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Foreword to the First Edition

The frontiers of physical science and technology commanded attention during the

last two centuries. In the next century lies the frontier of better understanding

behavior of social and economic systems. Ruth and Hannon join many other

pioneers exploring this new frontier.

By building on the profession of system dynamics, Ruth and Hannon contribute

to movement away from purely mental models, which necessarily lack adequate

precision, toward more insightful and disciplined computer simulation models.

The STELLA software used in this book is one of several computer applications

created to implement the concepts of system dynamics, a discipline that has been

developed over the last 40 years and now extends into many fields of activity.

System dynamics is beginning, already even in kindergarten through 12th grade

education, to provide a rigorous foundation for dealing with dynamic change in

mathematics, physics, social studies, environment, history, and even literature.

Education at every level will be changing from teaching isolated facts to allowing

students to explore those systems within which facts, policies, and individual

relationships are imbedded to develop their ability to think in terms of dynamic

systems.

This book includes elementary instruction in system dynamics modeling and in

the STELLA software. It covers a wide range of material from simple building

blocks of systems to models and mathematics of considerable complexity.

The material opens many avenues for further exploration, refinement, and simplifi-

cation. Examples demonstrate the process of moving from mental models to

computer simulation models. Mental models contain a wealth of useful information

about policies and relationships in a system, but mental intuition cannot reliably

estimate the future dynamic consequences when those elementary relationships
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interact with one another. Converting mental models to computer simulation

models forces a clarity of thought that is missing in ordinary writing and discussion.

And, most important, computer models reliably reveal the behavior implied by the

structure of a system that has been described. The authors are to be commended for

pushing toward a much more meaningful way to deal with the world’s major

difficulties in social and economic systems.

Jay W. Forrester
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Preface

The problems of understanding complex system behavior and the challenge of

developing easy-to-use models are apparent in the fields of environmental manage-

ment and economic development. We are faced with the problem of reconciling

economic activities with the goal of preserving or increasing environmental quality

and quality of life. In economic and environmental problems, many parameters

need to be assessed. This requires tools that enhance the collection and organization

of data, interdisciplinary model development, transparency of models, and visuali-

zation of the results. Neither purely mathematical nor purely experimental

approaches will suffice to help us better understand the world we live in and

shape so intensively.

Until recently, we needed significant preparation in mathematics and computer

programming to develop such models. Because of this hurdle, many have failed to

give serious consideration to preparing and manipulating computer models of the

events and developments in the world around them. This book, and the methods on

which it is built, will empower us to model and analyze the dynamics characteristic

of economic processes and human–environment interactions.

Without computer models, we are often left to choose between two strategies.

First, we may resort to theoretical models that describe the world around us.

Mathematics offers powerful tools for such descriptions, adhering to logic and

providing a common language by sharing similar symbols and tools for analysis.

Mathematical models are appealing in social and natural science, where cause and

effect relationships are confusing. These models, however, run the risk of becoming

detached from reality, sacrificing realism for analytical tractability. As a result,

these models are accessible only to the trained scientist, leaving others to “believe

or not believe” the model results.

Second, we may manipulate real systems to understand cause and effect. One

could modify the system experimentally (e.g., introduce a pesticide, some CO2,

etc.) and observe the effects. If no significant effects are noted, one is free to assume

the action has no effect and increase the level of the system change. This is an

exceedingly common approach. It is an elaboration of the way an auto mechanic
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repairs an engine, by trial and error. But social and ecological systems are not auto

engines. Errors in tampering with these systems can have substantial costs, in both

the short term and the long term, and can bring with them a series of other

unintended and unanticipated consequences that may lead to more tampering,

further errors, and so on. Despite growing evidence, the trial and error approach

remains the meter of the day. We trust that, just like the auto mechanic, we will be

clever enough to clear up the problems created by the introduced change. We let our

tendency toward optimism mask the new problems.

However, the level of intervention in social and ecological systems has become

so great that the adverse effects cannot be ignored. As our optimism about repair

begins to crumble, we take on the attitude of patience toward the inevitable—

unassignable cancer risk, global warming, fossil fuel depletion—the list is long.

We are pessimistic about our ability to identify and influence cause and effect

relationships. We need to understand the interactions of the components of dynamic

systems in order to guide our actions. We need to add synthetic thinking to the

reductionist approach. Otherwise, we will continue to be overwhelmed by details,

failing to see the forest for the trees.

There is something useful that we can do to turn from this path. We can

experiment using computer models. Models give us predictions of the short- and

long-term outcomes of proposed actions. To do this we can effectively combine

mathematical models with experimentation. By building on the strengths of each

we will gain insight that exceeds the knowledge derived from choosing one method

over the other. Experimenting with computer models will open a new world in our

understanding of dynamic systems. The consequences of discovering adverse

effects in a computer model are no more than ruffled pride.

Computer modeling has been with us for nearly 50 years. Why then are we so

enthusiastic about its use now? The answer comes from innovations in software and

powerful, affordable hardware available to every individual. Almost anyone can

now begin to simulate real-world phenomena on his or her own, in terms that are

easily explainable to others. Computer models are no longer confined to the

computer laboratory. They have moved into every classroom, and we believe

they can and should move into the personal repertoire of every educated citizen.

The ecologist Garrett Hardin and the physicist Heinz Pagels have noted that an

understanding of system function, as a specific skill, needs to be and can become an

integral part of general education. It requires the recognition (easily demonstrable

with exceedingly simple computer models) that the human mind is not capable of

handling very complex dynamic models by itself. Just as we need help in seeing

bacteria and distant stars, we need help modeling dynamic systems. We do solve the

crucial dynamic modeling problem of ducking stones thrown at us or safely

crossing busy streets. We learned to solve these problems by being shown the

logical outcome of mistakes or through survivable accidents of judgment.

We experiment with the real world as children and get hit by hurled stones, or we

let adults play out their mental model of the consequences for us and we believe

them. These actions are the result of experimental and predictive models, and they

begin to occur at an early age. In the complex social, economic, and ecological
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world, however, we cannot rely on the completely mental model for individual or

especially for group action, and often we cannot afford to experiment with the

system in which we live. We must learn to simulate, experiment, and predict with

complex models.

In this book, we have selected the modeling software STELLA® with its

iconographic programming style. Programs such as STELLA are changing the

way in which we think. They enable each of us to focus and clarify the mental

model we have of a particular phenomenon, to augment it, to elaborate it, and then

to do something we cannot otherwise do: to run it, to let it yield the inevitable

dynamic consequences hidden in our assumptions and the structure of the model.

STELLA is not the ultimate tool in this process of mind extension. However, its

relative ease of use makes the path to freer and more powerful intellectual inquiry

accessible to every student.

These are the arguments for our book onDynamic Modeling of Natural Resource
Use. This volume was spurred by our first book on Dynamic Modeling, (Hannon
and Ruth 1994) and others in the series onModeling Dynamic Systems. The need to
enhance our knowledge of human–environment interactions and the recognition

that traditional teaching of economy–environment interactions frequently lacks

tools that enable students to investigate, through an experimental approach, their

own understanding of these interactions and to compare their findings against

reality. We consider such modeling as the most important task before us. To help

students learn to extend the reach of their minds in this unfamiliar yet very powerful

way is the most important thing we can do.

College Park, MD, USA Matthias Ruth

Urbana, IL, USA Bruce Hannon

Reference
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Notation

Term Typical units Symbol

Resource stock Tons X
Input quantity Tons/year Y
Production, output Tons/year Q
Total cost Dollars/year C
Average cost Dollars/ton AC

Marginal cost Dollars/ton MC

Input price Dollars/ton W
Output price Dollars/ton P
Revenue Dollars/year R
Marginal revenue Dollars/ton MR

Interest rate Dollars/dollar/year I
Current value of profit Dollars/year CVP

Present value of profit Dollars/year PVP

Annual payment Dollars/year AP

Cumulative current value of profit Dollars CCVP

Cumulative present value of profit Dollars CPVP

Cumulative production Tons Z
Discovery rate Tons/year D
Discovery cost Dollars/ton DC

Marginal discovery cost Dollars/year MDC
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Chapter 1

Introduction

People confident in their own objectivity are likely to be
arrogant and self deceived—less likely, in fact, to see things
as clearly as those who recognize and acknowledge their own
biases. Those who have faith in the objectivity of others may
be complacent or dangerously naive. They fail to see the
many obstacles, innate and acquired, innocent and insidious,
inevitable and unavoidable, along the road to truth.

Lichtenberg, J. 1991. Objectivity and Its Enemies,

The Responsive Community, Vol. 2, pp. 59–69

1.1 Modeling Dynamic Systems

1.1.1 Model Building

This book was borne out of our understanding that arrogance, self-deception, and

blind reliance in science on the truths of others can be eradicated only if we extend

our intellectual capacities to embrace and effectively communicate the richness of

our real-world experiences. Our book attempts to show a path to freer, system-based

thinking and to encourage you to challenge yourself and the wisdom of others.

Models are central to our understanding of the world because they enable us to

represent and manipulate real phenomena, then explore the results. We create

models of cause and effect every day, building on past experience to evaluate

present options. For instance, you determine the “best” route to a store based on

your experience of its surroundings. Scientists and theoreticians also build on their

personal experience of the real world in their research, but they do so in a more

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_1,
# Springer Science+Business Media, LLC 2012
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organized and formal way. Among them are economists who model how humans

meet their needs with given endowments of resources and technologies.

A large number of models have been developed by the economics profession

over the last 200 years. Each is concerned with some part of the economy and

makes different assumptions on the processes that influence that part. Recently,

increasing attention has been given to the relationships between the economy and

the environment. Ultimately, all the materials and energy used to meet economic

needs must be extracted from the environment. Extraction, processing, distribution,

and use of materials and energy, in turn, lead to the generation of waste. Both

resource depletion and waste generation are likely to affect human welfare and

therefore need to be understood to make proper economic decisions.

This book deals with the dynamic processes in economic systems and

concentrates on the extraction and use of natural resources. We develop models to

better understand the impact of alternative decisions on economic performance and

environmental quality. Models are essential tools in generating new knowledge.

They help us simplify complex phenomena by eliminating everything we believe is

extraneous to what we want to study. An equation is a model stripped of everything

but the relationships between the variables and some initial conditions of the system

under investigation. Computers allow us to expand the scope of our models, to

includemore andmore diverse variables, and to askmore “what-if” questions. Heinz

Pagel compared the insight given by computer models to the extended sight given by

microscopes and telescopes (Pagels 1988).With the right models we can explore the

replication of viral particles or the economy of a nation, and we can explore dynamic

as well as static phenomena. Through such knowledge, we can explain the world

around us and, possibly, anticipate future happenings.

Real-world phenomena can be difficult to study. We are easily overwhelmed

with a flood of details, complex interrelationships, and a seeming lack of organiza-

tion, as well as the dynamic nature of reality in process. To deal with such complex

events, we formulate questions about the process we want to study and try to answer

these questions. We look for patterns within the details, without losing sight of the

“big picture”—we search for the underlying key, the particular set of details or

structure that leads to some outcome we have seen. Models, as abstractions of

reality, force us to consider the results of our structural and dynamic assumptions.

Model building can be an involved process, but certain procedures are generally

followed. Suppose a real event sparks your curiosity about what caused it or what it

could lead to. You translate this curiosity into questions or a theory about the event

and the processes surrounding it. You identify key elements, and your assumptions

about them do form an abstract version of the event. For example, in determining

the “best” route to store, you would take into account its geographic location,

the time it opens, the traffic, and other obstacles that may impede your speed to

get there, and your previous location, the time you have to make the trip, and

possible routes for your walk or drive. You consider the weather only if it would affect

your speed between the two locations. The places you would pass along the way will

not enter into your determination, unless you want to make a conscious choice

about combining a visit to them with your visit to the store. Probably, you abstract
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away from them. The parameters left for you to determine are distance, the time you

have to traverse it, possible paths, and factors that might affect your speed.

After you narrow down the details to those that describe the problem, you must

specify the relationships among them. The relevant details (the variables) and their

relationships establish your model. You should be able to tell if you can get to the

store at a good time.

“Running” the model—in this case, relating distance, speed, and possible

obstacles—gives you the experience and data on which to draw conclusions and,

perhaps, predict future experiences. Such conclusions and expectations, then, can

be compared to other events you have experienced. In the light of real-world

experiences, you might decide to reject the model, accept it, or most likely, revise

it. Model building and revision is dynamic—build, run, compare, and change—and

each cycle improves your understanding of reality. Sometimes, the modeling

process forces you to recognize new and important parameters; sometimes,

modeling will make you reduce the importance of your favorite parameter.

According to Casti (1989), good models are the simplest ones that explain the

data and yet do not explain it all, leaving some room for the model, or theory, to

grow. Good models should have elements that directly correspond to objects in the

real world. They should provide a reliable answer to our question(s).

The incentives to model a system’s behavior without checking model results

against reality are frequently high. If the discipline is sufficiently well established,

and if its proponents are powerful and enjoy high social status, their models will be

well received. If all those models make predictions ultimately shown to be wrong,

and yours does too, you are accepted in the discipline. If you do better in explaining

the system’s behavior, it may be regarded as luck. However, if your model fails to

be better than others, you are in trouble. Therefore, it may be more convenient for

you to stay with the majority, not challenging the dominant paradigm or school of

thought. But be aware, others may come and challenge you.

In the modeling process that we propose here, it is relatively easy to change an

assumption and determine the resulting effect on system-wide behavior. It is

therefore possible for you to challenge established paradigms—if the results are

closer to reality, you may be on your way to a new paradigm.

1.1.2 Static, Comparative Static, and Dynamic Models

Most models fit in one of three general classes. To first type belong models that

represent a particular phenomenon at a point of time, a static model. For example, a

map of the United States depicts the location and size of a city or the rate of

infection with a particular disease, each in a given year. The second class comprises

comparative static models that compare some phenomena at different points in

time. This is like using a series of snapshots to make inferences about the system’s

path from one point in time to another without modeling that process itself.

1.1 Modeling Dynamic Systems 5



Other models describe and analyze the very processes underlying a particular

phenomenon. An example of this would be a mathematical model that describes the

demand for and supply of a good as a function of its price. Choosing a static

modeling approach, we may want to find the price under which demand and supply

are in equilibrium and investigate the properties of this equilibrium: Is the equili-

brium price a unique one or are there other prices that balance demand and supply?

Is the equilibrium stable or are small perturbations to the system accompanied by a

movement away from the equilibrium? Such equilibrium analysis is widespread in

economics.

Alternatively, a model could be developed to show the changes in demand and

supply over time. Dynamic models are those that try to reflect changes in real or

simulated time and take into account that the model components are constantly

evolving as a result of previous actions.

With the advent of easy-to-use computers and software, we can all build on the

existing descriptions of a system and carry them further. The world is not a static or

comparative static process, and so the models treating it in that way will become

obsolete and are perhaps even misleading. We can now investigate in great detail

and with great precision the system’s behavior over time, its movement toward, or

away from, equilibrium positions, rather than restricting the analysis to the equili-

brium itself.

Throughout the social, biological, and physical sciences, researchers examine

complex and changing interrelationships among factors in a variety of disciplines.

What are the impacts of a change in the El Niño winds, not only on weather patterns,

but also on the cost of beef in the United States? How does the value of the Mexican

peso affect the rate of oil exploration in Alaska? Every day, scientists ask questions

like these that involve dissimilar frames of reference and even disciplines. This is

why we must understand the dynamics and complex interrelationships among

diverse systems in our increasingly complicated world. A good set of questions is

the start—and often the conclusion—of a good model. Such questions help the

researcher remain focused on the model, without becoming distracted by the myriad

of random details that surround it.

Through computer modeling we can study processes in the real world by

sketching simplified versions of the forces assumed to underlie them. As an

example, you might hypothesize that cities drew workers from farmlands as both

became greater users of technology, causing a surplus of jobs in the city and a

surplus of labor in the countryside. Another factor could be the feasibility of

moving from an agricultural area to the city. A basic version of this model might

abstract away from many of the factors that encourage or discourage such migra-

tion, in addition to those directly related to job location and the feasibility of

relocation. This model could leave behind a sufficiently good predictor of migration

rates, or it might not. If the model does, you can reexamine it. Did your abstractions

eliminate an important factor? Were all your assumptions valid? You can revise

your model, based on the answers to these questions. Then, you can test the revised

model for its predictions. You should now have an improved model of the system

you are studying. Even better, your understanding of that system will have grown.
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You can better determine whether you asked the right questions, included all the

important factors in that system, and represented those factors properly.

Elementary to modeling is the idea that the model should be kept simple, even

simpler than the cause and effect relationship it studies. We add complexities to the

model only when it does not produce the real effects. Models are sketches of real

systems and are not designed to show all the system’s many facets. Models aid us in

understanding complicated systems by simplifying them; such multifaceted models

would defeat this purpose.

Models study cause and effect; they are causal. The modeler specifies initial

conditions and relations among these elements. The model then describes how

each condition will change in response to changes in the others. In the example of

farm workers moving to the city, workers moved in response to a lack of jobs in the

countryside. But, more workers in the city would raise the demand for food in city

markets, raising the demand for farm labor. Thus, the demand for labor between the

city and the country would shift, leading to migration in both directions and changes

in migration over time.

The initial conditions selected by the modeler could be actual measurements (the

number of people in a city) or estimates (how many people will be there in 4 years,

given normal birth rate and other specified conditions). Such estimates are designed

to reflect the process under study, not provide precise information about it.

Therefore, the estimates could be based on real data or be the reasonable guesses

of a modeler, based on experience with the process. At each step in the modeling

process, documentation of the initial conditions, choice of parameters, presumed

relationships, and any other assumptions is always necessary, especially when the

model is based on the modeler’s guesses.

1.1.3 Model Components

Model building begins, of course, with the properly focused question. Then we

must decide on the boundaries of the system that contains the question. We must

choose the appropriate time step and the level of needed detail. But these are verbal

descriptions. Sooner or later we must get down to the business of actually building

the model. The very first step in that process is the identification of the state

variables, those variables that will indicate the status of our system through time.

These variables carry the knowledge of the system from step to step throughout

the run of the model—they are the basis for the calculation of all the rest of the

variables in the model.

Generally, there are two kinds of state variables, conserved and nonconserved.

Conserved variables are such things as the population in a country or the water

behind a dam. They do not take on negative values. Nonconserved state variables

are temperature or price, for example, and they might be able to take on negative

values (such as temperature measured on a Celsius or Fahrenheit scale) or they

might not (price).

1.1 Modeling Dynamic Systems 7



Control variables are the ones that directly change the state variables. They can

increase or decrease the state variables through time. Birth (per time period) or

water inflow (to a reservoir) or heat flow from a hot body all are examples of

controls affecting state variables.

Transforming or converting variables are sources of information used to change

the control variables. Such a variable might be the result of an equation based on

still other transforming variables or parameters. The birth rate, the evaporation rate,

and the heat loss coefficient are examples of transforming variables.

The components of a model are expected to interact with each other. Such

interactions engender feedback processes. Feedback describes the process wherein

one component of the model initiates changes in other components and those

modifications lead to further changes in the component that set the process in motion.

Feedback is said to be negative when the modification in a component leads

other components to respond by counteracting that change. As an example, the

increase in the need for food in the city caused by workers migrating to the city

leads to a demand for more laborers in the farmlands. Negative feedback is often the

engine that drives supply and demand cycles toward some equilibrium. The word

negative does not imply a value judgment—it merely indicates that feedback tends

to negate an initial stimulus for change.

In positive feedback, the original modification leads to changes that reinforce the

stimulus that started the process. For example, if you feel good about yourself and

think you are doing well in your work, you may work harder. Because you work

hard, you are more successful, which makes you feel good about yourself and

enhances your chances of doing well in your work. On the other hand, if you feel

bad about yourself and how you are doing in your work, you may lose motivation

and not work very hard. But because you did not work hard enough, your perfor-

mance and progress will decline, making you feel bad about yourself. As another

example, the migration of farm workers to a city attracts more manufacturers to

open plants in that city, which attracts even more workers. Another economic

example of positive feedback was noticed by Brian Arthur—firms that are first to

occupy a geographic space will be the first to meet the demand in a region and are

the most likely to build additional branch plants or otherwise extend their

operations. The same appears to be true with pioneer farmers—the largest farmers

today were among the first to cultivate the land.

Negative feedback processes tend to counteract a disturbance and lead systems

back toward an equilibrium or steady state. One possible outcome of market

mechanisms would be that demand and supply balance each other or fluctuate

around an equilibrium point, due to lagged adjustments in the productive or

consumptive sector. In contrast, positive feedback processes tend to amplify any

disturbance, leading systems away from equilibrium. This movement away from

equilibrium is apparent in the example of how you feel about yourself affects your

performance.

People from different disciplines perceive or interpret the role and strength

of feedback processes differently. Neoclassical economic theory, for example,

is typically preoccupied with market forces that lead to equilibrium in the system.
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Therefore, the models are dominated by negative feedback mechanisms, such as

price increases in response to increased demand. The work of ecologists and

biologists, in contrast, is frequently concerned with positive feedbacks, such as

those leading to insect outbreaks or the dominance of hereditary traits in a

population.

Most systems contain both positive and negative feedback; these processes are

different and vary in strength. For example, as more people are born in a rural area,

the population may grow faster (positive feedback). However, as the limits of

available arable land are reached by agriculture, the birth rate slows, at first perhaps

for psychological reasons but eventually for reasons of starvation (negative

feedback).

Nonlinear relationships complicate the study of feedback processes. An example

of such a nonlinear relationship would occur when a control variable does not

increase in direct proportion to another variable but changes in a nonlinear way.

Nonlinear feedback processes can cause systems to exhibit complex—even

chaotic—behavior.

A variety of feedback processes engender complex system behavior, some of

which we will encounter in this book. Let us develop a simple model to illustrate the

concepts of state variables, flows, and feedback processes. We will then return to

discuss some “principles of modeling” that will help you to develop the model

building process in a set of steps.

1.1.4 Modeling in STELLA

To explore modeling with STELLA, we will develop a basic model of the dynamics

of a fish population. Assume you are the sole owner of a pond that is stocked with

200 fish that all reproduce at a fixed rate of 5% per year. For simplicity, assume also

that none of the fish die. How many fish will you own after 20 years?

In building the model, we will utilize all four of the graphical “tools” for

programming in STELLA. On opening STELLA, you will be faced with the

“Map” layer, which we will not need now. It is available to lay out the structure

of a model without quantifying initial conditions or interrelationships among model

elements. To get to the “Model” layer—that part of the software in which we

develop and specify the actual model—click on the Model tab on the left-hand side

of the frame.

For a save-disabled copy of STELLA and the models in this book, go to the

following Internet site: www.iseesystems.com/ModelingEconomicSystems
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The Model layer allows you to specify your model’s initial conditions and

functional relationships. To do so will require use of symbols, or “building blocks,”

for stocks, flows, converters, and connectors (information arrows), shown, respec-

tively, from left to right in Fig. 1.1.

We begin with the first tool, a stock (rectangle). In our example model, the stock

will represent the number of fish in your pond. Click on the rectangle with your

mouse, drag it to the center of the screen, and click again. Type in FISH and you

should get what’s shown in Fig. 1.2

This is the first state variable in our model. Here we indicate and document a

state or condition of the system. In STELLA, this stock is known as a reservoir.
In our model, this stock represents the number of fish of the species we are studying

that populate the pond. If we assume that the pond is one square kilometer large, the

value of the state variable FISH is also its density, which will be updated and stored
in the computer’s memory at every step of time (DT) throughout the duration of the

model. The fish population is a stock, something that can be contained and

conserved in the reservoir; density is not a stock, it is not conserved. Nonetheless,

both of these variables are state variables. So, because we are studying a species of

fish in a specific area (one square kilometer), the population size and density are

represented by the same rectangle.

Inside the rectangle is a question mark. This is to remind us that we need an initial

or starting value for all state variables. Double-click on the rectangle. A dialogue box

will appear. The box is asking for an initial value. Add the initial value you choose,

such as 200, using the keyboard or the mouse and the dialogue keypad. When you

have finished, click on OK to close the dialogue box. The question mark will have

disappeared.

We must decide next what factors control (that is, add to or subtract from) the

number of fish in the population. Because we assumed that the fish in your pond

never die, we have one control variable: REPRODUCTION. We use the flow tool

(the right-pointing arrow, second from the left) to represent the control variable, so

named because they control the states (variables). Click on the flow symbol, then

click on a point about 2 in. to the left of the rectangle (stock) and drag the arrow to

POPULATION, until the stock becomes dashed, and release. Label the circle

REPRODUCTION. Figure 1.3 shows what you will have.

Fig. 1.1 Main building

blocks for model

development

Fig. 1.2 State variable of

the fish dynamics model
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Here, the arrow points only into the stock, which indicates an inflow. But, you can

get the arrow to point both ways if you want it to. You do this by double-clicking on

the circle in the flow symbol and choosing Biflow. (Conversely, if your flow is drawn

as a biflow and you only want it to go one direction, check the Uniflow box.) Biflow

enables you to add to the stock if the flow generates a positive number and subtract

from the stock if the flow is negative. In our model, of course, the flow REPRO-

DUCTION is always positive and newly born fish go only into the population.

Our control variable REPRODUCTION is a uniflow: “new fish per annum.”

Next we need to know how the fish in our population reproduce. Not the

biological details, just how to accurately estimate the number of new fish per

annum. One way to do this is to look up the birth rate for the fish species in your

pond. Saywe find that the birth rate ¼ 5 new fish per 100 adults each year, which can

be represented as a transforming variable. A transforming variable is expressed as

a converter, the circle that is second from the right in the STELLA toolbox. So far

REPRODUCTION RATE is a constant, later we will allow the reproduction rate to

vary. The same clicking and dragging technique that got the stock on the screen

will bring up the circle. Open the converter and enter the number of 0.05 (5/100).

Down the side of the dialogue box is an impressive list of “built-in” functions that

we can use for more elaborate models.

At the right of the STELLA toolbox is the connector (information arrow).We use

the connector to pass on information (about the state, control, or transforming

variable) to a circle, to control or transforming variable. In this case, we want to

pass on information about the REPRODUCTION RATE to REPRODUCTION.

Once you draw the information arrow from the transforming variable REPRODUC-

TION RATE to the control and from the stock FISH to the control, open the control

by double-clicking on it. Recognize that REPRODUCTION RATE and FISH are

two required inputs for the specification of REPRODUCTION. Note also that

STELLA asks you to specify the control: REPRODUCTION ¼ . . . “Place right-

hand side of equation here”

Click on REPRODUCTION, then on the multiplication sign in the dialogue box,

and then on FISH to generate the equation

REPRODUCTION ¼ REPRODUCTION RATE � FISH: (1.1)

Check the box “Non-negative” and then click on OK and the question mark in

the control REPRODUCTION disappears. Your STELLA diagram should now

look as shown in Fig. 1.4.

Next, we set the temporal (time) parameters of the model. These are DT (the

time step over which the stock variables are updated) and the total time length of a

Fig. 1.3 Stock with outflow
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model run. Go to the RUN pull-down menu on the menu bar and select Time

Specs. . . A dialogue box will appear in which you can specify, among other things,

the length of the simulation, the DT, and the units of time. We arbitrarily choose

DT ¼ 1, length of time ¼ 20, and units of time ¼ years.

To display the results of our model, click on the graph icon and drag it to the

diagram. If we wanted to, we could display these results in a table by choosing the

table icon instead. The STELLA icons for graphs and tables are shown in Fig. 1.5.

When you create a new graph pad, it will open automatically. To open a pad

that had been created previously, just double-click on it to display the list of

stocks, flows, and parameters for our model. Each one can be plotted. Select FISH

to be plotted and, with the� arrow, add it to the list of selected items. Then set the

scale from 0 to 600 and check OK. You can set the scale by clicking once on the

variable whose scale you wish to set and then on the ↕ arrow next to it. Now you can

select the minimum on the graph, and the maximum value will define the highest

point on the graph. Rerunning the model under alternative parameter settings will

lead to graphs that are plotted over different ranges. Sometimes these are a bit

difficult to compare with previous runs, because the scaling has changed.

Would you like to see the results of our model so far? We can run the model by

selecting RUN from the pull-down menu. We get results shown in Fig. 1.6.

We see a graph of exponential growth of the fish population in your pond. This is

what we should have expected. It is important to state beforehand what results you

expect from running a model. Such speculation builds your insight into system

behavior and helps you anticipate (and correct) programming errors. When the

results do not meet your expectations, something is wrong and you must fix it.

The error may be either in your STELLA program or your understanding of the

system that you wish to model—or both.

Fig. 1.4 Basic population

dynamics model

Fig. 1.5 Icons to display

model output
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What do we really have here? How does STELLA determine the time path of our

state variable? Actually, it is not very difficult. At the beginning of each time period,

starting with time ¼ 0 years (the initial period), STELLA looks at all the com-

ponents for the required calculations. The values of the state variables will probably

form the basis for these calculations. Only the variable REPRODUCTION depends

on the state variable FISH. To estimate the value of REPRODUCTION after the first

time period, STELLA multiplies 0.05 by the value FISH (@ time ¼ 0) or 200

(provided by the information arrows) to arrive at 10. From time ¼ 1 to time ¼ 2,

the next DT, STELLA repeats the process and continues through the length of the

model. When you plot your model results in a table, you find that, for our simple fish

model, STELLA calculates fractions of fish from time ¼ 1 onward. This problem is

easy to solve; for example, by having STELLA round the calculated number of

fish—there is a built-in function that can do that—or just by reinterpreting the

population size as “thousands of fish.”

This process of calculating stocks from flows highlights the important role

played by the state variable. The computer carries that information—and only

that information—from one DT to the next, which is why it is defined as the

variable that represents the condition of the system.

You can drill down in the STELLA model to see the parameters and equations

that you have specified and how STELLAmakes use of them. Click on the Equation

tab on the left side of your screen and you will see the following listing:

Fig. 1.6 Results of the basic population model
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Note how the fish population in time period t is calculated from the population

one small time step, DT, earlier and all the flows that occurred during a DT.

The model of the fish population dynamics is simple. So simple, in fact, we could

have solved it with pencil and paper, using analytic or symbolic techniques. The

model is also linear and unrealistic. So let us add a dimension of reality—and

explore some of STELLA’s flexibility. This may be justified by the observation

that, as populations get large, mechanisms set in that influence the rate of

reproduction.

To account for feedback between the size of the fish population and its rate of

reproduction, an information arrow is needed to connect FISH with REPRODUC-

TION RATE. The connection will cause a question mark to appear in the symbol

for REPRODUCTION RATE (Fig. 1.7). The previous specification is no longer

correct; it now requires FISH as an input.

Open REPRODUCTION RATE. Click on the required input FISH. The relation-

ship between REPRODUCTION RATE and FISH must be specified in mathe-

matical terms, or at least, we must make an educated guess about it. Our educated

guess about the relationship between two variables can be expressed by plotting a

graph that reflects the anticipated effect one variable (REPRODUCTION) will have

on another (FISH). The feature we will use is called a graphical function.
To use a graph to delineate the extended relationship between REPRODUC-

TION RATE and FISH, we click on Become Graph. Set the limits on the FISH at

2 and 500; set the corresponding limits on the REPRODUCTION RATE at 0 and

0.20, to represent a change in the birth rate when the population is between 0 and

500. Here we are using arbitrary numbers for a made-up model. Finally, use the

mouse arrow to draw a curve from the maximum birth rate and population of 2 to

the point of zero birth rate and population of 500.

Suppose a census were taken at three points in time. The curve we just drew goes

through all three points. We can assume that, if a census had been taken at other

times, it would show a gradual transition through all the points. This sketch is good

enough for now (Fig. 1.8). Click on OK.

Before we run the model again, let us speculate what our results will be. Think of

the graph for FISH through time. Generally, it should rise, but not in a straight line.

Fig. 1.7 Basic population

model with endogenous

reproduction rate
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At first the rise should be steep: the initial population is only 200, so the initial birth

rate should be very high. Later it will slow down. Then, the population should level

off at 500, when the population’s density would be so great that new births tend to

cease. Run the model. See Fig. 1.8 for the model results. We were right (Fig. 1.9).

This problem has no analytic solution, only a numerical one. We can continue

to study the sensitivity of the answer to changes in the graph and the size of DT.

We are not limited to a DT of 1. Generally speaking, a smaller DT leads to more

accurate numerical calculations for updating state variables and, therefore, a

more accurate answer. Choose Time Specs from the RUN menu to change the DT.

Fig. 1.8 Graphically defined reproduction rate

Fig. 1.9 Model results of the basic population model with endogenous reproduction rate

1.1 Modeling Dynamic Systems 15



Change the DT to reflect ever-smaller periods until the change in the critical variable

is within measuring tolerances.Wemay also change the numerical technique used to

solve the model equations. Euler’s method is chosen as a default. Two other

methods, Runge–Kutta-2 and Runge–Kutta-4, are available that update state

variables in different ways. We will discuss these methods later.

Start with a simple model and keep it simple, especially at first. Whenever

possible, compare your results against measured values. Complicate your model

only when your results do not predict the available experimental data with sufficient

accuracy or when your model does not yet include all the features of the real system

that you wish to capture. For example, as the owner of a pond, you may want to

extract fish for sale. Assume the price per fish is $5 and constant. What are your

revenues each year if you wish to extract fish at a constant rate of 3% per year?

To find the answer to this question, define an outflow from the stock FISH. Click

on the converter, then click onto the stock to have the converter connected to the

stock, and then drag the flow from the stock to the right. Now fish disappear from

the stock into a “cloud.” We are not explicitly modeling where they go. Figure 1.10

shows what you should have developed thus far as your STELLA model.

Next, define a new transforming variable called EXTRACTION RATE and set it

to 0.03. Specify the outflow as

EXTRACTION ¼ EXTRACTION RATE � FISH (1.2)

after making the appropriate connections with information arrows. Then create two

more transforming variables, one called PRICE, set it to 5, and the other called

REVENUES, specify it as

REVENUES ¼ EXTRACTION � PRICE (1.3)

Your model should look now as in Fig. 1.11.

Double-click on the graph pad and select REVENUES to plot the fish stock and

revenues in the same graph. The time profile of the revenue streams generated by

your pond is shown in Fig. 1.12.

Fig. 1.10 Basic population model with extraction
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You can easily expand this model; for example, to capture price changes over

time, unforeseen outbreaks of diseases in your pond, or other problems that may

occur in a real-world setting. When your model becomes increasingly complicated,

try to keep your STELLA diagram as organized as possible, so it clearly shows the

interrelationships among the model parts. A strong point of STELLA is its ability

to demonstrate complicated models visually. Click on the arrow symbol (Fig. 1.13)

to move model parts around the diagram; use the “paintbrush” to change the color

of icons. The “dynamite” will blast off any unnecessary parts of the model.

Be careful when you blast away connectors (information arrows). Move the

dynamite to the place at which the information arrow is attached and click on that

spot. If you click, for example, on the convertor itself, it will disappear, together with

the connector.

Fig. 1.11 Completed fish model

Fig. 1.12 Results from completed fish model
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As the model grows, it will contain an increasing number of submodels, or

modules. You may want to protect some of these modules from being changed.

To do this, click on the “Sector” symbol (Fig. 1.14) and drag it over that module or

modules you want to protect. To run the individual sectors, go to Sector Specs. . . in
the RUN pull-down menu and select the ones that you wish to run. The values of the

variables in the other sectors remain unaffected.

By annotating the model, you can remind yourself and inform others of the

assumptions underlying your model and its submodels. This is important in any

model, but especially in larger and more complicated models. To do this, click on

the “Text” symbol (the letter T) and drag it into the diagram. Then type in your

annotation (Fig. 1.15).

The tools we mentioned here are likely to prove very useful when you develop

more complicated models and when you want to share your models and their results

with others. STELLA contains very helpful tools, which we hope you will use

extensively. Space limitations preclude us from describing all of STELLA’s features.

You will probably want to explore on your own many such features—a little

experimentation or browsing through STELLA’s help features will go a long way.

Make thorough use of your model, running it over again and always checking

your expectations against its results. Change the initial conditions and try running

the model to its extremes. At some point you will want to perform a formal

sensitivity analysis. Later, we will discuss STELLA’s excellent sensitivity analysis

procedures.

1.1.5 Modeling Principles

Although the title of this section might seem somewhat ostentatious, we surely have

learned something general about modeling after years of building and running

models. These steps are a distillation of the process. The steps are not sacred:

they are intended as a guide to start you in the process. As you proceed in model

building, return to the list, challenge, and refine the principles.

Fig. 1.13 STELLA tools to

keep models organized

Fig. 1.14 Sector symbol

Fig. 1.15 Text symbol for

model annotation
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1. Identify the problem and what you want to achieve in the model. Pose the

questions that the model is to answer. Break down very large or complex

problems into subsystems and identify what you hope to achieve in modeling

each subsystem. Ask yourself if the problem is descriptive or predictive.

2. Define your state variables and do not forget to note the units of measurement.

You can type these units in the dialogue box, using braces, { and }, to separate

them from the specification of state variables. STELLA will read the text that

you write in braces as comments. You may also want to use STELLA’s built in

unit editor, which you can access through the “Units. . .” button on the right-

hand side of the dialog box that you see after you double-click on a stock or

convertor. At this stage, try to keep your model as uncomplicated as possible.

Purposely shun complexity at the start.

3. Stipulate your control variables, the flow controls into and out of the state

variables, and specify their units. List the functional relationships between the

state variables and control variables. For each control variable, ask which state

variables are its donors and which are its recipients. Focus on the most essential

features. Use one type of control to depict a class of similar controls. You will

add the others in step 10.

4. Determine the parameters and units for your control variables. What is the

function of these controls and their parameters?

5. Look at your model. Does it violate any laws of physics, economics, or other

discipline? For instance, have you allowed for the conservation of mass or

energy (or whatever is relevant to your model)? Are the units consistent?

You may have to use conditional statements to avoid such violations as division

by zero or negative volumes or prices. Fully document your parameters, initial

values, assumptions, and equations before going on.

6. For an idea of how the model will work, select time and space parameters over

which to examine its dynamic behavior. Choose the length of each time interval

(DT) for which state variables are to be updated by reference to the space over

which dynamics occur; mainly, by reference to the fastest rate of change you

expect in yourmodel. Then choose the numerical computation procedure (Euler’s

method, Runge–Kutta-2, or Runge–Kutta-4) to calculate flows. Prepare a graph of

the most important variables and guess their variation before running the model.

7. Run the model. Was the graph you prepared reasonable? Experiment with other

time intervals over which to update your state variables. Experiment with

other integration techniques.

8. Take your parameters to their reasonable extremes. Do they still make sense?

Rework the model to eliminate errors and anomalies.

9. Examine your results. How do they compare to the experimental data? To do

this, you may have to mimic a lab experiment by shutting off parts of your

model.

10. Using the understanding gained by going through these steps, reassess your

parameters, even yourmodel structure, to allow for greater complexity and include

the exceptions to your experimental results. Repeat steps 1–10. Finally, pose a new

set of interesting questions, derived from your experience with the model.
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It is not necessary to apply these steps in exactly the order given here. Develop

your own model and improve your modeling skills. Return to the list periodically to

see if you find these steps practical, inclusive, and logical.

Keep in mind that modeling can have four purposes. First, models enable you to

experiment: A good model of a system lets you alter its components and experience

the effect of such changes on the system. Second, good models give you insight into

the future course of a dynamic system. Third, good models lead you to further

questions about a system, what underlies its behavior, and how applicable are the

principles discovered in the modeling process to other systems. Fourth, good

models are good thought-organizing devices.

1.1.6 Model Confirmation

When do you know that you developed an appropriate model of real events? Giving

an answer to this question often is rather difficult. By definition, all models abstract

away from some aspects of reality that the modeler perceives less relevant than

others—less relevant, that is, with respect to the questions posed at the beginning of

the modeling process. As a result, the model is a product of the modeler’s percep-

tion. Consequently, one model is likely not the same as the models developed for

the same system by other modelers, who may have their own, individual

perceptions and questions. Plurality of, and competition among, models is therefore

required to improve our collective understanding of real-world processes. The more

open and flexible is the modeling approach, and the more people engage in

modeling, the larger the diversity that can foster new knowledge.

