ROB NAPIER MUGUNTH KUMAR

08
PROGRAMMING

O PUSHING THE LIMITS

Advanced Application Development
for Apple iPhone”, iPad” and iPod” Touch

. -

ROB NAPIER MUGUNTH KUMAR

08 3
PROGRAMMING

O PUSHING THE LIMITS

Advanced Application Development
for Apple iPhone®, iPad" and iPod" Touch

Pushing the Limits with 10S 5

Programming: Advanced Application

Development for Apple iPhone®,

iPad®, and iPod® Touch

Table of Contents

Introduction

Who This Book Is For
What This Book Covers
How This Book Is Structured

Part I: What’s New?
Part II: Getting the Most Out of Everyday Tools
Part I11: The Right Tool for the Job

Part IV: Pushing the Limits

What You Need to Use This Book

Finding Apple Documentation
Source Code

Part I: What’s New?

Chapter 1: The Brand New Stuff

The History of iOS
What’s New

iCloud
LLVM 3.0 Compiler

Automatic Reference Counting
Storyboards—Draw Your Flow

UIKit Customization—Appearance Proxy
Twitter Framework and Accounts Framework
Other New Features

Summary
Further Readin

Apple Documentation
Other Resources

Chapter 2: Getting Comfortable with Xcode 4

Getting to Know the New User Interface

Tabbed Editor

Changes to Key Bindings

Project Settings Editor
Integrated Version Control

Workspaces

All in One Window
Navigating the Navigators

Project Navigator
Symbol Navigator
Search Navigator
Issue Navigator
Debug Navigator
Breakpoint Navigator
Log Navigator

Help from Your Assistant
Integrated Interface Builder

Interface Builder Panels

LLVM Compiler 3.0: A Tryst with the Brain

The Clang Front End
I’m a Bug! Fix Me

Git Your Versions Here

Integrated Git Version Control System
Versions Editor
Git Best Practices

Schemes

Why Schemes?
Think of Schemes as Implementing Your Intentions

Creating a Scheme
Sharing Your Schemes

Build Configurations You Can Comment

Creating an xcconfig File
Refactoring the Build Configuration File

Xcode 4 Organizer

Automatic Device Provisioning

Viewing Crash I.ogs and Console NSI.og Statements
Viewing Applications’ Sandbox Data

Managing Repositories

Accessing Your Application Archives

Viewing Objective-C and SDK Documentation

Summary
Further Readin

Apple Documentation

Blogs
Web Resources

Books

Part II: Getting the Most Out of Everyday Tools

Chapter 3: Everyday Objective-C

Naming Conventions
Automatic Reference Counting
Properties

Property Attributes
Property Best Practices
Private Ivars

Accessors
Categories and Extensions

+load

Category Data using Associative References

Category Data using the Flyweight Pattern
Class Extensions

Formal and Informal Protocols

Summary
Further Readin

Apple Documentation

Other Resources

Chapter 4: Hold On Loosely: Cocoa Design Patterns

Understanding Model-View-Controller

Using Model Classes
Using View Classes

Using Controller Classes

Understanding Delegates and Data Sources
Working with the Command Pattern

Using Target-Action

Using Method Signatures and Invocations
Using Trampolines

Using Undo

Working with the Observer Pattern

Working with the Singleton Pattern
Summary
Further Reading

Apple Documentation
Other Resources

Chapter 5: Getting Table Views Right

UlTableView Class Hierarchy
Understanding Table Views

UlTableViewController
UlTableViewCell
Speed Up Your Tables

Custom Nonrepeating Cells

Advanced Table Views

Animating a UITableView
Table View Best Practices: Writing Clean Code with

Lean Controllers

Storyboards

Getting Started with Storyboards

Segues
Building Table Views with Storyboard

Custom Transitions

Customizing Your Views Using UIAppearance Protocol
Summary
Further Reading

Apple Documentation
WWDC Videos

Other Resources

Chapter 6: Better Drawing

10S’s Many Drawing Systems
UIKit and the View Drawing Cycle
View Drawing versus View Layout
Custom View Drawing

Drawing with UIKit
Paths

Understanding Coordinates
Resizing and contentMode

Transforms
Drawing with Core Graphics

Mixing UIKit and Core Graphics

Managing Graphics Contexts
Optimizing UlView Drawing

Avoid Drawing

Caching and Background Drawing
Custom Drawing Versus Prerendering
Pixel Alignment and Blurry Text
Alpha, Opaque, Hidden

CGLayer
Summary
Further Reading

Apple Documentation
Other Resources

Chapter 7: Layers Like an Onion: Core Animation

View Animations

Managing User Interaction
Drawing with Layers

Setting Contents Directly
Implementing Display

Custom Drawing
Drawing in Your Own Context

Moving Things Around

Implicit Animations
Explicit Animations
Model and Presentation

A Few Words on Timings

Into the Third Dimension

Decorating Your Layers
Auto-animate with Actions

Animating Custom Properties
Core Animation and Threads
Summary

Further Reading

Apple Documentation
Other Resources

Chapter 8: Tackling Those Pesky Errors

Error Handling Patterns
Assertions
Exceptions

Catching and Reporting Crashes
Errors and NSError

Error L.ocalization
Error Recovery Attempter

Logs

Logging Sensitive Information
Getting Your Logs

Summary
Further Reading

Apple Documentation
Other Resources

Part I11: The Right Tool for the Job

Chapter 9: Controlling Multitasking

Best Practices for Backgrounding: With Great Power Comes

Great Responsibility

Understanding Run L.oops

Threading

Developing Operation-Centric Multitasking
Multitasking with Grand Central Dispatch

Creating Synchronization Points with Dispatch Barriers

Queue Targets and Priority
New in iOS 5

Summary
Further Reading

Apple Documentation
WWDC Sessions

Other Resources

Chapter 10: REST for the Weary

The REST Philosophy
Choosing Your Data Exchange Format

Parsing XML on iOS
Parsing JSON on iOS
XML Versus JSON

Model Versioning

A Hypothetical Web Service

Important Reminders
RESTEngine Architecture (iHotel App Sample Code)

Creating the RESTEngine

Authenticating Your API Calls with Access Tokens
Canceling Requests

Request Responses

Key Coding JSONs
List Versus Detail JSON Objects

Nested JSON Objects
Less Is More

Error Handling
Localization

Handling Additional Formats Using Category Classes
Tips to Improve Performance on iOS

Summary
Further Reading

Apple Documentation
Other Resources

Chapter 11: Batten the Hatches with Security Services

Understanding the iOS Sandbox
Securing Network Communications

How Certificates Work

Checking Certificate Validity
Determining Certificate Trust

Employing File Protection
Using Keychains

Sharing Data with Access Groups

Using Encryption

Overview of AES
Converting Passwords to Keys with PBKDF?2

Applying PKCS7 Padding

Selecting the Mode and the Initialization Vector (IV)
Performing One-Shot Encryption

Improving CommonCrypto Performance

Combining Encryption and Compression

Summary
Further Reading

Apple Documentation
WWDC Sessions

Other Resources

Chapter 12: Running on Multiple iPlatforms and iDevices
Developing for Multiple Platforms

Configurable Target Settings: Base SDK Versus
Deployment Target

Considerations for Multiple SDK Support:Frameworks,
Classes, and Methods

Checking the Availability of Frameworks, Classes, and
Methods

Detecting Device Capabilities

Detecting Devices and Assuming Capabilities
Detecting Hardware and Sensors

In App Email and SMS
Checking Multitasking Awareness

Obtaining the UIDevice+Additions Category

UlIRequiredDeviceCapabilities

Summary
Further Reading

Apple Documentation
Other Resources

Chapter 13: Internationalization and [.ocalization

What is L.ocalization?

Localizing Strings

Auditing for Nonlocalized Strings
Formatting Numbers and Dates
Localizing Nib Files

Summary

Further Reading

Apple Documentation

Chapter 14: Selling Past the Sale with In App Purchases

Before You Start
In App Purchase Products

Prohibited Items
Rethinking Your Business Model

Setting Up Products on iTunes Connect

Step 1: Create a New App ID for Your App

Step 2: Generate Provisioning Profiles
Step 3: Create the App’s Product Entry

Step 4: Create the In App Purchase Product Entries

Step 5: Generating the Shared Secret
Step 6: Creating Test User Accounts

In App Purchase Implementation
Introduction to MKStoreKit

Why MKStoreKit?
Design of MKStoreKit

Customizing MKStoreKit

Making the Purchase
Testing Your In App Purchase
Troubleshooting

Invalid Product IDs

Cannot Connect to iTunes Store

You Have Already Purchased This Product, but It’s
Still Not Downloaded

Summary
Further Reading

Apple Documentation

Blogs
Other Resources

Part I'V: Pushing the Limits

Chapter 15: Cocoa’s Biggest Trick: Key-Value Coding and
Observing

Key-Value Coding

Setting Values with KVC
Traversing Properties

KVC and Collections
KVC and Dictionaries
KVC and Nonobjects

Higher-Order Messaging with KVC
Collection Operators

Key-Value Observing

KVO and Collections
How Is KVO Implemented?

KVO Tradeoffs

Summary
Further Reading

Apple Documentation

Chapter 16: Think Different: Blocks and Functional
Programming

What Is a Block?

Why Use Functional Programming?
A ‘Functional’ UTAlertView

Declaring a Block

Scope of Variables
Stack Versus Heap

Implementing a Block

Blocks-based UlIAlertView
Blocks-based RESTEngine

Blocks and Concurrency

Dispatch Queues in GCD
NSOperationQueue Versus GCD Dispatch Queue

Block-based Cocoa Methods

UlView Animations using Blocks

Presenting and Dismissing View Controllers
TweetComposer Versus In App Email/SMS
Dictionary Enumeration Using NSDictionary
enumerateWithBlock

Looking for Block-based Methods

Supported Platforms
Summary
Further Reading

Apple Documentation

Blogs
Source Code References

Chapter 17: Going Offline

Reasons for Going Offline
Strategies for Caching

Methods for Storing Your Cache
Cache Versioning

AppCache Architecture
Cache Versioning

Invalidating the Cache

Creating an In-Memory Cache

Designing the AppCache
Handling Memory Warnings

Handling Termination and Enter Background
Notifications

Caching Images
Components of ImageCache
Using iCloud
Managing Document and Key-Value Data Storage

on iCloud
Understanding the iCloud Data Store

Summary
Further Readin

Apple Documentation
Books

Other Resources

Chapter 18: Fancy Text Layout

The Normal Stuff: Fields, Views, and Labels
Web Views for Rich Text

Displaying and Accessing HTML in a Web View
Responding to User Interaction

Drawing Web Views in Scroll and Table Views
Rich Editing with Web Views

Core Text

Understanding Bold, Italic, and Underline
Attributed Strings

Paragraph Styles

Simple Layout with CTFramesetter
Creating Frames for Noncontiguous Paths
Typesetters, Lines, Runs, and Glyphs
Drawing Text Along a Curve

Comparison of Rich Text Options
Third-Party Options

NSAttributedString-Additions-for-HTML

CoreTextWrapper
OmniUI

Summary
Further Reading

Apple Documentation
WWDC Sessions

Other Resources

Chapter 19: Building a (Core) Foundation

Core Foundation Types

Naming and Memory Management
Allocators

Introspection

Strings and Data

Constant Strings
Creating Strings
Converting to C Strings
Other String Operations

Backing Storage for Strings
CFData

Collections

CFArray
CFDictionary

CFESet, CFBag
Other Collections
Callbacks

Toll-free Bridgin
Summary
Further Readin

Apple Documentation
Other Resources

Chapter 20: Deep Objective-C

Understanding Classes and Objects
Working with Methods and Properties

How Message Passing Really Works

Dynamic Implementations
Fast Forwarding
Normal Forwarding

Forwarding Failure
The Flavors of objc_msgSend

Method Swizzling

ISA Swizzling

Method Swizzling Versus ISA Swizzling
Summary

Further Reading

Apple Documentation
Other Resources

Pushing the Limits with 10S 5
Programming

Advanced Application Development

for Apple iPhone®, iPad®, and iPod®
Touch

Rob Napier and Mugunth
Kumar
&
This edition first published 2012
© 2012 John Wiley and Sons, Ltd.
Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and
for information about how to apply for permission to reuse the
copyright material in this book please see our website at
www.wiley.com.

The right of the author to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and

http://www.wiley.com

Patents Act 1988.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats.
Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are
often claimed as trademarks. All brand names and product names
used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is
not associated with any product or vendor mentioned in this book.
This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on
the understanding that the publisher is not engaged in rendering
professional services. If professional advice or other expert
assistance is required, the services of a competent professional
should be sought.

Trademarks: Wiley and the John Wiley & Sons, Ltd. logo are
trademarks or registered trademarks of John Wiley and Sons, Ltd.
and/ or its affiliates in the United States and/or other countries, and
may not be used without written permission. iPhone, iPad and iPod
are trademarks of Apple Computer, Inc. All other trademarks are
the property of their respective owners. John Wiley & Sons, Ltd. is
not associated with any product or vendor mentioned in the book.
This book is not endorsed by Apple Computer, Inc.

A catalogue record for this book is available from the British
Library.

ISBN 978-1-119-96132-1 (paperback); ISBN 978-1-119-96158-1
(ebook); 978-1-119-96159-8 (ebook); 978-1-119-96160-4 (ebook)

Set in 9.5/12 Myriad Pro Regular by Wiley Composition Services

Printed in the United States by Bind-Rite

Dedication

To Neverwood. Thanks for your patience.
Rob

To my mother who shaped the first twenty years of my life
Mugunth

Publisher’s Acknowledgements

Some of the people who helped bring this book to market include
the following:

Editorial and Production

VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director—Book Content Management: Martin Tribe
Associate Publisher: Chris Webb

Acquisitions Editor: Chris Katsaropolous

Assistant Editor: Ellie Scott

Development Editor: Tom Dinse

Copy Editor: Maryann Steinhart

Technical Editor: Mithilesh Kumar

Editorial Manager: Jodi Jensen

Senior Project Editor: Sara Shlaer

Editorial Assistant: Leslie Saxman

Marketing

Associate Marketing Director: Louise Breinholt

Marketing Executive: Kate Parrett

Composition Services
Compositor: Wiley Indianapolis Composition Services

Proofreaders: Laura Albert, Lindsay Amones, Melissa D.
Buddendeck, Melissa Cossell

Indexer: Potomac Indexing, LL.C

About the Authors

Rob Napier is a builder of tree houses, hiker, and proud father. He began
developing for the Mac in 2005, and picked up iPhone development when the
first SDK was released, working on products such as The Daily, PandoraBoy,
and Cisco Mobile. He is a major contributor to Stack Overflow and maintains
the Cocoaphony blog (cocoaphony.com).

Mugunth Kumar is an independent iOS developer based in Singapore. He
graduated in 2009 and holds a Masters degree from Nanyang Technological
University, Singapore, majoring in Information Systems. He writes about
mobile development, software usability, and iOS-related tutorials on his blog
(blog.mugunthkumar.com).Prior to iOS development he worked for Fortune
500 companies GE and Honeywell as a software consultant on Windows and
NET platforms. His core areas of interest include programming
methodologies (Object Oriented and Functional), mobile development and
usability engineering. If he were not coding, he would probably be found at
some exotic place capturing scenic photos of Mother Nature.

About the Technical Editor

Mithilesh Kumar is a software engineer with a passion for user interface
design, Internet protocols, and virtual worlds. He likes to prototype and build
applications for iOS and Mac OS X platforms. He has extensive experience in
developing UI and core components for telephony clients capable of voice,
video, instant messaging, presence, and voicemail.

