
Understanding	AJAX:	Using	JavaScript	to	Create
Rich	Internet	Applications
By	Joshua	Eichorn
...
Publisher:	Prentice	Hall
Pub	Date:	August	11,	2006
Print	ISBN-10:	0-13-221635-3
Print	ISBN-13:	978-0-13-221635-7
Pages:	352

	

Table	of	Contents		|	Index

AJAX:	fast	mastery	for	experienced	Web	developers!

	

Already	an	experienced	Web	developer?	Apply	your	skills	in	today's	fastest-growing	area	of
Web	development:	AJAX!

	

Building	on	what	you	already	know,	this	fast-paced	guide	will	show	you	exactly	how	to
create	rich,	usable	Internet	applications.	Joshua	Eichorn	teaches	through	sophisticated
code	examples,	including	extensive	server-side	PHP	code.

	

You	won't	just	learn	how	to	code	AJAX	applications:	Eichorn	covers	the	entire	development
lifecycle,	from	use	cases	and	design	through	debugging.	He	also	presents	detailed
application	case	studies,	including	a	start-to-finish	update	of	a	non-AJAX	application	that
addresses	everything	from	feature	improvements	to	changing	usage	patterns.	Coverage
includes:

	

·							How	AJAX	changes	the	conventional	Web	development	cycle

·							Problems	created	by	the	AJAX	paradigm	--	and	how	to	avoid	them

·							Adding	AJAX	to	existing	Web	applications:	key	considerations

·							Using	core	AJAX	technologies,	including	the	XMLHttpRequest	object

·							Consuming	data	returned	to	an	AJAX	application	using	both	XSLT	and	JSON

·							Building	more	usable	AJAX	applications:	guidelines	and	downloadable	resources

·							Use	cases:	solving	real-world	problems	in	the	AJAX	environment

·							Libraries	and	toolkits	for	simplifying	AJAX	development,	including	Sarissa,
scriptaculous,	and	HTML_AJAX

·							A	complete	guide	to	AJAX	debugging

·							Supporting	browsers	without	XMLHttpRequest	by	using	IFrames	or	cookies

·							JSON	data	encoding	debugging	guide,	which	covers	tools	for	Firefox	and	Internet
Explorer

·							A	list	of	libraries,	which	includes	PHP,	.NET,	Java,	and	other	libraries	that	can	be	used
with	any	server	language

Understanding	AJAX:	Using	JavaScript	to	Create
Rich	Internet	Applications
By	Joshua	Eichorn
...
Publisher:	Prentice	Hall
Pub	Date:	August	11,	2006
Print	ISBN-10:	0-13-221635-3
Print	ISBN-13:	978-0-13-221635-7
Pages:	352

	

Table	of	Contents		|	Index

			 Copyright
			 Prentice	Hall	Open	Source	Software	Development	Series
			 Acknowledgments
			 About	the	Author
			 Preface
			 Part	I:	
			 	 Chapter	1.		What	Is	AJAX?
			 	 Section	1.1.		Rich	Internet	Applications
			 	 Section	1.2.		AJAX	Defined
			 	 Section	1.3.		Technologies	of	AJAX
			 	 Section	1.4.		Remote	Scripting
			 	 Section	1.5.		Gmail	Brings	XMLHttpRequest	into	the	Mainstream
			 	 Section	1.6.		New	Name:	AJAX
			 	 Section	1.7.		Summary
			 	 Chapter	2.		Getting	Started
			 	 Section	2.1.		XMLHttpRequest	Overview
			 	 Section	2.2.		Cross-Browser	XMLHttpRequest
			 	 Section	2.3.		Sending	Asynchronous	Requests
			 	 Section	2.4.		AJAX	Without	XMLHttpRequest
			 	 Section	2.5.		Fallback	Option	1:	Sending	a	Request	Using	an	IFrame
			 	 Section	2.6.		Fallback	Option	2:	Sending	a	Request	Using	a	Cookie
			 	 Section	2.7.		Summary

			 	 Chapter	3.		Consuming	the	Sent	Data

			 	 Section	3.1.		Document-Centric	Approaches
			 	 Section	3.2.		Remote	Scripting
			 	 Section	3.3.		How	to	Decide	on	a	Request	Type
			 	 Section	3.4.		Summary
			 	 Chapter	4.		Adding	AJAX	to	Your	Web	Development	Process
			 	 Section	4.1.		Changes	to	the	Development	Cycle
			 	 Section	4.2.		Integrating	AJAX	into	a	Framework
			 	 Section	4.3.		JavaScript	as	a	Primary	Development	Language
			 	 Section	4.4.		Problems	Created	by	the	New	Development	Paradigm
			 	 Section	4.5.		Advantages	to	Using	a	Library
			 	 Section	4.6.		Reasons	to	Build	Your	Own	Library
			 	 Section	4.7.		How	Open	Source	Fits	into	the	Mix
			 	 Section	4.8.		Use	Case	for	Building:	The	Firefox	Counter
			 	 Section	4.9.		Use	Case	for	Downloading:	An	Intranet	Web	Site
			 	 Section	4.10.		Summary
			 	 Chapter	5.		Getting	the	Most	from	AJAX
			 	 Section	5.1.		Goals	of	AJAX
			 	 Section	5.2.		Measuring	Improvements

			 	 Section	5.3.		Promises	and	Problems	of	Combining	AJAX	with	Other	New
Technologies

			 	 Section	5.4.		Summary
			 	 Chapter	6.		Usability	Guidelines
			 	 Section	6.1.		Defining	Usability
			 	 Section	6.2.		Usability	Guidelines
			 	 Section	6.3.		Common	Usability	Problems
			 	 Section	6.4.		Summary
			 	 Chapter	7.		AJAX	Debugging	Guide
			 	 Section	7.1.		Two	Sides	to	Debugging
			 	 Section	7.2.		Looking	at	AJAX	Communications
			 	 Section	7.3.		JavaScript	Debugging	Tools
			 	 Section	7.4.		JavaScript	Exceptions
			 	 Section	7.5.		Dumping	Variables
			 	 Section	7.6.		Summary
			 Part	II:	
			 	 Chapter	8.		Libraries	Used	in	Part	II:	Sarissa,	Scriptaculous
			 	 Section	8.1.		Overview	of	the	Use	Cases
			 	 Section	8.2.		Libraries	Used	in	Part	II	of	This	Book
			 	 Section	8.3.		Sarissa

			 	 Section	8.4.		Scriptaculous

			 	 Section	8.5.		Summary
			 	 Chapter	9.		Libraries	Used	in	Part	II:	HTML_AJAX
			 	 Section	9.1.		HTML_AJAX
			 	 Section	9.2.		Summary
			 	 Chapter	10.		Speeding	Up	Data	Display
			 	 Section	10.1.		Overview	of	the	Sun	Rise	and	Set	Data	Viewer
			 	 Section	10.2.		Building	the	Non-AJAX	Version	of	the	Sun	Rise	and	Set	Viewer
			 	 Section	10.3.		Problems	with	the	Non-AJAX	Viewer
			 	 Section	10.4.		Improving	Viewing	with	AJAX
			 	 Section	10.5.		Summary
			 	 Chapter	11.		Adding	an	AJAX	Login	to	a	Blog
			 	 Section	11.1.		Why	Logins	Work	Well	with	AJAX
			 	 Section	11.2.		Building	an	AJAX	Login
			 	 Section	11.3.		Extending	the	Login	Form
			 	 Section	11.4.		Implementing	the	AJAX	Comment	Login	System	Using	XML
			 	 Section	11.5.		Summary
			 	 Chapter	12.		Building	a	Trouble-Ticket	System
			 	 Section	12.1.		Trouble-Ticketing	System
			 	 Section	12.2.		AJAX	Reliance	Scale
			 	 Section	12.3.		Creating	the	Back	End
			 	 Section	12.4.		Exporting	the	Back	End
			 	 Section	12.5.		Building	the	JavaScript	Application
			 	 Section	12.6.		Login	Component
			 	 Section	12.7.		User-Registration	Component
			 	 Section	12.8.		Account-Editing	Component
			 	 Section	12.9.		Ticket-Creation	Component
			 	 Section	12.10.		Ticket-Editor	Component
			 	 Section	12.11.		My-Tickets	Component
			 	 Section	12.12.		Assign-Tickets	Component
			 	 Section	12.13.		Security	Considerations	with	AJAX	Applications

			 	 Section	12.14.		Comparing	Our	AJAX-Driven	Application	against	a	Standard
MVC	Model

			 	 Section	12.15.		Summary
			 Appendix	A.		JavaScript	AJAX	Libraries
			 	 AJAX	Toolbox
			 	 Bajax
			 	 Dojo	Toolkit
			 	 libXmlRequest

			 	 MochiKit

			 	 Rico

			 	 Simple	AJAX	Code-Kit	(SACK)
			 	 ThyAPI
			 	 Qooxdoo
			 	 XHConn
			 	 Yahoo!	User	Interface	Library
			 Appendix	B.		AJAX	Libraries	with	Server	Ties
			 	 PHP
			 	 Java
			 	 C#/.NET
			 	 Multiple	Languages
			 Appendix	C.		JavaScript	DHTML	Libraries
			 	 Accesskey	Underlining	Library	(AUL)
			 	 Behaviour
			 	 cssQuery()
			 	 Dean	Edwards	IE7
			 	 DOM-Drag
			 	 JavaScript	Shell
			 	 Lightbox	JS
			 	 Moo.fx
			 	 Nifty	Corners	Cube
			 	 overLIB
			 	 Sorttable
			 	 Tooltip.js
			 	 WZ_jsgraphics
			 	 WZ_dragdrop
			 Index

Copyright
Many	of	the	designations	used	by	manufacturers	and	sellers	to
distinguish	their	products	are	claimed	as	trademarks.	Where
those	designations	appear	in	this	book,	and	the	publisher	was
aware	of	a	trademark	claim,	the	designations	have	been	printed
with	initial	capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of
this	book,	but	make	no	expressed	or	implied	warranty	of	any
kind	and	assume	no	responsibility	for	errors	or	omissions.	No
liability	is	assumed	for	incidental	or	consequential	damages	in
connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

The	publisher	offers	excellent	discounts	on	this	book	when
ordered	in	quantity	for	bulk	purchases	or	special	sales,	which
may	include	electronic	versions	and/or	custom	covers	and
content	particular	to	your	business,	training	goals,	marketing
focus,	and	branding	interests.	For	more	information,	please
contact:

																U.S.	Corporate	and	Government	Sales
																800-382-3419
																corpsales@pearsontechgroup.com

For	sales	outside	the	United	States,	please	contact:

																International	Sales
																international@pearsoned.com

Visit	us	on	the	Web:	www.prenhallprofessional.com

Copyright	©	2007	Pearson	Education,	Inc.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com

Java	and	all	Java-based	trademarks	are	trademarks	of	Sun
Microsystems,	Inc.	in	the	United	States,	other	countries,	or
both.	Other	company,	product,	or	service	names	mentioned
herein	may	be	trademarks	or	service	marks	of	their	respective
owners.

Information	is	provided	"as	is"	without	warranty	of	any	kind.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This
publication	is	protected	by	copyright,	and	permission	must	be
obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in
any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	write	to:

																	Pearson	Education,	Inc.
																	Rights	and	Contracts	Department
																	One	Lake	Street
																	Upper	Saddle	River,	NJ	07458
																	Fax:	(201)	236-3290

Text	printed	in	the	United	States	on	recycled	paper	at	R.R.
Donnelley	&	Sons	in	Crawfordsville,	IN.	First	printing,	August
2006.

Library	of	Congress	Cataloging-in-Publication	Data

Eichorn,	Joshua.
		Understanding	AJAX:	using	JavaScript	to	create	rich	Internet	applications	/	Joshua	Eichorn.
				p.	cm.
		ISBN	0-13-221635-
3	(pbk.)		1.		JavaScript	(Computer	program	language).
2.		Asynchronous	transfer	mode.	3.		World	Wide
Web.	I.	Title.
	QA76.73.J39E43	2006

	005.13'3dc22
																																											2006019443

Prentice	Hall	Open	Source	Software
Development	Series
Arnold	Robbins,	Series	Editor

"Real	world	code	from	real	world	applications"

Open	Source	technology	has	revolutionized	the	computing
world.	Many	large-scale	projects	are	in	production	use
worldwide,	such	as	Apache,	MySQL,	and	Postgres,	with
programmers	writing	applications	in	a	variety	of	languages
including	Perl,	Python,	and	PHP.	These	technologies	are	in	use
on	many	different	systems,	ranging	from	proprietary	systems,
to	Linux	systems,	to	traditional	UNIX	systems,	to	mainframes.

The	Prentice	Hall	Open	Source	Software	Development
Series	is	designed	to	bring	you	the	best	of	these	Open	Source
technologies.	Not	only	will	you	learn	how	to	use	them	for	your
projects,	but	you	will	learn	from	them.	By	seeing	real	code	from
real	applications,	you	will	learn	the	best	practices	of	Open
Source	developers	the	world	over.

Titles	currently	in	the	series	include:

Linux®	Debugging	and	Performance	Tuning:	Tips	and	Techniques
Steve	Best
0131492470,	Paper,	©2006

Understanding	AJAX:	Using	JavaScript	to	Create	Rich	Internet	Applications
Joshua	Eichorn
0132216353,	Paper,	©2007

Embedded	Linux	Primer

Christopher	Hallinan
0131679848,	Paper,	©2007

SELinux	by	Example
Frank	Mayer,	David	Caplan,	Karl	MacMillan
0131963694,	Paper,	©2007

UNIX	to	Linux®	Porting
Alfredo	Mendoza,	Chakarat	Skawratananond,	Artis	Walker
0131871099,	Paper,	©2006

Linux	Programming	by	Example:	The	Fundamentals
Arnold	Robbins
0131429647,	Paper,	©2004

The	Linux®	Kernel	Primer:	A	Top-
Down	Approach	for	x86	and	PowerPC	Architectures
Claudia	Salzberg,	Gordon	Fischer,	Steven	Smolski
0131181637,	Paper,	©2006

	

Acknowledgments
Writing	this	book	has	been	a	lot	of	work,	and	I	couldn't	have
done	it	without	the	help	of	many	people.	This	project	was
initiated	by	Pearson,	and	it	never	would	have	started	without
the	research	done	by	Andrew	Wait,	who	found	my	blog	and
brought	me	to	the	attention	of	his	father	at	Pearson.	The
readers	of	my	blog	have	also	been	a	great	help,	as	their
questions	and	feedback	have	helped	me	hone	my	thinking
about	AJAX.	The	HTML_AJAX	project	was	also	important	in	my
growth	as	an	AJAX	developer;	Laurent	Yaish	and	Arpad	Ray
have	helped	me	with	it,	and	our	talks	led	to	a	number	of
improvements	in	this	book.

I	would	especially	like	to	thank	Mark	L.	Taub	of	Pearson
Education	for	initiating	this	project	and	walking	this	first-time
author	through	the	many	steps	that	it	takes	to	complete	a
book.	Mark	has	a	wealth	of	knowledge,	and	I	wouldn't	have
made	it	through	the	process	without	him.	The	production	teams
at	Pearson	did	an	excellent	job	and	were	a	pleasure	to	work
with.	Terra	Dalton	was	the	production	editor,	Alan	Clements
designed	the	book's	cover,	Daniel	Knott	helped	with	the	figures,
and	Curt	Johnson	managed	the	marketing.

I	had	a	lot	of	help	during	the	writing	process;	Sheri	Cain	was
my	development	editor	and	helped	me	improve	my	writing
abilities.	Arnold	Robbins,	the	series	editor,	provided	a	lot	of
great	feedback	at	the	end	of	the	writing	process,	helping	me
improve	the	rough	spots	and	greatly	increasing	the	focus	and
quality	of	the	book.	Myles	Grant	and	David	Coallier	were	my
technical	reviewers	and	gave	a	lot	of	useful	feedback.

I	would	also	like	to	thank	Travis	Swicegood	and	Gordon
Forsythe,	my	coworkers	at	Uversa,	who	have	shown	me	many
new	ways	to	use	AJAX	while	building	Clearhealth.	Finally	I
would	like	to	thank	my	wife,	Megan,	for	putting	up	with	my

complaints	when	I	was	tired	of	working	on	the	book	and	for
always	encouraging	me	to	put	more	effort	into	it.

Joshua	Eichorn

Phoenix,	Arizona

	

About	the	Author
Joshua	Eichorn	is	a	web	developer	living	in	Arizona.	He	holds
a	Computer	Information	Systems	Degree	from	Arizona	State
University.	Josh	has	contributed	to	several	open	source	projects
over	the	years	and	is	the	creator	of	phpDocumentor,	the	most
popular	documentation	solution	for	PHP.	Josh	is	currently	the
project	lead	for	the	HTML_AJAX	library	in	PEAR.

Preface

Audience

This	book	is	intended	for	Web	developers	who	understand	how
to	build	Web	applications	and	have	a	basic	understanding	of
JavaScript.	JavaScript	knowledge	should	include	the	ability	to
do	Document	Object	Model	(DOM)	manipulation	and	the	ability
to	use	object-oriented	libraries.	Basic	understanding	of	PHP	is
also	helpful	for	understanding	many	of	the	examples	in	the
book,	but	it	isn't	required	because	this	book	focuses	on	client-
side	JavaScript	programming.	Understanding	the	stateless
nature	of	HTTP	and	how	tools	(such	as	cookies)	can	be	used	to
work	around	this	stateless	nature	is	also	useful.

As	I	wrote	this	book,	I	assumed	that	you	had	knowledge	of
Hypertext	Markup	Language	(HTML)	and	Cascading	Style
Sheets	(CSS).	If	you	are	a	Web	developer	who	has	used
JavaScript	before,	you	should	be	able	to	use	what	you've
learned	from	this	book	to	add	Asynchronous	JavaScript	and	XML
(AJAX)	to	your	sites.	If	this	is	the	first	time	you've	looked	at
JavaScript,	you	will	want	to	find	an	introductory	reference
source	before	delving	into	AJAX.	I	recommend	the	Mozilla
developer	Web	site	at
http://developer.mozilla.org/en/docs/JavaScript.	It	contains	a
comprehensive	JavaScript	reference	and	an	introduction	to	the
language.

What	You	Will	Learn

This	book	focuses	on	using	AJAX	to	create	a	new	style	of	Web
applications.	It	covers	the	following	topics:

http://developer.mozilla.org/en/docs/JavaScript

Ways	to	perform	AJAX	communications

AJAX	communications	models,	both	Remote	Procedure	Call
(RPC)	and	document-centric

Usability	guidelines	and	tips

How	to	choose	an	AJAX	library

Ways	to	measure	improvements	in	task	completion	speeds

How	to	add	AJAX	to	an	existing	application

How	to	build	rich	applications

How	to	debug	AJAX	applications

The	Sarissa	Extensible	Markup	Language	(XML)	AJAX	library

Scriptaculous	effects	and	widgets

HTML_AJAX,	which	is	an	AJAX	library	with	PHP	support

The	goal	of	this	book	is	to	add	AJAX	as	a	tool	in	your	arsenal,
not	to	cover	every	aspect	of	JavaScript	and	Web	programming.
To	do	this,	we	cover	AJAX	in	a	number	of	different	ways,
starting	with	basic	implementation.	We	then	move	on	to	more
theoretical	topics,	such	as	usability,	and	then	finish	by	building
actual	applications.

Organization	of	the	Book

This	book	is	divided	into	two	main	parts	and	three	appendixes.
The	first	part,	which	encompasses	Chapters	17,	covers	the

basics	of	AJAX	and	how	it	fits	into	the	rest	of	the	Web
development	world.	It	includes	introductions	to	the	basic
technology	(such	as	XMLHttpRequest),	facts	about	how	to	get	the
most	out	of	AJAX,	and	tips	regarding	usability.	Chapter	7	covers
debugging,	because	bugs	are	bound	to	happen	in	any
development	environment,	and	AJAX	affects	how	you
implement	many	current	Web-development	debugging
techniques.

The	second	part,	which	encompasses	Chapters	812,	contains
three	use	cases.	These	use	cases	show	how	you	can	use	AJAX
to	solve	usability	problems	and	improve	performance	on	your
current	Web	sites.	The	final	use	case	also	shows	what	is
involved	in	building	a	JavaScript-powered	application.

Finally,	the	appendixes	summarize	a	large	number	of	open
source	libraries.	These	include	AJAX	libraries	and	various
JavaScript	support	libraries.	I	know	that	everyone	requires
different	features	from	an	AJAX	library;	these	features	range
from	specific	server-side	language	support	to	DHTML	features
such	as	visual	effects	and	drag-and-drop	support.	However,	it's
impossible	for	me	to	give	detailed	coverage	of	all	the	libraries,
so	I've	chosen	to	focus	only	on	those	that	I	use	on	a	regular
basis.	These	libraries	may	not	meet	your	needs,	especially	if
you're	using	a	server-side	language	other	than	PHP	and	you
want	complete	server-side	integration.	To	help	with	the	process
of	picking	a	different	library,	the	appendixes	give	you	a	starting
point	for	picking	a	library	to	use	if	the	ones	covered	in	detail	in
this	book	don't	meet	your	needs.

Web	Browsers

Any	book	that	includes	JavaScript	code	needs	to	make	some
assumptions	about	the	Web	browsers	that	will	be	used.	All
examples	shown	in	this	book	have	been	tested	on	Internet
Explorer	6	and	Firefox	1.5.	The	code	should	work	in	newer
versions	without	much	trouble,	but	it	may	have	small	problems

with	other	browsers.	This	is	especially	true	for	older	browsers
such	as	Internet	Explorer	4	or	Netscape	4.7;	in	fact,	none	of	the
examples	in	this	book	would	run	on	these	browsers	without	a
lot	of	changes.	Browsers	have	advanced	over	time,	and	the	vast
majority	of	users	have	upgraded.	If	you	need	to	support	old
browsers,	do	it	with	non-JavaScript	versions	of	your	application;
supporting	AJAX	on	ancient	technology	will	make	support	a
nightmare.

Why	PHP?

The	main	focus	of	this	book	is	on	the	client-side	JavaScript
code,	but	in	many	of	the	examples,	server	code	is	also	shown	to
present	the	complete	processes.	PHP	was	chosen	as	the
language	for	these	examples	because	of	its	widespread	use	and
my	familiarity	with	it.	The	concepts	shown	on	the	server-side
code	should	be	easily	transferable	to	any	other	language,
although	each	language	will	have	its	own	implementation
details.

Summary	of	Chapters

The	first	part	of	the	book	builds	a	basic	understanding	of	AJAX
and	shows	how	the	technology	works.	It	builds	a	foundation
that	will	allow	you	to	build	complete	applications.	Specifically,	it
covers	the	following:

Chapter	1,	"What	Is	AJAX?"	page	3,	provides	an	overview	of
AJAX,	what	it	actually	means,	and	where	it	came	from.

Chapter	2,	"Getting	Started,"	page	15,	is	a	guide	to	basic
AJAX	implementation	covering	AJAX	communications
powered	by	XMLHttpRequest,	IFrames,	and	cookies.

Chapter	3,	"Consuming	the	Sent	Data,"	page	41,	shows	the

various	ways	to	use	the	data	that	you	learned	how	to
transmit	between	the	client	and	server	in	Chapter	2.	It
includes	both	document-centric	approaches	(such	as
processing	XML	and	displaying	HTML)	and	RPC	approaches.

Chapter	4,	"Adding	AJAX	to	Your	Web	Development
Process,"	page	77,	covers	some	of	the	ways	that	AJAX	will
change	the	development	process	and	the	ways	in	which	you
can	deal	with	these	changes.	It	also	covers	how	to	pick	an
AJAX	library.

Chapter	5,	"Getting	the	Most	from	AJAX,"	page	99,	provides
a	mental	framework	for	thinking	about	AJAX	and	deciding
when	to	use	it.	The	chapter	also	provides	some	basic	tools
for	measuring	the	time	it	takes	for	a	task	to	be	completed.

Chapter	6,	"Usability	Guidelines,"	page	119,	provides	a	set
of	usability	guidelines	for	building	AJAX	applications.

Chapter	7,	"AJAX	Debugging	Guide,"	page	137,	covers	the
various	debugging	options,	from	logging	techniques	to
handling	JavaScript	exceptions,	and	a	number	of	useful
tools.	These	include	the	Firebug	Firefox	extension	and
Fiddler,	which	is	a	debugging	HTTP	proxy.

The	second	part	of	this	book	introduces	you	to	three	AJAX
libraries	and	then	looks	at	use	cases	in	which	they	are	used.
Specifically,	it	covers	the	following:

Chapter	8,	"Libraries	Used	in	Part	II:	Sarissa,
Scriptaculous,"	page	167,	provides	an	overview	of	the
Sarissa	and	scriptaculous	JavaScript	libraries.

Chapter	9,	"Libraries	Used	in	Part	II:	HTML_AJAX,"	page
195,	provides	an	overview	of	HTML_AJAX,	which	is	a

JavaScript	and	PHP	AJAX	library.

Chapter	10,	"Speeding	Up	Data	Display,"	page	217,	builds	a
small	application	for	browsing	large	amounts	of	data	and
dealing	with	a	graph	that	is	very	slow	to	generate.

Chapter	11,	"Adding	an	AJAX	Login	to	a	Blog"	page	249,
adds	an	AJAX	login	to	a	sample	blog	application,	showing
how	an	AJAX	login	could	work	and	how	it	could	be	used	to
load	additional	information	at	the	time	it	is	needed.

Chapter	12,	"Building	a	Trouble-Ticket	System,"	page	271,
builds	a	complete	JavaScript-powered	application.	All	the
control	and	view	logic	is	managed	on	the	client	side,	and	a
set	of	services	for	interacting	with	the	database	is	provided
by	the	server.

Several	appendixes	cover	various	AJAX	and	JavaScript	libraries
that	you	might	find	useful	while	implementing	your	own	AJAX
application.	Specifically,	they	cover	the	following:

Appendix	A,	"JavaScript	AJAX	Libraries,"	page	333,	covers
AJAX	libraries	that	have	only	a	JavaScript	component.

Appendix	B,	"AJAX	Libraries	with	Server	Ties,"	page	339,
details	AJAX	libraries	that	have	a	server-side	component
and	a	JavaScript	component;	the	list	is	organized	by	server
language.

Appendix	C,	"JavaScript	DHTML	Libraries,"	page	347,	gives
information	about	JavaScript	libraries	that	is	useful	for
adding	rich,	JavaScript	elements	to	your	Web	applications.

Typographical	Conventions

Typographic	conventions	are	used	throughout	this	book	to
convey	information.	Italic	font	is	used	for	emphasis	and	for
citations	of	others'	work.	Code-based	items	are	shown	like	this
and	include	variable	names,	function	and	class	names,	and
filenames.

Where	to	Get	Examples	Used	in	This	book

The	example	programs	used	in	this	book	can	be	found	at
http://understandingajax.net.

http://understandingajax.net

Part	I:
Chapter	1.		What	Is	AJAX?

Chapter	2.		Getting	Started

Chapter	3.		Consuming	the	Sent	Data

Chapter	4.		Adding	AJAX	to	Your	Web	Development	Process

Chapter	5.		Getting	the	Most	from	AJAX

Chapter	6.		Usability	Guidelines

Chapter	7.		AJAX	Debugging	Guide

Chapter	1.	What	Is	AJAX?
In	this	chapter

1.1	Rich	Internet	Applications page	4

1.2	AJAX	Defined page	5

1.3	Technologies	of	AJAX page	7

1.4	Remote	Scripting page	9

1.5	Gmail	Brings	XMLHttpRequest	into	the
Mainstream page	9

1.6	New	Name:	AJAX page	12

1.7	Summary page	12

Web	2.0,	Rich	Internet	Application	(RIA),	Asynchronous
JavaScript	and	XML	(AJAX)	are	terms	that	explain	some	of	the
new	technologies	that	are	changing	the	World	Wide	Web.	These
changes	focus	on	the	user	experience	instead	of	just	on	the
technology,	and	this	collective	focus	will	create	the	next	version
of	the	Web.

This	chapter	examines	these	terms,	defines	them,	and	looks	at
their	basic	composition.	The	main	focus	is	AJAX	because	it	is
the	technology	that	makes	the	others	possible.	A	short	history
is	provided	to	give	you	the	context	into	which	AJAX	fits.	In
addition,	the	chapter	discusses	some	reasons	why	AJAX	didn't
take	off	before	2005	even	though	the	technical	obstacles	were

solved	years	before.	This	chapter	concludes	with	an	overview	of
Google's	Gmail,	gives	an	overview	of	the	various	AJAX	features
it	uses,	and	shows	how	Gmail	brought	AJAX	to	the	mainstream.

	

1.1.	Rich	Internet	Applications

The	Internet	has	changed	a	lot	since	its	initial	creation.	It
started	with	simple	text-based	communication	and	has	built	on
its	past	to	create	ever	more	powerful	means	of	communicating.
In	today's	World	Wide	Web,	you	can	create	interactive
multimedia	presentations	and	powerful	applications.	Although
these	applications	are	powerful,	they	aren't	without	their
drawbacks.	Most	are	incredibly	clumsy	when	compared	to	their
native	application	counterparts	(Hotmail	versus	Outlook
Express,	for	instance),	and	many	more	have	massive	usability
problems.	However,	problems	or	not,	the	Weband	especially
Web	applicationsis	one	of	the	fastest	growing	and	most
important	fields	of	software	development.

Internet	applications	bring	huge	benefits	to	the	table	when
compared	to	a	normal	application.	They	are	highly	accessible,
require	no	installation,	can	be	upgraded	at	any	time,	and	offer
access	to	large	amounts	of	data	without	complex	networks.
These	advantages	allow	for	a	shorter	time	to	market,	as	well	as
lower	development	and	support	costs,	when	compared	to	a
native	application.	Even	though	Internet	applications	usually
have	poorer	usability	due	to	their	simpler,	less	interactive
interfaces	and	slow	update	times,	they	are	replacing	native
applications	everywhere	you	look.

A	Rich	Internet	Application	(RIA)	is	an	Internet	application	that
attempts	to	bridge	the	usability	gap	between	native	applications
and	normal	Internet	ones.	It	contains	more	code	on	the
browser,	which	offers	higher	levels	of	interactivity	and	an
experience	similar	to	native	applications.	With	RIAs,	it's	possible
to	use	many	technologies,	such	as	Flash,	Java,	and	ActiveX,	but
the	most	important	one	is	JavaScript.	Because	JavaScript	is
provided	directly	by	the	browser	instead	of	being	an	add-on	like
the	other	technologies,	you	can	get	the	most	benefit	from	the
least	amount	of	work.

One	of	the	driving	technologies	behind	RIA	in	the	JavaScript
language	is	a	technology	called	AJAX.	AJAX	offers	the	ability	to
communicate	with	your	Web	server	outside	of	the	normal	load
flow.

	

1.2.	AJAX	Defined

AJAX,	originally	defined	by	an	article	written	by	Jesse	James
Garrett	in	February	2005,	meant	"Asynchronous
JavaScript+XML."	Although	that	acronym	is	amusing,	it	doesn't
tell	the	full	story.	AJAX	is	a	secondary	path	of	communication
from	the	JavaScript	environment	on	the	user's	Web	browser	to
your	server.	The	use	of	AJAX	causes	changes	in	the	typical	page
flow	that	you	see	in	a	normal	Web	application.	With	AJAX,
requests	now	happen	more	often	and	may	result	in	smaller
responses	of	non-HTML	data.

To	get	a	true	sense	of	what	this	really	means,	let's	look	at	the
communication	flow	of	a	normal	Web	application	(see	Figure	1-
1).	It's	composed	of	two	types	of	network	activity:	user-
initiated	HyperText	Transfer	Protocol	(HTTP)	requests	(typing	in
a	URL	or	clicking	on	a	link)	and	responses	from	the	server.	In
Web	applications,	most	of	the	user	requests	contain	data	from	a
form,	and	the	server	responses	are	generated	on	the	fly	by	a
programming	language	such	as	PHP	or	Java.	In	the	normal	Web
application	model,	the	user	always	generates	requests,	so	it's
possible	for	a	high	rate	of	page	requests	to	happen	by	someone
clicking	quickly,	but	in	general,	the	request	rate	is	low,	with
random	amounts	of	time	between	each	request.

Figure	1-1.	Web	application	request	flow

An	AJAX	Web	application	takes	the	normal	communication	flow
of	a	Web	application	and	adds	a	new	type	of	request.	To	your
server,	this	looks	just	like	a	normal	page	request	(although	in
most	cases,	its	data	will	be	in	a	different	format),	but	to	the
Web	browser,	it	is	different.	It's	a	request	that	won't	require	a
page	reload	on	completion,	and	it	doesn't	have	to	be	directly
initiated	by	a	user.	In	many	cases,	these	AJAX	requests	will	be
small	and	might,	for	instance,	take	the	form	of	a	request	to
validate	a	field	or	to	preload	some	data.	However,	the	requests
can	also	be	large.	For	instance,	they	might	submit	a	form
through	JavaScript	or	return	Hypertext	Markup	Language
(HTML)	that	will	be	used	to	replace	the	content	on	part	of	the
page.	A	sample	AJAX	communication	flow	is	shown	in	Figure	1-
2.	If	you	look	at	an	AJAX	application's	requests	over	time	and
compare	them	to	a	normal	Web	application,	you	can	pick	out
which	is	which	just	by	seeing	their	request	frequency.	A
comparison	between	the	two	is	shown	in	Figure	1-3.

Figure	1-2.	AJAX	application	request	flow

Figure	1-3.	Normal	Web	application	requests
versus	AJAX	requests

This	change	in	frequency	can	greatly	affect	your	ability	to	host

an	AJAX	Web	application.	Your	servers	now	have	to	be	able	to
handle	much	higher	request	rates	from	the	same	number	of
users.	This	can	be	especially	hard	if	each	AJAX	request	takes
just	as	much	processing	as	a	normal	page	load.

1.3.	Technologies	of	AJAX

If	you	search	the	Internet	for	AJAX,	you	are	likely	to	notice	a
large	number	of	items	popping	up	under	the	AJAX	name	that
don't	seem	to	fit	my	definition.	In	most	cases,	these	libraries
provide	the	related	functionality	needed	to	finish	your	AJAX
application,	but	other	times,	these	libraries	are	just	someone
trying	to	jump	on	the	AJAX	bandwagon.	When	looking	at	these
libraries	and	techniques,	I	divide	them	into	three	groups:

Those	directly	used	in	AJAX

Those	closely	related	to	AJAX

Those	that	are	just	part	of	the	rest	of	the	RIA	world

Most	of	the	technologies	directly	related	to	AJAX	are	those	that
make	up	the	"asynchronous"	and	the	"XML"	parts	of	the	AJAX
acronym.	These	are	the	libraries	and	techniques	that	provide
the	communication	layer	and	the	ways	to	encode	the	data	that
moves	over	it.	In	many	cases,	this	is	the	XMLHttpRequest	object,
but	IFrames	are	also	popular,	and	cookies	or	embedded
ActiveX/Java	are	yet	another	possibility.	The	"X"	in	AJAX	is	the
technique	used	in	the	data	encoding,	and	it's	an	area	with	a
huge	number	of	possibilities.	Data	can	be	transferred	as	plain
text,	HTML,	XML,	or	any	other	type	of	format	that	might	be
convenient	for	the	situation.

XML	is	extremely	popular	as	a	data	format	because	it's
supported	by	so	many	languages	and	because	it	is	easy	to
describe	arbitrary	data	types	with	it.	Many	times,	XML	is	used	to
facilitate	Remote	Procedure	Call	(RPC)	mechanisms,	but	it	can
also	be	used	to	directly	describe	the	data	being	transferred.	RPC
allows	for	the	direct	mapping	of	JavaScript	types	to	the	server's

data	types	(PHP,	Java,	and	so	on)	and	vice	versa.	XML	has	been
used	for	this	purpose	before,	so	it	includes	many	standardized
formats	such	as	those	used	in	SOAP,	XML-RPC,	and	WDDX.	It
can	also	include	a	custom	XML	format	created	for	a	specific
AJAX	implementation.

Another	popular	approach	is	to	generate	JavaScript	directly	on
the	server	and	send	it	to	the	client	where	it	can	be	used
directly.	This	approach	is	possible	because	JavaScript	can	run
code	from	a	string	using	its	eval	statement.	This	approach	is
often	used	in	conjunction	with	others	because	the	server-side
language	can't	evaluate	JavaScript	directly,	but	a	specific
JavaScript	Notation	(JSON)	can	allow	JavaScript	to	be	used	in
both	directions.	This	notation,	called	JavaScript	Object	Notation,
is	often	used	in	RPC	approaches	because	it	can	describe	any
data	type	JavaScript	can	support	while	still	being	easily
parseable	by	other	languages.

As	we	move	beyond	what	is	needed	to	allow	for	AJAX
communication,	we	get	the	large	set	of	related	technologies.
These	provide	the	extra	glue	and	user-interface	elements	that
are	needed	for	a	complete	AJAX	application.	These	are	generally
JavaScript	libraries;	some	are	stand-alone	and	just	provide	a
few	features;	others	provide	an	entire	framework	for	creating
dynamic	Web	pages.	In	most	cases,	you'll	need	some	sort	of
effects	library.	This	library	provides	fades,	swipes,	and	many
other	visual	effects	that	can	be	used	to	draw	attention	to	the
HTML	element	that	you've	updated	using	AJAX.

In	addition,	there	are	a	number	of	libraries	that	provide	drag-
and-drop	functionality,	which	is	less	closely	related	to	AJAX	but
is	most	useful	when	used	in	conjunction	with	AJAX.	Some	of
these	libraries	allow	AJAX	communication	in	some	setups,	while
they	are	just	a	related	add-on	in	other	setups.	This	mix-and-
match	of	libraries	is	great	because	you	use	only	what	you	need
to	get	the	job	done.	Keep	in	mind,	however,	that	the	Web
browser	will	need	to	download	all	this	JavaScript	to	actually	run.

In	the	wider	world	of	technologies	related	to	AJAX,	you	get	the
JavaScript	libraries	and	other	technologies,	such	as	Scalable
Vector	Graphics	(SVG),	that	might	be	in	an	AJAX	Web
application,	but	they	really	don't	have	a	direct	relation	to	AJAX.
These	technologies	make	up	the	wider	world	of	RIA,	but	they
are	also	more	expansive	and	harder	to	integrate	into	existing
applications.

	

1.4.	Remote	Scripting

At	the	heart	of	improving	the	usability	of	a	Web	application	is
removing	the	communications	bottleneck	between	the	user	and
the	Web	application.	Using	most	Web	applications	means
spending	tons	of	time	in	search	screens	looking	up	an	item's	ID
or	waiting	for	a	page	to	reload.	The	simplest	way	to	solve	these
problems	is	to	talk	to	your	server	from	JavaScript	and	skip	the
page	reload.

Experimentation	down	this	new	path	began	in	2001;	at	the
time,	it	was	called	remote	scripting.	A	couple	of	different
approaches	were	used,	but	most	ended	up	being	an	RPC-style
approach	using	JavaScript's	XMLHttpRequest	object	for	sending	the
data.	This	same	approach	is	used	in	many	AJAX
implementations	today,	so	why	did	it	take	four	years	for	its	use
to	become	widespread?	It	may	have	been	that	most	developers
weren't	comfortable	using	JavaScript.	It	also	might	be	that
questions	about	why	a	specific	Web	technology	is	used	or	not
seemed	impossible	to	answer.	However,	I	think	it	was	just	a
case	where	it	took	a	long	time	for	a	critical	mass	of	acceptance
to	be	reached.

1.5.	Gmail	Brings	XMLHttpRequest	into	the
Mainstream

In	March	2004,	the	use	of	XMLHttpRequest	to	create	highly
interactive	Web	applications	came	to	the	forefront	of	the
public's	attention.	Google	released	a	beta	form	of	Gmail,	a
highly	interactive,	JavaScript-based	Web	mail	application.	Gmail
(see	Figure	1-4)	made	waves	not	only	for	its	user	interface,	but
also	for	its	large	storage	capacity.	It	also	had	an	innovative
invitation-based	method	of	joining	the	preview,	which	made	it
even	more	exciting	because	Gmail	was	not	open	to	all.	Gmail
was	one	of	the	first	mainstream	applications	to	make
widespread	use	of	AJAX,	although	the	term	hadn't	yet	been
invented	in	2004.

Figure	1-4.	Gmail	Web	mail	interface

[View	full	size	image]

Google	applications	spend	a	lot	of	time	in	beta	before	their	final

release,	and	Gmail	is	no	exception.	While	I	was	writing	this
book	(in	May	2006),	Gmail	was	still	in	beta.	This	extended	beta
period	is	useful	for	a	large-scale	application	like	this	because	it
allows	time	for	polishing	the	user	interface	and	to	work	out	any
scalability	issues.	When	you	look	at	Gmail,	this	polish	shows	in
a	number	of	ways.	AJAX	and	other	JavaScript	techniques	are
used	throughout,	minimizing	full-page	reloads	and	providing	all
the	features	you	would	expect	in	a	high-quality	mail	reader.
Gmail	features	available	through	the	use	of	AJAX	include	the
ability	to	do	the	following:

Read	messages	without	a	page	reload

Tag	messages	(labels)	without	a	page	reload

Change	folders

Check	the	spelling	of	messages

Compose	messages

Check	for	new	mail	on	a	regular	basis

View	news	headlines	without	a	page	reload

Search	messages	without	a	page	reload

Add	messages	to	a	quick	group	and	view	just	that	group
without	a	page	reload

Save	drafts	automatically

The	features	in	the	preceding	list	provide	the	bulk	of	the	rich
experience,	but	it's	the	extras	that	complete	it.	For	instance,

users	can	receive	feedback	while	they	are	waiting	on	data.	This
feedback	comes	in	the	form	of	an	icon	(see	Figure	1-5)	in	the
upper-right	corner.	Dynamic	HTML	(DHTML)	features,	such	as	a
JavaScript	rich	text	editor,	are	also	available.	With	its	large
resources,	Google	has	also	made	a	non-JavaScript	version	of
Gmail.	It	looks	the	same	but	has	none	of	the	advanced	features
and	the	continuous	reloads	that	you	see	in	most	Web
applications.	This	two-application	approach	might	be	difficult	to
replicate	for	some,	simply	due	to	the	large	amount	of	work
involved,	but	it's	a	great	way	to	make	sure	your	application	is
accessible	to	everyone.

Figure	1-5.	Gmail's	loading	indicator

There	are	still	some	minor	issues	with	the	Gmail	application,
and	many	AJAX	applications	will	run	into	these	issues.	For
instance,	the	browser's	bookmark	feature	becomes	useless
because	the	URL	doesn't	change	when	content	is	updated,	and
the	URL	is	the	only	identifier	that	the	browser	stores.	In
addition,	the	user	interface	looks	similar	to	a	native	application,
but	it	behaves	differently,	which	can	be	a	problem	for	some
users	because	the	application	will	fail	to	meet	their
expectations.	Still,	the	application	does	attempt	to	alleviate	this
problem	by	giving	feedback	messages	that	tell	users	that	an
action	is	complete.	The	messages	include	notices	that	labels

have	been	added	to	emails	(see	Figure	1-6).

Figure	1-6.	Gmail	provides	feedback	for
completed	actions

Because	Gmail	was	one	of	the	first	mainstream	AJAX-powered
applications,	it	set	a	baseline	for	what	users	could	expect.	For
instance,	its	replacement	of	standard	browser	functions,	such
as	refresh,	with	links	inside	the	application	is	a	technique	that
has	been	copied	by	many	other	applications.	This	has	helped
increase	the	quality	of	many	AJAX	applications	because	Gmail
does	a	good	job	of	providing	a	consistent	and	highly	usable
experience.

1.6.	New	Name:	AJAX

In	February	2005,	Jesse	James	Garrett	published	an	article	that
created	the	term	AJAX	and	moved	it	from	something	neat	that
Google	and	a	couple	of	other	cuttingedge	companies	were	using
to	a	technique	that	could	be	used	by	anyone.	While	many
people	have	complained	about	the	acronym	he	coined,	it	did	get
people's	attention.	This	article	began	a	period	of	widespread
experimentation	and	implementation	in	the	Open	Source
Software	(OSS)	and	blogging	communities	that	has	made	AJAX
a	possibility	for	anyone.

By	2006,	developers	were	using	AJAX	in	a	number	of	exciting
new	applications,	from	online	mapping	sites	to	to-do	lists	and
calendars.	However,	the	driver	of	innovation	was	not	the	large
consumer-targeted	applications,	but	the	tools	that	allowed	AJAX
to	be	used	by	developers	everywhere.

1.7.	Summary

RIAs	are	modern	Web	applications	that	provide	high	levels	of
interactivity	and	perform	similarly	to	native	applications.	RIA	is
made	possible	by	a	number	of	enabling	technologies	and
techniques.	These	include	JavaScript,	DHTML,	SVG,	and	AJAX.

AJAX	is	a	JavaScript	technology	that	provides	an	extra
communication	channel	with	the	Web	server.	AJAX	is	one	of	the
enabling	technologies	that	allow	the	creation	of	RIAs,	together
with	DHTML	and	other	JavaScript	techniques;	with	them,	you
can	make	powerful	applications	that	can	rival	native
applications.

AJAX	isn't	a	new	technology,	but	it's	one	that	has	taken	awhile
to	become	ready	for	mainstream	consumption.	It	has	been
driven	by	the	Web's	constant	need	for	innovation	and	by
companies	such	as	Google	pushing	it	into	the	mainstream.
Open	source	has	made	it	possible	for	developers	to	add
advanced	AJAX	techniques	without	having	to	develop	everything
themselves.

	

Chapter	2.	Getting	Started
In	this	chapter

2.1	XMLHttpRequest	Overview page	16

2.2	Cross-Browser	XMLHttpRequest page	21

2.3	Sending	Asynchronous	Requests page	23

2.4	AJAX	Without	XMLHttpRequest page	29

2.5	Fallback	Option	1:	Sending	a	Request	Using	an	IFrame page	31

2.6	Fallback	Option	2:	Sending	a	Request	Using	a	Cookie page	36

2.7	Summary page	39

The	foundation	that	makes	AJAX	possible	is	the	communication
layer	with	the	server.	The	most	complete	option	for	performing
this	communication	is	the	JavaScript	XMLHttpRequest	object.	If
XMLHttpRequest	is	not	suitable	to	you,	hidden	IFrames	and	cookies
can	also	be	used.	We	will	examine	both	options	later	in	this
chapter.

This	chapter	introduces	you	to	the	XMLHttpRequest	object,	showing
you	how	to	work	around	its	implementation	differences	between
browsers.	After	that,	we	make	some	actual	page	requests,	both
in	a	synchronous	fashion	and	in	an	asynchronous	fashion.	This
chapter	finishes	with	some	various	fallback	approaches	that	can
be	used	if	a	browser	doesn't	support	XMLHttpRequest,	including

how	to	use	IFrames	and	cookies	as	your	communication	channel.

	

2.1.	XMLHttpRequest	Overview

Originally,	Microsoft	designed	XMLHttpRequest	to	allow	Internet
Explorer	(IE)	to	load	XML	documents	from	JavaScript.	Even
though	it	has	XML	in	its	name,	XMLHttpRequest	really	is	a	generic
HTTP	client	for	JavaScript.	With	it,	JavaScript	can	make	GET	and
POST	HTTP	requests.	(For	POST	requests,	data	can	be	sent	to	the
server	in	a	format	of	your	choosing.)	The	main	limitations	to
XMLHttpRequest	are	due	to	the	browser	security	sandbox.	It	can
make	only	HTTP(S)	requests	(file	URLs,	for	example,	won't
work),	and	it	can	make	requests	only	to	the	same	domain	as
the	currently	loaded	page.

The	security	limitations	of	XMLHttpRequest	do	limit	the	ways	in
which	you	can	use	it,	but	the	trade-off	in	added	security	is	well
worth	it.	Most	attacks	against	JavaScript	applications	center
around	injecting	malicious	code	into	the	Web	page.	If
XMLHttpRequest	allowed	requests	to	any	Web	site,	it	would	become
a	major	player	in	these	attacks.	The	security	sandbox	reduces
these	potential	problems.	In	addition,	it	simplifies	the
programming	model	because	the	JavaScript	code	can	implicitly
trust	any	data	it	loads	from	XMLHttpRequest.	It	can	trust	the	data
because	the	new	data	is	just	as	secure	as	the	page	that	loaded
the	initial	page.

Despite	the	fact	that	XMLHttpRequest	provides	only	a	small	API	and
just	a	handful	of	methods	and	properties,	it	has	its	differences
between	browsers.	These	differences	are	mainly	in	event
handling	and	object	instantiation	(in	IE,	XMLHttpRequest	is	actually
an	ActiveX	object),	so	they	aren't	hard	to	work	around.	In	the
following	overview	of	the	XMLHttpRequest	API,	the	Mozilla	syntax
for	XMLHttpRequest	instantiation	is	used.	If	you	want	to	run	the
examples	in	IE,	you	need	to	replace	new	XMLHttpRequest();	with
either	new	ActiveXObject("MSXML2.XMLHTTP.3.0");	or	the	full	cross-
browser	instantiation	method	shown	in	the	"Cross-Browser
XMLHttpRequest"	section	of	this	chapter.

XMLHttpRequest	is	the	most-used	method	for	AJAX	communications
because	it	provides	two	unique	features.	The	first	feature
provides	the	ability	to	load	new	content	without	that	content
being	changed	in	any	way,	which	makes	it	extremely	easy	to	fit
AJAX	into	your	normal	development	patterns.	The	second
feature	allows	JavaScript	to	make	synchronous	calls.	A
synchronous	call	stops	all	other	operations	until	it's	complete,
and	while	this	isn't	an	option	that	is	usually	used,	it	can	be
useful	in	cases	in	which	the	current	request	must	be	completed
before	further	actions	are	taken.

2.1.1.	XMLHttpRequest::Open()

The	open	method	is	used	to	set	the	request	type	(GET,	POST,	PUT,
or	PROPFIND),	the	URL	of	the	page	being	requested,	and	whether
the	call	will	be	asynchronous.	A	username	and	password	for
HTTP	authentication	can	also	be	optionally	passed.	The	URL	can
be	either	a	relative	path	(such	as	page.html)	or	a	complete	one
that	includes	the	server's	address	(such	as
http://blog.joshuaeichorn.com/page.html).	The	basic	method
signature	is:

open(type,url,isAsync,username,password)

In	the	JavaScript	environment,	security	restrictions	are	in	place.
These	security	restrictions	cause	the	open	method	to	throw	an
exception	if	the	URL	is	from	a	different	domain	than	the	current
page.	The	following	example	uses	open	to	set	up	a	synchronous
GET	request	to	index.html:

1	var	req	=	new	XMLHttpRequest();
2	req.open('GET',	'index.html',	false);
3	req.send(null);
4	if(req.status	==	200)

http://blog.joshuaeichorn.com/page.html

5	alert(req.responseText);

2.1.2.	XMLHttpRequest::Send()

The	send	method	makes	the	connection	to	the	URL	specified	in
open.	If	the	request	is	asynchronous,	the	call	will	return	it
immediately;	otherwise,	the	call	will	block	further	execution
until	the	page	has	been	downloaded.	If	the	request	type	is	POST,
the	payload	will	be	sent	as	the	body	of	the	request	that	is	sent
to	the	server.	The	method	signature	is:

send(payload)

When	you	make	a	POST	request,	you	will	need	to	set	the	Content-
type	header.	This	way,	the	server	knows	what	to	do	with	the
uploaded	content.	To	mimic	sending	a	form	using	HTTP	POST,	you
set	the	content	type	to	application/x-www-form-urlencoded.	URLencoded
data	is	the	same	format	that	you	see	in	a	URL	after	the	"?".	You
can	see	an	example	of	this	encoded	data	by	making	a	form	and
setting	its	method	to	GET.	The	following	example	shows	a
synchronous	POST	request	to	index.php	that	is	sending	a	URLencoded
payload.	If	index.php	contains	<?php	var_dump($_POST);	?>,	you	can
see	the	submitted	data	translated	as	if	it's	a	normal	form	in	the
alert:

1	var	req	=	new	XMLHttpRequest();
2	req.open('POST',	'index.php',	false);
3	req.setRequestHeader('Content-type',
4												'application/x-www-form-urlencoded;charset=UTF-8;');
5	req.send('hello=world&XMLHttpRequest=test');
6	if(req.status	==	200)
7			alert(req.responseText);

2.1.3.	XMLHttpRequest::setRequestHeader()

There	are	many	different	cases	in	which	setting	a	header	on	a
request	might	be	useful.	The	most	common	use	of
setRequestHeader()	is	to	set	the	Content-type,	because	most	Web
applications	already	know	how	to	deal	with	certain	types,	such
as	URLencoded.	The	setRequestHeader	method	signature	takes	two
parameters:	the	header	to	set	and	its	value:

setRequestHeader(header,value)

Because	requests	sent	using	XMLHttpRequest	send	the	same
standard	headers,	including	cookie	headers	and	HTTP
authentication	headers,	as	a	normal	browser	request,	the
header	name	will	usually	be	the	name	of	the	HTTP	header	that
you	want	to	override.	In	addition	to	overriding	default	headers,
setRequestHeader	is	useful	for	setting	custom,	application-specific
headers.	Custom	headers	are	generally	prefixed	with	X-	to
distinguish	them	from	standard	ones.	The	following	example
makes	a	synchronous	GET	request	adding	a	header	called	X-foo	to
test.php.	If	test.php	contains	<?php	var_dump($_SERVER);	?>,	you	will
see	the	submitted	header	in	the	alert:

1	var	req	=	new	XMLHttpRequest();
2	req.open('GET',	'test.php',	false);
3	req.setRequestHeader('X-foo','bar');
4	req.send(null);
5
6	if(req.status	==	200)
7						alert(req.responseText);

2.1.4.
XMLHttpRequest::getResponseHeader()	and
getAllResponseHeaders()

The	geTResponseHeader	method	allows	you	to	get	a	single	header
from	the	response;	this	is	especially	useful	when	all	you	need	is
a	header	like	Content-type;	note	that	the	specified	header	is	case-
insensitive.	The	method	signature	is	as	follows:

getResponseHeader(header)

getAllResponseHeaders	returns	all	the	headers	from	the	response	in
a	single	string;	this	is	useful	for	debugging	or	searching	for	a
value.	The	following	example	makes	a	synchronous	GET	request
to	test.html.	When	the	client	receives	a	response,	the	Content-type
is	alerted	and	all	the	headers	are	alerted:

1	var	req	=	new	XMLHttpRequest();
2	req.open('GET',	'test.html',	false);
3	req.send(null);
4
5	if(req.status	==	200)	{
6					alert(req.getResponseHeader('Content-type'));
7							alert(req.getAllResponseHeaders());
8	}

2.1.5.	Other	XMLHttpRequest	Methods

All	browsers	implement	an	abort()	method,	which	is	used	to
cancel	an	in-progress	asynchronous	request.	(An	example	of
this	is	shown	in	the	"Sending	Asynchronous	Requests"	section
in	this	chapter.)	Mozilla-based	browsers	also	offer	some	extra
methods	on	top	of	the	basic	API;	for	instance,	addEventListener()
and	removeEventListener()	provide	a	way	to	catch	status	events
without	using	the	on*	properties.	There	is	also	an
overrideMimeType()	method	that	makes	it	possible	to	force	the
Content-type	to	text/xml	so	that	it	will	be	parsed	into	a	DOM
document	even	if	the	server	doesn't	report	it	as	such.	The
Mozilla-specific	methods	can	be	useful	in	certain	circumstances,
but	in	most	cases,	you	should	stay	away	from	them	because
not	all	browsers	support	them.

2.1.6.	XMLHttpRequest	Properties

XMLHttpRequest	provides	a	number	of	properties	that	provide
information	or	results	about	the	request.	Most	of	the	properties
are	self-explanatory;	you	simply	read	the	value	and	act	on	it.
The	on*	properties	are	event	handlers	that	are	used	by	assigning
a	function	to	them.	A	list	of	all	the	properties	follows:

status.	The	HTTP	status	code	of	the	request	response.

statusText.	The	HTTP	status	code	that	goes	with	the	code.

readyState.	The	state	of	the	request.	(See	Table	2-1	in	the
next	section	of	this	chapter	for	values.)

responseText.	Unparsed	text	of	the	response.

responseXML.	Response	parsed	into	a	DOM	Document	object;
happens	only	if	Content-type	is	text/xml.

onreadystatechange.	Event	handler	that	is	called	when	readyState
changes.

onerror.	Mozilla-only	event	handler	that	is	called	when	an
error	happens	during	a	request.

onprogress.	Mozilla-only	event	handler	that	is	called	at	an
interval	as	content	is	loaded.

onload.	Mozilla-only	event	handler	that	is	called	when	the
document	is	finished	loading.

Note

Mozilla	resets	event	handlers,	such	as
onreadystatechange,	after	a	request	is	completed,	so
you	need	to	reset	them	if	you	are	making	multiple
calls	with	the	same	object.

2.1.7.	readyState	Reference

Table	2-1	shows	the	possible	values	for	the	readyState	variable.	It
will	return	a	number	representing	the	current	state	of	the
object.	Each	request	will	progress	through	the	list	of	readyStates.

Table	2-1.	readyState	Levels

readyState	Status
Code

Status	of	the	XMLHttpRequest	Object

(0)	UNINITIALIZED The	object	has	been	created	but	not	initialized.
(The	open	method	has	not	been	called.)

(1)	LOADING The	object	has	been	created,	but	the	send
method	has	not	been	called.

(2)	LOADED The	send	method	has	been	called,	but	the	status
and	headers	are	not	yet	available.

(3)	INTERACTIVE

Some	data	has	been	received.	Calling	the
responseBody	and	responseText	properties	at	this
state	to	obtain	partial	results	will	return	an	error,
because	status	and	response	headers	are	not
fully	available.

(4)	COMPLETED
All	the	data	has	been	received,	and	the	complete
data	is	available	in	the	responseBody	and
responseText	properties.

The	readyState	variable	and	the	onreadystatechange	event	handler
are	linked	in	such	a	way	that	each	time	the	readyState	variable	is
changed,	the	onreadystatechange	event	handler	is	called.

	

2.2.	Cross-Browser	XMLHttpRequest

One	of	the	attributes	that	have	made	XMLHttpRequest	such	a
popular	transport	for	AJAX	requests	is	that	it	is	easy	to	use	in	a
way	that	is	compatible	across	multiple	browsers.	The	big	two
browsers,	IE	and	Firefox,	provide	the	same	basic	API.	This
consistency	makes	for	a	similar	development	experience.	Opera
and	Safari	also	support	the	same	basic	API,	but	only	in	their
more	recent	versions.

When	you	are	writing	cross-browser,	the	first	problem	you	need
to	overcome	is	that	XMLHttpRequest	is	an	ActiveX	object	in	IE,	and
it's	a	normal	JavaScript	object	in	Mozilla	and	the	other
browsers.	There	are	a	number	of	approaches	to	overcoming	this
problem,	including	optional	JScript	code	for	IE,	but	I	find	that
the	simplest	solution	is	just	to	use	exceptions.	Listing	2-1	shows
an	example	that	tries	every	version	of	the	XMLHTTP	ActiveX
object,	if	needed.	This	helps	make	our	implementation	as
robust	as	possible.	The	function	also	throws	an	exception	if	it's
not	possible	to	create	an	XMLHttpRequest	object.	This	gives	us	a
way	to	give	error	messages	or	to	fall	back	to	IFrame	requests,	if
needed.

Listing	2-1.	Cross-Browser	XMLHttpRequest
Creation

1		//	function	to	create	an	XMLHttpClient	in	a	cross-browser	manner
2		function	initXMLHttpClient()	{
3						var	xmlhttp;
4						try	{
5										//	Mozilla	/	Safari	/	IE7
6										xmlhttp	=	new	XMLHttpRequest();
7						}	catch	(e)	{
8											//	IE
9											var	XMLHTTP_IDS	=	new	Array('MSXML2.XMLHTTP.5.0',
10																																					'MSXML2.XMLHTTP.4.0',
11																																					'MSXML2.XMLHTTP.3.0',

12																																					'MSXML2.XMLHTTP',
13																																					'Microsoft.XMLHTTP');
14										var	success	=	false;
15										for	(var	i=0;i	<	XMLHTTP_IDS.length	&&	!success;	i++)	{
16														try	{
17																			xmlhttp	=	new	ActiveXObject(XMLHTTP_IDS[i]);
18																						success	=	true;
19																}	catch	(e)	{}
20										}
21										if	(!success)	{
22														throw	new	Error('Unable	to	create	XMLHttpRequest.');
23										}
24					}
25					return	xmlhttp;
26	}

The	overall	pattern	of	this	code	is	simple:	Create	an
XMLHttpRequest	instance	in	the	most	optimal	way	possible,	as
shown	in	line	6.	This	creation	should	always	succeed	on	Mozilla-
based	browsers,	such	as	Firefox,	on	Opera,	and	on	the
upcoming	IE	7.

If	XMLHttpRequest	doesn't	exist,	catch	the	exception	that	is	thrown,
as	shown	in	line	7.	Getting	an	exception	means	you're	on	IE	or
an	old	browser.	To	test	for	IE,	attempt	to	create	an	ActiveX
version	of	XMLHttpRequest,	which	is	accomplished	by	the	following:

1.	 Looping	over	all	possible	ActiveX	identifiers.	This	action	will
create	an	ActiveX	instance	for	each	identifier	until	the
creation	succeeds,	setting	the	success	flag	to	TRue,	as	shown
in	lines	920.

2.	 If	creation	is	successful,	returning	an	XMLHttpRequest	instance,
as	shown	in	line	25.	Otherwise,	throwing	a	JavaScript
exception,	as	shown	in	line	22.

This	approach	allows	for	minimal	overhead	if	the	browser
supports	a	native	XMLHttpRequest	object	while	fully	supporting	IE.
It	also	gives	us	an	error	if	XMLHttpRequest	isn't	supported	at	all.
This	error	could	be	displayed	to	the	user	at	this	point,	or	you
could	insert	another	communication	approach,	such	as	hidden

IFrames.

	

2.3.	Sending	Asynchronous	Requests

Synchronous	requests	are	easier	to	use	than	asynchronous
requests	because	they	return	data	directly	and	remove	the
hassle	of	creating	callback	functions.	However,	they	aren't	the
standard	use	case	for	XMLHttpRequest	because	the	entire	browser
is	locked	while	the	request	is	happening.	There	are	some
circumstances	in	which	blocking	is	useful	(mainly	when	a
decision	needs	to	be	made	before	the	current	function	ends),
but	in	most	cases,	you'll	want	these	requests	to	happen	in	the
background.	An	asynchronous	request	allows	the	browser	to
continue	running	JavaScript	code	and	users	to	continue
interacting	with	the	page	while	the	new	data	is	loaded.	With	the
proper	user	interface,	asynchronous	communication	allows	an
AJAX	application	to	be	useful	even	when	the	user's	connection
to	the	site	is	slow.

To	make	an	asynchronous	call,	we	need	to	accomplish	two
tasks:	set	the	asynchronous	flag	on	open	to	TRue,	and	add	a
readyStateChanged	event	handler.	This	event	handler	will	wait	for	a
ready	state	of	4,	which	means	the	response	is	loaded.	It	will
then	check	the	status	property.	If	the	status	is	200,	we	can	use
responseText;	if	it's	another	value,	we	have	an	error,	so	we'll	need
to	create	an	alert	dialog	to	show	it.	An	asynchronous	call	to
test.php	is	shown	in	Listing	2-2.	The	initXMLHttpClient	function
from	an	earlier	chapter	section,	"Cross-Browser	XMLHttpRequest,"
is	used	to	create	our	XMLHttpRequest	object.

Listing	2-2.	Making	an	Asynchronous	Request

1	var	req	=	initXMLHttpClient();
2	req.onreadystatechange	=	function()	{
3					if	(req.readyState	==	4)	{
4												if	(req.status	==	200)	{
5																alert(req.responseText);

6									}	else	{
7													alert('Loading	Error:	['+req.status+']	'
8																						+req.statusText);
9									}
10				}
11	}
12	req.open('GET','test.php',true);
13	req.send(null);

Although	this	code	gets	the	job	done,	it's	not	a	great	long-term
solution	because	we	will	have	to	write	a	new	onreadystatechange
method	for	each	call.	The	solution	to	this	is	to	create	our	own
HttpClient	class	that	wraps	XMLHttpRequest.	Such	a	class	gives	us
an	easy-to-use	API	and	a	property	to	use	for	the	callback	that
has	to	deal	only	with	successful	requests.	Just	adding	some
helper	methods	would	be	a	simpler	solution,	but	that's	not	a
possibility	because	IE	doesn't	allow	you	to	add	methods	to	an
ActiveX	object.

A	sample	XMLHttpRequest	wrapper	class	is	shown	in	Listing	2-3.	The
main	features	of	the	HttpClient	class	are	a	callback	property	that
is	called	when	a	successful	asynchronous	request	is	complete
and	a	makeRequest	method	that	combines	the	open	and	send
functions.	It	also	provides	event	properties	that	are	called	when
a	request	is	made	(onSend),	when	it	ends	(onload),	and	when	an
errors	occurs	(onError).	A	default	onSend	and	onLoad
implementation	is	provided,	which	creates	a	basic	loading
message	while	requests	are	being	made.

Listing	2-3.	HttpClient	XMLHttpRequest	Wrapper

1		function	HttpClient()	{	}
2		HttpClient.prototype	=	{
3						//	type	GET,POST	passed	to	open
4						requestType:'GET',
5						//	when	set	to	true,	async	calls	are	made
6						isAsync:false,
7

8						//	where	an	XMLHttpRequest	instance	is	stored
9						xmlhttp:false,
10
11						//	what	is	called	when	a	successful	async	call	is	made
12						callback:false,
13
14						//	what	is	called	when	send	is	called	on	XMLHttpRequest
15						//	set	your	own	function	to	onSend	to	have	a	custom	loading
16					//	effect
							onSend:function()	{
17									document.getElementById('HttpClientStatus').style.display	=
18																															'block';
19					},
20
21					//	what	is	called	when	readyState	4	is	reached,	this	is
22					//	called	before	your	callback
23						onload:function()	{
24										document.getElementById('HttpClientStatus').style.display	=
25																														'none';
26						},
27
28					//	what	is	called	when	an	http	error	happens
29					onError:function(error)	{
30									alert(error);
31					},
32
33					//	method	to	initialize	an	xmlhttpclient
34					init:function()	{
35							try	{
36											//	Mozilla	/	Safari
37												this.xmlhttp	=	new	XMLHttpRequest();
38							}	catch	(e)	{
39											//	IE
40											var	XMLHTTP_IDS	=	new	Array('MSXML2.
																																									XMLHTTP.5.0',
41																																					'MSXML2.XMLHTTP.4.0',
42																																					'MSXML2.XMLHTTP.3.0',
43																																					'MSXML2.XMLHTTP',
44																																					'Microsoft.XMLHTTP');
45											var	success	=	false;
46											for	(var	i=0;i	<	XMLHTTP_IDS.length	&&
													!success;	i++)	{
47															try	{
48																			this.xmlhttp	=	new	ActiveXObject
																					(XMLHTTP_IDS[i]);
49																			success	=	true;
50															}	catch	(e)	{}
51											}
52											if	(!success)	{
53															this.onError('Unable	to	create	XMLHttpRequest.');
54											}
55								}
56					},
57
58					//	method	to	make	a	page	request
59					//	@param	string	url		The	page	to	make	the	request	to

60					//	@param	string	payload		What	you're	sending	if	this	is	a	POST
61				//																								request
62				makeRequest:	function(url,payload)	{
63									if	(!this.xmlhttp)	{
64													this.init();
65									}
66									this.xmlhttp.open(this.requestType,url,this.isAsync);
67
68									//	set	onreadystatechange	here	since	it	will	be	reset	after	a
69								//completed	call	in	Mozilla
70									var	self	=	this;
71									this.xmlhttp.onreadystatechange	=	function()	{
72								self._readyStateChangeCallback();	}
73
74									this.xmlhttp.send(payload);
75
76									if	(!this.isAsync)	{
77													return	this.xmlhttp.responseText;
78									}
79				},
80
81					//	internal	method	used	to	handle	ready	state	changes
82				_readyStateChangeCallback:function()	{
83									switch(this.xmlhttp.readyState)	{
84														case	2:
85															this.onSend();
86															break;
87												case	4:
88															this.onload();
89															if	(this.xmlhttp.status	==	200)	{
90																			this.callback(this.xmlhttp.responseText);
91															}	else	{
92																			this.onError('HTTP	Error	Making	Request:	'+
93																																							'['+this.xmlhttp.
																																									status+']'+
94																																							'+this.xmlhttp.
																																									statusText));
95															}
96															break;
97									}
98					}
99	}

The	HttpClient	class	contains	comments	explaining	its	basic
functionality,	but	you	will	want	to	look	at	a	couple	of	areas	in
detail.	The	first	areas	are	the	properties	you'll	want	to	set	while
interacting	with	the	class;	these	include	the	following:

requestType(line	4).	Used	to	set	the	HTTP	request	type,	GET	is

used	to	request	content	that	doesn't	perform	an	action
whereas	POST	is	used	for	requests	that	do.

isAsync(line	6).	A	Boolean	value	used	to	set	the	request
method.	The	default	is	false,	which	makes	an	synchronous
request.	If	you're	making	an	asynchronous	request,	isAsync
is	set	to	true.	When	making	an	asynchronous	request,	you
also	need	to	set	the	callback	property.

callback(line	12).	This	property	takes	a	function	that	takes
a	single	parameter	result	and	is	called	when	a	request	is
successfully	completed.

Lines	1631	contain	simple	functions	for	handling	some	basic
user	feedback.	When	a	request	is	sent	to	the	server,	a	DOM
element	with	the	ID	of	HttpClientStatus	is	shown	(lines	1619).
When	it	completes,	it	is	hidden	again	(lines	2326).	The	class
also	defines	a	function	to	call	when	an	error	happens	(lines
2931);	it	creates	an	alert	box	with	the	error	message.	Common
errors	include	receiving	a	404	page	not	found	HTTP	error	message
or	not	being	able	to	create	an	XMLHttpRequest	object.	The
implementation	of	these	three	functions	is	simple,	and	you'll
likely	want	to	override	them	with	more	sophisticated
application-specific	versions.

Lines	3356	contain	the	init	method,	which	is	identical	to	the
initXMLHttpClient	function	we	created	in	Listing	2-1,	except	for
what	it	does	with	its	error	message.	Now	it	sends	it	to	the
onError	method.	You	won't	be	dealing	with	this	function	directly
because	the	makeRequest	method	will	take	care	of	it	for	you.	The
makeRequest	method	(lines	6279)	is	your	main	interaction	with	the
class.	It	takes	two	parameters:	a	URL	to	which	to	make	the
request	and	a	payload	that	is	sent	to	the	server	if	you're
making	a	POST	request.	The	actual	implementation	is	a	more
generic	version	of	the	code	shown	in	Listing	2-2.	The
_readyStateChangeCallback	(lines	8299)	method	is	set	as	the
readyState	handler	by	makeRequest.	It	handles	calling	onSend	when

the	initial	request	is	sent	and	then	calling	onload	when	the
request	completes.	It	also	checks	for	a	200	HTTP	status	code	and
calls	onError	if	some	other	status	is	returned.

Listing	2-4	uses	the	HttpClient	class	and	shows	its	basic	usage.	A
wrapper	class	like	this	helps	cut	down	the	amount	of	code	you
need	to	write	per	request	while	giving	a	single	place	to	make
future	changes.

Listing	2-4.	Using	the	HttpClient	XMLHttpRequest
Wrapper

1		<html>
2		<head>
3		<title>Simple	XMLHttpRequest	Wrapper	Test	Page</title>
4
5		<script	type="text/javascript"	src="HttpClient.js"></script>
6		<body>
7		<script	type="text/javascript">
8
9		var	client	=	new	HttpClient();
10	client.isAsync	=	true;
11
12	function	test()	{
13					client.callback	=	function(result)	{
14										document.getElementById('target').innerHTML	=	result;
15					}
16						client.makeRequest('.',null);
17	}
18	</script>
19
20	<div	id="HttpClientStatus"	style="display:none">Loading	...</div>
21	Make	an	Async	Test	call
22	<div	id="target"></div>
23	</body>
24	</html>

Using	the	HttpClient	XMLHttpRequest	wrapper	is	a	simple	task.	You
start	by	including	it	in	the	header	of	your	HTML	page	(line	5),
and	then	you	can	proceed	to	use	it.	You	do	this	by	creating	an
instance	of	the	class	(line	9),	configuring	its	basic	properties	(in

this	case,	setting	isAsync	to	true	(line	10)),	and	then	setting	up
some	code	to	call	makeRequest.	In	most	cases,	this	code	will	be
contained	in	a	function	so	that	it	can	be	tied	to	a	user-driven
event,	such	as	clicking	a	link.	The	call	is	made	by	the	test
function	(lines	1217);	the	test	function	first	sets	up	a	callback	to
run	when	the	request	is	complete	(lines	1315),	and	then	it	calls
makeRequest	(line	16),	which	starts	the	AJAX	call.

	

2.4.	AJAX	Without	XMLHttpRequest

There	are	a	number	of	cases	in	which	you	might	not	have
XMLHttpRequest	support.	The	most	common	would	be	in	the	case
of	an	older	browser.	This	is	the	hardest	to	work	around,	not
because	there	is	no	AJAX	fallback,	but	because	all	the	other
DOM	manipulation	that	you	do	within	the	application	won't
work.	Another	problem	case	is	when	your	browser	supports
everything	that	is	needed	except	for	XMLHttpRequest.	This	problem
could	occur	when	IE	is	in	a	mode	where	it	can't	use
ActiveXObjects	or	when	you	are	using	a	pre-7.6	version	of	Opera.
In	some	cases,	especially	intranet	applications,	it's	easy	to	just
require	an	upgrade,	but	if	you	want	to	use	AJAX	on	a	public
site,	you'll	want	to	think	about	using	some	sort	of	fallback
mechanism.	The	best	candidate	for	a	fallback	is	to	use	hidden
IFrames.	Another	option	is	to	use	cookies,	but	they	can	send	only
a	limited	amount	of	data	per	request,	so	it	is	hard	to	drop	in
cookie-based	approaches	as	a	replacement	for	code	that	has
been	written	with	XMLHttpRequest	in	mind.	Only	XMLHttpRequest
supports	synchronous	calls,	so	if	they	are	necessary	for	your
application,	then	using	it	as	a	fallback	will	not	be	possible.

If	you're	using	a	fully	wrapped	XMLHttpRequest	and	you	don't	use
synchronous	calls,	providing	transparent	fallback	to	your
program	should	be	possible.	You	need	only	to	replace	the	final
throwing	of	an	exception	in	the	example	init	method	with	the
instantiation	of	your	IFrame	HTTP	client.	The	main	item	to
remember	about	using	another	approach	instead	of
XMLHttpRequest	is	that	it's	not	going	to	gain	you	huge	leaps	in
compatibility.	The	major	browsers	already	support	XMLHttpRequest.
This	support	makes	browsers	with	JavaScript	turned	off,	not
those	running	an	unsupported	browser,	the	biggest	group	that
can't	use	your	AJAX	application.	The	advantages	and
disadvantages	of	the	AJAX	communication	techniques	are
shown	in	Table	2-2.

Table	2-2.	Advantages	and	Disadvantages	of	AJAX
Techniques

Technique Advantages Disadvantages

XMLHttpRequest

Can	make	requests	to
pages	not	set	up	for	AJAX

Can	set/get	all	HTTP
headers

Can	make	HTTP	requests
using	any	type	(GET,	POST,
PROPFIND,	and	so	on)

Supports	full	control	over
POST	requests,	allowing	for
any	type	of	data	encoding

Requests	ActiveX	to	be
enabled	in	IE	5	and	6

Is	only	available	in	newer
versions	of	Opera	and
Safari

Has	small	implementation
differences	between
browsers

IFrame

Can	make	POST	and	GET
HTTP	requests

Supportes	all	modern
browsers

Supports	asynchronous
file	uploads

Prohibits	synchronous
requests

Server	pages	must	be
designed	to	work	with
IFrame	requests

Has	implementation
differences	between
browsers

Can	leave	extra	entries	in
browser	history	(depends
on	browser	and
implementation)

All	request	data	is	URL-
encoded,	increasing	request
size

Cookies

Supports	the	largest
number	of	browsers

Few	implementation
differences	between
browsers

Prohibits	no	synchronous
requests

Doesn't	work	with	large
requests/results

Requires	server	pages	to	be
designed	to	work	with
cookie	requests

Requires	polling	on	the
client	Can	make	only	GET
HTTP	requests

	

2.5.	Fallback	Option	1:	Sending	a	Request	Using
an	IFrame

IFrames	make	a	suitable	transport	for	asynchronous	calls	because
they	can	load	content	without	causing	the	entire	page	to	reload,
and	new	IFrame	elements	can	be	created	using	JavaScript.	The
nicest	attribute	about	an	IFrame	is	that	a	form	can	use	one	as	its
target,	reloading	that	IFrame	instead	of	the	entire	page;	this
approach	allows	large	amounts	of	data	to	be	sent	to	the	server
using	POST.

One	difficulty	in	using	an	IFrame	as	a	transport	is	that	the	page
we're	loading	needs	to	be	HTML,	and	it	needs	to	have	a
JavaScript	onload	event	handler	to	tell	the	parent	document
when	it's	done	loading.	This	need	forces	all	requests	being
made	with	IFrames	to	be	made	to	pages	designed	to	deal	with
IFrame	requests.	(Code	can't	just	grab	an	XML	file	in	the	way	that
XMLHttpRequest	allows.)

Note	that	the	use	of	IFrames	does	have	a	number	of	further
limitations:

Support	of	only	asynchronous	requests

Server	pages	needing	changed

Phantom	entries	in	browser's	history

Odd	back/forward	button	behavior	in	some	browsers

Large	differences	in	browser	implementations,	especially	in
older	browsers

One	advantage	that	an	IFrame	has	over	XMLHttpRequest	is	that	it

can	be	used	to	make	file	uploads.	Due	to	browser	security
limitations,	only	user	actions,	such	as	clicking	a	form,	can
interact	with	files	on	the	user's	machine.	This	makes	targeting	a
form	to	an	IFrame	the	only	option	for	file	uploads	that	do	not
involve	a	normal	form	POST	and	page	reload	cycle.	However,
there	is	no	reason	you	can't	fall	back	to	using	an	IFrame	for	file
uploads	and	XMLHttpRequest	for	the	rest	of	your	AJAX	requests.
Unless	you	are	making	remote	scripting-style	AJAX	requests
(which	is	covered	in	Chapter	3,	"Consuming	the	Sent	Data"),
working	around	IFrame	limitations	will	add	a	significant	amount
of	work	to	any	AJAX	development	project.

2.5.1.	Creating	a	Hidden	IFrame

To	get	maximum	compatibility	with	older	browsers,	you	could
just	add	the	IFrame	to	your	HTML	and	give	it	a	size	of	0x0.	(You
can't	just	hide	it,	or	some	browsers	won't	load	it.)	However,	this
approach	isn't	flexible,	so	you	will	want	to	create	the	frame
dynamically.	Not	all	older	browsers	support	document.createElement,
but	browsers	without	that	support	will	generally	lack	the	other
dynamic	capabilities	needed	to	use	the	data	you're	loading,	so
it's	best	to	provide	support	to	them	with	a	static	HTML	version
of	the	page.	In	the	following	example,	the	IFrame	is	created
using	innerHTML	because	it's	simpler	than	creating	it	using	DOM
methods.	Note,	however,	that	it	could	also	be	created	with
document.createElement,	just	like	the	div	to	which	it's	being	added:

1	var	rDiv	=	document.createElement('div');
2	rDiv.id	=	'remotingDiv';
3	var	style	=	'border:0;width:0;height:0;';
4	rDiv.innerHTML	=	"<iframe	name='"+id+"'	id='"+id+"'
5	style='"+style+"'></iframe>";
6
7	document.body.appendChild(rDiv);

2.5.2.	Creating	a	Form

If	you	want	to	make	only	a	GET	request,	you	can	change	the
value	of	the	IFrame's	src	property,	but	to	do	POST,	you	need	to	use
a	targeted	form.	GET	isn't	a	good	solution	for	AJAX	requests	for
two	reasons:	it	can	send	only	a	limited	amount	of	data	(an
amount	that	changes	depending	on	the	browser),	and	GET	can
be	cached	and/or	preloaded	by	proxy	servers,	so	you	never
want	to	use	it	to	perform	an	action	such	as	updating	your
database.

Using	a	form	with	an	IFrame	is	easy.	Just	set	the	form's	target
attribute,	and	when	you	submit	the	form,	the	result	loads	in	the
IFrame.	The	following	example	creates	our	form	and	sets	its
targets	to	the	IFrame	we	created	earlier	in	the	"Creating	a	Hidden
IFrame"	section	of	the	chapter:

1	rDiv.form	=	document.createElement('form');
2	rDiv.form.setAttribute('id',	id+'RemotingForm');
3	rDiv.form.setAttribute('action',	url);
4	rDiv.form.setAttribute('target',	id);
5	rDiv.form.target	=	id;
6	rDiv.form.setAttribute('method',	'post');
7	rDiv.form.innerHTML	=	'<input	type="hidden"	name="data"
8																								id="'+id+'Data">';

2.5.3.	Send	Data	from	the	Loaded	Content	to	the
Original	Document

The	only	way	to	know	that	the	content	of	the	IFrame	has	loaded
is	to	have	the	content	page	run	some	JavaScript	that	notifies
the	parent	page	in	which	the	IFrame	is	embedded.	The	simplest
way	to	do	this	is	to	set	the	onload	event	handler	on	the
document	you	are	loading.	This	limitation	means	you	can't	use
an	IFrame	for	loading	arbitrary	content	like	you	can	with
XMLHttpRequest.	However,	it's	still	useful	for	cases	in	which	a	single
server	page	is	already	being	used	as	an	AJAX	gateway.	Here	is
an	example	of	onload:

<body	onload="parent.document.callback(result)">

2.5.4.	Complete	IFrame	AJAX	Example

A	full	example	of	an	IFrame	that	AJAX	requests	includes	two
pieces.	The	first	piece	is	the	client-side	code	to	create	the	IFrame
and	form.	The	second	piece	is	the	server-side	code,	which
prepares	some	data	and	sends	it	back	to	the	parent	document
in	its	onload	event	handler.

