);

 expect(ModelsStub.Image.findOne).to.be.called;

 });

 it('should find Image by parameter id', ()=>{

 ModelsStub.Image.findOne = sinon.spy();

 image.index(req, res);

 expect(ModelsStub.Image.findOne).to.be.calledWith(

 { filename: { $regex: 'testing' } },

 sinon.match.func

);

 });

 // to do: write more tests...

});

The first test we run is to ensure that the index function actually exists. Within the index function,
the very first action that occurs is that the image model is found via the Models.Image.findOne
function. In order to test that function, we will need to first set it as spy. The reason we do this
here and not in beforeEach is because we might want the findOne method to behave slightly
differently in each test, so we don't want to set a strict rule to be applied for all the tests.

In order to emulate that a GET call was posted to our server and our image index controller
function was hit, we can just fire the function manually. We do this using image.index(req, res)
and pass in our fake request and response objects (defined earlier as globals and stubbed in the
beforeEach function).

Since ModelsStub.Image.findOne is a spy, we can test that it was called, and then separately test
that it was called specifically with the parameters we expect it to be called with. In the case of
findOne, where the second parameter is a callback function, we don't care or want to test the very
specific function that was included, but only ensure that an actual function was included. To do
this, we can use Sinon's matcher API and specify that a func, or function, was included as the
second parameter.

This last set of tests tests the code that executes when an image is found and returned from the
findOne function:

describe('with found image model', ()=>{

 beforeEach(function(){

 ModelsStub.Image.findOne =

 sinon.stub().callsArgWith(1,null,testImage);

 });

 it('should incremement views by 1 and save', ()=>{

 image.index(req, res);

 expect(testImage.views).to.equal(1);

 expect(testImage.save).to.be.called;

 });

 it('should find related comments', ()=>{

 image.index(req, res);

 expect(ModelsStub.Comment.find).to.be.calledWith(

 {image_id: 1},

 {},

[256]

 { sort: { 'timestamp': 1 }},

 sinon.match.func

);

 });

 it('should execute sidebar', ()=>{

 ModelsStub.Comment.find =

 sinon.stub().callsArgWith(3, null, [1,2,3]);

 image.index(req, res);

 expect(sidebarStub).to.be.calledWith(

 {image: testImage, comments: [1,2,3]}, sinon.match.func);

 });

 it('should render image template with image and comments', ()=>{

 ModelsStub.Comment.find = sinon.stub().callsArgWith(3, null, [1,2,3]);

 sidebarStub.callsArgWith(1, {image: testImage, comments: [1,2,3]});

 image.index(req, res);

 expect(res.render).to.be.calledWith('image', {image: testImage, comments: [1,2,3]});

 });

});

The first thing that you will note here is that findOne is no longer a spy in these tests, but a stub
that will manually fire the callback function that's provided as its second parameter. The callback
function that's fired will include our test image model. With this stub, we are emulating that the
database call was in fact made via findOne and that a valid image model was returned. Then, we
can test the remainder of the code that executes within that main callback. We perform a similar
setup with the Comment.find call.

When the sidebarStub gets executed, we use the callsArgWith Sinon function, which fires the
callback function that was originally included as a parameter. Within that callback function, we
include fake viewModel as a parameter.

Once sidebarStub does its job, we expect res.render to have been called, and we specify the exact
parameters we expect it to have been called with.

Running the tests for the image controller should yield the following output:

 $ npm test

 Image Controller

 Index

 should be defined

 should call Models.Image.findOne

 should find Image by parameter id

 with found image model

 should incremement views by 1 and save

 should find related comments

 should execute sidebar

 should render image template with image and comments

[257]

Spy and stub everything!
When in doubt, the safest thing you can do when writing your tests is spy on everything and stub
everything else. There are always going to be times when you'll want a function to execute
naturally; in that case, leave it alone. Ultimately, you never want your tests to be dependent on
any other system that includes database servers, other network servers, other APIs, and so on.
You only want to test that your own code works, nothing more. If your code is expected to make
a call to an API, spy on the actual call and just assert that your code attempted to make the call.
Likewise, fake the response from the server via a stub and ensure that your code handles the
response properly.

The easiest way to check for dependencies in your code is to stop any other services from
running (your local node app, and so on), as well as possibly even disabling your network
connection. If your tests time out or fail somewhere unexpectedly, it's likely because you missed
a function you needed to spy on or stub along the way.

Don't get stuck going down a rabbit hole when writing your tests. It's easy to get carried away
and start testing functionalities that can safely be assumed to be working. An example of this is
writing tests to ensure that a third-party module is performing correctly. If it's not a module you
wrote, don't test it. Don't worry about writing tests to prove the module does what it says it
should.

To learn more about TDD when writing JavaScript specifically, I would highly recommend that
you read Christian Johansen's beast of a book: Test-Driven JavaScript Development. This book is
huge and speaks of the sheer volume of information related to TDD. In some circles, TDD truly
is a way of life, and it will define the style with which you write your code.

[258]

Automating everything
Test automation was never so easy without Gulp. Gulp is an open source JavaScript library that
provides efficient build creation processes and serves as a task runner. We will use Gulp to
automate our unit tests by a single command in terminal.

Let's start by installing all the required packages using the following commands:

npm install gulp-cli -g

npm install gulp --save-dev

touch test/gulpfile.js

gulp --help

Note that you may require root access to install the global package of gulp-cli. Use sudo in such
cases, for example, sudo npm install gulp-cli -g. We used --save-dev to install Gulp locally and
save it as a development dependency in our package.json.

Further, we created a Gulp file in the test directory. Now, to test the directory of our app and
make sure that we have the following file structure:

Once we've installed the required packages and created a Gulp file, let's start writing some code,
as follows:

var gulp = require('gulp');

gulp.task('default', function() {

console.log("Lets start the automation!")

});

Go back to the terminal, run Gulp, and you will receive the following output:

Gulp is faster and simpler; why?: Gulp uses node.js streams to pass a data chunk through a series
of the piped plugin. This accelerates the in-memory process operations and performs the write
operation at the end of the task, once and for all.

Let's get ready to expand the scope of learning Gulp and automate our unit tests we covered in
the previous sections. We will start by installing the other required npm packages. Note that we
will need to install them in our project folder and not in the test folder. So, let's go back one step
using cd.., and ensure that you are at your project's root level and run the following command:

npm install gulp-mocha --save-dev

[259]

The gulp-mocha is a plugin to run the mocha test files. Now, let's modify our Gulp file and add
some es6 spices, as follows:

const gulp = require('gulp');

const gulpMocha = require('gulp-mocha')

gulp.task('test-helper',()=>gulp.src('./testhelper.js'))

gulp.task('test-server', ['test-helper'],()=>{

return gulp.src('./server/server.test.js')

.pipe(gulpMocha())

});

Now, run gulp test-server to get the following output:

[260]

Let's discuss how the preceding code works. First, we created the test-helper task that reads the
testhelper.js file in memory and does nothing else but store the global variables required to test
our server.test.js.

We used mocha as a framework to write test cases. The gulpMocha plugin runs the test cases in
memory by reading the server.test.js file and pipes the output in terminal. To study about gulp-
mocha in detail, follow the https://github.com/sindresorhus/gulp-mocha link.

Note the syntactical structure of how to write dependencies if required. Let's get clarity on
adding a dependency by writing one more task, as follows :

gulp.task('test-routes', ['test-helper', 'test-server'],()=>{

return gulp.src('./server/routes.test.js')

.pipe(gulpMocha())

});

This time we will run gulp test-routes.

Now, a question may arise regarding managing so many tasks. Gulp also provides a solution for
automating all the tasks in one go. Let's add the following snippet to our file:

gulp.task('build', ['test-helper', 'test-server','test-routes'])

Run the preceding command; Gulp build and automation of unit tests are both now complete.
Further, we can add all the controllers and respective models so as to achieve project-based
automation of test cases.

[261]

https://github.com/sindresorhus/gulp-mocha

Summary
This has definitely been a crash course on testing, but the groundwork has been laid, and I hope
that you have a solid understanding of the tool chain that you can use to write your own tests.
Trust this powerhouse suite of tools, and you'll be writing bulletproof code in no time!

The ultimate goal with writing tests is to have 100 percent complete code coverage and have unit
tests exist for every line of code you write. From here, the true test is to switch to TDD, which
dictates that you write tests before any code exists at all. Obviously, tests against nonexistent
code will fail, so you'll then need to write the least amount of code to get it to pass, and repeat!

In the next chapter, we'll take a look at a number of cloud-based hosting options available to get
your application up and running online.

[262]

Deploying with Cloud-Based Services
Inevitably, you'll want the application you've been building to be online and available to the
world, whether you want to host your application online during its development process or when
it's complete and ready for production. There are a number of different hosting options currently
available for Node.js and MongoDB-based apps, and in this chapter, we'll take a look at
deploying to a few different popular services.

In this chapter, we will cover the following:

Cloud versus traditional web hosting
An introduction to Git source control
Deploying an application with Nodejitsu
Deploying an application with Heroku
Deploying an application with Amazon Web Services
Deploying an application with Microsoft Azure
A brief look at DigitalOcean

[263]

Cloud versus traditional hosting
If you have any previous experience with website hosting, which I'll refer to as traditional
hosting, you're probably pretty familiar with the process of using FTP to upload your web files to
your hosting provider. With traditional web hosting, service providers typically offer shared
space to every user, each configured with their own public folder that houses the web files. In a
scenario like this, every customer hosts the same kind of website, and their files are all stored and
served from a single web server.

Traditional web hosting is fairly inexpensive because a single web server can host literally
hundreds, if not thousands, of individual websites. Scaling is typically a problem with traditional
hosting because if your website demanded more power, it would need to be moved to another
server (with more hardware) and could experience potential downtime during this move. As a
side effect, if a website on the same server as your own is being particularly demanding of the
hardware, every site on that server could suffer.

With cloud-based hosting, every instance of a website or service is hosted on its own Virtual
Private Server (VPS). When a customer uploads a copy of their website, that website is running
in its own isolated environment, and the environment is specifically designed to run only that
website. Virtual private servers are instances of a server, typically all running simultaneously on
the same hardware. Due to its isolated nature, a VPS scales very well because settings simply
need to be changed for hardware allocation, and the server restarts. If your VPS is hosted on the
same hardware as others, and they are experiencing high-volume spikes, your website will not
suffer because of the isolated nature of the VPS.