Mithilesh graduated with a Masters degree in Computer Science from
Virginia Tech with emphasis on Human-Computer Interaction. While at
graduate school, he co-authored several research papers in the area of user
interfaces, computer graphics and network protocols.

http://cocoaphony.com
http://blog.mugunthkumar.com

Authors’ Acknowledgements

Rob thanks his family for giving up many evenings that he spent in the
basement writing, hacking, and otherwise failing to come upstairs. Mugunth
thanks his parents and friends for their support while writing this book.
Thanks to Wiley for making this book possible. It went extremely well,
particularly due to Sara Shlaer’s continual guiding hand. Thanks to Mithilesh
Kumar who made sure what we said was true, and Tom Dinse who made sure
that it was intelligible. Thanks to Chris Katsaropoulos for first reaching out
and getting this project rolling. Thanks to the Apple engineers who answer
questions on development forums on all those still-under-NDA issues, and the
whole iOS developer community who share so much. And special thanks to
Steve Jobs for building toys we could build a career around.

Introduction

Apple has a history of alternating its releases between user-focus and
developer-focus. The good news about iOS 5 is that it’s all about the
developers. The addition of Automatic Reference Counting (ARC) alone is
worth the upgrade for developers. In one move, Apple has eliminated the
number one cause of crashes in iOS applications, while making the code
easier to write and faster to run. Moving to ARC is the single best thing you
can do for your application. It’s the most important Objective-C feature since
the autorelease pool.

But iOS 5 adds many more features for the developer. From iCloud to
automatic data protection, the operating system now takes care of more of the
hard problems, letting developers focus on making the best apps.

Most visible to developers is the new Xcode. Some of it is better, some of it is
just different, and some of it will make you crazy. It’s the new game in town,
though, and everyone needs to get used to it. This book will help you figure it
out.

If you’re ready to take on the newest Apple release and push your application
to the limits, this is the book to get you there.

Who This Book Is For

This is not an introductory book. There are many books out there that will
teach you Objective-C and take you step by step through Interface Builder.
This is not that book. This book assumes that you have a little experience
with i0S. Maybe you’re self-taught, or maybe you’ve taken a class. You’ve
hopefully written at least most of an application, even if you haven’t
submitted it yet. If you’re ready to move beyond the basics, to learn the best
practices and the secrets that the authors have learned from practical
experience writing real applications, then this is the book for you.

This book also is not just a list of recipes. There’s plenty of sample code here,

but the focus is on learning how to design, code, and maintain great iOS apps.
A lot of this book is about why rather than just how. You’ll learn about as
much about design patterns and writing reusable code as about syntax and
new frameworks.

All the examples use Xcode 4. If you’re not comfortable with Xcode 4 yet,
don’t worry. Chapter 2 is devoted to getting you up to speed.

What This Book Covers

The iOS platforms always move forward, and so does this book. Most of the
examples here require iOS 5. All examples use Automatic Reference
Counting. Except in a very few places, this book will not cover backward
compatibility. If you’ve been shipping code long enough to need backward
compatibility, you probably know how to deal with it. This book is about
writing the best-possible apps using the best features available.

This book focuses on the iPhone 4 and iPad 2. Most topics here are applicable
to the original iPad, iPod touch, iPhone 3GS, and Apple TV. At the time of
writing the iPhone 5 and iPad 3 have not been released, but everything here
should apply to them as well. Chapter 12 is devoted to dealing with the
differences between the platforms.

How This Book Is Structured

iOS has an extremely rich set of tools, from high-level frameworks like UIKit
to very low-level tools like Core Text. Often, there are several ways to
achieve a goal. As a developer, how do you pick the right tool for the job?

This book separates the everyday from the special purpose, helping you pick
the right solution to each problem. You’ll learn why each framework exists,
how the frameworks relate to each other, and when to choose one over
another. Then you’ll learn how to make the most of each framework for
solving its type of problem.

There are four parts to this book, moving from the most common tools to the
most powerful:

Part I: What’s New?

If you’re familiar with iOS 4, then this section quickly introduces you to the
new features of iOS 5.

® Chapter 1: The Brand New Stuff — iOS adds a lot of new features,
and here you get a quick overview of what’s available.

® Chapter 2: Getting Comfortable with Xcode 4 — Apple recently
redesigned the Xcode interface, and it can take some getting used to. This
chapter shows you how to get the most out of it.

Part I1: Getting the Most Out of Everyday Tools

As an iOS developer, you’ve encountered a wide variety of common tools,
from notifications to table views to animation layers. But are you using these
tools to their full potential? In this part, you learn the best practices in Cocoa
development from seasoned developers.

® Chapter 3: Everyday Objective-C—If you’re ready to move to the next
level in Objective-C, this chapter introduces you to the tools experienced
developers use every day to improve application design, maintainability,
and reusability.

® Chapter 4: Hold On Loosely: Cocoa Design Patterns—Cocoa relies
on a number of common and consistent design patterns. You learn what
they are so you can solve problems the same way Apple does.

® Chapter 5: Getting Table Views Right—Table views are perhaps the
most complex and commonly used Ul element in iOS. They are simple and
elegant in design, but confusing to developers who don’t understand how
they work. You learn how to use them correctly and to solve some special
problems like infinite scrolling.

m Chapter 6: Better Drawing—Custom drawing is intimidating to many
new developers, but it’s a key part of building beautiful and fast user
interfaces. You’ll discover the available drawing options from UIKit to
Core Graphics, and how to optimize them to look their best while keeping
them fast.

m Chapter 7: Layers Like an Onion: Core Animation—iOS devices
have incredible facilities for animation. With a powerful GPU and the

highly optimized Core Animation, you can build engaging, exciting, and
intuitive interfaces. In this chapter, you go beyond the basics and learn the
secrets of animation.

® Chapter 8: Tackling Those Pesky Errors—You try to write perfect
code, but sometimes things go wrong. How your application reacts to the
unexpected is what separates decent apps from extraordinary apps. You’ll
learn the common patterns for error handling, how to log, and how to make
your code more resilient against the unexpected.

Part III: The Right Tool for the Job

There are tools that are part of nearly every application, and there are tools
that you only need from time to time. In this section, you learn about those
tools and techniques that are a little more specialized.

® Chapter 9: Controlling Multitasking—Multitasking is an important
part of many applications, and you learn how to do multiple things at once
while your application is running and when your application is in the
background.

m Chapter 10: REST for the Weary—REST-based services are a
mainstay of modern applications, and you learn how to best implement
them in iOS.

m Chapter 11: Batten the Hatches with Security Services—User
security and privacy are paramount today, and you learn how to protect
your application and user data from attackers with the keychain,
certificates, and encryption.

® Chapter 12: Running on Multiple iPlatforms and iDevices—The iOS
landscape gets more complex every year with iPod touch, iPhone, iPad,
Apple TV, and a steady stream of new editions. It’s not enough just to write
once, run everywhere. You need your applications to be their best
everywhere. You’ll learn how to adapt your apps to the hardware and get
the most out of every platform.

m Chapter 13: Internationalization and Localization—While you may
want to focus on a single market today, there are small things you can do to
ease the transition to a global market tomorrow. Save money and
headaches later, without interrupting today’s development.

m Chapter 14: Selling Past the Sale with In App Purchases—In App
Purchases are still an untapped market for many developers. Users like the
add-on content, and developers love the extra revenue. You learn the best
ways to make this important feature a reality in your application.

Part I'V: Pushing the Limits

This section is what this book is all about. You’ve learned the basics. You’ve
learned the everyday. Now push the limits with the most advanced tools
available. You learn the ins and outs of deep iOS.

® Chapter 15: Cocoa’s Biggest Trick: Key-Value Observing—Many of
Apple’s most powerful frameworks rely on KVO for their performance and
flexibility. You learn how to leverage the flexibility and speed of KVO, as
well as the trick that makes it so transparent.

® Chapter 16: Think Different: Blocks and Functional Programming
—Many developers are still absorbing the addition of blocks to Objective-
C. They’re valuable for interacting with Apple frameworks, but they also
open new ways of thinking about your program. Embrace a new style, and
maximize its benefits in your next project.

® Chapter 17: Going Offline—Network programming is hard, but even
harder is providing a seamless offline experience. Learn how to best cache
your data and integrate it into your network engine.

® Chapter 18: Fancy Text Layout—From UIKit to Core Text, iOS is full
of ways to display text. There’s no perfect solution for displaying rich text
in i0S, so it’s important to learn the trade-offs so you can choose the right
solution and use it correctly.

® Chapter 19: Building a (Core) Foundation—When you want the most
powerful frameworks available on iOS, you’re going to want the Core
frameworks like Core Graphics, Core Animation, and Core Text. All of
these rely on Core Foundation. In this chapter you learn how to work Core
Foundation data types so you can leverage everything iOS has to offer.

® Chapter 20: Deep Objective-C—When you’re ready to pull back the
curtain on how Objective-C really works, this is the chapter for you. You
learn how to use the Objective-C runtime directly to dynamically modify
classes and methods. You also learn how Objective-C method calls are

dispatched to C function calls, and how you can take control of the system
to extend your programs in incredible ways.

You can skip around in this book to focus on the topics you need most. Each
chapter stands alone, except for those that require Core Foundation data
objects (particularly Core Graphics, Core Animation, and Core Text). Those
chapters direct you to Chapter 19, “Building a (Core) Foundation,” when you
need that information.

What You Need to Use This Book

All examples in this book were developed with Xcode 4.2 on Mac OS X 10.7
and iOS 5. You need an Apple developer account to access most of the tools
and documentation, and you need a developer license to run applications on
your iOS device. Visit http://developer.apple.com/programs/ios to sign

up.

Most of the examples in this book will run in the iOS Simulator that comes
with Xcode 4.2. You can use the iOS Simulator without an Apple developer
license.

There are few differences between Xcode 4.2 on Mac OS X 10.6 and 10.7, so
all examples should work under 10.6.

Finding Apple Documentation

Apple provides extensive documentation at its website and within Xcode. The
URLSs change frequently and are often very long. This book refers to Apple
documents by title rather than by URL. To find documents in Xcode, press
Cmd-Option-? or click Help - Documentation and API Reference. In the
Documentation Organizer, click the Search icon, type in the name of the
document, and then select the document from the search results. See Figure 1
for an example of how to search for the Coding Guidelines for Cocoa.

http://developer.apple.com/programs/ios

Organizer Yocume

hB. B

Devices Repositories Project documentation
© 0 m u | 4 > | (gi0s 5.0 Library) [General) [Coding Guidelines for Cocoa
Q- Coding Guidelines for Cocoa Next
Match Type (Prefix & H 1 1 H
Introduction to Coding Guidelines for Cocoa
Doc Sets (2 of 6 Doc Sets :
Languages (C C++ Objective-C
@ Reference Important: This is a Mac OS X document for an API or technology that is shared between Mac OS X and iOS.
0 Results Although this document has been reviewed for technical accuracy on Mac OS X, it has not been reviewed for
@ System Guides accuracy on i0OS and may contain errors or omissions. Apple is supplying this information to help you plan for
RSIRESIINS the adoption of the technologies and programming interfaces described herein. This information is subject to
| ﬁ 0 . I change, and software implemented according to this document should be tested with final operating system
aming Methods software and final documentation. Newer versions of this document may be provided with future seeds of the
Tips and Techni...work Developers API or technology.
Acceptable Abbr...s and Acronyms
Naming Functions
Introduction to...idelines for Cocoa Developing a Cocoa framework, plug-in, or other executable with a public APl requires some approaches and
Navigating a Dat...With Table Views conventions that are d?ffgrent from those used in applicaFign development. The primaw clients of your product
Adding Behavior to a Cocoa Program are developers, and it is important that they are not mystified by your programmatic interface. This is where API

naming conventions come in handy, for they help you to make your interfaces consistent and clear. There are

Communicating with Objects % S 2 A .
also programming techniques that are special to—or of greater importance with—frameworks, such as

Cocoa Design Patterns
Apple Publications Style Guide A % Hlctd (S b athd

I 2ee g & : both Cocoa naming conventions and recommended programming practices for frameworks.
The Core Application Design
Accessing Files and Directories
Encoding and D...ing C Data Types

Avoiding Race C...e File Operations orga n | zat |0 n Of Th | 3 DOC ument
”j Tools Guides
0 Results
» Sample Code The articles contained in this topic fall into two general types. The first and larger group presents naming
O Results conventions for programmatic interfaces. These are the same conventions (with some minor exceptions) that

Apple uses for its own Cocoa frameworks. These articles on naming conventions include the following:

“Code Naming Basics”

“Naming Methods"

“Naming Functions”

“Naming Instance Variables and Data Types”
“Acceptable Abbreviations and Acronyms”

The second group (currently with a membership of one) discusses aspects of framework programming:

“Tips and Techniques for Framework Developers”

Next

Figure 1 Searching for Coding Guidelines for Cocoa

To find documents at the Apple developer site, visit developer.apple.com,
click Member Center and log in. Select the iOS Dev Center, and enter the
document title in the Search Developer search box.

The online documentation is generally identical to the Xcode documentation.
You may receive results for both iOS and Mac. Make sure to choose the iOS
version. Many iOS documents are copies of their Mac counterparts, and
occasionally include function calls or constants that are not available on iOS.
This book guides you about which features are available on iOS.

Source Code

As you work through the examples in this book, you may choose either to
type in all the code manually or to use the source code files that accompany
the book. All of the source code used in this book is available for download at

http://developer.apple.com/

www . Wrox.com/go/ptl/ios5programming. For example, you will find the
following sample code online in the Chapter 18 folder, in the SimpleLayout
project, and the CoreTextLabel.m file:

CoreTextLabel.m (SimpleLayout)

- (id)initWithFrame: (CGRect)frame {

if ((self = [super initWithFrame:frame])) {
CGAffineTransform
transform = CGAffineTransformMakeScale(1, -1);
CGAffineTransformTranslate(transform,

0, -self.bounds.size.height);

self.transform = transform;
self.backgroundColor = [UIColor whiteColor];

}

return self;

}

Some source code snippets shown in the book are not comprehensive and are
meant to help you understand the chapter. For those instances, you should
refer to the files available on the website for the complete source code.

http://www.wrox.com/go/ptl/ios5programming

Part I: What’s New?

Chapter 1 The Brand New Stuff

Chapter 2 Getting Comfortable with Xcode 4

Chapter 1: The Brand New Stuff

In 2007, the late Steve Jobs took the stage at Macworld and proclaimed that
software running on iPhone was at least five years ahead of the competition.
Since its initial release, Apple has been iterating the operating system year
after year, and has even added two new devices, the iPad and Apple TV, to
the list of products capable of running it. As the operating system was
customized to run on more devices than just the iPhone, it was rebranded as
iOS. Today, it’s almost 5 years old, and iOS 5 is easily the biggest update to
iOS since the original launch, possibly making the software five years ahead
of the competition again.

This book is about programming with iOS 5. Targeting intermediate to
advanced iOS developers, this book, unlike most others, covers advanced
topics of iOS development. Rather than learning about frameworks and the
features available on the iOS SDK, you learn about how to make the best use
of those features to help push your apps to the next level. This chapter briefly
describes the new features covered in detail in the book and tells you the
chapters in which they are discussed.