The	first	part	of	the	example	(Listing	2-5)	is	the	JavaScript	code
in	a	simple	HTML	file.	This	page	is	used	for	testing;	the	callback
function	just	alerts	the	contents	of	the	results.	The	second	part
of	the	example	(Listing	2-6)	is	a	simple	PHP	script,	which	takes
the	data	from	POST	and	sends	it	back	to	the	parent	document.	To
make	a	useful	system,	you	might	also	want	to	include	some
extra	variables	in	the	form,	which	would	tell	the	PHP	code	what
to	do	with	the	uploaded	data,	or	you	could	put	the	logic	directly
into	the	script	and	use	a	different	target	page	for	each	task	you
wanted	to	accomplish.

Listing	2-5.	Making	an	AJAX	Request	Using	an
IFrame

1	<html>
2	<head>
3	<script	type="text/javascript">
4	var	remotingDiv;
5	function	createRemotingDiv(id,url)	{
6				var	rDiv	=	document.createElement('div');
7				rDiv.id	=	'remotingDiv';
8				var	style	=	'border:0;width:0;height:0;';
9				rDiv.innerHTML	=	"<iframe	name='"+id+"'	id='"+id+"'
10																					style='"+style+"'></iframe>";
11
12				document.body.appendChild(rDiv);
13				rDiv.iframe	=	document.getElementById(id);
14
15				rDiv.form	=	document.createElement('form');
16				rDiv.form.setAttribute('id',	id+'RemotingForm');
17				rDiv.form.setAttribute('action',	url);

18					rDiv.form.setAttribute('target',	id);
19					rDiv.form.target	=	id;
20					rDiv.form.setAttribute('method',	'post');
21					rDiv.form.innerHTML	=	'<input	type="hidden"	name="data"
22																										id="'+id+'Data">';
23
24					rDiv.appendChild(rDiv.form);
25					rDiv.data	=	document.getElementById(id+'Data');
26
27					return	rDiv;
28	}
29
30	function	sendRequest(url,payload,callback)	{
31					if	(!remotingDiv)	{
32									remotingDiv	=	createRemotingDiv('remotingFrame',
33																																									'blank.html');
34					}
35					remotingDiv.form.action	=	url;
36						remotingDiv.data.value	=	payload;
37						remotingDiv.callback	=	callback;
38						remotingDiv.form.submit();
39
40	}
41
42	function	test()	{
43					sendRequest('test.php','This	is	some	test	data',
44																	function(result){	alert(result)	});
45	}
46
47
48
49	</script>
50	</head>
51
52	<body	id="body">
53
54

55	Test
56
57	</body>
58	</html>

Listing	2-5	is	made	up	of	three	functions:

createRemotingDiv	for	setting	up	the	IFrame.

sendRequest	for	making	an	AJAX	request.

test	for	making	an	AJAX	request.	The	test	function	is	tied	to
a	link	(line	55)	in	the	pages'	HTML.	Clicking	on	this	link
allows	the	user	to	start	an	AJAX	request.

The	createRemotingDiv	function	(lines	528)	combines	the
previously	described	code	for	creating	a	hidden	IFrame	with	the
code	for	creating	a	form	to	submit	to	it.	When	the	form	is
created,	it's	targeted	against	the	newly	created	IFrame,	making
the	form	submission	use	it	instead	of	reloading	the	current
page.	Showing	the	IFrame	during	development	is	often	useful	in
the	debugging	process	so	that	you	can	see	any	output
generated	by	the	page	you're	calling.	You	can	do	this	by	editing
the	style	on	line	8	and	changing	it	to	width:200;height:200;.

The	sendRequest	function	(lines	3040)	makes	an	AJAX	request.	It
takes	the	URL	to	which	to	make	the	request,	a	payload	to	send
to	the	server,	and	a	callback	function	to	run	when	the	request	is
complete.	The	function	uses	createRemotingDiv	to	set	up	the
process	(lines	3134).	Then	sendRequest	updates	the	action	on	the
IFrame	form	(line	35),	adds	the	payload	value	on	the	form,	and
submits	the	form	using	the	IFrame.	When	the	new	page	is	loaded
into	the	IFrame,	the	new	document	uses	a	JavaScript	onload
handler	to	call	the	callback	function	that	was	passed	into	the
sendRequest	method.	The	PHP	page	that	processes	the	form	POST

and	creates	the	onload	JavaScript	is	shown	in	Listing	2-6.

Listing	2-6.	PHP	Server	Page	That	Handles	an
IFrame	AJAX	Request

1		<html>
2		<head>
3		<script	type="text/javascript">
4		var	result	=	"<?php
5																	echo	$_POST['data'];
6																	?>";
7		</script>
8		</head>
9		<body
10	onload	=
11	"parent.document.getElementById('remotingDiv').callback(result)">
12	</body>
13	</html>

On	the	server	side,	the	form	is	processed	and	output	is	created
in	the	form	of	an	HTML	page.	The	simplest	way	to	add	new	data
is	to	generate	JavaScript	containing	the	new	data.	In	this	case,
we	are	just	echoing	the	data	back	to	the	client	by	putting	it	in
the	result	variable	(lines	46).	Normally,	you'll	be	running	server-
side	code	here	and	either	outputting	a	string	(as	in	this	case)	or
adding	new	JavaScript	code	to	run	against	the	parent
document.	The	callback	function	on	the	parent	is	called	by	the
onload	handler	on	the	body	tag	(line	11).

	

2.6.	Fallback	Option	2:	Sending	a	Request	Using
a	Cookie

You	can	transfer	data	to	your	server	using	cookies,	but	any
implementation	using	them	will	be	severely	limited.	Cookies
have	a	maximum	size	of	4k,	and	each	domain	can	set	only	20
of	them,	which	means	that	each	request	is	going	to	be	size-
limited.	Cookie-based	AJAX	is	most	useful	when	your	site	is
designed	for	it,	because	its	limitations	make	it	hard	to	use	it	as
a	fallback.	The	basic	functionality	is	provided	by	setting	a
cookie,	loading	an	image,	and	then	polling	on	an	interval	while
waiting	for	the	response	to	appear.	The	implementation	is
simple;	to	do	something	besides	alerting	the	contents	of	the
result,	you	just	set	your	own	custom	onComplete	event	handler.
An	example	where	the	server	returns	the	input	and	the	number
of	times	it	has	been	called	is	shown	in	Listings	2-7	and	2-8.	The
example's	JavaScript	is	shown	in	Listing	2-7,	and	the	PHP	code,
which	reads	the	cookie	and	then	sets	a	response,	is	shown	in
Listing	2-8.

Listing	2-7.	Cookie-Powered	AJAX

1	<html>
2	<head>
3							<title>Cookie	Test</title>
4
5	<script	type="text/javascript">
6	function	CookieRequest()	{	}
7	CookieRequest.prototype	=	{
8					interval:	500,
9					attempts:	5,
10					attemptCounter:	0,
11					call:	function(url,payload)	{
12									var	d	=	new	Date();
13									var	i	=	new	Image();
14									this.setCookie('CR',payload);
15									i.src	=	url	+	'?u='	+	d.getTime();
16									var	self	=	this;

17									this.timerId	=	setTimeout(function()
18																																	{	self.read();	},	this.interval);
19					},
20					read:	function()	{
21									this.attemptCounter++;
22									//	check	for	data
23									var	data	=	this.getCookie('CR');
24									if	(data	!=	false)	{
25													this.attemptCounter	=	0;
26													this.onComplete(data);
27													return	true;
28									}
29
30										//	check	for	error
31										if	(this.attemptCounter	>	this.attempts)	{
32														this.onError();
33									}	else	{
34													var	self	=	this;
35													this.timerId	=	setTimeout(function()	{	self.read();	},
36																																					this.interval);
37									}
38					},
39					onComplete:	function(result)	{
40									alert(result)
41					},
42					onError:	function()	{
43									alert('Request	timed	out');
44					},
45					setCookie:	function(name,	value,	expires)	{
46									document.cookie	=	name	+	"="	+	escape(value)	+
47																									((expires)	?	";	expires="	+
48																									expires.toGMTString()	:	"");
49					},
50					getCookie:	function(name)	{
51									var	docCookie	=	document.cookie.split(";	");
52									for	(var	i=0;	i	<	docCookie.length;	i++){
53													var	piece	=	docCookie[i].split("=");
54													if	(piece[0]	==	name)	{
55																	return	unescape(String(piece[1]).
																			replace(/\+/g,	"	"));
56													}
57									}
58									return	false;
59					}
60	}
61	function	test()	{
62						var	cr	=	new	CookieRequest();
63						cr.call('cookie.php','Some	Example	Data');
64	}
65	</script>
66	</head>
67	<body>
68									Test
69	</body>

In	Listing	2-7,	the	cookie-powered	AJAX	functionality	is
wrapped	inside	the	JavaScript	class	CookieRequest.	Requests	to
the	server	are	made	with	the	call	method	(lines	1119).	The	call
method	takes	a	URL	to	which	to	send	the	request.	It	also	takes
a	payload	(the	content	we	want	to	send	to	the	server),	which	is
sent	in	the	request	cookie.	The	method	then	uses	the	setCookie
method	to	set	a	cookie	named	CR	(line	14);	it	then	creates	a
new	Image	object	and	sets	its	src	to	the	requested	URL	(line	15).
The	method	finishes	by	starting	a	timer,	which	runs	the	read
method	every	500	milliseconds.

The	read	method	(lines	2038)	checks	for	the	presence	of	the	CR
cookie	(lines	2324).	If	it	exists,	the	data	in	it	is	passed	to	the
onComplete	method	(line	26).	If	the	data	isn't	present,	we	check
for	errors;	this	is	done	by	comparing	the	number	of	checks
we've	completed	against	the	max	checks	set	in	the	attempts
property	(line	31).	If	there	is	an	error,	the	onError	method	is
called	(line	32).	If	no	error	is	present,	we	start	another	timer	to
do	the	next	check	(lines	3435).

Lines	3944	contain	methods	that	you'll	override	when	using	the
class.	The	onComplete	method	is	called	when	data	is	successfully
loaded.	This	is	the	equivalent	of	the	callback	property	in	the
HttpClient	class.	The	onError	method	is	called	if	the	request
doesn't	complete	successfully;	of	course,	you	could	leave	this	as
an	alert,	but,	in	most	cases,	you'll	want	to	provide	a	more
understandable	error	message	to	your	users	or	even	retry	the
request.

The	CookieRequest	class	also	contains	helper	methods	for	dealing
with	getting	and	setting	cookies.	setCookie	(lines	4549)	works	by
setting	the	value	of	document.cookie	to	a	urlencoded	string	in	the
format	of	cookie	name=value.	getCookie	(lines	5059)	works	by
splitting	document.cookie	into	one	part	for	each	cookie	(the	cookies
are	separated	by	";")	and	then	looping	over	these	parts	looking

for	a	cookie	with	the	specified	name.	If	a	matching	name	is
found,	the	value	is	returned;	otherwise,	false	is	returned.

The	PHP	page	that	is	used	with	Listing	2-7	is	shown	in	Listing	2-
8.	It	is	used	as	the	URL	in	the	call	method	and	processes	the
payload	that	is	set;	it	then	sets	a	response	for	read	to	grab.

Listing	2-8.	PHP	Server	Page	for	Handling	a
Cookie	AJAX	Request

1		<?php
2		session_start();
3		if	(!isset($_SESSION['i']))	{
4						$_SESSION['i']	=	0;
5		}
6		if	(isset($_COOKIE['CR']))	{
7						$_SESSION['i']++;
8						setcookie('CR','Server	Responds:	'.$_SESSION['i'].',
9																'.$_COOKIE['CR']);
10	}
11	?>

This	PHP	code	provides	the	basic	functionality	needed	to
interact	with	cookie-based	AJAX	requests.	It	uses	PHP	sessions
to	store	a	counter	and	increments	it	as	each	request	is	made.
As	you	extend	this	code,	you	could	use	different	PHP	pages	to
decide	which	action	to	perform,	or	you	could	include	that
information	in	the	cookie	that	is	sent	from	the	client.	Lines	25
handle	basic	session	setup,	setting	the	counter	to	0	if	this	is	the
first	call.	Lines	610	handle	the	checking	of	the	client	cookie	and
the	sending	of	the	response.	This	is	done	by	setting	a	cookie
that	then	will	be	sent	with	the	response	(line	89).	If	you	want	to
handle	large	server	responses,	you	would	need	to	include	code
to	split	the	data	among	multiple	cookies.

	

2.7.	Summary

At	the	heart	of	AJAX	is	the	communication	channel	with	your
server.	The	best	way	to	accomplish	AJAX	communication	is	by
using	XMLHttpRequest.	XMLHttpRequest	provides	the	ability	to	make
synchronous	and	asynchronous	requests	while	providing	an
easy-to-use	programming	model.	XMLHttpRequest's	biggest
disadvantage	is	that	it	doesn't	work	on	IE6	when	ActiveX	is
disabled,	which	can	cause	problems	for	security-conscious
users.	For	cases	in	which	XMLHttpRequest	can't	be	used,	you	do
have	a	number	of	different	options.	The	best	of	these	options	is
the	use	of	hidden	IFrames.	IFrames	require	server	pages	to	be
specially	tailored	to	respond	to	their	requests.	This	shortcoming
makes	for	a	much	less	flexible	implementation	but	one	that	is
still	capable	of	getting	the	job	done	for	many	AJAX	applications.

When	you	need	to	support	old	browsers,	you	can	use	either
IFrames	or	cookie-based	solutions.	Cookie-based	solutions	can
even	be	used	on	version	3	browsers,	if	needed.	Note,	however,
that	the	limited	dynamic	ability	of	a	browser	from	that	period
makes	building	any	large-scale	AJAX	applications	a	very	difficult
task.	When	targeting	modern	browsers,	compatibility	isn't	a
huge	concern,	and	you	can	choose	the	AJAX	communication
layer	with	the	best	features:	XMLHttpRequest.

	

Chapter	3.	Consuming	the	Sent	Data
In	this	chapter

3.1	Document-Centric	Approaches page	42

3.2	Remote	Scripting page	54

3.3	How	to	Decide	on	a	Request	Type page	74

3.4	Summary page	75

There	are	two	main	ways	you	can	use	the	data	you	receive	from
XMLHttpRequest	or	one	of	the	fallback	methods:	the	document-
centric	approach,	and	the	other	is	remote	scripting.	In	this
chapter,	we	look	at	different	ways	to	implement	these
techniques	and	use	the	data	we	learned	to	send	in	the	previous
chapter.

	

3.1.	Document-Centric	Approaches

A	document-centric	approach	to	AJAX	simply	means	that	your
main	interaction	with	the	server	is	pulling	down	pages	of
content.	This	doesn't	mean	that	the	pages	aren't	dynamically
generated,	but	it	does	mean	you're	pulling	down	the	content	in
a	ready-to-use	or	parse	format.	The	simplest	use	case	is	to
download	a	chunk	of	HTML	from	your	server	and	insert	it	into
the	page	using	innerHTML.

The	biggest	differentiator	between	document-centric
approaches	and	remote	scripting	is	how	the	design	relates	with
the	server.	Remote	scripting-style	AJAX	is	tightly	coupled	to	the
server	and	gives	you	a	direct	interface	to	the	server-side	code,
using	a	standardized	system	to	transfer	the	call	and	request
between	the	client	and	the	server.	Document-centric
approaches	are	loosely	tied	to	the	server;	the	only	requirement
is	that	the	data	be	in	the	usable	format,	allowing	you	to
generate	plain	text,	HTML,	or	XML	in	whatever	manner	you
want.	One	advantage	that	document-centric	approaches	have	is
that	they	are	highly	scalable	because	more	of	the	work	happens
on	the	client.	Document-centric	approaches	are	not	a	magic
bullet	for	scalability	or	performance,	because	dynamically
generated	content	can	have	many	bottlenecks;	however,	they
do	closely	resemble	current	Web	models,	which	allow	the	same
optimization	strategies	to	be	used.

3.1.1.	Adding	New	HTML	Content	to	a	Page	with
AJAX

One	of	the	basic	actions	performed	on	every	Web	page	is	the
displaying	of	new	content	when	a	user	clicks	a	link.	In	many
circumstances,	this	works	fine,	but	when	you	want	to	keep	the
original	content,	you	have	a	problem.	HTML	offers	two	solutions

to	the	problem:	frames	and	IFrames.	Both	allow	multiple	pages	to
be	embedded	into	a	single	page.	The	problem	with	frame-based
solutions	is	that	you're	still	stuck	loading	entire	pages;	that
being	said,	you	can	easily	use	frame-based	solutions	to	add	a
new	row	to	a	table	or	provide	a	status	message.	AJAX	offers	an
easy	way	out:	load	the	HTML	directly	using	XMLHttpRequest	and
add	it	to	your	page	by	replacing	the	content	of	a	DIV	using
innerHTML.	An	example	of	using	the	HttpClient.js	XMLHttpRequest
wrapper	we	built	earlier	(Listing	2-3)	is	shown	in	Listing	3-1.
The	pages	that	are	being	loaded,	content1.html	and	content2.html,
are	also	shown;	they	can	be	any	fragment	of	HTML	or	other	text
you	want	to	load	into	the	DIV.

Listing	3-1.	Adding	HTML	Content.html

1		<html>
2		<head>
3		<title>Adding	HTML	Content</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript">
6
7		var	client	=	new	HttpClient();
8		client.isAsync	=	true;
9
10	client.callback	=	function(result)	{
11				document.getElementById('target').innerHTML	=	result;
12		}
13
14	function	replaceContent(page)	{
15				client.makeRequest(page,null);
16	}
17	</script>
18	</head>
19	<body>
20
21	
22				
23										Load	Document	1
24				
25										Load	Document	2
26	
27
28	<div	style="position:	absolute;	width:100px;	height:20px;
29				top:	5px;	right:	5px;	display:none"
30				id="HttpClientStatus">Loading	...</div>

31
32	<div	id="target"	style="width:300px;	height:300px;
33				border:	solid	1px	black">	</div>
34	</body>
35	</html>

Line	4	includes	the	XMLHttpRequest	wrapper,	HttpClient,	which	is
instantiated	on	line	7.	Because	we	want	to	make	an
asynchronous	request,	we	turn	that	mode	on	at	line	8	and	then
create	our	callback	function	(lines	1012).	This	callback	will	take
the	result	from	the	load	and	set	the	innerHTML	of	the	target
element	to	it.	Lines	1416	create	a	JavaScript	function	that	we
can	call	from	HTML	links.	This	function,	replaceContent,	takes	a
single	parameter,	page,	which	is	the	URL	we	want	to	load.	Line
15	makes	the	remote	request.	The	second	parameter	is	null
because	we	have	no	POST	data	that	we	want	to	send	as	a
payload.

The	rest	of	the	example	is	a	list	of	test	calls	to	replaceContent	and
the	user	interface	(UI)	elements	used	by	the	JavaScript	code.
Lines	2223	load	Content1.html,	and	lines	2425	load	Content2.html.
Lines	2830	create	a	DIV	element	with	an	ID	of	HttpClientStatus.
Whenever	you	are	using	HttpClient.js,	you	need	to	provide	an
element	with	this	ID.	The	element	should	be	hidden	by	default;
this	is	accomplished	by	setting	display:none	in	the	style	attribute.
When	the	XMLHttpRequest	object	downloads	content	from	the
server,	the	HttpClientStatus	element	will	be	shown	by	setting	the
style.display	attribute	to	block.	Lines	3233	provide	a	DIV	with	an
ID	of	target;	this	is	where	the	downloaded	content	is	displayed.
The	results	of	Listing	3-1	loading	content1.html	are	shown	in
Figure	3-1.

		content1.html

<p>I'm	an	HTML	fragment.		Any	html	can	be	used.</p>

		content2.html

I'm	some	other	content.	In	this	case	I	don't	contain	anything	but	text.

Figure	3-1.	Using	AJAX	to	perform	basic	content
replacement

In	Listing	3-1,	we	took	a	normal	HTML	document	and	used	AJAX
to	load	in	new	content	at	will.	This	basic	technique	can	be
accomplished	through	the	use	of	frames,	but	AJAX	gives	you	a

lot	more	flexibility.	We	can	divide	the	page	in	any	way	we
choose,	dynamically	updating	something	as	small	as	a	single
word	or	as	large	as	the	majority	of	the	page.	Dynamically
updating	a	page	with	content	is	powerful,	and	it	fits	well	into
any	server-side	development	model,	because	you're	simply
increasing	the	number	of	pages	you	generate	while	decreasing
their	size	and	scope.

3.1.2.	Consuming	XML	Using	DOM

Another	popular	way	to	load	new	data	is	to	use	XML.	XML	is
useful	when	you	want	abstraction	between	the	code	on	the
server	that	produces	the	data	and	the	JavaScript	client	code
that	uses	it.	This	allows	you	to	change	out	the	back	end	without
affecting	the	front	end.	It	also	allows	you	to	expose	data	for
other	clients	through	the	same	generic	API.	The	XML	Document
Object	Model	(DOM)	is	similar	to	the	HTML	one	that	we've	used
in	other	examples.

An	easy	way	to	visualize	the	DOM	is	to	picture	a	tree	of	objects,
one	for	each	XML	element	on	the	page.	For	example,	the
following	sample	XML	document	will	make	DOM	with	four
nodes:	the	root	Document	node,	an	Element	node	for	the
rootTag,	and	an	Element	node	for	the	childTag.	The	childTag	has
a	Text	node	containing	Some	Text.

<rootTag>
	<childTag>Some	Text</childTag>
</rootTag>

A	visual	representation	of	this	tree	is	shown	here:

Document
								Element	(rootTag)

																Element	(childTag)
																								Text

To	turn	this	DOM	model	into	HTML,	we	will	need	to	use	a	couple
basic	methods	and	properties:

getElementsByTagName(tagName).	Gets	an	array	of	tags	of	the
specified	name	as	a	result

getAttribute(attributeName).	Gives	you	the	value	of	one	of	the
tag's	attributes

firstChild().	Returns	the	first	child	node	of	any	node

The	other	step	we	need	to	take	is	to	get	the	XML	document
result	from	XMLHttpRequest	instead	of	the	plain	text.	To	do	this,	set
the	Content-type	of	the	downloaded	page	to	text/xml.	This	causes
the	responseXML	property	of	XMLHttpRequest	to	create	a	DOM
document	from	the	contents.

In	the	following	examples,	we	take	an	XML	list	of	resource	links
about	a	subject	and	turn	them	into	a	simple	HTML	list.	The	two
test	lists	contain	PHP	resource	links	and	a	list	of	book	sellers.
Listing	3-2	contains	the	list	of	PHP	resources,	whereas	Listing	3-
3	contains	the	list	of	sellers.	These	files	are	used	by	Listing	3-4,
which	uses	the	DOM	to	update	the	current	page	and	build	the
list.

Listing	3-2.	PhpResources.xml

<sites	type="PHP	Resources">
						<site	url="http://php.net">PHP	Website</site>
						<site	url="http://php.net/manual">PHP	Manual</site>

						<site	url="http://phpdoc.org">phpDocumentor	Code	Documentation	Tool</site>
</sites>

Listing	3-3.	BookSellers.xml

<sites	type="A	List	of	Book	Sellers">
									<site	url="http://amazon.com">Amazon</site>
									<site	url="http://bn.com">Barnes	and	Noble</site>
</sites>

Listing	3-4.	DOMExample.html

1		<html>
2		<head>
3		<title>DOM	Example	-	Displaying	URL	Lists	from	XML</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript">
6
7		var	client	=	new	HttpClient();
8		client.isAsync	=	true;
9
10	client.callback	=	function()	{
11				var	newDom	=	client.xmlhttp.responseXML;
12
13				var	content	=	"<h2>"+
14										newDom.firstChild.getAttribute('type')
15										+"</h2>";
16
17				var	sites	=	newDom.getElementsByTagName('site');
18				for(var	i	=	0;	i	<	sites.length;	i++)	{
19						content	+=	"<a	href='"+
20												sites[i].getAttribute('url')+"'>"+
21												sites[i].firstChild.nodeValue+
22												"";
23				}
24				content	+=	"";
25
26				document.getElementById('target').innerHTML	=
27										content;
28	}
29

30		function	displayResources(url)	{
31					client.makeRequest(url,null);
32	}
33	</script>
34	</head>
35	<body>
36
37	

38				
39										Display	PHP	Links
40				
41										Display	Book	Seller	Links
42	
43
44	<div	style="position:	absolute;	width:100px;	height:20px;
45				top:	5px;	right:	5px;	display:none"
46				id="HttpClientStatus">Loading	...</div>
47
48	<div	id="target"	style="width:300px;	height:300px;
49				border:	solid	1px	black">	</div>
50	</body>
51	</html>

The	JavaScript	HttpClient	class	(from	Chapter	2,	"Getting
Started")	gives	us	cross-browser	XMLHttpRequest	support.	On	line
4,	we	include	the	library,	and	on	line	7,	we	create	an	instance	of
the	client.	Then,	on	line	8,	we	set	isAsync	to	true	because	we
want	to	make	an	asynchronous	request	for	the	XML	data	file.
Next,	on	lines	1028,	we	add	our	callback	function;	this	function
takes	the	downloaded	XML	document,	creates	an	HTML	list,	and
then	shows	the	list	using	innerHTML.

On	line	11,	we	grab	the	XML	DOM	document	from	response
XML.	We	have	to	use	the	XMLHttpRequest	object	directly	because
HttpClient	doesn't	wrap	this.	Depending	on	the	complexity	of	the
HTML	page,	updating	a	node	with	innerHTML	can	be	an	expensive
operation.	To	keep	this	to	a	minimum,	we	use	a	variable	to	hold
our	HTML	content	and	then	update	it	all	at	once	at	the	end	of
the	function.	On	lines	1315,	we	read	the	type	attribute	from	the
site's	tag	and	use	it	to	make	a	title	for	our	list.	Then	on	line	17,
we	get	an	array	of	all	the	site	nodes	in	our	XML	document,
which	is	looped	through	on	lines	1823.	In	each	iteration	of	the

site's	array,	we	build	one	list	element.	This	is	a	pretty
straightforward	process;	the	only	item	of	note	is	the	use	of
firstChild()	and	nodeValue()	to	get	to	the	text	content	of	the	site
tag.	These	calls	are	needed	because	text	content	exists	in	its
own	node	in	the	DOM,	and	there	is	no	innerHTML	attribute	to	read
from	the	text	content	and	its	markup,	as	is	the	case	with	the
HTML	DOM.

The	rest	of	the	page	gives	you	a	basic	UI	for	testing.	Lines	3032
provide	a	helper	function	that	requests	the	download	of	new
XML	files.	When	the	download	is	done,	the	callback	function
that	builds	the	output	will	be	called.	Lines	3742	contain	a	list
with	links	to	process	the	sample	XML	files,	and	lines	4446
contain	a	basic	loading	DIV	that	is	shown	while	waiting	for	the
XML	documents	to	be	downloaded.	Finally,	we	have	a	target	DIV
that	is	used	by	the	callback	function	as	a	place	to	display	the
generated	list.	The	output	of	Listing	3-4,	showing	the	PHP
resources	list,	is	shown	in	Figure	3-2.

Figure	3-2.	Updating	an	HTML	page	by	consuming
XML	documents	using	the	DOM

[View	full	size	image]

When	tied	with	dynamically	updates,	DOM-based	consumption
of	XML	can	be	an	efficient	way	to	dynamically	display	data	on
the	browser.	Using	the	DOM	manipulation	function	can	make	for
tedious	programming,	so	it	isn't	usually	the	best	approach	for
generating	a	large	amount	of	content	from	nonstructured	data.

3.1.3.	Consuming	XML	Using	XSLT

eXtensible	Stylesheet	Language	Transformations	(XSLT)	is
another	popular	way	to	take	a	DOM	document	and	generate
new	output.	The	advantage	it	has	over	DOM	is	that	the
transformation	and	the	data	are	in	an	XML	file.	XSLT	has	been
used	by	many	successful	AJAX	applications,	such	as	Google
Maps,	but	it	does	have	a	number	of	drawbacks.	XSLT	browser
support	is	uneven,	and	even	when	two	browsers,	such	as
Internet	Explorer	6	and	Firefox	1.0,	support	the	same	main

features,	the	application	programming	interfaces	(APIs)	for
controlling	the	transformations	from	JavaScript	are	completely
different.	This	difference	is	large	enough	that	you	can't	just
write	a	simple	wrapper	like	you	can	for	XMLHttpRequest.	If	you
need	cross-browser	support,	you'll	need	to	rely	on	a	library	like
Sarissa	instead.	(The	Sarissa	library	is	explained	in	detail	in
Chapter	8,	"Libraries	Used	in	Part	II:	Sarissa,	Scriptaculous.")

XSLT	can	also	be	problematic	simply	due	to	its	complexity.	Not
only	will	you	need	to	learn	how	to	write	the	XSLT	style	sheets
that	drive	the	actual	transformation,	but	you'll	also	need	to
learn	XPath,	which	is	used	to	refer	to	XML	nodes	inside	the	style
sheet.	Because	XSLT	is	a	World	Wide	Web	Consortium	standard,
there	are	tools	and	documentation	out	there	to	help,	but	in
many	cases,	the	added	effort	required	over	a	DOM	approach
isn't	worth	the	effort.

Although	the	purpose	of	this	book	isn't	to	teach	you	how	to
write	an	XSLT	style,	I	will	explain	the	basics	of	the	one	used.
Listing	3-5	replaces	the	JavaScript	DOM	code	in	Listing	3-4	with
an	XSLT	transformation.	The	same	XML	data	files
(PhpResources.xml	and	Booksellers.xml)	that	are	used	in	the	DOM
example	are	used	here.	The	Mozilla	XSLT	API	is	used	in	these
examples	because	it's	easier	to	understand,	and	all	you	have	to
do	to	make	it	work	in	IE	is	include	the	Sarissa	library.

Listing	3-5.	XSLTExample.html

1		<html>
2		<head>
3		<title>XSLT	Example	-	Displaying	URL	Lists	from	XML</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript"	src="sarissa/sarissa.js">
</script>
6		<script	type="text/javascript">
7		var	client	=	new	HttpClient();

8		client.isAsync	=	true;
9		var	xsltProcessor	=	new	XSLTProcessor();

10
11	function	setup()	{
12					//	set	up	an	xsltprocessor	and	import	the	stylesheet
13					client.callback	=	function()	{
14									var	xslRef	=	client.xmlhttp.responseXML;
15									xsltProcessor.importStylesheet(xslRef);
16					}
17					client.makeRequest('Resources.xsl');
18	}
19
20	function	displayResources(url)	{
21					client.callback	=	function()	{
22									var	newDom	=	client.xmlhttp.responseXML;
23									var	output	=	xsltProcessor.transformToDocument(newDom);
24									document.getElementById('target').innerHTML	=	"";
25									document.getElementById('target').appendChild(
26													document.importNode(output.firstChild,true));
27					}
28
29					client.makeRequest(url,null);
30	}
31	</script>
32	</head>
33	<body	onload="setup()">
34
35	
36					
37								Display	PHP	Links
38					
39								Display	Book	Seller	Links
40	
41
42	<div	style="position:	absolute;	width:100px;	height:20px;
43					top:	5px;	right:	5px;	display:none"
44					id="HttpClientStatus">Loading	...</div>
45
46	<div	id="target"	style="width:300px;	height:300px;
47					border:	solid	1px	black">	</div>
48	</body>
49	</html>

The	first	18	lines	cover	the	basic	setup;	we	include	our	HttpClient
XMLHttpRequest	wrapper	and	the	Sarissa	XML	compatibility	library.
On	line	7,	we	create	an	HttpClient	instance;	this	will	be	used	to
load	both	the	style	sheet	and	the	XML	files	we're	going	to
transform;	on	line	8,	we	set	isAsync	to	true	because	we	will	be
making	only	asynchronous	requests.	On	line	9,	we	create	a	new
xsltProcessor	instance;	this	will	be	loaded	with	a	style	sheet	in

the	setup	function	(lines	1118)	and	then	used	to	transform	XML
files	loaded	by	the	displayResources	function	(lines	2030).	On	lines
1316,	we	create	a	callback	to	run	when	the	style	sheet	is
loaded.	It	grabs	the	new	XML	DOM	from	the	client	(line	14)	and
then	adds	it	to	the	xsltProcessor	using	its	importStylesheet	method
(line	15);	this	style	sheet	is	shown	in	Listing	3-6.	The	setup
function	completes	by	making	the	actual	request	(line	17)	and
is	run	by	an	onload	handler	(line	33).

The	displayResources	function	is	called	by	links	in	the	HTML	page;
it	loads	new	XML	files	and	then	transforms	them.	Lines	2127
add	a	callback	method	that	processes	the	downloaded	XML
document.	Line	23	uses	the	processor	we	created	to	generate	a
new	DOM	document	formatted	by	the	style	sheet	we	imported
on	line	15.	Line	24	clears	the	target	element	on	the	HTML	page,
and	then	on	lines	2526,	we	append	the	content	of	the
transformed	DOM	document.	document.importNode	has	to	be	used
for	this	process	to	work	in	a	cross-browser	manner.	The	rest	of
the	HTML	page	(lines	3449)	has	no	changes	from	the	DOM
example.	It's	just	a	basic	list	of	actions	to	be	performed	and	a
target	to	display	the	results.

Listing	3-6	finishes	up	the	process;	it	is	run	on	each	XML	file	to
produce	HTML	that	is	similar	to	the	DOM	example.	Line	8
creates	the	list	title	using	value-of	to	output	the	type	attribute.
Lines	1019	loop	over	each	site	tag	in	the	file,	outputting	a	list
item	with	the	link	inside	it.	You	can	see	the	output	of	this	script
showing	the	PHP	resource	list	in	Figure	3-3.

Figure	3-3.	Using	XSLT	to	transform	XML
documents	loaded	using	AJAX

[View	full	size	image]

Listing	3-6.	Resources.xsl

1		<?xml	version="1.0"?>
2		<xsl:stylesheet	version="1.0"
3					xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
4
5		<xsl:output	method="html"	/>
6		<xsl:template	match="/sites">
7		<div>
8					<h2><xsl:value-of	select="@type"	/></h2>
9					
10				<xsl:for-each	select="//site">
11										
12										<xsl:element	name="a">
13																<xsl:attribute	name="href">

14																								<xsl:value-of	select="@url"	/>
15																		</xsl:attribute>
16																		<xsl:value-of	select="."	/>
17												</xsl:element>
18												
19						</xsl:for-each>

20					
21		</div>
22		</xsl:template>
23		</xsl:stylesheet>

XSLT	is	an	extremely	powerful	technique	for	managing	AJAX
transformation,	and	because	it's	supported	by	most	browsers,
it's	easy	to	see	how	it	could	be	paired	with	AJAX.	XSLT's
strength	lies	in	its	ability	to	create	rules	that	will	work	against
nonstructured	or	structured	schemas.	This	trait	allows	it	to
easily	transform	any	type	of	XML	document	and	generate	new
content	to	add	to	the	current	HTML	page.	If	you	are	already
dealing	with	XML	on	the	server	side,	XSLT	makes	a	great	choice
because	there	is	a	good	chance	you're	already	familiar	with	its
basics.

	

3.2.	Remote	Scripting

Remote	scripting	is	a	technique	in	which	you	make	a	request	to
the	server	that	directly	maps	to	a	function	on	the	server.	In
most	environments,	this	is	usually	referred	to	as	a	Remote
Procedure	Call	(RPC).	Remote	scripting	approaches	differ	from
document-centric	ones	mainly	in	how	tightly	coupled	the	server
side	is	to	the	JavaScript	client	side.	The	data	formats	used	are
of	a	more	generic	nature	and	are	designed	to	move	standard
data	types,	such	as	arrays	or	strings,	and	are	not	application-
specific,	such	as	the	schema	used	by	our	data	XML	files	in	the
DOM	or	XSLT	examples.

The	general	RPC	pattern	is	shown	in	Figure	3-4	and	is	as
follows:

1.	 The	JavaScript	client	code	serializes	the	request	data	into	a
standard	format.

2.	 The	serialized	data	is	sent	to	the	server.

3.	 The	data	is	userialized	to	a	native	data	type.

4.	 The	data	in	native	format	is	used	to	perform	an	action,
usually	calling	a	preregistered	function	or	method.

5.	 The	results	of	the	server	action	are	serialized	back	to	the
standard	format.

6.	 The	serialized	data	is	returned	to	the	JavaScript	client.

7.	 The	JavaScript	client	unserializes	the	data	to	a	native
JavaScript	type.

8.	 An	action	is	performed	on	the	result.

Figure	3-4.	The	RPC	pattern

Any	approach	that	follows	this	basic	pattern	can	be	considered
an	RPC	approach.	This	can	be	anything	from	a	simple	technique
that	passes	plain	strings	back	and	forth	to	something	as
complex	as	an	entire	Simple	Object	Access	Protocol	(SOAP)
stack.

RPC	approaches	fit	into	four	main	subgroups:

Approaches	that	use	plain	text	or	basic	serialization	such	as
URL	encoding

Approaches	that	use	standardized	XML	schemas,	such	as
SOAP	or	XML-RPC

Approaches	that	use	custom	XML	schemas

Approaches	that	send	JavaScript	or	its	subset,	JavaScript
Object	Notation	(JSON)

All	these	approaches	are	used	in	various	AJAX	implementations
and,	in	many	cases,	are	even	combined;	this	is	especially
prevalent	with	approaches	that	generate	JavaScript	because	few
server-side	languages	have	the	ability	to	natively	parse	it.

3.2.1.	Basic	RPC

The	simplest	RPC	approaches	send	plain	text	between	the	client
and	the	server.	What	distinguishes	them	from	document-centric
approaches	is	that	they	usually	call	only	a	single	page	on	the
server,	and	the	results	come	directly	from	what	a	function	on
the	server	returns.	Like	any	remote	scripting	approach,	there	is
a	server	component	and	a	client	component.	The	server
component	has	a	list	of	functions	that	can	be	called	by	the
client	(for	security	reasons,	any	RPC	server	should	allow	calls
only	to	preregistered	functions),	and	it	manages	dispatching
client	requests	to	a	function	and	returning	its	results.	The
application	flow	is	this:	The	JavaScript	client	makes	a	call	using
XMLHttpRequest	to	the	server,	sending	the	function	to	call	and	a
payload.	The	server	calls	the	requested	functions	and	outputs
the	results,	and	the	JavaScript	client	does	something	useful
with	the	result.	The	process	is	shown	in	Listings	3-7	and	3-8;
Listing	3-7	shows	the	server	side	written	in	PHP,	and	Listing	3-8
shows	the	client-side	HTML	and	JavaScript.

Listing	3-7.	rpc-basic-plain.php

1		<?php

2		//	functions	that	can	be	called	remotely
3		function	rot13($string)	{
4					return	str_rot13($string);
5		}
6
7		function	reverse($string)	{
8					return	strrev($string);
9		}
10
11	//	list	of	functions	that	can	be	called
12		$functionList	=	array(
13											'rot13',
14											'reverse'
15);
16
17
18	//	function	to	call
19	$funcToCall	=	$_REQUEST['function'];
20
21
22	//	set	the	content	type
23	header('Content-Type:	text/plain');
24

25	//	check	whether	the	function	is	registered
26	if	(!in_array($funcToCall,$functionList))	{
27				die('Unable	to	call'.$funcToCall);
28	}
29
30	//	Get	the	content	from	the	client
31	$payload	=	"";
32	if	(isset($HTTP_RAW_POST_DATA))	{
33				$payload	=	$HTTP_RAW_POST_DATA;
34	}
35
36	//	call	a	function	and	output	its	results
37	echo	$funcToCall($payload);
38	?>

The	server-side	component	of	this	basic	RPC	arrangement	is	as
simple	as	it	could	be;	this	works	for	small	pages,	but	to	build	a
full	site,	you	would	want	to	move	to	a	more	feature-rich
solution,	like	one	of	the	toolkits	listed	in	Appendix	A,	"JavaScript
AJAX	Libraries."	In	Listing	3-7,	lines	28	define	two	small	string-
processing	functions;	these	could	just	as	easily	contain	calls	to
a	database	or	code	that	builds	HTML.	Lines	1115	provide	an
array	of	functions	that	can	be	called	remotely;	this	provides
security,	locking	remote	access	to	a	small	set	of	functions	that

expect	input	from	JavaScript.	On	line	23,	we	set	the	Content-type
header.	text/plain	is	used	because	we're	merely	sending	back
string	data.	Lines	2528	show	the	security	check;	it	uses	the
$functionList	array	we	built	on	lines	1215;	it	also	uses	$funcToCall,
which	we	read	on	line	19.	The	function	we're	trying	to	call	isn't
in	this	array;	we	end	the	script	execution	using	the	die
command.	The	script	ends	by	reading	in	the	POST	data	that	was
sent	from	the	form	and	then	calling	the	requested	function	with
that	data	as	its	only	parameter.

The	HTML	page	contains	an	input	box	and	some	links	to
perform	some	remote	actions	on	the	contents	of	the	box.	The
actions	run	the	two	functions	registered	on	the	PHP	page,
reverse	and	rot13,	against	the	content	in	the	input	box.	The
reverse	function	returns	a	string	in	reverse	order,	whereas	rot13
replaces	each	character	with	the	one	that	is	13	characters
ahead	of	it	in	the	alphabet.	Now	that	we	have	a	server	to	call,
we	need	to	build	our	client	HTML	and	JavaScript	page.	We	will
reuse	the	same	HttpClient	class,	adding	in	a	helper	function	to
allow	us	to	make	remote	function	calls.	An	HTML	page	that
makes	RPCs	to	the	PHP	script	we	built	in	Listing	3-7	is	shown	in
Listing	3-8.

Listing	3-8.	rpc-basic-plan.html

1		<html>
2		<head>
3		<title>Basic	RPC	Example,	No	data	serialization</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript">
6		var	serverUrl	=	'rpc-basic-plain.php';
7		function	remoteCall(func,payload,callback)	{
8					var	client	=	new	HttpClient();
9					client.isAsync	=	true;
10				client.requestType	=	'POST';
11				client.callback	=	callback;
12				client.makeRequest(serverUrl+'?function='+escape(func),
13																payload,'text/plain');
14		}
15

16	function	reverseString()	{
17				remoteCall('reverse',document.getElementById('string').value,
18										function(result)	{
19																document.getElementById('string').value	=	result;
20											}
21);
22	}
23
24	function	rot13String()	{
25				remoteCall('rot13',document.getElementById('string').value,
26											function(result)	{
27																	document.getElementById('string').value	=	result;
28											}
29);
30	}
31	</script>
32	</head>
33	<body>
34							<label	for="string">Source	String:</label>	<input	id="string">
35	
36							Reverse	String
37							ROT	13	String
38	
39
40	<div	style="position:	absolute;	width:100px;	height:20px;
41				top:	5px;	right:	5px;	display:none"
42				id="HttpClientStatus">Loading	...</div>
43
44	</body>
45	</html>

Like	the	earlier	example	pages,	this	one	is	broken	into	two	main
sections.	The	JavaScript	code	is	at	the	top,	followed	by	the
HTML	interface	that	calls	it.	Lines	714	contain	the	remoteCall
function,	which	creates	a	new	HttpClient.	It	sets	up	this	new
client	to	make	an	asynchronous	POST	request,	and	it	uses	the
callback	parameter	as	the	callback	function	for	the	request.	The
function	finishes	by	sending	the	request	to	the	server.	Each
request	is	made	to	the	same	PHP	page;	we	just	change	the
query	string,	setting	function	to	the	PHP	function	we	want	to
call.	A	new	HttpClient	instance	is	created	for	each	request.	If	you
didn't	do	this,	you	would	need	to	add	in	extra	logic	to	keep	a
new	request	from	being	made	before	an	earlier	one	had
finished,	because	each	HttpClient	instance	can	have	only	a	single
outstanding	request.

Lines	1630	provide	the	two	helper	functions	that	initiate	the
remote	function	calls.	The	first	is	for	reverse,	and	the	second	is
for	rot13.	The	two	functions	are	nearly	identical;	they	both	call
remoteCall,	passing	in	the	remote	function	to	run,	the	value	of
the	input	box	as	the	payload,	and	a	callback	to	handle	the
results.	The	callback	functions	get	the	result	from	the	PHP
server	and	set	the	value	of	the	input	box	to	it.

The	rest	of	the	page	is	the	basic	UI.	Line	34	contains	the	input
box	we're	reading	from	to	make	remote	calls;	the	input	box	also
gets	updated	with	the	results	of	the	calls.	Lines	3637	contain
links	to	run	the	JavaScript	functions	that	make	the	remote	calls.
The	script	ends	with	a	DIV	(lines	4042),	which	is	shown	while
we	wait	for	the	server	to	respond.	Figure	3-5	illustrates
example	output	showing	a	reversed	string.

Figure	3-5.	Using	a	basic	RPC	example	to	reverse
a	string

[View	full	size	image]

A	simple	RPC	system	is	quick	to	build	and	has	little	overhead,
but	it	lacks	enough	functionality	that	it's	not	usually	used	in
larger	projects.	Normally,	you	want	the	ability	to	pass	multiple
arguments	to	the	functions	on	the	server	side	and	an	easy	way
to	get	back	something	besides	a	string	on	the	client.

3.2.1.1.	Mimicking	a	Form	POST

Another	option	for	performing	AJAX-based	RPC	is	to	mimic	a
form	POST.	This	entails	URL	encoding	the	data.	URL	encoding	is
the	format	used	in	the	query	string	of	a	GET	request;	key	value
pairs	are	separated	by	an	ampersand,	and	a	basic	example	is
shown	here:

ajax=asynchronous+javascript+and+xml&hello=world

As	you	can	see	in	this	example,	spaces	are	encoded	as	+
characters.	In	addition,	=,	&,	and	other	non-ASCII	characters
are	escaped	as	hexadecimal	entities.	Knowing	the	actual	details
of	the	encoding	isn't	that	important	because	JavaScript	contains
the	encodeURIComponent()	to	handle	the	encoding	of	each	key	and
value,	and	PHP	will	automatically	handle	the	decoding	for	you.
URL	encoding	can	be	used	to	perform	basic	RPC,	allowing
multiple	variables	to	be	passed,	or	to	submit	a	form	over	AJAX.
The	form	submission	method	is	especially	useful	because	you
can	easily	fall	back	to	normal	form	submission	for	users	who
don't	have	JavaScript	enabled.

The	example	of	this	takes	an	HTML	form	and	uses	a	drop-down
element	to	decide	how	it's	submitted.	One	mode	does	a
submission	to	a	slightly	modified	version	of	Listing	3-8;	another
submits	the	form	using	AJAX,	and	one	mode	does	a	normal
form	submission.	The	AJAX	and	normal	form	submission	submit
to	the	same	page,	showing	you	how	you	can	detect	an	AJAX
form	submission.	Because	the	AJAX	code	mimics	a	normal	form
submission,	the	server	side	can	treat	the	data	sent	from	either
input	method	identically.	You'll	generally	create	different	output
from	an	AJAX	form	submission	because	you	need	to	return	only
that	content	that	needs	to	be	updated	(instead	of	generating	an
entire	page).	The	fake	form	submission	example	is	shown	in
Listing	3-9,	starting	with	the	HTML	page	and	finishing	with	the

two	back	ends.

Listing	3-9.	Ajax-form.html

1		<html>
2		<head>
3		<title>Basic	RPC	Example,	No	data	serialization</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript">
6		function	handleForm(form)	{
7					var	serverUrl	=	'';
8					switch(document.getElementById('formAction').value)	{
9											case	'normal':
10																return	true;
11																break;
12										case	'ajax':
13																serverUrl	=	'Ajax-form.php';
14																break;
15										case	'rpc':
16																serverUrl	=	'Rpc-basic-urlencoded.php';
17																break;
18					}
19
20					var	client	=	new	HttpClient();
21					client.isAsync	=	true;
22					client.requestType	=	'POST';
23
24					//	urlencode	the	payload
25					payload	=	"ajax=true";
26					for(var	i	=0;	i	<	form.elements.length;	i++)	{
27							if	(form.elements[i].name)	{
28													if	(payload	!=	"")		{
29																			payload	+=	"&";
30													}
31													payload	+=		encodeURIComponent(form.elements[i].name)
32													+	'='	+	encodeURIComponent(form.elements[i].value);
33							}
34					}
35
36					client.callback	=	function(result)	{
37											document.getElementById('target').innerHTML	=	result;
38					};
39
40					client.makeRequest(serverUrl,payload,
41																	'application/x-www-form-urlencoded');
42					return	false;
43	}
44
45	</script>
46	</head>
47	<body>

48	<form	action="Ajax-form.php"	method="POST"
49										onsubmit="return	handleForm(this)">
50				<p><label>Source	String:</label>
51				<input	name="payload"	id="string"></p>
52
53				<p>

54				<label>Submit	As:</label>
55				<select	id="formAction">
56										<option	value='normal'>Normal	Form</option>
57										<option	value='ajax'>AJAX	Form</option>
58										<option	value='rpc'>RPC	Form</option>
59				</select>
60				</p>
61
62				<p>
63				<select	name='function'>
64										<option	value="reverse">Reverse	String</option>
64										<option	value="rot13">ROT	13	String</option>
65				</select>
66				</p>
67
68				<p><input	type="submit"	value="Submit	Form"></p>
69	</form>
70
71	<div	id="target"></div>
72
73	<div	style="position:	absolute;	width:100px;	height:20px;
74				top:	5px;	right:	5px;	display:none"
75				id="HttpClientStatus">Loading	...</div>
76
77	</body>
78	</html>

Listing	3-9	makes	a	form	submission	perform	different	actions;
this	basic	setup	leads	us	to	a	different	layout	in	our	JavaScript
code	than	most	of	the	RPC	examples.	Instead	of	having	a
number	of	smaller	helper	functions,	we	end	up	with	a	large
form	handler	function	that	performs	many	of	the	same	actions,
no	matter	how	we	submitted	the	form.	In	its	definition,	this
function	handle	Form,	which	starts	on	line	6	and	continues	to	line
43,	expects	the	form	to	be	submitted	as	a	parameter.	Lines	718
decide	how	we're	going	to	submit	the	form.	To	do	this,	we
create	a	switch	statement	around	the	value	of	a	select	element.
If	we	do	a	normal	form	submission,	we	return	true,	which	allows
normal	form	submission	to	take	place.	For	AJAX	or	RPC	form

submission,	we	set	the	URL	to	submit	content,	too.	The	rest	of
the	logic	is	the	same	because	the	data	is	formatted	the
samewhether	we're	treating	it	as	a	normal	form	POST	or	a	URL-
encoded	RPC	submission.

Lines	2023	set	up	an	HttpClient	instance	to	make	an
asynchronous	POST	submission;	HttpClient	is	the	XMLHttpRequest	we
built	earlier	and	included	on	line	4.	After	that,	we	prepare	a
payload	to	send	as	the	POST	body.	This	is	done	on	lines	2634.	We
loop	over	each	element	in	the	form,	and	if	name	is	set	on	it,	we
add	it	to	the	form	as	the	string	name=value.	Both	name	and	value	are
escaped	using	encodeURIComponent,	with	each	form	element's	value
being	separated	from	the	next	by	an	ampersand	(&).	Then	a
callback	handler	(lines	3638)	is	created	to	perform	an	action	on
the	results	of	our	remote	calls;	in	this	case,	it	just	updates	the
contents	of	a	DIV	using	innerHTML.	The	form	handler	finishes	by
making	a	remote	request	and	returning	false.	When	making	a
request	(lines	4041),	it's	important	to	include	the	correct
Content-type,	because	$_POST	will	be	automatically	populated	in
PHP	only	when	the	content-type	is	application/x-www-form-
urlencoded.	The	final	action	of	returning	false	is	also	important.
Without	it,	the	form	would	submit	over	our	HttpClient	and	then
as	a	normal	form.

The	rest	of	the	file	creates	a	basic	user	interface:	an	HTML
form,	an	output	target,	and	an	element	to	show	while	we're
waiting	for	the	server	to	respond.	Lines	4849	define	the	form,
and	the	action	attribute	sets	the	page	that	will	handle	normal
form	submission	requests.	onsubmit	ties	our	form-handling
function	to	this	form,	and	the	value	from	this	function	is
returned,	allowing	it	to	cancel	the	normal	form	submission.	Line
51	creates	the	source	string;	this	will	be	the	payload	sent	to	our
RPC	functions	when	doing	an	RPC	submission.	Lines	5559
define	the	select	element	that	lets	us	select	how	the	form	will	be
submitted;	the	value	of	each	option	matches	up	with	the	switch
statement	in	the	handler	function.	Lines	6365	define	a	select
element	that	lets	us	pick	an	RPC	function	to	call	on	the	string

payload,	and	the	values	of	these	options	match	functions
registered	on	the	PHP	RPC	page.	The	page	finishes	with	a
submit	button	(line	68),	a	DIV	with	an	ID	of	target	that	is	used
to	show	the	output	of	our	calls	(line	71),	and	a	status	DIV	(lines
7375).

The	output	from	ajax-form.html	can	be	sent	to	one	of	two	pages:
rpc-basic-urlencoded.php	or	ajax-form.php.	Each	page	interacts	with
the	data	in	the	same	way	because	our	encoding	works	in	the
form	submission	handler,	which	makes	each	POST	request	look
like	a	normal	form	submission.	ajax-form.php	is	shown	in	Listing
3-10;	it's	a	simple	page	that	checks	if	this	is	an	AJAX
submission	or	a	normal	submission	and	then	shows	the	value	of
$_POST	using	var_dump.	The	check	for	an	AJAX	submission	is	done
by	looking	for	the	ajax	element	in	the	$_POST	being	set.	Unless
you	set	a	marker	like	this,	there	is	no	way	to	tell	that
XMLHttpRequest	was	used	instead	of	a	normal	form	submission.

Listing	3-10.	ajax-form.php

<pre>
<?php

if	(isset($_POST['ajax']))	{
						echo	"AJAX	Form	submission\n";
}
else	{
						echo	"Standard	Form	submission\n";
}
var_dump($_POST);
?>
</pre>

3.2.1.2.	URL-Encoded	AJAX	RPC

The	RPC	handler,	rpc-basic-urlencoded.php,	is	the	same	code	as

rpc-basic-plain.php,	except	for	a	change	to	how	the	payload	is
read.	Lines	3134	of	rpc-basic-plain.php	are	replaced	with	the	code
shown	next.	This	code	sets	$payload	with	the	value	of	the	payload
index	in	$_POST:

31		$payload	=	"";
32		if	(isset($_POST))	{
33						$payload	=	$_POST['payload'];
34		}

You	can	experiment	with	the	example	by	loading	Listing	3-9.
Figure	3-6	shows	what	the	listing's	output	should	look	like.
Notice	how	easy	it	is	to	move	between	a	normal	form
submission	and	an	AJAX	form	submission.	AJAX	form
submissions	can	be	used	with	document-based	approaches	as
well	as	with	remote	scripting	approaches.

Figure	3-6.	URL-encoded	AJAX	RPC

[View	full	size	image]

Adding	some	basic	data	encoding	to	our	AJAX	requests	adds	a
lot	of	power	and	flexibility	to	AJAX-based	RPC.	It's	a	great	way
to	send	multiple	parameters	to	the	server,	and	it	is	a	great	fit
for	form	type	data.	The	same	encoding	technique	can	also	be
used	with	non-RPC-based	approaches	when	you	want	to
emulate	a	normal	form	submission.

3.2.2.	SOAP	and	XML-RPC

SOAP	and	XML-RPC	are	standardized	XML	protocols	for	doing
remote	requests.	Many	people	who	have	used	them	before	will
wonder	why	they	are	not	used	more	often.	There	are	a	variety
of	reasons	for	this,	but	the	mains	ones	are	as	follows:

The	standards	are	complex	and	require	large	client	libraries.

Their	encodings	are	verbose,	making	for	slower	interaction.

The	biggest	benefits	of	talking	to	any	Web	service	are
negated	by	the	fact	that	XMLHttpRequest's	security	model
limits	you	to	talking	to	the	same	server	that	sent	the	HTML
page.

At	present,	there	are	no	successful	cross-browser
implementations	in	JavaScript	for	either	SOAP	or	XML-RPC.
There	don't	seem	to	be	technical	issues	stopping	SOAP	or	XML-
RPC	from	being	implemented,	except	that	any	implementation
will	be	much	larger	than	the	RPC	options.	SOAP	or	XML-RPC
may	become	more	popular	in	the	future	if	browsers	add	native
clients,	but,	so	far,	any	implementations	such	as	the	SOAP	client
in	Mozilla	have	been	restricted	to	signed	code	or	custom
browsers	built	from	the	Mozilla	base.

3.2.3.	Custom	XML

Some	AJAX	implementations	use	various	custom	XML	schemas
for	transferring	data.	Although	these	formats	suffer	from	some
of	the	same	data-bloat	problems	as	SOAP	or	XML-RPC,	they	are
generally	much	simpler	and	make	a	better	fit	because	of	this.
One	advantage	of	custom	XML	formats	is	that	a	format	can	be
constructed	to	drive	actions	on	the	client	side	instead	of	just
transferring	data.	Custom	XML	schemas	based	off	the	current
schemas	in	your	application's	workflow	might	also	be	useful,
but	these	generally	fit	a	document-centric	approach	better
because	most	of	the	schemas	will	be	data-specific	and	don't	fit
into	a	generic	RPC	approach.

The	XML	example	server	pages,	Rpc-xml.html	and	Rpc-xml.php,	build
off	the	RPC	plain-encoded	example.	One	advantage	of	using	this
approach	over	the	basic	RPC	code	is	that	it	makes	your	client
code	more	dynamic,	because	you	can	use	a	set	of	generic
content-replacement	functions	that	are	put	into	action	as
needed	from	the	server.	You	can	use	these	generic	functions
instead	of	coding	lots	of	custom	callbacks.	Depending	on	your
needs,	you	may	want	to	use	a	different	XML	schema	in	each
direction,	but	for	this	example,	we	use	the	same	one.	It's	a
basic	schema	that	tells	which	function	to	call	and	the
parameters	to	pass	to	the	function.	An	example	of	the	schema
is	shown	in	Listing	3-11.

Listing	3-11.	Example	Call	XML

<call	function="reverse">
						<param>Test</param>
</call>

On	the	JavaScript	side,	we	can	use	the	DOM	to	read	the	XML,
turning	it	into	a	string	that	can	be	run	through	the	eval	function
to	make	the	actual	call.	This	works	well	from	a	security
standpoint	because	the	browser	security	sandbox	keeps	any
remote	requests	on	the	same	server,	so	you	can	trust	any	new
content	just	as	much	as	you	trusted	the	original	page	load.	On
the	PHP	side,	you	don't	have	that	same	level	of	trust,	because	a
request	can	come	from	anywhere	on	the	Internet.	Instead,
you'll	want	to	compare	the	function	to	call	against	a	white	list
and	use	a	method	like	call_user_func	instead	of	eval.	XML
processing	is	also	slightly	harder	than	in	JavaScript,	because
versions	older	than	5.0	don't	have	DOM	support	by	default.	An
easy	way	to	support	PHP	4	and	5	is	to	use	a	library	from	PEAR
called	XML_Serializer.	XML_Serializer	has	the	capability	to	take	an
XML	file	and	turn	it	into	a	native	PHP	array.	Most	recent	PHP
installs	come	with	the	PEAR	package	manager,	allowing	you	to
install	the	library	by	running	pear	install	XML_Serializer.	(Detailed
installation	instructions	are	available	at	http://pear.php.net.)	An
example	using	XML	to	build	an	AJAX	RPC	system	is	shown	in
Listing	3-12.

Listing	3-12.	Rpc-xml.html

1		<html>
2		<head>
3		<title>XML	RPC	Example</title>
4		<script	type="text/javascript"	src="HttpClient.js"></script>
5		<script	type="text/javascript">
6		var	serverUrl	=	'Rpc-xml.php';
7		function	remoteCall(func,payload)	{
8					var	client	=	new	HttpClient();
9					client.isAsync	=	true;
10				client.requestType	=	'POST';
11				client.callback	=	function(result)	{
12										var	call	=	'';
13										var	callNode	=	client.xmlhttp.responseXML.firstChild;
14										call	+=	callNode.getAttribute('function')+'(';
15										var	params	=	callNode.getElementsByTagName('param');
16
17											for(var	i	=	0;	i	<	params.length;	i++)	{
18											call	+=	"'"+escape(params[i].firstChild.nodeValue)+"',";

http://pear.php.net

19						}
20
21											call	=	call.substring(0,call.length-1)+')';
22
23											eval(call);
24				}
25
26				payload	=	'<call	function="'+escape(func)+'"><param>'+
27																escape(payload)+'</param></call>';
28
29				client.makeRequest(serverUrl,payload,'text/xml');
30	}
31
32	function	replace(id,value)	{
33				document.getElementById(id).innerHTML	=	value;
34	}
35

36	function	append(id,value)	{
37				document.getElementById(id).innerHTML	+=	value;
38	}
39
40	function	remote(func)	{
41				remoteCall(func,document.getElementById('string').value);
42	}
43
44	</script>
45	</head>
46	body>
47			<label	for="string">Source	String:</label>	<input	id="string">
48	
49				Reverse	String
50				ROT	13	String
50	
51
52	Output:<div	id="target"></div>
53	<div	style="position:	absolute;	width:100px;	height:20px;
54				top:	5px;	right:	5px;	display:none"
55				id="HttpClientStatus">Loading	...</div>
56
57	</body>
58	</html>

Listing	3-12	follows	the	normal	pattern	of	a	JavaScript	section
at	the	top	and	then	a	small	UI	to	interact	with	it	below.	The
JavaScript	starts	on	line	4	by	including	the	standard
XMLHttpRequest	wrapper.	After	that,	we	define	the	remoteCall
method.	This	method	is	based	on	remoteCall	in	rpc-basic-
plain.html;	the	biggest	different	is	that	instead	of	a	callback

being	passed	in,	it	is	built	from	the	XML.	Lines	810	create	an
HttpClient	instance	and	set	it	up	for	an	asynchronous	POST
request.	Lines	1124	build	the	callback	handler	that	handles	this
result;	this	code	uses	the	DOM	representation	of	the	resulting
XML	file	to	perform	an	action.

The	basic	process	is	to	build	a	string	and	evaluate	it.	This
process	starts	on	line	13	by	grabbing	the	root	node	of	the	XML
document	(the	call	tag)	and	putting	it	into	callNode.	Next,	we
append	the	function	name	and	an	"("	to	the	call	string.	After
that,	we	use	getElementsByTagName()	(line	15)	to	get	an	array	of	all
the	param	tags.	We	loop	through	these	tags,	appending	each	one
inside	single	quotes	to	the	string	(lines	1719).	Each	value	is
also	run	through	the	escape	function	in	case	it	contains	a	single
quote	or	another	character	that	would	cause	our	eval()	to	fail.	At
the	end	of	this	process,	we	will	get	a	string	like
"functionName('param1',	'param2',".	To	finish	up	the	process	of
building	our	call	string,	we	remove	the	extra	","	from	the	end
and	append	the	closing	")"	on	line	21.	Finally,	the	string	is	run
through	eval()	on	line	23,	calling	the	function.

Lines	2627	prepare	the	XML	payload	to	be	sent	to	the	server.
Because	this	is	just	a	simple	example	with	one	parameter,	it	is
just	a	matter	of	escaping	the	input	and	putting	it	together	with
the	XML	tags	using	string	concatenation.	Line	26	finishes
remoteCall()	by	making	the	actual	server	request.

Next,	the	file	contains	a	couple	of	generic	callback	functions	and
a	helper	function	for	making	the	remote	calls.	Lines	3234
contain	a	generic	function	that	replaces	the	content	of	an	HTML
element	using	innerHTML.	This	method	takes	two	parameters:	the
ID	of	the	element	and	the	content	to	use	for	innerHTML.	Lines
3638	contain	an	append()	function	that	follows	the	same	pattern
as	the	replace()	function	on	lines	3234;	the	only	difference	is
that	append()	appends	to	innerHTML.	The	remote()	function	on	lines
4042	grabs	the	input	value	from	the	string	input	box	and	calls
remoteCall()	with	it,	passing	it	the	function	in	the	func	variable.

The	rest	of	the	file	(lines	4657)	contains	the	basic	HTML	UI.	Line
47	contains	our	source	input	box,	and	lines	4850	contain	a	list
of	action	links	that	call	the	JavaScript	remote()	function.	Line	52
contains	our	target	DIV,	which	can	be	used	by	the	append	and
replace	functions.	The	file	is	finished	by	a	status	DIV	on	lines
5355.	The	back	end	for	this	page	is	shown	in	Listing	3-13.

Listing	3-13.	Rpc-xml.php

1		<?php
2		require_once	'XML/Unserializer.php';
3
4		//	functions	that	can	be	called	remotely
5		function	rot13($string)	{
6					$xml	=	'
7					<call	function="replace">
8											<param>target</param>
9											<param>'.str_rot13($string).'</param>
10				</call>
11				';
12				return	$xml;
13	}
14
15	function	reverse($string)	{
16				$xml	=	'
17				<call	function="append">

18						<param>target</param>
19						<param>'.strrev($string).'</param>
20				</call>
21				';
22				return	$xml;
23	}
24
25
26	//	list	of	functions	that	can	be	called
27	$functionList	=	array(
28						'rot13',
29						'reverse'
30);
31
32
33	//	set	the	content	type
34	header('Content-Type:	text/xml');
35
36
37	//	Get	the	content	from	the	client
38	if	(isset($HTTP_RAW_POST_DATA))	{

39				$xml	=	$HTTP_RAW_POST_DATA;
40
41				$unserializer	=	new	XML_Unserializer(
42				array('returnResult'=>true,'parseAttributes'=>true));
43				$data	=	$unserializer->unserialize($xml);
44
45				//	function	to	call
46				$funcToCall	=	$data['function'];
47
48				//	params	to	function
49				$params	=	array();
50				if	(isset($data['param']))	{
51										if	(is_array($data['param']))	{
52																$params	=	$data['param'];
53										}
54										else	{
55																$params	=	array($data['param']);
56									}
57				}
58	}
59
60	//	check	whether	the	function	is	registered
61	if	(!in_array($funcToCall,$functionList))	{
62				die('Unable	to	call'.$funcToCall);
63	}
64
65	//	call	a	function	and	output	its	results
66	echo	call_user_func_array($funcToCall,$params);
67	?>

The	first	section	of	the	file	contains	the	same	small	function
wrappers	around	basic	PHP	string	handling	functions	as	the
plain	example.	The	difference	is	that	returned	small	chunks	of
XML	define	what	to	do	with	the	results	instead	of	just	sending
the	results	back.	The	rot13	function	on	lines	513	returns	XML	to
replace	the	content	of	the	element	with	an	ID	of	target	with	a
rot13	of	the	input	string.	The	reverse()	function	on	lines	1523
returns	XML	to	append	to	the	contents	of	the	target	element
with	the	reverse	output	of	the	input	string.	These	two	functions
are	then	added	to	our	function	white	list	on	lines	2730.

The	latter	half	of	the	file	(lines	3366)	takes	an	incoming	request
and	prepares	the	results.	Line	34	sets	the	content-type;	if	it's
not	set	to	text/xml,	then	responseXML	will	never	be	populated	on
the	client	without	this	header	being	set.	Lines	3758	parse	the

XML,	getting	the	function	to	call	and	building	an	array	of
parameters	to	call	it	with.	Lines	4142	create	a	new
XML_Unserializer	instance.	Options	are	set	to	parse	XML	attributes
(line	42)	and	to	return	the	parsed	data	form	unserialized
instead	of	using	an	extra	method	call	to	get	it.	Line	43	parses
the	actual	XML	and	sets	its	output	array	to	the	$data	variable.
Line	46	uses	this	array	to	get	the	function	we're	calling,	and
then	lines	4957	grab	the	array	of	parameters.	We	first	check
whether	the	param	index	is	set	(line	50),	allowing	us	to	call
functions	without	input.	If	it	is	set,	we	check	whether	it's	an
array	(line	51).	If	it	is,	we	just	set	that	to	$params;	if	it's	not,	we
wrap	it	in	an	array	as	we	set	it	to	$params.	This	is	done	because
XML_Serializer	makes	$data['param']	an	array	when	multiple	param
tags	exist,	but	if	just	one	exists,	XML_Serializer	makes
$data['param']	index	string.	Lines	6063	do	a	basic	security	check,
canceling	script	execution	if	the	function	isn't	in	our	white	list	of
AJAX-callable	functions.	Finally	on	line	66,	we	use
call_user_func_array	to	call	the	function	and	echo	its	results	to	the
client.	This	example	is	shown	in	Figure	3-7.

Figure	3-7.	XML-based	AJAX	RPC

[View	full	size	image]

Using	XML	to	move	the	data	in	our	AJAX	RPC	system,	we	can
build	a	system	that	can	transfer	any	type	of	data.	Using	the
concepts	of	standard	XML-based	RPC	systems,	we	can	encode
any	type	of	data	and	get	the	flexibility	needed	to	build	complex
applications.	If	we	optimize	the	schema	for	the	server-side
language	that	is	being	used,	we	can	also	limit	the	overhead
created	by	the	XML	tags	needed	to	describe	the	data.	XML	is
used	in	many	AJAX	RPC	libraries	and	provides	everything	you
need	to	make	a	complete	RPC	solution.

3.2.4.	JavaScript	and	JSON

Generating	JavaScript	and	sending	it	to	the	client	where	it	is	run
through	eval()	is	a	popular	way	to	move	data	in	object
implementations.	This	process	is	popular	because	JavaScript
has	compact	notations	available	for	data	types,	such	as	arrays,
and	it	allows	for	very	flexible	operations.	Some	AJAX
frameworks	use	this	ability	to	generate	new	client	code	from
the	server	as	needed,	allowing	the	framework	to	provide	a	more
centralized	view	of	the	development	instead	of	the	normal
client/server	dichotomy.

A	mixed	XML/JavaScript	example	could	easily	be	built	for	the
RPC	XML	in	Listings	3-12	and	3-13.	On	the	client	side,	you
would	send	XML	to	the	server,	as	is	the	case	with	the	current
code,	but	for	the	results,	the	server	would	return	JavaScript	and
the	client	would	eval	it	directly.	To	accomplish	this,	we	need	to
make	some	small	edits	to	Listings	3-12	and	3-13.	For	Listing	3-
12,	we	need	to	replace	lines	1224	with	a	simple	three-line
callback	that	will	run	eval	on	the	results	from	the	server.	This
new	callback	is	shown	in	Listing	3-14.	The	server	URL	on	line	6
is	updated	to	point	to	a	new	PHP	script,	which	will	be	an	edited
version	of	Listing	3-13.	This	update	is	shown	here:

var	serverUrl	=	'rpc-xml-javascript.php';

On	the	server	side,	lines	423	of	Listing	3-13	are	removed	and
replaced	with	the	eight	lines	shown	in	Listing	3-15.	The	content
type	on	line	34	of	Listing	3-13	was	also	changed	to	text/plain.

Listing	3-14.	Changes	to	Make	Rpc-xml-
javascript.html

12	client.callback	=	function(result)	{
13						eval(result);
14	}

Listing	3-15.	More	changes	to	Make	Rpc-xml-
javascript.html

4		//	functions	that	can	be	called	remotely
5		function	rot13($string)	{
6							return	"replace('target','".addslashes(str_rot13($string))."')";
7		}
8
9		function	reverse($string)	{
10						return	"append('target','".addslashes(strrev($string))."')";
11	}

These	small	changes	give	you	a	simpler	code	base	with	which	to
work,	and	their	use	entails	sending	a	much	smaller	amount	of
data	back	to	the	client.	It	also	allows	for	simpler,	more	flexible
coding	because	you	can	send	back	any	JavaScript	instead	of
only	what	your	XML	schema	allows.

Taking	this	approach	one	step	further	and	sending	JavaScript	in
both	directions	would	be	nice	because	of	the	data	savings,	but
that's	a	much	harder	task	to	do	for	a	couple	reasons.	Most
server	languages	don't	contain	a	JavaScript	interpreter,	so	they
can't	evaluate	JavaScript	code,	but	even	if	they	did,	you
wouldn't	want	to	allow	arbitrary	client-created	code	to	run	on
your	server.	Running	code	from	the	client	on	the	server	would
be	a	huge	security	problem.	The	solution	to	both	of	these
problems	is	a	subset	of	JavaScript	called	JSON,	which	is	the
literal	syntax	for	JavaScript	objects.	It	can	be	run	by	eval()	on
the	JavaScript	side.	This	allows	for	any	JavaScript	data	types	to
be	transferred,	and	it's	much	faster	than	an	XML-based	solution
because	the	compact	encoding	allows	for	a	much	smaller
amount	of	data	to	be	transferred.	On	the	server	side,	JSON	is
simple	enough	for	a	small	parser	to	be	built	to	serialize	native
data	types	into	JSON	and	to	create	native	data	types	from
JSON.

While	JSON	is	powerful	and	supports	all	JavaScript	data	types,
it	also	has	the	drawback	of	being	a	more	complex	solution.	A
library	is	needed	on	the	server	to	handle	moving	to	and	from
the	JSON	strings,	and	a	library	is	needed	on	the	JavaScript	side
to	create	JSON	stringsalthough	eval()	can	be	used	to	turn	JSON
into	JavaScript	objects.	This	makes	a	JSON	example	more
complex	than	the	examples	shown	in	the	other	sections,	which
means	if	you	want	to	use	JSON,	you'll	need	to	find	some
external	libraries	to	do	the	actual	parsing.	Appendix	A	contains
a	list	of	libraries	that	provide	JSON	processing.	In	Chapter	9,
"Libraries	Used	in	Part	II:	HTML_AJAX,"	a	complete	JSON	RPC
library	for	PHP	HTML_AJAX	is	shown.

3.3.	How	to	Decide	on	a	Request	Type

There	are	two	main	request	types	used	in	AJAX	communication:
POST	and	GET.	These	are	the	identical	choices	you	have	with
forms	in	HTML,	and	the	same	rules	apply.	GET	requests	can	be
used	when	the	URL	performs	no	action.	(For	example,	a	URL
such	as	index.php?section=main	that	displays	the	main	section	of	a
Web	site	is	a	good	use	for	GET.)	A	URL	such	as	index.php?
action=delete&id=1	should	never	be	used	with	GET.	The	main
reasons	for	this	go	back	to	the	HTTP	standard,	which	suggests
that	GET	requests	should	not	perform	permanent	actions	and	are
not	allowed	to	be	cached	by	proxies	and	other	infrastructure.
Some	Web	accelerator	products	also	prefetch	GET	URLs	from
pages,	which	causes	huge	problems	when	they	hit	a	URL	that
deletes	a	record.	GET	requests	also	have	the	drawback	of
potentially	limiting	the	amount	of	data	that	the	client	can	send
to	the	server;	current	HTTP	specs	don't	limit	size,	but	many
servers	and	browsers	limit	the	size	to	around	2,000	characters.
POST	requests	aren't	allowed	to	be	cached	by	proxies	or
prefetched,	and	thus	are	much	safer	than	GET	requests.

In	most	AJAX	setups,	especially	any	using	an	RPC	approach,
only	POST	requests	should	be	used.	While	some	of	the	requests
might	be	just	to	load	new	data,	it's	generally	too	hard	to	keep
track	of	which	type	of	request	is	which.	In	a	document-centric
approach,	GET	requests	might	be	useful,	especially	when	you're
using	AJAX	to	load	in	chunks	of	static	HTML	or	XML	content.	If
you	go	with	an	approach	like	that,	you'll	want	to	use	a	good
naming	convention	to	help	keep	track	of	which	type	of	request
is	needed	for	each	URL.

	

3.4.	Summary

The	examples	in	this	chapter	cover	the	basic	ways	to	consume
the	data	we	learned	to	transfer	in	Chapter	2.	Although	fully
working,	their	simple	implementation	is	not	the	best	choice	for
most	production	environments,	because	their	simple	style	does
not	provide	the	robustness	and	feature	set	that	a	larger	library
would	provide.	In	Chapters	912,	many	of	these	same	patterns
will	be	implemented	using	various	libraries.	These	libraries	offer
better	error	handling	and	various	helper	functions	to	remove
some	of	the	repetitive	code	in	the	example.	The	more	complex
libraries	also	allow	you	to	mix	and	match	RPC	serialization
types,	letting	you	use	whatever	serialization	format	is	most
efficient	for	the	data	in	question.

You	have	two	main	choices	when	working	with	AJAX	data:

Document-centric	approaches	easily	fit	into	current	server-
side	modules	and	allow	for	a	loose	coupling	between	the
client	and	the	server.

RPC-based	approaches	produce	a	tight	coupling	with	the
server	side	but	offer	the	ability	to	write	simpler	server-side
code.

Either	approach	will	allow	you	to	successfully	build	AJAX
applications,	but	neither	choice	will	guarantee	it.	Successful
AJAX	applications	are	not	created	because	of	implementation
choices	(although	a	good	implementation	always	helps).	They
are	created	by	good,	user-centered	design;	the	AJAX	addition
improves	usability	and	gives	the	user	the	ability	to	do	things	he
or	she	never	imagined.

Chapter	4.	Adding	AJAX	to	Your	Web
Development	Process
In	this	chapter

4.1	Changes	to	the	Development	Cycle page	78

4.2	Integrating	AJAX	into	a	Framework page	86

4.3	JavaScript	as	a	Primary	Development	Language page	87

4.4	Problems	Created	by	the	New	Development
Paradigm page	88

4.5	Advantages	to	Using	a	Library page	89

4.6	Reasons	to	Build	Your	Own	Library page	91

4.7	How	Open	Source	Fits	into	the	Mix page	91

4.8	Use	Case	for	Building:	The	Firefox	Counter page	95

4.9	Use	Case	for	Downloading:	An	Intranet	Web	Site page	97

4.10	Summary page	98

AJAX	is	not	really	a	new	technology,	but	because	it	involves	new
skills	and	ideas	in	creating	Web	pages,	it	introduces	many	new
difficulties	for	Web,	developers.	There	are	three	basic	sets	of
problems:

Technical	aspects	of	implementing	AJAX	(covered	in
Chapters	2,	"Getting	Started,"	and	3,	"Consuming	the	Sent
Data")

Overall	problems	that	are	a	result	of	the	nature	of	AJAX	as
a	whole

Deciding	how	to	integrate	a	new	set	of	third-party	tools

This	chapter	covers	the	second	and	third	problems.	We'll	first
explore	the	changes	AJAX	brings	to	the	development	cycle	and
then	cover	what	changes	using	JavaScript	as	a	primary
development	language	brings.	Then	we	will	look	at	how	AJAX
libraries	fit	into	the	overall	development	process	and	how	you
should	decide	which	one	to	use,	or	even	when	the	best	solution
is	to	build	your	own.

	

4.1.	Changes	to	the	Development	Cycle

There	are	a	variety	of	ways	to	use	AJAX	when	integrating	it	into
Web	applications.	On	one	end	of	the	spectrum,	you	can	use	it	to
enhance	a	current	site,	making	small	noninvasive	changes	to	an
already	completed	application.	On	the	other	end	of	the
spectrum,	you	have	applications	that	are	heavily	driven	by
JavaScript	and	won't	work	at	all	if	the	user's	browser	doesn't
support	AJAX.

Moving	to	a	100%	AJAX	application	usually	isn't	an	option	for	a
mass-market	Web	site	because	browser	compatibility	issues	will
cut	out	too	many	possible	users,	but	it	can	be	a	successful
choice	for	internal	projects	in	which	limiting	support	to	one	or
two	browsers	is	possible.	Although	browser	compatibility	can
limit	the	possible	choices,	it's	not	the	most	important	factor
when	deciding	how	AJAX	will	be	implemented.	Developer
familiarity	with	JavaScript	and	the	willingness	of	developers	to
make	changes	to	the	way	they	normally	develop	will	usually
play	a	larger	role	in	how	AJAX	is	used.

The	more	you	rely	on	AJAX,	the	larger	the	changes	will	be.	In
an	enhancement-only	scenario,	the	largest	impact	will	be	the
additional	testing	that	is	needed,	whereas	in	a	100%	AJAX
application,	all	aspects	of	developmentincluding	design,
implementation,	and	testingwill	be	affected.	The	amount	of
testing	needed	in	any	scenario	is	also	affected	by	the	number	of
browsers	that	need	to	be	supported.	In	single-browser
scenarios,	testing	can	be	focused	solely	on	the	new	AJAX
widgets	and	user	interactions,	whereas	in	a	multiple-browser
scenario,	differences	between	browsers	need	to	be	tested	as
well;	if	older	browsers	are	supported,	then	fallback	scenarios
also	need	to	be	tested.