By enclosing a selected number of system components in the model and deter-

mining the model–system’s behavior over time solely in response to the forces

inside the model, the model becomes closed. Real systems, in contrast, are not

closed but open, allowing for new, even unprecedented development in response to

highly infrequent but dramatic changes in their environment. It is therefore not

possible to truly or completely “verify” a model by comparing model results to the

behavior of the real system. Extenuating circumstances may have led the real

system behave differently from the model; even though the model itself may not

have been incorrect, it may have been just incomplete with regard to those

circumstances. Such circumstances will always be present, precisely because the

model’s goal is to capture only the “essentials” of the real system and abstract away

from other factors. Consequently, verification of a model can be done only with

regard to the consistency, or logical accuracy, of its internal structure.

Generally, there are two ways to test a model. First, one can withhold some of

the basic data that was used to set up the model, data that represent the real world to

the extent that it can be measured. Then the model can be used to “predict” the data

used. For example, one might develop a model to predict the future population of

the US based on actual data from, say, 1900 to 1960 and then use the resulting

model to predict the (known) population data from 1970 to 1990, by estimating the
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birth and death rates for each cohort between 1970 and 1990. If the “prediction” is a

success, the later actual data can be incorporated into the model, and a real

prediction for the next 20 or 30 years can be made with an improved degree of

confidence. Another way to test the “goodness” of a model is to predict the

condition in some heretofore unmeasured arena and then proceed to measure

these variables in the field. For example, suppose that a model is being set up to

predict the location of an endangered species. The model is built and calibrated on

the known habitats and then applied to the rest of the likely geography to qualify

these places as likely locations. A good example of this is the effort to model

ecosystems. If we want to establish a quasi-stable base for the determination of

various forms of human impact, we need to establish the natural dynamics of the

system before today’s impacts began. We would then be describing a system that

we have never seen and have no data on, and yet, our model may represent the best

possible description of it.

Some of our system modeling is not for the purposes of explanation or prediction

at all. In some cases, we model a system to “retrieve” its original but unmeasurable

conditions. We do this to provide a reasonable reference system to which ensuing

states of the system can be compared or referenced. For example, when trying to

determine the current degree of distress in an ecosystem, we dynamically model all

of the natural elements that we can find or imagine in the original system, without

the known human disturbances. The long-term conditions in the model are taken to

be the presettlement condition of that ecosystem.

If it is not possible, by definition, to verify a model by comparing its results to the

performance of the real system, how can we know that we really captured the

essentials of that system in the model? More than one model of the same system can

produce the same result. We may compare the model results to reality, not to verify

but to confirm, and if we are unable to reproduce at least the trends observed in the

real system, we know something is missing or wrong, and we are forced to revise

our model or check the accuracy of the data that went into specifying the model

parameters and initial conditions. We can invoke the “reasonability” test. We can

ask if the results are reasonable insofar as our experience is concerned. We can push

the model to its extremes and ask again how reasonable the results are. Do the

results make sense to us? Do the results fit with the known physical laws, the laws of

conservation where they apply, and so forth? This is why it is so important to

speculate on what the results should be before you run the model. Not only does

such speculation help you avoid accepting blindly the model results, but it also

sharpens and builds your sense of how systems operate dynamically.

Ironically, things also may become more problematic if the model results

coincide well with our observations of the real system. The problem, for example,

lies in the possibility that errors in the model cancel each other. Such misspeci-

fications are difficult to detect, and this is why many chapters of this book will start

with a theory of model behavior rather than with casual observations of real systems.

Combining theory, observations, and indeed, intuition in a disciplined way in

dynamic models is especially important when we use easy-to-learn, easy-to-use

software packages that enable us to develop models with which we could get ahead
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of ourselves. At each point in the model construction process it is important to be

able to justify the assumptions that are made.

Once the model is built on a theoretical base and observations, or “reasonable”

initial conditions and parameter values, we let it yield the consequences of the

forces built into the model. The choice of observations vs. “reasonable” values is

basically a choice of providing a predictive or descriptive model. For a description

of the role of feedback mechanisms for system development, it is frequently

sufficient to concentrate on those forces and the appropriate parameter range rather

than precise numerical values.

To confirm our model results we may compare them to observational data.

The greater is the number of instances in which model results and reality coincide

under a variety of different scenarios, the more probable it is that the model captures

the essential features of the real system it attempts to portray. We can increase our

confidence in the model further by comparing its results to other models for the

same or similar systems. The latter approach is of particular interest if the model

was descriptive rather than predictive. Finally, we hope that we develop, through

practice in modeling, experience and new understanding of system dynamics that

enable us to more easily detect problems in model specifications. This is a learning

process; we hope our book makes its contribution.

1.1.7 Modeling of Natural Resource Use

A principal goal of modeling the dynamics of natural resource use in economics is to

develop quantitative and integrated models that effectively deal with the inherent

uncertainty in these very complex systems. For more than 3 decades, dynamic

models have been used to assess the adequacy of natural resources to meet human

needs. Many models focus on the relative strengths of positive and negative feed-

back processes that influence the availability of natural resources. Most notable is

the question whether technical change, the use of substitutes, or recycling can

compensate for a decrease in the quality or quantity of an essential resource.

As extraction proceeds, resource quality and quantity tend to decrease, and thus,

cost of extraction may increase. Recycling, use of substitutes, and technical change,

on the other hand, may drive down the unit cost of extraction, opposing the forces of

resource depletion. The relative strength and timing of these forces are difficult to

assess a priori because of the many interconnections and feedbacks among deple-

tion, recycling, substitution, and technical change. Most economists will admit that

their models do not include what they necessarily call externalities. This open-ended
form of dynamic modeling enables us to rather readily incorporate such externalities

and determine their importance. Modeling the dynamics of these systems with the

computer may improve our understanding of these systems, andmay help us identify

crucial relationships that determine the systems’ dynamics.

With the popularization of computer models for natural resource policy-making,

attention is now directed at a number of closely related issues that potentially dilute
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the effectiveness of those models in decision-making (Smil 1993). First, all models

are abstractions from reality and, therefore, incomplete. It is inappropriate to think of

models as anything but crude, although in many cases absolutely essential, abstract

representations of reality. What to include or exclude from a model depends on the

goal of the model and is a choice that is ultimately made within a cultural, socioeco-

nomic, and scientific context. As a result of the diversity in perceptions and

aspirations of modelers with different cultural and scientific backgrounds, there

are a large number of different methods for modeling resource use in economic

systems, each of which has a unique set of strengths and weaknesses.

Second, unlike models of physical systems that are based on rather well-

established rules, models of human systems are prone to misspecifications of the

complexities of human behavior. The context dependence of human activities

together with the variability in rules used to make decisions limits the applicability

of models for descriptive and predictive purposes. The predictive ability of models

is further reduced by the possibility of the occurrence of previously unencountered

constraints on, and development possibilities for, the systems. The latter is

frequently subsumed under the notion of novelty and most prominent in the case

of technological breakthroughs or discoveries of new deposits of a resource.

Third, models of natural resource use tend to become larger and more complex as

modelers and decision-makers ask to include aspects of the system that have previ-

ously been treated as exogenous to the model. There is an increased tendency to

“close” models; that is, to minimize the number of exogenously specified parameters

and relationships. However, with increasing scale and model complexity, only

experts, frequently only the creators of the models themselves, can interpret the

structure, dynamics, and results of the model.

Fourth, complex systems are characterized by substantial uncertainty that must

be addressed as a central part of the model building and evaluation process, not

relegated to the sidelines as is commonly the case. The task is to manage the

uncertainty of each model in order to gain the highest quality information from it.

The enormous uncertainty in the relationship between the economy and the

environment calls for a plurality of modeling approaches and perspectives, hence

our continual haranguing of the reader to keep the models simple.

Given the number and complexity of models developed to assess issues of

natural resource use, decision-makers frequently are faced with the following

dilemma. If they choose one model over another, decision-makers effectively

transfer part of their power to the modeler. By using a number of models on

which to base their decisions, the nonexpert policy-makers are left to reconcile

the different assumptions underlying the models, thus opening themselves up for

criticism irrespective of the value of their decision. Many modeling exercises are

full of hyper-precise numerical data, specious sophistication about uncertainties,

and unsupported hunches and loaded rhetoric, leaving policy-makers with little

hope of sorting through the various approaches.

Not surprisingly, the call for more transparent, flexible, yet more comprehensive

models is common (Meadows and Robinson 1985). With this book, we wish to

promote a revolution in systems thinking and hope that we further the democratization
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of the modeling process. Because the purpose of this book is to teach systems

thinking rather than data collection and analysis, the majority of the models

presented here do not make use of real-world data. Many of the concepts developed

here, however, are being applied to real-world systems. We challenge you to carry

the models of this book further and contribute to the understanding of these systems.

1.1.8 Extending the Modeling Approach

Unlike most of today’s computer languages, STELLA lets us focus on exploring the

features of a dynamic system, rather than writing a program to follow some

complicated, unintuitive syntax. With its easy-to-learn and easy-to-use approach

to modeling, STELLA provides us with a number of features that enhance the

development of modeling skills and collaboration of modelers. First there is the

knowledge-capturing aspect of STELLA. The way we employ STELLA leads not

only to a program that captures essential features of a system, but more important,

results in a process that involves the assembly of experts who contribute their

specialized knowledge to a model of a system. Experts can see the way in which

their knowledge is incorporated into the model because they can pick up the

fundamental aspects of STELLA very quickly. They can see how their particular

part of the whole is performing and judge what changes may be needed. They can

see how their part of the model interacts with others and how other specialists

formulate their own contributions. As a result, these experts are likely to be more

confident in the whole model and its accuracy than if they had entrusted a pro-

grammer with their insight into the system’s workings. Once engaged in this

modeling process, experts will sing its praises to other scientists. This is the

knowledge-capturing aspect of the modeling process.

These same experts are likely to take STELLA into the depths of their own

discipline. But, most important, they will return to their original models and repair

them to meet broader challenges than first intended. Thus models grow along with

the expertise and understanding of the experts. This is the expert-capturing part of

our process. It is based not only on informed consensus but it has the possibility of

continuing growth of the central model.

So we avoid the cult of the central modeler, working on a mainframe computer,

who claims to have understood and captured the meaning of the experts. We avoid

producing a group of scientists who are unsure of the degree to which their

knowledge has been captured and so, in their conservative default position, eventu-

ally deny any utility or even connection to the model and generally retain a negative

opinion of this and perhaps even all such models.

The process is not risk free, and it requires delicate organization. The scientists

who participate in the modeling endeavor do reveal their approach to their field.

That approach may contain errors and omissions, and thus, they may be prone to

increased criticism. However, these scientists have to be congratulated for their

courage to open up new areas for scientific endeavors and for opening themselves
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up to criticism. The process does, however, promise to make young scientists wiser

and older scientists younger.

A general strategy for modeling with experts is to build a STELLA model of the

phenomena that all expect will be needed to answer the questions posed at the outset.

That model should cover a space and have a time step commensurate with the detail

needed for the questions. The whole space and time needed for the model may

exceed reasonable use of the desktop computer. Eventually, anymodeling enterprise

may become so large that the program STELLA is too cumbersome to use. However,

translators exist for the final STELLA model, converting the STELLA equations

into either C+ or FORTRAN code. Translated models can be duplicated and put into

adjoining cells on a landscape and run simultaneously on large computers.

The various modeling processes are now being combined into a seamless one,

running from desktop to supercomputer and back, with little special effort on the part

of the body of experts. As an example, in an ecological model studying sage grouse

(Westervelt and Hannon 1993) in the desert, we used STELLA to combine the

expertise of a variety of life science professionals. The STELLA generic model

could be electronically translated into C+ or FORTRAN and applied to a series of

connected cells; in this example, as many as 120,000 such cells. These now

cellularized models were then electronically initialized with appropriate maps

from a specific Geographic Information System. The model could then be run on a

large parallel processing computer or a network of paralleled workstations. Thus,

we could connect STELLA’s knowledge-capturing features to the most powerful

computers available.

The interdisciplinary nature of landscape ecology and environmental manage-

ment has led researchers in these fields to make good use of a cellular approach to

building dynamic spatial models in STELLA and to running these models on ever

more powerful computers. Ruth and Pieper (1994) used a different, but similar

model to study the spatial dynamics of a rising sea level. Their model uses a

relatively small set of interconnected cells to describe the physical processes of

coastal erosion and sedimentation. Each cell of the model held site-specific data.

The model was run to cover a small part of the total area. Then the cells were moved

across the landscape to cover part of the area that was not covered previously by the

model. By rerunning and “moving” the cells over and over again, a large area could

be covered with a relatively small number of cells. The approach is sophisticated

enough to offer flexibility while maintaining computational efficiency, and usually

it does not require advanced parallel processing. STELLA’s use of visual elements

to represent data and the ways it characterizes system dynamics are all closely

related to pictorial simulation models (Câmara et al. 1991) and cellular automata

models (Toffoli and Margolus 1987). STELLA can even run object-oriented

models, although not nearly as well.

We have also used similar approaches to model large-scale, complex industrial

systems, tracing flows of materials, energy, and pollutants. These models are based

on engineering information and time series analysis (see, for example, Ruth et al.

2004). It is a goal to ultimately combine the dynamic engineering representations of

industrial processes with accounting models to provide tools for the economic

optimization of production processes.
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In this book, you will learn how to build your own models to investigate

potentially complex economic processes, such as trade in a barter economy, the

profit-maximizing choice of inputs and outputs in a production process, and

the optimal harvest of trees and fish populations. We chose STELLA because it

has proven a powerful tool for building and expanding models of dynamic systems.

With it, you can explore real-world systems and—perhaps even more importantly—

challenge your understanding and that of others about these systems.

By now, you probably feel ready to tackle the systems described in the rest of the

book, but not so fast. Practice selecting, initializing, and connecting STELLA’s

icons until you are familiar with the basics of this software. We will use these skills

to build models of various dynamic systems in the remainder of the book.

We will start, in Chap. 2, by identifying some features fundamental to dynamic

models. Because these features are basic to so many dynamic processes, they will

reappear throughout the book. Then, we turn our attention to the particulars of

models of optimal natural resource use. In building these models, we will focus on

general principles. You are encouraged to further your own investigations by

building on these basic principles to pose and solve questions concerning the

dynamics of complex, real-world phenomena.

1.1.9 Basic Fish Model Equations

Here, as in later chapters of this book, we show you the model equations in

STELLA. You can use them to check your model against the specifications we

have chosen, and readily make adjustments as needed.
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Chapter 2

Disaggregation of Stocks

Logic is the muse of thought. When I violate it I am erratic; if
I hate it, I am licentious or dissolute; if I love it, I am free—
the highest blessing the austere muse can give.

C. J. Keyser,Mathematical Philosophy, 1922, p. 136

2.1 Promotion Within the Firm

In the previous chapter, we modeled the dynamics of a fish population living in a

pond. We implicitly assumed that all fish are born at a reproductive age and leave

the pond irrespective of their age. If you were operating a fishery at your pond, you

may want to selectively remove fish of different age classes to maximize your

revenues. This may help you to capitalize on differentials in the reproductive rates

of younger and older fish and the fact that rates of reproduction are higher at lower

densities. A model of the different age cohorts in your pond would require that you

disaggregate the stock FISH into the different age classes and introduce age-

specific reproduction and extraction rates.

Let us take up this idea of disaggregating stocks into subgroups of individuals

here to model the dynamics of a company that consists of assistants, directors, and

executives. Each of these three groups makes up part of your “company stock.” You

are put in charge of personnel in that company and are given the task of changing

the distribution of people among the three positions in the company hierarchy from

the current distribution to a desired one. Currently there are 800 assistants, 100

directors, and 10 executives. People get hired into the company at the assistant

level, some of the assistants get promoted to become directors, and some of the

directors ascent to become executives. People retire from the company after they

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_2,
# Springer Science+Business Media, LLC 2012
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reached the executive position. The desired company hierarchy is one with 900

assistants, 90 directors and 9 executives.

To achieve the desired company hierarchy, you need to hire and promote people at

the appropriate rates. Assume that it is easier for you to hire new assistants than

promote assistants to directors or directors to executives. Assume also that the rate of

retirement is beyond your influence. The hiring rate is 100%of the difference between

the actual and desired number of assistants. The rates at which you can promote

assistants to directors and directors to executives are 80 and 60%, respectively. The

retirement rate is 5%. Can you achieve the desired distribution for the company

hierarchy within 10 years? Let us set up the STELLA model to answer this question.

Define three state variables as stocks, one each for ASSISTANTS,

DIRECTORS, and EXECUTIVES. Model an inflow of HIRES into the stock of

ASSISTANTS and outflows of ASSISTANTS into the stock of DIRECTORS and

from DIRECTORS to EXECUTIVES. PROMOTION of ASSISTANTS to

DIRECTORS is a function of the desired and actual stock and of the rate at

which you can hire people into the company. The DESIRED ASSISTANTS and

HIRING RATE are exogenously given parameters that you should specify as

transforming variables—they will transform the flow of hires. This flow is

HIRE ¼ HIRING RATE � ðDESIRED ASSISTANTS� ASSISTANTSÞ: (2.1)

The larger is the difference between the number of desired and actual assistants,

the more new assistants are hired. Similarly, we can define

PROMOTION ¼ PROMOTION RATE � ðDESIRED DIRECTORS

� DIRECTORSÞ; (2.2)

ASCENSION ¼ ASCENSION RATE � ðDESIRED EXECUTIVES

� EXECUTIVESÞ; (2.3)

RETIRMENT ¼ RETIREMENT RATE � EXECUTIVES: (2.4)

The STELLA model is shown in Fig. 2.1.

Make an educated guess on the dynamics of the company hierarchy and then run

the model over 20 years to see whether you guessed correctly and whether you can

achieve the desired goals by year 10. The results are shown in Fig. 2.2.

The goal of having 900 assistants is soon achieved, but there are more directors

and fewer executives than desired. Decrease the rate for promotion of assistants to

directors and see whether this should help you reach the goal. What are the effects

on the number of executives? Can you adjust the ascension rate to reach the desired

number of executives? Where is the bottleneck in your company hierarchy, and

how can you solve the problem of achieving the desired structure within 10 years?

Set up the model to show, over time, the size of the male and female work force.

To do this, assume different hiring, promotion and ascension, and retirement rates

for the two groups of employees. Then, investigate the time it would take to have an
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equal share of each gender in the company. What are the implications of your

findings for your personnel planning?

In this model, we have expanded on the logic of the previous chapter by tracing,

for exogenously given parameters, the effects of inflows to and outflows from

Fig. 2.2 Company hierarchy

Fig. 2.1 Company hierarchy model
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stocks on a system’s dynamics. We have then noted the influence of the parameters

on the system’s state variables over time. We have disaggregated a single stock of

employees into subgroups based on their positions in the company hierarchy,

because treating the entire work force of the company as a single stock would not

have enabled us to answer the question of optimal hiring strategies. The resolution

at which we model the system depends on the question we wish to answer.

The following chapter will illustrate this point in more detail. There we proceed

in the opposite direction. Rather than disaggregating a system of interest into ever-

smaller parts, we increasingly add to the model parts of the system’s surroundings.

2.2 Disaggregated Stocks Model Equations
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Part II

Methods for Dynamic Modeling



Chapter 3

System Boundaries in Space and Time

I know that history at all times draws strangest consequence
from remotest cause.

T. S. Eliot, Murder in the Cathedral, 1935, Part I.

3.1 Introduction

Much of the debate about the adequacy of particular models for describing

real-world phenomena stems from the fact that we all view the world differently

and thus place different importance on the processes that we observe. Some of these

differences then manifest themselves in the selection of particular aspects of thereal

world for our models. Through this selection process we effectively define the

boundaries of the system we wish to investigate with our model. System boundaries

delineate what we consider important from what we deem unimportant. We model

the important part.

We wish to distinguish two types of system boundaries that are related to each

other. Boundaries in space delineate the system under investigation from its surround-

ings.We are quite familiarwith the use of such boundaries. They are drawn onmaps to

delineate different countries, or oceans from coastlines. But recognize, many of these

boundaries are disputed or change as the resolution of our map changes. Similarly, we

can delineate companies or households as individual entities—or systems—based on

the type of economic activities performed by them and by property rights, location, or

other criteria. These boundaries, too, can be subject to considerable debate, as it is well

exemplified in the case of multinational corporate systems—conglomerates that have

offices in different countries are “owned” by companies or shareholders in different

countries, and perform a multitude of tasks.

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_3,
# Springer Science+Business Media, LLC 2012
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Even more difficult to deal with than boundaries in space are boundaries in time.

The impacts that a system as on its surroundings may not be immediate and possibly

rather complex, following a chain of interrelated responses in its environment that

then may feed back to the system itself. Which of those impacts should be captured

in our model? Surely, those impacts that are comparably small and that do not occur

for a long time may be safely regarded as irrelevant to understanding the system’s

performance. Our model will then operate under a set of ceteris paribus

assumptions—meaning that we postulate that “everything that is not part of the

model remains the same” as our system moves from one state to another. But, what

do we mean when we say that impacts are “comparably small” and do not occur

“for a long time”? Which of the ceteris paribus assumptions can be justified and

which cannot? An experimental approach to modeling can help us make this

decision by laying open the relevance of our assumptions.

In the following sections of this chapter, we subsequently extend the boundaries

of our model. We start with an individual firm and ultimately capture activities of

other firms and part of the resource base. Of course, a large number of potentially

important real-world features will not be included in this model. We abstract away

from them. However, as we extend our model, we find that our answers to the

question that the model is supposed to answer will change.

3.2 Energy Cost of Production at the Level of the Firm

Let us consider a single firm that produces a single good as its output. The quantity

Q of the good is generated by usingmaterials and energy. The firm knows—or thinks

it knows—all future sales of its good and produces just as much as can be sold for

a given price. The expected sales and production may be thought as following a

product life cycle pattern with low sales early on as the good is introduced in the

market, increasing sales as the market develops, and declining sales the longer the

good has been available. Declines in sales by this firm may be due to increased

competition from other firms that enter the market. We do not model market access

explicitly here, but will take up this issue in some detail in Chap. 11.

Many goods seem to follow a life cycle pattern. Black-and-white television sets,

pocket calculators, and turntables for stereo equipment are examples of goods that

have been around for a while and whose sales and sales potential declined quite a

while ago. Mobile phones may have already approached their peak in sales while

electronic book readers are still at relatively early stages of their product life cycle.

For our model, we capture the sales over time with the simplified, hypothetical

relationship shown in Fig. 3.1.
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The entire data for the above figure is shown here:

0 2.10

2 2.30

4 2.90

6 3.70

8 4.70

10 6.00

12 7.70

14 9.60

16 11.90

18 14.00

20 16.10

22 18.10

24 19.20

26 19.60

28 19.20

30 18.00

32 16.10

34 14.00

36 12.50

38 10.90

40 9.50

42 8.20

44 7.10

46 6.30

48 5.40

50 4.50

52 3.70

54 2.80

56 2.30

58 1.90

60 1.90

Fig. 3.1 Sales profile over a

product lifecycle
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When you open the STELLA model, which you can download (for details

see Chap. 1), look at the transforming variable Q that captures this relationship in

a graph. Press the Option (Macintosh) or Control (Windows) key to view the entire

graph.

Bell-shaped trends, as shown in the life cycle pattern here, often result from an

interplay of at least two counteracting forces whose relative strength changes over

time. In our case, one of these forces is the increase in the size of the market

or development of technologies to produce the goods at ever-lower cost. The other

force is the competitors whose entry into the market drives down the sales of the

firm. But recognize, the result of these counteracting forces does not necessarily

have to be a bell-shaped curve, as we assumed here. With an increased number of

feedback processes and time lags in the response of system components, many

variations and reversals of trends can occur, as we will see in later chapters.

Through our choice of system boundaries, however, we do not deal with such

feedback processes and time lags.

Let us assume that the firm anticipates that, with increased experience in

producing the good, it will be able to increase its efficiency of using energy in the

production process. Experience may be expressed through cumulative production,

Z. Energy efficiency is measured as energy use per unit output, EQ\Q. The relation-
ship is given in Fig. 3.2.

The question that we wish to answer with our model is the following: What is the

total and per unit energy consumed over time to produce the output of the firm? To

provide an answer, the model must keep track of cumulative production Z, and must

calculate energy use, EQ, in the production of Q. Energy use is just the product of

per unit energy consumption and output:

EQ ¼ EQnQ � Q: (3.1)

Fig. 3.2 Declining energy

requirements per unit output

(EQ\Q) as cumulative

production (Z) increases
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Our model is shown in Fig. 3.3.

Set the initial values of cumulative production and cumulative energy use to 1.

Choose a DT ¼ 0.25 and run the model over 60 years of simulation time. Figure 3.4

shows what you should get. Cumulative production rises at an increasing rate early

on but levels off as output declines. The increase in cumulative production is

accompanied by a decline in energy costs of production EQ\Q. The combined

effect of declining energy cost and increased rates of production temporarily results

in increased energy use EQ. Energy use ultimately declines as production levels off.

Fig. 3.3 Simple energy use model

Fig. 3.4 Results of the simple energy use model
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The firm that we modeled here can pride itself with the fact that it achieved more

than an 80% decline in energy use per unit output over the product life cycle.

Change the initial values of Z and note the effects on the results. In reality it is often

difficult to know the entire cumulative past production of a firm, unless you have

access to all its production records. By truncating that past and (arbitrarily) assum-

ing an initial value for Z, we made an assumption on the system boundaries in time.

You should find that this assumption is not very crucial for the model results,

provided that we indeed deal with a product early in its product life cycle.

3.3 Firm-Level Energy Cost Model Equations

3.4 Extending the System Boundaries

In the previous section, we conceptually drew the system boundaries to capture a

single firm’s output and the corresponding energy use. We assumed that the firm

was able to increase energy efficiency as it gained more experience. Let us

introduce a similar learning effect for the use of materials. Material use per unit

output is denoted X\Q and represented as a graphical function of cumulative

production (Fig. 3.5). The more of the good has been produced in the past, the

more experience has been gained and thus the lower are the material input

requirements per unit output.

Assume this material must be extracted from the ground, such as copper or iron

ore. Increased material use, thus, corresponds to increased extraction rates.

Typically, companies extract minerals from their best reserves first before they

move on to those that are of a lower quality. The quality of the mineral reserves is

reflected by its ore grade and its expected extraction cost. The lower the grade, the
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lower the quality—more impurities and waste materials have to be removed to yield

a ton of metal. Historically, ore grades of many metals dropped significantly. For

example, at the beginning of this century copper ore grades in the United States were

approximately 2% pure metal content. Today, they are less than 0.5%. Similarly,

iron ore grades dropped from close to 40% in 1950 to less than 20% in 1995.

Let us model changes in ore grade G as a declining function of cumulative

material use, CUM X. The functional form is

G ¼ ALPHA1 � CUM X^ALPHA2: (3.2)

We arbitrarily set the constants ALPHA1 ¼ 0.7 and ALPHA2 ¼ �0.2. Note

that we could have portrayed G as a graph in one of STELLA’s converters and used

multipliers on the graphical input or output to simulate the effect of ALPHA1 and

ALPHA2. Other ways of dealing with such depletion effects are presented in detail

in Part IV of the book.

Of course, making input materials available for the production of Q itself

requires energy. Energy use in material extraction per unit of the material extracted

typically declines as ore grades drop. We model this relationship between ore grade

G and energy use per unit X, EX\X, with the following function:

EXnX ¼ BETA1 � G^BETA2; (3.3)

with BETA1 ¼ 0.8 and BETA2 ¼ �0.6 as constants. As ore grade changes over

time due to continued material use for the production of Q, energy use EX in the

extraction of X increases as G drops. These relationships are captured in the part of

the STELLA model illustrated in Fig. 3.6.

The total energy use E associated with the production of Q—directly in the

production of Q itself and indirectly for the extraction of X—is

E ¼ EQþ EX: (3.4)

Fig. 3.5 Declining material

use per unit output (X\Q) with
increasing cumulative

production (Z)
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Dividing E by the total amount of Q yields the total of direct and indirect energy

required in the production of Q, E\Q.
With each additional feature, the diagram of the model increases in size. In

larger models that have highly interdependent components we need to make a large

number of connections. With an increasing number of connections, or information

arrows, the readability of the model can be seriously reduced. Use “Ghosts” of icons

to avoid crossing arrows and increase the transparency of the model structure. You

can create a ghost, for example, of a converter by first clicking on the ghost icon

shown in Fig. 3.7.

Once you clicked on the ghost icon, move it to the variable that you want to

duplicate. Click on the symbol you want to duplicate. The ghost icon then changes

Fig. 3.6 Material use, energy use, and ore grade changes
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its appearance into that of the symbol you clicked on. You can now place this

duplicate of the original anywhere in the diagram and connect it with information

arrows to the relevant parts of the model. The ghost you created is the same icon as

its original, but printed slightly lighter in color than the original.

In our model, we created a duplicate, or “ghost,” of EQ and EX to easily connect

them to calculate E. Similarly, we used a ghost of Q to calculate E\Q. The ghost

always assumes the value of the original. Be aware that all changes to the

variable must be made to the original, not the ghost. Thus, information arrows can

originate from the ghosts to connect them to other parts of the model, but it is not

possible that ghosts receive information arrows (Fig. 3.8).

Run the model for initial values of Z, CUM EQ, and CUM EX equal to 1 and

CUM X equal to 10. The cumulative values of output, material use, and energy use

are shown in Fig. 3.9. All curves show initially fast increases due to the rapid

expansion in Q.
Figure 3.10 shows the life cycle pattern of production Q, material use X, and

material use per unit output. Because production of Q ultimately levels out, so does

the use of materials. The decline in ore grade G with increased cumulative extrac-

tion and use of materials X is shown in Fig. 3.11. Ore grades initially drop fast.

As less material is extracted—because of declining Q and X\Q—ore grades decline

at a lower rate. Figure 3.12 shows changes in energy use per unit output. Energy use

per unit material extracted increases steadily because ore grades decline. By

contrast, energy use per unit output Q declines. The joint effect of these two

opposite trends in energy use is a bell-shaped path for the combined direct and

indirect energy consumption per unit output.

Let us now return to the question we posed in the previous section: What is

the total and per unit energy consumed over time to produce the output of the

firm? Compare the graphs above with the results of the model in the previous

section, where we were concerned with only the firm producing Q. Now that

Fig. 3.7 Ghost

Fig. 3.8 Energy use
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we included the effects of material use by that firm on energy use elsewhere in

the system, we must be more careful when judging energy efficiency improvements

by the firm. Could the temporary rise in the combined direct and indirect energy use

per unit output be reduced if the firm had improved material use efficiencies X\Q a

bit more, even if this improvement came at the expense of an increase in EQ\Q?

Fig. 3.10 Output and material use

Fig. 3.9 Cumulative output, material use, and energy use
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Of course, our answer is different here from the case in the previous section

because we included the effects that material use has on ore grades and through ore

grades on energy use in the “extractive sector.” A number of different answers to

our question can be given, depending on the choice of the parameters that we used.

However, the answer depends not only on the choice of parameters but also, to a

Fig. 3.11 Changes in material use

Fig. 3.12 Changes in material and energy uses per unit output
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very significant extent, on our choice of the system boundaries, as the last of the

preceding graphs illustrates.

Rerun the model with alternative initial values of CUM X and alternative

parameters for the functional forms that capture the relationship between ore

grade and cumulative material use, (3.1), and between ore grade and energy cost

of extraction, (3.2). Modify (3.1) and (3.2) to include effects of the rates of material

use X on ore grades and energy that is required to produce a unit of output. What

should the direction of this effect be?

3.5 Extended System Boundary Model Equations
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3.6 Sensitivity Analysis

There are many directions in which the model of the previous section can be

refined and extended to make it more realistic. We could specifically model the

use of other inputs in the production process such as labor and capital, and deal

explicitly with the possibilities of trade-offs in the use of one of these inputs for

others. For example, to some extent capital goods may be used to substitute for

labor or material inputs. Obviously, capital goods themselves need to be pro-

duced, using materials and energy. An interesting question that arises from such a

model is whether increased capital use actually helps decrease total material and

energy requirements in the system. Return to this question after you worked

through this section.

Real production processes frequently show possibilities for substitution—at

least within certain realms. We will focus on the realm of best input substitution

possibilities in Chap. 8.

Another extension to the model is to include the energy cost of extracting

energy. So far, we were concerned with only the energy cost of extracting

materials. But, of course, energy must be extracted in the first place to be able

to extract and process the materials, and energy extraction itself requires energy.

In this section, we extend our model in this direction and then introduce a

systematic procedure to test for the sensitivity of the model results to our choice

of parameters.

The combined effects of substitution and resource depletion on the energy

requirements per unit of energy and material extraction can be significant.

For example, use of wood for heating, cooking, and construction in England led

to a significant depletion of forest resources in the seventeenth century. Increases in

economic activity and in population during the industrial and agricultural

revolutions required increased use of energy. Charcoal, produced from wood,

was increasingly used to supply this energy, which exacerbated the problems in

wood supply. As pressures on remaining forest resources increased further, coal—

an abundant energy source of high heat content—was used as a substitute. Its

chemical and physical characteristics made it a preferred input in iron smelting and

refining, processes that became increasingly important for the industrial revolution.

However, as more and more coal was extracted from England’s coal mines, more

energy had to be used to extract coal, and to pump water that infiltrated the mine

shafts and tunnels. At increased depths, human and animal labor was insufficient in

handling the large amounts of water that had to be pumped from the mines. The

invention of the steam engine provided a technological breakthrough that helped

alleviate some of the problems in mining. However, steam engines required coal to

operate. As a result even more energy that was extracted from the mines was

diverted to the extraction process itself. The steam engine not only revolutionized

mining of coal but also of iron ore. More materials were transported from mines to

smelters, refineries, and population centers. The steam engine, through its

applications on railroads, facilitated the transportation of those materials. But
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again, more energy was required to move goods and services, to produce iron and

steel for railroads and other uses, and to extract the coal used to extract iron ore and

coal itself.

Let us model in a simplified way the energy requirements by the energy

extracting sector. Assume that the energy required per unit energy extracted EE\E
depends on cumulative energy extraction, CUM EE. The relationship is similar to

the one used above to define changes in ore grade of materials with cumulative

material extraction. The functional form used in the model is

EEnE ¼ GAMMA1 � CUM EE^GAMMA2; (3.5)

where GAMMA1 ¼ 2 and GAMMA2 ¼ 0.1. Unlike the case of materials, where

increased cumulative material extraction drove down ore grades, increased cumu-

lative energy extraction increases the energy used in extracting the next unit

of energy.

Let us assume that the demand for energy in the model is composed of the

demand for energy only to extract materials, to process them in the production of Q
units of the final product, and to extract energy itself. For simplicity, we assume

here that own energy use by the energy sector is directly proportional to the energy

use in material extraction and production of Q. The proportionality factor A is 10%.

Therefore, total energy extraction is

EE ¼ ð1þ AÞ � EEnE � ðEQþ EXÞ: (3.6)

Indirect energy use to produce Q now includes the energy to extract energy and

the energy to extract materials. The direct energy for the production of Q is EQ.
To calculate the total direct and indirect energy use in the system per unit output we

now need to divide total demand for energy EE by Q. Our extended model now

consists of the parts shown in Fig. 3.13.

Energy use per unit output of the materials extraction sector, the energy extrac-

tion sector, and the firm producing the final product are shown in Fig. 3.14. We also

calculated the total direct and indirect energy per unit output of the final product.

Compare the results with the previous section, and you will find that the inclusion of

energy cost in the energy-extracting sector significantly increased the total direct

and indirect energy use per unit output, E\Q.
Throughout this chapter, we have stressed the dependency of the model results

on system boundary definitions and parameter choice. We have explored the role

of system boundaries by including in subsequent model development stages

parts of the system that we assumed had significant impacts on our results.

Let us now turn to the sensitivity of model results to the parameter values used

in the model.
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The last model extension showed that the inclusion of the energy use in energy

extraction determines to a significant extent total direct and indirect energy use per

unit of the finished product. Here we assumed that the energy-extracting sector

itself uses 10% of the demand by other sectors in the model. How sensitive are the

model results to this assumption?

Let us vary the parameter A, which captures the percentage of own energy use in
the energy extracting sector for consecutive runs, and plot all the resulting curves of

E\Q together in the same graph. To do this, we make use of sensitivity runs, a

convenient method provided by the STELLA software.

Go to the RUN pull-down menu, select “Sensi Specs” (Sensitivity Specific-

ations), and choose the parameter A—by clicking on it and selecting it—as the one

Fig. 3.13 Extended model
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for which we want to perform a sensitivity analysis. Type in the dialogue box “#

of Runs” 5 to generate five sensitivity runs. Then provide start and end values for A.
A assumes the start value for the first sensitivity run and the end value for the last

sensitivity run. If you chose “Incremental” as the variation type, STELLA will

calculate the other values from the start and end values that you specified such that

there are equal incremental changes in A from run to run. Plot the five resulting

Fig. 3.14 Results of the extended model

Fig. 3.15 Sensitivity analysis
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curves for E\Q in the same graph by choosing the “Graph” option in STELLA’s

SENSITIVITY SPECS menu. Run the model with the S-RUN command and

observe the resulting graph (Fig. 3.15).

Obviously our assumption on own energy use by the energy extraction sector

does not drastically influence the results of the model. Choose other parameters in

the model and assess the sensitivity of the results to those parameters. If you wish

to let them vary from run to run along a normal distribution with a known mean and

standard deviation, choose the “Distribution” option instead of “Incremental”

(Fig. 3.16). When you specify “Seed” as a positive integer, you ensure the ability

to replicate a particular random number sequence in subsequent sensitivity runs.

Specify 0 as the seed, and a “random” seed will be selected. If you do not wish to

utilize the normal distribution of the random numbers used in the sensitivity

analysis, click on the bell-curve button (Fig. 3.16).

This button will change the curve’s appearance (Fig. 3.17), and you now need to

specify a minimum, maximum, and a seed for your sensitivity analysis.

A final choice for the specification of sensitivity runs is not to use STELLA’s

prescribed changes in parameters in incremental intervals or along distributions.

You can specify ad hoc values for each of the consecutive runs. These options

should provide you with sufficient flexibility in the assessment of the sensitivity

of the model to the numerical values you choice to initialize it. Make frequent

use of sensitivity runs. They will help you better understand your model and its

reliability.

Fig. 3.16 Specification of

sensitivity analysis with

normally distributed

parameter values

Fig. 3.17 Specification of

sensitivity analysis with not

normally distributed

parameter values
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3.7 Sensitivity Analysis Model Equations
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Chapter 4

Scheduling Flows

Nothing is permanent but change.

Heraclitus 500 B.C.

4.1 Conveyors, Queues, and Ovens

In the previous chapterswe used stocks to represent state variables. The corresponding

STELLA symbol is the Reservoir with inflow and outflow at each DT. In reality,

however, many stocks receive inflows and result in outflows only at particular

periods of time, depending on a “schedule” that underlies the processes of the

respective system. The scheduling of inflows into and outflows from stocks can be

easily modeled by using the other versions of stocks offered in STELLA: Conveyor,

Queue, and Oven. To create any of these stocks, select the STELLA symbol of a

stock (Fig. 4.1), drag it into the diagram, and open it by double-clicking on it. At the

top of the dialogue box you can choose the type of stock.

A Conveyor is able to take up some value or values of state variables, keep these

values for a fixed length of time, and then release the values describing the state

variable. Each DT is assigned a slat on the conveyer. Conveyors can be compared to

conveyor belts on which some object moves before it gets off again. Whatever goes

into the Conveyor first also leaves the Conveyor first. The same holds for Queues.