The History of iOS

The second version, iPhone OS 2, was the first to have a public SDK. From
then on, with every release of the operating system, Apple introduced several
major features and a lot more minor API changes. This section briefly
describes the history of the iOS. The remaining sections in the chapter
provide an overview of what’s new in iOS 5.

iPhone OS 3 brought Core Data from Mac to iPhone. Other additions include
Apple Push Notification Service, External Accessory Kit, In App Purchases
through the StoreKit.framework, in app email sheets, the MapKit . framework
that allows developers to embed Google Maps into their apps, read-only
access to the iPod library, and keychain data sharing. OS 3.1 added video
editor support, a minor update. iPhone OS 3.2 added Core Text and gesture
recognizers, file sharing, and PDF generation support, another minor (yet so

major) update. OS 3.2 also added a whole new product, iPad, support for
developing apps that run on iPad, and universal apps that run on iPad (3.2)
and iPhone (3.1.3). 3.2 was iPad only and didn’t run on iPhone or iPod touch
devices.

iPhone OS 4 (rebranded as iOS 4) introduced much-awaited multitasking
support, local notifications, read-only access to calendar (Event Kit
framework, EventKit . framework), blocks, Grand Central Dispatch (GCD),
in app message composer sheets (SMS), and Retina display support. This
version was iPhone only and didn’t support developing apps for iPad. A
minor update, iOS 4.2, unified iPhone and iPad operating systems.

What’s New

iOS 5 introduces several important features like iCloud, Automatic Reference
Counting (ARC), Storyboards, built-in Twitter framework, and several other
minor features. The next few sections introduce you to the key features added
to iOS 5 and the chapters in which they are discussed in detail and where I
provide guidance about how to push your apps to the next level.

iCloud

iCloud is a new cloud service provided by Apple. iCloud differs from
competing similar offerings in that it’s more a cloud-based service than
cloud-based storage. Developers have been using third-party services for
synchronizing data across multiple devices. Dropbox is the most popular of
these services; however, even Dropbox API version O (the latest version as of
this writing), doesn’t support conflict handling, something that’s critical for
data integrity. While Dropbox has conflict resolution, it’s not exposed to
developers via their API. iCloud, on the other hand, supports file storage and
has conflict resolution built into the iOS 5 SDK.

iCloud also supports storing key-value data on the cloud, which is good
enough for apps that need settings and other similar data to be kept in sync.

iCloud is not just a hard disk on the cloud. Think of iCloud as a cloud-based
service that just happens to support data storage.

iOS 5 adds several new APIs for adding iCloud support:

W UIDocument (very similar to its kin, NSDocument, on Mac)
W UIManagedDocument, for managing your Core Data storage

m Additions to NSFileManager to move and restore files from iCloud

iCloud is covered in detail in Chapter 17.

LLVM 3.0 Compiler

LLVM (Low Level Virtual Machine) is a new compiler project partly funded
by Apple. While technically not a part of iOS 5, developers should be
equipped with the knowledge of the new features available in LLVM.
Improved auto complete and speedier compilation are just a part of LLVM’s
new features. In Chapter 2 you learn about the features of LLVM and how
LLVM augments Xcode 4’s features.

Automatic Reference Counting

Another important feature of iOS 5 is Automatic Reference Counting (ARC).
It is a compiler-level feature provided by the new LLVM compiler. This
means that you can use it without increasing the minimum SDK support to
iOS 5. ARC can be used in apps targeting iOS 4 onward, and Xcode 4.2 also
provides support for migrating your code to use ARC using the Convert to
Objective-C ARC tool. With the new LLVM compiler slowly becoming
mainstream, ARC will supercede the current retain/release memory
management.

Automatic Reference Counting is not like garbage collection offered on Mac OS X from version
10.5 (Leopard). Garbage collection is automatic memory management. This means that
developers don’t have to write a matching release for every retain statement. The compiler
automatically inserts them for you.

ARC adds two new lifetime qualifiers—strong and weak—and it also
imposes new rules, such as that you can no longer invoke release, retain on
any object. This applies to custom dealloc methods as well. When using
ARC, your custom dealloc methods should only release resources (files or
ports) and not instance variables.

ARC is covered in detail in Chapter 3.

Storyboards—Draw Your Flow

Storyboards is a new way to design your user interface. Prior to iOS 5 you
used Interface Builder nib files to define your UI one view controller at a
time. With Storyboards, you can define in one file the complete UI flow of
your app, including interaction among the different view controllers.

You can use Storyboards to define all view controllers in your app. You don’t
have to create multiple Storyboards or worry about performance. The
Interface Builder build tool automatically splits your storyboard file into parts
and loads it individually at runtime without affecting performance.

On iOS 5, storyboards replace Mainwindow.xib nib file (and possibly every
other view controller’s nib file). The new project template in Xcode 4.2 helps
in creating storyboards. You can also add a storyboard to your old projects
and optionally make it the main storyboard by adding an entry to the
Info.plist file.

Storyboards, unlike ARG, is an iOS 5-specific feature, and using Storyboards means that you
need to raise your minimum supported OS to iOS 5.

You will learn more about storyboards in Chapter 5.

UIKit Customization—Appearance Proxy

Apple (and even Microsoft) has always been against UI customization, or
theming. Its reasoning is that theming makes it difficult for users to
understand the user interface. The Web, on the other hand, has made a huge
revolution on this front and this has had an effect on the latest release of iOS
as well. Beginning with iOS 5, some native apps like Reminders get some
rich customization. With iOS 5, most properties of UIKit elements can be
customized. This includes backgroundColor, tintColor, and a lot more.
Customization is supported by a UIView subclass if it implements the
UIAppearance protocol. The protocol also allows customization based on the
contained view. For example, you can have a different tint when a custom
view of yours is within a navigation bar.

Chapter 5 covers Ul customization.

Twitter Framework and Accounts Framework

iOS 5 integrates Twitter experience right into the OS. This means sending a
tweet from your app is as easy as sending an email using an in app email
sheet. The framework also handles authentication for you, which means you
no longer need to do the oAuth/xAuth authentication yourself. Twitter
framework on iOS 5 integrates with Accounts framework to provide account
authentication. As of this writing, Twitter is the only third-party
authentication system supported natively on iOS 5. But, by looking at the
decoupled design of Twitter framework and Accounts framework, there is a
possibility that additional services might be introduced later on. While there
are some advantages of using these frameworks, it’s still an iOS 5-specific
feature, which means that using it requires you to limit your app to devices
running iOS 5 and later. Additionally, when you send out a tweet through
iOS, you will not be able to customize the sender (via text). As such, your
tweet will be sent as “via i0S.” (See Figure 1-1.)

@twitter

One Million Registered Twitter Apps:
blog.twitter.com/2011/07/one-mi...

jodio _O Favorite Retweet Reply

© Twitter 2011

Figure 1-1 Screenshot from Twitter.com showing the “via” text

When you create a new application on Twitter, you can name it so when you
tweet using this application’s credentials, its name shows up in the “via” text.
The built-in Twitter.framework on iOS 5 doesn’t allow setting this text, so if
you are considering using Twitter for increasing your brand’s reach, you may

have to evaluate branding versus ease of development.

Adding Twitter experience to your app with the new Twitter.Framework is
as easy as sending an in app email. This differs from an app email in one
aspect. Instead of providing a delegate callback, the
TWTweetComposeViewController of Twitter.Framework provides a
completionHandler. Chapter 16 shows you an example of this in action.

Other New Features

In addition to the “big” features discussed in the preceding sections, iOS 5
also adds several other features, including dedicated support for magazine
apps, a native image processing library, AirPlay mirroring support, and new
controls added to UIKit.framework.

Newsstand Kit

Newspaper or magazine apps can make use of the NewsstandKit . framework
to deliver digital content. Although it was technically possible to do
something similar with iOS 4, iOS 5 introduces several new APIs to enable
content for the latest release to be downloaded in the background.
Additionally it also enables publishers to provide a cover art image (front
cover) for their magazine instead of an icon. Apps developed using this
framework appear within the Newsstand app and display the cover art instead
of the app icon.

Core Image for Image Processing

Camera apps can use features in Core Image to apply image processing
filters. The classes CIImage and CIFilter add basic image-editing functions
like cropping, rotation (affine transform), and color inversion, to advanced
features like gamma correction, white point adjustment, false color, sepia
toning, temperature and tint correction, and many more that would be present
in any entry-level image editor. This feature of iOS 5 will be tremendously
useful for camera-enhancement apps that compete with apps like Instagram
or Camera+. iPhone camera is already the most popular camera on Flickr.
This framework will take it even further.

Core Image for Feature Detection

Core Image has another important element: feature detection. At WWDC
2011, Apple demonstrated a feature of Photo Booth that tracks the location of
a face and adorns it with birds circling the head. With Core Image, you can
add such features with very little programming effort. The class CIDetector
has a convenient featuresInImage: method that returns a list of CIFeature
objects detected in the given image.

Core Image is discussed in Chapter 6.

Other Minor Enhancements

iOS 5 adds many other minor enhancements like AirPlay video support,
mirroring (which can be disabled by your app if you are showing protected
content); better document support; improvements in data protection (Chapter
11); a new control, UIStepper; capability to add a password entry field to the
UIAlertView just like the AppStore password prompt; a new
UIPageViewController for creating page curl effects like iBooks; and much
more. All these major and minor enhancements together make iOS 5 the
biggest enhancement since its inception.

Summary

Adoption rates of iOS have always been way ahead of the competition. A
couple of years ago, when iPhone OS 3.0 was launched, adoption rates were
partly hindered on iPod touch because the upgrade cost $10. However, Apple
soon made it free and adoption rates increased. Similarly, when Apple
released iOS 4, the adoption rate was initially slow because of performance
issues on older phones such as iPhone 3G and the original iPhone (and
equivalent iPod touches). Some features—mainly multitasking—were also
not available for older devices. Nevertheless, the latest iOS usually gets
adopted on more than 90 percent of devices within the first two months of
launch.

With iOS 5, adoption rates should be the fastest ever for the following
reasons. First, the update is free for all devices, unlike iPhone OS 3. Second,
unlike iOS 4, i0S 5 doesn’t make older devices (the iPhone 3GS) run slower.
Finally, for end users, cleaner notifications, iTunes wi-fi sync, and iMessage
are killer features that should accelerate iOS 5 adoption.

All this means that you should start using every iOS 5 feature as soon as
possible to get your app to shine in all its glory. Features like iCloud and
UIKit customizations alone should be reason enough to update your apps to
iOS 5. That said, the next chapters start you on your iOS 5 journey.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

iCloud
What’s New in iOS 5
Twitter Framework

Accounts Framework

Other Resources

How is a file conflict detected using the API - Dropbox forums
http://forums.dropbox.com/topic.php?id=40492

http://developer.apple.com/
http://forums.dropbox.com/topic.php?id=40492

Chapter 2: Getting Comfortable with
Xcode 4

Apple officially announced Xcode 4 at WWDC 2010 (June 2010), and the
beta version was available to attendees. It was in beta for quite a while
(around 9 months) and a Gold Master was made available through iOS/Mac
developer center in February 2011. Weeks later, in March, Xcode 4 was
officially released and developers who subscribe to the iOS or Mac developer
programs were able to get it for free. Others were able to buy it from the Mac
App Store.

Xcode 4 is a completely rewritten IDE (integrated development environment)
replacing Xcode 3. The major features include, but are not limited to, single
window editing, navigators, integrated Interface Builder, an integrated Git
version control system, and schemes (a new way to configure and share build
settings in your product). You learn in detail about every major feature in this
chapter.

Xcode 4 features are not just skin deep—they come with some huge
compiler-level changes as well. The LLVM compiler is the new brain behind
Xcode. Apple made LLVM-GCC the default compiler in the original version
of Xcode. Beginning with Xcode 4.0 and in the version that is released with
iOS 5 (Xcode 4.2), LLVM 3.0 is the default compiler; it uses Clang as its
front end. Using Clang as the front end over GCC has several advantages, and
several new features of Xcode 4 were added because of this change. Because
Apple is moving from GCC to LLVM, you should know how to harness the
power of the new compiler to increase your coding and debugging speed, and
how to use the IDE to be more productive. The most important feature of the
LLVM compiler is better and faster compilation with the Clang front end,
which provides better code completion support.

This chapter covers the important features of the IDE, the new features
offered by the LLVM compiler, the built-in integrated version control system,
schemes (new to Xcode 4), writing readable and commentable project

configuration files, and finally, the features of the new Xcode 4 Organizer.

Getting to Know the New User Interface

Xcode 4 features a whole new iTunes-like user interface (UI). The toolbar is
gone in favor of iTunes-like Play/Stop buttons. The build setting chooser is
gone in favor of the new schemes selector. There’s a new LED-like status
display similar to iTunes. Developers who are used to Xcode 3 will feel at
home once they know where things are, what has been removed, and what

has been superseded. You’ll welcome the new additions and actually be more

productive than ever. This section helps you bridge the gap between Xcode 3

and Xcode 4.

This section covers the six most important changes to Xcode 4. The first

important change is the new navigators. There are seven navigators that can
be accessed by clicking the buttons highlighted in Figure 2-1. They can also
be accessed via the shortcut keys Cmd-1 to Cmd-7.

® Xcode File Edit

View Navigate

SO

Run Stop

Scheme

@ IL’ ™ "_:Z [ReadyForI(ing | My Mac 64-bit :J

- T @ A =

n, ReadyForKing
=] target, Mac OS5 X SDK 10.6

&

M

un | g

Figure 2-1 The Xcode navigator items

The same navigators can be accessed from the Xcode’s View menu item as

shown in Figure 2-2.

®no

Navigators 2

i Xcode File Edit Navigate Editor Product Window Help !

P == ~ Project #®1
(m)| i ot Symbol 382
@. /) |ReadyForKing (i rant Layout » | search 323
Ru S L shras |
_" — - Utilities I [SEis 524 n
|| @ 4 = 0 Debu 85 |
Saichireasiue Hide Toolbar 9
B 1 target, Mac 05 X SDK 10.6 Show Tab Bar Breakpoint 86
_| dsa_pub.pem Show Debug Area {3Y Log #®7
| xmlirpc . .
», XMLRPC.xcodeproj Hide Navigator &0

Figure 2-2 Accessing the new navigators from the menu bar

The first view in the Navigators area is the project navigator. Previously, this

was the Groups and Files list. From the Groups and Files list you were able to

add frameworks and edit the target’s properties. With Xcode 4, however, this
functionality is moved to the project and build settings editor view. The

Xcode 4 workspace pane can now edit more types of files than just Objective-

C or property list files, and the project and build settings editor just happens

to be one such editor. You can access the build settings editor by selecting the
project file from the project navigator. Figure 2-3 shows Xcode 4 project

navigator.

« iHotelApp

1t =

Figure 2-3 Xcode project navigator view

The subsequent navigators are Symbol, Search, Issue, Debug, Breakpoint,
and Log. You look at them in detail later in this chapter.

Tabbed Editor

The second major change is the new tabbed editor. Unlike its predecessor,
Xcode 4 supports opening multiple tabs within the same window. This means
that you will spend less time searching for the window that displays your
source file. Figure 2-4 shows Xcode 4’s tabbed editor in action.

@ \!/ MKStor...) i0S Device| [3) { Build Succeeded | 30/7/11at 7:31 PM \ Bloz EEO (5

Run Stop Scheme Breakpoints Project (13 Editor View Organizer
— — e —
MKStoreManager.m “[MKSKSubscriptionProdu... l MKStoreObserver.m '1 MKSKProduct.m 1 MKStoreKitDemoAppDel... B
| & | T Q A = > a I i e | BMKS(oreKitDemo »|__|Classes » @ MKStoreKitDemoAppDelegate.m » No Selection | 4 >
MKStoreKitDemo //
1 target, iOS SDK 5.0
i #import "MKStoreKitDemoAppDelegate.h"
v
{i] MKStoreKit 1 #import "MKStoreKitDemoViewController.h"
v || Externals #import "MKStoreManager.h"
|h| JSONKit.h
m| JSONKit.m 13| @implementation MKStoreKitDemoAppDelegate

th| NSData+Base64.h @synthesize window;
m| NSData+Base64.m 16| @synthesize viewController;
|h| SFHFKeychainUtils.h
‘E SFHFKe.ychmrrUnIs.m y #pragma mark -
|h| MKStoreKitConfigs.h #pragma mark Application lifecycle
D MKStoreKitConfigs.plist
|h| MKStoreManager.h - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions: (NSDictionary x*)

launchOptions {
|m| MKStoreManager.m

|h| MKStoreObserver.h // Override point for customization after application launch.
ﬂ MKStoreObserver.m

MKStoreM sharedManager];
lh| MKSKSubscriptionProduct.h /WG torenanager gerl;

// Add the view controller's view to the window and display.