[264]

Infrastructure as a Service versus Platform
as a Service
The beauty of the cloud is that the level and amount of service one can obtain varies greatly. For
something as simple as a basic hosting plan to run your web application, you can use any number
of services that are considered a Platform as a Service (PaaS). This is a service that provides a
platform for you to host and run your web application. Increasing in scale and complexity, you
can turn to an Infrastructure as a Service (IaaS) provider, which offers an entire cloud-based
data center at your disposal.

You can learn more about the differences between IaaS, PaaS, and Software as a Service (SaaS)
by reading a detailed article available at
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-
stack-saas-paas-iaas.

Cloud-based hosting costs can vary greatly because of the simple fact that they are so scalable.
Your costs can fluctuate throughout a single month dramatically, depending directly on your
need for power (that is, during more demanding times of the month and/or with big social media
hits such as HackerNews or Reddit). On the flip side, if you require very little power for a server,
you can often get cloud hosting for free!

Traditional web hosting service providers include GoDaddy, Dreamhost, 1&1, HostGator, and
Network Solutions. Popular cloud-based hosting options include Nodejitsu (PaaS), Heroku
(PaaS), Amazon Web Services (IaaS), Microsoft Azure (IaaS), and Digital Ocean.

[265]

http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas

An introduction to Git
With traditional hosting providers, the standard method for connecting to your server and
uploading your files was to use File Transfer Protocol (FTP). You would connect using any
standard FTP software and push a copy of your files to the server, and those changes would be
reflected online instantly when accessing your website URL. With cloud-based hosting
providers, the standard is typically to use the Git source control. Git is a source control
technology that allows you to track changes and history with your project source code, as well as
to provide an easy-use means of collaboration with multiple developers. The most popular Git
online code repository provider is currently www.github.com.

We will use Git in order to track our application project source code and the method of pushing
our code up to the various cloud-hosting providers. When you push code using Git, you are
effectively transferring all or only the changed version of your code to an online repository (for
example, Git and www.github.com are relatively easy to get into, but can seem intimidating and
complex). If you're unfamiliar with Git and/or https://GitHub.com, I would strongly suggest
taking a moment to get acquainted by checking out the following guides:

https://help.github.com/articles/set-up-git
https://gist.github.com/andrewpmiller/9668225

The guides will take you through the following concepts:

Downloading and installing Git
Registering an account at https://github.com
Authenticating your machine with https://github.com and creating your first repository
Committing your project source code to the repository

Once you have your project source code configured as a local Git repository and all of the code
committed to the master branch, proceed to the following sections.

[266]

http://www.github.com
http://www.github.com
https://GitHub.com
https://help.github.com/articles/set-up-git
https://gist.github.com/andrewpmiller/9668225
https://github.com
https://github.com

Deploying your application
Now that you have your project set up as a local GitHub repository, it's time to take that code and
get it online! The following sections will each cover the process of deploying your application to
a few different popular cloud-based hosting providers.

Feel free to explore and experiment with each, as most have free or relatively inexpensive plans.
Each provider has its strengths and weaknesses, so I'll leave it up to you to decide which to stick
to for your particular needs. The services that we cover aren't presented in any particular order.

For the purpose of this chapter, I will consistently name my app imgploadr; however, your app
name needs to be different and unique. Wherever I include imgploadr in this chapter, you should
replace it with your own app's unique name.

[267]

Nodejitsu
To get started with Nodejitsu, visit www.nodejitsu.com and register for a free account first. After
providing your email address, username, and password, you will be presented with a pricing plan
page where you can configure your service. If you just want to create the free account and
experiment, simply click on the No Thanks button and the registration process is complete. Then,
simply click on the Login button in the upper-right corner to log in and proceed to your Apps
dashboard.

Deploying your app to Nodejitsu will require a new command-line interface tool; specifically,
the jitsu CLI. Clicking on the big blue Deploy an app with jitsu button will take you to the
www.github.com repository for this tool. You can skip that step and just install the CLI
manually, using the following npm command:

 $ sudo npm install -g-g install jitsu

The sudo part of the command to install an npm package globally (using the -g flag) is sometimes
required. Depending on the access level of the machine you are using, you may or may not need
to include sudo.

Now that the jitsu CLI is installed, you can use this handy tool to log in to your Nodejitsu
account, create an app, and deploy your project code. First, let's log in:

[268]

http://www.nodejitsu.com
http://www.github.com

$ jitsu login

info: Welcome to Nodejitsu

info: jitsu v0.13.18, node v0.10.26

info: It worked if it ends with Nodejitsu ok

info: Executing command login

help: An activated nodejitsu account is required to login

help: To create a new account use the jitsu signup command

prompt: username: jkat98

prompt: password:

info: Authenticated as jkat98

info: Nodejitsu ok

You can see that after successfully providing your username and password, you are now
authenticated with Nodejitsu and are ready to go.

Before we can deploy the actual application, we need to configure the MongoDB database in our
Nodejitsu dashboard. Switch back to your browser, and on the Nodejitsu Apps dashboard, switch
sections by clicking on the Databases tab.

Let's choose MongoHQ for our needs by clicking on the large MongoHQ button. You will be
prompted for a name for the new database, and then it will be listed at the bottom of the screen in
the Your databases section. The important part we need is the connection string, and there's a
convenient copy link right next to it to copy it to your clipboard.

Edit the server.js file and update the mongoose.connect line to use the new connection string you
copied for your Nodejitsu database:

[/server.js]

mongoose.connect('YOUR_NODEJITSU_CONNECTION_STRING_HERE');

mongoose.connection.on('open', ()=>{

 console.log('Mongoose connected.');

});

[269]

The only thing remaining is to open a Terminal, change directories to your project home, and
execute the following command to package up your app and push it to Nodejitsu:

$ jitsu deploy

info: Welcome to Nodejitsu jkat98

info: jitsu v0.13.18, node v0.10.26

info: It worked if it ends with Nodejitsu ok

info: Executing command deploy

warn:

warn: The package.json file is missing required fields:

warn:

warn: Subdomain name

warn:

warn: Prompting user for required fields.

warn: Press ^C at any time to quit.

warn:

prompt: Subdomain name: (jkat98-imgploadr) imgploadr

warn: About to write /Users/jasonk/repos/nodebook/imgploadr/package.json

... (a lot of npm install output) ...

info: Done creating snapshot 0.0.1

info: Updating app myapp

info: Activating snapshot 0.0.1 for myapp

info: Starting app myapp

info: App myapp is now started

info: http://imgploadr.nodejitsu.com on Port 80

info: Nodejitsu ok

After executing jitsu deploy, the CLI first prompts you to confirm what the subdomain will be
under the www.nodejitsu.com domain. Feel free to change this to whatever you like (it will
check to confirm availability). It then makes a few minor modifications to your package.json file,
specifically including the subdomain option with whatever value you provided. Finally, it uploads
your source code and performs a remote npm install operation. Assuming that all went well, the
app should be deployed and a confirmation of the URL should output to the screen. Feel free to
open that URL in your browser to view the app online!

Now, you can also see that the app is listed in your Apps dashboard:

[270]

http://www.nodejitsu.com

Now that the application has been successfully uploaded, launch it via its URL and give it a test
run by attempting to upload a new image. The first thing you should note is that attempting to
upload an image fails with a fairly useless error (you can see the following error by accessing the
Logs tab from your app's dashboard):

400 Error: ENOENT, open

'/opt/run/snapshot/package/public/upload/temp/72118-89rld0.png

This error is far from helpful! Basically, what's happening here is that the application is
attempting to upload and save the image to the temp folder, which doesn't actually exist! We need
to add a snippet of code to our application to check for this condition and create the folders, if
necessary.

Edit the server/configure.js file and insert the following code snippet between routes (app); and
return app;:

// Ensure the temporary upload folders exist

 fs.mkdir(path.join(__dirname, '../public/upload'),

 (err)=>{

 console.log(err);

 fs.mkdir(path.join(__dirname,

'../public/upload/temp'),

 (err)=>{

 console.log(err);

 });

 });

Here, we're using the filesystem fs module to create both the parent upload folder and the temp
subfolder. Don't forget to require the fs module at the top of the file, too:

[271]

const connect = require('connect'),

 path = require('path'),

 routes = require('./routes'),

 exphbs = require('express3-handlebars'),

 moment = require('moment'),

 fs = require('fs');

There is an npm module called node-mkdirp that will perform a recursive mkdir, which will
basically accomplish the double mkdir we called in the preceding example. The only reason I
didn't include it was for brevity and to not include additional instructions to install the module,
require it, and use it unnecessarily. More information can be found at
https://www.npmjs.org/package/mkdirp.

With the mentioned changes made to your code, you need to deploy your application again.
Simply execute another jitsu deploy, and a fresh copy of your code will be uploaded to your
instance:

$ jitsu deploy

Open your app URL again, and this time you should be able to interact with the application and
successfully upload a new image! Congratulations, you have successfully deployed your
application, and it is now online using the Nodejitsu hosting service!

[272]

https://www.npmjs.org/package/mkdirp

Heroku
Another popular cloud-based hosting provider for Node.js apps is www.Heroku.com. The one
thing that sets Heroku apart from other providers is the number of powerful add-ons that are
available. Any kind of service you can imagine that your application will require is available as
an add-on, including data stores, search, logging and analytics, email and SMS, workers and
queuing, monitoring, and media. Each of these add-ons can be quickly and easily added to your
service and integrated into your application.

Like Nodejitsu, Heroku allows you to register for a free account and work within the confines of
their sandbox pricing plans. The plans are free, but limited in scope with regard to bandwidth,
processing power, and so on. Most, if not all, of the add-ons typically also offer some sort of free
sandbox or trial-based plan. Just like Nodejitsu, one of the add-ons we will be using with our
Heroku app is MongoHQ, a cloud-based MongoDB service provider.

To get started, first go to http://heroku.com and sign up for your free account. While registration
doesn't require a credit card, in order to include any add-ons with your application, you will have
to have a credit card on file (even though you won't be charged unless you choose to scale up the
services). After registering, click on the link in the confirmation email and provide a password;
you will be presented with your Apps dashboard.

You'll note that the first thing you need to do is to download the Heroku Toolbelt (again, much
like the jitsu CLI for Nodejitsu). Click on the Download button to download and install the
Toolbelt. The Toolbelt is a CLI specifically used to create and deploy apps to Heroku, and gives
you the heroku command.

[273]

http://www.Heroku.com
http://heroku.com

Once you have the Toolbelt installed, open a command-line Terminal and change directories to
your project's root. From there, execute the following command
to log in to Heroku:

 $ heroku login

 Enter your Heroku credentials.