4.1.1.	Enhancement-Driven	Changes

AJAX	is	typically	used	to	enhance	a	current	Web	site	after	the
site	has	been	developed	to	a	fully	functional	state.	Specific
areas	where	AJAX	could	improve	user	experience	are	chosen
and	then	optional	code	is	used	to	add	AJAX	to	those	areas.
Examples	include	adding	an	AJAX-driven	pull-down	element	to	a
search	box	that	shows	matching	options	as	the	user	types	or
providing	a	way	to	validate	that	a	username	isn't	already	in	use
without	submitting	an	entire	form.	Many	AJAX	libraries
encapsulate	all	the	functionality	needed	for	features	like	these,
making	the	only	implementation	and	design	challenge	the
integration	of	a	new	library.	While	this	can	be	difficult	depending
on	the	framework	in	use,	it's	not	really	any	different	from
supporting	any	other	third-party	library.	If	an	AJAX	library	is	not
used,	any	implementation	will	make	some	major	changes	to
your	normal	application	development	cycle;	be	sure	to	set	time
aside	to	create	the	needed	infrastructure	pieces.

Large	amounts	of	JavaScript	development	can	be	especially
disruptive	for	groups	using	unit	testing	or	other	automated
testing	tools.	The	disruption	is	caused	by	the	lack	of	JavaScript
support	in	normal	testing	tools.	Unit	testing	of	JavaScript	is
possible,	but	it	may	be	hard	to	integrate	into	existing	testing
frameworks	because	it	needs	to	run	in	a	browser.	In	addition,	it
may	need	to	run	in	different	browsers	to	cover	differences
between	them.	Although	getting	JavaScript	unit	tests	integrated
into	an	existing	framework	can	be	a	difficult	task,	it	does	have	a
large	payoff	because	it	helps	hide	many	of	the	debugging
differences	that	AJAX	adds.

You'll	find	that	even	bringing	in	a	small	amount	of	AJAX	leads	to
huge	differences	in	debugging.	These	changes	are	caused	by
two	main	items:

A	larger	amount	of	logic	is	encapsulated	in	JavaScript,
which	creates	a	second	area	to	test	code	for	problems.	This
testing	process	can	be	further	complicated	by	the	need	to
learn	new	tools	because	few	Integrated	Development

Environments	(IDEs)	support	JavaScript.	This	leads
developers	to	rely	more	heavily	on	debugging	tools	that	are
built	into	browsers.

The	communication	process	is	hidden.	When	you	are
loading	a	normal	page,	logic	errors	and	debugging
messages	can	be	immediately	shown,	but	with	AJAX
communication,	these	errors	need	to	be	caught	in	the
JavaScript	code	and	handled	before	they	are	visible.	This
makes	logging	problems	at	the	server	level	more	important
and	removes	the	direct	feedback	that	most	Web
development	languages	provide.

When	adding	any	amount	of	AJAX	to	a	Web	application,	you	can
expect	longer	development	and	testing	cycles.	If	AJAX	libraries
are	used,	the	amount	of	additional	time	needed	is	about	the
same	as	adding	any	other	feature.	If	all	the	development	is
new,	then	testing	time	will	be	increased,	as	more	testing	of
basic	functionality	will	be	needed.	Because	more	features	are
being	added,	implementation	time	is	increased,	but	no	other
large	changes	are	introduced.	(These	bolt-on	features	require
little	JavaScript	to	be	coded	once	the	basic	infrastructure	is	in
place.)

4.1.2.	AJAX	in	Action:	Removing	a	Popup	User
Search

A	common	task	in	many	Web	sites	is	selecting	a	user	on	which
to	perform	an	action.	This	task	is	especially	common	when
dealing	with	permissions	systems,	where	you	can	spend	a	large
amount	of	time	selecting	users	to	add	to	groups	or	to	update
the	permissions	on.	If	the	site	contains	only	a	small	number	of
users,	this	can	be	accomplished	by	an	HTML	select	box,	but
after	a	hundred	or	so	users,	this	becomes	less	useful.	It
becomes	less	useful	because	of	the	time	it	takes	to	scroll

through	the	list	and	find	the	item	in	question	and	because	of
the	large	amounts	of	data	that	need	to	be	transferred	for	each
box.	One	solution	is	to	provide	a	link	that	opens	a	new	page
where	the	search	can	be	done;	the	new	page	would	then	return
the	selected	user.	Although	this	scales	to	large	numbers	of
users,	it	does	have	the	disadvantage	of	taking	a	long	time	to
select	each	user.	An	easy	solution	to	this	problem	is	to	allow
users	to	search	directly	on	the	page	using	AJAX.

AJAX	searching	can	be	achieved	by	putting	an	entire	search
form	right	on	the	page	and	submitting	it	over	AJAX,	or	it	can	be
done	by	building	a	combo	box-style	search	box.	As	the	user
types,	AJAX	search	requests	are	sent	and	the	results	are	used
to	build	a	dynamic	pull-down	list	below	the	text-input	box.	An
example	of	this	is	shown	in	Figure	4-1.	If	this	is	the	only	AJAX
you're	adding	to	an	application,	it	will	require	the	following
actions:

Addition	of	an	AJAX	communication	layer	(usually	provided
by	a	library)

Additional	JavaScript	and	HTML	code	for	building	the	drop-
down	elements

New	entry	point	to	the	application	for	getting	unformatted
search	results

Testing	of	the	new	feature

Testing	of	the	fallback	to	the	old	pop-up	in	non-AJAX
browsers

Figure	4-1.	AJAX-driven	user	selection

[View	full	size	image]

As	you	can	see	from	the	list	of	actions,	there	are	no	wildly
different	additions	to	the	development	cycle.	You	just	need
some	extra	time	to	add	in	this	AJAX	feature.	The	biggest
changes	caused	by	this	addition	are	the	new	entry	point	for
your	AJAX	search	and	any	debugging	hassles	caused	by	it.

4.1.3.	Changes	Caused	by	Creating	an	AJAX-
Driven	Application

AJAX	can	be	useful	when	used	as	an	enhancement	tool	that	is
targeted	at	specific	tasks	that	are	slow	or	hard	to	do	within	the
normal	Web	environment.	However,	AJAX	is	most	powerful
when	you	rethink	how	you	build	Web	sites	and	design	it	into	the
application	from	the	ground	up.	This	allows	you	to	move	from	a
design	built	on	full-page	reloads	to	an	event-driven	application

where	events	drive	small	areas	of	the	application	to	update.
Requiring	AJAX	for	your	application	does	limit	which	browsers
you	can	support,	but	in	many	circumstances,	the	tradeoff	is
worth	it,	because	it	allows	you	to	create	applications	that	are
not	possible	in	a	normal	Web	application	model.

Creating	an	AJAX-driven	application	is	a	much	larger	shift	than
just	sprucing	up	a	site	with	AJAX.	One	of	the	most	invasive
changes	you'll	find	is	the	removal	of	the	page	concept	from	the
application.	In	a	normal	Web	application,	you	would	go	to	the
/list/users.php	URL,	and	that	page	would	generate	HTML	to	show
a	table	of	users.	In	our	AJAX-driven	application,	an	event	will	be
fired	(maybe	by	clicking	a	button)	that	will	cause	JavaScript	to
load	user	data	using	AJAX	and	then	update	an	existing	table
using	the	JavaScript	Document	Object	Model	(DOM).	Depending
on	your	design,	the	/list/users.php	page	on	the	server	might	still
exist.	However,	it	would	now	just	output	the	data	needed,	not
an	entire	page.	The	main	shift	here	is	moving	the	logic	that
puts	together	the	different	data	sources	from	your	server	to	the
client.

This	shift	will	have	a	number	of	effects	on	your	server-side
development	efforts.	Because	you	will	no	longer	be	generating
HTML	at	each	URL,	you'll	find	yourself	in	a	model	where	you're
building	an	API	instead	of	a	bunch	of	pages.	This	will	have	a
large	effect	on	most	development	frameworks,	because	the
front	controller	will	lose	command	over	the	actual	HTML-
generation	aspects	of	the	page	and	instead	will	focus	on	data
aggregation	and	security.	By	the	same	token,	security	handling
will	move	to	different	parts	of	the	application.	Because	much	of
the	HTML	generation	will	now	be	handled	on	the	client,	you	will
no	longer	rely	on	it	to	filter	out	records	the	user	shouldn't	be
able	to	access.	Although	most	people	won't	edit	the	JavaScript
code	that	drives	your	application,	there	is	nothing	stopping
them	from	doing	so;	therefore,	security	checks	and	filters	that
are	implemented	in	JavaScript	could	be	removed	easily	by	a
determined	foe.

The	heavy	focus	on	JavaScript	will	also	be	a	change	for	many
developers;	reusable	widgets	that	were	created	in	a	template
language	before	will	now	need	to	be	moved	to	JavaScript
constructs.	You'll	also	find	it	harder	to	stay	away	from
JavaScript	functions	that	have	inconsistencies	between
browsers.	This	is	especially	true	of	JavaScript	events,	because
they	are	at	the	heart	of	any	event-driven	application.	Events	do
work	well	in	all	new	browsers,	but	there	are	some	differences,
especially	with	change	events	that	make	them	unreliable	when
used	by	themselves.	In	most	cases,	a	bit	of	research	will	find
workarounds	to	these	cross-browser	problems,	but	this	aspect
will	likely	be	an	annoyance	during	development	and	will	surely
increase	the	amount	of	testing	that	needs	to	be	done.

Testing	needs	will	increase	as	you	make	a	more	complex	user
interface	(UI),	but	this	process	is	relatively	straightforward;	if
you	already	implement	a	detailed	testing	plan,	this	won't	be
much	of	a	change.	The	biggest	difference	is	that	more
interaction	is	needed	with	the	elements	on	the	page	to	test
their	interactivity.	The	JavaScript-to-server	communication	layer
also	becomes	a	new	point	of	testing.	You	will	need	to	make	sure
that	your	application	handles	communication	errors	properly
because	you'll	be	handling	them	now	(instead	of	leaving	them
to	the	browser).	The	actual	testing	of	the	server	side	will	also
be	a	change	for	developers	who	are	not	currently	using	some
type	of	unit	testing	processes.	In	an	AJAX	application,	it	is
important	to	be	able	to	test	the	server	separately	from	the
client	because	this	greatly	reduces	complexity	during	the
debugging	process.

An	AJAX-Driven	Application	Use	Case:	Mp3act

Mp3act	is	an	open	source	music	management	system;	it	allows	you	to	search,
browse,	and	stream	music	stored	on	a	server.	Although	it's	not	as	popular	as
client-side	music	management	systems,	such	as	iTunes,	server-side	music
management	does	have	a	thriving	niche,	and	there	are	many	implementations	of
this	same	process	using	a	normal	Web	development	model.

Mp3act	fully	removes	the	page	concept	from	the	application;	the	application	is
divided	into	two	independent	sections.	One	section	is	the	navigation	bar,	which
contains	links	between	major	aspects	of	the	application,	such	as	search	and
playlists.	The	other	section	is	the	content	area	that	is	updated	as	needed,	either
from	links	in	the	navigation	area	or	from	an	action	performed	inside	the	content.

Mp3act	provides	feedback	while	waiting	for	data	to	load	so	that	the	user	knows
something	is	happening.	(This	feedback	is	useful	because	the	Web	browser's
loading	throbber	never	moves.)	This	status	message	is	shown	in	Figure	4-2;	this
consistent	messaging	is	used	throughout	the	application	and	is	one	of	the
interface	touches	that	any	good	AJAX-driven	application	needs.

Figure	4-2.	Mp3actloading	status	shown	switching	to	Playlists
view

[View	full	size	image]

Mp3act	performs	two	major	types	of	AJAX	actions:	loading	new
application	sections	where	large	amounts	of	HTML	are	replaced,

and	dynamically	updating	tables.	Figure	4-3	shows	a	table
being	dynamically	updated;	the	plus	button	(on	the	right)	is
clicked,	which	adds	the	songs	in	the	table	to	the	playlist.	The
new	songs	are	highlighted	in	green,	showing	the	user	that	an
action	has	been	performed.	(The	highlight	fades	away	in	a
couple	seconds.)	Items	can	also	be	deleted	from	the	playlist
and	can	be	reordered	using	the	arrow	buttons.	(Similar
highlights	with	fade	affects	are	used	throughout	the
application.)

Figure	4-3.	Mp3actadding	an	album	to	a	playlist

[View	full	size	image]

When	compared	to	a	similar	application	developed	without
AJAX,	Mp3act	requires	a	large	number	of	development	changes,
such	as	the	following:

Addition	of	an	AJAX	communication	layer

Creation	of	a	JavaScript	playlist	widget

Visual-effect	JavaScript	code	for	fading	highlights	and
loading	messages

Creation	of	a	data-driven	API	on	the	server

Increased	testing	of	rich	UI	features,	such	as	reordering

Cross-browser	testing

Loss	of	support	on	browsers	that	do	not	support	AJAX

Although	AJAX	causes	development	changes,	Mp3act's	overall
development	timescale	isn't	necessarily	longer	than	a	non-AJAX
version	would	require.	Because	Mp3act	was	conceived	as	an
AJAX	application	from	the	start	of	its	development	and	because
its	developers	never	planned	for	it	to	support	non-AJAX	capable
browsers,	its	development	process	can	skip	normal	Web-
development	work,	such	as	building	forms	to	reorder	lists.

The	one	area	that	might	still	be	overly	time-consuming	is	the
processing	of	developing	good	cross-browser	support.	In	fact,	in
the	original	Mp3act	release,	Internet	Explorer	(IE)	didn't	work
at	all.	Resolving	these	cross-browser	issues,	which	involved
items	from	XMLHttpRequest	differences	to	various	ways	to	create
visual	effects,	could	have	been	easily	accomplished	by	using	a
library.	However,	some	cross-browser	issues,	such	as	CSS
layout,	have	no	easy	solution.	Even	if	the	overall	development
time	is	longer	than	for	a	non-AJAX	version,	the	end	result	a
usable,	attractive	application	that	works	the	way	a	user
expectsseems	well	worth	it.

	

4.2.	Integrating	AJAX	into	a	Framework

Whether	you're	planning	to	add	only	a	few	simple	AJAX	features
or	use	AJAX	throughout	your	site,	integrating	it	into	your
current	Web	site	design	is	a	must.	The	more	formal	the
framework,	the	harder	the	process	isespecially	if	your
framework	provides	a	front	controller	that	is	heavily	optimized
for	generating	HTML.	Frameworks	without	a	front	controller
have	an	easier	time	incorporating	AJAX	because	they	can	add	a
new	entry	point	just	for	AJAX;	many	AJAX	Remote	Procedure
Call	(RPC)	implementations	provide	code	to	help	do	this.

The	way	you	integrate	with	a	front	controller	depends	heavily
on	the	style	of	AJAX	you're	performing.	If	you're	taking	a
document-centric	approach,	integration	is	generally	easy;	you
just	need	the	ability	to	create	pages	in	the	needed	output
format.	(The	controller's	normal	name	spacing	will	work	just
fine.)	This	may	take	some	new	development,	depending	on
your	current	design,	because	you'll	need	to	generate	small
chunks	of	HTML	(or	other	data	formats,	such	as	XML)	instead	of
full	pages.	You	will	also	need	to	make	some	naming	decisions,
such	as	whether	you	are	going	to	put	your	AJAX	pages	next	to
normal	pages	or	into	their	own	distinct	namespace.	A	distinct
namespace	makes	it	easy	to	locate	your	AJAX	code,	but	it
divides	the	code	by	usage	instead	of	by	function,	so	you	can't
see	the	AJAX	code's	relation	to	its	non-AJAX	version.	Adding	in
AJAX	pages	next	to	your	normal	code	lets	you	see	the	relation,
but	it	makes	it	much	harder	to	identify	all	of	an	application's
AJAX-entry	points.	Either	option	can	work	well;	the	most
important	point	is	to	use	a	consistent	approach.

RPC	AJAX	implementations	have	the	hardest	time	integrating
with	a	front	controller.	This	difficulty	occurs	because	most	RPC
implementations	are	focused	on	exporting	classes	to	JavaScript
and	have	their	own	mini-controller	implementation,	which	maps
incoming	calls	to	these	classes.	Many	also	generate	JavaScript,

which	should	be	added	to	the	page	using	a	JavaScript	include,
which	again	needs	its	own	basic	controller	logic.	There	are	three
main	tasks	you	want	to	accomplish	when	performing	this
integration:	managing	what	functions	are	exported	to
JavaScript,	managing	the	permissions	on	those	functions,	and
creating	a	clean	entry	point	that	fits	the	style	of	the	current
application.

The	last	task	is	generally	the	easiest	to	achieve.	With	most	RPC
libraries,	you'll	be	passing	information	specifying	which	class
and	which	function	to	call	to	the	server.	This	information	is
similar	to	the	section	and	page	information	that	most
controllers	already	manage;	it	allows	for	a	pass-through	or
mapping	system	to	be	created	easily.	The	problem	comes	with
the	first	two	tasks:	If	you	enforce	permissions	at	the	controller
level	of	your	application,	you	may	find	yourself	with	no	other
choice	but	to	create	tons	of	stub	functions	to	create	the
namespace	needed	for	permission	enforcement.	The	final	task
is	deciding	which	functions	to	export.	The	simplest	solution	is	to
create	classes	that	are	used	specifically	for	AJAX	integration,
but	you	may	find	that	mapping	functions	on	your	current
controllers	is	a	better	solution	for	you.	If	you	need	to	perform
complex	permission	or	partial	controller	mapping,	make	sure	to
choose	your	library	with	that	in	mind.	Some	enforce	strict	name
mapping	between	the	server	and	JavaScript	side,	and	most
approaches	like	this	will	need	a	virtual	mapping	of	the	methods
instead.

If	you	start	using	large	amounts	of	AJAX	in	your	application,
you'll	also	want	to	look	at	ways	to	standardize	your
management	of	JavaScript	code.	Your	framework	will	need	a
way	to	map	the	JavaScript	that	is	needed	to	power	each	HTML
page.	In	a	small	application,	it	can	all	be	stored	in	a	single	file,
but	in	most	frameworks,	you'll	have	various	chunks	of	reusable
JavaScript	to	manage.	One	way	to	manage	this	is	to	output	all
the	needed	JavaScript	for	a	page	through	a	dynamic	page	on
the	server,	sending	headers	to	allow	the	client	to	cache	the

JavaScript	as	if	it	were	static.	Another	option	is	to	build
packages	of	prebuilt	JavaScript	files	and	then	include	the	set
you	need	for	the	page	in	question.	Large	amounts	of	JavaScript
development	will	affect	your	framework	in	other	ways	as	well,
because	JavaScript	can	become	just	as	important	as	your
server-side	language.

	

4.3.	JavaScript	as	a	Primary	Development
Language

JavaScript	is	a	powerful	scripting	language,	but	deserved	or
undeserved,	it	has	gained	a	bad	reputation.	If	you	take	some
time	to	look	at	JavaScript	with	a	fresh	eye,	you	will	notice	that
most	of	its	problems	no	longer	exist.	The	core	language	is	now
standardized	with	the	European	Computer	Manufacturer's
Association	(ECMA)	standards	group	and	is	supported	on	all
modern	browsers.	Of	course,	these	browsers	also	support	older
proprietary	syntaxes,	and	you	should	avoid	these	as	much	as
possible.	Keeping	to	the	standardized	interfaces,	JavaScript	is
portable	with	a	minimal	amount	of	testing	and	browser-specific
code.	Because	of	this	standardization,	writing	complex
JavaScript,	which	was	close	to	impossible	in	the	Netscape	4
days,	is	now	an	easy	task,	although	each	browser	will	still	need
its	own	testing.

High-quality	libraries	help	reduce	the	amount	of	JavaScript	you
need	to	write.	Many	libraries,	both	open	source	and	commercial,
are	immature,	but	the	more	popular	ones	are	already	usable
tools,	even	though	it	can	be	harder	to	find	documentation	and
examples	for	them	than	for	server-side	libraries.	JavaScript
libraries	are	especially	useful	for	complicated	user-interface
elements,	such	as	drag	and	drop.	However,	with	less-complex
elements,	such	as	AJAX	communications	or	visual	effects	(such
as	fading	an	element	out),	they	are	less	useful	because	you	still
have	to	write	all	the	glue,	and	that's	a	large	part	of	the	overall
code.	As	AJAX	becomes	more	popular	and	libraries	mature,
more	and	more	solutions	will	be	created	that	will	generate	all
the	JavaScript	for	you,	allowing	you	to	handle	all	the	details
from	your	primary	development	language.

JavaScript's	greatest	advantage	is	that	it	runs	directly	on	the
client,	so	it	can	react	immediately	to	the	user's	actions.	This

interaction	allows	a	JavaScript-driven	Web	application	to	offer	a
highly	interactive	user	experience.	The	experience	is	interactive
because	tasks	such	as	reordering	a	record	no	longer	take	an
entire	page	reload.	This	direct	interaction	has	driven	the
development	of	the	language,	focusing	it	on	interacting	with	the
HTML	DOM.	JavaScript's	ability	to	add	functions	to	elements	of
the	page	at	runtime	provides	a	different	programming
experience	than	most	other	languages.	However,	its	position	in
the	browser	gives	it	the	unique	opportunity	to	provide
compelling	user	experience	opportunities,	especially	when
teamed	with	the	server	communication	opportunities	that	AJAX
provides.

Just	as	with	any	new	language,	JavaScript	will	seem	more
familiar	once	you've	used	it	on	a	couple	of	different	projects.	In
most	cases,	the	biggest	problem	isn't	dealing	with	the
language,	or	even	the	differences	in	its	implementation	between
browsers,	but	dealing	with	the	new	development	paradigm	that
AJAX	brings.	Splitting	your	application	into	two	partsone	written
in	JavaScript	and	the	other	written	in	your	normal	server
languageisn't	without	costs	or	problems.

	

4.4.	Problems	Created	by	the	New	Development
Paradigm

Most	of	the	problems	with	AJAX	are	caused	by	its	added
complexity.	Because	the	communication	with	the	server
happens	in	an	opaque	manner,	it	is	easy	to	lose	error	messages
or	learn	that	there	is	an	error	without	also	getting	all	the
additional	details	you	relied	on	before	using	AJAX.	These
aspects	force	you	to	rely	on	server-side	logging,	which	is
something	most	casual	developers	seldom	do.	The	complexity	is
also	increased	by	the	more	frequent	use	of	JavaScript.	No
matter	how	comfortable	you	are	with	it,	you	still	have	two	main
development	languages	(JavaScript	and	whatever	you	run	on
your	server)	and	cross-browser	compatibility	to	worry	about.

There	are	a	number	of	ways	to	manage	this	added	complexity.
One	of	the	simplest	solutions	is	to	create	test	constructs	that
allow	you	to	test	your	server	components	without	connecting
them	to	the	front	end.	The	additional	complexity	created	by
adding	a	new	language	is	harder	to	manage,	but	it	can	be	done,
either	by	using	developers	with	lots	of	JavaScript	experience	or
by	limiting	the	scope	of	your	JavaScript	development	to	only
those	features	that	have	the	biggest	payoff.

Developing	with	AJAX	can	also	create	new	usability	and	design
problems.	As	you	add	more	interactive	features	to	a	Web	site,	it
moves	further	away	from	the	model	your	users	have	used.	One
way	to	avoid	this	is	to	make	the	site	look	and	feel	more	like	an
application;	this	gives	the	users	a	clue	that	the	site	will	be
working	like	an	application	and	not	like	the	Web	site	to	which
they	are	accustomed.	However,	in	many	cases,	there	is	no	easy
way	to	mimic	native	applications,	especially	in	areas	where	no
similar	native	application	exists.	In	these	cases,	you'll	have	to
use	other	cues	to	create	appropriate	usability	expectations	from
your	users.	Following	the	usability	guidelines	provided	in

Chapter	6,	"Usability	Guidelines,"	can	help	solve	many	of	these
basic	usability	problems.

AJAX	can	also	cause	problems	because	it	is	new	and	because
it's	a	prime	candidate	for	overuse.	AJAX	is	powerful	and	can
create	some	great	solutions,	but	that	doesn't	mean	it	can	solve
every	problem.	For	instance,	you	may	have	a	general	usability
problem	that	can	be	solved	only	by	updating	the	user	interface.
Throwing	AJAX	at	the	problem	isn't	going	to	solve	anything.	In
other	words,	keep	in	mind	that	AJAX	isn't	a	magic	bullet;	to	use
it	effectively,	you	must	keep	your	goals	and	overall	usability	in
mind	when	adding	it	to	an	application's	design.

4.5.	Advantages	to	Using	a	Library

As	with	any	other	technology,	you	can	grab	off-the-shelf
components	to	handle	implementing	AJAX	instead	of	writing	all
the	code	yourself.	This	can	help	reduce	the	changes	to	your
overall	development	cycle,	or	it	can	cause	more	changes	than
starting	everything	from	scratch.	This	effect	depends	not	only
on	the	quality	of	the	library,	but	also	on	its	fit	into	your	current
processes	and	development	style.	If	you	can	find	a	library	that
fits	your	needs,	it	will	help	reduce	the	changes	wrought	by
adding	AJAX	to	your	toolbox.	The	largest	advantage	comes	from
the	library's	ability	to	hide	the	hard	parts	of	JavaScript
development	(cross-browser	support,	communications	between
different	languages,	and	visual	effects),	but	you	can	also	make
gains	just	from	following	the	best	practices	of	someone	else
instead	of	having	to	spend	time	figuring	out	all	the	new	rules	on
your	own.

When	developers	first	take	a	look	at	AJAX,	they	may	think	it's	a
simple	technology	with	enough	support	from	major	browsers
that	they	can	take	off	coding	from	scratch.	This	approach
ignores	the	fact	that	even	the	major	browsers	have
implementation	differences	around	which	you're	going	to	need
to	work.	If	your	approach	is	too	simplistic,	you	can	end	up	in	a
position	where	it's	impossible	to	work	around	various	browser
bugs	without	recoding	large	amounts	of	your	application	or	Web
site.	The	better	that	the	basic	browser	primitives	are	hidden,
the	easier	it	is	to	plug	in	new	compatibility	techniques.	These
techniques	range	from	using	IFrames	on	older	browsers	to
implementing	new	JavaScript	API	elements	that	haven't	yet
been	added	to	browsers.

An	AJAX	library	needs	to	cover	basic	communications	aspects,
allowing	you	to	make	asynchronous	requests	to	your	server
from	all	the	browsers	you	need	to	support.	Depending	on	your
choices,	you	will	also	need	some	other	features;	if	you	need

eXtensible	Stylesheet	Language	Transformation	(XSLT)	support,
you'll	need	a	library	that	hides	the	differences	between	the
Firefox	and	IE	implementations.	You	may	need	code	that
encodes	data	in	a	specific	type	to	be	sent	to	your	server;	this
can	be	any	format,	from	JavaScript	Object	Notation	(JSON)	to
Extensible	Markup	Language	(XML).	It	is	also	useful	to	support
the	tasks	often	used	in	conjunction	with	basic	AJAX
development,	including	drag-and-drop,	visual	effects,	dynamic
positioning,	and	DOM	manipulation.

A	good	library	helps	hide	the	problematic	areas	of	JavaScript,
adding	in	compatibility	between	different	browsers	while
offering	a	clean,	easy-to-use	API.	It	also	exposes	its	feature	set
without	making	you	learn	every	inch	of	its	API.	Drag-and-drop
is	a	great	feature,	but	if	it	gets	in	the	way	of	something	more
basic,	then	it's	making	tradeoffs	that	aren't	useful	to	a
developer.	No	matter	the	source	of	your	AJAX	library,	make	sure
it	meets	your	needs	in	a	clean	well-encapsulated	manner.	Don't
be	afraid	to	mix	and	match	libraries,	taking	the	best	features
from	each	one,	but	remember	that	each	library	has	a	cost	in
download	size,	and	not	every	environment	will	be	a	high-
bandwidth	local	network.

	

4.6.	Reasons	to	Build	Your	Own	Library

There	are	two	reasons	to	build	your	own	library:	control	and
lack	of	a	good	alternative.

Control	is	the	most	common	reason	to	build	your	own	library;
you	want	things	to	work	in	a	specific	way.	Usually	this	is	a
matter	of	making	AJAX	fit	into	the	ideas	of	a	current	Web
development	framework.	You	might	also	build	a	library	to	get	a
specific	set	of	features,	although	this	need	generally	presents
itself	only	when	minimizing	library	size	is	also	a	goal.	This	lack
of	feature	want	occurs	because	many	of	the	large	open	source
libraries	already	have	such	a	large	feature	set.	The	need	for
control	is	often	centered	on	intellectual	property.	There	are
cases	when	owning	the	copyrights	to	all	your	development	is
more	important	than	cutting	down	the	amount	of	work	you
need	to	do.	In	these	cases,	you're	forced	to	start	from	scratch,
although	generally	it	is	a	good	idea	to	look	at	libraries	with
liberal	licenses	because	they	offer	many	of	the	same	intellectual
property	benefits	as	writing	the	code	yourself.

Sometimes,	you	may	also	find	that	no	AJAX	library	meets	your
needs.	This	is	more	likely	to	happen	if	you're	developing	a
project	on	a	nomainstream	language.	It	can	also	happen	if	your
project	needs	low	overhead	in	terms	of	code	size	and	has
limited	feature	needs.	Few	AJAX	libraries	go	the	minimalist
route	because	it's	hard	to	meet	a	large	number	of	people's
needs	in	this	fashion.	Most	single-purpose	AJAX	code	supports
only	a	single	type	of	request	and	has	little	to	no	configuration.
This	is	great	if	the	code	is	written	for	a	single	application,	but	it
generally	isn't	useful	for	a	wide	range	of	development	tasks.
Building	your	own	AJAX	library	makes	sense	for	many	projects,
but	don't	underestimate	the	amount	of	work	that	building	a
library	takes.	While	the	initial	development	may	be	easy,
tracking	down	browser	bugs	in	older	browsers,	or	browsers	with
a	small	market	share,	is	a	time-consuming	process,	and	it's	this

widespread	compatibility	provided	by	these	workarounds	that
maximizes	the	cases	where	you	can	use	AJAX.

4.7.	How	Open	Source	Fits	into	the	Mix

As	you	look	for	an	AJAX	library,	you	will	notice	that	many	of	the
most	mature	options	are	open	source	libraries.	In	fact,	most	of
the	first	libraries	were	open	source,	and	an	ecosystem	has
grown	up	around	them;	this	has	made	it	much	harder	for	high-
priced	commercial	libraries	to	gain	a	following	because	they
have	to	offer	more	than	their	free	open	source	counterparts	to
get	people's	attention.	Open	source	AJAX	has	also	been	driven
by	its	match	with	open	source	scripting	languages.	These
languages	include	Python,	Ruby,	and	PHP.	These	languages
often	pick	up	new	technologies	faster	than	vendor-driven
languages,	such	as	ASP.Net	or	Java,	because	there	is	more
competition	at	the	tool	level.	This	has	allowed	for	quick
integration	of	AJAX,	although	the	implementation	isn't	always
mature.

4.7.1.	Evaluating	an	Open	Source	Library

When	picking	an	open	source	AJAX	library,	keep	in	mind	three
main	items:	license	compatibility,	feature	set,	and
maturity/community	size.

License	compatibility	is	simply	a	matter	of	picking	a	license	that
meets	your	needs;	if	your	software	will	be	released	as	open
source,	then	the	licenses	need	to	work	together.	The	simplest
solution	in	this	case	is	to	pick	a	library	with	the	same	license	as
your	currently	chosen	code	or	one	that	is	very	liberal,	such	as
Berkeley	Software	Distribution	(BSD)	or	Massachusetts	Institute
of	Technology	(MIT)	software	licenses.	If	you're	using	the	library
for	internal	development,	licensing	isn't	generally	an	issue
because	most	licenses	apply	to	distribution,	and	you're	the	only
user.	If	you're	selling	the	software,	you'll	need	to	be	more
careful	because	you'll	need	to	pick	a	license	that	has

redistribution	rules	you	can	deal	with.	Open	source	licensing	can
be	complex,	but	not	necessarily	more	so	than	managing
licensing	from	commercial	vendors.

As	with	any	library,	picking	one	with	an	appropriate	feature	set
is	of	vital	importance.	You	may	be	quick	to	pick	one	that	offers
the	biggest	checklist,	but	it's	generally	a	good	idea	to	look	at	a
couple	options	and	pick	one	that	fits	your	coding	style	and	that
can	be	easily	combined	with	other	libraries.	As	with	any
development,	there	is	always	a	tradeoff	between	large
monolithic	libraries	and	smaller	components.	In	addition,	be
sure	to	pay	attention	to	how	well	the	library	integrates	into	any
Web-development	framework	you	might	be	using;	an	AJAX
library	designed	with	your	framework	in	mind	can,	in	many
cases,	provide	a	simpler	development	experience	than	a	more
general	library.

The	last	item	to	look	at	when	picking	an	open	source	library	is
the	maturity	of	the	project	and	the	size	of	the	community
around	it.	The	community	offers	support,	testing,	and
documentation.	The	larger	the	community,	the	easier	time	you'll
have	getting	started	with	the	project.	A	large	community	also
reduces	risk	because	there	are	more	people	to	share
development	in	case	the	project's	original	developers	abandon
it.	Because	the	barrier	to	entry	in	starting	a	new	project	is	low,
you'll	want	to	pick	a	project	in	which	the	developers	have
proven	they	know	how	to	support	their	users	over	more	than
one	release.	Libraries	associated	with	larger	projects,	such	as
the	PHP	PEAR	project	(HTML_AJAX),	or	a	framework	like	Ruby
on	Rails	(Prototype),	are	also	good	picks	because	they	have	a
large	infrastructure	and	knowledge	base	from	past	larger
projects.

4.7.2.	Open	Source	Libraries	in	Relation	to
Commercial	Libraries

Open	source	is	popular	in	the	AJAX	world	because	it	offers	low
cost,	ease	of	customization,	and	widespread	support	in	every
possible	language.	Mainstream	mature	projects	offer	a	quick
route	to	AJAX	deployment	and	a	large	community	that	is	a
great	source	for	support.	Smaller,	more	experimental	projects
can	also	offer	great	value	if	they	meet	your	unique	needs,	but
you	need	to	be	careful	because	many	small	projects	will	never
generate	a	large	enough	community	to	gain	support	beyond
their	original	developers.

Commercial	languages	developers,	such	as	Microsoft,	have	also
started	developing	AJAX	libraries.	These	libraries	have	many	of
the	same	distribution	advantages	as	open	source	libraries
because	they	are	not	tied	to	per-server	licenses.	However,	they
don't	offer	the	same	customization	possibilities	that	an	open
source	library	does.	They	also	lack	the	ease	of	developer
interaction	that	most	open	source	projects	have.	This	lack	of
ease	occurs	because	there	are	fewer	lines	of	communication
with	the	developers	of	the	actual	library.	The	biggest	advantage
that	libraries	from	major	vendors	have	is	the	resources	behind
them.	This	leads	to	widespread	testing	and	thorough
documentation,	even	in	early	releases.

How	I	Decide	Which	Open	Source	AJAX	Library	to	Use

The	company	I	work	for,	Uversa	Inc.,	is	based	around	General	Public	License
(GPL)	software,	so	when	I	pick	any	library,	it	first	needs	to	be	compatible	with
the	GPL.	Because	the	GPL	is	so	widespread,	many	licenses	are	compatible	with
it.	(See	www.fsf.org/licensing/licenses/index_html#GPLCompatibleLicenses	for
more	information.)	However,	because	licensing	is	a	hard	rule,	you	should	always
start	your	search	by	limiting	it	to	the	ones	that	meet	your	needs.	After	getting
my	license	guidelines,	I	look	at	major	features	that	are	required.	In	my	case,	this
includes	good	compatibility	with	PHP,	including	the	ability	to	map	data	types
between	PHP	and	JavaScript.	I	also	want	to	be	able	to	easily	combine	the	library
with	other	JavaScript	libraries,	so	well-name-spaced	functions	and	variables	are
a	plus.	Finally,	I	want	a	focused	design,	so	I'm	looking	just	for	an	AJAX	library;	I
don't	need	a	large	JavaScript	framework	that	takes	weeks	to	learn.	Multiple
developers	will	be	using	it,	so	the	less	they	have	to	learn,	the	better.

During	most	of	2005,	these	requirementsand	a	bit	of	searchingwould	have	left
me	with	a	small	list	of	libraries	from	which	to	choose.	I	could	investigate	them
and	find	one	that	fit	the	rest	of	my	Web	development	framework	without	too
much	hassle.	Today,	though,	these	requirements	leave	me	with	a	large	list,	so	I
need	to	enter	some	other	items	to	narrow	the	list	of	items	I'll	investigate
thoroughly.	I	can	further	limit	my	list	by	picking	projects	that	are	actively	being
developed,	so	I'll	look	in	depth	only	at	those	with	releases	in	the	past	few
months	and	that	seem	to	be	developed	by	more	than	one	person.	You	don't	want
to	remove	every	single-developer	project	(after	all,	that's	where	many	of	the
most	innovative	ideas	come	from);	you	just	want	to	make	sure	that	enough
releases	have	been	made	that	the	library	is	not	a	one-time	code	drop	of
unfocused	ideas.	These	criteria	will	help	weed	out	the	unsuitable	projects	and
will	keep	me	from	wasting	time	on	a	project	that	will	never	gain	the	community
needed	to	sustain	it	over	the	long	run.

Once	I	have	a	short	list	of	libraries,	I'll	do	a	quick	review.	Everyone	has	different
goals,	but	I	like	libraries	with	at	least	basic	documentation	and	an	object-
oriented	(OO)	design.	(OO	design	is	especially	important	to	me	on	the	PHP	side
because	it	will	need	to	mesh	with	my	existing	code.)	A	good	way	to	test	any
library	is	to	do	a	basic	install	and	to	build	a	basic	"hello	world"	application	with	it.
If	you	can't	easily	complete	a	basic	task,	then	the	library	probably	isn't	a	good
fit.	AJAX	isn't	such	a	complicated	technology	that	the	basics	can't	be	made	easy
while	still	making	the	difficult	items	possible.

Hopefully,	after	some	basic	use,	one	of	the	libraries	will	stand	out	from	the	pack
and	end	my	search.	If	a	few	libraries	seem	really	good,	I'll	dig	further	into	their
documentation	and	user	forums	and	make	a	final	decision	based	on	how	easy
learning	all	the	details	will	be.	If	none	of	the	libraries	looks	like	it	will	work,	then
I'm	left	back	at	the	starting	gate.	I	can	expand	my	search	and	look	for	less
popular	and	hence	harder-to-find	libraries,	or	I	can	look	into	developing	my	own
solution.

In	my	earlier	searches,	I	had	very	few	options	when	I	was	selecting	a	library;	my

http://www.fsf.org/licensing/licenses/index_html#GPLCompatibleLicenses

first	foray	into	AJAX	was	before	the	term	had	been	defined.	I	picked	the	JPSpan
library	for	its	good	PHP	integration	and	object-oriented	design.	Although	JPSpan
was	a	decent	solution,	it	didn't	end	up	meeting	all	my	needs.	Over	time,	I
decided	to	develop	my	own	library,	HTML_AJAX,	for	PHP's	PEAR	project.	The	reasons
for	building	my	own	library	relate	more	with	wanting	to	help	the	PEAR
community	than	in	meeting	my	needs,	but	once	you	have	your	own	library,	it's
an	easy	front-runner	for	future	use.

As	you	make	a	decision	on	what	library	to	use,	you	can	apply	much	of	this
process.	First,	decide	on	your	licensing	needs;	your	needs	can	be	as	simple	as	a
specific	open	source	license	or	as	complicated	as	a	commercial	solution.	After
that,	look	at	your	feature	requirements,	especially	server-side	language	support,
and	build	a	list	of	possible	solutions.	If	the	list	is	large,	looking	only	at	more
active	projects	is	a	great	way	to	pare	down	the	list.	Then,	take	some	time	to
investigate	the	libraries.	I	find	it's	always	worth	my	time	to	actually	write	a	small
amount	of	test	code.	After	that,	it's	just	a	matter	of	picking	a	library	that	seems
like	a	good	fit.	Don't	forget	to	take	into	account	everything	into	which	you'll	be
integrating	this	library;	some	solutions	that	might	be	easy	in	a	standalone
situation	become	a	bear	when	integrated	into	your	server-side	Web	development
framework.

	

4.8.	Use	Case	for	Building:	The	Firefox	Counter

After	the	Firefox	1.0	release,	the	Mozilla	project	added	a
number	of	grass-root	marketing	approaches	to	their	marketing
effort.	One	of	these	was	asking	people	to	add	a	counter	to	their
Web	sites	showing	the	number	of	Firefox	downloads.	This	data
was	provided	by	a	Really	Simple	Syndication	(RSS)	feed;	some
implementations	read	this	data	at	the	server	and	then	rendered
it	during	the	normal	page	generation	process.	Building	on	this
basic	approach,	Matthew	Levine	built	a	small	AJAX	odometer-
style	counter	that	updates	continuously.	An	example	of	this	is
shown	in	Figure	4-4.	In	this	figure,	an	AJAX	request	is	made	on
a	regular	interval,	with	rate	information	being	used	between
updates	to	continually	update	the	displayed	count.

Figure	4-4.	Version	2.0	of	the	Firefox	counter

[View	full	size	image]

This	is	a	very	basic	use	case	for	AJAX.	To	implement	the
counter,	you	need	to	do	a	GET	request	to	a	single	page	and	then
grab	three	data	points	from	an	XML	file.	Because	you're	only
going	to	be	making	a	single	type	of	request,	you	don't	need	the
full-blown	AJAX	support	that	most	libraries	provide.	It's	also	a
small	feature	you	are	adding,	so	lots	of	error	handling	or	other
status	feedback	isn't	really	useful.	The	concept	behind	the
counter	is	that	it's	an	informative	marketing	technique,	and
while	it's	more	active	than	a	mere	image,	it's	not	the	major
draw	of	any	page	it's	on.	To	accomplish	this	design	goal,	all	you
need	is	an	implementation	that	updates	in	a	smooth	fashion	or
that	dies	silently	when	there	are	problems.

Simple	functionality,	combined	with	the	goal	of	widespread
installation	on	many	different	Web	sites,	makes	building	custom
AJAX	implementation	a	good	choice.	In	the	case	of	the	actual
counter,	there	is	a	small	PHP	script	that	produces	the	feed	data;
a	small	bit	of	JavaScript	code;	and	a	small	HTML	page	that	can
be	used	as	an	IFrame	to	tie	the	pieces	together.	This	makes	for
easy	installation	and	a	small	amount	of	additional	weight	for	the
target	page.	The	ease	of	installation	and	the	small	size	are
important	features	for	any	code	you're	hoping	to	widely	deploy
in	a	marketing	effort.

In	this	case,	building	custom	AJAX	code	was	beneficial	because
ease	of	deployment	and	small	size	were	more	useful	than	the
quick	development	time	that	a	pre-built	library	might	have
offered.	The	simplicity	of	the	AJAX	code	also	removed	much	of
the	need	for	a	library	because	in	this	basic	case,	we	needed	to
focus	on	only	one	type	of	request.	If	we	were	combining	the
counter	onto	a	site	already	using	AJAX,	we	might	want	to	swap
out	the	communication	component	to	increase	consistency,	but
because	a	counter	by	itself	needs	no	other	features,	it	makes
little	sense	to	bring	along	other	features	that	will	never	be	used.

	

4.9.	Use	Case	for	Downloading:	An	Intranet	Web
Site

A	large	amount	of	Web	development	is	focused	inward	and	is
used	to	power	company	portals,	content	management	systems,
and	myriad	other	applications.	These	applications	are	perfect
places	to	deploy	AJAX	because	they	usually	provide	a	high-
bandwidth,	homogeneous	environment.	The	homogeneous
environment	aids	in	testing	because	you	have	fewer	browsers	to
test	against.	In	addition,	the	high	bandwidth	allows	you	to	pull
in	any	tool	you	need	without	much	fear	of	increasing	download
times	to	an	unacceptable	level.	These	characteristics	open	up	a
huge	number	of	possibilities	when	choosing	an	AJAX	library;
you	may	even	choose	to	combine	several	to	get	the	mix	of
features	and	the	APIs	that	best	suit	your	needs.

Internal	sites	generally	have	high	levels	of	interactivity	and	may
be	the	main	application	used	by	large	numbers	of	employees.
This	is	especially	true	within	many	content-management
systems.	They	have	many	areas	that	can	be	enhanced	through
the	use	of	AJAX,	especially	in	the	editing	process.	Commonly,
content-management	systems	add	in	AJAX-based	autosaves	to
keep	authors	from	losing	content.	AJAX-based	editing	that
allows	for	quick	processing	is	also	useful.	Any	powerful
application	will	have	many	different	places	where	AJAX	makes
sense,	and	these	areas	will	have	a	variety	of	different
communication	patterns.	The	applications	may	also	be
enhanced	by	a	variety	of	additional	features.	For	instance,	a
content-management	system	may	find	drag-and-drop	ordering
of	articles	to	be	especially	useful.	Any	application	may	also
benefit	from	graphical	fade	effects	that	notify	users	that	an
action	has	taken	place.

As	you	can	see,	an	intranet	Web	site	needs	an	AJAX	library	or
multiple	libraries	that	provide	many	types	of	features.	The

library	needs	to	provide	a	communications	layer	that	tightly
couples	with	the	backend	programming	language	and
framework	while	also	covering	different	development	patterns.
These	patterns	range	from	buffering	search	requests	on	a	find-
as-you-type	system	to	providing	timed	updates	on	an	autosave
system.	Then,	the	library	needs	to	provide	graphical	effects	that
can	enhance	ease	of	use;	these	can	include	features	ranging
from	a	visual	effects	library	for	fading	in	new	HTML	elements	to
a	drag-and-drop	ordering	system.	Writing	a	library	that
provides	all	these	features	can	be	a	huge	undertaking;	this
makes	looking	to	prebuilt	libraries	a	great	solution.

	

4.10.	Summary

Adding	AJAX	to	an	application	isn't	a	magical	cure-all.	It's	a
great	solution	when	you	need	to	increase	interactivity,	but	it's
not	without	cost.	For	many	developers,	these	costs	will	be
higher	than	just	the	time	it	takes	to	do	the	basic
implementation;	AJAX	development	adds	a	number	of	new,
higher-level	challenges.	These	challenges	include	dealing	with
application	logic	divided	into	two	parts:	managing	cross-
browser	compatibility	and	using	JavaScript	as	a	primary
development	language.	The	best	way	to	mitigate	these	new
problems	is	to	keep	AJAX's	additional	complexity	as	low	as
possible:	Use	well-tested	libraries	whenever	possible,	test	your
own	code	in	its	component	parts	whenever	possible,	and	use
AJAX	only	when	you	have	an	actual	goal,	not	just	when	you
want	to	add	the	newest	technology.	Keeping	these	items	in
mind	won't	prevent	the	inevitable	changes,	but	it	will	keep	them
from	becoming	problems.

The	easiest	way	to	quickly	integrate	AJAX	into	your
development	is	to	bring	in	a	library	to	do	the	heavy	lifting	for
you.	Of	course,	this	brings	in	a	new	set	of	problems	because
you	need	to	pick	a	library	that	meets	your	needs.	Mature
libraries	are	available	from	multiple	sources,	including	many
open	source	groups,	commercial	library	developers,	and	large
tool	builders	such	as	Microsoft.	These	libraries	offer	you	the
ability	to	immediately	take	advantage	of	AJAX	instead	of
starting	at	the	ground	floor.	They	also	offer	myriad	associated
features,	such	as	drag-and-drop	support,	animations,	and	visual
effects,	which	are	time-consuming	to	build	when	supporting
multiple	browsers	is	required.	Remember	that	even	a	well-
designed	AJAX	library	can	cause	problems	if	it	doesn't	fit	your
needs	and	development	style;	spending	extra	time	in	the
selection	process	will	pay	off	down	the	road	when	you	skip	the
painful	processes	of	rewriting	all	your	code	to	work	with

something	else.

	

Chapter	5.	Getting	the	Most	from	AJAX
In	this	chapter

5.1	Goals	of	AJAX page	100

5.2	Measuring	Improvements page	107

5.3	Promises	and	Problems	of	Combining	AJAX	with
Other	New	Technologies page	115

5.4	Summary page	117

AJAX	offers	a	whole	world	of	new	possibilities,	but	to	reap	the
benefits,	you	must	keep	focused	on	your	primary	goals.	In	this
chapter,	we	will	cover	some	of	the	general	objectives	people
have	when	implementing	AJAX,	as	well	as	how	to	measure
whether	these	objectives	are	ultimately	met.	To	that	end,	we
must	also	explore	how	these	objectives	enhance	current
applications.	(To	do	so,	Web	applications	built	with	standard
techniques	would	need	to	be	compared	to	applications	built
using	AJAX.)	Some	tradeoffs	may	be	necessary	to	use	AJAX	in
conjunction	with	other	technologies,	because	AJAX	by	itself
won't	meet	every	application's	needs.	Let's	get	started!

5.1.	Goals	of	AJAX

First	and	foremost,	AJAX	is	about	improving	user	experience;
user	experience	improvements	fall	into	two	categories:	making
current	tasks	easier	and	making	previously	impossible	tasks
possible.	Obviously,	it	is	easier	to	focus	on	making	current	tasks
easier.	In	Web	development	environments,	this	can	be	further
broken	down	into	two	main	goals:	increasing	interactivity	and
decreasing	the	time	required	to	perform	a	task.	In	nonintranet
cases,	you	may	also	have	a	related	technical	goal	of	reducing
bandwidth	use;	by	transferring	less	data	to	the	browser,	you
can	reduce	page	load	times	and	improve	the	user's	overall
experience.

5.1.1.	Increasing	Interactivity

One	of	the	overall	goals	of	adding	any	amount	of	JavaScript	to	a
Web	site	is	to	increase	its	interactivity.	Even	without	AJAX,	you
can	provide	content-sensitive	information	when	the	user	moves
over	a	link	or	validates	a	form	without	reloading	the	page.	This
extra	interactivity	provides	more	information	to	the	users
without	overwhelming	them.	Using	AJAX,	we	can	build	on	this
general	process	instead	of	focusing	on	adding	extra	static
information;	in	other	words,	we	can	add	extra	information
dynamically.

A	good	example	of	increasing	interactivity	is	using	AJAX	to	add
a	real-time	search	to	a	normal	search	form	on	your	Web	site.
An	example	of	real-time	search	is	the	Google	Suggest
application	(www.google.com/webhp?complete=1&hl=en),
which	suggests	possible	search	terms	in	a	drop-down	widget	as
you	type	your	query;	the	widget	would	also	indicate	the	number
of	results	the	search	would	return.	Using	Google	Suggest	to
search	for	AJAX	is	shown	Figure	5-1.	Similar	approaches	can	be

http://www.google.com/webhp?complete=1&hl=en

used	for	any	search	application.	The	possibilities	range	from
selecting	a	user	on	which	to	change	permissions	to	picking	a
city	to	which	to	send	a	package.

Figure	5-1.	Using	Google	Suggest	to	search	for
AJAX

[View	full	size	image]

You	can	also	use	AJAX	to	increase	interactivity	in	ways	other
than	search	methods.	One	way	is	to	use	a	scrollbar	to	move
through	a	page	of	results	instead	of	using	the	Web	method	of
next	page	links.	AJAX	works	well	for	items	such	as	these
because	data	is	still	loaded	only	as	needed,	just	as	with	a
normal	table,	but	the	later	rows	can	be	accessed	much	more
quickly.	Figure	5-2	shows	a	standard	table	paging	widget,
whereas	Figure	5-3	shows	a	table	using	an	AJAX	scrollbar
instead.	The	example	in	Figure	5-3	also	allows	columns	to	be
sorted	without	loading	the	page.	AJAX-based	filtering	could	also
be	added	to	the	table,	making	for	a	quick	and	natural	data-
browsing	experience.

Figure	5-2.	A	standard	table	paging	widget	for	a
Web	site,	with	each	link	causing	a	page	reload

[View	full	size	image]

Figure	5-3.	AJAX-based	scroll	table	with	new	data
being	loaded	by	moving	the	scroll	bar

[View	full	size	image]

AJAX	opens	up	lots	of	new	ways	to	increase	interactivity
because	the	extra	data	you're	showing	can	be	loaded	as
needed.	This	becomes	especially	useful	when	working	with
medium-sized	data	sets,	because	you	can	see	all	the	data
without	increasing	the	original	page-load	time	or	needing
another	reload	to	see	the	data.	The	biggest	problem	with
increasing	interactivity	is	that	it	is	hard	to	measure,	so
increasing	interactivity	becomes	most	useful	when	looked	at

when	addressing	our	secondary	goaldecreasing	the	time
required	to	perform	the	actions.

5.1.2.	Decreasing	the	Time	Required	to	Perform
Actions

One	of	the	biggest	disadvantages	of	Web	applications	is	that
any	multistep	process	becomes	a	multiminute	process.	On	a
fast	connection,	each	page-reload	connection	adds	two	to	five
seconds	of	pure	wait	time	as	the	next	page	is	generated	and
downloaded	by	the	browser,	and	on	a	slow	connection,	the	waits
can	be	double	or	triple	that.	Using	AJAX	to	load	in	the	new	data
allows	us	to	remove	these	page	reloads,	making	for	a	seamless
experience	with	only	a	small	one-	or	two-second	wait	for	extra
data.

There	are	lots	of	other	cases	where	AJAX	can	be	used	to
decease	process	times.	They	include	using	multistep	wizards
and	reviewing	and	updating	online	content.	Once	you've	found
a	task	that	takes	a	long	time,	such	as	moderating	posts	on	a
customer	support	forum,	you	look	for	the	specific	subtasks	that
take	up	the	most	time.	In	forum	moderation,	the	problem	is
that	each	page	reload	takes	a	long	time	because	you	may	be
looking	at	20	or	100	posts	at	once.	Moderating	posts	requires
one	reload	to	start	editing	and	then	one	reload	to	save	your
edita	painful	process.	Other	tasks,	such	as	moving	a	post,	are
also	slow	because	each	page	reload	can	make	you	lose	your
place	in	the	list	of	posts.

For	example,	consider	a	conference-room	booking	system	at	a
large	company.	After	a	room	is	chosen,	each	participant	needs
to	be	searched	for	and	added	to	the	booking	so	that	he	or	she
can	receive	a	notification	email.	Because	the	company	has	over
100	employees,	a	select	drop-down	widget	isn't	a	good	choice.
Using	it	would	greatly	increase	page	load	times	because	so

much	data	would	need	to	be	preloaded.	An	extremely	large
drop-down	widget	would	also	be	unwieldy	to	use.

The	solution	to	this	selection	problem	prior	to	AJAX	was	to	add
a	search	system	to	find	each	employee;	the	search	system
might	even	be	put	in	a	popup	window	to	lower	the	amount	of
data	to	be	reloaded,	but	no	matter	how	it	is	implemented,
adding	each	person	becomes	a	5-	to	30-second	process.	This
clunky	interface	isn't	a	problem	when	adding	1	or	2	people,	but
it	becomes	unbearable	when	adding	20	or	more.	An	AJAX
approach	allows	the	search	to	happen	using	a	real-time	search.
The	interface	would	look	much	like	Google	Suggest	in	Figure	5-
1,	displaying	employees'	names	instead	of	search	terms.	In	this
case,	by	using	AJAX,	we	make	adding	20	employees	a	1-minute
process	instead	of	a	5-minute	process.

Using	AJAX,	you	speed	up	the	process	by	adding	in-place
editing	and	by	using	drag-and-drop	to	move	a	post.	In-place
editing	works	by	creating	a	text	editing	box	without	reloading
the	page.	Because	the	content	is	already	displayed,	no	request
needs	to	be	sent	to	the	server	to	start	an	edit.	At	the	end	of	the
process,	the	changes	are	transparently	saved	while	the	user
moves	on	to	editing	the	next	post.	An	example	of	using	inline
editing	is	shown	in	Figure	5-4.	Drag-and-drop	moving	of	posts
is	also	a	large	time-saver,	mainly	because	it's	much	easier	to
see	the	target	location	on	your	normal	post-browsing	screen
than	it	is	to	see	it	in	a	list	of	post	titles	that	a	non-AJAX	process
would	be	forced	to	use.

Figure	5-4.	In-place	editing

[View	full	size	image]

One	of	the	things	that	make	reducing	task	time	such	a	great
AJAX	implementation	goal	is	that	it	is	easily	measurable.	All	you
need	to	do	is	sit	down	and	perform	some	of	the	tasks	and	track
the	amount	of	time	they	take	to	complete.	Depending	on	the
tasks,	you	can	even	add	timers	to	the	application	to	record
normal-use	data.	Once	you	have	these	baseline	numbers,	you
can	create	specific	targets	for	your	AJAX	implementation.
Combined	with	further	tracking	after	you've	created	an	AJAX
implementation,	you	can	obtain	data	to	decide	how	effective
your	enhancements	have	been.	With	a	real	and	repeatable
measurement,	the	effectiveness	of	AJAX	moves	from	guesswork
to	simple	math.	You	can	even	use	this	process-time
measurement	to	improve	on	your	current	AJAX	use,	swapping
out	techniques	or	adding	in	prefetching	to	make	a	process	take
less	time.

5.1.3.	Reducing	Bandwidth	Use

Reducing	bandwidth	use	can	be	a	useful	goal	in	some	AJAX
implementations	because	a	smaller	amount	of	data	takes	less
time	to	transfer,	providing	the	user	a	more	seamless
experience.	If	you're	paying	for	hosting,	reducing	bandwidth
use	can	also	be	an	effective	way	to	save	money.	However,	if
you're	using	your	application	on	an	internal	network,	this	may
be	a	goal	that	doesn't	matter	at	all	because	the	fast	network

keeps	load	times	low	no	matter	how	much	data	you	transfer.

Bandwidth	use	is	easy	to	measure;	the	related	metrics	are
always	easier	to	use	than	subjective	comparisons.	Of	course,
unlike	the	measurement	of	time	to	perform	a	task,	bandwidth
use	isn't	a	number	that	you	always	want	to	see	decrease	as	a
whole.	Reducing	the	amount	of	data	loaded	in	the	initial	page
load	can	be	useful,	especially	if	that	data	is	seldom	used	and
can	be	easily	loaded	as	needed.	However,	in	some	cases,	the
best	user	experience	is	achieved	by	preloading	data	and
increasing	the	overall	bandwidth	use.

You	can	preload	data	directly	during	the	initial	page	load	or	by
using	AJAX	call,	but	you'll	find	that	using	AJAX	is	beneficial	as
long	as	the	data	isn't	needed	immediately.	AJAX	preloading	can
happen	after	the	page	is	loaded,	making	it	less	noticeable	to	the
user.	It	can	also	be	tied	to	the	beginning	of	a	task	that	will	use
it.	This	is	especially	true	when	browsing	large	data	sets	because
they	generally	have	consistent	access	patterns	that	can	be
discerned	by	monitoring	the	users	of	the	applications.

AJAX	doesn't	have	guaranteed	bandwidth	reductions	and,	in
some	access	patterns,	it	will	likely	use	more	bandwidth.	This	is
especially	true	when	you're	performing	event-driven	AJAX
requests.	Each	request	may	be	small,	but	a	search	for	each
keystroke	can	quickly	add	up.	These	effects	may	be	reduced	by
limiting	the	number	of	events	to	one	per	time	period,	but	the
effects	will	still	build	up	over	time.	Your	goal	should	be	to	make
each	request	as	small	as	possible,	while	realizing	that	these
bandwidth	reductions	may	be	eaten	up	by	the	greater	quantity
of	requests	and	by	using	prefetching	to	make	a	highly
interactive	interface.

5.1.4.	Creating	Rich	Applications

Our	first	three	goals	focused	mainly	on	making	enhancements

to	current	Web	applications;	however,	AJAX	also	gives	us	the
possibility	to	create	an	entirely	new	class	of	Web	applications.
When	creating	rich	applications,	developers	have	the	goal	of
making	them	work	as	much	like	native	applications	as	possible,
while	trying	to	keep	Web	development's	advantages	in	ease	of
deployment	and	implementation.	In	addition,	rich	applications
development	still	has	the	goal	of	increasing	the	interactivity	of
the	application	and	decreasing	the	time	needed	to	perform
actions,	although	the	design	and	implementation	of	these	goals
may	be	different.

Because	you're	not	taking	a	current	application	and	fixing	slow
spots,	you	don't	have	the	baseline	metric	of	a	standard	Web
application.	Instead,	you	have	to	compare	your	application
against	its	native	equivalent.	This	can	be	challenging	because
native	applications	can	use	large	persistent	data	stores	to
reduce	the	number	of	slow	interactions,	whereas	AJAX
applications	are	limited	to	smaller	session-based	caches.
Depending	on	how	data-intensive	the	task	is,	you	may	be
unable	to	match	the	performance	of	a	native	application,	so
you'll	need	to	focus	on	different	usage	patterns	that	will	hide
this	problem.	The	easiest	native	applications	to	mimic	are	those
that	deal	with	a	large	dataset	that	isn't	stored	fully	on	the	local
client;	because	the	data-access	speeds	are	similar,	the	Web
application	needs	to	compete	only	on	the	quality	of	its	user
interface.

Many	rich	applications	use	more	bandwidth	than	their	standard
Web	application	counterparts	because	they	rely	heavily	on
prefetching	data	to	give	a	seamless	user	experience.	This
makes	rich	applications	better	suited	for	internal	deployments
where	a	fast	network	and	the	lack	of	bandwidth	charges	remove
bandwidth	reduction	as	a	necessary	goal.

The	decision	to	build	a	rich	application	instead	of	an	enhanced
Web	site	should	not	be	taken	lightly.	Rich	applications	work	best
when	they	are	targeting	the	tasks	performed	by	a	native
application.	Email	clients,	RSS	readers,	and	reporting

applications	are	good	examples	of	native	applications	that	are
easy	to	mimic.	That	being	said,	services	normally	provided	by
Web	sites,	such	as	shopping	at	an	online	store	or	displaying
product	information,	don't	translate	well	to	rich	applications.
These	tasks	are	better	suited	to	an	enhanced	Web	site	where
only	the	slow,	complex	tasks	are	replaced	with	AJAX	versions.

	

5.2.	Measuring	Improvements

Measuring	the	time	it	takes	to	complete	a	task	is	one	of	the
most	useful	metrics	when	looking	at	the	success	of	an	AJAX
implementation.	The	actual	measurement	process	is	broken
down	into	three	simple	steps:

1. Identifying	a	task's	starting	and	ending	points

2.
Adding	instrumentation	to	measure	the	starting	and	ending
times

3. Combining	multiple	data	points	into	useful	information

Deciding	which	tasks	to	measure	is	generally	a	simple	process;
you	need	only	find	the	areas	in	the	application	about	which
users	always	complain.	If	a	process	is	slow	and	clunky,	it's	a
good	target	for	AJAX	and	therefore	a	good	target	for
measurement.	After	choosing	the	task	you	need	to	measure,
identify	its	starting	and	ending	points.	It's	important	that	you
measure	the	entire	process.	You	don't	want	to	focus	on	page
loads	or	the	technical	pieces,	but	actual	steps	taken	by	the	user.
If	the	process	is	complex,	you	may	find	it	useful	to	watch	users
in	action	to	see	how	things	are	actually	done.

Once	you've	identified	the	start	and	end	points,	you	need	to	add
instrumentation.	In	most	cases,	you	can	do	this	by	making
some	simple	AJAX	requests	to	a	recording	script.	One	call
marks	the	beginning	of	the	process,	and	a	second	records	the
ending.	In	our	example	case,	we'll	be	recording	the	time	it
takes	to	select	a	user	to	edit,	as	shown	in	Figure	5-5.	This
example	is	extremely	artificial,	but	useful,	because	the	goal	is
to	show	how	to	instrument	a	process,	not	how	to	build	an	AJAX
user	editor.

Figure	5-5.	Selecting	a	user

[View	full	size	image]

The	breakdown	of	this	task	is	as	follows:	Load	the	page,	search
for	a	user,	and	then	select	the	user	from	the	results.	The	start
of	this	task	could	be	considered	the	loading	of	the	page	or	the
clicking	of	the	Search	for	User	button.	In	our	example,	we	use
the	clicking	of	the	Search	for	User	button	because	it	will	help
reduce	the	amount	of	variance	in	our	measurement.	The	end	of
the	process	occurs	when	the	selectUser	JavaScript	function	runs;
in	an	actual	implementation,	this	would	either	redirect	us	to	a
user	editor	or	populate	an	editing	form	below	the	selection
section.	A	unique	ID	will	also	need	to	be	created	so	that	the
start	and	end	times	can	be	matched	together,	but	as	long	as	the
client	is	making	only	one	request	at	a	time,	this	ID	can	be
created	and	stored	in	our	data-storing	script.

To	implement	the	instrumentation,	we	will	be	using	our	basic
HttpClient	XMLHttpRequest	wrapper.	We	will	be	making	an	AJAX	call
to	process.php	at	the	beginning	and	the	end	of	the	process.
process.php	will	store	this	data	in	the	session,	and	then
process.php's	endProcess	function	will	match	it	with	a	second	end
request	that	happens	when	the	process	is	complete.	A	simple
report	(see	Figure	5-6)	can	then	be	run	to	see	how	long	each
attempt	to	select	a	user	took.	The	data	storage	is	basic	in	this
implementation	and	would	need	to	be	replaced	with	a	database
if	you	wanted	to	collect	data	from	multiple	machines.

The	reusable	parts	of	the	measurement	process	are	the
process.php	storage	script	shown	in	Listing	5-1	and	the	Monitor
JavaScript	class	shown	in	Listing	5-2.

Listing	5-1.	process.php

1		<?php
2		session_start();
3
4		if	(!isset($_SESSION['data']))	{
5					$_SESSION['data']	=	array();
6		}
7		if	(!isset($_SESSION['id']))	{
8				$_SESSION['id']	=	false;
9		}
10
11
12		function	startProcess()	{
13				if	(!$_SESSION['id'])	{
14						$now	=	time();
15						$id	=	uniqid('m');
16										$_SESSION['id']	=	$id;
17						$_SESSION['data'][$id]['start']	=	$now;
18						$_SESSION['data'][$id]['name']	=	$_GET['process'];
19				}
20		}
21
22		function	endProcess()	{
23				$now	=	time();
24				$_SESSION['data'][$_SESSION['id']]['end']	=	$now;
25				$_SESSION['id']	=	false;
26		}
27
28		function	printStats()	{
29				echo	"<table	border=1><tr><th>Name</th><th>Start	Time</th>
30						<th>Run			time	(seconds)</th></tr>";
31				foreach($_SESSION['data']	as	$process)	{
32						echo	"<tr><td>$process[name]</td><td>".
33								date('Y-m-d	H:i:s',$process['start'])	.
34								'</td><td>';
35						if	(isset($process['end']))	{
36								echo	($process['end']	-	$process['start']);
37						}
38						echo	'</td></tr>';
39				}
40				echo	"</table>";
41		}
42
43		switch($_GET['action'])	{
44				case	'start':

45						startProcess();
46						break;
47				case	'end':
48						endProcess();
49						break;
50				case	'data':
51						printStats();
52						break;
53		}
54		?>

Listing	5-1	uses	a	PHP	session	to	store	its	data,	so	the	script
starts	out	by	setting	this	up.	We	start	the	session	on	line	2	and
then	set	some	default	values	on	lines	49.	Lines	1241	define
three	functions,	one	for	each	of	the	actions	the	script	can	take.
The	startProcess	function	(lines	1220)	first	checks	if	we	have	a
current	ID	stored	in	the	session;	this	check	allows	us	to	ignore
multiple	start	requests	for	the	same	process.	If	there	isn't	a
stored	ID,	startProcess	stores	the	current	time,	creates	a	new
random	ID,	and	then	puts	this	data,	along	with	the	process
name,	into	the	session.	The	endProcess	function	(lines	2226)
stores	the	current	time	as	the	end	time	and	then	clears	out	the
ID	to	allow	another	process	to	start.	These	two	functions
provide	the	basic	data-gathering	capabilities	of	the	script.

The	third	function,	printStats	(lines	2841),	creates	a	table	that
provides	basic	reporting.	It	loops	over	the	data	stored	in	the
session	and	creates	an	HTML	table.	While	doing	this,	it	uses	the
start	and	end	times	to	calculate	how	long	each	process	took.
The	output	from	this	function	is	shown	in	Figure	5-6.	Lines	4353
control	which	of	the	functions	is	called.	The	function	to	call	is
selected	by	the	GET	variable	action.	On	the	HTML	side,	JavaScript
monitoring	code	makes	AJAX	requests	to	process.php	to	store	the
usage	data.

Figure	5-6.	A	simple	report	of	how	long	attempts
to	select	a	user	took

[View	full	size	image]

Listing	5-2.	Monitor.js

1		//	Class	for	monitoring	time	users	spend	performing	actions
2
3		function	Monitor()	{
4					this.httpclient	=	new	HttpClient();
5					this.httpclient.isAsync	=	true;
6					this.httpclient.callback	=	function()	{};
7		}
8		Monitor.prototype	=	{
9					startProcess:	function(name)	{
10										this.httpclient.makeRequest(
11										'process.php?action=start&process='+name);
12				},
13				endProcess:	function(name)	{
14										this.httpclient.makeRequest(
15										'process.php?action=end&process='+name);
16				}
17	}

The	monitor	class	is	quite	simple;	it	sets	up	an	instance	of
HttpClient	for	asynchronous	operation	in	its	constructor	(lines
37)	and	then	defines	two	functions.	The	first	startProcess	sends	a
request	to	process.php,	which	triggers	its	startProcess	function.
The	second	function,	endProcess	(lines	1316),	sends	a	similar
request	to	process.php,	but	this	time,	the	AJAX	request	triggers
the	matching	endProcess	PHP	function.	The	main	purpose	of	this
class	is	to	make	it	easier	to	instrument	application	pages,	so	it
takes	care	of	the	boilerplate	code	for	you.	It	is	also	a	good	place

to	add	other	methods	if	you	find	yourself	needing	to	collect
other	data,	such	as	which	actions	a	user	performs.

Now	that	we	have	a	basic	instrumentation	framework	set	up	to
collect	process	times,	we	need	to	add	it	to	a	script.	The
process-time	data	can	be	useful	in	AJAX-driven	pages	to	collect
data	that	is	generated	by	changes	you	are	making.	It	is	also
useful	in	non-AJAX	pages	to	help	measure	slow	processes	and
to	find	ones	that	should	be	updated.	Data	collection	like	this	can
also	be	useful	in	making	decisions	on	what	data	to	prefetch,	but
normally,	more	data	than	simple	timings	is	necessary	because
you	need	to	identify	which	actions	the	user	is	most	likely	to
perform.	Listing	5-3	shows	a	simple	user-selection	script	that
uses	the	Monitor	JavaScript	class	from	Listing	5-2	to	record	how
long	each	selection	takes.

Listing	5-3.	selectUser.class.php

1		<?php
2		/**
3			*	This	is	an	example	class,	which	searches	for	a	user	from	an	array
4			*	In	most	cases	this	class	would	actually	query	a	database
5			*/
6		class	selectUser	{
7
8					var	$users	=	array(
9											1	=>	'Joshua	Eichorn',
10										2	=>	'Travis	Swicegood',
11										3	=>	'Random	Person	1',
12										4	=>	'Random	Person	2',
13);
14
15				function	search($input)	{
16										$ret	=	array();
17
18										foreach($this->users	as	$key	=>	$name)	{
19																if	(stristr($name,$input))	{
20																						$ret[$key]	=	$name;
21																}
22										}
23										return	$ret;
24				}
25	}
26	?>

The	actual	searching	takes	place	in	a	related	class,	selectUser.
This	class	does	all	its	searching	against	an	array	to	keep	the
example	as	simple	as	possible,	but	in	most	cases,	this	process
would	be	database-driven.	The	class	has	a	single	method	search
(lines	1524),	which	takes	an	input.	The	method	then	case-
insensitively	checks	this	input	to	see	if	it	exists	in	the	array	of
any	of	the	users	stored	in	the	class.	Last,	the	method	builds	an
array	from	the	matching	results	and	then	returns	this	array.	The
HTML	user	interface	is	built	in	Listing	5-4,	which	uses	the
selectUser	class	to	handle	POST	requests	to	the	page.

Listing	5-4.	selectUser.php

1		<html>
2		<head>
3					<title>Select	User	Non	AJAX</title>
4
5
6		<script	type="text/javascript"	src="HttpClient.js"></script>
7		<script	type="text/javascript"	src="Monitor.js"></script>
8		<script	type="text/javascript">
9		var	monitor	=	new	Monitor();
10		function	selectUser(el)	{
11					alert('Selected	User	with	an	id	of:	'+el.value);
12					monitor.endProcess('Select	User');
13		}
14		</script>
15		</head>
16		<body>
17
18	<div	id="HttpClientStatus"></div>
19
20	<h1>Select	a	User</h1>
21
22	<form	action="selectUser.php"	method='post'>
23				<input	name="name"	onclick="monitor.startProcess('Select	User')">
24				<input	type="submit"	value="Search	for	User">
25	</form>
26
27	<?php
28	require_once	'selectUser.class.php';
29

30		if	(isset($_POST['name'])	&&	!empty($_POST['name']))	{
31				$users	=	new	selectUser();
32				$results	=	$users->search($_POST['name']);
33
34				foreach($results	as	$key	=>	$val)	{
35						echo	"<input	type='radio'	name='user'	value='$key'".
36															"id='user_$key'	onclick='selectUser(this)'>".
37								"<label	for='user_$key'>$val</label>
\n";
38				}
39		}
40?>

The	script	starts	with	some	basic	setup;	then,	line	6	includes
the	XMLHttpRequest	wrapper,	and	line	7	includes	the	JavaScript
Monitor	class.	Line	9	creates	an	instance	of	the	Monitor	class	so
that	we	can	easily	call	startProcess	and	endProcess	throughout	the
page.	Lines	1013	define	the	JavaScript	function	that	is	called	at
the	end	of	the	user-selection	process;	this	function	just	outputs
a	selected	message	and	then	runs	endProcess.	Lines	2025	provide
the	basic	HTML	UI	of	the	page;	this	is	a	form	that	POSTs	its
results	to	the	current	page.	The	search	input	box	runs	a	start
process	when	you	click	it	to	start	entering	your	search	term.

Lines	2740	perform	the	search	after	the	form	is	POSTed	to	the
page.	An	instance	of	the	selectUser	class	does	the	actual
searching.	The	results	from	this	search	are	then	looped	over,
creating	a	radio	button	for	each	result.	An	onclick	action	is
added	to	each	radio	button,	which	calls	the	selectUser	function
defined	in	lines	1013.

The	basic	workflow	of	this	page	is	shown	in	Figure	5-7.

1.	 The	user	clicks	the	Search	input	box,	sending	a	startProcess
request.

2.	 The	user	clicks	the	Search	for	User	button,	POSTing	the	form.

3.	 The	script	uses	the	name	sent	in	the	POST	request	to	build	a
list	of	radio	buttons	from	which	the	user	can	select	a
specific	user.

4.	 The	user	clicks	a	radio	button,	sending	an	endProcess	request.

Figure	5-7.	Workflow	measuring	how	long	it	takes
to	select	a	user

Data	collection	is	an	important	first	step	to	making	good
decisions	about	how	and	when	to	implement	AJAX.	If	the	user-
selection	process	is	already	fast,	it	doesn't	make	sense	to	spend
time	adding	AJAX	to	it;	instead,	you'll	want	to	find	a	different
process	to	upgrade.	If	the	process	is	slow,	you	can	build	an
AJAX	version	that	adds	instrumentation	to	it	and	then	obtain
real	numbers	on	how	effective	the	process	is.	Ultimately,	you
may	find	that	an	AJAX	version	of	the	form	won't	give	you	the
increased	speed	that	you	need,	because	searching	by	name
doesn't	scale	to	the	number	of	users	in	your	system;	instead,
your	best	results	might	be	accomplished	by	limiting	the	search
results	using	other	criteria,	such	as	department	or	job	title.

	

5.3.	Promises	and	Problems	of	Combining	AJAX
with	Other	New	Technologies

As	you	work	with	AJAX,	you	may	hear	of	related	technologies
that	you	can	use	with	AJAX.	They	fit	into	two	main	groups:
mature	technologies	that	are	widely	available	in	many	browsers
today,	and	new	technologies	that	are	available	only	on	a	specific
browser.	The	mature	technologies	include	Java	and	Flash.	(Flash
is	the	most	important	because	its	plug-in	is	widely	installed,
and	its	design	is	optimized	for	providing	interactive	elements
and	animations	to	Web	sites.)	Java	can	also	be	used	to	add
interactivity	to	sites,	but	its	popularity	has	waned	over	the	past
five	years,	and	it's	no	longer	installed	by	default	everywhere.

5.3.1.	Combining	AJAX	with	Flash

Flash	makes	a	good	partner	with	other	AJAX	techniques
because	it	provides	a	number	of	features	that	are	not	available
with	pure	JavaScript.	These	include	a	canvas	on	which	images
can	be	added	and	positioned	and	a	drawing	API	that	can	be
used	for	creating	graphics.	In	addition,	Flash	has	the	ability	to
stream	video	and	sound,	and	it	includes	support	for	vector
animations.	The	biggest	drawback	of	Flash	is	that	it	adds	a	new,
separate	development	environment,	and	although	you	can
make	calls	between	the	JavaScript	on	your	page	and	the
ActionScript	of	your	Flash	movie,	it's	not	tightly	integrated	with
the	rest	of	your	page.	Flash	also	has	a	different	look	than	the
rest	of	the	elements	on	an	HTML	page,	which	makes	it	hard	to
deliver	a	consistent	feel	and	operation	when	using	it	for	small
elements	within	a	bigger	picture.

The	drawbacks	of	Flashpoor	JavaScript	integration	and	a
different	look	and	feelare	not	insurmountable,	but	they	do	lead
many	people	to	pick	a	complete	Flash	solution	when	they	need

to	do	anything	complicated.	This	helps	control	complexity,	but	it
leaves	you	fully	tied	to	a	single	vendor	and	means	that	you
have	to	use	Flash	remoting	for	your	communications	layer
instead	of	AJAX.	Adding	Flash	to	your	AJAX	application	gives
you	the	ability	to	support	many	graphical	tasks	that	would	be
impossible	without	it,	but	be	prepared	for	a	more	complex
design	and	debugging	process.

5.3.2.	Scalable	Vector	Graphics	(SVG)

The	new	technologies	in	the	browser	world	are	not	as	widely
deployed	as	Flash,	and	some,	like	Microsoft's	Extensible
Application	Markup	Language	(XAML),	have	had	only	beta
releases.	They	do	have	the	benefit	of	being	fully	integrated	into
the	browser,	making	them	fully	scriptable	with	JavaScript	and
available	as	first-class	elements	on	Web	pages.	Scalable	Vector
Graphics	(SVG)	is	a	new	W3C	standardized	language	for
creating	vector	graphics.	It	has	many	of	the	same	features	as
Flash,	allowing	for	animations	and	interactive	graphical
elements	to	be	added	to	the	page.	SVG	avoids	many	of	Flash's
problems	because	it	uses	JavaScript	for	scripting;	in	addition,	it
can	be	embedded	directly	into	an	HTML	page	and	modified	just
like	any	other	element.

SVG's	biggest	problem	is	that	browser	support	has	been	slow	to
develop;	a	plug-in	from	Adobe	currently	supports	many	of	its
features,	but	it	leaves	some	of	the	same	integration	problems
as	Flash.	The	next	versions	of	both	Firefox	and	Opera	browsers
will	have	built-in	support	for	SVG,	but	that	still	leaves	it	as	a
niche	technology	that	can	be	used	only	on	internal	projects.

SVG	is	also	missing	a	canvas	element,	so	there	is	no	way	for
users	to	draw	on	elements,	as	can	be	done	with	Flash.	To
address	this,	a	bitmap	canvas	was	created	by	Apple	for	its
Safari	browser.	This	effort	has	since	been	codified	by	the	Web
Hypertext	Application	Technology	Working	Group	(WHATWG).

This	group	is	supported	by	many	browser	developers,	including
Mozilla	and	Opera,	so	support	will	be	forthcoming	in	new
releases	of	these	browsers;	however,	support	by	Internet
Explorer	seems	less	certain.

5.3.3.	XML	User	Interface	Languages

Many	of	the	new	technologies	are	missing	widespread	browser
support,	and	XML-based	user	interface	languages	are	no
exception.	These	languages,	which	include	Mozilla's	XML	User
Interface	Language	(XUL)	and	XAML,	add	the	ability	to	describe
normal	application	elements	(such	as	menus,	scrollbars,	text
boxes,	and	buttons)	in	an	easy-to-use	XML	markup.	Microsoft
and	Mozilla	built	their	XML	languages	to	allow	for	the	creation	of
highly	interactive	rich	applications	that	look	and	feel	much	like
native	applications	right	out	of	the	box.	However,	because	they
are	supported	only	by	a	single	vendor,	they	do	create	problems
of	lock-in	and	tie	you	to	a	specific	browser.	This	lock-in	makes
for	a	much	less	compelling	solution	than	widely	compatible
solutions	built	on	top	of	JavaScript	and	HTML.

XUL	was	created	to	define	the	user	interface	of	Mozilla's
browser	and	has	been	available	for	a	number	of	years.	Recently,
it	has	begun	to	gain	momentum	as	Firefox	has	increased	in
popularity,	but	it	will	never	be	able	to	move	beyond	niche
products	until	other	browsers	support	the	language.	XAML	was
created	by	Microsoft	as	part	of	its	.NET	effort,	and	it	is
scheduled	to	be	released	as	part	of	Windows	Vista.	It's	hard	to
know	what	its	effect	will	be	until	it's	widely	released	and	until
we	know	how	accessible	it	will	be	to	Web	developers.