ﬁ MKSKSubscriptionProduct.m [window addSubview:viewController.view];
h| MKSKProduct.h 9 [window makeKeyAndVisible];
\m| MKSKProduct.m return YES:
v | _|Classes }
|h| MKStoreKitDemoAppDelegate.h
MKStoreKitDemoAppDel .
m S—— - (void)applicationWillResignActive:(UIApplication *)application {
|h| MKStoreKitDemoViewController.h /%
m| MKStoreKitDemoViewController.m Sent when the application is about to move from active to inactive state. This can occur for
certain types of temporary interruptions (such as an incoming phone call or SMS message) or
¥ || Other Sources
4) . when the user quits the application and it begins the transition to the background state.
h| MKStoreKitDemo_Prefix.pch Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame rates.
|m| main.m Games should use this method to pause the game.
¥ || Resources 4. N */
' MKstoreKitDemoViewControllerxib | =9 3~ & 4 | No Selection
~ MainWindow.xib .
Local & Q Em

[MKstorekitDemo-Info.plist
v | _|Frameworks
» &= StoreKit.framework
> &= Security.framework
» &= UIKit.framework
> \7; Foundation.framework
» &= CoreGraphics.framework

+ ©BEE®

Figure 2-4 Xcode 4 window showing a several opened tabs

The tabbed editor in Xcode 4 behaves differently from tabbed editors in, for
example, Eclipse, Visual Studio, or TextMate. Think of Xcode 4’s tabs as
virtual workspaces instead of just file editors. The navigator pane’s file
selection and search criteria are preserved when you switch back and forth

between tabs. I recommend opening three to four tabs, each showing a related
group of files. For example, you can use one tab to show your model classes,
use another tab for your view controllers, a third tab for Interface Builder
files, and maybe, if you use Core Data, use a fourth tab for showing Core
Data-related files. Use tabs to make the workspace suit your thought process
or workflow. Going to work on your Core Data files? Switch to the Core Data
tab. Going to work on Interface Builder? Switch to the Interface Builder tab.

Changes to Key Bindings

The third major change is to key bindings. Xcode 4 has changed most of its
keyboard shortcuts, which means you have to learn those quick shortcut keys
again. Three commonly used shortcuts for debugging are changed to F6 (Step
over), F7 (Step into), and F8 (Step out). Another commonly used shortcut that
has been changed is for switching between header and source code
counterparts. Xcode 3 used Cmd-Opt-Up Arrow; Xcode 4 uses Cmd-Ctrl-Up
Arrow. The shortcut for Build and Run, which was Cmd-Return, is now Cmd-
R.

For a good, comprehensive list of keyboard shortcuts, I recommend Cocoa Samurai’s list,
available for download at http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-
shortcuts-now.html, and another by The Pragmatic Studio, available at
http://pragmaticstudio.com/media/Xcode4Shortcuts. pdf.

Project Settings Editor

The fourth major change is the new project settings editor. In Xcode 3 you
normally edit your project settings by Cmd-clicking your target from the
Groups and Files list and choosing Edit. This has been completely revamped
and moved to the project settings editor. The project settings editor also
allows you to edit your build settings and other commonly accessed functions
like the NSZombieEnabled and GuardMalloc options. Furthermore, adding
additional frameworks to your product and passing command line arguments
are all now a part of this build settings panel of the project settings editor.

Integrated Version Control

The fifth major change is the supported integrated version control system.
Xcode 3 supported Subversion (SVN), Perforce, and Concurrent Versions
System (CVS) for versioning your source code. Xcode 4 removes support for

http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-shortcuts-now.html
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf

Perforce and CVS and adds Git. Later in this chapter you learn how to get the
best out of your version control system.

Workspaces

The sixth major change is the addition of workspaces to projects. In Xcode 3,
the top level of your app is the project. In Xcode 4 you can create a
workspace and add multiple projects within it. For example, if you are
writing a Mac + iOS app, you can share a wealth of code. Instead of manually
copying and pasting code, you can extract the common code into a separate
static library project and add it to the workspace. The primary advantage of a
workspace is implicit dependencies. This means that when you build your
Mac app (or iOS app), Xcode 4 automatically detects that it’s dependent on
your static library project and builds it first, without you explicitly requesting
it to do so.

All in One Window

Unlike Xcode 3, Xcode 4 is a single window IDE like Eclipse or Visual
Studio. Every file you use in your project can be opened without “switching”
to it using Mac’s Exposé. With full screen editing in Lion, you will appreciate
the single window IDE and find yourself spending less time switching or
searching for a window.

The IDE, as you saw earlier in this chapter, consists of a set of navigators, a
workspace area, and the utility area. There are seven navigators that replace
the functionality of the Groups and Files view.

The workspace area is where you edit your files, which can be either source
code or plist or even Interface Builder (IB) files. There are three different
kinds of editors: the Standard editor that you use for editing files, the
Assistant editor for editing files related to the current file in Standard editor,
and a Versions editor that shows the version history of a file.

The Utility area is akin to the Inspector pane found on most other
applications. Below the Utility area is the library from where you can drag
user interface elements into your IB or code snippets into your source code.
Let’s take a closer look at the different navigators available in Xcode 4.

Navigating the Navigators

Seven navigator panes are built into Xcode 4. These features were also
present in Xcode 3 (in the Groups and Files view), but are presented in a
more meaningful way in Xcode 4.

In Xcode 3, there used to be a single view—the Groups and Files view—where you did pretty
much everything. You chose the file to edit, edited project settings, added frameworks, accessed
breakpoints and debug logs, and a lot more all from the same view. Xcode 4 groups these actions
into seven different navigators.

All navigators have a filter and scope box (shown in Figure 2-5) that can be
accessed using Cmd-Opt-J. This shortcut puts the focus on the filter and
scope box below the navigator from where you can search for a project file.
The keyboard shortcut works for all navigators, so if you are in, say, the
symbol navigator, you can use this to quickly filter symbols. The filter box
might have additional buttons to restrict the scope, and sometimes (as in the
debug navigator) it might be replaced with a UI that looks different but offers
the same functionality.

You can press the shortcut key Cmd-Opt-J to quickly jump to the filter and scope box.

Navigators provide a clear separation of duties on the UI. For example, there
is a dedicated navigator for breakpoints, a dedicated navigator for issues, and
another for logs. Although it might be difficult to switch to the new, separate
navigators, you will appreciate them once you get accustomed to them.

Some features, like the capability to create smart groups, were dropped
probably because few people use them. However, if you have a project in
Xcode 3 that uses smart groups, opening it in Xcode 4 and saving it doesn’t
remove them from the project file. So when you open the project again on
Xcode 3, you will still see your smart groups.

Project Navigator

The project navigator is equivalent to the Groups and Files view in Xcode 3.
As its name suggests, the project navigator helps you locate your source code
files, frameworks, and targets. Similar to Xcode 3, the project navigator also
serves as a source code control Ul. This means that when you add files to the
project navigator, they are automatically added to your source control (if you

use one) and the project navigator also updates the UI with the files’ source
control status.

. iHotelApp
¥V ®1 target, i0S SDK 5.0

» (] Data
» [| Externals

» | |iHotelApp
» | Frameworks
» [| Products

+ O0OEQAQ(®

Figure 2-5 Xcode navigator showing the search and scope bar

Symbol Navigator

You can jump to the symbol navigator with the Cmd-2 shortcut. The symbol
navigator makes it easy to locate a specific symbol or class in your project.
The Clang front end of the LLVM compiler integrates well with Xcode 4 and
has made it faster to browse through symbols in the project.

Search Navigator

The search navigator is functionally exactly the same as the Xcode 3’s Find
and Replace feature. You can access this navigator with the traditional Cmd-
Shift-F shortcut or the navigator shortcut Cmd-3.

Issue Navigator

When you build your project, compiler warnings, error messages, or analyzer
warnings appear on the issue navigator. The issue navigator on Xcode 4 is
clear of build log messages, unlike Xcode 3’s equivalent debug view. In
Xcode 4, build logs are moved to a separate navigator called the log
navigator, which maintains every build log in chronological order. You can
access this using the navigator shortcut Cmd-4.

Debug Navigator

The debug panel in Xcode 3, which you access by pressing Cmd-Shift-Y, is
equivalent to Xcode 4’s debug navigator. You can access the debug navigator
in Xcode 4 using the navigator shortcut Cmd-5. The most important addition
is the scope slider. Instead of the filter and scope search box present in other
navigators, the debug navigator uses a scope slider. Drag the scope slider to
customize your scope preference.

Breakpoint Navigator

The sixth navigator is the breakpoint navigator. On Xcode 3, this was
managed in a separate window. The nifty addition here is the ability to
quickly add a symbolic breakpoint or an exception breakpoint. You can
access the breakpoint navigator using the shortcut Cmd-6.

A noteworthy feature of the breakpoint navigator is the ability to share your breakpoints with co-
workers. From the breakpoint navigator, Cmd-Click the project file and click Share Breakpoints.

Log Navigator

On Xcode 3, logs can be either configured to either clear themselves for
every build or continue to add to the current project log. On Xcode 4, this is
no longer the case. With the log navigator, every build gets its own log entry
and you can even search for entries in a log that was created several builds
ago. You can access the log navigator using the shortcut Cmd-7.

Help from Your Assistant

Xcode 4 has three main editors, and they are akin to multiwindow document
editing present in other competing IDEs. The two editors that augment Xcode
4’s Standard editor are the Assistant editor and the Versions editor. The best
thing about the Assistant editor is that, when you turn in on, it intelligently
knows the most relevant file to the file you are currently working with.

For example, when you are editing a Core Data model, turning on Assistant
editor opens the corresponding Core Data’s model file. Similarly, when you
are editing an Interface Builder file, it opens the corresponding header file.

A common action like adding an IBAction declaration in your header and
coming back to the Interface Builder to connect it can be easily done within
the same window using the Assistant editor.

Integrated Interface Builder

Prior to Xcode 4, Interface Builder was a standalone application, and the
most common mistake a programmer would make was failing to sync
Interface Builder and Xcode properly. For example, forgetting to save an
Interface Builder connection could crash your app at runtime. Additionally,
the very fact that there are two applications for writing iOS apps confuses
developers coming from an Eclipse or Visual Studio background. Those
difficulties are in the past because Xcode 4 integrates Interface Builder right
into the main IDE, and it’s now very easy to sync your user interface with the
controller code.

Interface Builder Panels

Interface Builder on Xcode 3 usually has multiple windows floating around.
At a bare minimum, you have the main document window, the library panel,
the inspector, and the actual user interface view. In Xcode 4, the library and
inspector are brought into the utility area. The document window is docked to
the left. Figure 2-6 shows a classical Interface Builder file open in Xcode 4.

® Xcode File Edit View Navigate Editor Product Window Help WA Bk @ D i T 4) Sun0945:01PM Q

806 [iHotelApp - iHotelAppViewController.xib e
@ @ T n ‘ Build iHotelApp: Succeeded | Today at 8:47 AM ’ EI

Run Stop, Scheme kpois Pruject _fi4 Editor View Organizer
us | €4 » | [NiHotelApp) (] \pp) i pp ontr... » - iHotelApp ontr... » | |View)| [Button - Login |4 . > n B % ©

‘ () Placeholders ‘

File's Owner
@ First Responder

‘ V% Objects ‘

v View

Button - Get Menu

Button - Simulate Req...
Button - Simulate Serv...
Label - This action fet...
Label - Tapping this b...
Label - This simulates...
Label - This simulates...

o

L Ld
Tapping this button initializes our engine. No real
logging is performed since we don't actually hit a

working server. You will get a connection error (which
you can ignore) since the demo end point
api.example.com doesn't exist

This action fetches the menu from the server. In our
case, we mock it to fetch from local store

Simulate Request Error

This simulates a request error (Bad formed URL).
Understand the control flow by placing breakpoints and
tapping this button

Simulate Server Error

This simulates a business logic error. Understand the
control flow by placing breakpoints and tapping this
button

¥ Button

Type | Rounded Rect D

State Config | Default 2
Title Login

Image | Default Image [v]

Background | Default Background Image |v |
Font Helvetica Bold 15.0 [D @

Text Color | BN | Default ¢
Shadow Color | BBNN | Default 3|

Shadow Offset o|(;] o|(3)
Width Height
Highlight [_| Reverses Direction
Drawing |_| Shows Touch On Highlight
@ Highlighted Adjusts Image
Disabled Adjusts Image

D (|| =

+) (=)

Label - A variably sized amount of
static text.

I_\‘ Objects
Label

. Round Rect Button - Intercepts touch
events and sends an action message to a
——— target object when it's tapped.

Segmented Control - Displays
multiple segments, each of which
functions as a discrete button.

112

(\ Text Field - Displays editable text and
Text | sends an action message to a target
object when Return is tapped.

Slider - Displays a continuous range of

Figure 2-6 Xcode 4 Interface Builder

The left pane now contains the objects in the Interface Builder file. The utility
area shows properties for the selected object.

When you turn on the Assistant editor, Xcode 4 will automatically open the correct header file for

you.

Generating Code Using Assistant Editor and Integrated Interface

Builder

The most important feature that has been added to Xcode 4’s integrated
Interface Builder is the capability to generate properties (IBOutlet) or event
handling (1BAction) code directly from IB. When the Assistant editor is
open, all you have to do is command-click and drag objects to the header file
to generate properties, or command-click and drag events from the Utility
area to the header to generate IBActions. If your drag destination is valid,
Xcode shows an insertion marker and adds the code right in. No connections
needed. It’s all done for you.

LLVM Compiler 3.0: A Tryst with the Brain

Xcode 3 and prior versions were not as “intelligent” compared to competing
IDE such as Eclipse or Visual Studio. The main reason for this is that Xcode
3 used GCC as the compiler. While GCC is a good compiler, it doesn’t offer
much interoperability with the IDE. A compiler normally has a front end that
converts source code into an intermediate representation and expands
preprocessor macro definitions. It also has a back end that generates code and
optimizes it. The GCC compiler is essentially a back-end compiler, which
means that when you provide it with source code, it generates compiled
binary for it. It was primarily developed for compiling code and not for
parsing it. Essentially, this means that Apple has to write its own version of
parsers to assist you with debugging. GCC is GPL, so Apple’s version of
parsers cannot use the same GCC code without changing the Xcode license to
GPL. Because Apple’s parsers and GCC are from different code base, there
were always some discrepancies between what the GCC compiler “thinks”
and what Xcode “thinks.”

The Clang Front End

To alleviate this problem, Apple is slowly switching to the LLVM compiler.
With Xcode 4.2 debuting with iOS 5, the default compiler is LLVM compiler
3.0. Although LLVM is not as “efficient” as GCC in code generation, it’s
more modular and extensible. LLVM is also more than twice as fast in terms
of compile time (thereby increasing your productivity). A number of front
ends have been developed for LLVM, and one of these is Clang, which is
heavily funded by Apple. (Clang stands for C language.) Clang supports
incremental compilation, which means that the IDE can actually compile the

code as you type and show you near-instantaneous compilation errors. You
will find this very useful when you start using Xcode 4.