 Email: jkat98@gmail.com

 Password (typing will be hidden):

 Authentication successful.

Now that you're logged in, you can issue commands directly to your Heroku
account and use those commands to create an application, install add-ons, and deploy your
project.

The first thing you'll want to do is to create a new application. Do so by executing heroku create
from the command line:

 $ heroku create

 Creating secret-shore-2839... done, stack is cedar

 http://secret-shore-2839.herokuapp.com/ | git@heroku.com:secret-

 shore-2839.git

After creating the app, Heroku randomly assigns it a unique name; in my case, secret-shore-2839
(don't worry, though, as this can easily be changed):

 $ heroku apps:rename imgploadr --app secret-shore-2839

 Renaming secret-shore-2839 to imgploadr... done

 http://imgploadr.herokuapp.com/ | git@heroku.com:imgploadr.git

 Don't forget to update your Git remotes on any local checkouts.

Let's address the last part next. Heroku relies on the Git source control on your machine in order
to push your project source code up to your server, unlike Nodejitsu, which uses its own file
transfer mechanism. Assuming that you followed the directions earlier with regard to Git and
www.github.com, your project source code should be all set and committed to the master branch
and ready to go. What we need to do next is to add a new remote for Git on your machine to
point to Heroku; specifically, your new app.

Let's start with git init to initialize git in the current working directory and then execute the
following command to create a new remote for Heroku:

 $ git remote add heroku git@heroku.com:imgploadr.git

Before you can push your source code up to your Heroku account, we need to take care of a few
things.

A special file is required before your application will be able to run on your Heroku server. This
file is called Procfile, and it specifically contains the command necessary to launch your
application. Create this new file named Procfile (no extension) in the root of your project and
include the following line:

 web: node server.js

That's it! With that file, Heroku will use that command to launch your application. Now that you
have Procfile set up and your project source code ready, there's only one thing left to do--install
the MongoHQ add-on and configure your app to use it:

[274]

http://www.github.com

 $ heroku addons:create mongohq --app imgploadr

 Adding mongohq on imgploadr... done, v3 (free)

 Use 'heroku addons:docs mongohq' to view documentation.

With the MongoHQ add-on added, you can now configure the database itself and retrieve the
connection string (much like you did earlier with Nodejitsu). Access your http://heroku.com
Apps dashboard, and it should look something like the following screenshot:

The app's dashboard screen is a great place to get a snapshot of your application and a quick
glance at its current cost. Since I'm using the sandbox and/or free plans for my application and
add-ons, my current estimated monthly cost is $0.00. However, you can quickly and easily scale
your apps, should you demand more power. Pay attention, as you can also just as quickly and
easily escalate your monthly cost through the roof! (Scaling everything to maximum, I was able
to get my estimated cost to roughly $60,000 per month!).

To configure your MongoHQ database, simply click on the MongoHQ link under the Add-ons
section of your app's dashboard:

[275]

http://heroku.com

Click on the Admin tab with the gear icon below the Collections tab. Click on the Users tab and
provide a username and password that your application will use to connect with your MongoHQ
database. This will create the imgploadrdb username with a secure password. With the new user
added, switch back to the Overview tab and copy the Mongo URI string.

Again, just like with Nodejitsu, edit the server.js file in your project and replace the
mongoose.connect string with the new URI you just copied. Edit the string and replace <username>
and <password> with the appropriate values, based on the new user account you just created. The
server.jsmongoose.connect code should look as illustrated:

mongoose.connect('mongodb://imgploadrdb:password@kahana.mongohq.co

 m:10089/app26');

mongoose.connection.on('open', ()=>{

 console.log('Mongoose connected.');

});

Since you just made changes to your project's source code, you need to remember to commit
those changes to your Git repository master branch so that they can be uploaded to Heroku.
Execute the following command to permanently commit these changes to your source code and
upload your code to your Heroku server:

 $ git commit -am "Update mongoose connection string"

 $ git push heroku master

 Initializing repository, done.

 Counting objects: 50, done.

 Delta compression using up to 8 threads.

 Compressing objects: 100% (43/43), done.

 Writing objects: 100% (50/50), 182.80 KiB | 0 bytes/s, done.

 Total 50 (delta 3), reused 0 (delta 0)

 ... npm install output ...

 To git@heroku.com:imgploadr.git

 * [new branch] master -> master

[276]

The final step to get your application up and running is to create an instance of your server
(basically, the equivalent of turning it on). To do this, execute the following command:

 $ heroku ps:scale web=1 --app imgploadr

 Scaling dynos... done, now running web at 1:1X.

 $ heroku open

 Opening imgploadr... done

Success! Hopefully, your browser launched and your website is up and running. Go ahead, give
it a try and upload an image! Thanks to the bug we caught during the Nodejitsu deployment, this
updated version of the application should work just fine.

While deploying with Heroku seems more complicated than Nodejitsu, this is probably because
it uses Git source control to facilitate the transfer of your project files. Also, because Heroku is
so flexible with the power of its scaling and add-ons, the Toolbelt CLI is a little more robust.

[277]

Amazon Web Services
While Nodejitsu and Heroku can be considered developer-level service providers because they
are PaaS, Amazon Web Services (and Microsoft Azure) will be considered enterprise-level
services because they are more IaaS. The sheer volume of options and services available with
AWS and Azure is staggering. These are definitely top-tier services and hosting an application
like ours is kind of like using a bazooka to kill a fly!

AWS does provide its own NoSQL database, called DynamoDB, but for our purposes, we want
to continue working with MongoDB and use Mongoose in our app. To do this, we can use a
third-party MongoDB provider. If you recall, when we originally set up Nodejitsu, one of the
MongoDB providers listed was MongoLab. MongoLab provides MongoDB-as-a-Service, which
means we can use its service to host our MongoDB database, but use all of the power of AWS to
host our Node.js application (this is not unlike what's already happening with Nodejitsu and
Heroku; they just streamline the process a little better). Remember that AWS is an IaaS provider,
so you can also just create another server instance and install MongoDB on it yourself and use
that as your data source. However, that's slightly beyond the scope of this chapter.

[278]

Creating a MongoLab account and database
In order to use MongoLab with our app in AWS, we first need to register a new account on
https://mlab.com/ and create an AWS database subscription. After you register a new account
and activate it using the link they send you via email, you can create your first database
subscription.

From your main dashboard, click on the Create new button (with the lightning
bolt icon).

From the Create new subscription page, configure the following settings:

Cloud provider: amazon web services
Location: Whichever region you prefer
Plan: Select Single-node (development)
Select Sandbox (shared/free)
MongoDB version: 2.4.x
Database name: anything_you_want (I chose imgploadr)
Confirm that the price is $0 per month
Click on Create new MongoDB deployment

Going back to your main dashboard, you should now see that your new database has been
created and is ready to go. The next thing we need to do is to create a user account that our app
will use to connect to the server. Click on the database listed on the main dashboard and then
select the Users tab. Provide a new username and password. After the new user account has been

[279]

https://mlab.com/

added, copy the URI located at the top of the screen (it only appears after a user has been added)
that starts with mongodb://.

Now that you have the new URI connection string, we need to update server.js to include this
new connection string in our mongoose.connect. Edit the file and update it with the following code:

mongoose.connect('mongodb://imgploadrdb:password@ds061248.mongolab

 .com:61248/imgploadr');

mongoose.connection.on('open', ()=>{

 console.log('Mongoose connected.');

});

Ensure that you replace <username> and <password> with the appropriate information from the user
account you created on the MongoLab dashboard.

With our application code updated to point to the new MongoLab database connection string, we
need to zip up the project files so that they can be uploaded via the AWS dashboard. From your
computer's file browser, locate the project root that contains all of your applications' source code
files, select all of them, and right-click on them to add to an archive or ZIP file. The name of the
ZIP file can be whatever you choose. One thing to note is that you shouldn't include the
node_modules folder with this ZIP file (the easiest solution might be to simply delete the folder
altogether). The AWS online docs have a great write-up on creating ZIP files, if you need more
information (https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.deployment.source.html).

Once your source code has been updated to use the new MongoLab connection string and you've
created a ZIP file of the entire project (excluding the node_modules folder), you're ready to create
the new AWS application and deploy your app.

[280]

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html

Create and configure the AWS environment
If you don't already have an account with Amazon, you will need one to use their AWS services.
Point your browser to http://aws.amazon.com and click on Sign Up (even if you already have an
Amazon account). From the screen that follows, you can log in using your existing Amazon
account or register for a new account. Once you've registered and logged in, you should be
presented with the entire suite of cloud services AWS has to offer.

The primary service we're interested in is Elastic Beanstalk (located under Deployment and
Managed with a green icon):

From this screen, click on the Create New Application link in the upper-right corner. The screens
that follow will walk you through a multistep wizard process, where you will configure the
environment in which the application will reside. Configure the following settings, where
appropriate:

Application Information:
Application name: anything_you_want

Environment Type:
Environment tier: Web Server
Predefined configuration: Node.js
Environment type: Load balancing, autoscaling

Application Version:
Upload your own (choose the ZIP file that you created earlier)

Environment Information:

[281]

http://aws.amazon.com

Environment name: anything_you_want
Environment URL: anything_you_want (this is the subdomain for your app)

Configuration Details:
Instance type: t1.micro
The remaining fields can be left blank or at their default values

Environment Tags: Skip this step; it is unnecessary for this app

The final step is to review the configuration settings and then launch the environment (by
clicking on the blue Launch button).

It might take a few minutes for Elastic Beanstalk to configure and launch your environment
and application, so you might need to sit tight. With the environment officially launched and the
application online, go ahead and open your app (by clicking on the link at the top of the page)
and give it a test run. Assuming that everything went according to plan, your application should
be up and running and should be working just fine!

[282]

Microsoft Azure
Microsoft's Azure service is very similar to Amazon's AWS. Both can be considered enterprise-
level services, and both offer a tremendous level of flexibility and power, with a really slick UI.
Surprisingly, even though it's a Microsoft product, you can spin up instances of Linux
environments using Azure, as well as host your Node.js and MongoDB apps.

The first thing you will need, like with any other service, is a registered account at
http://azure.microsoft.com. You can use an existing Microsoft Live login if you have one;
otherwise, you can register for a new account fairly easily. Once you're logged in to the Azure
service, the first thing you'll be presented with is your primary dashboard. The icons to the left
are all the various services and options available with Azure.