The	rise	of	popular	new	Web	browsers	has	led	to	the	creation	of
exciting	new	Web	technologies.	The	biggest	problem	is	that
most	haven't	made	it	beyond	being	implemented	in	a	single
browser.	As	support	for	these	new	technologies	increases,	they
may	become	larger	players,	adding	in	the	technology	needed	to

increase	interactivity	beyond	the	level	that	AJAX	and	dynamic
HTML	(DHTML)	can	reach	on	their	own.

	

5.4.	Summary

To	get	the	most	out	of	AJAX,	you	need	to	identify	and	target	the
areas	where	it	will	have	the	most	effect	and	then	take	steps	to
monitor	that	effect.	AJAX	can	be	used	in	most	any	Web	site
design,	but	it's	most	effective	when	used	to	speed	up	searching
and	multistep	processes.	For	solving	simple	problems,	just
picking	appropriate	areas	to	apply	AJAX	will	give	good	results.
However,	as	complexity	increases,	you'll	want	to	add
instrumentation	to	your	applications	to	get	hard	data	on	the
changes	AJAX	is	causing.	Using	this	data,	you	can	fine-tune
your	approach	and	start	down	the	path	to	effective	AJAX.	The
final	step	in	using	AJAX	effectively	comes	from	looking	at	the
usability	of	the	graphical	interfaces	you're	creating;	we'll	cover
this	process	in	the	next	chapter.

	

Chapter	6.	Usability	Guidelines
In	this	chapter

6.1	Defining	Usability page	120

6.2	Usability	Guidelines page	121

6.3	Common	Usability	Problems page	125

6.4	Summary page	134

As	shown	in	previous	chapters,	AJAX	offers	an	exciting	new	set
of	possibilities,	but	it	also	creates	new	challenges.	A	big	part	of
those	challenges	is	creating	a	new	interaction	model	that	works
not	only	from	a	technology	standpoint,	but	also	from	the	users'
perspective.	Your	new	designs	need	to	work	and	to	be	easy	to
discover.	In	addition,	they	need	to	allow	for	productive,	regular
use.	This	chapter	looks	at	usability,	provides	a	set	of	principles
that	help	you	create	highly	usable	interfaces,	and	shows	real
examples	to	illustrate	some	common	mistakes	and	ways	to
avoid	them.

	

6.1.	Defining	Usability

Usability	is	defined	by	the	International	Organization	for
Standardization	(ISO)	in	document	9241	as	"the	extent	to
which	a	product	can	be	used	by	specified	users	to	achieve
specified	goals	with	effectiveness,	efficiency	and	satisfaction	in
a	specified	context	of	use."	For	our	purposes,	this	broad
definition	boils	down	to	this:	Can	people	easily	understand	and
use	your	Web	site?

Usability	expert	Jakob	Nielson	has	a	framework	for	looking	at
the	usability	of	a	Web	site.	It	breaks	down	usability	into	five
components:	learnability,	efficiency,	memorability,	errors,	and
satisfaction.	By	using	this	framework,	we	can	identify	usability
problems	in	AJAX	designs	and	identify	ways	to	solve	them:

Learnability	looks	at	how	easy	it	is	to	accomplish	tasks	the
first	time	the	user	visits	the	site.	Learnability	can	be	a
problem	in	many	AJAX	designs	because	the	site	no	longer
acts	like	a	standard	Web	site	to	which	the	user	is
accustomed.	These	problems	are	most	common	when	the
results	of	standard	actions	are	changed.	Creating	new
widgets	can	also	be	a	problem,	although	this	can	be
alleviated	by	making	the	new	widgets	look	like	their
counterparts	in	the	standard	application	world.	Simplicity
and	consistency	are	keys	to	making	an	interface	learnable.
The	goal	isn't	to	make	a	flashy	unique	interface;	it's	to
create	one	that	new	users	can	instantly	recognize.

Efficiency	refers	to	how	quickly	the	user	can	perform	a
task	once	it	has	been	learned.	This	component	sometimes
stands	in	juxtaposition	against	learnability	because	the
most	efficient	interfaces	may	require	a	large	amount	of
knowledge	to	use.	(A	text-based	data	entry	system	is	one
example	of	an	efficient	interface.)	Efficiency	is	the	area	of

usability	where	AJAX	can	make	a	huge	difference.	AJAX	can
combine	multistep	processes	into	one	quick	screen	to
greatly	reduce	the	time	required	to	complete	a	task.	This
savings	is	most	obvious	in	item-selection	cases	where
multistep	popup	search	screens	can	be	replaced	with
search-as-you-type	AJAX	widgets.

Memorability	looks	at	how	easily	a	user	can	regain
proficiency	in	the	use	of	the	interface	after	not	using	it	for	a
period	of	time.	In	such	situations,	the	use	of	AJAX	might
not	have	a	large	effect,	but	it	still	can	make	a	difference.
AJAX	can	be	used	to	streamline	processes,	which	reduces
the	amount	of	steps	that	the	user	has	to	remember.	It	can
also	be	used	to	create	unique	interface	widgets	that	may
hurt	memorability	because	the	user	has	no	points	of
reference	for	them.

The	errors	component	focuses	on	having	a	system	with	few
errors.	It	also	focuses	on	how	easy	it	is	to	recover	from
errors	that	are	received.	Web	development	as	a	whole	is
prone	to	network-related	errors,	but	these	errors	are
seldom	fatal	because	users	can	just	reload	their	browsers.
In	an	AJAX	application,	network	errors	will	need	to	be
trapped	in	application	code	because	the	browser's	Reload
button	won't	resend	the	AJAX	action.	The	greater	use	of
JavaScript	can	also	create	more	errors	if	developers	aren't
used	to	the	language.	One	way	to	help	alleviate	these
problems	is	to	use	an	AJAX	library	that	simplifies	cross-
browser	development.

The	final	component	is	a	subjective	measurement	of
satisfaction.	Does	the	user	enjoy	using	the	design?	This
component	is	affected	by	many	items,	especially	visual
design,	but	AJAX	can	still	play	a	part.	A	highly	efficient	AJAX
interface	that	provides	good	feedback	about	what	it's	doing
will	be	more	satisfying	than	a	standard,	slow	Web	interface

that	requires	tons	of	page	reloads.

	

6.2.	Usability	Guidelines

Many	usability	experts	have	criticized	AJAX	by	pointing	out
cases	where	it	hurts	usability.	Although	it	is	possible	for	AJAX	to
have	that	effect,	I	don't	think	AJAX	inherently	hurts	usability;
it's	just	that	many	developers	have	the	wrong	focus	when
adding	AJAX	to	their	sites.	Focus	on	buzzwords	and	the	latest
technology	results	in	nice	demos	but	not	necessarily	in	easy-to-
use	sites.	Web	development	should	always	be	user	focused;
adding	AJAX	to	the	mix	shouldn't	change	that.

As	you	use	AJAX,	keep	the	following	guidelines	in	mind,	and
you'll	end	up	with	a	highly	usable	site	or	Web	application:

Keep	the	user's	expectations	in	mind

Provide	feedback	to	actions

Maintain	the	user's	focus	when	adding	content

Keep	the	ability	to	undo	actions

Know	if	you	are	developing	an	application	or	a	Web	site

Only	use	AJAX	where	it	has	the	greatest	effect

Have	a	plan	for	those	users	without	XMLHttpRequest

The	following	subsections	cover	each	of	the	points	in	more
detail.

6.2.1.	Keep	the	User's	Expectations	in	Mind

Keeping	the	user's	expectations	in	mind	is	a	broad	guideline,
but	it	is	also	an	important	one.	At	the	simplest	level,	it	means
not	changing	how	things	operate	without	letting	the	user	know.
In	most	Web	pages,	buttons	are	used	to	submit	forms,	so
having	some	other	action,	such	as	the	clicking	of	a	hyperlink,	to
submit	a	form	can	be	confusing	to	users.	This	rule	comes	into
play	in	any	place	where	you	redefine	the	standard	way	a	Web
site	works.

One	area	in	which	you'll	have	a	hard	time	meeting	expectations
is	with	bookmarking	and	the	Back/Forward	button	operations;
in	many	cases,	these	will	no	longer	work,	and	you'll	need	new
ways	to	support	bookmarking	within	your	application.	This
guideline	doesn't	mean	that	you	have	to	change	how	the	user
interacts	with	your	site;	it	just	means	that	you	need	to	work	to
provide	the	user	with	enough	feedback	so	that	he	or	she	knows
what	is	going	on.

6.2.2.	Provide	Feedback	to	Actions

The	next	guideline	focuses	on	providing	feedback	that	an	AJAX
action	has	taken	place.	With	this	feedback,	users	know	that
some	action	has	happenedeven	if	it	doesn't	work	as	expected.
In	a	basic	Web	application,	the	page	reload	shows	that
something	is	happening.	In	an	AJAX	application,	we	remove	the
reload,	so	we	need	to	replace	this	feedback.	This	feedback
mechanism	ranges	from	a	loading	message	in	the	corner	of	the
screen	that	is	similar	to	the	waving	flag	that	Internet	Explorer
uses	to	visually	highlight	the	sections	of	the	page	that	have
changed.	In	many	cases,	you'll	want	to	use	multiple
approaches,	such	as	showing	a	standard	loading	box	while	the
new	content	is	being	transmitted	and	then	highlighting	the	part
of	the	page	that	was	updated.	Providing	feedback	keeps	your
application	from	feeling	broken.	When	someone	clicks	a	link,	he
or	she	expects	something	to	change;	without	the	feedback,	it's
easy	to	miss	what	happened.

6.2.3.	Maintain	the	User's	Focus	When	Adding
Content

As	you	add	feedback	to	your	AJAX	application,	avoid	disturbing
the	user's	focus.	This	usability	guideline	is	especially	important
when	using	popup	messages;	they	should	never	be	used	except
in	areas	where	immediate	action	is	required.

Here	are	some	items	to	watch	out	for	when	thinking	about
maintaining	a	user's	focus	on	one	area:

Actions	that	move	the	focus	of	a	cursor.	Such	actions
will	cause	the	user	to	type	in	the	wrong	input	box	or	have
to	take	the	time	to	figure	out	the	current	cursor	location.

Actions	that	cause	page	reflows.	If	a	user	fills	out	a
form	and	an	error	message	causes	the	form	to	move	down
half	an	inch,	the	effect	can	be	disorienting.

Distracting	message	styles.	Blinking	red	text	can	steal
the	user's	focus	just	as	easily	as	a	popup	can.

As	a	user	interacts	with	your	site,	remember	that	he	or	she
controls	the	interaction,	not	you;	if	your	message	isn't
important	enough	to	require	immediate	action,	don't	push	it
into	the	user's	focus	prematurely.

6.2.4.	Keep	the	Ability	to	Undo	Actions

Many	AJAX	applications	try	to	outthink	their	users	by
automatically	saving	data	as	needed	or	submitting	a	form
without	clicking	a	button.	When	this	is	done	well,	it	can	be
effective,	but	you	must	keep	the	user's	expectations	in	mind

when	applying	these	techniques.	Users	are	used	to	a	forgiving
Web	environment	where	they	can	simply	reset	a	form	if	the
current	input	is	incorrect.	As	you	add	AJAX,	you	must	keep	that
level	of	forgiveness;	operations	should	always	be	undoable.
Autosave	is	one	of	the	worst	offenders	in	this	area,	but	it	is
easily	fixable	by	adding	a	Reset	button	on	an	autosave	form	or
exposing	the	history	of	the	saves.

6.2.5.	Know	If	You	Are	Developing	an
Application	or	a	Web	Site

As	you	develop	with	AJAX,	it	is	important	to	know	if	you	are
creating	an	application	or	a	Web	site.	If	you	are	developing	an
application,	focus	on	having	it	act	like	a	native	application;
following	the	human-interface	guidelines	of	the	target	operating
system	is	often	a	good	idea.	If	you	are	developing	a	Web	site,
strive	to	have	your	work	fit	the	standard	feel	and	interaction
model.	This	focus	helps	set	the	user's	expectations	and	will
make	your	interface	more	learnable	because	the	user	will	have
a	correct	frame	of	reference	against	which	to	compare	it.

6.2.6.	Only	Use	AJAX	Where	It	Has	the	Greatest
Effect

AJAX	is	a	powerful	tool,	but	it	should	be	only	a	part	of	your	Web
development	arsenal.	Always	make	sure	not	to	overuse	AJAX.	It
should	be	used	in	areas	where	its	extra	capabilities	provide
enough	benefits	to	overcome	its	drawbacks.	An	example	of	such
an	area	is	the	breaking	of	bookmarking	within	a	page.	AJAX	is	a
great	tool	to	update	part	of	a	pagejust	load	the	changed
contentbut	it	should	not	be	used	to	load	an	entire	page.	Normal
pages	work	just	fine	and	are	going	to	be	just	as	fast	as
reloading	the	page	with	AJAX.	When	you	are	deciding	on	using

AJAX,	look	for	a	problem	that	needs	solving,	not	just	for	places
where	it	might	be	possible	to	use	AJAX.

6.2.7.	Have	a	Plan	for	Those	Users	Without
XMLHttpRequest

The	last	usability	guideline	is	to	have	a	plan	for	users	whose
browsers	can't	perform	AJAX	operations.	No	matter	how	usable
an	application	is,	if	the	user	can't	run	it,	it's	useless.	For	internal
applications,	this	is	seldom	an	issue	because	a	specific	browser
can	be	required,	but	that's	not	always	a	great	idea	for	a	mass
market	Web	site.	If	you're	using	AJAX	just	to	enhance	slow
tasks,	an	easy	solution	is	to	keep	support	for	the	slower	non-
AJAX	operation.	However,	if	much	of	your	site	depends	on	AJAX,
you	will	need	either	to	create	a	non-AJAX	version	or	to	keep
non-AJAX	users	out	of	your	site.	Users	who	use	browsers	that
don't	support	AJAX	should	always	at	least	get	messages	that
some	actions	won't	work	for	them.	As	you	add	AJAX,	make	sure
to	understand	your	audience.	Although	AJAX	is	widely
supported,	it	won't	work	in	all	browsers	(especially	mobile
ones),	and	you	don't	want	to	lock	out	any	part	of	your	audience
without	addressing	the	consequences.

6.3.	Common	Usability	Problems

Although	AJAX	has	the	ability	to	create	a	more	usable	and
efficient	interface,	it	doesn't	always	achieve	this	goal.	Usability
problems	can	steal	away	any	gains	created	from	the	use	of	new
technology.	This	section	discusses	some	common	usability
problems	and	then	gives	examples	on	how	to	fix	them.	Many	of
these	problems	can	happen	without	the	help	of	AJAX,	but	they
are	prevalent	in	AJAX	applications,	which	are	more	active	by
nature.

6.3.1.	Stealing	Focus	with	Validation	Messages

A	common	use	of	AJAX	is	to	perform	complex	validation	before
the	user	has	submitted	a	form.	This	is	especially	useful	on	large
forms	where	large	amounts	of	data	are	input	before	validation
can	take	place.	Simplistic	attempts	at	continuous	validation	are
often	worse	than	waiting	until	the	form	is	submitted	to	perform
the	validation,	because	they	continuously	steal	the	user's	focus.

Figure	6-1	contains	a	basic	registration	form.	AJAX	is	used	to
validate	that	the	username	hasn't	already	been	taken	and	that
the	zip	code	matches	the	city/state	information.	The	problem
here	is	that	validation	steals	the	user's	focus	because	it	uses
popup	alerts	to	give	validation	errors	as	the	user	tabs	to	the
next	field.

Figure	6-1.	A	validation	message	stealing	focus
on	a	user	registration	page

[View	full	size	image]

One	solution	to	this	problem	is	to	change	from	a	popup	error
message	to	an	inline	one.	In	some	cases,	this	is	an	acceptable
solution,	but	it	still	causes	problems.	(In	this	case,	the	problem
is	that	the	more	useful	error	message	will	cause	the	form	to
move	down	quite	a	bit	in	the	user's	view.)	Although	usable,	this
approach	pushes	most	of	the	form	off	the	user's	page	after	a
couple	error	messages	are	shown.	It's	also	not	clear	which
fields	need	to	be	updated.	Figure	6-2	shows	an	inline	validation
message.

Figure	6-2.	A	validation	message	that	pushes	the
rest	of	the	form	down

Figure	6-3	shows	a	possible	solution	to	these	problems.	The
size	of	the	error	messages	was	reduced	to	a	single	line,	and	the

use	of	a	"More	Info"	link	now	provides	information	on	how	to
solve	the	error.	The	fields	with	errors	were	also	highlighted	to
show	what	needed	to	be	updated.

Figure	6-3.	Validation	messages	with	the	usability
problems	fixed

Stealing	focus	problems	often	happen	when	trying	to	meet	the
guideline	of	providing	user	feedback.	Although	user	feedback	is
important,	it	should	not	prevent	the	user	from	completing	his	or
her	current	task.	This	is	especially	important	when	feedback	is
combined	with	automatic	actions,	because	the	user	has	no
reason	to	expect	the	feedback	to	happen.

6.3.2.	Preventing	Undo	with	Autosave

In	conventional	Web	applications,	large	forms	can	be	dangerous
because	they	are	impossible	to	save	automatically,	and
submitting	the	form	on	a	regular	basis	depends	on	the	user
clicking	a	button.	Plus,	such	saving	interrupts	the	user's
workflow.	Here's	an	example:	A	content	management	system
was	upgraded	with	AJAX	to	save	an	article	automatically	every
five	minutes.	This	seemed	like	a	great	solution	because	then
only	five	minutes	of	work	could	be	lost	by	a	browser	crash	or	an
accidental	closing;	however,	after	more	use,	a	couple	of
problems	with	this	approach	were	found.

One	problem	occurred	when	an	author	opened	an	article	to	edit
it.	He	or	she	would	make	some	changes	and	then	decide,
perhaps,	that	he	or	she	didn't	like	the	approach	taken.	In	other
words,	the	author	ended	up	wanting	to	revert	to	the	old
version,	but	couldn't;	during	the	editing	process,	the	autosave
process	had	already	overwritten	the	original.	This	was	not	good.

As	you	can	see	from	the	previous	scenario,	editing	couldn't	be
done	on	live	articles	because	the	autosave	process	would	push
out	changes	before	they	were	complete.	This	problem	can	be
solved	easily	by	creating	a	separate	autosave	area	to	store	the
data	from	this	process.	This	autosave	area	can	keep	anywhere
from	one	to	an	unlimited	number	of	autosaves.	An	interface	is
then	added	to	let	users	load	an	autosave	and	save	it	as	a

normal	version.

In	some	content	management	systems,	documents	are
versioned	so	that	the	original	problem	of	overwriting	data
doesn't	happen.	However,	saving	each	autosave	as	a	new
version	can	also	be	problematic	because	it	makes	for	a	clumsy
document	history	and	can	cause	data-storage	needs	to	explode.
In	a	versioned	content	management	system,	a	separate
autosave	area	would	also	work,	but	it	may	be	more	useful	to
use	a	subtree	in	your	version	history	to	which	autosaves	are
written.	The	application	can	then	remove	the	old	autosaves
when	each	normal	save	is	complete.	This	allows	autosaved
articles	to	be	accessed	by	the	normal	article-management
process	without	causing	an	explosion	in	version	history.

Preventing	undo	operations	often	happens	when	AJAX
implements	autosave.	This	prevention	results	in	data-loss
situations	from	a	process	that	was	supposed	to	prevent	them.
Whether	you	are	using	time-based	saving	while	editing	an
article	or	autosaving	a	form	by	detecting	what	field	is	edited,
you	are	changing	the	way	a	Web	form	normally	operates.
Because	you	are	moving	the	save	decisions	out	of	the	user's
hands,	you	need	to	provide	a	way	for	the	user	to	revert	his	or
her	changes.

6.3.3.	Updating	Sections	of	a	Page	Without	the
User	Realizing	It

One	way	to	use	AJAX	is	to	update	parts	of	the	page	with	new
content	in	response	to	a	user's	action.	This	AJAX	updating
process	could	be	used	in	technical	documentation	to	load
definitions	or	related	information.	A	basic	example	of	this	is
shown	in	Figure	6-4.	When	you	click	any	term	with	a	dashed
link,	its	definition	is	loaded	into	the	sidebar	on	the	right.

Figure	6-4.	Documentation	Browser	with	no
feedback

[View	full	size	image]

The	page	in	the	preceding	figure	is	already	taking	some
usability	steps,	such	as	using	a	different	link	style	for	definition
links,	but	it	still	has	one	problem:	No	feedback	is	given	to	the
user	regarding	the	fact	that	something	has	changed.	Feedback
is	important	in	this	case	because	we	are	redefining	a	standard
browser	action.	Normally,	when	you	click	a	link,	it	loads	a	new
page.	If	the	user	were	expecting	a	new	page	to	load	and	didn't
notice	the	change	on	the	right,	he	or	she	might	think	the	link

was	just	broken.

Providing	feedback	is	about	finding	the	right	balance;	we	want
to	show	that	something	has	changed	without	annoying	the	user
with	effects	that	are	overly	flashy	and	distracting.	There	are	a
number	of	different	techniques	we	can	use	in	this	case.	One
technique	is	to	show	a	loading	message	while	the	browser	is
waiting	for	the	server	to	respond.	At	this	same	time,	we	can
fade	out	the	current	content	and	then	fade	it	back	in	after	the
new	content	has	arrived.	Figure	6-5	shows	this	approach	in
progress.

Figure	6-5.	Documentation	Browser	while	loading
new	content

[View	full	size	image]

An	alternative	to	providing	loading	feedback	is	to	wait	until	the
new	content	is	loaded	and	then	highlight	it	in	a	pale	yellow
background.	Over	a	period	of	three	to	five	seconds,	this	yellow
then	fades	to	the	white	background	color.	Figure	6-6	shows	the
beginning	of	this	process.	In	a	documentation	browser,	I	would
recommend	this	approach	because	it	doesn't	distract	the	user
until	there	is	actually	something	to	see.	However,	in	another
application	where	the	content	may	take	a	while	to	load,
immediate	feedback	would	also	be	needed.	You	could	combine
both	approaches,	but	in	most	cases,	a	more	subtle	approach	is
just	as	effective	and	is	more	aesthetically	pleasing.

Figure	6-6.	Highlighting	content	to	provide

feedback	that	the	content	has	been	updated

[View	full	size	image]

6.3.4.	Breaking	Bookmarking	by	Using	AJAX	to
Load	Entire	Pages

Many	times,	when	developers	adopt	a	new	technology,	they	see
it	as	the	solution	to	every	problem	they	have.	One	area	where
AJAX	can	be	overused	is	as	a	replacement	for	HTML	framesets.
This	AJAX	usage	allows	you	to	skip	the	loading	of	the	navigation

sections	and	just	update	the	main	body	of	the	document.
However,	unless	you	take	steps	to	make	bookmarking	work,
you	have	the	same	problems	as	using	framesplus	a	more
complicated	development	process.	Figure	6-7	shows	an
example	of	this	mistake;	here,	everything	below	the	navigation
bar	is	loaded	using	AJAX.

Figure	6-7.	Loading	an	entire	page	using	AJAX

In	most	of	these	cases,	the	simple	solution	is	to	use	only

normal	pages;	because	navigation	is	seldom	a	large	part	of	a
page's	loading	time,	these	approaches	save	little	in	load	times.
In	other	cases,	you	may	find	that	trying	to	load	entire	pages
using	AJAX	is	just	a	symptom	of	larger	design	issues,	and	you'll
need	to	start	at	the	beginning	and	focus	on	how	users	will
interact	with	your	information.	AJAX	is	a	great	tool,	but	it	is	not
the	solution	to	every	problem.	Design	and	development	should
always	keep	the	user	in	mind.	The	end	result	might	not	use
every	technology	you	would	like,	but	it	will	make	for	the	best
user	experience.

6.3.5.	Making	AJAX	Required	on	a	Web	Store

Although	AJAX	adds	great	capabilities	to	a	Web	site,	it's	not
always	worth	the	cost.	The	biggest	cost	is	preventing	users
from	using	a	site	because	they're	not	using	an	advanced-
enough	Web	browser.	While	it's	easy	to	say	"Please	upgrade,"
doing	so	is	not	always	possible,	especially	if	the	user	is	using	a
mobile	device,	such	as	a	PDA	or	cell	phone.	Let's	look	at	a
fictional	scenario	to	see	some	of	the	problems	that	might	be
caused	by	requiring	AJAX.	A	Web-based	store	updated	its
shopping	cart	to	use	AJAX;	it	then	tested	AJAX	on	all	the	major
browsers,	and	everything	worked	fine.	Because	the	store	was
supporting	all	major	browsers,	it	decided	to	drop	its	non-AJAX
version.	After	rolling	out	the	new	shopping	cart,	a	large	number
of	complaints	came	into	the	company's	support	email.	After
some	research,	the	store	noticed	that	all	the	complaints	were
from	users	using	Pocket	IE	on	smart	phones	or	PDAs.

This	is	a	fictional	example,	but	it	shows	important	points.
Although	no	new	computer	will	come	with	a	browser	that	can't
be	used	with	AJAX,	lots	of	mobile	devices	still	will.	If	your	site
has	a	broad	user	base,	requiring	AJAX	may	shut	out	a	sizable
part	of	your	audience.

6.4.	Summary

AJAX	can	create	great	interfaces	that	have	much	higher
usability	than	current	Web	development	techniques.	However,
using	AJAX	doesn't	guarantee	that	the	end	result	will	be	highly
usable.	Usability	requires	the	solid	presence	of	many	different
aspects	of	the	user	interface.	AJAX	has	the	ability	help	some
aspects,	but	it	has	a	tendency	to	hurt	others.	This	chapter's
usability	guidelines	can	help	keep	you	on	the	right	track.	While
developing	with	AJAX,	remember	the	following:

Think	about	the	user's	expectations

Provide	feedback	when	performing	actions

Avoid	breaking	the	user's	focus

Give	the	user	the	ability	to	undo	every	action

Follow	the	style	of	a	Web	site	or	an	application,	not	a
mixture	of	both

Use	AJAX	to	improve	usability,	not	to	add	new	technology

Plan	for	users	whose	browsers	don't	support	XMLHttpRequest

AJAX	can	help	you	to	produce	great	applications	that	use	the
latest	technology	and	to	perform	tasks	you	didn't	think	were
possible.	However,	there	is	more	to	success	than
implementation.	An	AJAX	application	is	compared	not	only	to
other	Web	applications,	but	also	to	native	applications.	This
comparison	raises	the	bar	higher,	because	we're	moving	into	a
more	mature	development	space.	A	highly	capable	site	with

poor	usability	is	no	success;	great	development	has	usability	as
a	major	focus	and	offers	the	new	features	in	a	highly	usable
package.

	

Chapter	7.	AJAX	Debugging	Guide

7.1	Two	Sides	to	Debugging page	138

7.2	Looking	at	AJAX	Communications page	139

7.3	JavaScript	Debugging	Tools page	156

7.4	JavaScript	Exceptions page	160

7.5	Dumping	Variables page	161

7.6	Summary page	163

One	of	the	biggest	difficulties	of	developing	in	AJAX	is	figuring
out	how	to	put	your	code	back	together	when	your	applications
go	wrong.	You	don't	know	if	the	problem	is	code	on	the	server
or	code	on	the	client,	or	if	it's	caused	by	a	cascade	of	problems
between	the	two.	Debugging	server-side	problems	can	be
especially	difficult	because	the	client-side	JavaScript	code	has	a
tendency	to	hide	the	errors,	but	there	is	a	solution.	This	chapter
covers	a	number	of	tools	and	techniques	that	let	you	see
exactly	what	is	happening.	Once	you	have	information,	solving
the	actual	problem	becomes	easy.

7.1.	Two	Sides	to	Debugging

When	you	look	at	an	AJAX	application,	it	is	important	to
remember	that	there	are	two	sides	to	the	equation:	the	server,
which	interacts	with	the	back	end,	and	the	client,	which	adds
interactivity	to	the	user's	environment.	Although	this	two-sided
model	has	always	existed,	what	has	changed	dramatically	with
the	rise	of	AJAX	is	the	complexity	of	the	code	running	on	the
client.	A	secondary	complexity	is	the	number	of	interaction
points	between	the	two	sides.	Added	complexity	always	makes
debugging	harder,	so	your	focus	when	debugging	an	AJAX
application	needs	to	be	on	the	various	ways	you	can	reduce	that
complexity.

The	first	step	to	debugging	any	problems	is	to	separate	the	two
sides	as	much	as	possible.	This	is	generally	an	easy	process	on
the	server	side;	if	you	are	generating	HTML	page	chunks,	you
can	go	to	the	URL	and	inspect	the	output,	looking	for	errors
generated	by	the	server	code.	If	you're	using	a	JSON	or	other
RPC-based	approach,	it's	slightly	harder.	However,	you	can
always	check	the	code	that	is	being	run	by	the	RPC	call,	using
normal	development	tools	to	look	at	its	state	before	it's
encoded.	Many	people	find	unit	tests	to	be	especially	helpful	in
verifying	the	operation	of	the	server-side	code.	It's	especially
useful	for	applications	that	expose	chunks	of	functionality	as
services	to	the	client.	Unit	tests	work	well	on	the	server	side
because	every	major	language	has	mature	tools	for	managing
these	processes,	and	it	narrows	the	type	of	problems	you'll	see
on	the	data-production	side.

On	the	JavaScript	side,	unit	tests	have	a	harder	time	being
effective.	This	is	due	both	to	the	lack	of	tools	and	the	difficulty
of	testing	an	environment	that	relies	on	user-created	events.
There	are	a	number	of	jUnit	ports	to	JavaScript,	and	by	using
these	testing	frameworks	and	working	hard,	you	can
successfully	use	unit	tests	on	the	JavaScript	side	as	well.	Unit

tests	are	a	tool,	and	in	AJAX	development,	they	can	be	powerful
because	they	provide	a	framework	to	test	both	sides	of	the
equation	separately.	Note,	however,	that	they	are	not	your	only
option.	The	most	important	item	to	remember	is	to	debug	the
easy	stuff	first.	If	you	get	an	error,	always	verify	that	your
server-side	code	is	working	properly	before	moving	on	to	the
JavaScript.

7.2.	Looking	at	AJAX	Communications

Commonly,	when	you	get	an	error,	it's	caused	by	a	small
problem,	and	all	you	need	to	do	to	solve	it	is	to	look	at	what	the
client	sent	to	the	server	and	then	look	at	the	server's	response.
Some	libraries	provide	logging	mechanisms	to	record	this
information,	and	you	can	easily	create	a	generic	request	logger
using	PHP,	but	I	find	tools	that	directly	interact	with	my	browser
to	be	more	effective.	However,	you	don't	always	have	access	to
these	tools,	or	you	may	need	to	debug	in	a	nondevelopment
environment.	In	such	cases,	you'll	want	to	know	how	to	build	a
logger.

7.2.1.	Building	an	AJAX	Logger

To	build	an	AJAX	logger,	you	first	need	to	identify	the
information	that	is	sent	from	the	client.	This	information
includes	three	types	of	information:	query	parameters,	HTTP
headers,	and	possibly	a	POST	payload.	In	PHP,	the	query
parameters	are	automatically	parsed	and	made	available	in	the
$_GET	variable;	if	the	data	sent	to	the	server	is	a	form
submission,	the	POST	variables	are	made	available	under	a
similar	variable,	which	is	$_POST.	You	can	also	read	the	raw	POST
submission	by	reading	from	php://input;	this	raw	access	is
required	to	see	the	information	if	the	client	sent	a	JSON	or	XML
payload.	Finally,	you	can	access	the	headers	through	the
$_SERVER	variable.	Listing	7-1	shows	an	example	of	reading	this
information.

Listing	7-1.	read.php

1		<?php

2
3		echo	"Query	(GET)	parameters
";
4		var_dump($_SERVER['QUERY_STRING']);	//	raw
5		var_dump($_GET);	//	parsed
6
7		echo	"POST	parameters
";
8		var_dump(file_get_contents('php://input'));	//	raw
9		var_dump($_POST);	//	parsed
10
11		echo	"HTTP	Headers
";
12		$headers	=	array();

13	foreach($_SERVER	as	$name	=>	$val)	{
14			if	(preg_match('/HTTP_(.+)/',$name,	$m))	{
15					$headers[$m[1]]	=	$val;
16			}
17	}
18	$other	=	array('CONTENT_TYPE','CONTENT_LENGTH');
19	foreach($other	as	$o)	{
20			if	(isset($_SERVER[$o]))	{
21					$headers[$o]	=	$_SERVER[$o];
22			}
23	}
24	var_dump($headers);
25	?>

The	query	parameters	are	the	easiest	inputs	with	which	to
work;	the	raw	version	is	available	as	an	index	in	the	$_SERVER
array	(line	4),	and	that	same	data	turned	into	an	array	is
available	through	$_GET	(line	5).	POST	data	is	available	only	when
a	POST	HTTP	request	has	been	made.	This	can	be	done	by	using
either	a	form	or	XMLHttpRequest.	The	raw	POST	header	is	read	from
php://input	(line	8),	and	the	parsed	version	is	on	line	9.	$_POST	is
populated	only	when	the	POST	has	a	Content-type	of	application/www-
form-urlencoded	or	multipart/form-data.

Reading	the	headers	is	a	little	harder	because	they	are	stored	in
$_SERVER	along	with	a	bunch	of	other	data.	The	majority	of	the
HTTP	headers	are	prefixed	with	HTTP_,	so	we	can	display	them	by
looping	over	$_SERVER	and	doing	a	regular	expression	match
(lines	1317).	This	match	will	store	the	matching	headers	into	an
array.	A	couple	of	important	HTTP	headers	don't	have	an	HTTP
prefix,	so	we	look	for	the	Content-type	and	Content-length	headers
using	a	secondary	check	(lines	1823).

The	examples	for	this	chapter,	which	can	be	downloaded	from
the	book's	Web	site,	include	a	small	test	page	(test.php)	so	that
you	can	see	the	output	of	this	script.	The	output	for	a	GET
request	with	a	query,	a	form	POST,	and	a	POST	from	XMLHttpRequest
are	shown	in	Figures	7-1	through	7-3.

Figure	7-1.	A	GET	request	with	a	query	string

[View	full	size	image]

Figure	7-2.	A	form	POST

[View	full	size	image]

Figure	7-3.	A	POST	request	from	XMLHttpRequest

[View	full	size	image]

To	make	this	code	usable	for	AJAX	logging,	we	just	need	to
format	the	output	and	add	the	ability	to	write	it	to	a	file.	It's
also	useful	to	let	the	server	code	log	what	data	it	is	going	to
send	to	the	client.	The	final	setup	is	a	class	called	logger.	It	has
two	methods:	storeServer,	which	sets	the	content	we're	going	to
send	to	the	client,	and	write,	which	puts	the	information	in	a
file.	Listing	7-2	shows	an	example	of	a	page	that	generates
HTML	chunks	for	an	AJAX	page.

Listing	7-2.	pageChunk.php

1		<?php
2		require_once	'logger.class.php';
3
4		$logger	=	new	logger();
5
6		//	create	some	content
7		//	use	an	output	buffer	so	we	can	log	it
8		ob_start();

9			?>
10	<p>
11	Some	random	content
12	It	could	be	anything	generated	from	PHP
13	or	static	like	this
14	</p>
15	<?php
16	echo	$_GET['input'];
17
18	//	page	is	done
19	$logger->storeServer(ob_get_contents());
20	$logger->write();
21
22	ob_flush();
23	?>

7.2.2.	Using	the	Logger

Adding	our	logger	is	a	fairly	simple	process.	We	include	the
logger	class	(line	2)	and	then	create	a	new	instance	of	it	(line	4).
When	the	logger	instance	is	created,	it	automatically	grabs	the
information	from	the	client,	so	if	the	$_GET,	$_POST,	or	$_SERVER
variables	are	changed	by	other	parts	of	the	code,	our	logging	is
not	messed	up.	Then,	we	start	an	output	buffer	(line	8).	This
will	allow	us	to	log	what	is	being	sent	back	to	the	client	without
changing	any	of	our	existing	code.	Lines	1016	contain	some
example	input,	and	then	we	finish	our	logging	process.	Line	19
uses	the	ob_get_contents	method	to	read	all	the	output	that	has
been	created	and	to	set	it	on	our	logger.	Then,	on	line	20,	we
write	out	a	log	entry.	The	script	ends	by	calling	ob_flush	(line
22),	which	sends	out	all	the	generated	content	we've	been
buffering.	This	simple	logging	process	stores	most	of	the	details
of	an	example	entry	from	the	log	file,	as	Listing	7-3	shows.

Listing	7-3.	Log	Entry

##
Request	to:	/debug/pageChunk.php
Time:	2006-02-25	11:45:13

RAW	Query	String:	input=test
_GET:
array	(
		'input'	=>	'test',
)

RAW	POST:
_POST:
array	(
)

HTTP	Headers:
HOST:localhost
USER_AGENT:Mozilla/5.0	(Windows;	U;	Windows	NT	5.1;	en-US;	rv:1.8.0.1)
Gecko/20060111	Firefox/1.5.0.1
ACCEPT:text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,te
xt/plain;q=0.8,image/png,*/*;q=0.5
ACCEPT_LANGUAGE:en-us,en;q=0.5
ACCEPT_ENCODING:gzip,deflate
ACCEPT_CHARSET:ISO-8859-1,utf-8;q=0.7,*;q=0.7
KEEP_ALIVE:300
CONNECTION:keep-alive

COOKIE:clearhealth=fcf23cdc7394e71b5c83a9929f0fdb7e
CACHE_CONTROL:max-age=0

Sent	to	client
<p>

Some	random	content

It	could	be	anything	generated	from	PHP

or	static	like	this

</p>

test

Logging	like	this	is	easy	to	build	into	the	AJAX	library	that	you
are	using	(if	it	doesn't	already	have	its	own).	It's	easy	because
the	process	happens	automatically.	If	you're	using	an	HTML
page	chunk	approach,	you	could	also	build	it	right	into	your
framework;	in	that	case,	the	logging	could	be	done	on	a
preconfigured	set	of	pages,	or	it	could	be	turned	on	by	sending
a	custom	header	when	you	make	a	request	using	XMLHttpRequest.
Logging	like	this	is	especially	useful	in	large-scale	testing	or
production	environments	in	which	you	don't	have	access	to	the
browser	to	see	error	messages.

7.2.3.	Firebug:	A	Firefox	Debugging	Extension

While	logging	provides	you	with	a	lot	of	information,	it's	not	the
most	efficient	way	to	get	the	information	you	need.	It	means
keeping	another	file	open	and	parsing	through	large	text	entries
for	the	required	information.	Logging	also	doesn't	have	access
to	what	is	happening	to	the	JavaScript	on	the	browser,	so	it
doesn't	contain	the	full	picture.	Tools	that	can	be	added	to	the
browser	can	get	around	most	of	these	problems	and	have	the
ability	to	offer	you	a	rich	user	interface.

If	you're	using	Mozilla	Firefox,	extra	functionality	can	be	added

to	your	browser	through	the	use	of	an	extension.	The	Firebug
extension	(www.joehewitt.com/software/firebug/)	adds	a	popup
bar	at	the	bottom	of	the	browser	that	lets	you	see	JavaScript
errors.	With	it,	you	can	also	view	details	of	each	XMLHttpRequest
request,	inspect	DOM	elements,	and	run	JavaScript	commands
against	the	current	page.	An	installation	link	is	available	from
the	project's	Web	site.	The	basic	interface	is	shown	in	Figure	7-
4.

Figure	7-4.	Firebug:	a	Firefox	debugging
extension

[View	full	size	image]

Firebug	attacks	the	debugging	process	from	the	JavaScript	side.
Whenever	a	JavaScript	error	happens,	an	error	icon	is	shown	in
the	lower-right	corner	(see	Figure	7-5).	Clicking	this	icon	will

http://www.joehewitt.com/software/firebug/

bring	up	the	console,	showing	you	the	errors.	In	its	default
configuration,	these	errors	include	errors	generated	by	CSS,	the
browser,	and	its	extensions	(see	Figure	7-6).	To	limit	the
displayed	errors	to	just	JavaScript	ones,	use	the	Errors	drop-
down	box	to	deselect	Show	Errors	From	Chrome	and	Show	CSS
Errors.	You	can	also	get	to	the	dialog	box	even	when	an	error
hasn't	happened	by	clicking	the	error	icon	in	the	lower-right
corner	(see	Figure	7-7).	Doing	this	gives	you	an	easy	way	to
get	to	the	XMLHttpRequest	inspector.

Figure	7-5.	Firebug	error	icon

[View	full	size	image]

Figure	7-6.	Firebug	error	selector

[View	full	size	image]

Figure	7-7.	Firebug	status	icon

[View	full	size	image]

The	XMLHttpRequest	inspector	lets	you	see	the	POST	payload	that
was	sent	to	the	server,	the	response	from	the	server,	and	the
properties	of	the	XMLHttpRequest	object	that	sent	it.	A	new	row	is
added	to	the	Firebug	pane	each	time	a	request	is	made	using
XMLHttpRequest,	so	you	can	also	use	it	as	an	overview	of	your
AJAX	activity.	Each	request	entry	includes	the	HTTP	request
type	(generally	GET	or	POST)	and	the	URL	to	which	the	request
was	made.	Figure	7-8	shows	Firebug	with	several	requests	in	it.

Figure	7-8.	Firebug	with	multiple	XMLHttpRequest
entries

[View	full	size	image]

Now	if	you	have	a	request	that	isn't	working	as	expected,	you
can	start	the	debugging	process	by	doing	the	following:

1.

Open	Firebug	and	find	the	request	in	the	pane.	Requests	are
added	to	the	bottom	of	the	list,	so	scroll	down	to	the	most
recent	one.	Selecting	the	request	expands	it,	giving	you
three	tabs	from	which	to	choose.

2.
Select	the	Post	tab	on	the	right	side	to	see	the	POST	payload
that	you	sent	to	the	server.

3.
Select	the	Response	tab	to	see	the	data	that	the	server
returned.

4.
Select	the	Headers	tab	to	see	the	HTTP	headers	that	the
server	returned.

Depending	on	the	configuration	of	the	server,	you	may	see	a
large	number	of	headers	returned	with	the	data,	as	in	Figure	7-
9.	The	most	important	ones	are	Content-type	and	Set-Cookie.
Content-type	has	to	be	set	to	text/xml	for	XML-based	requests	to
work.	Many	libraries	also	use	this	header	to	determine	if	the
server	is	sending	JSON	that	the	library	needs	to	decode,	or	if
the	content	is	just	plain	HTML.	The	Set-Cookie	headers	mark
which	cookies	were	set	on	this	request;	you	can	use	them	to
verify	that	new	authentication	or	other	cookies	were	set	as
needed.

Figure	7-9.	Firebug	showing	the	Headers	tab	of
an	XMLHttpRequest	entry;	the	important	fields	are

outlined

[View	full	size	image]

Firebug	also	has	the	capability	to	run	any	JavaScript	command
against	the	current	page.	To	do	this,	type	a	JavaScript
command	such	as	document.getElementByName('test').style.color	=
'red';	into	the	field	at	the	bottom	of	the	page	(see	Figure	7-10).
You	can	also	inspect	page	elements,	get	layout	information,	and
view	all	elements,	DOM	properties,	and	events	(see	Figure	7-
11).	These	features	are	useful	in	the	overall	development
processes,	but	the	biggest	aid	to	debugging	AJAX	requests	is
the	XMLHttpRequest	inspector.

Figure	7-10.	Running	a	JavaScript	command	in
Firebug

Figure	7-11.	Inspecting	a	DOM	element	with
Firebug

[View	full	size	image]

7.2.4.	Fiddler

If	you	develop	in	Internet	Explorer	or	just	need	to	track	down
an	Internet	Explorer-specific	bug,	you	obviously	won't	be	able
to	use	Firebug,	but	there	still	are	a	number	of	useful	tools	to
help	you.	One	tool	is	Fiddler,	which	is	an	HTTP	debugging	proxy
that	lets	you	see	each	request	made	by	Internet	Explorer	and
the	response	it	receives	from	the	server.	Because	it	is	an

external	tool,	it	can't	look	at	the	JavaScript	the	way	Firebug
can,	but	it	does	have	an	easy-to-use	interface	and	it	does	give
you	an	easy-to-use	view	of	each	request.

You	can	download	Fiddler	from	www.fiddlertool.com/;	this	Web
site	also	includes	a	wealth	of	information	on	how	to	use	its
advanced	scripting	and	transformation	features.	Once	you	have
it	installed,	you	just	need	to	run	it,	and	Internet	Explorer	will
automatically	be	set	up	to	use	it.	You	can	also	use	it	with	other
browsers	by	setting	them	up	to	use	Fiddler	as	an	HTTP	proxy.
You	just	set	the	proxy	host	to	localhost	and	the	port	to	8888.	An
example	of	setting	up	the	proxy	in	Firefox	is	shown	in	Figure	7-
12.

Figure	7-12.	Setting	up	Firefox	to	use	Fiddler	as
its	proxy

http://www.fiddlertool.com/

Once	you've	run	Fiddler,	open	your	browser	and	perform	the
request	that	is	giving	you	problems.	Each	HTTP	request	is
shown	as	an	entry	in	the	main	pane;	secondary	requests	for
images	and	CSS	files	will	be	shown	with	gray	text,	and	the	two
HTML	pages	will	be	shown	in	blue.	You	can	clear	entries	from
the	pane	by	right-clicking	them	and	selecting	remove.	The	basic
session	browsing	interface	is	shown	in	Figure	7-13.

Figure	7-13.	Main	Fiddler	interface

[View	full	size	image]

Once	you've	identified	the	HTTP	request	you	want	to	inspect,
select	it	in	the	sessions	pane	on	the	left	side	and	then	look	at
the	pane	on	the	right	side.	This	pane	has	three	main	tabs.	For
debugging	purposes,	the	most	useful	tab	is	the	Session
Inspector.	After	you	select	the	Session	Inspector	tab,	the	pane
will	be	split	into	two	sections:	the	top	showing	the	information
that	was	sent	to	the	server	and	the	bottom	showing	the	server's
response	(see	Figure	7-14).	For	both	the	request	and	the
response,	you	can	view	the	request	in	a	number	of	different
formats,	the	most	useful	being	the	Headers	and	TextView	views.
If	you're	using	XML	to	move	data	between	the	client	and	the
server,	you	will	also	find	the	XML	view	to	be	useful	because	it
will	show	the	XML	data	in	a	formatted	display.

Figure	7-14.	Fiddler	session	Inspector	interface

[View	full	size	image]

The	Headers	view	shows	you	a	formatted	version	of	the	HTTP
headers	used	in	the	request	(see	Figure	7-15).	You	can	use	this
view	to	verify	cookies	are	being	sent,	to	see	the	Content-type	of
the	data,	and	to	view	any	HTTP	status	codes.	The	online	help
gives	more	details,	but	outside	of	verifying	expected	Content-
types,	you	shouldn't	need	to	spend	much	time	here.	The
TextView	view	shows	you	the	content	that	was	sent	to	the
server	in	a	POST	request	and	the	results	that	the	server	sent
back.	The	view	offers	the	ability	to	search	the	content	inline
(the	blue	Find	bar)	and	to	open	another	program,	such	as	your
favorite	text	editor.	(The	open	with	command	is	the	button	to	the
right	of	the	blue	Find	bar).	You	can	see	an	example	of	the
TextView	in	Figure	7-16.	Fiddler	offers	a	number	of	other
features,	which	are	useful	for	transforming	the	request	and
responses,	but	they	are	not	all	that	useful	in	basic	AJAX
debugging	situations.

Figure	7-15.	Fiddler	Headers	view

[View	full	size	image]

Figure	7-16.	Fiddler	TextView	view

[View	full	size	image]

7.2.5.	General	Debugging	Scenarios

Firebug,	Fiddler,	and	custom	logging	code	all	provide	extra
information	about	an	AJAX	request.	These	types	of	tools	are
useful	in	scenarios	in	which	you	make	an	AJAX	request	and	the
request	dies	without	giving	useful	information	to	your
JavaScript	code.	In	most	cases,	looking	at	the	response	from
the	server	will	quickly	point	out	the	problem.	It	could	be	an
error	in	your	server	code	or	just	some	unexpected	data	being
returned.

Debugging	tools	such	as	Fiddler	or	Firebug	can	help	you	figure
out	what	data	you're	sending	to	the	server.	This	can	be
especially	useful	once	you	start	using	more	complex	JavaScript
widgets	and	AJAX	libraries.	These	libraries	offer	a	lot	of
functionality,	but	they	move	the	AJAX	operations	far	away	from
the	actual	event.	This	can	make	it	hard	to	see	what	is	really

happening,	so	by	using	a	tool	like	Firebug	or	Fiddler,	you	can
see	the	HTTP	request	that	was	sent	to	the	server	and	know
what	is	really	going	on.

7.3.	JavaScript	Debugging	Tools

The	tools	we've	looked	at	so	far	are	good	at	giving	you	a	picture
of	the	communication	between	the	client	and	the	server,	but
they're	not	a	huge	help	if	the	bug	is	somewhere	in	your
JavaScript	code.	JavaScript	isn't	known	for	having	a	large
number	of	tools	to	help	the	developer,	and	if	you're	working
with	Internet	Explorer,	that	lack	of	tools	is	still	true;	however,
Firefox	(and	other	browsers)	gives	you	a	lot	of	tools	that	are
helpful	with	debugging	and	developing	JavaScript.	For	instance,
the	most	basic	Firefox	development	tool	is	the	JavaScript
console	(see	Figure	7-17).	Any	JavaScript	errors	are	shown	in
it,	and	clicking	one	of	them	will	show	you	the	line	in	your	code
where	the	error	happened.	You	can	view	the	console	by
selecting	it	from	the	Tools	menu;	it's	labeled	either	JavaScript
Console	or	Error	Console,	depending	on	your	Firefox	version.
(Note	that	a	number	of	Firefox	extensions,	including	Firebug,
provide	quicker	access	to	this	information.)

Figure	7-17.	Firefox	JavaScript	Console

[View	full	size	image]

Out	of	the	box,	Internet	Explorer	gives	you	a	particularly	hard
time	debugging	JavaScript	because	it	doesn't	provide	correct
lines	numbers	when	external	files	are	used.	The	solution	to	this

is	to	install	the	Microsoft	Script	Debugger
(www.microsoft.com/downloads/details.aspx?
FamilyID=2f465be0-94fd-4569-b3c4-
dffdf19ccd99&DisplayLang=en).	After	you	install	the	debugger,
you	need	to	turn	it	on.	To	do	so,	follow	these	steps:

1. Open	Internet	Explorer	and	go	to	Tools	->	Internet	Options.

2. Select	the	Advanced	tab.

3.

In	the	Advanced	tab,	you	see	an	option	labeled	Disabled
Script	Debugging	(Internet	Explorer).	Uncheck	this	option	to
enable	the	debugger.	This	debugger	dialog	box	is	shown	in
Figure	7-18.

Figure	7-18.	Enabling	the	Microsoft	Script
Debugger

http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&DisplayLang=en

4.

Once	you	have	the	debugger	enabled,	you	receive	a	dialog
box	for	each	JavaScript	error.	The	dialog	box	asks	if	you
want	to	debug	your	error	(see	Figure	7-19).	Selecting	Yes
will	open	the	debugger	and	show	you	the	line	in	the	file
where	the	error	occurred.

Figure	7-19.	Script	Debugger	Error	dialog	box

The	basic	debugger	interface	is	shown	in	Figure	7-20.	From	this
screen,	you	can	step	through	the	code	using	the	Debug	menu,
just	as	with	any	other	debugger.	The	debugger	has	two	main
drawbacks:	It	creates	a	popup	dialog	box	for	each	JavaScript
error	that	has	to	be	dealt	with,	and	it	tends	to	become	unstable
when	actually	using	it	for	debugging.	That	being	said,	the	Script
Debugger	quickly	gives	you	the	actual	line	where	JavaScript
errors	happen,	which	is	a	big	advantage	over	the	normal	IE
error	message.

Figure	7-20.	Basic	Script	Debugger	interface

[View	full	size	image]

	

7.4.	JavaScript	Exceptions

JavaScript	has	a	number	of	language	features	that	are	useful	in
the	debugging	process.	The	biggest	one	of	these	is	the	ability	to
catch	any	JavaScript	error	as	an	exception.	This	is	done	by
wrapping	code	that	can	cause	errors	inside	of	a	try	block
followed	by	a	catch	block.	In	the	catch	block,	you	have	access	to
an	Error	object,	which	contains	additional	information	about	the
error.	This	Error	object	contains	the	name	of	the	error	and	a
message.	On	Firefox,	it	also	includes	the	file	in	which	the	error
happened,	the	line	on	which	it	happened,	and	a	call	stack.
Listing	7-4	shows	an	example	of	catching	an	error.	Listings	7-5
and	7-6	show	the	output	of	the	catch	block	in	Firefox	and	IE.

Listing	7-4.	exception.html

1		<html>
2		<body>
3								<div	id="error">
4								</div>
5
6		<script	type="text/javascript">
7		try	{
8					alert(IDontExist);
9		}
10		catch	(e)	{
11					var	msg	=	'';
12					for(var	i	in	e)	{
13							msg	+=	i+':'+e[i]+"
\n";
14
15				}
16				document.getElementById('error').innerHTML	=	msg;
17		}
18	</script>
19	</body>
20	</html>

Listing	7-4	is	simple.	It	contains	a	basic	HTML	page	with	a

JavaScript	block	that	creates	the	error	and	then	prints	out	the
resulting	error	object.	Lines	34	give	us	an	element	to	which	to
write	an	error	message.	Line	7	starts	the	try	block;	it's	ended
by	the	bracket	on	line	9.	All	JavaScript	errors	that	happen	in	the
TRy	block	will	cause	the	catch	block	to	be	run.	If	no	error
happens,	the	code	in	the	catch	block	is	ignored.	The	catch	block
on	lines	1017	takes	the	error	object	and	prints	out	each
property.	This	text	is	then	added	to	the	error	element,	showing
the	value	of	the	error	object.

Listing	7-5.	Output	of	exception.html	in	Firefox

message:IDontExist	is	not	defined
fileName:http://localhost/debug/exception.html
lineNumber:8
stack:@http://localhost/debug/exception.html:8
name:ReferenceError

Listing	7-6.	Output	of	exception.html	in	Internet
Explorer

name:TypeError
message:'IDontExist'	is	undefined
number:-2146823279
description:'IDontExist'	is	undefined

Looking	at	the	error	messages,	you	can	see	that	exceptions	in
Firefox	are	more	useful	for	general	debugging,	but	exceptions
are	still	useful	even	without	line	properties	because	you	end	up
knowing	which	block	of	code	caused	the	error.	They	also	allow
you	to	handle	the	error	programmatically,	letting	you	give	the
user	an	error	message	or	even	perform	a	workaround	instead	of

having	your	code	silently	break.

	

7.5.	Dumping	Variables

As	shown	in	lines	1017	of	Listing	7-4,	there	are	lots	of	cases	in
JavaScript	in	which	you	have	an	object	but	don't	know	what
properties	it	contains.	This	is	especially	common	when	you	are
passing	JSON-encoded	data	from	the	server	to	the	client.
JavaScript	provides	the	"for	in"	loop	for	looping	over	the
properties	of	any	object.	Using	this	loop,	you	can	construct	a
basic	dump	function	that	allows	you	to	quickly	see	the
properties	of	an	object.	Listing	7-7	shows	an	example	function.

Listing	7-7.	A	JavaScript	Property	Dumping
Function

function	dump(input)	{
	var	msg	=	'';
	for(var	i	in	input)	{
			msg	+=	i+':'+input[i]+"\n";
	}
	return	msg;
}

You	can	then	use	this	function	to	alert	the	contents	of	the	object
or	assign	the	debug	output	to	a	debug	element	on	a	page.	A
simple	function	like	this	can	save	a	great	deal	of	time	in	the
debugging	and	development	processes.	Building	on	this	same
concept,	the	HTML	AJAX	library	provides	a	utility	function	called
varDump	that	provides	additional	information.	This	method	is
based	on	the	var_dump	function	in	PHP	and	provides	the	type	of
each	element	as	well	as	its	value.	It	also	supports	recursion,
giving	you	the	output	of	any	child	objects.	Listings	7-8	and	7-9
show	the	output	of	varDump	against	different	inputs.	Sample
usage	is	shown	in	the	following	code:

alert(HTML_AJAX_Util.varDump(input));

Listing	7-8.	Sample	varDump	Output	(an	Array	with
Another	Nested	Inside	It)

array(3)	{
		[0]=>
		number(1)
		[1]=>
		array(3)	{
				[0]=>
				number(1)
				[1]=>
				number(2)
				[2]=>
				number(3)
		}
		[2]=>
		number(3)
}

Listing	7-9.	Sample	varDump	Output	(an	Object)

object(Object)	(2)	{
		["bar"]=>
		string(3)	"baz"
		["bat"]=>
		number(5)
}

7.6.	Summary

One	of	the	biggest	risks	in	adding	AJAX	to	an	application	is	the
increased	complexity	of	debugging.	Using	the	tools	covered	in
this	chapter,	you	can	help	reduce	that	risk.	The	following	tools
and	techniques	offer	a	solution	to	many	of	the	problems	you	will
hit	when	debugging	AJAX:

Server-side	logging.	This	logs	AJAX	requests	and	results,
allowing	you	to	debug	AJAX	communications	without
additional	tools.	It	also	allows	you	to	collect	debugging	data
from	multiple	clients.

Firebug.	This	is	the	Firefox	extension	that	adds	a	viewer
for	AJAX	requests	and	results.	It	also	provides	DOM	viewing
and	JavaScript	console	improvements.

Fiddler.	This	is	the	debugging	proxy,	cross-browser	way	to
view	AJAX	requests	and	results.

Script	Debugger.	This	adds	basic	JavaScript	debugging	to
IE	and	is	the	only	way	to	find	a	line	of	JavaScript	that
caused	the	error	in	IE.

JavaScript	exceptions.	The	use	of	these	is	the
programmatic	way	of	managing	JavaScript	errors,	and	they
allow	you	to	isolate	problematic	sections	of	JavaScript	code.

Dumping	variables.	With	these,	you	can	build	JavaScript
functions	to	see	the	contents	of	an	object	on	the	fly.

The	most	important	item	to	remember	in	the	debugging
processes	is	to	test	the	server	side	and	the	client	side

separately	whenever	possible.	When	that's	not	an	option,	you'll
find	that	looking	at	the	data	sent	between	the	server	and	the
browser	is	helpful.	Most	importantly,	like	debugging	in	any
language,	strive	for	a	clean	simple	design.	AJAX	is	already
adding	the	complexity	of	client/server	communications;	if	you
add	tons	of	complexity	in	your	design,	debugging	your
application	will	quickly	become	unworkable.

	

Part	II:

Chapter	8.		Libraries	Used	in	Part	II:	Sarissa,	Scriptaculous

Chapter	9.		Libraries	Used	in	Part	II:	HTML_AJAX

Chapter	10.		Speeding	Up	Data	Display

Chapter	11.		Adding	an	AJAX	Login	to	a	Blog

Chapter	12.		Building	a	Trouble-Ticket	System

Chapter	8.	Libraries	Used	in	Part	II:
Sarissa,	Scriptaculous
In	this	chapter

8.1	Overview	of	the	Use	Cases page	168

8.2	Libraries	Used	in	Part	II	of	This	Book page	168

8.3	Sarissa page	169

8.4	Scriptaculous page	181

8.5	Summary page	193

Part	I	of	this	book	gives	you	a	good	understanding	of	the	basics
of	AJAX,	but	it	doesn't	give	you	a	complete	understanding	of
how	you	would	implement	it.	Part	II	fills	in	that	gap,	solving
real-world	problems	by	using	libraries	that	would	be	a	good
choice	for	any	AJAX	implementation	you	choose.	Chapter	8
provides	an	introduction	to	two	of	the	libraries,	with	Chapter	9,
"Libraries	Used	in	Part	II:	HTML_AJAX,"	following	up	with	a	third
library	that	we	will	be	using	in	the	use	cases.

A	total	of	three	use	cases	are	presented	in	this	section	of	the
book,	showing	how	AJAX	can	be	used	in	realistic	situations.	The
cases	strive	to	show	not	only	how	to	use	specific	techniques,
but	also	how	each	one	improves	the	user's	experience	over	a
standard	site.	They	also	show	how	you	can	use	various	open
source	libraries	to	add	AJAX	without	a	lot	of	hard	work	on	your
part.	The	libraries	used	throughout	these	use	cases	are	covered

in	the	rest	of	this	chapter.

	

8.1.	Overview	of	the	Use	Cases

The	three	use	cases	presented	in	this	book	are	as	follows:

The	first	case	is	focused	on	improving	data	display.	It	takes
a	large	amount	of	data	and	displays	it	in	an	interactive	grid
that	shows	how	AJAX	can	remove	a	common	cause	of	"click
and	wait."

The	second	case	looks	at	using	AJAX	to	build	login	systems.
Updating	the	standard	process	allows	for	quicker	feedback
and	makes	it	easier	to	add	logins	to	applications	like	the
comment	systems	on	blogs.

The	final	case	is	a	Web-based	trouble	ticketing	system	used
to	provide	technical	support.	This	case	focuses	on	building	a
complete	AJAX	application.	It	shows	various	techniques	that
can	be	used	to	manage	an	application	that	is	written
primarily	in	JavaScript.	It	also	shows	what	a	lightweight
server	back	end	would	look	like.

8.2.	Libraries	Used	in	Part	II	of	This	Book

Many	powerful	libraries	exist	in	the	AJAX	world,	especially	if
you're	looking	for	one	available	under	an	open	source	license.
Most	are	focused	on	one	area	or	were	developed	with	a	specific
Web	development	framework	in	mind.	This	section	covers	the
basic	usage	of	these	libraries:

Sarissa:	XML	usage,	including	XSLT

scriptaculous:	Visual	effects	and	drag-and-drop

HTML_AJAX:	Communications	with	tight	PHP	integration

	

8.3.	Sarissa

Sarissa	is	a	GPL	license	library	focusing	on	providing	a	cross-
browser	wrapper	for	the	native	JavaScript	XML	APIs.	It	provides
an	ECMA	style	API	on	all	browsers	it	supports,	which	allows	you
to	write	to	the	standard	no	matter	what	browser	you	might	be
using.	Its	major	features	are	AJAX	communications,	XPath,	and
XSLT	support.	Sarissa	supports	most	major	browsers,	including
Firefox	and	other	Mozilla-based	browsers,	Internet	Explorer
(MSXML	3.0+),	Konqueror	(KDE	3.3+),	Safari,	and	Opera.	The
code	has	reached	a	stable	level	and	no	longer	has	frequent
releases,	but	the	forums	are	busy	and	the	developers	respond
to	questions.	Sarissa	can	be	downloaded	from
http://sourceforge.net/projects/sarissa,	and	it	has	online
documentation	available	at	http://sarissa.sourceforge.net/.

8.3.1.	Installation

Sarissa	is	a	pure	JavaScript	library,	so	it's	quite	easy	to	install.
Download	the	zip	file	from	the	SourceForge.net	download	page,
and	extract	its	contents	to	an	accessible	location	on	your	Web
server.	The	examples	in	this	chapter	use	Sarissa	version	0.9.6.1
installed	at	http://localhost/sarissa/;	the	Sarissa	code	is
extracted	into	a	subdirectory	below	that.

The	release	includes	API	documentation,	including	a	basic
tutorial	located	in	the	doc	directory.	It	also	includes	unit	tests
that	can	be	run	by	loading	testsarissa.html	and	a	sample
application,	minesweeper,	in	the	sample-apps/minesweeper	directory.

8.3.2.	Making	an	AJAX	Request

http://sourceforge.net/projects/sarissa
http://sarissa.sourceforge.net/

Sarissa	gives	you	the	ability	to	access	XMLHttpRequest	directly	(or
on	IE6,	a	wrapper	classes	that	looks	the	same),	but	that's	not
how	you	usually	want	to	use	it	to	make	AJAX	requests.	Sarissa
is	designed	around	loading	XML	documents,	so	you	can	easily
use	the	load	command	on	its	DOM	documents	to	make	a	remote
request.

Listing	8-1	does	three	main	tasks:	It	includes	the	Sarissa
library,	creates	a	loadDoc	function	(which	does	an	AJAX	load	of	an
XML	file),	and	provides	a	simple	UI	for	running	the	loadDoc
function.	The	Sarissa	library	is	included	on	line	5;	in	this
example,	the	library	is	installed	in	the	Sarissa	subdirectory.	Lines
921	define	the	loadDoc	function;	it's	made	up	of	a	number	of
subtasks.	Line	10	gets	an	empty	Sarissa	DomDocument.	Lines	1217
define	a	handler	function	that	is	called	each	time	the	ready
state	of	the	DomDocument	is	called.	This	ready	state	handler	is	just
like	the	one	on	XMLHttpRequest;	state	4	is	reached	when	the
document	is	fully	loaded.	When	this	state	is	reached	(line	13),
we	use	the	Sarissa.serialize	method	to	turn	the	loaded	document
back	into	its	textual	XML	representation	and	then	turn	<	into	its
entity	form	so	that	we	can	show	the	XML	document	in	an	HTML
document	(lines	1415).	Line	19	attaches	the	handler	we	defined
to	the	DomDocument,	and	line	20	loads	the	sarissaNews.xml	file	from
the	server.	In	most	cases,	this	XML	file	would	be	a	dynamically
generated	file,	but	to	keep	this	example	simple,	a	static	file	is
used.

Listing	8-1.	SarissaMakingAnAJAXRequest.html

1		<html>
2		<head>
3		<title>Making	an	AJAX	Request	with	Sarissa</title>
4
5		<script	type="text/javascript"	src="sarissa/sarissa.js">
6		</script>
7
8		<script	type="text/javascript">
9				function	loadDoc()	{

10				var	oDomDoc	=	Sarissa.getDomDocument();
11
12				var	rHandler	=	function()	{
13						if(oDomDoc.readyState	==	4)	{
14								document.getElementById('target').innerHTML	=
15								Sarissa.serialize(oDomDoc).replace(/</g,'<');
16						}
17				}
18
19				oDomDoc.onreadystatechange	=	rHandler;
20				oDomDoc.load("sarissaNews.xml");
21	}

22	</script>
23	</head>
24	<body>
25			Load	news.xml
26			<pre	id="target"></pre>
27		</body>
28	</html>

8.3.3.	Basic	XML	Features

The	Sarissa	library	focuses	on	providing	good	cross-browser
XML	support.	To	provide	this,	it	creates	a	standardized	interface
to	DOM	documents	loaded	from	any	source.	Most	of	this	work	is
providing	compatibility	methods	for	Internet	Explorer,	hiding	the
fact	that	the	XML	capabilities	are	provided	by	the	MSXML
ActiveX	control	instead	of	by	native	JavaScript	objects.

8.3.4.	Working	with	DOM	Documents

DOM	documents	are	created	in	Sarissa	through	the	use	of	the
Sarissa.getDomDocument()	method.	Once	you	have	a	document,	you
can	load	content	into	it	using	three	different	methods.	You	can
load	remote	data	using	AJAX	(as	shown	in	Listing	8-1),	you	can
parse	a	string	that	contains	XML	data,	or	you	can	create	the
elements	using	standard	DOM	functions.	Sarissa	also	includes	a
utility	method,	Sarissa.serialize(),	for	working	with	DOM

documents.	This	prints	out	the	document	as	its	XML	output,
which	is	useful	for	debugging	or	in	cases	in	which	you	want	to
send	XML	payloads	to	the	server.	To	use	the	serialize	method,
just	send	the	method	a	DOM	document;	a	basic	example	is
shown	here:

Sarissa.serialize(domDoc);

8.3.4.1.	Loading	DOM	Documents	from	a	String

Loading	DOM	documents	from	a	string	gives	you	the	ability	to
load	a	number	of	XML	documents	in	a	single	request	and	then
parse	them	into	DOM	documents	to	work	with	them.	This	can
be	a	useful	strategy	for	preloading	XML	during	the	normal	page
load,	or	it	can	be	used	with	XMLHttpRequests	that	return	data	other
than	XML.	(An	example	of	such	data	is	JSON.)	A	small	example
HTML	page,	which	loads	a	short	XML	string	into	a	Sarissa	DOM
document,	is	shown	in	Listing	8-2.

Listing	8-2.	SarissaDOMDocumentString.html

1	<head>
2	<title>Loading	a	DOM	document	with	an	XML	string</title>
3
4		<script	type="text/javascript"	src="sarissa/sarissa.js">
5		</script>
6
7		<script	type="text/javascript">
8					var	xmlData	=	'<rss	version="2.0"></rss>';
9
10				function	loadDoc()	{
11										var	parser	=	new	DOMParser();
12							var	domDoc	=	parser.parseFromString(
13											xmlData,	"text/xml");
14
15									document.getElementById('target').innerHTML	=
16										Sarissa.serialize(domDoc).replace(/</g,'<');

17					}
18	</script>
19	</head>
20		<body>
21					Load	XML	String
22					<pre	id="target"></pre>
23	</body>
24	</html>

In	Listing	8-2,	all	the	Sarissa	interaction	takes	place	within	the
loadDoc	function,	which	is	defined	on	lines	1017.	The	Sarissa
library	is	loaded	on	lines	45,	and	an	example	XML	string	is
defined	on	line	8.	In	practice,	this	string	would	be	generated
from	a	server-side	language	like	PHP,	allowing	XML	data	to	be
accessed	without	an	extra	HTTP	request.	Line	10	starts	our
worker	loadDoc	functions.	First	we	create	a	DOMParser	(line	11),
and	then	we	use	its	parseFromString	method	to	parse	our	XML
string	data	contained	in	the	xmlData	var	(lines	1213).
parseFromString	takes	two	parameters:	the	XML	string	and	its
content-type.	Content-type	is	usually	text/xml,	but	application/xml
and	application/xhtml+xml	can	also	be	used.	The	parseFromString
method	returns	a	DOM	document,	which	can	be	used	just	like
the	one	from	Sarissa.getDomDocument().

On	lines	1516,	we	print	out	the	document	using	some	basic
entity	replacement	so	that	we	can	see	the	output	in	the
browser.	The	rest	of	the	XML	is	a	link	to	run	the	example,	line
21,	and	a	pre-element	that	we	use	as	a	target	for	the	printed-
out	DOM	node.

8.3.4.2.	Creating	a	DOM	Document	Manually

Because	Sarissa	works	with	DOM	documents,	all	the	normal
DOM	methods	and	properties	are	available.	This	allows	you	to
create	a	DOM	document	with	just	its	root	node	specified	and
then	append	additional	nodes	to	it.	In	most	cases,	you	won't
use	this	functionality	to	create	a	complete	DOM	document;

instead,	you	will	use	it	to	update	a	document	loaded	by	one	of
the	other	methods.	When	creating	a	document	manually,	you'll
want	to	specify	the	root	node	to	create	to	the	getdomDocument
method;	this	is	done	by	filling	in	geTDomDocument's	optional
parameters.	Sarissa.getDomDocument	takes	two	parameters:	the
namespace	of	the	root	and	the	local	name	of	the	root	node.
Listing	8-3	shows	a	small	example	using	this	method.

Listing	8-3.	SarissaCreateNodesWithDom.html

1		<html>
2		<head>
3		<title>Sarissa:	Create	elements	on	a	DomDocument</title>
4
5		<script	type="text/javascript"	src="sarissa/sarissa.js">
6		</script>
7
8		<script	type="text/javascript">
9					function	loadDoc()	{
10										var	domDoc	=	Sarissa.getDomDocument(null,'foo');
11
12								var	elBar	=	domDoc.createElement('bar');
13									domDoc.firstChild.appendChild(elBar);
14
15									var	elBaz	=	domDoc.createElement('baz');
16									var	text	=	domDoc.createTextNode('Some	Text');
17									elBaz.appendChild(text);
18
19									domDoc.firstChild.appendChild(elBaz);
20
21								document.getElementById('target').innerHTML	=
22								Sarissa.serialize(domDoc).replace(/</g,'<');
23				}
24	</script>
25	</head>
26	<body>
27				Create	an
28																			XML	document	manually
29				<pre	id="target"></pre>
30	</body>
31	</html>

Listing	8-3	follows	the	same	pattern	as	the	previous	examples:

A	loadDoc	function	is	called	by	a	small	HTML	interface.	On	lines
56,	we	include	the	Sarissa	library,	followed	by	the	main
JavaScript	block,	which	defines	loadDoc	(lines	824).	Line	10
creates	the	empty	DOM	document;	we're	not	setting	the	XML
namespace,	so	we	pass	null	into	that	property,	and	the	root
node	has	a	value	of	foo.	Line	12	creates	a	new	element	with	a
tag	name	of	bar;	this	is	appended	to	the	document	on	line	13.
The	bar	element	is	appended	to	the	firstChild	of	the	DOM
document,	not	directly	to	the	document.	This	appending	is	done
because	an	XML	document	can	have	only	a	single	root	element.

Lines	1519	repeat	the	same	process	for	an	element	with	the	tag
name	of	"baz".	This	time,	however,	the	difference	is	that	we	add
a	child	node	to	"baz".	In	this	case,	it	is	a	DOM	text	node	with
the	value	of	"Some	Text",	but	it	could	also	be	any	other	XML
element.	There	are	two	main	types	of	nodes	you	work	with	in
XPath:	element	nodes,	which	represent	the	XML	tags,	and	text
nodes,	which	hold	the	content	within	tags.	This	distinction	also
exists	in	HTML,	but	you	don't	see	it	as	often	because	you	can
use	the	innerHTML	property	to	grab	the	text	content	without
worrying	about	DOM	notes.	Lines	2122	use	Sarissa.serialize	to
output	the	generated	document	to	the	target	element.

8.3.5.	Using	XPath	to	Find	Nodes	in	a	Document

Many	times,	when	you're	displaying	data	from	an	XML
document,	you'll	want	to	look	only	at	specific	portions	of	the
document.	This	is	especially	true	for	formats	such	as	RSS	that
contain	a	number	of	news	entries.	XPath	is	an	XML	technology
that	allows	you	to	select	specific	nodes	within	a	document.	A
basic	XPath	follows	the	nodes	from	the	root	of	the	document	to
the	element	you're	specifying.	Each	element	can	be	directly
addressed	by	a	path;	these	paths	start	with	a	/	and	contain	a	/
between	each	node	(/rss/item).	Further	specificity	can	be
provided	by	adding	a	bracketed	number	after	the	node	name
(/rss/item[1]).	This	path	selects	a	particular	occurrence	of	the

node	when	there	are	multiple	instances	of	a	tag	in	this
particular	branch	of	the	document.	XPath	can	also	query	a
document	by	starting	with	a	double	slash	(//);	these	paths
return	any	matching	nodes	(//item).	Listing	8-4	shows	an	XML
document	that	is	used	in	some	subsequent	examples	in	this
chapter.

Listing	8-4.	An	Example	XML	File

1		<rss>
2						<item>
3												<title>AJAX	Defined</title>
4						</item>
5						<item	new="true">
6												<title>Web	2.0	News</title>
7						</item>
8		</rss>

You	can	refer	to	the	nodes	of	this	document	in	a	number	of
different	ways.	First,	there	are	absolute	paths.	The	path
/rss/item[1]	refers	to	the	item	node	that	starts	on	line	2	and	ends
on	line	4.	The	path	/rss/item[2]/title	refers	to	the	title	node	on
line	6.	You	can	also	query	style	paths;	the	path	//item	refers	to
both	the	item	node	on	lines	24	and	the	item	node	on	lines	56.
These	queries	can	also	look	at	attributes	by	using	an	"@";	the
path	//item[@new="true"]/title	refers	to	the	title	node	on	line	6.

XPath	is	able	to	do	more	complex	queries	than	what	is	shown	in
this	simple	overview.	If	you're	dealing	with	XML	documents	in
the	browser,	you	will	find	XPath	to	be	an	important	tool.	XPath
is	a	W3C	standard,	so	you	can	easily	find	more	information	to
move	past	the	basics.

Sarissa	provides	the	IE	XPath	API	to	all	the	browsers	it
supports,	which	provides	an	easy	to	use	cross-browser	API.	The
API	consists	of	two	methods	on	a	DOM	document:	the

selectSingleNode	method	and	the	selectNodes	method.	Each	method
takes	an	XPath,	with	selectSingleNode	returning	a	single	DOM
node	and	selectNodes	returning	a	node	collection	that	you	can
iterate	over	to	access	all	the	nodes.	Listing	8-5	is	a	small
example	page	that	shows	how	to	use	these	XPath	methods.

Listing	8-5.	SarissaSearchingWithXpath.html

1		<html>
2		<head>
3		<title>Sarissa:	Searching	XML	with	XPath</title>
4
5		<script	type="text/javascript"	src="sarissa/sarissa.js">
6		</script>
7		<script	type="text/javascript"
8		src="sarissa/sarissa_ieemu_xpath.js"></script>
9
10	<script	type="text/javascript">
11	var	domDoc;
12	function	loadDoc()	{
13					domDoc	=	Sarissa.getDomDocument();
14
15					var	rHandler	=	function()	{
16									if(domDoc.readyState	==	4)	{
17													document.getElementById('target').innerHTML	=
18													"Document	Loaded,	ready	to	Search";
19
20													document.getElementById('afterLoad'
21).style.display	=	'block';
22									}
23					}
24
25					domDoc.onreadystatechange	=	rHandler;
26					domDoc.load("sarissaNews.xml");
27	}
28

Lines	18	perform	the	basic	HTML	setup.	Besides	including	the
main	Sarissa	library	file,	we	also	include	the	sarissa_ieeme_xpath.js
file.	This	file	provides	the	IE	XPath	API	to	other	browsers,	and	it
is	how	Sarissa	provides	cross-browser	XPath	support.	Lines
1227	define	a	loadDoc	function,	which	loads	the	remote	XML

document	we	will	be	searching	in	this	example.	This	code	is
identical	to	the	earlier	AJAX	XML	loading	examples.	The	only
exception	is	that	now,	we're	defining	the	domDoc	variable	outside
of	the	function	so	that	it	can	be	used	elsewhere.	In	addition,
we're	showing	a	DIV	element,	which	contains	more	links	when
the	document	is	loaded	instead	of	just	printing	it	out.	This	file	is
continued	in	Listing	8-6	where	the	logic	appears	for	searching
the	DOM	using	XPath.

Listing	8-6.	SarissaSearchingWithXpath.html
Continued

29	function	searchBuildDate()	{
30					var	el	=	domDoc.selectSingleNode('//lastBuildDate');
31					document.getElementById('target').innerHTML	=
32					"Build	date	=	"	+	el.firstChild.nodeValue;
33	}
34
35		function	searchItems()	{
36					var	list	=	domDoc.selectNodes('//item/title');
37
38					var	target	=	document.getElementById('target');
39					target.innerHTML	=	"Number	of	Items	=	"+	list.length+
40								"
Titles:
";
41
42					for(var	i	=	0;	i	<	list.length;	i++)	{
43									target.innerHTML	+=
44															list[i].firstChild.nodeValue	+	"
";
45				}
46	}
47	</script>
48	</head>
49	<body>
50				Load	news.xml
51				<div	id="afterLoad"	style="display:	none">
52						Last	build	date
53						List	item	titles
54					</div>
55				<pre	id="target"></pre>
56	</body>
57	</html>

Lines	2933	define	the	searchBuildDate	function;	this	function

performs	an	XPath	query	against	the	loaded	document	to	find
the	last	build	date	of	the	document.	This	information	is	provided
in	a	single	tag	called	lastBuildDate,	so	the	XPath	to	get	the
information	is	//lastBuildDate.	The	XPath	query	happens	on	line
30	when	we	call	selectSingleNode.	The	value	of	the	resulting	node
is	then	displayed	in	the	target	element.	Because	the
lastBuildNode	is	from	an	XML	document,	we	can't	just	use	the
innerHTML	attribute.	Instead,	we	access	the	text	node	inside	the
returned	element	and	get	its	value	(line	32).

Lines	3545	define	the	searchItems	function;	this	function	performs
an	XPath	query	that	selects	all	the	title	nodes	that	are	inside
item	nodes	from	the	document	and	then	outputs	their	value	in
the	target	element.	The	XPath	query	takes	place	on	line	36;	it
returns	a	node	collection	to	the	list	variable.	On	line	39,	we	use
the	collection's	length	attribute	to	output	the	number	of	items	in
the	loaded	RSS	document.	Lines	4245	loop	over	the	returned
nodes,	outputting	the	value	of	the	nodes	to	the	target;	this	lists
the	title	of	each	item	in	the	RSS	feed.

Lines	5055	create	the	document's	basic	user	interface.	Links	are
provided	to	run	each	JavaScript	function	with	the	search	links
that	are	accessible	only	after	the	RSS	document	is	loaded.	This
delay	is	accomplished	by	putting	them	inside	a	DIV	that	is
hidden	until	the	document's	onreadystatechange	change	callback
shows	it	on	line	21.

8.3.6.	Transforming	XML	with	XSLT

XSLT	is	a	powerful	XML-based	template	language.	XPaths	are
used	inside	the	template,	which	allows	you	to	easily	apply
multiple	subtemplates	to	different	XML	templates.	Describing
how	to	create	an	XSLT	template	could	take	a	book	as	long	as
this	one,	so	we	focus	only	on	the	API	that	Sarissa	provides	to
transform	documents.	The	API	is	easy	to	use;	you	create	a	new
XSLTProcessor,	load	a	stylesheet	that	contains	the	transformation

rules,	and	then	transform	the	document	using	the	processor's
TRansformToDocument	method.	You'll	usually	want	to	import	the
resulting	document	into	the	main	HTML	document	using	its
importNode	method	so	that	you	can	add	it	to	the	DOM	and	display
the	results.	A	short	example	is	shown	in	Listing	8-7.	The	data	is
the	same	RSS	feed	of	the	Sarissa	news	used	earlier;	the	only
exception	is	that	the	stylesheet	is	shown	in	Listing	8-7.