A clear example of this is that Xcode 3 suggests nearly every symbol indexed
after you type @synthesize, but Xcode 4 shows suggestions only of the
properties in the corresponding header file. Moreover, the modular nature of
Clang makes it easy to support code refactoring and features like Edit All in
Scope.

I’m a Bug! Fix Me

LLVM’s tighter integration with IDE also helps Xcode 4 to offer suggestions
about what the developer must do when the compiler encounters an error.
This feature is called Fix-it.

Figure 2-7 shows a suggestion to remove the closing square brackets to match
the number of opening brackets.

© Expected statement before)’ token &9

Key:@" firstName"; O Extraneous] before ' @B
ey:@" lastName"] "
Forl

tFo Issue ©O Extraneous '] before ™'

a N

y:@

Figure 2-7 Xcode 4 Fix-it in action

Git Your Versions Here

Another interesting feature addition to Xcode 4 is the integrated Git version
control system. Git is a distributed version control system written by Linus
Torvalds (yes, the same guy behind the Linux kernel) primarily to maintain
the Linux kernel repository. The distributed nature, speed, reliability, cheap
branching, and the ability to easily do nonlinear software development
encouraged more and more users to adopt Git.

Integrated Git Version Control System

Git is primarily a command-line system, much like most other Unix/Linux
systems. Don’t fret. Xcode 4 has built-in support for Git, and the project
navigator even shows the commit statuses of your file. However, the decision
to use Git over any other version control system shouldn’t be based solely on
this. The main reason I advocate using Git for your next iOS app is its cheap
branching and its nonlinear development support.

Versions Editor

The Versions editor is the third type of editor available in Xcode 4. (As
mentioned previously in this chapter, the other two editor types are the
Standard editor and the Assistant editor.) The integrated Versions editor
comes in handy when you want to visually analyze differences between two
versions of a file. If your project uses Git (or SVN), you can compare a file
with a previous revision from its repository. The Versions editor allows you to
pick any older version of a file by scrubbing through a timeline resembling
the classical Time Machine UI. With OS X Lion, Apple might even consider
adding local versions support to Xcode and you would be able to compare
local versions of files in addition to the versions in the repository.

Git Best Practices

Apple’s AppStore is a walled garden, and if you are an active developer,
Apple has probably rejected you at least once. Imagine a product
development with, say, ten features. Out of these ten features, you develop
four for version 1.0, and another two for version 1.5, and remaining four for
version 2.0. You have submitted version 1.0 and are working on the fifth and
sixth features. A couple of weeks into development, you get a reply from
Apple that your app is rejected. Let’s assume that the third feature violates
some of Apple’s policies and is not allowed in its current state. In a traditional
SCM system, you check out the old code, work on the fix, and submit the fix
to Apple. You then come back to your code that has the fifth and sixth
features added and painstakingly merge these bug fixes to your latest-and-
greatest code. While SVN and other source code control systems offer
branching, it’s quite hard to use and as the size of project grows, branching
becomes an expensive operation (both timewise and disk-usagewise). With
Git, this kind of merging, branching, and parallel development is very easy
mostly because of the way Git stores change sets.

For a deeper introduction to Git, I recommend reading Pro Git or Version Control With Git. (See
the “Further Reading” section at the end of the chapter for details.) The first book gives you an
in-depth understanding about how Git works; the second helps you get started with and make the
best use of Git in your project.

I suggest you follow these steps when using Git in your next iOS app:

1. Let your master branch reflect your latest-and-greatest code for the
version available on the App Store.

2. For every new version you are working on, create a new branch.

3. For every major feature you implement, create a branch from the version
branch.

4. Merge your branch with the master whenever you submit your app to the
App Store.

5. Optionally tag your master branch after the app is approved.

When you follow these steps, you can easily fix bugs and issues with a
particular version and merge your changes with the latest branch you are
working on, all within couple of minutes.

For example, if Apple were to reject your app, all you would need to do is
check out the master branch, make your fixes, resubmit to the App Store,
check out your current working branch, and merge the changes you made in
the master to it. With Git, nonlinear development gets really easy. Try using
it. You will not regret it.

Schemes

The most powerful yet most confusing addition to Xcode 4 is schemes. In
Xcode 3, there is a build configuration selection combo box, where you
specify an active configuration; an active target; an active executable; the
active architecture (instruction set); and the target device before running the
app. Even the default set of options has an overwhelmingly high combination
of selections, and for complicated project settings, choosing the right
executable for the right target or device and instruction set becomes
challenging. To top it off, Xcode 3 even allows choosing a wrong executable
as active for a given target. Schemes have been introduced in Xcode 4 to help

developers handle these issues easily. A scheme is a single entity that
combines all of the above-mentioned settings. A scheme is a set of
instructions for building a product. The product can be (in most cases will be)
a collection of targets with its own build configurations. You can also use
your existing xcconfig files for those targets. You learn about this later in this
chapter.

Why Schemes?

The previous method of choosing four different options whenever you want
to build something makes it difficult to do it right every time. There are times
when you would have built and submitted the debug version of the app to the
App Store or tried to debug the release configuration of the app, only to find
your breakpoints were not getting hit. With schemes in place, all you have to
do is to choose your scheme and every other option is automatically applied.
When you are building your product for debugging, you obviously don’t want
to strip off debug statements. On the other hand, when you are building for
the App Store, you almost always want to optimize your build for
performance and strip off debug statements. That holds good for Ad Hoc
deployments as well. Wait! It doesn’t end there. These schemes can also be
shared among co-workers by committing into the repository.

Think of Schemes as Implementing Your Intentions

With schemes you can automatically choose the correct configuration for a
target by choosing a scheme that matches your intent. That is, if your intent
is, “I want to debug this product,” choose the Run scheme. If your intent is, “I
want to submit this product to AppStore/Adhoc distribution,” choose the
Archive scheme.

With schemes, you select one option based on your intent. All your other
settings are applied automatically. With some tweaks, you can customize the
settings that are applied when a scheme is created. You will learn this in the
next section.

Creating a Scheme

The easiest way to create a scheme is to let Xcode 4 auto-create one for you.
When you open a project created on Xcode 3 in Xcode 4, it automatically

creates a default scheme. Every scheme has its own unique settings panel that
allows you to customize or tweak the default scheme setting. The following
list discusses actions in a scheme.

® Run—The Run action builds the included targets using the debug build
configuration. On the settings panel of this action you can change the
debugger you want to use (GDB or LLDB) and the build configuration, the
default being Debug. The Run action’s settings panel is where you specify
command-line arguments, provide default data, or provide mock location
data (using GPX files) to your app. You can also enable diagnostics-related
arguments like Enabling Zombies or Guard Malloc from here (from Xcode
4.1 onward).

To take it even further, you can duplicate the scheme and try different
debuggers (and/or settings) on each.

m Test—The Test action runs your test targets. On the settings panel, you
can customize which tests should be executed. Schemes are fully integrated
with the OCUnit Objective-C testing framework and tests written will
show up on the settings panel. Test failures show up on the Issue and Log
navigators instead of the console, which means that navigating to the
correct method that caused the test case to fail is now easier.

By duplicating this scheme, you can create two test schemes: one testing
your model classes, and one testing, say, your helper methods.

® Profile—The Profile action builds your target and attaches it to
Instruments. When you choose this, Instruments automatically launches
and shows you the list of instruments available. You can edit the scheme to
always launch the Time Profiler tool or the Leaks tool (or any other)
automatically.

You can duplicate the profile scheme so that you have two schemes: one
launching Leaks and the other launching Time Profiler.

® Analyze—The Analyze action runs the Clang static analyzer on your
code and warns you of potential memory leaks. There isn’t much to
customize here except the build configuration to use for this scheme.

®m Archive—The Archive action is used for making xcarchive files (or ipa
files) used for submitting to the App Store. Archives automatically appear
on the Xcode organizer from where you can validate/submit to the App

Store. With a dedicated Archive scheme, you are no longer required to
create an Ad Hoc build configuration or an “App Store” build
configuration for your product like you do in Xcode 3. These specific
distribution configurations differ in most cases from the release
configuration only by the signing certificate. Because the signing happens
later, you can use the release configuration for archiving your apps.
Signing it for submitting to the App Store or for Ad Hoc distribution is
done through the Xcode organizer.

Sharing Your Schemes

By default, a scheme created by Xcode 4 is saved to the project bundle under
the xcuserdata directory. Normally this directory is excluded from
repositories, which means schemes generated on your machine stay on your
machine. In some cases, you might want to share schemes with co-workers.
To do so, go to the Manage scheme options panel and select the Shared
checkbox for every scheme you want to share. This is illustrated in Figure 2-
8.

@Autocreate schemes Autocreate Schemes Now
Show | Scheme Container Shared
v iHotelApp B iHotelApp project |
+ - B
Edit... [OK

Figure 2-8 Sharing Schemes

When you check the Shared option, your schemes are copied over to the
xcshareddata directory. By adding this directory to your repository, you can
share your custom schemes with co-workers.

Schemes are actually a better way to customize your IDE/Environment than
Xcode 3’s method of using multiple configurations. Give it a try and you will
like it.

Build Configurations You Can Comment

In most projects, you would have depended on Xcode’s build settings panel to
edit/change your build settings. But this build settings panel has one major
drawback. You cannot easily comment on a particular change you made on
your project’s configuration. Xcode (both 3 and 4) provides an easy way to

do this by using xcconfig files.

Creating an xcconfig File

An xcconfig file is a plaintext file that contains build configurations for your
target. Start by adding a Debug configuration file to your project. You can
choose this from the templates in the new file wizard’s Other section. Figure
2-9 illustrates this.

Choose a template for your new file:
B ios ~
5 N L Y
Cocoa Touch S Y g ™ Q;Q
Cand C++ 2]
User Interface .
Core Dita Empty Assembly File Configuration Resource Rules
Settings File
Resource
& Mac OS X
Cocoa
Cand C++ Shell Script
User Interface
Core Data
Resource
Other
/. Configuration Settings File
An empty Xcode Configuration Settings File.
Cancel Previous | [sesNexte

Figure 2-9 Adding a new configuration file

Name the file debug.xcconfig. Now open the build settings editor and select
Basic and Levels as options. Copy these build settings to the configuration
file you just created. You can select a row and use Cmd-C to copy and paste
them on the configuration file.

Repeat these steps for the Release configurations in another file called
release.xcconfig. Once you create this basic configuration, you can set all
settings to default in the build settings editor.

Now, you need to tell Xcode to use this build configuration file instead of the
specified build settings. To do so, select the project and then, in the project
settings editor, choose the project again. In the Info panel, expand the
configuration section and choose your config file.

That’s it. You have now created a build configuration file that’s readable and
commentable, which you can share with co-workers through your SCM.
Ready to refactor this?

Refactoring the Build Configuration File

When you created the build configuration file, you probably noticed that
many identical settings appear on both the debug and release configurations.
You can easily avoid duplicating them by creating a shared.xcconfig file
and copying those settings to it. Once you are done with the
shared.xcconfig file, remove those entries from the debug.xcconfig and
release.xcconfig files. Now use the include statement to add the
shared.xcconfig entries to both files:

#include “shared.xcconfig”

This will automatically import all the shared settings into both the
configuration files. Now when you run your app, everything should work.
You can even add this to every new project you create or even to Xcode’s
new project templates.

Xcode 4 Organizer

Xcode 4 Organizer is a one-stop shop for anything related to Xcode that’s not
programming specific. From the Organizer, you can manage project
repositories, perform SCM operations, and manage your application archives,
provisioning profiles, and devices. Open the Organizer window by pressing
Cmd-Shift-2 or clicking the rightmost button on your Xcode 4 toolbar. You
will use the Xcode 4 Organizer mostly to access your application archives,
submit your apps to the App Store and to manage your devices and
provisioning profiles. Xcode 4 also has a new feature called Automatic
Device Provisioning, discussed in the next section.

The first tab of Xcode 4 Organizer shows the list of devices and provisioning
profiles currently loaded. Xcode 4 provides an easy way to export this list and
import it on a new machine. If you ever want to migrate your developer
settings to another computer, this is the place you should look for.

Automatic Device Provisioning

From the provisioning profiles list on the Devices tab, you can see a
checkbox near the footer called Automatic Device Provisioning. When
enabled, Xcode 4 can automatically download and install a developer
certificate and a distribution certificate from your iOS developer program
portal. Xcode 4 can also create a wild card provisioning profile (with an
Implicit App ID) automatically, and that profile can be used for your apps that
don’t require an Explicit App ID.

Apps with any of the following features—Push Notification, Game Center, iCloud, or In App
Purchases—cannot use the implicit App ID and hence cannot depend on Xcode’s Automatic
Device Provisioning.

Viewing Crash Logs and Console NSLog Statements

The Devices tab shows you a list of devices that have been connected to your
development machine at least once. When you expand the device by clicking
the disclosure triangle, you will be able to see Device logs and screenshots
for that device. When a device is connected, you will see additional entries
like Console logs, provisioning profiles installed on the device, and a list of
applications provisioned. (This includes apps you run via Xcode or apps that
you install via Ad Hoc distribution.)

Viewing Applications’ Sandbox Data

With Xcode 4 (beginning with Xcode 4.2), you can view, delete, or add files
to an app’s sandbox inside a device. This makes debugging on the device
easier. To access the device’s sandbox, select the connected device from the
left pane, choose Applications from the list, and choose the application for
which you want to see the sandbox. Delete or add files from here or copy
them locally to your computer.

Managing Repositories

Xcode 4 automatically adds the repositories for any project you have opened
into the Repositories tab. The repositories section serves as a pretty good
alternative for Git (or SVN) GUI access for most purposes.

If you are a “Unix-y” person and prefer to use the command line, I suggest
you stay away from any GUI tools, and use them only for viewing diffs. A
quick, lightweight tool I recommend is GitX. It has a command line tool to
“pipe” Git diff output and shows you a visual diff. My workflow has always
been like this:

git diff | gitx

Accessing Your Application Archives

You can access your application archives from the Xcode 4 Organizer and
validate or submit your apps from there. In the previous section, you saw how
to archive an application using the archive scheme action. This archive can be
accessed from the Archives tab of Xcode 4 Organizer.

Viewing Objective-C and SDK Documentation

Organizer also makes it easy to access the SDK documentation. The
Documentation tab of Organizer shows the list of docsets installed. In most
cases that would be the latest two iOS SDKs, the latest two Mac OS X SDKs,
and the current Xcode library.

Summary

Xcode 4 IDE is a huge improvement over Xcode 3. While it is still not as
stable as Xcode 3, you should start using and getting accustomed to it. Some
features such as new key-bindings, schemes, and integrated Interface Builder
might look different and confusing at first, but as you get used to them you
will start appreciating them, especially for the time they save. Apple has
already stopped supporting Xcode 3, and new features like storyboarding and
ARC migration tools are available only on Xcode 4. It only makes sense to
start using the latest-and-greatest IDE as soon as possible.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Apple Developer: Debugging with Xcode 4
Apple Developer: Orientation to Xcode 4
Apple Developer: Designing User Interfaces with Xcode 4

WWDC Videos

The following session videos are available at developer.apple.com.