These are lines of objects that await entry into some process. Objects first in line,

that is, arriving first in the queue, will enter the process first. Lines of people waiting

at a grocery store checkout are an example.

Ovens are processors of discrete batches of objects, very much like ovens used in

a bakery. Ovens receive a number of objects over some period of time, retain these

objects for some time, and then unload them all in an instant.

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_4,
# Springer Science+Business Media, LLC 2012
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Although we are used to thinking of objects as discrete entities—such as one

car, two telephones—manymodels assume divisibility of those entities. For example,

infinite divisibility of units is frequently assumed in economic models. Consumers,

for example, may increase their utility by receiving a quarter of a car. Similarly, firms

may increase their profits to a maximum by selling half a telephone more.

With increased use of the calculus of variations in economic models, assum-

ptions of infinite divisibility of units were made necessary, and as a result, discrete

processes have been frequently neglected. However, real-world production and

consumption processes are replete with examples of discrete units. Conveyors,

ueues, and Ovens are forms of stocks that are designed to model such discrete

processes, and some examples of their use follow.

This chapter presents two models of discrete processes. The first of these models

deals with a simple grocery store. This model introduces the tools for modeling

discrete processes and shows how to handle multiple independent variables in

STELLA. Time is our usual independent variable, and we use it to cause the change

in our models. In the next sections, we model systems not only with respect to their

temporal dimension but also with respect to their spatial dimension. By doing so, we

model two independent variables—space and time. The methods of modeling

discrete processes in space and time are used in the final section of this chapter to

optimize a system’s performance. Here, we identify an optimal schedule for a public

transportation system to minimize travel time. The same tools and methods can be

used to optimize, for example, discrete production processes of individual firms.

4.2 Modeling Discrete Flows in Space and Time

To illustrate the use of conveyors, queues, and ovens, consider the simple case of a

store intowhichpeople enter, receive some service, thenmove to the cash register, and

have to wait in a checkout line before they can pay and leave. Only one person can be

served at a time, and initially oneperson is already at the service center being served. It

takes 5 min to be served and 1 min to get from the service center to the checkout line.

The “inflow”of people into the store can bemodeled, as before,with a unidirectional

flow. Let us call it ENTER and specify it later. Upon arrival, people wait in line, the

SERVICE QUEUE, to be served at the SERVICE CENTER. Place two stocks in your

STELLA II diagram, one called SERVICE QUEUE and the other called SERVICE

CENTER. Connect both with a flow called GET SERVICE. Next, place a stock on the

diagram, call it TRANSFER, and connect it with a flow to the SERVICE CENTER.

Choose another stock for the checkout line, with inflow fromTRANSFER and outflow

into a cloud to represent the people leaving the store. The final state variable,

representedbya stock, is theCASHREGISTER, capturing thepeople currently paying.

Fig. 4.1 Alternative

representations of stocks
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Now that we have laid out the model, let us specify the stocks and flows. Open the

SERVICEQUEUE stock and specify it as a queue with an initial value of 2, assuming

two people are already waiting to be served. Recognize that once you click onOK, the

questionmarkwill disappear, not only in the stock icon but also in the GET SERVICE

flow.STELLArecognizes that theoutflow fromanoven isdeterminedby its cook time.

Next, open the SERVICE CENTER stock and specify it as an oven with an

initial value of 1, for the person already being served, and a “Cook Time” of 5.

The cook time of 5 min defines the duration of items in the oven.

Similarly, specify the TRANSFER stock as a conveyor, set its initial value to

0—assuming no people are currently on their way from the service center to the

checkout line—and the transit time as 1, corresponding to the 1 min it takes to walk

to the checkout line. Click on OK, and the question mark in MOVE TO CHECK-

OUT will disappear.

Now specify the state variable CHECKOUT LINE as a queue, with an arbitrary

initial value of 8, for the eight people waiting in line. When you click OK, the

question mark in the outflow PAY will disappear. People coming out of the

checkout line are assumed to pay at the CASH REGISTER before they can

leave the store. The CASH REGISTER is specified as an oven with a cook time

of 2 min, and we assume that currently one person is being served.

Your model should now look like the one in Fig. 4.2, and we are left to specify

the rate of arrival of customers into the store.

Let us assume that one customer arrives every 4 min and that the first customer

arrives in the third minute after we began to run the model. The PULSE built-in

function is designed to model such a case. We specify

ENTER ¼ PULSEð1; 3; 4Þ; (4.1)

where the first entry in the PULSE function refers to the volume of the pulse, the

second to the initial occurrence of the pulse, and the third entry to the length of

the recurrence interval. Additionally, we “time-stamp” the inflow into the store

and the outflows from the store. This is done by checking the “Time-stamp check

box” in the upper right-hand corner of the ENTER flow diagram (Fig. 4.3).

Fig. 4.2 Store model
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After you checked the box and clicked OK, the flow’s appearance will change to

indicate that it has been time-stamped (Fig. 4.4).

We are now able to calculate the time it takes to shop. We do so with the built-in

function Cycle time. This built-in function requires for its specification, as its first

input, a flow whose cycle time is calculated and, as a second input, a weight. When

no weight is specified, Cycle time will return the per batch cycle time independent

of volume. When the weight is set to 1, it will return the per unit volume cycle time.

The latter specification is chosen in our model:

SHOPPING TIME ¼ CYCLE TIMEðLEAVEÞ: (4.2)

Similarly, we can calculate the average cycle time per unit volume cycles as

MEAN SHOPPING TIME ¼ CT MEANðLEAVE; 1Þ: (4.3)

The complete model is shown in the following diagram. The results of our

model, presented in the graph, show overall a stepwise decrease in the CHECK-

OUT LINE, with short temporary increases, and increases in the queue prior to the

SERVICE CENTER. Given an initially long CHECKOUT LINE, the time it takes

an individual customer to shop is initially high, declines temporarily, and as more

shoppers arrive, increases again. By the same token, the average shopping time

declines temporarily and increases the longer the queue gets in front of the service

center (Figs. 4.5 and 4.6).

Fig. 4.3 Time-stamp

elements

Fig. 4.4 Store model with time stamp
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Assume you are the manager of a store of this type, but you are lucky to have two

service centers and twocash registers. There are three employees in your store, each of

whom is qualified to work at the SERVICE CENTER and at the CASH REGISTER.

An employee can be at only one place at one point in time. It is your task to decide

Fig. 4.5 Waiting times

Fig. 4.6 Shopping times
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when to have both service centers open and when to have both cash registers open.

Find awork schedule thatminimizes themean shopping time over the course of an 8 h

workday. Then, assume that you need to give your employees a set of breaks from

their work; for example, two 15 min breaks each in the morning and afternoon, and a

1 h lunch break. How does this influence the “optimum” work schedule?

4.3 Store Model Equations
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4.4 Optimizing Traffic Flow

The model of the previous section can be used to optimize the schedules of workers

in a company that provides services, such as a grocery store or chemical lab, or to

schedule workers or the use of materials in discrete production processes, such as

assembly lines. The optimal schedule for the use of workers is often one that

minimizes the number of people that are at the production facility at one point in

time—full-time workers are used to meet the base demand and part-time workers

augment them at peak times. We will encounter an example of the need for part-

time workers in Chap. 10.

In some industries, it is customary to have a pool of employees on stand-by to

meet unanticipated bottlenecks in the ability to produce a good or supply a service.

A case in point is the use of on-call medical doctors and airline pilots. Similarly,

optimization of material use in discrete production processes frequently results in

only small inventories of input materials at the production facility. Therefore, to

ensure that the system reliably meets demand even though it has only few workers

or little excess materials on site requires efficient transportation of workers or

materials to its site. Let us therefore investigate some features of transportation

systems in more detail and model traffic flow for a simple commuter system to find

the best schedule. Again, the ideas presented here can easily be used to model the

transport of materials, for example, with freight trains or trucks.

Assume a simple commuter rail system connecting four stations. Passengers

arrive at STATION 2 and STATION 3, and all leave at STATION 4. No passengers

board at STATION 1 and STATION 4. STATION 1 is the shunting station from

which trains successively leave to pick up passengers at STATION 2 and STA-

TION 3. There are a constant number of passengers arriving at stations 2 and 3. The

rate of passenger arrival at STATION 2 is 4 passengers per minute and that for

STATION 3 is 5 passengers per minute. When a train arrives in the station and no

train is in front of it, it stops for an average of 6 s per passenger before it can move

on to the next station.
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Trains pull out from STATION 1 into STATION 2 at fixed intervals. The rate at

which trains pull out from STATION 1, PULLOUT, is specified by the built-in

PULSE function:

PULLOUT ¼ PULSEð1;DT; FREQÞ: (4.4)

Each pulse releases 1 train (the first number in parentheses) into STATION 1.

The first occurrence of that pulse is in time period DT. Thus, if DT ¼ 1, then the

first train leaves STATION 1 in period 1. The frequency at which trains depart

STATION 1, FREQ, is a parameter and is specified exogenously to the model.

STATION 1 contains initially ten trains. There is no limit on the maximum

number of trains that can be in STATION 1. However, no train can pull out from

STATION 1 to STATION 2 if there is no train in STATION 1.

No more than 1 train can reach a station at a time. Trains leaving a station move

through queues to reach subsequent stations. The travel time of a train, called

TRAVEL in our model, depends on its speed from station to station (assumed to

be a uniform 30 miles per hour) and the distance between stations (2.5 miles

between stations 1 and 2; 2 miles between stations 2 and 3; 2 miles between stations

3 and 4; and 6.5 miles between stations 4 and 1). Additionally, the travel time

depends on the time passengers at each station need to board the train. This

DWELL time is the product of the BOARD TIME (6 s per passenger) and the

total number of passengers that accumulated at a station between train arrivals.

Each station ismodeled as an oven. Its initial value is 0 and its capacity is 1; that is,

no more than 1 train can reach that station at a time. Trains leaving the station move

through a queue to reach the next station.Queues prevent later trains to pass those that

left a station earlier. The conveyor TRAIN 1 moves trains from STATION 1 into a

queue TO 2. The transfer time depends on the distance from STATION 1 to

STATION 2 and train speed. Once a train arrives in STATION 4, all passengers

leave (at an average of 6 s per passenger) and the empty train returns to STATION 1

via a conveyor, TRAIN 4, with a transfer time dependent on distance and train speed.

Be careful in specifying the units in your model. Convert, for example, seconds

and hours into minutes and run your model for the time scale of minutes. The part of

our model that captures the movement of trains is shown in Fig. 4.7.

The number of passengers departing from a station depends on the accumula-

tion of passengers at that station and whether a train has just pulled into the

station. For example, to calculate the number of passengers departing STATION

2, we use the DELAY built-in function and a variable STATE OF S2 that

indicates whether a train is in STATION 2. DELAY(variable,DT,0) specifies the

value of a variable delayed by one DT and assigns a value of 0 to the value of the

state variable at time t ¼ 0. Thus, DELAY(STATE OF S2, 1, 0) is equal to 1 if a

train has arrived in STATION 2 in the previous minute.

The STATE OF S2 variable is specified with the built-in function OSTATE as

STATE OF S2 ¼ OSTATEðSTATION 2Þ; (4.5)
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which gives the state of the oven STATION 2, and assumes 0 if the oven is empty, 1

if it is full, and 2 if it is emptying.

If a train just pulled into the station and no train was in the station during the

previous minute, then people who arrived at the station since the departure of the

last train will depart now; that is,

PASS BOARD 2 ¼ IFðSTATE OF S2

¼ 1ÞANDððDELAYðSTATE OF S2; 1; 0ÞÞ
6¼ 1ÞTHEN PASSENGERS 2 ELSE 0 (4.6)

Our model must keep track of the trains moving from station to station and the

number of passengers on each train (Fig. 4.8). The latter information is required for

the calculation of the time trains stay in STATION 4 before they move back to

STATION 1 and has been used as a ghost in the module shown in Fig. 4.7 that

captures train movement.

To calculate the time after which trains leave STATION 4, the number of

passengers on each train must be known. When the passengers board each train

(when PASS BOARD 2 or 3 >0), they are placed in a queue (PASS ON AT S2

or S3). The first number in each queue represents the number of passengers on the

first train; the second number in each queue, the number of passengers on the second

train; and so on. Thus when a train makes the nth complete trip to STATION 4

(STATEOF S4 becomes equal to 1), the nth element of the queues (PASSONAT S2

or S3) represents the number of passengers on that train. This number is calculated in

PASS ON TRAIN, using the built-in function QELEM. QELEM requires, as its first

Fig. 4.7 Train movement
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input, the name of the queue and, as its second input, the element in that queue. In our

model, we have

TOTAL PASS ON TRIP ¼ QELEMðPASS ON AT S2;COMPLETE TRIP þ 1Þ
þ QELEMðPASS ON AT S3;COMPLETE TRIPþ 1Þ: (4.7)

The 1 is added to the number of complete trips to offset the delay because it takes

one time period to register trains arriving in STATION 4 as having made a complete

trip (Fig. 4.9). From this number, DWELL 4 is calculated from the product of the

number of passengers on the train and the DEBOARD TIME.

To optimize traffic flow, we may choose alternative frequencies, FREQ, at which

trains pull into STATION 1. A number of different criteria may be chosen to assess

optimality of traffic flow, such as the number of passengers waiting at each station or

Fig. 4.9 Calculation of trips

Fig. 4.8 Waiting passengers
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the mean travel time from STATION 2 to the destination STATION 4. A choice

must be made also with regard to the time frame over which we wish to optimize

traffic flow. In this model we choose to minimize the mean travel time from

STATION 1 to STATION 4 over the course of one half workday; that is, 240 min.

To calculate the ride time (Fig. 4.10) we need to sum the dwell time for each

train (CUM DWELL TIME) and travel time for each train (CUM RIDE TIME),

both shown in Fig. 4.11, to the time each train waits in a queue (CUM WAIT

TIME), shown in Fig. 4.12. These cumulative times are then divided by the number

of complete trips that have been made to get the average ride time per train.

Fig. 4.10 Average time

per trip

Fig. 4.11 Dwell and travel

times for trains
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These cumulative times are calculated from the travel, dwell, and wait times for

each train. Inflows to cumulative time reservoirs occur exactly when STATEOF S2,

STATE OF S3, or STATE OF S4 is equal to 1, but not in the preceding time period.

Recognize how, in the long run, the average travel times per train arriving in

STATION 3 become increasingly uniform. Given a time horizon of 4 h and one

train pulling out to STATION 1 every 4 min, the average travel time per ride is

approximately 1 h. Increasing the frequency at which trains arrive at STATION

2 may reduce the boarding time. However, for frequencies low enough, trains may

get backed up in queues between stations, thereby increasing the travel time. Thus,

it is not necessarily beneficial for traffic flow to have shorter spacing between the

trains arriving at a station.

Decreasing the PULLOUT rates from 1 train every 4 min to 1 train every 7 min

actually leads to an improvement in terms of the mean travel time. The five curves

in Fig. 4.13 correspond to FREQ ¼ 4, 7, 10, 13, 16 min. Increasing the spacing

between trains to 10 min results in lower mean travel times, but increasing it further

to 13 or 16 min leads to higher mean travel times.

Figure 4.14 shows the number of trains in STATION 1 for each of the five

frequencies.

Try to find the schedule for the trains that minimizes the average trip time.

We already know that it must be between FREQ ¼ 10 and FREQ ¼ 13.

You may want to add the time-stamp features discussed in the previous section

and calculate the cycle time and standard deviation of the cycle time by using the

built-in functions CYCLETIME and CTSTDDEV, respectively.

Extend the model to include changes in the rate of arrival of passengers,

including features such as a well-pronounced rush hour. Find a new PULLOUT

frequency that minimizes average travel time. In reality, we need to allow for the

return of people to STATIONS 1 and 2 at the end of their workday (8 h). Make sure

that the same number of people who left for work through each of the stations will

arrive at that station at the end of the day.

In Chap. 2, we learned about ways of disaggregating stocks to answer questions

that pertain to subsets of the overall system, such as the hiring and promotion of

Fig. 4.12 Cumulative

waiting times
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workers with different qualifications and genders in an individual company.

In Chap. 3, we investigated the role of system boundaries in space and time for

an assessment of changes in production technologies and the quality of resource

endowments. In this chapter, we developed methods to optimize the performance

Fig. 4.13 Mean travel times for alternative departure frequencies

Fig. 4.14 Number of trains in station 1 for alternative departure frequencies
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of systems over space and time. All of the systems modeled so far had one

important feature in common. There were no unforeseen changes in their environ-

ment: The company hiring new employees or promoting from within the firm had

access to an infinite pool of qualified workers, and once hired no one left before

retirement. Product life cycles, technologies, and changes in ore grades were all

given and fixed for the firms of Chap. 3. Similarly, there was no random fluctuation

in passenger arrivals at the train stations of Chap. 4, and all trains operated without

breakdown and under constant weather conditions that enabled them to maintain a

uniform mean speed between train stations. The real world is not that predictable.

Unforeseen events may and will happen in a firm’s environment. The effects of such

events on a company’s performance in the marketplace are modeled in the following

chapter.

4.5 Traffic Flow Model Equations
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Chapter 5

Positive Feedback in the Economy

There are in fact four very significant stumbling-blocks in the
way of grasping the truth, which hinder every man however
learned, and scarcely allow anyone to win a clear title to
wisdom, namely, the example of weak and unworthy author-
ity, longstanding custom, the feeling of the ignorant crowd,
and the hiding of our own ignorance while making a display
of our apparent knowledge. Every man is involved in these
things, every rank is affected. For each person, in whatever
walk of life, both in application to study and in all forms of
occupation, arrives at the same conclusion by the three worst
arguments, namely this is a pattern set by our elder, this
the custom, this is the popular belief: therefore it should
be upheld.

Roger Bacon, Opus Majus, 13th century, I.1.

5.1 Feedback in the Economy

The models we built in the preceding chapters sketched the behavior of dynamic

systems in a simplified, mechanical way. First, the relationships among components

of the system were defined and the initial conditions specified within particular

bounds, then the dynamics of the entire system were hypothesized and the model

was run. Running the same model over and over again resulted in the same

dynamics. Real systems, however, do not behave that well, that regularly. Some

random element can change the direction of a system’s behavior and its ultimate

state. Things can become particularly “messy,” if even very small, random

influences on the system behavior change the strength of positive and negative

feedback processes, possibly leading the system to entirely different states.

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.
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The effect of positive and negative feedback processes on dynamic systems was

discussed in Chap. 1. You may recall that negative feedback processes lead a

system into a state of equilibrium, and positive feedback leads away from equilib-

rium by reinforcing a given tendency of a system. Acting alone, positive feedback

can lead a system into a new, unpredictable equilibrium state.

5.2 Positive Feedback

Because of the tendency to maintain equilibrium states, researchers have focused on

negative feedback processes. Breaking with this tradition, economist Brian Arthur

(1990) wrote of the vital influence of positive feedback on economic systems.

Arthur saw positive feedback processes as driving forces in determining which of

competing new technologies would dominate a market. Arthur used the develop-

ment of the VCR industry as an example to explain the effect of positive feedback.

The industry began with two different formats: VHS and Beta. Both formats entered

the market at approximately the same time, with similar products, and at first

seemed to share the market almost equally. Which technology would ultimately

take over the market? No one knew for sure. And many people wanted to know.

Manufacturers wanted to know whether to produce films in VHS or Beta. Retailers

and video rental businesses wanted to know which format to stock. Consumers

wanted to know which technology to buy. The market was unstable, as

manufacturers, retailers, and consumers waited to see which format would win.

A combination of corporate strategy and “luck” gave a slight lead to VHS. Building

on this lead, VHS became the sole tape format on the market.

Because at the start markets are unstable, small, seemingly random increases to a

new technology’s market share can expand its growth exponentially. Indeed, in

video technology, the growth of VHS drove Beta off the market. This is not a

unique example. Other products and technologies competing against close, but

mutually exclusive, rivals simultaneously entering a new market have had similar

experiences.

To capture positive feedback in a market, assume two producers are in the race

for market dominance. At the beginning of this “race,” each produces the same

output quantity. Furthermore, each of the producers is free to adjust output at each

period of time. We denote output by the two producers as Q1 and Q2, respectively.
From these we can calculate the producer’s market share F1 and F2. We can also

keep track of cumulative production, Z1 and Z2.
Let us assume that the more that has been produced by a particular producer, the

more experience that producer has gained, and as a consequence, the lower its

production cost per unit of the output. Lower cost translates into lower prices P1
and P2, which, in turn, increase the attractiveness of the product to the consumer.

The relationship between cumulative production (Z1) and price (P1), and that

between price (P1) and “attractiveness” (A1) of the output to consumers are

modeled with the use of Figs. 5.1 and 5.2.
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Let us assume that both producers have the same two curves. Also assume there

are always unknown, random influences on the marketplace. These are captured by

the variable RAND, defined as a random number varying between 0 and 1:

RAND ¼ RANDOMð0; 1Þ: (5.1)

The choice on how much to expand production from one period to the next in the

light of these random influences is assumed to be done in the following way. If the

current market share of a producer exceeds the random number, then this is taken by

the producer as a sign that things are going well for its product. Subsequently,

production is increased above the previous level. If the market share does not

Fig. 5.1 Price as a graphical

function of cumulative

production

Fig. 5.2 Attractiveness

as a function of price
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exceed the random number, then production is held steady; that is, the new output

level is equal to the previous output level. For producer 1 we have

NEW Q1 ¼ IF F1>RAND THEN Q1�ð1þ A1Þ ELSE Q1: (5.2)

Analogously,

NEW Q2 ¼ IF F1>RAND THEN Q2 ELSE Q2�ð1þ A2Þ: (5.3)

These decision rules capture positive feedback. As the market share increases, it

becomes more likely that the market share will exceed the random number, and

consequently production is increased, speeding up the increase in cumulative

production. As a result, price declines and attractiveness increases (Fig. 5.3).

The results of the model are shown for ten model runs in Fig. 5.4. Even though

producer 1 always starts with a 50% share of the market and may be able to increase

its market share early on, ultimate market dominance may not necessarily follow.

However, once a significant share has been reached, it is almost impossible to lose

the race for market dominance. Can you identify what approximately the critical

share is? Run the model for many times and check the reliability of your answer.

Fig. 5.3 Positive feedback model
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Modify the model to capture negative feedback. You can do that in many ways.

For example, let the producers increase their production when they recognize that

they fall back in the race or let the price increase with increased rates of production.

Run the model many times. What do you find? Introduce a third producer into

this model, and explore again the roles of positive and negative feedback for the

system’s dynamics.

We have now seen the effects of randomness on the market performance of a

firm. Before we move on to investigate in more detail the behavior of firms in the

marketplace, such as the optimum choice of input and output quantities, we need to

learn how we can use STELLA to make a system move toward an optimum point as

its dynamics unfold. This is the topic of the following chapter.

5.3 Positive Feedback Model Equations

Fig. 5.4 Positive feedback model results
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Chapter 6

Derivatives and Lags

The order of historical events clearly shows the true position
of the variational principle: It stands at the end of a long
chain of reasoning as a satisfactory and beautiful condensa-
tion of the results.

Max Born

6.1 Introduction

Integration is the process whereby a rate variable is added, in increments, to a stock,

an accumulated amount. Obviously, integration is necessary in solving rate or

differential equations, and STELLA is designed to perform this process. STELLA

can also do the opposite, differentiate, and find the rate of change of a variable or

slope of a curve. We would use this process to identify a variable’s maximum or

minimum value.

Suppose we specified that a variable Y depends on another variable X, such as the
population depending on the number of births. Y is a function of X, and in general

this functional relationship may take on quite complicated forms. How can we use

STELLA to find the value of X that yields a maximum Y?
Take the example of an aquaculture firm that has special holding cages for adult

fish. The size of the cage is fixed and the firm manager wants to use the cage as

effectively as possible. As the manager of the firm, you may want to add only a

small number of fish to the empty cage to give each fish enough room. With this

strategy, you may need a lot of cages to keep all the fish. Could you have kept more

fish in the cage? Perhaps, but after a certain number of fish are added to the cage, the

fish population may suffer from crowding. Some of the smaller fish may die
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because they are not successful in competing for the food added to the cage, or they

may be prone to diseases that can spread quickly if the fish density in the cage is too

high. So your goal is to maximize the number of fish in a cage (variable Y) by
adjusting the number of fish that you add to the cage (variable X).

To find the optimum number of fish for each cage, we may set up the model to

plot the number of surviving fish as more and more fish are added to the cage

(Fig. 6.1). At first the fish population may increase, then reach a maximum, and as

more fish are added, they decrease in response to starvation or disease. As long as

additions of fish to the cage increase the size of the population, the slope of the

population curve is positive. At the point at which the maximum is reached, the

slope of the population curve is 0; to the right of this point, it is negative.

We can use STELLA to calculate the slope of the curve as fish are incrementally

added to the cage. STELLA provides a built-in list of derivative functions, which

we can use to find derivatives. Alternatively, we can take the value of a function,

subtract the value it held in the preceding time step (DT), and divide this difference

by DT. This gives us the rate of change, corrected for the size of DT, within a single

time period.

In Chap. 1, we briefly discussed how STELLA numerically determines the time

path of state variables. We used Euler’s method, set in STELLA as the default

integration method, to numerically approximate that path. This method consists of

two steps. In the first step, the change in the state variable over the interval DT is

estimated from the flows F in time period t. The latter, in turn, are a function of the
stocks and possibly the values of other flows and converters at the beginning of the

period:

Dstate variable ¼ DT �Fðt; state variable; flows; convertersÞ: (6.1)

Stocks are then updated by adding to them the change in the state variable,

Dstate variable.

Fig. 6.1 Schematic fish

population dynamic
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In the second step, new values for flows and converters are calculated as a

function of the state variables, converters, and flows:

flow ¼ Fðstate variable; flows; convertersÞ: (6.2)

This is the simplest and fastest numerical solution method in STELLA.

Two other integration techniques are available and can be chosen in the TIME

SPECS menu: Runge–Kutta-2 and Runge–Kutta-4. The second-order Runge–Kutta

method consists of three steps to calculate the change in state variables before the

new values for flows and converters are calculated. First, an estimate of the change

in a state variable over the time period t is made from the flows F in that period:

F1 ¼ DT �Fðt; state variable; flows; convertersÞ: (6.3)

This is the same as with Euler’s method. Then, a second estimate is calculated by

projecting a DT ahead in the following way:

F2 ¼ DT �Fðtþ DT; state variableþ F1; flows; convertersÞ: (6.4)

These two estimates are combined in a third step to estimate the change in the

state variable:

Dstate variable ¼ DT � 1
2
ðF1þ F2Þ; (6.5)

which is used to estimate the new state variable by adding Dstate variable to the

value of the state variable that was present at the beginning of the time period.

The fourth-order Runge–Kutta method estimates changes in stocks by making

even more forecasts of flows:

F1 ¼ DT �Fðt; state variable; flows; convertersÞ; (6.6)

F2 ¼ DT �F tþ DT

2
; state variableþ F1

2
; flows; converters

� �
; (6.7)

F3 ¼ DT �F tþ DT

2
; state variableþ F1

2
; flows; converters

� �
; (6.8)

F4 ¼ DT �Fðtþ DT; state variableþ F3; flows; convertersÞ; (6.9)

state variables ¼ 1

6
ðF1þ 2 �F2þ 2 �F3þ F4Þ: (6.10)
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Runge–Kutta-4 is the slowest of the three numerical integrationmethods provided

by STELLA and, as youwill find, oftentimes the most accurate. But experiment with

the three methods to see how your results are affected by the choice of method.

Now let us develop a model of integration over time, the calculation of a stock

that increases stepwise over a specific period. This may also be called the integral of

a function of time. The flow (F) steadily increases the stock as time goes on, so it is

the function of time. For example,

FðTÞ ¼ Aþ B �TIME^C� TIME^D (6.11)

with A ¼ 1, B ¼ 10, C ¼ 2, and D ¼ 3. Set up the model using a biflow for F(T),
because it will at times add to the integral and at times subtract from it (Fig. 6.2). We

want the derivative of the integral. In STELLA, the derivative is the delayed value of

the stock minus the value of the stock in time t, divided by DT. Because we use the

numerical solution for the integral rather than the analytical one, we have

a percentage error. This error can be calculated by comparing the value of

the derivative we found using STELLA with the actual value of the flow. Run the

model with Euler’s method. See how smaller increments of DT can reduce the error.

Rerun the model with Runge–Kutta-2 and Runge–Kutta-4, starting with a DT of 1

and reducing the DT for consecutive runs. Compare your results of the different

model runs. Which is the “appropriate” method to use? Which is a “small enough”

DT? Next we will examine some examples and uses of derivatives and lags. Investi-

gate the sensitivity of your results with regard to the numerical solution technique.

In our model, the error is rather small until INTEGRAL F(T)—the state vari-

able—changes its sign (Fig. 6.3). After the ERROR peaks, it soon settles back to a

value close to zero.

Return to the example of the aquaculture firm trying to find the optimum stock of

fish in a cage. Set up the model to yield an increase in population size at low density

Fig. 6.2 Calculation of derivatives and integrals in STELLA
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of fish in the cage, and a decline in population at high densities. Find the maximum

population size for a cage, running the model at various DT and with alternative

integration methods.

6.2 Integration Model Equations

6.3 Derivatives and Lags: Some Applications

6.3.1 Single-Output Firm

The derivative can prove a handy tool for finding the extremes of a variable’s range.

As we have seen in the previous section, STELLA has a built-in function, DELAY,

which can compute the delayed (or lagged) value. This, in turn, can be used to

Fig. 6.3 Numerical results for the calculation of derivatives and integrals
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determine the derivative as the difference between the actual and delayed values.

We begin with an example that identifies the extreme ranges of a variable by using

DELAY. A firm adjusts its output levels, in consecutive periods, to achieve a profit

maximum. The SIGNAL assumes a value of 0 as long as the profit maximum has

not been reached and a value of 1 to indicate the profit-maximizing output level.

For the model, assume that each period of time a new output level is chosen as

Q ¼ 0:4 �TIME; (6.12)

such that the cost of producing Q units of output is given by the cost function C as

C ¼ 20 �Q^2 (6.13)

and that prices P decrease with increasing output according to the demand function

P ¼ 100� 12 �Q: (6.14)

The SIGNAL is defined to yield a value of 1, once the profit-maximizing output

level is reached; that is,

SIGNAL ¼ IF ððCVP � DELAYðCVP;DTÞ � 0ÞÞANDðTIME>1Þ
THEN 1 ELSE 0;

(6.15)

with CVP as current value of profits:

CVP ¼ P �Q� C (6.16)

and CCVP representing the cumulative current value of profits.

Nothing in the model (Fig. 6.4), however, prevents the firm from exceeding the

profit-maximizing output level. As a result, with increased output the firm realizes

losses (Fig. 6.5). Extend the preceding model to prevent the firm from surpassing its

profit-maximizing output level. Be careful to avoid circularity in your model. One

possible solution to this problem is shown in the following section.

6.3.2 Single-Output Firm
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6.3.3 Two-Output Firm

Let us extend the previous model to account for two different goods produced by

the firm and sold on the market. This problem reveals a more complicated signal

than the one just discussed. Here, we have products characterized by different cost

functions and demand curves (Figs. 6.6 and 6.7). Cost functions for output Q1 and

Q2 are, respectively,

C1 ¼ 20 �Q1^2; (6.17)

Fig. 6.4 Current value and cumulative value calculations

Fig. 6.5 Changes in current value profits (CVP) with changing output (Q)
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Fig. 6.6 Optimal production for the two-output firm

Fig. 6.7 Results for the two-output firm model
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C2 ¼ 60 �Q2^2 (6.18)

and the demand curves are given by

P1 ¼ 100� 12 �Q1; (6.19)

P2 ¼ 250� 20 �Q2: (6.20)

Assume additionally that adjustments in output levels are easier for output Q1
than output Q2:

DQ1 ¼ IF SIGNAL COUNT < 1 THEN :4 �TIME ELSE 0 (6.21)

DQ2 ¼ IF SIGNAL COUNT < 2 THEN :05 �TIME ELSE 0: (6.22)

The model enables us to find numerically when the peaks in the profits from each

of the products occur. Additionally, the model maintains the output of each product

at its profit-maximizing level. This is done by setting the change in output levels

DQ1 andDQ2 equal to 0 once a peak in CVP 1 or CVP 2 has occurred. In this model,

there are clearly two peaks, provided we started with small initial output levels.

The SUM PROFITS variable calculates the total profits in each period. These are

used to generate a signal in the same way as we did before. Because there are

multiple peaks in the SUM PROFITS function, we need to count peaks. This is done

with the variable COUNT and the SIGNAL COUNT stock. COUNT generates a

value based on the SIGNAL that is corrected for the length of DT. SIGNAL

COUNT keeps track of the number of peaks that have occurred. Thus, this model

can easily be expanded to accommodate multiple peaks and simulation runs with

different time step lengths.

6.3.4 Two-Output Firm
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Part III

Microeconomic Models of Firms



Chapter 7

Introduction to Modeling Economic Processes

Perhaps it is the very simplicity of the thing which puts you at
fault.

Edgar Allen Poe, “The Purloined Letter.”

7.1 Core Principles of Economics

In the preceding part of this book we learned about the gradual development of

a dynamic model, the role of system boundaries, models of discrete processes,

multiple independent variables, randomness, feedback processes, and lags. These

are the basic concepts used in all our models. For the development of models in

the previous chapters, we combined our understanding of the system’s driving forces

with experiments on the computer. We will now begin to see the importance of

blending analytical and numerical solutions of our models.

Analytical methods can make our models more efficient by speeding up the

numerical techniques provided by STELLA and by increasing their accuracy.

Analytics can give us equations that will describe not just optimal operating points

but whole optimal trajectories through time—a very difficult problem to formulate

numerically. However, analytical methods will soon carry us to a point at which their

further use would be either inefficient or impossible—the optimal operating points

and trajectories are too difficult for analytics to completely solve. For example,

many of the nonlinear dynamic relationships that underlie our models have no

analytical solutions. This is one reason why economic models typically have been

developed to investigate the properties of an equilibrium situation, rather than the

potentially complex path toward that equilibrium. By combining analytical and
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numerical techniques in the following chapters, we build on the strengths of both

methods and arrive at a solution superior to using just one of the methods.

The economic models can then be solved for potentially complex paths toward

equilibrium.

Each academic specialty uses principles unique to that field. Economics builds

on three principles: substitution, time value, and opportunity cost (for a detailed

discussion see Ruth 1993). An example of substitution is when machines replace

workers on a production line. Here, inputs such as the machines, the energy they

consume, and the labor of technical workers increase as the production time and

work hours of less-skilled (or differently skilled) workers decrease.

If you borrow $1,000 from a bank for 1 year, you will have to repay not only

$1,000 but also a premium (interest on the loan) to the bank for foregoing other uses

of that money for a year. Foregoing consumption can be expensive and risky.

During the year when you borrow the money, a more profitable investment might

emerge, and the bank would have to wait to use the money you borrowed. Also, you

might not repay the loan or repay only part of it. The interest (the premium you pay

in addition to the $1,000) reflects the time value of the loan.

An accountant who earns $50/h wants her living room repainted. She could do

the job herself or hire a painter for $25/h. If she hires a painter, the accountant could

accept extra work during those evenings when she would have been painting.

The cost of those evening hours, the opportunity cost, is $25/h.

These principles—substitution, time value, and opportunity cost—are central in

economics. In the following three chapters, we provide illustrations for each of

these concepts.

At this point, we would like to refer you to the list of symbols and their

explanation at the beginning of the book. We will make extensive use of the

notation outlined there.

Reference
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Chapter 8

Substitution of Inputs in Production

Division of labor may have gone so far that many people—
men especially—feel disconnected and alienated from the
ultimate goals of their work. And that may partly be what
leads individuals to seek satisfaction in exaggerated
expressions of virtuosity . . . Much professional culture may
be a disguise for this sense of emptiness, devoted as so much
of it is to building up a notion of the professional importance
of the profession.

Arnold Pacey, Culture of Technology, 1983.

8.1 Trade-Off Possibility Frontiers

Firms in the real world use a number of different inputs to generate a desired output.

Even a process as simple as making some hand-made wooden toy requires labor,

wood, some kind of knife, and knowledge as its fundamental inputs. Of course,

some of these inputs can be substituted for each other, at least within some range.

For example, if you have a lot of experience in producing wooden toys, you may be

able to cut down on the time you spend per toy. Similarly, if everything else remains

equal and you work more slowly, and thus more carefully, you will take longer to

produce a product but you may be able to cut down on waste of the wood. You trade

off, or substitute, labor for the input material.

In this chapter we model a “trade-off possibility frontier” for two inputs at a

given output level. A trade-off possibility frontier is also called an isoquant and

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_8,
# Springer Science+Business Media, LLC 2012

91

www.iseesystems.com/modelingeconomicsystems


shows the minimum input combinations that just generate a desired output. Let us

assume that the production function for the firm is of the form

Q ¼ GAMMA � ðALPHA � X1BETA þ ð1� ALPHAÞ � X2BETAÞDELTA=BETA: (8.1)

where ALPHA, BETA, GAMMA, and DELTA are fixed parameters that establish

the “recipe” for producing output Q from inputs X1 and X2.
Since the isoquant provides the relationship between inputs X1 and X2 for a fixed

output level, we define such an output level as Qo, insert Qo into (8.1), and solve for

one of the inputs, such as X1. This gives us X1 as a function of X2, the parameters of

the production function, and the fixed output level:

X1 ¼ 1

ALPHA
� Qo

GAMMA

� �BETA=DELTA

� ð1� ALPHAÞ � X2BETA
" #1=BETA

:

(8.2)

Suppose W1 and W2, the prices of X1 and X2, respectively, are given. The

following equation can be used to calculate the cost to a firm of producing outputQo:

C ¼ W1 � X1þW2 � X2: (8.3)

We can now build a model that determines an isoquant and cost function for an

output level of Qo ¼ 4.0 units (Fig. 8.1). The parameters are set as ALPHA ¼ 0.8,

BETA ¼ 0.3, GAMMA ¼ 1, and DELTA ¼ 0.8. Unit cost of inputs are W1 ¼ 2

and W2 ¼ 1.

The model is run for a fixed output level of Qo ¼ 4.0 units. Figures 8.2 and 8.3

illustrate the trade-off possibility frontier and cost functions generated by the model.

Fig. 8.1 Specification of an

isoquant and cost function
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The minimum of the cost function is $16. In that minimum, the firm uses

approximately 6.6 units of X1. Given the cost-minimizing X1, the optimal choice

of X2 is approximately 2.5 units. The second graph shows the relationships between

X1 and X2, the isoquant.
The production function of (8.1) is called a constant elasticity of substitution

production function, or for short, CES production function. CES production

functions are characterized by a constant percentage change in the ratio of inputs

in response to a 1% change in the slope of the isoquant. Can you confirm this

property for the function we used here? Model the isoquants for a production

function of the type Q ¼ A*X1^ALPHA*X2^BETA. What are the cost-minimizing

Fig. 8.2 Cost function

Fig. 8.3 Isoquant

8.1 Trade-Off Possibility Frontiers 93



input combinations for alternative, fixed output levels? How does the ratio of inputs

X1 and X2 change for this production function as we move along the isoquant?

In the model of this section, we assumed that an output level was predetermined.

Then the cost function’s minimum was used to determine the firm’s choice of a

profit-maximizing input combination. We did not know, however, whether our

choice of the output level Qo did indeed maximize the profits of the firm.

In practice, the profit-maximizing output level and cost-minimizing input combina-

tion are best determined simultaneously by a firm. The next section demonstrates

how this can be done.

8.2 Trade-Off Possibilities Frontier Model Equations

8.3 Profit Maximization with Several Inputs

The firm in our present model is searching for the profit-maximizing output level

from its fixed input costs (W1, W2) and output price (P). We assume here that the

production function bears the same form as in the last section:

Q ¼ GAMMA � ðALPHA � X1BETA þ ð1� ALPHAÞ � X2BETAÞDELTA=BETA: (8.4)

Once again, ALPHA, BETA, GAMMA, and DELTA are the parameters describ-

ing the relationship between inputs and output.

