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Abstract

Spoken dialogue is often considered as one of the most natural means of interaction
between a human and a machine. It is, however, notoriously hard to process
automatically. As many corpus studies have shown, natural spoken dialogue is
replete with disfluent, partial, elided or ungrammatical utterances, all of which are
very hard to accommodate in a dialogue system. Furthermore, automatic speech
recognition is known to be a highly error-prone task, especially when dealing with
complex, open-ended discourse domains. The combination of these two problems
– ill-formed and/or misrecognised speech inputs – raises a major challenge to the
development of robust dialogue systems.

This thesis presents an integrated approach for addressing these issues in the
context of domain-specific dialogues for human-robot interaction. Several new
techniques and algorithms have been developed to this end. They can be divided
into two main lines of work.

The first line of work pertains to speech recognition. We describe a new model
for context-sensitive speech recognition specifically suited to our application do-
main. The underlying hypothesis is that, in situated human-robot interaction,
speech recognition performance can be significantly improved by exploiting con-
textual knowledge about the physical environment (objects perceived in the visual
scene) and the dialogue history (previously referred-to objects within the cur-
rent dialogue). The language model is dynamically updated as the environment
changes, and is used to establish expectations about uttered words which are most
likely to be heard given the context.

The second line of work deals with the robust parsing of spoken inputs. We
present a new approach for this task, based on an incremental parser for Combi-
natory Categorial Grammar [CCG]. The parser takes word lattices as input and is
able to handle ill-formed and misrecognised utterances by selectively relaxing and
extending its set of grammatical rules. This operation is done via the introduction
of non-standard CCG rules into the grammar. The choice of the most relevant
interpretation is then realised via a discriminative model augmented with contex-
tual information. The model includes a broad range of linguistic and contextual
features, and can be trained with a simple perceptron algorithm.

All the algorithms presented in this thesis are fully implemented, and inte-
grated as part of a distributed cognitive architecture for autonomous robots. We
performed an extensive evaluation of our approach using a set of Wizard of Oz
experiments. The obtained results demonstrate very significant improvements in
accuracy and robustness compared to the baseline.
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Zusammenfassung

Gesprochener Dialog wird oft als eines des natürlichsten Mittel der Interaktion
zwischen Mensch und Maschine gesehen. Dieser ist jedoch notorisch schwer mit
Sprachtechnologie zu verarbeiten. Wie viele Korpusstudien gezeigt haben, ist
natürlicher, gesprochener Dialog voll von Disfluenzen, bruchstückhaften und von
Auslassungen geprägten, sowie ungrammatischen Äußerungen, die alle schwer in
ein Dialogsystem zu integrieren sind. Automatische Spracherkennung ist außerdem
als fehlerträchtige Aufgabe bekannt, ganz besonders, wenn es um komplexe, of-
fene Domänen geht. Das Zusammentreffen dieser beiden Probleme - fehlgeformte,
und/oder falsch erkannte Spracheingaben - stellt eine große Herausforderung bei
der Entwicklung von robusten Dialogsystemen dar.

Diese Arbeit stellt einen integrierten Ansatz für den Umgang mit diesen Prob-
lemen im Kontext des domänenspezifischen Dialogs für die Mensch-Roboter In-
teraktion dar. Neue Techniken und Algorithmen wurden dafür entwickelt. Diese
können in zwei große Richtungen gegliedert werden.

Die erste Richtung betrifft die Spracherkennung. Wir beschreiben ein neues
Modell für kontextabhängige Spracherkennung, die besonders gut für unsere An-
wendungsdomäne geeignet ist. Die zu Grunde liegende Annahme ist dabei die, dass
in situationsgebundener Mensch-Roboter Interaktion die Spracherkennungsleis-
tung durch die Ausnutzung von kontextuellem Wissen über die physische Umge-
bung (Objekte in der visuellen Szene) und den Dialog-Verlauf signifikant verbessert
werden kann. Das Sprachmodell wird dynamisch aktualisiert, sobald sich die
Umgebung verändert, und wird benutzt, um Erwartungen zu formen, welche Wörter
im gegebenen Kontext am wahrscheinlichsten sind.

Die zweite große Richtung ist das robuste Parsen gesprochener Eingaben. Wir
stellen einen neuen Ansatz für dieses Problem vor, der auf einem inkrementellen
Parser für Combinatory Categorial Grammar [CCG] basiert. Der Parser nimmt
Wortverbände als Eingabe und ist in der Lage, mit fehlgeformten und falsch erkan-
nten Äußerungen umzugehen, und zwar durch das gezielte Relaxieren und Erweit-
ern seiner Regeln. Dieses wird durch die Einführung von nicht-standard CCG
Regeln in die Grammatik erreicht. Die Wahl der relevantesten Interpretation wird
dann durch ein diskriminatives Modell realisiert. Das Modell schließt ein weites
Spektrum von Kontext- und linguistischen Merkmalen ein und kann mit einem
simplen Perzeptron trainiert werden.

Alle in dieser Arbeit vorgestellten Algorithmen sind vollständig implementiert
und als Teil einer verteilten, integrierten Architektur für autonome Roboter im-
plementiert. Wir haben unseren Ansatzes mit einer Reihe von “Zauberer von
Oz”-Experimenten ausführlich evaluiert. Die erzielten Resultate zeigen gegenüber
der Baseline ausgesprochen signifikante Verbesserungen sowohl der Präzision, als
auch der Robustheit.
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Résumé

Le dialogue oral est souvent considéré comme un moyen d’interaction partic-
ulièrement naturel entre un homme et une machine. Son traitement automatique
est cependant notoirement difficile. Comme l’ont montré de nombreuses études de
corpus, le dialogue oral fourmille en effet de disfluences, d’expressions incomplètes,
élidées ou agrammaticales, autant de phénomènes linguistiques difficiles à intégrer
dans un système de dialogue. À cela viennent s’ajouter les problèmes de recon-
naissance vocale, une technologie générant un nombre important d’erreurs, parti-
culièrement dans le cas de domaines de discours ouverts et complexes. La combi-
naison de ces deux problèmes – données mal formées et/ou mal reconnues – pose
un défi majeur au développement de systèmes de dialogue robustes.

Ce mémoire présente une approche intégrée de ces questions dans le cadre
d’interactions hommes-robots centrées sur des domaines spécifiques. Plusieurs
techniques et algorithmes ont été développés à cet effet. Ils peuvent être répartis
en deux grandes sections.

La première section concerne la reconnaissance vocale. Nous décrivons un nou-
veau modèle de reconnaissance vocale sensible au contexte, spécifiquement adapté
aux interactions hommes-robots. L’hypothèse sous-jacente est que, dans le cadre
d’interactions situées, les performances du système de reconnaissance vocale peu-
vent être significativement améliorées par l’exploitation de données contextuelles
relatives à l’environnement physique (objets percus dans le champ visuel) et lin-
guistique (entités précédemment mentionnées au cours du dialogue). Le modèle de
langage est dynamiquement mis à jour au gré de l’évolution de l’environnement,
et est utilisé pour établir des prévisions quant aux mots les plus probables au vu
du contexte.

La deuxième section a trait à l’analyse syntaxique de données orales. Notre
approche est fondée sur un analyseur incrémental pour Grammaires Catégorielles
Combinatoires [CCG]. L’analyseur prend un treillis de mots en entrée et traite les
expressions mal formées ou mal reconnues via la relaxation et l’extension sélective
de son ensemble de règles grammaticales. Cette opération est réalisée grâce à
l’introduction d’un ensemble de nouvelles règles CCG non-standardes dans la
grammaire. Le choix de l’interprétation la plus appropriée est ensuite réalisé par
un modèle discriminatif. Le modèle inclut un large nombre de traits linguistiques
et contextuels, et peut être paramétré à l’aide d’un simple perceptron.

La totalité des algorithmes présentés dans ce mémoire est implémentée et
intégrée dans une architecture cognitive distribuée pour robots autonomes. Une
évaluation détaillée (de type “Magicien d’Oz”) de notre approche a été effectuée.
Les résultats obtenus montrent des améliorations significatives tant au niveau de
la précision que de la robustesse.

ix





Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
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“Geschrieben steht: “Im Anfang war das Wort!”
Hier stock’ ich schon! Wer hilft mir weiter fort?
Ich kann das Wort so hoch unmöglich schätzen,

Ich muss es anders übersetzen,
Wenn ich vom Geiste recht erleuchtet bin.

Geschrieben steht: Im Anfang war der Sinn.
Bedenke wohl die erste Zeile,

Dass deine Feder sich nicht übereile!
Ist es der Sinn, der alles wirkt und schafft?
Es sollte stehn: Im Anfang war die Kraft!

Doch, auch indem ich dieses niederschreibe,
Schon warnt mich was, dass ich dabei nicht bleibe.

Mir hilft der Geist! Auf einmal seh’ ich Rat
Und schreibe getrost: Im Anfang war die Tat! ”

Goethe, Faust, 1, 3.
(Anachronistic reflections on the pivotal role played by situated action in

language processing for human-robot interaction)
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1
Introduction

In this introductory chapter, we give an overall picture of the the-
sis. We start by providing a brief sketch of the main research ques-
tions pursued in this thesis. What are we trying to solve? What are
precisely the issues at stake? What is the general approach chosen
to address them? And how does it relate to the state of the art in
the field? We then proceed with a broad introduction to the field of
human-robot interaction, the application area in which our work has
been carried out. We describe the fundamental questions which are
studied in this research field, and their connection with other areas
such as robotics and cognitive science. We also present the practi-
cal scenarios we considered for our experiments. We finally close this
chapter with a general outlook on the structure of this thesis, and list
the contributions we have made.

Recent years have witnessed a surge of interest for service robots endowed
with communicative abilities. Such robots could take care of routine tasks,
in homes, offices, schools or hospitals, help disabled or mentally impaired
persons, serve as social companions for the elderly, or simply entertain us.
They would assist us in our daily life activities.

These robots are, by definition, meant to be deployed in social environ-
ments, and their capacity to interact with humans is thus a crucial factor.
A natural way to perform this interaction is through spoken dialogue. Un-
fortunately, the development of technical systems able to comprehend and
produce spoken dialogue is a notoriously challenging task.

This is due to several reasons. The first one resides in the difficulty
of accommodating spoken language phenomena such as disfluencies (pauses,
corrections, repetitions, etc.), elided or fragmentary utterances in a dialogue
system. A second, related issue is speech recognition, which is known to
be highly error-prone, especially when dealing with complex, open-ended
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discourse domains. Finally, the dialogue systems must also deal with the
inherent complexity, ambiguity, and heterogeneity which are characteristic of
unconstrained natural language.

This thesis presents an integrated approach for addressing these issues in
the context of domain-specific dialogues for human-robot interaction [HRI].
As we will explain in the next chapters, the underlying system is based
on a hybrid symbolic/statistical architecture, which combines fine-grained
linguistic resources with statistical knowledge to achieve both deep and robust
spoken dialogue comprehension.

Another key element of our approach is the central role played by con-
textual information in the interpretation process. Contextual knowledge is
here defined as including both the situated context (objects in the visual
scene, small- and large-scale qualitative spatial knowledge) and the dialogue
context (i.e. the history of the interaction).

The next section provides an introduction to the main research questions
pursued in the present thesis.

1.1 Processing spoken dialogue

We start by addressing the first important question: what are we trying
to solve? What are the most important issues at stake in spoken dialogue
processing?

1.1.1 The issues

The present thesis aims to address four central issues in spoken dialogue
processing: (1) ill-formed inputs, (2) speech recognition errors, (3) linguistic
ambiguities, and (4) extra-grammaticality.

1. Disfluencies and ill-formed inputs in spoken language

We know from everyday experience that spoken language behaves quite dif-
ferently from written language. We do not speak the way we write. The
difference of communicative medium plays a major role in this discrepancy.
A speech stream offers for instance no possibility for “backtracking” – once
something has been uttered, it cannot be erased anymore. And, contrary
to written language, the production of spoken language is strongly time-
pressured. The pauses which are made during the production of an utterance
do leave a trace in the speech stream. As a consequence, spoken dialogue is
replete with disfluencies such as filled pauses, speech repairs, corrections ordisfluencies
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repetitions [Shriberg, 1996].
A speech stream is also more difficult to segment and delimitate than a

written sentence with punctuation and clear empty spaces between words.
In fact, the very concepts of “words” and “sentences”, which are often taken
as core linguistic objects, are much more difficult to define with regard to
spoken language. When we analyse spoken language, we observe a continuous
speech stream, not a sequence of discrete objects. Hence the presence of
many discourse markers in spoken dialogue, which play an important role in discourse

markersdetermining discourse structure [Kawamori et al., 1996].
A final characteristic of spoken dialogue which is worth pointing out is

that few spoken utterances take the form of complete sentences. The most
prototypical example is the “short answer” in response to queries, but many
other types of fragments or non-sentential utterances can be found in real non-sentential

utterancesdialogues [Fernández and Ginzburg, 2002]. This is mainly due to the inter-
active nature of dialogue – dialogue participants heavily rely on what has
been said previously, and seek to avoid redundancies.

As a result of all these factors, spoken language contains much more
disfluent, partial, elided or ungrammatical utterances than written language.
The question of how to accommodate these types of ill-formed input is a
major challenge for spoken dialogue systems.

2. Less-than-perfect automatic speech recognition

A second, related problem is automatic speech recognition [ASR]. Speech automatic
speech

recognition
recognition is the first step in comprehending spoken dialogue, and a very
important one. For robots operating in real-world, noisy environments, and
dealing with utterances pertaining to complex, open-ended domains, this
step is also highly error-prone.

In spite of continuous technological advances, the performance of ASR
indeed remains for most tasks at least an order of magnitude worse than
that of human listeners [Moore, 2007]. And contrary to human performance,
ASR accuracy is usually unable to degrade gracefully when faced with new graceful

degradationconditions in the environment (ambient noise, bad microphone, non-native
or regional accent, variations in voice intensity, etc.) [Cole and Zue, 1997].

This less-than-perfect performance of ASR technology seriously hinders
the robustness of dialogue comprehension systems, and new techniques are
needed to alleviate this problem1.

1The speech recogniser included into our robotic platform – Nuance Recognizer v8.5
with statistical language models – yields for instance a word error rate [WER] of about
20 % when evaluated on real spoken utterances. In other words (no pun intended), more
than one word out of five in each utterance is actually misrecognised by the system. It is
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3. Lexical, syntactic and semantic ambiguities

Ambiguity is pervasive in natural language – at all processing levels. Theseambiguity

ambiguities may arise either from the lexicon, the syntax, the semantics or
even the pragmatics. Resolving them is a highly complex task, which, in
many cases, is difficult or even impossible to perform without the use of
extra-linguistic knowledge.

The ambiguity problem also arises in spoken dialogue, due e.g. to:

• lexical ambiguities : the word ‘right’ can be both a discourse marker, an
adjective expressing an attitude, or a direction;

• syntactic ambiguities, such the PP attachment ambiguity in (1.1), where
“to the left of the box” can be attached either to the verb (indicating
where the ball should be taken) or to the noun ‘ball’ (indicating the
position of the ball object).

“take the ball to the left of the box!”
�� ��1.1

• pragmatic ambiguities : the utterance in (1.2) could be both a question
or an indirect command:

“could you give me the ball?”
�� ��1.2

Our spoken dialogue comprehension system therefore needs to include a
component able to resolve such ambiguities with the help of linguistic and
contextual information.

4. Extra-grammaticality

Finally, the fourth problem we want to address is extra-grammaticality. Anextra-
grammaticality extra-grammatical utterance is an utterance which is seen as grammatically

correct (in regard to the internalized grammar of native speakers), but which
cannot be parsed with the grammar of the system. In other words, it contains
linguistic constructions which are not covered in the grammar.

Ideally, a dialogue comprehension system which encounters an extra-
grammatical utterance should be able to extract partial substructures in the
absence of a full parse for the utterance.
Consider for instance the problem of interpreting the utterance (1.3):

“robot I want you to take the red ball”
�� ��1.3

thus a very serious issue.
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when the grammar does not include the syntactic construction (1.4):

npsubj want nppat to (s\np)event
�� ��1.4

Even if it cannot get a full-scope parse for the utterance (1.3), the dialogue
comprehension system should nevertheless be (ideally) able to extract as
many substructures as possible, and assemble these into a common represen-
tation. In this case, it would mean recognizing “robot” as a discourse marker,
followed by the construction “I want you”, a preposition ‘to’, and finally the
imperative command “take the red ball”.

These substructures could then be used by the dialogue manager, either
to execute an action (if it has enough confidence in the computed interpre-
tation), or to trigger a clarification request. clarification

request

1.1.2 Key ideas of our approach

How do we go about solving these difficult issues? Here is a short summary
in three points of the approach we present in this thesis:

1 Use context to improve the performance of ASR. We developed a new context-
sensitive

speech
recognition

model for context-sensitive speech recognition, which relies on the situ-
ated and dialogue context to prime the recognition.

To this end, we first build a cross-modal salience model which incor- salience model

porates both visual salience (objects in the visual scene) and linguistic
salience (previously referred-to objects in the dialogue history).

The salience model is then used to modify, at runtime, the probabilities
of the statistical language model in the speech recogniser. This way,
we can dynamically adapt the language model to the environment.

Practically, this adaptation is done by increasing the probabilities of
the words which are likely to appear given the context.

2 Relax the grammatical constraints in order to account for spoken lan- grammar
relaxationguage phenomena. This is done by inserting a set of non-standard rules

to the CCG grammar.

We included new rules to handle disfluencies, missing words, slightly
non-grammatical constructions, utterances combining several indepen-
dent discourse units, and frequent speech recognition errors.

3 Apply a discriminative model on the resulting set of parses. The com- discriminative
model
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bined use of (1) multiple speech recognition hypotheses and (2) gram-
mar relaxation techniques, associated to (3) the natural ambiguity in-
herent to language, has for consequence a substantial increase in the
number of possible interpretations.

We therefore need a way to filter the set of interpretations/parses, based
on their likelihood. To this end, we use a discriminative model which
incorporates a large set of linguistic and contextual features, and yields
a score to each interpretation.

The interpretation with the highest score can then be selected and
transferred for further processing.

This approach has been fully implemented and integrated into a cog-
nitive architecture for HRI. It is able to address, at least partially, the four
issues we just mentioned regarding spoken dialogue: ill-formed inputs, speech
recognition errors, linguistic ambiguities, and extra-grammaticality. Experi-
mental results on a “Wizard of Oz” test suite demonstrate the effectiveness
of our approach, with very significant improvements both in accuracy and
robustness (55.6 % increase in the exact-match accuracy of the final chosen
interpretation over the baseline performance).

Figure 1.1: Processing workflow for robust spoken dialogue comprehension.

1.1.3 Discussion and relation to previous work

There are three defining characteristics of our approach we would like to
stress:

1. It is a hybrid symbolic/statistical approach to spoken dialogue pro-hybrid
approach
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cessing. The implemented mechanisms combine fine-grained linguis-
tic resources (the CCG lexicon) with statistical information (the ASR
language model and the discriminative model). The resulting system
therefore draws from the best of both worlds and is able to deliver both
deep and robust language processing.

2. It is also an integrated approach to spoken dialogue comprehension. integration

It goes all the way from the signal processing of the speech input up
to the logical forms and the pragmatic interpretation. The various
components involved in dialogue processing interact with each other in
complex ways to complement, coordinate and constrain their internal
representations.

3. And finally, it is also a context-sensitive approach. Contextual infor- context-
sensitivitymation is used at each processing step, either as an anticipatory mech-

anism (to guide expectations about what is likely to be uttered next),
or as a discriminative mechanism (to prune interpretations which are
contextually unlikely). These mechanisms are implemented by the dy-
namic adaptation of the ASR language model and the use of contextual
features in the discriminative model for robust parsing.

The question to address now is: how does our approach compare to the
state of the art in robust processing of spoken dialogue?

Commercial spoken dialogue systems traditionally rely on shallow parsing shallow
parsingtechniques such as “concept spotting”. In this approach, a small hand-crafted,

task-specific grammar is used to extract specific constituents, such as locative
phrases or temporal expressions, and turn these into basic semantic concepts
[Ward, 1989; Jackson et al., 1991; Aust et al., 1995; Dowding et al., 1994;
Allen et al., 1996]. These techniques are usually very efficient, but also
present several important shortcomings, as they are often highly domain-
specific, fragile, and require a lot of development and optimisation effort to
implement.

In more recent years, several new techniques emerged, mainly based on
statistical approaches. In the CHORUS system [Pieraccini et al., 1992], the
utterances are modeled as Hidden Markov Models [HMMs], in which hidden Hidden

Markov
Models

states correspond to semantic concepts and the state outputs correspond to
the individual words.

HMMs are a flat-concept model – the semantic representation is just a
linear sequence of concepts with no internal structure. To overcome this
problem, various stochastic parsing techniques have been proposed, based stochastic

parsingeither on Probabilistic Context Free Grammars [Miller et al., 1994; Fine,
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1998], lexicalised models [Collins, 1997; Charniak, 2001], data-oriented pars-
ing [Bod, 1999; Sima’an, 2004], or constrained hierarchical models [He and
Young, 2005]. A few recent systems, such as the SOUP parser, also at-
tempt to combine shallow parsing with statistical techniques, based on a
hand-crafted grammar associated with probabilistic weights [Gavaldà, 2004].

More rarely, we can also find in the literature some descriptions of spo-
ken dialogue systems performing a real grammatical analysis, usually alonggrammatical

analysis with a “robustness” mechanism to deal with speech recognition errors, extra-
grammaticality [van Noord et al., 1999; Chanod, 2000] or ill-formed inputs
[Zettlemoyer and Collins, 2007].

Compared to the state of the art, our approach is unique in the sense
that it is, to the best of our knowledge, the only one which attempts to
combine deep grammatical analysis together with statistical discriminative
models exploiting both linguistic and contextual information.

We believe that the strategy we propose in this thesis has decisive advan-
tages over purely shallow, statistical or symbolic methods:

• Using a deep processing approach, we are able to extract full, detailed
semantic representations, which can then be used to draw inferences
and perform sophisticated dialogue planning. This is not possible with
shallow or statistical methods.

• At the same time, due to the grammar relaxation mechanism and the
discriminative model, we do not suffer from the inherent fragility of
purely symbolic methods. Our parsing method is particularly robust,
both to speech recognition errors and to ill-formed utterances.

• Finally, contrary to “concept spotting” techniques, our approach is
much less domain-specific: the parser relies on a general-purpose lexi-
calised grammar which can be easily reused in other systems.

Our approach is also original in its tight integration of multiple knowledge
sources – and particularly contextual knowledge sources – all through the
utterance comprehension process. Many dialogue systems are designed in a
classical modular fashion, where the output of a component serves as direct
input for the next component, with few or no interactions other than this
pipelined exchange of data2. Our strategy, however, is to put the tight, multi-
level integration of linguistic and contextual information at the very center
of processing.

2Some interesting exceptions to this design include integrated approaches such as
[Moore et al., 1995; Gabsdil and Bos, 2003].
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As a final note, we would like to stress that our dialogue comprehension
system also departs from previous work in the way we define “context”.
Many recent techniques have been developed to take context into account in
language processing (see e.g. Gruenstein et al. [2005]). But the vast majority
of these approaches take a rather narrow view of context, usually restricting it
to the mere dialogue/discourse context. Our dialogue comprehension system
is one of the only ones (with the possible exceptions of Roy [2001]; Chai
and Qu [2005]; Gorniak and Roy [2007]) to define context in a multimodal
fashion, with a special focus on situated context.

In the next section, we describe the field of Human-Robot Interaction,
the application area in which our work has been implemented and evaluated.

1.2 Human-robot interaction

How can we make talking robots? That is, how can we develop robots capable
of interacting with humans using natural languages like English or German?
How can we make them understand dialogue – more specifically, how can we
make them understand situated, spoken dialogue? And what’s more, how do situated

spoken
dialogue

we enable them to go beyond mere “understanding” and be able to actively
participate in a dialogue, by contributing to the interaction in a meaningful
and contextually relevant way?

These questions are at the core of an emerging research field called human-
robot interaction, or HRI. Human-robot interaction is the field of study human-robot

interactiondedicated to understanding, designing, and evaluating robotic systems for use
by or with humans [Goodrich and Schultz, 2007]. Interaction, by definition,
requires communication between robots and humans. The basic goal of HRI
is to develop principles, techniques and algorithms to allow for natural and
effective communication between humans and robots. As one might expect,
HRI is a highly multidisciplinary research area, drawing from a wide range
of fields such as artificial intelligence, engineering, robotics, (computational)
linguistics, cognitive science, social psychology, human factors engineering
and design, and anthropology.

1.2.1 A short historical background

The concept of “robot” as a mechanical creature working for (and sometimes
against) humans has been around for centuries in religion, mythology, philos-
ophy, and fiction3. The word “robot” itself originates from the Czech word

3In the Iliad, written around 800 BC, Homer describes some of the creatures crafted by
Hephaistos (the god of forge and fire) as “golden handmaids” looking like real persons, with
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robota, which means drudgery or servitude. It appears to have first been
used in Karel Chapek’s 1920’s play Rossum’s Universal Robots.

The development of modern-day robotics went hand in hand with the
emergence of electronics, and the first real implementations can be traced
back to the early 70s. One of the most famous engineering example of this
period is the autonomous “Shakey” robot, which could navigate in a small
block world. and move different kinds of objects [Nilsson, 1984].

Figure 1.2: Shakey the robot

Robots such as Shakey are based on a centralised architecture operating
under a monolithic sense-plan-act loop. This kind of architecture suffers fromsense-plan-act

a number of key problems in terms of robustness and adaptation [Brooks,
1986], and in the mid-eighties, a new alternative paradigm started to emerge,
called behaviour-based robotics.behaviour-

based
robotics

In this paradigm, behaviour is designed from the “bottom-up“, based on
a set of autonomy modules mapping sensors directly to actions, with few or
no internal representation. These modules are then integrated to create an
emergent system [Arkin, 1998; Brooks, 1986, 1999].

sense, reason, voice and strength (Book XVIII, verse 415). In other words, Hephaistos’
“handmaids” are artificial systems designed to accomplish specific tasks, and endowed with
capacities for perception, reasoning, interaction and physical action – the exact definition
of modern “talking robots”.
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Today, many robotic architectures are based on a hybrid combination
of both approaches. These systems rely on sense-think-act models on top
of a behaviour-based substrate [Murphy, 2000]. The low-level reactivity is
therefore separated from higher level reasoning such as planning, reasoning,
and learning [Bonasso et al., 1995].

What about human-robot interaction? For a long time, the development
of HRI has been slowed down by technological constraints. The earliest types
of interaction were mainly teleoperation and supervisory control [Sheridan,
1992]. In the 80s, human-robot interaction based on spoken dialogue began
to emerge, usually relying on some SHRDLU-like dialogue processing scheme
[Winograd, 1976]. These interactions were usually very rigid and made little
use of the situated context, let alone dynamically react to it.

Progressively, the field moved towards more flexible and context-sensitive
types of interaction, where the dialogue system is directly grounded in action grounding

and perception [Hsiao and Mavridis, 2003; Roy, 2005]. Human-robot inter-
action also benefited a lot from the recent technological advances in speech
recognition [Gruenstein et al., 2005; Moore, 2007] and in robust natural lan-
guage processing [Allen et al., 1996; Pineau et al., 2003].