Clicking on the +NEW icon at the bottom-left corner will present you with the
main dialog that you can use to add any new service. For our purposes, we want to
add a website:

1. Select Compute, Web Site, and From Gallery.
2. Select Node JS Empty Site from the long list of gallery options. This will create the

necessary environment so that you have somewhere you can put your application.
3. On the screen that follows, provide the URL for your app.
4. Leave the remaining fields as their default values.
5. Click on the checkmark icon to complete the setup process, and your website will be

[283]

http://azure.microsoft.com

created.
6. The next step is to set up the database server. Again, similar to AWS or Nodejitsu, we will

once again select MongoLab as our database service provider.
7. Click on the +NEW icon again, select Store, and browse the list until you find and select

MongoLab.
8. Click on the next arrow and browse through the various plans. For our needs, we will leave

Sandbox selected (since it's free).
9. Provide a name for your database; in my case, I entered imgploadrdb.

10. Click on Next again to review and confirm the plan and monthly price (which should be $
0.00 per month).

11. Finally, click on the checkmark icon to Purchase this new subscription plan.

After a few seconds, you should be taken back to your dashboard, where you will see entries for
both the website and database app service listed:

Now that the database has been created and is ready, we need to include its connection string in
our application before we can upload our code:

1. Click on the database row to select it and go to its overview.
2. The bottom of this screen will contain a few icons, one of which is labeled as Connection

Info (and has an icon that looks like >i). Click on that icon for a modal window, which
contains the connection string URI for your new MongoLab database server, to pop up.

3. Copy that URI to your clipboard.
4. Edit server.js in your local app and replace the mongoose.connect connection string with the

new string you just copied. There is no need to update the username, and password as Azure
has already taken care of this for you using the following code:

mongoose.connect('mongodb://your_specific_azure_

 mongolab_uri');

mongoose.connection.on('open', ()=>{

 console.log('Mongoose connected.');

});

[284]

Once that change has been made, save the file, and don't forget to update your local Git
repository with the change, as we'll be using Git in the next section to push your code to Azure
(just like we did earlier with Heroku):

 $ git commit -am "Azure connection string"

Back at the Azure dashboard, click on Web Site in the All Items list (or filter by websites using
the icons on the left toolbar). From this overview screen, locate the Integrate source control
section toward the bottom and click on the Set up deployment from source control link. The
following screenshot shows what you should see at this point:

Select Local Git repository and then continue by clicking on the next arrow icon.

The screen that follows will present instructions on how to push your local code to the remote
Git repository that has just been created for your Azure website. The gist is to add a new Git
remote (much like we did earlier with Heroku) that points to your Azure repository, and then
push your code:

 $ git remote add azure SPECIFIC_URL_FOR_YOUR_SERVER

 $ git push azure master

You should notice the Git information screen in your Azure dashboard update in real time as
your code starts to push up after the git push command. From the command line, you will see a
lot of remote npm install output as well. Once completed, the deployment history in your Azure
dashboard will update, showing the information for the last active deployment.

[285]

Now that your code has been deployed to your Azure website and your website connection string
is pointing to your MongoLab Azure app service, you're ready to give the website a test run.
Launch it by pointing your browser to http://yourappname.azurewebsites.net. Azure does a lot of
things right, (UI/UX) and has some really powerful options and scaling features available!
Taking a quick glance at the dashboard for a website (the preceding screenshot), you can see that
there is a lot going on.

[286]

http://yourappname.azurewebsites.net

There are many different configuration options, as well as health monitoring and general
information (FTP settings, website URLs, usage metrics, and so on), so feel free to poke around
and explore.

[287]

Digital Ocean
The last service I wanted to mention and briefly take a look at is Digital Ocean--
http://digitalocean.com. Digital Ocean is a true Virtual Private Server (VPS) service provider
and is a good example of a service that gets you just about as close to the metal as possible. What
this means is that Digital Ocean doesn't really have all the bells and whistles that the other
services that we've seen offer. What Digital Ocean does offer, however, is direct, unfiltered
access to the Linux server instance you spin up, referred to as Droplets in this case.

Digital Ocean allows you to boot up new Linux; virtual server instances very quickly. They offer
very competitive prices, and they're a great service if you need to get a Linux server superfast
because you only need one for a short period of time, or you want to boot up your own Linux
server that you plan to use to host a production environment. The only downside (if I had to refer
to it as such) is that you have to be pretty familiar with Linux; specifically, with administering a
server and all the responsibilities that come with that.

You can very easily clone your project using Git on a new Droplet, but an example of the actual
raw nature of a new Droplet is that Git is not installed on the server by default. You need to
manually install Git before you can clone your repository. Depending on which image you
decided to clone when creating a new Droplet, you might need to install and configure Node.js as
well as MongoDB. Fortunately, Digital Ocean offers a number of predefined servers you can
choose from when creating a new server, one of which includes the MongoDB, Express,
Angular, and Node.js (MEAN) stacks. Beyond that, actually launching your app will only run
as a process during your currently logged in session; once you log out, your application will go
down. You will need to further administer the server to configure your app to run as a service.

Digital Ocean allows you to connect directly to your server using the console access tool within
the website itself, or by using SSH directly from a Terminal on your own machine:

[288]

http://digitalocean.com

I mention Digital Ocean only because a lot of people will find this kind of raw power quite
refreshing and will want to do their own hands-on kind of configuration and maintenance on
their server. Digital Ocean is an awesome service, but it's not for everyone. I wanted to talk about
it specifically because I feel that it rounds out and completes the list of services we've covered so
far.

[289]

Summary
We've covered the full spectrum of cloud-based hosting service providers and walked through
configuring your service and deploying your project code. Nodejitsu and Heroku are great
services that cater more to developers and give them a lot of power through very accessible and
slick user interfaces. Amazon and Microsoft, both industry juggernauts, are representatives of the
kind of power and sophistication you'd expect with enterprise-level service providers. Digital
Ocean is a no-frills, close to the metal, cloud-based VPS provider that sacrifices bells and
whistles for raw and direct access to the server.

All the hosting options we covered are great, and not the only choices out there. They're just a
sample, but they speak to the power of the cloud! Within a few minutes and with very little to no
cost at all, you can have an environment configured, and your website up and running online!

In the next chapter, we will take a look at the concept of Single-Page Applications and popular
client-side development frameworks and tools.

[290]

Popular Node.js Web Frameworks
Throughout this book, we've focused exclusively on using Express.js as our web framework of
choice, primarily because it's one of the most popular web development frameworks for Node.js.
It has been around for quite a while and is very widely used. However, there are a number of
alternate frameworks available that I want to introduce you to. Some of these frameworks are
much more powerful and robust than Express.js, while others are right in line with it, or slightly
less feature packed.

In this chapter, we will take a brief look at the following frameworks:

Koa
Meteor
Sails
Flatiron
total.js
loopback
Hapi

At the end, we will use one of these frameworks that is Hapi to build a server API. This server
API will be consumed by a client-side application build in Angular 4 in the next chapter. The
whole purpose of building this web application is to study how can we choose a framework
based on a project and how different frameworks have different bits and pieces of their own, yet
build on the common platform of Node.js.

[291]

Koa
Koa is a new web framework designed by the same team that created Express.js. The goal of
Koa is to be smaller, more expressive, and a more robust foundation for web applications. T J
Holowaychuk, who is the creator of the Express framework, is the same person who created Koa,
as well, and you can see that it focuses much of its capability on generators, which is a feature
found in other popular programming languages, such as Python, C#, and Ruby. Generators were
introduced to JavaScript with ECMAScript 6. Generators prevent the standard callback hell that
is so popular with the development process in Node.js. Koa has a lightweight architecture, so it
doesn't come with any middleware; rather, it leaves the choice of implementing certain features
to the developers.

More information about Koa and sample implementations can be found on its website, as well as
at https://github.com/koajs/koa.

[292]

https://github.com/koajs/koa

Meteor
Meteor is a simple and complete web framework with the goal of giving developers of any
skillset the ability to build robust web applications in a fraction of the time.

It features a handy CLI tool that you can use to scaffold new projects very quickly.

Meteor provides some core projects/libraries, such as blaze, DDP, livequery, and so on, with a
unified build system. This simplifies the overall development process and yields an integrated
developer experience.

Meteor aims to build real-time applications by providing its two core features, the distributed
data protocol on the server side and transparent reactive rendering on the client side. For more
details, visit http://meteor.com/features.

Another notable feature of this framework is its extensive package system, named atmosphere,
which has modules developed for most of the common application
use cases.

It is quickly gaining traction and becoming increasingly popular every day. Currently, its GitHub
repo has over 38,000 stars!

More information about Meteor can be found on its website as well as on its official GitHub repo
at https://github.com/meteor/meteor.

[293]

http://meteor.com/features
https://github.com/meteor/meteor

Sails
Sails is another great MVC framework for building web applications using Node.js
that sometimes compares itself to Ruby on Rails. Unlike Meteor, Sails is database agnostic, so it
doesn't matter which data store you choose. Sails includes some handy scaffolding tools, such as
an automatic RESTful API generation. Socket.io,
a real-time communication framework for Node.js, is built into Sails, so, including real-time
functionalities in your application should be a breeze. Sails features some nice production-level
automation that would typically need to be handled by a tool such as Grunt.js or Gulp (this
includes the minification and bundling of CSS and JavaScript for the frontend). Sails also
includes basic security and role-based authentication for your app, should you require that level
of functionality. Sails could be considered a more full-fledged enterprise level framework than
Express, as it has almost every feature that a popular framework such as Rails has. The Sails
website is at http://sailsjs.com.

More information about Sails can be found on its website, as well as its official GitHub repo at
https://github.com/balderdashy/sails.

[294]

http://sailsjs.com
https://github.com/balderdashy/sails

Flatiron
Flatiron is yet another Node.js MVC web application framework. What sets Flatiron apart from
other frameworks is its package-based approach. Since it gives the power and freedom to decide
how much or how little the framework should include, developers can pick and choose the
packages they want to work with and include in their project. It handles a lot of the basic data
management responsibilities and CRUD for you by supplying a powerful ODM that takes care of
a lot of the heavy lifting.

More information about Flatiron can be found on its website, as well as its official GitHub repo
at https://github.com/flatiron/flatiron.

[295]

https://github.com/flatiron/flatiron

total.js
Yet another Node.js HMVC framework is total.js. As its name suggests, it provides total
solutions from the web applications to IOT applications. You name a feature, and total.js has it;
that is the speciality of total.js. It supports tons of features, such as image processing, workers,
generators, static file handling, sitemaps, caching mechanisms, SMTP, and so on.