Listing	8-7.	transform.xsl

1	<?xml	version="1.0"?>
2		<xsl:stylesheet	version="1.0"
3					xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
4
5		<xsl:output	method="html"	/>
6				<xsl:template	match="/rss">
7							<div>
8									<xsl:for-each	select="//item">
9											<h2><xsl:value-of	select="title"/></h2>
10								</xsl:for-each>
11						</div>
12			</xsl:template>
13	</xsl:stylesheet>

This	is	a	really	basic	stylesheet	with	a	single	template	that
matches	the	root	rss	element	in	the	document	(lines	511).
Inside	this	template,	we	output	a	DIV	container	so	that	we	have
an	HTML	element	encasing	the	rest	of	the	output,	which	will
make	it	easy	to	add	to	the	main	document.	Lines	810	loop	over
the	results	from	an	XPath	query.	The	query	//item	selects	each
item	node	in	the	document.	The	code	then	displays	the	value	of
the	title	of	each	item	inside	an	h2	tag	(line	9).	The	rest	of	the
file	is	basic	XSLT	boilerplate.	This	XSLT	stylesheet	is	used	by	an
HTML	and	JavaScript	page	to	transform	an	XML	document;	this
page	is	shown	in	Listing	8-8.

Listing	8-8.	SarissaTransformWithXSLT.html

1		<html>
2		<head>
3		<title>Sarissa:	Transforming	Documents	with	XSLT</title>
4
5		<script	type="text/javascript"	src="sarissa/sarissa.js">
6		</script>
7		<script	type="text/javascript"
8		src="sarissa/sarissa_ieemu_xslt.js"></script>
9
10	<script	type="text/javascript">
11	var	domDoc	=	Sarissa.getDomDocument();
12	var	styleSheet	=	Sarissa.getDomDocument();
13	styleSheet.load("transform.xsl");
14	var	processor	=	new	XSLTProcessor();
15
16	function	loadDoc()	{
17					var	rHandler	=	function()	{
18									if	(domDoc.readyState	==	4)	{
19
20														document.getElementById('target').innerHTML	=
21														"Document	Loaded,	ready	to	transform";
22
23														document.getElementById('afterLoad'
24).style.display	=	'block';
25									}
26					}
27
28					domDoc.onreadystatechange	=	rHandler;
29					domDoc.load("sarissaNews.xml");
30	}
31
32	function	transform()	{
33					processor.importStylesheet(styleSheet);
34					var	output	=	processor.transformToDocument(domDoc);
35
36					var	target	=	document.getElementById('target');
37					target.appendChild(document.importNode(
38																	output.firstChild,true));
39	}
40	</script>
41	</head>
42	<body>
43				Load	news.xml
44					<div	id="afterLoad"	style="display:	none">
45					Display	Items

46					</div>
47					<div	id="target"></div>
48		</body>
49		</html>

Listing	8-8	takes	the	sarissaNews.xml	file,	transforms	it	with	the
transform.xsl	XSLT	stylesheet,	and	then	adds	its	results	to	the
main	document's	DOM.	The	Sarissa	library	is	included	on	lines
58.	Notice	that	we're	including	the	cross-browser	XSLT	support
files	as	well	as	the	main	library	file.	On	lines	1114,	we	set	up
the	objects	we	will	use	on	the	rest	of	the	transformation
process.	On	line	5,	we	set	up	an	empty	DomDocument	into	which	we
will	load	our	RSS	feed;	then,	on	line	6,	we	create	a	similar
object	into	which	to	load	the	stylesheet.	On	line	13,	we	load
TRansform.xsl	into	the	styleSheet	document;	you	could	also	use	the
string	parser	to	load	transform.xsl.	This	would	be	accomplished
by	loading	the	contents	of	TRansform.xsl	into	a	JavaScript	variable
and	then	creating	the	DomDocument	using	the	DOMParser.	Doing	this
would	let	you	reduce	the	number	of	HTTP	requests	needed	to
load	the	document,	which	is	helpful	from	a	performance
standpoint	as	long	as	the	stylesheet	is	small.	Finishing	the	basic
setup,	we	create	a	new	XSLTProcessor	on	line	14.

Lines	1630	define	the	loadDoc	function,	which	loads	sarissaNews.xml
so	that	it	can	later	be	transformed.	This	works	the	same	as	the
earlier	examples;	we're	just	adding	a	few	more	actions	to
perform	after	the	document	is	loaded.	On	lines	2021,	we	output
a	message	saying	the	document	is	loaded,	giving	the	user
feedback	that	something	has	happened.	Then,	on	lines	2324,
we	show	a	DIV	in	the	main	HTML	document.	This	DIV	contains
the	links	that	do	the	actual	transformation;	by	keeping	it	hidden
until	the	document	is	loaded,	we	are	able	to	prevent	errors	from
happening.	The	rest	of	the	method	contains	the	simple	Sarissa
document	loading	processes;	on	line	28,	we	register	the
callback	function,	and	on	line	29,	we	load	the	sarissaNews.xml
document.

Lines	3239	define	a	JavaScript	function	that	does	the
transformation.	This	is	a	three-part	process.	On	line	33,	we
import	the	stylesheet	we	previously	set	up,	and	then	on	line	34,
we	transform	the	document	assigning	the	result	to	a	variable.
We	finish	the	processes	on	lines	3638,	selecting	an	output

element	and	then	appending	the	output	to	it	after	importing	it
to	the	HTML	document.	When	importing	the	nodes,	passing	a
Boolean	value	of	true	as	the	second	parameter	to	importNode
makes	the	method	perform	a	deep	import.	A	deep	import
imports	the	element	passed	in	and	all	its	children;	without	this
flag,	only	the	top-level	element	is	imported.

The	rest	of	the	document	is	the	basic	HTML	user	interface.	A
link	is	provided	on	line	43	to	load	the	sarissaNews.xml	document,
with	the	transform	link	enclosed	in	a	hidden	DIV	so	that	it	will
be	available	only	after	the	news	document	is	loaded	(lines
4446).	We	finish	up	with	a	target	DIV	on	line	47	that	we	use	for
giving	messages	to	the	user	and	for	showing	the	transformed
document.

8.3.7.	Sarissa	Development	Tips

Sarissa	is	a	highly	focused	library	that	provides	an	easy-to-use,
cross-browser	API	to	the	major	browsers'	XML	functionality.	If
you're	looking	to	use	XML	technologies	such	as	XSLT	or	XPath,
then	Sarissa	is	a	perfect	solution	for	you.	While	using	Sarissa,
keep	in	mind	these	tips:

Be	sure	to	include	the	sarissa_ieemu_xpath.js	or
sarissa_ieemu_xslt.js	files	if	you're	working	with	XPath	or
XSLT.	Without	them,	your	scripts	will	work	only	in	Internet
Explorer.

Use	the	XML	string-loading	capabilities	to	cut	down	on	the
number	of	individual	XML	files	that	you	need	to	load.

Run	the	test	cases	in	testsarissa.html	to	make	sure	your
browser	is	supported	if	you're	on	a	less	commonly	used
browser.

Mix	Sarissa	with	other	libraries	if	Sarissa	meets	only	some
of	your	needs;	Sarissa	is	focused	on	XML.

XPath	is	extremely	effective	at	searching	XML	documents;
try	using	it	before	creating	custom	solutions	to	search	XML.

If	you	have	a	question	about	what	method	to	use,	check	out
the	project's	Web	site;	it	contains	complete	API
documentation.

	

8.4.	Scriptaculous

Scriptaculous	is	an	MIT-licensed	JavaScript	library	that	provides
visual	effects,	drag-and-drop	support,	and	controls,	such	as
sliders,	to	HTML	pages.	It	is	built	on	top	of	the	Prototype
JavaScript	library,	which	provides	AJAX	support	(and	a	number
of	other	features)	to	the	Ruby	on	Rail	Web	application
framework.	Because	it's	built	on	Prototype,	scriptaculous	has
AJAX	support,	but	its	main	focus	is	on	providing	highly
interactive	visual	components	that	can	take	an	AJAX	application
to	the	next	level.

8.4.1.	Installation

You	can	download	scriptaculous	from	http://script.aculo.us.
After	extracting	the	archive,	copy	the	contents	of	the	src	and	lib
subdirectories	into	a	directory	in	the	document	root	of	your	Web
server.	After	doing	that,	you	just	need	to	include	the	prototype
and	scriptaculous	libraries	in	your	HTML	files.	The	components
of	scriptaculous	will	be	automatically	included	as	needed	as	long
as	they	are	in	the	same	directory	as	scriptaculous.js.	An	example
of	these	includes	is	shown	here:

<script	src="/scriptaculous/prototype.js
"type="text/javascript"></script>
<script	src="/scriptaculous/scriptaculous.js
"type="text/javascript"></script>

8.4.2.	Visual	Effects

http://script.aculo.us

One	of	the	most	exciting	features	of	scriptaculous	is	its	visual
effects.	These	effects	can	be	used	to	notify	the	user	that	an
event	has	happened	or	that	some	content	is	updated.	The
effects	can	be	applied	to	any	DOM	element,	making	them	very
versatile,	because	they	will	work	no	matter	what	the	display
type	of	the	element	is.	To	apply	an	effect,	you	create	a	new
instance	of	a	method	of	the	Effects	class,	passing	in	the	element
to	update.	This	element	can	be	an	ID	or	a	DOM	element
accessed	directly	in	JavaScript.

A	wide	variety	of	effects	are	provided.	They	perform	two	main
tasks:	showing	or	hiding	elements	and	drawing	attention	to	an
element.	Some	of	the	show/hide	effects	are	available	in	pairs
and	can	be	used	with	the	Effect.toggle	method	to	hide	or	show
an	element,	doing	the	opposite	of	the	element's	current	status.
The	rest	of	the	functions	can	be	used	individually,	like	the
simple	examples	in	the	following	list	of	effects.	An	effects	tester
is	also	included	so	that	you	can	see	what	each	effect	looks	like.
Scriptaculous	also	includes	the	lower-level	methods	that	can	be
used	to	build	new	effects;	the	API	for	these	methods	is	included
on	its	Web	site.

8.4.3.	Hide/Show	Pairs

BlindDown	hides	the	element,	and	BlindUp	shows	it:

new	Effect.toggle(element,'blind');
new	Effect.BlindDown(element);
new	Effect.BlindUp(element);

SlideDown	hides	the	element,	and	SlideUp	shows	it:

new		Effect.toggle(element,'slide');
new	Effect.SlideDown(element);

new	Effect.SlideUp(element);

Fade	hides	the	element,	and	Appear	shows	it:

new	Effect.toggle(element,'appear');
new	Effect.Fade(element);
new	Effect.Appear(element);

A	large	number	of	nonpaired	effects	for	hiding	elements	is	also
included:

new	Effect.SwitchOff(element);
new	Effect.DropOut(element);
new	Effect.Squish(element);
new	Effect.Shrink(element);
new	Effect.Fold(element);

The	Grow	effect	is	the	only	unpaired	effect	for	showing	an
element:

new	Effect.Grow(element);

The	Effects	class	also	contains	a	number	of	methods	for	drawing
attention	to	an	element:

new	Effect.Pulsate(element);
new	Effect.Shake(element);
new	Effect.Highlight(element);

The	effects	tester	is	located	in	the	scriptaculousViewAllEffects.html
file.	Listing	8-9	shows	a	short	example	of	how	to	apply	various
effects.

Listing	8-9.	ScriptaculousViewAllEffects.html

1		<html>
2		<head>
3		<title>Script.aculo.us	Visual	Effects</title>
4		<script	src="scriptaculous/prototype.js"
5					type="text/javascript"></script>
6		<script	src="scriptaculous/scriptaculous.js"
7					type="text/javascript"></script>
8		</head>
9		<body>
10
11	<p>Reload	the	page	to	reset	the	effects.</p>
12
13	<div	onclick="new	Effect.Fade(this)">
14				Click	Me	to	see	a	Fade	Effect

15	</div>
16
17	<p>
18	<a	href="#"	onclick="new	Effect.Puff(this)"
19				>Click	to	hide	this	link
20	</p>
21
22	<p>
23	<a	href="#"	onclick="new	Effect.Fold('cell')"
24				>Hide	the	table	cell
25	<a	href="#"	onclick="new	Effect.Grow('cell')"
26				>Show	the	table	cell
27	</p>
28
29	<table	border=1>
30				<tr>
31										<td>A	cell</td>
32										<td	id="cell">Cell	to	Hide</td>
33				</tr>
34	</table>
35
36	<p>
37	<a	href="#"	onclick=
38				"new	Effect.toggle('box','blind')"
39				>Toggle	the	box	below

40	<div	id="box"
41				style="border:	solid	1px	black;
42				width:	50px;	height:	50px">
43				BOX
44	</div>
45	</p>
46	</body>
47	</html>

One	way	to	attach	an	event	is	to	tie	it	to	the	click	event	of	a
DOM	element;	this	passes	the	element	being	clicked	and
performs	the	effect	directly	on	the	current	element.	This
approach	is	easy	to	do	and	is	shown	on	line	13	against	a	block-
level	element,	and	on	line	18	against	an	inline	element.	There
are	few	cases	where	this	direct	attachment	is	useful;	in	most
cases,	you'll	want	the	effect	to	be	performed	against	another
element	on	the	page	because	the	point	of	the	effect	is	to	draw
attention	to	the	action	that	is	happening.	Line	23	hides	the
element	with	an	ID	of	cell	by	using	the	Fold	effect,	whereas	line
25	shows	the	same	element	using	the	Grow	effect.	Line	38	shows
the	toggle	utility	method,	which	alternately	shows	and	hides	an
element.	This	method	is	useful	for	building	interface	elements
that	show	optional	information.

8.4.4.	Drag-and-Drop

Drag-and-drop	gives	you	the	ability	to	visually	drag	elements
around	the	page	and	have	other	elements	that	accept	the	drop.
The	scriptaculous	implementation	separates	the	drag-and-drop
components	into	two	parts,	allowing	you	to	make	elements
draggable	without	providing	a	place	to	drop	them.	This	can	be
useful	for	adding	palettes	or	note	elements	that	can	be	moved
anywhere	within	the	window	by	the	user.	To	create	a	draggable
element,	create	a	new	instance	of	the	Draggable	class,	passing	in
the	element	to	drag	and	any	options.	A	common	option	is
revert;	when	it	is	set	to	true,	the	item	returns	to	its	original

position	when	the	user	lets	up	on	the	mouse:

new	Draggable(element,{revert:true});

In	the	second	half	of	drag-and-drop,	the	drop	target	is	provided
by	the	Droppables	class.	Drop	targets	are	useful	in	a	number	of
cases,	from	building	a	visual	shopping	cart	to	allowing	you	to
visually	move	mail	to	a	new	folder.	Drop	targets	can	be	any
element	and	can	take	a	number	of	options,	including	an	accept
parameter	that	limits	the	elements	that	can	dropped	to	those
with	a	matching	class.	They	can	also	include	an	onDrop	handler,
which	is	run	when	an	element	is	added	to	the	drop	target:

Droppables.add(el,	{	onDrop:	function(e)	{	alert(e);	});

Listing	8-10	shows	a	small	drag-and-drop	application.	In	this
listing,	there	are	three	draggable	boxes	and	one	drop	target.
Only	the	first	two	boxes	can	be	dropped	on	the	target	because
the	third	box	has	a	class	that	isn't	in	the	accept	list	of	the	drop
target.	This	example	also	uses	the	$()	alias	function;	it	works
the	same	way	as	document.getElementById.	Formatting	for	this
example	is	done	with	CSS,	which	is	included	in	a	separate	file	to
decrease	the	amount	of	noise.

Listing	8-10.	ScriptaculousDragNDrop.html

1	<html>
2	<head>
3	<title>Script.aculo.us	Drag	and	Drop</title>
4	<script	src=""scriptaculous/prototype.js"
5				type="text/javascript"></script>
6	<script	src="scriptaculous/scriptaculous.js"
7				type="text/javascript"></script>
8

9	<link	rel="stylesheet"	href="dnd.css"
10			type="text/css">
11	</head>
12	<body>
13				<div	id="box1"	class="box">Box	1</div>
14				<div	id="box2"	class="box">Box	2</div>
15				<div	id="box3"	class="other">Box	3</div>
16
17				<br	style="clear:	both">
18				<div	id="drop">Drop	Target</div>
19
20
21	<script	type="text/javascript">
22					new	Draggable('box1',{revert:true});
23					new	Draggable('box2',{revert:false});
24					new	Draggable('box3',{revert:true});
25
26					Droppables.add('drop',	{accept:	'box',
27										onDrop:	function(el)	{
28										$('drop').innerHTML	=
29										'Dropped:	'+el.id;
30				}
31				});
32	</script>
33
34	</body>
35	</html>

Most	of	this	page	is	set	up	in	HTML	with	a	small	amount	of
JavaScript	code	to	activate	the	drag-and-drop	functionality.	The
page	starts	with	a	basic	setup.	Lines	47	include	the
scriptaculous	JavaScript	library,	and	lines	910	include	a	CSS	file
to	do	some	basic	formatting.	Lines	1318	create	the	basic	user
interface;	it	is	made	up	of	three	200x200	pixel	boxes	that	are
floated	next	to	each	other.	Below	that	is	a	100x400	pixel	drop
target.

Lines	2132	make	these	boxes	draggable	and	create	a	drop
target	for	them.	Lines	2224	create	the	draggable	boxes;	the
first	parameter	is	the	ID	of	the	box,	and	the	second	is	a	hash	of
options.	On	line	23,	we	set	the	revert	property	of	the	second	box
to	false;	this	lets	us	drag	it	around	the	screen.	This	property
isn't	very	useful	for	dragging	to	a	drop	target,	but	it	can	be
useful	for	other	use	cases.	Lines	2630	create	the	drop	target;

the	first	parameter	is	the	ID	of	the	element,	and	its	second
parameter	is	a	hash	of	options.	Here	we're	setting	two	options.
The	first	is	the	accept	variable,	which	takes	a	class	to	accept;	in
this	case,	it's	set	to	box,	which	allows	box	1	and	2,	but	not	box
3,	to	be	dropped.	The	second	option	is	the	onDrop	function;	this
is	called	when	a	draggable	element	is	released	while	over	the
drop	target.	The	function	displays	some	simple	feedback
displaying	the	ID	of	the	dropped	element	in	the	drop	target.

8.4.5.	Sortables

A	sortable	is	a	predefined	component	built	from	the	drag-and-
drop	building	blocks	that	scriptaculous	provides.	Sortables	make
it	easy	to	build	graphically	reorderable	lists	and	can	even	be
used	to	let	you	move	items	between	multiple	lists.	Sortables	are
usually	used	with	HTML	lists,	but	they	can	also	be	used	with
floated	elements.	To	create	a	sortable	list,	you	simply	run
Sortable.create,	passing	in	an	ID	and	any	options	you	want	to
specify,	like	so:

Sortable.create("element",{ghosting:true});

Some	of	the	more	commonly	used	properties	are	overlap,
ghosting,	and	onChange:

The	overlap	property,	which	takes	the	values	of	horizontal,
vertical,	or	false,	limits	how	you	can	drag	the	elements
around;	the	false	setting	has	no	limits.

Setting	the	ghosting	property	to	TRue	leaves	the	element	in	its
current	position;	the	user	then	drags	a	faded	version	until	it
is	dropped.

The	onChange	property	lets	you	set	a	callback	function,	which
is	called	after	an	item	has	been	moved.

If	the	elements	in	your	sortable	have	the	ID	property	set	using
the	naming	convention	of	name_item,	you	can	use	the
Sortable.serialize	method	to	quickly	build	a	query	string,	which
can	be	sent	to	the	server	and	used	to	update	the	order	on	the
server.	An	example	output	from	the	serialize	method	is	this:

list[]=one&list[]=three&list[]=two&list[]=four

If	you	used	this	string	as	the	query	string	on	a	request	to	a	PHP
page,	$_GET['list']	will	be	populated	with	an	array	that	contains
the	updated	positions	of	the	list.	The	array	is	ordered	in	its	new
position,	with	the	value	being	the	specified	ID.	Listing	8-11
shows	an	example	of	this	operation.

Listing	8-11.	ScriptaculousSortable.php

1		<html>
2		<head>
3		<title>Script.aculo.us	Sortables</title>
4		<script	src="scriptaculous/prototype.js"
5					type="text/javascript"></script>

6		<script	src="scriptaculous/scriptaculous.js"
7					type="text/javascript"></script>
8
9		<style	type="text/css">
10	#list	{
11				cursor:	pointer;
12	}
13	</style>
14	</head>
15	<body>
16
17	<ul	id="list">
18				<li	id="i_one">One
19				<li	id="i_two">Two

20				<li	id="i_three">Three
21				<li	id="i_four">Four
22	
23
24	<a	href="javascript:updateList()"
25				>Send	Changes	to	server
26
27	<pre><?php
28	if	(isset($_GET['list']))	{
29				var_dump($_GET['list']);
30	}
31	?></pre>
32
33	<script	type="text/javascript">
34	Sortable.create("list"});
35
36	function	updateList()	{
37				var	update	=	Sortable.serialize('list');
38
39				window.location	=	'?'+update;
40	}
41	</script>
42
43	</body>
44	</html>

This	page	is	mainly	an	HTML/JavaScript	page	with	a	small
amount	of	PHP	mixed	in	to	show	how	a	server-side	language
parses	the	output	of	Sortable.serialize().	The	script	starts	with	a
basic	setup,	with	lines	47	including	the	scriptaculous	library.
Then,	on	lines	912,	we	include	a	small	amount	of	CSS,	which
gives	all	the	sortable	elements	a	pointer	cursor.	This	is	an
important	usability	step;	without	it,	the	elements	will	have	a
text	select	cursor,	and	the	user	won't	realize	they	are	sortable.
Lines	1722	build	the	list	that	will	be	sorted;	each	item	has	an	ID
in	it,	which	defines	the	value	that	will	be	returned	to	the	server.
Lines	2425	complete	the	user	interface,	creating	a	link	that
reloads	the	page	and	sends	the	list's	new	order	to	the	server.

Lines	2731	contain	the	small	amount	of	PHP	code	in	this	script.
If	the	list	variable	has	been	passed	in	by	the	query	string,	its
outputs	are	echoed	out	using	a	debugging	function.	PHP	and
many	other	Web	development	languages	automatically	turn	the
query	string	provided	by	Sortable.serialize	into	an	array;	from

here	you	could	update	the	database	with	the	new	order.

Lines	3340	contain	the	JavaScript	for	this	example.	On	line	34,
we	make	the	list	element	sortable,	using	most	of	the	default
options	because	they	are	optimized	for	use	with	HTML	lists.
Then,	on	lines	3640,	we	build	a	small	function	that	builds	a
query	string	using	Sortable.serialize	(line	37)	and	then	reloads
the	page	by	setting	window.location.

8.4.6.	Slider	Control

Scriptaculous	also	provides	a	slider	control,	which	is	useful	for
selecting	values	that	are	in	a	range.	This	control	can	be	used	in
its	basic	state	to	build	something	like	a	color	selector.	It	can
also	be	used	as	a	building	block	for	more	advanced	elements,
such	as	a	JavaScript-powered	scrollbar	for	an	AJAX	grid.	An
example	of	the	slider	control	in	both	horizontal	and	vertical
modes	is	shown	in	Figure	8-1

Figure	8-1.	The	scriptaculous	slider	control	shown
in	both	horizontal	and	vertical	modes

[View	full	size	image]

Scriptaculous	provides	only	the	behavior	of	the	slider,	not	its
looks.	As	long	as	you	follow	the	pattern	of	a	container	element
with	a	slide	handle	inside	of	it,	you	can	make	the	slider	look	any
way	you	want.	Because	you	control	the	look	of	the	sliders,	you
also	control	their	usability.	One	simple	usability	tip	is	to	set	the
cursor	of	the	slide	handle	to	a	value	of	move.	This	gives	you	the
browser's	standard	cursor	icon	for	items	that	can	be	moved
around,	which	helps	users	understand	how	to	move	the	control.
The	slider	returns	a	value	from	0	to	1	as	you	scroll	across	its
range;	to	translate	this	to	a	more	usable	value,	you	simply
multiply	it	by	the	maximum	value	of	your	target	range,
rounding	it	if	you	want	an	integer,	like	so:

var	outputValue	=	Math.round(100*sliderValue);

Listing	8-12	shows	an	example	page	that	implements	both	a

horizontal	slider	and	a	vertical	slider.

Listing	8-12.	ScriptaculousSlider.html

1		<html>
2		<head>
3		<title>Script.aculo.us	Slider</title>
4		<script	src="scriptaculous/prototype.jsv
5					type="text/javascript"></script>
6		<script	src="scriptaculous/scriptaculous.js"
7					type="text/javascript"></script>
8		</head>
9		<body>
10
11	<h3>Horizontal	Slider</h3>
12	<div	id="track1"	style="
13				width:	200px;

14				background-color:	rgb(170,	170,	170);
15				height:	5px;">
16	<div	id="handle1"	style="
17				width:	5px;
18				height:	10px;
19				background-color:	rgb(255,	0,	0);
20				cursor:	move;
21				">	</div>
22	</div>
23		<div	id="debug1"></div>
24
25	<h3>Vertical	Slider</h3>
26	<div	id="track2"	style="
27				height:	100px;
28				background-color:	rgb(170,	170,	170);
29				width:	5px;">
30	<div	id="handle2"	style="
31				width:	10px;
32				height:	5px;
33				background-color:	rgb(255,	0,	0);
34				cursor:	move;
35				">	</div>
36	</div>
37	<div	id="debug2"></div>
38
39	<script	type="text/javascript">
40	var	d1	=	document.getElementById('debug1');
41	var	d2	=	document.getElementById('debug2');
42
43	new	Control.Slider('handle1','track1',{
44	onSlide:function(v){d1.innerHTML='slide:	'+v},
45	onChange:function(v){d1.innerHTML='changed!	'+v}
46	});

47
48	new	Control.Slider('handle2','track2',{
49	axis:'vertical',
50	onSlide:function(v){d2.innerHTML=Math.round(100*v)},
51	onChange:function(v){d2.innerHTML=Math.round(100*v)}
52		});
53		</script>
55		</body>
56		</html>

Like	the	rest	of	the	scriptaculous	examples	(Listings	8-98-11),
this	page	includes	the	JavaScript	library	files	in	its	header	(lines
47).	After	that,	the	HTML	for	the	sliders	is	laid	out:	first	the
horizontal	slider	(lines	1123)	and	then	the	vertical	slider	(lines
2537).	Both	sliders	follow	a	similar	pattern;	first	the	slider	track
is	defined,	setting	its	ID,	width,	height,	and	color	(lines	1215
and	2629).	Then,	the	handles	for	the	sliders	are	defined	(lines
1621	and	3035).	The	handles	set	most	of	the	same	basic	style
elements	as	the	track,	adding	a	cursor	of	move	for	improved
usability.	The	HTML	definitions	are	finished	by	creating	empty
DIV	elements	to	display	the	current	value	of	the	slider	(lines	23
and	37).

The	next	section	of	the	page	is	the	JavaScript	that	turns	these
DIV	groups	into	sliders.	We	start	this	process	by	assigning	the
debug	DIV	elements	to	variables	so	that	we	can	easily	reference
them	later	(lines	4041).	Then	we	create	a	slider	instance	for	the
horizontal	slider	control	(lines	4346).	The	Control.Slider	function
takes	three	parameters:	the	track	element,	the	handle	element,
and	any	options.	In	this	case,	we	are	setting	two	options:	the
onSlide	and	onChange	event	handlers.	The	onSlide	handler	is	called
as	we	move	the	handle	around;	the	onChange	handler	is	called
when	we're	done	dragging	the	handle.	The	onSlide	handler	is
usually	used	to	provide	feedback,	whereas	the	onChange	handler
is	used	to	make	the	value	of	the	slide	accessible	to	other	parts
of	the	page,	storing	its	value	in	an	input	box	or	JavaScript
variable.

Lines	4852	follow	much	of	the	same	process	for	the	vertical
slider.	In	this	case,	we	set	an	extra	option,	axis,	to	the	value	of
vertical	setting.	This	does	what	it	suggests	and	makes	the	slider
work	in	a	vertical	fashion.	We	also	translate	the	value	of	the
slider	to	a	0100	scale	in	the	onSlide	and	onChange	handlers.

8.4.7.	Scriptaculous	Development	Tips

Scriptaculous	contains	functionality	for	creating	visually
impressive	Web	sites.	While	using	it,	keep	these	tips	in	mind:

Most	scriptaculous	functions	have	further	documentation
and	examples	at	http://script.aculuo.us,	so	if	you're	not
sure	how	to	make	a	function	operate,	start	there.

Scriptaculous	contains	a	variety	of	prepackaged	effects	and
components,	but	if	they	don't	meet	your	needs,	it	also
provides	the	tools	to	build	new	ones.

Besides	the	Web	site,	you	can	find	more	scriptaculous
examples	in	the	tests	directory,	in	the	scriptaculous
download.	The	functional	tests	are	very	useful	in	this
regard.

Scriptaculous	contains	a	number	of	additional	controls	that
you	should	explore	before	building	your	own.	These	include
the	following:

Autocompleter:	Provides	Google	Suggest	style	auto
completing	text	fields

InPlaceEditor:	Provides	click-to-edit	content	with	AJAX
saving	the	changes

8.5.	Summary

Sarissa	and	scriptaculous	are	powerful	AJAX	libraries.	Sarissa	is
focused	on	XML,	making	it	a	great	choice	if	you	already	heavily
use	XML	throughout	your	tool	chain.	Its	main	features	include
the	following:

Cross-browser	support

The	ability	to	create	DOM	documents	from	XML	strings

XSLT	support	for	transforming	XML	documents

XPath	support	for	querying	nodes	within	XML	documents

Scriptaculous	offers	many	of	the	exciting	features	that	AJAX
applications	are	known	for.	Using	it,	you	can	easily	create	highly
interactive	applications	that	are	both	visually	appealing	and
easy	to	use.	The	main	features	of	scriptaculous	include	the
following:

Visual	effects,	such	as	fade	in/out	elements

Drag-and-drop	support

Sortable	lists

Slider	controls

Both	of	these	libraries	make	a	good	building	block	for	an	AJAX
application.	They	offer	clean	API,	useful	functionality,	and	a
tight	enough	focus	that	they	are	easy	to	combine	with	other
libraries.	In	the	next	chapter,	we	look	at	HTML_AJAX.	It	is	a

JavaScript/PHP	library	that	focuses	on	server	interaction,
simplifying	using	PHP	as	the	back	end	for	an	AJAX	application.

	

Chapter	9.	Libraries	Used	in	Part	II:
HTML_AJAX
In	this	chapter

9.1	HTML_AJAX page	196

9.2	Summary page	214

The	libraries	shown	in	Chapter	8,	"Libraries	Used	in	Part	II:
Sarissa,	Scriptaculous,"	consisted	solely	of	JavaScript	and	so
could	be	used	with	any	server-side	language;	in	this	chapter,
we're	taking	a	look	at	a	library	that	takes	a	language-specific
approach.	HTML_AJAX	contains	JavaScript	code	and	PHP	code;
both	are	tightly	integrated,	making	the	process	of
communicating	between	the	two	sides	easier.	If	PHP	isn't	your
language	of	choice,	but	you	still	want	to	look	at	tightly
integrated	libraries,	look	in	Appendix	B,	"AJAX	Libraries	with
Server	Ties"),	which	contains	a	list	of	AJAX	libraries	with	tight
server-side	integration.

9.1.	HTML_AJAX

HTML_AJAX	is	an	AJAX	library	for	PHP	licensed	under	the
Library	General	Public	License	(LGPL);	it	provides	a	JavaScript
API	and	a	PHP	API.	It	supports	a	number	of	different
communication	strategies	and	use	cases.	It	also	provides	the
ability	to	pass	data	directly	from	PHP	to	JavaScript	(and	vice
versa)	using	JSON.	HTML_AJAX	focuses	on	providing	a	complete
communication	layer	and	tight	PHP	integration,	but	it	also
provides	a	number	of	JavaScript	utility	functions	that	are	useful
for	debugging	and	performing	common	actions	in	a	cross-
browser	manner.

HTML_AJAX	is	part	of	the	PHP	Extension	and	Application
Repository	(PEAR),	giving	it	wide	infrastructure	support.
HTML_AJAX	has	a	small	development	team,	the	leader	of	which
is	me,	the	author	of	this	book.	This,	of	course,	makes	me	partial
to	HTML_AJAX,	but	HTML_AJAX	is	widely	used	and	is	a	good
example	of	an	AJAX	library	that	strives	for	tight	language
integration.

HTML_AJAX	provides	many	choices	in	how	you	use	it.	This
makes	it	usable	for	many	styles	of	development	but	also	makes
it	harder	to	see	where	to	get	started.	The	three	main	ways	of
using	HTML_AJAX	are	as	follows:

The	JavaScript	API	provides	methods	to	perform	general
AJAX	actions,	such	as	replacing	a	DOM	element	with	the
results	of	an	HTTP	request	or	submitting	a	form	using	AJAX.
It's	targeted	at	developers	who	don't	mind	writing
JavaScript	code	to	tie	everything	together,	and	it	is
especially	useful	when	used	with	behaviors,	which	allow	you
to	tie	JavaScript	code	to	HTML	using	CSS	selectors.

The	mapped	PHP	classes'	API	makes	it	easy	for	JavaScript

code	to	call	directly	into	PHP	code	and	get	results.	It's	most
useful	when	you	need	raw	data	moved	from	PHP	to
JavaScript.	It	lets	you	format	the	data	and	control	its
interaction	from	the	JavaScript	side.

The	HTML_AJAX_Action	code	starts	off	using	mapped	PHP
classes,	but	instead	of	returning	raw	data,	it	returns	a	set	of
actions	to	perform	against	the	HTML	page;	this	can	include
updating	the	content	of	nodes,	changing	the	value	of	an
attribute,	or	running	some	JavaScript	code.	This	usage
pattern	allows	for	a	minimal	amount	of	JavaScript	to	be
written	and	keeps	the	majority	of	the	logic	encapsulated
within	PHP	code.

9.1.1.	Installation

Because	HTML_AJAX	is	part	of	the	PEAR	project,	its	installation
process	is	the	same	as	any	other	PEAR	package.	You	simply
need	to	use	the	install	method	of	the	PEAR	package	manager,
like	so:

pear	install	HTML_AJAX

If	you	already	have	HTML_AJAX	installed,	you	can	upgrade	to
the	newest	version	by	using	this	upgrade	command:

pear	upgrade	HTML_AJAX

If	you	don't	have	the	PEAR	package	manager	installed,	you	can
find	installation	information	on	the	HTML_AJAX	Web	site
(http://htmlajax.org)	or	on	the	PEAR	Web	site
(http://pear.php.net).	The	HTML_AJAX	Web	site	also	provides

http://htmlajax.org
http://pear.php.net

information	on	how	to	install	HTML_AJAX	without	using	the
PEAR	installer,	but	it's	not	the	recommended	method	because	it
makes	keeping	your	installation	up-to-date	a	much	more	time-
consuming	process.

To	use	an	HTML_AJAX	installation,	you	will	need	to	provide	a
way	for	browsers	to	access	its	JavaScript	library.	The	simplest
way	is	to	create	a	page	that	exposes	an	instance	of	the
HTML_AJAX_Server	class.	This	class	will	serve	up	the	JavaScript
library	from	its	installation	point	in	the	PEAR	install	directory,
which	is	normally	located	outside	of	your	document	root.	This
class	supports	combining	multiple	libraries	and	client-side
caching	to	improve	performance.	Alternatively,	you	can	copy
the	library	from	its	installation	location,	the	PEAR	data	directory,
to	somewhere	in	your	Web	root.	A	single	file	version	of	the
library	named	HTML_AJAX.js	is	provided	for	this	use.	A	version	with
comments	and	whitespace	stripped	is	also	provided	in
HTML_AJAX_lite.js.	An	example	PHP	script	that	can	serve	up	the
JavaScript	library	is	shown	in	Listing	9-1.

Listing	9-1.	server.php

<?php
require_once	'HTML/AJAX/Server.php';

$server	=	new	HTML_AJAX_Server();

$server->handleRequest();
?>

You	can	include	the	library	in	an	HTML	page	by	loading	the	page
with	the	client=all	query	string	set.	You	could	also	include	just
the	parts	of	the	library	you	need;	examples	of	both	are	shown
here:

<script	type="text/javascript

src="server.php?client=all"></script>

<script	type="text/javascript
src="server.php?client=main,request,httpclient,json,loading"></script>

If	you	want	to	copy	the	library,	you'll	need	to	find	the	location	of
the	files.	You	first	find	the	PEAR	data	directory	by	running	the
following	command:

pear	config-get	data_dir

On	most	UNIX-like	systems,	this	directory	is	/usr/share/pear/data.
After	you	find	the	directory,	look	in	the	HTML_AJAX/js	directory
underneath	it.	In	this	directory,	you'll	see	files	for	each
individual	part	of	the	library	and	the	combined	files	as	well.	To
use	the	library	in	an	HTML	file,	just	include	it	in	the	page,	like
so:

<script	type="text/javascript	src="pathtolibrary/HTML_AJAX.js"></script>

9.1.2.	HTML_AJAX	JavaScript	API

HTML_AJAX's	JavaScript	API	provides	easy	access	to	common
AJAX	operations.	These	operations	are	exposed	through	the
HTML_AJAX	static	class.	The	most	important	methods	on	this
class	are	as	follows:

9.1.2.1.	grab

Method	signature:

HTML_AJAX.grab(url,callback)

The	grab	method	loads	the	content	from	the	given	URL	and
either	returns	it	or	gives	it	to	a	callback.	The	grab	method
provides	a	way	to	do	trivial	AJAX	requests.	The	first	parameter
is	the	URL	to	load,	and	the	second	is	a	callback	function.	The
second	parameter	is	optional,	and	if	it's	not	specified,	a
synchronous	request	is	performed.	Because	synchronous
requests	lock	the	user	interface,	you'll	usually	want	to	pass	in	a
callback	function.	The	callback	function	takes	a	single
parameter,	which	is	the	content	of	the	loaded	URL	in	string
format.

9.1.2.2.	replace

Method	signature:

HTML_AJAX.replace(id,url)

or

HTML_AJAX.replace(id,className,methodName)

The	replace	method	takes	the	content	of	a	URL	and	updates	the
content	of	the	specified	element	with	the	content	that	has	been
loaded.	The	replace	method	can	load	a	URL	directly	(the	first
version	of	the	method	call),	or	it	can	be	used	with	a	PHP	class
that	has	been	registered	on	a	server	calling	one	of	its	methods

(the	second	version	of	the	method	signature).

9.1.2.3.	append

Method	signature:

HTML_AJAX.append(id,url)

or

HTML_AJAX.append(id,className,methodName)

The	append	method	works	like	the	replace	method,	except	that
instead	of	replacing	all	the	content	of	the	element	specified,	it
appends	the	new	content	to	the	end	of	the	HTML	element.	This
method	can	be	used	to	load	a	URL	or	against	a	registered	PHP
method.

9.1.2.4.	formSubmit

Method	signature:

HTML_AJAX.formSubmit(form,target,customRequest)

The	formSubmit	method	provides	an	easy	way	to	submit	a	form
over	AJAX.	The	form	parameter	is	the	form	to	submit	over	AJAX;
it	can	be	the	ID	of	the	form	or	a	DOM	element.	The	target
parameter	is	the	element	whose	innerHTML	property	will	be
replaced	with	the	results.	This	can	also	be	an	ID	or	a	DOM

element,	and	it	is	optional;	if	not	specified,	the	form	element	is
also	used	as	the	target.	customRequest	is	also	optional	and
provides	a	way	to	pass	in	a	custom	Request	object,	which	is
useful	for	setting	a	custom	loading	message	for	this	request.
The	method	returns	false	on	a	successful	submission,	allowing	it
to	be	used	in	a	form's	onsubmit	property	to	cancel	the	normal
form	submission	because	it	has	already	happened	in	AJAX.	This
allows	you	to	quickly	make	an	AJAX	form	by	adding	an	onsubmit
handler,	like	so:

<form	onsubmit="return	HTML_AJAX.formSubmit(this)">

9.1.2.5.	Properties

HTML_AJAX	also	contains	methods	that	you	can	override	to
change	the	behavior	of	both	the	default	loading	notification	and
the	error	handling.	In	default	operation,	errors	thrown	by
HTML_AJAX	are	left	for	the	browser	to	handle;	this	usually
means	a	message	shows	up	in	a	JavaScript	error	console.	You
will	normally	want	to	handle	this	in	a	more	informative	way
because	common	errors	include	page	loading	timeouts	and	"404
URL	not	found"	messages.	If	you	are	making	AJAX	calls	directly
into	PHP	functions,	these	messages	can	also	include	errors	from
the	PHP	code	that	was	called.	To	change	the	default	behavior,
you	simply	need	to	set	a	new	function	on	HTML_AJAX.onError.	This
function	can	then	show	a	message	to	the	user	or	try	to	recover
from	the	problem.	Here	is	a	basic	custom	error	handler:

HTML_AJAX.onError	=	function(e)	{
							document.getElementById('error').innerHTML	=
														HTML_AJAX_Util.quickPrint(e);
}

Most	of	the	methods	in	the	JavaScript	API	can	take	either	a	URL
to	which	to	make	a	request	or	a	class	name	and	a	method
name.	When	a	class	name	and	method	name	are	provided,	the
request	is	made	to	the	default	HTML_AJAX	server,	where	the
PHP	class	that	matches	the	class	name	is	called.	To	make	a
class	available	for	an	AJAX	request,	it	has	to	be	registered	with
the	server;	you	would	update	the	server.php	file	from	the
installation	example,	adding	a	registerClass	call	before	calling
handleRequest.	Listing	9-2	shows	a	basic	server	with	a	Test	class.

Listing	9-2.	testServer.php

1		<?php
2		require_once	'HTML/AJAX/Server.php';
3
4		class	Test	{
5				function	serverTime()	{
6						return	date('Y-m-d	H:i:s');
7				}
8
9				function	echoString($str)	{
10							return	'From	Server'.$str;
11				}
12		}
13
14	$server	=	new	HTML_AJAX_Server();
15
16	$server->registerClass(
17			new	Test(),
18			'Test',
19			array('serverTime','echoString')
20);
21	$server->handleRequest();
22	?>

Like	the	HTML_AJAX	server	example	in	Listing	9-1,	this	page
starts	by	requiring	the	HTML_AJAX_Server	class.	Then,	it	defines	a
trivial	class	called	Test	(lines	412);	this	class	contains	a	function
that	returns	the	current	date	from	the	server	and	one	that
echoes	a	string	back	to	the	caller.	On	line	14,	we	create	a	new

HTML_AJAX_Server	instance,	and	then	on	lines	1620,	we	register	an
instance	of	the	Test	class	on	the	server	instance.	The	first
parameter	to	registerClass	is	the	instance	to	register	(line	17),
the	second	parameter	is	the	name	to	call	it	in	JavaScript	code
(line	18),	and	the	last	parameter	(line	19)	is	an	array	of
methods	to	make	available.	Both	the	second	and	third
parameters	are	case	sensitive	and	optional.	If	they	are	not
provided,	PHP's	introspection	code	is	used	to	gather	the
information.	You	usually	want	to	provide	these	options	because
it	guarantees	compatibility	between	PHP4	and	PHP5;	this
compatibility	problem	exist	because	PHP4	doesn't	keep	the	case
of	class/method	names,	and	the	later	versions	of	PHP	do.

Now	that	you	have	a	server	page	that	will	accept	AJAX
requests,	you're	almost	ready	to	use	both	URL	and	method	uses
of	HTML_AJAX	functions,	such	as	HTML_AJAX.replace.	You	just	set
the	server	to	make	the	class/method	requests;	this	is	done	by
setting	HTML_AJAX.defaultServerUrl.	Listing	9-3	shows	an	example	of
the	JavaScript	API	usage.	testServer.php	is	used	to	handle
class/method	calls,	and	page.html	is	used	for	URL	calls.

Listing	9-3.	HTML_AJAXBasicJSRequest.html

1		<html>
2		<head>
3		<title>HTML_AJAX:	Basic	Request	JavaScript	API</title>
4		<script	type="text/javascript"
5				src="server.php?client=all"></script>
6
7		<style	type="text/css">
8		.target	{
9				width:	200px;
10				border:	solid	1px	black;
11	}
12	</style>
13
14	<script	type="text/javascript">
15	HTML_AJAX.defaultServerUrl	=	'testServer.php';
16
17	HTML_AJAX.onError	=	function(e)	{
18				document.getElementById('error').innerHTML	=

19				HTML_AJAX_Util.quickPrint(e);
20	}
21	</script>
22	</head>
23	<body>
24	<pre	id="error">
25	</pre>
26
27	<h3>HTML_AJAX.formSubmit	Basic</h3>
28	<form	action="form.php"
29						onsubmit="HTML_AJAX.formSubmit(this,this);
30						return	false;"	method="post">
31
32						<input	name="field">
33						<input	type="submit">
34	</form>
35
36	<h3>HTML_AJAX.formSubmit	Custom	loading	message</h3>
37	<script	type="text/javascript">
38				function	customForm(form)	{
39						var	r	=	{
40						Open:	function()	{
41								form.innerHTML	=	'Loading	Please	Wait...';
42						}
43						}
44
45						HTML_AJAX.formSubmit(form,form,r);
46						return	false;
47				}
48	</script>
49	<form	action="form.php"
50						onsubmit="return	customForm(this);"
51						method="post">
52
53				<input	name="field">
54				<input	type="submit">
55	</form>
56
57	<h3>HTML_AJAX.grab</h3>
58	<a	href="#"	onclick="
59						HTML_AJAX.grab('page.html',
60						function(r)	{	alert(r);	});
61	">Grab	page.html
62
63	<h3>HTML_AJAX.replace	url</h3>
64	<div	id="replaceTarget1"	class="target"></div>
65	<a	href="#"	onclick="
66						HTML_AJAX.replace('replaceTarget1','page.html');
67	">Replace	target	with	page.html
68
69	<h3>HTML_AJAX.replace	class/method</h3>
70	<div	id="replaceTarget2"	class="target"></div>
71	<a	href="#"	onclick="
72						HTML_AJAX.replace('replaceTarget2',
73						'Test','serverTime');
74	">Replace	target	with	Test::serverTime

75
76
77	<h3>HTML_AJAX.append	url</h3>
78	<div	id="appendTarget1"	class="target">
79				Current	Content:	</div>
80	<a	href="#"	onclick="
81					HTML_AJAX.append('appendTarget1','page.html');
82	">Append	page.html	to	target
83
84	<h3>HTML_AJAX.append	class/method</h3>
85	<div	id="appendTarget2"	class="target">
86						Current	Content:	</div>
87	<a	href="#"	onclick="
88					HTML_AJAX.append('appendTarget2','Test',
89					'echoString','Some	Text');
90	">Append	Test::echoString('Some	Text')	to	target
91	</body>
92	</html>

The	first	section	of	the	listing	does	the	basic	setup.	On	lines	45,
it	includes	the	HTML_AJAX	JavaScript	library.	Then	on	lines	712,
it	sets	up	a	basic	CSS	style	that	will	be	used	to	mark	elements
that	will	be	updated	by	the	AJAX	methods.	Finally,	it	finishes	the
setup	by	adding	the	defaultServerUrl	(line	15)	and	adding	an
error	handler,	which	is	useful	for	debugging	problems	during	the
development	process.

The	defaultServerUrl	is	used	in	requests	to	methods	on	PHP
classes.	Lines	2734	set	up	a	form	and	make	it	possible	to
submit	it	over	AJAX.	The	form	has	a	text	box,	which	is	defined
on	line	32,	and	a	Submit	button,	which	is	defined	on	line	33,
but	only	the	input	box	on	line	32	will	be	submitted.	This	is
because	only	data	from	elements	with	name	attributes	are
submitted.	The	AJAX	activation	of	the	form	happens	on	line	29,
which	is	where	we	send	the	onsubmit	method	to
HTML_AJAX.formSubmit.	The	current	form	is	used	both	for	the	form	to
submit	and	the	element	to	update	the	innerHTML	with	the	results.
This	means	that	the	form	tag	will	still	exist,	but	all	its	children
(lines	5354)	will	be	replaced.	Also	note	that	false	is	returned
from	the	onsubmit	method;	this	prevents	the	normal	form
submission	from	happening.	The	method	and	action	attributes	of

the	form	are	read	by	formSubmit,	and	they	are	used	to	determine
where	the	form	is	submitted.

Lines	3655	show	a	more	advanced	case	of	AJAX	form
submission.	The	form	is	set	up	the	same	way,	but	instead	of
calling	formSubmit	in	the	onsubmit	method,	we	call	a	custom
function	instead.	This	function,	which	is	defined	on	lines	3847,
defines	some	options	for	the	form	submission	and	then	runs
HTML_AJAX.	formSubmit	(line	45).	These	extra	options	are	passed	in
as	the	third	parameter;	these	options	allow	you	to	set	any
attribute	on	the	Request	object	that	will	be	built	to	submit	this
form.	Some	commonly	overridden	attributes	are	the	Open	and
Load	event	handlers	and	the	RequestUrl.	In	this	example,	we're
setting	only	the	Open	event	handler	(lines	4042).	This	is	called
when	we	open	the	HTTP	connection	to	the	server,	and	it	is
generally	used	to	provide	custom	loading	messages.	Normally,
this	event	handler	is	matched	with	the	Load	event	handler,	which
is	called	at	the	end	of	the	request,	but	that's	not	needed	in	this
case,	because	the	Open	function	replaces	the	contents	of	the
form,	and	this	message	will	then	be	replaced	by	the	form's
results.

Lines	5761	show	an	example	of	the	HTML_AJAX.grab	function.	This
simple	function	is	used	when	you	want	to	make	a	GET	request	to
a	page	and	perform	an	action	on	its	results.	The	second
parameter	(line	60)	is	the	callback	function;	in	this	case,	it	just
creates	an	alert	box	with	the	value	of	the	page.	If	this
parameter	is	left	out,	a	synchronous	requestinstead	of	an
asynchronous	oneis	made.

There	are	two	examples	of	the	HTML_AJAX.replace	function.	The
first	one	is	on	lines	6367	and	loads	a	URL	and	then	replaces	the
contents	of	a	DIV	with	the	new	content	from	the	server.	The
second	example	is	on	lines	6974	and	calls	a	PHP	method	and
replaces	the	contents	of	a	DIV	with	the	results	from	the	PHP
method	call.	In	URL	mode,	replace	takes	two	parameters	(line
66):	the	ID	of	the	element	to	replace	and	the	URL	to	which	to
make	the	request.	In	PHP	method	mode,	replace	takes	three

parameters:	The	first	is	the	ID	of	the	element	to	replace,	the
second	is	the	PHP	class,	and	the	third	is	a	method	on	that	class.
The	URL	to	use	for	this	request	is	determined	by	the
HTML_AJAX.defaultServerUrl	variable,	which	was	set	on	line	15.	If
the	class	and	method	haven't	been	registered	for	AJAX	access
by	the	server,	an	error	will	be	thrown;	this	error	can	then	by
handled	by	the	HTML_AJAX.onError	method.

The	final	sets	of	examples	are	for	the	HTML_AJAX.append	method
(lines	7790).	This	method	works	exactly	like	the	HTML_AJAX.replace
method,	except	that	instead	of	replacing	the	innerHTML	of	the
specified	element,	the	new	content	is	appended	to	innerHTML.	If
you	need	more	complicated	replacement	rules,	use	the	grab
method	and	provide	a	custom	callback	function	with	the	needed
logic.

9.1.3.	Remote	Stub	AJAX

As	was	shown	in	testServer.php	in	Listing	9-2,	HTML_AJAX	has
the	ability	to	make	PHP	classes	directly	available	to	AJAX	calls
from	JavaScript.	By	default,	HTML_AJAX	accomplishes	this	by
passing	JSON-encoded	messages	between	the	server	and	the
client.	This	allows	all	serializable	PHP	and	JavaScript	data	types
(resources	in	PHP	and	DOM	objects	in	JavaScript	can't	be	sent)
to	be	seamlessly	sent	between	the	client	and	the	server.
Although	these	PHP	functions	can	be	accessed	through
HTML_AJAX's	JavaScript	API,	they	also	offer	another	possibility:
generated	JavaScript	classes	that	mimic	the	API	of	their	PHP
counterparts.

This	system	allows	you	to	have	a	JavaScript	class	with	the	same
methods	that	were	registered	on	the	server.	For	example,
testServer.php	registered	the	Test	class;	this	class	has	two
methods,	serverTime	and	echoString,	so	after	including	the
generated	JavaScript	stub	file,	you	now	have	a	class	called	Test
in	JavaScript	with	serverTime	and	echoString	methods.	A	call	to

either	of	these	methods	will	automatically	be	sent	over
XMLHttpRequest	to	the	PHP	server;	the	matching	PHP	method	will
then	be	called,	and	its	results	will	be	sent	back	to	JavaScript
where	they	will	be	passed	to	a	callback	method.

To	import	the	JavaScript	stub	class,	you	simply	add
stub=className	to	your	inclusion	of	testServer.php.	You	can	choose
to	combine	this	with	the	request	you're	already	doing	for	the
client	libraries,	or	you	can	add	a	second	JavaScript	include	to
handle	this.	While	including	the	JavaScript	library	and	the	stubs
in	one	request	is	handy,	it's	not	always	the	best	approach	from
a	caching	standpoint.	HTML_AJAX	includes	code	that	causes
client	Web	browsers	to	cache	JavaScript	served	up	by	the
HTML_AJAX_Server	class	whenever	possible,	but	for	this	to	work,	the
content	needs	to	remain	consistent.	If	you	are	requesting	a
different	stub	class	on	each	page	load,	you'll	defeat	this	cache
even	though	only	a	small	part	of	the	requested	content	is
changing.

When	you	create	an	instance	of	the	stub	class,	you	pass	in	an
object	that	provides	the	callback	methods.	Each	method	has	its
own	callback	named	the	same	as	the	method	that	was	called.
These	callback	methods	take	a	single	parameter,	which	contains
the	results	sent	from	the	PHP	code.	The	callback	class	can	also
provide	custom	handlers	that	work	the	same	as	the	general
handlers	in	the	HTML_AJAX	class.	This	allows	handling	errors
and	loading	messages	specifically	for	this	class.	Listing	9-4
shows	an	example	that	uses	the	Test	class	provided	by
testServer.php.

Listing	9-4.	HTML_AJAXStubAJAX.html

1		<html>
2		<head>
3		<title>HTML_AJAX:	Stub	AJAX</title>
4		<script	type="text/javascript"
5						src="testServer.php?client=all"></script>

6		<script	type="text/javascript"
7						src="testServer.php?stub=Test"></script>
8
9		<style	type="text/css">
10	.target	{
11			width:	200px;
12				border:	solid	1px	black;
13	}
14	</style>
15
16	<script	type="text/javascript">
17	var	callback	=	{
18	serverTime:	function(result)	{
19						document.getElementById('target').innerHTML
20										=	'Server	Time:
'	+	result;
21	},
22	echoString:	function(result)	{
23						document.getElementById('target').innerHTML
24										=	'Echo	String:
'	+result;
25						}
26	}
27
28	var	remote	=	new	Test(callback);
29	</script>
30	</head>
31	<body>
32
33	<a	href="#"	onclick="remote.serverTime()"
34						>Show	Server	Time

35
36	<a	href="#"	onclick="remote.echoString('Test')"
37						>Echo	a	String

38
39	<div	class="target"	id="target"></div>
40
41	</body>
42	</html>

Listing	9-4	allows	you	to	run	the	serverTime	method,	which
displays	the	formatted	date	and	time	from	the	server,	and
echoString,	which	returns	the	passed	in	string	with	From	Server
prepended	to	it.	The	page	starts	with	a	basic	setup;	lines	56
include	the	JavaScript	client	library;	this	library	provides	the
automatically	generated	stub	class,	which	is	included	on	lines	6
and	7.	The	parameters	to	both	these	includes	follow	the	same
syntax,	so	we	could	have	used	the	all	keyword	instead	of	the
class	name	on	line	7.	You	can	also	uses	a	comma-separated	list

for	both	stub	and	client;	this	is	useful	for	including	a	specific	set
of	stub	classes	(stub=Test,OtherClass)	or	to	include	a	specific
portion	of	the	JavaScript	library	(client=main,util).	The	header
also	includes	a	small	amount	of	CSS	(lines	914)	used	to	style
the	element	to	which	we	will	be	outputting	messages.

Lines	1629	include	the	JavaScript	code	that	provides
functionality	to	this	page.	First	it	defines	a	setup	of	callback
functions	(lines	1726);	then	it	creates	an	instance	of	the	remote
stub	class	(line	28).	In	the	callback	definition,	we	define	one
method	for	each	method	on	the	stub	class.	Lines	1821	define
the	callback	for	the	serverTime	method;	this	code	outputs	the
results	of	serverTime()	to	the	target	DIV	prepended	with	a	small
message.	Lines	2226	do	the	same	tasks	for	the	echoString
method,	except	that	they	use	a	different	label.	Line	28	finishes
the	process	by	creating	an	instance	of	the	remote	stub	passing
in	the	callback	variable	defined	above	it.	If	no	callback	was
passed	into	the	constructor,	the	remote	class	would	still	work,
but	it	would	run	in	synchronous	mode,	returning	results	directly
and	locking	the	user	interface	until	the	request	was	done.

The	rest	of	the	listing	creates	the	user	interface	for	the	page,
creating	links	to	call	the	methods	on	the	remote	class.	Line	33
is	for	the	serverTime	method,	and	line	36	is	for	the	echoString
method.	Line	39	creates	the	output	DIV,	using	the	CSS	rule
defined	earlier	to	give	it	a	border.

9.1.4.	Using	HTML_AJAX_Action

HTML_AJAX_Action	is	a	PHP	class	that	allows	you	to	specify	the
JavaScript	callback	of	a	PHP	function	from	within	PHP	code.	On
the	JavaScript	side,	you	create	a	remote	stub	class,	but	instead
of	passing	in	an	object	containing	your	custom	callback
functions,	you	pass	in	an	empty	hash,	like	so:

var	remote	=	new	remoteClass({});

The	PHP	class	that	you	are	registering	for	remote	access	returns
an	instance	of	HTML_AJAX_Action	to	specify	what	the	JavaScript
should	do.	HTML_AJAX_Action	provides	the	ability	to	set	attributes
on	arbitrary	DOM	nodes,	create	new	DOM	nodes,	and	run	any
JavaScript	code.	When	working	with	DOM	attributes,	you	can
prepend	to	the	property,	append	to	it,	or	clear	it.	These
operations	are	most	useful	with	the	innerHTML	property,	but	they
can	also	be	useful	with	other	properties	that	can	take	multiple
values.	One	example	of	such	a	property	is	className.	Listing	9-
5	shows	an	example	of	a	PHP	class	that	returns	HTML_AJAX_Action
events.

Listing	9-5.	Action.class.php

1		<?php
2		require_once	'HTML/AJAX/Action.php';
3
4		class	Action	{
5				function	changeColor()	{
6						$haa	=	new	HTML_AJAX_Action();
7
8						//	pick	a	random	color
9						$r	=	rand(0,255);
10						$g	=	rand(0,255);
11						$b	=	rand(0,255);
12						$haa->assignAttr('target',
13														array('style'	=>	"color:	rgb($r,$g,$b)"));
14						return	$haa;
15				}
16
17						function	alert()	{
18						$haa	=	new	HTML_AJAX_Action();
19
20										$haa->insertAlert('This	is	a	message	from	PHP');
21										return	$haa;
22						}
23	}

Because	we	are	going	to	be	creating	HTML_AJAX_Action	objects,	we
need	to	start	out	by	requiring	the	needed	code;	this	is	done	on
line	2.	Then,	we	define	the	Action	class.	The	class	contains	two
methods.	The	first	method,	changeColor	(lines	515),	uses	the
assignAttr	method	to	set	the	style	attribute	of	the	target	node.
To	do	this,	we	create	a	new	HTML_AJAX_Action	instance	(line	6),
create	three	random	values	to	use	as	our	color	(lines	811)	and
then	run	assignAttr	(line	12).	The	first	parameter	to	assignAttr	is
the	ID	of	the	element	to	update;	the	second	parameter	is	an
associative	array	of	attributes	to	update.	The	key	of	the	array	is
the	attribute,	with	its	value	being	the	new	value	to	set.	You
could	include	multiple	attributes	to	set,	including	innerHTML.	To
finish	the	method,	we	return	the	HTML_AJAX_Action	instance	on
which	we've	been	working	(line	14).

The	second	method	alert	(lines	1722)	uses	HTML_AJAX_Action's
ability	to	inject	new	JavaScript	into	the	page.	On	line	18,	we
create	a	new	HTML_AJAX_Action	instance,	and	then	on	line	20,	we
call	its	insertAlert	method.	The	method	takes	a	single	parameter,
which	is	the	message	to	alert.	We	also	could	have	used	the
insertJavaScript	method	and	written	alert("message");	directly.	The
function	finishes	by	returning	the	HTML_AJAX_Action	instance	(line
21).	While	not	shown	here,	HTML_AJAX_Action	allows	you	to
combine	multiple	actions	in	one	method;	you	just	keep	calling
the	various	methods	on	the	instance	before	returning	it.	The
order	that	you	call	the	methods	will	be	the	order	that	the
actions	are	processed	in	the	browser.

9.1.5.	JavaScript	Behaviors

JavaScript	Behaviors	are	pieces	of	JavaScript	code	applied	to
DOM	elements	through	the	use	of	CSS	selectors.	They	are	an
effective	way	to	keep	HTML	code	free	from	hundreds	of	onclick
attributes.	HTML_AJAX	includes	behavior	support	through	its
inclusion	of	a	modified	version	of	Ben	Nolan's	Behavior	library.
Behavior	is	extremely	easy	to	use;	it	has	one	public	method,

Behavior.register,	which	takes	a	CSS	selector	as	its	first
parameter	and	a	JavaScript	function	that	is	run	on	each
matching	element.	These	registrations	can	take	place	in	the
header	of	the	HTML	document.	A	good	strategy	is	to	put	them
into	an	include	file	and	create	a	common	set	of	behaviors	to	use
throughout	a	site	just	like	you	would	for	CSS.	Listing	9-6	gives
an	example	that	shows	the	basics	of	JavaScript	behaviors.

Listing	9-6.	HTML_AJAXBehavior.html

1		<html>
2		<head>
3		<title>HTML_AJAX:	Behavior</title>
4		<script	type="text/javascript"
5				src="server.php?client=all"></script>
6
7		<script	type="text/javascript">
8		Behavior.register(
9						".alert",
10						function(element)	{
11										element.onclick	=	function()	{
12														alert('I	alert	on	click');
13										}
14						}
15);
16		Behavior.register(
17						".green",
18						function(element)	{

19										element.onmouseover	=	function()	{
20														element.style.color	=	'green';
21										}
22						}
23);
24	</script>
25	</head>
26	<body>
27	<p	class="alert">
28	I	am	a	paragraph	that	alerts	when	you	click	on	me
29	</p>
30	<p	class="	alert	green">
31	I	am	a	paragraph	that	alerts	on	click
32	and	turns	green	on	mouse	over
33	</p>
34	</body>
35	</html>

Behavior	is	provided	by	HTML_AJAX,	so	we	get	support	for	it
when	we	include	the	entire	HTML_AJAX	JavaScript	library;	this
is	done	on	lines	4	and	5.	On	lines	724,	we	define	two	JavaScript
behaviors.	The	first	behavior	(lines	815)	applies	to	the	CSS
selector	.alert,	which	is	any	element	with	a	class	of	alert.	On
the	page	load,	Behavior	passes	each	matching	class	to	the
processing	function	(lines	1014);	this	function	adds	an	onclick
event	handler,	which	alerts	a	message.	The	second	behavior
(lines	1623)	has	a	similar	selector;	this	time,	the	behavior
applies	to	the	green	class.	The	processing	function	for	it	(lines
1822)	adds	an	onmouseover	handler,	which	sets	the	color	of	the
element	to	green	(line	20).

The	rest	of	the	page	(lines	2635)	provides	some	sample	HTML
elements	to	which	to	apply	the	rules.	On	lines	2729,	we	define
a	paragraph	element	with	the	class	alert;	when	you	click	this
class,	it	will	alert	a	message	because	of	the	behavior	applied	to
elements	within	the	alert	class.	Lines	3033	define	another
paragraph.	This	paragraph	has	two	classes	(in	CSS,	multiple
classes	are	separated	by	spaces):	alert	and	green.	This	value	for
class	means	it	will	get	both	behaviors,	alerting	a	message	when
clicked	and	turning	green	on	a	mouse	over.

9.1.6.	JavaScript	Utility	Methods

HTML_AJAX	contains	a	number	of	JavaScript	utility	methods
located	in	the	HTML_AJAX_Util	class.	Some	of	these	methods,	such
as	quickPrint	and	varDump,	are	useful	for	debugging,	whereas
others	help	in	cross-browser	compatibility.	Some	of	the	most
widely	applicable	functions	are	shown	here.

9.1.6.1.	quickPrint

Method	signature:

HTML_AJAX_Util.quickPrint(input)

The	quickPrint	method	takes	an	input	variable	and	iterates	over
it,	printing	out	each	member	on	its	own	line	in	the	format	of
name:value.	This	is	useful	for	quickly	identifying	the	values	of	the
properties	of	an	object.	The	input	is	an	object	written	in	object
literal	notation.	Example	output	of	quickPrint	follows.

Input:	{property1:'one',innerHash:[4,5,6,7],anotherProp:true}

Output:
property1:one
innerHash:4,5,6,7
anotherProp:true

9.1.6.2.	varDump

Method	signature:

HTML_AJAX_Util.varDump(input)

varDump	takes	an	input	variable	and	recurses	over	it,	producing
an	output	similar	to	PHP's	var_dump	method,	including	type
information.	When	dealing	with	DOM	objects	or	other	variables
that	have	a	large	number	of	children,	you	will	get	an	extremely
large	output	from	varDump.	Example	output	of	varDump	follows:

Input:	{property1:'one',innerHash:[4,5,6,7],anotherProp:true}

Output:
object(Object)	(3)	{
		["property1"]=>
		string(3)	"one"
		["innerHash"]=>
		array(5)	{
				[0]=>
				number(4)
				[1]=>
				number(5)
				[2]=>
				number(6)
				[3]=>
				number(7)

				["______array"]=>
				string(11)	"______array"
		}
		["anotherProp"]=>
		boolean(true)
}

9.1.6.3.	getElementsByClassName

Method	signature:

HTML_AJAX_Util.getElementsByClassName('CSSClass',parent);

The	getElementByClassName	function	allows	you	to	get	an	array	of
the	DOM	elements	that	have	the	provided	CSS	class.	The
second	parameter,	parent,	is	optional;	if	specified,	the	search

happens	against	the	child	elements	of	the	parent	node.	If	it's
not	specified,	the	search	is	done	against	the	entire	document.
The	document	we're	searching	against	contains	the	following
HTML:

<p	class="test">Test	Nodes</p>
<div	class="test"></div>
</div>
<div	class="test2"></div>

To	find	the	nodes	in	the	document	with	a	class	of	test,	you
would	run	the	following:

var	nodes	=	HTML_AJAX_Util.getElementsByClassName('test');

This	gives	you	an	array	with	three	elements.	You	could	then
loop	over	this	array,	changing	the	style	of	the	elements	or
updating	their	content	using	innerHTML.

9.1.7.	PHP	Utility	Methods

HTML_AJAX	also	includes	a	class	of	PHP	utility	methods	that
help	perform	common	functions	related	to	JavaScript
generation.	The	methods	are	located	in	the	HTML_AJAX_Helper	class,
which	is	included	in	a	PHP	script	by	use	of	the	following:

require_once	'HTML/AJAX/Helper.php';

The	most	commonly	used	methods	are	jsonEncode	and
encloseInScript.	The	jsonEncode	method	takes	a	PHP	variable	and

returns	a	JSON	string,	which	can	be	outputted	directly	to
JavaScript,	like	so:

var	jsVar	=	<?php	echo	$helper->jsonEncode($phpVariable);	?>;

The	encloseInScript	method	takes	a	string	input,	encloses	it	in
JavaScript	script	tags,	and	then	returns	it.	It	is	commonly	used
when	generating	JavaScript	from	PHP,	which	would	be	like	this:

echo	$helper->encloseInScript($generateJavaScript);

9.1.8.	HTML_AJAX	Development	Tips

HTML_AJAX	can	be	used	out	of	the	box,	but	if	it	doesn't	meet
your	needs,	it	can	also	be	used	as	a	building	block	for	your	own
custom	AJAX	library.	The	following	are	some	tips	to	keep	in
mind	while	using	HTML_AJAX:

The	HTML_AJAX	wiki	(http://htmlajax.org)	contains	more
information	about	HTML_AJAX,	including	a	mailing	list	by
which	you	can	ask	questions	of	its	developers.

If	you	register	lots	of	classes	with	HTML_AJAX_Server,	you	can
use	its	initMethod	functionality	to	include	classes	only	as	they
are	requested,	decreasing	the	amount	of	PHP	processing
done	per	request.

HTML_AJAX	turns	native	data	types	into	strings	using
serialization	classes;	this	process	is	customizable,	so	if
JSON	doesn't	meet	your	needs,	you	can	replace	it	with
whatever	does.

http://htmlajax.org

	

9.2.	Summary

HTML_AJAX	provides	easy	communication	between	PHP	server-
side	code	and	JavaScript	code	on	the	browser.	This	allows	you
to	focus	on	building	backend	logic	or	a	frontend	user	interface
instead	of	worrying	about	the	communication	between	them.
HTML_AJAX	also	includes	helper	classes	for	both	PHP	and
JavaScript	that	help	simplify	the	AJAX	development	process.
HTML_AJAX's	main	features	include	the	following:

Easy	movement	of	PHP	data	to	JavaScript	and	vice	versa

Export	of	PHP	APs	to	JavaScript

A	simple	JavaScript	API	for	making	standard	AJAX	requests

The	ability	to	perform	basic	DOM	interactions	without
writing	JavaScript

JavaScript	Behaviors	for	tying	JavaScript	code	to	HTML
without	populating	the	HTML	with	extra	markup

JavaScript	helper	methods	for	JavaScript	debugging

PHP	helper	methods	for	generating	JavaScript

In	Chapters	1012,	we	will	use	the	libraries	shown	in	Chapters	8
and	9	in	real-life	cases.	As	we	look	at	the	use	cases,	will	see
some	of	the	solutions	that	AJAX	can	provide	to	common	Web
development	problems.	We	also	will	see	how	the	choice	of
library	affects	the	implementation	of	those	solutions.

	

Chapter	10.	Speeding	Up	Data	Display
In	this	chapter

10.1	Overview	of	the	Sun	Rise	and	Set	Data	Viewer page	218

10.2	Building	the	Non-AJAX	Version	of	the	Sun	Rise	and
Set	Viewer page	220

10.3	Problems	with	the	Non-AJAX	Viewer page	232

10.4	Improving	Viewing	with	AJAX page	234

10.5	Summary page	247

A	common	Web	development	task	is	showing	large	data	sets.	To
navigate	through	the	dataset,	the	user	is	forced	to	reload	the
entire	Web	page,	which	makes	data	browsing	a	slow	process.
The	example	we	will	build	in	this	chapter	is	a	graph	of	the	time
the	sun	rises	and	sets	for	different	cities.	It	will	also	include	a
table	showing	the	data	from	which	it's	built;	this	data	browsing
is	especially	handicapped	by	the	constant	reload	process.	The
actual	graph	generation	is	a	slow	process,	and	because	it	shows
data	for	the	entire	year,	it	doesn't	need	to	be	updated	as	you
look	through	the	data	month	by	month.	In	this	chapter,	I	will
show	how	you	can	use	the	AJAX	technique	of	subpages	to
greatly	speed	up	data	browsing.

10.1.	Overview	of	the	Sun	Rise	and	Set	Data
Viewer

In	this	chapter,	we	look	at	a	specific	case	that	illustrates	the
general	problem	of	slow	data	display.	Our	case	is	a	small	PHP
and	HTML	site	that	displays	the	data	for	the	time	that	the	sun
rises	and	sets	in	various	cities.	The	page	includes	a	graph	of	a
full	year	of	this	data,	and	it	includes	a	table	that	shows	one
month	of	the	data.	The	overall	layout	of	the	site	is	shown	in
Figure	10-1.

Many	times,	when	you	display	large	amounts	of	data	in	a	table,
you	use	a	user	interface	(UI)	element	called	a	pager.	A	simple
example	of	this	is	shown	in	Figure	10-2.	This	sun	rise	and	set
viewer	uses	a	simpler	version	of	this	because	the	data	can
easily	be	divided	into	months.	The	pager	for	the	viewer	(see
Figure	10-3)	divides	the	data	set	by	month	and	puts	all	the
options	in	a	drop-down	widget	because	the	number	of	possible
pages	is	only	12.

Figure	10-1.	Basic	site	interface

[View	full	size	image]

Figure	10-2.	Example	pager

[View	full	size	image]

Figure	10-3.	Month	selector

[View	full	size	image]

10.2.	Building	the	Non-AJAX	Version	of	the	Sun
Rise	and	Set	Viewer

This	use	case	starts	by	building	a	standard	HTML	version,	which
means	we're	using	AJAX	as	an	enhancement	at	the	end	of	the
development	process.	This	is	a	common	AJAX	approach,	and	it
follows	the	basic	pattern	of	building	a	site,	finding	its	problem
areas,	and	then	updating	those	problem	areas	with	AJAX	to
improve	the	user	experience.	This	approach	can	have	some
disadvantages,	especially	on	complex	multipage	sites,	because
adding	in	AJAX	might	cause	workflows	to	be	changed,	causing
large	parts	of	the	site	to	be	updated.	However,	it	does	work	well
if	you	focus	on	specific	tasks	that	can	be	upgraded.

This	example	stores	its	data	in	a	MySQL	database,	so	we	need
to	start	by	setting	it	up.	If	you're	not	used	to	using	a	database
with	PHP,	don't	worry;	the	AJAX	changes	are	usable	with	any
server-side	language.	PHP	just	provides	the	needed	code	to
have	a	fully	working	example.	First,	you	need	to	create	a
database	named	rise_set.	This	can	be	accomplished	in	an	admin
tool	such	as	phpMyAdmin	or	by	running	create	database	rise_set;.
Once	you	have	the	database	created,	you	need	to	create	the
table	in	which	to	store	the	data.	To	do	this,	load	the	SQL	that	is
in	Listing	10-1.

Listing	10-1.	Schema.sql

CREATE	TABLE	`rise_set`	(
		`city`	varchar(150)	NOT	NULL	default	'',
		`day`	date	NOT	NULL	default	'0000-00-00',
		`rise`	varchar(4)	NOT	NULL	default	'',
		`set`	varchar(4)	NOT	NULL	default	'',
		PRIMARY	KEY		(`city`,`day`)
)	ENGINE=MyISAM	DEFAULT	CHARSET=utf8;

After	the	table	is	set	up,	you're	ready	to	import	some	sun	rise
and	sun	set	data.	The	data	has	been	gathered	from	the	U.S.
Naval	Observatory	Web	site
(http://aa.usno.navy.mil/data/docs/RS_OneYear.html).	Data	for
two	example	cities	has	already	been	prepared	and	can	be	used
by	running	the	SQL	located	in	data/phoenix.sql	and
data/sturgis.sql.	The	script	that	generated	these	SQL	files
(data/dataToSql.php)	is	also	provided,	and	you	can	use	it	to
prepare	data	for	other	cities.	First,	get	a	dataset	for	a	city	by
filling	out	the	form	at	the	U.S.	Naval	Observatory	Web	site,	and
then	copy	the	data	into	a	text	file.	(You	want	just	the	data,	not
HTML	tags).	Then	you	can	run	the	dataToSql.php	script	over	the
file	and	redirect	its	output	to	an	SQL	file,	which	can	then	be
loaded	into	your	database	server.	Here's	an	example	command
loading	in	data	for	London,	England:

php	DataToSql.php	london.txt	>	london.sql
mysql	-u	root	rise_set	<	london.sql

Now	that	we've	done	the	prep	work,	let's	look	at	the	overall
design	of	this	site.	It	consists	of	three	parts:

The	SunRiseSet	class	grabs	data	from	the	database	and
performs	any	needed	formatting.

The	Graph.php	page	generates	the	graph	using	data	from	the
SunRiseSet	class.

The	Standard.php	page	builds	the	interface	and	displays	a
month	of	data	at	a	time	in	a	table.

Each	part	will	get	more	coverage	in	the	following	sections,	but
the	important	part	is	Standard.php	because	it	creates	the	HTML
user	interface	that	you	will	enhance	with	AJAX.

http://aa.usno.navy.mil/data/docs/RS_OneYear.html

10.2.1.	SunRiseSet	Class

The	SunRiseSet	class	is	a	simple	class	that	connects	to	the
database	and	provides	methods	for	the	other	pages	to	access
the	data	that's	been	loaded	into	the	database.	Because	all
database	access	takes	place	through	this	class,	you	can	easily
update	it	to	support	a	different	back	end.	If	you	want	to	run	the
examples	on	your	own	server,	you	may	need	to	update	the
database	connection	information;	these	variables	are	located	on
lines	47	of	SunRiseSet.class.php.

The	SunRiseSet	class,	shown	in	Listing	10-2,	contains	two	setter
methods	that	are	used	to	configure	the	user-selectable
components	of	the	data	access.	The	setMonth	method	allows	you
to	set	the	month	of	data	that	will	be	returned	by	the	monthsData
method,	and	it	is	used	by	the	table	that	is	rendering	code.	The
setCities	method	allows	you	to	set	the	city	to	which	the	data	will
be	limited.	Along	with	these	setters,	five	data	access	methods
are	provided:	possibleCities(),	monthList(),	monthsData(),	graphData(),
and	minRise().	More	details	about	these	methods	are	shown	later
as	we	walk	through	the	code	of	the	class.	The	class	also
contains	a	number	of	methods	for	querying	the	database;	these
internal	methods	are	prefixed	with	an	underscore	(_)	to	show
that	they	shouldn't	be	used	outside	of	this	class.

Listing	10-2.	SunRiseSet.class.php

1		<?php
2		//	manage	requesting	data	from	a	mysql	database
3
4		$dbHost	=	'localhost';
5		$dbUser	=	'root';
6		$dbPass	=	'';
7		$dbName	=	'rise_set';
8
9		class	SunRiseSet	{
10				var	$_conn;
11				var	$month;

12				var	$year	=	'2006';
13				var	$cities	=	array();
14				var	$citiesIn	=	'';
15
16				function	setMonth($month)	{
17						$this->month	=	$month;
18				}
19
20				function	setCities($cities)	{
21						$this->cities	=	$cities;
22						foreach($cities	as	$key	=>	$city)	{
23								$cities[$key]	=
24																		"'".
25																		mysql_real_escape_string($city)
26																		.	"'";
27						}
28						$this->citiesIn	=	implode(',',$cities);
29				}
30
31				function	possibleCities()	{
32						$sql	=	"select
33																						distinct	city
34																						from	rise_set
35																						order	by	city
36																		";
37						return	$this->_querySingleArray($sql);
38				}
39
40				function	monthList()	{
41						$ret	=	array();
42						for($i	=	1;	$i	<	13;	$i++)	{
43								$ret[$i]	=	date('F',mktime(1,1,1,$i));
44						}
45						return	$ret;
46		}
47

The	class	starts	with	some	basic	setup.	Lines	47	contain	the
basic	database	connection	parameters.	$dbHost	contains	the	DNS
name	or	IP	address	of	the	MySql	server,	$dbUser	contains	the
username	with	which	to	connect,	$dbPass	contains	the	password,
and	$dbName	contains	the	name	of	the	database.	After	that,	we
start	the	class	definition	(line	9).	Inside	the	class,	we	define	five
properties	(lines	1014),	which	the	methods	of	the	class	use	to
hold	settings	and	shared	variables.	$_conn	holds	the	database
connection	resource	and	is	set	by	the	_connect	method	(line	95)
and	used	by	the	_query	method	(line	112).	$month	holds	the

selected	month	and	is	set	by	the	setMonth	method	on	line	16;
$year	holds	the	current	year	and	is	simply	set	to	2006.	$cities
contains	an	array	of	all	the	selected	cities;	it	is	set	by	the
setCities	method	on	line	20.	Note	that	$citiesIn	also	contains	a
list	of	selected	cities,	this	time	formatted	to	be	used	in	an	SQL
in	clause.

Lines	1646	contain	the	two	setter	methods	and	several	basic
data	access	methods.	The	method	setMonth	(lines	1618)	takes	a
single	parameter,	the	integer	value	of	the	selected	month,	and
sets	it	to	$this->month.	The	setCities	method	(lines	2029)
performs	a	similar	action,	only	this	time,	it	takes	an	array	of
cities.	It	also	builds	the	citiesIn	method.	This	method	takes	an
array	and	turns	it	into	a	quoted	comma-separated	string.	If	the
array	had	two	values,	one	for	Phoenix	and	one	for	Sturgis,	it
would	equal	'PHOENIX,	ARIZONA','STURGIS,MICHIGAN'.

The	possibleCities	method	(lines	3138)	returns	an	array	that
contains	an	entry	for	each	city	in	the	database.	This	array	is
used	to	build	the	interface	for	selecting	cities.	The	list	is	built
from	the	query	"select	distinct	city	from	rise_set",	which	returns
one	row	for	each	city	in	the	rise_set	table.	The	helper	function
_querySingleArray	is	used	on	line	37	to	return	the	values	from	this
query.	The	monthList	function	(lines	4047)	creates	an	associative
array	containing	12	months;	the	key	of	the	array	contains	the
values	112,	with	their	matching	values	being	generated	by	the
PHP	date	function.	You	can	see	sample	output	from	these
functions	by	running	the	SunRiseSetDemo.php	example	page.	Listing
10-3	continues	the	SunRiseSet	class.