1.2.2 Scientific relevance of HRI

Why is human-robot interaction an interesting and relevant topic of research?
What can we exactly learn from it? Our view is that the scientific study of
the inner mechanisms of human-robot interaction is important from both a
theoretical and practical perspective:

Theoretical interest

The theoretical interest of HRI lies in the insights that this research area can
provide about the nature of human cognition, and more specifically about
the nature of human language comprehension and production. human

language
processing

As human beings, we learned from a very early age how to interact socially
with others. And we all know that conducting a natural dialogue in a real
setting requires much more than just being able to manipulate linguistic
forms – may it be speech signals, words, utterances, or discourse segments.
Crucially, we also need to figure out how the dialogue relates to the world we
live in, and how it can be used as a medium for action and inter-action to
help us achieve particular goals in our environment.

That is where the study of human-robot interaction has an explanatory
power which is lacking in other types of interaction. Human-robot interac-
tion is by definition always situated in physical environments, and instanti- situated

context
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ated (“embodied”) in robotic platforms. From the perspective of Artificial
Intelligence as an “experimental model” for human cognition4, human-robot
interaction can help us investigate issues concerning the cognitive plausibil-
ity of various theories in human language processing5. (It should however be
added that a large part of the research done in HRI is application-oriented
and not really directly concerned by issues of cognitive modeling).

Practical interest

HRI is also a topic of critical technological importance. The development of
service robots endowed with communicative capabilities is a major area ofservice robots

R&D funding in the technological industry. And there is a rapidly growing
body of academic research devoted to this topic as well.

This is not surprising – potential applications of such technology abound
and may have a large impact in our lives. In the future, service robots
could be used in domains such as domestic or hospital care, entertainment,
educational or therapeutic toys, military defense, autonomous exploration,
search-and-rescue operations, and space robotics – to cite just a few.

1.2.3 Dimensions of HRI

Depending on the nature of the interaction and of its participants, human-
robot interactions can take very different forms. The following dimensions
can be used for analysing particular instances of HRI:

1. Remote vs. situated character of the interaction;

2. Level of autonomy (tele-operated vs. fully autonomous systems, with
mixed-initiative interactions);

3. Communication medium (touchscreen, keyboard terminal, speech);

4. Unimodal vs. multimodal character of the interaction;

5. Format of the communication (scripted language vs. free dialogue);

4Note that this doesn’t mean that robots must incorporate the same “wetware” (i.e.
the same brain circuitry and neuronal connections) as human beings. What is important
here is to include the same cognitive functions as humans. The robot must be capable
of “mimicking” at the functional level certain aspects of human social behaviour in order
for a human to recognise it as a goal-directed, intentional agent. Its cognitive architecture
should therefore reflect some level of “functional biomimetism”.

5see e.g. [Staudte and Crocker, 2008] concerning eye gaze.
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6. Duration and complexity of the interaction (short-lived or covering a
large number of turns);

7. Type of task that must be accomplished by the robot;

8. Goal of the interaction (i.e. information gathering, entertainment,
mentoring, or collaboration to achieve a specific task).

9. Possibilities for learning and adaptation;

For the purpose of this thesis, we’ll focus on the particular subset of
interactions which are (1) situated, (2) mixed-initiative, and (3) based on
natural spoken dialogue.

Figure 1.3: Example of multimodal social interaction including voice, gesture
and eye gaze: the Leonardo robot from MIT [Thomaz, 2006].

Many other types of interactions exist. In industrial and commercial set-
tings, the dominant communication media remain touchscreens, tele-operating
devices and keyboard terminals. These types of interface are nevertheless far
less interesting from the perspective of computational linguistics. As a conse-
quence, we will not treat them directly in this thesis, in order to concentrate
on situated spoken dialogue.

1.2.4 Cognitive systems for HRI

Robots used in HRI must generally operate in open-ended environments and
interact with humans using natural language to perform a variety of service-
oriented tasks.

Developing cognitive systems for such robots remains a formidable chal- cognitive
systemslenge. Software architectures for cognitive robots are typically composed of a

large number of cooperating subsystems, such as communication, computer
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vision, navigation and manipulation skills, and various deliberative processes
such as symbolic planners [Langley et al., 2005].

The interactions between the various components of these architectures
are often highly complex. Equipping the robot with basic functionalities for
dialogue comprehension and production is not enough to make it interact
naturally in situated dialogues. For a robot to be able to interact with a
human, it must also build and maintain an awareness of it immediate physical
environment, as well as of the communicative goals and intentions of its
interlocutor, and the “possibilities for action” provided by the environment
– that is, the existing affordances.affordances

Cognitive systems for HRI need to find
meaningful ways to relate language, action
and situated reality, and enable the robot to
use its rich perceptual experience to contin-
uously learn and adapt itself to its environ-
ment, and more generally to the context sur-
rounding him.

This is no trivial or secondary task. In fact, one of the central claims of
this thesis is that the connection between language and situated context, farsituated

context from being a minor post-processing step, is absolutely essential and pivotal to
both dialogue comprehension and production. This has been known for quite
some time in the psycholinguistic community (see for instance [Knoeferle and
Crocker, 2006]), but has been to our knowledge scarcely applied in practical
NLP systems, with a few notable exceptions that we shall discuss later.

The key insight of our approach is therefore to put context first, at the
centre of processing, not the periphery. Context should be the very ground
on which we build and maintain linguistic interpretations. We will detail in
the next chapters how this insight can be exploited and put into practice for
the development of a robust spoken dialogue comprehension system.

1.3 Considered scenarios

The work done in this thesis has been conducted within practical “scenarios”scenarios

of human-robot interaction. These scenarios were part of the research effort
pursued during the “CoSy” project, an EU-funded Integrated Project which
ran from 2004 to 2008, and carried out by a consortium of seven universities6.
We briefly present below the two scenarios we considered in our experiments.

6see the project website for more information: http://www.cognitivesystems.org

14



1.3.1 Playmate scenario

The “Playmate” scenario, illustrated in Figure 1.4, is an object manipulation object
manipulationscenario. The experiments are carried out with a robotic arm combined with

various cameras. The robot is able to manipulate objects, learn about their
properties, and do so in conjunction with humans.

Research topics within this scenario include object categorization, spa-
tial reference resolution, planning of high and low level actions, cross-modal
learning of visual qualities, and recognition of intentional human actions7

[Hawes et al., 2009b; Brenner et al., 2007; Skočaj et al., 2007].

Figure 1.4: The Playmate scenario: object manipulation and visual learning.

1.3.2 Explorer scenario

The “Explorer” scenario, illustrated in Figure 1.5, involves a mobile robot
equipped with a laser scanner and various cameras. This autonomous robot
can acquire a spatial understanding of its environment, interact with humans spatial

understandingusing spoken dialogue, and search for objects in indoor environments.
Research topics within this scenario include SLAM (Simultaneous Local-

ization and Mapping), multi-level conceptual spatial representations, human
augmented mapping (ie. the acquisition of qualitative spatial knowledge
with the help of a human), visual place recognition, and object search &
localisation8 [Zender et al., 2008; Sjö et al., 2008].

7cf. http://www.cognitivesystems.org/playmate.asp for details.
8cf. http://www.cognitivesystems.org/explorer.asp for details.
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Figure 1.5: The Explorer scenario: an indoor mobile robot.

1.4 Outline

To conclude this introductory chapter, we provide a general outlook on the
remaining chapters. The thesis is divided in three main parts: Background,
Approach, and Evaluation & Conclusion.

• The Background part contains three chapters. The first chapter pro-
vides an analysis of spoken dialogue phenomena, based on corpus stud-
ies, insights from theories of natural language syntax, and experimen-
tal findings in psycholinguistics and cognitive neuroscience. The sec-
ond chapter is devoted to the theoretical foundations of our work: we
present the various formalisms used to represent information at the
syntactic, semantic and pragmatic levels. Finally, the third chapter de-
tails the software architecture in which our system has been developed.
We describe the various components and their interaction.

• In the Approach part, we dive into the details of our approach. The
first chapter describes the model for context-sensitive speech recogni-
tion that we developed. The second chapter details the strategy we
devised to handle robust parsing – that is, the grammar relaxation
mechanism associated to a discriminative model.

• The Evaluation & Conclusion is the last part of the thesis, where
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we present our results. We first explain the experimental setup, then
present the quantitative results, and analyse them in detail. And fi-
nally, we conclude this thesis by recapitulating what has been achieved,
and what still lies ahead.

In the appendices, you will find the detailed specification of the “packing
algorithm”, the detailed figures and graphs for the experiments, the spec-
ifications of the domain-specific grammar used for generating the training
examples, and of course the bibliography and the index.

1.5 Contributions

The thesis makes the following contributions:

1. A new model for context-sensitive speech recognition, which relies on
the situated and dialogue context to dynamically adapt the language
model of the speech recogniser to the environment;

2. A new model for robust parsing of spoken inputs, based on a relaxed
CCG grammar combined with a discriminative model exploring a wide
range of linguistic and contextual features.

3. A fully working implementation for these two models, integrated into
a cognitive architecture for autonomous robots. The implementation
comes along with a complete set of training and testing data.

The work performed for this thesis has given rise to a number of peer-
reviewed publications and research talks at international conferences, which
are listed on the author’s website: http://www.dfki.de/∼ plison

The source code for the implementation is released under a GPL open-
source license, along with the accompanying documentation.
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Background
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2
Situated spoken dialogue

This chapter is devoted to the empirical analysis of situated spoken
dialogue. It is divided into two parts: the first part is a linguistic
analysis of spoken interactions. As a motivating example, we present
a dialogue transcript extracted from a corpus of spoken dialogue in-
teractions, and analyse it in detail. We then give a more theoretical
account of spoken dialogue phenomena, informed by linguistic theo-
ries of spoken language. The second part is devoted to the cognitive
grounding of spoken situated dialogue. Based on experimental studies
in psycholinguistics and cognitive neuroscience, we highlight some im-
portant findings regarding human language processing and its relation
to situated awareness and possibilities for embodied action.

2.1 Linguistic analysis of spoken dialogue

In the introductory chapter, we claimed that spoken language differs funda-
mentally from written language along several dimensions. What are exactly
these differences, and what makes them difficult to process using standard
NLP tools? The next pages are devoted to answering these questions. And
to make our discussion more concrete, we start with a motivating example,
which will help us introduce a few important ideas.

2.1.1 Example from the Apollo corpus

The dialogue transcript shown on Table 2.1 is an excerpt from a real-life
interaction between three astronauts during the Apollo 17 space mission
(the last manned moon landing to date, launched on December 7, 1972).
The interaction takes place at Geology Station 3, Ballet Crater.
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The full transcript along with the audio file (in MP3 format) is available
online1. The reader is invited to listen to the audio file in parallel to reading
the dialogue transcript, as it will provide a clearer understanding of the
various linguistic phenomena we are dealing with in this chapter.

Dialogue annotation

Here are the conventions we followed to transcribe and annotate the dialogue
(based on Bachy et al. [2004]):

• Short silent pauses are indicated by one slash /, and longer pauses
(lasting more than one second) by two slashes //;

• Speech errors, usually followed by their corresponding speech repairs,
are indicated by a slash where the error is made, such as in 6 : “abo/

about one left bob”;

• Filled pauses are expressed by their usual transcriptions in English:
‘uh’, ‘er’, ‘um’, etc.

• Speech overlaps (i.e. when two or more speakers are speaking at the
same time) are bracketed by ` and a.

• Finally, no punctuation is added to the transcript. Such punctuation
would be necessarily artificial since we are dealing with spoken dialogue,
where punctuation is – by definition – nonexistent.

Analysis

The transcript in Table 2.1 illustrates several important spoken dialogue
phenomena, which are worth reviewing in some detail.

1. The first phenomenon we can observe is the omnipresence of filled andpauses

unfilled pauses. This is partly due to the nature of the communication
medium itself – contrary to written language, speech is strongly time-
pressured, and the hesitations made during utterance production leave
a trace in the speech stream.

But there’s more. In turn-taking conversations, these disfluencies have
a broad range of linguistic functions of their own. They can be used to
implicate that the speaker is searching for a word, deciding what to say
next, wants to keep the floor, or cede it [Clark and Fox, 2002]. They

1At the following URL: http://history.nasa.gov/alsj/a17/a17.trvsta4.html.
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Schmitt : i got your gnomon 1

Cernan : sun shadow is zero 2

pitch / if i can get it over to read it 3

pitch is uh // pitch is zero // 4

roll is zero 5

abo/ about one left bob 6

Parker : okay copy 7

and ` how about 8

Cernan : about one a left 9

Parker : and how about heading 10

Cernan : he/ / heading is two eight two 11

Parker : okay go ahead and park 12

we’ll give you an update when you get done // 13

Cernan : what else do you need 14

Parker : that’s all we need 15

go ahead and park ` on your 〈Schmitt〉 okay a zero four five 16

we’ll give you an update when you’re done 17

Cernan : Jack is worth coming right there 18

Schmitt : err looks like a pretty go/ good location 19

Cernan : okay 20

Schmitt : we can sample the rim materials of this crater // 21

Bob i’m at the uh / south uh 22

let’s say east-southeast rim / of a uh // 23

oh / thirty meter crater // err 24

in the light mantle of course / 25

up on the uh / Scarp and maybe // three hundred 26

err two hundred meters from the uh rim of Lara 27

in (inaudible) 28

northeast direction 29

Parker : okay i copy ` that 30

Schmitt : it a it probably shows up as a 31

bright ` crater 〈Parker〉 (inaudible) that a 32

a bright crater on your map 33

there’s only about a half a centimeter of gray cover / 34

over very white material // 35

uh that forms the rim 36

Table 2.1: Transcript excerpt from a spoken dialogue interaction between
three astronauts in the Apollo 17 space mission. The full transcript (along
with the audio file and additional comments) is available at this address: [
http://history.nasa.gov/alsj/a17/a17.trvsta4.html ]. The transcript
annotation is ours.
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also have a role in information structure [Arnold et al., 2003] and can
serve as markers for discourse structure [Swerts et al., 1996].

2. Some words are repeated several times. These repetitions can occurrepetitions

for various reasons. In 3 - 4 the word ‘pitch’ is repeated because of the
introduction of a new discourse unit breaking the initial utterance,
which has therefore to be started anew. In 31 , the pronoun ‘it’ is
repeated because of a speech overlap with another speaker.

3. Several corrections occur in the dialogue. These corrections are some-corrections

times due to factual errors which need to be corrected, as in 26 - 27 . At
other places, the correction is used to clarify or make precise what has
just been said, such as in 32 - 33 .

4. Speech overlaps are far from uncommon. They are usually quite short,speech
overlaps generally a few hundreds milliseconds of overlap between two turns (like

in 30 - 31 ), and often due to back-channels (cf. 16 ). But longer overlaps
are also possible, such as in 32 , where a rather long overlap causes the
first speaker to start his whole phrase anew.

5. The transcribed dialogue presents many instances of acknowledgements,
back-channels and clarifications. (see for instance 1 , 7 , 16 , 32 ). Theseback-channels

dialog acts are known to be crucial for social interactions [Jurafsky
et al., 1998].

6. The dialogue also illustrates at several places (for instance in 6 and 11 )
the presence of speech errors, directly followed by their corresponding
speech repairs.speech repairs

7. Many utterances found in the transcribed dialogue are non-sentential.non-sentential
utterances They can take the form of short answers or acknowledgements ( 7 , 20 ),

utterance fragments (as in 9 ), or elided utterances ( 10 ).

8. Several discourse units are interrupted by the introduction of a new
discourse unit. See for instance 3 , where the speaker interrupts his
initial utterance for an aside comment.

9. As in all spoken dialogues, some speech segments can be acoustically
difficult to recognise (see 28 and 32 ), either because of technical prob-
lems in the communication medium, or due to other problems such as
speech overlaps, pronunciation errors, low voice intensity, etc.

10. Finally, several utterances in the dialogue are agrammatical, at least
from a normative point of view. This is often due to a missing word.
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In 6 , what the speaker actually means is: “about one [degree] left, Bob”.
In 18 , the pronoun is missing: “Jack is [it] worth coming right there”.

2.1.2 Theoretical analysis

In section 1.1, we explained that one of the most important issues in spoken
dialogue processing is the difficulty of accommodating in a dialogue system
spoken language phenomena such as disfluencies, utterance fragments, or
slightly agrammatical expressions.

The first step in tackling these problems is to elaborate a linguistic analy-
sis of these phenomena. Once the analysis is made, it can then be formalised
in a computational model, and ultimately serve as the basis for a practical
mechanism implemented in the dialogue comprehension system to handle
these phenomena (which is the topic of section 6.1).

So the first question we need to answer is the following: is it possible to
provide a linguistic account for these spoken dialogue phenomena, possibly
in a unified framework?

There is a considerable body of work devoted to this topic, which spans
several decades of research in theoretical linguistics, more specifically in con-
versation analysis, theories of spoken language syntax and semantics, and in
dialogue modeling2.

In this section, we describe one possible analysis of spoken language,
concentrating on the syntactic treatment of disfluencies. We leave out other
interesting aspects of spoken dialogue such as the semantics and pragmatics
of conversation, which are extensively discussed in the literature.

Blanche-Benveniste et al. [1990] offer an interesting perspective on the
linguistic analysis of spoken language, based on an extensive corpus study
of spoken French transcripts. Their analysis has been recently extended and
formalised in works such as [Guénot, 2006], which distinguishes two types of
syntactic relations: syntagmatic relations and paradigmatic3 relations.

2Seminal papers on this topic include (with no claim to exhaustivity): [Sacks et al.,
1974; Grice, 1975; Searle, 1975; Power, 1979; Allen and Perrault, 1980; Grosz and Sidner,
1980; Clark and Schaefer, 1989; Goodwin, 1996; Purver et al., 2001; Ginzburg, 2009].

3Although it is used here in a somewhat different way, the adjective “paradigmatic” is
a reference to the “paradigmatic axis” of de Saussure [1949] – a concept also used later
by Hjelmslev [1974] and Jakobson [1976]. In his famous course, de Saussure distinguishes
two possible types of relations between signs: syntagmatic relations (connections between
elements of the speech chain) and paradigmatic relations (class of linguistic elements with
similarities). In the structuralist perspective of de Saussure, each language is a complex
system based on relations of difference which place signs in opposition to one another.
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Paradigmatic heaps

Syntagmatic constructions are primarily characterized by hypotactic (i.e.
head-dependent) relations between their constituents, whereas paradigmatic
ones do not have such head-dependent asymmetry. Two important families of
linguistic phenomena which are generally troublesome for syntacticians can
be conveniently analysed as instances of paradigmatic relations: disfluencies
and coordinations.

Together, constituents connected by such paradigmatic relations form
what Blanche-Benveniste et al. [1990] call a “paradigmatic heap”. A paradig-paradigmatic

heap matic heap is defined as the position in a utterance where the “syntagmatic
unfolding is interrupted”, and the same syntactic position hence occupied by
several linguistic objects.

A few examples

To make this more concrete, consider the ex-
ample given in (2.1)4. This utterance contains
several hard-to-process disfluencies. The lin-
guistic analysis of this example is illustrated
in (2.2) on two dimensions, the horizontal di-
mension being associated to the syntagmatic
axis, and the vertical dimension to the paradig-
matic axis. The disfluencies are indicated in
bold characters.

(2.1) “il il a quand même un une fibre pédagogique assez assez euh enfin réelle quoi”
“he does have a real pedagogical streak, you know”

(2.2)

il
il a quand même un

une fibre pédagogique assez
assez euh enfin réelle quoi

As we observe in (2.2), the disfluencies are grouped in paradigmatic heaps,
represented in vertical columns. The disfluencies are “stalled” on the same
syntactic position.

The utterance presented in (2.3) is another example, containing a speech
repair. The associated analysis is given in (2.4).

4The examples are drawn from the Corpus d’Interactions Dilogiques [Bertrand and
Priego-Valverde, 2005]
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(2.3) “s’il n’y a pas d’éléments à mon avis euh il il tombe dans la paran/ dans la
parano quoi”
“if there are no facts [backing him], I think he’s falling into paranoia”

(2.4)
s’il n’y a pas d’éléments à mon avis euh il

il tombe dans la paran/
dans la parano quoi

An interesting advantage of this descriptive approach is that the same
conceptual toolbox can be applied to analyse coordination phenomena, such
as in (2.5). The corresponding analysis is given in (2.6).

(2.5) “il y a des conflits soit des conflits d’intérêts soit des gens qui savent pas que
tu es là”
“there are conflicts, either conflicts of interests, or people who don’t know
you’re there”

(2.6)
il y a des conflits

soit des conflits d’intérêts
soit des gens qui savent pas que tu es là

Application to the Apollo transcript

The analysis we just described can be conveniently applied to the problematic
utterances in our Apollo transcript. We provide below analyses for three
excerpts containing difficult, hard-to-process disfluencies.

(2.7)
Bob i’m at the uh

south uh
let’s say east-southeast rim of a uh oh

thirty-meter crater

(2.8)
up on the uh

Scarp and maybe three hundred
err two hundred meters

(2.9)
it
it probably shows up as a bright crater

a bright crater on your map
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Practical implementation

The concept of “paradigmatic heap” we just described is implemented in
our approach (although in a rather limited and obviously perfectible way)
via the introduction of new combinatory rules which allow constituents of
the same syntactic category to be combined in order to form a “heap” (cf.
section 6.1.1). The generalisation of such technique to handle the full range
of paradigmatic relations is left open to future research.

2.2 Language, context and human cognition

As we said in the introductory chapter, one of the central claims of this thesis
is that the connection between language and situation awareness is absolutely
crucial for dialogue comprehension and production. In this section, we ex-
amine why it is so, and what lessons we can learn from these observations
regarding the development of our dialogue system.

So why is situated context so important? Cognitive science offers an in-
teresting perspective on this question, which can help shed some light into
the nature of language itself. Language is indeed a cultural product deeply
rooted in the specifics of human cognition. And as many cognitive scientistshuman

cognition and philosophers have argued, human cognition must be primarily under-
stood as an embodied and situated activity5 (emphasis should be put on all
three) rather than a formal system operating on abstract symbols. Human
language processing is in this respect no different than other cognitive activ-
ities such as visuospatial attention, perception or motor control.

2.2.1 Phylogenetic and ontogenetic origins

This should not come as a surprise from an evolutionary point of view. The
biological and (most importantly) cultural capacities of modern human com-
munication didn’t emerge “out of the blue”, as an isolated system. It grew
out of animal capacities because they proved to be instrumental in the species

5See [Anderson, 2003] for a comprehensive guide to the field of embodied and situated
cognition. Foundational works in this area, ranging from many different fields (cognitive
psychology, linguistics, artificial intelligence and robotics, social sciences, neurosciences),
include [Lakoff and Johnson, 1980; Steels, 1994; Berthoz, 1997; Lakoff and Johnson, 1999;
Brooks, 1999; Clark, 1999; Barsalou, 1999; Dourish, 2001; Wilson, 2002; Fauconnier and
Turner, 2003; Roy and Reiter, 2005]. More philosophical considerations on the “embodied
mind” and its relation to general semiotics and phenomenology are also worth reading,
see in particular [Heidegger, 1927; Merleau-Ponty, 1945; Peirce et al., 1998; Varela et al.,
1991; Lakoff and Johnson, 1999; Petitot et al., 2000].
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survival – because these capacities helped us addressing crucial needs (ac-
complishing certain goals or avoiding threats) arising from specific situations
in specific environments. As argued by developmental psychologists, human
communication presumably emerged from the general ability to participate
with others in collaborative activities with shared goals and intentions. Hu- intentionality

mans communicate to request help, inform others of things helpfully, and
share attitudes as a way of bonding within the cultural group [Tomasello
et al., 2005]. In order to do so, the participants in a given interaction must
be able to (1) establish a common ground, and (2) view each other as goal- common

grounddirected, intentional agents with whom they can share emotions, experience
and activities. Such kind of communication therefore directly depends on
being fully aware and attentive to what’s going on in the environment and
in the mind of the other participants.

The centrality of context is also striking from the point of view of early
language acquisition. Children develop based on their sensorimotor experi- language

acquisitionences with the physical environment, and this naturally also holds for the
acquisition of their native language, starting at about 10 months. Learning
always takes place in environments in which the child can get sensory in-
formation and perform actions to interact with other people. And indeed,
among the first words learned by children, we notice that a large portion are
directly grounded in the physical senses [Bailey et al., 1997; Caselli et al.,
2000].

2.2.2 Situated human language processing

Figure 2.1: Mounted helmet
for eye-tracking experiments.

But what is exactly the nature of this con-
nection between human language process-
ing and the situated context? The hypoth-
esis that we put forward in this thesis is
that the connection should take the form of
a close bi-directional coupling between dia- bi-directional

couplinglogue processing and the various processes
involved in building up and maintaining sit-
uation awareness. These cognitive activities
are inextricably linked. Their interdepen-
dence is expressed by a constant exchange
of information. Our awareness of the situa-
tions affects how we understand dialogue and, through dialogue, we can also
further our understanding of those situations. [Kruijff et al., 2009].

Furthermore, several experimental studies in psycholinguistics and neu-
rosciences have demonstrated that the connection between language com-
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prehension and the situated context (and more specifically the visual scene)
is also closely time-locked, and already present at the phoneme or sub-word
level. This has been demonstrated by analyses of saccadic eye movements in
visual scenes – based on the idea that eye movements can serve as indications
of underlying cognitive processes [Tanenhaus et al., 1995; Allopenna et al.,
1998; Knoeferle and Crocker, 2006] – and by neuroscience-based studies of
event-related brain potentials [Van Berkum, 2004].

These findings have important implications on how we view language
comprehension. Upon hearing a spoken utterance, humans do not wait for
the end of the utterance to start processing it. As soon as they have recog-
nised a given morpheme, they start building partial syntactic and semantic
interpretations – and they relate these to the situated context.

Language comprehension must therefore be seen as being essentially an
incremental , “word-by-word” process [Crocker, 1999]. At each incrementalincrementality

step, situation awareness plays a double role:

• as a disambiguation tool on the existing representations, by pruning
the unlikely or incoherent interpretations;

• and as an anticipatory tool, raising expectations about what is likely to
appear next [Altmann and Steedman, 1988; Van Berkum et al., 2005].

Moreover, the existence of such close interaction between cognitive pro-
cesses also illustrates another defining characteristic of human language pro-
cessing (and of human cognition in general, for that matter): its high degree
of parallelism. When we try to comprehend an utterance, all levels of anal-parallelism

ysis – acoustic, morpho-syntactical, semantic, pragmatic – are activated in
parallel and mutually constrain each other to guide the processing.

2.2.3 Five working hypotheses

We have now laid out the basic theoretical “tenets” of our perspective on
human language processing and situated context. Let’s briefly recapitulate
some of the essential facts what we have learned in this section:

1. Situation awareness is crucial to spoken dialogue comprehension andsituation
awareness production.

2. Pragmatics should be taken seriously, and context put at the verypragmatics

centre of processing.

3. Linguistic and non-linguistic processes cannot be isolated from each
other. They are are strongly interdependent, and must be seen as
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“permeable glass boxes” which can exchange information while pro-
cessing to help guide the interpretation process (i.e. gradual refinement
of internal representations, selective attention).

4. Spoken utterances are processed in an incremental fashion, and con-
text is exploited all along the way, either to disambiguate existing
representations, or to anticipate future ones.

5. All levels of analysis, linguistic and non-linguistic, should occur in par-
allel and complement each others internal representations.

These five points constitute five basic “working hypotheses” for our ap-
proach. As will be explained in the next chapters, many of our design choices
and implementation strategies – such as the use of particular linguistic for-
malisms (Chapter 3), the software architecture in which our system is inte-
grated (Chapter 4), or the type of features that we use to discriminate the
possible interpretations of an utterance (Chapter 6) – are all direct applica-
tions of these insights.