The need to use a third-party module is reduced. It has a strong community support from the last
three years and is again a strong contender that can outpace other frameworks in various aspects
of functionality development.

Follow the link for all the updates: https://www.totaljs.com/.

[296]

https://www.totaljs.com/

LoopBack
IBM and StrongLoop have architected one the of most powerful modern node frameworks,
called LoopBack. It requires minimal effort to bootstrap an API server. LoopBack has a client
inside itself called API explorer, which documents the API and also provides API testing at same
time. It is a strong competitor for the Sails framework, with ready to go structure, and is fully
configurable when needed. It has hooks for Access control list (ACLs), mobile client SDKs,
convention over configuration based coding, and of course the IBM backed team that will
maintain the project for long term support.

You can get started with LoopBack at the following link: https://loopback.io/.

[297]

https://loopback.io/

Hapi
Hapi is the result of the team behind Walmart's online mobile website. The team that built that
website developed a rich set of Node.js utilities and libraries that can be found under the
Spumko umbrella. Considering the tremendous amount of traffic Walmart's website receives on
any given day, it's no wonder that the team at Walmart Labs is on the top of their game when it
comes to Node.js development and best practices. Hapi is the web framework that was born from
the ashes of real-world trial and error. The Hapi website is at http://hapijs.com.

More information about Hapi can be found on its website, as well as its official GitHub repo at
https://github.com/spumko/hapi. In next section, we will implement a set of API's in the Hapi
framework.

[298]

http://hapijs.com
https://github.com/spumko/hapi

Kick starting Hapi.js
In previous chapters, we studied and implemented Express framework. The Express community
denotes it as minimalistic framework, and it thus provides performance benefits. For building
any application, choosing the right framework is one of the most important factors for scalability
of an application. In the case of Hapi, It has a different routing mechanism which boosts the
performance of an application with its configurable pattern of code. It's always recommended
that developers take into consideration all the benefits as well as downsides of any framework
that it provides versus the functional implementation of application and its long-term goals. Let's
understand the Hapi framework with the help of a small prototype.

The following steps give an incremental learning the experience of implementation of the Hapi
framework using a phone book example. It is recommended to code as you read for better
learning.

[299]

Scaffolding the Hapi app
Create a directory phone book-API and navigate to that directory by `cd phonebook-api`. Use npm
init to initialize a node project and complete the questionnaire provided by npm. Install the Hapi
framework using the following command:

npm install hapi --save

[300]

Setting up a server
The first file to be written must be a server file, so let's create a `server.js`. The minimal code
required to kick-start a server with the hapi framework is as follows:

const hapi = require('hapi');

const server = new hapi.Server();

server.connection({

 host: 'localhost',

 port: 8000,

 routes: { cors: true }

});

// Start the server

server.start((err) => {

 if (err) {

 throw err;

 }

 console.log('Server running at:', server.info.uri);

});

After reviewing the preceding code, we can observe that hapi starts its server by first configuring
all the required data. It takes the host and port as input, and then finally starts the server. If we
compare it with express, express needs a callback as an input first, and then the listening part.

[301]

Creating APIs
The next important step is creating routes. It is always recommended to follow modularity
whenever we implement routes in any framework for the longtime maintainability of code. That
being said, let's create a routes.js file. As we are not going to use any database such as
MongoDB or MySQL, let's create a json file called phonebook.json for a supportive data source.
Let's create the following data in a json file:

{

 "list": [

 {

 "phone_no": 1212345678,

 "name": "Batman"

 },

 {

 "phone_no": 1235678910,

 "name": "Superman"

 },

 {

 "phone_no": 9393939393,

 "name": "Flash"

 }]

}

The structure of our API directory is as follows:

[302]

Creating a configuration-based architecture
The configuration code pattern of hapi is followed everywhere, even for creating routes. Let's
understand it by adding a simple GET method and its handler in the following snippet:

let phonebook = require('./phonebook');

module.exports = [{

 method: 'GET',

 path: '/phone/list',

 config: {

 handler(request, reply) {

 reply({

 message: "phonebook of superheroes",

 data: phonebook.list

 });

 }

 }

}]

The preceding snippet shows the minimal configuration required to create a route. It consists of
the request method, which can be 'GET', 'POST', and so on; the URL path for URL navigation
purposes; and a config property that consists of the request handler. This handler is used to write
all sort of business logic a on request received.

Now, include the route file inside server.js and assign the routes to the hapi server before the
server starts. So to wrap up, we have the following code in server.js:

const hapi = require('hapi');

const server = new hapi.Server();

const routes = require('./routes');

server.connection({

 host: 'localhost',

 port: 8000,

 routes: { cors: true }

});

//Add the routes

server.route(routes);

// Start the server

server.start((err) => {

 if (err) {

 throw err;

 }

 console.log('Server running at:', server.info.uri);

});

Let's hit the route in the browser and view the response:

Similarly, we can add, update, and delete the entries from the phone book. Our routes.js will
look as follows :

let phonebook = require('./phonebook');

module.exports = [{

 method: 'GET',

[303]

 path: '/phone/list',

 config: {

 handler(request, reply) {

 reply({

 message: "phonebook of superheroes",

 data: phonebook.list

 });

 }

 }

}, {

 method: 'POST',

 path: '/phone/add',

 config: {

 handler(request, reply) {

 let payload = request.payload;

 phonebook.list.unshift(payload);

 reply({

 message: "Added successfully",

 data: phonebook.list

 });

 }

 }

}, {

 method: 'PUT',

 path: '/phone/{phno}',

 config: {

 handler(request, reply) {

 let payload = request.payload;

 let phno = request.params.phno;

 var notFound = [];

 for (let i = phonebook.list.length - 1; i >= 0; i--) {

 if (phonebook.list[i].phone_no == phno) {

 phonebook.list[i].name = payload.name;

 reply(phonebook.list);

 return;

 } else {

 notFound.push(i);

 }

 }

 if (notFound.length == phonebook.list.length) {

 reply('not Found');

 return;

 }

 }

 }

}, {

 method: 'DELETE',

 path: '/phone/{phno}',

 config: {

 handler(request, reply) {

 let phno = request.params.phno;

 var notFound = [];

 for (let i = phonebook.list.length - 1; i >= 0; i--) {

 if (phonebook.list[i].phone_no == phno) {

 phonebook.list.splice(i, 1);

 reply({

 message: "Delete successfully",

 data: phonebook.list

 });

 return;

 } else {

 notFound.push(i);

 }

 }

 if (notFound.length == phonebook.list.length) {

 reply('not Found');

 return;

 }

 }

 }

}];

We need to use a browser extension to test the preceding REST APIs. POSTMAN is one of
popular the extensions for REST API calls. Refer chapter 8 to learn in details about POSTMAN.

[304]

Woot! Our server APIs are ready. In the next chapter, we will consume these API calls by
creating a frontend application.

[305]

Summary
Even though we used Express.js exclusively throughout this book, there are many other options
available when creating web applications using Node.js. We examined
a few of those options in this chapter, including Meteor, Sails, Hapi, Koa, and Flatiron. Each
framework features its own strengths and weaknesses and its own unique approach to the
standard functionality that a web application requires.

That's all, folks! I hope all the different facets of building a web app using Node.js and
MongoDB brought the readers to a progressive way of learning and developing an awesome
idea. Well, this is just the start. I would recommend that you follow the developer communities
of all the technologies or libraries that you are going to use in your own app.

The beauty of web development with Node.js is that there's no shortage of opinions on how to
accomplish a single task. MVC frameworks are no exception, and you can see from this chapter
that there are a lot of really robust and feature-packed frameworks to choose from.

[306]

Single Page Applications with Popular
Frontend Frameworks
In this chapter, we will take a look at web application development from the frontend
perspective, specifically with a Single Page Application (SPA), also referred to as a thick client
app. With an SPA, a large chunk of the presentation layer is offloaded to the browser, and the
browser is responsible for rendering pages, handling navigation, and making data calls to an API.

In this chapter, we will cover:

Why do we use a frontend framework, such as Backbone.js, Ember.js, or Angular.js?
What is a single page application exactly?
Popular frontend development tools, such as Grunt, Gulp, Browserify, SAAS, and
Handlebars
Test-driven development on the frontend

[307]

Why use a frontend framework?
We use frameworks to increase our productivity, keep us sane, and generally, to make our
development process more enjoyable. In most of the chapters throughout this book, we worked
with the Express.js MVC framework for Node.js. This framework allows us to organize our
code, and it extrapolates out a lot of boilerplate code, freeing up our time to focus on our custom
business logic. The same should be said for the front of an application, as well. Any amount of
complex code is eventually going to need to be properly organized, and we need to use a
standard set of reusable tools to achieve common tasks. Express.js makes our life easy when
writing our backend code with Node.js. There are a number of popular frontend frameworks that
you can rely on as well.

[308]

What is a single page application?
The current trend with sophisticated web applications is to emulate desktop applications and veer
away from the feel of a traditional website. With traditional websites, every interaction with the
server requires a full-page postback that makes a complete round trip. As our web applications
become more sophisticated, the need to send and retrieve data to and from the server increases.

If we rely on full-page postbacks every time, we need to facilitate one of these requests; our app
will feel sluggish and unresponsive, as the user will have to wait for a full round trip with every
request. Users demand more from their apps these days, and if you think about the application
we've written, the Like button is a perfect example. Having to send a full-page postback to the
server just because we wanted to increment a counter by one seems like a lot of unnecessary
overhead. Fortunately, we were able to easily rectify this using jQuery and AJAX. This is a
perfect example of how a single page application works (only on a much larger scale).

A great example of one of the first, standout single page applications is Google's Gmail. Gmail
gives you an interface that is similar to Microsoft Outlook or any traditional desktop-based email
client. User interaction with the application feels just as responsive as with a desktop application-
-the page never reloads, you can switch panes and tabs within the application with ease, and data
is constantly being refreshed and updated in real time.

Creating an SPA typically involves having a single HTML page as the source of the application,
which loads all of the necessary JavaScript in order to trigger a series of events that include:

Bootstrapping the app: This means connecting to the server via AJAX to download the
necessary startup data
Rendering the screens based on user actions: This means monitoring events triggered by
the user and manipulating the DOM so that sections of the app are hidden, revealed, or
redrawn, which emulates the feel of a desktop application
Communicating with the server: This means using AJAX to constantly send and receive
data from the server, which maintains the illusion of a stateful connection via the browser

[309]

The TodoMVC project
When deciding which frontend framework to choose for your next large-scale frontend project,
the decision making process can be crippling! Keeping track of all of the different frameworks
and the pros and cons of each can seem like an exercise in futility. Luckily, people have
answered the call, and a handy website exists to not only demonstrate the same application
written in nearly every framework, but to also offer the complete annotated source code for each
as well!