We want to find the mixture of X1 and X2 that minimizes the firm’s costs while

maximizing its profits. As presently formulated, this problem does not lend itself to

a numerical solution using STELLA; first, we must perform some analysis. CVP is

the current value of profit. It is defined as

CVP ¼ P�Q�W1�X1�W2�X2: (8.5)
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We now draw briefly on some analytic reasoning to save ourselves an immense

amount of extra programming. We will do this again, particularly in the chapters

on optimal resource use through time. To find the profit-maximizing conditions,

we take the partial derivatives of the CVP function relative to X1 and X2:

@CVP

@X1

¼ P � @Q

@X1

�W1 ¼ 0; (8.6)

@CVP

@X2

¼ P � @Q

@X2

�W2 ¼ 0: (8.7)

The partial derivatives are used to calculate the change in CVP in response to

very small changes in inputs X1 and X2. Because we wish CVP not to change for

marginal changes in inputs—that is, we want to hold CVP at its maximum—we set

these derivatives to 0. If small changes in X1 or X2 would lead to increases in

CVP—that is, the marginal derivatives are positive—we would not have chosen the

profit-maximizing inputs. Similarly, for decreases in CVP in response to marginal

changes in X1 or X2, we have surpassed the optimum input levels. Because both

partial derivatives must be 0 at the same time, we combine these two equations to

yield the optimum condition:

X2 ¼ W2

W1

ALPHA

ð1� ALPHAÞ
� �1=ðBETA�1Þ�

X1: (8.8)

Equation (8.8) establishes the relationship between the two inputs. After we have

determined a profit-maximizing output level for one input, say,X1, it is not difficult to
determine the optimum quantity for the other, X2.We then proceed as in the previous

section, manipulating one input until we reach the profit maximum. Once again, X1
riseswith a positive slope on the profit curve. The rise inX1 brings about a consequent
rise in X2, which together cause Q to increase. The difference between revenue and

(P*Q) and cost yields the profit based on a cost-minimizing mix of inputs. Although

we used only two inputs here, any number ofmultiple inputs can be treated in the same

way. We encourage you to set up the problem for the cases of more than two inputs.

The following STELLA diagram of Fig. 8.4 shows the two-input situation,

assuming a small value for X1 at first. The profit-maximizing input level X2
that corresponds to our choice of X1 is determined by (8.8). From the levels of

X1 and X2 we can calculate the firm’s output (Q) and cost (C); hence, its profit.
The profit just calculated may be less than maximum. Until the profit-maximizing

output level is reached—that is, as long as inputs X1 and X2 can be increased to

produce an increase in CVP, over the profits reached in the preceding small time

step (DT)—we continue to increase X1, and consequently X2 (Fig. 8.5).

The profit-maximizing output level shown in this model, Q ¼ 4, is the level

chosen to model the isoquant earlier. We wanted to find the optimum (cost-

minimizing) input mix that yields the profit-maximizing output level. The results

of the new model and those of the model in the preceding section correspond well.
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Figure 8.6 illustrates the relationship between marginal cost (MC), the change in

cost that follows a change inQ, and price (P). We see that MC increases to the level

of P when profit is maximum, just as predicted by microeconomic theory.

Fig. 8.4 Profit-maximization model

Fig. 8.5 Profit-maximization results
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Of course, by combining this technique with methods used in the previous

models, we can be more effective in finding a numerical solution using STELLA.

Often, the most accurate and efficient solution to a problem requires the appropriate

mix of analytic and numerical analysis.

Now that we have modeled substitution—a core concept of economics—we will

turn our attention to the concept of time preference. This is the topic of the

following chapter.

8.4 Competitive Firm with Substitution Model Equations

Fig. 8.6 Marginal cost and price
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Chapter 9

Time Value

We shall not cease from exploration
And the end of all exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, 1943

9.1 Current and Present Value Calculation

In the previous chapter, we modeled a firm that applied a given technology to

produce a desired output. We started the models under the assumption that the

initial input quantities, and therefore the level of output, were too low. Then, we let

input quantities and output adjust to yield the profit maximum. Such problems of

profit-maximizing firms are typically solved in economics as static problems, but

we pretended that adjustments took place over time. Let us now explicitly introduce

time into decision-making by the firm.

With the following models, we try to answer the questions of how firms can

compare profits that occur at different periods of time. Having a dollar today is

surely different from having a dollar next year. In order to compare profits that

accrue at different time periods, we may calculate their present value rather than

their current value. In later chapters, we take up the issue of present vs. current

value in more detail and provide the tools necessary to assess, for example, optimal

resource use by firms over time.

Typically, firms value higher those profits that occur in the present or nearby future

than profits in the distant future. There aremany reasons for valuing profits differently

based on their occurrence. For example, the timing and amount of profits may be

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_9,
# Springer Science+Business Media, LLC 2012
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more uncertain for the more distant future. Furthermore, if profits accrue today, they

may be reinvested to generate even higher profits in the future. Therefore, lower

weights are assigned to future profits when firms evaluate a stream of profits

over time.

The value of a fixed profit from today’s perspective is the lower the further in the

future that profit is earned. The percentage rate at which the present value of the

profits, PVP, declines into the future is called the discount rate. It captures risk,
uncertainty, and alternative investment possibilities. For practical purposes we may

choose a fixed interest rate, I, as the discount rate.
In Fig. 9.1, the stock of PVP is drawn down by a given interest rate of 3%.

The stock contains an initial value of $200. The outflow present value of profit rate,

PVPR, deceases PVP over time. The outflow depends on the remaining stock and the

interest rate. Because both PVP and the interest rate, I, influence the size of the

outflowPVPRover time, both are connected to that outflowwith information arrows.

The model shows the present value of $200 at various times, t, in the future.

Running the model at a DT ¼ 0.25, you can see from Fig. 9.2, for example, that the

value of $200 for the decision-maker in the present is only approximately $110, 20

years into the future. Conversely, if the firm had invested $110 today at the given

interest rate, it would own $200 in 20 years from now.

If we are interested in the amount received t periods from now for an investment

of $200 at a given interest rate, we just need to reverse the direction of the flow in

the STELLA model, thereby accumulating value. Such a calculation gives us the

future value of our investment. In this case, the stock rises exponentially.

Often we do not invest a given amount of money in just one period but repeat the

investment over a number of periods. Similarly, firms typically receive a stream of

profits over time. In Fig. 9.3, the current value of an annual investment series

of $200 is calculated and displayed in the graph. In our model, the steady invest-

ment stream combined with interest earned on the investment lead to an increase

in cumulative current value of profits, CCVP, of close to $130,000 after 100 years

(Fig. 9.4).

Investments may not be uniform over time. Similarly, streams of profits may

follow cycles of high and low sales, and interest rates may fluctuate. For simplicity,

we assume that there is a constant stream of annual payments, AP 2, of $100 and

Fig. 9.1 Present value calculation
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Fig. 9.2 Changes in present value through time

Fig. 9.3 Accumulation of profits

Fig. 9.4 Profit accumulation through time
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that interest rates change in a cyclic pattern. Let us calculate the cumulative present

value of our investments where the interest rate changes along a sine wave.

To specify the sine wave pattern for the interest rate, create a converter, call it

SINE, and open it. Select SINWAVE from the list of built-in functions. SINWAVE

requires the specification of an amplitude and period of the wave, each written

within the parentheses and separated by a comma. If you choose an amplitude of

0.02 and a period of 50 years, then the sinewave has a maximum value of 0.02,

a minimum of �0.02, and a mean of 0. The sinewave is repeated every 50 years.

Use that specification of the sinewave. You should now have

SINE ¼ SINWAVEð:02; 50Þ (9.1)

as the function defining the variable SINE. Next, open the flow AP 2 and specify

it as

AP 2 ¼ 100�EXPð�ðI þ SINEÞ�TIMEÞ (9.2)

to generate a stream of annual payments of $100 that is continuously discounted by

a rate that fluctuates along a sine wave between 1 and 5%; that is, in the interval

I � 0.02. The resulting cumulative present value is calculated and plotted in

Fig. 9.5.

Introduce into this model variations in the investment stream. You can do this in

different ways. Try specifying the investment stream to also follow a sine wave that

shows declines in payments during the first 25 years and subsequent increases

(Fig. 9.6). Alternatively, specify the investment streams with a graph to allow for

rather erratic changes in annual payments. What are the implications of these erratic

payments for the cumulative present value of profits in the long run? We will return

to this issue of variable income streams combined with variable interest rates in

Chap. 22.

In calculating the present value, one can use either EXP(�I * TIME) or the factor

(1 + I * DT)^(�TIME/DT) as the analytical expression (with ^ as the symbol

for exponentiation). The first one is continuous (or infinitely often) negative

Fig. 9.5 Fluctuating income stream
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compounding, and the second is stepwise (DT) negative compounding. Run the

model subsequently with the two discounting methods for DT ¼ 1 and note the

difference. The graph in the second case rises to the same present value of some

string of future values but it rises more quickly. Change DT to smaller values and run

the model repeatedly. You should find the curves get closer and closer. The expo-

nential discounting is just getting more accurate but the stepwise discounting is

actually changing to more and more frequent negative compounding, a conceptually

different result. As DT goes to 0, the discount factor (1 + I * DT)^(�TIME/DT) is

EXP(�I*TIME) as you can easily show in STELLA.

9.1.1 Time Value Model Equations

Fig. 9.6 Accumulation with fluctuating income stream
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9.2 Cost–Benefit Analysis

Now that we learned how to calculate the present value of future payments, let us

employ the method of discounting revenues and cost to decide among alternative

investment options. Such comparisons are regularly made in policy decision-making

when society needs to decide, for example, whether to build a dam for flood control or

a new highway to improve the accessibility of a region. Let us use this method of

comparing discounted cost and benefits of a project for an individual company.

Your company is ready to commit $5 million in profits from last year’s

operations to a possible combination of proposed company projects or a bank

account. The market interest rate for money in the bank account is 10%. Abstract

away from future taxes.

There are three projects, A, B, and C, from which the firm can choose. Each

project is characterized by a distinct construction, maintenance, and revenue

stream. For project A, these streams are specified in Figs. 9.7–9.9.

Construction, maintenance, and revenue streams for projects B and C are in the

model that accompanies this book. Which of the investment options should your

firm choose?

To answer the question, form a discounted net present value, PVP, of each

investment then accumulate it for a choice of the return rate (Fig. 9.10). Make

sure that you allow your stock of the cumulative net present value, CPVP, from

which you subtract the PVP, to be able to become negative. Run the model first with

a low rate of return; note the result. Then, increase the rate of return for subsequent

runs and compare the model results. Find that return rate which causes CPVP of the

project to be exactly 0. This is defined as the internal rate of return for the project.

Compare this rate to those of the other investment options. We have chosen a

50-year lifetime for each project, after which time we assume it is abandoned.

Figure 9.11 shows the cumulative net present value of project A over the 50-year

time horizon for rates of returns set at 5, 6, 7, 8, and 9%, respectively. Plot the results

Fig. 9.7 Construction cost

profile for project A
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in a table to find the rate of return that comes closest to CPVP ¼ 0 in year 50.

The analysis of project A should give a rate of return of approximately 7.89%.

Find the other rates of return and determine which will draw the profit funds. Then

invest the money in the market while drawing it down over the construction years to

Fig. 9.8 Maintenance cost

profile for project A

Fig. 9.9 Revenue cost profile

for project A

Fig. 9.10 Cost benefit model
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finance the winning project(s). What is the present value of the invested profit over

the 50-year time span?

Earlier we noted that cost–benefit analysis is a method frequently employed both

at the level of an individual firm and for policy decision -making on projects such as

dams for flood control or construction of highways. Assume that a particular

project, such as a dam for flood control, may be carried out by either an individual

firm or a government agency. Under each scenario, construction, maintenance, and

revenue streams are the same. What may compel an individual company to not
carry out the project even though it may be beneficial from a societal perspective

and perhaps be carried out by the government agency?

Of course, the discount rate is a crucial determinant for the choice of a project,

and we may expect that individual firms have shorter planning horizons than society

as a whole. The firm may go out of business if it does not generate sufficient profits.

Its decisions should be made in the interest of the owners of the firm, all of whom

have a finite life expectancy and wish to see their investments pay off soon.

Government, in contrast, may be around for a long time to come and is supposed

to represent the interests not just of the current generation but also of that

generation’s children and grandchildren. As a consequence, the firm’s discount

rate may be higher than the government’s, and therefore, its choice of an interest

rate to which to compare the rate of return of the project may be different.

Which discount or interest rate to apply in cost–benefit analysis is a hotly

debated issue. For a detailed discussion, see, for example, Lind et al. (1982).

The model presented here should help you investigate the implications of alterna-

tive assumptions about the discount rate. We will return to this issue later, when we

determine the rates at which nonrenewable and renewable resources should be

extracted from the environment to maximize cumulative present value of profits.

Fig. 9.11 Cumulative present values of profits for different rates of return
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9.3 Cost–Benefit Model Equations

Reference

Lind RC, Arrow KJ, Corey GR, Dasgupta P, Sen AK, Stauffer T, Stiglitz JE, Stockfisch JA,

Wilson R (1982) Discounting for time and risk in energy policy. Resources for the Future,

Washington
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Chapter 10

Opportunity Cost

It seems to me simplicity is about the most difficult thing to
achieve in scholarship and writing. How difficult is clarity of
thought, and yet it is only as thought becomes clear that
simplicity is possible. When we see a writer belaboring an
idea we may be sure that the idea is belaboring him. This is
proved by the general fact that the lectures of a young college
assistant instructor, freshly graduated with high honors, are
generally abstruse and involved, and true simplicity of
thought and ease of expression are to be found only in the
words of the older professor. When a young professor does
not talk in pedantic language, he is positively brilliant, and
much may be expected of him.

Lin Yutang, The Importance of Living, 1937

10.1 Managing an Inventory

In this chapter we turn to the third core concept of economics—the concept of

opportunity cost. Opportunity cost is the utility or profits foregone by choosing one

alternative over another. Whether consciously or not, every day we make decisions

by comparing opportunity cost. If the pleasure of going to the movies exceeds that

of staying at home and reading a book, you will likely find yourself going to the

movies.

Similarly, companies must compare alternative actions with each other and

decide which to take. A rational strategy is to choose the action with the lowest

opportunity cost. For example, a firm may decide on keeping some of its products in

stock to be able to meet demand when demand, and thus price, is high. However,

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_10,
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keeping an inventory is costly not just because goods have to be stored. Inventory

cost also arises from the loss of income that could have been generated if the goods

had been sold. In this chapter we calculate the opportunity cost associated

with holding an inventory. For a simpler version of this model, see Hannon and

Ruth (2001).

Let us assume that there is only one input, X, into the production process. That

input generates Q units of output according to the following production function:

Q ¼ 3�X^0:3 (10.1)

The outputQ temporarily becomes part of the INVENTORY. The sales of goods

from the inventory are equal to the sales level at the current period. The part of the

STELLA model that captures the production–inventory–sales relationship is shown

in Fig. 10.1.

Set DT ¼ 1/8. Assume that the firm’s decision on the level of production in a

given period depends on the change in inventory. If the inventory declined since the

last period, input X into the production process is reduced to reduce output. If the

inventory increased since the last period, then production is decreased via a

reduction in X, and the inventory is restocked. The adjustments in inputs, DX, in
response to changes in inventory, DINVENTORY, are given in Fig. 10.2.

The choice of X by the firm leads to production cost, C, which is determined in

the following way. Think of X as a labor input. Assume that the firm is committed,

through contracts, to compensate workers for 40 h of work a week, even if the

workers work less. The wage rate based on the 40-h workweek is fixed atW ¼ 1.0.

Overtime must be paid at higher rates. For the first 5 h of overtime the wage rate is

W ¼ 1.5, and thereafter W ¼ 2. The conditional statement that captures this pay

schedule is

W ¼IF X > 40 AND X � 45 THEN 1:5 ELSE IF X

> 45 THEN 2 ELSE 1
(10.2)

and the corresponding production cost is

Fig. 10.1 Inventory
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C ¼ IF X � 40 THEN 40�W ELSE W�X: (10.3)

These relationships between inventory, inputs, wages, and production cost are

given in Fig. 10.3.

Changes in inventory are based on an exogenously determined desired inven-

tory, the actual size of the inventory, and a “damping factor.” The DAMPING

FACTOR, in turn, is calculated by comparing the current difference between the

desired and actual inventory with that difference one time step earlier. To make this

comparison meaningful, we need to correct for possible differences in the sign.

Such a correction is made by taking the square of the difference between the desired

and actual inventory.

DAMPING FACTOR ¼ IFððDESIRED INVENTORY

� INVENTORYÞ^2 > DELAYððDESIRED INVENTORY

� INVENTORYÞ^2;DT; 0:1ÞÞTHEN 8 ELSE 1

(10.4)

Fig. 10.2 Adjustment in

inputs

Fig. 10.3 Changes in input

dependent on inventory
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The resulting DAMPING FACTOR is used to calculate the change in inventory

(Fig. 10.4):

DINVENTORY ¼ DAMPING FACTOR�ðDESIRED INVENTORY

� INVENTORYÞ=INVENTORY (10.5)

As we stated already, production costs are only part of the costs that need to be

considered by the firm in its decision-making process. The opportunity cost of

holding an inventory is a second determinant for the choice of appropriate levels of

production and inventory. The opportunity cost of the inventory is the foregone

sales. Therefore, to calculate these opportunity cost we must multiply the inventory

by the market price and the rate of interest for the time step. Multiplying by the

interest rate for the time step is necessary to calculate the amount of money that

could have been earned had the inventory been sold and the profits from it invested.

This procedure takes into account the concept of time preference discussed in the

previous chapter.

For our model, the market price of the good produced by the firm is given by the

following demand curve:

P ¼ 15� 0:01�SALES (10.6)

Given the price, the opportunity cost of the inventory, and the cost of production,

we can calculate the current value of profits, CVP, as shown in Fig. 10.5.

Changes in the level of sales, DSALES, are assumed to be driven by changes in

the current value of profits, DCVP. The relationship between DSALES and DCVP is

defined by the graph in Fig. 10.6, and the corresponding STELLA module is shown

in Fig. 10.7.

The firm adjusts its inventory so long until the change in profit becomes 0.

The corresponding inventory, sales, output, and price are shown in Fig. 10.8. After

significant initial adjustments long-run equilibria for each of the state variables

are reached.

The CVP, cost of holding the inventory, and producing output Q are shown next,

followed by a graph of input levels, wage rates, and production costs. In the

Fig. 10.4 Changes

in inventory
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equilibrium, X exceeds 60 units and the firm must pay the wage rate W ¼ 2.0. The

cost of the inventory is approximately $18, and CVP is approximately $110

(Figs. 10.9 and 10.10).

The worker of this model will have to contribute more than 60 h per week to the

production process, so that the profit-maximizing output level can be achieved.

Fig. 10.6 Changes in sales

Fig. 10.5 Current value

of profit

Fig. 10.7 Sales level

10.1 Managing an Inventory 113



This is obviously an undesirable situation—from the perspectives of both the

worker and the firm that must pay the high wage rate for overtime. Recall our

discussion in Chap. 4, where we indicated that under a variety of scenarios it may be

beneficial for firms to hire part-time workers in addition to full-time workers. How

would hiring a part-time worker affect the optimal inventory and the maximum

CVP? Assume a different pay schedule for that worker and make appropriate

assumptions on that worker’s availability. Give the workers a significant pay

raise over the wage rates that are assumed in our hypothetical firm. How high can

W be so that the firm does not run out of business?

Fig. 10.8 Equilibrium outcomes

Fig. 10.9 Current value profits, cost of inventory, and production cost
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Change the specification of the damping factor for subsequent runs of the model.

Recognize that, if you try to do without this factor in your model, you may run into

stability problems. Can you find alternative specifications for DX that avoid making

use of the DAMPINGFACTOR, and in the calculation ofDINVENTORY, yet achieve
a profit maximum while reaching an INVENTORY at the desired level of 250 units?

The firm of this model maximizes its current value profit while it maintains

inventory. Can you find a way to also optimize inventory at the same time?

10.2 Opportunity Cost Model Equations

Fig. 10.10 Inputs, wage rate, and production cost

10.2 Opportunity Cost Model Equations 115



Reference

Hannon B, Ruth M (2001) Dynamic modeling, 2nd edn. Springer, New York

116 10 Opportunity Cost



Chapter 11

The Profit-Maximizing Competitive Firm

In questions of Science the authority of a thousand is not
worth the humble reasoning of a single individual.

Galileo Galilei

11.1 Optimizing Behavior of the Competitive Firm

In the previous chapter, we illustrated the use of core concepts of economics.

Now we turn our attention to a series of models to illustrate frequently made

assumptions on the behavior of firms. For example, a standard assumption is that

firms expand the level of their output until they maximize the level of their profits.

We made use of this assumption in Chaps. 6 and 8.

Another important assumption is that firms have perfect information about all

current and future features of the economy and environment that are necessary for

their decision-making. With the exception of Chap. 5, we have not yet explicitly

modeled themarket within which a firmmakes its decisions. One crucial determinant

for a firm’s decision is the signals that it receives from the market. An assumption

standard in microeconomic theory is that all relevant information for decision-

making is subsumed in the price of a good or service. As prices increase, producers

are compelled to enlarge their production, thus driving down the price. As prices

decline, consumers are willing to buy more of a product, thus stimulating the price to

increase. The decisions of producers and consumers are coordinated in the market,

with the price as the signal that achieves that coordination. Of course, each consumer

may have a different willingness to pay for the goods that are offered in the market;

and if there is a shortage, potential buyers may try to out-bid their competitors.

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.
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We will discuss such a model in more detail in Chap. 15. Similarly, adjustments of

producers to price changesmay not be instantaneous.Wemodel that case inChap. 32.

Before we return to these important issues, let us build on the assumptions of

profit maximization and perfect information to determine the optimal size of a firm

in a competitive market. This is the topic of this chapter.

Assume that you are the manager of a small firm that produces wooden toys.

Your firm is one of many small firms that all try to sell identical output and compete

with each other. Neither your firm nor any of your competitors individually

has sufficient power to influence the price of hand-made wooden toys. Similarly,

none of you can individually exert any influence on the suppliers of wood to lower

the price of your essential input. As a result, both the price of wooden toys and the

wood that you use to produce them are given to you and beyond your influence.

How many toys should you produce in your firm? Answering this question requires

that we identify the goal of your firm. One reasonable goal may be to maximize

profits from producing and selling wooden toys. Another goal may be to rapidly

expand your operation from an initial size to a desired one. Of course, both goals are

related to each other. If your firm is small yet could increase its profits to a

maximum by increasing its output, it should do so. The rate of expansion is likely

closely related to the profits you make in a year. The higher are the profits, the

more money you can set aside for future expansions and the larger loans you may

be able to receive from a bank to support the expansion of your firm. Alternative

assumptions about the optimal behavior of firms abound and may even be more

appropriate: Satisficing behavior—meeting preset goals in a multiyear plan is

sufficient indication of appropriate size and expansion rate—and expanding market

share, to name but two.

Let us model your firm under the assumptions that it is small, does not influence

the price of its inputs or output, and can expand faster the larger are its profits.

For simplicity let us also assume that you have perfect information about all relevant

market characteristics, such as the prices of inputs and outputs, and about the

technology of producing wooden toys.

At a fixed price P, the revenues R from selling a quantity Q of wooden toys on

the competitive market are

R ¼ P � Q: (11.1)

The technology used to produce Q units of toys from X units of wood is given by

the following production function:

Q ¼ A � X^ALPHA; (11.2)

where 0 < ALPHA < 1 ensures a declining rate of growth of Q as X increases.

The wood, in turn, needs to be purchased at a unit cost W. Purchase of X units of

wood results in total cost

C ¼ W � X: (11.3)
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At total cost C and revenues R, the current value of profits is

CVP ¼ R� C: (11.4)

This is the standard formulation for profit that we already introduced briefly in

Chap. 6. In that chapter we showed how STELLA can be used to solve differential

equations. The differential equation of interest to you as the manager of the firm is

the equation that relates changes in profits to changes in output. This change in profit

in response to a change in output, in turn, will determine the rate at which you can

expand production. To calculate the change in profits as the level of output changes,

we take the first partial derivative of the profit function (11.3) with respect to Q:

@CVP

@Q
¼ @R

@Q
� @C

@Q
¼ MR�MC ¼ P�MC: (11.5)

If you start out with a sufficiently small output, slight increases in output are

likely to increase your revenues faster than you drive up the cost. As a result,

@CVP

@Q
>0: (11.6)

Once your firm reached a critical size, even a very small increase in output may

lead to an increase in revenues that is smaller than the increase in cost. Consequently,

@CVP

@Q
<0: (11.7)

Thus, there is an output level at which profits cannot be increased further by

marginal increases in output and

@CVP

@Q
¼ 0: (11.8)

This is the profit-maximizing amount of wooden toys that your firm should

produce. Let us take the first partial derivative of the profit function (11.3) with

respect to Q and set it equal to 0 to identify this profit-maximizing output level.

Once we have identified this level, we will attend to the second issue of adjusting

the expansion of your company in response to the change in its profits.

The first partial derivative of the profits with respect to Q is given in (11.5).

Setting it equal to 0 yields the condition that in the optimum:

P ¼ MC: (11.9)

The second-order conditions for this and all the following problem sets are

fulfilled.
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The following STELLA model (Fig. 11.1) is set up to calculate revenues R,
cost C, profits CVP, and marginal cost MC. Each of those is determined by the

choice of our output level Q. Outputs, in turn, are determined by our choice of input

quantities X, given the production function (11.2). How should you choose the

input quantities such that you achieve your goal of maximizing profits?

As the company is small, slight increases in inputs will result in disproportionate

increases in outputs and profits. Large profits, CVP, should enable you to quickly

expand your operation and to purchase a larger amount of wood in the next period.

As long as there is an increase in profits, the firm should expand production—

controlled through an appropriate choice of input quantities. In our model the

change in profits is defined as

DCVP ¼ CVP� DELAYðCVP;DT; :1Þ (11.10)

and we may set the change in inputs DX proportional to the level of profits as long

as DCVP > 0:

DX ¼ IF DCVP > 0 THEN CVP � :01 ELSE 0: (11.11)

Essentially the same signal can be formed by DCVP/DT ¼ DERIVN(CVP,1,.1).

To complete the STELLA model, we set up the module for the adjustments of

input quantities as shown in Fig. 11.2.

Figure 11.3 shows the rise in profit as your company increases its use of wood in

the production of toys. Figure 11.4 confirms our analytically derived condition

(11.9) for the profit maximum; the cost of an additional unit of inputs increases as

you expand the size of your operation and ultimately equals the price of a unit of

output, as your company achieves the profit maximum. The maximum profit for

your competitive firm is not zero ($1,562) when its optimal output (630 units) is

reached. Additional producers of wooden toys may enter the market because a

Fig. 11.1 Profit-maximizing

output
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Fig. 11.2 Adjustments in input quantity

Fig. 11.3 Current value of profits and output

Fig. 11.4 Marginal cost and price
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profit is to be made from selling wooden toys. As a consequence, they will drive

down the price of the toys and collectively increase output. The number of toy

producers is expected to increase to the point where the entry of an additional

producer into the market leads to a profit rate of 0. In Chap. 14 we will explicitly

solve for the equilibrium number of firms in a competitive market in which all firms

produce an identical output but some may use different technology (A and ALPHA

are not the same for each firm).

In our precedingmodel, we arbitrarily chose the rate of expansion of the company

and set it proportional to the current value of profits. Choose alternative propor-

tionality factors and observe the model results. Then, explicitly introduce labor as

one of the essential inputs into the production of wooden toys. Of course, labor is

costly, and you need to specify a wage rate at which you compensate the workers in

your company. Analogous to the price of wood, assume that you have no influence

on this wage rate and that it is an exogenous parameter in your model. Assume that

the workers that you just hired need to be trained before they can contribute to the

production process, and introduce an appropriate lag in the production function.

Similarly, make the rate of expansion of inputs X a delayed function of the labor

inputs. How may the use of tools and other capital equipment affect optimal output,

the profit maximum, and your company’s ability to expand its production?

In this chapter, we dealt with the ideal case of perfect competition and calculated

the rate of expansion and optimum size of a firm in such a market. In the following

chapter, we identify the optimum output level of the same firm if it can function as a

monopoly. Both cases are extreme ones when compared with reality, but they

enable us to delineate the realm of likely choices by firms. They are useful to

make general statements about the desirability of alternative taxes (Chap. 12) or

alternative market forms for the supply of essential, nonrenewable resources

(Chaps. 21–23).

11.2 Competitive Firm Model Equations
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Chapter 12

The Profit-Maximizing Monopoly

If two people agree all the time, one of them is unnecessary

David Mahoney

12.1 Introduction

In contrast to the previous chapter, let us assume that you are the proud owner of a

firm that holds a monopoly on wooden toys. You are now in a position to simulta-

neously decide about the levels of output and sales price. However, your firm still

competes for the input material wood on a competitive market. The price of wood

used to produce toys is given and fixed. A second constraint imposed on you is

given by the fact that even though you can set the sales price of your output,

consumers will respond to a price change by adjusting the quantity of wooden toys

they wish to buy. The relationship between the price that you set for your output and

the quantity consumers are willing to buy can be specified with a demand curve.

Typically, a demand curve is defined as a function that relates the price consumers

are willing to pay to the quantity of a good available to them:

P ¼ PðQÞ with @P

@Q
<0 (12.1)

Given such an inverse relationship between price and demand, how many

wooden toys should your firm produce and at what price should they be sold to

maximize profits?

Before we attend to this question with a STELLA model, let us first derive the

analytical solution. As in the previous chapter, we calculate the first partial

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
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derivative of the profit function with respect to a change in price. The profit function

is now

CVP ¼ R� C ¼ P QðXÞ½ ��QðXÞ �W�QðXÞ; (12.2)

which leads to

@CVP

@Q
¼ @R

@Q
� @C

@Q
¼ MR�MC ¼ 0 ) MR ¼ MC: (12.3)

Note that, since price is a function of Q, MR 6¼ P in the case of the monopoly.

Thus, in the profit maximumMR ¼ MC 6¼ P. The difference between the marginal

revenues and price in the profit maximum is known as the monopoly rent rate. This
rate is shown for linear demand and supply curves in the following figure. As a

monopolist, you would identify the profit-maximizing output level QM by setting

MR ¼ MC and then charge the price PM. The large set of firms in the perfectly

competitive market, in contrast, would each set P ¼ MC resulting in QC as their

optimal output, which they would sell at the price PC.

Analogously to the previous chapter, we assume that the monopoly’s expansion

rate is determined by the level of the profit rate (Fig. 12.1).

Fig. 12.1 Optimal output in competitive and monopolistic markets
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DCVP ¼ IF DCVP >0 THEN CVP�:01 ELSE 0: (12.4)

The STELLA diagram is shown in Fig. 12.2. The results of Fig. 12.3 indicate

that the optimal size of your monopolistic firm is reached in less than 6 months.

The maximum profit is found to be $2,092 for an output of 432 units, at a

price of $6.57 per unit output, when the marginal revenue and cost are $3.24.

The graph of Fig. 12.4 confirms our analytical solution stated in (12.3) and

shows a difference between price and marginal cost—monopoly rent rate—of

$3.33.

Expand this model to include labor and capital in the production process and

make the rate of expansion of your monopoly dependent on the use of labor and

capital. Introduce a time lag at which your company can expand in response to a

higher capital stock, and investigate the impacts of such lags on the change in

the monopoly rent rate. Similarly, assess the implications of alternative

technologies on maximum profit, optimal output, and monopoly rent rate. For

example, change the coefficient ALPHA in the production function that we used

Fig. 12.2 Monopolistic firm

12.1 Introduction 125



earlier. Here, we have chosen ALPHA ¼ 0.5. For 0 < ALPHA < 1, increases

in inputs lead to an increase of outputs at a decreasing rate. This case is known

as decreasing returns to scale. What will happen if ALPHA becomes greater

than 1?

Fig. 12.4 Monopoly price, marginal cost, and marginal revenue

Fig. 12.3 Reaching the profit-maximizing conditions

126 12 The Profit-Maximizing Monopoly



12.2 Monopoly Model Equations

12.3 Effects of Taxes on Monopolistic Output and Price

In the preceding model, we have seen that the monopoly can capitalize on its market

power by charging a rent in excess of its marginal cost. When compared to the case

of perfect competition modeled in the previous chapter, we also see that the

monopoly restricts output below that of the competitive firm and sells that output

at a higher price. Thus, governments frequently intervene to affect a monopolist’s

decisions on prices and quantities. Among the most preferred methods of interven-

tion are taxes on output, profits, or as a lump sum. Each of these taxing schemes has

different affects on the monopolist’s optimal choice of outputs and prices and thus

may achieve a government’s goal of extending supply or reducing price to a

different extent. All of these taxing schemes, however, generate revenues, and we

will assess the impact of taxes on the monopolist’s behavior under the assumption

of equal tax revenues for the government.

The STELLA model of Fig. 12.5 is based on the one used previously in the

absence of taxes. We modified the model to accompany the impacts of a PRODUC-

TION TAX of $0.8 per unit ofQ and calculate the corresponding tax revenues in the

optimum of the firm. Similarly, we introduced a PROFIT TAX and a LUMP SUM

TAX whose values we set such that they generated the same tax revenue as the

profit tax of $0.8 per unitQ. Because the production tax has a direct influence on the
marginal revenues, we need to set up the model to calculate the new marginal

revenue NMR in case the government levies a production tax.
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The calculations of tax revenues in our STELLA model are not done with

stocks, but with converters. If we use stocks, we calculate the cumulative tax

revenue collected by the government over time. The size of this stock, of course,

depends on the speed at which the monopolist adjusts production to achieve a

profit maximum. The faster the profit maximizing output can be achieved, every-

thing else being equal, the lower are the cumulative tax revenues. To calculate the

tax revenues over time, as the monopolist gradually finds, the profit-maximizing

output and price levels make use of stocks and flows, rather than transforming

variables.

Fig. 12.5 Monopoly with taxes
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Run the model in the absence of a tax at a DT ¼ 0.25 and you will find that the

maximum profits are CVP ¼ 2,093, the profit maximizing-output level isQ ¼ 423,

which is sold on the market at a price P ¼ $6.44 per unit.

Now, introduce the production tax of $0.8 per unit. Figure 12.6 shows the effects

of the production tax of $0.8 on profit, price, output quantity, and marginal cost.

Tax revenues are approximately $314 (313.92, to be precise), profits are roughly

$1,772, and the profit-maximizing output level and price are 392 and $6.88,

respectively. Profits are now lower, prices higher, and optimum production also

declined as compared to the non-tax case. Thus, the tax neither extended production

nor decreased price for consumers. It did, of course, lower the monopolist’s profits.

Figure 12.7 shows the results for a lump sum tax. Here, given our prerequisites

for such a tax, government revenues are $313.92. The corresponding equilibrium

price is $6.72. Output and profits are, respectively, 413 units and $1,779.

Next, introduce a profit tax that generates—at the monopolist’s profit maxi-

mum—the same tax revenues as the production tax. You will find that that profit tax

is $0.149945 per dollar profits earned by the monopolist to generate exactly the tax

revenue of $313.92 as the production tax case did. The corresponding profits are

$1,779, price is $6.64, and output is a little over 423. Again, profits and optimal

output are lower than in the absence of taxes, price is higher.

Compare the output in Figs. 12.7 and 12.8. Note how the firm differently treats

the Lump Sum vs. the Profit Tax. The first is a fixed reduction in profits while the

second depends on the profit itself.

Calculate the cumulative tax revenues that are generated by the end of a year in

the case of a production tax of $1.2 per unit output and then find the profit and lump

sum taxes that generate the same cumulative tax revenues. Which of the three taxes

lead to the smallest increase in price and which to the smallest decline in output

Fig. 12.6 Monopoly with production tax
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when compared to the no-tax case? Change the speed at which the monopolistic

firm can adjust the size of its operation. How does a quicker adjustment affect your

answer?

Now that we have seen the impact of a monopoly on output quantities and

prices and the limited ability of the government to affect monopolistic behavior

through taxes, let us investigate how the monopoly fares if its production results in

pollution that has negative health effects on consumers. The following section

addresses this issue.

Fig. 12.8 Monopoly with profit tax

Fig. 12.7 Monopoly with lump sum tax
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12.4 Monopoly with Taxes Model Equations

12.5 Monopolistic Production and Pollution

Let us return to the basic model of a monopoly without tax and introduce a pollutant

that is generated as a by-product from the production process and may need

abatement. Whether or not abatement actually takes place, and the degree to

which it takes place, depends on whether there is an incentive for the producer to

incur the cost of abatement. Assume that the level of pollution depends on the

output quantity Q of the desired product and the extent to which abatement takes

place. The relationship is given by the graph of Fig. 12.9.

The extent of abatement efforts, in turn, is dependent on the monopolist’s choice

of a CONTROL FACTOR (Fig. 12.10). If this factor is 0, pollution is emitted

without control or control costs. The control factor is not a fraction because it can

exceed 1.

The level of pollution is assumed to affect the health of consumers. Zero

pollution levels result in zero adverse health effects. But zero pollution can be

achieved only if no production takes place. Low, nonzero pollution levels require
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high abatement efforts, that is, a choice of a high CONTROL FACTOR. If the

monopolist chooses to significantly control pollution, then pollution cost is high:

POLLUTION COST ¼ CONTROL FACTOR � Q (12.5)

We have assumed here that costs of abatement are directly proportional to

production. No doubt this is not true, but any more exact connection would not

change the message of this model. Note that this cost must be included in the profit

calculation and the calculation of the total and marginal costs.

If the monopolist chooses a low control factor, pollution levels and adverse

health effects will be high (Fig. 12.11). As a consequence, consumers may be

willing to pay less for, or buy less of, the monopolist’s product. The effect of health

cost on the producer may occur in the following way: Increased expenditures on

health care due to increased pollution mean that the consumers will have less

Fig. 12.9 Pollution–

abatement relationship

Fig. 12.10 Control factor

for pollution abatement
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money to spend on the producer’s product. This effect is arranged through a change

in the slope of the demand curve for the product—as pollution increases, the slope

of the demand curve increases (the choke-off price stays the same). This means that

increased pollution leads to increased health expenditures that, in turn, lead to

decreased expenditures on the product. The DEMAND CURVE EFFECT that

results from the HEALTH EFFECT of pollution is specified graphically in our

model (Fig. 12.12). Under these assumptions, it may behoove the producer to spend

on pollution control, to maximize its profits, given this pernicious effect!

We have introduced a HEALTH EFFECTS SWITCH in the model (Fig. 12.13)

that enables you to easily control the impacts of health effects on the demand curve.

If the switch is 1, the health effects are lowering the consumer’s demand curve. If it

is 0 (and the control factor is 0), we should have the same effect as we had in the

basic model of the monopoly, where we did not even consider the pollution or

environmental problems. That condition is the “no pollution” result, and it forms a

kind of benchmark for the profit level of this company.

Fig. 12.11 Health effects

of pollution

Fig. 12.12 Demand effects

from changes in the health

effect of pollution
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Run the model for a DT ¼ 0.125, the following specification for the change in

inputs

DX ¼ IF DCVP > 0 THEN :008�CVP ELSE 0 (12.6)

and different values of the CONTROL FACTOR. Observe the resulting CVP, Q,
and POLLUTION. No pollution control leads to CVP ¼ 2,443 and a control factor

of 2 results in CVP ¼ 2,116. You will find that the highest CVP can be achieved if

there is moderate pollution control. A pollution control factor of 0.404 will yield the

highest CVP. The graph in Fig. 12.14 shows the optimal case.