2.3 Summary of the chapter

Here is a short summary of what we learned in this chapter:

• We described the various linguistic phenomena encountered in spoken
dialogue, such as the presence of filled pauses, repetitions, corrections,
speech overlaps, back-channels, speech repairs, sentence fragments, or
slightly agrammatical utterances. We also provided a theoretical anal-
ysis for the syntactic treatment of disfluencies, which will serve as a
basis for the grammar relaxation mechanism presented in Chapter 6.

• In the second part of this chapter, we explained the fundamental char-
acteristics of situated human language processing, based on experimen-
tal studies in psycholinguistics and cognitive science. We concluded by
summing up these characteristics in five “working hypotheses”, which
– as we will see in the next chapters – will constitute the backbone of
our approach to spoken dialogue comprehension.
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3
Theoretical foundations

This chapter lays out the theoretical foundations of our work. We
detail the formalisms used at the syntactic, semantic and pragmatic
levels of our architecture. We first describe the grammatical formalism
used for syntactic parsing, which is Combinatory Categorial Grammar.
We then present the logic used to express the semantic representations,
called Hybrid Logic Dependency Semantics, and discuss its main for-
mal properties. We also describe how the mapping between syntactic
and semantic structures is practically realised. Finally, we explain
how the discourse and event structures are represented.

3.1 Combinatory Categorial Grammar

Categorial Grammar (CG) is one of the oldest family of grammatical for- Categorial
Grammarmalisms developed in modern linguistics (along with dependency grammars,

with whom they share many common insights). CG was first proposed by
Adjukiewicz [1935] and subsequently modified by Bar-Hillel [1953]; Lambek
[1958]; Dowty [1979]; Ades and Steedman [1982]; Steedman [1989], inter alia.

All forms of categorial grammars share a strong commitment to the prin-
ciple of compositionality [Frege, 1892; Montague, 1974] – that is, the assump-
tion that the meaning of a complex expression is determined by its structure
and the meanings of its constituents. Or to put it slightly differently, the
assumption that syntax and semantics are homomorphically related and may
be derived in tandem.

All modern flavours of CG are fully lexicalised grammar formalisms. That
is, all the language-specific information is contained in the lexicon, not in
grammar rules, as in classical context-free grammars. The responsibility of
defining the syntactic forms is done at the level of individual lexical items.
The syntactic behaviour of each morpheme (in terms of subcategorisation
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frame, possible features and constraints, multi-word combinations, etc.) can
therefore be specified with great precision, leading to a much more fine-
grained level of grammatical description.

One of the most recent (and most successful) formulation of CG is Com-
binatory Categorial Grammar [Steedman, 2000]. It combines the ad-Combinatory

Categorial
Grammar

vantages of being both linguistically very expressive and efficiently parsable.
It has been used to model a wide range of linguistic phenomena [Steedman,
2000; Steedman and Baldridge, 2009], most notably a unified – and very
elegant – treatment of extraction and coordination.

As Tree Adjoining Grammar, CCG is a mildly context-sensitive formal-
ism, and is therefore able to account for non-context-free linguistic phenom-
ena such as Germanic crossing dependencies. Another remarkable trait of
CCG is its flexible constituent structure, which is of particular interest for
our purpose since it allows the construction of incremental derivations. It is
also a formalism which is perfectly suited for island parsing [Carroll, 1983],
a mechanism devised to extract partial analyses out of a given utterance.

Finally, CCG has a completely transparent interface between surface syn-
tax and the underlying semantic representation, including predicate-argument
structure, quantification and information structure.

For all these reasons – linguistic expressivity, efficiency, flexible con-
stituent structure, possibility for partial analyses, and transparent syntax-
semantics interface – CCG is a grammatical formalism which is particularly
well suited to the specific needs of our dialogue comprehension system.

3.1.1 Lexicon

The core of a CCG grammar is a lexicon. Each entry in the lexicon is alexicon

pair consisting of a word and an associated category, which contains both
syntactic and semantic information:

red ` adj : @d:-color ( red )
�� ��3.1

The lexical entry in (3.1) defines the word ‘red’ as being of syntactic
category adj, and binds it to a particular semantic representation, which we
write @d:-color ( red ) (more on this in the next section).

The category adj is an atomic category, which does not take any argument.
We can also define complex categories, using the slash notation. A category
X/Y denotes a lexical item which, if given an argument of type Y to its right,
will return a result of type X. For instance, a determiner such as ‘the’ can
be assigned the category np/n, meaning that if it is associated to a common
noun of type n, the determiner will produce a noun phrase np.
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Likewise, the category X\Y denotes a lexical item which, if given an
argument of type Y to its left, will return a result of type X.

3.1.2 Combinatory rules

CCG makes use of a set of combinatory rules which are used to assemble combinatory
rulescategories to form larger pieces of syntactic and semantic structure. The

most simple ones, which are used in all flavours of categorial grammars, are
the forward and backward applications:

X/Y Y ⇒ X
�� ��>

Y X\Y ⇒ X
�� ��<

The first rule states that we can form a larger constituent of type X by
assembling a constituent of type X/Y and a constituent of type Y which is
to its right. The second rule embodies the same principle, but in the left
direction.

CCG also allows for more sophisticated combinatory rules, such as for-
ward/backward composition (B) and type-raising (T):

X/Y Y/Z⇒ X/Z
�� ��> B

Y\Z X\Y ⇒ X\Z
�� ��< B

X⇒ Y/(Y\X)
�� ��> T

X⇒ Y\(Y/X)
�� ��< T

The simultaneous build of the syntactic and semantic structures is done
using these combinatory rules. The applicability of these rules can moreover
be controlled through modalised slashes [Baldridge and Kruijff, 2003].

3.1.3 Derivations

Given a lexicon and a set of combinatory rules, parsing a given utterance is
achieved in polynomial time. The syntactic structure can then be extracted
by looking at the derivational history of a parse. Figure 3.1 offers an illus-
trative example (du stands for “discourse unit”).

As a final note, it should be noted that CCG derivations are monotonic –
there are no movements or traces in Categorial Grammar, contrary to trans-
formational approaches of natural language syntax (e.g. Chomsky [1957] and
following).
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now
du/s

you
np

put
s\np/pp/np

the
np/n

ball
n

np
>

s\np/pp
>

into
pp/np

the
np/n

box
n

np
>

pp
>

s\np
>

s
<

du
>

Figure 3.1: CCG parse for the utterance ”now you put the ball into the box”.

3.2 Hybrid Logic Dependency Semantics

In this section1, we present the logical formalism which we use to express
the semantic representations of our dialogue system. The formalism is called
Hybrid Logic Dependency Semantics [Baldridge and Kruijff, 2002]. ItHybrid Logic

Dependency
Semantics

provides an explicit encoding for a wide range of semantic information, in-
cluding dependency relations between heads and dependents [Tesnière, 1959;
Sgall et al., 1986; Mel’c̆uk, 1988], tense and aspect [Moens and Steedman,
1988], spatio-temporal structure, contextual reference, and information struc-
ture [Kruijff, 2001].

What we mean here by “semantic representation” is more precisely the
linguistically realised meaning. Contrary to most formalisms derived from
Fregean semantics (notably DRT), we only represent the meaning as it is
realised in the utterance, without trying to evaluate the state of the world
denoted by it.

Hybrid Logic Dependency Semantics [HLDS] is based on hybrid modal
logic. We start with some (brief) generalities about hybrid logics, and thenhybrid modal

logic proceed to describe the HLDS formalism itself.

3.2.1 Hybrid logic

Relational structures are a fundamental modeling tool in science. It is ubiqui-
tous in artificial intelligence, computer science, linguistics and mathematics.
Modal logic provides an efficient and logically sound way of talking aboutmodal logic

such structures [Blackburn et al., 2001].

1Most of the content of this section is derived from [Baldridge and Kruijff, 2002; Kruijff,
2001; Blackburn, 2000; Areces and Blackburn, 2001].
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Classical modal logic however suffers from – as Carlos Aceres puts it –
a surprising “asymmetry”. Although the concept of states (“worlds”) are
at the heart of model theory (cf. the definition of Kripke models), there
is no way to directly reference specific states in the object language. This
asymmetry is at the root of several theoretical and practical problems facing
modal logic [Blackburn, 2000; Areces and Blackburn, 2001].

Hybrid logic provides an elegant solution to many of these problems. It Hybrid logic

extends standard modal logic while retaining decidability and favorable com-
plexity [Areces et al., 2001; Areces and Blackburn, 2001]. The strategy is to
add nominals, a new sort of basic formula with which we can explicitly name nominals

states in the object language. Next to propositions, nominals are therefore
first-class citizens in the object language.

Each nominal names a unique state. To get to that state, we add a new
operator, called the satisfaction operator, that enables us to “jump” to the satisfaction

operatorstate named by the nominal. The satisfaction operator is written @i, where
i is a nominal.

Formal definitions

We first present in Definition 1 the formal specification of the object lan-
guage for the basic hybrid multimodal language H(@). Definitions 2 and
3 then provide the model-theoretical interpretation of such hybrid language,
based on Kripke models.

Definition 1 (Basic hybrid multimodal language H(@)). We start
with a set of propositional symbols PROP = {p, q, p′, q′, ....}, a set of modality
labels MOD = {π, π′, ...}, and a nonempty set NOM = {i, j, ...} disjoint
from PROP and MOD. We define the well-formed formulas of the basic
hybrid multimodal language H(@) over PROP , MOD and NOM as such:

WFF := i | p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | 〈π〉φ | [π]φ | @iφ
�� ��3.2

A formula @iφ states that the formula φ holds at the (unique) state named
by i. Or to put it in more operational terms, the formula @iφ could be
translated in the following way: “go to the (unique!) state named by i, and
check whether φ is true at that state”.

Definition 2 (Kripke models). Such a language is interpreted on mod-
els (often called Kripke models). A model M is a triple (W, {Rπ | π ∈
MOD}, V ). W is a non-empty set (its elements are called states or nodes),
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and each Rπ is a binary relation on W . The pair (W, {Rπ | π ∈ MOD}) is
called the frame underlying M, and M is said to be a model based on this
frame. The function V is called the hybrid valuation. It is a function with
domain PROP ∪ NOM and range Pow(W ); it tells us at which states (if
any) each propositional symbol is true. We additionally require that for each
nominal i, the valuation V (i) be a singleton subset of W . We call the unique
state in V (i) the denotation of i.

Definition 3 (Satisfaction and validity). Interpretation on models is
carried out using the Kripke satisfaction definition. Let M = (W, {Rπ | π ∈
MOD}, V ) and w ∈ W . Then:

M, w |= p iff w ∈ V (p), where p ∈ PROP
M, w |= i iff w ∈ V (i), where i ∈ NOM
M, w |= ¬φ iff M, w, 6|= φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ
M, w |= φ→ ψ iff M, w 6|= φ or M, w |= ψ
M, w |= 〈π〉φ iff ∃w′(wRπw

′ & M, w′ |= φ)
M, w |= [π]φ iff ∀w′(wRπw

′ ⇒M, w′ |= φ)
M, w |= @iφ iff M, w′ |= φ, where w′ is the denotation of i.

If M, w |= φ, we say that the formula φ is satisfied in M at the state w.

A practical example

Let us consider a practical example to illustrate how hybrid logic can be
applied to represent relational structures. (3.3) is an attribute-value matrix
[AVM], a widely used relational structure in computational linguistics. subj 1

[
agr foo
pred bar

]
comp

[
subj 1

]
 �� ��3.3

Such structure can be efficiently expressed with a hybrid logic formula,
as (3.4) shows. Figure 3.2 gives a graphical illustration of the same formula.
The nodes denote individual states, and the edges are modalities. The fact
that states can be explicitly referenced in the object language is what allows
us to represent the reentrancy mechanism of the AVM.

@(〈subj〉(i ∧ 〈agr〉foo ∧ 〈pred〉bar) ∧
〈comp〉〈subj〉i)

�� ��3.4
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Figure 3.2: Graphical representation of the hybrid formula 3.4.

Sorting strategy

Another interesting characteristic of hybrid logics is the possibility to sort
atomic symbols. Sorting is a strategy that has been proposed by various
authors to create ontologically rich representations of meaning [Vendler, 1967;
Dowty, 1979; van Benthem, 1997].

Different sorts of nominals can be introduced in the object language to
build up a rich sortal ontology. This make it possible to capture the rich
ontologies of lexical databases like WordNet in a clear and concise fashion,
while retaining decidability and a favorable complexity [Baldridge and Krui-
jff, 2002; Areces and ten Cate, 2006].

3.2.2 Encoding linguistic meaning

Using hybrid logic, we are able to capture three essential aspects of linguistic
meaning:

1. structural complexity (due to the use of modal logic to represent lin-
guistic meaning via sophisticated relational structures)

2. ontological richness (due to the sorting strategy);

3. the possibility to refer (due to the introduction of nominals in the
object language).

We can represent an expression’s linguistically realized meaning as a con-
junction of modalized terms, anchored by the nominal that identifies the
head’s proposition:

@h: sorth
(proph ∧ 〈δi〉 (di : sortdi

∧ depi))
�� ��3.5
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In (3.5), the head proposition nominal is labeled by h. proph represents
the elementary predication of the nominal h. The dependency relations (such
as Agent, Patient, Result, etc.) are modeled as modal relations 〈δi〉.
Each dependent is labeled by a specific nominal, here di. Features attached
to a nominal (e.g. 〈num〉, 〈quantification〉, etc.) are specified in the same
way.

Figure 3.3 gives an example of logical form, written in HLDS.

@w0:cognition(want ∧
<Mood> ind ∧
<Tense> pres ∧
<Actor>(i0 : person ∧ I ∧

<Number> sg ) ∧
<EComp>(t0 : action-motion ∧ take ∧

<Actor> y0 : person ∧
<Patient>(m0 : thing ∧ mug ∧

<Delimitation> unique ∧
<Number> sg ∧
<Quantification> specific singular)) ∧

<Patient>(y0 : person ∧ you ∧
<Number> sg))

Figure 3.3: HLDS semantics for the utterance ‘I want you to take the mug’.

3.3 Syntax-semantics interface

How do we derive a semantic representation from a particular syntactic struc-
ture? In our CCG grammar, this is realized by augmenting the syntactic rules
with semantic information. Since CCG is a lexicalist theory, this informa-
tion is specified directly in the lexicon. The formal properties of the syntax-
semantics interface are not detailed here, the interested reader is invited to
consult Baldridge and Kruijff [2002] for more information2.

We illustrate below two concrete examples of CCG derivation, along with
the associated HLDS semantics.

Example 1

The parsed utterance is “The ball is red”.

2See also White [2006] for a translation from HLDS forms to DRT.
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• Lexicon

the ` np : a / n : b
�� ��3.6

with a being defined as @a


p ∧
〈num〉 sg ∧
〈delim〉 unique ∧
〈quant〉 specific


and b as @bp

ball ` n : @b:thing ( ball )
�� ��3.7

is ` s : c \ np : r / adj : s
�� ��3.8

with c being defined as @c:ascription


be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈subj〉(r ∧ p) ∧
〈restr〉r ∧
〈scope〉(s ∧ q)


and r as @rp

and s as @sq

red ` adj : @d:-color ( red )
�� ��3.9

• Syntactic derivation

With the lexical information we provided, we can derive the semantic
representation for the utterance “the ball is red” in just three steps (to
save space, we don’t show the entire premises, and instead redirect to
the equation numbers).

np/n : (3.6) n : (3.7)

np : @b:thing


ball ∧
〈num〉 sg ∧
〈delim〉 unique ∧
〈quant〉 specific


>

�� ��3.10

s\np/adj : (3.8) adj : (3.9)

s : @c:ascription


be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈subj〉(r ∧ p) ∧
〈restr〉r ∧
〈scope〉(s:q-color ∧ red)

 \np : @rp

>
�� ��3.11
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np : (3.10) s\np : (3.11)

s : @c:ascription



be ∧
〈mood〉ind ∧
〈tense〉pres ∧

〈subj〉


b:thing ∧ ball ∧
〈num〉 sg ∧
〈delim〉 unique
〈quant〉 specific

 ∧
〈restr〉b ∧
〈scope〉(s:q-color ∧ red)



<
�� ��3.12

Example 2

Figure 3.4 presents a complete syntactic analysis for the utterance “robot I

want the red ball where is it”. Due to space constraints, only the main syntactic
categories are shown. The features and the semantic representation associ-
ated to each intermediate category are omitted. Note that the final syntactic
category is not a sentence, but a discourse unit, labeled du.

3.4 Segmented Discourse Representation Theory

Once a semantic interpretation for a given utterance has been built, it must
be integrated into a larger discourse structure. How do we represent this dis-
course structure? Our dialogue system is based on Segmented Discourse
Representation Theory (SDRT) [Asher and Lascarides, 2003; LascaridesSegmented

Discourse
Representa-

tion
Theory

and Asher, 2007].
SDRT is a formal approach to discourse interpretation which is grounded

in dynamic semantics (notably DRT, cf. Kamp and Reyle [1993]), and ex-
tended with rhetorical relations.

3.4.1 Dynamic semantics

In traditional formal semantics [Montague, 1988], the content of a discoursedynamic
semantics is defined as the set of models (”‘possible worlds”’) that it satisfies. They

are therefore typically unable to model how the interpretation of the current
sentence is dependent on the interpretations of those that precede it [Las-
carides and Asher, 2007]. As a consequence, traditional formal semantics
is inadequate to model most intersentential phenomena, like temporal and
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pronominal anaphora. For instance, in (3.13-3.14), how do we express the
fact that the man who ordered a beer is the same as the one who walked in?

The man walked in.
�� ��3.13

He ordered a beer.
�� ��3.14

Dynamic semantics, on the other hand, views the meaning of a given dis-
course as a relation (or more precisely, a function) between contexts. This
function is called Context Change Potential. Contrary to Montagovian se-Context

Change
Potential

mantics, dynamic semantics is also generally non-compositional – i.e. you
cannot define the meaning of a discourse as a simple, static composition of
its parts. Indeed, in addition to contributing to the “static” content of a
discourse, expressions like indefinite NPs make a dynamic contribution to it
by introducing new referents.

The most well-known theory based on dynamic semantics is Discourse
Representation Theory [Kamp and Reyle, 1993].Discourse

Representa-
tion

Theory 3.4.2 Rhetorical relations

Dynamic semantics theories typically explore a relatively restricted set of
pragmatic phenomena, mainly focusing on the effects of logical structure
on anaphora. They typically fail to take into account the discourse struc-
ture (i.e. rhetorical relations between discourse segments) in their analysis.
And as evidenced by researchers in discourse analysis, understanding dis-
course structure is absolutely crucial for discourse interpretation [Mann and
Thompson, 1986; Mann et al., 1992].

Asher and Lascarides [2003] provide two interesting examples to motivate
the use of rhetorical relations in modeling discourse structure.rhetorical

relations

Example 1: pronoun resolution

Consider this simple discourse:

John had a great evening last night.
�� ��3.15

He had a great meal.
�� ��3.16

He ate salmon.
�� ��3.17

He devoured lots of cheese.
�� ��3.18

He won a dancing competition.
�� ��3.19

??It was a beautiful pink.
�� ��3.20
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In DRT, nothing would prevent the pronoun ‘it’ in (3.20) to pick the
salmon as the referent. The theory clearly overgenerates the possible inter-
pretations. We need some notion of rhetorical structure to be able to specify
more precisely the possible antecedents for the pronoun.

SDRT solves the problem by introducing a set of rhetorical relations be-
tween the segments, as illustrated in Figure 3.5. SDRT can then easily rule
out the salmon as an antecedent for ‘it’ by using a right-frontier constraint
(cf. Asher and Lascarides [2003]).

Figure 3.5: Discourse structure of (3.15)-(3.20).

Example 2: temporal structure

Consider these two examples:

John fell. Mary helped him up.
�� ��3.21

John fell. Mary pushed him.
�� ��3.22

In (3.21), the textual order reflects the temporal one, whereas (3.22) does
not. The compositional semantics of both examples are insufficient for distin-
guishing their interpretations, as they have the same temporal and aspectual
classes. The additional bit of information we need resides in rhetorical rela-
tions, which will be Narration for (3.21) and Explanation for (3.22).

3.4.3 The SDRT approach in brief

To sum up, SDRT combines two paradigms in discourse interpretation: dy-
namic semantics and discourse analysis. The theory attempts to explicit the
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interactions between the semantic content of the segments and the global,
pragmatic structure of the discouse – it can therefore be seen as a model of
the semantics-pragmatics interface. Note that the basic units are segmented
and analysed according to their propositional content, and not e.g. on their
attentional or intentional content, like in Grosz and Sidner [1986].

For more details regarding the linguistic and formal motivations behind
SDRT, the reader is invited to consult Asher and Lascarides [2003].

How do we apply SDRT to the specific needs of our dialogue compre-
hension system? First, the so-called “formulas” of SDRT are expressed in
the HLDS formalism we introduced in this chapter. These formulas are con-
nected with each other by rhetorical relations, which (since we are dealing
with dialogue) most often take the form of conversational moves. In addition
to this, anaphoric relations are also expressed between discourse referents,
anchored by their HLDS nominals.

The SDRT-based discourse structure can be used as a precious resource
to define the linguistic context of a particular dialogue. This context can then
be fruitfully exploited to guide the processing, e.g. by priming the speech
recognition (Chapter 5), or by discriminating the possible interpretations of
a given utterance (Chapter 6).

3.4.4 Event structure

Additionally to the usual discourse structure, an event structure is used toevent
structure model temporal and aspectual information. It is based on a temporal on-

tology structured on notions of causation and consequence rather than on
purely temporal primitives.

The elementary event-complex is called a nucleus. A nucleus is a tripar-nucleus

tite structure, consisting of a “preparation” (the activity bringing the event
about), a “culmination” (the goal event), and a “consequent” (the state en-
suing the event). Natural-language categories like aspects, futurates, adver-
bials, and when-clauses are able to change the temporal/aspectual category
of propositions under the control of such a nucleic knowledge representation
structure [Moens and Steedman, 1988].

3.5 Summary of the chapter

In this chapter, we introduced the three linguistic formalisms used at (respec-
tively) the syntactic, semantic, and pragmatic levels of our dialogue compre-
hension system:
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• We first described Combinatory Categorial Grammar, a grammat-
ical formalism for natural language syntax. It combines several advan-
tages which makes it particularly well suited to our approach, such as
its linguistic expressivity, an efficient parsability (in polynomial time),
a flexible constituent structure, the possibility of partial analyses, and
a transparent syntax-semantics interface.

The core of a CCG grammar is a lexicon, which associates both syn-
tactic and semantic information. The derivation of a parse for a given
utterance is achieved by applying a set of combinatory rules to combine
categories and form larger pieces of syntactic and semantic structure.

• We then detailed the logical formalism used to express the semantic
representations. This formalism is called Hybrid Logic Dependency
Semantics, and is based on an extension (an “hybridisation”) of modal
logic. Besides the usual constructions of modal logic, a new artifact is
added to the object language: nominals. These nominals allow us to
directly point to a particular state. The formalism also provides the
possibility to sort atomic symbols, and hence create ontologically rich
representations of meaning.

• Finally, we outlined the central tenets of Segmented Discourse Rep-
resentation Theory, the formalism chosen to express the discourse
structure. This formalism combines hindsights from dynamic seman-
tics (the meaning of a given discourse is viewed as a relation between
contexts) and discourse analysis (every discourse is structured by a set
of rhetorical relations). In our approach, the formulas of the discourse
structure are expressed in HLDS, and connected by various conversa-
tional moves. The discourse referents can moreover also be connected
with each others in case of anaphoric relations.
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4
Software architecture

In this chapter, we describe the software architecture in which our ap-
proach to robust dialogue processing has been designed and developed.
We start by describing the global architecture for the entire cognitive
system, then provides details on the components used in the communi-
cation subarchitecture. We define the various internal representations
which are manipulated and shared across the subarchitecture, as well
as the processes operating on these representations.

Intelligent behaviour relies a combination of highly complex cognitive
capacities. An “intelligent” system must be able to actively perceive the
environment it finds itself in, reason about it, and achieve goals through plans
and actions. As a result, artificial cognitive systems which can support such
kind of intelligent behaviour must encompass a large number of distributed
and cooperating subsystems, such as computer vision (perception, attention),
navigation and manipulation skills (motor control), and various deliberative
processes (reasoning, learning, planning).

The design of software architectures for such cognitive systems is therefore
a very demanding enterprise. Not only must these architectures meet very
strong structural and performance requirements, but these requirements are
often competing with each other.

For instance, quick reactivity and continuous adaptation to the environ-
ment are crucial prerequisites for cognitive systems operating in real phys-
ical environments. From this perspective, post-sensory processing overhead
should be maintained as low as possible, to keep the system reactive. Yet,
at the same time, we may also wish to include general capacities for abstract
reasoning in the system (e.g. for language comprehension). Such capacities
can unfortunately only be achieved with the help of symbolic processes which
are usually slow and result in a high processing overhead, at the expense of
reactivity. How do we solve this kind of dilemma?
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The answer to this question lies in the careful exploration of the design
space of cognitive architectures, and the investigation of the possible com-
promises and trade-offs which are available within it. This way, we can find
out which architectural choices are the most adequate for a given scenario
[Hawes et al., 2007b, 2009a].

The next section introduces an architectural schema which attempts to
address these issues in a coherent fashion: the Cognitive Systems Architec-
ture Schema [CAS]. As we will see, CAS allows us to capture many of the
“requirements” for cognitive processing outlined in section 2.2.3. It comes
with an associated implementation toolkit, CAST, on top of which our im-
plementation has been built.

4.1 Global architecture

We start with the notion of architectural schema. An architectural schemaarchitectural
schema is described as a “set of constraints that defines a space of possible architec-

tures”. Multiple architectural instantiations – that is, fully specified, concrete
architectures – can then be created on basis of such schema.

4.1.1 Cognitive Systems Architecture Schema

The architectural schema used for this thesis is called the Cognitive Sys-
tems Architecture Schema, or CAS. Its most important characteristicsCognitive

Systems
Architecture

Schema

are (quoted from [Hawes et al., 2009a]):

• Distributed shared memory : The schema contains subarchitectures each
of which has a blackboard (working memory). These subarchitectures
are loosely coupled to reduce complex inter-dependencies. Systems can
contain subarchitectures for motor control, vision, action, planning,
language etc.

• Parallel refinement of shared representations : Each subarchitecture
contains a number of processing components which run in parallel and
that asynchronously read and update shared information via the sub-
architecture specific working memory.

• Limited privileges : Each of these subarchitecture working memories is
only writable by processes within its subarchitecture, and by a small
number of privileged global processes (e.g. a global goal manager).

• Control of information and processing : Information flow is controlled
by goals generated within the architecture at run time, allowing it to
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deal with new problems and opportunities. This allows the schema to
support different approaches to processing (e.g. incremental processing,
forward chaining, backward chaining etc.).

• Knowledge management by ontologies : The knowledge used within a
subarchitecture is defined by a set of ontologies for that subarchitecture.
Relationships between the ontologies in different subarchitectures are
defined by a set of general ontologies. These ontologies can also be
used to define knowledge at an architecture-general level.

Figure 4.1: A single subarchitecture within the Cognitive Systems Architec-
ture Schema. The subarchitecture includes a set of components, which run
in parallel, asynchronously updating shared structures on a common working
memory. They can also take input from sensors or give output to actuators.
The task manager determines whether managed components are able to run,
while unmanaged components always run [Hawes et al., 2009a].