The TodoMVC project, http://todomvc.com, is a website that focuses on creating a simple, single
page, to-do application, which is written using each of the proven JavaScript MVC frameworks;
there's even one written in vanilla JavaScript! So, the easiest way to jump into a framework
would be to take a look at its TodoMVC code sample:

Definitely spend some time checking out the website and digging into each of the featured
frameworks. You can get a really good feel for the different frameworks by seeing the same code
written in completely different ways; no two are identical, and ultimately, it's up to you to
evaluate and figure out which you prefer and why.

For the sake of brevity, I'm going to focus on the three that I personally like and believe are at
the top of the current list of front runners.

[310]

http://todomvc.com

Backbone.js
Backbone.js is an extremely lightweight (6.5 KB in production) MV* framework that has been
around for a few years. It has an extremely large established user base, and many large-scale web
applications have been written using this framework:

USA Today
Hulu
LinkedIn
Trello
Disqus
Khan Academy
Walmart Mobile

Backbone.js is a great framework to start with if you're comfortable with jQuery and have been
using it for a while and want to start improving your code organization and modularity.
Additionally, Backbone.js requires jQuery and integrates it pretty tightly, so that's one less thing
to worry about learning as you ease into this new world of frontend development.

Backbone.js works on the basic idea of models, collections, views, and routers. Take a look at
the following points:

Models are the basic elements that store and manage all of the data in your application
Collections store models
Views render HTML to the screen, retrieving dynamic data from models and collections
Routers power the URLs of your application, allowing each individual section of your
application its own unique URL (without actually loading live URLs) and ultimately tying
the whole thing together

As Backbone.js is so lightweight, an extremely small and simple set of sample code can be put
together very quickly:

var Person = Backbone.Model.extend();

var PersonView = Backbone.View.extend({

 tag: 'div',

 render: function() {

 var html = [

 this.model.get('name'),

 '
',

 this.model.get('website')

].join('');

 this.$el.html(html);

 return this;

 }

});

var person = new Person({

 name: 'Jason Krol',

 website: 'http://kroltech.com'

 }),

 view = new PersonView({ model: person });

$('body').append(view.render().el);

The one thing to notice is that Backbone.js, by its very nature, is so lightweight that it doesn't

[311]

include most of the functionalities that you'd expect to work right out of the box. As you can see
in the preceding code, in the View object that we created, we had to provide a render function that
manually renders the HTML for us. For this reason, many people shy away from Backbone.js,
but others embrace it for the raw power and flexibility it gives to developers.

Traditionally, you wouldn't put all of your code into a single file, like in the earlier example. You
would organize your models, collections, and views into individual folders in a structure, just
like we organized the code in our Node.js application. Bundling all of the code together would be
the job of a build tool (which will be discussed later in this chapter).

You can learn more about Backbone.js by visiting its official website at http://backbonejs.org.
Also, don't forget to check out the Backbone.js implementation of the to-do application on the
TodoMVC website!

I maintain a repository on GitHub that has a boilerplate web application with complete code that
uses the full stack we've covered in this book, as well as Backbone.js with Marionette for the
frontend. Feel free to check it out at http://github.com/jkat98/benm (Backbone, Express, Node,
and MongoDB).

[312]

http://backbonejs.org
http://github.com/jkat98/benm

Ember.js
Ember.js bills itself as the framework for creating ambitious web applications. Ember's goal is to
target fairly large-scale SPAs, so the idea of using it to build something very simple might seem
like overkill, but it is certainly doable. A fair assessment is to take a look at the production file
size of the Ember library, which comes in at around 90 KB (versus 6.5 KB for Backbone.js).
That being said, if you are building something very robust with a very large code base, the added
90 KB might not be a big deal for you.

Here is a very small sample application using Ember.js:

var App = Ember.Application.create(),

 movies = [{

 title: "Big Trouble in Little China",

 year: "1986"

 }, {

 title: "Aliens",

 year: "1986"

 }];

App.IndexRoute = Ember.Route.extend({

 model: function() {

 return movies;

 }

});

<script type="text/x-handlebars" data-template-name="index">

 {{#each}}

 {{title}} - {{year}}

 {{/each}}

</script>

Ember.js's code looks somewhat similar to that of Backbone.js, and it's no surprise that a lot of
seasoned Backbone.js developers find themselves migrating to Ember.js as their need for more
robust solutions increases. Ember.js uses familiar items, including views, models, collections,
and routes, as well as an Application object.

Additionally, Ember.js features components, which is one of its more powerful and beloved
features. Giving a sneak preview of the future of the web, components allow you to create small,
modular, reusable HTML components that you can plug into your application as needed. With
components, you can basically create your own custom HTML tags that look and behave exactly
how you define them, and they can be reused easily throughout an application.

Developing with Ember.js is all about convention. Unlike Backbone.js, Ember.js tries to get a lot
of the boilerplate out of the way and makes certain assumptions for you. Because of this, you
need to do things a certain way, and controllers, views, and routes need to follow a somewhat
strict pattern with regards to naming conventions.

The Ember.js website features incredible online documentation and Getting Started guides. If
you're interested in learning more about Ember.js, check it out at http://emberjs.com/guides/.
Also, don't forget to take a look at the TodoMVC implementation!

[313]

http://emberjs.com/guides/

React.js
There has never been such a great race for adapting new JavaScript technologies. It's the best
time for JavaScript. The Facebook team has a strong contender known as React.js. So, unlike
other MVC frameworks such as Angular, React.js is just a view from Model-View-Controller. It
is lightweight and renders with amazing speed. The basic encapsulated unit of code is called a
component. These components are composed together, forming a whole UI. Let's create a simple
component using the es6 class for the greeting example, as follows:

class Greet extends React.Component {

 render() {

 this.props.user = this.props.user || 'All';

 return (< div >

 <

 h4 > Greeting to { this.props.user }! < /h4> <

 /div>);

 }

}

The preceding snippet created a simple class to greet the users. We extended React.component to
provide its public methods and variables to be accessible in the Greet class. Each component
created requires a render method, which contains the html template of the respective component.
The props is the public variable use to pass the data from containers to child components, and so
on.

Now, we need to load the component in our HTML document. To do this, we need to register
under the reactDOM API, which is provided globally by the React.js library. This can be done as
follows:

ReactDOM.render(

 <Greet user="Developers" />,

 document.getElementById('root')

);

The render method of the ReactDOM object requires two parameters. First the root node, and
second, the root element. The root node is an element used to declare a host for the different
parent components. The root element <div id="root" /> is written in the body of our index.html to
host the entire view of the React components.
reactDOM is responsible for creating a virtual DOM and observes for any changes to be made to
each component. Only the changed/acted on part is re-rendered, keeping other components
intact. This boosts up the performance of application. The changes in the components we read
about are also called states of the components maintained by different libraries such as reflux.js
or redux.js.
Another important feature is one-way binding using props. The props are only a way to pass data
to the view. Once the scaffold and the data flow are set, the react projects provide great scalable
code and ease of maintenance for complex projects. There is a huge list of projects on React.js
https://github.com/facebook/react/wiki/sites-using-react. Once you get comfortable with the react
web app, you can easily switch to react native which create amazing native mobile applications.

[314]

http://redux.js/
https://github.com/facebook/react/wiki/sites-using-react

Angular
Angular exploded onto the scene because of the simple fact that it's built by Google (it is open
source). Angular is basically like putting HTML on steroids. The applications and pages that you
create use regular HTML that we're all used to, but they include a number of new and custom
directives that extend the core functionality of HTML, giving it awesome new power.

Another great feature of Angular, which has seasoned non-web developers flocking to it is that it
is built from the group to be heavily tested and supports dependency injection. It's a framework
that doesn't make creating sophisticated web applications feel like traditional web development.

Make no mistake, however; JavaScript still plays a huge role in the development of Angular. The
new Angular 2.0, which is now 4.0, is already one of the most extensively used frameworks of
today. It has not only introduced TypeScript for syntactical modularity of code, but also provides
new semantics, such as components (instead of controllers), pipes, life cycle hooks, and more
features. Let's learn more about Angular by implementing a simple client application that
consumes the phone-API created in the previous chapter.

Unlike Angular.js, Angular 2.0 is a whole framework, rather than a single includable file. This
framework comes with a bunch of features, such as rxJs, TypeScript, systemJs, and so on, which
provide an integrated development of code. The Angular team has provided simple steps to set
up Angular 2.0 seed application. However, a developer can also create a manual list of the
minimal files required for Angular projects, though it is not recommended and is also time
consuming. For our client prototype, we will follow the Angular quick-start steps provided by
angular.io and then integrate our functionality in to it. Let's follow these steps.

[315]

http://angular.io/

Scaffolding the Angular app
Go to https://angular.io/guide/quickstart and follow the three step procedure:

1. Install Angular/cli. It is globally installed with the command:

npm install -g @Angular/cli

2. Create a new project and name it phonebook-app with the following command:

ng new phonebook-app

3. Go to the phonebook-app directory by cd phonebook-app. Finally, serve the application with ng
serve --open. The ng serve command is used to watch for changes while developing,
transpiling, and rebuilding the app. --open is an optional command-line argument used to
open the app in a browser tab. Here, in case you receive an error, make sure you reinstall
npm packages by the npm install command.

The Google definition of transpile is the process of converting source code in one language to
another language, which has a similar level of abstraction. Simply, this means we will write code
in TypeScript, which is to be converted to JavaScript (as it works in a browser).

Explaining each file in the project is out of the context of this book, however, we will mainly
focus on Angular basic building blocks to get it started. Our main concern is the src/app directory
for now. Before we create the components, let's add Twitter's bootstrap link for the basic styling
of our app. In our src directory, we have index.html. Insert the following HTML code in the
header tag:

<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"

integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"

crossorigin="anonymous">

[316]

https://angular.io/guide/quickstart
http://app.in/
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css

Understanding TypeScript and es6
TypeScript is a superset of JavaScript that compiles to clean the JavaScript output.