Session 307: Moving to the Apple LLVM Compiler
Session 316: LLVM Technologies in Depth
WWDC 2011 Session 313: Mastering Schemes with Xcode 4

Blogs

Cocoa Samurai. “Xcode 4 keyboard shortcuts now available!”
http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-
shortcuts-now.html

The Pragmatic Studio. “Xcode 4 shortcuts”
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf

Pilky.me. “Xcode 4: the super mega awesome review”
http://pilky.me/view/15

Napier, Rob. Cocoaphony: Mac and iPhone, on the brain. “Building the

Build System — Part 1 — Abandoning the Build Panel”
http://robnapier.net/blog/build-system-1-build-panel-360

Web Resources
GitX.Mac OS X Git Client http://gitx.frim.nl/

Books

Chacon, Scott. Pro Git (Apress 2009, ISBN 978-1430218333).
http://progit.org/book/

Loeliger, Jon. Version Control With Git: Powerful Tools and Techniques for

http://developer.apple.com/
http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-shortcuts-now.html
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf
http://pilky.me/view/15
http://robnapier.net/blog/build-system-1-build-panel-360
http://gitx.frim.nl/
http://progit.org/book/

Collaborative Software Development (O’Reilly Media 2009, ISBN 978-
0596520120) http://oreilly.com/catalog/9780596520137

http://oreilly.com/catalog/9780596520137

Part II: Getting the Most Out of
Everyday Tools

Chapter 3 Everyday Objective-C

Chapter 4 Hold On Loosely: Cocoa Design Patterns
Chapter 5 Getting Table Views Right

Chapter 6 Better Drawing

Chapter 7 Layers Like an Onion: Core Animation

Chapter 8 Tackling Those Pesky Errors

Chapter 3: Everyday Objective-C

This chapter covers many everyday best practices for Cocoa development,
along with several underused features that more developers should be
familiar with. Chapter 4 delves deeper into broad Cocoa patterns; here you
focus on language features.

You begin by learning the critical Cocoa naming conventions that will
improve your code’s readability. Next you are introduced to one of the most
exciting new features of iOS 5: Automatic Reference Counting (ARC). This
will change how you develop your applications and dramatically reduce bugs
and crashes. Then you learn how to best use properties and accessors to
manage data in your objects. Finally, you learn about categories, extensions,
and protocols, which are all commonly used throughout Cocoa.

By the end of this chapter, you should be very comfortable with the most
important language features of Objective-C and feel confident that you are
using the best practices of experienced Cocoa developers.

Naming Conventions

Throughout iOS, naming conventions are extremely important. If you
understand how to read them correctly, the names of methods and functions
throughout the iOS SDK tell you a great deal about how they are supposed to
be called and what they do. Once you’re used to the naming conventions, you
can often guess what the name of a class or method is, making it much easier
to find the documentation for it. This section touches on some of the most
important naming convention rules and those that cause problems for
developers with experience in other languages.

The best source of information on Cocoa naming conventions is Apple’s Coding Guidelines for
Cocoa, which is available at developer.apple.com.

The first thing to know is that in Cocoa, ease of reading is more important
than ease of writing. Code spends much more of its life being read,
maintained, and debugged than written. Cocoa naming conventions always

http://developer.apple.com/

favor the reader by striving for clarity over brevity. This is in stark contrast to
C, which favors extremely terse naming. Because Objective-C is a dynamic
language, the compiler provides far fewer safeguards than a static language
like C++. Good naming is a critical part of writing bug-free code.

The most important attribute of a good name is clarity. The names of methods
should make it clear what types they accept and return. For instance, this
method is extremely confusing:

- (void)add; // Confusing

It looks like add should take a parameter, but it doesn’t. Does it add some
default object?

Yes, so names like these are much clearer:

- (void)addEmptyRecord;
- (void)addRecord: (Record *)record;

Now it’s clear that addRecord: accepts a Record. The type of the object
should match the name if there is any chance of confusion. For instance, this
is a common mistake:

- (void)setURL:(NSString *)URL; // Incorrect

It’s incorrect because something called setURL: should accept an NSURL, not
an NSString. If you need a string, then you should add some kind of indicator
to make this clear:

- (void)setURLString: (NSString *)string;
- (void)setURL: (NSURL *)URL;

This rule shouldn’t be overapplied. It’s better to have a property called name
than nameString, as long as there is no Name class in your system that might
confuse the reader.

Clear naming also means that you should avoid abbreviations in most cases.
Use backgroundColor rather than bgcolor, and stringvalue rather than
to_str. There are exceptions to the use of abbreviations, particularly for
things that are best known by their abbreviation. For example, URL is better
than uniformResourceLocator. An easy way to determine whether an

abbreviation is appropriate is to say the name out loud. You say “source” not
“src.” But most people say “URL” as either “u-ar-el” or “earl.” No one says
“uniform resource locator” in speech, so you shouldn’t in code. There are a
few abbreviations such as alloc, init, rect, and pboard that Cocoa uses for
historical reasons that are considered acceptable. Apple has generally been
moving away from even these abbreviations as it releases new frameworks.

There are several kinds of variables in a program: instance variables, static
variables, automatic (stack) variables, and so on. It can be very difficult to
understand code if you don’t know what kind of variable you’re looking at.
Naming conventions should make the intent of a variable clear. After coding
in many different styles with different teams, my recommendations are the
following:

m Prefix static (package-scoped) variables with s and nonconstant global
variables with g. Generally you should avoid nonconstant globals; for
example, the following is a static declaration:

static MYThing *sSharedInstance;

m Constants are named differently in Cocoa from the way they are named
in Core Foundation. In Core Foundation, constants are prefixed with a k. In
Cocoa, they are not. File-local (static) constants should generally be
prefixed with k in my opinion, but there is no hard-and-fast rule here. The
following are examples of a file constant and a public constant:

static const NSUInteger kMaximumNumberOfRows = 3;
NSString * const MYSomethingHappenedNotification =
@”SomethingHappened”;

®m Method arguments are generally prefixed with an article such as a, an, or
the. The last is less common and sometimes suggests a particularly
important or unique object. Prefixing your arguments this way helps avoid
confusing them with local variables and ivars. It is particularly helpful to
avoid modifying them unintentionally.

m Suffix instance variables (ivars) with an underscore or prefix them with
m. I avoid prefixing with underscore because Apple reserves the leading
underscore, and I’ve occasionally collided with instance variables in the
superclass. Also, key-value coding (KVC) automatically retrieves private
instance variables that begin with an underscore. This breaks encapsulation

in a way that isn’t obvious in the code and provides no warning. To avoid
that, I use another naming convention (trailing underscore, based on
Google’s approach).

m Classes should always begin with a capital letter. Methods and variables
should always begin with a lowercase letter. All classes and methods
should use camel case—never underscores—to separate words.

Cocoa and Core Foundation use slightly different naming conventions, but their basic approach is
the same. For more information on Core Foundation naming, see Chapter 19.

Cocoa naming is tightly coupled with memory management. With the
addition of ARG, this is no longer as critical, but it is important to understand
when working on non-ARC code. The naming convention is quite simple, as
the following extract from the Memory Management Programming Guide
(developer.apple.com) shows:

You take ownership of an object if you create it using a method whose name
begins with alloc or new or contains copy (for example, alloc, newobject, or
mutableCopy), or if you send it a retain message. You are responsible for
relinquishing ownership of objects you own using release or autorelease.
Any other time you receive an object, you must not release it.

Even in ARC code, you should be aware of this naming convention and avoid
using alloc, new, copy, retain, and release to mean anything other than

their traditional meanings.

Automatic Reference Counting

One of the most powerful additions to iOS 5 is ARC. ARC greatly reduces
the most common programmer error in Cocoa development: mismatching
retain and release. ARC does not eliminate retain and release, it just
makes them a compiler problem rather than a developer problem most of the
time. In the vast majority of cases this is a major win, but it’s important to
understand that retain and release are still going on. ARC is not the same
thing as garbage collection. Consider the following code, which assigns a
value to an ivar:

@property (strong, nonatomic) NSString *title;

http://developer.apple.com/

@synthesize title = title_;
title_ = [NSString stringWithFormat:@”Title”];

Without ARC, title_ is underretained in the preceding code. The NSString
assigned to it is autoreleased, so it will disappear at the end of the run loop,
and the next time someone accesses title_, the program will crash. This
kind of error is incredibly common and can be very difficult to debug.
Moreover, if title had a previous value, then that old value has been leaked
because it wasn’t released.

Using ARC, the compiler automatically inserts extra code to create the
equivalent of this:

id o0ldTitle = title_ ;

title_ = [NSString stringWithFormat:@”Title”];
[title_ retain];

[01dTitle release];

The calls to release and retain still happen, so there is a small overhead,
and there may be a call to dealloc during the release. But generally this
makes the code behave the way the programmer intended it to without
creating an extra garbage collection step. Memory is reclaimed faster than
with garbage collection, and decisions are made at compile time rather than at
runtime, which generally improves overall performance. As with other
compiler optimizations, the compiler is free to optimize memory management
in various ways that would be impractical for the programmer to do by hand.
ARC-generated memory management is often dramatically faster than the
equivalent hand-coded memory management.

But this is not garbage collection. In particular, it cannot handle reference
(retain) loops the way Snow Leopard garbage collection can. For example,
the object graph in Figure 3-1 shows a retain loop between Object A and
Object B:

External Object

7 N

Object A Object B

s

Figure 3-1 A retain loop

If the link from “External Object” to “Object A” is broken, then under Snow
Leopard garbage collection both Object A and Object B will be destroyed
because they are orphaned from the program. Under ARC, Object A and
Object B will not be destroyed because each still has a retain count greater
than zero. So in iOS, you need to keep track of your strong relationships to
avoid reference loops.

Property relationships have two main forms: strong and weak, which map to
the former retain and assign. As long as there is a strong reference to an
object, it will continue to exist. This is nearly identical to shared_ptr in C++,
except that the code to manage the reference counts is injected by the
compiler rather than determined at runtime with operator overloads.

Objective-C has always had the problem of reference loops, but they really
don’t come up that often in practice. Anywhere you would have used an
assign property in the past, use a weak property under ARC and you should
be fine. Most reference loops are caused by delegates, and a delegate
property should almost always be weak. Weak references have the advantage

of automatically being set to nil when the referenced object is destroyed.
This is a significant improvement over assign properties, which can point to
freed memory.

Prior to ARC, the default storage class for synthesized properties was assign. Under ARC, there
is no default storage class for synthesized properties. You must provide one in the @property line.

There are two major changes when switching to ARC for most code:

m Don’t use retain, release, or autorelease. You can just delete these.
ARC should do the right thing.

m If your dealloc only releases ivars, you don’t need dealloc. This will be
done automatically for you, and you can’t call release in any case. If you
still need dealloc to do other things (remove KVO observations, for
instance), don’t call [super dealloc]. This last change is surprising, but
the compiler will give you errors if you forget.

As noted previously, ARC is not garbage collection. It is a compiler feature
that injects calls to retain and release at appropriate places in the code.
This means that it is fully interoperable with existing, manual memory
management code, as long as all the code uses the correct naming
conventions. For example, if you call a method named copySomething, ARC
will expect the result of that method to have a +1 retain count. If needed, it
will insert a balancing release. It doesn’t matter to ARC whether that +1
retain count was created by ARC code inside of copySomething, or manual
memory management inside of copySomething.

This breaks if you violate Cocoa’s naming conventions. For instance, if you
have a method that returns the copyright notice as an autoreleased string, and
call the method copyRight, then how ARC behaves depends on whether the
calling and called code are both compiled with ARC.

ARC looks at the name copyRight, sees that it begins with copy, and so
assumes that it returns a +1 retain count object. If copyRight is compiled
with ARC, and the calling code is compiled with ARC, everything will still
work. ARC will inject an extra retain in copyRight because of its name, and
it will inject an extra release in the calling code. It may be a little less
efficient, but the code will neither crash nor leak.

If, however, the calling code is compiled with ARC, but copyRight is not,
then the calling code will inject an extra release, and the code will crash. If
the calling code is not compiled with ARC, but copyRight is, then ARC will
inject an extra retain, and the code will leak.

The best solution to this problem is to follow Cocoa’s naming conventions. In
this example, you could name this method copyright and avoid the problem
entirely. ARC determines the memory management rules based on whole
camel case words in the method.

If renaming an incorrect method is impossible, you can add the attribute
NS_RETURNS_RETAINED or NS_RETURNS_NOT_RETAINED to your method
declaration to tell the compiler which memory management rule to use. These
are defined in NSObjCRuntime.h.

ARC introduces four restrictions on your code so that it can properly add
retain and release calls for you:

® No calls to retain, release, or autorelease. This is usually the easiest
rule. Just delete them. It also means that you cannot override these
methods, but you should almost never do that anyway. If you were
overriding these methods to implement the Singleton pattern, see Chapter 4
for information about how to properly implement this pattern without
overriding these methods.

B No object pointers in C structs. This seldom comes up, but if you have
been storing an object in a C struct, you either need to store it in an object,
or you need to cast it to void* (see the next rule for more information on
casting to void*). C structs can be destroyed at any time by calling free,
and this interferes with automatically tracking objects that are stored in
them.

® No casting between id and void* without a bridging cast. This mostly
impacts Core Foundation code. See Chapter 19 for full details on bridging
casts and how to use them with ARC.

® No NSAutoreleasePool. Rather than creating your own autorelease
pools by hand, just wrap any code you want to have its own pool in a
@autoreleasepool{} block. If you had special code to control when you

drained your pool, it is almost certainly unnecessary. @autoreleasepool is
up to 20x faster than NSAutoreleasePool.

Most code will have no problem with these rules. There is a new tool in
Xcode under the Edit>Refactor menu called Convert to Objective-C
ARC. ... It will do the majority of the work for you.

ARC is perhaps the greatest advancement in Objective-C since the
autorelease pool. If at all possible, you should convert your code to ARC. If
you can’t convert everything, convert as much as you can. It is faster, less
buggy, and easier to write than manual memory management. Switch to ARC
today.

Properties

Objective-C 2.0 introduced several interesting changes. A key improvement
was nonfragile ivars. This allows classes to add ivars without recompiling
their subclasses. This feature mostly affects framework developers like Apple
rather than application developers, but it has some useful side effects. The
most popular is synthesized properties.

What few people realize is that synthesized properties can generate their own
ivar. For example:

MyClass.h

@interface MyClass : NSObject
@property (copy) NSString *string;
@end

MyClass.m

@implementation MyClass
@synthesize string=string_;
@end

The ivar string_ is automatically generated, even though it is not listed in
the header. Even more interesting, you could put the property declaration in a
private extension or the @implementation block making a fully private

property. (You cannot synthesize an ivar for a property defined in a category.
See “Categories and Extensions” later in this chapter for more information on
the differences.)

In your code, I encourage you either to declare all of your ivars in the
interface or to synthesize all of your ivars. Don’t have some declared in the
interface and some not declared in the interface.

My recommendation is to switch entirely to properties and fully synthesized
ivars. Put your public properties in the header, and your private properties in
an extension in the .m file. So a full example might look like this:

MyClass.h

@interface MyClass : NSObject

@property (readwrite, weak) id delegate;

@property (readonly, strong) NSString *readonlyString;
@end

MyClass.m

@interface MyClass () // Private methods

@property (readwrite, strong) NSString *readonlyString;
@property (readwrite, strong) NSString *privateString;
@end

@implementation MyClass

@synthesize delegate=delegate_;

@synthesize readonlyString=readonlyString_;

@synthesize privateString=privateString_;

@end

Note how readonlyString is redefined in the class extension to be
readwrite. This allows you to create a private setter.

Property Attributes

While we’re discussing properties, you should also consider the attributes you
apply to your properties. Let’s consider each category in turn.

B Atomicity — nonatomic. There is no atomic attribute. Anything not
declared nonatomic is atomic. This is an easy attribute to misunderstand.