Fig. 12.13 Monopolist with pollution and pollution cost
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At a given CONTROL FACTOR the greatest possible profit may not be the

overall maximum. Here, then, we have the producer adjusting its pollution control

factor to reduce health effects of unabated pollution so that the consumers will

divert some of these former expenditures on health over to buying its product. It is

simply the monopolist’s goal of maximizing profits—not altruism—that leads it to

cut down on pollution. The acknowledgment of this position seems too inhumane

and too calculating, but any good policy maker, private or public, needs to know of

the possibility of the existence of such an operating point.

It is easy for the monopolist to act in self-interest here and realize that reducing

pollution somewhat will lead to an increase in profits. But what about the competi-

tive market? There, no one producer can act without loss of market share and

profits. Because one cannot act alone, none will act. This case calls out for

governmental control.

We have now seen that monopolistic firms will reduce output and sell at higher

prices than competitive firms, but this is not necessarily “bad” for consumers. If

production leads to the generation of waste products, it may be even preferred to

have a profit-maximizing monopolist who has significant power to adjust output

quantities and control pollution. To make a judgment on the desirability of such a

monopoly, however, requires that we know how consumers value the goods

produced by the monopoly vs. pollution.

Of course, other factors need to be considered before we take sides in favor or

against monopolistic behavior. One of these is employment in the monopolistic

firm. If the monopoly is large and operates multiple facilities, it has considerable

power over the distribution of output and employment among its various facilities.

As a consequence, the monopoly has significant influence on the development and

decline of the regions in which its factories are located. We model the case of a

monopolist with two production facilities in the following chapter.

Fig. 12.14 Profit maximization for the monopolist with pollution
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12.6 Monopolistic Production and Pollution Model Equations
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Chapter 13

Monopolistic Collusion

The book of Nature is the book of Fate. She turns the gigantic
pages—leaf after leaf, never returning one.

R. W. Emerson, Everyman’s Library Edition, 1915, p. 157.

13.1 Joint Management of Two Monopolists

Assume two production plants are jointly managed. The decision to jointly manage

may arise from at least the following two scenarios. First, a monopoly might own

two different kinds of plants, such as electric generating stations; one is old and

operates with high cost; the other is new and operates at low cost. The model

developed here can tell the monopolist how to divide output between the plants,

assuming that both facilities can produce the desired output. On the darker side, we

may imagine this setting arises as the result of two former competitors deciding to

collude and treat their market as though they were a monopoly. The model can tell

them how to allocate production to maximize their joint profits.

Output of the firms is Q1 and Q2, respectively. Together, the two plants control

the entire market for their output Q ¼ Q1 + Q2. Production functions and costs are
different for the two plants. Production functions are specified as

Q1 ¼ A1�X1^ALPHA1 (13.1)

and

Q2 ¼ A2�X2^ALPHA2; (13.2)

A save-disabled version of STELLA® and the computer models of this book are available at
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with the constants A1 ¼ 50, A2 ¼ 60, ALPHA1 ¼ 0.6, and ALPHA2 ¼ 0.5. Input

pricesW are the same for both firms. Thus, costs depend on only the input quantities

X1 and X2:

C1 ¼ W�X1 (13.3)

C2 ¼ W�X2: (13.4)

The combined current value of profits from both firms is

CVP ¼ CVP1þ CVP2 ¼ P� Q1þ Q2ð Þ � C1� C2
¼ R1þ R2� C1� C2 (13.5)

and the profit maximizing output levels are defined by

@CVP

@Q1

¼ MR1�MC1 ¼ 0; (13.6)

@CVP

@Q2

¼ MR2�MC2 ¼ 0 ) MR2 ¼ MC2 (13.7)

and we must have

MR1 ¼ MR2: (13.8)

In our model, the demand curve for the product is linear and because Q ¼ Q1 +

Q2. However, we set up the marginal revenue specifications such that we can

easily accommodate nonlinear demand functions. The results that follow are shown

for the simple case of

P ¼ 10� 0:00794� Q1þ Q2ð Þ: (13.9)

Changes in input quantities X1 and X2 to achieve a profit-maximizing output

level may now be defined on the basis of the difference between marginal revenues

and marginal cost. Once marginal revenues equal marginal cost, no change in input

quantities should occur because a maximum for the profits is encountered. In this

model, we choose graphical functions to change input quantities, allowing X1 and

X2 to overshoot and return to their equilibrium values. The graphical function for

the change in X1, DX1 is defined as shown in Fig. 13.1 and the change in X2, DX2 is
specified analogously.

Of course, for real firms the actual paths for approaching equilibrium are

determined, for example, by the availability of the necessary capital, construction

progress, and the time it takes to phase in new capital. It is possible to represent

these influences with DX1 and DX2, as shown in Fig. 13.2.

The model shows profit-maximizing output levels of Q1 ¼ 220.6 (Fig. 13.3)

and Q2 ¼ 1616.0 (Fig. 13.4) with input quantities of X1 ¼ 11.9 and X2 ¼ 7.3.

The maximum profit level is approximately $2,471 per month (Fig. 13.5). Note how

one of the profit functions overshoots and backs down, even though the maximum
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profit rises continuously. The overshoot is really undesirable because it means

idling part of the plant that had been built. This idling may not have actually

happened, however, if the overshoot were not too long. No plant operates at

100% capacity forever, but it may be possible to operate higher than normal for a

short time; for example, by having workers work overtime. Can you adjust the

problem to eliminate the overshoot?

Let us return to the interpretation in which the setting of the model is the

collusion of two former competitors joining to form a monopoly. The solution of

the model tells the producers their profit-maximizing output levels and the distri-

bution of production and profits between the two production plants. The model also

shows that CVP1 is greater than CVP2. Furthermore, the combined profits under a

monopolistic collusion are higher than profits of perfect competitors. The differ-

ence in profits between firms may be a reason for conflict between the two plants,

and the arrangements between the two producers may break down unless they can

lay out some suitable way to split the greater profits. Can you define a set of profit

division schemes that would or should hold the two together?

Let you think we encourage you too much toward law-breaking plans, realize

that you have to know them to stop them. Lest you think that we direct you only into

jobs with the Justice Department, realize that you would make a better business

consultant if you could solve the problems laid out here.

The model may also get handy if you end up working for Japanese industry.

Nippon is the largest steel maker in the world. Nippon has many plants of many

different ages and thus of different costs of operation. When world demand for

steel is high, all plants proceed at full speed. But as demand falls, the managers

consider two options: the first is to shut down the high-cost plants until the demand

can be met by the low-cost plants, producing the steel for the lowest possible cost.

Shutting down plants, however, requires layoffs and leads to increasing government

welfare and unemployment costs. Or, they could slow down production of each

Fig. 13.1 Changes in input

quantity in production Plant 1
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Fig. 13.2 Monopolistic collusion

Fig. 13.3 Finding optimal conditions for production Plant 1



plant at the same percentage until demand is met. This solution keeps everyone

employed but with lower bonus payments and higher operating costs, and more

costly steel.

The two options may be presented to the Japanese government, which is faced

with the choice between incurring increased welfare payments or covering the

difference in cost to exercise the second option. The government has frequently

Fig. 13.4 Finding optimal conditions for production Plant 2

Fig. 13.5 Price, profit, and output with collusion
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chosen the second option. When it does, US steelmakers complain about the

Japanese government subsidizing exports of steel, seemingly in support of monop-

olistic collusion! They neglect to see that when US steelmakers close down their

high-cost plants, the US government picks up the welfare and unemployment cost,

and the unemployed pay their own relocation costs, both of which amount to a

subsidy to US steel! Additionally, valuable skills may be lost when US steel plants

shut down and workers are laid off. By the time orders for US steel increase, those

high-skilled workers may have left the work force or be employed elsewhere in

the economy.

13.2 Monopolistic Collusion Model Equations
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Chapter 14

Quasi-Competitive Equilibrium

There is no likelihood man can ever tap the power of the
atom.

Robert Millikan, Nobel Laureate, Physics, 1923

14.1 Finding the Number of Profit-Maximizing Competitors

In previous chapters we have considered two extreme market forms—perfect

competition and monopolistic behavior. Many markets, however, fall between

these two extremes. Some companies are large and well endowed and therefore

have significant market power. Yet, there are few of those fortunate ones. A larger

group of less profitable firms compete for the part of the market not served by the

large firms. As a result of these differences among firms, we do not have perfect

competition. Rather, only a limited number of firms can compete successfully.

In this chapter, we determine how many profit-maximizing firms can be successful

in a quasi-competitive market. In our model, we assume that there are two groups of

firms in that market. The first group consists of N1 firms. Each of those firms has the

same production technology to produce Q1 units of the product. Their production

function is

Q1 ¼ A1 � X1^2� ALPHA1 � X1^3; (14.1)

with A1 ¼ 50 and ALPHA1 ¼ 13 as fixed parameters.
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In the second group of firms are exactly five firms. These firms are more efficient

in producing the output quantity Q2 of the same good produced by firms in group 1.

The production function of each of those firms is

Q2 ¼ A2 � X2^2� ALPHA2 � X2^3; (14.2)

with A2 ¼ 75 and ALPHA2 ¼ 13 as fixed parameters. The firms in this group are

able to produce the product at lower cost. We can think of them as mining a rich vein

of ore that is easy to reach. Those firms with A ¼ 50 are mining the same type of ore,

but it is not as easy to extract; their costs per ton are higher. When an equilibrium

price for the ore is reached, howmany of theminers with high extraction costs will be

forced off the market? What will then be the profit for mines with a rich vein of ore?

Since firms in both groups produce the product, we need to sum their output to

calculate the total quantity available to meet demand. The demand curve in our case is

P ¼ 10� 0:00338 N1 � Q1þ N2 � Q2ð Þ (14.3)

Fierce competition can force down a firm’s production level until the market

price of its products equals the average cost of manufacturing them. The firm’s

profit is reduced to zero. Although the firm may generate just enough revenues to

cover its cost, from the perspective of economic theory, it is maximizing its profit.

Unfortunately, the average cost, AC, of production, the marginal cost, MC, and the

price, P, are all the same: profits are reduced to nothing.

The implications of the P ¼ AC ¼ MC rule for market equilibrium are rather

straightforward for our simple, quasi-competitive setting with two groups of firms.

Because we know N2 ¼ 5, we can easily calculate the number N1 of firms in

group 1, in the market equilibrium, by solving the demand curve of (14.3) for N1.
Then we need to recognize that the high-cost firms must follow the P ¼ AC ¼ MC

rule. Firms in group 1 compete heavily with each other. To determine their optimal

output level, each of them has to set its marginal cost equal to the market price.

Denoting MC1 as the marginal cost of the high cost firms and substituting MC1 for

P in (14.3), we get from the demand curve,

N1 ¼ 10�MC1

0:00338�Q1
� N2�

Q2

Q1
: (14.4)

Firms in group 2 do not have to comply with this rule. Their number is fixed to

N2 ¼ 5, and they can realize a nonzero profit because they use more efficient

technology or are endowed with higher quality resources.

To find the number of firms in group 1 we need to drive the difference between

average cost and marginal cost to 0 (AC1 ¼ MC1) while insisting that each firm is

maximizing profits (P ¼ MC1). By increasing X1, we exhaust all profits through an
increase in the number of firms in the market. Figure 14.1 shows that part of the

STELLA model that is set up to calculate changes in X1 and thus N1.
The adjustments in production of firms in group 2 and the calculation of the

demand curve and current value profits, CVP1, CVP2, are done in that part of
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the model shown in Fig. 14.2. Prices and profits are calculated in the module of

Fig. 14.3.

Figure 14.4 shows that the optimal number of firms in group 2 is about nine.

Figure 14.5 depicts the continuous equality of price and MC—maximum possible

profits for each firm—and the eventual equality of MC and AC when the number

of firms entering the market has stabilized. This is the equilibrium for the market.

All high-cost firms reach a maximum of zero profits, while low-cost firms have

positive profits (Fig. 14.6).

Fig. 14.1 Quasi-competitive equilibrium

Fig. 14.2 Adjustments in production quantities

Fig. 14.3 Calculation of price and profits
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Run the model at a DT ¼ 0.25. Set up scatter plots for the production functions

Q1 ¼ Q1(X1) and Q2 ¼ Q2(X2). Similarly, plot the cost functions in a scatter plot.

Interpret the behavior of these functions and compare them for the two groups of

mining companies.

We have now set up a model that is more realistic than either of the two extreme

assumptions of perfect competition or a monopoly. Before we move on to relax

another assumption frequently made in economic theory, we will explore this

model a bit further. But rather than expanding on the model itself, let us perform

sensitivity analyses on its parameters. We can do such sensitivity analyses with

STELLA, as we have seen in Chap. 3.

Fig. 14.4 The number of firms and their output

Fig. 14.5 Price, marginal costs, and average cost
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14.2 Quasi-Competitive Equilibrium Model Equations

Fig. 14.6 Profits
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Chapter 15

Modeling Economic Games

Heavier than air flying machines are impossible.

Lord Kelvin, Royal Society, c. 1895

15.1 Arms Race

At the outset of our discussion of the behavior of firms in Chap. 11, we stressed the

assumption that the behavior of firms and consumers is coordinated in markets via

price signals. Of course, supply and demand curves need not be as well behaved as

we assumed them so far. There may not be a demand curve at all, for example;

rather one may be evolving as exchange takes place in the marketplace.

As different parties meet in the market, a game unfolds in which each player may

pursue a different strategy. As in the games you may have played just for fun, the

“players” in an economic game often lack perfect information that would enable

them to identify the best strategy. Specifically, they may not have perfect informa-

tion on important characteristics of the other players.

In this section, we begin modeling games played by a small number of economic

agents. The first of these games is the traditional arms race game (Hanneman 1988)

that can easily be interpreted in an economic context. In fact, this mimetic behavior

is analogous to the household consumer goods race.

In the following section, we model the exchange of goods in a simple barter

economy. For simplicity, both the arms race game and the exchange economy are

modeled for the case of two players. A more complex, multiplayer game is

presented in the third section of this chapter, in which we model an auction game.

Let us start with a simple model of an arms race. The two competing nations are

X and Y. Each strives to maintain 10% more arms than the other. This behavioral

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_15,
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assumption is captured in the STELLA model by the coefficients X GOAL COEFF

and Y GOAL COEFF. We will change these coefficients to assess their impact on

the outcome of the arms race.

Each country spies on the other to determine its level of arms, but there is a delay

in the receipt of that information. The information gained by X about the level of Y’s
arms is delayed by three time steps. It is used to set the goal for arms production:

ARMS GOAL X ¼ X GOAL COEF�DELAY Y; 3ð Þ; (15.1)

ARMS GOAL Y ¼ Y GOAL COEF�DELAY X; 3ð Þ: (15.2)

When the spies do report in, each country begins to make arms. Each nation tries

to close its perception of the arms gap by producing new arms and replacing those

that depreciated. For the model, we assume that there is a manufacturing delay of

three time steps:

MAKE X¼DELAY MAX ARMSGOAL X�XþDEPRECIATE X;0ð Þ;3ð Þ;
(15.3)

MAKE Y¼DELAY MAX ARMSGOAL Y�YþDEPRECIATE Y;0ð Þ;3ð Þ:
(15.4)

The depreciation of arms is the same for each nation and set to 5% of its current

stock. Equations (15.3) and (15.4) calculate the maximum value of the added arms

or 0 to prevent the sale of arms outside the system, during a time of defusing of the

race—the case in which the goal coefficients are less than 1 (Fig. 15.1).

Fig. 15.1 Arms race model
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Run the model with initial values of arms for X ¼ 150 units and Y ¼ 50 units.

Choose a DT ¼ 0.125. Figure 15.2 shows the results. Nation Y will initially

increase its production of arms significantly to make up for the big difference in

initial endowments, whereas X can afford to have some of its arms depreciate.

However, soon X will try to catch up with Y by increasing its production. The result

for the non-delayed case shows that stocks of arms for the two nations that fluctuate

around each other and exponentially grow.

Alter the lags at which information is received by the two nations on the

competing nation’s stock of arms. What are the effects of these lags on the escala-

tion of the race? Next, change the manufacturing lags and observe their impact on

the arms race. You should find that the manufacturing delay is very important. For

example, with no manufacturing delays and a difference in the set of initial arms,

the arms levels oscillate but then converge and rise exponentially. As the lag time

grows, the arms levels oscillate wildly, without growing divergence. With a lag of

three time units, the two countries can even be trying to de-escalate the race and the

arms levels still grow, indicating that even with good intentions, the race can

continue. Confirm this finding by changing the X GOAL COEFF and Y GOAL

COEFF to values larger than 0 but less than 1.

Try to introduce an arms treaty whose effect is to increase the retirement rate of

arms. Try to imagine other ways of stopping the escalation of arms such as very low

goal coefficients. Set the model to have one country be industrially more advanced

than the other (e.g., differing lags in manufacturing between the two countries) and

with better spies. Make interpretations of, and applications for, this kind of model in

economics or business.

Fig. 15.2 Outcome of the arms race
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15.2 Arms Race Model Equations

15.3 Barter Economy

So far we have focused in this book almost entirely on the market behavior of firms.

Now let us model in more detail a game with a long history in economic theory, a

“game” that we all played at one time or another: the exchange of goods or services

that is not accompanied by an exchange of money. A sister helps you fix your bike

and in exchange you help her with her homework. A neighbor watches your kids

and in exchange you mow his lawn.

To model the barter economy, consider two people, A and B, who each possess

an endowment of two goods X and Y. Person A possesses more of good X and

person B possesses more of good Y. The preferences of each are given by the

following utility functions:

UA ¼ XA^ 1=3ð Þ�YA^ 2=3ð Þð Þ XAþ YAð Þ= ; (15.5)

UB ¼ XB^ 2=3ð Þ�YB^ 1=3ð Þð Þ XBþ YBð Þ= : (15.6)

With these utility functions and the initial endowments, the two players would

like to have more of the good of which each possesses less. Therefore, we would

expect them to exchange goods to increase their utility. For example, person A

would exchange EX units of X if there was a positive change in utility DUA. If there
was a loss in utility, then person A would ask EX units back from person B. We set

EX ¼ 0:25þ :1�CHANGE UA; (15.7)
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with CHANGE UA as the percentage increase in player A’s utility. If there was

no change in utility, A should trade no further. An analogous relationship is assumed

for player B.

The change DX in the players’ endowments of X is

DX ¼ IFDUA � 0 THEN EX ELSE� EX: (15.8)

Because any player would give up some of one good only in exchange for some

of the other good, we set

DY ¼ IF DUB � 0 THENEY ELSE��EY: (15.9)

The resulting STELLA model is shown in Fig. 15.3.

Run the model with XA ¼ 30, YA ¼ 15 and XB ¼ 5, YB ¼ 40 at DT ¼ 0.25.

From the structure of the utility functions, it is clear that A prefers Y and B prefers

X. We have set the initial values in opposition to these preferences to show how the

model adjusts to the optimum distribution of trade (Fig. 15.4). Both of the players

increase their utility through exchange (Fig. 15.5).

Can you find the equilibrium distribution of the two goods if both players have

the same preference for those two goods? For example, assume

UA ¼ XA^ 1=2ð Þ�YA^ 1=2ð Þð Þ XAþ YAð Þ= ; (15.10)

UB ¼ XB^ 1=2ð Þ�YB^ 1=2ð Þð Þ XBþ YBð Þ= : (15.11)

Think your answer through before running the changed model.

Fig. 15.3 Barter economy
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Assume that person A has the utility function as in (15.5) but person B is

envious of person A’s possessions. The more of a good A possesses, the lower is

B’s utility:

UB ¼ XB^ 2=3ð Þ�YB^ 1=3ð Þ � XA^ 1=4ð Þ � YA^ 1=4ð Þð Þ: (15.12)

Does envy affect the equilibrium distribution of the goods?

Fig. 15.4 Redistribution through exchange

Fig. 15.5 Utility increase through exchange
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How does the exchange process change if a large number of people want to

trade part of their endowments for the same good offered by one person? This is

the basic setting for the auction game discussed in the following section. We will

assume that the participants in trade attempt to maximize the utilities they can

derive from their endowments of goods. In Part VI of this book, we will return to the

utility-maximizing consumers and introduce explicitly the effects the consumption

history has on utility.

Note that the equilibrium levels depend on the initial conditions. Show this by

transferring five time units from A to B and rerun the model. What does this

outcome say about the prospects for fair trade?

15.4 Barter Economy Model Equations

15.5 Sealed-Bid, Second-Price Auction Game

In this section we describe and model a sealed-bid, second-price auction

game, which is also called the Vickrey Auction (for details see, e.g., Shogren

1993; Shogren et al. 1994, and for the original model see Vickrey 1961).

Assume that four restaurants buy food items from a supplier in a market in

which they bid for the food. The restaurants are the bidders in our market and
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are told that the food they intend to buy may contain salmonella at the same

probability as found in food from other “normal” suppliers. Each of the bidders

attempting to buy food for its restaurant has the choice to bid for the food on

the market or buy a special sanitary food as an alternative. The bid is the

differential value between the two types of food, sometimes called the ex ante
willingness to pay.

The auction is a silent one in which only the second highest bid is known to all

bidders. The second highest bid is the MARKET PRICE, the signal to which

bidders may respond. For the four bids BID 1, . . ., BID 4 by our restaurants and a

highest bid MAX BID, the market price is calculated as

MARKET PRICE ¼ IF MAX BID ¼ BID 1 THEN MAX BID 2;BID 3;BID 4ð Þ
ELSE IF MAX BID ¼ BID 2 THEN MAX BID 1;BID 3;BID 4ð Þ
ELSE IF MAX BID ¼ BID 3 THEN MAX BID 1;BID 2;BID 4ð Þ

ELSE MAX BID 1;BID 2;BID 3ð Þ:
(15.13)

The bids (Fig. 15.6) are generated in our model by three different types of

bidders: two bidders (1 and 2) who try in slightly different ways to catch up with

the market signal and overbid just enough to be the high bidder; a third bidder who

ignores market signals; and one bidder (bidder number 4) who is largely random.

Each bidder starts with a bid that is based on its own private risk perception. We call

this the self-reliance probability (SRP). Bidders are assumed to assign their own

weights to SRP and the market probability Q. The self-reliance probabilities are

SRP1 ¼ 0.9, SRP2 ¼ 0.4, SRP3 ¼ 0.1, and SRP4 ¼ 0.5. Weights are set for the

four bidders as ALPHA 1 ¼ ALPHA 4 ¼ 0.5, ALPHA 2 ¼ 0.1, and ALPHA

3 ¼ 0.9. The market probability is the same for each bidder and specified as a

graph. The introduction of SRP and Q enable us to easily devise an array of bidder

behaviors to describe those behaviors identified in experiments.

We defined the market history as BID(t�1)�MARKET PRICE(t�1). We could

include all the previous bids (bidder or market in a discounted difference).

The problem is to transfer this value into the relative market risk perception, Q.

Fig. 15.6 Bid generation
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We do this with a graph of Q for each bidder. It is not likely to be a straight-line

relationship, and yetwe can use this line as theway to begin a calibration procedure for

the model.

The equations for the initial and subsequent bids are Bayesian:

BID 1 ¼ V1� 1� ALPHA 1�SRP 1 ALPHA 1þ BETA 1ð Þ=ð Þ (15.14)

and

BID 2 ¼ V2� 1� ALPHA 2�SRP 2 ðALPHA 2þ BETA 2Þ=ð Þ; (15.15)

with V1 ¼ 1 and V2 ¼ 2 as the monetary values placed by the two bidders on good

health. ALPHA and BETA are the coefficients that determine the reliance the

bidder places on its own risk perception vs. the market risk perception, respectively.

Alpha + Beta ¼ 1, in our model (Fig. 15.7).

The initial bids for the other two bidders are specified analogously as

BID 3 ¼ V3� 1� ALPHA 3�SRP 3 ðALPHA 3þ BETA 3Þ=ð Þ (15.16)

and

BID 4 ¼ V4� 1� ALPHA 4�SRP 4 ðALPHA 4þ BETA 4Þ=ð Þ: (15.17)

Updates to the bids are made based on the prior bids held by the bidders and

reflect their individual bidding behavior:

PRIOR 1 ¼ IF BID 1 � 1:25�V1 THEN IF BID 1 ¼ MAX BID

THEN � V1�BETA 1�Q1= ALPHA 1þ BETA 1ð Þ
ELSE � V1 � BETA 1�Q1= ALPHA 1þ BETA 1ð Þ þ RANDOM 0; :1ð Þ
ELSE BID 1 � 1:25�V1;

(15.18)

Fig. 15.7 Own vs. market

risk perception
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PRIOR 2 ¼ IF BID 2 � 1:25�V2 THEN IF BID 2 ¼ MAX BID

THEN � V2�BETA 2�Q2= ALPHA 2þ BETA 2ð Þ
ELSE � V2�BETA 2�Q2= ALPHA 2þ BETA 2ð Þ þ RANDOM 0; :05ð Þ
ELSE BID 2 � 1:25�V2;

(15.19)

PRIOR 3 ¼ IF BID 3 � 1:25�V3 THEN IF BID 3 ¼ MAX BID

THEN � V3�BETA 3�Q3= ALPHA 3þ BETA 3ð Þ
ELSE � V3�BETA 3�Q3= ALPHA 3þ BETA 3ð Þ þ RANDOM 0; :05ð Þ
ELSE BID 3 � 1:25�V3;

(15.20)

PRIOR 4 ¼ IF BID 4 ¼ MAX BID

THEN � V4�BETA 4�Q4= ALPHA 4þ BETA 4ð Þ þ RANDOM �:5; :3ð Þ
ELSE � V4�BETA 4�Q4= ALPHA 4þ BETA 4ð Þ þ RANDOM �:5; :3ð Þ

(15.21)

The PRIORS are calculated using these equations. The PRIORS contain a random

element, biased upward, that causes the bidder to bid slightly higher if it did not win

the last bidding round. Remember, only the winner knows both the first and second

highest bids. Themodule set up to calculate BID 1 is shown in Fig. 15.8 for the case of

the first bidder. The modules for the other three bidders are specified analogously.

The profit functions for each of the bidders are relative net value of the food

bought if the bidder did make the maximum bid and 0 otherwise. For example, for

the first bidder the profit function is

PROFIT FCT 1 ¼ IF BID 1

¼ MAX BID THENðV1� BID 1Þ V1 ELSE 0= : (15.22)

Fig. 15.8 Calculation of bid 1
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To see who wins the bidding contest for the food for its restaurant, we accumulate

the winning bids of each round of bids in stocks WIN 1, . . . , WIN 4 (Fig. 15.9).

The model shows that the first bidder is bid out of the market first and that the

third bidder soon wins the auction. The resulting market price ultimately fluctuates

around $2.60 per food item, but it keeps changing because the fourth bidder, whose

behavior is largely random, makes an occasional bid (Figs. 15.10–15.12).

Can you find other behavioral assumptions and integrate them in the auction

game? What are the results for an increasing number of bidders that attempt to

outbid each other?

Fig. 15.9 Accumulation of winning bids

Fig. 15.10 Bid dynamics
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Economic game theory is a very powerful analytic tool in describing economic

outcomes, especially when coupled with a simulation procedure. Here we

have managed to model the behavior of four different bidders—behavior actually

found in related experiments. It seems to us that, when economic simulation

games are based on experimental data, economics becomes a true science.

Fig. 15.11 Profits

Fig. 15.12 Wins
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15.6 Sealed-Bid Second-Price Auction Game

15.6 Sealed-Bid Second-Price Auction Game 161



162 15 Modeling Economic Games



References

Hanneman RA (1988) Computer-assisted theory building: modeling dynamic social systems.

Sage, Newbury Park

Shogren JF (1993) Experimental markets and environmental policy. Agr Resource Econ Rev

12:117–129

Shogren JF, Shin SY, Hayes DJ, Kliebenstein JB (1994) Resolving differences in willingness to

pay and willingness to accept. Am Econ Rev 84:255–270

Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Finance

16:8–37

References 163



Part IV

Modeling Optimal Use
of Nonrenewable Resources



Chapter 16

Competitive Scarcity

For the Poorer ƒort, . . . Horƒe-dung in Balls with Saw-duƒt,
or the duƒt of Smalcoale, or Charcoale duƒt, dryed,
is good Fewell, but the ƒmell is offenƒive

(Richard Gesling, Ingineer, Artificiall Fire, or
Coale for Rich and Poor, A Recipe for Making
Briquettes, 1644. British Museum, 669, f. 10(11).

16.1 Basic Model

In the previous chapters on the models of firms, we used STELLA to find the

profit-maximizing input and output quantities at a point in time. We ran the models

over time as if the firm were able to “feel its way towards the optimum.” Similarly,

the auction game was assumed to take place over time, but the decision making

itself did not take into account the time over which the decision is made. In contrast

to these models, we now turn our attention to the problem of finding an optimal path
through time. Specifically, we are interested in how much of a resource to extract at

each point in time over the lifetime of a finite, nonrenewable resource.

As we show in this and the following chapters, the seemingly complex problem

of determining a whole series of optimal points along a path—rather than just a

single optimal point, as we have done, for example, in Chaps. 8, 11, and 12—can be

simplified significantly. We will first show some of the general features of this path.

This part of the problem is solved with analytical methods. Once features of the

optimal path are identified, the remaining problem is to ensure that the system of

interest—in our case, the resource-extracting firm—positions itself at the outset in

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.
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one point on the path. The second part of this problem is solved through trial and

error with a STELLA model that incorporates the analytical solution for the optimal

trajectory of the system.

Once the initial point on the optimal path of the system is identified, the whole

system behaves optimally over time. The dynamic optimization problem, therefore,

boils down to the optimal choice for a single period, the starting point for our

model. Recognize that this is a mechanistic approach to understanding the dyna-

mics of a system. In Part VI of this book, we contrast this mechanistic view with one

in which prediction of a system’s future behavior is impossible based on knowledge

of its past and current states. For examples of purely simulation-based approaches

to the issue of optimal extraction of a nonrenewable resource, see Shelden and

Hassler (1980) or Shelden (1982).

Assume that we have an oil field. Oil is not a renewable resource. When the

reservoir under our field is depleted, the wells will run dry. Assume further that the

size of the reservoir is perfectly known and its quality is uniform. Therefore,

we want to maximize the current value of profits from selling our crude oil.

As previously, we assume perfect competition in the marketplace; the price we

can ask for our crude equals the OPEC price in each period. Crude oil is unique;

there are no effective substitutes for it, and it is consumed when it is used—no

recycled oil. To keep the model simple, we assume that no substitute will be

discovered and that our costs of extraction will remain the same. We also ignore

all government subsidies, depletion allowances, and price supports.

The reservoir under our oil field holds a finite amount of petroleum. We control

the rate at which our oil is sold to a refinery. If we deplete our reservoir, we can

invest the profits we earn, for example, in another business or another potential oil

field. Of course, the new business might fail or the new field might not live up to its

potential. We have an alternative: we need not extract any of the oil. By thus

keeping our oil off the market, we help drive up the price for crude oil. Then, if the

price were high enough, we could begin pumping again. Of course, during the

waiting period, some of our costs will continue and we would lose the present use of

the profits. Which is the better choice? The optimal behavior seems to lie between

the two extremes: full extraction now or no pumping until the price goes up.

Optimal behavior, in the sense of maximizing the present value of cumulative

profit, would be for all oil producers to sell their crude at a rate that would

continuously raise its price. Such thinking led to the Organization of Petroleum

Exporting Countries (OPEC). As oil producers, we would begin by selling a large

amount of crude. This would give us a high present value of profits. The amount

of oil in the reservoir is reduced by the amount we have extracted, and this would be

the case for others who followed the same plan. Therefore, less crude oil would

be available in the future. This lower supply would lead to higher prices along the

demand curve. With a higher price for our crude, and less of it in the reservoir,

we would pump less oil in future periods.

The problem becomes one of choosing an optimal schedule of production.

The best way to solve such a complex problem is to use analytic techniques to

derive the governing dynamic equations (differential equations) and then solve
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them numerically with the aid of STELLA. Most often, such equations are not

analytically solvable. So we combine analytic and numerical techniques to find the

optimal path. We will discover though that this is not all we need. The optimal

solution depends on several initial and boundary conditions, and these are met by

repeated trial runs in STELLA. There are some strategies that we can use to reduce

the drudgery. We begin with the analytic development.

The problem of finding the optimal path for the extraction of a nonrenewable

resource can be formalized as follows. The objective of our petroleum extraction is

to maximize the cumulative stream of current value profits discounted each period

at an interest rate I, that is,

Maximize CPVP ¼
ZT

0

CVPe�I�tdt ¼
ZT

0

P�Q� Cð Þe�I�tdt: (16.1)

We want to maximize these profits over a period that begins today (t ¼ 0) and

continues until period T, the time when the reservoir is totally depleted. Our model

will determine T, of course. Q represents output, the variable we can control to

maximize our profits. In (16.1), P is the price of crude oil in period t and C is the

cost of extracting the crude oil. The cost of extraction is a function of the output:

C ¼ B�Q^DELTA; (16.2)

where B and DELTA are constants. Basically, our production costs rise as we pump

more oil. In (16.1), I is the rate of discount, whose value is known and remains

constant from one period to the next.

The amount of oil in the reservoir is finite: no “stream” feeds it and we cannot

wait for more oil to be “produced” naturally. This places a constraint on our

maximization: we cannot extract more oil than is there now. Our initial stock of

oil must be greater than or equal to the amount we can pump in T periods:

Y t ¼ 0ð Þ ¼
ZT

0

Qdt: (16.3)

We recognize that the oil is a nonrenewable resource (i.e., the oil will not be

replaced in the reservoir) by stating

Q � 0: (16.4)

Finally, we want to show that the change in the amount of oil in the reservoir,
_Y ¼ @Y=@t, reflects only the amount of oil pumped; no other factor changes the

reservoir amount. We state this formally as

_Y ¼ �Q: (16.5)
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_Y is negative because the amount decreases as we pump out oil.

We are now ready to determine the optimal rate of extraction Q in time period t.
We do this by maximizing the function H, called the Hamiltonian, relative to Q,
which is our control variable:

H ¼ P�Q� Cð Þ�e�I�tl�Q; (16.6)

where (P * Q�C) is the current value of profits at some period. It is discounted at

the interest rate I to yield the present value of profits in that period. The term l * Q
reflects the “penalty” (l) for reducing our supply of oil in the reservoir by an

amount Q. Another way to interpret the term is this: l represents what a petroleum

producer would pay to have one more unit of oil in the reservoir; we call this the

(discounted) scarcity rent rate.
The method of maximizing our profits over time is known as the optimal control

theory (Dorfman 1969). We will assume that our oil operation is competitive

and P ¼ P(t) is not a function of Q. The optimal extraction conditions (Kamien

and Schwartz 1983) for our oil operation are given by the partial derivative of the

Hamiltonian relative to Q, our control variable,

@H

@Q
¼ P� @C

@Q

� ��
e�I�t � l ¼ 0; (16.7)

and the way H is affected by a change in the amount of oil left in the reservoir, Y,

� @H

@Y
¼ _l; (16.8)

where the dot on l refers to the partial derivative with respect to time. SinceH is not

a function of Y, we know

_l ¼ 0: (16.9)

Equation (16.7) yields

l ¼ ðP�MCÞ�e�I�t: (16.10)

Taking the first partial derivative with respect to time in (16.10) and combining it

with (16.9) helps us to eliminate l from the system of equations:

l
�
¼ ðP� �MC

�
Þ�e�I�t � I�l: (16.11)

Inserting (16.10) into (16.11) enables us now to express changes in price of the

resource over time solely in terms of observable quantities:

P
� ¼ I�ðP�MCÞ þMC

�
: (16.12)
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Recognize that (16.12) can also be rewritten as

P
� �MC

�

P�MC
¼ I: (16.13)

Since P�MC ¼ l* eI * t is the undiscounted scarcity rent rate, let us call it m; we
have

m
�
=m ¼ I: (16.14)

Equation (16.14) describes a condition called the Hotelling rule (Hotelling

1931). That is, for extraction of a nonrenewable resource to be optimal (to maxi-

mize the present value of profits), the undiscounted scarcity rent rate of the resource

must rise at the rate of interest. This means that the undiscounted scarcity rent rate,
m/m, must equal the interest rate we could garner from investing our profits.

When we discussed the maximum profit of a manufacturer in a perfectly

competitive market, we found that the price equals the marginal cost of producing

its good. Here, because we are dealing with a nonrenewable resource, we must add

to that marginal cost a rent, l, to represent the irreversible loss of the resource,

which explains the term scarcity rent rate. The relationship between the solutions

of the profit maximization for the extraction of a nonrenewable resource and the

standard competitive equilibrium are shown in Fig. 16.1. The “endowment rent”

shown in the figure is realized by well-endowed (low-cost) producers, such as the

ones we discuss in Chap. 14.

In (16.12), we showed how we could maximize our profits by following a time

path in pumping observable amounts of oil from our reservoir. Now, we must

express these conditions in a STELLA model to learn exactly how much oil we can

pump in each period.

Recognize that (16.12) is used in the STELLA model to calculate the change in

price over time. It is specified as a flow DP into the stock P. The integration is done
in STELLA by multiplying this flow by DT:

PðtÞ ¼ P t� dtð Þ þ ðDPÞ*DT (16.15)

with

DP ¼ I� P� MCð Þ þ DMC: (16.16)

The value DMC takes on in our model is dependent on the length of the time step

used for the integration. Hence, we need to correct DMC for the length of the time

step DT. This correction can easily be made by dividing DMC by DT:

DP ¼ I� P�MCð Þ þ DMC/DT: (16.17)

16.1 Basic Model 171

http://dx.doi.org/10.1007/978-1-4614-2209-9_14


This is the expression for DP that will be used in the model.

The STELLA model (Fig. 16.2) also requires that we specify marginal cost and

the change in marginal cost over time. For the cost function of (16.2), the marginal

cost function is

MC ¼ DELTA�B�Q^ DELTA � 1ð Þ (16.18)

and the change in marginal cost over time is calculated in the STELLA program as

DMC ¼ MC� DELAY MC;DTð Þ: (16.19)

Finally, let us assume for simplicity that there are N identical resource extracting

firms on the market that compete with each other. Each of those firms supplies one

Nth of the demand for the nonrenewable resource. Total demand is given by the

demand function

P ¼ 10� 0:00338 Q; (16.20)

which we can solve for the demand that is met by each of the N firms:

Q ¼ ð10� PÞ=0:00338
N

: (16.21)

Price, MC

Q

Marginal
Cost

Scarcity
Equilibrium

Competitive
Equilibrium

Scarcity
Rent

Endowment
Rent

Cost

Collective Supply by 
Many Identical Firms

Demand

Scarcity
Rent Rate

Scarcity
Price

Fig. 16.1 Price, marginal cost, and scarcity rent rate in perfectly competitive nonrenewable

resource markets
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For simplicity we assume that N ¼ 10 in this and the following problems of

competitive resource extraction. Also, assume that the discount rate is fixed at 5%.

Because we are one of ten identical firms who own the reservoir, we know how

much oil is in it (at least, we think we do). Let us assume that the amount in all

reservoirs combined is 60,000 units of oil. Hence, we own 60,000/N ¼ 6,000 units

of it.

Note when running this model, there are some terminal conditions you must

meet. These are called the transversality conditions and are needed to insure

optimality, in addition to the necessary conditions that lead to (16.17).

The transversality conditions for this type of problem are as follows: l(T) � 0,

l(T) * Y(T) ¼ 0, where Twould be the terminal time, when eitherQ or Y became 0,

or, T is infinity, in the case where both Q and Y asymptotically approached 0.

When the finite resource is of uniform quality, we know that all of it will be used,

resulting in a finite terminal time. From (16.7) and (16.9) we can see that l will be a

positive constant for all times, so l(T) > 0 and therefore Y(T) must be 0 to satisfy

the second condition. So we pick an initial price that will bring Y to 0 such that a

slightly higher price will leave some resource in the ground. This P0 is the highest

initial price that still reduces the final amount of resource to 0. It can be observed

Fig. 16.2 Optimal extraction from a nonrenewable resource
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that this condition produces the highest CPVP of all such initial prices. Q(T) must

also be 0, since no Q can exist without a resource, and if Q is 0 before Y is 0, Y will

never reach 0. The exact terminal time T is discovered by this process. This line of

reasoning holds for all our optimization models where the cost of extraction is only

a function of Q.
Note that the cost function, the number of firms, the demand curve, the initial

amount of remaining resource and the firms discount rate are required data for this

model. But our differential (16.17) and the terminal conditions guide us along the

optimal path to depletion. The key to this solution is the assumption of the firm

maximizing behavior in (16.1).