4.1.2 CAST: an implementation toolkit for CAS

CAS comes with an associated implementation toolkit which is called CAST
[Hawes et al., 2007a]. CAST allows components written in different languages
(mostly Java and C++) to be combined into CAS instantiations, without
recompilation or change in components.
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CAST is constituted as a distributed collection of subsystems for infor-
mation processing. Figure 4.2 illustrates the connections between the sub-
architectures implemented in our robotic platform. The interested reader is
invited to consult [Hawes et al., 2009b; Brenner et al., 2007; Skočaj et al.,
2007; Zender et al., 2008; Sjö et al., 2008] for more information on the in-
stantiation of CAST in various robotic scenarios.

As illustrated in Figure 4.1, each subsystem consists of one or more pro-
cesses, and a working memory. The processes can access sensors, effectors,
and the working memory to share information within the subsystem. Pro-
cesses can be either unmanaged (data-driven) or managed (goal-driven). The
execution of the managed processed is directed by the task manager. This
enables the subarchitecture to synchronize various forms of information pro-
cessing.

Figure 4.2: Interactions between subarchitectures in CAST
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Cross-modal binding

One interesting aspect of CAST we would like to highlight is the way the
architecture addresses the binding problem. Binding is the operation of con- binding

necting pieces of information coming from different modalities, but which
ultimately refer to the same entity. From the linguistic point of view, this
binding functionality is what is used by the communication subsystem to
achieve visual and spatial reference resolution.

Figure 4.3: Cross-modal interconnectivity

Imagine for instance a visual scene with a blue mug at the centre of a
table, which gets mentioned in the course of a dialogue (“hey robot look - this is

a blue mug”). The visual modality perceives the blue mug as an object in the
scene, whereas the “linguistic modality” (i.e. the dialogue comprehension)
perceives a discourse referent named ‘blue mug’. The question is how we can
connect, or bind, these two pieces of information. Or to put it differently,
how we can ground the dialogue in the situated environment. grounding

The basic idea is illustrated in Figure 4.3. Each subsystem can have
a binding monitor as one of its managed processes. A binding monitor is a binding

monitorprocess which monitors the subsystem’s internal working memory. As soon as
the working memory contains content that could be connected to content in
other modalities, the binding monitor translates this content using a mapping
between the subsystem’s own representations, and an amodal format used in
a particular subarchitecture called the binder. This is based on the idea of
ontology-mediated information fusion [Kruijff et al., 2006]. information

fusionThe resulting representation is then written from the working memory
into the binder. There it acts as a proxy for content in the originating
subsystem. The binder now applies strategies to combine proxies with similar
content, but coming from different subsystems. Proxies that can be combined proxy

to form unions. The power of the binding mechanism is its flexibility: we can
use a mixture of early- and late-fusion, and represent content at any level of
abstraction [Kruijff et al., 2007; Jacobsson et al., 2007].
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The “binder” subarchitecture provides us with a (mediated) access to the
situated context. At each stage of processing, the various processing compo-
nents involved in dialogue comprehension can query the binder in order to
know which objects are currently in the visual scene. This allows us to per-
form context-sensitive language processing – a core aspect of our approach.
Chapters 5 and 6 will explain how this information is then applied to antic-
ipate or discriminate the spoken inputs.

The design of CAS and CAST also provides interesting solutions to many
other architectural problems (pertaining e.g. to information filtering, pro-
cessing management, action fusion, etc.), which, due to space constraints,
we don’t have the time to discuss in this thesis. For details, see [Jacobsson
et al., 2007; Hawes et al., 2007a,b, 2009a].

4.2 The communication subarchitecture

Let us now concentrate on the subarchitecture which is most relevant for the
topic of this thesis: the communication subarchitecture. Figure 4.4 illustrates
the information flow in the subarchitecture for spoken dialogue comprehen-
sion (dialogue production components are omitted). All the structures and
components described in the next pages are comprised in this schema.

We start by defining the various internal representations which are ma-
nipulated and shared across the subarchitecture, and then proceed with a
description of the different processes which operate on these representations.

4.2.1 Representations

We describe below four important representations used through the commu-
nication subarchitecture: the word lattice (which is generated by the speech
recogniser), the logical form (the semantic representation build by the incre-
mental parser), the packed logical form (a “compressed” set of logical forms),
and the discourse structure (representing, well, the discourse structure).

Word lattices

The speech recogniser outputs partial recognition hypotheses in the form of
word lattices. Each recognition hypothesis corresponds to a possible path inword lattices

the word lattice. These paths are weighted paths, some hypotheses being
more likely than others.

The weights are computed on basis of two numerical scores provided by
the ASR: an acoustic score (based on the acoustic model) and a semantic
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Figure 4.5: Recognition lattice for the utterance “now put this mug inside”.

score (based on a semantic model incorporated in the ASR).

Logical forms

The semantic representations are expressed via logical forms. These logical
forms are formally defined using a hybrid logic framework named Hybrid
Logic Dependency Semantics [HLDS], that we already reviewed in someHybrid Logic

Dependency
Semantics

detail in section 3.2. HLDS expresses linguistically realised meaning as on-
tologically richly sorted, relational structures. These relational structures are
defined as conjunctions of modalised terms, anchored by the nominal that
identifies the head’s proposition.

On the implementation level, logical forms are practically defined as sets
of nominals, along with a reference to the root node. A logical form is
therefore a tuple {Noms, root}, where:

1. Noms is a set of nominals. Each nominal includes an identifier, an onto-
logical sort, a (possibly empty) logical proposition, a (possibly empty)
list of features and a (possibly empty) list of dependency relations.

2. root is a reference to the root nominal.

The logical form representation defined above is a model of HLDS for-
mulas which is convenient for computational purposes. The “conjunction
of modalised terms” is simply expressed as a list of features and a list of
dependency relations, and the nominal anchoring the head’s proposition is
simply assigned to the root nominal. Figure 4.6 gives an example of logical
form, which we have already seen in the previous chapter. Figure 4.7 shows
a graphical illustration of the same logical form (the nominals being shown
as nodes, and the modalities as dependency edges).
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@w0:cognition(want ∧
<Mood> ind ∧
<Tense> pres ∧
<Actor>(i0 : person ∧ I ∧

<Number> sg ) ∧
<EComp>(t0 : action-motion ∧ take ∧

<Actor>y0 : person ∧
<Patient>(m0 : thing ∧ mug ∧

<Delimitation> unique ∧
<Number> sg ∧
<Quantification> specific singular)) ∧

<Patient>(y0 : person ∧ you ∧
<Number> sg))

Figure 4.6: Logical form for the utterance ‘I want you to take the mug’

Figure 4.7: Graphical representation of the logical form expressed in 4.6
(automatically generated by the parser, based on the DOT library).
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Packed logical forms

The syntactic analysis of most utterances is likely to yield a large number of
possible logical forms. This is due to three main reasons:

• Recall that the comprehension system is not parsing single word strings,
but complete word lattices. A word lattice encompasses several alterna-
tive recognition hypotheses in a single structure. The result of parsing
such structure will therefore comprise, for each recognition hypothesis,
the set of its possible interpretations.

• As we already mentioned in the introduction, our approach to robust
parsing of spoken inputs relies on grammar relaxation techniques. Re-
laxing the set of grammatical constraints has for logical consequence
an increase in the number of possible parses.

• Finally, we should not forget that language in itself is inherently am-
biguous, and the comprehension system must deal with various kinds
of lexical, syntactic, semantic or pragmatic ambiguities.

The problem we are facing here is that maintaining hundreds of distinct
logical forms in parallel in the system is likely to result in a high processing
overhead. To address this issue, we devised an algorithm which could “pack”
all the alternative interpretations in a single representation, similar to the
packing algorithms developed for HPSG [Oepen and Carroll, 2000; Carroll
and Oepen, 2005]. We call this representation a packed logical form. A packedpacked logical

form logical form [PLF] represents content similar across the different analyses of
a given input as a single graph, using over- and underspecification of how
different nodes can be connected to capture lexical and syntactic forms of
ambiguity.

Figure 4.8 gives an example of such packed logical form. PLFs are con-
strued with two basic elements: packing nodes and packing edges. A packing
node groups a set of nominals sharing identical properties under a particular
subset of the logical forms. The packing edges are then used to connect the
packing nodes with each other.

The details of the packing algorithm can be found in Appendix A.

Discourse structure

The discourse structure takes the form of a SDRS-like discourse representa-
tion, which we presented in section 3.4. It is completed by an event structure
used for modeling temporal and aspectual information à la Moens and Steed-
man [1988].
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Figure 4.8: Example of packed logical form [PLF] for the utterance “Put
the ball inside the box”. Four distinct logical forms are contained in this
representation. The PLF is made of two packing nodes (indicated by the
grey area), connected with each other by three packing edges (indicated
by the small polygons). In total, five packed nominals are included in the
representation, plus one “dummy” root nominal which points to the head of
the logical form. For each nominal, we specify (1) the logical proposition,
(2) the ontological sort, and (3) the set of possible features.
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Practically, the discourse structure is defined as a set of packed logical
forms connected by rhetorical relations (e.g. EXPLANATION, NARRATION,rhetorical

relations ELABORATION, etc.). Since we are dealing with dialogue, these relations often
represent dialogue moves (also called speech acts or conversational moves)dialogue move

[Traum, 1993; Poesio and Traum, 1997].

Name of dialogue move Example
ASSERT “The ball is red”
QUESTION-W “Which ball is to the left of the box?”
QUESTION-YN “Is this a ball?”
ACTION-DIRECTIVE “Now take the red ball and put it in front of you”
ACCEPT “Ok”
REJECT “No that’s wrong”
OPENING “Hi robot”
CLOSING “Goodbye!”

Table 4.1: List of recognised dialogue moves

A cache is associated to each packed logical form in the discourse struc-cache

ture. This cache contains the set of discourse referents used in the PLF.
Discourse referents can be connected across caches of PLFs in order to indi-
cate that their associated linguistic expressions refer to the same entity. In
other words, the connection between caches is used to represent discourse
referent resolution.

Finally, the event structure is modeled as a network of nuclei. A nucleusnucleus

is a tripartite structure, consisting of a “preparation” (the activity bringing
the event about), a “culmination” (the goal event), and a “consequent” (the
state ensuing the event). The nuclei are directly connected to the discourse
referents in the cache.

Figure 4.9 illustrates an example of full discourse structure. The schema
is automatically generated at runtime by the module responsible for updating
the discourse structure.

4.2.2 Processes

The communication subarchitecture can be roughly divided into four basic
components (which are illustrated in Figure 4.4): the speech recogniser, the
incremental parser, the dialogue-level interpreter, and finally the connection
with the other modalities. See Figure 4.10 for a simplified time diagram
illustrating the interactions between the four components.
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Figure 4.10: Simplified time diagram for the communication subarchitecture

1. Speech recognition

The speech recognition is based on Nuance Recognizer v8.5 together with
a statistical language model, more precisely a class-based trigram language
model. As we will see in Chapter 5, the probabilities included in the language
model are constantly updated at runtime to adapt the system to changes in
the environment.

The speech recogniser outputs recognition hypotheses in the form of word
lattices. The hypotheses yielded by the speech recogniser are partial hypothe-word lattices

ses. We do not wait for the utterance to be complete to estimate the possible
hypotheses. As soon as a sequence of words has been recognised in the speech
stream, the ASR system computes a set of hypotheses for it, and sends the
result to the rest of the system. These partial hypotheses are then progres-
sively extended and refined as the utterance unfolds.

Once they are generated, the word lattices are inserted into the working
memory of the subarchitecture, where they can be retrieved by the other
components for further processing.

2. Incremental parsing

The parsing operations are factorized into several interconnected functions:

1 Context-sensitive lexical retrieval : As a new word is being recognisedcontext-
sensitive

lexical
retrieval

by the ASR, the first step is to retrieve a set of possible lexical entries
from the lexicon. A lexicon entry specifies all possible syntactic and
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semantic uses of a given word. The situated and task context can be
exploited to restrict what lexical meanings can be retrieved.

2 Incremental syntactic parsing: Syntactic parsing is based on an incre- Incremental
syntactic

parsing
mental chart parser built on top of the OpenCCG NLP library1 for Com-
binatory Categorial Grammar, which we have already described in
Chapter 3.

The utterances are parsed in a word-by-word, left-to-right fashion,
based on a bottom-up CKY parser [Ney, 1991]. At each step, the chart
is updated with all possible partial analyses for the given utterance seg-
ment. These analyses represent the syntactic and semantic structure
built for the utterance so far, and indicate possible ways in which these
analyses can be continued by means of open arguments. Figure 4.11
illustrates a simple example of incremental parse.

After each incremental step, the parser checks whether it has reached
a frontier. A frontier is specified as a type of complete grammatical
structure at the right branch of a grammatical derivation. This enables
us to specify whether the parser should return after every word, or e.g.
after every phrase. At each frontier check, the chart is pruned using a
category scorer. This scorer ranks the categories for the partial analyses
construed so far, possibly pruning them if they are guaranteed not to
lead to a complete analysis [Kruijff et al., 2009].

Once all analyses are extracted, the parser yields a set of interpreta-
tions, expressed as HLDS logical forms. logical forms

3 Packing and pruning of the construed analyses: a packing mechanism is packing of
logical formsused by the incremental parser to efficiently represent and manipulate

logical forms across the communication subarchitecture. The packed
logical form is then pruned to eliminate the interpretations which are
not contextually supported. The packing algorithm is explained in
more detail in Appendix A.

4 And finally, discriminative parse selection: as will be explained in de- parse selection

tail in Chapter 6, a discriminative model is used to assign a likelihood
score to each possible interpretation. The logical form with the high-
est score is then selected and inserted into the working memory for
further processing. The discriminative model includes semantic, syn-
tactic, acoustic and contextual features and is trained with a simple
perceptron algorithm.

1http://openccg.sf.net
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take
s:a / np:b

@a:action–motion(take ∧
〈mood〉 imp ∧
〈tense〉 pres ∧
〈actor〉(e ∧ addressee) ∧
〈patient〉 b)

the
np:c / n:c

@c:thing(
〈delim〉 unique ∧
〈quant〉 specific)

s:a / n:c

@a:action–motion(take ∧
〈mood〉 imp ∧
〈tense〉 pres ∧
〈actor〉(e ∧ addressee) ∧
〈patient〉 (c:thing ∧
〈delim〉 unique ∧
〈quant〉 specific))

> B

mug
n:d

@d:thing( mug )

s:a

@a:action–motion(take ∧
〈mood〉 imp ∧
〈tense〉 pres ∧
〈actor〉(e ∧ addressee) ∧
〈patient〉 (d:thing ∧mug ∧
〈delim〉 unique ∧
〈quant〉 specific))

>

Figure 4.11: Incremental parsing of the utterance “take the mug”.
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3. Dialogue interpretation

Once the packed logical form is built, it is retrieved by the dialogue recogni-
tion module, which performs dialogue-level analysis tasks such as discourse
reference resolution, dialogue move interpretation, event-structure recogni-
tion, and consequently updates the dialogue structure.

The discourse reference resolution module is responsible for the appro- discourse
reference

resolution
priate binding of referring expressions (deictics, demonstratives, pronouns,
definite NPs) to their referent in the dialogue structure. This is done via
a simple algorithm which searches in the dialogue history the most salient
referent which meets the constraints imposed by the referring expressions.
For our purposes, the linguistic saliency of a given referent is equivalent to
its recency (that is, the number of utterances which separates the referent
from the current position in the dialogue).

Once the discourse reference resolution is performed, the anaphoric rela-
tions between the various discourse referents is specified by way of connec-
tions across the caches of the formulas which populate the discourse structure
(cfr. previous section for the notion of cache).

The dialogue move interpretation is implemented with a decision tree ex- dialogue move
interpretation

decision tree
ploring various linguistic features to determine the most likely dialogue move
for a given utterance. For instance, the dialogue move ACTION-DIRECTIVE

is defined with two simple features: a verb expressed in the imperative form,
and whose ontological sort is an action.

The recognised dialogue move is then integrated into the discourse struc-
ture, as a SDRT formula linking back to its associated packed logical form.

Finally, the event structure recognition is responsible for building up the event
structure

recognition
nucleus associated to the utterance. The nodes inside the nucleus are linked
to the discourse referents specified in the cache. Once the nucleus is created,
it is connected to the full event structure (a network of nuclei which spans
the complete discourse structure).

Figure 4.9 illustrated a typical result of these discourse-level interpreta-
tions.

4. Cross-modal binding

Linguistic interpretations must finally be associated with extra-linguistic
knowledge about the environment – dialogue comprehension hence needs to
connect with other subarchitectures like vision, spatial reasoning or planning.
We realise this information binding between different modalities via a spe-
cific module, called the “binder”, which is responsible for the ontology-based
mediation across modalities [Jacobsson et al., 2008]. ontology-

based
mediation
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A component of particular importance for our purpose is the multimodal
salience modeling tool. The role of this component is to extract a set of
salient entities, both from the physical environment (objects present in the
visual scene), and from the interaction itself (previously referred-to elements
in the dialogue history). This contextual knowledge is then exploited to
create a cross-modal salience model. Once computed, the salience model issalience model

inserted into the working memory, where it can be retrieved by the various
components involved in dialogue comprehension and help guide the interpre-
tation process. The next chapter explains in detail how the salience model
is built up, and how it is integrated into the speech recogniser to prime the
utterance recognition.

4.3 Summary of the chapter

This chapter described the software architecture on which our approach rests.

• We started with a brief outlook on the general cognitive architecture
used in our robotic platform. We listed its main characteristics (dis-
tributed memory, parallel refinement of shared representations, control
of information and processing, and ontology-based knowledge manage-
ment). We also detailed the strategy followed by the architecture to
address the “binding problem”.

• We then concentrated on the communication subarchitecture. We anal-
ysed the subarchitecture both in terms of representations and in terms
of processes operating on these representations. These processes can
be grouped into four groups, one for each major processing step:

– The speech recogniser is responsible for the transformation of a
speech signal into a word lattice expressing the various recogni-
tion hypotheses. This word lattice is continuously updated and
extended as the utterance unfolds.

– The incremental parser takes a word lattice as input, and outputs
an ordered set of possible interpretations. These interpretations
are expressed as a packed logical form along with associated pref-
erence scores (assigned by the discriminative model detailed in
Chapter 6). The parser itself is based on an incremental CKY
parser for Combinatory Categorial Grammar.

– The dialogue-level interpreter integrates the packed logical forms
into a discourse structure. It performs various dialogue-level tasks
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such as discourse referent resolution, dialogue move interpretation,
and event structure recognition.

– Finally, the cross-modal binding is responsible for the mediation
with the other modalities. Of particular interest is the salience
modeling component, which builds up a cross-modal model of
salient entities. This model can be used by various components
to prime utterance comprehension with contextual knowledge.

Now that the necessary background knowledge has been laid out, we
dive in the next two chapters into the details of our approach, starting with
situated speech recognition.
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Part II

Approach
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5
Situated Speech Recognition

We present a model for speech recognition which relies on contextual
information about salient entities to prime utterance recognition. The
underlying hypothesis is that ASR performance can be significantly
enhanced by exploiting knowledge about the immediate physical en-
vironment and the dialogue history. To this end, visual salience (ob-
jects perceived in the physical scene) and linguistic salience (previously
referred-to objects in the current dialogue) are integrated into a uni-
fied cross-modal salience model. The model is dynamically updated as
the environment evolves, and is used to establish expectations about
uttered words which are most likely to be heard given the context. The
update is realised by continuously adapting probabilities specified in
the statistical language model. The chapter describes our approach in
detail and reports the evaluation results on a test suite.

5.1 Introduction to the issue

Automatic speech recognition [ASR] is the first step in comprehending automatic
speech

recognition
spoken dialogue. For robots operating in real-world noisy environments, and
dealing with utterances pertaining to complex, open-ended domains, this step
is particularly error-prone. In spite of continuous technological advances, the
performance of ASR remains for most tasks at least an order of magnitude
worse than that of human listeners [Moore, 2007].

One strategy for addressing this issue is to use context information to
guide the speech recognition by percolating contextual constraints to the sta-
tistical language model [Gruenstein et al., 2005]. In this chapter, we follow
this approach by defining a context-sensitive language model which exploits context-

sensitive
language

model

information about salient objects in the visual scene and linguistic expres-
sions in the dialogue history to prime recognition. To this end, a salience
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model integrating both visual and linguistic salience is used to dynamicallysalience model

compute lexical activations, which are incorporated into the language model
at runtime.

Our approach departs from previous work on context-sensitive speech
recognition by modeling salience as inherently cross-modal, instead of relying
on just one particular modality such as gesture [Chai and Qu, 2005], eye gaze
[Qu and Chai, 2007] or dialogue state [Gruenstein et al., 2005]. The Fuse
system described in [Roy and Mukherjee, 2005] is a closely related approach,
but limited to the processing of object descriptions, whereas our system was
designed from the start to handle generic situated dialogues (cfr. section
5.4).

The structure of this chapter1 is as follows. After a brief reminder re-
garding the psycholinguistic motivation of our approach, we describe the
cross-modal salience model we developed to model situated context. We then
proceed by explaining how it is utilised within the language model used for
ASR. Finally, we present the evaluation results of our approach.

5.2 Psycholinguistic motivation

As psycholinguistic studies have shown, humans do not process linguistic
utterances in isolation from other modalities. Eye-tracking experiments no-
tably highlighted that, during utterance comprehension, humans combine,
in a closely time-locked fashion, linguistic information with scene under-
standing and world knowledge [Altmann and Kamide, 2004; Knoeferle and
Crocker, 2006]. These observations – along with many others – therefore
provide solid evidence for the embodied and situated nature of language and
cognition [Lakoff, 1987; Barsalou, 1999].

Humans thus systematically exploit dialogue and situated context to
guide attention and help disambiguate and refine linguistic input by filter-
ing out unlikely interpretations. Our approach is essentially an attempt to
improve the speech recognition by drawing inspiration from the contextual
priming effects evidenced in human cognition.

5.3 Salience modeling

In our implementation, we define salience using two main sources of infor-salience

mation:
1This chapter is a slightly adapted version of the paper presented at the ESSLLI 2008

Student Session [Lison, 2008], which took place in Hamburg on August 4-15, 2008.
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1. the salience of objects in the perceived visual scene;

2. the linguistic salience or “recency” of linguistic expressions in the dia-
logue history.

Other sources of information could also be added, for instance the pos-
sible presence of gestures [Chai and Qu, 2005], eye gaze tracking [Qu and
Chai, 2007], entities in large-scale space [Zender and Kruijff, 2007], or the
integration of a task model – as salience generally depends on intentionality
[Landragin, 2006].

5.3.1 Visual salience

Via the “binder”, we can access the set of objects currently perceived in the
visual scene. Each object is associated with a concept name (e.g. printer)
and a number of features, for instance spatial coordinates or qualitative pro-
preties like colour, shape or size.

Several features can be used to compute the salience of an object. The
ones currently used in our implementation are (1) the object size and (2) its
distance relative to the robot (i.e. spatial proximity). Other features could
also prove to be helpful, like the reachability of the object or its distance from
the point of visual focus – similarly to the spread of visual acuity across the
human retina. To derive the visual salience value for each object, we assign visual salience

a numeric value for the two variables, and then perform a weighted addition.
The associated weights are determined via regression tests.

It is worth noting that the choice of a particular measure for the visual
saliency is heavily dependent on the application domain and the properties
of the visual scene (typical number of objects, relative distances, recogni-
tion capacities of the vision system, angle of view, etc.). For the application
domain in which we performed our evaluation (cfr. section 5.6), the experi-
mental results turned out to be largely indifferent to the choice of a specific
method of calculation for the visual saliency.

At the end of the processing, we end up with a set Ev of visual objects,
each of which is associated with a numeric salience value s(ek), with ek ∈ Ev.

5.3.2 Linguistic salience

There is a vast amount of literature on the topic of linguistic salience. Roughly linguistic
saliencespeaking, linguistic salience can be characterised either in terms of hierarchi-

cal recency, according to a tree-like model of discourse structure (cfr. Grosz
and Sidner [1986]; Grosz et al. [1995]; Asher and Lascarides [2003]), or in
terms of linear recency of mention (see Kelleher [2005] for a discussion). Our hierarchi-

cal/linear
recency
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Figure 5.1: Example of a visual scene

implementation can theoretically handle both types of linguistic salience, but
for all practical purposes, the system only takes linear recency into account,
as it is easier to compute and usually more reliable than hierarchical recency
(which crucially depends on having a well-formed discourse structure).

To compute the linguistic salience, we extract a set El of potential refer-
ents from the discourse structure, and for each referent ek we assign a salience
value s(ek) equal to the distance (measured on a logarithmic scale) between
its last mention and the current position in the discourse structure.

5.3.3 Cross-modal salience model

Once the visual and linguistic salience are computed, we can proceed to
their integration into a cross-modal statistical model. We define the set E ascross-modal

statistical
model

the union of the visual and linguistic entities: E = Ev ∪ El, and devise a
probability distribution P (E) on this set:

P (ek) =
δv IEv(ek) sv(ek) + δl IEl

(ek) sl(ek)

|E|
�� ��5.1

where IA(x) is the indicator function of set A, and δv, δl are factors con-
trolling the relative importance of each type of salience. They are determined
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empirically, subject to the following constraint to normalise the distribution
:

δv
∑
ek∈Ev

s(ek) + δl
∑
ek∈El

s(ek) = |E|
�� ��5.2

The statistical model P (E) thus simply reflects the salience of each visual
or linguistic entity: the more salient, the higher the probability.

5.4 Lexical activation

In order for the salience model to be of any use for speech recognition, a
connection between the salient entities and their associated words in the
ASR vocabulary needs to be established. To this end, we define a lexical
activation network, which lists, for each possible salient entity, the set of lexical

activation
network

words activated by it. The network specifies the words which are likely to be
heard when the given entity is present in the environment or in the dialogue
history. It can therefore include words related to the object denomination,
subparts, common properties or affordances. The salient entity laptop will
activate words like ‘laptop’, ‘notebook’, ‘screen’, ‘opened’, ‘ibm’, ‘switch on/off’,
‘close’, etc. The list is structured according to word classes, and a weight can
be set on each word to modulate the lexical activation: supposing a laptop
is present, the word ‘laptop’ should receive a higher activation than, say, the
word ‘close’, which is less situation specific.

The use of lexical activation networks is a key difference between our
model and [Roy and Mukherjee, 2005], which relies on a measure of “de-
scriptive fitness” to modify the word probabilities. One advantage of our
approach is the possibility to go beyond object descriptions and activate
word types denoting subparts, properties or affordances of objects. In the
context of a laptop object, words such as ‘screen’, ‘ibm’, ‘closed’ or ‘switch

on/off’ would for instance be activated.
If the probability of specific words is increased, we need to re-normalise

the probability distribution. One solution would be to decrease the prob-
ability of all non-activated words accordingly. This solution, however, suf-
fers from a significant drawback: our vocabulary contains many context-
independent words like prepositions, determiners or general words like ‘thing’
or ‘place’, whose probability should remain constant. To address this issue,
we mark an explicit distinction in our vocabulary between context-dependent
and context-independent words. Only the context-dependent words can be
activated or deactivated by the context. The context-independent words
maintain a constant probability. Figure 5.2 illustrates these distinctions.
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In the current implementation, the lexical activation network is con-
structed semi-manually, using a simple lexicon extraction algorithm. We
start with the list of possible salient entities, which is given by:

1. the set of physical objects the vision system can recognise ;

2. the set of nouns specified in the CCG lexicon with ‘object’ as ontological
type.