Listing	10-3.	SunRiseSet.class.php	Continued

48				function	monthsData()	{
49						$sql	=	"select	*
50								from
51										rise_set
52								where

53										`day`	between
54										'{$this->year}-{$this->month}-1'	and
55										'{$this->year}-{$this->month}-31'
56										and	city	in($this->citiesIn)
57								order	by
58										`day`,	city";
59
60						$data	=	$this->_queryAll($sql);
61
62						$ret	=	array();
63						$i	=	0;
64						$currentDay	=	$data[0]['day'];
65						foreach($data	as	$row)	{
66								if	($row['day']	!=	$currentDay)	{
67										$currentDay	=	$row['day'];
68											$i++;
69								}
70								$key	=	array_search($row['city'],
71																						$this->cities);
72								$ret[$i][$key]	=	$row;
73						}
74						return	$ret;
75	}
76

Lines	4876	define	the	monthsData	method.	This	method	queries
the	database	and	returns	an	array	of	data	containing	one	month
of	rise	and	set	data	for	the	selected	cities.	The	cities	are	chosen
using	the	values	set	by	setCities,	and	the	month	is	chosen	by
the	value	set	by	setMonth	along	with	the	$this->year	property.	The
SQL	query	is	built	on	lines	4958.	This	query	is	then	executed
using	the	_queryAll	helper	method	(line	60).	This	returns	a
multidimensional	array,	with	the	first	level	being	the	row	index
and	the	second	level	being	the	values	of	the	row	in	an
associative	array.	We	then	loop	through	the	results	(lines	6574),
which	builds	an	array	one	row	per	day,	with	subentries	under
that	row	for	each	city.	Listing	10-4	shows	an	excerpt	of	that
output.

Listing	10-4.	Sample	Output	of	monthsData()

[0]	=>	Array
								(
												[0]	=>	Array
																(
																				[city]	=>	PHOENIX,	ARIZONA
																				[day]	=>	2006-01-01
																				[rise]	=>	0733
																				[set]	=>	1732

)

												[1]	=>	Array
																(
																				[city]	=>	STURGIS,	MICHIGAN
																				[day]	=>	2006-01-01
																				[rise]	=>	0809
																				[set]	=>	1722
)
)

Listing	10-5.	SunRiseSet.class.php	Continued

77	function	graphData($city)	{
78						$sql	=	"select	*	from	rise_set
79						where	city	=	'".mysql_real_escape_string($city)."'
80						order	by	`day`	";
81
82						return	$this->_queryAll($sql);
83				}
84
85				function	minRise()	{
86						$sql	=	"select
87																		min(rise)	mr
88																		from	rise_set
89																		where	city	in($this->citiesIn)
90														";
91						$data	=	$this->_queryAll($sql);
92						return	$data[0]['mr'];
93	}
94

Lines	7793	define	two	functions	that	are	used	by	Graph.php	to
load	its	data.	The	Image_Graph	graphing	engine	loads	its	data
based	on	the	concept	of	data	sets,	so	instead	of	grabbing	a

combined	array,	like	the	month	data	case,	we	return	the	data
one	city	at	a	time.	The	graphData	method	on	lines	7783
accomplishes	this	process	by	building	a	query	limited	to	the
passed-in	city	and	then	returning	all	its	results	using	the
_queryAll	helper	function.

The	minRise	method	defined	on	lines	8593	is	used	by	the
graphing	code	to	set	the	bottom	value	on	its	Y	axis.	Because
this	minimum	SunRise	value	needs	to	take	into	account	all	the
cities	being	displayed,	the	query	looks	for	the	minimum	rise
value	where	the	city	is	among	the	currently	selected	cities	in
the	$this->citiesIn	list.	A	single	time	value	is	returned	from	the
function.

Listing	10-6.	SunRiseSet.class.php	Continued

95					function	_connect()	{
96							if	($this->_conn)	{
97									return	true;
98							}
99							global	$dbHost,	$dbUser,	$dbPass,	$dbName;
100
101						$this->_conn	=	mysql_connect($dbHost,
102																										$dbUser,$dbPass);
103
104						if	(!$this->_conn)	{
105								die(mysql_error());
106						}
107
108						mysql_select_db($dbName,$this->_conn);
109				}
110
111
112				function	_query($sql)	{
113						$this->_connect();
114						$res	=	mysql_query($sql,$this->_conn);
115						if	(!$res)	{
116								die(mysql_error($this->_conn));
117						}
118						return	$res;
119				}
120
121				function	_queryAll($sql)	{
122						$res	=	$this->_query($sql);
123

124						$ret	=	array();
125						while($row	=	mysql_fetch_assoc($res))	{
126								$ret[]	=	$row;
127						}
128						return	$ret;
129				}
130
131				function	_querySingleArray($sql)	{
132						$res	=	$this->_query($sql);
133
134						$ret	=	array();
135						while($row	=	mysql_fetch_row($res))	{
136								$ret[]	=	$row[0];
137						}
138						return	$ret;
139				}
140		}

The	rest	of	the	class	(lines	95140)	defines	the	database
connectivity	and	utility	methods.	They	provide	a	basic	wrapper
around	the	MySql	database	functions.	The	_connect	method	on
lines	95109	connects	to	the	database.	If	there	is	a	problem,	it
stops	script	execution	and	shows	an	error	message.	The	_query
method	(lines	112119)	executes	an	SQL	query	and	does	basic
error	handling.	Lines	121129	define	the	_queryAll	method,	which
uses	_query	to	execute	an	SQL	query	and	then	loops	over	its
results,	grabbing	an	associative	array	for	each	row.	The
_querySingleArray	method	(lines	131138)	is	similar	to	_queryAll.
The	only	difference	is	that	instead	of	returning	an	associative
array	for	each	row;	it	uses	the	value	of	only	the	first	column	for
each	row.

10.2.2.	Graph.php

The	graph	on	the	viewer	is	generated	using	a	PEAR	library
called	Image_Graph	(http://pear.php.net/Image_Graph).	To	run
the	examples	locally,	you	need	to	install	the	library,	which	can
be	accomplished	by	running	pear	install	Image_Graphalpha.	I	won't
walk	through	all	the	graphing	code,	because	it's	not	necessary

http://pear.php.net/Image_Graph

to	understand	it	to	understand	how	the	example	works.	The
graph	is	generated	by	the	Graph.php	script,	which	will	be	used	as
the	URL	for	an	image	on	the	HTML	page	in	which	it's	displayed.
The	graph	takes	the	GET	parameter	of	cities	and	uses	it	to	select
which	cities	will	appear	on	the	graph.	The	graphing	period	is
one	year,	meaning	the	graph	uses	365	points	per	city.	This	large
number	of	points	causes	much	of	the	slowdown	in	the	graphing
processes,	but	dynamic	image	generation	is	usually	a	slow	area
in	any	Web	site,	no	matter	how	much	data	it's	working	with.
This	slow	speed	is	due	to	the	complexity	of	the	image
generation	process.

In	this	example,	the	slow	processing	point	is	this	graph,	but	this
slow	processing	could	be	replaced	by	any	number	of	other
problems.	On	another	site,	you	may	have	some	database
queries	that	are	slow	and	impossible	to	speed	up,	or	you	might
have	some	other	visualization	with	lots	of	processing	overhead.
In	many	cases,	page	loads	can	be	slow	simply	due	to	the	large
amounts	of	information	and	the	formatting	of	the	HTML	that	is
being	used.	In	other	cases,	the	page	performs	fine,	but	the	user
experience	isn't	great	due	to	the	constant	reload	process	that
browsing	through	data	causes.

10.2.3.	Standard.php

Standard.php	generates	the	HTML	that	makes	up	our	sun	rise	and
set	viewer.	This	page	contains	a	form	that	is	used	to	change
which	cities	are	displayed	and	which	month	of	data	the	table
shows.	It	also	links	in	the	graph	and	generates	the	data	table.
This	page	contains	a	minimal	amount	of	PHP	code,	most	of	it
being	foreach	loops	to	build	the	options	for	the	form	or	the	data
in	the	table.	This	separation	of	the	bulk	of	the	logic	from	the
building	of	the	HTML	is	important	because	it	will	make	the
creation	of	an	AJAX	version	much	easier.	Listing	10-7	presents
the	code.

Listing	10-7.	Standard.php

1		<?php
2		//	non-AJAX	version	of	a	sun	rise/set	viewer
3
4		//	include	data	class
5		require_once	'SunRiseSet.class.php';
6		$data	=	new	SunRiseSet();
7
8		//	defaults
9		$month	=	1;
10	$cities	=	array('PHOENIX,	ARIZONA');
11
12	//	load	options
13	if	(isset($_GET['month']))	{
14				$month	=	(int)$_GET['month'];
15	}
16
17	if	(isset($_GET['cities']))	{
18				$cities	=	(array)$_GET['cities'];
19	}
20
21	//	Set	the	selected	options	on	the	data	class
22	$data->setMonth($month);
23	$data->setCities($cities);
24
25	//	build	the	graph	query	string
26	$graphOptions	=	'';
27	foreach($cities	as	$city)	{
28				$graphOptions	.=	"cities[]=$city&";
29	}
30
31	$action	=	htmlentities($_SERVER['PHP_SELF']);
32	$months	=	$data->monthList();
33	?>
34	<html>
35	<head>
36				<title>Sun	Rise	and	Set	Viewer</title>
37	</head>
38	<body>
39	<div	style="float:left;	width:	610px">
40	<img	src="Graph.php?<?php	echo	$graphOptions;	?>"
41				width="600"	height="400"	alt="sun	rise	and	set">

42
43	<form	action="<?php	echo	$action;	?>">
44	<fieldset>
45				<legend>Cities</legend>
46				<?php	foreach($data->possibleCities()
47						as	$city)	{	?>
48				<label><?php	echo	$city;	?>
49						<input	type="checkbox"	name="cities[]"

50						value="<?php	echo	$city;	?>"
51						<?php	if(in_array($city,$cities))	{
52								echo	"CHECKED";	}	?>
53				</label>
54
55				<?php	}	?>
56		</fieldset>
57		<label>View	Month:
58		<select	name="month">
59		<?php	foreach($months	as	$key	=>	$m)	{	?>
60				<option	value="<?php	echo	$key;?>"
61				<?php	if($key	==	$month)	{
62						echo	'SELECTED';	}	?>>
63						<?php	echo	$m;	?></option>
64		<?php	}	?>
65		</select>
66		</label>
67		<input	type="submit"	value="Update	View">
68	</form>
69	</div>

The	first	33	lines	of	Standard.php	do	the	basic	PHP	setup.	On	line
5,	we	require	the	SunRiseSet	class	that	gives	us	access	to	the
data	in	the	database.	On	line	6,	we	create	an	instance	of	it,	and
then	we	start	the	process	of	setting	its	defaults.	First,	we	set
some	default	values	to	use	throughout	the	page	if	nothing	is
passed	in	by	the	form	(lines	910);	then	we	check	for	month	and
cities	being	passed	in	by	the	form	and,	if	so,	overwrite	our
default	values	with	those	from	the	form.	On	lines	2223,	we	use
those	values	and	set	the	month	and	cities	on	the	SunRiseSet
instance.	To	finish	up	the	setup	portion,	we	format	the	$cities
variable	so	that	it	can	be	passed	in	a	query	string	(lines	2629),
set	the	URL	from	the	form	to	which	to	submit	(line	31),	and	put
our	list	of	months	into	the	variable	$months	so	that	it	can	be	used
later	on.

Lines	3468	add	the	graph	and	the	form	to	the	page.	These
elements	float	to	the	left,	so	as	long	as	you	have	a	wide	enough
screen,	you'll	be	able	to	see	the	data	table	next	to	them	on	the
right.	The	graph	is	added	to	the	page	on	lines	4041.	We	add
$graphOptions	to	its	query	string,	which	lets	us	set	the	cities	the
graph	will	display.	On	lines	4368,	we	build	the	form	that

provides	the	viewing	options	for	this	page.	The	page	submits
using	GET	to	the	$action	variable,	which	we	set	to	the	current
page	on	line	31.

The	first	element	in	the	form	is	a	fieldset	that	contains	a
checkbox	for	each	possible	city	(lines	4456).	We	get	the	list	of
options	using	the	possibleCities	method	(line	46)	and	loop	over
the	array;	in	each	iteration,	a	checkbox	element	is	created	(lines
4953).	Line	48	outputs	the	name	of	the	city	to	use	as	a	label,
and	line	50	outputs	$city	again	(this	time	as	the	value	of	the
checkbox).	Lines	5152	finish	up	the	output	for	the	checkboxes,
checking	whether	the	city	is	currently	selected;	if	it	is,	it
outputs	CHECKED.

The	next	section	of	the	form	builds	the	selected	drop-down
element	for	picking	which	month	to	view.	The	element	is	started
on	line	58	and	is	named	month.	Lines	5964	contain	a	loop	that
produces	the	drop-down's	option	elements.	The	values	from
those	options	are	pulled	out	of	the	$months	variable	that	was	set
on	line	32.	Lines	6162	check	to	see	if	the	current	element	is
selected	and	if	it	is,	outputs	SELECTED.	The	form	finishes	up	with	a
Submit	button	on	line	67.

Listing	10-8.	Standard.php	Continued

70		<div>
71		<?php	echo	$months[$month];	?>
72		<table	cellpadding="2"	cellspacing="0"
73				border="1">
74		<thead>
75				<tr>
76						<th	rowspan="2">Day</th>
77				<?php	foreach($cities	as	$city)	{	?>
78						<th	colspan="2"><?php	echo	$city;	?></th>
79				<?php	}	?>
80				</tr>
81				<tr>
82				<?php	foreach($cities	as	$city)	{	?>
83						<th>Rise</th>
84						<th>Set</th>
85				<?php	}	?>

86				</tr>
87		</thead>
88		<tbody>
89		<?php	foreach($data->monthsData()	as	$row)	{	?>
90				<tr>
91						<td><?php	echo	$row[0]['day'];	?></td>
92				<?php	foreach($row	as	$city)	{	?>
93						<td><?php	echo	$city['rise'];	?></td>
94						<td><?php	echo	$city['set'];	?></td>
95				<?php	}	?>
96				</tr>
97		<?php	}	?>
98		</tbody>
99		</table>
100
101	</div>
102	</body>
103	</html>

The	page	finishes	by	producing	the	data	table.	On	line	71,	a
label	for	the	table	is	created,	showing	the	currently	selected
month.	Then	on	line	72,	the	actual	table	starts;	the	table	is
given	some	basic	formatting,	some	cell	padding,	and	a	border
of	1	pixel.	Then	we	move	on	to	its	dynamic	aspects.	First,	we
create	the	header	for	the	table	(lines	7487).	The	header	has
two	rows:	The	first	displays	the	name	of	each	selected	city,	and
the	second	subdivides	each	city	column	into	a	rise	and	set
column.	We	create	the	list	of	cities	in	the	foreach	loop	on	lines
7779,	looping	over	the	$cities	variable,	which	contains	our
currently	selected	cities,	and	outputting	each	one	with	a	colspan
of	2.	We	then	loop	over	the	same	variable	again	(lines	8285);
this	time,	two	cells	are	outputted:	one	for	rise	and	one	for	set.

The	table	is	finished	up	by	a	loop	on	lines	8997	that	generates
the	table	body.	We	get	the	data	for	this	loop	from	the	monthsData
method	(line	89);	if	you	look	back	at	the	explanation	of
monthsData	shown	in	Listing	10-3,	you'll	remember	that	it	contains
a	subarray	for	each	city.	Thus,	we	start	off	a	row	by	outputting
a	cell	for	the	date	(line	91).	We	then	read	the	date	from	the
first	city's	data,	knowing	that	all	the	dates	are	the	same.	Then
we	loop	over	the	$cities	arrays,	printing	out	rise	and	set	times

(lines	9394)	for	each.	This	completes	the	page,	giving	us	a
graph,	a	form,	and	a	data	table.

	

10.3.	Problems	with	the	Non-AJAX	Viewer

Now	that	we've	implemented	the	viewer,	we	can	see	that	it	has
a	number	of	problems.	The	first	problem	is	performance.
Generating	the	graphespecially	for	a	large	number	of	citiescan
take	three	to	five	seconds.	This	is	further	aggravated	by	the	fact
that	obtaining	a	new	set	of	monthly	data	takes	a	page	reload.	It
might	be	possible	to	eliminate	some	of	this	performance	penalty
though	caching	or	other	graphing	speedups,	but	that's	not	a
reusable	solution,	and	if	we	would	add	any	more	interactive
features,	such	as	highlighting	a	day	on	the	graph,	the	caching
would	be	unworkable.

The	viewer	also	gives	poor	user	feedback	because	of	how	the
browser	handles	loading	the	slow	images.	In	Internet	Explorer,
the	user	will	see	an	empty	box	where	the	image	will	be	shown
(see	Figure	10-4),	whereas	in	Firefox,	the	old	image	will	be
shown	until	the	reload	finishes.	Firefox's	behavior	around	image
loading	(see	Figure	10-5)	is	especially	problematic	because	it
makes	the	page	look	like	it's	done	loading	even	though	the
cursor	still	has	a	loading	icon	and	is	waiting	for	the	graph	to
finish	loading.

Figure	10-4.	Internet	Explorer's	slow	image-
loading	behavior

[View	full	size	image]

Figure	10-5.	Firefox's	slow	image-loading
behavior

[View	full	size	image]

	

10.4.	Improving	Viewing	with	AJAX

Because	the	biggest	problem	with	the	viewer	is	that	it's
reloading	content	that's	not	changing,	we	want	to	look	at	AJAX
patterns	that	we	can	use	to	avoid	this.	We	have	a	number	of
options,	but	they	all	end	up	having	the	same	effect:	Instead	of
treating	the	viewer	as	one	monolithic	page,	we	get	to	treat	it	as
a	number	of	sub-pages.	This	allows	us	to	load	data	for	each
section	independently,	which	will	keep	us	from	needing	to
reload	the	slow	graph	when	we	just	want	to	view	the	next
month's	data.	This	independent	loading	gives	us	a	speed
advantage	over	a	monolithic	approach.	We	end	up	with	three
different	sections,	one	for	each	of	the	main	elements.	(These
sections	are	shown	in	Figure	10-6.)	Each	section	can	be
updated	independently	from	the	others,	and	in	this	case,	input
from	the	form	section	controls	what	the	other	sections	do.	Any
change	to	the	form,	either	in	the	selection	of	a	different	city	or
in	the	changing	of	the	month,	causes	the	data	section	to
update.	The	graph	will	only	be	updated	when	the	selected	cities
are	changed.

Figure	10-6.	Viewer	with	sections	labeled

[View	full	size	image]

Sectioning	a	page	is	an	easy	AJAX	pattern	to	implement,	but	it's
not	without	its	disadvantages.	The	biggest	disadvantage	is	that
the	actions	you	perform	are	no	longer	directly	bookmarkable.
You	can	add	a	bookmark	link	that	always	contains	the	URL	to
get	to	your	current	view,	but	users	might	not	recognize	it	and
will	just	bookmark	the	page	like	normal,	getting	its	default
value	instead	of	the	current	one.	There	are	some	solutions	to
this	problem.	They	involve	using	the	fragment	part	of	the	URL
(the	value	after	the	#),	but	they	suffer	from	browser
compatibility	problems	and	complex	programming	models.	The
fragment	solutions	also	have	a	hard	time	fixing	both	the	Back
and	Forward	buttons	and	booking	at	the	same	time.	Eventually,
there	will	be	an	easy	solution	to	the	bookmark	problem,	but	it's
not	ready	today.

10.4.1.	Viewer	HTML	Updated	for	AJAX

To	implement	our	AJAX	actions,	we	start	by	adding	a	submit
handler	to	the	form:

<form	action="<?php	echo	$action;	?>"	onsubmit="return	updatePage(this)"	id="form">

This	function	returns	false,	canceling	the	normal	form
submission	process.	Now	that	we	have	client-side	code	in
control	of	the	submission	process,	we	can	figure	out	what	needs
to	be	updated.	This	means	we	need	some	code	to	always
update	the	data	section	and	to	update	the	graph	section	only
when	the	selected	cities	have	changed.	Using	HTML_AJAX,
updating	the	data	section	is	simple,	as	shown	here:

var	queryString	=	HTML_AJAX.formEncode(form);
var	callback	=	function(result)	{

				document.getElementById('table').innerHTML	=	result;

}
HTML_AJAX.grab('ajaxTable.php?'+queryString,callback);

We	start	the	process	by	using	the	HTML_AJAX.formEncode	method	to
turn	the	values	of	the	form	into	a	queryString.	This	string	is	the
same	one	that	you	can	see	after	the	"?"	in	the	URL	when	doing
a	normal	form	submission.	Then,	we	build	a	callback	function
that	will	be	called	when	the	HTTP	request	to	the	server	is
complete.	We	then	call	HTML_AJAX.grab	against	the	AjaxTable.php
page,	passing	in	the	queryString	we	built	from	the	form	and	the
callback	we	just	built.	The	new	PHP	script	will	be	explained	later
in	section	10.4.2	(Viewer	PHP	Script	Updated	for	AJAX),	but	it
follows	the	same	subpage	split,	generating	just	the	data	table
section.

Figuring	out	if	the	currently	selected	cities	have	changed	is
more	difficult.	The	basis	of	this	process	is	a	function	that	looks
at	the	form	and	creates	a	hash	of	its	current	check	status.	This
function	will	run	on	page	load	and	then	again	each	time	we
detect	a	change	so	that	we	have	a	value	to	compare	against	the
next	time.	The	code	for	this	function	is	shown	here:

function	updateCurrentCities()	{
		var	els	=	document.getElementById('form').elements;
		for(var	i	=	0;	i	<	els.length;	i++)	{
			if	(els[i].name	==	'cities[]')	{
					cities[els[i].value]	=	els[i].checked;
				}
		}
}

The	cities	variable	is	defined	outside	of	this	function	as	var
cities	=	{};,	which	puts	it	in	the	global	scope	and	lets	other
functions	use	it.	The	updateCurrentCities	function	works	by	first
getting	all	the	elements	of	the	form	and	then	looping	over	them
to	look	for	cities	elements.	Because	each	checkbox	has	the
same	name	(cities[]),	we	can	use	those	elements	that	are
checkboxes	for	city	selection;	if	the	elements	had	different
names,	an	easy	solution	would	be	to	give	them	all	the	same
CSS	class.	The	value	of	each	checkbox	is	the	name	of	the	city,
so	we	use	that	as	the	key	in	the	cities	hash	and	then	store	if
the	box	is	checked	as	the	value.

In	our	form-handling	function,	we'll	loop	over	the	elements
again,	comparing	each	value	against	the	value	stored	in	the
hash.	If	any	one	of	the	checkboxes	doesn't	match,	we	stop	the

comparison,	update	the	src	property	of	the	graph,	causing	it	to
reload,	and	then	run	updateCurrentCities	again.	The	code	that
does	this	is	shown	here:

//	check	whether	the	cities	have	changed	(graph	reload)
var	els	=	form.elements;
for(var	i	=	0;	i	<	els.length;	i++)	{
		if	(els[i].name	==	'cities[]'	&&
				cities[els[i].value]	!=	els[i].checked)	{
				document.getElementById('graph').src	=
							'Graph.php?'+queryString;
				updateCurrentCities();
					break;
		}
}

Now	that	we	have	the	basic	AJAX	functionality	added	to	the
page,	we	are	ready	to	start	improving	its	usability.	The	first	step
is	adding	a	link	that	can	be	bookmarked	and	will	return	you	to
the	current	set	of	data	you're	viewing.	Upon	page	load,	this	link
will	contain	the	same	URL	as	the	form,	so	we	can	use	the	$action
PHP	variable	again:

<a	id="blink"	href="<?php	echo	$action;?>">Bookmarkable	Link

Once	the	link	has	been	added	to	the	page,	we	need	to	add	code
to	update	it	when	the	form	is	submitted.	This	code	is	pretty
simple:	It	checks	the	current	HRef	on	the	blink	tag	to	see	if	it
has	a	"?"	in	it.	If	it	does,	all	the	content	after	it	is	removed.
Then,	we	append	the	new	queryString	to	the	link.	This	is	the
same	string	we	send	to	the	AjaxTable.php	script.	The	code	that
performs	this	bookmark	link	updating	is	shown	here:

//	update	bookmarkable	link
var	blink	=	document.getElementById('blink');
if	(blink.href.indexOf('?')	>	0)	{
					blink.href	=	blink.href.substring(
											0,blink.href.indexOf('?'));
}
blink.href	=	blink.href+'?'+queryString;

Adding	in	the	bookmark	link	helps	solve	some	of	the	usability
problems	caused	by	AJAX,	but	it	doesn't	do	anything	for	the
page's	original	usability	problem,	which	is	poor	feedback.	To	do
this,	we	need	to	add	a	feedback	mechanism	to	the	loading	of
the	graph.	The	basic	way	this	works	is	that	we	create	a	DIV
element	and	position	it	over	the	graph.	It	will	contain	the
message	"Loading,	please	wait"	and	can	be	further	formatted
using	CSS	to	make	it	look	nice.	This	DIV	will	be	hidden	by	an
onload	handler	that	we	will	add	to	the	image.	To	improve	the
look	of	this	loading	notice,	we'll	use	some	visual	effects	from
the	scriptaculous	library.	These	steps	are	accomplished	by	using
the	startLoad	function,	which	is	shown	in	Listing	10-9.	The
startLoad	function	takes	as	its	single	parameter	the	element	to
which	to	add	the	loading	effect.

Listing	10-9.	The	startLoad	JavaScript	Function

1	function	startLoad(element)	{
2					if	(!element.loading)	{
3									element.loading	=	document.createElement('div');
4									element.loading.className='loading';
5									element.loading.innerHTML='Loading,	please	wait';
6									element.loading.style.height	=
7													element.clientHeight+'px';
8			element.parentNode.appendChild(element.loading);
9									element.onload	=	function()	{
10													new	Effect.Fade(this.loading);
11									}
12					}

13					else	{
14									new	Effect.Appear(element.loading);
15					}
16		}

In	basic	operation,	the	startLoad	function	takes	the	loading	div
and	shows	it	using	the	Appear	effect	(line	14);	it	then	sets	up	a
Fade	effect	to	hide	the	div	when	the	page	is	loaded	(lines	911).
The	rest	of	the	function	(lines	28)	handles	the	initial	case	where
we	dynamically	create	the	loading	div.	As	we	create	the	div,	we
assign	it	to	a	property	on	the	element	to	which	we're	adding	the
message.	Doing	this	makes	the	code	reusable	and	helps	make	it
clear	to	what	element	the	loading	div	belongs.	Line	3	creates
the	div,	line	4	sets	its	CSS	class	and	lets	it	be	styled,	and	line	5
sets	the	height	of	the	element.	Width	can	be	easily	set	in	CSS
because	a	width	of	100%	works,	but	percentage	heights	don't
work	in	IE,	so	we	need	to	calculate	the	absolute	height	that	is
needed	to	cover	the	area	where	the	element	will	be	loaded.	The
setup	finishes	by	appending	the	loading	node	to	the	parent	of
the	element	to	which	it	will	be	applied.	This	means	that	the
image	tag	for	the	graph	must	be	created	inside	another
element,	but	this	works	fine	because	we	will	want	that	wrapper
div	for	CSS	purposes.

The	final	usability	change	to	make	is	to	replace	the	default
HTML_AJAX	loading	feedback	effect	with	a	custom	one.	Because
updating	the	data	table	is	normally	a	fast	process,	we	want	to
highlight	the	table	when	it	has	been	updated.	Without	this
visual	queue,	users	might	not	notice	that	something	has
changed.	We'll	also	change	the	cursor	to	the	standard	page	load
progress	cursor	while	the	table	is	updating;	that	way,	the	user
will	get	feedback	if	the	loading	is	delayed	by	a	slow	network
connection.	This	is	implemented	by	creating	an	options	hash
and	passing	it	to	HTML_AJAX.grab:

var	options	=	{
		Open:	function()	{

										document.body.style.cursor	=	'progress';
		},
		Load:	function()	{
				document.body.style.cursor	=	'default';
				new	Effect.Highlight('table');
		}
}

This	options	hash	creates	a	custom	event	handler	that	is	called
when	a	connection	to	the	server	is	opened,	and	this	handler
sets	the	cursor	to	progress.	Then	we	create	a	custom	function
to	be	called	when	the	page	load	is	finished.	This	function	sets
the	cursor	back	to	default	and	then	runs	a	highlight	effect	on
the	table.	This	effect	highlights	the	table	in	yellow	and	then
fades	out	the	highlight	over	a	short	period	of	time.

10.4.2.	Viewer	PHP	Script	Updated	for	AJAX

Now	that	we've	looked	at	the	AJAX	changes	we	will	be	adding,
let's	look	at	what	other	changes	need	to	be	made	to	build	an
AJAX	version	of	the	viewer.	The	first	step	is	to	break	the
Standard.php	file	into	three	different	files.	The	first	34	lines	of	the
file	are	pulled	out	into	a	file	called	AjaxSetup.php.	This	allows	the
basic	setup	code	and	form	value	loading	to	be	easily	done	in
multiple	files.	Lines	71101	of	Listing	10-8	are	also	pulled	out
into	their	own	file,	AjaxTable.php.	At	the	top	of	this	new	file,	we
require	AjaxSetup.php,	giving	it	access	to	the	same	variables	that
were	used	while	the	code	was	still	in	one	file.	This	file	now
contains	the	code	used	to	create	the	data	table	section.
Finishing	up	the	sectioning,	Standard.php	is	renamed	to	Ajax.php	so
that	we	can	compare	the	two	versions,	and	the	removed	code	is
added	back	into	the	page	using	the	require	function	so	that	the
initial	page	generation	happens	in	the	same	way.	Neither	the

backend	class	nor	the	Graph.php	script	needs	to	change.	Listing
10-10	shows	the	updated	AJAX	code.

Listing	10-10.	AjaxSetup.php

1		<?php
2		//	set	up	the	data	instance
3
4		//	include	data	class
5		require_once	'SunRiseSet.class.php';
6		$data	=	new	SunRiseSet();
7
8		//	defaults
9		$month	=	1;
10	$cities	=	array('PHOENIX,	ARIZONA');
11
12	//	load	options
13	if	(isset($_GET['month']))	{
14		$month	=	(int)$_GET['month'];
15	}
16
17	if	(isset($_GET['cities']))	{
18		$cities	=	(array)$_GET['cities'];
19	}
20
21	//	Set	the	selected	options	on	the	data	class
22	$data->setMonth($month);
23	$data->setCities($cities);
24
25	//	build	the	graph	query	string
26	$graphOptions	=	'';
27	foreach($cities	as	$city)	{
28		$graphOptions	.=	"cities[]=$city&";
29	}
30
31	$action	=	htmlentities($_SERVER['PHP_SELF']);
32	$months	=	$data->monthList();
33	?>

The	AjaxSetup.php	file	contains	the	first	34	lines	of	Standard.php.
Because	it's	in	a	standalone	file,	it	can	be	used	in	both	Ajax.php
and	AjaxTable.php,	performing	the	setup	duties	for	each	of	them.
The	AjaxTable.php	file	will	generate	the	table	data	and	is	shown	in
Listing	10-7,	while	Ajax.php,	shown	in	Listing	10-1,	will	be	the

main	entry	point	for	the	viewer,	creating	the	main	UI	and	the
AJAX	code	for	controlling	the	viewer.

Listing	10-11.	AjaxTable.php

1		<?php
2		//	build	just	the	data	table	for	the	viewer
3		require_once	'AjaxSetup.php';
4		?>
5		<?php	echo	$months[$month];	?>
6		<table	cellpadding="2"	cellspacing="0"	border="1">
7		<thead>
8				<tr>
9						<th	rowspan="2">Day</th>
10			<?php	foreach($cities	as	$city)	{	?>
11					<th	colspan="2"><?php	echo	$city;	?></th>
12		<?php	}	?>
13		</tr>
14		<tr>
15		<?php	foreach($cities	as	$city)	{	?>
16				<th>Rise</th>
17				<th>Set</th>
18		<?php	}	?>
19		</tr>
20	</thead>
21	<tbody>
22	<?php	foreach($data->monthsData()	as	$row)	{	?>
23			<tr>
24					<td><?php	echo	$row[0]['day'];	?></td>
25			<?php	foreach($row	as	$city)	{	?>
26					<td><?php	echo	$city['rise'];	?></td>
27					<td><?php	echo	$city['set'];	?></td>
28			<?php	}	?>
29			</tr>
30	<?php	}	?>
31	</tbody>
32	</table>

AjaxTable.php	contains	lines	71101	of	Standard.php	(see	Listing	10-
13).	The	only	change	to	this	code	is	the	addition	of	the
require_once	of	AjaxSetup.php,	at	the	top.	This	allows	AjaxTable.php	to
be	called	directly.	Because	we	use	require_once	to	include
AjaxSetup.php,	it	will	be	included	only	once	during	a	page	load.
This	lets	Ajax.php	require	AjaxSetup.php	and	AjaxTable.php	without

worrying	about	the	setup	code	running	multiple	times.

Listing	10-12.	Ajax.php

1	<?php
2			//	AJAX	version	of	a	sun	rise/set	viewer
3			require_once	'AjaxSetup.php';
4			?>
5			<html>
6			<head>
7							<title>AJAX	Sun	Rise	and	Set	Viewer</title>
8			<script	src="scriptaculous/prototype.js"
9							type="text/javascript"></script>
10		<script	src="scriptaculous/scriptaculous.js"
11						type="text/javascript"></script>
12		<script	src="server.php?client=all"
13					type="text/javascript"></script>
14

In	comparison	to	Standard.php,	the	setup	for	this	page	has
changed	quite	a	bit.	All	the	PHP	setup	is	now	handled	in
AjaxSetup.php,	and	on	the	HTML	side,	we're	now	including	a
couple	of	JavaScript	libraries.	On	line	3,	we	include	the
AjaxSetup.php	file,	and	we	use	the	require_once	function	to	make
sure	the	file	gets	pulled	in	only	one	time.	On	lines	811,	we
include	the	scriptaculous	library;	this	library	will	be	used	for	a
number	of	visual	effects.	The	setup	completes	on	lines	1213,
including	the	HTML_AJAX	JavaScript	library.	The	PHP	script,
Server.php,	is	identical	to	the	one	shown	in	Listing	9-1.

Listing	10-13.	Ajax.php	Continued

15	<script	type="text/javascript">
16		var	cities	=	{};
17
18		function	updatePage(form)	{
19						var	queryString	=	HTML_AJAX.formEncode(form);
20

21					//	check	if	the	cities	have	changed	(graph	reload)
22					var	els	=	form.elements;
23					for(var	i	=	0;	i	<	els.length;	i++)	{
24									if	(els[i].name	==	'cities[]'
25									&&	cities[els[i].value]	!=	els[i].checked)	{
26													startLoad(document.getElementById('graph'));
27													document.getElementById('graph').src	=
28																	'Graph.php?'+queryString;
29													updateCurrentCities();
30											break;
31									}
32					}
33
34					//	when	the	AJAX	request	is	done,	we	replace	the
35					//	current	table	with	a	new	one
36					var	callback	=	function(result)	{
37									document.getElementById('table').innerHTML
38										=	result;
39					}
40
41					//	change	the	cursor	to	indicate	loading
42					var	options	=	{
43									Open:	function()	{
44													document.body.style.cursor	=	'progress';
45									},
46									Load:	function()	{
47													document.body.style.cursor	=	'default';
48													new	Effect.Highlight('table');
49									}
50					}
51
52					//	make	the	ajax	request
53					HTML_AJAX.grab('AjaxTable.php?'+queryString,
54									callback,options);
55
56					//	update	bookmarkable	link
57					var	blink	=	document.getElementById('blink');
58					if	(blink.href.indexOf('?')	>	0)	{
59									blink.href	=	blink.href.substring(
60													0,blink.href.indexOf('?'));
61					}
62					blink.href	=	blink.href+'?'+queryString;
63
64					return	false;
65			}
66
67		//	update	the	cities,	marking	which	ones	are	checked
68		function	updateCurrentCities()	{
69						var	els	=	document.getElementById('form').elements;
70						for(var	i	=	0;	i	<	els.length;	i++)	{
71										if	(els[i].name	==	'cities[]')	{
72														cities[els[i].value]	=	els[i].checked;
73										}
74						}
75		}
76

77		//	show	the	loading	effect	on	the	image
78		function	startLoad(elem)	{
79						if	(!elem.loading)	{
80										elem.loading	=	document.createElement('div');
81										elem.loading.className=	'loading';

82										elem.loading.innerHTML=	'Loading,	please	wait';
83										elem.loading.style.height	=
84														elem.clientHeight+'px';
85										elem.parentNode.appendChild(element.loading);
86										elem.onload	=	function()	{
87														new	Effect.Fade(this.loading);
88										}
89						}
90						else	{
91										new	Effect.Appear(elem.loading);
92						}
93		}
94		</script>

Lines	1594	contain	the	JavaScript	needed	for	the	viewer.	Its
different	components	have	already	been	explained;	they
provide	AJAX	loading	of	page	sections	and	various	feedback
effects.	Line	16	defines	the	cities	hash;	it	is	used	to	see	if	the
selected	cities	to	view	have	changed.	Lines	1865	define	the
updatePage	function;	this	function	is	called	by	the	onsubmit	handler
on	the	form	and	takes	that	form	as	its	parameter.	Line	19
processes	the	form	into	a	query	string.	Then,	lines	2132	check
whether	any	of	the	cities	have	changed	and	reload	the	graph	as
needed.	Lines	3454	set	up	the	AJAX	call	and	then	make	the	call
to	update	the	data	table.	In	this	area,	lines	3639	set	up	the
callback,	lines	4150	define	the	feedback	options,	and	lines	5354
make	the	AJAX	request	using	HTML_AJAX.grab.	The	updatePage
function	finishes	by	updating	the	bookmark	link	(lines	5762).
Lines	6875	define	the	updateCurrentCities	function,	which
populates	the	cities	hash.	The	JavaScript	section	finishes	with
the	startLoad	function	on	lines	7893,	which	handles	creating	and
showing	the	graph-loading	message.

Listing	10-14.	Ajax.php	Continued

95		<style	type="text/css">
96		.loadable	{
97						position:	relative;
98		}
99		.loading	{
100					position:	absolute;
101					background-color:	#eee;
102					text-align:	center;
103					top:	0;
104					left:	0;
105					width:	100%;
106	}

107		#table	{
108						float:	left;
109	}
110	</style>

Lines	95110	(Listing	10-14)	contain	some	CSS	rules	that	style
the	elements	used	in	the	loading	effects.	The	.loadable	rule	on
lines	9698	is	applied	to	the	container	outside	the	element	that
will	be	loaded;	making	its	position	relative	allows	it	to	be	the
parent	element	for	the	absolutely	positioned	loading	DIV.	Lines
99106	contain	the	rules	for	the	loading	DIV;	they	position	it
absolutely	to	cover	the	entire	graph	and	give	it	a	gray
background.	The	CSS	rules	finish	up	with	a	rule	(lines	109110)
that	floats	the	table	to	the	left.	This	rule	is	needed	to	keep	the
highlight	effect	from	bleeding	out	onto	the	rest	of	the	page,	and
it	is	needed	only	because	we're	using	floats	on	other	parts	of
the	page.

Listing	10-15.	Ajax.php	Continued

111	</head>
112	<body	onload="updateCurrentCities()">
113	<div	style="float:left;	width:	610px;">
114
115	<div	class="loadable">
116	<img	src="Graph.php?<?php	echo	$graphOptions;	?>"
117					id="graph"	width="600"	height="400"
118					alt="sun	rise	and	set">

119	</div>
120
121	<script	type="text/javascript">
122	startLoad(document.getElementById('graph'));
123	</script>
124
125	<form	action="<?php	echo	$action;	?>"	id="form"
126				onsubmit="return	updatePage(this)">
127	<fieldset>
128				<legend>Cities</legend>
129				<?php	foreach($data->possibleCities()
130								as	$city)	{	?>
131				<label><?php	echo	$city;	?>
132								<input	type="checkbox"	name="cities[]"
133								value="<?php	echo	$city;	?>"
134								<?php	if(in_array($city,$cities))	{
135													echo	"CHECKED";
136								}	?>>
137				</label>
138
139			<?php	}	?>
140	</fieldset>
141	<label>View	Month:
142	<select	name="month">
143	<?php	foreach($months	as	$key	=>	$m)	{	?>
144					<option	value="<?php	echo	$key;?>"
145					<?php	if($key	==	$month)	{	echo	'SELECTED';	}	?>>
146									<?php	echo	$m;	?></option>
147	<?php	}	?>
148	</select>
149	</label>
150	<input	type="submit"	value="Update	View">
151	<a	id="blink"	href="<?php	echo	$action;	?>"
152					>Bookmarkable	Link
153	</form>
154	</div>
155
156	<div	id="table">
157	<?php	include	'AjaxTable.php';	?>
158	</div>
159	</body>
160	</html>

Little	has	changed	in	the	rest	of	the	document	when	compared
to	the	non-AJAX	version.	Line	112	contains	an	onload	call	to
updateCurrentCities;	this	populates	which	cities	are	selected	at	the
time	of	the	page	load.	The	graph	output	on	lines	115123	also
has	a	number	of	changes	from	the	standard	version.	The	graph
now	has	an	ID	so	that	its	src	value	can	be	changed	later,	and	its

container	div	has	the	loadable	class	applied	to	it.	Finishing	up
the	graph	code	is	a	call	to	startLoad	to	pass	in	the	graph;	this
provides	a	loading	message	on	the	initial	page	load.

Lines	125153	contain	the	form	code;	the	form	contains	several
small	changes.	The	form	definition	now	contains	an	ID	and	an
onsubmit	property	that	calls	pageUpdate	(lines	125126).	It	also	has
a	bookmark	link	added	to	it	(lines	151152).	On	page	load,	this
link	is	the	same	value	as	the	form	submit	and	is	updated	by	the
pageUpdate	JavaScript	function	as	AJAX	requests	are	made.
Finishing	up	the	document,	we	include	AjaxTable.php,	which
renders	the	data	table.

	

10.5.	Summary

In	this	chapter's	use	case,	we	looked	at	how	you	can	use	the
subpage	AJAX	pattern	to	improve	the	performance	of	displaying
data.	This	AJAX	pattern	breaks	up	large	pages	and	lets	you
update	one	section	of	the	page	at	a	time.	It	can	greatly	improve
the	user	experience	by	increasing	the	efficiency	of	the	site	and
reducing	the	time	users	spend	waiting	for	content	to	load.	This
pattern	will	be	used	over	and	over	in	your	AJAX
implementations,	because	it	represents	basic	AJAX	functionality,
updating	one	part	of	a	page	without	affecting	the	rest.	The
major	points	we	can	take	from	experience	are	as	follows:

Browsers	handle	slow-loading	images	poorly.

JavaScript	can	be	used	to	add	nice	image-loading	effects.

Sectioning	pages	can	reduce	overall	loading	times	by
allowing	fast-loading	content	to	be	updated	without
affecting	slow-loading	content.

Loading	page	sections	with	AJAX	is	a	reusable	pattern	that
is	useful	in	many	situations.

In	the	next	use	case,	we	will	reuse	much	of	what	we	learned
here;	however,	instead	of	focusing	on	improving	performance,
we	will	look	at	how	you	use	AJAX	to	add	new	features	without	a
major	application	redesign.

	

Chapter	11.	Adding	an	AJAX	Login	to	a
Blog
In	this	chapter

11.1	Why	Logins	Work	Well	with	AJAX page	250

11.2	Building	an	AJAX	Login page	250

11.3	Extending	the	Login	Form page	256

11.4	Implementing	the	AJAX	Comment	Login	System
Using	XML page	262

11.5	Summary page	270

A	common	feature	of	many	Web	logs	is	the	ability	to	leave
comments.	When	these	systems	were	first	implemented,	they
allowed	anyone	to	fill	in	a	couple	of	fields	and	post	a	comment
directly	to	the	site.	Today,	however,	most	blogs	have	some	sort
of	moderation	system	with	which	the	blog	owner	can	approveor
disapprovecomments.	In	an	effort	to	streamline	this	process,
many	blogs	also	use	logins.	The	problem	with	a	login	to	a	site
like	a	blog	is	that	it's	not	something	you	need	to	do	until	you	go
to	post	a	comment.	This	makes	a	standard	login	process
involving	a	couple	of	different	redirects	annoying,	especially	if
you've	already	filled	out	a	comment	before	attempting	to	log	in.
AJAX	offers	you	the	ability	to	streamline	this	process	because
you	need	to	submit	only	the	login	form,	not	the	entire	page.

11.1.	Why	Logins	Work	Well	with	AJAX

A	login	is	a	type	of	application	that	fits	into	an	AJAX	paradigm
well.	Logins	are	forms	that	need	to	be	submitted,	but	they
generally	take	up	only	a	small	part	of	a	page.	On	public	sites,
you	might	want	to	log	in	multiple	times,	generally	in	relation	to
another	action	that	you've	already	performed,	such	as	filling	out
a	comment	form.	A	login	form	also	needs	the	ability	to	show
login	failure	messages	and	make	it	easy	for	the	user	to	type	in
his	or	her	password	again.	To	sum	up,	a	Web	site	login	is
generally	a	few	square	inches	on	a	Web	site,	and	it's	handy	to
have	the	login	on	every	page	of	a	site.	Treating	it	as	its	own
separate	entity	works	well,	and	using	AJAX	so	that	only	the
login	section	submits	when	logging	into	the	site	makes	for	a
much	nicer	user	experience.	AJAX-based	logins	are	used	by
many	of	the	Google	sites.	An	example	of	Google's	AJAX	login	is
shown	in	Figure	11-1.

Figure	11.1.	Google's	AJAX	login

[View	full	size	image]

11.2.	Building	an	AJAX	Login

Building	an	AJAX	login	is	a	simple	process	if	you're	using	an
AJAX	library	that	supports	submitting	a	form	using	AJAX.	If	your
library	of	choice	doesn't	do	that,	you	have	a	bit	of	work	to	do,
but	it's	only	two	fields,	so	grabbing	their	values	by	hand	isn't
too	hard.	Our	first	login	implementation	will	use	HTML_AJAX
and	its	formSubmit	method;	this	is	the	simplest	AJAX	login	case,
but	it	may	not	work	in	all	cases	due	to	its	limited	flexibility.

Although	it's	possible	to	use	other	methods,	the	easiest	way	to
create	an	AJAX	login	system	is	to	use	cookie-based	logins.	PHP
has	a	system	called	sessions	that	makes	this	easy	to	do.	Before
outputting	any	content,	run	the	session_start()	function;	if	a
session	ID	cookie	exists,	PHP	uses	this	ID	to	load	any	data
associated	with	this	ID	from	where	it	is	stored	on	the	server.	If
the	session	ID	cookie	doesn't	exist,	PHP	generates	a	random
string	that	identifies	this	session	and	adds	a	header	to	send	to
the	browser.	Other	server-side	languages	offer	similar	features,
either	built-in	or	through	standard	libraries.	The	important	part
of	a	session-based	approach	is	that	it	stores	only	an	ID	in	the
browser	cookie;	all	other	data	is	stored	on	the	server.

The	AJAX	login	form	works	by	updating	information	in	the
session	to	say	that	the	user	is	logged	in.	Because	the	data	is
stored	on	the	server,	other	pages	don't	need	to	be	notified	that
a	login	has	occurred.	If	the	other	pages	submit	any	data,	the
server	can	check	that	the	user	is	logged	in.	Our	login	form	will
provide	a	form	with	inputs	for	a	username	and	password.	When
the	form	is	submitted,	PHP	code	will	update	the	session	storing
the	username	for	latter	use.	The	PHP	page	will	then	generate	a
logout	button,	because	redisplaying	the	form	doesn't	make
sense.	In	review,	the	workflow	of	login	form	is	shown	in	Figure
11-2.

Figure	11-2.	Workflow	of	the	AJAX	login	process
using	HTML_AJAX

1.	 Include	a	login	form	in	a	normal	page.

2.	 Submit	the	form	over	AJAX.

3.	 The	PHP	script	processes	the	login	and	updates	the	session.

4.	 The	contents	of	the	form	are	regenerated.

5.	 The	JavaScript	code	uses	innerHTML	to	replace	the	contents	of
the	form	with	the	new	version.

To	start	this	process,	we	need	a	Web	page	into	which	we	want
to	log.	This	page	needs	to	run	session_start()	before	outputting
content,	and	it	needs	to	include	the	HTML_AJAX	JavaScript
libraries.	Last,	it	needs	to	include	the	login	form.	A	minimal
sample	page	is	shown	in	Listing	11-1.

Listing	11-1.	index.php

1		<?php
2		session_start();
3		?>
4		<html>
5		<head>
6		<title>Sample	Page</title>
7		<script	src="server.php?client=all"
8				type="text/javascript"></script>
9		</head>
10	<body>
11
12	<p>
13	This	page	might	contain	a	blog	post,	or
14	any	other	content	where	a	login
15	might	be	useful.
16	</p>
17
18		<div	id="loginForm"	style="
19			border:	solid	1px	black;
20			width:250px;	padding:	2px">
21	<?php
22			include	'SimpleLogin.php';
23	?>
24	</div>
25	</body>
26	</html>

This	sample	page	could	hold	any	kind	of	content,	but	it	must
meet	the	requirements	for	the	embedded	login	form.	Line	2
starts	the	session.	Because	this	command	adds	HTTP	headers	to
the	response,	it	needs	to	be	done	before	any	content	is
generated.	Lines	78	include	the	HTML_AJAX	JavaScript	libraries;
you	always	want	to	include	JavaScript	files	in	the	head	section
of	the	HTML	document	because	they	will	slow	the	display	of	any
HTML	that	follows	the	includes.	Lines	1820	contain	a	wrapper
DIV	for	the	form.	When	the	form	is	submitted,	the	innerHTML	of
this	DIV	will	be	replaced	with	updated	content.	Line	11	includes
an	external	PHP	file	that	generates	the	login	form.	The	basic
form	could	be	produced	directly	in	this	page,	but	having	the
form	always	generated	by	the	same	code	helps	in	its

maintenance.	The	rest	of	the	page	could	be	any	HTML	content;
in	this	case,	it's	just	a	paragraph	of	text	(lines	1216).	Finishing
the	basic	login	system	is	the	SimpleLogin.php	file	(see	Listing	11-
2).

Listing	11-2.	SimpleLogin.php

1		<?php
2		if	(!session_id())	{	session_start();	}
3		$message	=	"";
4		if	(isset($_POST['ajaxLogin']))	{
5				//	hard	coded	login,	use	the	application's
6				//	normal	login	code	here
7				if	($_POST['username']	===	'jeichorn'	&&
8						$_POST['password']	===	'test')	{
9						$_SESSION['login']	=	true;
10				}
11				else	{
12						$_SESSION['login']	=	false;
13						$message	=	"Login	Failed";
14				}
15	}
16	if	(isset($_POST['ajaxLogout']))	{
17				$_SESSION['login']	=	false;
18				$message	=	"Logout	Complete";
19	}
20	?>
21	<form	method="POST"	action="SimpleLogin.php"
22	onsubmit=
23	"return	!HTML_AJAX.formSubmit(this,'loginForm');">
24	<?php
25	echo	"<p>$message</p>";
26
27	if	(!isset($_SESSION['login'])
28				||	$_SESSION['login']	==	false)	{
29	?>
30
31	Login

32	<label>Username:
33				<input	name="username">
34	</label>

35	<label>Password:
36				<input	name="password"	type="password">
37	</label>

38	<input	type="hidden"	name="ajaxLogin"	value="1">
39	<input	type="submit"	value="Login">
40
41	<?php	}	else	{	?>

42
43	Logged	in	as	Test

44	<input	type="hidden"	name="ajaxLogout"	value="1">
45	<input	type="submit"	value="Logout">
46
47	<?php	}	?>
48
49	</form>

The	first	20	lines	of	SimpleLogin.php	handle	processing	the	form.
This	code	logs	the	user	in	or	out	and	creates	a	$message	variable
that	can	be	used	to	tell	the	user	that	a	login	has	failed.	On	line
4,	the	code	checks	whether	the	hidden	variable	ajaxLogin	is	set;
if	it	is	set,	we	perform	a	login.	Line	2	starts	a	session	if	it	hasn't
already	been;	this	allows	this	page	to	be	included	in	another
page	or	to	work	stand-alone.	The	actual	login	check	is	hard-
coded	to	a	username	of	jeichorn	and	a	password	of	test	(lines
710).	If	the	login	succeeds,	we	set	a	flag	in	the	session	(line	9).
If	the	username	or	password	does	not	match,	we	set	the
session	login	flag	to	false	(line	12)	and	set	$message	to	a	failure
message	(line	13).	Lines	1619	contain	code	for	handling	logout.
If	the	hidden	field	ajaxLogout	exists,	we	set	the	session	login	flag
to	false	and	add	a	notification	message	to	$message.

The	rest	of	the	page	generates	the	login	form	or	the	logout
form.	The	form	tag	is	generated	on	lines	2123.	Its	method	is
set	to	POST,	and	its	action	is	set	to	this	same	page,
SimpleLogin.php.	When	the	form	submission	button	is	clicked,	the
onsubmit	handler	on	the	form	(line	23)	calls	HTML_AJAX.formSubmit.
The	first	parameter	is	the	form	to	process;	the	value	this,	which
means	the	current	form,	is	used.	The	second	parameter	is	the
ID	of	the	element	to	update	with	the	results.	Line	25	contains
PHP	code	to	output	the	message	that	was	set	up	during	the
login	processes.	Lines	2728	check	to	see	which	mode	the	form
is	in.	If	the	login	flag	isn't	set	at	all,	or	if	it's	set	to	false,	then
we	produce	a	login	form	(lines	3040).	If	the	login	flag	is	set	to
true,	we	produce	a	logout	form	(lines	4246).	The	login	forms	are
minimaljust	a	login	and	password	field	or	a	logout	button.	You

can	see	what	this	basic	form	looks	like	in	Figure	11-3.

Figure	11-3.	Basic	login	form

[View	full	size	image]

	

11.3.	Extending	the	Login	Form

With	some	basic	formatting,	we	now	have	an	AJAX	login	form
that	easily	meets	the	needs	of	pages	that	need	a	login.
However,	in	the	case	of	a	blog,	you	usually	want	to	load	some
profile	information	into	the	current	page	as	well.	To	do	this,	we
need	to	make	some	data	available	to	the	rest	of	the	site	and
update	the	login	form.	The	Comment	section	of	my	blog	is
shown	in	Figure	11-4;	you	can	see	that	we	also	want	to	load
the	user's	name,	email	address,	and	Web	site.	On	some	sites,
you	might	hide	these	fields	after	a	login	because	the	values
from	the	user's	profile	will	be	used,	but	we	will	just	update
these	fields	directly,	allowing	the	user	to	change	the	information
for	this	post.

Figure	11-4.	Comment	form	from	my	blog

[View	full	size	image]

From	a	user	interface	standpoint,	this	form	will	be	easy	to
extend.	There	is	room	to	the	right	of	the	informational	fields	to
add	a	login	box.	The	login	form	will	be	submitted	over	AJAX,
and	instead	of	returning	a	logout	form,	it	will	return	some
JavaScript	that	will	populate	the	fields	with	information	from	the
user's	profile.	If	the	user	is	already	logged	in	when	he	or	she
comes	to	this	page,	he	or	she	will	just	get	the	prepopulation	of
his	or	her	profile	information.	The	user	will	not	get	a	logout
button,	because	logging	out	from	this	area	of	the	user	interface
doesn't	make	a	lot	of	sense.	This	approach	can	be	accomplished
in	this	fashion	because	our	AJAX	library	is	doing	a	lot	of	work
for	us.

When	you	add	new	content	to	a	document	using	innerHTML,	the
JavaScript	included	in	it	isn't	run;	HTML_AJAX	includes	code	to
pull	the	JavaScript	code	out	and	evaluate	it	(returning	to	code).
An	updated	comment	form	with	a	login	added	is	shown	in
Figure	11-5.	The	code	that	builds	this	form	is	shown	in	Listing
11-3.

Figure	11-5.	Sample	comment	form	with	a	login

[View	full	size	image]

Listing	11-3.	Comment.php

1		<?php
2		session_start();
3		?>
4		<html>
5		<head>
6		<title>A	sample	Comment	Page</title>
7		<link	rel="stylesheet"	type="text/css"
8				href="Comment.css"	/>
9		<script	src="server.php?client=all"
10				type="text/javascript"></script>
11		</head>
12		<body>
13		<h3>Leave	a	reply</h3>
14		<form	action="Comment.php"	method="post">
15
16		<div	id="inputFields">
17		<p><input	name="author"	id="author"

18				size="22"	type="text">

19		<label	for="author"><small>Name
20				(required)</small></label></p>
21
22		<p><input	name="email"	id="email"
23				size="22"	type="text">
24		<label	for="email"><small>Mail	(will	not	be
25				published)	(required)</small></label></p>
26
27		<p><input	name="url"	id="url"
28				size="22"	type="text">
29		<label	for="url"><small>Web	site
30				</small></label></p>
31		</div>
32		<br	style="clear:both"	/>
33
34		<p><textarea	name="comment"	id="comment"
35				cols="100"	rows="10"></textarea></p>
36
37		<p><input	name="submit"	id="submit"
38				value="Submit	Comment"	type="submit">
39		</p>
40
41		</form>
42		<div	id="loginForm">
43		<?php	include	'CommentLogin.php';	?>
44		</div>
45		</body>
46		</html>

Comment.php	is	mainly	a	form	(lines	1441)	for	submitting	a
comment	to	a	blog.	In	the	example	shown	in	Listing	11-3,
submitting	the	form	doesn't	do	anything,	but	the	goal	isn't	to
show	how	to	submit	comments.	The	goal	is	to	show	how	a	login
form	that	loads	profile	data	could	be	integrated	with	a	comment
system.	To	make	this	integration	work,	the	page	starts	a
session	on	line	2	and	then	pulls	in	the	needed	JavaScript	library
files	on	lines	910.	A	CSS	file	is	also	included.	This	file	handles
the	formatting	of	the	page	and	the	positioning	of	the	login	form.
Forms	can't	be	nested,	so	if	you	want	that	visual	effect,	you'll
need	to	accomplish	it	with	a	positioning	effect.	The	login	form	is
included	on	line	43;	it	sits	inside	a	DIV	with	the	ID	of	loginForm.
This	wrapper	DIV	helps	in	positioning	the	form	and	gives	it	an
element	to	update	with	its	results.	The	login	code	from	Listing
11-2	was	updated	to	work	with	this	comment	form,	loading

profile	data	when	a	login	is	complete;	this	code	is	shown	in
Listing	11-4.

Listing	11-4.	CommentLogin.php

1		<?php
2		if	(!session_id())	{
3						session_start();
4		}
5		$message	=	"";
6
7		if	(isset($_POST['ajaxLogin']))	{
8					//	hard	coded	login,	use	the	application's
9					//	normal	login	code	here
10					if	($_POST['username']	===	'jeichorn'	&&
11							$_POST['password']	===	'test')	{
12
13							$_SESSION['clogin']	=	true;
14							$_SESSION['profile']	=	array(
15							'name'	=>	'Joshua	Eichorn',
16							'email'=>	'josh@bluga.net',
17							'url'		=>	'http://blog.joshuaeichorn.com'
18);
19					}
20					else	{
21							$_SESSION['clogin']	=	false;
22							$message	=	"Login	Failed";
23					}
24					}
25					if	(!isset($_SESSION['clogin'])
26					||	$_SESSION['clogin']	==	false)	{
27	?>
28	<form	method="post"	action="CommentLogin.php"
29	onsubmit=
30	"return	!HTML_AJAX.formSubmit(this,'ajaxForm')">
31	<?php
32	echo	"<p>$message</p>";
33	?>
34
35	<h4>Login</h4>
36	<p>
37	<input	name="username">
38	<label><small>Username</label>
39	</p>
40
41	<p>
42	<input	name="password"	type="password">
43	<label>Password</label>
44	</p>
45

46	<input	type="hidden"	name="ajaxLogin"	value="1">

47	<p><input	type="submit"	value="Login"></p>
48
49	</form>
50	<?php
51	}
52	else	{
53						require_once	'HTML/AJAX/Helper.php';
54						$h	=	new	HTML_AJAX_Helper();
55						$var	=	'var	profile	=	'.
56										$h->jsonEncode($_SESSION['profile']);
57						$js	=	"
58						$var;
59						document.getElementById('author').value	=
60										profile.name;
61						document.getElementById('email').value	=
62										profile.email;
63						document.getElementById('url').value	=
64										profile.url;
65						";
66						echo	$h->encloseInScript($js);
67	}
68	?>

Like	the	login	code	in	Listing	11-2,	the	first	part	of
CommentLogin.php	takes	care	of	processing	POSTs	from	the	login
form.	On	lines	24,	we	start	a	session	if	one	hasn't	already	been
started.	Then	on	lines	724,	we	process	the	login.	The
information	is	again	hard-coded	to	keep	the	example	clear.	If
the	username	and	password	match	jeichorn	and	test	(lines
1011),	we	set	a	flag	in	the	session	and	add	some	profile
information	to	the	session.	In	some	applications,	this
information	could	include	other	demographics	and	various
application	details,	such	as	the	user's	ID	or	what	permissions	he
or	she	has.	If	the	login	fails,	the	clogin	flag	is	set	to	false,	and	a
message	is	provided.

The	form	generated	by	CommentLogin.php	has	two	modes:	One	is	a
normal	login	form	(lines	2849),	whereas	the	other	produces
some	JavaScript	that	updates	the	comment	form.	We	check
which	mode	we're	in	on	lines	2526,	which	show	the	login	form
when	we're	not	logged	in.	Lines	3547	produce	the	actual

elements	of	the	form,	giving	us	username	and	password	inputs
as	well	as	a	submit	button	and	a	hidden	field	to	let	this	page
know	we	are	trying	to	log	in.

The	logged-in	mode	of	the	form	uses	the	HTML_AJAX_Helper	class	to
help	it	produce	some	JavaScript.	We	include	this	class	on	line
53	and	then	create	an	instance	of	it	on	line	54.	On	lines	5556,
we	use	the	helper's	jsonEnode	method	to	turn	the	session's	profile
data	into	a	JSON	string	that	can	be	directly	used	in	the
JavaScript	we're	writing.	We	then	write	the	rest	of	the
JavaScript,	updating	each	field	in	the	comment	form,	using	the
user's	ID	and	the	matching	value	from	the	profile.	After	that,
we	use	another	helper	method	to	quickly	add	a	script	tag
around	this	JavaScript.	Because	this	login	code	is	session
driven,	the	logged-in	mode	will	be	used	each	time	the	parent
Comment.php	page	is	reloaded	after	a	single	login	has	happened.
With	this	design,	you	need	to	close	your	browser	to	log	out,	but
you	normally	put	a	Logout	button	somewhere	else	on	the	page
where	it	would	make	sense.

11.4.	Implementing	the	AJAX	Comment	Login
System	Using	XML

The	HTML_AJAX-powered	implementation	of	an	AJAX	login	form
was	easy	to	implement,	but	it	is	tightly	tied	to	the	HTML_AJAX
library.	You	could	implement	it	in	a	similar	fashion	with	another
library	that	has	the	same	features,	but	you	need	to	take	a
different	approach	if	you're	using	a	lighter	weight	library.
Because	the	HTML_AJAX	approach	generates	JavaScript	on	the
fly,	it	can	be	especially	hard	to	do	if	your	language	of	choice
doesn't	have	JSON	support.	XML	is	often	a	good	alternative	if
you	lack	JSON	support,	because	it's	easier	to	create	by	hand
and	more	mature;	therefore,	it	has	wider	language	support.
Any	of	the	communications	patterns	that	were	covered	at	the
beginning	of	this	book	are	a	possibility,	but	you'll	find	the	ones
that	use	a	more	standard	page-based	approach	will	be	easiest
to	integrate	into	existing	sites.	RPC-based	approaches	can	also
be	useful,	but	they	introduce	a	different	style	of	interaction	into
your	Web-based	applications.	Thus,	you'll	need	to	think	about
them	from	the	start,	if	you're	planning	on	using	them.

To	give	a	better	idea	of	what	an	alternative	implementation
would	look	like,	I've	implemented	the	same	comment	updating
system	using	Sarissa	and	XML.	The	back	end	is	still	written	in
PHP,	but	instead	of	generating	HTML	and	JavaScript,	it	will	now
generate	XML	code	that	is	used	by	client-side	JavaScript.	This
will	increase	the	amount	of	JavaScript	you	need	to	write,	but	it
may	well	be	worth	it,	especially	if	you're	already	using	XML
throughout	your	site.

In	this	example,	we	start	with	the	back	end	script
XMLCommentLogin.php,	because	the	JavaScript	code	doesn't	make
sense	until	you	see	the	XML	with	which	it	is	working.	All	the
XML	messages	are	contained	within	the	root	node	of	login.
When	a	login	fails,	an	XML	message	like	the	one	shown	here

can	be	returned:

<login>
						<result>fail</result>
						<message>Login	Failed</message>
</login>

If	a	login	was	attempted,	a	message	should	always	be	provided.
An	alternate	version	of	this	response	with	no	message	nodes
can	be	received	on	the	initial	page	load.	This	alternate	response
happens	when	the	login	status	is	read	from	the	session.	The
other	case	is,	of	course,	the	XML	that	is	shown	when	a	user	is
logged	in.	This	response	contains	profile	data;	using	XML	for
data	like	this	is	nice	because	it	makes	it	easy	to	extend	for
future	purposes.	An	example	of	the	XML	returned	by	a
successful	login	is	shown	here:

<login>
						<result>success</result>
						<profile>
																	<value	name="name">Joshua	Eichorn</value>
																	<value	name="email">josh@bluga.net</value>
																	<value	name="url">http://blog.joshuaeichorn.com
																	</value>
						</profile>
</login>

In	a	successful	case,	a	result	message	and	profile	data	are
returned.	The	value	tags	within	the	profile	tag	store	the	actual
profile	information.	In	this	example,	the	name	attribute
matches	the	ID	of	the	field	we	want	to	update,	but	in	most
cases,	this	mapping	wouldn't	work	and	you	would	have	to	add
code	to	match	the	XML	nodes	and	the	field	IDs.	In	the	initial

page	load	case,	the	same	response	as	a	successful	login	is
used.	The	code	that	generates	these	messages	is	shown	in
Listing	11-5.

Listing	11-5.	XMLCommentLogin.php

1		<?php
2		if	(!session_id())	{
3						session_start();
4		}
5
6		function	profileXML($profile)	{
7						$xml	=	"<profile>";
8						foreach($profile	as	$key	=>	$val)	{
9										$xml	.=	"<value	name='$key'>$val</value>";
10						}
11						$xml	.=	"</profile>";
12						return	$xml;
13		}

14
15		if	(isset($_GET['ajaxLogin']))	{
16						$xml	=	"<login>";
17				//	hard-coded	login,	use	the	application's
18				//	normal	login	code	here
19				if	($_GET['username']	===	'jeichorn'	&&
20						$_GET['password']	===	'test')	{
21
22										$_SESSION['profile']	=	array(
23										'name'	=>	'Joshua	Eichorn',
24										'email'=>	'josh@bluga.net',
25										'url'		=>	'http://blog.joshuaeichorn.com'
26);
27										$xml	.=	"<result>success</result>";
28										$xml	.=	profileXML($_SESSION['profile']);
29
30						$_SESSION['xlogin']	=	true;
31				}
32				else	{
33										$xml	.=	"<result>fail</result>";
34										$xml	.=	"<message>Login	Failed</message>";
35						$_SESSION['xlogin']	=	false;
36				}
37						$xml	.=	"</login>";
38		}
39		else	if	(isset($_SESSION['xlogin'])
40				&&	$_SESSION['xlogin']	==	true)	{
41						$xml	=	'<login><result>true</result>'.
42										profileXML($_SESSION['profile'])
43										.'</login>';

44		}
45		else	{
46						$xml	=	"<login><result>fail</result></login>";
47		}
48
49		if	(!isset($inline))	{
50						header("Content-type:	text/xml");
51		}
52		echo	$xml;
53		?>

Like	the	other	login	pages,	Listing	11-5	is	included	directly	in
the	main	content	page	to	produce	the	loading	of	default	values.
Unlike	the	other	pages,	it	needs	a	specific	flag	set	to	know	this
is	happening.	It	needs	this	flag	because	it	sends	a	content-type
header	on	line	50,	and	we	want	to	do	that	only	in	the	stand-
alone	case.	The	page	starts	by	initializing	the	PHP	session;	like
all	the	login	examples,	the	actual	status	of	the	login	is	stored	on
the	server.	Just	as	in	normal	Web	development,	storing	the
login	status	on	the	client	is	a	big	security	problem.	Next	(lines
613),	we	set	up	a	helper	function,	profileXML,	which	loops	over
profile	data	and	generates	XML	for	it.	It's	in	a	helper	function
because	we	need	to	be	able	to	access	it	in	two	places:	once	for
a	successful	login	(line	28),	and	once	for	the	already	logged-in
case	(line	42).

Lines	1547	handle	the	actual	login	processing.	We're	using	GET
requests	in	this	case	because	they	are	easier	to	accomplish	with
Sarissa,	but	this	could	cause	some	future	problems.	GET
requests	can	be	cached,	unlike	POST	requests,	which	could	make
it	hard	to	use	this	same	code	as	a	method	to	reload	profile
data.	On	line	15,	we	check	whether	we	have	a	login	attempt;	if
so,	we	start	building	our	output	xml	string	(line	16)	and	then	do
a	login	check	(lines	1920).	If	the	login	succeeds,	we	set	the
session	flag	(line	30)	and	load	the	user's	profile	into	the	session
(lines	2226).	The	successful	login	process	is	completed	by
outputting	the	needed	XML.	The	successful	login	code	first
outputs	a	result	tag	(line	27)	and	then	the	profile	data	(line	28)
by	calling	the	profileXML	helper	function.

If	the	login	fails,	we	output	a	result	tag	with	a	value	of	fail	(line
33)	and	add	a	message	tag	whose	value	will	be	displayed	on
the	login	form	(line	34).	The	failed	login	process	is	finished	by
setting	the	SESSION	flag	to	false	(line	35).	Lines	3947	contain	the
two	default	loading	cases.	If	the	user	is	logged	in,	we	generate
the	profile	XML	(lines	4143);	if	the	user	isn't	logged	in,	we
output	the	failure	XML	with	no	messages	(line	46).	The	file
finishes	by	outputting	an	XML	Content-type	header	(line	50),
which	is	needed	because	PHP	generates	HTML	files	by	default,
and	then	we	display	the	xml	(line	52).	This	example	is	used	by	a
comment	page,	shown	in	Listing	11-6,	which	has	been	updated
to	use	the	Sarissa	library	to	consume	the	XML.

Listing	11-6.	XMLComment.php

1		<?php
2		session_start();
3		$inline	=	true;
4		?>
5		<html>
6		<head>
7		<title>A	sample	Comment	Page</title>
8		<link	rel="stylesheet"	type="text/css"
9				href="Comment.css"	/>
10		<script	type="text/javascript"
11						src="sarissa/sarissa.js"></script>
12		<script	type="text/javascript"
13						src="sarissa/sarissa_ieemu_xpath.js"></script>
14		<script	type="text/javascript">
15		var	loginData	=
16					"<?php	include	'XMLCommentLogin.php';	?>";
17
18		function	processForm(form)	{
19						var	remote	=	Sarissa.getDomDocument();
20						remote.onreadystatechange	=	function()	{
21										if(remote.readyState	==	4)	{
22														var	result	=
23														remote.selectSingleNode('//result');
24
25										if	(result.firstChild.nodeValue
26														==	'success')	{
27														loadProfile(remote);
28														}
29														else	{
30																		var	message	=

31																		remote.selectSingleNode('//message');
32																		var	el	=
33																		document.getElementById('message');
34																		el.innerHTML	=
35																		message.firstChild.nodeValue;
36												}
37										}
38							}
39
40							var	url	=	"XMLCommentLogin.php?ajaxLogin=1";
41							url	+=	"&username="+
42											escape(form.elements.username.value);
43							url	+=	"&password="+
44											escape(form.elements.password.value);
45
46						remote.load(url);
47
48						return	false;
49		}
50
51		function	loadInline()	{
52						var	parser	=	new	DOMParser();
53						var	loginXML	=	parser.parseFromString(
54										loginData,	"text/xml");
55						loadProfile(loginXML);
56		}
57
58		function	loadProfile(doc)	{
59						var	nodes	=	doc.selectNodes('//profile/value');
60						if	(nodes.length	>	0)	{
61										document.getElementById('loginForm').style.display	=	'none';
62						}
63						for(var	i	=	0;	i	<	nodes.length;	i++)	{

64										var	name	=	nodes[i].getAttribute('name');
65										document.getElementById(name).value	=
66														nodes[i].firstChild.nodeValue;
67						}
68		}
69
70		</script>

XMLComment.php	provides	the	same	comment	form	as	the	Comment.php
example.	Because	it's	using	the	Sarissa	library,	the	code	quickly
diverges	because	it	defines	several	JavaScript	functions	to
handle	the	XML.	The	page	starts	with	some	basic	PHP	setup,
starting	the	session	(line	2)	and	setting	$inline	to	TRue	so	that
the	XML-generating	page	knows	not	to	send	Content-type
headers.	The	page	then	includes	the	same	CSS	(lines	89)	and

the	Sarissa	library	(lines	1011),	including	its	XPath	support
(lines	1213).	Then,	we	move	into	the	JavaScript.	The	first	item
we	define	is	the	loginData	variable,	which	will	contain	the	XML
generated	by	XMLCommentLogin.php.	This	variable	allows	us	to	load
the	profile	data	at	page	load	if	the	user	is	already	logged	in.

After	that,	we	define	a	function	that	will	handle	submitting	the
login	form	(lines	1849).	It	starts	by	getting	a	Sarissa	DOM
Document	(line	19);	it	then	sets	up	its	onreadystatechange	handler
(lines	2038).	When	the	page	is	loaded	(readyState	==	4),	this
handler	will	use	an	XPath	query	to	grab	the	result	node	(lines
2223)	and	then	check	to	see	whether	its	value	is	successful
(lines	2526).	If	the	value	is	success,	the	profile	information	will
be	loaded	using	the	loadProfile	function.	If	the	value	isn't	success,
an	XPath	query	will	be	used	to	load	the	message	node	(lines
3031),	and	then	the	content	of	this	message	will	be	added	to
the	paragraph	element	with	an	ID	of	message	(lines	3235).

Once	the	handler	is	set	up,	the	URL	to	be	used	in	the	request	is
created	(lines	4044).	Because	we're	making	a	GET	request,	the
data	is	appended	to	the	query	string.	The	values	are	read	from
the	form	using	the	elements.elementName	syntax.	Each	value	read
from	the	form	is	escaped;	this	escaping	makes	sure	that	we
won't	get	a	broken	URL.	Once	we	have	a	URL,	we	use	the	DOM
document's	load	method	to	make	the	request	(line	46)	and	then
return	false	(line	48)	so	that	the	form	won't	do	a	normal
submission.	Lines	5156	define	the	loadInline	function;	this
function	is	called	at	page	load,	and	it	uses	a	DOMParser	to	load	the
XML	from	loginData	and	then	calls	loadProfile	on	it.

The	JavaScript	code	finishes	up	by	defining	the	loadProfile
function;	this	function	takes	a	login	result	DOM	document	and
loads	the	profile	data	into	the	comment	form.	It	does	this	by
making	an	XPath	query	that	loads	all	the	value	nodes	into	an
array	(line	59).	If	that	query	succeeds,	it	first	hides	the	login
form	(line	61)	and	then	loops	over	the	array	(lines	6367),
grabbing	the	name	of	the	value	from	its	name	attribute,	grabbing
the	HTML	element	with	an	ID	that	matches	that	name,	and	then

setting	that	element's	value	to	the	value	of	the	tag.	If	the
names	do	not	match,	you	can	loop	over	the	nodes,	creating	a
hash	with	the	name	as	the	key,	and	then	write	out	each	update
by	hand.

Listing	11-7.	XMLComment.php	Continued

71		</head>
72		<body	onload="loadInline()">
73		<h3>Leave	a	reply</h3>
74		<form	action="Comment.php"	method="post">
75
76		<div	id="inputFields">
77		<p><input	name="author"	id="name"
78				size="22"	type="text">
79		<label	for="author"><small>Name
80				(required)</small></label></p>
81
82		<p><input	name="email"	id="email"
83				size="22"	type="text">
84		<label	for="email"><small>Mail	(will	not	be
85				published)	(required)</small></label></p>
86
87		<p><input	name="url"	id="url"
88				size="22"	type="text">
89		<label	for="url"><small>Web	site
90				</small></label></p>
91		</div>
92		<br	style="clear:both"	/>
93
94		<p><textarea	name="comment"	id="comment"
95				cols="100"	rows="10"></textarea></p>
96
97		<p><input	name="submit"	id="submit"
98				value="Submit	Comment"	type="submit">
99		</p>
100
101		</form>
102		<div	id="loginForm">
103		<form	onsubmit="return	processForm(this)">
104		<h4>Login</h4>
105		<p	id="message"></p>
106		<p>
107		<input	name="username">
108		<label><small>Username</label>

109		</p>
110
111		<p>

112		<input	name="password"	type="password">
113		<label>Password</label>
114		</p>
115
116		<input	type="hidden"	name="ajaxLogin"	value="1">
117		<p><input	type="submit"	value="Login"></p>
118		</form>
119		</div>
120		</body>
121		</html>

The	rest	of	the	page	builds	the	user	interface.	It	has	a	few
changes	from	Comment.php.	The	big	one	is	that	the	login	form	is
defined	directly	on	this	page	instead	of	being	included.	On	line
72,	we	set	an	onload	handler.	This	handler	called	loadInline	loads
any	current	profile	data.	After	that,	we	have	just	the	standard
comment	form	until	line	102,	where	we	define	the	login	form.
The	only	difference	in	this	form	is	that	it	is	now	calling	the
processForm	function	in	its	onsubmit	handler.	This	event	handler	will
start	the	AJAX	submit	process	when	the	user	clicks	the	Submit
button.	The	data	flow	of	the	user	filling	out	a	comment,	logging
in,	and	then	submitting	his	or	her	comment	is	shown	in	Figure
11-6;	this	data	flow	is	identical	in	both	the	HTML_AJAX	and
Sarissa	XML	cases.

Figure	11-6.	Workflow	of	the	AJAX	login	process
using	Sarissa

	

11.5.	Summary

In	this	chapter's	use	case,	we	focused	on	submitting	forms	over
AJAX	and	then	updating	parts	of	the	document	using	the
returned	information.	You	can	implement	this	pattern	in	many
different	ways,	but	it's	common	to	use	a	library's	AJAX	form
submission	features	to	do	so.	This	form	submission	feature	is
especially	powerful	if	the	library	supports	adding	JavaScript	to
the	page	along	with	HTML	when	doing	the	update.	Be	careful
when	deciding	which	parts	of	a	page	to	upgrade	with	AJAX	in
this	fashion;	if	you	start	making	one	form	update	many
different	parts	of	a	page,	you	can	make	it	hard	for	a	user	to	see
what	is	happening.	Thus,	this	updating	strategy	actually	works
best	for	self-contained	actions	or	for	those	that	seem	related.
Even	in	related	cases,	you	may	want	to	add	some	visual	effects,
such	as	highlighting	the	changed	elements,	to	make	it	clear	that
something	has	happened.

The	page	segmenting	pattern	can	be	especially	useful	in	cases
where	you	need	to	look	up	information	while	completing
another	form.	This	could	be	anything	from	selecting	a	billing
address	on	a	shopping	cart	to	selecting	a	permissions	group	in
a	user	editor.	When	designed	correctly,	you	can	often	package
these	components	in	your	server-side	framework	in	such	a	way
that	they	can	be	reused	without	your	having	to	write	any
JavaScript	for	their	subsequent	uses.	In	the	next	chapter's	use
case,	we	look	at	some	other	reusable	components	and	how
standard	ones	can	be	combined	to	build	a	small	application.

Chapter	12.	Building	a	Trouble-Ticket
System
In	this	chapter

12.1	Trouble-Ticketing	System page	272

12.2	AJAX	Reliance	Scale page	274

12.3	Creating	the	Back	End page	275

12.4	Exporting	the	Back	End page	282

12.5	Building	the	JavaScript	Application page	288

12.6	Login	Component page	299

12.7	User-Registration	Component page	305

12.8	Account-Editing	Component page	308

12.9	Ticket-Creation	Component page	310

12.10	Ticket-Editor	Component page	312

12.11	My-Tickets	Component page	318

12.12	Assign-Tickets	Component page	323

12.13	Security	Considerations	with	AJAX	Applications page	328

12.14	Comparing	Our	AJAX-Driven	Application	against	a
Standard	MVC	Model page	329

12.15	Summary page	330

When	developing	with	AJAX,	the	first	decision	you	need	to	make
is	how	much	you're	going	to	rely	on	it.	It's	possible	to	use	it	as
an	optional	HTML	enhancement,	as	an	integral	part	to	specific
features,	or	as	the	driver	for	an	entire	site.	In	this	chapter's	use
case,	we	build	a	small	trouble-ticket	system	using	a	design	that
is	100	percent	AJAX	powered.	Moving	to	this	extreme	can	be
problematic	on	public	sites,	but	it's	a	great	choice	for	an
internal	application	like	this.	Using	this	case,	we	can	see	the
differences	that	having	AJAX	and	JavaScript	as	the	driving	force
of	our	development	can	make.	We'll	also	see	a	number	of
techniques	and	design	decisions	that	can	be	used	in	any
applicationno	matter	how	you're	using	AJAX.