Its purpose is to make setting and getting the property thread safe. That
does not mean that the underlying object is thread safe. For instance, if you
declare an NSMutableArray property called stuff to be atomic, then
self.stuff is thread safe and self.stuff=otherStuff is thread safe. But
accessing the array with objectAtIndex: is not thread safe. You will need
additional locking to handle that. The atomic attribute is implemented
similar to this:

[_propertyLock lock];

id result = [[value retain] autorelease];
[_propertyLock unlock];

return result;

The pattern of retain/autorelease ensures that the object will not be
destroyed until the caller’s autorelease pool drains. This protects the caller
from other threads releasing the object in the middle of access. Managing
the lock and calling retain and autorelease can be expensive (though
atomic properties are much cheaper with ARC). If you will never access
this property from another thread, or if you need more elaborate locking
anyway, then this kind of atomicity is wasteful. It turns out that this is the
case most of the time, and you usually want to use nonatomic. In the fairly
small number of cases where this kind of atomicity is useful, there
unfortunately is no way to call it out because there is no atomic attribute.
It’s helpful to add a comment in these cases to make it clear that you’re
making the property atomic on purpose.

ARC provides significant performance benefits to atomic properties, and best practices regarding
nonatomic may change in the near future.

B Writability — readwrite, readonly. These should be fairly self-
explanatory. If a property is readonly, then only a getter will be available.
If it is readwrite, then both a setter and getter will be available. There is
no writeonly attribute.

m Setter Semantics — weak, strong, copy. These should be fairly
obvious, but there are some things to consider. First, you often should use
copy for immutable classes such as NSString and NSArray. It is possible
that there is a mutable subclass of your property’s class. For instance, if
you have an NSString property, you might be passed an
NSMutableString. If that happens, and you only hold a reference to the

value (strong), your property might change behind your back as the caller
mutates it. That often isn’t what you want, and so you will note that most
NSString properties use the copy semantic. This is also usually true for
collections like NSArray. Copying immutable classes is generally very
cheap because it can almost always be implemented with retain.

Property Best Practices

Properties should represent the state of the object. Getters should have no
externally visible side effects (they may have internal side effects such as
caching, but those should be invisible to callers). Generally they should be
efficient to call and certainly should not block.

Private Ivars

While I prefer properties for everything, some people prefer ivars, especially
for private variables. In iOS 5, you can declare ivars in the @implementation
block like this:

@implementation Something{
NSString *name;

}

This syntax moves the private ivar out of the public header, which is good for
encapsulation, and keeps the public header easier to read. ARC automatically
retains and releases ivars, just like other variables. The default storage class is
strong, but you can create weak ivars as shown here:

@implementation Something{
__weak NSString *name;

}

Accessors

Avoid accessing ivars directly. Use accessors instead. There are a few
exceptions that I discuss in a moment, but first I discuss why you should use
accessors.

Prior to ARC, one of the most common iOS bugs was failure to use
accessors. Developers would fail to retain and release their ivars correctly,

and the program would leak or crash. Because ARC automatically manages
retains and releases, some developers may believe that this rule is no longer
important, but there are other reasons to use accessors.

m Key-value observing: Perhaps the most critical reason to use accessors
is that properties can be observed. If you do not use accessors, you need to
make calls to willChangeValueForKey: and didChangeValueForKey:
every time you modify a property. Using the accessor will automatically
call these when they are needed.

m Side effects: You or one of your subclasses may include side effects in
the setter. There may be notifications posted or events registered with
NSUndoManager. You shouldn’t bypass these unless it’s necessary.
Similarly, you or a subclass may add caching to the getter that direct ivar
access will bypass.

® Locking: If you introduce locking to a property in order to manage
multithreaded code, direct ivar access will break this and likely crash your
program.

m Consistency: One could argue that you should just use accessors when
you know you need them for one of the preceding reasons, but this makes
the code very hard to maintain. It is better that every direct ivar access be
suspicious and explained rather than having to constantly remember which
ivars require accessors and which do not. This makes the code much easier
to audit, review, and maintain. Accessors, particularly synthesized
accessors, are highly optimized in Objective-C, and they are worth the
overhead.

That said, there are a few places where you should not use accessors:

® Inside of accessors: Obviously you cannot use an accessor within itself.
Generally you should also not use the get accessor inside of the setter
either (this can create infinite loops in some patterns). An accessor may
speak to its own ivar.

® Dealloc: ARC greatly reduces the need for dealloc, but it still comes up
sometimes. It is best not to call external objects inside of dealloc. The
object may be in an inconsistent state, and it is likely confusing to the
observer to receive several notifications that properties are changing when

what is really meant is that the entire object is being destroyed.

® Initialization: Similar to dealloc, the object may be in an inconsistent
state during initialization and you generally shouldn’t fire notifications or
have other side effects during this time. This is also a common place to
initialize readonly variables like an NSMutableArray. This avoids declaring
a property readwrite just so you can initialize it.

Accessors are highly optimized in Objective-C and provide important
features for maintainability and flexibility. As a general rule, you should refer
to all properties, even your own, using their accessors.

Categories and Extensions

Categories allow you to add methods to an existing class at runtime. Any
class, even Cocoa classes provided by Apple, can be extended with
categories, and those new methods will be available to all instance of the
class. This approach was inherited from Smalltalk and is somewhat similar to
extension methods in C#.

Categories were designed to break up large classes into more manageable
pieces, hence the name. If you look at large Foundation classes, you will find
that sometimes they are broken into several pieces. For instance, NSArray
includes the NSExtendedArray, NSArrayCreation, and NSDeprecated
categories defined in NSArray. h, plus the NSArrayPathExtensions category
defined in NSPathutilities.h. Most of these are split up to make it simpler
to implement in multiple files, but some categories, like the UIStringDrawing
category on NSString, exist specifically to allow different code to be loaded
at runtime. On Mac, AppKit loads the NSStringDrawing category. On iOS,
UIK:it loads the ustringbrawing category. This provides a more elegant
way to split up the code than #ifdef. On each platform, you simply compile
the appropriate implementation (.m) files, and the functionality becomes
available.

Prior to Objective-C 2.0, @protocol definitions could not include optional
methods. Developers used categories as “informal protocols.” The complier
knows the methods defined in a category, but it will not generate a warning if
the methods are not implemented. This made all the protocol’s methods

optional. I discuss this further in “Formal and Informal Protocols” later in this
chapter, but for iOS I do not recommend this use of categories. Formal
protocols now support optional methods directly.

Because the compiler will not check that you have implemented methods in
the category, using categories solely to break up large classes has trade-offs.
An implementation file that’s getting overly large is often an indication that
you need to refactor your class to make it more focused rather than define
categories to split it up. But if your class is correctly scoped, you may find
splitting up the code with categories is convenient. On the other hand, using
categories can scatter the methods into different files, which can be
confusing, so use your best judgment.

Declaration of a category is straightforward. It looks like a class interface
declaration with the name of the category in parentheses:

@interface NSMutableString (Capitalize)
- (void)capitalize;
@end

Capitalize is the name of the category, but it isn’t used for anything. Note
that there are no ivars declared here. Categories cannot declare ivars, nor can
they synthesize properties (which is the same thing). You’ll see how to add
category data later in this chapter.

The capitalize category does not require that capitalize actually be
implemented anywhere. If it isn’t and a caller attempts to invoke it, it will
raise an exception. The compiler gives you no protection here. If you do
implement it, then by convention it looks like this:

@implementation NSMutableString (Capitalize)
- (void)capitalize {

[self setString:[self capitalizedString]];
}

@end

I say “by convention” because there is no requirement that this be defined in
a category implementation or that the category implementation have the same
name as the category interface. However, if you provide an @implementation
block named capitalize, then it must implement all the methods from the

@interface block named capitalize. Adding the parentheses and category
name after the class name allows you to continue adding methods in another
compile unit (.m file). You can implement your category methods in the main
implementation block, in a named category implementation block for the
class, or not implement them at all.

Technically a category can override methods, but that’s dangerous and not
recommended. If two categories implement the same method, then it is
undefined which one is used. If a class is later split into categories for
maintenance reasons, your override could become undefined behavior, which
is a maddening kind of bug to track down. Moreover, using this feature can
make the code hard to understand. Category overrides also provide no way to
call the original method. I recommend against using categories to override
existing methods, except for debugging. Even for debugging, I prefer
swizzling, which is covered in Chapter 20.

A very good use of categories is to provide utility methods to existing classes.
When doing this, I recommend naming the header and implementation files
using the name of the original class plus the name of the extension. For
example, you might create a simple MyExtensions category on NSDate:

NSDate+MYExtensions.h

@interface NSDate (MYExtensions)
- (NSTimeInterval)timeIntervalUntilNow;
@end

NSDate+MYExtensions.m

@implementation NSDate (MYExtensions)

- (NSTimeInterval)timeIntervalUntilNow {
return [self timeIntervalSinceNow];

}

@end

If you have only a few utility methods, it is convenient to put them together
into a single category with a name like MYExtensions (or whatever prefix you
use for your code). This makes it easy to drop your favorite extensions into
each project. Of course, this is also code bloat, so be careful about how much
you throw into a “utility” category. Objective-C can’t do dead-code stripping

as effectively as C or C++.

If you have a large group of related methods, particularly a collection that
might not always be useful, it’s a good idea to break those into their own
category. Look at UIStringDrawing.h in UIKit for a good example of this.

+load

Categories are attached to classes at runtime. It’s possible that the library that
defines the category is dynamically loaded, so categories can be added quite
late. (While you can’t write your own dynamic libraries in iOS, the system
frameworks are dynamically loaded and include categories.) Objective-C
provides a hook called +1oad that you can run when the category is first
attached. Like +initialize, you can use this to implement category-specific
setup such as initializing static variables. You can’t safely use +initialize in
a category because the class may implement this already. If multiple
categories implemented +initialize, it would be undefined which one
would run.

Hopefully you’re ready to ask the obvious question: “If categories can’t use
+initialize because they might collide with other categories, what if
multiple categories implement +1oad?” This turns out to be one of the few
really magical parts of the Objective-C runtime. The +1load method is special-
cased in the runtime so that every category may implement it and all the
implementations will run. There are no guarantees on order, and you
shouldn’t try to call +1oad by hand.

+1oad is called regardless of whether the category is statically or dynamically
loaded. It is called when the category is added to the runtime, which often is
at program launch, before main, but could be much later.

Classes can have their own +1oad method (not defined in a category) and
those will be called when the classes are added to the runtime. This is seldom
useful unless you’re dynamically adding classes.

You don’t need to protect against being run multiple times in +1oad the way
you do with +initialize. The +load message is only sent to classes that
actually implement it, so you won’t accidentally get calls from your

subclasses the way you can in +initialize. Every +load will be called
exactly once. You shouldn’t call [super load].

Category Data using Associative References

While categories can’t create new ivars, they can do the next best thing: They
can create associative references. Associative references allow you to attach
key-value data to arbitrary objects.

Consider the case of a Person class. You’d like to use a category to add a new
property called emailAddress. Maybe you use Person in other programs, and
sometimes it makes sense to have an email address and sometimes it doesn’t,
so a category can be a good solution to avoid the overhead when you don’t
need it. Or maybe you don’t own the Person class, and the maintainers won’t
add the property for you. In any case, how do you attack this problem? First,
just for reference, take a look at the Person class:

@interface Person : NSObject

@property (readwrite, copy) NSString *name;
@end

@implementation Person

@synthesize name=name_;

@end

Now you can add a new property, emailAddress, in a category using an
associative reference:

#import <objc/runtime.h>
@interface Person (EmailAddress)
@property (readwrite, copy) NSString *emailAddress;
@end
@implementation Person (EmailAddress)
static char emailAddressKey;
- (NSString *)emailAddress {
return objc_getAssociatedObject(self, &emailAddressKey);
}

- (void)setEmailAddress: (NSString *)emailAddress {

objc_setAssociatedObject(self, &emailAddressKey,
emailAddress,

OBJC_ASSOCIATION_COPY);

@end

Note that associative references are based on the key’s memory address, not
its value. It does not matter what is stored in emailAddressKey; it only needs
to have a unique address. That’s why it’s common to use an unassigned
static char as the key.

Associative references have good memory management, correctly handling
copy, assign, or retain semantics according to the parameter passed to
objc_setAssociatedObject. They are correctly released when the related
object is deallocated.

Associative references are a great way of attaching a relevant object to an
alert panel or control. For example, you can attach a “represented object” to
an alert panel, as shown in the following code. This code is available in the
sample code for this chapter.

ViewController.m (AssocRef)

id interestingObject = ...;

UIAlertView *alert = [[UIAlertView alloc]
initwithTitle:@”Alert” message:nil
delegate:self
cancelButtonTitle:@”0K”
otherButtonTitles:nil];

objc_setAssociatedObject(alert, &kRepresentedObject,

interestingObject,
OBJC_ASSOCIATION_RETAIN_NONATOMIC);
[alert show];

Now, when the alert panel is dismissed, you can figure out why you cared:

- (void)alertView: (UIAlertView *)alertView
clickedButtonAtIndex: (NSInteger)buttonIndex {
UIButton *sender = objc_getAssociatedObject(alertView,
&kRepresentedObject)
self.buttonLabel.text = [[sender titlelLabel] text];

}

Many programs handle this with an ivar in the caller like
currentAlertObject, but associative references are much cleaner and
simpler. For those familiar with Mac development, this is similar to
representedObject, but more flexible.

One limitation of associative references (or any other approach to adding data
via a category), is that it doesn’t integrate with encodewWithCoder:, so they’re
difficult to serialize via a category.

Category Data using the Flyweight Pattern

If you’re sharing code with pre-10.6 Mac OS X, then associative references
aren’t an option and you’ll need to use the older approach: the Flyweight
pattern. Rather than store the data inside the object, you store it outside the
object and keep track of some key to find it. In this case, each Person
instance must have a unique identifier, as shown in this code:

Person.h (Flyweight)

@interface Person : NSObject

@property (readonly, copy) NSString *identifier;
@property (readwrite, copy) NSString *name;

- (Person *)initWithIdentifier:(NSString *)anIdentifier;
@end

Person.m (Flyweight)

@implementation Person
@synthesize identifier=identifier_;
@synthesize name=name_;
- (Person *)initWithIdentifier:(NSString *)anIdentifier {
if ((self = [super init])) {
identifier_ = [anIdentifier copy];

}

return self;

}
@end

Now you create a static NSMutableDictionary to keep track of your
emailAddress data:

Person+EmailAddress.h (Flyweight)

@interface Person (EmailAddress)
@property (readwrite, copy) NSString *emailAddress;
@end

Person+EmailAddress.m (Flyweight)

@implementation Person (EmailAddress)
static NSMutableDictionary *sEmailAddressForIdentifier = nil;
+ (void)load {
sEmailAddressForIdentifier =
[[NSMutableDictionary alloc] init];

(NSString *)emailAddress {
return [sEmailAddressForIdentifier
objectForKey:[self identifier]];

(void)setEmailAddress: (NSString *)anAddress {
[sEmailAddressForIdentifier setObject:[anAddress copy]
forKey:[self identifier]];

}
@end

You can now set an email address for a Person object just as you would set a
name, as shown here:

main.m (Flyweight)

Person *person = [[Person alloc] initWithIdentifier:@"”someone”];
person.name = @”A Name”;
person.emailAddress = @”"myaddress@example.org”;

There are some problems with this approach. There’s no good way to release
memory, unless you can somehow track when Person objects are destroyed.

But for a wide variety of problems, this approach works pretty well in cases

where associative references aren’t an option.

Class Extensions

Objective-C 2.0 adds a useful twist on categories, called class extensions.
These are declared exactly like categories, except the name of the category is
empty:

@interface MYObject ()
- (void)doSomething;
@end

Class extensions are a great way to declare private methods inside of your .m
file. The difference between a category and an extension is that methods

declared by an extension are exactly the same as methods declared in the
main interface. The compiler will make sure you implement them all, and
they will be added to the class at compile time rather than runtime as
categories are. You can even declare synthesized properties in extensions.