Choose a different number N of firms in the market. Set DT ¼ 1 and run the

model several times to find the optimal initial value of P. How does N affect CPVP?

Figure 16.3 shows the time path that maximizes the cumulative present value of

profits for the number of identical firms N ¼ 10. Note the smooth decline in the

production rate, Q; a steady rise in price, P; and a fall in output Y. We see that

the production rate is 0 just as the choke-off price is reached. A bit of the oil is left in

the reservoir. Decrease the discount rate, reoptimize the model, and see the effect

on the amount of reserves left in the ground.

Set up the model to start with the terminal conditions and run the model

backward. This should give you the relationship between the different reserve

sizes and the corresponding optimal price. Run the model until Y ¼ 6,000 and

determine the starting price P(t ¼ 0). Suppose we stop the problem at t ¼ 20 and

reoptimize on the remaining reserve? What would happen?

Fig. 16.3 Profit-maximizing behavior of nonrenewable resource extracting firms
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You can use these trial and error techniques to assure yourself that the

discounted scarcity rent rate really does rise at the rate of interest, which is what

the analytic theory indicates it should in the absence of any stock effects. Further-

more, you will notice that CPVP is maximized when the choke-off price is reached

by a production rate that smoothly goes to 0 at the same time.

Realize that these firms were probably coasting along at equilibrium, pumping

their resources away, at the time they first realized they were dealing with a

finite resource. If they were at equilibrium, CVP was 0 (it is not in this chapter),

and AC ¼ MC ¼ P. The simple cost function used here will not allow this

condition to be established (see Chap. 14, Sect. 14.1). So, change the cost function

to C ¼ B*Q^0.5 + DELTA*Q^2, with B ¼ 5, and DELTA ¼ 0.02. Form the

variable AC and experiment with the number of firms until MC ¼ AC at the start

of the model. This is the prescarcity equilibrium price. The model will show this

initial postscarcity price, along with the pre- and postscarcity MC and AC (equal at

t ¼ 0). Then determine the initial price that meets the boundary conditions, then go

back and adjust the number of firms, etc. until the boundary conditions are met and

the AC ¼ MC at t ¼ 0. What is the prescarcity initial price, the number of firms

and initial scarcity price? Note that from t ¼ 0 on in this model, MC and P differ by

the scarcity rent. So here is what the firms are doing. The instant before they

implement the scarcity behavior, P ¼ MC ¼ AC and all these firms are at equilib-

rium. The instant that the scarcity behavior begins, the price jumps to contain the

scarcity rent, AC begins to slowly rise, MC begins to slowly decline.

The model for maximizing CPVP is rather intuitive and instructive, but it cannot

be applied to all cases. In the model we assumed that the cost of extracting oil from

the reservoir did not change until very little was left. But, what if the reservoir were

uneven? Only some of the oil would be found and extracted easily and the cost of

extracting the rest would have to include increasing costs of extracting the resource,

say, from greater depths. We have seen, albeit in a very simplified way,

the consequences of a depletion effect in the case of uneven resource endowments

in Chap. 3, where declines in ore grade lead to an increase in the energy necessary

to extract a mineral from the ground. The model developed here would not account

for these differences and the interest rate would rise faster than the scarcity rent rate.

This means that less of the resource might be used. We augment our little model

from the theory and enrich it in the following sections to cover a number of different

cases. Among those extensions are nonlinear demand curves, sudden demand

shifts, gradually increasing availability of a perfect substitute, depletion effects

on the cost of extraction, and more. First, however, we need to understand

the effects the numerical solution technique has on the results of our model.

This is done in the following section.
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16.2 Basic Competitive Scarcity Model Equations

16.3 Competitive Scarcity with Various DT

Let us take the model of the competitive firm dealing with a finite resource and

reduce the DT below 1 or choose the Runge–Kutta-4 numerical solution technique in

the TIME SPECS menu. Not only is the calculation of the optimal time path slowed

by the increased precision of the numerical solution method, but we also get a

different answer for the initial price that produces the maximum cumulative present

value of profits. Using the analytic form forMC directly for the specification of these

converters reduces inaccuracies that stemmed from the numerical solution. In this,

as in the previous problem, that substitution has been made (Fig. 16.4).

Even though we make use here of the analytical solution of the problem, the

answer is still sensitive to the choice of DT and the calculation form. Run this

problem with DT ¼ 0.125 and 1.0 and with the Euler and Runge–Kutta-4 solution

forms to see the variation in the answer.

Figure 16.5 shows the optimal time path for DT ¼ 0.125. The profit-maximizing

initial price is P ¼ 1.83 with a maximum CPVP ¼ 9,098, which deviates slightly

from the result in the previous section. There, we had an optimal initial price

P ¼ 1.89 and a maximum CPVP ¼ 9,376. When do we know that we have a

sufficiently accurate solution to our model? Is DT ¼ 0.125 with Runge–Kutta-4

far enough to go in the search for accuracy?
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Fig. 16.4 Nonrenewable resource model with various DT

Fig. 16.5 Optimal extraction in the nonrenewable resource model with various DT
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Modify this model to deal with the following situation. The demand curve is

linear for the first 20 periods. Use the specification of the demand curve shown in

the previous section. After period 20, a new, nonlinear demand curve is the relevant

one. How do the optimal initial price and the resulting time paths change? Can you

change this model to have a series of linear demand curves for, say, ten periods

each, whose slope is gradually decreasing as the choke-off price is approached?

Run the model with a demand curve that does not have a choke-off price. Try

P ¼ 6,000/Q�2. Now all the resource will be exhausted.

16.4 Competitive Scarcity with Various DT Model Equations
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Chapter 17

Competitive Scarcity with Substitution

We must gather and group appearances, until the scientific
imagination discerns their hidden laws, and unity arises from
variety; and then from unity we must rededuce variety, and
force the discovered law to utter its revelations of the future.

W. R. Hamilton

17.1 Price Effects

In the previous chapter, we modeled a simple case of nonrenewable resource

extraction in the absence of a substitute. Here, we use the same kind of analysis

that draws on the model’s optimality and transversality conditions. But now

suppose that we have a producer of a finite resource who realizes that its original

version of the demand is increasingly in error—people are finding substitutes for

the mineral. Perhaps it sells copper and people are shifting to aluminum as the price

of copper is raised. We represent this process as a new nonlinear demand curve that

is tangent to the original linear curve at the initial or starting price. From there, the

new demand curve departs increasingly from the linear one. You can see this in the

sketch of Fig. 17.1: the linear demand curve runs from the lower right to the upper

left corners of the graph and it touches the newly revealed demand curve at its

starting point. The equation for this curve is

Q ¼ Q0 þ A � P2; (17.1)

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_17,
# Springer Science+Business Media, LLC 2012
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which, when the coefficients are solved to produce the starting tangent gives

Q ¼ PS2 � 2 � P0
� PSþ P2

�2 � M � PS
; (17.2)

where PS is the starting price, P0 is the terminal price of the linear demand curve

(10 in our model), P is the price, and M is the slope of the linear demand curve

(�0.00338 in our model). Again, we divide by N ¼ 10 to calculate the demand that

is met by one of the ten identical firms in the market. Note how the starting price is

set up in the model (Fig. 17.2).

Our producer does not know beforehand how the new curve is going to unwind.

Rather, it discovers the new demand curve as the firm proceeds to extract the

mineral from its mine. So how is this reaction different from the behavior in the

previous section? What would you expect? If one sees with increasing clarity that

the demand curve is turning toward the horizontal, one knows people are fleeing

one’s price. The company therefore produces an optimal path that reduces its stock

faster than before, mainly because it appears that the firm has less control over its

consumers. The choke-off price is just a little over $5 per unit of the mineral rather

than the $10 in the previous model.

Can you construct a demand curve that is also tangent to the linear curve at the

starting price but is asymptotic to the price axis? How would use of this curve

change the current situation? The equation of such a curve is

Q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P � PS
p � PS� 10

�0:00338
(17.3)

Fig. 17.1 Price effects from the emergence of substitutes for a nonrenewable resource
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Fig. 17.2 Price effects

Fig. 17.3 Optimal depletion with price effect
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What are the starting price and optimal time path for this demand curve? Let the

number of firms decline as the demand for the resource declines. How does this

affect the terminal time, the amount of resources left in the ground, and CPVP?

Make an educated guess before you run the model. As in Chap. 16, the

transversality condition require Y(T) ¼ 0. Choose the highest price that just zeros

out the final amount of resource and this will reveal the optimal path.

17.2 Competitive Scarcity with Price Effect Model Equations

17.3 Sudden Demand Shift

In the previous problem, the mine owning firm gradually discovers the “real”

demand curve. The changes in demand may not be gradual but come as a shock

to the system at some future time. The model of this section deals with such a

sudden demand shift. In its structure, the STELLAmodel in Fig. 17.4 is very similar

to that of the previous problem.

Let us assume that there is a price level at which substitutes suddenly are

economical to produce and sell and therefore start to compete for the mineral

extracted from the mine. In such a scenario, the extraction rate would be increased
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once that critical price level is reached. Set this price level at P ¼ 5 and have a

demand shift occur from the linear demand curve

Q ¼ 10� Pð Þ=0:00338
N

(17.4)

to

Q ¼ 7� Pð Þ=0:00338�2
N

(17.5)

The transversality conditions require (see Chap. 16) that we find a price in

time period zero (P0), which zeros out the resource and maximizes CPVP. That

P0 is the largest one that just exhausts the resource (any larger P0 would leave some

resource in situ).

Fig. 17.4 Nonrenewable resource with sudden demand shift
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The result, shown in Fig. 17.5, is a shortened time frame over which extraction

takes place, a lower initial price, and a lower CPVP than if the linear demand curve

of (16.1) had prevailed.

17.4 Sudden Demand Shift Model Equations

Fig. 17.5 Resource and market dynamics with sudden demand shift
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17.5 S-Shaped Substitution Model

In the previous section, we dealt with substitution in an indirect way, assuming that

its effect is a decrease of the price of the material extracted from the reserve and that

the substitute is perfect in the sense that once we ran out of the material from the

mine the demand can be satisfied by the substitute. In this section, we model more

explicitly the substitution process under alternate assumptions. The advantage of

this approach is that it is more amenable to empirical applications.

Assume that a metal is provided from both mining operations and firms that

recycle discarded metal. The recycled metal could be used as a substitute for the

metal provided by the mines. For example, recyclable iron and copper are close

substitutes to these metals obtained from virgin ores. Assume further that all mining

and recycling firms operate in competitive markets. The share of the recycled

material is at first low but increases fast, for example, due to the improvement of

collection and distribution channels and the refinements of recycling technology.

After some time, the expansion of recycling begins to slow down. Distribution

channels may now all be well established and technologies well developed.

The share F of the recycled material can be modeled to follow an S-shaped

curve. A convenient and versatile functional form is the logistic equation

dF

dt
¼ GAMMA � F � 1� Fð Þ; (17.6)

with GAMMA as a constant determining the slope of the resulting S-shaped curve.

Assume for simplicity that the metal from the recycling firms is offered at the

same price as that from the mines. This assumption may be justified by the fact that

the recycled metal may not be bought if it is more expensive than the metal from the

mine. If the recycled product is less expensive, recycling operations can realize an

economic rent by raising their price to that of the product from the mine. Further-

more, let us assume that recycling cannot take place forever because recycled

materials may ultimately become dispersed or decrease in quality through added

impurities or changes in physical and chemical characteristics. We have metal

“leakage” from the system. Hence, recycling will require that mines produce

metal that can ultimately be recycled. Therefore, in this model recycling is not a

"backstop" technology; that is, cannot indefinitely supply the metal.

The model assumes that mine owners maximize the cumulative present value of

their profits CPVP, given an initial resource endowment and a fixed technology.

The latter is expressed through the cost function. The Hamiltonian is

H ¼ P � QM � C½ �e�I � t � l � QM; (17.7)

with QM as the materials extracted from the mine. These are sold on the market

together with the substitute. Note that (17.7) is in essence the same as (16.6) in

Sect. 16.1.
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The quantity QS of the substitute is defined by

QS ¼ F � Q; (17.8)

where Q is the demand met by one of N identical firms based on the linear demand

curve of the previous chapters

Q ¼ 10� Pð Þ=0:00338
N

(17.9)

The STELLA model is shown in Fig. 17.6. Again, we need to find the initial

price that maximizes CPVP, simultaneously driving reserves Y and the rate of

extraction from the mineQM to 0 in the terminal time. The transversality conditions

require (see Chap. 16) that Y(T) ¼ 0 and so we seek the largest Po that just exhausts

the resource. One can easily show that this Po, of all those meeting the resource

exhaustion condition, also maximizes the CPVP.

When any of these firms dealing with scarcity begin their price raise they

are acquiring increased risk that the higher price will produce a substitute. This

risk is no doubt represented in their chosen discount rate. Change I to 12% and rerun

the model.

Fig. 17.6 Scarcity with substitution
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Choose GAMMA ¼ 0.02, an initial recycling fraction F ¼ 0.2 and assume the

same cost function as in the previous section. Run the model for DT ¼ 0.1 and find

the optimal initial price. Compare the results to those in the absence of recycling,

that is, dF/dt ¼ 0 and F ¼ 0.

The graphs in Figs. 17.7–17.9 show that total demand for the metal drops. This is

due to an increase in price in response to resource depletion in the mine. The

quantity recycled is at first low but increases as the rate of recycling F increases.

However, because mining output continuously decreases, the increase in F is not

sufficient to maintain, or further increase, a temporarily achieved high level of

recycling. Mining output and recycling drop to 0 by the terminal time.

Introduce a collection operation into the model by assuming that not all metal

extracted from the mine is readily available for recycling; rather, it takes time

for the metal to be discarded and enter the recycling process. Only when

discarded can the material be collected and recycled. How does the average

lifetime of the product, the time before it is discarded, influence the optimal

price and the lifetime of the mine? Change the specification of the recycling

fraction F such that F does not approach 1 for large values of t but some

number F < 1.

Make the recycling fraction a function of cumulative extraction from the mine,

rather than the rate of extraction. Set up the recycling process such that, once the

mine is exhausted, recycling can supply the metal indefinitely; that is, model the

development of a backstop technology.

Now that we have explored various ways of modeling substitution, let us return

to the basic model of Chap. 16 and account for the effects of extraction history

on cost of extraction. Particularly, we wish to model the fact that the more of

Fig. 17.7 Production quantities
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the resource already extracted, the higher is the extraction cost. We already

have modeled in a simplified form the depletion effect on the cost of extraction

in Chap. 3. Its inclusion in the models of optimal resource depletion is the topic of

the following chapter.

Fig. 17.9 Market share of recycled material

Fig. 17.8 Mining operation
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17.6 S-Shaped Substitution Model Equations
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Chapter 18

Competitive Scarcity with Cost Dependent
on Production Rate and Resource Size

Truth is the conformation of appearance to reality.

Alfred North Witehead

18.1 Production Rate and Resource Size Effects

In the preceding models, we assumed a competitive firm extracting a finite resource

that has a cost function that is dependent on the rate of extraction. In reality,

however, cost of extraction increases not only with the rate of extraction but also

with decreasing stock size. The smaller are the remaining reserves, the deeper they

may lie or the less the mineral is concentrated in the mine. The model of this chapter

incorporates that stock effect into the cost function (Fisher 1981). As a result of

this stock effect, the scarcity rent rate can no longer rise at the rate of interest,

and we surpass the intuitive model’s capacity to accurately follow the optimal

production path.

Assuming the cost function

C ¼ A � Q^ALPHA � ðY=Yo=NÞ^BETA; (18.1)

the Hamiltonian is now

H ¼ P � Q� C½ �e�I�t � l � Q; (18.2)

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_18,
# Springer Science+Business Media, LLC 2012
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leading to the following adjoint equation:

� @H

@Y
¼ dl

dt
¼ @C

@Y
� e�I�t: (18.3)

Equation (18.3) combined with (16.7) from Sect. 16.1

@H

@Q
¼ P� @C

@Y

� �
�e�I�t � l ¼ 0

gives the solution for DP:

DP ¼ I � P�MCð Þ þMCY þ DMC=DT: (18.4)

In the presence of the stock effect on extraction cost, the discounted scarcity rent

rate has to rise not only at the rate of interest but also must compensate for the

change in extraction cost due to marginal changes in the reserve size, ∂C/∂Q,
which we denoted MCY to distinguish them fromMC. To calculate MC andMCY in

STELLA, we have chosen the analytic approach because here cost is a function of

two variables. STELLA easily finds total derivatives but partial derivatives are

more difficult and would complicate the model unnecessarily. The transversality

conditions (see Chap. 16) indicate that l (t) �0 as t �1, as does Q, since by

experimenting, we note that Y(t) tends to a fixed positive value (about 62 units per

firm) as time ! 1. From this we can determine that the price in time period zero

(P0) is approximately 2.3, which produces this joint asymptotic result. The resulting

model is shown in Fig. 18.1.

As in the earlier forms of the scarcity model, a trial and error process must be

used to find the initial price that maximizes the cumulative present value of the

profit. We must also set, as before, the initial value of the MC and MCY functions

that make use of the DELAY built-in function. This is a tricky process. MC and

MCY are not control variables, and therefore, their initial values must agree with the

first MC and MCY values generated by the cost function. These values, of course,

depend on the initial choice of the control variable, price. So we juggle the initial

MC and MCY until we are close to the first model-generated value of MC.

Fortunately, once we are close to matching the value, the ultimate result is not

too sensitive to small changes in the initial values of MC and MCY. Then, using a

trial and error procedure, we solved for the initial price that maximized CPVP.

The extraction schedule and reserve decline are shown in Fig. 18.2 alongside the

corresponding CPVP and scarcity rent rate. Figure 18.3 shows the price response.

Price and the present value of the profit rate are made 0 at the same time by adjusting

the initial price. By use of a table in STELLA, we can show that the scarcity rent rises
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Fig. 18.2 Optimal extraction path, resource stock and value

Fig. 18.1 Cost dependent on production rate and resource size
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more slowly than the exponential rate of the earlier models of this type. This is

visually obvious toward the termination time of the resource extraction process.

Note that we leave none of the mineral in the ground. The total profit is 89,400 and

6,300 resource units are left in the ground. Compare this result with that in Chap. 23.

Try varying the coefficients A, ALPHA, and BETA to find their effect on the

lifetime of the reserve. These coefficients typically can be found from the historical

analysis of data for this industry or firm. Each comes with an uncertainty attached,

and one can explore the effects on the result by varying statistically estimated

parameters within that range of uncertainty.

Finally, we should ask what the optimum extraction strategy would look like if

we interrupted the optimal path, for example, at year 20, and reoptimized on the

basis of the current reserve size and marginal costs.

Suppose that, in year 30, we were to find an additional 3,000 units of new

resources. How would you handle this outcome? Show the entire extraction path in

one graph in STELLA. In this model, increases in cumulative extraction from the

resource stock lead to an increase in extraction cost. However, as the cost of

extraction increases, the resource-extracting firms may find themselves compelled

to improve their technologies to counteract the depletion effect on cost. Technology

improvement would give them an edge on the market by being able to offer the

resource at a lower price or by increasing the difference between the market price

and their marginal cost of extraction. The following chapter discusses one form of

technical change and its impacts on cost, price, and the lifetime of the mine.

Fig. 18.3 Price, marginal cost and profit rate
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Chapter 19

Competitive Scarcity with Technical Change

Elegant intellects who despise the theory of quantity are but
half developed.

A. N. Whitehead

19.1 Introduction

In contrast to the previous chapters on optimal resource extraction, let us more

explicitly model changes in extraction technology. In this chapter, we model

technical change that is endogenous to the system; that is, dependent on state

variables of the system. Much of the technical change that takes place is a gradual

improvement in production technologies that can be modeled as learning by doing:

Increases in cumulative extraction will lead to increased experience in the mining

operation. This increase in experience, in turn, translates into efficiency improve-

ments and, thus, reductions in the average cost of the mineral extracted. Of course,

these improvements cannot go on forever. If any of the inputs in the extractive

operation is costly and essential, an assumption that is very likely to hold, then some

minimum expenditures in the production process must be made that cannot be

overcome by technical change. The laws of thermodynamics, for example, tell us

that all real-world processes require a minimum of energy inputs (Ruth 1993,

1995). Furthermore, technical change itself may require materials or energy from

those reserves whose scarcity it is supposed to alleviate.

You may recall that we have encountered simple versions of this learning-by-

doing effect on cost in Chaps. 3 and 5. In each case, we have drawn cost curves as

functions of cumulative production. When drawing these curves, we made sure that

they declined at a decreasing rate and asymptotically approached a value
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significantly larger than 0. The latter implicitly captures minimum input require-

ments for the production process. Additionally, the model in Chap. 3 captured

material and energy consumption to sustain technical change.

19.2 A Basic Model of Competitive Scarcity

with Technical Change

Similar to the models of Chaps. 3 and 5, we introduce here technical change as a

function of cumulative extraction. Technical change will be fast early on, when

extraction is high and can make a relatively large contribution to cumulative

production, and will slow down over time, if and when the rates of extraction

decrease. Furthermore, no technical change can take place if none of the resource is

extracted. These assumptions are consistent with everyday experience. For exam-

ple, the first few times you play a musical instrument you can improve a lot.

The longer you practice, however, the smaller the incremental improvements

become, and if you stop practicing, you stop improving.

For our mining operation, average cost of production is a measure of the

efficiency of production. A learning curve that shows decreases in average unit

cost AC of extraction with cumulative production Z is

AC ¼ CMþ G � Z^PHI; (19.1)

with CM, G, and PHI as constants. In this model, average cost declines toward a

minimum level, CM. The parameters G and PHI determine the slope of the average

cost curve; that is, the speed at which learning can take place. PHI is negative so

that increases in cumulative past production Z decrease average cost.

The state variables in this model are Y and Z with dY/dt ¼�Q and dZ/dt ¼ +Q.
Thus, the Hamiltonian is

H ¼ ½P � Q� AC � Q�e�I �t � l1 � Qþ l2 � Q; (19.2)

which gives us the optimality and adjoint conditions, with one control and two state

variables,

@H

@Q
¼ ½P� AC� �e�I �t � ðl1 � l2Þ ¼ 0; (19.3)

� @H

@Y
¼ dl1/dt; (19.4)
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� @H

@Z
¼ dl2/dt: (19.5)

Equation (19.3) yields

P�� A
�
C

� �
� e�I � t � I �ðP� ACÞ � e�I � t ¼ l1 � l2 (19.6)

and because Z ¼ Y(t ¼ 0)�Y + Zo, Eq. (19.4) yields

l1
�

¼ Q � G � PHI �ZðPHI�1Þ � e�I � t: (19.7)

Similarly, (19.5) yields

l
�
2 ¼ Q � G � PHI �ZðPHI�1Þ � e�I � t: (19.8)

Thus, the optimality and adjoint equations combine to

P ¼ I P� ACð Þ þ AC� 2 �Q �G �PHI �ZðPHI�1Þ; (19.9)

which we use in our STELLA model, after correcting for the length of DT, to

calculate the change in price

P ¼ I P� ACð Þ þ AC

DT
� 2 �Q �G � PHI � Z PHI�1Þð (19.10)

As in the previous chapters, we can find the optimal initial price through trial and

error in successive runs of the STELLA model. An additional requirement for this

model is that we specify an initial value for Z. The calculation of the cumulative

present value of profits, price, total cost, and extraction are shown in Fig. 19.1.

Start again with an initial reserve size Y of 60,000/N tons, set N ¼ 10, and use

the same demand curve as in the previous section. Run the model at a DT ¼ 1/64

with G ¼ 30, PHI ¼ �0.5, and CM ¼ 1. You will find an optimum initial price of

$2.371, resource exhaustion in approximately 41 years and a cumulative present

value of profits CPVP ¼ $6,350. An appropriate starting value for Z is 8,000.

Average extraction costs drop from an initial value of $1.65/ton to approximately

$1.33/ton. The results are shown in Figs. 19.2 and 19.3. The transversality

conditions (see Chap. 16) are more difficult to apply here. First we know that

lambda2(T) ¼ 0, since lambda2(T)*Z(T) must be 0 and we know that Z(T) cannot
be 0. Then from (19.3), we have at the terminal time: (P�AC)e^(�I*T) ¼ lambda1

(T) and since P > AC always, lambda1(T) > 0. Therefore, Y(T) ¼ 0, and the

resource must be used up completely by the end of this process. Since no T was

specified at t ¼ 0, H(T) ¼ 0 since Q(T) ¼ 0.
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“Switch off” technical change, which resulted in the learning curve of Fig. 19.3.

What are the effects on the optimal price, terminal time, and CPVP if there is no

technical change? Make an educated guess before you run the model. Change the

speed at which learning takes place and interpret your results.

Technical change is one way by which the price of nonrenewable resources may

temporarily be held at a low level. Another way is through new discoveries. We

assumed that those discoveries are exogenous to the model—we accidentally

stumbled across a previously unknown field of oil or vein of ore. The following

chapter takes up the topic of discoveries again but makes the more realistic

assumption that a resource-extracting firm needs to actively engage in exploration

efforts if it intends to find a new reserve.

Fig. 19.1 Competitive scarcity with technical change
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Fig. 19.3 Learning curve

Fig. 19.2 Optimal extraction with technical change
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19.3 Competitive Scarcity with Endogenous

Technical Change Model Equations
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Chapter 20

Competitive Scarcity with Exploration

The generally accepted view is that markets are always
right—that is, market prices tend to discount future
developments accurately even when it is unclear what those
developments are. I start with the opposite point of view.
I believe that market prices are always wrong in the sense
that they present a biased view of the future

George Soros, 1987

20.1 Scarcity and Exploration

In the previous models, we assumed the extractive process to be the only force

changing the reserve size. In reality, other forces play a role, too, in determining the

size of the reserve. Among those are exploration and discovery. The rate of

exploration E (e.g., the rate of feet drilled per year in search of oil) controls the

discovery rate (D), which, in turn, directly affects discovery cost (DC). Assume that

this relation between exploration and discovery rate is given by

D ¼ 20�E^BETA (20.1)

and that the relation between discovery cost and the rate of exploration is

DC ¼ 3�E^ALPHA (20.2)

The change of the exploration cost per unit of the resource found is called the

marginal discovery cost (MDC).
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Here, we see an increase in our difficulty to find the correct numerical

solution—now we have two control variables: exploration rate E and Q. We

must find the optimum initial values for each of them.

Let us extend our intuitive understanding of the dynamics of resource depletion

to see the effect of exploration and discovery on the optimal extraction path. If the

MDC exceeds the current scarcity rent rate (the profit on extracting a unit of the

resource now), exploration is proceeding too fast. Alternatively, if MDC is less than

the current scarcity rent rate, the profit rate is too small—higher profits could be

achieved if extraction were slowed down a bit. The resource owner is not replacing

the last unit sold with a new resource at the breakeven rate.

This reasoning, however, is not always true. One can show that a wedge of cost

emerges between MDC and the scarcity rent rate—the opportunity cost of finding

the next unit of the resource. For our purposes we will ignore this opportunity cost.

Therefore, we must devise an arrangement that will cause MDC to track the scarcity

rent rate being generated in the model. We do this by controlling the exploration

rate. In the model that follows the exploration rate is set so that the tracking process

begins on the first year of resource extraction. Try raising the exploration rate and

see what happens.

We can also extend the theory developed in the previous problem to account for

exploration and discovery. The Hamiltonian capturing the discovery process (but

not the opportunity cost of finding the next unit of the resource) is

H ¼ ½P�Q� C� DC�e�I�t þ ðD� QÞ (20.3)

and the resulting optimality equations for the model are

@H

@Q
¼ ½P�MC��e�I�t � l ¼ 0; (20.4)

@H

@E
¼ � @DC

@E

�
e�I�t þ l

@D

@E
¼ 0: (20.5)

Equations (20.4) and (20.5) can be written as

@DC=@E

@D=@E

�
e�I�t ¼ @DC

@D

�
e�I�t ¼ MDCe�I�t ¼ l: (20.6)

The adjoint equation in this problem is

� @H

@Y
¼ l

�
¼ 0: (20.7)

These equations (20.4) and (20.6) reduce to

P ¼ IðP�MC)þMC; (20.8)

MDC ¼ P�MC: (20.9)
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These results reaffirm our intuitive arguments that exploration will proceed with

the marginal discovery cost equal to the scarcity rent rate.

Because DC ¼ 3*E^ALPHA, D ¼ 20*E^BETA, and with (20.6), we have in

our model

P�MC ¼ MDC ¼ 3=20�ALPHA/BETA�E^ðALPHA� BETAÞ: (20.10)

Since in this problem, infinity is the horizon, the applicable sufficiency conditions

are: lim(t ! 1)l(t) ! 0, lim(t ! 1)l(t)*Y(t) ¼ 0, lim(t ! 1)H(t) ¼ 0.

We can see by inspection of (20.4) that lim(t ! 1)l(t) ¼ 0. The same is true for

H due to l(t) and e^(�I*t) going to 0 in the limit. So there may or may not be a

residual Y left in the ground in the long run.

In the main part of the model (Fig. 20.1), the initial price is adjusted to maximize

the cumulative present value of profits. Because this adjustment will affect the

Fig. 20.1 Competitive scarcity with exploration
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scarcity rent rate, the initial value of the exploration rate may have to be adjusted.

Since this latter adjustment will affect the discovery rate and hence the resource

stock size, the price may have to be readjusted, although in our case the discovery

rate is so small that it does not noticeably affect the solution. The adjustment

process continues until the two criteria are met: tracking of the scarcity rent rate

by MDC and the closure of the mining operation at the same time as the profit rate

smoothly reaches 0. At this production–exploration rate combination, the cumula-

tive present value of the profit is at a maximum (Fig. 20.2). You can demonstrate

this point by moving the optimum set points for price and exploration rate and then

calculating the CPVP for these cases. We can also show that the cumulative present

value of the profit is less in the case of extraction with discoveries than extraction

alone, even though the resource is exhausted here over a longer time. This resource

owner would therefore not undertake any exploration. Even though the price to the

consumer would be initially lower (higher later) and the resource would last longer,

it reduces the owners’ CPVP and they will not explore. Can you change the model

to reverse this outcome?

In this problem, we have two control variables, price and exploration rate. We

set the initial values of the control variables to produce the optimum production

path. Try varying the initial level of the resource and see if you can readjust the

model to its optimum level. Note how the delay functions are set to smooth out the

initial Q and price curves.

From (20.9), we see that the discounted scarcity rent rate l is also the discounted
marginal discovery cost. So, we could examine a firm’s marginal discovery cost and

determine the level of its scarcity rate. This could tell us about the scarcity of the

resource (Figs. 20.3 and 20.4). But imagine the firm learns as its finds new

discoveries. It might learn where new discoveries lie, or it may learn that discovery

Fig. 20.2 Optimal resource extraction with exploration
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is becoming harder. This little insight makes the marginal discovery cost less

valuable as a scarcity measure. There apparently are no simple measures of

scarcity.

This model concludes our scenarios of optimal extraction of nonrenewable

resources in a perfectly competitive market. The following chapters explore the

case of a monopoly. We begin with a simple model that is analogous to the one

developed in Chap. 16 and expand it in subsequent chapters to capture the effects of

changes in the interest rate on optimal time paths and to include the impact of a

declining reserve size on the cost of extraction.

Fig. 20.3 Price and costs with exploration

Fig. 20.4 Scarcity rent rate, marginal discovery cost and price with exploration
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Chapter 21

Monopoly Scarcity

Preposterous as it may seem at first blush, it is probably true
that, even if all the timber in the US, or all the oil, or gas or
anthracite, were owned by absolute monopoly, entirely free
of public control, prices to consumers would be fixed lower
than the long run interests of the public would justify

John Ise, 1925.

21.1 Nonrenewable Resource Extraction in a Monopoly

Let us return to the basic model of Chap. 16 but now assume that our firm has a

monopoly for the resource it extracts. As a monopolist, our firm could influence the

price via the amount of the mineral that it extracts from the mine. The extraction

rate will be chosen such that we maximize the cumulative present value of profits,

CPVP. The Hamiltonian in this model is

H ¼ P�Q� C½ � �e�I�t � l�Q (21.1)

with

@H

@Q
¼ MR� @C

@Q

� �
�e�I�t � l ¼ 0; (21.2)

� @H

@Y
¼ l

�
; (21.3)

as the optimality and adjoint equations. These equations are virtually the same as

those for the perfect competitors, with the exception that price is now a function
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of Q, and therefore, marginal revenues are no longer equal to the price. When you

set up and run the model, remember to correct for the size of DT to calculate the

change in MR over time, and ensure that the transversality conditions are fulfilled.

For the demand curve

P ¼ 10� 0:00338�Q (21.4)

marginal revenues are

MR ¼ 10� 0:00676�Q (21.5)

Solving the demand curve for Q allows the extraction rate to be determined from

MR, which is a state variable in our model. Using the demand curve lets us find the

price once Q has been determined. Price in the monopoly case is MR plus a

monopoly rent rate (Fig. 21.1).

The marginal revenue curve for a straight-line demand curve is a straight line at

twice the slope of the demand curve, as shown in (21.5) and the preceding sketch.

Can you prove this? In the sketch, we show the four possibilities for market

equilibrium for the competitive/monopoly, finite/nonfinite resource conditions.

We have now covered all four of these conditions with our models (Fig. 21.1):

1. P ¼ MC for the pure competition condition with no finiteness in the inputs.

2. P ¼ MC + SRR (the scarcity rent rate) for the competition/finiteness condition.

3. MR ¼ MC and P ¼ MC + MRR (the monopoly rent rate) for the monopoly/

nonfiniteness condition.

4. MR ¼ MC + SRR and P ¼ MC + SRR + MRR for the monopoly/finiteness

condition.

Demand

Q (tons/year)

$/ton

MC

Monopoly
Finite Resource

Monopoly
Non-finite Resource

Competition
Finite Resource

Competition
Non-finite Resource

MRR

MRR

SRR
SRR

MR

MRR = Monopoly Rent Rate SRR = Scarcity Rent Rate

Fig. 21.1 Comparison of optimality conditions for competitive and monopolistic markets with

finite and non-finite resources
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Note that the monopoly extracts both types of rent rates if it realizes that its

input is finite. The rent rate is a possible scarcity indicator for the input resource.

The problem lies in distinguishing betweenMRR and SRR, that is, in distinguishing

the monopolist from the competitive firms that are using an increasingly scarce

resource.

Before trying to find the rent rate and how it may have changed for a particular

industry, one must first determine the degree of monopoly in the industry. One can

assume away monopolistic possibility and then look for differences between P and

MC for the industry. This approach, however, is hardly satisfying! As we have seen

earlier, there exists an approximate surrogate for the SRR, the marginal discovery

cost, i.e., the cost of finding the next unit of a resource. If that is not 0, then there

probably exists some SRR and the resource is probably becoming scarce.

The model of a monopoly is solved here for a 60,000 unit finite resource (the

same as Chap. 16) using trial and error values for the initialMR (Fig. 21.2). TheMR
is adjusted until the cumulative present value of profits, CPVP, is maximized. Use

the Table Window for this effort.

Fig. 21.2 Monopoly with finite resource
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The transversality conditions of Chap. 16, Sect. 16.1 apply directly here.

l(T) > 0 and therefore Y(T) ¼ 0.

At a maximum CPVP, the monopolistic extraction rate and the resource stock

have smoothly gone to 0 at the same time. All of the resource is used in this case

(Fig. 21.3) and marginal revenue rises to meet price in the terminal period

(Fig. 21.4).

Fig. 21.3 Optimality conditions for nonrenewable resource extracting monopoly

Fig. 21.4 Marginal revenue, marginal cost and price for nonrenewable resource extracting

monopoly
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We can now compare the competitive and the monopoly under scarcity. Begin

the scarcity model of the ten firms in Chap. 16, each with 6,000 units of resource

and the monopoly model of this chapter with the same amount, 60,000 units. The

graphs in Figs. 21.5–21.6 depict the differences.

Fig. 21.6 Comparison of prices for monopoly and competitive market

Fig. 21.5 Comparison of extraction rates for monopoly and competitive market
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Note how much higher the price is here, in the initial and intermediate times,

when compared with the competitive case (Chap. 16). Note also how much lower

cumulative present value of profits is and how much longer the resource lasts

(Figs. 21.5 and 21.6).

Is it always the case that monopolies will slow the rate of resource use? For the

linear demand curve this is always true. But for a demand curve with a rising

price–elasticity of demand, the monopolist will use the resource faster than the

competitors! The price–elasticity of demand is

@Q

@P
� P

Q
(21.6)

and an example of a demand curve with increasing price elasticity is

P ¼ 120=Q^0:5 (21.7)

Solve for the optimal extraction path under perfect competition and under

monopolistic behavior, using this demand curve to show that the monopolist is

now more “shortsighted” than the competitors. Because the monopoly profit is

lower here than in the total competitive case, will monopolies be less likely to form

in the finite resource markets than in regular markets? If a monopoly extends the

life of a finite resource and accrues smaller cumulative present value profit, would

you prefer that a monopoly controlled your society’s finite resources? Before you

jump to conclusions, recall the discussion we had in Chaps. 12 and 13 of the various

effects a monopoly may have on the levels of pollution and on regional differences

in output and employment. Recall also that discount rates, which play a primary

role in determining the rate of extraction, are not constant over time and may differ

among decision makers, as we argued in Chap. 9. The case of variable interest rates

is modeled in the following chapter.
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Chapter 22

Monopoly Scarcity with Variable Interest Rate

Truth comes out of error more readily than out of confusion

Sir Francis Bacon

22.1 Introduction

Up to this point, we could solve many of the complex optimal depletion path

problems with dynamic equations developed from our intuition of the behavior of

a firm facing scarcity. We were able to generate the guiding differential equation by

realizing that the firmwould hold back on producing the resource, thus forcing up the

value of the resource in the ground at the rate of interest. In this way, extraction was

chosen such that a balance is reached between the profits to be made from selling the

remaining resource and putting the money in the bank at the going interest rate or

leaving enough of it in the ground so that its value would rise at the rate of interest.

In so doing, the resource-extracting firm would maximize the cumulative present

value of the profits from sales of the resource. With those revenues, the firm would

generate a fund whose present value would supply the firm the same net income as it

would have had if it were not dealing with a scarce resource.

The argument and calculation in those model sets were done under the assumption

of a fixed interest rate. However, if the interest rate changes over time we face

additional conditions that push us beyond our intuition. We have the possibilities of

the firm expecting variable interest rates and possessing finite stocks whose extrac-

tion cost rises as the stock is depleted. Furthermore, we have the possible

complexities of the firm wanting to optimize two paths at once: a production path

and an exploration path.
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22.2 Monopoly, Scarcity, and Variable Interest Rates

How can we handle the complexity inherent in optimizing both a production and

exploration path? We turn to a method that itself has limitations. It is a general

procedure for reducing our optimality problem to one or more nonlinear differential

equations. These equations are often not analytically tractable, but that is where

numerical analysis and, in particular, STELLA comes in. We combine analytic

procedure with numerical method to solve some of the more difficult problems in

modern resource economics.