12.1.	Trouble-Ticketing	System

Many	information	technology	groups	use	some	kind	of	Web-
based	trouble-ticket	system	to	support	their	users.	These
applications	allow	users	to	report	problems;	they	also	allow
support	personnel	to	respond	and	manage	the	issue's	life	cycle.
In	this	use	case,	we'll	be	building	a	small-scale	trouble	ticketing
system.	This	system	works,	but	it	doesn't	have	all	the	features
you	might	need	in	a	true	production	system.	This	sample
application	will	be	fully	reliant	on	AJAX	communications,	setting
it	on	the	far	right	of	the	reliance	scale.

The	trouble-ticketing	system	has	two	main	components:

The	first	component	is	the	back	end,	which	handles
database	updates,	queries,	and	authentication.

The	second	is	the	JavaScript/HTML	front	end,	which	uses
AJAX	to	talk	to	the	back-end	services	infrastructure.

You	may	hear	a	design	like	this	called	a	Service-Oriented
Architecture	(SOA),	but	besides	helping	us	communicate	with
those	familiar	with	the	term,	it	doesn't	help	us	along	the
learning	process,	so	you	can	file	away	the	buzzword	for	future
use.	This	JavaScript	front	end	will	replace	the	control	logic	you
would	normally	write	on	the	server.	If	you're	used	to	a	model
view	controller	(MVC)	programming	abstraction,	you	can	think
of	moving	the	view	and	most	of	the	controller	code	to	the	client.
Not	all	of	the	controller	code	can	be	moved	though,	because	the
client	is	still	an	untrusted	entity;	in	addition,	authentication,
data	cleaning,	and	mapping	service	requests	to	a	particular
piece	of	code	still	have	to	happen	on	the	server.

The	overall	design	of	the	JavaScript	system	is	one	based	on
components.	Each	component	contains	some	HTML	code	and

some	JavaScript	code	that	powers	it.	In	other	scenarios,	you
might	want	to	also	include	the	CSS	style	information	directly	in
the	component,	but	in	this	case,	the	style	rules	were	left	at	a
global	level.	The	components	are	designed	so	that	their	HTML	is
present	on	the	page	from	its	initial	load,	sitting	inside	a	DIV
container	that	has	a	display	attribute	of	none.	When	one	of	the
components	is	needed,	its	container	is	shown.	This	process
reveals	the	HTML	and	allows	the	user	to	interact	with	it.

A	similar	component	design	can	be	used	in	an	application	that
uses	AJAX	as	an	enhancement	tool.	If	AJAX	components	are
designed	to	provide	generic	user-interface	components,	they
can	be	used	in	other	projects,	but	you'll	generally	still	want	to
make	customized	versions	of	them.	These	versions	would	do
specific	tasks,	such	as	providing	AJAX	logins	or	searching	for
users.	In	this	project,	the	components	are	application	specific;
this	specificity	helps	lower	their	complexity	and	makes	it	easier
to	understand	them.	It	also	makes	their	development	faster;
many	times,	I	find	it	useful	to	wait	until	after	I	have	done	two
or	three	specific	implementations	of	a	component	before	I	make
a	generalized	one.	This	lets	you	learn	about	the	problem	space,
and	it	makes	it	easier	to	build	a	truly	reusable	component
instead	of	one	that	works	only	in	cases	that	match	its	original
use.

To	understand	the	code	of	our	trouble	ticket	system,	we	must
first	look	at	the	tasks	it	must	perform:

Register	new	users

Log	in	users

Update	user	accounts

Create	tickets

Update	tickets

Assign	tickets	to	users

Give	users	a	way	to	see	all	their	assigned	tickets

A	system	that	has	this	level	of	functionality	provides	a	relatively
basic	trouble-ticket	system,	and	it	offers	us	more	then	enough
functionality	to	understand	the	process	of	building	a	fully	AJAX-
powered	application.

	

12.2.	AJAX	Reliance	Scale

You	can	use	AJAX	such	that	it's	100	percent	optional,	and	your
application	will	be	just	fine	with	JavaScript	turned	off.	This	type
of	AJAX	usage	is	usually	accomplished	by	developing	an
application	and	then	adding	small	amounts	of	JavaScript	to
enhance	specific	functions.	JavaScript	behaviors	are	a	great
technique	to	use	in	this	approach.	At	the	opposite	end	of	the
spectrum,	you	have	a	pure	AJAX	application;	in	a	case	like	this,
the	back-end	Web	server	provides	only	a	set	of	services	(such
as	creating	users,	listing	tickets,	and	so	on).	The	entire	user
interface	and	the	logic	that	drives	it	are	built	in	JavaScript.	A
Web	application	with	AJAX	enhancement	follows	the	normal
Web	pattern;	forms	post	like	normal	to	the	server	and	pages
reload	on	a	regular	basis.	An	AJAX	application	breaks	out	of
that	mode:	The	site	is	loaded	once,	and	from	that	point	on,	all
interaction	with	the	server	is	controlled	by	JavaScript,	with
requests	being	made	as	needed	and	the	DOM	being	updated	as
well.

These	two	styles	of	AJAX	development	create	two	ends	of	a
scale.	Although	both	these	approaches	have	their	merits,	most
applications	won't	fit	neatly	into	either	of	the	categories.
Instead,	you'll	have	a	mix	somewhere	in	the	middle;	an
enhanced	application	will	add	features	such	as	user	selection
that	work	only	with	AJAX	support,	but	other	functions	will
submit	like	normal.	You	might	also	have	a	page	with	few	normal
reloads.	It	will	not	quite	fit	into	the	AJAX	application	structure
because	the	majority	of	the	logic	rests	on	the	back-end	server.

One	important	item	to	remember	is	that	although	applications
can	exist	all	along	the	scale,	you'll	have	a	hard	time	moving	an
application	from	one	end	to	the	other.	If	your	design	is
structured	around	server-side	logic,	you	can	easily	make
features	that	require	AJAX	optional	again	by	providing	non-AJAX
versions	of	them.	However,	you	might	have	a	tough	time

getting	rid	of	all	the	page	reloads,	because	you'll	find	yourself
having	a	large	amount	of	duplicated	client	and	server	logic	that
will	be	hard	to	keep	in	sync.	Making	a	completely	AJAX-driven
application	not	rely	on	AJAX	communications	will	offer	these
same	types	of	problems,	because	you'll	have	to	duplicate	large
amounts	of	logic	on	the	server	to	make	the	switch.	If	you're
making	a	mixed	application,	you	won't	have	this	problem,
because	moving	small	features	that	cause	normal	refreshes	to
an	AJAX	request	will	be	easy.	An	AJAX	reliance	scale	with	a
number	of	AJAX	applications	placed	on	it	is	shown	in	Figure	12-
1.

Figure	12-1.	AJAX	reliance	scale

The	trouble	ticket	system	built	in	this	chapter	will	rely	on	AJAX
for	server	communication	needs	past	the	original	page	load.
This	puts	the	application	at	the	far	right	of	the	scale,	with
applications	like	Mp3act,	which	is	described	in	Chapter	4,
"Adding	AJAX	to	Your	Web	Development	Process."	Heavy
reliance	like	this	can	make	supporting	old	browsers	extremely
difficult,	but	old	browser	support	isn't	usually	needed	for
internal	applications,	so	this	isn't	an	issue	for	the	trouble-ticket

system.

12.3.	Creating	the	Back	End

The	first	step	to	building	our	application	is	creating	the	back-
end	services	that	will	perform	all	the	database	work.	Think	of
the	functions	as	a	set	of	services	that	will	be	exposed	to	the
client	application.	In	some	cases,	these	services	might	already
exist	and	are	offered	to	other	applications	using	SOAP	or	some
other	Web	services	technology,	but	in	most	cases,	you'll	be
creating	them	just	for	your	AJAX	application.	Because	the
trouble-ticket	application	is	offering	only	basic	functionality,	the
back	end	in	this	case	can	be	quite	simple.	In	this	case,	it's
grouped	into	a	single	class,	but	as	the	application	grows,	you
may	want	to	factor	it	into	multiple	classes	to	keep	it
manageable.

Because	the	focus	of	this	use	case	is	AJAX,	we're	not	going	to
look	at	the	back-	end	code	in	detail.	The	back	end	is
implemented	in	PHP	and	uses	a	lightweight	class	to	talk	to	a
MySql	database.	The	code	is	in	Ticket.class.php,	with	the	SQL	to
set	up	the	database	in	Ticket.sql.	If	you	want	to	run	the
example	on	your	own	server,	you'll	need	to	edit	the	first	six
lines	of	the	Ticket.class.php	file,	updating	its	database	connection
settings.	A	nice	aspect	about	a	back	end	like	this	is	that	it	can
be	easily	implemented	in	any	language	that	has	a	library	to
expose	the	services	provided	by	the	class	using	a	JSON	RPC
mechanism	or	something	similar.	We'll	be	using	HTML_AJAX	to
expose	the	class	from	PHP	and	will	cover	that	in	detail	once	we
cover	the	API	provided	and	the	results	to	expect	from	each
method.

All	interactions	with	the	back	end	are	performed	by	using	the
API	provided	by	the	Ticket	class.	The	methods	perform	actions
against	the	database	that	has	two	tables.	The	basic	definition	of
the	Tickets	and	Users	tables	is	shown	in	Figure	12-2.

Figure	12-2.	Database	definition	of	Tickets	and
User	Tables

The	addUser	method	creates	a	new	user;	it	takes	three
parameters:	the	new	username	to	use,	the	password,	and	the
email	address.	The	method	does	basic	validation	requiring	that
none	of	the	fields	is	empty;	if	any	are,	the	method	returns	false.
If	a	user	is	successfully	added,	the	method	returns	TRue.	The
method's	signature	is

addUser($username,$password,$email)

The	updateUser	method	updates	information	about	the	currently
logged	in	user.	If	no	user	is	logged	in,	the	method	returns	false.
If	the	update	succeeds,	an	associative	array	containing	the
user's	profile	is	returned.	The	method	takes	a	single	parameter,
which	is	an	associative	array	containing	the	fields	to	update.
updateUser's	signature	is

updateUser($fields)

An	example	input	is	as	follows:

$fields	=	array(
								'email'	=>	'new	email',
								'password'	=>	'new	password'
);

Although	we	store	a	user_id,	username,	password,	and	email	address
for	each	user,	only	emails	and	passwords	can	be	updated;
user_id	is	auto_created,	and	username	can	be	set	only	when	an
account	is	created.	An	example	profile	array	that	would	be
returned	by	this	method	is	as	follows:

array
		'user_id'	=>	'1'
		'username'	=>	'josh'
		'email'	=>	'josh@bluga.net'
		'loggedIn'	=>	true

The	listUsers	method	returns	an	array	containing	a	list	of	all	the

users	in	the	system.	The	key	of	the	array	is	the	user_id,	and	the
value	is	the	username.	The	array	is	ordered	by	the	username.
The	listUsers	method	takes	no	parameters:

listUsers()

An	example	output	is	shown	here:

array
		1	=>	'josh'

The	addTicket	method	adds	a	new	trouble	ticket	to	the	system.	It
takes	two	parameters:	the	title	of	the	ticket	and	a	descriptive
text	field.	The	user	must	be	logged	in	to	submit	a	ticket;	if	the
user	isn't	logged	in,	this	method	returns	false.	On	successful
creation	of	a	ticket,	the	method	returns	the	new	ticket_id.
addTicket	has	a	signature	of

addTicket($title,$description)

getTicket	grabs	an	associative	array	with	all	the	information
about	a	ticket.	This	method	can	be	used	without	logging	in.	The
returned	array	contains	two	subarrays:	the	first	subarray	with	a
key	of	users	contains	the	output	from	listUsers,	whereas	the
second	subarray	with	a	key	of	ticket	is	the	ticket	information.
The	getTicket	method's	signature	is

getTicket($ticketId)

Example	output	is	shown	here:

array
		'users'	=>
				array
						1	=>	'josh'
		'ticket'	=>
				array
						'ticket_id'	=>	'1'
						'creator'	=>	'josh'
						'assigned'	=>	'1'
						'title'	=>	'Test	Ticket'
						'description'	=>	'Test'
						'status'	=>	'new'
						'created_time'	=>	'2006-02-26	12:38:32'
						'last_change'	=>	'2006-02-26	12:38:32'
						'assigned_to'	=>	'josh'

The	updateTicket	method	updates	the	fields	of	a	ticket.	It	has	a
method	signature	of

updateTicket($ticketID,$fields)

The	first	parameter	is	the	ID	of	the	ticket	to	update,	and	the
second	is	an	associative	array	of	the	fields.	All	the	ticket	fields
except	for	the	ticket_id	can	be	updated	using	this	method.	The
last_change	field	is	automatically	set	to	the	current	time	when
this	method	is	run.	The	user	must	be	logged	in	to	use	this
method;	false	is	returned	if	the	user	isn't	logged	in.	When	the
update	is	completed,	an	associative	array	containing	the	same
output	as	getFields	is	returned.	Ticket	status	can	be	updated
with	this	method;	possible	status	values	are	new,	assigned,	open,
and	fixed.	An	example	input	value	for	the	attribute	$fields	is
shown	here:

$fields	=	array(
																'title'	=>	'New	Title',
																'description'	=>	'New	Description',
																'status'	=>	'open',
																'assigned'	=>	1
);

The	assignTicket	method	assigns	a	ticket	to	a	specific	user.	It
takes	two	parameters:	a	$ticket_id	and	a	$user_id.	The	user	must
be	logged	in	to	use	this	method;	if	he	or	she	is	not,	it	returns
false;	after	the	ticket	is	successfully	updated,	output	that
matches	getTicket	is	returned.	If	$userId	is	set	to	false,	the	ticket
is	unassigned.	This	method	will	also	automatically	update	the
status	of	the	ticket;	if	the	current	status	of	the	ticket	is	new	and
$userId	isn't	false,	then	the	status	will	be	changed	to	assigned.	If
the	current	status	of	the	ticket	is	assigned	and	$userId	equals
false,	then	the	status	of	the	ticket	will	be	changed	to	open.	Note
that	updateTicket	uses	this	method	if	its	assigned	field	is	set.	The
value	of	this	field	is	passed	in	as	$userId.	assignTicket's	signature
is

assignTicket($ticketId,$userId)

The	listUnassignedTickets	method	lists	all	the	tickets	in	the	system
that	haven't	been	assigned	to	a	user.	The	array	is	ordered	by
the	last_change	date	of	the	tickets.	The	listUnassignedTickets
signature	is

listUnassignedTickets()

Example	output	is	shown	here:

array
		0	=>
				array
						'ticket_id'	=>	'1'
						'creator'	=>	'josh'
						'assigned'	=>	null
						'title'	=>	'Test	Ticket'
						'description'	=>	'Test'
						'status'	=>	'new'
						'created_time'	=>	'2006-02-26	12:43:39'
						'last_change'	=>	'2006-02-26	12:43:39'
						'assigned_to'	=>	'Not	Assigned'

The	listAssignedTickets	method	returns	a	list	of	tickets	that	are
assigned	to	the	currently	logged	in	user.	If	this	method	is	called
without	the	user	being	logged	in,	false	is	returned.	The	array	is
ordered	by	the	last_change	date	of	the	tickets.	The
listAssignedTickets	method	has	no	parameters	and	has	a
signature	of

listAssignedTickets()

Example	output	is	shown	here:

array
		0	=>
				array
						'ticket_id'	=>	'1'
						'creator'	=>	'josh'
						'assigned'	=>	'1'
						'title'	=>	'Test	Ticket'
						'description'	=>	'Test'
						'status'	=>	'assigned'

						'created_time'	=>	'2006-02-26	12:43:39'
						'last_change'	=>	'2006-02-26	12:43:39'
						'assigned_to'	=>	'josh'

The	listUpdatedTickets	method	provides	a	way	to	get	updated
information	about	tickets	that	are	assigned	to	the	currently
logged	in	user	and	that	have	changed	since	the	last	time	you
checked	with	the	back	end.	This	method	tries	to	return	a
minimal	number	of	ticket	records,	but	in	cases	where	tickets
have	been	unassigned,	it	sets	a	flag	to	note	that	the	table
displaying	the	data	needs	to	be	rebuilt	and	returns	the	full
output	of	listAssignedTickets.	When	the	rebuild	flag	is	set,	the
ticket	data	is	returned	under	a	tickets	index.

listUpdatedTickets($last_call_time,$current)

An	example	of	output	returned	in	normal	mode	and	then	in
rebuild	mode	is	shown	in	Listings	12-1	and	12-2.	In	normal
mode,	only	new	and	changed	tickets	are	sent	to	the	client
where	the	table	displaying	them	is	updated.	In	rebuild	mode,	all
the	tickets	are	sent	to	the	client,	where	the	entire	table	is
rebuilt.

Listing	12-1.	Normal	listUpdatedTickets	Output

array
		0	=>
				array
						'ticket_id'	=>	'1'
						'creator'	=>	'josh'

						'assigned'	=>	'1'
						'title'	=>	'Test	Ticket'
						'description'	=>	'Blah	blah'

						'status'	=>	'assigned'
						'created_time'	=>	'2006-02-26	13:21:11'
						'last_change'	=>	'2006-02-26	13:21:12'
						'assigned_to'	=>	'josh'

Listing	12-2.	Rebuild	Mode	listUpdatedTickets
Output

array
		'rebuild'	=>	true
		'tickets'	=>
				array
						0	=>
								array
										'ticket_id'	=>	'2'
										'creator'	=>	'josh'
										'assigned'	=>	'1'
										'title'	=>	'test	ticket'
										'description'	=>	'blah	blah'
										'status'	=>	'assigned'
										'created_time'	=>	'2006-02-26	13:39:06'
										'last_change'	=>	'2006-02-26	13:39:06'
										'assigned_to'	=>	'josh'

The	login	method	logs	a	user	into	the	system,	storing	this	status
in	the	user's	session.	It	takes	two	parameters:	the	username
and	the	password.	If	the	login	is	unsuccessful,	false	is	returned;
if	the	login	is	successful,	the	user's	profile	information	is
returned.	The	method	signature	is

login($username,$password)

An	example	profile	output	is	shown	here:

array
		'user_id'	=>	'1'

		'username'	=>	'josh'
		'email'	=>	'josh@bluga.net'
		'loggedIn'	=>	true

The	isLoggedIn	method	returns	TRue	if	the	user	is	logged	in	and
false	if	the	user	isn't.	This	method	isn't	usually	called	by	a
JavaScript	client	but	is	instead	used	by	other	methods	in	the
Ticket	class.	isLoggedIn	has	a	signature	of

isLoggedIn()

The	profile	method	is	used	to	get	information	about	a	user's
profile.	The	method	takes	one	optional	parameter:	$field.	If
$field	is	set,	that	value	from	the	user's	profile	will	be	returned;
otherwise,	the	entire	profile	will	be	returned.	If	the	user	isn't
logged	in	when	this	method	is	called,	false	will	be	returned.	The
profile	output	is	identical	to	the	output	of	a	successful	login.	The
profile	method	has	a	signature	of

profile($field	=	false)

The	logout	method	logs	the	current	user	out	of	the	system	and
destroys	the	user's	current	PHP	session.	This	method	always
returns	a	value	of	true.	logout	has	no	parameters;	its	signature	is

logout()

12.4.	Exporting	the	Back	End

Now	that	we've	reviewed	the	functionality	provided	by	the	back-
end	Ticket	class,	let's	look	at	what	we	need	to	do	to	export	it	to
a	JavaScript	client.	We	have	a	number	of	options,	including
generating	an	XML	file	from	the	output	of	each	Ticket	method,
creating	chunks	of	HTML	for	each	method,	or	having	JSON
encode	the	data.	XML	would	work	for	an	application	like	this,
but	there	is	no	standard	for	describing	PHP	data	structures	in
XML	with	which	JavaScript	automatically	knows	how	to	deal.	An
HTML	chunk	option	is	less	than	ideal	because	it	would	entail
writing	more	PHP	code	and	would	limit	flexibility.	JSON	is	a
great	choice	for	an	application	such	as	this	because	code	is
available	for	PHP	to	encode	its	data	structures	into	JSON,	and
JavaScript	can	directly	evaluate	the	data	it	sends.	In	addition,
JSON	is	a	smaller	encoding	format	than	the	other	options,
which	helps	keep	our	application	running	quickly.	For	these
reasons,	we	will	use	JSON.

Now	that	we've	decided	that	were	going	to	use	JSON,	we	need
to	figure	out	how	we're	going	to	make	it	accessible	to	the	client.
One	option	is	to	create	a	PHP	page	for	each	method;	that	page
will	look	at	the	incoming	POST	data,	transform	it	to	PHP	data
types,	call	the	method	of	the	Ticket	class,	and	then	return	its
output	formatted	as	JSON.	An	example	of	what	this	would	look
like	for	the	login	method	is	shown	in	Listing	12-3.

Listing	12-3.	Login.php

1		<?php
2		require_once	'HTML/AJAX/Serializer/JSON.php';
3		require_once	'Ticket.class.php';
4
5		$rawin	=	file_get_contents('php://input');
6
7		$serializer	=	new	HTML_AJAX_Serializer_JSON();

8		$in	=	$serializer->unserialize($rawin);
9
10	$ticket	=	new	Ticket();
11
12	$out	=	$ticket->login($in->username,$in->password);
13
14	echo	$serializer->serialize($out);
15	?>

Lines	23	include	the	classes	needed	for	this	page.	We're	using
the	JSON	serializer	code	from	HTML_AJAX,	but	any	PHP	JSON
library	would	work.	Line	5	reads	the	raw	POST	input,	with	lines	7
and	8	using	the	JSON	Serializer	class	to	decode	it	into	a	PHP
object.	On	line	10,	we	create	a	new	Ticket	instance,	calling	the
login	method	on	line	12.	We	then	send	the	output	to	the	client
on	line	14,	serializing	it	into	the	JSON	format.	An	example	HTML
page	that	can	be	used	to	test	this	login	page	is	shown	in	Listing
12-4.

Listing	12-4.	Login.html

1		<html>
2		<head>
3		<title>Login	Tester</title>
4		<script	type="text/javascript"
5		src="server.php?client=all"></script>
6		<script	type="text/javascript">
7		var	s	=	new	HTML_AJAX_Serialize_JSON();
8		function	callback(result)	{
9				var	profile	=	s.unserialize(result);
10			document.getElementById('target').innerHTML	=
11					HTML_AJAX_Util.quickPrint(profile);
12	}
13	var	options	=	{
14	args:	s.serialize({username:'josh',password:'test2'})
15	};
16
17		function	login()	{

18			HTML_AJAX.grab('Login.php',callback,options);
19	}
20	</script>
21	</head>

22	<body>
23	Run	a	test	login
24	<pre	id="target">
25	</pre>
26	</body>
27	/html>

In	Listing	12-4,	we're	again	using	the	HTML_AJAX	libraries	to
handle	some	of	the	AJAX	grunt	work.	On	lines	45,	we	include
the	HTML_AJAX	JavaScript	library.	On	lines	620,	we	define	some
functions	to	test	making	a	JSON	request	to	log	in.	On	line	7,	we
create	an	instance	of	HTML_AJAX_Serialize_JSON;	this	instance	will	be
used	to	transform	JavaScript	data	to	JSON	strings	and	JSON
strings	back	to	JavaScript.	Lines	812	define	a	callback	function;
this	function	will	be	called	when	our	AJAX	request	is	complete.
It	takes	the	resulting	AJAX	string	and	turns	it	into	a	profile
object	(line	9);	it	then	uses	a	utility	method	to	print	its	contents
to	a	target	element.

Lines	1315	set	up	an	options	object,	which	contains	a	JSON
string	that	will	be	posted	to	the	PHP	page.	Lines	1719	define
the	login	function	that	makes	the	AJAX	request.	The	request	will
be	made	to	Login.php,	calling	the	callback	function	when	it's
complete,	and	will	pass	in	the	serialized	JSON	string	we	set	up
in	the	options	object.	Line	23	provides	us	with	a	function	to	test
it.	When	you	run	the	login	function,	you	will	get	output	from	the
server	that	contains	the	user's	profile,	because	that's	what	a
successful	login	returns.	An	example	is	shown	here:

user_id:1
username:josh
email:josh@bluga.net
loggedIn:true

This	system	works	by	sending	the	JSON-encoded	string	to	the

server;	in	this	case,	the	string	would	be	like	so:

{"username":"josh","password":"test2"}

The	server	decodes	that	into	a	PHP	object	that	looks	like	this:

object(stdClass)
		var	'username'	=>	'josh'
		var	'password'	=>	'test2'

The	login	method	on	the	Ticket	class	is	called;	this	method
returns	a	profile	array.	This	array	is	turned	into	a	JSON	string,
which	is	sent	back	to	the	client.	This	JSON	string	looks	like	this:

{"user_id":"1","username":"josh","email":"josh@bluga.net","loggedIn":true}

This	string	is	then	decoded	to	a	JavaScript	object,	where	it	can
be	used,	or	in	the	test	case,	where	it	is	displayed	in	the	target
element.

We	could	follow	this	same	pattern	to	create	a	PHP	page	for
every	Ticket	method,	but	fortunately,	we	have	a	simpler	option.
HTML_AJAX	provides	code	to	automatically	expose	the	Ticket
class's	methods	in	a	similar	fashion.	On	the	PHP	side,	this
functionality	is	provided	through	the	HTML_AJAX_Server	class.
An	example	of	exporting	the	Ticket	class	is	shown	in	Listing	12-
5.

Listing	12-5.	Server.php

1	<?php
2	require_once	'HTML/AJAX/Server.php';
3	require_once	'Ticket.class.php';
4
5	$server	=	new	HTML_AJAX_Server();
6	$server->registerClass(
7			new	Ticket(),
8			'Ticket',
9			array(
10				'addUser',
11				'updateUser',
12				'listUsers',
13				'addTicket',
14				'updateTicket',
15				'getTicket',
16				'assignTicket',
17			'listUnassignedTickets',
18				'listAssignedTickets',
19				'listUpdatedTickets',
20				'login',
21				'isLoggedIn',
22				'currentUserId',
23				'logout'
24)
25);
26	$server->handleRequest();
27	?>

This	page	is	fairly	simple.	It	creates	a	new	HTML_AJAX_Server,
registers	the	Ticket	class	with	it,	and	then	has	the	server	handle
requests	to	the	page.	Lines	23	include	the	required	classes	for
the	page.	Line	5	creates	the	new	HTML_AJAX_Server	instance.	Lines
625	register	the	class.	Line	7	is	the	instance	of	the	Ticket	class,
line	8	is	the	name	to	export	it	to	JavaScript	as,	and	lines	924
are	an	array	of	Ticket	methods	to	export.	These	methods	don't
have	to	be	specified;	if	they	are	not	specified,	PHP	introspection
is	used	to	detect	them,	but	if	you're	running	on	PHP	4,	PHP
can't	detect	the	case	of	the	functions;	this	can	be	annoying
when	we	look	at	the	JavaScript	side	of	the	equation	because	all
the	methods	will	be	exported	in	lowercaseno	matter	what	they
look	like	in	the	PHP	code.

On	the	JavaScript	side,	HTML_AJAX	provides	a	stub	class	that
has	all	the	methods	that	were	exported.	When	you	call	one	of

these	methods,	an	AJAX	call	is	made	against	the	server.	When
working	with	this	setup,	it's	important	to	remember	that	you
don't	have	a	PHP	object	being	remotely	controlled	through
JavaScript.	Instead,	you	have	an	automatic	wrapping	of	a
JavaScript	method	to	an	AJAX	call.	Each	method	call	takes	an
HTTP	request,	which	means	you	have	a	new	instance	of	the	PHP
Ticket	class	for	each	response;	this	process	is	shown	in	Figure
12-3.

Figure	12-3.	Data	flow	of	multiple	requests	to
PHP	using	HTML_AJAX's	generated	JavaScript

proxy

To	create	this	JavaScript	class,	you	simply	need	to	add	another
include	to	your	HTML	file.	The	syntax	is	Server.php?stub=Name.	This
includes	the	JavaScript	class	definition.	When	you	create	an
instance	of	this	class,	you	pass	it	in	a	single	parameter,	which	is
the	callback	object	to	use.	Matching	methods	on	this	callback
object	will	be	used	to	handle	the	response	of	the	AJAX	request.

For	example,	if	you	call	ticket.login,	the	login	method	on	the
callback	object	will	be	called	when	the	request	is	complete.	An
example	of	calling	the	login	method	using	HTML_AJAX's	auto
class	export	is	shown	in	Listing	12-6.

Listing	12-6.	LoginStub.html

1		<html>
2		<head>
3		<title>Login	Tester</title>
4		<script	type="text/javascript"
5		src="server.php?client=all"></script>
6		<script	type="text/javascript"
7		src="server.php?stub=Ticket"></script>
8		<script	type="text/javascript">
9		var	callback	=	{
10				login:	function	(result)	{
11						document.getElementById('target').innerHTML
12						=	HTML_AJAX_Util.quickPrint(result);
13				}
14	}
15
16		var	ticket	=	new	Ticket(callback);
17
18		function	login()	{
19				ticket.login('josh','test2');
20		}
21		</script>
22		</head>
23		<body>
24		Run	a	test	login
24		<pre	id="target">
25		</pre>
26		</body>
27		</html>

Using	the	stub	class	helps	reduce	the	complexity	of	our
JavaScript	code	because	it	makes	the	AJAX	request	look	much
like	a	normal	AJAX	call.	JSON	serializing	and	unserializing
happens	automatically,	so	you	only	deal	with	JavaScript	data
types.	The	big	changes	from	Login.html	are	as	follows:
including	the	Ticket	stub	(lines	78),	making	the	callback	a	hash

(lines	914),	and	using	a	remote	stub	object	to	make	the	AJAX
call	(lines	16	and	19).	The	other	item	to	note	is	that	the	code
doesn't	worry	about	any	of	the	data	serialization,	letting	us
move	to	another	format	at	any	time	without	changing	any
application	code.

	

12.5.	Building	the	JavaScript	Application

Now	that	the	back	end	of	the	application	is	complete,	we	need
to	look	at	building	the	front	end.	This	code	needs	to	build	the
user	interface,	manage	the	application	flow,	and	communicate
with	the	back	end.	To	help	manage	this	process,	we;ll	be
breaking	the	application	into	a	number	of	different	components.
Each	component	is	made	up	of	an	HTML	file	and	a	JavaScript
file,	and	each	component	performs	one	action,	such	as	logging
a	user	into	the	site	or	adding	a	ticket.	The	various	components
will	be	tied	together	by	some	simple	JavaScript	code	that
controls	the	site.

The	JavaScript	controller	is	a	simple	design;	it	is	based	around
the	idea	of	showing	and	hiding	DIV	elements	to	enable	a
current	section	of	the	site.	All	the	JavaScript	and	HTML	code	will
be	loading	into	the	browser	on	the	initial	page	load	and	then	will
use	a	function	to	pick	which	code	to	deal	with.	Each	part	of	the
application	with	which	you	can	interact	is	called	a	section,	and	it
could	be	made	up	of	multiple	components,	if	needed;	note,
however,	that	in	this	case,	each	section	will	contain	just	one.

The	basic	site	setup	is	a	PHP	page	that	loads	the	application;
this	page	includes	ticket.js,	which	contains	JavaScript	shared
throughout	the	entire	site.	It	also	includes	all	the	HTML	code	for
the	various	components	and	their	associated	JavaScript	files.
The	components	are	used	to	build	the	various	sections	of	the
application,	and	only	one	is	visible	at	a	time.	There	is	also	a	site
sidebar	that	always	shows	the	login	component.	This	setup	was
used	because	some	features,	such	as	viewing	a	ticket,	can	be
used	without	logging	in,	but	other	features,	such	as	adding	a
new	ticket,	require	the	user	to	be	logged	in.	The	basic	layout	of
the	user	interface	can	be	seen	in	Figure	12-4.

Figure	12-4.	Basic	ticket-manager	interface

[View	full	size	image]

The	look	of	the	ticket	application	is	controlled	by	the	Ticket.css
CSS	file.	There	is	no	need	to	cover	the	CSS	in	detail	because	it
doesn't	do	anything	AJAX-specific.	The	one	item	to	note	is	that
it	does	specify	default	display	types	for	a	number	of	CSS
classes;	this	allows	us	to	have	all	of	the	various	sections	of	the
site	hidden	by	default,	so	you	don't	see	them	until	they	have
been	selected.	Now	that	you've	seen	what	we're	building,	let's
look	at	it	in	detail,	starting	with	the	page	that	pulls	it	all
together	(see	Listing	12-7).

Listing	12-7.	index.php

1		<?php
2		require_once	'HTML/AJAX/Helper.php';
3		require_once	'Ticket.class.php';
4
5		$app	=	new	Ticket();
6		$ajax	=	new	HTML_AJAX_Helper();
7		$ajax->stubs	=	array('Ticket');
8		$ajax->jsLibraries	=	array('All');
9
10		//	Load	time	values
11		$isLoggedIn	=	$ajax->jsonEncode($app->isLoggedIn());
12		$profile	=	$ajax->jsonEncode($app->profile());
13		?>
14		<html>
15		<head>
16		<title>Ticket	Manager</title>

17		<?php	echo	$ajax->setupAJAX();	?>
18		<script	type="text/javascript"
19		src="scriptaculous/prototype.js"></script>
20		<script	type="text/javascript"
21		src="scriptaculous/scriptaculous.js"></script>
22
23		<script	type="text/javascript">
24		var	app	=	{
25				isLoggedIn:	<?php	echo	$isLoggedIn;	?>,
26				profile:	<?php	echo	$profile;	?>,
27				setup:	[],
28				logout:	[],
29				templates:	{},
30				since:	false
31		}
32		HTML_AJAX.onError	=	function(e)	{
33				alert(HTML_AJAX_Util.quickPrint(e));
34		}
35		</script>
36
37		<script	type="text/javascript"
38		src="Ticket.js"></script>
39		<script	type="text/javascript"
40		src="components/Login.js"></script>
41		<script	type="text/javascript"
42		src="components/EditAccount.js"></script>
43		<script	type="text/javascript"
44		src="components/MyTickets.js"></script>
45		<script	type="text/javascript"
46		src="components/AddTicket.js"></script>
47		<script	type="text/javascript"
48		src="components/TicketEditor.js"></script>
49		<script	type="text/javascript"
50		src="components/Register.js"></script>
51		<script	type="text/javascript"
52		src="components/Assign.js"></script>
53
54
55		<link	rel="stylesheet"	href="Ticket.css"
56				type="text/css">
57		</head>
58		<body	onload="setup()">
59
60		<div	id="header">
61		<h1>Ticket	Manager</h1>
62		<div	id="nav">
63		<a	href="javascript:selectSection('front')"
64				>Home
65
66		<a
67				href="javascript:selectSection('myTickets')"

68			>My	Tickets
69
70	<a
71			href="javascript:selectSection('addTicket')"

72			>Add	Ticket
73
74	<a
75			href="javascript:selectSection('assign')"
76			>Assign	Tickets
77	<a
78			href="javascript:selectSection('editAccount')"
79			>Update	Account
80	</div>
81	</div>
82
83	<div	style="position:	relative">
84
85	<div	id="body">
86	<div	id="front"	class="section">
87	Welcome	to	the	Ticket	Manager.	Log	in	to	add
88	new	tickets	and	view	your	own.
89
90	<form	onsubmit="return	viewTicketForm(this)">
91	<p	id="frontMessage"></p>
92	<label>ID</label>	<input	name="id"	size="4">
93	<input	type="submit"	value="View	Ticket">
94	</form>
95	</div>
96	<?php	include	'components/Register.php';	?>
97	<?php	include	'components/EditAccount.php';	?>
98	<?php	include	'components/MyTickets.php';	?>
99	<?php	include	'components/AddTicket.php';	?>
100	<?php	include	'components/Ticket.php';	?>
101	<?php	include	'components/Assign.php';	?>
102	</div>
103
104	<div	id="sidebar">
105	<?php	include	'components/Login.php';	?>
106	</div>
107
108	</div>
109
110	</body>
111	</html>

The	first	57	lines	of	index.php	do	the	JavaScript	setup	for	the
entire	application.	This	includes	setting	up	our	interaction	with
the	HTML_AJAX-powered	back	end	and	including	the	JavaScript
for	the	various	components.	Each	component	has	its	own
JavaScript	file,	which	is	great	from	a	development	point	of	view
but	could	become	a	scalability	problem	over	time	due	to	the
number	of	HTTP	requests	required	to	load	them	all.	You	could

easily	replace	all	the	individual	JavaScript	includes	with	a
request	to	a	PHP	script	that	combined	the	files	automatically,	if
that	ever	became	a	problem.

Lines	2	and	3	require	the	PHP	classes	that	will	be	used	to	build
this	page.	One	of	these	is	the	HTML_AJAX_Helper	class	(line	2),
which	we	will	be	using	to	output	some	JSON-encoded	strings
and	to	quickly	build	the	JavaScript	include	line	for	the
HTML_AJAX	libraries.	The	Ticket	class	(line	3)	will	be	used	to	get
the	user's	current	login	status.	Outputting	this	information	in
index.php	keeps	us	from	having	to	do	an	AJAX	call	at	page-load
time	to	figure	out	if	the	user	is	already	logged	in.	Line	5	creates
an	instance	of	the	Ticket	class,	which	will	be	used	later,	and	lines
58	create	an	HTML_AJAX_Helper	instance	and	then	configure	it.
Setting	its	stub	property	to	Ticket	sets	it	to	load	the	generated
JavaScript	stub	class	for	the	PHP	Ticket	class	we	registered	in
Server.php.	Setting	its	jsLibraries	to	All	gives	us	the	entire	set	of
HTML_AJAX	JavaScript	libraries;	you	could	limit	this	to	just	the
components	you're	using	to	reduce	the	amount	of	JavaScript
code	that	is	required,	but	most	sites	don't	need	that	level	of
optimization.	Lines	11	and	12	encode	login	status	and	the
currently	logged	in	user's	profile	as	JSON	strings	so	that	we	can
use	them	later.

Line	14	starts	the	HTML	output.	The	first	task	is	to	include	the
JavaScript	libraries	we're	going	to	use.	Line	17	uses	the	helper
class	to	output	the	HTML_AJAX	JavaScript	includes	and	is
followed	by	the	includes	for	scriptaculous	on	lines	1821.	We	will
be	using	HTML_AJAX	for	communications	and	scriptaculous	for
visual	effects	and	drag-and-drop	support.	The	next	step	(lines
2335)	is	to	define	the	JavaScript	app	object;	this	object	is	used
to	hold	data	that	will	be	reused	throughout	our	JavaScript
application.	We	could	use	a	number	of	separate	variables,	but
combining	them	into	one	object	helps	us	keep	track	of	variables
that	are	safe	to	use	throughout	the	application;	included	in	this
variable	are	the	user's	login	status	(line	25)	and	the	user's
profile	data	(line	26).	We	also	set	up	a	development	error

handler	for	HTML_AJAX	requests	(lines	3436);	you	could	leave
this	for	production	as	well,	but	normally,	you'll	want	to	show
users	a	less	technical	error	message.

Lines	3752	require	the	JavaScript	files	that	are	used	throughout
the	site.	The	first	is	Ticket.js	(see	Listing	12-8),	which	contains
the	site's	shared	code,	followed	by	the	JavaScript	for	the
various	components.	The	order	in	which	the	components	are
required	shouldn't	matter	because	they	don't	have
intercomponent	dependencies.	All	the	shared	code	is	included	in
Ticket.js,	with	interactions	of	items	such	as	login	status	handled
through	the	application	object	or	through	CSS	classes.	The
setup	is	completed	by	including	the	Ticket.css	file,	which	gives
the	application	its	basic	look	and	feel.

The	rest	of	the	file	builds	a	basic	user	interface;	this	includes	a
navigation	menu,	a	simple	front	page,	and	a	sidebar.	On	line
58,	we	add	an	onload	handler	to	the	page,	which	calls	a	setup
method	that	exists	in	the	shared	Ticket.js	file.	Next,	the	page
defines	the	header	DIV	(lines	6081).	This	DIV	contains	the
application's	name	(line	61)	and	its	navigation	links	(lines
6280).	The	navigation	links	call	the	setSection	function	to	change
which	section	is	selected,	and	they	use	a	CSS	class	to	mark
which	ones	should	be	shown	when	the	user	is	logged	in.	Any
element	on	the	page	with	a	CSS	class	of	loggedIn	will	be	shown
only	when	the	user	is	logged	in.	The	hiding	and	showing	of
these	elements	is	handled	in	the	login	component.

Lines	85102	define	the	main	body	of	the	application.	Most	of
this	is	just	including	the	HTML	for	the	given	modules,	but	the
default	view	is	created	right	on	this	page	because	it	is	so
simple.	It	contains	a	form	(lines	9094)	that	calls	the
viewTicketForm	function	when	submitted.	This	function	is	defined
in	the	ticket	component.	The	page	finishes	by	defining	a	sidebar
DIV	(lines	104106)	that	includes	the	login	component.	Having
the	login	on	the	sidebar	allows	the	user	to	log	in	or	out	at	any
time.

Listing	12-8.	Ticket.js

1	//	set	up	some	function	aliases
2	var	byClass	=	HTML_AJAX_Util.getElementsByClassName;
3	var	byId	=	function(id)	{
4			return	document.getElementById(id);
5	}
6	var	d	=	function(item)	{
7			alert(HTML_AJAX_Util.quickPrint(item));
8	}
9
10	function	setup()	{
11			for(var	i	=	0;	i	<	app.setup.length;	i++)	{
12					app.setup[i]();
13			}
14			selectSection('front');
15	}
16
17	function	selectSection(name)	{
18
19			if	(!app.isLoggedIn	&&
20					(name	!=	'front'	&&
21					name	!=	'ticket'	&&
22					name	!=	'register')
23)	{
24					name	=	'front';
25			}
26
27			var	s	=	byClass('section',byId('body'));
28			for(var	i	=	0;	i	<	s.length;	i++)	{
29					if	(s[i].id	==	name)	{
30							s[i].style.display	=	'block';
31							if	(s[i].onDisplay)	{
32									s[i].onDisplay();
33							}
34					}
35					else	{
36							s[i].style.display	=	'none';
37					}
38			}
39	}
40
41	function	setMessage(element,message)	{
42			element.innerHTML	=	message;
43			element.className	=	'message';
44
45			element.style.display	=	'block';
46
47			window.setTimeout(function()	{
48					new	Effect.Fade(element);	},3000);
49	}
50

51
52	//	Utility	functions
53	function	positionOver(element)	{
54			var	target	=	element.parentNode;
55			target.style.position	=	'relative';
56			element.style.position	=	'absolute';
57			element.style.top	=	0;
58			element.style.left	=	0;
59			element.style.width	=	'100%';
60			element.style.height	=	target.clientHeight+'px';
61	}
62
63	function	buildTable(data,table)	{
64			var	tbody	=	byId(table).tBodies[0];
65			for(var	i	=	tbody.rows.length-1;	i	>=	0;	i--)	{
66					tbody.deleteRow(i);
67			}

68
69			for(var	i	=	0;	i	<	data.length;	i++)	{
70					var	row	=	app.templates[table].cloneNode(true);
71					updateRow(row,data[i]);
72
73					byId(table).tBodies[0].appendChild(row);
74			}
75	}
76
77	function	updateRow(row,rowData)	{
78			row.ticket_id	=	rowData.ticket_id;
79			var	tds	=	row.getElementsByTagName('td');
80			for(var	r	=	0;	r	<	tds.length;	r++)	{
81					tds[r].innerHTML	=	tds[r].innerHTML.replace(
82					/{\$([a-zA-Z0-9_]+)}/g,
83					function(s,k)	{
84							return	rowData[k];
85					}
86);
87			}
88	}

Ticket.js	contains	the	JavaScript	code	that	is	shared	throughout
the	application.	At	the	start	of	the	file,	we	define	several	utility
functions	that	cut	down	on	the	amount	of	typing	we	have	to	do
while	writing	the	application.	The	first	one,	which	appears	on
line	2,	is	byClass,	which	is	an	alias	to	an	HTML_AJAX	function
that	returns	an	array	of	elements	that	have	the	given	CSS
class.	Lines	35	define	the	byId	function,	which	is	a	wrapper	for
document.getElementById,	and	lines	68	define	a	quick	debug

function,	which	is	useful	during	the	development	process.

Lines	1015	define	the	setup	function.	This	function	is	called	by
the	document's	load	event	and	gives	each	module	in	the
application	a	way	to	run	some	code	at	load	time	without	first
having	to	register	an	event	handler.	This	is	done	by	looping	over
the	functions	in	the	app.setup	array	(lines	1113)	and	running
them.	Because	the	modules	are	included	before	the	onload	event
runs,	they	can	add	functions	to	this	array	as	they	are	included.
The	setup	finishes	by	selecting	the	front	section	of	the
application.

The	next	item	defined	in	Ticket.js	is	the	selectSection	function.
This	function	acts	as	the	main	controller	of	the	application,
selecting	which	section	will	be	shown.	It	takes	a	single
parameter,	which	is	the	ID	of	the	section	to	be	shown.	First,	the
function	checks	whether	the	user	is	logged	in	(lines	1925).	Only
the	front,	ticket,	and	register	sections	can	be	used	without
logging	in.	By	doing	this	check,	we	prevent	errors	from	taking
the	user	to	a	section	that	won't	work.	Next	the	function	selects
all	the	sections	within	the	body;	each	section	is	marked	with
section	class,	so	we	use	the	byClass	function	to	do	this.	Then	we
loop	over	the	sections;	if	the	ID	matches	the	section	we	passed
in	(line	29),	we	show	it	(line	30)	and	run	its	onDisplay	method	if
it	exists.	Otherwise,	we	hide	the	section	(line	27).	Running	the
onDisplay	method	gives	the	section	a	way	to	run	code	as	the
section	is	displayed.	This	gives	it	the	opportunity	to	update	data
or	clear	out	old	data.

Lines	4149	define	the	setMessage	function.	This	is	a	simple
function	that	allows	us	to	give	the	user	a	success	or	failure
message	that	will	be	shown	for	three	seconds	and	then	fade	off
the	screen.	The	first	parameter	to	the	function	is	the	DOM
element	to	fade;	the	second	parameter	is	the	message	to	use.
Depending	on	your	design,	you	can	always	use	a	single
message	target	so	that	the	first	parameter	isn't	needed,	but	in
this	case,	the	flexibility	is	needed,	so	the	same	code	can	be
used	for	login	messages.	The	fading	out	of	the	message	is

performed	by	the	use	of	a	scriptaculous	effect	(line	48),	which
is	applied	inside	a	setTimeout	call;	the	delay	on	running	the
timeout	function	is	in	milliseconds,	so	the	value	of	3000	equals
3	seconds.

When	combined	with	an	alert	color,	such	as	yellow	or	red,
notification	messages	that	appear	and	then	fade	away	after	a
short	period	can	be	very	successful	in	AJAX	applications.	The
disappearing	message	keeps	the	alerts	timely,	and	it	is	needed
so	that	the	user	can	tell	which	action	the	message	applied	to,
because	a	page	reload	won't	be	clearing	it.	The	biggest
downside	of	this	approach	is	that	the	user	can	lose	useful
information	if	it	disappears	before	he	or	she	has	read	the
message.	One	approach	to	get	around	this	problem	is	to	add	a
message	history	to	the	application.	Instead	of	being	removed
completely,	the	message	is	added	to	the	message	history	after
three	seconds.	An	example	message	is	shown	in	Figure	12-5.

Figure	12-5.	Message	that	will	fade	away	after
three	seconds

[View	full	size	image]

The	positionOver	function	is	used	to	position	a	passed-in	element
over	its	parent	element.	This	is	used	when	you	want	to	cover	an
element,	such	as	a	form,	with	an	opaque	message	while	it	is
being	AJAX	processed.	This	is	a	useful	loading	technique
because	it	will	prevent	the	form	from	being	clicked	while	you
are	processing	the	last	request	it	sent.	To	use	the	function,
follow	these	steps:

1. Create	a	new	element	(usually	a	DIV).

2. Style	it.

3. Add	any	messaging	it	should	have.

4. Append	it	to	the	element	you	want	to	hide.

Once	the	element	has	been	added,	you	run	positionOver(element),
and	the	element	is	positioned	to	hide	all	the	elements	to	which
it	was	added.	You	can	show	the	parent	by	removing	the
element	from	the	DOM	or	setting	its	display	property	to	none.
Scriptaculous	effects,	such	as	fade,	are	a	good	way	to	remove
this	element.	The	positioning	elements	of	this	function	can	be
achieved	using	CSS	on	some	browsers,	but	if	you	want	it	to
work	everywhere,	size	the	element	with	CSS.

Another	possible	approach	to	preventing	a	form	from	being
submitted	while	its	results	are	loading	is	to	disable	its	form
submission	button.	This	is	often	accompanied	with	changing	the
label	on	the	button	to	a	loading	message.	Both	approaches
provide	good	feedback	to	the	users,	but	positioning	a	DIV	over
the	form	gives	the	developer	the	ability	to	display	a	larger
loading	message.	Figure	12-6	shows	an	example	of	positioning
an	element	over	a	form	as	a	loading	message;	Figure	12-7
shows	an	example	of	disabling	the	form	submission	button.

Figure	12-6.	Providing	form-loading	status	by
using	the	positionOver	function

[View	full	size	image]

Figure	12-7.	Providing	form-loading	status	by
disabling	the	form	submission	button

[View	full	size	image]

The	last	two	functions	in	Ticket.js	work	in	concert	to	allow	us	to
dynamically	update	tables	using	a	template	approach.	The	first
function,	buildTable	(lines	6375),	takes	an	array	of	data	and	the
ID	of	the	table	to	update.	It	deletes	all	current	rows	from	the
table's	body	(if	you	put	your	headers	in	the	<thead>	tag,	they	will
not	be	deleted)	on	lines	6567.	Then	it	loops	over	all	the	data
(lines	6974),	creating	a	new	row	by	cloning	a	template	node
and	then	runing	updateRow	using	that	row's	data.

The	updateRow	function	(lines	7787)	takes	the	data	and	applies	it
to	the	row	using	a	regular	expression	replacement.	The	function
starts	by	setting	the	ticket_id	on	the	tr	element	(line	78).	This	is
an	application-specific	assignment	because	not	all	data	will
contain	a	ticket_id	in	each	row,	but	similar	approaches	are	often
used	for	other	IDs	(or	even	all	the	row's	data)	because	it	makes
the	data	available	to	later	JavaScript	code.	The	actual
replacement	has	to	be	done	by	updating	the	innerHTML	property
of	each	table	cell	(td	tag),	because	even	though	the	table	row
(TR	tag)	has	an	innerHTML	property,	updating	it	won't	work
properly.	Thus,	we	get	all	the	td	tags	in	the	row	(line	79)	and
loop	over	them,	running	a	replace	against	their	innerHTML,	with	a
callback	function	grabbing	the	correct	data	with	which	to	use	in
the	replacement.	The	regular	expression	(line	82)	is	designed	to
match	against	strings	such	as	{$variable_name}.	The	name	of	the
variable	is	passed	into	our	replacement	function	(lines	8285)
and	used	to	grab	the	correct	index	from	the	row	of	data.	This
allows	us	to	create	a	template	like	this:

<tr><td>#{$ticket_id}</td><td>{$title}</td></tr>

This	template	is	used	to	build	each	row	of	output.	After
replacing	its	tokens	with	data	that	has	a	matching	ticket_id	and
title	property,	you	will	produce	a	table	row	like	this:

<tr><td>#4</td><td>A	Sample	Ticket</td></tr>

This	same	replacement	approach	could	be	used	against	many
other	types	of	DOM	elements;	in	fact,	the	most	problematic
elements	for	this	approach	are	tables	because	they	don't	update
properly	when	working	with	the	innerHTML	of	their	individual
rows.

12.6.	Login	Component

The	login	component	provides	a	login	form	and	a	logout	form	to
the	ticket	manager	application.	This	form	is	displayed	on	the
sidebar	and	is	always	present.	Besides	providing	the	user
interface	in	the	sidebar,	the	login	component	provides	hooks	for
other	components	to	be	login	aware.	This	is	done	by	hiding	and
showing	elements	that	have	specific	CSS	classes.	Elements	with
the	loggedOut	class	are	shown	only	when	the	user	is	logged	out,
and	elements	with	the	loggedIn	class	are	shown	only	when	the
user	is	logged	in.	The	login	user	interface	is	shown	in	logged-
out	mode	in	Figure	12-8.	It	is	shown	in	logged-in	mode	in
Figure	12-9.	The	HTML	that	creates	the	login	is	shown	in	Listing
12-9.

Figure	12-8.	User	is	logged	out;	the	login
component	shows	a	login	form

[View	full	size	image]

Figure	12-9.	User	is	logged	in;	the	login
component	shows	a	Logout	button

[View	full	size	image]

Listing	12-9.	Login.php

1	<div	id="login">
2	<form	onsubmit="return	login(this)"	class="loggedOut">
3			<h3>Login</h3>
4			<p	id="loginMessage"></p>
5			<p><label>Username:
6			<input	name="username">
7			</label></p>

8			<p><label>Password:
9			<input	name="password"	type="password">
10			</label></p>
11			<p><input	type="submit"	value="Login">
12			</p>
13
14			<a	href="javascript:selectSection('register')"
15			>Register
16	</form>
17	<form	onsubmit="return	logout(this)"	class="loggedIn">
18			<p>Logged	in	as:
19			
20			<?php	echo	$app->profile('username');	?>
21			
22			</p>
23			<p>
24			<input	type="submit"	value="Logout">

25			</p>
26
27			<a	href="javascript:selectSection('editAccount')"
28			>Update	Account
29	</form>
30	</div>

The	login	component	is	made	up	of	two	parts;	the	first,
Login.php,	provides	the	simple	login	user	interface.	The	second,
Login.js	(shown	in	Listing	12-10),	provides	the	JavaScript	logic
to	power	it.	The	entire	interface	is	created	at	load	time,	with
parts	of	it	being	shown	or	hidden	as	needed.	There	isn't	a	lot
happening	here;	first	the	form	for	logging	in	is	created	(lines
216),	and	then	the	form	for	logging	out	(lines	1729)	is	created.
Both	forms	are	processed	through	the	addition	of	onsubmit
handles;	these	handles	will	stop	the	normal	form	submission
processes	and	instead	perform	an	AJAX	call.	The	login	form
contains	a	message	target	(line	4)	that	is	used	with	the
setMessage	function	(from	Ticket.js)	to	display	a	login	failure
message.	The	login	form	also	contains	a	link	to	the	user
registration	form,	which	uses	the	selectSection	function	(line	14),
whereas	the	logout	form	contains	a	link	to	the	account	editing
form	(line	27),	which	also	uses	selectSection.

Listing	12-10.	Login.js

1	var	loginSetup	=	function()	{
2			//	Enable	logged	in	sections	of	components
3			var	li	=	'none';
4			var	lo	=	'block';
5			if	(app.isLoggedIn)	{
6					li	=	'block';
7					lo	=	'none';
8			}
9			var	els	=	byClass('loggedIn');
10			for(var	i	=	0;	i	<	els.length;	i++)	{
11					if	(els[i].tagName	==	'SPAN'	&&	li	==	'block')	{
12							els[i].style.display	=	'inline';
13					}
14					else	{

15							els[i].style.display	=	li;
16					}
17			}
18			var	els	=	byClass('loggedOut');
19			for(var	i	=	0;	i	<	els.length;	i++)	{
20					if	(els[i].tagName	==	'SPAN'	&&	li	==	'block')	{
21							els[i].style.display	=	'inline';
22					}
23					else	{
24							els[i].style.display	=	lo;
25					}
26			}
27	}
28	app.setup.push(loginSetup);
29
30	var	callback	=	{
31			login:	function(result)	{
32					loginComplete(result);
33			},
34			logout:	function(result)	{
35					logoutComplete(result);
36			}
37	}
38	var	rLogin	=	new	Ticket(callback);
39
40	//	login	component	js
41		function	login(form)	{
42				var	username	=	form.elements.username.value;
43				var	password	=	form.elements.password.value;
44
45				rLogin.login(username,password);
46
47				var	div	=	document.createElement('div');
48				div.className	=	'overlay';
49				form.appendChild(div);
50				Element.setOpacity(div,.3);
51				positionOver(div);
52				form.overlay	=	div;
53
54				return	false;
55	}
56	function	loginComplete(result)	{

57			var	els	=	byClass('loggedOut',byId('login'));
58			var	form	=	els[0];
59			form.removeChild(form.overlay);
60
61			if	(result)	{
62					app.profile	=	result;
63					app.isLoggedIn	=	true;
64					byId('loginUsername').innerHTML	=
65													app.profile.username;
66
67					loginSetup();
68					selectSection('mytickets');
69			}

70			else	{
71					setMessage(byId('loginMessage'),'Login	Failed');
72			}
73			new	Effect.Highlight('login');
74	}
75
76	function	logout()	{
77			rLogin.logout();
78			return	false;
79	}
80
81		function	logoutComplete(result)	{
82				app.isLoggedIn	=	false;
83				app.profile	=	{};
84				loginSetup();
85
86				for(var	i	=	0;	i	<	app.logout.length;	i++)	{
87						app.logout[i]();
88				}
89
90				selectSection('front');
91				new	Effect.Highlight('login');
92	}

The	Login.js	file	provides	the	functionality	behind	the	login
component,	processing	the	forms	provided	by	the	user	interface
and	hiding	and	showing	elements	as	needed.	The	first	part	of
Login.js	is	the	setup	logic;	this	is	composed	of	the	loginSetup
function,	which	will	be	run	at	page	load,	and	the	creation	of	a
remote	AJAX	class	for	accessing	the	back	end.	The	Setup
function	(lines	127)	works	by	checking	whether	the	user	is
logged	in	(line	5)	and	setting	the	appropriate	style.display	value
for	the	logged	in	case	(variable	li,	line	6)	and	the	logged	out
case	(variable	lo,	line	7).	Once	these	are	set,	it's	just	a	matter
of	using	the	byClass	function	to	get	a	list	of	all	the	elements	with
the	loggedIn	class	(line	9),	looping	over	them	(lines	1017),	and
setting	each	element's	style.display	property.	During	this
process,	we	also	check	for	span	elements	because	they	need	to
be	given	the	display	property	of	inline,	instead	of	the	display
property	of	block.	This	process	is	then	repeated	for	elements
with	the	loggedOut	class	(lines	1827),	with	the	style	properties
being	set	to	the	opposite	values.	Once	the	setup	function	is
defined,	it	is	added	to	the	app.setup	array,	which	will	run	the

loginSetup	function	on	page	load.

Next,	the	AJAX	stub	class	is	set	up.	This	class	is	provided	by
HTML_AJAX	and	will	call	the	matching	callback	function	to	the
method	that	is	called	when	an	asynchronous	request	is
completed.	Thus,	in	the	setup	process,	we	define	the	callback
functions	(lines	3037)	for	the	methods	that	this	component
needs.	To	increase	readability,	these	callback	functions	are	kept
simple	and	just	call	out	to	other	functions	that	do	the	real	work.
An	instance	of	the	Ticket	stub	class	is	created	on	line	38;	this
instance	will	be	used	for	all	AJAX	access	in	the	component.

Next,	we	define	the	two	login	functions.	First	login()	is	defined;
it	processes	the	form	and	sends	an	AJAX	request.	Then,
loginComplete()	is	defined;	it	takes	the	results	from	the	AJAX	call
and	updates	the	user	interface.	The	login	function	starts	by
grabbing	the	username	and	password	from	the	form	(lines
4243);	it	then	makes	an	AJAX	call	(line	45),	which	performs	the
login	on	the	server.	The	rest	of	the	function	adds	loading
notification;	this	is	done	by	creating	a	semi-opaque	div,	which	is
added	to	the	form	and	then	positioned	over	it	using	the
positionOver	function	defined	in	Ticket.js.

When	the	AJAX	request	is	complete,	loginComplete	is	run;	the
result	is	either	false	or	an	array	containing	the	user's	profile.
The	function	removes	the	loading	overlay	(lines	5759)	and	then
checks	the	value	of	the	result.	If	the	result	is	an	object
containing	the	profile,	app.profile	and	app.login	are	set	(lines
6263),	the	logout	form	has	the	user's	username	added	to	it
(lines	6465),	and	the	loginSetup	function	is	called	(line	67).	The
loginSetup	function	will	show	all	the	elements	that	have	a	loggedIn
class,	hiding	those	with	the	loggedOut	class.	The	successful	login
is	completed	by	showing	the	mytickets	section	of	the	application.
If	the	login	is	unsuccessful,	the	only	action	that	is	taken	is	the
showing	of	a	Login	Failed	message	with	the	setMessage	function.	In
either	case,	a	scriptaculous	highlight	effect	is	used	to	show	that
loading	has	completed	and	that	the	login	component	on	the
screen	has	updated	its	contents.

The	last	part	of	Login.js	contains	the	logout()	function	and	its
callback	function,	which	is	logoutComplete().	The	logout	process	is
simpler	than	the	login	process	because	it	can't	fail.	The	logout
function	(lines	7679)	simply	calls	the	rLogin.logout	method,
making	the	AJAX	request.	It	then	returns	false,	canceling	the
normal	form	submission.	LogoutComplete	(lines	8192)	is	called
when	the	logout	is	complete	on	the	server;	it	clears	the	user's
profile,	marks	the	user	as	logged	out,	and	then	calls	the
loginSetup	function	to	show	and	hide	any	login-driven	visual
elements.	Next	the	function	calls	all	the	registered	logout
functions.	These	work	much	like	setup	functions	and	give	the
other	modules	a	chance	to	run	code	once	a	logout	is	complete;
usually	this	code	clears	data	that	should	be	accessible	only
when	the	user	is	logged	in.	The	function	finishes	by	changing
the	current	section	to	the	front	page	and	highlighting	the	login
form	to	show	that	it	has	been	changed	to	a	login	form.

	

12.7.	User-Registration	Component

The	user-registration	component	provides	a	way	for	people	to
register	themselves	as	users	of	the	ticket	manager	application.
It's	a	simple	component,	providing	a	form	and	the	code	needed
to	process	that	form	using	AJAX.	An	example	of	the	form	is
shown	in	Figure	12-10,	with	the	HTML	that	builds	the	UI	shown
in	Listing	12-11.

Figure	12-10.	User	registration	form

[View	full	size	image]

Listing	12-11.	Register.php

1	<div	id="register"	class="section">
2	<form	onsubmit="return	register(this)"
3	id="registerForm">
4			<h3>Register</h3>
5			<p	class="message"></p>
6			<p><label>Username:

7			<input	name="username">
8			</label></p>
9			<p><label>Password:
10			<input	name="password"	type="password">
11			</label></p>
12			<p><label>Email:
13			<input	name="email">
14			</label></p>
15
16			<p><input	name="submit"	type="submit"
17					value="Register">
18			</p>
19	</form>
20	</div>

Register.php	provides	the	basic	form.	It	calls	the	register	function
when	submitted	(line	2)	and	has	an	ID	so	that	it	can	be	easily
accessed	from	JavaScript.	All	the	other	form	elements	can	be
accessed	through	the	form's	elements	array,	so	they	need	only	a
name	attribute.	This	access	method	allows	form	elements	to
look	just	like	non-AJAX	forms.	The	form	also	contains	a
message	target	(line	4),	which	is	used	to	display	validation
messages.	The	HTML	is	powered	by	the	JavaScript	added	by
register.js,	which	is	shown	in	Listing	12-12.

Listing	12-12.	Register.js

1	var	callback	=	{
2			addUser:	function(result)	{
3					registerComplete(result);
4			}
5	}
6	var	rReg	=	new	Ticket(callback);
7
8	function	register(form)	{
9			var	u	=	form.elements.username.value;
10			var	p	=	form.elements.password.value;
11			var	e	=	form.elements.email.value;
12

13			if	(u	==	''	||	p	==	''	||	e	==	'')	{
14					setMessage(byClass('message',form)[0],
15							'All	fields	are	required');

16					new	Effect.Highlight(form);
17					return	false;
18			}
19
20			rReg.addUser(u,p,e);
21			var	els	=	byClass('loggedOut',byId('login'));
22			els[0].elements.username.value	=	u;
23			els[0].elements.password.value	=	p;
24
25			form.elements.submit.value	=
26					'Registering	Please	Wait';
27			form.elements.submit.disabled	=	true;
28			return	false;
29	}
30
31	function	registerComplete(result)	{
32			selectSection('front');
33			new	Effect.Highlight('login');
34			var	form	=	byId('registerForm');
35			form.elements.submit.value	=	'Register';
36			form.elements.submit.disabled	=	false;
37	}

The	register	component	doesn't	need	a	setup	function,	so	it
starts	by	setting	up	its	AJAX	instance	(line	6).	It	defines	a	single
callback,	addUser	(lines	24),	which	calls	the	registerComplete
function.	Next	we	define	the	register	function	(lines	829),	which
is	called	when	the	registration	form	is	submitted.	The	function
grabs	the	values	of	the	fields	it	will	be	submitting	(lines	911)
and	then	does	some	basic	validation.	If	the	validation	fails,	we
use	the	setMessage	function	(lines	1415)	to	display	a	warning	to
the	user	and	stop	the	form	submission	by	returning	false.
Remember	that	validation	is	also	enforced	on	the	server,	so
we're	not	using	this	code	to	protect	our	back	end,	just	to
provide	a	good	user	experience.	If	the	validation	succeeds,	we
make	an	AJAX	call	to	addUser,	passing	in	the	username,
password,	and	email	address	(line	20).	This	call	is	followed	by
code	that	prepopulates	the	login	form	with	the	new	username
and	password	(lines	2223).	The	next	step	is	to	display	the
loading	status,	which	is	done	by	disabling	the	submission	button
of	the	registration	form	(lines	2527).

When	the	server	has	returned	a	response,	the	registerComplete

function	(lines	3137)	is	run	by	the	callback	function.	This
function	selects	the	front	page	of	the	application	(line	34),
highlights	the	login	form	(line	33)	to	show	the	user	that	he	or
she	should	log	in,	and	then	re-enables	the	registration	form
(lines	3536)	in	case	we	want	to	register	another	user.

12.8.	Account-Editing	Component

The	account-editing	component	provides	a	similar	form	to	the
registration	component,	allowing	the	currently	logged	in	user	a
way	to	update	his	or	her	password	and	email	address.	This
page	is	quite	simple	and	looks	just	like	the	registration	screen,
except	that	the	username	input	box	is	disabled	because	the
back	end	doesn't	allow	usernames	to	be	changed.	An	example
of	the	account-editing	screen	is	shown	in	Figure	12-11;	the
HTML	that	generates	it	is	shown	in	Listing	12-13.

Figure	12-11.	Account-editing	component

[View	full	size	image]

Listing	12-13.	EditAccount.php

1	<div	id="editAccount"	class="section">
2
3	<form	onsubmit="return	updateAccount(this)"
4			id="accountForm">
5			<h3>Edit	Account</h3>

6			<p	class="message"></p>
7			<p><label>Username:
8			<input	name="username"	disabled="true">
9			</label></p>
10		<p><label>Password:

11		<input	name="password"	type="password">
12		</label></p>
13		<p><label>Email:
14		<input	name="email">
15		</label></p>
16
17		<p><input	name="submit"	type="submit"
18		value="Update	Account"></p>
19	</form>
20	</div>

The	HTML	for	the	account-editing	component	is	nice	and	simple.
It	creates	a	form	that	calls	the	updateAccount	function	on	submit
(line	3).	It	contains	the	same	fields	as	the	registration	form,
except	that	its	username	field	is	disabled	(line	8).	The	matching
JavaScript	for	editAccount.js	is	shown	in	Listing	12-14.

Listing	12-14.	EditAccount.js

1	app.setup.push(function()	{
2	byId('editAccount').onDisplay	=	function()	{
3			var	form	=	byId('accountForm');
4
5			for(var	i	=	0;	i	<	form.elements.length;	i++)	{
6					var	n	=	form.elements[i].name;
7					if	(app.profile[n])	{
8							form.elements[i].value	=
9									app.profile[n];
10					}
11			}
12	}
13
14	});
15
16	var	accountCallback	=	{
17			updateUser:	function(result)	{
18					updateAccountComplete(result);
19				}
20		}

21		var	rAccount	=	new	Ticket(accountCallback);
22
23		function	updateAccount(form)	{
24				var	update	=	{
25				password:	form.elements.password.value,
26				email:	form.elements.email.value
27		}
28		form.elements.submit.value	=	"Updating	please	wait..";
29		form.elements.submit.disabled	=	true;

30		rAccount.updateUser(update);
31		return	false;
32	}
33
34	function	updateAccountComplete(result)	{
35			app.profile	=	result;
36		setMessage(byClass('message',
37					byId('editAccount'))[0],'Account	Updated');
38			var	form	=	byId('accountForm');
39			form.elements.submit.value	=	"Update	Account";
40			form.elements.submit.disabled	=	false;
41	}

EditAccount.js	starts	by	defining	setup	and	onDisplay	functions
(lines	114).	The	setup	function	is	used	only	to	register	the
onDisplay	function	(lines	212).	The	onDisplay	function	takes	the
account	form	(line	3)	and	loops	over	its	elements	(lines	511),
setting	the	value	of	each	field	that	has	a	name	matching	the
name	of	a	property	in	the	user's	profile.	This	will	populate	the
account	form	with	the	user's	account	information	when	the
account	editor	is	selected.

On	lines	1621,	the	AJAX	class	is	set	up.	This	component	uses
only	the	updateUser	function,	so	it's	the	only	one	with	a	callback.
The	response	to	this	method	is	sent	to	the	updateAccountComplate
function.	The	updateAccount	function	on	lines	2332	takes	the
account	form	and	performs	an	AJAX	submission	of	it.	This	is
done	by	creating	an	object	containing	the	form's	values	(lines
2427)	and	then	sending	it	to	the	server	on	line	30.	The	function
also	contains	some	basic	user	feedback;	the	Submit	button's
value	is	changed	to	a	loading	message	and	disabled	(lines
2829).	Wrapping	up	the	file	is	the	updateAccountComplete	function
(lines	3441),	which	takes	the	results	from	the	server,	updates

the	user's	profile	with	them	(line	35),	and	then	turns	off	the
loading	messages	set	by	the	updateAccount	function	(lines	3840).

12.9.	Ticket-Creation	Component

The	ticket-creation	component	provides	a	form	that	is	used	to
add	a	new	ticket	to	the	application.	The	user	must	be	logged	in
to	use	this	component.	The	ticket-creation	process	is	kept
simple	because	the	form	requires	only	a	title	and	a	description;
the	rest	of	the	information	will	be	pulled	in	from	the	user's
profile	or	set	later	during	the	editing	process.	An	example	of	the
ticket-creation	form	is	shown	in	Figure	12-12;	the	HTML	is
shown	in	Listing	12-15.

Figure	12-12.	Ticket-creation	form

[View	full	size	image]

Listing	12-15.	AddTicket.php

1	<div	id="addTicket"	class="section">
2
3	<form	id="atForm"	onsubmit="return	addTicket(this);">

4			<p><label>Title</label>

5			<input	name="title">
6			</p>
7
8			<p><label>Description</label>

9			<textarea	name="description"	rows=6></textarea>
10		</p>
11
12		<p><input	type="submit"	value="Add	Ticket"></p>
13	</form>
14	</div>

AddTicket.php	contains	a	simple	form.	When	the	form	is
submitted,	the	addTicket	function	is	called.	This	function	is	shown
in	Listing	12-16.

Listing	12-16.	AddTicket.js

1	var	atCallback	=	{
2			addTicket:	function(result)	{
3					addTicketComplete(result);
4			}
5	};
6	var	rAddTicket	=	new	Ticket(atCallback);
7
8	function	addTicket(form)	{
9			var	title	=	form.elements.title.value;
10		var	description	=	form.elements.description.value;
11		rAddTicket.addTicket(title,description);
12
13		form.submit.value	=	"Adding	ticket	please	wait	...";
14		form.submit.disabled	=	true;
15
16		return	false;
17	}
18
19	function	addTicketComplete(result)	{
20			var	form	=	byId('atForm');
21			form.submit.value	=	"Add	Ticket";
22			form.submit.disabled	=	false;
23			form.title.value	=	'';
24			form.description.value	=	'';
25			viewTicket(result);
26	}

The	HTML	that	drives	the	JavaScript	for	adding	a	ticket	is	quite
simple.	On	lines	16,	we	set	up	the	AJAX	class;	it	contains	a
callback	for	the	addTicket	method,	which	calls	addTicketComplete.
The	addTicket	method	(lines	817)	processes	the	form,	the	values
are	pulled	from	its	elements	array	(lines	910),	and	the	values
are	sent	to	the	server	by	using	the	AJAX	stub	class's	addTicket
method	(line	11).	The	function	finishes	by	adding	a	loading
message	to	the	form's	submission	button	(lines	1314).	The
addTicketComplete	function	(lines	1926)	removes	the	loading
indication	set	by	addTicket,	clears	out	the	form,	and	then	runs
the	viewTicket	method,	which	is	defined	in	the	ticket-editor
component.

	

12.10.	Ticket-Editor	Component

The	ticket-editor	component	provides	a	form	that	is	used	to	edit
tickets.	It	allows	you	to	update	the	ticket's	title	and	description,
assign	it	to	a	user,	and	change	its	status.	It	also	shows	some
details,	including	who	opened	the	ticket	and	when	it	was	last
changed.	The	ticket-editing	interface	is	created	by
TicketEditor.php	(see	Listing	12-17)	and	is	shown	in	Figure	12-
13.

Figure	12-13.	Ticket	editor

[View	full	size	image]

Listing	12-17.	TicketEditor.php

1	<div	id="ticket"	class="section">
2	<form	id="tForm"	onsubmit="return	updateTicket(this)">
3			<p	id="ticketMessage"	class="message"></p>
4
5			<p><label>Ticket	ID:</label>
6			
7			</p>
8

9			<p><label>Title:</label>

10		<input	name="title">
11		</p>
12
13		<p><label>Description:</label>

14		<textarea	name="description"	rows=6></textarea>
15		</p>
16
17		<p><label>Opened	by:</label>
18		
19		</p>
20
21		<p><label>Assigned	to:</label>
22		<select	name="assigned">
23				<option>Not	Assigned</option>
24		</select>
25		</p>
26
27		<p><label>Status:</label>
28		<select	name="status">
29				<option>new</option>
30				<option>assigned</option>
31				<option>open</option>
32				<option>fixed</option>
33		</select>
34		</p>
35
36		<p><label>Last	Changed	on:</label>
37		
38		</p>
39
40		<p><input	name="submit"	type="submit"
41				value="Update	Ticket"></p>
42		<input	type="hidden"	name="ticket_id"	value="">
43	</form>
44	</div>

The	ticket	editor	contains	a	larger	form	than	the	other
components	in	the	application,	but	from	an	HTML	standpoint,	it
is	not	any	more	complex.	When	the	form	is	submitted,	it	will

run	the	updateTicket	function	(line	2),	which	performs	the	AJAX
submission.	The	form	contains	a	message	target,	which	will	be
used	to	give	the	user	feedback	(line	3).	The	form	also	contains
a	number	of	spans,	which	will	have	their	innerHTML	updated	to
show	static	information	(lines	6	and	37).	The	other	new	element
of	the	form	is	the	addition	of	a	select	element	that	will	be
dynamically	updated	with	the	users	in	the	system	(lines	2224).
The	matching	JavaScript	is	shown	in	Listing	12-18.

Listing	12-18.	TicketEditor.js

1	var	tCallback	=	{
2			getTicket:	function(result)	{
3					updateTicketForm(result);
4			},
5			updateTicket:	function(result)	{
6					updateTicketForm(result);
7					setMessage(byId('ticketMessage'),
8							'Ticket	Updated');
9					new	Effect.Highlight('tForm');
10		}
11	}
12
13	var	rTicket	=	new	Ticket(tCallback);
14
15	function	viewTicket(id)	{
16			selectSection('ticket');
17			rTicket.getTicket(id);
18	}
19
20	function	viewTicketForm(form)	{
21			viewTicket(form.elements.id.value);
22			return	false;
23	}
24
25	function	updateTicket(form)	{
26			var	fields	=	{};
27			fields.title	=	form.elements.title.value;
28			fields.description	=	form.elements.description.value;
29
30			var	a	=	form.elements.assigned;
31		if	(a.selectedIndex	>	0)	{
32					fields.assigned	=
33						a.value;
34		}
35	else	{
36				fields.assigned	=	false;

37		}
38
39		var	s	=	form.elements.status;
40		fields.status	=	s.options.value;
41
42			rTicket.updateTicket(form.elements.ticket_id.value,
43					fields);
44
45			return	false;
46	}
47
48	function	updateTicketForm(values)	{
49			if	(!values)	{
50			setMessage(byId('frontMessage'),
51						"Ticket	doesn't	exists");
52				selectSection('front');
53				return;
54		}
55
56		var	t	=	values.ticket;
57		var	form	=	byId('tForm');
58		form.elements.title.value	=	t.title;
59		form.elements.description.value	=	t.description;
60		form.elements.ticket_id.value	=	t.ticket_id;
61
62		byId('lastChanged').innerHTML	=	t.last_change;
63		byId('openedBy').innerHTML	=	t.creator;
64		byId('ticketId').innerHTML	=	t.ticket_id;
65
66		var	status	=	form.elements.status;
67		for(var	i	=	0;	i	<	status.options.length;	i++)	{
68				if	(status.options[i].text	==	t.status)	{
69						status.selectedIndex	=	i;
70						break;
71				}
72	}
73
74			//	remove	current	user	options
75		var	a	=	form.elements.assigned;
76
77			for(var	i	=	1;	i	<	a.options.length;	i++)	{
78					a.remove(i);
79	}
80
81		//	add	users
82		var	u	=	values.users;
83		for(var	i	in	u)	{
84				var	o	=	new	Option(u[i],i);
85				a.options[a.options.length]	=	o;
86	}
87
88		//	select	user
89		if	(t.assigned)	{
90				for(var	i	=	0;	i	<	a.options.length;	i++)	{
91						if	(a.options[i].value
92								==	t.assigned)	{

93								a.selectedIndex	=	i;
94								break;
95						}
96				}

97		}
98		else	{
99				a.selectedIndex	=	0;
100	}
101
102		if	(!app.isLoggedIn)	{
103			form.submit.value	=	"Login	to	Update";
104				form.submit.disabled	=	true;
105		}
106		else	{
107				form.submit.value	=	"Update	Ticket";
108				form.submit.disabled	=	false;
109		}
110	}

This	component	doesn't	require	setup	methods,	but	it	does
have	to	set	up	its	AJAX	class	(line	12).	We	will	be	using	two	of
the	server's	methodsgetTicket	and	updateTicketso	callback
functions	are	added	for	each.	The	getTicket	callback	calls	the
updateTicketForm	method	when	it	is	called,	and	the	updateTicket
method	calls	that	same	method.	We	will	also	be	providing	a
user	feedback	message	and	highlighting	the	form	(lines	79).

Lines	2023	define	the	viewTicket	method;	this	is	used	by	other
parts	of	the	application,	such	as	the	add	ticket	component,	to
select	a	ticket	to	view.	This	method	sets	the	current	section	to
ticket	and	does	an	AJAX	call	to	getTicket.	The	viewTicketForm
method	(lines	2023)	calls	viewTicket,	getting	the	value	of
ticket_id	from	the	form	that	is	passed	in.

The	updateTicket	function	(lines	2546)	processes	a	submission	of
the	ticket	form.	It	builds	an	object	that	contains	the	fields	to
update	and	then	makes	an	AJAX	call	to	updateTicket	(line	42)
with	that	list.	The	fields	object	is	defined	on	line	26,	and	then
the	easy	fields	(title	and	description)	are	added	to	it.	Next	the
assigned	value	is	processed	(lines	3037);	assigned	is	set	using	a
select	box,	and	its	first	option	needs	a	special	value.	We	support

this	value	mapping	by	checking	the	select	box's	selected	index
(line	31),	and	if	the	first	option	is	not	selected,	using	its	value.
Otherwise,	the	mapping	code	uses	the	value	of	false.	Setting
the	assigned	property	to	false	lets	the	back	end	know	that	the
ticket	is	unassigned	and	allows	it	to	clean	up	the	database
accordingly.	Finishing	the	process,	the	status	property	is	added
to	the	fields	object	(line	40),	and	the	AJAX	update	is	performed.

The	updateTicketForm	function	updates	the	form	that	is	used	to
edit	the	data.	It	starts	with	some	basic	error	checking	(lines
4954).	If	the	server	isn't	able	to	find	a	ticket	for	a	given	ID,	it
returns	false.	Thus,	the	function	checks	for	a	false	value,	sets	an
error	message	if	it	finds	one,	and	then	sets	the	application	to
the	front	page.	If	the	ticket	exists,	we	start	updating	the	form.
We	start	with	the	input	boxes,	text	area,	and	spans	(lines	5864)
and	then	move	on	to	the	select	boxes.	Status	contains	a	hard-
coded	set	of	options,	so	it	can	be	selected	by	looping	over	the
list,	matching	the	status	value	against	the	options	text,	and
then	setting	the	element's	selectedIndex	property	(lines	6672).