For each entity, we then extract its associated lexicon by matching domain-
specific syntactic patterns against a corpus of dialogue transcripts.

Figure 5.2: Graphical illustration of the word activation network

5.5 Language modeling

We now detail the language model used for the speech recognition – a class-language
model based trigram model enriched with contextual information provided by the

salience model.

5.5.1 Corpus generation

We need a corpus to train any statistical language model. Unfortunately, no
corpus of situated dialogue adapted to our task domain is available to this
day. Collecting in-domain data via Wizard of Oz experiments is a very costly
and time-consuming process, so we decided to follow the approach advocated
in [Weilhammer et al., 2006] instead and generate a class-based corpus from
a task grammar we had at our disposal.

Practically, we first collected a small set of WoZ experiments, totalling
about 800 utterances. This set is of course too small to be directly used as a
corpus for language model training, but sufficient to get an intuitive idea of
the kind of utterances we had to deal with.

Based on it, we designed a domain-specific context-free grammar able todomain-
specific

grammar
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cover most of the utterances. Weights were then automatically assigned to
each grammar rule by parsing our initial corpus, hence leading to a small
stochastic context-free grammar.

As a last step, this grammar is randomly traversed a large number of
times, which yields the final corpus.

Additional details regarding the domain-specific grammar used for corpus
generation can be found in Appendix C.

5.5.2 Salience-driven, class-based language models

The objective of the speech recognizer is to find the word sequence W∗ which
has the highest probability given the observed speech signal O and a set E
of salient objects:

W∗ = arg max
W

P (W|O; E)
�� ��5.3

= arg max
W

P (O|W)︸ ︷︷ ︸
acoustic model

× P (W|E)︸ ︷︷ ︸
salience-driven language model

�� ��5.4

For a trigram language model, the probability of the word sequence trigram
language

model
P (wn1 |E) is:

P (wn1 |E) '
n∏
i=1

P (wi|wi−1wi−2; E)
�� ��5.5

Our language model is class-based, so it can be further decomposed into class-based
modelword-class and class transitions probabilities. The class transition probabil-

ities reflect the language syntax; we assume they are independent of salient
objects. The word-class probabilities, however, do depend on context: for a
given class – e.g. noun -, the probability of hearing the word ‘laptop’ will be
higher if a laptop is present in the environment. Hence:

P (wi|wi−1wi−2; E) = P (wi|ci; E)︸ ︷︷ ︸
word-class probability

× P (ci|ci−1, ci−2)︸ ︷︷ ︸
class transition probability

�� ��5.6

We now define the word-class probabilities P (wi|ci; E):

P (wi|ci; E) =
∑
ek∈E

P (wi|ci, ek)× P (ek)
�� ��5.7

To compute P (wi|ci, ek), we use the lexical activation network specified
for ek:
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P (wi|ci, ek) =


P (wi|ci) + α1 if wi ∈ activatedWords(ek)
P (wi|ci)− α2 if wi /∈ activatedWords(ek) ∧

wi ∈ contextDependentWords
P (wi|ci) else

�� ��5.8

The optimum value of α1 is determined using regression tests. α2 is
computed relative to α1 in order to keep the sum of all probabilities equal to
1:

α2 =
|activatedWords|

|contextDependentWords| − |activatedWords|
× α1

These word-class probabilities are dynamically updated as the environ-
ment and the dialogue evolves and incorporated into the language model at
runtime.

5.6 Evaluation

5.6.1 Evaluation procedure

We evaluated our approach using a test suite of 250 spoken utterances recorded
during Wizard-of-Oz experiments (a representative subset of the 800 utter-Wizard-of-Oz

experiments ances initially collected). The participants were asked to interact with the
robot while looking at a specific visual scene. We designed 10 different visual
scenes by systematic variation of the nature, number and spatial configura-
tion of the objects presented. Figure 5.3 gives an example of visual scene.

The interactions could include descriptions, questions and commands. No
particular tasks were assigned to the participants. The only constraint we
imposed was that all interactions with the robot had to be related to the
shared visual scene.

After being recorded, all spoken utterances have been manually seg-
mented one-by-one, and transcribed.

5.6.2 Results

Table 5.1 summarises our experimental results. We focus our analysis on
the WER of our model compared to the baseline – that is, compared to a
class-based trigram model not based on salience.

The table details the WER results obtained by comparing the first recog-
nition hypothesis to the gold standard transcription. Below these results,
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Figure 5.3: Sample visual scene including three objects: a box, a ball, and a
chocolate bar.

Word Error Rate
[WER]:

Classical LM Salience-driven LM

vocabulary size 25.04 % 24.22 %
' 200 words (NBest 3: 20.72 %) (NBest 3: 19.97 %)

vocabulary size 26.68 % 23.85 %
' 400 words (NBest 3: 21.98 %) (NBest 3: 19.97 %)

vocabulary size 28.61 % 23.99 %
' 600 words (NBest 3: 24.59 %) (NBest 3: 20.27 %)

Table 5.1: Comparative results of recognition performance

we also indicate the results obtained with NBest 3 – that is, the results ob-
tained by considering the first three recognition hypotheses (instead of the
first one). The word error rate is then computed as the minimum value of
the word error rates yielded by the three hypotheses2.

2Or to put it slightly differently, the word error rate for NBest 3 is computed by
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5.6.3 Analysis

As the results show, the use of a salience model can enhance the recognition
performance in situated interactions: with a vocabulary of about 600 words,
the WER is indeed reduced by 28.61−23.99

28.61
× 100 = 16.1 % compared to the

baseline. According to the Sign test, the differences for the last two tests
(400 and 600 words) are statistically significant. As we could expect, the
salience-driven approach is especially helpful when operating with a larger
vocabulary, where the expectations provided by the salience model can really
make a difference in the word recognition.

The word error rate remains nevertheless quite high. This is due to several
reasons. The major issue is that the words causing most recognition problems
are – at least in our test suite – function words like prepositions, discourse
markers, connectives, auxiliaries, etc., and not content words. Unfortunately,
the use of function words is usually not context-dependent, and hence not
influenced by salience. By classifying the errors according to the part-of-
speech of the misrecognised word, we estimated that 89 % of the recognition
errors were due to function words. Moreover, our test suite is constituted of
“free speech” interactions, which often include lexical items or grammatical
constructs outside the range of our language model.

5.7 Summary of the chapter

We have presented an implemented model for speech recognition based on
the concept of salience. This salience is defined via visual and linguistic
cues, and is used to compute degrees of lexical activations, which are in turn
applied to dynamically adapt the ASR language model to the robot’s envi-
ronment and dialogue state. The obtained experimental results demonstrate
the effectiveness of our approach.

It is worth noting that the primary role of the context-sensitive ASR
mechanism outlined in this chapter is to establish expectations about uttered
words which are most likely to be heard given the context – that is, to
anticipate what will be uttered. In the next chapter, we move a step further,
and explain how we can also use the context as a discrimination tool to select
the most relevant interpretations of a given utterance.

assuming that, out of the three suggested recognition hypotheses, the one finally selected
is always the one with the minimal error.
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6
Robust Parsing of Spoken Dialogue

We present in this chapter the approach we developed for the robust
parsing of spoken inputs. After a general overview, we start by de-
scribing the grammar relaxation mechanism devised to parse slightly
ill-formed or misrecognised utterances. We then go on to detail the
discriminative model used to select the most likely parses among the
ones allowed by the relaxed grammar. We explain what a discrimina-
tive model is, and how it can be applied to our task. We then describe
the learning algorithm, the training data, and the various features on
which the discriminative model operates. We conclude this chapter
by explaining two interesting extensions of our approach.

Parsing spoken inputs is a notoriously difficult task. The parser must robust parsing
of spoken

inputs
be made robust to both speech recognition errors and ill-formed utterances,
such as those including disfluencies (pauses, speech repairs, repetitions, cor-
rections), ellipsis, fragments, a- or extra-grammatical constructions. Three
broad families of techniques are generally used in the literature to tackle this
problem:

1. The first family includes the large set of shallow or partial parsing shallow
parsingtechniques such as “concept spotting”. In this approach, a small hand-

crafted, task-specific grammar is used to extract specific constituents
and turn these into basic semantic concepts [Dowding et al., 1994; Allen
et al., 1996]. These techniques are usually quite efficient, but are also
highly domain-specific, fragile, and requires a lot of development and
optimisation effort.

2. Statistical approaches are also widely used for robust parsing. They
can take the form of either (1) flat models derived from Hidden Markov
Models [Pieraccini et al., 1992], or (2) structured models relying on
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stochastic parsing [Fine, 1998; Collins, 1997; Charniak, 2001; He and
Young, 2005] . In both cases, the possible parses of a given utterancestochastic

parsing are computed based on the selection of the most probable optimal cover-
age. Pure statistical techniques have the advantage of being inherently
robust, and can be trained automatically with annotated corpus data.
Unfortunately, they are usually unable to deliver deep and detailed
analysis [Rosé and Lavie, 2001], and have a large search space [Carroll
and Briscoe, 1996; Ailomaa, 2004]. And of course, they are only appli-
cable as long as there is available training data (i.e. annotated corpora)
for the task domain.

3. The third family of techniques relies on the controlled relaxationgrammar
relaxation of grammar rules [van Noord et al., 1999; Chanod, 2000]. Contrary

to (pure) stochastic parsing, grammar relaxation approaches are able
to provide deep syntactic analyses. They however require more devel-
opment time to build up the necessary grammatical resources1. The
relaxation mechanism must also be carefully controlled in order to avoid
a combinatory explosion of the number of parses.

The approach we present in this chapter belongs to the latter set of tech-
niques, and contains several new improvements compared to the state of the
art. It is based on a grammar relaxation mechanism coupled with a discrim-
inative model selecting the most appropriate parse(s), a strategy we borrow
from [Zettlemoyer and Collins, 2007]. The approach relies on a hybrid sym-
bolic/statistical architecture and integrates acoustic, semantic, syntactic and
contextual knowledge into a unified model.

The grammar relaxation mechanism is implemented by introducing non-
standards CCG rules that relax certain parts of the grammar, for example
allowing for the insertion of missing words, the treatment of disfluencies, the
combination of distinct discourse units, or the correction of common speech
recognition errors. Grammar relaxation has the potential to significantly in-
crease the grammar coverage, but at a cost: the multiplication of the number
of alternative parses.

A parse selection component (which we implement via a discriminativeparse selection

model) is hence integrated into the system in order to discriminate the correct
parses from the incorrect ones, by “penalising” to a correct extent the relaxed
grammatical analyses2.

1Excepted when these grammatical resources are automatically extracted from corpora,
see e.g. [Zettlemoyer and Collins, 2007]

2See also Raymond and Mooney [2006] concerning discriminative reranking methods
for semantic parsing.
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It is also worth noting that the integration of a parse selection component
has the added advantage of associating an explicit score (or probability) to likelihood

scoreeach parse. This score is a very worthy piece of information on its own,
which can be used in various ways: for instance, it could be applied to
trigger clarification requests, if it appears that no parse has a sufficient score
(compared to a given threshold), or if several parses end up with a (quasi-
)similar score. It can also be used during the incremental parsing to prune
low-probability partial parses from the chart.

The rest of the chapter is as follows. We first present the grammar relax-
ation mechanism. We then proceed with a description of the discriminative
model, detailing its formal properties, the learning algorithm and the asso-
ciated training data. We also describe the set of linguistic and contextual
features on which the model operates. We finally present two possible exten-
sions of our approach.

6.1 Grammar relaxation

Our approach to robust processing of spoken dialogue rests on the idea of
grammar relaxation: the grammatical constraints specified in the gram- grammar

relaxationmar are “relaxed” to handle slightly ill-formed or misrecognised utterances.
Practically, the grammar relaxation is done via the introduction of non-

standard CCG rules [Zettlemoyer and Collins, 2007]. In Combinatory Cate- non-standard
CCG rulesgorial Grammar, rules are used to assemble categories to form larger pieces of

syntactic and semantic structure. The standard rules are application (<,>),
composition (B), and type raising (T) [Steedman and Baldridge, 2009]3.

Using more powerful grammar rules to relax grammatical analysis in pars-
ing tends, however, to increase the number of parses. We hence need a mech-
anism to discriminate among the possible parses - this is precisely the task
of the discriminative model, which we will detail in section 6.2. But we first
describe the non-standard rules we introduced.

6.1.1 New type-shifting rules

Following [Zettlemoyer and Collins, 2007], we introduce two new type-shifting
rules in our grammar. type-shifting

rules

1. Role-hypothesising type-shifting rule:

Imagine we encounter the utterance “put it the box”, which is not parsable
using our CCG grammar. A preposition, presumably ‘in’, is obviously

3See also Wittenburg [1987]; Hoyt and Baldridge [2008] for more advanced rules.
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missing. This kind of phenomena can happen frequently, due for in-
stance to speech recognition errors.

We can specify a new type-shifting rule in our grammar to handle
this phenomena, which we shall call role-hypothesising type-shifting rule
(labeled by TR):

np : @jc⇒ pp : @{i:s} (p ∧ (〈Anchor〉 j ∧ c))
�� ��TR

where p is instantiated by a specific proposition and s a specific onto-
logical sort. They usually represent the semantics of some preposition.

For example, if p← in and s← {where–to}, the rule becomes:

np : @jc⇒ pp : @{i:where–to} (in ∧ (〈Anchor〉 j ∧ c))
�
 �	TR(in)

Figure 6.1 illustrates a parse using the rule TR(in) (unnecessary details
are omitted).

In order to prevent a combinatory explosion in the number of parses,
the rule TR is only instantiated to a small number of prepositions, like
‘in’ or ‘to’ – those which are causing most parsing failures.

2. Null-head type-shifting rule

The second type-shifting rule that we introduce is called the null-head
type-shifting rule. Imagine we want to parse “take the blue in the box”.
Here again, there is a word presumably missing. We can introduce a
new rule TN to avoid this problem:

n\n ∨ n/n : @jc⇒ n : @{j:s} (p ∧ c)
�� ��TN

where p and s are again instantiated to some specific proposition and
ontological sort. These usually represent broad semantic categories, like
a “thing”, an “entity” or a “location”. For example, if we instantiate
s← thing and p← thing, the resulting rule TN(thing) is:

n\n ∨ n/n : @jc⇒ n : @{j:thing} (thing ∧ c))
�
 �	TN(thing)

Figure 6.2 illustrates a successful parse using this rule.
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6.1.2 Paradigmatic heap rules

We also experimented with rules related to the notion of “paradigmatic heap”,
introduced in Chapter 2. Two types of syntactic relations are distinguished:
syntagmatic relations and paradigmatic relations. Syntagmatic constructions
are primarily characterized by hypotactic (i.e. head-dependent) relations be-
tween their constituents, whereas paradigmatic ones do not have such head-
dependent asymmetry. Together, constituents connected by such paradig-
matic relations form what Blanche-Benveniste et al. [1990] calls a “paradig-
matic heap”. A paradigmatic heap is defined as the position in a utterance
where the “syntagmatic unfolding is interrupted”, and the same syntactic
position hence occupied by several linguistic objects. Disfluencies can be
conveniently analysed as paradigmatic heaps.

Let us consider as a motivating example the following utterance (taken
from the Apollo corpus):

(6.1) “it it probably shows up as a bright crater a bright crater on your map”

which can be conveniently analysed with the notion of “paradigmatic
heap”:

(6.2)
it
it probably shows up as a bright crater

a bright crater on your map

The rule TPH is a type-changing rule which allows us to formalise the
concept of paradigmatic heap in terms of a CCG rule, by “piling up” two
constituents on a heap.

A : @ax⇒ A : @cz / A : @by
�� ��TPH

where the formula @cz is defined as:

@{c:heap-units}(heap ∧
(〈first〉 a ∧ x)∧
(〈next〉 b ∧ y))

�� ��6.3

The category A stands for any category for which we want to allow this
piling-up operation.

It is worth noting that in the rule TPH , the associated semantics of all
elements contained in the heap is retained. This is desirable in certain con-
ditions (i.e. when the elements in the heap complement each other), but for
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some disfluencies such as repetitions or corrections, we might want to only
retain the semantic information of the last element, and discard the others4.
An interesting forthcoming work would be to investigate how such distinction
could be implemented in the rule system of a CCG grammar.

6.1.3 Discourse-level composition rules

In natural spoken dialogue, we may encounter utterances containing several
independent “chunks” without any explicit separation (or only a short pause
or a slight change in intonation), such as

(6.4) “ok robot, now take the ball - no, not this one, the other one - take the ball

on your left... okay that’s right, and now put it in the box.”

Even if retrieving a fully structured parse for this utterance is difficult
to achieve, it would be useful to have access to a list of smaller “discourse
units“. Syntactically speaking, a discourse unit can be any type of saturated discourse-level

composition
rules

atomic categories - from a simple discourse marker to a full sentence.
The type raising rule Tdu allows the conversion of atomic categories into

discourse units:
A : @if ⇒ du : @if

�� ��Tdu

where A represents an arbitrary saturated atomic category.
Rule TC then integrates two discourse units into a single structure:

du : @ax⇒ du : @cz / du : @by
�� ��TC

where the formula @cz is defined as:

@{c:d-units}(list ∧
(〈first〉 a ∧ x)∧
(〈next〉 b ∧ y))

�� ��6.5

6.1.4 ASR error correction rules

Speech recognition is a highly error-prone task. It is however possible to
partially alleviate this problem by inserting new error-correction rules error-

correction
rules

(more precisely, new lexical entries) for the most frequently misrecognised
words.

4As pointed out by Jason Baldridge (p.c.), such kind of combination would be analogous
to the combinator K (vacuous abstraction).
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If we notice for instance that the ASR system frequently substitutes the
word ‘wrong’ for the word ‘round’ during the recognition (since they are phono-
logically close to each other), we can introduce a new lexical entry in the
lexicon in order to correct this error:

round ` adj : @attitude(wrong)
�
 �	lex{round}

In total, thirteen new lexical entries of this type have been added to our
lexicon to account for the most frequent recognition errors. The insertion of
these lexical entries has been done manually, by analysing the output of the
speech recogniser in order to detect the most frequent errors.

An interesting extension of our approach for the future would be to in-
vestigate whether this process can be automated and integrated within the
learning algorithm itself. The biggest issue in this case would be to avoid an
explosion of the search space.

6.1.5 Control of grammar relaxation

In order to avoid slowing down the dialogue comprehension system with the
grammar relaxation, we integrated in the parser a simple control mechanism
designed to limit the application of the relaxation rules.

The implemented mechanism is very simple: in each syntactic category
construed by the parser, we keep track of the number of non-standard rules
already applied in the category. If this number is above a given thresh-
old (usually set to a maximum of 1 or 2 applications), we suspend the ap-
plication of any new non-standard rules on this category. Of course, the
constraint percolates from the lower categories to the higher ones enclos-
ing them. This mechanism ensures that the grammar relaxation mechanism
remains tractable. The threshold limiting the number of applications of non-
standard rules can be easily modified, in order to allow for a stronger or
weaker relaxation of the grammatical rules.

6.2 Discriminative models for parse selection

Once all the possible parses for a given utterance are computed, they must be
subsequently filtered or selected in order to retain only the most likely inter-
pretation(s). This is done via a (discriminative) statistical model covering a
large number of features. This task of selecting the most likely interpretation
among a set of possible ones is called parse selection.
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6.2.1 Definition of the task

Formally, the task is defined as a function F : X → Y where the domain X is parse selection

the set of possible inputs (in our case, X is the set of possible word lattices),
and Y the set of parses. We assume:

1. A function GEN(x) which enumerates all possible parses for an input
x. In our case, this function simply represents the set of parses of x
which are admissible according to the CCG grammar.

2. A d -dimensional feature vector f(x, y) ∈ <d, representing specific fea-
tures of the pair (x, y). It can include various acoustic, syntactic, se-
mantic or contextual features which may be relevant in discriminating
the parses according to their likelihood.

3. A parameter vector w ∈ <d.

The function F , mapping a word lattice to its most likely parse, is then
defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y)
�� ��6.6

where wT · f(x, y) is the inner product
∑d

s=1ws fs(x, y), and can be
seen as a measure of the “quality” of the parse. Given the parameters w,
the optimal parse of a given utterance x can be therefore easily determined
by enumerating all the parses generated by the grammar, extracting their
features, computing the inner product wT · f(x, y), and selecting the parse
with the highest score.

The model defined by the parameters w in Equation (6.6) is also called
a linear model, since the score assigned to each parse is computed as a linear linear model

combination of the feature values.
Parse selection is an example of structured classification problem, which structured

classificationis the problem of predicting an output y from an input x, where the output
y has a rich internal structure. In the specific case of parse selection, x is a
word lattice, and y a logical form.

6.2.2 A distribution-free approach

Parameter estimation is the task of setting the parameter values w using the parameter
estimationtraining data as evidence. How can we achieve that? The approach we take

in this thesis is to use a discriminative, distribution-free (i.e. nonparametric)
estimation method, implemented in a simple perceptron algorithm (described
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in the next section). This class of learning algorithms offers several distinctive
advantages over the usual parametric techniques, which we shall now briefly
discuss.

Let us assume a general framework for supervised learning, with an input
domain X and an output domain Y , where the task is to learn the mapping
between X and Y based on a set of training examples. Two broad family of
approaches are then conceivable5:

• Parametric models attempt to solve the supervised learning problemparametric
models by explicitly modeling either the joint distribution D(x, y), or the

conditional distributions D(y|x) for all variables x. The crucial as-
sumption is that there is some set of parameters Θ∗ ∈ Ω such that
D(x, y) = P (x, y|Θ∗). In other words, we assume that D(x, y) is a
member of the set of distributions under consideration.

Provided we have a training set {(x1, y1), ...(xm, ym)} drawn fromD(x, y),
a common estimation method is to set the parameters to the maximum-maximum-

likelihood
estimation

likelihood estimates, Θ̂ = argmaxΘ∈Ω logP (xi, yi|Θ).

Maximum-likelihood estimation on parametric models must operate
under quite strong assumptions – the most important one being that
the structure of the statistical process generating the data is known.
For instance, maximum-likelihood estimation for PCFGs is justified
provided that the data was actually generated by a PCFG.

• Distribution-free methods, on the other hand, work on the weaker as-distribution-
free

methods
sumption that training and test examples are generated from the same
distribution, but that the form of the distribution is unknown. These
methods eschew the explicit modeling of the underlying distribution
over all variables, and instead attempt to compute the mapping be-
tween input and output directly.

Let’s assume a loss function L(y, ŷ) expressing the cost of proposing an
output ŷ when the “true” output is y. A commonly used cost is the 0-1
loss L(y, ŷ) = 0 if y = ŷ and L(y, ŷ) = 1 otherwise. Given a hypothesis
function h mapping elements from X to Y , its expected loss is defined
as:

Er(h) =
∑
x,y

D(x, y)L(y, h(x))
�� ��6.7

5The rest of the discussion is borrowed from [Collins, 2004].
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Er(h) is a measure of how successful the function h is. Unfortunately,
we cannot explicitly calculate the expected loss of a hypothesis, since
we do not have a direct access to the distribution D(x, y), Using a
training set of m pairs {(x1, y1), ...(xm, ym)} – which are assumed to
be drawn from D(x, y) –, the empirical loss of the function h on the
training sample is then defined as

Êr(h) =
1

m

∑
i

L(yi, h(xi))
�� ��6.8

The basic idea of distribution-free methods is to perform the parameter
estimation directly from data so that its empirical loss is minimized
[Vapnik, 1998].

ĥ = argmin
h∈H

Êr(h) = argmin
h∈H

1

m

∑
i

L(yi, h(xi))
�� ��6.9

where ĥ is the chosen hypothesis for the mapping between X and Y .

The minimisation of the empirical loss is usually translated into the min-
imisation of an error margin in some high-dimensional space.

The perceptron algorithm that we present in the next section is an in-
stance of such distribution-free methods. The algorithm is mathematically
very elegant, and is able to deliver impressive experimental results. The theo-
retical underpinning of the approach in statistical learning theory is discussed
at length in [Vapnik, 1998; Collins, 2004].

6.3 Learning

6.3.1 Training data

In order to estimate the parameters w, we need a set of training examples.
Unfortunately, no corpus of situated dialogue adapted to our task domain
is available to this day, let alone semantically annotated. The strategy we
followed was therefore to extend the small domain-specific grammar described
in section 5.5.1, in order to generate automatically a set of training examples.

Practically, we first collected a small set of WoZ data, totalling about a
thousand utterances. Based on it, we designed a domain-specific context-
free grammar able to cover most of the utterances. Each rule is associated
to a semantic HLDS representation. Weights are automatically assigned to
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each grammar rule by parsing our initial corpus, hence leading to a small
stochastic context-free grammar augmented with semantic information.stochastic

context-free
grammar

Once the grammar is specified, it is randomly traversed a large number
of times, resulting in a large set (about 25.000) of utterances along with
their semantic representations. Since we are interested in handling errors
arising from speech recognition, we also need to “simulate” the most frequent
recognition errors. To this end, we synthesise each string generated by the
domain-specific CFG grammar, using a text-to-speech engine6, feed the audio
stream to the speech recogniser, and retrieve the recognition result. Via this
technique, we are able to easily collect a large amount of training data.

Note that, instead of annotating entire derivations, we only specify the
resulting semantics of the utterance, i.e. its logical form. The training data is
thus represented by a set of examples (xi, zi), where xi is an utterance and zi
is a HLDS formula. For a given training example (xi, zi), there may be several
possible CCG parses which lead to the same semantics zi. The estimation of
the parameters based on the set of examples (xi, zi) can therefore be seen as
a hidden-variable problem , where the training examples contain only partialhidden-

variable
problem

information.
The context-specific grammar used to generate the training data is de-

scribed in more detail in Appendix C.

6.3.2 Averaged perceptron

The algorithm we use to estimate the parameters w using the training data
is a perceptron. The algorithm is fully online - it visits each example inperceptron

turn and updates w if necessary. Albeit simple, the algorithm has proven
to be very efficient and accurate for the task of parse selection [Collins and
Roark, 2004; Collins, 2004; Zettlemoyer and Collins, 2005, 2007].

The pseudo-code for the online learning algorithm is detailed in [Algo-
rithm 1].

It works as follows: the parameters w are first initialised to some arbitrary
values. Then, for each pair (xi, zi) in the training set, the algorithm searches
for the parse y′ with the highest score according to the current model. If
this parse happens to match the best parse which generates zi (which we
shall denote y∗), we move to the next example. Else, we perform a simple
perceptron update on the parameters:

w = w + f(xi, y
∗)− f(xi, y

′)
�� ��6.10

The iteration on the training set is repeated T times, or until convergence.

6We used MARY (http://mary.dfki.de) for the text-to-speech engine.
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Note that the most expensive step in this algorithm is the calculation of
y′ = argmaxy∈GEN(xi)

wT · f(xi, y) - this is the decoding problem.
It is possible to prove that, provided the training set (xi, zi) is separable

with margin δ > 0, the algorithm is assured to converge after a finite number
of iterations to a model with zero training errors [Collins and Roark, 2004].
See also [Collins, 2004] for convergence theorems and proofs.

Following [Collins, 2002], we compute the average of the parameters once
the learning is complete. Let wt

i be the parameter vector after the ith ex-
ample on the t pass through the data. Then the averaged parameter vector
is

waverage =
T∑
t=1

n∑
i=1

wt
i

nT

�� ��6.11

This averaging method was shown to give substantial improvements in
accuracy [Collins, 2002].