 -
https://github.com/Microsoft/TypeScript

As its name suggests, TypeScript implies type languages, which require us to specify data types
during data declaration in code. This can be seen in different languages, such as Java, C#, and so
on. In TypeScript, the declaration of a variable is done using an annotation colon, as follows:

let name : string = "Bruno";

Secondly, JavaScript contains most (not all) of the object-oriented features. So, it can be
implemented semantically, but there is no provision syntactically . For example, an important
feature of OOP is the encapsulation; let's compare it:

TypeScript code JavaScript code (ES5)

class GreetTheWorld {

 greet() {

 return "Hello World";

 }

 }

var GreetTheWorld = (function () {

 function GreetTheWorld() {

 }

 GreetTheWorld.prototype.greet = function () {

 return "Hello World";

 };

 return GreetTheWorld;

 }());

Eventually, the frameworks that uses TypeScript as its primary scripting language compiles
(transpiles) it into es5 JavaScript. The new es6 acts as a bridge between es5 and TypeScript. To
date, es6 has gradually implemented TypeScript features into JavaScript for example classes.
Knowing this, it will be easy for us to understand the usage of TypeScript in Angular framework.
For more in depth learning, we can refer https://www.TypeScriptlang.org/docs/home.html.

[317]

https://github.com/Microsoft/TypeScript
https://www.typescriptlang.org/docs/home.html

Modules and components
Angular 2.0 provides a component-based approach for the reusability of code, as well as its
maintainability. By visualizing each functional group of elements as a component, it is easy to
replicate or reuse them. Let's create a wireframe for our project so that we can pick out those
components from our project:

In our project structure, we already have app.component.ts as our component file. We already
have our app-root component specified in the selector property of component metadata. This file
will be used for handling the root or parent element. According to the preceding wireframe, this
file contains the app-root component:

import { Component } from '@Angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {}

Make sure we have a class attached for each component so that we can export a component class
and register it as an Angular component in app.modules.ts. For brevity, we follow the standard
naming convention of capitalizing the first letter of the class name, followed by importing the
Angular class prefix that is a component. So in the app module.ts file, we have the following
code:

import { BrowserModule } from '@Angular/platform-browser';

import { NgModule } from '@Angular/core';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [AppComponent],

 imports: [BrowserModule],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule {}

Once registered with NgModule, we need to pass the root component to the bootstrap
method/property. Bootstrap handles the loading on to the platform we decide to use.
As per design, in app components, we just have an outline that will act as a container for other
components, so accordingly, let's create a template. Create a file with HTML code,

[318]

app.component.html and its relative css file, as follows:

app.component.html

<div class="outter">

<!-- <subscribe></subscribe>-->

<!-- <list></list> -->

</div>

app.component.css

.outter {

 padding: 20 px;

 border: solid 2 px# AAA;

 width: 200 px;

}

After running this code, we get a simple outline in the browser. Use ng serve to run the app.

[319]

Angular data flow architecture
To get a brief idea of data flow, let's make a comparative study of how MVC is implemented in
Angular. Consider the following diagram:

The diagram consists of basic blocks in Angular 2.0, and not all the facets. The model consists of
static data or synchronous data classes, which are extended or imported in components. The
components act as controllers that contain business logic. Each component has metadata, which
connects it with templates. Finally, the data is bound to the component class variables and is
available in templates. Now, for our application, we need the contact data list to be displayed;
hence, we will be using this feature of data bindings in our new component file
list.component.ts. This file provides the logic for listing the contacts in the phonebook. Always
follow the three step procedure to include a component.

1. Create a metadata and a class for the list component with its template. So, we have
list.component.ts, which consists of the following code :

import { Component } from '@Angular/core';

@Component({

 selector: 'list',

 templateUrl: './list.component.html'

})

export class ListComponent {

 public phoneList = []

 constructor() {

 this.phoneList = [{

 name: 'Superman',

 phno: 1234567890

 }, {

 name: 'Batman',

 phno: 2222222890

 }]

 }

}

 It also consists of its template, list.component.html:

<div>

 <div class="list-group">

[320]

 <div class="list-group-item list-group-item-info">

 Contact list

 </div>

 {{data.name}}

 {{data.phone_no}}

 </div>

<div>

2. Include the component in app.module and register it within the declaration property, as
follows:

import { ListComponent } from './list.component';

@NgModule({

 declarations: [

 AppComponent,

 ListComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

3. This third step is to include the template for rendering the component. We already have
our root component root-app. So, uncomment the list tag from app.component.htm. This can
be done as follows :

<div class="outter">

<!-- <subscribe></subscribe>-->

 <list></list>

</div>

[321]

Services
The preceding snippet contains static data that is binded to the phoneList property and thus
rendered accordingly, which is a synchronous operation. Now, what if we need the asynchronous
data to be displayed? Let's consume our phonebook APIs and create an HTTP service for our
client so that we can display the asynchronous data. Let's create a service file called
phonebook.service.ts. This file contains all the HTTP request methods required to get and set the
data. For now, let's create a getContactlist method, which will get all the contact data present on
the server. The required code is as follows:

import { Injectable } from '@Angular/core';

import { HttpClient } from '@Angular/common/http';

import 'rxjs/add/operator/map'

@Injectable()

export class PhonebookService {

 constructor(private http: HttpClient) {}

 getContactList() {

 return this.http.get('http://localhost:8000/phone/list')

 }

}

Here, we imported the HttpClient service for making XML HTTP requests from our browser.
The Injectable function is needed to make this file a service provider. The metadata in the
injectable is not provided as Angular itself will emit the metadata. Next, we will be using this
service by injecting it inside the component's constructor. We have passed a parameterized value
in the constructor, which is referred to as the dependency injection.

Modify the current code to the following code of list.components.ts:

import { Component } from '@Angular/core';

import { PhonebookService } from './phonebook.service';

@Component({

 selector: 'list',

 templateUrl: './list.component.html'

})

export class ListComponent {

 public phoneList = []

 constructor(private _pbService: PhonebookService) {

 this._pbService.getContactList()

 .subscribe((response) => {

 this.phoneList = response['data'];

 })

 }

}

Finally, we need to register the service under the providers in app.modules, as we are using it
across the app. At this step, we need to have the following code in app.modules:

import {HttpClientModule} from '@Angular/common/http';

import {PhonebookService} from './phonebook.service';

And include it in the providers list of ngModule:

@NgModule({

 declarations: [

 ListComponent,

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule

[322]

],

 providers: [PhonebookService],

 bootstrap: [AppComponent]

})

For using the Httpclient service, we first need to register httpModule in NgModules.
Also, make sure our phonebook API node server is already running. If not, start it using npm
start, and once we start ng serve --open, we will be receiving the list of superheroes contacts
from the server.

[323]

Forms
Last but not least, we need to create a form component called add, which adds a new phone
record. In Angular, there are two ways to build a form: template-driven forms and reactive
forms. As the reactive form is a new feature of Angular, we will be implementing it. To put it
simply, reactive forms provide for the control of form directives through code logic and not in
partials. Let's check it out by implementing them for our phonebook app.
The new component files to be created are add.component.ts and its .html file, as follows:

import {

 Component,

 Output,

 EventEmitter

} from '@Angular/core';

import {

 PhonebookService

} from './phonebook.service';

import {

 FormControl,

 FormGroup,

 Validators

} from '@Angular/forms';

@Component({

 selector: 'add',

 templateUrl: './add.component.html'

})

export class AddComponent {

 @Output() onAdded = new EventEmitter < Object > ();

 public newRecordForm = new FormGroup({

 name: new FormControl(),

 phone_no: new FormControl(0, [Validators.required, Validators.minLength(10)])

 });

 constructor(private _pbService: PhonebookService) {

 this.resetForm();

 }

 resetForm() {

 this.newRecordForm.reset();

 }

 onSubmit() {

 if (this.newRecordForm.valid) {

 const payload = this.newRecordForm.value;

 this._pbService.postContactList(payload).subscribe((response) => {

 let newListData = response['data'];

 this.onAdded.emit(newListData);

 this.resetForm();

 })

 }

 }

}

In the preceding code, you may observe some new facets of Angular. They are explained as
follows:

FormControl and FormGroup: Importing the FormControl, which is a directive that takes model
data as an input and creates an instance of form elements. These form elements can be
aggregated or grouped using FormGroup.
Validators: The class validators provide methods to validate the form elements. They are
passed as a second optional argument to FormControl, to configure the validation of an
element. It sets a Boolean property as valid, according to conditions applied.
The Output and EventEmitter will be explained later. So once we have our code ready, let's
create its template as follows:

[324]

<form [formGroup]="newRecordForm" (ngSubmit)="onSubmit()" novalidate>

 <div class="form-group">

 <label class="center-block">Name:

 <input class="form-control" formControlName="name">

 </label>

 <label class="center-block">Phone no:

 <input class="form-control" formControlName="phone_no" ngClass="">

 </label>

 </div>

 <input type="submit" name="submit">

</form>

In the preceding code, we can investigate if formGroup is a directive that takes the public variable
as input that is newRecordForm. We have an event handler called ngSubmit with public method
onSubmit. This method is responsible for saving the contact details to our server. The last
requirement here is that we map the properties of newRecordForm to formControlName so that the
code logic is mapped to appropriate elements in the template. Classes such as form-control are
used for HTML elements and are just bootstrap classes for a basic design.

[325]

Component communication
Now, we need to add one more change in app.component.html:

<div class="container">

 <add (onAdded)="onAddedData($event)"></add>

 <list [phoneList]="listData"></list>

</div>

We also need to add a change in app.component.ts, which is as follows:

export class AppComponent {

 public listData = [];

 onAddedData(newListData: any) {

 this.listData = newListData;

 }

}

This change is required to communicate between two components. What is this communication
required for?
When we add a new record in the add component, it needs to send the newly added data to the list
component, which cannot be bound directly, so we use @output to bind the data back to the
parent. The EventEmitter is used to emit the response data via the binding in the app template,
which can be seen as follows:

<add (onAdded)="onAddedData($event)"></add>.

Here, the app component acts as a bridge between them. Once the parent receives the data in the
AddedData method, it communicates to its child list component via the @input binding of the
listData variable.

Watch for the changes in the browser; the form component adds new data to the list and our
phonebook app is ready for its first prototype.

Frontend frameworks have recently taken on somewhat religious undertones. Post a negative
comment or criticism about a particular framework and it's likely you'll get blasted by its
supporters. Likewise, talk positively about a particular framework, and again, it's likely you'll get
attacked about how much better a different framework handles the same topic. The bottom line
when deciding which framework is right for you and/or your project is typically going to be
about personal preference. Each of the frameworks featured on the TodoMVC website can
clearly accomplish the same goals, each in its own unique way. Take some time to evaluate a few
and decide for yourself!