The	users	array	is	dynamic,	so	the	process	has	to	start	by
updating	the	list	of	users	from	the	data	that	is	returned	from
the	server.	This	is	done	by	creating	a	new	Option	instance	for
each	user	and	adding	it	to	the	select	element	options	array.	With
the	list	updated,	we	loop	over	the	list	as	we	did	in	the	status
case.	The	only	difference	is	that	this	time,	we	compare	the
option's	value	because	we	have	a	user_id.	If	no	user	matches,
the	selected	index	is	set	to	0,	which	is	the	"not	assigned"
option.

The	function	finishes	by	doing	a	basic	security	check.	If	the	user
is	not	logged	in,	the	Submission	button	is	disabled,	and	a
message	telling	the	user	to	log	in	to	update	the	ticket	is	shown.
This	check	allows	the	same	page	to	be	used	for	authenticated
and	nonauthenticated	users.	Like	any	other	security	check,	this
code	on	the	client	is	there	just	to	provide	a	good	user
experience;	the	back	end	also	enforces	security	and	would
prevent	any	not-logged-in	user	from	updating	a	ticket,	no

matter	what	he	or	she	did	to	the	client's	code.

12.11.	My-Tickets	Component

The	my-tickets	component	is	the	user's	default	screen	within
the	application;	it	provides	the	user	with	a	list	of	tickets	that
have	been	assigned	to	him	or	her.	This	component	does	a	large
amount	of	dynamic	table	processing	and	tries	hard	to	load	the
minimal	amount	of	data	it	needs	from	the	server.	The	data
minimization	is	important	because	when	you're	viewing	your
ticket	list,	it	will	poll	the	server	on	a	30-second	interval,	looking
for	updated	tickets.	You	can	see	the	my-tickets	view	in	Figure
12-14,	which	is	created	from	myTickets.php	(see	Listing	12-19).

Figure	12-14.	The	my-tickets	view

[View	full	size	image]

Listing	12-19.	MyTickets.php

1		<div	id="myTickets"	class="section">
2		<div	style="font-size:	80%;	visibility:	hidden;"
3				id="mtLoading">Updating	...</div>
4		<table	id="mtTable"	cellspacing="0">
5		<thead>

6				<tr>
7						<th>#</th>
8						<th>Title</th>
9						<th>Status</th>
10					<th>Last	Change</th>
11					<th>Opened	By</th>
12			</tr>
13	</thead>
14	<tbody>
15			<tr	id="mtTemplate">
16			<td><a	href="javascript:viewTicket({$ticket_id});"
17					>{$ticket_id}</td>
18			<td>{$title}</td>
19			<td>{$status}</td>
20			<td>{$last_change}</td>
21			<td>{$creator}</td>
22			</tr>
23	</tbody>
24	</table>
25
26	</div>

This	component	has	a	small	template	but	a	large	amount	of
functionality.	The	template	contains	two	elements:	a	notice	area
to	display	a	message	when	the	table	is	being	updated	(lines	23)
and	the	actual	table	that	shows	the	user's	assigned	tickets.	The
table	contains	a	header,	which	is	contained	in	the	thread	tag	so
that	the	buildTable	function	won't	remove	it.	It	also	contains	a
table	in	its	body,	which	will	be	cleared	when	buildTable	updates
the	table.	The	template	is	marked	with	an	ID	so	that	it	can	be
pulled	out	during	page	load	by	the	component's	setup	function.
The	tokens	are	in	the	format	described	in	the	explanation	of	the
updateRow	function,	so	the	{$status}	will	be	replaced	with	the
corresponding	status	line	from	the	server.	This	simple
templating	system	gives	a	great	deal	of	flexibility,	which	is
shown	on	lines	1617,	where	we	add	a	link	around	the	ticket_id.
The	matching	JavaScript	that	uses	this	HTML	is	shown	in	Listing
12-20.

Listing	12-20.	myTickets.js

1		app.logout.push(function()	{
2				var	tbody	=	byId('mtTable').tBodies[0];
3				for(var	i	=	tbody.rows.length-1;	i	>=	0;	i--)	{
4						tbody.deleteRow(i);
5				}
6				app.since	=	false;
7		});
8		app.setup.push(function()	{
9
10	function	mtOnDisplay()	{
11			if	(app.since)	{
12					startUpdate();
13			}
14			else	{
15					app.since	=	new	Date();
16					rMt.listAssignedTickets();
17			}
18	}
19
20	function	mtSetup()	{
21			app.templates['mtTable']	=
22					byId('mtTemplate').cloneNode(true);
23			byId('mtTable').tBodies[0].removeChild(
24					byId('mtTemplate'));
25
26			byId('myTickets').onDisplay	=	mtOnDisplay;
27			window.setInterval(
28			function()	{
29					if	(byId('myTickets').style.display
30							==	'block')	{
31							startUpdate();
32					}
33			},30000);
34
35	}
36	app.setup.push(mtSetup);
37
38	var	mtCallback	=	{
39			listAssignedTickets:	function(result)	{
40					buildTable(result,'mtTable');
41			},
42			listUpdatedTickets:	function(result)	{
43					updateTable(result);
44			}
45	};
46	var	rMt	=	new	Ticket(mtCallback);
47
48	function	startUpdate()	{
49			var	since	=	app.since;
50			app.since	=	new	Date();
51
52			var	current	=	[];
53
54			var	rows	=	byId('mtTable').tBodies[0].rows;
55			for(var	i	=	0;	i	<	rows.length;	i++)	{
56					current.push(rows[i].ticket_id);

57			}
58
59			byId('mtLoading').style.visibility	=	'visible';
60			rMt.listUpdatedTickets(since.getTime(),current);
61	}
62
63	function	updateTable(data)	{
64			byId('mtLoading').style.visibility	=	'hidden';
65			if	(data['rebuild'])	{
66					buildTable(data['tickets'],'mtTable');
67					return;
68			}
69			var	tbody	=	byId('mtTable').tBodies[0];
70			for(var	i	=	0;	i	<	data.length;	i++)	{
71					var	row	=	app.mtTemplate.cloneNode(true);
72					updateRow(row,data[i]);
73
74					var	replace	=	-1;
75					for(var	r	=	0;	r	<	tbody.rows.length;	r++)	{
76							if	(tbody.rows[r].ticket_id

77									==	data[i].ticket_id)	{
78									replace	=	r;
79									break;
80							}
81					}
82
83					if	(replace	==	-1)	{
84							tbody.insertBefore(row,tbody.rows[0]);
85					}
86					else	{
87							tbody.removeChild(tbody.rows[replace]);
88							tbody.insertBefore(row,tbody.rows[0]);
89					}
90			}
91	}

MyTicket.js	starts	by	creating	three	setup	functions:

The	first	is	a	function	to	be	called	when	the	user	logs	out
(lines	17).	This	function	is	needed	to	clear	out	the	user's
current	tickets	so	that	the	tickets	currently	shown	won't	be
reused	if	another	user	logs	in	from	the	same	browser.

The	second	is	the	onDisplay	function	(1018),	which	runs
when	the	page	is	displayed	and	sends	an	AJAX	request	to

the	server	to	update	the	list	of	tickets	that	are	being	shown.

The	third	is	the	Setup	function	(lines	2036),	which	runs	on
page	load.	This	function	clones	the	row	template	for	the
table,	storing	it	in	the	app	object	(lines	2124).	It	registers
the	onDisplay	function	(line	26),	and	it	sets	up	a	function	to
run	on	a	30-second	interval	(lines	2333).	This	function	will
run	every	30	seconds	while	this	page	is	loaded.	The
function	does	a	simple	check	to	see	if	the	user	is	on	the	My
Tickets	section	(line	29);	if	it	is,	the	function	starts	the
update	process	(line	31).

Lines	3846	set	up	the	AJAX	class	for	this	component.	Callbacks
are	set	up	for	the	listAssignedTickets	method,	which	is	used	on
initial	page	load,	and	for	listUpdatedTickets,	which	is	used	to	get
updates	afterward.	The	Ticket	instance	is	created	on	line	46.

The	startUpdate	function	(lines	4861)	gets	the	data	needed	to	call
the	server's	listUpdateTicket	method.	This	method	needs	the	last
time	an	update	was	asked	for,	which	is	stored	in	app.since	(lines
4950).	It	also	needs	a	list	of	the	current	tickets	being	displayed,
which	is	created	by	looping	over	the	ticket	table	and	reading	the
ticket_id	property	on	each	row	(lines	5457).	Once	this	data	is
ready,	a	loading	indicator	is	shown	(line	59)	and	the	AJAX	call	is
made	(line	60).

Finishing	up	the	component	is	the	updateTable	function	(lines
6391).	This	function	takes	the	data	returned	from	the	server
and	updates	the	ticket	table	with	it.	The	function	starts	by
disabling	the	loading	indicator	set	by	the	startUpdate	function
(line	64);	it	then	checks	to	see	what	type	of	data	was	returned.
If	it	is	a	complete	set	of	data	(lines	6568),	then	the	buildTable
function	is	used,	and	the	function	stops.	If	there	is	an	updated
set	of	data,	we	loop	over	the	new	data,	inserting	new	rows	at
the	top	of	the	table	or	replacing	current	ones.	Lines	7071
prepare	the	new	row,	using	updateRow	and	its	template	system.
Lines	7481	determine	if	we	are	doing	an	update	or	a	replace;

this	check	is	done	by	looping	over	the	current	tickets	and
looking	for	matching	ticket_ids.	If	the	ID	exists,	then	we	are
updating	a	current	row	by	removing	the	old	row	and	inserting
the	new	one	(lines	8788).	If	the	ID	doesn't	exist	in	the	table,
we	insert	a	new	row	at	the	top	of	the	table.

	

12.12.	Assign-Tickets	Component

The	ticket-assignment	component	provides	the	users	of	the
ticket	manager	with	a	quick	way	to	assign	unassigned	tickets	to
users	in	the	system.	This	is	done	by	dragging	tickets	from	a
table	and	dropping	them	on	a	box	that	represents	each	user.
This	interface	is	a	good	example	of	the	power	that	fully
interactive	interfaces	give	users.	A	drag-and-drop	approach	is
especially	useful	for	tasks	such	as	sorting	or	assigning,	because
they	are	made	up	of	elements	that	are	mappable	and	that	are
often	time-consuming	with	pre-AJAX	approaches.	The
scriptaculous	library	is	used	to	provide	the	drag-and-drop	logic
in	this	example.	The	interface	of	the	assign-tickets	component
is	created	by	Ticket.php	(see	Listing	12-21)	and	is	shown	in
Figure	12-15.

Figure	12-15.	Assign-tickets	component

[View	full	size	image]

Listing	12-21.	Ticket.php

1		<div	id="assign"	class="section">
2		<table	id="aTable"	cellspacing="0">
3		<thead>
4				<tr>
5						<th>#</th>
6						<th>Title</th>
7						<th>Status</th>
8						<th>Last	Change</th>
9						<th>Opened	By</th>
10					<th>Assigned	To</th>
11			</tr>
12	</thead>
13	<tbody>
14			<tr	id="aTemplate">
15			<td><a	href="javascript:viewTicket({$ticket_id});"
16					>{$ticket_id}</td>
17			<td>{$title}</td>
18			<td>{$status}</td>
19			<td>{$last_change}</td>
20			<td>{$username}</td>
21			<td>{$assigned_to}</td>
22			</tr>

23	</tbody>
24	</table>
25
26	<p>Drag	assign	from	a	ticket	row	to	a
27			users	box	to	assign</p>
28	<p	id="dragMessage"></p>
29	<div	id="assignUsers">
30	</div>
31	</div>

The	Ticket.php	file	provides	the	interface	for	assigning	tickets	to
users.	This	interface	is	made	of	two	parts:	The	first	is	a	table
that	lists	unassigned	tickets,	and	the	second	is	a	box	containing
boxes	for	each	user.	The	table	is	defined	on	lines	224	and
follows	the	standard,	dynamic-table	model	we've	used
throughout	the	application.	It	contains	a	thead	tag	(lines	312),
which	contains	the	headings	for	the	table,	and	a	tbody	tag,	which
contains	a	single	row	(lines	1422).	This	row	acts	as	the
template	for	the	buildTable	and	updateRow	functions	in	Ticket.js.

The	file	also	contains	a	DIV	(lines	2930)	to	hold	the	drop
targets	for	the	ticket	rows.	This	target	is	empty	now	because
the	targets	will	be	built	dynamically	from	the	list	of	users.	The
JavaScript	that	builds	the	user	drop	targets	and	powers	the	rest
of	the	interface	is	shown	in	Listing	12-22.

Listing	12-22.	Assign.js

1		function	aOnDisplay()	{
2				rAssign.listUsers();
3				rAssign.listUnassignedTickets();
4		}
5
6		function	aSetup()	{
7				app.templates['aTable']	=
8						byId('aTemplate').cloneNode(true);
9				byId('assign').onDisplay	=	aOnDisplay;
10	}
11	app.setup.push(aSetup);
12
13	var	aCallback	=	{
14			listUnassignedTickets:	function(result)	{
15					buildTable(result,'aTable');
16					makeDraggable();
17			},
18			listUsers:	function(result)	{
19					buildUserDrops(result);
20			}
21	}
22	var	rAssign	=	new	Ticket(aCallback);
23
24			function	makeDraggable()	{
25			var	tbody	=	byId('aTable').tBodies[0];
26			for(var	i	=	0;	i	<	tbody.rows.length;	i++)	{
27					var	td	=	document.createElement('td');
28					var	div	=	document.createElement('div');
29					div.innerHTML	=	'drag';
30					div.className	=	'handle'
31					td.appendChild(div);
32					tbody.rows[i].appendChild(td);
33
34					new	Draggable(div,
35							{revert:true,	ghosting:	false});
36			}
37	}
38
39	function	buildUserDrops(users)	{
40			byId('assignUsers').innerHTML	=	'';
41			for(var	i	in	users)	{

42					var	div	=	document.createElement('div');
43					div.className	=	'user';
44					div.innerHTML	=	users[i];
45					div.userId	=	i;
46
47					byId('assignUsers').appendChild(div);
48					Droppables.add(div,{
49					accept:	'handle',
50					hoverclass:	'highlight',
51					onDrop:	function(element,	u)	{
52							assignTicket(element,u);
53					}
54					});
55			}
56	}
57
58	function	assignTicket(handle,user)	{
59			var	row	=	handle.parentNode.parentNode;
60			var	title	=	row.cells[1].innerHTML;
61			var	id	=	row.cells[0].firstChild.innerHTML;
62			rAssign.assignTicket(id,user.userId);
63
64			byId('dragMessage').innerHTML	=	"Assigned	ticket	#"+
65					id+"	'"+title+"'	to	"+user.innerHTML;
66
67			row.cells[5].innerHTML	=	user.innerHTML;
68			new	Effect.Highlight(row);
69	}

The	ticket-assignment	component	uses	both	a	setup	function
and	an	onDisplay	function,	so	it	starts	by	setting	those	up.	The
onDisplay	function	(lines	14)	is	run	each	time	the	user	loads	the
section.	In	this	function,	AJAX	calls	are	made	to	the	server	to
load	the	users	and	unassigned	tickets	in	the	browser.	The	ticket
information	is	updated	when	the	section	is	displayed	because
you	don't	want	to	be	in	a	situation	in	which	you	are	reassigning
tickets	that	someone	else	already	assigned.	This	problem	can
happen	if	you	are	working	with	stale	data;	updating	the	data	on
section	display	least	guarantees	you	fresh	data	at	the	start	of
the	assignment	process.	The	Setup	function	(lines	69)	loads	the
template	row	into	the	app	object	using	cloneNode	so	that	it	can	be
used	latereven	after	the	source	is	overwritten.	The	Setup
function	also	registers	the	onDisplay	function	because	that	can't
be	done	until	the	assign	DIV	is	loaded.

The	next	ten	lines	take	care	of	setting	up	the	AJAX	class.
Callbacks	for	listUnassignedTickets	and	listUsers	are	registered.	As
in	the	rest	of	the	application,	these	callbacks	do	minimal	work,
leaving	the	implementation	to	functions	that	are	registered	later
in	the	file.

The	rest	of	Assign.js	contains	the	functions	that	provide	the
functionality	of	the	component.	MakeDraggable	(lines	2437)	makes
the	rows	in	the	ticket	table	draggable.	It	does	this	by	looping
over	the	rows	in	the	body	of	the	table	and	adding	a	new	td	on
the	right	side.	This	td	will	contain	a	div,	which	is	the	drag	handle
for	the	row.	The	use	of	the	handle	DIV	makes	it	clear	how	you
should	interact	with	the	table;	it	works	better	than	directly
dragging-and-dropping	the	table	rows	because	the	rows	have	a
variety	of	bugs	in	different	browsers	and	they	don't	always	offer
a	great	user	experience.	The	DIV	is	made	draggable	on	lines
3435	by	creating	a	new	scriptaculous	Draggable	instance;	the
revert	option	is	set	to	true	so	that	the	DIV	stays	in	place	after	it
is	dragged	to	a	user's	drop	target.

The	buildUserDrops	function	takes	a	list	of	users	that	is	returned
from	the	server	and	dynamically	creates	a	DIV	for	each	user
that	is	used	as	a	drop	target	for	the	ticket	rows.	This	process
starts	by	clearing	the	target	DIV	(line	40)	because	drops	may
already	be	in	place	from	an	earlier	view	of	this	section.	Then
the	list	of	users	is	iterated	over.	On	lines	4245,	a	DIVis	created,
and	it's	populated	with	some	of	the	user's	information.	Included
in	this	is	the	user's	user_id	set	as	a	property	on	the	DIV	so	that
it	can	be	accessed	by	other	code	when	the	tickets	are	dropped.
The	function	finishes	by	adding	the	new	DIV	to	the	target	area
(line	47)	and	making	it	a	drop	target	(lines	4854).	When	we
make	it	a	drop	target,	we	set	an	onDrop	handler.	This	handler
calls	the	assignTicket	function	and	gives	us	a	way	to	tie	the	drop
event	from	the	user	interface	to	the	back	end.

The	assignTicket	function	runs	when	a	drop	is	completed.	The
first	parameter,	handle,	is	the	DIV	from	the	ticket	row;	the
second	parameter,	user,	is	the	user's	drop	target	DIV.	The

function	starts	by	using	the	handle's	parentNode	property	to	get
the	actual	table	row	(line	59),	and	then	it	uses	the	row	to	get
the	title	of	the	ticket	(line	60)	and	the	ticket's	ID	(line	61).	With
that	information,	an	AJAX	call	to	the	server	can	be	made.	This
call	assigns	the	ticket	to	the	specified	users	(line	62).	The	rest
of	the	function	provides	status	feedback	to	the	user;	lines	6465
provide	a	textual	message,	and	lines	6768	update	the	assigned
column	in	the	ticket	table	and	highlight	the	row	to	show	that	it's
been	updated.

	

12.13.	Security	Considerations	with	AJAX
Applications

The	ticket	manager	application	has	a	relatively	simple	security
model.	There	are	no	different	user	levels;	the	only	issue	to
worry	about	is	whether	the	user	logged	in.	If	the	user	is	logged
in,	he	or	she	has	the	ability	to	edit	and	create	tickets;
otherwise,	he	or	she	can	only	view	them.	The	user's	login	status
is	stored	on	both	the	JavaScript	side	and	the	server.	On	the
JavaScript	side,	this	status	is	used	to	hide	the	links	to	actions
that	the	user	can't	perform.	On	the	server	side,	the	login	status
is	used	to	enforce	what	actions	the	user	can	perform.	This	setup
highlights	an	important	rule	in	any	Web	application:	The	client
can't	be	trusted.

Often,	when	we	build	an	AJAX	application,	we	forget	that	our
back-end	code	is	still	being	exposed	through	normal	HTTP
requests.	Just	because	the	JavaScript-driven	user	interface
doesn't	allow	a	ticket	to	be	created	doesn't	mean	that	an	HTTP
request	directly	to	the	back-end	addTicket	method	can't	be
made.	The	methods	exposed	in	the	Ticket	class	are	a	public
interface	to	the	application;	they	need	to	check	login	status	if	a
login	is	required	to	use	the	method,	and	they	need	to	do	any
required	data	escaping.

Even	though	libraries	such	as	HTML_AJAX	make	it	easy	to
expose	a	PHP	class	for	AJAX,	access	doesn't	mean	that	you	can
remove	the	controller	from	your	application	and	expose	your
data	models	directly	to	JavaScript.	The	code	that	handles	an
AJAX	request	is	now	the	front-line	code	of	your	application	and
needs	to	take	appropriate	precautions.

	

12.14.	Comparing	Our	AJAX-Driven	Application
against	a	Standard	MVC	Model

You	have	many	different	design	choices	that	you	can	make
when	building	a	Web	application,	but	one	that	is	often	used	is
the	MVC	model.	In	an	MVC	application,	your	model	code
handles	interacting	with	the	database,	the	view	manages	how
the	content	is	displayed,	and	the	controller	ties	things	together.
When	you	move	to	an	AJAX-driven	application,	this	model	will
still	exist,	only	now	you	have	the	possibility	of	having	it	twice:
once	on	the	server	and	once	on	the	client.	In	many	cases,	the
controller	and	view	classes	will	mainly	disappear	from	the
server	side	because	that	functionality	is	transparently	provided
by	the	AJAX	communications	library.

In	the	ticket	manger,	the	controller	functionality	was	provided
by	the	HTML_AJAX_Server	class.	The	server	class	takes
incoming	requests	and	maps	them	to	the	appropriate	method
on	the	ticket	class;	it	then	takes	the	output	and	uses	a	JSON
serialization	class	as	the	view.	In	the	ticket	manager,	the	model
is	less	clear,	but	the	model	component	is	still	the	ticket	class.	In
some	ways,	the	ticket	class	is	still	a	controller	because	it
handles	user	input,	decides	what	to	do	with	it,	and	then	returns
data	or	errors.	As	the	ticket	manager	application	grows,	a
common	refactoring	approach	would	be	to	pull	the	code	that
creates	the	queries	into	its	own	classes,	leaving	only	the	code
for	cleaning	the	input	and	for	picking	the	entity	to	work	with	in
the	ticket	class.	You	can	also	build	an	AJAX-driven	application
without	the	use	of	JSON;	instead	of	returning	data	to	the	client,
you	would	return	chunks	of	HTML.	In	an	HTML,	chunk-style
AJAX	application,	you	would	keep	the	standard	view	component
in	the	MVC	model.	(The	view	component	is	a	template	in	most
Web	applications.)

On	the	JavaScript	side	of	the	application,	you	can	also	choose

an	MVC	model	to	drive	your	application.	However,	you're	less
likely	to	see	a	pure	implementation	because	most	JavaScript
code	is	event	driven.	(That	is,	it	responds	only	to	user
interaction,	such	as	the	clicking	of	a	link.)	In	addition,	it	is
harder	to	work	in	a	controller	model	than	the	standard,	URL-
driven	approach	used	on	the	server.	A	strict	view	also	isn't
needed	on	the	JavaScript	side	because	you	can	interact	directly
with	the	DOM,	but	you	may	find	template-based	approaches	to
be	quite	useful	because	the	templates	make	the	development
processes	much	simpler.	Models	follow	much	of	the	same
pattern;	in	a	simple	AJAX	application,	they	can	be	simple	data
structures	mapped	directly	from	the	server	using	JSON.
However,	as	features	are	added,	you'll	find	it	useful	to	wrap	this
data	inside	JavaScript	classes.	These	classes	can	take	care	of
caching	data	in	the	client,	handle	validation,	and	even	combine
multiple	requests	to	allow	you	to	lower	the	number	of	requests
you	send	to	the	server.

Overall,	building	an	AJAX-driven	application	has	the	tendency	to
lower	the	amount	of	code	you	have	on	the	server	and	increase
what	you	have	on	the	client.	However,	even	with	large	amounts
of	functionality	being	provided	by	an	AJAX	library,	the	server-
side	code	will	still	need	to	provide	more	than	simple	data
access.	All	of	the	application's	security	will	have	to	be	enforced
on	the	server.	You'll	also	need	to	manage	the	first-time	page
generation	on	the	server,	which	may	include	preloading	large
amounts	of	data	to	save	you	from	doing	a	bunch	of	AJAX
requests	as	soon	as	the	page	is	loaded.	The	server	will	also
tend	to	have	methods	that	combine	multiple-step	processes;
due	to	the	high	latency	of	AJAX	requests,	you	will	want	to
minimize	the	number	of	round	trips	to	the	server	that	are
required	to	process	a	single	action.

Building	a	fully	AJAX-driven	application	gives	you	a	lot	of	power,
but	be	careful	when	using	this	approach.	You'll	have	a	lot	more
important	logic	running	on	the	client,	so	you'll	need	to	update
your	testing	approaches	to	account	for	this.	You	also	want	to	be

careful	about	ending	up	with	a	design	that	leaves	you	with	a
complex	back	end	and	then	a	complex	front	end	that	performs
many	of	the	same	functions.	If	you	have	a	fully	driven	AJAX
application,	you	should	strive	to	keep	one	side	of	the	application
as	simple	as	possible.	If	you're	pushing	data	out	using	JSON,
that	side	should	be	the	back	end;	if	you're	pushing	out	chunks
of	HTML,	that	side	is	the	front	end.	If	you	let	both	sides	become
complicated,	you'll	find	yourself	with	two	interdependent	pieces
that	are	hard	to	maintain	and	debug.

	

12.15.	Summary

The	ticket	manager	use	case	showed	us	a	different	development
pattern.	A	light-weight	back	end	exposed	services	that	a
heavier	front-end	JavaScript	application	used	to	build	the	actual
ticket	manager.	This	made	JavaScript	the	primary	development
language	and	shifted	the	development	processes	much	further
from	the	standard	Web	development	model	than	the	other	use
cases.	The	approaches	we	covered	would	also	be	useful	in	cases
in	which	JavaScript	was	taking	more	of	a	secondary	role.	These
approaches	include	the	following:

Exposing	back-end	functionality	as	a	service	gives	the	most
flexibility	to	your	AJAX	code.

JSON's	lightweight	encoding	makes	it	the	perfect	fit	for
heavy	AJAX	use.

Building	small	JavaScript	components	that	are	self-
contained	and	have	simple	rules	for	interacting	with	the	rest
of	the	application	helps	manage	complexity.

Usability	must	be	thought	about	at	the	initial	design	stage,
not	bolted	on	later.

Visual	sorting	is	easy	to	implement	and	easier	for	users	to
understand.

Creating	utility	functions	for	common	JavaScript	operations
can	speed	development	and	make	code	more	readable.

The	ticket	manager	is	a	rich	Internet	application,	offering	quick
response	times,	features	such	as	drag-and-drop	ticket

assignments	that	are	seldom	seen	in	Web	1.0	applications,	and
high	levels	of	usability	throughout.	However,	it	just	scratches
the	surface	of	what's	possible.

AJAX	offers	the	ability	to	create	highly	interactive	applications.
AJAX-powered	applications	have	the	ability	to	help	us	create	a
new	Weba	Web	2.0.	As	you	walk	down	the	path	to	AJAX
development,	you	need	to	be	careful	to	avoid	the	bumps	in	the
road.	Keep	your	focus	on	the	user's	experience,	not	on
technology,	and	strive	to	keep	your	code	simple.	As	you	rely
more	and	more	on	AJAX,	you'll	want	to	move	complexity	to	the
client	code,	not	create	a	situation	in	which	both	sides	of	the
equation	are	extremely	complex.	AJAX	development	gives	you
lots	of	options,	from	moving	data	with	JSON	to	updating	the
page	with	server-side	generated	HTML.	However,	what
determines	your	success	won't	be	what	programming	strategy
you	use,	but	how	well	you	keep	your	focus	on	what	the	user
needs.

Appendix	A.	JavaScript	AJAX	Libraries
In	this	chapter

AJAX	Toolbox page	334

Bajax page	334

Dojo	Toolkit page	334

libXmlRequest page	335

MochiKit page	335

Rico page	335

Simple	AJAX	Code-Kit	(SACK) page	336

ThyAPI page	336

Qooxdoo page	336

XHConn page	337

Yahoo!	User	Interface	Library page	337

AJAX	Toolbox

Web	site:	http://ajaxtoolbox.com/request/

License:	Free	to	use

AJAX	Toolbox	is	a	comprehensive	XMLHttpRequest	wrapper.	It
features	progress	monitoring,	request	grouping,	and	AJAX	form
submission.	The	project	is	well	documented	and	includes	source
code	and	examples.	The	main	drawback	is	the	nonstandard
license.

	

http://ajaxtoolbox.com/request/

Bajax

Web	site:	https://developer.berlios.de/projects/bajax/

License:	BSD

Bajax	is	a	small	AJAX	library	with	support	for	asynchronous
requests.	Automatic	URL	encoding	of	parameters	is	supported,
but	building	the	argument	list	from	a	form	is	not.	The	API	is	set
up	to	be	used	as	a	simple	entry	point	to	a	URL-encoded	RPC
system	and	to	easily	include	new	HTML	content.

	

https://developer.berlios.de/projects/bajax/

Dojo	Toolkit

Web	site:	www.dojotoolkit.org/

License:	New	BSD	or	Academic	Free	License	2.1

Dojo	is	a	complete	framework	for	building	JavaScript
applications.	It	includes	support	for	managing	events	and	AJAX
communications	and	for	building	widgets	using	templates.	Dojo
ships	with	a	wide	variety	of	widgetsfrom	application	style
menus	to	Google	Map's	integration.	Dojo	is	focused	on	building
rich	applications	and	provides	a	rich	set	of	features	for	doing	so.
It's	not	the	sort	of	library	you	want	to	drop	in	just	for	AJAX
support,	but	if	you	want	to	build	applications	with	JavaScript	as
a	primary	development	language,	it's	a	good	choice.	AJAX
includes	RPC-style	calls	through	JSON	support.	It	also	supports
AJAX	form	submission	and	a	document-oriented	JavaScript	API.

	

http://www.dojotoolkit.org/

libXmlRequest

Web	site:
www.whitefrost.com/reference/2005/09/09/libXmlRequest.html

License:	Similar	to	BSD,	but	with	an	advertising	clause

libXmlRequest	is	an	AJAX	communications	library	with	an	XML
focus.	It	supports	asynchronous	and	synchronous	operation,
including	support	for	cached	GET	requests.	The	XML	support
includes	an	XPath	and	an	XSL	wrapper	that	works	in	Firefox	and
IE.	Other	browsers	are	supported	for	basic	communication,	but
the	XML	features	won't	work.

http://www.whitefrost.com/reference/2005/09/09/libXmlRequest.html

MochiKit

Web	site:	http://mochikit.com/

License:	MIT	or	Academic	Free	License,	v.	2.1

MochiKit	is	a	complete	JavaScript	library	that	is	designed	to	be
a	base	for	building	rich	Web	applications.	Features	include
visual	effects,	drag-and-drop	support,	JSON	serialization	and
safe	evaluation,	string	and	date	formatting,	event	management,
and	a	number	of	other	development	tools.	AJAX	communication
support	is	focused	on	JSON	and	supports	only	asynchronous
operation.	The	library	is	well	documented	at	the	API	level,	but
there	is	little	high-level	documentation	explaining	how	it	all	fits
together.	Although	MochiKit	is	a	large	library,	it	takes	strides	to
be	well	name-spaced	so	that	it	can	be	used	with	other	libraries.

http://mochikit.com/

Rico

Web	site:	http://openrico.org/

License:	Apache	2.0

Rico	is	an	AJAX	and	general	DHTML	library	that	provides	many
effects	and	tools	that	are	useful	in	AJAX	applications.	Rico
includes	cinematic	effects,	drag-and-drop	support,	and	widgets
called	behaviors.	Like	scriptaculous	(described	in	Chapter	8,
"Libraries	Used	in	Part	II:	Sarissa,	Scriptaculous"),	Rico	builds
on	the	prototype	library	and	is	comparable	in	scope	to
scriptaculous.	Rico	is	known	for	its	high-quality	widgets,	such	as
its	accordion	and	datagrid	widgets.	Basic	AJAX	communication
support	is	provided	by	a	singleton	communication	manager.

http://openrico.org/

Simple	AJAX	Code-Kit	(SACK)

Web	site:	http://twilightuniverse.com/projects/sack/

License:	MIT

SACK	is	a	simple	JavaScript	library	that	provides	AJAX
communication	support.	Its	focus	is	on	ease	of	use	and
simplicity.	Requests	are	made	by	creating	a	single	object,	which
contains	support	for	URL	encoding	data.	There	is	no	direct
support	for	RPC	or	JSON,	but	the	library	is	simple	enough	that	it
would	be	easy	to	extend.	Support	for	managing	errors	is
minimal,	but	loading	notification	is	provided	by	adding	event-
handling	functions.

	

http://twilightuniverse.com/projects/sack/

ThyAPI

Web	site:	http://sourceforge.net/projects/thyapi/

License:	LGPL

ThyAPI	is	a	framework	for	creating	rich	applications.	It	needs	a
server	component	but	will	work	with	any	server-side	language
that	supports	XML-RPC.	(Currently	only	a	PHP	back	end	exists.)
The	API	is	similar	to	client	GUI	frameworks,	such	as	Java's
Swing,	and	includes	a	number	of	widgets,	including	a	rich	text
editor,	a	calendar,	dialog	boxes,	and	windows.	ThyAPI	also
supports	drag-and-drop	support,	animations,	and	sound
playback.	(Sound	playback	uses	the	Flash	plug-in.)

http://sourceforge.net/projects/thyapi/

Qooxdoo

Web	site:	http://qooxdoo.org/

License:	LGPL

Qooxdoo	is	a	rich-application	framework	with	a	focus	on	AJAX-
powered	widgets.	It	has	a	large	set	of	core	features,	including
browser	detection,	event	management,	drag-and-drop	support,
a	cookie	API,	and	AJAX	communications.	The	focus	of	the
project	is	on	API	layout	and	widgets;	the	API	layout	provides	an
experience	similar	to	using	standard	graphical	APIs,	such	as
Swing	in	Java.	Widgets	include	menus,	toolbars,	combo	boxes,
and	windows.	Qooxdoo	is	extremely	large,	so	it	won't	be	a	good
choice	for	mixing	and	matching	with	other	solutions.

http://qooxdoo.org/

XHConn

Web	site:	http://xkr.us/code/javascript/XHConn/

License:	Creative	Commons	Attribution-ShareAlike

XHConn	is	an	extremely	lightweight	wrapper	that	provides
cross-browser	XMLHttpRequest	support.	It's	a	good	choice	if
you	don't	want	to	bother	with	cross-browser	support	but	want
to	take	care	of	the	rest	of	the	details	yourself.	The
implementation	is	simple	enough	that	you	could	easily	make
your	version	using	the	examples	in	Chapter	1,	"What	Is	AJAX?"

	

http://xkr.us/code/javascript/XHConn/

Yahoo!	User	Interface	Library

Web	site:	http://developer.yahoo.com/yui/

License:	BSD

The	Yahoo!	User	Interface	Library	is	a	large	JavaScript	API	that
provides	support	for	all	aspects	of	rich-application	development.
It	includes	event	management,	drag-and-drop	support,	visual
effects,	animation,	and	AJAX	communications.	It	also	includes	a
number	of	widgets	(which	are	called	controls);	these	include	an
AutoComplete	search	widget	and	a	calendar	widget.	The	AJAX
API	is	document-based	on	a	single	asyncRequest	method.	AJAX
form	submission	is	supported,	and	an	object-oriented	API	for
managing	connections	and	errors	is	provided.	The	library
includes	excellent	documentation;	it	also	includes	a	design
patterns	library	that	shows	how	to	combine	the	various	widgets
and	effects.

	

http://developer.yahoo.com/yui/

Appendix	B.	AJAX	Libraries	with	Server
Ties
In	this	chapter

PHP page	340

Java page	342

C#/.NET page	343

Multiple	Languages page	345

	

PHP

AjaxAC

Web	site:	http://ajax.zervaas.com.au/

License:	Apache

AjaxAC	is	a	widget-based	AJAX	library	in	which	minimal
JavaScript	is	written.	New	widgets	are	written	as	PHP	classes,
and	they	use	an	event	API	for	attaching	AJAX	actions	to	normal
JavaScript	events.	Small	amounts	of	glue	JavaScript	are
included	inside	the	PHP	class,	which	can	make	for	a	complex
development	process.	On	the	client,	a	mix	of	custom,
handwritten	JavaScript	and	framework-generated	JavaScript	is
used	to	implement	applications.

HTML_AJAX

Web	site:	http://pear.php.net/package/HTML_AJAX/

License:	LGPL

HTML_AJAX	provides	a	stand-alone	JavaScript-and-PHP	API	for
AJAX	requests.	It's	part	of	the	PHP	PEAR	library	project.	PHP
integration	includes	exposing	PHP	classes	though	proxy
JavaScript	objects	and	helper	functions	for	JavaScript
generation.	RPC	communications	takes	place	using	JSON,
although	other	formats	are	supported	through	a	pluggable
architecture.	Easy	AJAX	form	submission	and	the	generation	of
JavaScript	from	AJAX	requests	are	also	supported.	The	library	is
covered	in	detail	in	Chapter	9,	"Libraries	Used	in	Part	II,
HTML_AJAX."

http://ajax.zervaas.com.au/
http://pear.php.net/package/HTML_AJAX/

PAJAJ

Web	site:	http://pajaj.sourceforge.net/

License:	LGPL

PAJAJ	is	an	object-oriented,	event-driven	AJAX	library	for	PHP5.
You	can	develop	applications	by	using	the	PAJAJ	HTML-
generation	tools	to	build	your	HTML	and	to	attach	events	on	the
server	side;	you	can	also	use	a	JavaScript	API	to	bind	events	to
already-existing	HTML	pages.	PHP	classes	are	exposed	to
JavaScript	by	creating	a	PHP	page	for	each	class	and	having	the
class	extend	the	BaseAjaxServer	class.	This	requirement	of
extending	a	base	class	can	be	troublesome	for	some
frameworks	that	already	contain	base	classes.	JSON	is	used	for
all	communication	between	JavaScript	and	PHP.

TinyAjax

Web	site:	www.metz.se/tinyajax/

License:	LGPL

TinyAjax	is	a	PHP5	solution	that	provides	a	simple	API	that	is
similar	to	SAJAX.	It	works	by	exporting	individual	PHP	functions
to	JavaScript	and	generating	JavaScript	from	a	set	of	PHP
helper	methods.	These	helper	methods	include	functions	for
grabbing	the	values	from	an	HTML	form	and	setting	the
innerHTML	of	DOM	elements.	Basic	TinyAJAX	applications	can
be	written	without	writing	any	JavaScript	code.

Xajax

Web	site:	www.xajaxproject.org/

http://pajaj.sourceforge.net/
http://www.metz.se/tinyajax/
http://www.xajaxproject.org/

License:	LGPL

Xajax	works	by	exporting	PHP	classes	that	return	AJAX	action
objects	from	each	call.	These	return	actions	can	update	the
attributes	of	any	DOM	element	and	new	custom	JavaScript	to
the	application.	This	functionality	is	similar	to
HTML_AJAX_Action	(Chapter	9)	and	is	designed	to	allow	you	to
implement	AJAX	almost	completely	from	the	server	side.	Data
serialization	is	handled	using	a	custom	XML	format.

XOAD

Web	site:	http://wiki.xoad.org/index.php?title=Wiki_Home

License:	PHP

XOAD	provides	RPC-style	AJAX	by	exporting	PHP	classes	to
JavaScript.	It	includes	a	number	of	helper	classes	for	generating
the	needed	JavaScript	during	this	process.	JSON	is	used	for
communications	between	the	client	and	the	server.	XOAD	also
includes	a	number	of	additional	features,	including	action-based
returns	(similar	to	HTML_AJAX_Action	in	Chapter	9)	and	a
custom	event	model.	The	event	model	is	designed	to	allow	you
to	fire	an	event	on	one	client	and	catch	it	on	another.	This
makes	it	easy	to	write	chat	applications.

	

http://wiki.xoad.org/index.php?title=Wiki_Home

Java

AjaxTags

Web	site:	http://ajaxtags.sourceforge.net/

License:	Apache	2.0

AjaxTags	is	a	set	of	JSP	tags	designed	to	make	it	easy	to	add
AJAX	to	Java	JSP	sites.	Each	tag	implements	a	specific	widget.
These	tags	include	support	for	an	auto-complete	text	box,	pop-
up	balloons,	multistep	select	boxes,	tabbed	panels,	and	area
displays.	Tags	are	also	offered	for	making	HTML	content
replacement.	Prototype,	scriptaculous,	and	OverLIB	are	used	on
the	client	side.	XML	is	used	for	communication	between	the
client	and	the	server.

Direct	Web	Remoting	(DWR)

Web	site:	http://getahead.ltd.uk/dwr/overview/dwr

License:	Apache

DWR	offers	an	easy	way	to	export	Java	classes	and	make	them
accessible	from	JavaScript	applications.	DWR	does	this	by
generating	JavaScript	proxy	classes	that	match	the	Java	ones.
This	operation	works	much	like	HTML_AJAX's	RPC	mechanism
(described	in	Chapter	9).	The	Java	classes	can	be	configured
using	XML	or	annotations.	A	number	of	utility	JavaScript
functions	are	also	included	to	make	standard	DOM-manipulation
tasks	easier.

http://ajaxtags.sourceforge.net/
http://getahead.ltd.uk/dwr/overview/dwr

Google	Web	Toolkit

Web	site:	http://code.google.com/webtoolkit/

License:	Mix	of	Apache	2.0	and	free-to-use	components

Google	Web	Toolkit	allows	Java	developers	to	make	AJAX
applications	without	writing	JavaScript.	The	heart	of	the	toolkit
is	a	special	compiler	that	translates	the	Java	application	into
JavaScript	and	HTML.	The	toolkit	includes	a	user-interface
library	with	a	large	number	of	widgets,	including	standard	HTML
form	elements,	menu	bars,	trees,	tables,	dialog	boxes,	and
various	panels	for	managing	the	layout	of	the	application.	A
custom	event	model	based	on	a	listener	pattern	is	provided,	as
is	an	API	for	managing	style	sheets.	RPC	support	is	provided
using	code	generation	to	hide	the	hard	work,	and	data
serialization	is	provided	for	most	basic	Java	types.	The	toolkit
also	includes	back-button	management	and	debugging	tools.

ZK

Web	site:	http://zk1.sourceforge.net/

License:	GPL	and	commercial

ZK	is	a	component-	and	widget-based	AJAX	library.	It	allows
you	to	build	AJAX	applications	without	writing	JavaScript.	Its
widgets	are	geared	toward	building	complete	applications;	thus,
it	would	be	hard	from	a	style-and-usability	perspective	to
integrate	it	into	existing	Web	sites.	(This	isn't	unique	to	ZK;
many	widget-based	toolkits	have	a	similar	problem.)	ZK	has	a
large	set	of	widgets,	from	standard	HTML	form	elements	to
trees	and	modal	dialog	boxes.	ZK	applications	are	developed
using	a	custom	ZUML	markup	language	(which	is	similar	to
Mozilla's	XUL)	with	embedded	Java.

http://code.google.com/webtoolkit/
http://zk1.sourceforge.net/

	

C#/.NET

Ajax.NET

Web	site:	www.ajaxpro.info/default.aspx

License:	Public	domain

Ajax.NET	provides	AJAX	support	for	ASP.NET	2.0	applications.	It
includes	control	for	AJAX	versions	of	standard	HTML	elements
and	allows	you	to	create	your	own	custom	controls.	It	includes
the	ability	to	expose	.NET	classes	to	JavaScript,	handling	type
mapping	automatically.	This	mapping	is	implemented	using
JSON.

Anthem.NET

Web	site:	http://anthem-dot-net.sourceforge.net/

License:	Public	domain

Anthem.NET	provides	AJAX	support	to	ASP.NET	1.1	and	2.0.
Like	most	.NET	libraries,	it	provides	indirect	AJAX,	where
portions	of	your	templates	are	rewritten	by	the	library	to	make
AJAX	calls.	It	works	by	mapping	the	standard	ASP.NET	control
model	into	an	AJAX	environment.	This	includes	full	support	for
view	state	and	server-side	events.

Atlas

Web	site:	http://atlas.asp.net/

http://www.ajaxpro.info/default.aspx
http://anthem-dot-net.sourceforge.net/
http://atlas.asp.net/

License:	Free	to	use

Atlas	is	Microsoft's	AJAX	toolkit	that	provides	tight	integration
with	ASP.NET	2.0	and	Visual	Studio.	The	toolkit	is	designed	so
that	.NET	developers	can	add	AJAX	to	their	applications	by
using	widgets	and	indirect	AJAX	and	without	editing	code.	In
indirect	AJAX,	the	Atlas	code	takes	current	ASP.NET	templates
and	rewrites	their	links	and	form	actions,	making	them	post	to
the	server	using	AJAX	calls.	The	toolkit	also	includes	visual
effects,	drag-and-drop	support,	automatic	user	profiles,	data-
binding	widgets,	and	support	for	Windows	Live	widgets.

MagicAJAX.NET

Web	site:	http://www.magicajax.net/

License:	LGPL

MagicAJAX.NET	focuses	on	providing	AJAX	support	without	your
needing	to	write	JavaScript	code.	You	can	do	this	by	adding	an
AJAX	control	to	your	pages	and	then	rewriting	current	controls.
MagicAJAX.NET	also	has	some	support	for	writing	JavaScript
from	.NET	(including	helper	methods).	Communication	with	the
server	is	done	with	URL-encoded	POSTs	to	the	server.	In	such
situations,	the	server	returns	JavaScript	code.

http://www.magicajax.net/

Multiple	Languages

CPAINT

Web	site:	http://cpaint.booleansystems.com/

License:	GPL	and	LGPL

Languages:	PHP,	ASP,	and	PERL

CPAINT	is	an	AJAX	library	that	is	focused	on	communications
and	supports	XML	and	text-return	types.	The	JavaScript	API
supports	RPC	calls	and	can	be	used	in	asynchronous	or
synchronous	mode.	Results	are	encapsulated	in	a	CPAINT	result
object	and	can	be	generated	on	the	server	using	a	similar	API.
As	an	alternative,	the	results	on	the	server	can	be	generated
automatically	using	a	proxy	API.

Rialto

Web	site:	http://rialto.application-servers.com/wiki/

License:	Apache

Languages:	JSP,	JSF,	.NET,	Python,	and	PHP

Rialto	is	a	JavaScript	widget	library	with	support	for	a	number
of	different	server	languages	through	pluggable	back	ends.	The
widgets	include	drag-and-drop,	treeview,	popup,	calendar,	and
forms.	The	pages	are	created	using	an	object-oriented	API	in
JavaScript,	and	page	development	can	be	done	using	pure
JavaScript	or	a	server	API.	Server-specific	code	includes	an
object-oriented	API	for	creating	widgets	as	well	as	an	API	for

http://cpaint.booleansystems.com/
http://rialto.application-servers.com/wiki/

dealing	with	AJAX	requests.	Java	JSP	support	is	the	most
mature,	but	others	are	in	early	development.

SAJAX

Web	site:	www.modernmethod.com/sajax/

License:	BSD

Languages:	PHP,	ASP,	ColdFusion,	Perl,	Python,	Ruby,	LUA,	and
IO

Sajax	is	a	simple	RPC-style	AJAX	library.	Its	original	focus	was
PHP,	but	support	for	other	languages	has	been	added	over	time.
Some	of	the	additional	language	support	is	under	a	different
license	than	the	main	code.	Sajax	provides	a	procedural	API
and	works	by	registering	server	methods	and	having	JavaScript
stubs	generated	for	them.	When	you	call	the	stub	method,
Sajax	makes	an	AJAX	request	and	then	calls	a	callback	method
with	the	results.

	

http://www.modernmethod.com/sajax/

Appendix	C.	JavaScript	DHTML	Libraries
In	this	chapter

Accesskey	Underlining	Library	(AUL) page	348

Behaviour page	348

cssQuery() page	348

Dean	Edwards	IE7 page	349

DOM-Drag page	349

JavaScript	Shell page	349

Lightbox	JS page	350

Moo.fx page	350

Nifty	Corners	Cube page	350

overLIB page	351

Sorttable page	351

Tooltip.js page	351

WZ_jsgraphics page	352

WZ_dragdrop page	352

	

Accesskey	Underlining	Library	(AUL)

Web	site:	www.gerv.net/software/aul/

License:	New	BSD

AUL	is	a	JavaScript	library	that,	when	included,	adds	additional
behaviors	to	your	HTML	page	based	on	existing	accesskey
attributes.	It	works	by	taking	HTML	elements	that	have	accesskey
attributes	and	adding	underlines	under	the	matching	characters
within	the	label.	For	example,	a	button	defined	as	<button
accesskey="b">button</button>	would	be	displayed	with	an	underline
under	the	b.	This	allows	you	to	easily	match	accesskey	display
standards	without	filling	your	HTML	with	extra	markup.

http://www.gerv.net/software/aul/

Behaviour

Web	site:	http://bennolan.com/behaviour/

License:	BSD

Behaviour	is	a	small	library	that	is	used	to	attach	JavaScript
events	to	an	HTML	page	without	adding	additional	markup.	This
is	accomplished	by	using	CSS	selectors,	which	apply	JavaScript
to	matching	HTML	elements.	Such	a	matching	system	is	useful
for	keeping	markup	clean,	and	it	helps	make	your	JavaScript
more	reusable.	The	library	is	bundled	with	HTML_AJAX,	and	its
usage	is	explained	in	Chapter	9,	"Libraries	Used	in	Part	II:
HTML_AJAX."

http://bennolan.com/behaviour/

cssQuery()

Web	site:	http://dean.edwards.name/my/cssQuery/

License:	LGPL

cssQuery()	is	a	cross-browser	JavaScript	function	that	allows
you	to	query	the	DOM	using	CSS	selectors.	It	includes	support
for	CSS1	and	CSS2	selectors	and	for	parts	of	CSS3.	It's	useful
for	creating	your	own	behaviors,	such	as	functionality,	and	for
trying	out	new	CSS3	selectors	that	are	not	yet	supported	in	all
browsers.

	

http://dean.edwards.name/my/cssQuery/

Dean	Edwards	IE7

Web	site:	http://dean.edwards.name/IE7/

License:	LGPL

Dean	Edwards	IE7	is	a	browser-compatibility	library	that	uses
JavaScript	to	extend	Internet	Explorer	5	and	6,	giving	these
browsers	support	for	newer	CSS	standards.	It	also	fixes	various
layout	bugs	and	contains	a	fix	for	transparent	PNGS.	It	works
quite	well	and	can	be	an	easy	addition	for	a	site	that	is	targeted
toward	a	standards-compliant	browser	that	later	needs	to	be
made	to	work	in	IE.	On	large	and	complex	sites,	IE7	can	add
some	additional	load	times	and	can	cause	page	reflows	after	the
initial	layout	is	done.	However,	if	you	use	IE7	enough	to
understand	its	drawbacks,	it	can	be	a	useful	tool	for	supporting
IE6.

http://dean.edwards.name/IE7/

DOM-Drag

Web	site:	www.youngpup.net/2001/domdrag/

License:	Free	to	use

DOM-Drag	is	an	extremely	lightweight	(4Kb)	library	that	makes
DOM	elements	draggable.	It	includes	support	for	making	part	of
the	element	the	dragging	handle	and	for	limiting	the	area	to
which	the	draggable	element	can	be	dragged.	It	doesn't	support
drop	targets	or	ghosting,	as	is	the	case	with	scriptaculous	(see
Chapter	8,	"Libraries	Used	in	Part	II:	Sarissa,	Scriptaculous"),
but	it	is	much	smaller.

	

http://www.youngpup.net/2001/domdrag/

JavaScript	Shell

Web	site:	www.squarefree.com/shell/

License:	GPL/LGPL/MPL

JavaScript	shell	is	a	command-line	interface	for	JavaScript	and
DOM	that	allows	you	to	interactively	write	JavaScript	code.
Accessible	as	a	stand-alone	tool	or	from	a	bookmarklet,	it	is
useful	as	a	debugging	and	development	tool	and	includes	tab
completion	of	function	names.	It	also	includes	extra	functions
for	interacting	with	the	DOM.

	

http://www.squarefree.com/shell/

Lightbox	JS

Web	site:	www.huddletogether.com/projects/lightbox/

License:	Creative	Commons	Attribution	2.5

This	is	an	unobtrusive	JavaScript	library	that	makes	it	easy	to
overlay	images	on	the	current	page.	It	is	used	on	many	sites	to
show	the	larger	images	of	thumbnails	within	articles.	To	use	it,
you	simply	need	to	include	the	library	and	add	rel="lightlight"
attributes	to	an	a	href	that	links	to	the	image	you	want	to
overlay.

	

http://www.huddletogether.com/projects/lightbox/

Moo.fx

Web	site:	http://moofx.mad4milk.net/

License:	MIT

Moo.fx	is	a	lightweight	library	for	providing	JavaScript	visual
effects.	Rather	than	bundle	effects	in	the	manner	that
scriptaculous	does,	Moo.fx	provides	tools	to	animate	the	width,
height,	and	opacity	of	elements.	This	focus	allows	for	6Kb	of	file
size	for	basic	operations.	An	extension	package	provides	a
number	of	additional	features	including	an	accordion	widget,
support	for	combination	effects,	memory	of	last	effect	position
through	cookie	storage,	and	text	resizing.	This	doubles	the	size
of	the	library	but	adds	its	features	in	only	a	fraction	of	the	size
of	other	libraries.

http://moofx.mad4milk.net/

Nifty	Corners	Cube

Web	site:	www.html.it/articoli/niftycube/index.html

License:	GPL

With	Nifty	Corners	Cube,	you	can	add	rounded	corners	to	HTML
elements	in	a	cross-browser	manner,	without	adding	additional
images	or	HTML	markup	to	your	pages.	The	library	rounds	the
elements	by	calling	a	single	JavaScript	function	and	providing
CSS	selectors	for	the	elements	you	want	rounded.	Nifty	Corners
Cube	also	provides	parameters	for	controlling	transparent
display,	rounding	size,	and	element	size.	This	allows	Nifty
Corners	Cube	to	be	used	for	everything	from	creating	buttons
to	making	fake	columns.

http://www.html.it/articoli/niftycube/index.html

overLIB

Web	site:	www.bosrup.com/web/overlib/

License:	Artistic

overLIB	is	a	large,	feature-filled	library	for	producing	ToolTips.	It
can	be	used	for	anything	from	standard	Tool	Tips	to	pop-up
message	boxes.	A	plug-in	API	is	provided,	and	plug-ins	are
available	for	tasks	such	as	moving	the	pop-up	message	box
while	scrolling	the	page	or	adding	drop	shadows	to	the	pop-up
message	box	itself.	overLIB	contains	a	huge	number	of
features,	making	it	suitable	for	many	tasks,	but	it	can	be
overkill	if	you	are	adding	just	a	few	ToolTips	to	a	site.

	

http://www.bosrup.com/web/overlib/

Sorttable

Web	site:	http://kryogenix.org/code/browser/sorttable/

License:	MIT

Sorttable	is	an	unobtrusive	JavaScript	library	that	makes	a
table's	columns	sortable	without	server	interaction.	Sorting	is
enabled	by	giving	the	table	a	class	of	sortable.	Sorting	is	allowed
on	one	column	per	table	and	works	in	ascending	or	descending
mode.

	

http://kryogenix.org/code/browser/sorttable/

Tooltip.js

Web	site:	http://tooltip.crtx.org/

License:	MIT-style

Tooltip.js	is	an	unobtrusive	behavior-style	library	built	on	top	of
scriptaculous	that	adds	simple	ToolTips	to	Web	sites.	ToolTips
can	be	added	by	using	specially	named	CSS	classes	or	by	using
a	simple	JavaScript	API.	Tooltip.js	has	fewer	features	than
overLiB,	but	is	much	smaller	if	you	are	already	using
scriptaculous.	However,	if	you're	pulling	in	scriptaculous	just	for
ToolTips,	then	it's	the	same	size.

	

http://tooltip.crtx.org/

WZ_jsgraphics

Web	site:	www.walterzorn.com/jsgraphics/jsgraphics_e.ht`m

License:	LGPL

WZ_jsgraphics	adds	a	vector-graphics	drawing	implementation
in	pure	JavaScript.	It	supports	multiple	browsers	and	allows	for
drawing	anywhere	on	the	Web	site's	content	area.	The	API
provides	for	basic	drawing,	including	lines,	boxes,	polygons,	and
ellipses.	Arbitrary	positioning	of	images	and	text	is	also
supported.	The	library	includes	a	mode	to	make	the	drawings
printable	and	works	by	building	the	lines	out	of	DIV	elements.
Thus,	it	will	have	some	performance	limitations,	but	it	works
fast	enough	for	many	tasks.

http://www.walterzorn.com/jsgraphics/jsgraphics_e.ht`m

WZ_dragdrop

Web	site:	www.walterzorn.com/dragdrop/dragdrop_e.htm

License:	LGPL

WZ_dragdrop	is	a	DHTML	drag-and-drop	library;	it	offers	highly
functional	drag-and-drop	support	and	an	additional	DHTML	API.
With	this	API,	you	can	make	elements	resizable,	clone	nodes,
and	perform	basic	animation.	The	only	missing	functionality	is
built-in	support	for	drop	targets,	which	is	useful	for	tasks	such
as	sorting	or	ordering

http://www.walterzorn.com/dragdrop/dragdrop_e.htm

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

abort()	method,	XMLHttpRequest	object
Accesskey	Underlining	Library	(AUL)
account-editing	component,	trouble-ticketing	systems,	creating
actions
					feedback,	providing	for
					undoing,	providing
ActiveX
addEventListener()	method,	XMLHttpRequest	object
AJAX	(Asynchronous	JavaScript	and	XML)
					communication	flow
					Flash,	combining
					Implementation,	goals
					Improvements,	measuring
					integration
									complexity	issues
									development	cycles
									Firefox	counters
									frameworks
									intranet	Web	sites
									Open	Source	libraries

					interactivity,	increasing
					mainstream	acceptance
					remote	scripting
					request	flow
					technologies
AJAX	requests,	making,	Sarissa
AJAX	Toolbox
AJAX	viewers,	building
Ajax.NET
AjaxAC
AjaxTags
Anthem.NET
API	documentationSarissa
Appear	(scriptacalous)
append	method	(HTML_AJAX)
applications
				AJAX	applications
									MVC	applications,	compared
									security	issues
					rich	applications,	creating
assign-tickets	component,	trouble-ticketing	systems,	creating
2nd
Asynchronous	JavaScript	and	XML	[See	AJAX
(Asynchronous	JavaScript	and	XML).]
asynchronous	requests,	sending,	XMLHttpRequest	object	2nd
Atlas
AUL	(Accesskey	Underlining	Library)
Autocompleter	(scriptaculous)
Autosave,	undo	operations,	preventing	with

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

back	ends,	trouble-ticketing	systems
					creating
					exporting
Bajax
bandwidth	uses,	reducing
Behavior	library
BlindUp	(scriptacalous)
blogs
					comments,	login	forms
				logins
									adding
									building
									XML	implementation
bookmarking,	breaking,	page	loads
breaking	bookmarking,	page	loads

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

C#/.NET
client-side	music	management	systems
code,	debugging
					communications	2nd
					Fiddler	HTTP	debugging	proxy
					Firebug
					JavaScript	dumping	variables
					JavaScript	exceptions
					JavaScript	tools
comments,	blogs
					login	forms
					logins
communication	layer
					cookies
					IFrames
					XMLHttpRequest	object
									abort()	method
									addEventListener()	method
									asynchronous	requests	2nd

									cross-browser	creation
									getAllRequestHeaders()	method
									getRequestHeader()	method
									open()	method
									overrideMimeType()	method
									properties
									readyState	variable
									removeEventListener()	method
									send()	method
									setRequestHeader()	method
communications,	AJAX
cookies
					requests,	sending	2nd
				sent	data
									document-centric	consumption
									remote	scripting
CPAINT
cross-broswer	creation,	XMLHttpRequest	object
cssQuery()	method
custom	XML	schemas,	RPC

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

data	displays,	speeding	up
					with	AJAX
Dean	Edwards	IE7	library
debugging
					communications
					Fiddler	HTTP	debugging	proxy
					Firebug
					JavaScript	dumping	variables
					JavaScript	exceptions
					JavaScript	tools
				loggers
									adding
									building
development
				AJAX
									complexity	issues
									Firefox	counters
									intranet	Web	sites
									library

									Open	Source	libraries
					HTML_AJAX
					Sarissa
					scriptaculous
development	cycles,	changes	to
development	languages,	JavaScript	as	primary	development
language
DHTML	(dynamic	HTML)	libraries	2nd
dialogs,	Script	Debugging	error	dialog
Direct	Web	Remoting	(DWR)
disappearing	messages,	creating
document-centric	data	consumption
					DOM
					XSLT
Dojo	Toolkit
DOM
					documents
					JavaScript	Behaviors
					XML	data	consumption
DOM-Drag
downloading
					Sarissa
					scriptaculous
drag-and-drop	operations,	scriptaculous
dumping	variables,	JavaScript
DWR	(Direct	Web	Remoting)
dynamic	HTML	(DHTML)	libraries	2nd

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

efficiency,	Web	sites
encloseInScript	utility	method	(PHP)
error	icon	(Firebug)
error	selector	(Firebug)
errors,	Web	sites
eval	statement	(JavaScript)
exceptions,	JavaScript
exportation,	trouble-ticketing	system	back	ends
Extensible	Application	Markup	Language	(XAML)
eXtensible	Stylesheet	Language	Transformations
[See	XSLT	(eXtensible	Stylesheet	Language
Transformations).]

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

feedback,	actions,	providing	for
feedback	messages,	Gmail
Fiddler	HTTP	debugging	proxy
					Headers	view
					main	interface
					session	inspector	interface
					TextView	view
Firebug
					error	icon
					error	selector
					JavaScript	commands,	running
Firebug	(status	icon)
Firefox	counters
Flash	2nd
form	POST,	mimicking,	RPC
form-loading	status,	providing
forms
					IFrames,	creating
					login	forms,	extending
formSubmit	method	(HTML_AJAX)
framework,	AJAX,	integration	into

functional	tests,	scriptaculous
functions
					positionOver	2nd
					scriptaculous,	documentation
					startLoad

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Garrett,	Jesse	James	2nd
General	Public	License	(GPL)	software
getAllRequestHeaders()	method,	XMLHttpRequest	object
getElementsByClassName	utility	method	(JavaScript)
getRequestHeader()	method,	XMLHttpRequest	object
ghosting	property	(scriptaculous)
Gmail	(Google)	2nd
					feedback	messages
					interface
					loading	indicator
goals,	AJAX	implementation
Google	Suggest	application
Google	Web	Toolkit
GPL	(General	Public	License)	software
grab	method	(HTML_AJAX)
graph.php,	Sun	Rise	and	Set	data	viewer
graphics,	SVG	(Scalable	Vector	Graphics)

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Headers	view	(Fiddler)
hidden	IFrames,	creating
hide/show	pairs,	scriptaculous
horizontal	mode	(scriptaculous	slider	control)
Hotmail
HTML	content,	pages,	adding	to
HTML_AJAX	2nd
					development
					HTML_AJAX_Action	code	2nd
					initMethod	functionality
					installing
					JavaScript	API
					JavaScript	Behaviors
					JavaScript	utility	methods
					mapped	PHP	classes'	API
					PHP	utility	methods
					remote	stub	AJAX
					serialization	classes
					wiki
HTML_AJAX_Action	code	2nd
HttpClient	XMLHttpRequest	wrapper	class	2nd

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

IFrames
					forms,	creating
					hidden	IFrames,	creating
					requests,	sending
				sent	data
									document-centric	consumption
									remote	scripting
implementation,	AJAX,	goals
improvements,	AJAX,	measuring
inline	editing
InPlaceEditor	(scriptaculous)
installation
					HTML_AJAX
					Sarissa
					scriptaculous
integration,	AJAX
					complexity	issues
					development	cycles
					Firefox	counters
					frameworks

					intranet	Web	sites
					Open	Source	libraries
interactivity,	increasing
intranet	Web	sites,	developing
ISO	(International	Organization	for	Standardization),	usability
definition
iTunes

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Java
JavaScript
					as	primary	development	language
					cookies	2nd
					debugging	tools
					dumping	variables
					eval	statement
					exceptions
					Firefox	Console
					IFrames
					JSON
				libraries
									AjaxTags
									DHTML	libraries
									DWR	(Direct	Web	Remoting)
									Google	Web	Toolkit
									ZK
					remote	scripting
					utility	methods

					XMLHttpRequest	object
									abort()	method
									addEventListener()	method
									asynchronous	requests	2nd
									cross-browser	creation
									getAllRequestHeaders()	method
									getRequestHeader()	method
									open()	method
									overrideMimeType()	method
									properties
									readyState	variable
									removeEventListener()	method
									send()	method
									setRequestHeader()	method
JavaScript	API,	HTML_AJAX
					append	method
					formSubmit	method
					grab	method
					properties
					replace	method
					stub	class
JavaScript	Behaviors
JavaScript	commands,	running,	Firebug
JavaScript	shell
JavaScript	trouble-ticketing	systems,	building
JPSpan	library
JSON
jsonEncode	utility	method	(PHP)

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

learnability,	Web	sites
LGPL	(Library	General	Public	License)
libraries
					advantages	of
					AJAX
					AJAX	Toolbox
					Ajax.NET
					AjaxAC
					AjaxTags
					Anthem.NET
					Atlas
					AUL	(Accesskey	Underlining	Library)
					Bajax
					Behavior
					building
					CPAINT
					cssQuery()	method
					Dean	Edwards	IE7
					Dojo	Toolkit

					DOM-Drag
					DWR	(Direct	Web	Remoting)
					Google	Web	Toolkit
					HTML_AJAX	2nd
									development
									HTML_AJAX_Action	code	2nd
									installing
									JavaScript	API
									JavaScript	Behaviors
									JavaScript	utility	methods
									mapped	PHP	classes'	API
									PHP	utility	methods
									remote	stub	AJAX	2nd
					JavaScript	shell
					JPSpan	library
					LGPL	(Library	General	Public	License)
					libXmlRequest
					Lightbox	JS
					MagicAJAX.NET
					Mochikit
					Moo.fx
					Nifty	Corners	Cube
					OO	(object-oriented)	design
					Open	Source	libraries
					overLIB
					PAJAJ
					Qooxdoo

					Rialto
					Rico
					SACK	(Simple	AJAX	Code-Kit)
					SAJAX
					Sarissa
									AJAX	requests
									API	documentation
									development
									DOM	documents
									downloading
									installing
									mixing
									sarissa_ieemu_xpath.js	file
									sarissa_ieemu_xslt.js	file
									test	cases
									XML	features
									XML	string-loading	capabilities
									XPath	2nd
									XSLT	2nd
					scriptaculous
									Autocompleter
									development
									downloading
									drag	and	drop	operations
									function	documentation
									functional	tests
									hide/show	pairs

									InPlaceEditor
									installing
									prepackaged	effects	and	components
									slider	control
									sortables
									visual	effects
					Sorttable
					ThyAPI
					TinyAjax
					Tooltip.js
					WZ_dragdrop
					WZ_jsgraphics
					Xajax
					XHConn
					XOAD
					Yahoo!	User	Interface	Library
					ZK
Library	General	Public	License	(LGPL)
libXmlRequest
licensing,	GPL-licensed	software
Lightbox	JS
loading	datasets,	speeding	up
					with	AJAX
loading	DOM	documents	from	a	string
loading	indicator	(Gmail)
loading	pages,	bookmarks,	breaking
loggers
					adding

					building
login	forms,	extending
logins
					trouble-ticketing	systems,	creating
				Web	logs
									adding	to
									XML	implementation

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

MagicAJAX.NET
manually	creating	DOM	documents
mapped	PHP	classes'	API,	HTML_AJAX
memorability,	Web	sites
messages,	disappearing	messages,	creating
methods
					abort()
					addEventListener()
					cssQuery()
					getAllRequestHeaders()
					getRequestHeader()
					HTML_AJAX
					JavaScript,	utility	methods
					open()
					overrideMimeType()
					PHP	utility	methods
					removeEventListener()
					send()
					setRequestHeader()
Mochikit

Moo.fx	library
Mozilla,	event	handlers,	resetting
Mozilla	Firefox,	Firebug
Mp3act
MVC	applications,	AJAX	applications,	compared
my-tickets	component,	trouble-ticketing	systems,	creating

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Nielson,	Jakob
Nifty	Corners	Cube
nodes,	finding,	XPath
non-AJAX	data	viewers
					building
					problems	with

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

object-oriented	(OO)	design,	libraries
onChange	property	(scriptaculous)
onerror	property	(XMLHttpRequest	object)
onload	property	(XMLHttpRequest	object)
onprogress	property	(XMLHttpRequest	object)
onreadystatechange	property	(XMLHttpRequest	object)
OO	(object-oriented)	design,	libraries
Open	Source	libraries
open()	method,	XMLHttpRequest	object
Outlook	Express,	Hotmail
overlap	property	(scriptaculous)
overLIB
overrideMimeType()	method,	XMLHttpRequest	object

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

pagers
pages,	new	HTML	content,	adding	2nd
PAJAJ
PEAR	(PHP	Extension	and	Application	Repository)
PHP
					libraries
					utility	methods
popup	user	searches,	removing
positionOver	function
primary	development	languages,	JavaScript
properties
					HTML_AJAX	2nd
					XMLHttpRequest	object

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Qooxdoo
quickPrint	utility	method	(JavaScript)

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

readyState	property	(XMLHttpRequest	object)
readyState	variable	(XMLHttpRequest	object)
Really	Simple	Syndication	(RSS)	feeds
reducing	bandwidth	use
registration	component,	trouble-ticketing	systems,	creating
Remote	Procedure	Call	[See	RPC	(Remote
Procedure	Call).]
remote	scripting	2nd
remote	stub	AJAX	2nd
removeEventListener()	method,	XMLHttpRequest	object
replace	method	(HTML_AJAX)
request	flow
					AJAX	applications
					Web	applications
requests
					asynchronous	requests,	sending	2nd
					cookies,	sending	2nd
					IFrames
									sending
					making,	Sarissa
					types,	choosing

					XMLHttpRequest	object,	sending	2nd
responseText	property	(XMLHttpRequest	object)
responseXML	property	(XMLHttpRequest	object)
reversing	strings,	RPC	(Remote	Procedure	Call)
Rialto
RIAs	(Rich	Internet	Applications)	2nd
rich	applications,	creating
Rico
RPC	(Remote	Procedure	Call)	2nd
					custom	XML	schemas
					form	POST,	mimicking
					JSON
					SOAP	(Simple	Object	Access	Protocol)
					strings,	reversing
					URL-encoded	AJAX
					XML	consumption
RSS	(Really	Simple	Syndication)	feeds

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

SACK	(Simple	AJAX	Code-Kit)
SAJAX
Sarissa
					AJAX	requests,	making
					API	documentation
					development
					DOM	documents,	working	with
					downloading
					installing
					mixing
					nodes,	finding
					sarissa_ieemu_xpath.js	file
					sarissa_ieemu_xslt.js	file
					test	cases,	running
				XML
									features
									string-loading	capabilities
									transforming	2nd
					XPath
sarissa_ieemu_xpath.js	file

sarissa_ieemu_xslt.js	file
Scalable	Vector	Graphics	(SVG)	2nd
Script	Debugger	error	dialog
scriptaculous
					development
					downloading
					drag-and-drop	operations
					functional	tests
					functions
					hide/show	pairs
					installing
					prepackaged	effects	and	components
					slider	control
					sortables
					visual	effects
scripting,	remote	scripting
security,	AJAX	applications
send()	method,	XMLHttpRequest	object
sending
					asynchronous	requests,	XMLHttpRequest	object	2nd
				requests
									cookies	2nd
									IFrames	2nd
									XMLHttpRequest	object	2nd
sent	data
					document-centric	consumption
									DOM
									XSLT

					remote	scripting
serialization	classes,	HTML_AJAX
server-side	music	management	systems,	Mp3act
servers
				communication	layer
									cookies
									IFrames
									XMLHttpRequest	object	2nd
					libraries
session	inspector	interface	(Fiddler)
setRequestHeader()	method,	XMLHttpRequest	object
Simple	AJAX	Code	Kit	(SACK)
Simple	Object	Access	Protocol	[See	SOAP	(Simple
Object	Access	Protocol).]
slider	control,	scriptaculous	2nd
SlideUp	(scriptaculous)
SOAP	(Simple	Object	Access	Protocol)
					XML-RPC	(Remote	Procedure	Call)
sortables,	scriptaculous
Sorttable	library
standard.php,	Sun	Rise	and	Set	data	viewer
startLoad	function
status	icon	(Firebug)
status	property	(XMLHttpRequest	object)
statusText	property	(XMLHttpRequest	object)
strings
					DOM	documents,	loading	from
					reversing,	RPC	(Remote	Procedure	Call)
Sun	Rise	and	Set	data	viewer
				non-AJAX	version

									building	2nd
									graph.php
									problems	with
									standard.php	2nd
									SunRiseSet	class	2nd
SVG	(Scalable	Vector	Graphics)	2nd

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

table	paging	widgets
technologies,	AJAX
test	cases,	Sarissa,	running
TextView	view	(Fiddler)
ThyAPI
ticket-creation	component,	trouble-ticketing	systems,	creating
ticket-editor	component,	trouble-ticketing	systems,	creating	2nd
tickets,	trouble-ticketing	systems
TinyAjax
Toolbox	(AJAX)
Tooltip.js
transforming	XML	with	XSLT
trouble-ticketing	systems
					account-editing	component,	creating
					assign-tickets	component,	creating
				back	end
									creating
									exporting
					building	2nd
					components
					JavaScript	application,	building

					login	component,	creating
					my-tickets	component,	creating
					tasks
					ticket-creation	component,	creating
					ticket-editor	component,	creating	2nd
					tickets
					user	tables
					user-registration	component,	creating

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

undo	operations,	preventing	with	autosave
undoing	actions,	providing
URL-encoded	AJAX,	RPC
usability,	Web	sites
					common	problems
					guidelines
user	searches,	popup	user	searches,	removing
user	tables,	trouble-ticketing	systems
user-registration	component,	trouble-ticketing	systems,	creating
users
					expectations,	accommodating
				focus
									maintaining
									validation	messages
					selecting	2nd
					Web	site	updates,	recognition
utility	methods
Uversa	Inc.

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

validation	messages,	stealing	focus	with
varDump	utility	method	(JavaScript)
variables,	dumping	variables,	JavaScript
vertical	mode	(scritaculous	slider	control)
viewers
					AJAX	viewers,	building
					Sun	Rise	and	Set	data	viewer
									non-AJAX	version
visual	effects,	scriptaculous

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Web	2.0
Web	applications
					request	flow
					usability
									common	problems
									guidelines
Web	logs
					comments,	login	forms	2nd
				logins
									adding
									building
									XML	implementation
Web	page	loads,	speeding	up
					with	AJAX
Web	sites
					intranet	Web	sites,	developing
					new	HTML	content,	adding	to	2nd
					updating,	user	recognition
					usability

									common	problems
									guidelines
Web-based	stores,	AJAX,	requiring
Web-based	trouble-ticket	systems
					account-editing	component,	creating
					assign-tickets	component,	creating
				back	end
									creating
									exporting
					building
					components
					JavaScript	application,	building
					login	component,	creating	2nd
					my-tickets	component,	creating
					tasks
					ticket-creation	component,	creating
					ticket-editor	component,	creating	2nd
					tickets
					user	tables
					user-registration	component,	creating
WHATWG	(Web	Hypertext	Application	Technology	Working
Group)
WZ_dragdrop
WZ_jsgraphics

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Xajax
XAML	(Extensible	Application	Markup	Language)
XHConn
XML
					custom	XML	schemas,	RPC
				document-centric	data	consumption
									DOM
									XSLT
					popularity	of
					remote	scripting
					Sarissa
XML	User	Interface	Language	(XUL)
XML-RPC,	SOAP
XMLHttpRequest
XMLHttpRequest	object	(JavaScript)
					abort()	method
					addEventListener()	method
					asynchronous	requests	2nd
					cross-browser	creation
					getAllRequestHeaders()	method

					getRequestHeader()	method
					open()	method
					overrideMimeType()	method
					properties
					readyState	variable
					removeEventListener()	method
					requests,	sending	2nd
					send()	method
				sent	data
									document-centric	consumption
									remote	scripting
					setRequestHeader()	method
XOAD
XPath,	Sarissa
					node	searches
XSLT	(eXtensible	Stylesheet	Language	Transformations)
					data	consumption	2nd
					transforming	2nd
XUL	(XML	User	Interface	Language)

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

Yahoo!	User	Interface	Library

Index

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[L]	[M]	[N]	[O]	[P]	[Q]
[R]	[S]	[T]	[U]	[V]	[W]	[X]	[Y]	[Z]	

ZK	library

	Understanding AJAX: Using JavaScript to Create Rich Internet Applications
	Table of Contents
	Copyright
	Prentice Hall Open Source Software Development Series
	Acknowledgments
	About the Author
	Preface

	Part I:
	Chapter 1. What Is AJAX?
	Section 1.1. Rich Internet Applications
	Section 1.2. AJAX Defined
	Section 1.3. Technologies of AJAX
	Section 1.4. Remote Scripting
	Section 1.5. Gmail Brings XMLHttpRequest into the Mainstream
	Section 1.6. New Name: AJAX
	Section 1.7. Summary

	Chapter 2. Getting Started
	Section 2.1. XMLHttpRequest Overview
	Section 2.2. Cross-Browser XMLHttpRequest
	Section 2.3. Sending Asynchronous Requests
	Section 2.4. AJAX Without XMLHttpRequest
	Section 2.5. Fallback Option 1: Sending a Request Using an IFrame
	Section 2.6. Fallback Option 2: Sending a Request Using a Cookie
	Section 2.7. Summary

	Chapter 3. Consuming the Sent Data
	Section 3.1. Document-Centric Approaches
	Section 3.2. Remote Scripting
	Section 3.3. How to Decide on a Request Type
	Section 3.4. Summary

	Chapter 4. Adding AJAX to Your Web Development Process
	Section 4.1. Changes to the Development Cycle
	Section 4.2. Integrating AJAX into a Framework
	Section 4.3. JavaScript as a Primary Development Language
	Section 4.4. Problems Created by the New Development Paradigm
	Section 4.5. Advantages to Using a Library
	Section 4.6. Reasons to Build Your Own Library
	Section 4.7. How Open Source Fits into the Mix
	Section 4.8. Use Case for Building: The Firefox Counter
	Section 4.9. Use Case for Downloading: An Intranet Web Site
	Section 4.10. Summary

	Chapter 5. Getting the Most from AJAX
	Section 5.1. Goals of AJAX
	Section 5.2. Measuring Improvements
	Section 5.3. Promises and Problems of Combining AJAX with Other New Technologies
	Section 5.4. Summary

	Chapter 6. Usability Guidelines
	Section 6.1. Defining Usability
	Section 6.2. Usability Guidelines
	Section 6.3. Common Usability Problems
	Section 6.4. Summary

	Chapter 7. AJAX Debugging Guide
	Section 7.1. Two Sides to Debugging
	Section 7.2. Looking at AJAX Communications
	Section 7.3. JavaScript Debugging Tools
	Section 7.4. JavaScript Exceptions
	Section 7.5. Dumping Variables
	Section 7.6. Summary

	Part II:
	Chapter 8. Libraries Used in Part II: Sarissa, Scriptaculous
	Section 8.1. Overview of the Use Cases
	Section 8.2. Libraries Used in Part II of This Book
	Section 8.3. Sarissa
	Section 8.4. Scriptaculous
	Section 8.5. Summary

	Chapter 9. Libraries Used in Part II: HTML_AJAX
	Section 9.1. HTML_AJAX
	Section 9.2. Summary

	Chapter 10. Speeding Up Data Display
	Section 10.1. Overview of the Sun Rise and Set Data Viewer
	Section 10.2. Building the Non-AJAX Version of the Sun Rise and Set Viewer
	Section 10.3. Problems with the Non-AJAX Viewer
	Section 10.4. Improving Viewing with AJAX
	Section 10.5. Summary

	Chapter 11. Adding an AJAX Login to a Blog
	Section 11.1. Why Logins Work Well with AJAX
	Section 11.2. Building an AJAX Login
	Section 11.3. Extending the Login Form
	Section 11.4. Implementing the AJAX Comment Login System Using XML
	Section 11.5. Summary

	Chapter 12. Building a Trouble-Ticket System
	Section 12.1. Trouble-Ticketing System
	Section 12.2. AJAX Reliance Scale
	Section 12.3. Creating the Back End
	Section 12.4. Exporting the Back End
	Section 12.5. Building the JavaScript Application
	Section 12.6. Login Component
	Section 12.7. User-Registration Component
	Section 12.8. Account-Editing Component
	Section 12.9. Ticket-Creation Component
	Section 12.10. Ticket-Editor Component
	Section 12.11. My-Tickets Component
	Section 12.12. Assign-Tickets Component
	Section 12.13. Security Considerations with AJAX Applications
	Section 12.14. Comparing Our AJAX-Driven Application against a Standard MVC Model
	Section 12.15. Summary

	Appendix A. JavaScript AJAX Libraries
	AJAX Toolbox
	Bajax
	Dojo Toolkit
	libXmlRequest
	MochiKit
	Rico
	Simple AJAX Code-Kit (SACK)
	ThyAPI
	Qooxdoo
	XHConn
	Yahoo! User Interface Library

	Appendix B. AJAX Libraries with Server Ties
	PHP
	Java
	C#/.NET
	Multiple Languages

	Appendix C. JavaScript DHTML Libraries
	Accesskey Underlining Library (AUL)
	Behaviour
	cssQuery()
	Dean Edwards IE7
	DOM-Drag
	JavaScript Shell
	Lightbox JS
	Moo.fx
	Nifty Corners Cube
	overLIB
	Sorttable
	Tooltip.js
	WZ_jsgraphics
	WZ_dragdrop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