6.3.3 Decoding

The decoding operation is the search for the most likely parse y∗ for the word decoding

lattice x:

y∗ = argmax
y∈GEN(x)

wT · f(x, y)
�� ��6.12

This operation is computationally expensive since the set of possible
parses GEN(x) can grow exponentially with the length of x. The gram-
matical constraints specified in the CCG grammar can substantially reduce
the size of GEN(x), but for ambiguous or complicated sentences, we may
still end up with hundreds of different parses.

Some approaches (e.g. Zettlemoyer and Collins [2005]) use a beam-search
algorithm to compute the value of (6.12). Beam search, like other dynamic
programming techniques, requires the features f(x, y) to be strictly local,
which is not the case for many of our features. For instance, the adequacy
of an hypothesised dialogue move relative to the discourse context is a global
feature of the whole utterance, not of a single word. This is also the case for
the dependency relations included in the semantic features.

We therefore need to find other ways to implement the computations
in (6.12) efficiently. This is where the packed logical form representation
incorporated in our architecture proves to be extremely helpful. Instead of
computing the feature vector f(x, y) for each parse y separately, we take
advantage of the efficient “information packaging” provided by the packed
logical form, and compute the semantic features directly on this structure.
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Algorithm 1 Online perceptron learning

Require: - Examples is a set of n training examples {(xi, zi) : i = 1...n}
- T is the number of iterations over the training set
- GEN(x) is a function enumerating all possible parses for an

input x, according to the CCG grammar.
- GEN(x, z) is a function enumerating all possible parses for an

input x and which has semantics z, according to the CCG grammar.
- L(y) maps a parse tree y to its associated logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1...T do

for i = 1...n do

% Compute best parse according to current model
Let y′ = argmaxy∈GEN(xi) w

T · f(xi, y)

% If the decoded parse 6= expected parse, update the parameters
if L(y′) 6= zi then

% Search the best parse for utterance xi with semantics zi
Let y∗ = argmaxy∈GEN(xi,zi) w

T · f(xi, y)

% Update parameter vector w
Set w = w + f(xi, y∗)− f(xi, y′)

% Record current values of w
Set wt

i = w
end if

end for
end for

% Compute average and return the learned parameters
w =

∑T
t=1

∑n
i=1

wt
i

nT

return parameter vector w
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All the semantic features f(x, y) are therefore computed directly, in one pass,
by traversing the packed representation.

6.4 Features

As we have seen, the parse selection operates by enumerating the possible
parses and selecting the one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on the selection of “good”
features f(x, y) for our model - that is, features which help discriminating features of the

discriminative
model

the parses. They must also be relatively cheap to compute. In our model, the
features are of four types: semantic features, syntactic features, contextual
features, and speech recognition features.

6.4.1 Semantic features

What are the substructures of a logical form which can be relevant to discrim-
inate the parses? A logical form (a typical example is illustrated in Figure
6.3) being essentially defined as a set of nominals connected by dependency
relations, we can define features on these information sources: semantic

features

Figure 6.3: Graphical representation of the logical form for “I want you to
take the mug” (the full HLDS formula is presented in 4.6).
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1. Nominals : for each possible pair 〈prop, sort〉, we include a feature fi
in f(x, y) counting the number of nominals with ontological sort sort
and proposition prop in the logical form.

2. Ontological sorts : features counting the occurrences of specific ontolog-
ical sorts in the logical form.

3. Dependency relations : following [Clark and Curran, 2003], we also
model the dependency structure of the logical form. Each dependency
relation is defined as a triple 〈sorta, sortb, label〉, where sorta denotes
the ontological sort of the incoming nominal, sortb the sort of the out-
going nominal, and label is the relation label.

4. Sequences of dependency relations : We also count the number of oc-
currences of particular sequences (i.e. bigram counts) of dependency
relations.

5. Existence of at least one well-formed parse: Finally, we also include
a feature specifying whether the utterance is parsable or not (i.e. if
it generates at least one well-formed parse). The objective here is to
favour the recognition hypotheses which are parsable over those who
are not.

The features on nominals and ontological sorts aim at modeling (aspects
of) lexical semantics - e.g. which meanings are the most frequent for a given
word -, whereas the features on relations and sequence of relations focus on
sentential semantics - which dependencies are the most frequent.

In other words, these features help us handle lexical and syntactic ambiguities.ambiguities

6.4.2 Syntactic features

By “syntactic features”, we mean features associated to the derivational
history of a specific parse. The main use of these features is to penalisederivational

history to a correct extent the application of the non-standard rules introduced into
the grammar.

pick
s/particle/np

cup
up corr

particle

s/np
>

the
np/n

ball
n

np >

s >

Figure 6.4: CCG derivation of “pick cup the ball”.
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In order to achieve that, we include in the feature vector f(x, y) a newsyntactic
features feature for each non-standard rule, which counts the number of times the

rule was applied in the parse.

take
s/np

the
np/n

ball
n

np >

np/np
TPH

the
np/n

red
n/n

ball
n

n >

np >

np >

s >

Figure 6.5: CCG derivation for the utterance “take the ball the red ball”,
containing a self-correction.

In the derivation shown in the Figure 6.4, the rule corr (correction of a
speech recognition error) is applied once, so the corresponding feature value
is set to 1. The feature values for the remaining rules are set to 0, since they
are absent from the parse. The Figure 6.5 illustrates another example where
the rule TPH is used.

These syntactic features can be seen as a penalty given to the parses
using these non-standard rules, thereby giving a preference to the “normal”
parses over them. This mechanism ensures that the grammar relaxation is
only applied “as a last resort” when the usual grammatical analysis fails
to provide a full parse. Of course, depending on the relative frequency of
occurrence of these rules in the training corpus, some of them will be more
strongly penalised than others.

6.4.3 Contextual features

One striking characteristic of spoken dialogue is the importance of context.
A good understanding the visual and discourse contexts is crucial to resolve
potential ambiguities and compute the most likely interpretation(s) of a given
utterance.

The feature vector f(x, y) therefore includes various features related to contextual
featuresthe context:

1. Activated words : our dialogue system maintains in its working memory
a list of contextually activated words (cfr. [Lison and Kruijff, 2008] contextually

activated
words

and Chapter 5). This list is continuously updated as the dialogue and
the environment evolves. For each context-dependent word, we include
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one feature counting the number of times it appears in the utterance
string7.

2. Expected dialogue moves : for each possible dialogue move, we include
one feature indicating if the dialogue move is consistent with the current
discourse model. These features ensure for instance that the dialogue
move following a QuestionYN is a Accept, Reject or another question
(e.g. for clarification requests), but almost never an Opening.

3. Expected syntactic categories : for each atomic syntactic category in
the CCG grammar, we include one feature indicating if the category is
consistent with the current discourse model8.

It is worth noting that, since the generated training data does not con-
tain per se any contextual annotation, the values for the parameter weights
associated with the contextual features are set at a fixed constant value for
each activated word.

6.4.4 Speech recognition features

Finally, the feature vector f(x, y) also includes features related to the speech
recognition. The ASR module outputs a set of (partial) recognition hypothe-
ses, packed in a word lattice. One example of such structure is given in
Figure 6.6.speech

recognition
features

Figure 6.6: Example of a word recognition lattice

Each recognition hypothesis is provided with an associated confidence
score, and we want to favour the hypotheses with a high confidence score,

7Note that this feature is only useful for parsing the word lattice produced by the speech
recognition- it has obviously no use when parsing a single utterance, since all the parses
share the same string.

8These features can be used to handle sentence fragments, for instance when the full
utterance is cut in half by a pause. As an example, imagine a speaker saying “Now give
me ...”, stopping a few seconds, and then finishing his sentence by “the red ball”. In this
case, the first part of the utterance waits for an np. When analysing the second part of
the utterance, the parses resulting in a np will therefore be preferred.
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which are, according to the statistical models incorporated in the ASR, more
likely to reflect what was uttered.

To this end, we introduce three features:

1. Acoustic confidence score: this feature simply indicates the confidence confidence
scoresscore given by the ASR module (domain ∈ <);

2. Semantic confidence score: our ASR system additionally provides a
semantic confidence score which we also use for parse selection;

3. ASR ranking : finally, we also include information about the hypothesis
rank (from best to worst) in the word lattice.

The parameters weights for the three speech recognition features de-
scribed above are set using regression tests.

6.5 Additional extensions

There are two possible extensions of our approach which are not (yet) imple-
mented in the dialogue system, but are worth describing in some detail. The
first one is the integration of the discriminative model into the incremental
parser, as a tool for chart scoring (and early update during training). The
second extension pertains to the learning algorithm: it might be interesting
to see if we can improve our results by replacing the perceptron algorithm
with more powerful techniques such as Max-margin classifiers.

6.5.1 Incremental parse selection

The first possible extension of our approach is to make our system fully
incremental.

Chart scoring

As we explained in section 6.3.3, the decoding algorithm cannot rely directly
on dynamic programming techniques, since our features are not strictly local.
But we can take advantage of the incremental nature of the CCG parser to
achieve a similar search space reduction.

Indeed, it is possible to use parse selection not only as a post-parsing
step, but also as a chart scorer during the incremental parsing. After each chart scoring

incremental step, the parse selection component can be applied to remove
the partial parses with a low probability from the chart, thereby ensuring
that the size of GEN(x) remains bounded.
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Type Feature description

Semantic features

- Occurrences of specific nominals

- Occurrences of specific ontological sorts

- Occurrences of specific dependency rela-
tions

- Occurrences of specific sequences (bigrams)
of dependency relations

- Existence of at least one well-formed parse

Syntactic features - Use of non-standard CCG rules

Contextual features

- Occurrences of contextually activated words

- Coherence with expected dialogue moves

- Coherence with expected syntactic cate-
gories

Speech recognition
features

- Acoustic confidence score

- Semantic confidence score

- Rank

Table 6.1: Summary of the features f(x, y)
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Collins and Roark [2004] use the following technique to filter the low-
probability parses: Let pk be the kth ranked parse (from best to worst) in
GENi(x) - which is the set of possible parses of x at incremental step i.
Then pk will be discarded from the packed chart if wT · f(x, pk) < θk, with
the threshold θk being defined as

θk = wT · f(x, p0)− γ

k3

�� ��6.13

where γ is a parameter controlling the “strength” of the filtering.
An incremental chart scoring algorithm based on parse selection has been

implemented in our cognitive architecture, and is presented in detail in Lison
[2009]. Evaluation results on the Wizard-of-Oz test suite notably demon-
strate significant improvements in parsing time

Early update during training

The training algorithm can also be made incremental. Let (xi, zi) be an early update

arbitrary training example, where xi is an utterance and zi the expected
logical form. And let y∗i = argmaxy∈GEN(xi,zi)

wT · f(xi, y) denote the best
parse which can generate the logical form zi, i.e. the “gold standard” parse9.

Once the parse y∗i is found, we can easily derive a set of partial parses
from it. We define y∗i(k) to be the “gold standard” partial parse of the training

example (xi, zi) at step k (i.e when parsing the first k words of utterance xi).
In [Algorithm 1], the parameter update is done by directly applying

the decoding algorithm on the full utterance xi and comparing the selected
parse y′ to the gold standard parse y∗. The whole update process can be made
incremental by a simple modification of the algorithm: instead of parsing the
full utterance xi in one pass, we parse it incrementally, and at each step k
we compare the partial parse y′(k) selected according to the current model to
the gold standard partial parse y∗(k).

If it appears that these two partial parses do not match, we exit the
parsing process for the whole utterance, and perform the parameter update
based on the partial parses:

w = w + f(xi, y
∗
(k))− f(xi, y

′
(k))

�� ��6.14

This simple modification has been shown to significantly improve the
accuracy of the learning algorithm [Collins and Roark, 2004]. The motivation
behind it is very intuitive: when an error in parse selection has been made, it
makes sense to correct the parameters at the point where the error has been

9see [Algorithm 1] for details.
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made rather than on the full parses. It can also increase the efficiency of
the algorithm since we do not necessarily have to parse the full utterance for
each iteration.

6.5.2 Max-margin classifier (SVM)

We should also consider the use of more sophisticated learning algorithms in-Max-margin
classifier stead of a simple perceptron. A Max-margin classifier – otherwise known

as a Support Vector Machine [SVM] – could be an interesting solution. HereSupport
Vector

Machine
is how the learning problem should be formulated in our case (see also Collins
[2004] for details).

Given parameter values w, the distance between an arbitrary parse y and
the correct parse yi for the ith training example is

Mi,y = wT · f(xi, yi)−wT · f(xi, y)
�� ��6.15

with yi = arg maxy∈GEN(xi,zi)
wT · f(xi, y). SVM learning is based on the

idea of margin maximisation. For a given example (xi, yi) and a parameter
vector w, the margin is defined as the distance between the first best parse
yi and the second best one:

γiw =
1

||w||

[
wT · f(xi, yi)− max

y∈GEN(x),y 6=yi

wT · f(xi, y)

] �� ��6.16

The margin therefore represents the normalised distance between the best
parse and the “second best parse” for a given utterance.

On the entire training set, the margin γw is defined as

γw = min
i
γiw

�� ��6.17

If the data is separable (i.e. there exists at least one w where γw > 0),
the best classifier is the one which maximises the margin between the “good
parse” and the others:

w∗ = argmax
w∈<d

γw

�� ��6.18

The method involves solving the following constrained optimisation prob-
lem in order to determine w∗:

Minimise

||w||2 − C
n∑
i=1

εi
�� ��6.19
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with respect to w, εi for i = 1...n
under the constraints

∀i, ∀y 6= yi, Mi,y ≥ 1− εi
�� ��6.20

∀i, εi ≥ 0
�� ��6.21

where εi are slack variables.
For the perceptron, SVMs, and conditional random fields, the final pa-

rameter values can be expressed using the dual variables αi,y:

w =
n∑
i=1

∑
y∈GEN(x)

αi,y [f(xi, yi)− f(xi, y)]
�� ��6.22

In order to train the SVM, the dual variables are set to initial values and
then gradually updated on basis of the training examples. The update rule
is:

∀i, y, α′i,y =
αi,ye

η5i,y∑
y αi,ye

η5i,y

�� ��6.23

where

η is the learning rate

5i,y = 0 for y = yi

5i,y = 1−Mi,y for y 6= yi.

6.6 Summary of the chapter

In this chapter, we detailed our approach to robust parsing of spoken inputs.
We first gave a short overview of the state-of-the-art techniques used in this
domain. These can be classified in three groups: shallow parsing techniques,
pure statistical approaches, and controlled relaxation. Our approach belongs
to the latter set of techniques. It relies on a grammar relaxation mechanism
coupled with a discriminative model selecting the most appropriate interpre-
tations, according to a set of linguistic and contextual features.

In the first section, we explained how the grammar relaxation mechanism
precisely works. Four groups of non-standard rules have been added to the
CCG parser: new type-shifting rules, paradigmatic heap rules, discourse-level
composition rules, and ASR correction rules.

We then detailed the formal properties of the discriminative model used
for parse selection. Based on a parameter vector, the model assigns a score to
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each interpretation according to the value of its features. The interpretation
with the highest score is then selected. We outlined the learning algorithm
(an averaged perceptron), the training data on which it operates, and dis-
cussed some technicalities regarding the decoding operation.

We presented the various linguistic and contextual features which have
been integrated into our discriminative model. They are of four different
sorts: semantic features (defined on the substructures of the logical form);
syntactic features (defined on the derivational history of the parse); contextual
features (defined on the situated and dialogue contexts), and finally speech
recognition features (defined on ASR scores).

In the last section, we discussed two possible extensions of our approach,
one pertaining to the incrementality of the parsing process (how can we use
the discriminative model during parsing to prune unlikely interpretations),
and the other pertaining to the learning algorithm (how can we replace the
perceptron by a max-margin classifier).

In the next chapter, we present the experimental results of our approach.
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Part III

Evaluation & Conclusion
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7
Evaluation

This chapter presents the evaluation results of our approach to ro-
bust processing of spoken dialogue. We start by describing the testing
data, collected during Wizard-of-Oz experiments. We then present
the evaluation procedure, explain the type of quantitative results we
extracted (exact-match, partial-match and word error rate), give de-
tailed figures for each of them, and close the chapter by a discussion
of the results.

7.1 Testing data

The test suite is composed of 195 individual utterances collected during
Wizard-of-Oz experiments1. These experiments consist of a set of sit- Wizard-of-Oz

experimentsuated human-robot interactions relative to a shared visual scene. A total
of seven such experiments were conducted, all with members of the CoSy
research team. The interactions were free both in form and content – they
could include questions, assertions, commands, answers or clarifications. The
only imposed constraint was to interact with the robot about the visual scene
(and nothing else). All the interactions were done in English2.

The scene included objects of various sizes, shapes and colors. The
robot (simulated by a human being) was able to recognise these objects,
talk about their properties, ask questions regarding what it did not know,
and grasp/move the objects within the scene.

All these interactions were recorded with a headset microphone. The
audio data resulting from these experiments were subsequently segmented

1These 195 utterances are distinct from the 250 utterances used for the experiments
regarding situated speech recognition (cfr. Chapter 5).

2It should be noted that six out of the seven interactions were conducted with non-
native English speakers, hence complicating the task of speech recognition.
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utterance-by-utterance. Each speech segment was then manually transcribed,
and associated with a semantic annotation (its “gold standard” logical form).
The semantic annotation was realised semi-automatically, using the domain-
specific grammar described in Appendix C to provide an initial annotation,
which was then manually corrected.

7.2 Evaluation procedure

Once the preparation of the testing data was complete, we started the eval-
uation procedure, which followed these steps (illustrated in Figure 7.1):

1 The audio data corresponding to each utterance is sent to the dialogue
comprehension system.

2 The speech recogniser computes a set of recognition hypotheses (“NBests”)
and sends the resulting word lattice to the incremental parser;

3 The incremental parser takes the word lattice as input, parses it, and
outputs a packed logical form;

4 The discriminative model is then applied to the packed logical form,
and assigns a score to each interpretation;

5 The interpretation with the highest score is selected, and is compared
to the desired interpretation (i.e. the one manually specified in the
semantic annotation for the utterance).

6 Three quantitative results are then extracted from this comparison:
exact-match, partial-match, and word error rate.

7 The above procedure is repeated for each utterance included in the test
suite.

7.3 Types of quantitative results

Three types of quantitative results are extracted from the evaluation output
(see also Collins [2003] for more details on possible measures):

1. Exact-match: does the selected logical form match exactly the ex-exact-match

pected “gold standard” logical form? By “exactly”, we mean that
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Figure 7.1: Simplified evaluation workflow

there must exist a one-to-one relation between each substructure3 of
the logical forms (modulo variable renaming). If the match is perfect,
the exact-match result for this utterance is set to 1, and 0 otherwise.

2. Partial-match: how many substructures of the chosen logical form partial-match

are matching substructures of the expected logical form? To get the
partial-match result for the utterance, we count the number of sub-
structure matches, and then divide the result by the total number of
substructures in the logical form.

3. Word error rate: we compare the phonological string which produced Word error
ratethe interpretation to the original utterance from the transcript (i.e.

without speech recognition errors), and derive the word error rate from
it. The word error rate is defined as:

WER =
S +D + I

N

�� ��7.1

where S is the number of substitutions, D is the number of the dele-
tions, I is the number of the insertions, and N is the total number of
words in the original utterance.

3The substructures of a logical form are defined to be either (1) a nominal, (2) a
dependency relation between nominals, or (3) a feature included in a nominal.
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For the exact- and partial-match results, we give the precision, recall,
and F1-measure. Their values are defined in terms of true positives (TP),
false positives (FP) and false negatives (FN). For our task, these are simple
counts:

TP = #utterances correctly matched
�� ��7.2

FP = #utterances incorrectly matched
�� ��7.3

FN = #utterances with no computed interpretation
�� ��7.4

The precision, recall and F1 measure are then computed on these counts:

precision =
TP

TP + FP

�� ��7.5

recall =
TP

TP + FN

�� ��7.6

F1 = 2× (precision× recall)

precision + recall

�� ��7.7

7.4 Quantitative results

The Tables 7.1, 7.2 and 7.3 present our quantitative results. These tables
only show the most important values, see Appendix B for all details.

We ran the entire test suite over each possible combination of activated
features and grammar relaxation, and repeated the operation for NBest 1, 3,
5, and 10. Only NBest 1 and 5 are shown in the tables 7.1 and 7.2.

Each line shown in the tables corresponds to a possible configuration. For
each configuration, we analyse the accuracy results on different NBests, and
give the precision, recall and F1 value for each.

The first cell of the first line corresponds to the baseline: no grammar
relaxation, no activated features, and use of the first NBest recognition hy-
pothesis. The last line corresponds to the final results with all features,
combined with the grammar relaxation mechanism.

Two elements are worth noticing in these results:

1. In each of the three tables, we observe that no configuration is able to
beat the results obtained with all activated features. In other words,
it shows that all features types are playing a positive role on the task,
they all “play their part”.
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2. Likewise, we observe that taking into account more ASR recognition
hypotheses has a positive effect on the results: the results obtained
using ten recognition hypotheses are substantially better than those
obtained based only on the first hypothesis.

7.4.1 Comparison with baseline

Here are the comparative results we obtained:

• Regarding the exact-match accuracy results, the difference between the
baseline results and the results with our approach (grammar relaxation
and all features activated for NBest 5) is striking: the F1-measure
climbs from 43.0 % to 66.9 %, which means a relative difference of
55.6 %.

• For the partial-match, the F1-measure goes from 68.0 % for the baseline
to 86.8 % for our approach – a relative increase of 27.6 %.

• Finally, the decrease in Word Error Rate is also worth noting: we
go from 20.5 % for the baseline to 15.7 % with our approach. The
difference is statistically significant (p-value for t-tests is 0.036), and
the relative decrease is of 23.4 %.
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Gram. Activated Features Nbest 1 Nbest 5
Relax. Sem. Synt. Ac. Cont. Pr. R. F1 Pr. R. F1

40.9 45.2 43.0 14.4 13.9 14.2
× 35.2 41.5 38.1 28.8 31.8 30.2

× 42.8 46.3 44.5 38.1 47.1 42.2
× × 41.9 45.8 43.7 43.1 49.4 46.0

× 59.0 54.3 56.6 30.3 51.3 38.1
× × 59.0 54.3 56.6 35.2 55.1 43.0
× × 59.0 54.3 56.6 58.3 65.4 61.6
× × × 59.0 54.3 56.6 60.8 66.3 63.4

× 20.9 49.0 29.3 10.7 34.1 16.3
× × 20.9 49.0 29.3 12.1 39.0 18.4
× × 27.1 55.5 36.4 27.3 54.6 36.4
× × × 21.7 50.0 30.2 27.9 56.2 37.3
× × 34.1 61.1 43.7 21.0 39.6 27.4
× × × 30.2 58.2 39.7 21.9 44.2 29.3
× × × 34.1 61.1 43.7 32.8 59.1 42.2
× × × × 32.5 60.0 42.2 32.5 60.0 42.2
× × 49.6 69.5 57.9 28.9 77.7 42.2
× × × 49.6 69.5 57.9 31.0 78.9 44.5
× × × 49.6 69.5 57.9 52.1 83.1 64.0
× × × × 49.6 69.5 57.9 53.1 84.4 65.2
× × × 52.7 70.8 60.4 29.6 78.1 43.0
× × × × 52.7 70.8 60.4 31.7 79.3 45.3
× × × × 52.7 70.8 60.4 54.6 82.7 65.8
× × × × × 52.7 70.8 60.4 55.6 84.0 66.9

Table 7.1: Exact-match accuracy results, broken down by activated features,
use of grammar relaxation, and number of recognition hypotheses considered.
For each configuration, we give the precision, recall, and F1 value. This is a
reduced table, see Table B.1 for details.

Gram. Activated Features Nbest 1 Nbest 5
Relax. Sem. Synt. Ac. Cont. Pr. R. F1 Pr. R. F1

86.2 56.2 68.0 73.5 45.8 56.4
× 85.5 56.0 67.7 81.3 54.2 65.1

× 86.8 56.4 68.3 84.3 60.4 70.4
× × 86.2 56.2 68.1 85.4 60.4 70.7

× 90.5 57.4 70.3 80.1 66.4 72.6
× × 90.5 57.4 70.3 83.3 67.2 74.4
× × 90.5 57.4 70.3 88.9 67.1 76.4
× × × 90.5 57.4 70.3 89.5 67.2 76.8

× 75.7 73.3 74.5 71.4 81.9 76.3
× × 73.7 72.8 73.2 71.7 78.7 75.1
× × 75.3 73.2 74.2 74.6 73.1 73.8
× × × 72.7 72.5 72.6 74.6 74.1 74.4
× × 80.9 74.6 77.6 76.2 72.1 74.1
× × × 80.2 74.4 77.2 78.7 76.2 77.4
× × × 80.8 74.6 77.6 80.3 74.5 77.3
× × × × 80.4 74.5 77.3 80.3 75.5 77.8
× × 86.5 75.8 80.8 80.7 88.4 84.4
× × × 86.5 75.8 80.8 80.0 88.3 84.0
× × × 86.5 75.8 80.8 86.2 86.7 86.4
× × × × 86.5 75.8 80.8 86.3 87.2 86.8
× × × 88.1 76.2 81.7 79.3 88.2 83.5
× × × × 88.1 76.2 81.7 81.7 88.5 85.0
× × × × 88.1 76.2 81.7 87.5 85.4 86.4
× × × × × 88.1 76.2 81.7 87.6 86.0 86.8

Table 7.2: Partial-match accuracy results, broken down by activated features,
use of grammar relaxation, and number of recognition hypotheses considered.
For each configuration, we give the precision, recall, and F1 value. This is a
reduced table, see Table B.2 for details.
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Gram. Activated Features Nbest 1 Nbest 3 Nbest 5 Nbest 10
Relax. Sem. Synt. Ac. Cont.

20.5 26.9 29.7 25.9
× 20.5 23.6 24.6 28.0

× 20.5 19.7 19.6 19.7
× × 20.5 18.7 18.2 18.3

× 20.5 24.6 25.6 31.2
× × 20.5 21.4 23.2 26.1
× × 20.5 18.3 18.4 18.1
× × × 20.5 17.3 17.4 17.4

× 19.6 23.6 25.9 23.9
× × 19.3 20.4 23.3 26.7
× × 19.7 18.6 18.4 19.3
× × × 19.4 18.0 17.6 17.7
× × 19.4 24.6 26.9 27.9
× × × 19.4 22.2 23.9 28.1
× × × 19.4 18.8 18.7 18.8
× × × × 19.4 17.8 17.3 17.4
× × 20.2 22.4 25.5 29.4
× × × 20.2 21.0 22.9 26.1
× × × 20.2 17.8 17.8 17.8
× × × × 20.2 17.4 17.1 17.1
× × × 19.4 21.5 24.3 28.7
× × × × 19.4 19.8 21.9 25.9
× × × × 19.4 16.8 16.7 16.7
× × × × × 19.4 16.5 15.7 15.7

Table 7.3: Word Error Rate results, broken down by activated features, use
of grammar relaxation, and number of recognition hypotheses considered.
For each configuration, we give the word error rate, in percents. This is a
reduced table, see Table B.3 for details.

Figure 7.2: Word error rate, broken down by activated features (graphical
illustration of Table 7.3).
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7.5 Discussion of results

The analysis of the parse selection output is interesting in many respects.
Here are a few lessons we learned from our evaluation:

• The first lesson we learned is the importance of tuning the ASR system
correctly4. The initial results we obtained for our approach were done
with a non-optimised ASR system, yielding a word error rate of over
30 %. When we applied our robust parsing system to this data set, we
realised that the comparative results were far below our expectations.