Let us return to the basic theory (Arrow and Kurz 1970). We assume that the

finite resource problem is to maximize the cumulative present value of the profit,

CPVP, over the lifetime of the resource. Here, we add the complexities of an

interest rate that can vary with time and an extraction cost that is a function of

both reserve size and rate of extraction:

maximize CPVP ¼
ðT

0

ðP � Q� CðQ;YÞÞe�IðtÞ � tdt: (22.1)

From this equation and the constraint

dY

dt
¼ �Q (22.2)

the Hamiltonian, H, can be set up very similar to the previous models as

H ¼ ðP �Q� CðQ; YÞ�e�IðtÞ � t � l �Q; (22.3)

where now the interest rate I is explicitly a function of time. This Hamiltonian

yields as its optimality and adjoint equations:

@H

@Q
¼ MR� @C

@Q

� �
� e�I � t � l ¼ 0 ) ðMR�MCÞe�IðtÞ � t ¼ l (22.4)

and

� @H

@Y
¼ @C

@Y
� e�IðtÞ@ � t ¼ MCY � e�IðtÞ � t ¼ l

�
: (22.5)

When (22.4) and (22.5) are combined to eliminate the costate variable l, they
yield the basic differential equation for the optimal resource extraction rate:

dMR

dt
¼ dMC

dt
þ IðtÞ þ t �

dIðtÞ
dt

� �
�ðMR�MCÞ þMCY: (22.6)

If cost is not a function of Y and I is not a function of time, we find the intuitively

derived equation that we have been using in the preceding problems,

dMR

dt
¼ I � MR�MCð Þ þ _MC (22.7)
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This simplified equation is the form most often talked about in the elementary

literature of resource economics.
We will now solve the resource problem when the interest rate is not constant. In

the next chapter we will take up the problem of a cost function that is dependent on

the extraction rate and the size of the remaining resource.

Applying the transversality conditions of Chap. 16, we see from (22.5) that l(T)
will not be zero for any finite T (MCY ¼ 0) and therefore Y(T) ¼ 0. We choose the

largest Po that makes Y asymptotically zero, as this produces the largest CPVP for

the constrained Y(T).
Suppose that a monopoly, based on a finite resource, expects an interest rate that

varies linearly with time:

I ¼ I0 þ O � t (22.8)

The scarcity rent rate no longer rises at the same rate as the interest rate.

Therefore, the interest rate in our model must be modified to change over time.

Additionally, we must use (22.6) to capture the effect on MR of a dynamic interest

rate. Then, the scarcity rent rate grows at I þ t � dI/dt ¼ I0 þ 2 � t if the cost is not a
function of the remaining resource size (Fig. 22.1).

In this problem, O is �0.0002 with an initial interest rate of 0.04. The results of

the constant I runs are shown Figs. 22.2–22.4. The price starts slightly higher and

the resource lasts many years longer. We could expect something like this as the

Fig. 22.1 Monopoly scarcity with variable interest rate
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scarcity rent rate must keep dropping at an increasing rate. Run the model with

O ¼ +0.0002 and note the differences. Try to ramp the interest rate up from 4 to 6%

in 20 years and hold it there for the rest of the run.

To derive the solution of this chapter, we assumed that there is no stock effect on

the extraction cost. Of course, this is an assumption we may wish to eliminate, and

we will do so in the following chapter.

Fig. 22.2 Optimal extraction for monopoly facing a changing interest rate

Fig. 22.3 Changing interest rate
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22.3 Monopoly Scarcity with Variable Interest
Rate Model Equations

Fig. 22.4 Price, marginal revenue, marginal cost, and monopoly rent rate for optimal resource

extraction under a changing interest rate
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Chapter 23

Monopoly Scarcity with Cost Dependent
on Production Rate and Resource Size

Sometimes truth comes riding into history on the back of error.

Reinhold Niebuhr

23.1 Production Rate and Resource Size Influences
on Monopolistic Resource Extraction

In this chapter, we return to the problem of extraction cost dependent on the rate of

extraction and stock size. We laid out the analytical approach to that problem

already in the previous chapter. However, let us not consider here a varying interest

rate. You may combine the two issues, though, in one model. Before you do that,

make sure to fully understand each problem by itself.

The cost function is designed to give about the same initial cost as in the previous

chapter. It is specified as

C ¼ A � Q^ALPHA � ðY=60;000Þ^BETA; (23.1)

with A ¼ 0.1, ALPHA ¼ 1.2, and BETA ¼ 2.

For the proper transversality conditions, see Chap. 18. The correct initial MR

(1.29) produces Y(T) ¼ Q(T) ¼ 0 simultaneously is the one that finds l(T) ¼ 0 at

the same time, uniquely satisfying the transversality conditions.

The addition of the reserve size effect to the cost function means also that the

optimal path is affected by more than just the corresponding change in the MC.
The interest rate must also be modified in the determination of the price by adding
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the partial derivative of cost with respect to the reserve size, divided by the scarcity

rent rate (see the previous chapter for details). All this is done in the model of this

chapter (Fig. 23.1). When you set up the model yourself, remember again to correct

for the size of DT in the DMR calculation.

Introduce a production tax for the monopoly. Should this tax be considered a

cost? Or should it just be subtracted from the price in the CPVP calculation? What

do you think the mine owner will do about the tax? How will the resulting CPVP-

maximizing extraction curve compare to the original one?

We can show analytically that the inclusion of the tax as a reduction in price

leaves us with only an ambiguous solution: We cannot say which of many paths is

best. But, if we include the tax as another cost, the solution is unique and reasonable.

Try a tax of $0.2 per unit ofQ, include it in the cost and reoptimize. You should find

that the new optimal extraction curve begins at a lower rate and lasts a little longer

than the path without the tax. The firm is pushing off in time the taxes that must be

paid on the extraction. In this way, the present value of the taxes is less than had the

firm not reoptimized! Proceed, as we did in Chap. 12, to include alternative forms of

a tax on the monopolist. Set those taxes such that they generate the same cumulative
present value of tax revenues as the production tax did and compare your results,

with respect to the time it takes to exhaust the resource, and the optimal initial price

(Figs. 23.2 and 23.3).

Fig. 23.1 Monopoly extraction with production rate and resource size affecting extraction cost
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Fig. 23.2 Monopolistic optimum when extraction cost is dependent on production rate and

resource size

Fig. 23.3 Prices, marginal revenue, marginal costs, and monopoly rent rate
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23.2 Production Rate and Resource Size
Influences on Monopolistic Resource
Extraction Model Equations
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Part V

Modeling Optimal Use
of Renewable Resources



Chapter 24

Optimal Timber Harvest

I believe humanity made a serious mistake when our
ancestors gave up the hunting and gathering life for agri-
culture and towns. That’s when they invented the slave, the
serf, the commissar, the master, the bureaucrat, the
capitalists and the five-star General. Wasn’t it farming that
made a murderer of Cain? Nothing but trouble and grief ever
since, with a few comforts thrown in now and then, like
bourbon and ice cubes and free beer on the fourth of July,
mainly to stretch out the misery.

Edward Abbey

24.1 Introduction

In this part of the book, we turn our attention to the harvest of renewable resources

such as timber and fish. We concentrate on the optimal harvest by one of many

identical firms that individually own part of that resource and operate in a competitive

market. You may want to extend the following models to the case of monopolistic

firms by using the insights of the previous chapters.

Assume you are an owner of a forestry operation that grows a single species of

trees. Your operation is small in comparison to the rest of the tree growers in the

country. A consequence of this assumption is that the price of trees is given and

cannot be influenced by your production. Assume also for simplicity that the price

of trees, measured in dollars per board feet of biomass, is constant and equal to 1.

Figure 24.1 shows the changes in biomass Q over time. We deliberately misspelled

time as TYME for reasons discussed later.
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As the owner of the forestry operation you must make an initial investment of

$100/ha in the plantation. Once you made this investment, for example, in the form

of little saplings that you buy, trees grow and yield more biomass. This investment

has to be made after each harvest. The cost of harvest (C) of trees depends on their

biomass (Q) at the time of harvest. The relationship between harvest cost and

biomass is given by Fig. 24.2.

No other costs occur during the growth phase of your trees. We also assume that

soil fertility is constant. To maximize the cumulative present value of profits by

your forest operation, you may want to find the optimum harvest time for a fixed

interest rate and given the growth function of the renewable resource. Alternatively,

you may want to fix the harvest time for successive runs and find the highest rate of

return that can be achieved with that harvest time. The rate of return that can be

achieved by managing the resource is called its internal rate of return. Let us
employ the second method.

Fig. 24.1 Growth of biomass

Fig. 24.2 Harvest cost as a

function of biomass

230 24 Optimal Timber Harvest



Alternative harvest times will yield different internal rates of return. Therefore,

to find the maximum rate of return for alternative harvest times, we need to specify

the harvest time, run the model, note the highest internal rate of return that is

generated for that harvest time, and rerun the model for another harvest time. We

should find that, for short rotation times of the forest, the maximum rate of return is

low and that it increases with increasing rotation times, until a peak in the internal

rate of return is reached. If the rotation times are increased further, the internal rates

of return decrease again.

Let us recast this model in mathematical terms to facilitate its development in

STELLA. As the tree plantation manager we face the initial investment of C0. After

t periods, the revenues from selling Q board feet of tree biomass at a price P is

P * Q. At that period, we have to pay harvesting cost C that depends on Q and

replant at the cost of C0. This cycle of planting at cost C0, timber growth, harvest,

and new initial investment takes place into the distant future. Consequently, the

present value of your profits is the stream of all the cost and revenues discounted at

the interest rate I.

PVP ¼� C0 þ ðP � Q� C� C0Þ � e�I�t þ ðP � Q� C� C0Þ � e�I�2�t

þ ðP � Q� C� C0Þ � e�I�3�t þ � � � þ ðP � Q� C� C0Þ � e�I�n�t

¼ ðP � Q� CÞðe�I�tþ e�I�2�t þ e�I�3�t þ � � � þ e�I�n�tÞ
� C0ð1þ e�I�tþ e�I�2�t þ e�I�3�t þ � � � þ e�I�n�tÞ:

(24.1)

For simplicity of this analytical expression, let us define a new variable a ¼ e�I � t,

so we can rewrite the previous equation as

PVP ¼ ðP � Q� CÞðaþ a2 þ a3 þ � � � þ anÞ � C0ð1þ aþ a2 þ a3

þ � � � þ anÞ: (24.2)

Our calculation of the cumulative present value of profits depends on the choice

of the planning horizon. The longer our planning horizon, the more profits are

accumulated. However, the further in the distance these profits occur, the lower is

their contribution to the cumulative present value.

Ideally, we would like to determine the behavior of the forest operation over an

infinite time horizon, assuming that the operation keeps growing trees over and over

again. This requires infinite summation in the previous equation, which is, of

course, quite a task to carry out. With a little mathematical trick, we can simplify

matters considerably and get rid of this infinite sum of the values of a. For that
purpose, let us define that sum as

s ¼ 1þ aþ a2 þ a3 þ � � � þ an

) as ¼ aþ a2 þ a3 þ � � � þ an þ anþ1

) ðs� asÞ ¼ 1� anþ1

) sð1� aÞ ¼ 1� anþ1 (24.3)
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and therefore

s ¼ 1� anþ1

1� a
: (24.4)

Since a ¼ e�I � t, an + 1 will get very small for long time horizons, that is, for

large values of n. We can, therefore, for all intents and purposes, neglect an+1 in the
numerator if we are interested in the behavior that is optimal over a very long time

horizon and write

s ¼ 1

1� a
; (24.5)

which we insert into the present value profit function to eliminate the sum of the

values of a, leading to

PVP ¼ ðP � Q� C� C0Þ=ð1� e�I�tÞ � ðP � Q� CÞ (24.6)

This is the expression for the present value of profit rate function used in the

STELLA model for the optimal harvest of trees (Fig. 24.3). The interest rate, I, is
not fixed in the model. It is the internal rate of return that we vary to find the one that

is largest, analogous to the way we have found the internal rate of return in Chap. 9.

The supporters of this method assert that one does not know the proper interest

rate to use. The World Bank uses this method, but the economist Paul Samuelson

soundly debunks it (Samuelson 1976). A full discussion of both methods can be

found in Robinson (1972).

Fig. 24.3 Optimal tree cutting

232 24 Optimal Timber Harvest

http://dx.doi.org/10.1007/978-1-4614-2209-9_9


24.2 Optimal Harvest Time and Internal Rate of Return

Here, we set up the model such that the interest rate incrementally changes for a

given CUT TIME; that is, the rotation time of the forest. To find the highest internal

rate of return for that CUT TIME, we need to run the model over a time horizon that

exceeds the growth of the first generation of trees.

We calculate a variable TYME that drives the change in biomass. Its values

should start at 21, the first data point in the tree biomass graph just shown, increase

over time, and be set back once the forest has been cut. Use the MODULO built-in

function to generate a cyclical clock based on simulation time TIME:

TYME ¼ MOD(TIME; CUT TIME� 20Þ þ 21: (24.7)

We named this variable TYME so as to not confuse it with the built-in function

TIME.

Start the model at some initial interest rate and increase that rate as long as the

present value of profits is positive. Once the present value of profits reaches 0, you

will have found the highest internal rate of return that corresponds to your chosen

CUT TIME. Figure 24.4 shows the internal rates of return for rotation times of 24,

26, 28, 30, and 32 years.

The maximum internal rate of return is 10.6% for a cut time of 26 years.

Figure 24.5 shows the internal rate of return, the present value profit rate and

corresponding tree biomass for a CUT TIME of 26 years.

Fig. 24.4 Internal rates of return for alternative rotation times
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This method is rather controversial. The controversy stems from the concept of

an internal rate of return. The word internal is the problem here. The return is not

internal at all. The method determines the rate of return from forestland of a

particular quality in a particular climate. It assumes that an infinite amount of

such land is available so that profits from the timber operation can be plowed

back into the operation. But can (and will) they? If not, then what is the rate of

return of the alternate investment?

When trying to find answers to these questions, we immediately arrive at the

problem of specifying the rate of return of the alternative investment to see if

investing in tree farms is useful at all and, if it is, how long will it be before the tree

growth slows to where it is more profitable to invest in the next most profitable

alternative. Then we are back to the issue this method intended to circumvent.

The problem with this method is not that it is wrong. Rather, it is redundant and

narrow. Only if there is more land of equal quality is this method of use, and then it

will give only the same answer that can be found from the method of finding the cut

time that maximizes the present value of the profit rate. To confirm this observation,

set up the model to find the optimal cut time—rather than the internal rate of return

for alternative cut times as we did here—and compare the results.

Fig. 24.5 Internal rate of return, profit, and biomass at the optimal rotation time
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24.3 Internal Rate of Return Model Equations
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Chapter 25

Managing Open Access Resources

I know that history at all times draws strangest consequence
from remotest cause.

T. S. Eliot, Murder in the Cathedral, Part I, 1935.

25.1 Tragedy of the Commons

In contrast to the model of the previous chapter, the same renewable resource may

be exploited by many individual firms. If there is free access to the resource, many

firms will compete with each other for what is left of the resource. The incentives

for each individual firm to maintain a certain size of the resource can be quite low—

possibly so low that too little of the renewable resource remains to ensure renewal.

This is the tragedy of the commons; and it has been observed for many renewable

resources, such as the grass on a commons jointly used by the members of a village,

fisheries in open oceans, clean air, and clean water.

Let us model this process of unimpaired access to the commons and the resulting

tragedy. Once we developed such a model, we can devise a procedure based on

cooperation in the village that leads to the maximum number of sheep sustainable

on the commons at a steady state.

Assume that the weather is constant and that the commons have a unit area with

an initial grass stock of 250. This grass stock can reach a maximum 1,000 units. We

model the growth of grass with a simple biological function. This function is shown

in Fig. 25.1.

Assume that the only way the grass can be removed is through consumption by

sheep. There are three age classes of sheep: 0–1-year olds, 1–2-year olds, and 3 or

more year olds. Consumption of grass by sheep in each of the age classes is
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different, with young sheep consuming less than older sheep. Consumption per

capita for each of the three age classes is denoted as CPC 0 1, CPC 1 2, and CPC 2 3,

respectively, and defined by the graphical relationships with the stock of grass as

shown in Figs. 25.2–25.4.

The part of the model that captures the growth and removal of grass is shown in

Fig. 25.5. Total consumption of grass per time period is defined as the sum of grass

consumption by sheep in each of the three cohorts:

CONSUMPTION ¼ CPC 0 1 � AGE 0 1þ CPC 1 2 � AGE 1 2

þ CPC 2 3 � AGE 2 3 (25.1)

The death rates of sheep in each of the three age classes are assumed to depend

on the per capita consumption of grass. If consumption is low, death rates are high.

But even if per capita consumption is high, the death rate is not 0. Some sheep may

die due to natural causes not related to their food supply. For each of the three age

Fig. 25.1 Grass growth rate

Fig. 25.2 Consumption

by the youngest age class
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Fig. 25.3 Consumption by the middle age class

Fig. 25.4 Consumption by the oldest age class

Fig. 25.5 Module for changes in the stock of grass
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classes, the same graphical function for death rates is used. It is shown in Fig. 25.6

for the first age class.

Sheep get added to the commons by two processes. First, there is the natural

increase in the sheep population due to births. Only sheep age 2 years and older can

reproduce. The coefficient for the birth rate, expressed as a percentage of the

individuals in the third cohort, is given as 12%. Second, sheep of all ages are

added by the villagers to the commons. The additions occur at the beginning of each

time period, and the sheep that do not die during the time period mature and move

on to the next age cohort. Once sheep reach the last cohort, the villagers remove

them at the end of the period; for example, to sell them on the market. The model

for the three age cohorts on the commons is shown in Fig. 25.7.

Let us hold a set of assumptions on how sheep are added to the commons. First, we

assume that sheep are added depending on the number of sheep already present on the

commons but irrespective of the availability of the grass. Villagers following this

strategy are very shortsighted. They take the increased number of sheep as a sign that

the commons are in good condition. The more sheep are being added by other

villagers, the more there is an incentive to compete with the other villagers and

take advantage of the grass that is there. But, of course, the villagers are not totally

blind to the conditions of the commons, and theymay decide to not add any sheep of a

particular age class if the number of deaths in that age class exceeds the number of

sheep that mature into the next age class. The decision rules for the addition of sheep

at each of the three age classes are given as

ADD 0 1 ¼ IF OUT 0 1

� DIE 1 THEN A � ðAGE 0 1þ AGE 1 2þ AGE 2 3Þ; (25.2)

ADD 1 2 ¼ IF OUT 1 2

� DIE 2 THEN A � ðAGE 0 1þ AGE 1 2þ AGE 2 3Þ; (25.3)

ADD 2 3 ¼ IF REMOVE 2 3

� DIE 3 THEN A � ðAGE 0 1þ AGE 1 2þ AGE 2 3Þ: (25.4)

Fig. 25.6 Death rate
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The parameter A is a measure of the competition or shortsightedness of the

villagers and is measured in number of sheep added to a particular age cohort per

total number of sheep on the commons. Let us set A ¼ 0.8 and run the model.

The results are fluctuating stocks of grass and sheep on the commons (Fig. 25.8).

The cycles are vicious and perpetually repeated. Herd sizes collapse and stay

at virtually 0 for a few periods, but temporarily recover due to restocking.

Fig. 25.7 Population cohort model

25.1 Tragedy of the Commons 241



In response to restocking too rapidly, too many sheep are on the commons. The

sheep are decimating the grass and dying. After their death, the grass stock recovers

and the commons receive new additions of sheep from the village.

The following three model runs are done for A ¼ 0.4 (Fig. 25.9). Here, the

additions of sheep to the commons are not as high as in the previous model run.

Also, the uniformity of the cycles no longer holds, yet they are still strong, leading to

collapse on the commons that is only temporarily overcome by restocking the herd.

We can easily calculate and plot the relative sizes of the three cohorts.

Figure 25.10 shows that part of the model that provides a way of setting up such

a calculation and a corresponding plot.

Fig. 25.8 Grass and sheep stock dynamics (A ¼ 0.8)

Fig. 25.9 Grass and sheep stock dynamics (A ¼ 0.4)
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The cohort number is defined as

COHORT NUMBER ¼ MODðTIME=DT; 3Þ þ 1: (25.5)

It uses the built-in function to calculate the modulus and continuously counts

from 1 to 3. The number of sheep in each of the three cohorts is then defined as

NUMBER IN COHORT ¼ IF COHORT NUMBER ¼ 1 THEN AGE 0 1

ELSE IF COHORT NUMBER ¼ 2 THEN AGE 1 2

ELSE IF COHORT NUMBER ¼ 3 THEN AGE 2 3

ELSE 0:

(25.6)

Fig. 25.10 Calculating

relative cohort sizes

Fig. 25.11 Relative

cohort sizes
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Plotting the number of sheep in each cohort against the cohort number yields the

“bar chart” shown in Fig. 25.11. An alternative way to generate a bar chart—one,

whose bars change as the model runs—is by clicking the “Bar” check box in the

“Define Graph” field, which opens after double-clicking on a graph. Using our bar

chart, which keeps track of values as the model runs, the results show a slightly

underrepresented second age class, and the third age class marginally larger than

the first age class. Can you explain why?

Assume that villagers are more conservative with their additions of sheep to the

commons. Rerun the model for smaller values of A; then, increase A to model even

more shortsighted villagers. The graphs in Figs. 25.12 and 25.13 show the results

for A ¼ 0.2, A ¼ 0.4, A ¼ 0.6.

An alternative strategy that the villagers may pursue in an attempt to avoid the

tragedy of the commons is to consciously take the state of the commons into

account in their decision-making process. Let us assume the following decision

rules for adding sheep to the respective age classes:

ADD 01 ¼ IF OUT 01 � DIE 1 THEN A � GRASS ELSE 0; (25.7)

ADD 12 ¼ IF OUT 12 � DIE 2 THEN A � GRASS ELSE 0; (25.8)

ADD 23 ¼ IF REMOVE 23 � DIE 3 THEN A � GRASS ELSE 0 (25.9)

and set A ¼ 0.15. The fluctuations in the stock of sheep and grass still occur

(Fig. 25.14), and the distribution of sheep is now skewed toward the younger age

Fig. 25.12 Grass stock dynamics for alternate values of A
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classes (Fig. 25.15). Run the model for A ¼ 0.1 and A ¼ 0.2 to see the effect of the

villagers’ shortsightedness and competitiveness on the age distribution of sheep on

the commons.

As we would expect, more conservative strategies dampen the fluctuations in the

availability of grass and the size of the herd on the commons. However, are the

villagers really better off if the fluctuations are less erratic? Assume that sheep can

be sold on markets with given demand curves for each of the three age classes.

Fig. 25.13 Sheep stock dynamics for alternate values of A

Fig. 25.14 Grass and sheep dynamics (A ¼ 0.15)
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Assume that the price for younger sheep is lower than that for older ones. Villagers

try to maximize the cumulative present value of their profits by selling sheep on

these markets. For your model, assume the decision rules laid out in (25.3) through

(25.5), and set A ¼ 0.2, A ¼ 0.4, A ¼ 0.6 for consecutive runs. Then assume the

decision rules of (25.7) through (25.9) and set A ¼ 0.1, A ¼ 0.15, A ¼ 0.2 for

consecutive runs. Assume a constant, positive discount rate and calculate for each

of the models the cumulative present value of collective profits from selling the

sheep. Interpret your results. What is the effect of combining the two decision rules

on the cumulative present value of profits?

Can you find parameters A that yield a maximum steady-state sheep population

on the commons for each of the two decision rules? How high is the cumulative

present value of profits in each case, and how does this compare to the previous

scenarios?

Assume that decisions to add sheep to the commons are not made immediately in

response to the observed state of the commons. Rather, it takes villagers one full

time period to decide how many sheep they should add. How does this time lag

affect their cumulative present value of profits?

What are the impacts of a tax per number of sheep that are added each period on

the fluctuations in the stocks of grass and sheep and on the cumulative present value

of profits?

Now try making the weather cycle through the seasons, by having the grass

senesce periodically and then regrow. Or, perhaps more appropriately, have the

grass growth rate cycle between 0 and some maximum representing the seasonal

effects. Assume A ¼ 0.2 for your model runs. Does this setup make it harder to

dampen the fluctuations in herd size?

Fig. 25.15 Age distribution

(A ¼ 0.15)
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25.2 Open Access Resources Model Equations
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Chapter 26

Optimal Catch from Fisheries

Naturemust be considered as awhole if she is to be understood
in detail.

G. Bunge, Philosophical and Pathological Chemistry, 1902

26.1 Optimal Fisheries Model

Issues of optimal use of renewable resources are typically complicated because

resource owners need to take into considerations not only the size and quality of the

resource as well as the technology and opportunity cost when extracting from a

stock but also the growth dynamics characteristic of the biological populations they

deal with. Additional problems are incurred in the case of free access, as we have

seen in the context of common property resources. Management issues are still

relatively tractable when dealing with resources that are easily monitored and

“cultivated,” as in the case of forests or sheep. Significant additional problems

arise, however, when the resources are mobile, common property, and fluctuating in

size considerably from year to year. This is the case for marine fisheries modeled in

this and the following chapters.

To identify the optimal catch of fish we may use the approach chosen for the

optimal extraction from a finite resource presented in the previous part of this book

and augment the models by a natural growth process. Such a growth process can be

captured in a way very similar to the elementary models of population growth we

developed in Chap. 1.

The natural rate of growth G of the fish population is

G ¼ GF � Y; (26.1)

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_26,
# Springer Science+Business Media, LLC 2012
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with GF the growth factor, which in turn, depends on the size of the population; that

is,

GF ¼ GFðYÞ; (26.2)

so

@G

@Y
¼ GFþ Y � @GF

@Y
: (26.3)

Here, we chose a maximum growth factor GF of 6% (when the reserve has

nearly vanished), on a straight line to a zero rate when the reserve is at 40,000

(Fig. 26.1).

As a result of the linear relationship between the population size Y and the

growth factor GF, the change in the growth factor with regard to a change in the

population size is just the slope of that line; that is,

@GF

@Y
¼ �1:5 � E�6: (26.4)

The potential stock size increase must be captured in the analytical model used

to solve for the optimal extraction rate. The constraint equation for the state variable

Y is

dY

dt
¼ GðYÞ � Q: (26.5)

The Hamiltonian for our model is

H ¼ ðP � Q� CðQ; YÞÞ � e�I � t þ l � ðGðYÞ � QÞ; (26.6)

Fig. 26.1 Relationship

between the growth factor

and population size
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with cost dependent on the rate of extraction, or “individual catch”, Q by an

individual fishing operation and the size of the total fish population Y, and the

growth rate is a function of stock size. As a result of the relationships among cost C,
individual catch Q, and total stock Y, average cost AC and marginal cost MC all

depend on an individual’s Q and total Y. But Y is augmented by the natural growth

of the stock Y and is depleted by the total catch, Q TOTAL, as determined from the

demand curve and price P.
The optimality and adjoint equations for our model are

@H

@Q
¼ ðP�MCÞ e�I � t � l; (26.7)

� @H

@Y
¼ l

�
; (26.8)

which reduce to

P
� ¼ I � @G

@Y

� �
� ðP�MCÞ þMC

�
�MCY: (26.9)

Thus, very similar to the models of nonrenewable resources with discoveries,

the change in the stock size requires an adjustment of the interest rate to capture the

growth effect of the stock. In our model, this growth effect is reflected by the

growth fraction itself. The corresponding transversality conditions must be fulfilled.

The STELLA model is shown in Fig. 26.2. It incorporates a module to tax

fishermen, and thus increase the cost of fishing. Let us first set this tax-induced cost

to 0. We return to it later.

This model is much trickier to run than earlier ones (Figs. 26.3 and 26.4). We

must monitor the cumulative present value of the profit, CPVP, carefully to find the

absolute maximum, but the result is very sensitive to the initial price. One can

reason that the closer we are finally to a steady state, the larger the CPVP will be.

This seems to be true, but you try it.

We have run the problem out to 100 years. It seems close to the steady state and

the CPVP keeps rising ever more slowly. Try to lower the maximum growth rate in

the graphed function to a rate of 0.035. Be sure to change the slope constant in the

translation variable called DP. Can you conclude that the best result is to extinguish
this fishery? Why or why not? Recall the problem of the tree cut. Would the

hybridization of these fish to a faster growth rate tend to keep them from being

destroyed, given the current fishing technology? Try a fisherman’s discount rate of

20% find the final stock level. What resources do the fish depend on? How can we

model the rise and fall of a fishery if we do not know the vagaries of the ecosystem

on which the fishermen ultimately depend?

The graph in Fig. 26.5 shows the rise of the growth rate of fish as the stock is

depleted. The curve has risen to a peak and then declined. Biologists refer to this
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Fig. 26.2 Optimal catch model
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peak as the maximum sustainable yield (MSY) and recommend it as the operating

point for fisheries. It is the most economically appropriate point when the interest

rate and stock effects are ignored and environmental conditions remain constant.

In this example, following the economic solution, the fishermen drive the stock of

fish well below the MSY. As we see in the following, this can also be the case if

there is some government intervention. What interest rate would be required to

reach the MSY?

The idea of the fishery brings up again the potential for the “tragedy of the

commons.” The tragedy occurs when competitors ignore the finite potential of the

Fig. 26.3 Optimal catch, fish stock, price, and profit

Fig. 26.4 Price, tax rate, marginal cost, and growth fraction for the optimal fishery
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resource and collectively ignore the scarcity rent. In the world of real (not

optimizing) fishing, the fishermen set their average cost equal to the price and

compete away all profits. With price equal to average cost, the rate of use is higher

and the stock is lower and more susceptible to extinction.

Most economists would favor a tax on the fish caught as a remedy to the tragedy.

It would cover two items in order to drive the condition P ¼ AC governing

fishermen’s decisions market into a P ¼ MC + scarcity rent rate decision: One

part, which we can calculate, would be equal to the scarcity rent rate; an added part

would cover the difference between MC and AC. The tax is, therefore, equal to the

price less the average cost in our optimal result.

Our preceding optimization shows the results when the fishermen follow their

collective best interests and collect the scarcity rent. Under this condition, the initial

price is $2.061525. But our claim is that they really would not do this for long. One

or more of them will lower his price and sell all that he can catch. This price war

would continue until the profit was entirely gone (P ¼ AC). Unfortunately, the fish

reserve would then be gone, too. To ensure that the reserve will be optimized, we

raise a production tax on the fishermen whose rate is P � AC. This tax is treated as

an additional cost, and the problem is reoptimized (Figs. 26.6 and 26.7). Now the

initial price is $2.157 and the final steady state extraction rate and reserve size are

about the same as before, but the cumulative present value of the private profit is

lower. Additionally, the government can raise a significant tax revenue, shown in

the model in its present value, PV TAX REVENUE, and as a cumulative present

value CPV TAX REVENUE ($18,027 in t ¼ 100).

Note well the extreme sensitivity of the extraction and reserve paths to the initial

value of any of the stocks and the optimal starting price. The steady state paths for

Fig. 26.5 Growth rate
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any particular model, however, show very little difference. The fishermen reduce the

extraction rate earlier in the period when the tax is applied to reduce its effect on the

present value of the profit (which is now 0). So, with the government collecting this

tax, the fishermen are operating with the profit level they would have sought on their

own (0) as profit optimizers. With the tax, the steady state is reached rather than a

collapse of the fishery. The results of the model with the inclusion of the tax follow.

Fig. 26.7 Price, tax rate, marginal cost, and growth fraction for the optimal fishery with the

production tax as a cost

Fig. 26.6 Optimal catch, fish stock, price, and profit with the production tax as a cost
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Unfortunately, most fishery managers will try to restrict the fishing seasons and

limit the fishing technology rather than implement a tax. The latter strategy will idle

workers in the industry and cause the expansion of the technology into new, more

effective, temporarily legal arenas. The tax is a far better way but an anathema to

the independent-minded fisherman.

With the tax, government income increases and the fishery is perpetuated. The

problem boils down to one of perception on the part of the firm owners and personal

vs. governmental discount rates. We have alluded to this problem already in Chap. 9.

Do the firm owners trust the government to accurately calculate market demand and

their costs over the next 75 years? Perhaps the firm owners have a higher discount

rate than the government. At the moment, the fishers would not care if the fishery

were demolished in the next 10 years, but the government, with its supposed longer

range view might want the fishery to last forever at some level and might want to

avoid the unstable swings in the fishery size over the century. It is a classic question

of government intervention. The fishermen may well realize that they should be

taking a scarcity rent but are powerless to do so on their own. They may well

understand that the unbridled competitive spirit will destroy the fishery in a short

time but they can do nothing but adopt cost-cutting technology and ultimately sell at

the average cost.

Under the tax program, cost-cutting technical improvements are also the only

way that individual profits can be increased, so the tax spurs the use of new

technology. The government is inclined to stay attentive because reduced average

cost will reduce the selling price (AC + tax), and so the tax must be pushed up to

compensate for average cost decreases in the industry in order to protect the

fishery. The very instincts that cause the firm owners to sell at average cost will

keep them adopting lower cost technologies under the government’s plan: They

assume that the industry as a whole is changing less rapidly than they are and so the

industry price will fall less rapidly than they can drive down their own average

costs. So, they assume, their own profit will rise faster than that of the industry,

allowing them to expand their own operation’s size faster than that of their

competitors and thus they can achieve higher shares of the diminishing size of

the fish population. It is a plan that will operate well if it could only get started.

Thus, the main point of this discussion is that efficient intervention in the

“commons” problem can save the industry from self-destruction and maintain

competition with technological improvement. Are there non-market-based inter-

vention mechanisms that may be beneficial to both the fish population and the

fishing industry? Chapter 28 explores such an option—fish reserves. Before we

discuss the introduction of reserves, let us develop a simple version of this model in

Chap. 27 and investigate its behavior. In both of these chapters, we make extensive

use of the experimental approach to modeling economic decisions that we have

called for throughout this book.
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Chapter 27

Predator–Prey Models of Fisheries

And it ought to be remembered that there is nothing more
difficult to take in hand, more perilous to conduct, or more
uncertain in its success, than to take the lead in the intro-
duction of a new order of things. Because the innovator has
for enemies all those who have done well under the old
conditions, and lukewarm defenders in those who may do
well under the new. This coolness arises partly from fear of
the opponents, who have the laws on their side, and partly
from the incredulity of men, who do not readily believe in new
things until they have had a long experience of them. Thus it
happens that whenever those who are hostile have the
opportunity to attack they do it like partisans, whilst the
others defend lukewarmly.

N. Machiavelli, The Prince, 1513.

27.1 Basic Fisheries Model

In the previous chapter, we extended the model of optimal extraction from

nonrenewable resources to enable renewal of the resource and then identified optimal

harvest from a fish population. In this chapter, we choose an alternative approach to

modeling fisheries. Methods of modern marine fisheries management virtually are no

different from ancient hunter–gatherer strategies, in that the “prey” has to be first

spotted, then caught or collected, and hauled to the home port. We therefore use

predator–prey models to simulate the interactions between the economic and

biological systems (Ruth 1995). The fish are the prey, and boats of fishermen

correspond to the predators.

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_27,
# Springer Science+Business Media, LLC 2012
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The resulting interactions between the economic and biological systems may be

simulated with well-known predator–prey models. Predator–prey models are

frequently used in ecology and have been extensively analyzed. For example, Johan

Swart (1990) elegantly presented the richness of even the simplest predator–prey

models, showing damped and explosive oscillations as well as stable limit cycles.

We encounter those features in the models developed here. The arguments presented

can easily be generalized to other mobile renewable resources.

Much of the real-world fluctuations in the size of fish populations are caused by

unpredictable environmental fluctuations that are poorly understood. Reference to

those fluctuations is used to justify deviations of model predictions from actual

population changes or to stress similarities between seemingly erratic model

predictions and actual population changes (Wilson et al. 1990).

We contend that fish population dynamics may as well be attributed to economic

factors that play an increasing role in the “predator–prey relationship.” Many eco-

nomic forces are poorly understood and difficult to forecast. Furthermore, differences

between the model result and actual system behavior are significantly dependent on

the spatial resolution of the predator–prey models in use. To demonstrate the sensi-

tivity of the model results on economic parameters and spatial resolution, the

standard analytical description of population dynamics and economic adjustments

is combined with a dynamic modeling approach. Although economic models typi-

cally concentrate on the analytical investigation of properties of a system’s equilib-

rium points, the dynamic modeling approach chosen for this chapter admits the

richness of experimental investigations tomodels of the dynamic evolution of fishery

resources. This chapter demonstrates again the power of merging experimentation

with economic models of natural resource use to assess the sensitivity of model

results to model specifications, initial conditions, and empirical estimates and to

guide data collection, analysis, and ultimately policy decision making.

Assume the following dynamics of the stockN of a fish population in a given area:

dN

dt
¼ _N ¼ R �N � 1� N

K

� �
� V �E �N ¼ R �N � 1� N

K

� �
� Q; (27.1)

with R as the natural rate of increase of the population; K, the carrying capacity of the
ecosystem, measured in tons of biomass; E, effort, measured in days fished in the

fishery in a given year; and V, a catchability coefficient characteristic of the technol-

ogy in use and measured in tons of biomass caught per biomass in the fishery per

fishing day per time period. The product Q ¼ V*E*N is total catch in the fishery per

time period, and thus, P*V*E*N is revenue from the catch. For simplicity, the

carrying capacity, catachability coefficients, and price are assumed constant.

Assume for the fishermen that all profit made in a given period is used to increase

effort. Thus,

dE

dt
¼ _E ¼ E �ðV �P �N � JÞ; (27.2)

with P as price per ton of biomass and J as cost per unit effort, including costs

of operating boats, paying fishermen, and reimbursing the captain. Cost per unit
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effort are measured in dollars per day fished. For simplicity, we assume the price to

be constant.

The goal of the fishermen is to maximize the cumulative present value of profits:

CPCP ¼
ðT

0

E �ðV �P �N � JÞ e�I �tdt: (27.3)

The interest rate, I, is assumed to be constant.

The optimal harvest Q of the fish population is determined by the optimal effort

level. That level can be found by choosing an initial effort level, running the model,

noting the resulting cumulative present value of profits, and adjusting effort in

consecutive runs until an initial effort level is found that yields the highest possible

cumulative present value of profits. The model is shown in Fig. 27.1.

Assume the following parameters: The initial population and carrying capacity

are 40,000 and 150,000 tons of biomass, respectively. The natural rate of growth of

the fish population, in the absence of fishing, is 0.08 tons of biomass per ton of

biomass per time period. Costs per unit effort are $0.22 per fishing day per ton, price

per ton of fish is $2.9. The catchability coefficient is 0.000008 tons of biomass per

ton of fish in the fishery per time period. At an interest rate of 5%, in the initial year

the optimal level of effort is 992 fishing days.

Fig. 27.1 Basic preditor–prey model of a fishery
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This model, when run over centuries (DT ¼ 0.5), yields oscillations that tend to

increase beyond bounds. Each increase in the fish population prompts the fishermen

to increase their effort and decreases in fish population result in decreased effort due

to reduced profits (Figs. 27.2 and 27.3). Note also that the present value of profits

can temporarily be negative. Thus, to find the optimal initial effort level, one must

run the model for a sufficiently long time period; that is, until present value profits

become discounted so much that their contribution to CPVP is negligible

(Fig. 27.4).

Fig. 27.2 Time series for effort and population size

Fig. 27.3 Observed changes in effort with changes in population size
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Extend the model to account for price changes along a linear demand curve.

Choose a demand curve that has the price P ¼ 2.9 at a catch Q ¼ 318.4 tons of

biomass as one of its points, so that you can start your model at the same point as in

the previous one. Be careful not to have price changes too sensitive to changes in

catch. How do optimal initial effort and cumulative present value of profits change

when such a demand curve is introduced? How does a harvest tax affect optimal

effort? Be sure to speculate on the form of the answer before you run the model.