[326]

Frontend development tools
Due to the sophisticated nature of single page applications, there exists a growing suite of tools a
frontend developer needs to be familiar with to manage many day-to-day, and sometimes,
minute-to-minute tasks.

[327]

Automated build task managers
A build tool is just what it sounds like--a tool used to build your application. When a frontend
developer creates and maintains an application, there could be a number of tasks that need to be
repeated literally every time a file is changed and saved. Using a build tool, a developer can free
up time and mental resources by offloading the responsibility to an automated task manager that
can watch files for changes and execute any number of tasks needed. These tasks might include
any number of the following:

Concatenation
Minification
Uglification and obfuscation
Manipulation
Dependency installation and preparation
Custom script firing
Concurrent watchers
Server launching
Test automation

Some of the more popular build tools today include Grunt, Gulp, and Broccoli. Grunt.js has been
around for a number of years and is very well established in the development community. Gulp
and Broccoli are fairly new but quickly gaining traction and work a little differently than Grunt.
With Grunt, you define and manage your tasks using a configuration file, whereas with Gulp and
Broccoli, you write Node.js code and use the raw power of streams. Many developers find
working with Grunt's configuration file to be fairly convoluted and frustrating and find working
with Gulp to be a refreshing change. However, it's hard to dispute Grunt's history and popularity.

All three are feature-extensive ecosystems of plugins that help automate literally everything and
anything you can think of in your build process.

Here is a sample output from a typical Grunt build command:

[328]

In a typical single page application, the build manager can be responsible for downloading and
installing dependencies, concatenating multiple JavaScript files into a single file, compiling and
shimming Browserify modules, linting JavaScript files for syntax errors, transpiling LESS files
into production-ready CSS files, copying files to a runtime destination, watching files for
changes to repeat any of the tasks again, and finally, running appropriate tests any time the code
is changed--all from a single command!

Grunt can be installed using npm and should be installed globally. Execute the following
command to install the Grunt CLI on your machine:

 $ npm install -g grunt-cli

Refer to the getting-started guide on the official Grunt.js website for more information at
http://gruntjs.com/getting-started.

[329]

http://gruntjs.com/getting-started

Additionally, feel free to check out Gulp and Broccoli as well, for more information:

http://gulpjs.com/
https://github.com/broccolijs/broccoli

[330]

http://gulpjs.com/
https://github.com/broccolijs/broccoli

Dependency management
There are literally millions of JavaScript libraries that exist to help you with everything from
DOM manipulation (jquery) to timestamp formatting (moment.js). Managing these libraries and
dependencies can sometimes be a bit of a headache. For the frontend, the dependency manager of
choice is Bower.io.

Bower works in almost exactly the same way as npm; it manages the packages in the bower.json
file. While working on the frontend (you need a known JavaScript library or plugin, such as
underscore, for example), simply execute bower install underscore and the JavaScript files will
be downloaded to a local bower_components folder in your project. From there, you can automate
the inclusion of those scripts by updating your build process or by simply copying the file,
including a script tag in your HTML; then, you're all set.

Bower can be installed using npm and should be installed globally. Execute the following
command to install Bower on your machine:

 $ npm install -g bower

 $ bower install jquery

 bower cached git://github.com/jquery/jquery.git#2.1.0

 bower validate 2.1.0 against git://github.com/jquery/jquery.git#*

 bower new version for git://github.com/jquery/jquery.git#*

 bower resolve git://github.com/jquery/jquery.git#*

 bower download https://github.com/jquery/jquery/archive/2.1.1.tar.gz

 bower extract jquery#* archive.tar.gz

 bower resolved git://github.com/jquery/jquery.git#2.1.1

 bower install jquery#2.1.1

 jquery#2.1.1 bower_components/jquery

Visit the Bower.io website (http://bower.io) for more information, as well as the full directory of
scripts available to be installed via bower install.

[331]

http://bower.io

Modularity
When writing large JavaScript applications, the key is to keep your source code well-organized
and structurally sane. Unfortunately, JavaScript doesn't inherently support the idea of modular
code very well right out of-the-box. To solve this problem, two popular libraries exist to allow
you to write modular code and to rely on only the modules you need within each individual piece
of code.

An absolute must-read and incredible resource for frontend design patterns is Addy Osmandi's
Learning JavaScript Design Patterns, which you can read for free by visiting the following
URL:
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

Require.js and Browserify are two of the most popular module loaders today. Each has a very
unique syntax and its own set of benefits. Require.js follows asynchronous module definitions,
which means each piece of code needs to define its own dependencies. Personally, I've worked
with Require.js in the past, and I've recently found that I really like working with Browserify.
One of Browserify's strengths is that it uses the same modular pattern as Node.js; so, writing
frontend code using Browserify feels identical to that of Node. You use module.exports and
require on the frontend, and you don't have to worry about the syntax context switching if you go
back and forth between Node and the frontend within the same application.

Using a module loader in conjunction with one of the popular MVC frameworks mentioned
earlier is almost a requirement, because the two go together like peanut butter and jelly!

For more information, visit the following links:

http://browserify.org/
http://requirejs.org/

[332]

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://browserify.org/
http://requirejs.org/

HTML template-rendering engines
Fortunately, we've already covered the idea of HTML template-rendering engines throughout the
course of this book. The topics and concepts transfer directly to frontend applications as well.
There are many different HTML template engines to choose from for use in the browser.

Many template engines will be mustache-based, meaning that they use {{ and }} for merge
variables. Handlebars is currently my personal favorite, mainly because it works so well in the
backend and frontend of an application, and I really like working with its helpers. Underscore.js
has a built-in lite template-rendering engine for use with Backbone.js, but its syntax uses <% and
%> (much like classic ASP or ASP.net MVC Razor syntax). Typically, most frontend MVC
frameworks allow you to customize the template-rendering engine and use any engine you want.
For example, Backbone.js can be set up to use Handlebars.js very easily, instead of using
Underscore.js by default.

Here's just a small sample list of some of the currently available frontend template-rendering
engines:

Underscore.js: http://underscorejs.org
Handlebars: http://handlebarsjs.com
Mustache: http://mustache.github.io
Dust.js: http://akdubya.github.io/dustjs
EJS: http://embeddedjs.com

Some of these will work at the backend as well as on the frontend.

[333]

http://underscorejs.org
http://handlebarsjs.com
http://mustache.github.io
http://akdubya.github.io/dustjs
http://embeddedjs.com

CSS transpiling
The idea of using variables and logic within a CSS file sounds like a dream come true, right? We
aren't quite there yet (in the browser, anyway); however, there are a few tools that will let us use
variables and logic in our CSS files and compile them during our build step. LESS and SASS are
two of the most popular CSS transpilers currently available. They behave almost identically, with
only slight differences in syntax and features. The big difference is that LESS was written using
JavaScript
and Node, whereas SASS uses Ruby; therefore, each has different requirements to get running on
your machine.

Here is a sample SASS style sheet file:

$sprite-bg:url("/images/editor/sprite-msg-bg.png");

@mixin radius($radius) {

 -moz-border-radius: $radius;

 -webkit-border-radius: $radius;

 -ms-border-radius: $radius;

 border-radius: $radius;

}

.upload-button {

 border-bottom: solid 2px #005A8B;

 background: transparent $sprite-bg no-repeat;

 @include radius(4px);

 cursor: pointer;

}

#step-status {

 color:#dbdbdb; font-size:14px;

 span.active {

 color:#1e8acb;

 }

 &.basic-adjust, &.message-editor {

 width: 525px;

 }

 .icon {

 height:65px;

 width: 50px;

 margin:auto;

 }

}

@import "alerts";

@import "attachments";

@import "codemirror";

@import "drafts";

Looking at the sample code, you can see that we have a few new elements that wouldn't typically
work in a regular CSS file. Some of these include:

Defining custom variables for use throughout the style sheet
Defining mixins, which act as pseudo functions for reusable styles (with dynamic
parameters)
Mixins and variables within our style definitions
Nesting styles with parent/child relationships

When the previous code is transpiled using LESS (or in the case of the sample code SASS), the

[334]

output is a standard .css style sheet that adheres to all the normal browser rules and syntax.

For more information on LESS and SASS, check out the following links:

http://lesscss.org
http://sass-lang.com

[335]

http://lesscss.org
http://sass-lang.com

Testing and test-driven development
The development of a sophisticated frontend application is no different than any other software
application. The code is going to be complicated and robust, and there's no reason not to write
tests, as well as a practice test-driven development. The availability of testing frameworks and
languages for the frontend is just as robust as for any other language. All of the tools and
concepts we've used for testing the Node.js code that we've written in this book can be used
directly on the frontend as well.

Some other tools to consider for testing your frontend JavaScript are:

Karma for running tests: http://karma-runner.github.io
Jasmine for writing tests: http://jasmine.github.io

[336]

http://karma-runner.github.io
http://jasmine.github.io

PhantomJS headless browser
One thing I'd like to point out with testing frontend code is that typically, the test runners want to
run in a browser window. This is great and makes perfect sense, but in the real world, automating
your tests or quickly executing them with TDD can be a bit painful when a browser window
wants to open every time your test suite runs. PhantomJS is an available headless browser that
works perfectly in this kind of scenario. A headless browser simply means it's a browser that
runs from the command line, in memory, with no actual interface (like a typical browser).

You can easily configure Karma to launch the test suite using PhantomJS instead of your
browser of choice. When using PhantomJS as your browser, your tests execute behind the
scenes, and only errors are reported. Here is a sample output of a test suite running with Karma
using PhantomJS:

[337]

Summary
This was a whirlwind tour of some of the most common frontend tools and frameworks used
when doing typical web development. We took a look at the TodoMVC project and reviewed
three popular JavaScript frameworks to build robust and sophisticated frontend applications.

Popular build tools such as Grunt.js, Gulp, and Broccoli help developers streamline their
workflow process by automating a lot of the repetitive tasks that need to occur every time a file
is modified. From concatenating scripts into a single file, to minifying and compressing, to
executing automated test suites, the task runners can be configured to handle pretty much
everything under the sun!

We took a look at two popular CSS transpilers with LESS and SASS and saw how they can
make creating and managing CSS style sheets dynamic with the use of mixins, variables, and
nesting.

Finally, you learned about PhantomJS, the headless browser, and using it when running frontend
tests so that the tests can be executed quickly and easily from the command line using a test
runner like Karma.

[338]

	What this book covers
	Who this book is for