Upon analysing the output in detail, it appeared that the primary
reason was the very low accuracy of the ASR recognition hypotheses.
In many cases, the recognition hypotheses were completely “off the
mark” compared to what was uttered. As a result, the parse selection
module could not function properly because the given input was too
noisy to be of any practical use.

The grammar relaxation mechanism and the discriminative model can
only be effective if, for a given utterance, its “gold standard” tran-
scription and its actual recognition hypotheses bear at least some re-
semblance with each other. If the word lattice input contains only
non-sensical data, we should not be surprised to see the robust parsing
system fail to provide a sensical interpretation. As the famous com-
puter science axiom says: “Garbage In, Garbage Out”.

• The second, related lesson we can derive from our evaluation is that, in
practical spoken dialogue systems, speech recognition errors largely out-
weight all other issues (ill-formed inputs, syntactic ambiguities, etc.).
The non-standard rules which proved to be most useful were – by far
– the ASR correction rules. The type-shifting rules turned out to be
only marginally useful, not because the spoken language phenomena
they sought to handle were absent from the testing data (to the con-
trary), but because they were overshadowed by the pervasiveness of
speech recognition errors.

• While experimenting with our robust parsing model, we realised that
the correct calibration of the grammar relaxation mechanism was abso-
lutely crucial to maintain a reasonable computational efficiency. Some
of the non-standard combinatory rules we introduced (such as the

4ASR software such as Nuance usually come with a large set of technical parameters
which have to be tuned, such as the relative weights of the acoustic and language models,
pruning thresholds, activation of noise cancellation, etc.
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“paradigmatic heap” rules) turned out to be “overkill” on our eval-
uation test suite: they significantly slowed down processing (due to
a large increase in the search space) while contributing minimally to
the interpretation. Most of the type-shifting rules and paradigmatic
heap rules were therefore deactivated when computationally expensive
experiments had to be performed.

• Most importantly, the evaluation results demonstrate the adequacy of
our approach to robust parsing. In the introductory chapter, we out-
lined three essential characteristics of our approach. Let us recapitulate
them briefly, and compare our design choices to the experimental re-
sults we obtained:

1. Our system is based on a hybrid symbolic/statistical approach,
combining a grammar relaxation mechanism to a statistical dis-
criminative model. As the evaluation results show, this strategy
turned out to be highly successful: we are able to achieve very
significant increases in both precision and recall, while retaining
a deep, fined-grained linguistic analysis.

2. The second defining characteristic of our approach is its high level
of integration. Here again, the results speak for themselves: we
observe that all the features (semantic, syntactic, acoustic or con-
textual) play a positive role in discriminating the correct interpre-
tations from the incorrect ones. And the highest result is achieved
when all these features are activated.

3. Finally, we designed our system to be context-sensitive. And this
strategy also turned out to be a fruitful one. Contextual knowl-
edge is able to significantly improve the accuracy of our results,
by filtering out the ASR recognition hypotheses which are contex-
tually unlikely.
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8
Conclusion

This chapter concludes our thesis. We first present a brief summary
of what we have achieved, stepping back from the implementation
details to see the bigger picture. We recapitulate the issues we tried to
address, the approach we developed to this end, and the experimental
results we obtained. We then provide suggestions for further research.

In the introductory chapter, we detailed four important issues hampering
the development of robust systems for spoken dialogue comprehension. Let
us briefly recapitulate what these issues were. The first issue is the difficulty
of accommodating spoken language phenomena (disfluencies, sentence frag-
ments, elided or ungrammatical utterances, etc.) in the system. A second
problem facing dialogue systems is the pervasiveness of speech recognition
errors, speech recognition being a highly error-prone task, particularly for
open-ended discourse domains. And finally, dialogue systems must also find
ways to handle the ambiguities arising at all processing levels, and the various
extra-grammatical constructions encountered.

This thesis presented an original approach to address these complex is-
sues in the context of domain-specific dialogues for human-robot interaction
[HRI]. Our implementation is fully integrated in a cognitive architecture for
“talking robots” – that is, robots which are able to interact socially with
humans using spoken dialogue to achieve a range of service-related tasks.
The cognitive architecture is composed of a number of cooperating subsys-
tems for vision, motor control, navigation, planning, and of course commu-
nication. The various components we developed to make spoken dialogue
comprehension more robust are all part of the communication subsystem,
and span multiple processing levels, from the initial speech signal up to the
semantic and pragmatic interpretation.

The approach advocated here is strongly inspired by recent experimental
findings in psycholinguistics and cognitive science regarding situated human
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language processing. Contextual knowledge is used at every step to guide the
interpretation process, either to anticipate what is going to be said (this is re-
alised via e.g. the context sensitive language models described in Chapter 5),
or to discriminate between the possible interpretations of a given utterance
(cfr. the robust parsing model described in Chapter 6).

A hybrid symbolic/statistical processing strategy is used for parsing the
word lattices. It combines fine-grained linguistic resources (the CCG gram-
mar) with automatically trained statistical models. This way, we are able to
achieve both deep and robust spoken dialogue processing.

Practically, robust parsing is realised via a controlled relaxation of the
grammatical constraints. A set of non-standard combinatory rules are intro-
duced in the grammar to this end. The role of such non-standard rules is
to account for various spoken language phenomena (missing words, “paradig-
matic heaps”, discourse-level compositions) and correct possible speech recog-
nition errors.

At the end of the “relaxed” parsing operation, a (potentially large) set
of semantic interpretations is outputted by the CCG parser. In order to se-
lect the most likely interpretation, a discriminative model is applied. The
discriminative model assigns a score to each interpretation. A decoding al-
gorithm is responsible for computing these scores. It works as follows. First,
the algorithm extracts a set of linguistic and contextual features relative to
the parse, and records the corresponding values in a feature vector. This fea-
ture vector is then projected against a perceptron-trained parameter vector,
and the linear combination of the feature vector and the parameter vector
gives the final score for the interpretation.

One of the biggest advantage of discriminative models is the possibility
to integrate virtually any kind of feature which might be useful – without
being tied (as for generative models) to the particular variables being gener-
ated by the model. A wide range of features are included in our approach.
They are extracted from the semantic, syntactic, acoustic and contextual
representations. Others features could be easily incorporated in the future.

We performed an extensive empirical evaluation of our work. The eval-
uation results on a “Wizard of Oz” test suite demonstrated very significant
improvements both in accuracy and robustness, with notably a 55.6 % in-
crease in the exact-match accuracy of the final chosen interpretation over the
baseline performance. Partial-match accuracy is similarly improved (increase
of 27.6 % compared to the baseline). Word error rate decreases from 20.5
% for the baseline to 15.7 % with our model.
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8.1 Suggestions for further research

The approach presented in this thesis can be improved and extended in many
possible ways.

Enhancing the speech recognition component is probably the single ex-
tension which would bring the most significant improvements in terms of
empirical results. As we explained during the discussion of results in the
evaluation chapter, the speech recognition errors indeed currently largely
outweight all other issues. Several lines of work can be envisioned.

1. The first one, which is purely technical but not to be neglected, would
consist of technological improvements regarding the ASR software, the
incorporated acoustic models, and the use of a microphone array in-
stead of a simple microphone.

2. The use of more sophisticated (and trained on a larger and more varied
set of training data) language models is also expected to significantly
improve the speech recognition performance.

3. The salience-based models of context we developed are currently quite
simple. A more sophisticated statistical modeling of the situated and
discourse context would be interesting, and could possibly lead to better
results [Wiggers, 2008].

The robust parsing component also provides room for multiple interesting
extensions. We already outlined two of these extensions at the end of Chapter
6.

4. The first extension concerns the exploitation of the discriminative model
during incremental parsing, as a tool for chart scoring. As we explained,
this extension could also be fruitfully used within the learning loop, to
improve the perceptron training.

5. The second possible improvement is related to the algorithm used for
parameter estimation. We believe it might be worth considering the
use of more sophisticated learning algorithms such as max-margin clas-
sifiers, instead of a simple perceptron.

6. There are still other aspects of the learning process which might be im-
proved. The search space in which the perceptron operates is currently
rather limited. As we have explained in the previous chapters, some
parameter weights in the discriminative model (those for the contextual
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and speech recognition features) are set manually or using regression
tests, instead of being automatically learned. The ASR correction rules
are also specified manually, by analysing the most frequent sources of
errors.

Investigating how these operations could be automatised while avoid-
ing data sparsity problems or an explosion of the search space would
certainly constitute an interesting line of future research.

7. Regarding the grammar relaxation, a more precise specification of the
“paradigmatic heap” rules would surely be beneficial to the grammati-
cal coverage of our system. In particular, an explicit distinction should
be made between the heaps which incorporate the semantics of each of
their elements (such as for enumerations), and the heaps which should
only retain the last element and discard the others (such as for repeti-
tions and corrections).

8. On a more technical level, another possible improvement concerns the
parsing algorithm. As we explained in the previous chapter, our CCG
parser takes word lattices as input, and analyse them in an incremen-
tal fashion. The current algorithm that we developed is however not
optimal. Several efficient algorithms for parsing word lattices are de-
scribed in the literature [Tomita, 1986; Staab, 1995], but, to the best
of our knowledge, none are fully incremental. Devising a new, more
efficient algorithm for incremental CCG parsing of word lattices would
constitute an interesting forthcoming work.

9. The parse selection mechanism (implemented via our discriminative
model) currently works on full interpretations. The controlled relax-
ation techniques allow us to extract interpretations in many cases of
ill-formed or extra-grammatical utterances, but it can still remain in-
sufficient. One possible solution would be to expand our approach to
partial parse selection [Zhang et al., 2007]. Some kind of island parsing
mechanism would then be necessary to extract partial analyses. As our
grammatical analysis is based on Combinatory Categorial Grammar,
such a mechanism is perfectly possible and can be realised efficiently.
An interesting question to address in this case is how to combine island
parsing with incrementality.

10. Finally, the current approach is limited to domain-specific dialogues, for
which developing a full-scale symbolic grammar by hand is conceivable.
It would be interesting to investigate the potential extension of our
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approach to handle generic, domain-independent dialogues, which are
not limited to a particular task, domain or vocabulary.

This would probably require the use of lexical acquisition techniques
(see e.g. Cholakov et al. [2008]; Zettlemoyer and Collins [2007]), as well
as of broad-coverage statistical models [Collins, 1997; Charniak, 2001;
He and Young, 2005; Clark and Curran, 2007].

The biggest advantage of such an extension would be the possibility to
directly compare the performance of our model with other approaches
based on standardised benchmarks, such as the ATIS corpus of spoken
dialogue [Dahl et al., 1994].
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A
Packing algorithm

A packing mechanism [Oepen and Carroll, 2000; Carroll and Oepen, 2005]
is used by the incremental parser to efficiently represent and manipulate
logical forms across the communication subarchitecture. A packed logical
form [PLF] represents content similar across the different analyses of a given
input as a single graph, using over- and underspecification of how different
nodes can be connected to capture lexical and syntactic forms of ambiguity.

After each incremental step, the resulting set of logical forms is compacted
into a single representation, which can then be directly manipulated by var-
ious processes, in order, for example, to prune unsupported interpretations.
It can also be unpacked, i.e. the original logical forms can be completely
regenerated (this is done by traversing the packed structure).

The packed representations are made of two basic elements: packing nodes
and packing edges. A packing node groups a set of nominals sharing identical
properties and named relations under a particular subset of the logical forms.
Packing edges are responsible for connecting the different packing nodes to-
gether, thus ensuring the correspondence between the packed structure and
the set of logical forms it represents.

The packing of logical forms is performed in two main steps:

1. An initial PLF is first constructed on the basis of the set of logical forms
(Step 1 of Algorithm 2). To this end, each logical form is traversed and
its nominals are used to populate the packed structure.

2. The resulting structure is then compacted by merging particular sub-
structures (Step 2 of Algorithm 2).

A.1 Example

The Figures A.1-A.3 below exemplify a simple case of packing operation.
The parsed utterance is ”Take the ball to the left of the box”. Two distinct
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readings can be derived, depending on the interpretation of the phrase ”to
the left of the box”. In the first reading (LF1 in the figure A.1), the robot is
asked to take the ball and put it to the left of the box - the phrase is thus
seen as indicating the direction of the move. In the second reading (LF2)
however, ”to the left of the box” indicates the location of the ball to take.

Figure A.1: The two initial logical forms LF1 and LF2 retrieved from parsing
the utterance ”Take the ball to the left of the box”

Figure A.2: The resulting packed logical form, before compacting

Figure A.2 illustrates the application of the first step of the packing oper-
ation. A packing node - drawn in the figure as a square - is created for each
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nominal. A packing edge is constituted for each relation found in the logical
forms. As shown in the figure, some packing edges are shared by both logical
forms, whereas others are only evidenced in one of them. An example of the
first case is the edge between ”take” and ”robot”, which shared by the two
logical forms LF1 and LF2. The edge between ”take” and ”left” illustrates
the second case: it is only evidenced in LF1.

In the example we present here, all packing edges have only one packing
node target. In the general case however, several distinct targets can be
specified within the same edge.

During the second step, the packed structure is compacted by merging
packing nodes. The criteria to decide whether two packing nodes can be
merged is the following: if (1) two packing nodes are connected by a packing
edge, and if (2) the logical form identifiers for the head node, the edge and
the target node are all identical, then the two packing nodes can be merged.
For example, the packing node surrounding ”take” and the one surrounding
”robot” can be merged, since the two nodes and the edge between them are
present both in LF1 and LF2.

The compacting operation is repeated until no more merges are possible.
In our case, illustrated in the figure A.3, we are left with two packing nodes,
one rooted on the nominal ”take”, and one on ”left”.

Figure A.3: The final packed logical form, after compacting
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A.2 Data structures

We present below the informal specifications of the various data structures
used to construct PLFs. See figure A.5 for a graphical representation.

PackedLogicalForm:
• id: packed logical form identifier
• packingNodes: set of packing

nodes
• root: root packing node

PackingNode:
• id: packing node identifier
• packedNominals: set of packed

nominals
• lfIds: set of LF identifiers, enu-

merating the logical forms in
which the nominals included in
the packing node are present

• root: root nominal

PackedNominal:
• id: packed nominal identifier
• sort: ontological sort
• prop: logical proposition
• features: set of packed features
• relations: set of internal rela-

tions
• packingEdges: set of outgoing

packing edges

PackedFeature:
• feature: name of the feature
• value: value of the feature
• lfIds: set of the LF identifiers,

enumerating the logical forms in
which the feature holds

PackingEdge:
• id: packing edge identifier
• head: head nominal
• mode: edge label
• packingNodeTargets: set of

packing node targets

PackingNodeTarget:
• lfIds: set of LF identifiers, enu-

merating the logical forms in
which the edge exists

• target: packing node targeted
by the edge

Figure A.4: Data structures used to construct PLFs
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Figure A.5: Graphical representation of the data structures
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A.3 Pseudo-code

We finally describe the details of the algorithms used in the packing mecha-
nism we implemented.

Algorithm 2 : Pack(LFs) - Packing of a set of logical forms

Require: LFs is a set of logical forms (describing the same utterance)

% Step 0: Initialization
rootNominal ← 〈 rootSort, ’root’, ∅, ∅, ∅〉
rootNode ← 〈 {rootNominal}, ∅, rootNominal 〉
packingNodes ← {rootNode}
PLF ← 〈 packingNodes, rootNode 〉

% Step 1: Construction of the packed logical form
for lf ∈ LFs do

AddLFInformation(lf, PLF)

end for

% Step 2: Merge of the packed logical form
PLF = MergePackedLogicalForm(PLF)

return PLF

Algorithm 3 : CreateNewNode(nom) - using the information in nom, create
(1) a new packing node, (2) a new packed nominal inside it and (3) new
packing edges connected to the latter.

Require: A well-formed nominal nom

newEdges ← ∅
for every relation rel in rels(nom) do

% A packing edge is defined with a head nominal, a mode (”edge label”), a set of packing node
targets, and a set of logical form identifiers
newEdge ← 〈 head(rel), mode(rel), {target(rel)}, {lfId(nom)}〉,
newEdges ← newPackingEdges ∪ {newEdge}

end for

% A packing nominal comprises an ontological sort, a logical proposition, a set of features, a set of
internal relations, and a set of outgoing packing edges
newNom ← 〈 sort(nom), prop(nom), feats(nom), ∅, newEdges 〉

% A packing node is a triple comprising a set of packing nominals, a set of LF identifiers, and a
reference to the root nominal
newPackingNode ← 〈{newNom},{lfId(nom)}, newNom〉

return newPackingNode
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Algorithm 4 : AddLFInformation(lf, PLF) - Add the information con-
tained in lf to the packed logical form.

Require: lf is a well-formed logical form

for every nominal nom in nominals(lf) do

if there is no packing node in PLF which encapsulates a packed nominal with the ontological sort
sort(nom) and the logical proposition prop(nom) then

% We create a new packing node and its related substructures
newPackingNode ← CreateNewPackingNode(nom)

% We add the packing node to the PLF structure
packingNodes(PLF) ← packingNodes(PLF) ∪ {newPackingNode}

else
% We update the existing nominal and its dependent edges
let pNom = the packed nominal with sort(nom) and prop(nom)

let pNode = the packing node encapsulating pNom

pNode ← IntegrateNominalToPackingNode(nom, pNode)

end if

if nom is the root nominal in lf then
% We establish a connection between the root node and the current one

let packingNode = the packing node which encapsulates nom in PLF

Add a packing edge between root(PLF) and packingNode

lfIds(root(PLF)) = lfIds(root(PLF)) ∪ {id(lf)}
end if

end for

return PLF
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Algorithm 5 : IntegrateNominalToPackingNode(nom, pNode) - integrate
the information contained in nom to the existing packing node pNode

Require: A well-formed nominal nom
Require: A well formed packing node pNode which already encapsulates a nominal with the same onto-

logical sort and logical proposition as nom

let pNom = the nominal encapsulated in pNode

for every relation rel in rels(nom) do
if ∃ edge ∈ edges(pNom) where mode(rel) = mode(edge) then

% If there is already a packing edge with same mode, add one packing node target and the LF
identifier
targets(edge)←targets(edge) ∪ {target(rel)}
lfIds(edge) ← lfIds(edge) ∪ {lfId(nom)}

else
% Else, we create a new packing edge
newEdge ← 〈 head(rel), mode(rel), {target(rel)}, {lfId(nom)}〉
edges(pNom) ← edges(pNom) ∪ {newEdge}

end if
end for

% Update the features in the nominal, and the LF identifiers in the packing node
feats(pNom) ← feats(pNom) ∪ {feats(nom)}
lfIds(pNode) ← lfIds(pNode) ∪ {lfId(nom)}

return pNode

Algorithm 6 : MergePackedLogicalForm(PLF) - compact the PLF repre-
sentation by merging nominals
Require: PLF a well formed packed logical form

while there are packing nodes in PLF which can be merged do
for every packing node packingNode ∈ PLF do

for every nominal nom ∈ nominals(packingNode) do
for every edge edge ∈ edges(nom) do

if edge has only one packing node target then

let LFShead = set of logical forms identifiers in packingNode

let LFSedge = set of logical forms identifiers in edge

let LFStarget = set of logical forms identifiers in target(edge)

if LFShead = LFSedge = LFStarget then
% If the set of logical forms shared by the two packing nodes (and the packing edge
between them) is identical, then they can be merged in one packing node

let targetNom = the head nominal of target(edge)

Merge packingNode and targetNom into a single packing node

Transform edge into an internal relation (in the merged packing node) between nom

and targetNom

end if
end if

end for
end for

end for
end while

return PLF
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B
Detailed results for parse selection

We present here the detailed quantitative results we obtained regarding the
robust parsing of spoken inputs using a discriminative model. As we explained
in Chapter 7, the test suite is composed of 195 individual utterances collected
during Wizard-of-Oz experiments. The evaluation procedure is explained in
detail in sections 7.2 and 7.3.

B.1 Tables

For the detailed results shown in the tables B.1, B.2 and B.3, we ran the
entire test suite over each possible combination of activated features and
grammar relaxation, and repeated the operation for NBest 1, 3, 5, and 10.

Since we have 4 different types of features, plus the possible activation
of grammar relaxation rules, the number of possible feature configurations is
equal to

∑5
k=0

5!
k!(5−k)!

= 32.
Each line shown in the tables corresponds to a possible configuration. For

each configuration, we analyse the accuracy results on NBest 1, 3, 5 and 10,
and give the precision, recall and F1 value for each.

The NBest 1 results of the first line correspond to the baseline: no gram-
mar relaxation, no activated features, and use of the first NBest recognition
hypothesis. The last line corresponds to the final results with all features,
combined with the grammar relaxation mechanism.

Two elements are worth noticing in these detailed results:

1. In each of the three tables, we observe that no configuration is able to
improve on the results obtained with all activated features. In other
words, it shows that all features types play a positive role on the task.

2. Likewise, we observe that taking into account more ASR recognition
hypotheses has a positive effect on the results: the results obtained
using ten recognition hypotheses are substantially better than those
obtained based only on the first hypothesis.
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B.2 Figures

We present below various figures which illustrates graphically the results we
achieved for the parse selection task. The data used to generate the graphs
is the same as the one shown in the tables B.1, B.2, and B.3.

B.2.1 Global results with all NBest hypotheses

Figure B.1: Word error rate, broken down by activated features.
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Figure B.2: F1 values for exact-match, broken down by activated features.

Figure B.3: F1 values for exact-match, broken down by activated features.
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B.2.2 Detailed results for exact-match

Figure B.4: Precision, Recall and F1 for exact-match on NBest 1

Figure B.5: Precision, Recall and F1 for exact-match on NBest 3
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Figure B.6: Precision, Recall and F1 for exact-match on NBest 5

Figure B.7: Precision, Recall and F1 for exact-match on NBest 10
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B.2.3 Detailed results for partial-match

Figure B.8: Precision, Recall and F1 for partial-match on NBest 1

Figure B.9: Precision, Recall and F1 for partial-match on NBest 3
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Figure B.10: Precision, Recall and F1 for partial-match on NBest 5

Figure B.11: Precision, Recall and F1 for partial-match on NBest 10
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C
Domain-specific grammar for corpus

generation

We provide here some technical details about the domain-specific grammar
used to automatically generate the training examples of our algorithm (cfr
6.3.1). The grammar serves as a resource to produce a set of training exam-
ples {xi, zi} – where xi is an utterance and zi its associated semantics.

Each rule is weighted. The stipulation of the weights is realised by parsing
the transcripts of the Wizard of Oz experiments at our disposal, and counting
the relative use of each rule.

Once the grammar is specified and weighted, the generation of the train-
ing examples {xi, zi} is done by simply traversing the grammar a large num-
ber of times and recording the results.

C.1 Definitions

The grammar is a familiar context-free grammar, where each rule is as- context-free
grammarsociated to a particular semantic representation as well as to a weight. It is

formally defined as a tuple G = {V,Σ,M,R, S}, where:

• V is an alphabet (finite set of symbols);

• Σ ⊆ V is the set of terminal symbols. V − Σ is therefore the set of
non-terminal symbols.

• M is the space of possible semantic representations (i.e. logical forms).
Each instance of M is a formula expressed in the HLDS formalism (cf.
Chapter 4) . It is defined as a tuple {Noms, root}, where:

1. Noms is a set of nominals. Each nominal includes an identifier,
an ontological sort, a logical proposition, a set of features and a
set of dependency relations.
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2. root is a reference to the root nominal.

• R ⊆ (V ×V +×M ×<) is the set of context-free rules, associated with
their semantic counterpart (∈M) and their weight (∈ <).

• S is the start symbol.

A particular characteristic of the logical forms used here is the presence
of “plug-in nominals”. The content of these nominals is defined relative toplug-in

nominals the non-terminals specified in the right-hand side of the rule. Consider for
instance the following rule:

COMMAND–DIRECT⇒ move OBJ 2

�� ��C.1

The semantics of rule C.1 is defined as such:

@c:action–motion(move ∧ 〈patient〉( 2 ))
�� ��C.2

The symbol 2 represents a plug-in nominal. It indicates that the seman-
tics associated to the non-terminal “OBJ” needs to be “plugged-in” in the
representation to complete the logical form.

C.2 Grammar specification

We present below the specification of our grammar. Due to space constraints,
only one third of the total number of rules are listed here.

On the left, we indicate the syntactic derivation (for ease of presentation,
the elements in the right-hand side of the rule are listed vertically). The
non-terminals are shown in uppercase, the terminals in lowercase.

On the right, we indicate the associated semantic representation.