27.2 Basic Fisheries Model Equations

Fig. 27.4 Profits and catch

27.2 Basic Fisheries Model Equations 263



27.3 Fishing with Nonmalleable Capital

In reality, it is not as easy for fishermen to adjust effort as we assumed in the previous

section. Capital equipment, for example, needs to be bought or sold. Thus, we may

want to include the cost of new capital expenditures and revenues that arise from

selling old capital. Let us for simplicity assume that the price of new and old capital

is the same. As in the model of the previous section P*V*E*N are the revenues from

fishing (dollars per time period). Denote B as the stock of capital at a period of time,

such as the number of boats owned and operated by the fishermen. _B is then the

change in boats per time period. To calculate costs, we need to distinguish those that

are directly related to operating the capital equipment (boats, mainly) and those of

purchasing new boats. Total operating costs are J*B (dollars per fishing day). With

PB as the price of capital, PB
� _B is the cost of purchasing new capital (i.e., if _B>0).

Similarly, if _B<0 then old boats are sold and since we assume here for simplicity that

the price of old boats and new ones is the same, PB
� _B is revenues from selling old

capital. Current value of profits, CVP, is then

CVP ¼ E �V �P �N � J �B� PB
� _B: (27.4)

Let us also assume that effort is proportional to the amount of capital owned by

the fishermen:

E ¼ A �B; (27.5)

_E ¼ A � _B: (27.6)

The proportionality factor A is measured in fishing days per unit of capital. For

all intents and purposes we may normalize A ¼ 1 and replace _B by _E in CVP:

CVP ¼ E �V �P �N � J �E� PB
� _E: (27.7)

Hence, the change in effort in a given year, _E, is the following function in profits

_E ¼ E �ðV �P �N � JÞ � PB
� _E (27.8)

or

_E ¼ 1

1þ PB
E �ðV �P �N � JÞ (27.9)

or

_E ¼ ALPHA �EðV �P �N � JÞ (27.10)
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with

ALPHA ¼ 1

1þ PB
: (27.11)

For PB ¼ 0 (ALPHA ¼ 1) we have the case in which capital can be acquired at

no cost and is given away without generating revenues. This is the case modeled in

the previous section. Capital is perfectly malleable; that is, it can be used and retired

at any time and without any constraints.

Set PB ¼ 3 in the model of Fig. 27.5. It is nowmore difficult for the fishermen to

adjust their effort (ALPHA ¼ 0.25) because they need to spend a portion of their

profits on new capital. In return, however, they generate revenues when they sell

capital.

Run the model at DT ¼ 0.5. In contrast to the model of the previous section with

ALPHA ¼ 1, the resulting levels of effort and the fish population sizes show

damped oscillations (Figs. 27.6–27.8). The optimal initial effort level is 989 fishing

days, resulting in a cumulative present value of profits of approximately

$14,799.87.

In the previous section we found that, for ALPHA ¼ 1, the system exhibits

explosive oscillations; that is, over time both effort and population levels increase

beyond bounds. For ALPHA ¼ 0.25, the system in the long run will move toward a

steady state. Hence, there must be a value for ALPHA at which the system will

Fig. 27.5 Basic fishery with nonmalleable capital
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repeat its behavior over and over again, a so-called stable limit cycle. Lower

adjustment coefficients ALPHA tend to damp oscillations because density depen-

dence of the fish population dynamics increasingly dominates the system’s behavior.

Slightly increase ALPHA for consecutive runs. You should find, for an initial effort

of 990 fishing days, values of ALPHA that result in explosive oscillations, damped

oscillations, or neutral stability. Is there a unique combination of values for ALPHA

Fig. 27.6 Time series for effort and population size with nonmalleable capital

Fig. 27.7 Observed changes in effort with changes in population size (ALPHA ¼ 0.25)
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and initial effort that yields a stable limit cycles? The cycles for E(t ¼ 0) ¼ 990 and

ALPHA ¼ 0.50, ALPHA ¼ 0.66, ALPHA ¼ 0.75 are shown, respectively, in

Figs. 27.9–27.11.

Of course, real adjustment coefficients ALPHA depend on the prices of capital

(e.g., gear, boats) of different vintages, interest rates, institutional constraints (e.g.,

tax breaks, subsidies, limitations of access to the fishery, restrictions on boat size, or

fishing seasons) and characteristics of fishermen (e.g., risk aversion, price

expectations, experience). Thus, changes in ALPHA are very likely and potentially

Fig. 27.8 Profits and catch

Fig. 27.9 Observed changes in effort with changes in population size (ALPHA ¼ 0.50)
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perturbing the system’s dynamics. Even small changes in ALPHA, as it is evident

from the models developed in this chapter, result in marked differences of the

system behavior. Little data is actually available to reliably estimate ALPHA.

The resulting models are consequently highly sensitive to the assumptions about

the actual adjustments in effort, and it is therefore difficult to attribute population

dynamics predominantly to environmental fluctuations.

Return to the model with ALPHA ¼ 0.25 and generalize the model to have

purchase prices of new capital higher than the sales prices of “scrap,” PS. Introduce
a depreciation rate for the capital stock. How do a harvest tax and a property tax

(a tax per boat) affect optimal effort?

Fig. 27.10 Observed

changes in effort with

changes in population size

(ALPHA ¼ 0.66)

Fig. 27.11 Observed

changes in effort with

changes in population size

(ALPHA ¼ 0.75)
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27.4 Nonmalleable Capital Stock Model Equations
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Chapter 28

Spatial Fishery Model

Then I say the earth belongs to each . . . generation during its
course, fully and in its own right. . . . Then, no generation can
contract debts greater than may be paid during the course of
its own existence.

Thomas Jefferson, September 6, 1789

28.1 Basic Model

In the previous chapter, we saw that, to a significant degree, fish population

dynamics may be attributed to economic factors. This is not surprising, as humans

are frequently the number one predator of fish species. Consequently, fisheries

models must incorporate very carefully economic adjustment processes. In this

chapter, we show that differences between the model result and actual system

behavior are also significantly dependent on the spatial resolution of the

predator–prey models in use. Allen and McGlade (1987) make use of a more

elaborate spatial fisheries model, including a specification of effort adjustments

that is similar to the one employed here. Their model, however, is devoted to the

macroscopic results of adjustments in individual fishermen’s risk perception, and

does not address the issues of spatial resolution discussed here.

Let us investigate the implications of spatial resolution for the model results.

Toward this end, we modify the general predator–prey model of the previous

chapter for a marine fishery subdivided into n regions. The change in population

in region i (i ¼ 1:n) is given by

A save-disabled version of STELLA® and the computer models of this book are available at

www.iseesystems.com/modelingeconomicsystems.

M. Ruth and B. Hannon, Modeling Dynamic Economic Systems,
Modeling Dynamic Systems, DOI 10.1007/978-1-4614-2209-9_28,
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dN

dt
¼ Nt

� ¼ R � Ni
� 1� Ni

Ki

� �
� V � Ei

� Ni; (28.1)

with R as the natural rate of change in the absence of fishing-induced mortality; Ki,

the carrying capacity of region i; V, a constant catchability coefficient (dependent

on technology); and Ei, fishing effort in region i. Hence, V*Ei*Ni is the total harvest

from region i:

Qi ¼ V � Ei
� Ni (28.2)

and

Q ¼
Xn
i¼1

Qi: (28.3)

For simplicity we may assume all regions to be of equal size and quality; that is,

Ki ¼ Kj ¼ constant: (28.4)

Changes in total effort E are given by

dE

dt
¼ E

� ¼ a � ðP � V � E � N � J � EÞ; (28.5)

with a a constant proportionality factor, P the unit price of a catch, N total

population, and J the unit cost per effort. Total effort is then allocated to region i
based on the relative population sizeDi of that region; that is, Ei ¼ Di*E. Typically,
a < 1 due to limited malleability of capital in the fishing industry.

The STELLA model (Fig. 28.1) is composed of several modules. In one such

module, we calculate the stock of fish biomass.

A second module (Fig. 28.2) is set up to allocate effort to each of the four

regions. In this module, we calculate the proportions Di of fish biomass in region i
(i ¼ 1, 2, 3, 4) and then multiply total effort by those proportions. In the model

without migration (setting M ¼ 0), equal distribution of biomass across regions,

and equal size and quality of the regions, Di will always be 0.25. Therefore, 25% of

the effort is directed to each of the four regions. If we start out the model with

unequal distributions of fish or with unequal size (Ki 6¼ Kj), the Di typically will not

be the same.

Total harvest in each region and cumulative present value of profits are calcu-

lated in a third module (Fig. 28.3). It is set up to account for differences in costs per

unit of effort for different regions. Once you run the basic model, you may want to

investigate the impact of costs differing by region, say, due to different restrictions

on gear or boats in different fishing grounds. You may then also want to change the

decision on effort allocation among regions, shown in the previous module.
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Let us start with 5,000 tons of biomass fish in each region and a carrying capacity

of 20,000 tons of biomass in each region. To run the model, let us assume that the

size of the fishing fleet at first is small, enabling the fish population to increase

initially. This increase will then prompt an increase in effort. If we assume identical

initial conditions for each region and no migration of fish across regional

boundaries, the specification is equivalent to a single region model, as we discussed

it in the previous chapter.

To verify the existence of damped and explosive oscillations and neutral stabil-

ity in the absence of migration, set M ¼ 0 and E (t ¼ 0) ¼ 150 and run the model

Fig. 28.1 Spatial fishery model
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with a ¼ 0.60, a ¼ 0.6666, and a ¼ 0.70 for a sufficiently long time (e.g., 1,000

periods). Run the model at DT ¼ 0.5. What you should get for a ¼ 0.6666 is

illustrated in Figs. 28.4–28.7.

To see the implications of changes in the spatial resolution for the model results,

include the spatial aspects of the four-region fishery by allowing for migration of

fish among regions. Assume that a fixed proportion of the population migrates, and

the destination of those fish is determined by random factors. No fish, however, are

leaving the system other than through natural or fishing-induced death. None are

added other than through births.

Assume again an equal initial distribution of fish populations across the four

regions. The regions are contiguously arranged in a square and migration of fish is

permitted from each region into any other. As a result, the relative size of the fish

population in each area changes from time step to time step. Thus, typically,

Di 6¼ Dj and therefore effort is not uniform across the regions.

Net migration NiNj between regions i and j (i 6¼ j) is calculated as

Fig. 28.2 Effort allocation across regions
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NiNj ¼ MiNi

PNiNjP
i PNiNj

�MjNj

PNjNiP
j PNjNi

; (28.6)

withMi andMj as the proportion of migrants from regions i and j, respectively; and
PNiNj

and PNjNi
, random numbers ranging between 0 and 1. N1N2, for example, is the

net migration of fish (measured in tons of fish biomass) between regions 1 and 2.

Set all initial conditions and parameters equal to the ones that yielded neutral

stability in the model runs of the previous chapter.

Assuming that fish move freely in oceans is not at all an unreasonable assump-

tion. To the observer (or modeler) the proportion of fish moving from one region to

Fig. 28.3 Harvest and profits
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another may seem higher the finer the spatial resolution. Increase of the spatial

resolution from the one-region to a four-region model results in movement away

from neutral stability to explosive oscillations. The terms neutral stability and

oscillation are used here loosely because the randomness of migration will always

introduce fluctuations in the time paths.

With increased migration rates Mi, the oscillations become more pronounced.

Figures 28.8–28.11 assume, for simplicity, Mi ¼ Mj ¼ M ¼ 0.90, 8 i, j. You can

Fig. 28.4 Profits and catch

Fig. 28.5 Effort and population size
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easily relax this assumption. Additionally, we assume a ¼ 0.6666; that is, the

adjustment coefficient yields neutral stability in the absence of migration.

By increasing the spatial resolution of the model and enabling movement among

the regions of the model, and leaving virtually all other model parameters

unchanged, we no longer generate neutral stability but explosive oscillations.

Additionally, CPVP is lower than in the single-region model and lower for higher

values of Mi. Is this conclusion robust for alternative arrangements of the four

regions and for larger numbers of regions?

Organize the model so that the regions are in a row rather than a square.

Alternatively, prevent diagonal migration in the four-region model. Increase the

Fig. 28.6 Effort levels

at different population sizes

Fig. 28.7 Changes

in population for different

population sizes
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number of regions to 9, then to 16, and simulate the models with the parameters that

yield a stable limit cycle in the absence of migration. What are the implications of

an unequal initial distribution of biomass across regions or differences in the size

(carrying capacity) of the regions for the system’s dynamics. Can you provide a

general statement for the model behavior as the spatial resolution increases? What

are the implications for the optimal initial effort level?

Fig. 28.9 Effort and population size with migration

Fig. 28.8 Profits and catch with migration
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Let the boats follow the fish as they flourish in neighboring regions, with a lag

time. Introduce technical change that, for example, leads to an increase in the

catchability coefficient over time. Introduce a demand curve. Carry out each of

these modifications individually and, before running the model, make an educated

guess about the results.

Fig. 28.11 Changes

in population for different

population sizes with

migration

Fig. 28.10 Effort levels

at different population sizes

with migration
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28.2 Spatial Fisheries Model Equations
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28.3 Management of a Multiregion Fishery

Previous fisheries policies targeted individual species through various restrictions

on effort or catch. In lieu of sufficient understanding of the feedbacks among

fish populations and their physical environment as well as the corresponding

economic adjustments, management may more safely be done by setting aside

reserves (Holland 1993). No fishing would be allowed in the reserve but fish could

leave the reserve, thus replenishing stocks in the remainder of the ocean. In this

section, we introduce a reserve into the spatial fisheries model of the previous

section.

The STELLA model for the four-region model with one region designated as a

reserve is virtually the same as in the previous section. Just modify the module that

allocates effort to the regions so that no fishing takes place in the reserve (e.g., set

E4 ¼ 0 if region 4 is the reserve) and distribute effort such that all effort is allocated

to the other three regions.

To better understand the effects of the fishery reserve, let us first assume that no

migration takes place across any of the regional boundaries. The result is, of course,

a higher total population level than in the absence of the reserve. Once the stable

oscillation is reached, population never drops below the size maintained by the

reserve. As a result, the system moves from its initial oscillation (left part of the

following two graphs) to the stable limit cycle. Although the population size

increases, the cumulative present value of profits is lower because part of the fish

population is off limits to fishermen (Figs. 28.12 and 28.13).

Fig. 28.12 Effort levels at

different population sizes

with a reserve and no

migration
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Now let us include migration in the model. Assume that the reserve is placed to

cover the region with highest rates of migration; that is, M4 > M1 ¼ M2 ¼ M3.

For example, assume that 90% of the fish in the reserve (region 4) migrate

and only 50% in the remaining region. Again, start the model with a ¼ 0.6666,

an effort level of 150 fishing days and an initial biomass of 5,000 tons in each

of the four regions. The carrying capacity of each of these regions is

Ki ¼ K ¼ 20,000.

Fig. 28.13 Changes in

population for different

population sizes with a

reserve and no migration

Fig. 28.14 Effort levels

at different population sizes

with a reserve and differing

migration rates
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As Figs. 28.14 and 28.15 attest, migration leads to abandonment of the stable

limit cycle but, unlike in the absence of the reserve, to damped oscillations. Due

to migration, the population size may fall below the maximum that can be

sustained in the reserve. To judge about the change in cumulative present

value of profits when migration is introduced in the model, you need to run the

model many times, because the randomness of the migration will result in

different CPVP values for consecutive runs. Typically, the cumulative present

value of profits is marginally lower than in the one region model with stable limit

cycle.

Set up the four-region, one-reserve model such that the regions are not arranged

in a square but a row; for example, we may be modeling a narrow fjord rather than a

wide bay. You should find a faster movement toward the steady state, and cumula-

tive present values of profit that may exceed those achieved in the one-region model

with neutral stability. The rather erratic initial development is caused by the

combined effect of the randomness of the migration direction of fish from the

reserve and its immediate neighbor region(s).

The spatial model shows that, starting from neutral stability, an increase in

spatial resolution and an introduction of the reserve leads to fundamentally different

results with regard to long-term population sizes and economic performance.

Therefore, when modeling the optimal use of a mobile renewable resource, special

attention must be paid not only to the biological characteristics of the resource but

also to the spatial resolution at which the system is modeled. To provide qualitative,

let alone quantitative, answers on the dynamics of fish populations and effort

requires clarification of the appropriate spatial resolution of models and proper

delineation of the regions to be modeled.

Fig. 28.15 Changes

in population for different

population sizes with

a reserve and differing

migration rates
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28.4 Multiregion Fisheries Model Equations
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Part VI

Chaos in Economic Models



Chapter 29

Preference Cycles and Chaos

It could be argued that a study of very simple nonlinear
difference equations . . . should be a part of high school
or elementary college mathematics courses. They would
enrich the intuition of students who are currently nurtured
on a diet of almost exclusively linear problems.

May and Oster 1976

29.1 Introduction

The models of the previous parts of this book may be distinguished between those

that are based on linear relationships among system components, such as the direct

proportionality of the birth of fish in a lake modeled in Chap. 1, and those that

capture nonlinearities, such as the per capita grass consumption by sheep modeled

in Chap. 25. The models based on linear relationships could have been solved using

analytical methods. In contrast, some of the nonlinear relationships discussed in this

book have no analytical solutions. To solve for their behavior over time requires

numerical solutions, such as the ones that we adopted here.

At least one feature, however, is common to both the linear and nonlinear models

discussed so far. All of them have been “well behaved” in the sense that, at least in

principle, we could have been able to predict their future time paths with relatively

high confidence just by observing their past behavior and their current states. The

models presented in this part of the book are different from these “well-behaved”

models. Events occur that are not anticipated. Chaos prevails.
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29.2 Modeling Preference Cycles

The first of our chaos models returns to the case of the consumer who attempts to

maximize his or her utility from the consumption of goods and services. That is the

topic of this chapter. The following chapter concentrates on time lags in

adjustments of demand and supply. Chapter 31 concentrates on price expectations

and production lags, and Chap. 32 presents an example of chaos in macroeconomic

models. Each of these models involves only a small number of state variables and

controls. Yet, their dynamics are surprisingly rich.

We havemodeled utility-maximizing consumers in the setting of a barter economy

in Chap. 15. The model in Chap. 15 did not explicitly take into account the time over

which the exchange of goods took place. Rather, the goodswere exchanged among the

participants in the trade, and only after an equilibrium in the trade occurred could

consumption of the goods that were exchanged take place. In contrast, let us now

explicitly model the history of consumption as a determinant of the utility that can be

achieved by a consumer. Let us assume that the consumer’s preferences for consump-

tion goods are a function of the quantities of those goods consumed in the past.

A discussion of endogenous preferences can be found in Rosser (1991).

We assume that the following utility function represents those preferences:

U ¼ Q1A �Q2ð1�AÞ: (29.1)

We also assume that the consumer wishes to maximize his or her utility function

subject to the budget constraint

M ¼ P1 �Q1þ P2 �Q2; (29.2)

where Q1 and Q2 refer to the quantities of two goods, and P1 and P2 are their

respective unit prices; M is the total budget available to purchase goods 1 and 2.

Before we introduce changes in consumption in response to past consumption,

let us first find the optimum consumption choice in the static case. The static

optimization of (29.1) subject to the constraint in (29.2) is equivalent to maximizing

the following auxiliary function, frequently referred to as a Lagrangian function:

L ¼ U þ l �ðM � P1 �Q1� P2 �Q2Þ; (29.3)

where l is a shadow price—the marginal utility of income. Maximization of (29.3)

yields the following necessary conditions

@L

@Q1
¼ A

U

Q1
� lP1 ¼ 0; (29.4)

@L

@Q2
¼ ð1� AÞ U

Q2
� lP2 ¼ 0: (29.5)
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These conditions are also sufficient, in the case modeled here. They can be

combined to

Q1 ¼ A

1� A

P2

P1
Q2: (29.6)

Compare this result to the optimal relationship between inputs into the produc-

tion process of a profit-maximizing firm, derived in Chap. 8.

To calculate the demand curve for good 1, we replace Q2 in (29.6) with the use

of the budget constraint of (29.2). The result is shown in the following equation:

Q1 ¼ A
M

P1
: (29.7)

Now that we derived the utility-maximizing demand curve for good 1, let us

introduce the dynamic aspects of this problem. Assume

Aðtþ 1Þ ¼ ALPHA �Q1ðtÞ �Q2ðtÞ (29.8)

and insert (29.8) into (29.7). ALPHA is the parameter that reflects the relevance of

the consumption history for the current choice of Q1 and Q2. The larger ALPHA,
the more prominent the choice of Q1(t) and Q2(t) is for the choice of Q1(t + 1) and

Q2(t + 1). By cutting the direct connection of A from its own previous value, we are

setting this system up for chaos. Rewriting (29.7) as

Q1ðtþ 1Þ ¼ Aðtþ 1Þ M
P1

(29.9)

and inserting (29.8), we get

Q1ðtþ 1Þ ¼ ALPHA �Q1ðtÞ �Q2ðtÞ M
P1

(29.10)

which, when we make use of the budget constraint again, leads to

Q1ðtþ 1Þ ¼ ALPHA � M
P1

M

P2
� P1

P2
� Q1ðtÞ

� �
: (29.11)

Let us now introduce a simplification of our model by assuming P1 ¼ P2 ¼ 1.

As a result

Q1ðtþ 1Þ ¼ ALPHA �Q1ðtÞ �M �½M � Q1ðtÞ�: (29.12)

Setting the prices of the two goods equal makes the model simpler without

sacrificing the message that we wish to convey. You can easily relax this assump-

tion later on.
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Now that we defined demand in time period t, we can easily calculate the change
in demand over time as

DQ1 ¼ Q1ðtþ 1Þ � Q1ðtÞ ¼ ALPHA � Q1ðtÞ � M � ½M � Q1ðtÞ� � Q1; (29.13)

which we use to drive our model (Fig. 29.1).

The results illustrated in Fig. 29.2 are all calculated for M ¼ 1. Let us vary the

parameter ALPHA for consecutive runs, setting ALPHA ¼ 2, ALPHA ¼ 3, and

ALPHA ¼ 3.5. The change in demand over time is shown for the three cases in the

following graph. Low values for ALPHA lead to a steady-state demand. Increases

in ALPHA first lead to oscillations of period 1, then to oscillations of period 2.

The budget constraint is shown in Fig. 29.3. It is, as it should be, a straight-line

curve, with a negative slope of 45�, since we set P1 ¼ P2.

Fig. 29.1 Preference cycle model

Fig. 29.2 Preference cycles with steady state and oscillations
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Let us increase ALPHA further to 3.7. The result is a breakdown of the regular

periodic behavior of demand for good 1 (and hence for good 2). The model exhibits

chaotic behavior (Fig. 29.4).
This behavior is exactly repeated from one model run to the next. It is not

random, but deterministic. However, at each point in time we cannot predict the

Fig. 29.3 Budget constraint

Fig. 29.4 Preference cycle with chaos
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future values of demand. All we do know is the range within which we will find the

state variable. Plot Q1(t � 1) against Q(t)—a so-called phase diagram—and you

will find that all the values of Q1 follow a well-defined pattern (Fig. 29.5).
Compare this result to a truly random number. We defined such a number in the

model as RAND and calculated its delayed value (Fig. 29.6).
The random number, plotted against its delayed value, is shown in the following

graph. Rerun the model several times and see how the graph changes. The differ-

ence between chaotic—but deterministic—behavior and random behavior should

become apparent (Fig. 29.7).

Set the DT of your model to 0.25 and vary the values of ALPHA to find the onset

of chaos. Then set DT ¼ 0.125 and rerun the model. Interpret your result.

Replace (29.12) with the following demand curve

Q1ðtþ 1Þ ¼ M �Q1 � expðALPHA �½1� Q1ðtÞ� (29.14)

and find values for ALPHA that yield oscillations of period 1 and 2 and ulti-

mately chaos. This equation was also used in a different context in May and

Oster (1976).

Fig. 29.5 Phase diagram

for Q1

Fig. 29.6 Generating

randomness
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29.3 Preference Cycle Model Equations
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Chapter 30

Nonmonotonic Demand and Supply Curves

To these elementary laws [of nature] there leads no logical
path, but only intuition, supported by being sympathetically
in touch with experience.

Albert Einstein

30.1 Introduction

In Chap. 29, we saw chaos emerge in a model of a consumer’s demand for a goods.

In this chapter, we model chaos as a result of particular interactions between

demand and supply of a good. Before we do this, let us briefly review the workings

of a market characterized by demand and supply curves. Let us assume that demand

and supply are not instantaneously equated with each other. Rather, adjustments in

demand and supply take time.

Demand curves are typically assumed to be downward sloping because

consumers are willing to pay less for a good that is available in abundance. The

roots for the declining willingness to pay lie in declining marginal utility: Con-

sumption of each additional unit of the good contributes less to the consumer’s

welfare the more of the good has already been consumed. Obvious examples

include the consumption of water by someone walking in the desert. The first sip

significantly contributes to that person’s utility. The second sip will do so, too, but

to a slightly smaller extent. After the first gallon, or so, each additional sip makes

only a minor, and rapidly declining, contribution to utility.

Supply curves are typically assumed to be upward sloping. The underlying

rationale is that producers experience decreasing returns to scale that lead to ever

higher unit production costs as production is expanded.
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Under the assumptions of “normal” demand and supply curves, and perfectly

functioning markets, any excess supply should lead to a reduction in demand,

followed by a response in supply, until market equilibrium is achieved. This is

illustrated in Fig. 30.1. The price of the good is denoted by P and quantities are

noted as Q. The demand and supply curves are D and S, respectively.
For example, the model may start with an excess demand in point 1. As a result

of excess demand, price is high, stimulating supply to rise to point 2, which leads to

a subsequent drop in price, followed by movement to point 3, then 4, and so on,

until demand and supply are equal. This model of the market clearing process is

frequently referred to as a cobweb model.
Demand and supply curves, however, need not be as well behaved as we

assumed previously. There are markets, such as for some highly skilled labor and

in some fisheries that are assumed to have backward-bending supply curves.

The origin for this “abnormality” can come from lags in the adjustment process

among suppliers. For example, it takes time for workers to increase their skills

before they can participate in the market for specialized workers. Similarly, it takes

time to build boats and hire and train a crew of fishermen before one can go out to

sea and successfully fish. In each of those cases, increasing prices may lead

temporarily to a decline in supply—workers decide to withdraw from the labor

market and participate in training programs; fishermen decide to build boats or nets

and increase their knowledge of the sea.

30.2 Nonmonotonic Supply

An example for a system with “normal” demand curve and nonmonotonic supply

curve is shown in Fig. 30.2. The result may be a chaotic cobweb, in which price

does not settle down over time but keeps fluctuating in a deterministic, chaotic way.

P

Q

1
2

3

4

5 6

Fig. 30.1 Cobweb model
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Due to the sensitivity of the price path to initial conditions, the future path cannot be

predicted, although it will be found in a well-defined range.

A set of demand and supply curves that illustrate the chaotic cobweb model is

the following (Rosser 1991):

QðtÞ ¼ S½Pðt� 1Þ� ¼ Aþ B �Pðt� 1Þ � E �Pðt� 1Þ^2; (30.1)

QðtÞ ¼ D½PðtÞ� ¼ C� D � PðtÞ: (30.2)

To ensure that the market clears, the supply and demand quantities must be equal.

The market-clearing equation for this system of demand and supply equations is

PðtÞ ¼ ALPHA� BETA �Pðt� 1Þ þ GAMMA �Pðt� 1Þ^2; (30.3)

where ALPHA ¼ (C�A)/D, BETA ¼ B/D, and GAMMA ¼ E/D. The corres-

ponding STELLA model is shown in Fig. 30.3.

P

Q

1 2

3
4

5

Fig. 30.2 Cobweb with nonmonotonic supply curve

Fig. 30.3 Price dynamics in the cobweb with nonmonotonic supply
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For the graph in Fig. 30.4 we set ALPHA ¼ 10, GAMMA ¼ 0.24, and BETA

¼ 2.6. The result is a damped oscillation. In this case, the slope of the supply curve is

such that prices gravitate toward the equilibrium, leading to market clearing.

The graph in Fig. 30.5 is for BETA ¼ 2.8. Here, we have oscillation with period 1.

With each iteration, we neither get closer to the equilibrium price, nor do we move

further away from it. In contrast to this result, BETA ¼ 3.0 alternately leads to

movement away from the equilibrium price and then again closer to it (Fig. 30.6).

Fig. 30.4 Dynamic cobweb with BETA ¼ 2.6

Fig. 30.5 Dynamic cobweb with BETA ¼ 2.8
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The last graphs in Figs. 30.7 and 30.8 are for BETA ¼ 3.1 and exhibit chaotic

behavior.

Set up a model with “normal” demand and supply curves to see the cobweb

process in action. Then introduce a nonmonotonic demand curve. What could be

reasons for the existence of such a demand curve and in what kinds of markets

would you expect to find it? Can you generate chaos with your demand curve?

Fig. 30.6 Dynamic cobweb with BETA ¼ 3.0

Fig. 30.7 Dynamic cobweb with BETA ¼ 3.1
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30.3 Nonmonotonic Supply Model Equations
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Chapter 31

Price Expectation and Production Lags

All the effects of nature are only the mathematical
consequences of a small number of immutable laws

P. Laplace, in E. Bell,Men ofMathematics,
1937, p. 172.

31.1 Chaos with Price Expectations and Production Lags

In the Chap. 30, we saw how nonmonotonic demand and supply curves can cause

chaotic price behavior in dynamic cobweb models. In this chapter, we introduce

price expectations and lagged production into a model of monotonic demand and

supply curves. This model follows ideas laid out in Chiarella (1988).

The demand curve is a linear function of observed prices P(t)

QðtÞ ¼ D½PðtÞ� ¼ A� B�PðtÞ: (31.1)

The supply curve, in contrast, is a nonlinear function in expected prices.

The quantity Q(t) supplied in period t is determined in the following way. In the

previous period t–1, firms formed expectations about the price of the good in period t.
That expected price isP0(t). Based on this price, firms produce the quantityQ(t) that is
offered on themarket. Thus, we have here a combination of production lags and price

expectations that give rise to the following general supply curve:

QðtÞ ¼ S½P0ðtÞ�: (31.2)

A save-disabled version of STELLA® and the computer models of this book are available at
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For our model, this supply curve is assumed to have an inflection point. The supply

curve is specified by the graph in Fig. 31.1:

Assume that price expectationsP’(t + 1) are formed according to the following rule

P0ðtþ 1Þ ¼ ð1�WÞ�P0ðtÞ þW�PðtÞ: (31.3)

The parameterW relates the price that was expected for the current period t with
the price that is actually observed on the market in that period to form a new price

expectation. A linear combination of both results in the newly expected price for the

following period. For example, if W ¼ 0.5 and the firms expect a price P0(t) ¼ 2

but observe a price P(t) ¼ 1, then they adjust their expectations for the following

period to P0(t + 1) ¼ 1.5. Thus, the parameter W captures the speed of the adjust-

ment in price expectations.

Let us express P0(t + 1) as a function of P0(t). To do this, we solve (31.1) for P(t)
to get

PðtÞ ¼ QðtÞ � A

B
: (31.4)

Then, we insert equation (31.4) into (31.3) which yields

Pðtþ 1Þ ¼ ð1�WÞ�P0ðtÞ þW� QðtÞ � A

B
: (31.5)

From this, we replace Q(t) by using (31.2). We do this under the assumption that

markets must clear. The result are expectations of future prices based on the

expectations that were held for the prices of the current period and the supply

that resulted from the price expectations for the current period:

Pðtþ 1Þ ¼ ð1�WÞ�P0ðtÞ � A�W
B

þW� SðPðtÞÞ
B

: (31.6)

Fig. 31.1 Supply curve
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The resulting model for (31.6) is shown in the STELLA diagram of Fig. 31.2.

We set A ¼ 0.1, B ¼ 1.0, and vary W to find chaos. The choice of W ¼ 3.2

results in damped oscillations. Increasing W, for example, toW ¼ 5, W ¼ 5.5, and

W ¼ 5.75, we get oscillations with one, two, and higher periods (Figs. 31.3–31.6).

Increasing W further ultimately leads to the breakdown of the regular periodicity

and the emergence of chaos.

The last set of graphs (Figs. 31.7 and 31.8) have been calculated forW ¼ 6.2. Here,

we have chaos. Run the model for a few periods, then pause it andmake a guess on the

future path of P0(t). Any pattern that seems to emerge for the time path is soon

abandoned. Yet, the path is not random. There is an underlying order, as is apparent

Fig. 31.2 Price expectations

and production lags

Fig. 31.3 Price expectations and productions lags with W ¼ 3.2
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from the second graph that follows. Can you find chaos by setting 0 < W < 1 and

varying the other parameters?

In the Chap. 30, chaos was generated by making use of a U-shaped supply curve.

In this chapter, the use of a supply curve that is convex for low prices and concave

for high prices enables us to generate chaotic behavior of the state variable. In the

next chapter, we model production and investment from a macroeconomic perspec-

tive and, again, find chaos in a rather simple model.

Fig. 31.5 Price expectations and productions lags with W ¼ 5.5

Fig. 31.4 Price expectations and productions lags with W ¼ 5.0
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Fig. 31.7 Price expectations and productions lags with W ¼ 6.2

Fig. 31.6 Price expectations and productions lags with W ¼ 5.75
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31.2 Price Expectations and Production Lag Model Equations

Reference

Chiarella C (1988) The cobweb model: its instability and onset of chaos. Economic modelling

5:377–384

Fig. 31.8 Phase diagram for

W ¼ 6.2
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Part VII

Conclusion



Chapter 32

Chaos in Macroeconomic Models

Earliest men perceived . . . their world as largely chaotic, and
so now do we! There is a difference, however. The cavemen
viewed nature as indifferently rolling unbiased dice; modern
men recognize that nature’s dice are only slightly but none-
theless purposefully loaded.

Joseph Ford

32.1 Macroeconomic Chaos

Assume that the output of the economy is given by

F ¼ B �K^BETA �ðM � KÞ^MU; (32.1)

where B, BETA, M, and MU are positive numbers; F is output per capita; and K is

the capital–labor ratio of the economy. The differenceM�K represents the negative

effects of capital concentration, such as pollution.

Allow the capital–labor ratio to change over time as

Kðtþ 1Þ ¼ ðF� HÞ=ð1þ OÞ; (32.2)

where H is the per capita consumption and O is the population growth rate.

Furthermore, define

H ¼ ð1� SÞ �F: (32.3)
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When all these equations are combined, we have

Kðtþ 1Þ ¼ A � K^BETA �ðM �MÞ^MU; (32.4)

where

A ¼ S � B=ð1þ OÞ: (32.5)

For STELLA we need to calculate the change in K over time. This is given by

DK ¼ Kðtþ 1Þ � KðtÞ ¼ A �K^BETA �ðM � KÞ^MU� K: (32.6)

Let us simplify (32.6) by assuming BETA ¼ 1, M ¼ 1, and MU ¼ 1. We relax

this assumption later. The STELLA model is shown in Fig. 32.1. Related macro-

economic chaos models and an extensive discussion can be found in Jenson (1987).

Run the model with an initial K of 0.1, DT ¼ 1, and A ¼ 1. Then, for subsequent

runs, raise A to 2 and 3 and watch K. You will find that for A < 3.0 there is one

solution, namely, the logistic. The graph in Fig. 32.2 confirms this.

For 3.0 < A < 3.4 there are two solutions; for 3.4 < A < 3.5 there are four

solutions; for A > 3.57 there is essentially an infinite number of solutions (chaos)

with notable exceptions (try A ¼ 3.83). The upshot of this model is that, as A rises to

3.57 (and DT ¼ 1), increasing bifurcation is seen but the number of solutions, for K
is finite. For A � 3.57, one cannot predict what the final equilibrium value will be or

evenwhether there will be a finite or infinite number of solutions: There is no definite

set of equilibrium values. However, some values seem to be “visited” more

frequently than others. The graphs in Figs. 32.3 and 32.4 are plotted for A ¼ 3. 7

at DT ¼ 1.

Fig. 32.1 Macroeconomic

chaos
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Now, lower the time step to DT ¼ 0.5 and find the value for A at which chaos

begins again. Keep shortening DT, and you will find that there is a relation between

the size of DT and the smallest A necessary to produce chaotic behavior:

DT A necessary for chaos

1 3.58

0.5 6.12

0.25 11.29

0.125 21.56

0.0625 42.13

0.03125 83.24

Fig. 32.3 Capital to labor ratio, K, for A ¼ 3.7

Fig. 32.2 Capital to labor ratio, K, for different values of A
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A pattern emerges. When DT is halved, A is doubled and lessened by 1. That is,

if DT(n + 1) ¼ 0.5*DT(n), then A(n + 1) ¼ 2 *A(n)�1. A function A(DT) to cal-

culate the critical A is

AðDTÞ ¼ ð4:57=DTÞ � 1þ 2þ 4þ 8þ :::1=DTð Þ (32.7)

or

A DTð Þ ¼ A 1ð Þ þ 1½ Þ=DT� � 1þ 2þ 4þ 8þ :::1=DTð Þ; (32.8)

the boundary between chaos and finitely numbered solutions for the spectrum of

discrete steps.

This model shows you that the A for DT ¼ 0 is infinity. This result is correct

since chaos does not exist at the continuous level in a first-order differential

equation. Chaos occurs on a continuous level only if you are stuck with a specific

DT in your particular problem and the parameters lie within the critical range.

Now let us return to (32.6) without making the simplifying assumptions that

gave rise to the previous results. Assume, for example,

DK ¼ ½ðA �ðK^:7Þ �ð1� KÞ^:8Þ � K�=DT (32.9)

and find values for A that, alternatively, yield damped oscillations, cycles with one

or two periods and chaos. Run the model first at a DT ¼ 1, then cut DT in half and

find the critical value for A at which chaos emerges. Can you find a relationship

between the DT and the critical A?

Fig. 32.4 Phase diagram of capital to labor ratio, K, for A ¼ 3.7
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32.2 Macroeconomics Chaos Model Equations

Reference

Jenson RV (1987) Classical chaos. Amer Sci 75:168–181
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Chapter 33

Building a Modeling Community

The models and concepts that we developed in this book are powerful means to

investigate the behavior of systems. The modeling approach that we chose is

dynamic with regard to four issues. First, the systems that we modeled are dynamics

ones, and we portrait their dynamics, rather than use a static or comparative-static

approach. Second, the model development process itself is dynamic. We encourage

you to start with simple models of complex economic systems. You will soon find

that your models become increasingly complex but more representative of the

system about which you are asking important questions. STELLA through its use

of graphics is an excellent tool to organize and assess the various aspects of the

system that you wish to capture. Once the model system is sufficiently understood,

you can easily move on to expand on the model and capture additional features of a

real economy.

Third, the learning process that accompanies model development and model runs

is a dynamic one. By carefully phrasing the questions that the model should answer

and by stating the assumptions that underlie the model that we develop, we structure

our knowledge about a system. By running the model and observing the results, we

learn about some aspect of a system. Subsequent model runs and model refinements

provide more of this insight and should sharpen our focus for future model develop-

ment and improve our intuition about the behavior of dynamic systems.

Fourth, through building and running computer models we provide a basis for

communicating data and model assumptions. Frequently, model efforts become

large-scale multidisciplinary endeavors. STELLA is sufficiently versatile to enable

development of complex, large-scale dynamic models. Such models can include a

variety of features that typically are not dealt with by an individual modeler.

Through easy incorporation of new modules into existing dynamic models and

flexibility in adjusting models to specific real-world problems, STELLA fosters

dialogue and collaboration among modelers. It is a superb organizing and

A save-disabled version of STELLA® and the computer models of this book are available at
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knowledge-capturing device for model building in an interdisciplinary arena.

Individuals can easily integrate their knowledge into a STELLA model without

“losing sight” of, or influence on, their particular part of the model. We anticipate

that the modeling approach presented in this book will increase interaction among

modelers and will be generating new momentum for interdisciplinary and cross-

cultural exchange of ideas.

With the books in this series, we wish to initiate a dialogue with (and among) you

and other modelers. We invite you to share with us your ideas, suggestions, and

criticisms of the book, its models and its presentation format. We also encourage you

to send us your best STELLAmodels. We intend tomake the best models available to

a larger audience, possibly in the form of new books, acknowledging you or your

group as one of the selected contributors. The models will be chosen based on their

simplicity and their application to an interesting phenomenon or real-world problem.
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