Syntactic derivation Associated HLDS semantics

S⇒ CONTENT 1 @( 1 )

S⇒ DISFL 1

CONTENT 2
@(@( 2 ))

S⇒ TEMPORAL–LC 1

CONTENT 2

@( 2 ∧
〈modifier〉( 1 ))

S⇒ DISC–PARTICLE 1

CONTENT 2

@s1:d–units(list ∧
〈first〉( 1 ) ∧
〈next〉( 2 ))
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S⇒ CONTENT 1

DISC–PARTICLE 2

@s1:d–units(list ∧
〈first〉( 1 ) ∧
〈next〉( 2 ))

S⇒ DISC–PARTICLE 1

TEMPORAL–LC 2

CONTENT 3

@s1:d–units(list ∧
〈first〉( 1 ) ∧
〈next〉( 3 ∧
〈modifier〉( 2 )))

S⇒ DISC–PARTICLE 1

DISC–PARTICLE 2

CONTENT 3

@s2:d–units(list ∧
〈first〉( 1 ) ∧
〈next〉(s3:d–units ∧ list ∧
〈first〉( 2 ) ∧
〈next〉( 3 )))

CONTENT⇒ GREETING 1 @( 1 )

CONTENT⇒ COMMAND 1 @( 1 )

CONTENT⇒ ASSERTION 1 @( 1 )

CONTENT⇒ QUESTION 1 @( 1 )

CONTENT⇒ EVALUATION 1 @( 1 )

CONTENT⇒ OBJ 1 @( 1 )

CONTENT⇒ QUALIFIER 1 @( 1 )

CONTENT⇒ LOCATION–MOD 1 @( 1 )

CONTENT⇒ MISC 1 @( 1 )

DISC–PARTICLE⇒ x
with x ∈ {and, now, so, well} @m1:marker(y)

with y ∈ {and,now, so,well}

DISC–PARTICLE⇒ CUEWORD–MARKER 1 @( 1 )

DISC–PARTICLE⇒ PERSON–LC 1 @( 1 )

DISFL⇒ x
with x ∈ {uh, um, mm, err, ah} @()

MISC⇒ i
mean

@misc1:cognition(mean ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(i1:person ∧ I ∧
〈num〉sg) ∧

〈event〉x1:event ∧
〈subject〉i1:person)

145



MISC⇒ you
know

@misc2:cognition(know ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈subject〉y1:person)

MISC⇒ i
see

@misc3:perception(see ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(i1:person ∧ I ∧
〈num〉sg) ∧

〈subject〉i1:person)

GREETING⇒ hi @g1:greeting(hi)

GREETING⇒ hello @g2:greeting(hi)

TEMPORAL–LC⇒ now @t1:m–time–point(now)

TEMPORAL–LC⇒ x
with x ∈ {first, after, then, next}

@t2:m–time–sequence(y)
with y ∈ {first,after, then,next}

TEMPORAL–LC⇒ again @t2:m–time–frequency(again)

CONNECTIVE–BINARY⇒ x
with x ∈ {then, and, or, but}

@(y)
with y ∈ {then,and,or,but}

COMMAND⇒ COMMAND–DIRECT 1

@( 1 ∧
〈mood〉imp ∧
〈subject〉(a1:entity ∧ addressee) ∧
〈actor〉a1:entity)

COMMAND⇒ ADV–LC 1

COMMAND–DIRECT 2

@( 2 ∧
〈mood〉imp ∧
〈subject〉(a1:entity ∧ addressee) ∧
〈actor〉a1:entity ∧
〈modifier〉( 1 ))

COMMAND⇒ COMMAND–DIRECT 1

CONNECTIVE–BINARY 2

COMMAND–DIRECT 3

@com2:event(
〈mood〉imp ∧
〈subject〉(a1:entity ∧ addressee) ∧
2 ∧
〈first〉( 1 ∧
〈actor〉a1:entity) ∧
〈next〉( 3 ))

COMMAND⇒ COMMAND–INDIRECT 1 @( 1 )

COMMAND–DIRECT⇒ ACTION–TRANS–LC 1

OBJ 2

@( 1 ∧
〈patient〉( 2 ))
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COMMAND–DIRECT⇒ pick
OBJ 2

up

@c1:action–non–motion(pick ∧
〈patient〉( 2 ) ∧
〈particle〉(u1 ∧ up))

COMMAND–DIRECT⇒ listen @c2:perception(listen)

COMMAND–DIRECT⇒ look @c3:perception(look)

COMMAND–DIRECT⇒ look @c3:action–non–motion(search)

COMMAND–DIRECT⇒ look
at
OBJ 3

@c20:perception(look ∧
〈modifier〉(a1:m–location ∧ at ∧
〈anchor〉( 3 )))

COMMAND–DIRECT⇒ move
OBJ 2

@c4:action–motion(move ∧
〈patient〉( 2 ))

COMMAND–DIRECT⇒ move
OBJ 2

LOCATION–RESULT 3

@c5:action–motion(move ∧
〈patient〉( 2 ) ∧
〈result〉( 3 ))

COMMAND–DIRECT⇒ put
OBJ 2

LOCATION–RESULT 3

@c6:action–non–motion(put ∧
〈patient〉( 2 ) ∧
〈result〉( 3 ))

COMMAND–DIRECT⇒ give
OBJ 2

to
PERSON–LC 4

@a5:action–non–motion(give ∧
〈patient〉( 2 ) ∧
〈recipient〉( 4 ))

COMMAND–DIRECT⇒ stop @a10:modal(stop)

COMMAND–DIRECT⇒ stop
it

@a10:modal(stop ∧
〈event〉(c25:event ∧ context))

ACTION–TRANS–LC⇒ x
with x ∈ {take, reach, pick, get, open,
close, play, rotate, remove, see}

@c1:action–non–motion(y)
with ∈ {take, reach,pick,get,open,
close,play, rotate, remove, see}

ACTION–TRANS–LC⇒ give
me

@c6:action–non–motion(give ∧
〈recipient〉(i1:person ∧ I ∧
〈num〉sg))

ACTION–TRANS–LC⇒ get
me

@c8:action–non–motion(get ∧
〈recipient〉(i1:person ∧ I ∧
〈num〉sg))

MODAL⇒ x
with x ∈ {must, can, could, should, would}

@(〈tense〉pres ∧
〈modifier〉(mod1:modal ∧ y))

with y ∈ {must, can, could, should,
would}
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COMMAND–INDIRECT⇒ MODAL 1

you
COMMAND–DIRECT 3

@( 3 ∧ 1 ∧
〈mood〉int ∧
〈subject〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈actor〉y1:person)

COMMAND–INDIRECT⇒ you
MODAL 2

COMMAND–DIRECT 3

@( 3 ∧ 2 ∧
〈mood〉ind ∧
〈subject〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈actor〉y1:person)

COMMAND–INDIRECT⇒ i
want
you
to
COMMAND–DIRECT 5

@ci2:cognition(want ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(i1:person ∧ I ∧
〈num〉sg) ∧

〈event〉( 5 ∧
〈actor〉y1:person) ∧
〈subject〉i1:person ∧
〈patient〉(y1:person ∧ you ∧
〈num〉sg))

COMMAND–INDIRECT⇒ MODAL 1

you
ADV–LC 3

COMMAND–DIRECT 4

@( 4 ∧ 1 ∧
〈mood〉int ∧
〈subject〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈actor〉y1:person ∧
〈modifier〉( 3 ))

COMMAND–INDIRECT⇒ i
want
OBJ 3

@ci3:cognition(want ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(i1:person ∧ I ∧
〈num〉sg) ∧

〈patient〉( 3 ) ∧
〈subject〉i1:person)

COMMAND–INDIRECT⇒ do
not
COMMAND–DIRECT 3

@( 3 ∧
〈mood〉imp ∧
〈subject〉(a1:entity ∧ addressee) ∧
〈polarity〉neg)

PRONOUNS⇒ x
with x ∈ {i, you}

@i1:person(y ∧
〈num〉sg)

with y ∈ {i,you}

PRONOUNS⇒ we @i1:person(I ∧
〈num〉pl)

ADV–LC⇒ just @a1:m–time(just)

ADV–LC⇒ never @n1:m–frequency(never)

ADV–LC⇒ also @a1:m–comment(also)

ADV–LC⇒ please @a1:m–comment(please)
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ADV–LC⇒ already @a1:m–time(already)

ASSERTION⇒ PRONOUNS 1

see
OBJ 3

@as1:perception(see ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉( 1 ) ∧
〈patient〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ LOCATION–MOD 1

is
OBJ–SG 3

@as3:presentational(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈modifier〉( 1 ) ∧
〈presented〉( 3 ))

ASSERTION⇒ LOCATION–MOD 1

are
OBJ–PL 3

@as5:presentational(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈modifier〉( 1 ) ∧
〈presented〉( 3 ))

ASSERTION⇒ OBJ–SG 1

is
LOCATION–MOD 3

@as7:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ OBJ–SG 1

is
ADV–LC 3

LOCATION–MOD 4

@as8:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈modifier〉( 3 ) ∧
〈cop–scope〉( 4 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ PRONOUNS 1

have
OBJ 3

@as10:ascription(have ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉( 1 ) ∧
〈patient〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ OBJ–SG 1

is
QUALIFIER 3

@as11:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ OBJ–SG 1

is
not
QUALIFIER 4

@as12:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈polarity〉(neg) ∧
〈cop–scope〉( 4 ) ∧
〈subject〉( 1 ))
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ASSERTION⇒ OBJ–SG 1

is
OBJ–SG 3

@as18:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ OBJ–SG 1

is
not
OBJ–SG 4

@as19:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈polarity〉neg ∧
〈cop–scope〉( 4 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ DEM–PL 1

are
OBJ–PL 3

@as16:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

ASSERTION⇒ OBJ–PL 1

are
QUALIFIER 3

@as11:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

OBJ⇒ OBJ–SG 1 @( 1 )

OBJ⇒ OBJ–PL 1 @( 1 )

OBJ–SG⇒ DEM–SG–PRONOUN 1 @( 1 )

OBJ–SG⇒ DET–SG 1

OBJ–SG–LC 2
@( 2 ∧ 1 )

OBJ–SG⇒ DET–SG 1

QUALIFIER 2

OBJ–SG–LC 3

@( 3 ∧ 1 ∧
〈modifier〉( 2 ))

OBJ–SG⇒ DET–SG 1

OBJ–SG–LC 2

LOCATION–MOD 3

@( 2 ∧ 1 ∧
〈modifier〉( 3 ))

OBJ–SG⇒ DET–SG 1

ADJUNCT–LC 2

OBJ–SG–LC 3

LOCATION–MOD 4

@( 3 ∧ 1 ∧
〈modifier〉( 2 ) ∧
〈modifier〉( 4 ))

OBJ–SG⇒ something

@o1:thing(context ∧
〈delimitation〉existential ∧
〈num〉sg ∧
〈quantification〉specific)

OBJ–SG⇒ it @o4:thing(it ∧
〈num〉sg)
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OBJ–SG⇒ one

@o6:entity(context ∧
〈delimitation〉existential ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈modifier〉(n1:number–cardinal ∧ 1))

OBJ–SG⇒ DET–SG 1

OBJ–SG–LC 2

of
PERSON–LC 4

@( 2 ∧ 1 ∧
〈owner〉( 4 ))

OBJ–PL⇒ DEM–PL–PRONOUN 1 @( 1 )

OBJ–PL⇒ DET–PL 1

OBJ–PL–LC 2
@( 2 ∧ 1 )

OBJ–PL⇒ DET–PL 1

ADJUNCT–LC 2

OBJ–PL–LC 3

@( 3 ∧ 1 ∧
〈modifier〉( 2 ))

OBJ–PL⇒ DET–PL 1

OBJ–PL–LC 2

LOCATION–MOD 3

@( 2 ∧ 1 ∧
〈modifier〉( 3 ))

OBJ–PL⇒ OBJ 1

and
OBJ 3

@e1:entity(and ∧
〈num〉pl ∧
〈first〉( 1 ) ∧
〈next〉( 3 ))

DET–SG⇒ DET–SG–LC 1 @( 1 )

DET–SG⇒ DEM–SG–LC 1 @( 1 )

DET–PL⇒ DET–PL–LC 1 @( 1 )

DET–PL⇒ DEM–PL–LC 1 @( 1 )

QUESTION⇒ where
is
OBJ–SG 3

@q1:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 3 ) ∧
〈cop–scope〉(w1:m–location ∧

where) ∧
〈subject〉( 3 ) ∧
〈wh–restr〉w1:m–location)

QUESTION⇒ where
are
OBJ–PL 3

@q2:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 3 ) ∧
〈cop–scope〉(w1:m–location ∧

where) ∧
〈subject〉( 3 ) ∧
〈wh–restr〉w1:m–location)
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QUESTION⇒ what
do
you
see

@q5:perception(see ∧
〈mood〉int ∧
〈tense〉pres ∧
〈actor〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈patient〉(w1:entity ∧what) ∧
〈subject〉y1:person ∧
〈wh–restr〉w1:entity)

QUESTION⇒ do
you
see
OBJ 4

@q7:perception(see ∧
〈mood〉int ∧
〈tense〉pres ∧
〈actor〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈patient〉( 4 ) ∧
〈subject〉y1:person)

QUESTION⇒ do
you
see
OBJ 4

LOCATION–MOD 5

@q7:perception(see ∧
〈mood〉int ∧
〈tense〉pres ∧
〈actor〉(y1:person ∧ you ∧
〈num〉sg) ∧

〈patient〉( 4 ) ∧
〈subject〉y1:person ∧
〈modifier〉( 5 ))

QUESTION⇒ what
colour
is
OBJ–SG 4

@q8:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 4 ) ∧
〈cop–scope〉(c1:quality ∧ color) ∧
〈subject〉( 4 ) ∧
〈wh–restr〉(w1:specifier ∧

what ∧
〈scope〉c1:quality))

QUESTION⇒ what
size
is
OBJ–SG 4

@q10:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 4 ) ∧
〈cop–scope〉(c1:quality ∧ size) ∧
〈subject〉( 4 ) ∧
〈wh–restr〉(w1:specifier ∧

what ∧
〈scope〉c1:quality))

QUESTION⇒ how
ADJUNCT–LC 2

is
OBJ–SG 4

@q12:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 4 ) ∧
〈cop–scope〉( 2 ) ∧
〈subject〉( 2 ) ∧
〈wh–restr〉(h1:quality ∧ how ∧
〈scope〉( 2 )))
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QUESTION⇒ how
is
OBJ–SG 3

@q13:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 3 ) ∧
〈cop–scope〉(h1:quality ∧ how) ∧
〈subject〉( 3 ) ∧
〈wh–restr〉h1:quality)

QUESTION⇒ what
is
LOCATION–MOD 3

@q15:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉(w1:entity ∧what) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉w1:entity ∧
〈wh–restr〉w1:entity)

QUESTION⇒ what
is
OBJ–SG 3

@q24:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 3 ) ∧
〈cop–scope〉(w1:entity ∧what) ∧
〈subject〉( 3 ) ∧
〈wh–restr〉w1:entity)

QUESTION⇒ is
OBJ–SG 2

QUALIFIER 3

@q16:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 2 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 2 ))

QUESTION⇒ are
OBJ–PL 2

QUALIFIER 3

@q17:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 2 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 2 ))

QUESTION⇒ is
OBJ–SG 2

LOCATION–MOD 3

@q19:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 2 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 2 ))

QUESTION⇒ is
there
OBJ–SG 3

LOCATION–MOD 4

@q21:presentational(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈modifier〉( 4 ) ∧
〈presented〉( 3 ) ∧
〈subject〉(t1:dummy ∧ there))

153



QUESTION⇒ which
OBJ–SG–LC 2

is
QUALIFIER 4

@q23:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 2 ∧
〈delimitation〉unique ∧
〈quantification〉specific) ∧

〈cop–scope〉( 4 ) ∧
〈subject〉( 2 ) ∧
〈wh–restr〉(w1:specifier ∧

which ∧
〈scope〉( 2 )))

QUESTION⇒ how many
OBJ–PL 2

are
LOCATION–MOD 4

@be39:ascription(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈cop–restr〉( 2 ∧
〈delimitation〉variable ∧
〈quantification〉unspecific) ∧

〈cop–scope〉( 4 ) ∧
〈subject〉( 2 ∧
〈delimitation〉variable ∧
〈quantification〉unspecific) ∧

〈wh–restr〉(h1:quantity ∧
howmany ∧
〈scope〉( 2 ∧
〈delimitation〉variable ∧
〈quantification〉unspecific)))

QUESTION⇒ how many
OBJ–PL 2

are
there

@be1:presentational(be ∧
〈mood〉int ∧
〈tense〉pres ∧
〈presented〉( 2 ) ∧
〈subject〉(there1:dummy ∧

there) ∧
〈wh–restr〉(h1:quantity ∧

howmany ∧
〈scope〉( 2 )))

QUESTION⇒ do
you
follow

@follow1:action–motion(follow ∧
〈mood〉int ∧
〈tense〉pres ∧
〈actor〉(you1:person ∧ you ∧
〈num〉sg) ∧

〈subject〉you1:person)

OBJ–SG–LC⇒ one
@c1:entity(context ∧
〈modifier〉(o1:number–cardinal ∧

one))

OBJ–SG–LC⇒ x
with x ∈ {ball, box, book, chocolate,
coffee, computer, cup, laptop, mug,
object, pizza, place, screen, table, thing,
couch, cube, column, closet, desk, ,
tabletop, door, fax, floor, flower,
needle, oven, phone, fridge, letter,
jug, keyboard, mailbox, microwave,
printer, block, bucket, chair, thread, tea,
phone, tv, shelf, pin, game,
star, triangle, square, car, circle,
cylinder, cone, arm}

@o6:thing(y)
with y ∈ {ball,box,book, chocolate,
coffee, computer, cup, laptop,mug,
object,pizza,place, screen, table, thing,
couch, cube, column, closet,desk, ,
tabletop,door, fax,floor,flower,
needle,oven,phone, fridge, letter,
jug,keyboard,mailbox,microwave,
printer,block,bucket, chair, thread, tea,
phone, tv, shelf ,pin,game,
star, triangle, square, car, circle,
cylinder, cone,arm}
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OBJ–SG–LC⇒ chocolate
bar

@o11:thing(bar ∧
〈compound〉(c1:e–substance ∧

chocolate))

OBJ–SG–LC⇒ corner @o12:e–region(corner)

OBJ–SG–LC⇒ place @o19:e–place(place)

OBJ–SG–LC⇒ top @o24:e–region(top)

OBJ–SG–LC⇒ side @o56:e–region(side)

OBJ–SG–LC⇒ colour
game

@o58:thing(game ∧
〈compound〉(c1:entity ∧ color))

OBJ–SG–LC⇒ shape
game

@o59:thing(game ∧
〈compound〉(c1:entity ∧ shape))

OBJ–PL–LC⇒ x
with x ∈ {balls, boxes, books, computers,
cups, laptops, mugs, objects, screens,
tables, things, cubes, columns, doors,
needles, ovens, letters, jugs, blocks

chairs, threads, pins, stars, triangles,
squares, cars, circles}

@o58:thing(y ∧
〈num〉pl)

with y ∈ {balls,boxes,books, computers,
cups, laptops,mugs,objects, screens,
tables, things, cubes, columns,doors,
needles,ovens, letters, jugs,blocks

chairs, threads,pins, stars, triangles,
squares, cars, circles}

OBJ–PL–LC⇒ corners @o62:e–region(corner ∧
〈num〉pl)

OBJ–PL–LC⇒ places @o68:e–place(place ∧
〈num〉pl)

OBJ–PL–LC⇒ robots @o69:animate(robot ∧
〈num〉pl)

OBJ–PL–LC⇒ sides @o84:e–region(side ∧
〈num〉pl)

DET–SG–LC⇒ your

@(〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉(you1:entity ∧ you ∧
〈num〉sg))

DET–SG–LC⇒ the
@(〈delimitation〉unique ∧
〈quantification〉specific ∧
〈num〉sg)

DET–SG–LC⇒ a
@(〈delimitation〉existential ∧
〈quantification〉specific ∧
〈num〉sg)
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DEM–SG–PRONOUN⇒ it @d1:thing(it ∧
〈num〉sg)

DEM–SG–PRONOUN⇒ this

@d2:entity(context ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈proximity〉proximal ∧
〈quantification〉specific)

DEM–SG–PRONOUN⇒ that

@d3:entity(context ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈proximity〉distal ∧
〈quantification〉specific)

DEM–SG–LC⇒ this

@(〈delimitation〉unique ∧
〈num〉sg ∧
〈proximity〉proximal ∧
〈quantification〉specific)

DEM–SG–LC⇒ that

@(〈delimitation〉unique ∧
〈num〉sg ∧
〈proximity〉distal ∧
〈quantification〉specific)

DET–PL–LC⇒ the @(〈delimitation〉unique ∧
〈quantification〉specific)

DET–PL–LC⇒ two

@(〈delimitation〉existential ∧
〈num〉pl ∧
〈quantification〉specific ∧
〈modifier〉(n1:number–cardinal ∧ 2))

DET–PL–LC⇒ several

@(〈delimitation〉existential ∧
〈num〉pl ∧
〈quantification〉unspecific ∧
〈modifier〉(s1:quantity ∧ several))

DET–PL–LC⇒ some
@(〈delimitation〉existential ∧
〈num〉pl ∧
〈quantification〉unspecific)

DET–PL–LC⇒ all

@(〈delimitation〉existential ∧
〈num〉pl ∧
〈quantification〉unspecific ∧
〈modifier〉(s1:quantity ∧ all))

DEM–PL–PRONOUN⇒ these

@c1:entity(context ∧
〈delimitation〉unique ∧
〈num〉pl ∧
〈proximity〉proximal ∧
〈quantification〉unspecific)
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DEM–PL–PRONOUN⇒ those

@c1:entity(context ∧
〈delimitation〉unique ∧
〈num〉pl ∧
〈proximity〉distal ∧
〈quantification〉unspecific)

DEM–PL–LC⇒ those

@(〈delimitation〉unique ∧
〈num〉pl ∧
〈proximity〉distal ∧
〈quantification〉unspecific)

DEM–PL–LC⇒ these

@(〈delimitation〉unique ∧
〈num〉pl ∧
〈proximity〉proximal ∧
〈quantification〉unspecific)

LOCATION–RESULT⇒ between
OBJ 2

and
OBJ 4

@l1:m–whereto(between ∧
〈anchor〉(a22:physical ∧ and ∧
〈num〉pl ∧
〈first〉( 2 ) ∧
〈next〉( 4 )))

LOCATION–RESULT⇒ LOC–PREP–LC 1

OBJ 2

@l2:m–whereto(
1 ∧
〈anchor〉( 2 ))

LOCATION–RESULT⇒ LOC–PREP–LC 1

PERSON–LC 2

@l3:m–whereto(
1 ∧
〈anchor〉( 2 ))

LOCATION–RESULT⇒ LOCATION–LC 1 @l4:m–whereto( 1 )

LOCATION–RESULT⇒ from
OBJ 2

@l5:m–wherefrom(from ∧
〈anchor〉( 2 ))

LOCATION–RESULT⇒ out
of
OBJ 3

@l6:m–wherefrom(out ∧
〈anchor〉( 3 ))

LOCATION–RESULT⇒ to
the
left
of
OBJ 5

@l10:m–whereto(to ∧
〈anchor〉(l1:e–region ∧ left ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–RESULT⇒ to
the
right
of
OBJ 5

@l11:m–whereto(to ∧
〈anchor〉(l1:e–region ∧ right ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–RESULT⇒ to
OBJ 2

@l30:m–whereto(to ∧
〈anchor〉( 2 ))
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LOCATION–RESULT⇒ up
to
OBJ 3

@l30:m–whereto(to ∧
〈modifier〉(up1:m–direction ∧ up) ∧
〈anchor〉( 3 ))

LOCATION–RESULT⇒ into
OBJ 2

@l12:m–whereto(into ∧
〈anchor〉( 2 ))

LOCATION–RESULT⇒ onto
OBJ 2

@l12:m–whereto(onto ∧
〈anchor〉( 2 ))

LOCATION–RESULT⇒ x
with x ∈ {away, aside, down, back}

@l22:m–direction(y)
with x ∈ {away,aside,down,back}

LOCATION–RESULT⇒ close
to
OBJ 3

@l28:m–whereto(close ∧
〈anchor〉( 3 ))

LOCATION–RESULT⇒ next
to
OBJ 3

@l30:m–whereto(next ∧
〈anchor〉( 3 ))

LOCATION–RESULT⇒ closer
to
OBJ 3

@l29:m–whereto(close ∧
〈degree〉comparative ∧
〈anchor〉( 3 ))

LOCATION–MOD⇒ LOC–PREP–LC 1

OBJ 2

@l14:m–location( 1 ∧
〈anchor〉( 2 ))

LOCATION–MOD⇒ on
the
left
of
OBJ 5

@l17:m–location(on ∧
〈anchor〉(l1:e–region ∧ left ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–MOD⇒ on
the
right
of
OBJ 5

@l18:m–location(on ∧
〈anchor〉(l1:e–region ∧ right ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–MOD⇒ to
the
left
of
OBJ 5

@l19:m–location(to ∧
〈anchor〉(l1:e–region ∧ left ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–MOD⇒ to
the
right
of
OBJ 5

@l20:m–location(to ∧
〈anchor〉(l1:e–region ∧ right ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉( 5 )))

LOCATION–MOD⇒ LOCATION–LC 1 @l21:m–location( 1 )
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LOCATION–LC⇒ to
the
right

@(to ∧
〈anchor〉(l1:e–region ∧ right ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific))

LOCATION–LC⇒ to
the
left

@(to ∧
〈anchor〉(l1:e–region ∧ left ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific))

LOCATION–LC⇒ to
your
left

@(to ∧
〈anchor〉(l1:e–region ∧ left ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉(i1:entity ∧ you ∧
〈num〉sg)))

LOCATION–LC⇒ to
your
right

@(to ∧
〈anchor〉(l1:e–region ∧ right ∧
〈delimitation〉unique ∧
〈num〉sg ∧
〈quantification〉specific ∧
〈owner〉(i1:entity ∧ your ∧
〈num〉sg)))

LOCATION–LC⇒ here @(context ∧
〈proximity〉m–proximal)

LOCATION–LC⇒ there @(context ∧
〈proximity〉m–distal)

LOC–PREP–LC⇒ x
with x ∈ {above, behind, close to, in,
inside, near, near to, next to,
on, left of, right of, under,
over, along, around, below, beside,
by, down, outside, in front of}

@(y)
with y ∈ {above,behind, close to, in,
inside,near,near to,next to,
on, left of , right of ,under,
over,along,around,below,beside,
by,down,outside, in front of}

QUALIFIER⇒ ADJUNCT–LC 1 @( 1 )

QUALIFIER⇒ ADJUNCT–LC 1

and
ADJUNCT–LC 3

@qua1:quality(and ∧
〈first〉( 1 ) ∧
〈next〉( 3 ))

QUALIFIER⇒ DEGREE–ADV–LC 1

ADJUNCT–LC 2
@( 2 ∧ 〈modifier〉( 1 ))

DEGREE–ADV–LC⇒ also @deg1:m–intensity(also)

DEGREE–ADV–LC⇒ too @deg1:m–intensity(too)

DEGREE–ADV–LC⇒ very @deg1:m–intensity(very)
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ADJUNCT–LC⇒ x
with x ∈ {white, black, blue, green,
brown, red, yellow}

@ad1:q–color(y)
with y ∈ {white,black,blue,green,
brown, red,yellow,orange,purple}

ADJUNCT–LC⇒ x
with x ∈ {open, closed}

@ad8:q–physical(y)
with y ∈ {open, closed}

ADJUNCT–LC⇒ x
with x ∈ {round, elongated}

@ad9:q–shape(y)
with y ∈ {round, elongated}

ADJUNCT–LC⇒ x
with x ∈ {big, small}

@ad9:q–size(y)
with y ∈ {big, small}

ADJUNCT–LC⇒ x
with x ∈ {on, off, full, empty}

@ad10:q–state(y)
with y ∈ {on,off , full, empty}

ADJUNCT–LC⇒ x
with x ∈ {left, right, far, top}

@ad10:q–location(y)
with y ∈ {left, right, far, top}

ADJUNCT–LC⇒ better @ad21:q–attitude(good ∧
〈degree〉comparative)

ADJUNCT–LC⇒ x
with x ∈ {last, other}

@ad9:q–position(y)
with y ∈ {last,other}

EVALUATION⇒ CUEWORD–ATTITUDE 1 @( 1 )

EVALUATION⇒ CUEWORD–MARKER 1 @( 1 )

EVALUATION⇒ CUEWORD–MARKER 1

CUEWORD–MARKER 2

@list22:d–units(list ∧
〈first〉( 1 ) ∧
〈next〉( 2 ))

EVALUATION⇒ DEM–SG–PRONOUN 1

is
CUEWORD–ATTITUDE 3

@e1:ascription(be ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈cop–restr〉( 1 ) ∧
〈cop–scope〉( 3 ) ∧
〈subject〉( 1 ))

EVALUATION⇒ thanks

@e4:communication(thank ∧
〈mood〉ind ∧
〈tense〉pres ∧
〈actor〉(s1:entity ∧ speaker ∧
〈num〉sg) ∧

〈recipient〉(a1:entity ∧ addressee))

CUEWORD–ATTITUDE⇒ x
with x ∈ {wrong, right, sure, great,
correct, incorrect, wonderful, good,
true, false, bad, sorry}

@cu1:q–attitude(y)
with y ∈ {wrong, right, sure,great,
correct, incorrect,wonderful,good,
true, false,bad, sorry}

CUEWORD–ATTITUDE⇒ very
good

@cu6:q–attitude(good ∧
〈modifier〉(v1:m–intensity ∧ very))
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CUEWORD–ATTITUDE⇒ fine @cu13:marker(fine)

CUEWORD–MARKER⇒ x
with x ∈ {ok, okay, fine, yes, yeah,
no, right, good, sorry, alright}

@cu11:marker(y)
with y ∈ {ok,okay,fine,yes,yeah,
no, right,good, sorry,alright}

PERSON–LC⇒ me @p1:person(I ∧
〈num〉sg)

PERSON–LC⇒ you @p2:person(you ∧
〈num〉sg)

PERSON–LC⇒ robot @p3:animate(Robot)

PERSON–LC⇒ pierre @p4:person(Pierre)

PERSON–LC⇒ gj @p5:person(GJ)
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