Formal and Informal Protocols

Protocols are an important part of Objective-C, and in Objective-C 2.0 formal
protocols have become common. In Objective-C 1.0, there was no @optional
tag for protocol methods, so all methods were mandatory. It is rare that this is
useful. Often you want some or all of the protocol to be optional. Because
this wasn’t possible in Objective-C 1.0, developers commonly used “informal
protocols” and sometimes you’ll still come across these.

An informal protocol is a category on NSobject. Categories tell the compiler
that a method exists, but do not require that the method be implemented. This
technique allowed developers to document the interface and prevent compiler
warnings, while indicating that any child of NSobject could implement the
methods. This isn’t a great approach to defining an interface, but in
Objective-C 1.0, it was the best there was.

With Objective-C 2.0, formal protocols can declare optional methods, and
many informal protocols on Mac are migrating to formal protocols. Luckily,
iOS has always used Objective-C 2.0, so formal protocols are the norm.

Most developers are familiar with how to declare that a class implements a
formal protocol. You simply include the protocols in angle brackets after the
superclass:

@interface MyAppDelegate : NSObject <UIApplicationDelegate,
UITableViewDatasource>

Declaring a protocol is similarly easy:

@protocol UITableViewDataSource <NSObject>

@required

- (NSInteger)tableView: (UITableView *)tableView

numberOfRowsInSection: (NSInteger)section;

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath;

@optional

- (NSInteger)numberOfSectionsInTableView: (UITablevView *)tv;
- (NSString *)tableView: (UITableView *)tableView
titleForHeaderInSection: (NSInteger)section;

There are some important points to note in this example. First, protocols can
inherit just like classes. The UITableviewDataSource protocol inherits from
the <NSObject> protocol. Your protocols should almost always inherit from
<NSObject>, just as your classes inherit from NSObject.

NSoObject is split into both a class and a protocol. This is primarily to support NSProxy, which
inherits from the protocol, but not the class.

For delegate protocols, the delegating object is always the first parameter.
This is important because it allows a single delegate to manage multiple
delegating objects. For instance, one controller could be the delegate for
multiple UIAlertView instances. Note the slight difference in naming
convention when there are parameters other than the delegating object. If
there are no other parameters, the class name comes last
(numberofsSectionsInTableView:). If there are other parameters, the class
name comes first as its own parameter
(tableVview:numberOfRowsInSection:).

Once you’ve created your protocol, you will often need a property to hold it.
The typical type for this property is id<Protocol>:

@property(nonatomic, weak) id<MyDelegate> delegate;

This means “any object that conforms to the Mybelegate protocol.” It is
possible to declare both a specific class and a protocol, and it’s possible to
declare multiple protocols in the type:

@property(nonatomic, weak) MyClass* <MyDelegate,
UITableViewDelegate> delegate;

This indicates that delegate must be a subclass of MyClass and must
conform to both the <MyDelegate> and <UITableVviewDelegate> protocols.

Protocols are an excellent alternative to subclassing in many cases. A single
object can conform to multiple protocols without suffering the problems of

multiple inheritance (as found in C++). If you are considering an abstract
class, a protocol is often the better choice. Protocols are extremely common
in well-designed Cocoa applications.

Summary

Much of good Objective-C is “by convention” rather than enforced by the
compiler. This chapter covers several of the important techniques you’ll use
every day to get your programs to the next level. Conforming to Cocoa’s
naming conventions will greatly improve the reliability and maintainability of
your code, and give you key-value coding and observing for free. Correct use
of properties will make memory management easy, especially since the
addition of ARC. And good use of categories and protocols will keep your
code easy to understand and extend.

Further Reading

Apple Documentation

The following document is available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Coding Guidelines for Cocoa

Other Resources

Gallagher, Matt, “Method names in Objective-C,” Cocoa With Love.
cocoawithlove.com/2009/06/method-names-in-objective-c.html

Stevenson, Scott, “Cocoa Style for Objective-C,” CocoaDevCentral.
cocoadevcentral.com/articles/000082.php

http://developer.apple.com/
http://cocoawithlove.com/2009/06/method-names-in-objective-c.html
http://cocoadevcentral.com/articles/000082.php

Chapter 4: Hold On Loosely: Cocoa
Design Patterns

If you’re like most iOS developers, Objective-C is not your first language.
You probably have a background in other object-oriented languages like Java,
C++, or C#. You may have done development in C. None of these languages
really prepare you for how to think in Objective-C.

In the beginning there was Simula, and Simula had two children: C++ from
Bell Labs and Smalltalk from Xerox PARC. From C++ sprung Java, which
tried to make things easier. Microsoft wrote Java.NET and called it C#.
Today, most developers are trained in this branch of Simula. Its patterns
include generic programming, static typing, customization through
subclassing, method calling, and strong object ownership.

Objective-C and Cocoa come from the Smalltalk fork. NeXT developed a
framework called NeXTSTEP. It was written in Objective-C and
implemented many of Smalltalk’s patterns. When Apple brought NeXTSTEP
to the Mac, it renamed it Cocoa, although the NS prefix remains to this day.
Cocoa has very different patterns, and this is what sometimes gives new
developers trouble. Common Cocoa patterns include protocols, dynamic
typing, customization through delegation, message passing, and shared object
ownership.

I’m not going to give a computer science history lesson here, but it’s
important to understand that Objective-C is not Java and it’s not C++. It’s
really Smalltalk. Because few developers learn Smalltalk, most need to adjust
their thinking to get the most out of Objective-C.

In this chapter I use the terms Objective-C and Cocoa interchangeably.
Technically, Objective-C is a language and Cocoa is a collection of
frameworks implemented in Objective-C. In principle you could use
Objective-C without Cocoa, but in practice this is never done. In the
following sections you learn the major Cocoa design patterns and how best to

apply them in your programs.

The pattern names used in this chapter come from the book Design Patterns
(Addison-Wesley Professional 1994. ISBN: 978-0201633610) by Eric
Gamma, Richard Helm, Ralph Johnson, and John Vlissides—sometimes
called “The Gang of Four.” Apple maps its patterns to the Design Pattern
names in the chapter “Cocoa Design Patterns” of the Cocoa Fundamentals
Guide (see the “Further Reading” section at the end of this chapter).

Understanding Model-View-Controller

The most important pattern in Smalltalk and Cocoa is called model-view-
controller (MVC). This is an approach to assigning responsibilities within a
program. Model classes are responsible for representing information. View
classes are responsible for interfacing with the user. Controller classes are
responsible for coordinating between models and views.

There are subtle differences between how Smalltalk and Cocoa implement MVC. This chapter
discusses only how Cocoa uses MVC.

Using Model Classes

A good model class encapsulates a piece of data in a presentation-
independent way. A classic example of a good model class is Person. A
Person might have a name, an address, a birthdate, and an image. The Person
class, or related model classes, would encapsulate storing and retrieving
related information from a data source, but would have no display or editing
features. The same Person class should be easily reusable on an iPhone, iPad,
Mac, or a command-line program. Model classes should reference only other
model classes. They should never reference views or controllers. A model
class might have a delegate that happens to be a controller, but it should
implement this using a protocol so that it does not need to reference the
specific controller class.

Model class names are generally simple nouns like Person, Dog, and Record.
You often include a two- or three-letter prefix to identify them as your code
and prevent collisions, such as RNPerson.

Model classes can be mutable or immutable. An immutable class cannot

change once it is created. NSString is a good example of this. A mutable
class like NSMutableString can change after it is created. In this context,
“change” refers only to changes that are visible outside the object. It doesn’t
matter if internal data structures like caches change.

There are many advantages to immutable objects. They can save time and
memory. Immutable objects can implement copy by calling retain. Because
it’s impossible for the object to change, you don’t have to make a real copy.
Immutable objects are inherently thread safe without locking, which makes
them much faster and safer to access in multithreaded code. Because
everything is configured at initialization time, it is much easier to ensure the
object is always in a consistent state. You should use immutable model
classes unless there is a reason to make them mutable.

Model classes are often the most testable and reusable classes in the system.
Designing them well is one of the best ways to improve the overall quality of
your code. Historically, Apple sample code has not included well-designed
model classes. This confuses new developers who believed that controllers
(or worse, views) are supposed to hold data. More recent sample code from
Apple has improved, and the example project TheElements includes good
examples of model classes. Look at AtomicElement and PeriodicElements.
(See the “Further Reading” section at the end of this chapter.)

Using View Classes

View classes are responsible for interfacing with the user. They present
information and accept user events. (This is the biggest deviation from
Smalltalk MVC, where controller classes are responsible for user events.)
View classes should not reference controller classes. As with model classes,
view classes may have a delegate that happens to be a controller, but they
shouldn’t reference the controller class directly. They also shouldn’t reference
other views, except their immediate superview and subviews. Views may
reference model classes, but generally only the specific model object that
they are displaying. For instance a PersonView object might display a single
Person object. It is easier to reuse view objects that do not reference custom
model objects. For instance, a UITableViewCell is highly reusable because it
displays only strings and images. There is sometimes a trade-off between
reusability and ease-of-use in view objects, and finding the right balance is an

important part of your architecture. In my experience, specialized views that
handle a specific model class are often very useful for application writers.
Framework writers, such as the UIKit team, need to emphasize reusability.

Model-specific view class names often append View to the model class, such
as PersonView or RecordView. You should do this only if the view is a
subclass of UTview. Some kinds of view classes have special names. Reusable
views are generally called cells such as UITableviewCell on iOS or NSCell
on Mac. Lightweight, hardware-optimized view classes are generally called
layers such as CALayer or CGLayer. Whether or not they are subclasses of
UIView or NSView, they are still MVC view classes.

Views are responsible for accepting events from users, but not for processing
them. When a user touches a view, the view may respond by alerting a
delegate that it has been touched, but it should not perform logic or modify
other views. For example, pressing a Delete button should simply tell a
delegate that the Delete button has been pressed. It should not tell the model
classes to delete the data, nor tell the table view to remove the data from the
screen. Those functions are the responsibility of a controller.

Using Controller Classes

Between the models and the views lie the controllers, which implement most
of the application-specific logic. Most controllers coordinate between model
classes and view classes. For example UITableViewController coordinates

between the data model and the UuITableview.

Some controllers coordinate between model objects or between view objects.
These sometimes have names ending in Manager such as CALayoutManager
and CTFontManager. It is common for managers to be singletons.

Controllers are often the least-reusable parts of a program, which is why it is
so critical not to allow view and model classes to reference them directly.
Even controllers should avoid referencing other controllers directly. In this
context, “directly” means referring to specific classes. It is fine to refer to
protocols that are implemented by a controller. For instance, UITableView
references <UITableViewDelegate>, but should not reference
MyTableViewController.

A common mistake is to allow many objects to reference the application
delegate directly. For example, you may want to access a global object. A
common, but incorrect, solution is to add this global object as a property on
the application delegate, and access it as shown here:

// Do not do this
MyAppDelegate *appDelegate =
(MyAppDelegate*)[[UIApplication sharedApplication] delegate];
Something *something = [appDelegate something];
// Do not do this

It is very difficult to reuse code that uses this pattern. It relies on
MyAppDelegate, which is hard to move to other programs that have their own
application delegate. The better way to access global objects is the Singleton
pattern, discussed later in this chapter.

The model-view-controller pattern is very effective at improving code reuse.
Applying it properly to your programs helps them fit into the Cocoa
framework and simplify development.

Understanding Delegates and Data Sources

A delegate is a helper object that manages the behavior of another object. For
example, UITableView needs to know how tall each row should be.
UITableView has a rowHeight property, but this isn’t sufficient for all
problems. What if the first row should be taller than the other rows? Apple
might have added a firstRowHeight property for that case. Then it might
have added lastRowHeight and evenRowHeight properties. UITableView
would become much more complicated, and still would be limited to uses that
Apple had specifically designed for.

Instead UITableVview takes a delegate, which can be any object class that
conforms to the <UITableviewDelegate> protocol. Every time UITableView
is ready to draw a row, it asks its delegate how tall that row should be. This
allows you to implement arbitrary logic for row height. It could be based on
the data in that row, or a user configuration option, or any other criteria that is

appropriate for your application. Delegation makes customization extremely
flexible.

Some objects have a special kind of delegate called a data source.
UITableView has a data source protocol called <UITableviewDataSource>.
Generally a delegate is responsible for appearance and behavior, while a data
source is responsible for the data to be displayed. Splitting the responsibilities
this way can be useful in some cases, but most of the time the delegate and
the data source are the same object. This object is generally the controller. For
instance, UITableViewController conforms to both
<UITableViewDelegate> and <UITableViewDataSource>.

As a general rule, objects do not retain their delegates. If you create a class
with a delegate property, it should almost always be declared weak. In most
cases, an object’s delegate is also its controller, and the controller almost
always retains the original object. If the object retained its delegate, you
would have a retain loop and would leak memory. There are exceptions to
this rule. For example, NSURLConnection retains its delegate, but only while
the connection is loading. After that NSURLConnection releases its delegate,
avoiding a permanent retain loop.

Delegates are often observers (see “Working with the Observer Pattern” later
in this chapter). It is common for objects to have delegate methods that
parallel their notifications. For example, UIApplication sends its delegate
applicationwillTerminate:. It also posts the notification
UIApplicationwWillTerminateNotification.

Configuring your objects using delegation is a form of the Strategy pattern.
The Strategy pattern encapsulates an algorithm, and allows you to change
how an object behaves by attaching different strategy (algorithm) objects. A
delegate is a kind of Strategy object that encapsulates the algorithms
determining the behavior of another object. For instance, a table view’s
delegate implements an algorithm that determines how high the table view’s
rows should be. Delegation reduces the need for subclassing by moving
customization logic into helper objects. This improves reusability and can
simplify your code by moving complex customization logic out of the main
program flow. Before adding configuration properties to your classes,
consider adding a delegate instead.

Working with the Command Pattern

The Command pattern encapsulates a request as an object. Rather than calling
a method directly, you package the method call into an object and dispatch it,
possibly at a later time. This can provide significant flexibility and allows
requests to be queued, redirected, logged, and serialized. It also supports
undoing operations by storing the inverse of the commands. Cocoa
implements the Command pattern using target-action and NSInvocation. In
this section you will learn how to use NSInvocation to create more complex
dispatch objects such as trampolines.

Using Target-Action

The simplest form of the Command pattern in Cocoa is called target-action.
This isn’t a full implementation of the Command pattern because it doesn’t
encapsulate the request into a separate object, but it allows similar flexibility.

UIControl is an excellent example of target-action. You configure a
UIControl by calling addTarget:action:forControlEvents:. This
establishes a target, which is the object to send a message, an action, which is
the message to send, and a set of events that will trigger the message. The
action selector must conform to a particular signature. In the case of
UIControl, the signature must be in one of the following forms:

- (void)action;
- (void)action:(id)sender;
- (void)action:(id)sender forEvent:(UIEvent *)event;

UIControl can then dispatch its action like this:

[target performSelector:action
withObject:self
withObject:event];

Because of how Objective-C message passing works, this use of
performSelector: ... works whether action takes one, two, or no
parameters. (See Chapter 20 for details of how Objective-C message passing
is implemented.)

Target-action is very common in Objective-C. Controls, timers, toolbars,
gesture recognizers, IBAction, notifications, and other parts of Cocoa rely on
this pattern.

Target-action is similar to delegation. The main difference is that in target-
action the selector is configurable, while in delegation the selector is defined
by a protocol. It is easier for a single object to be the target of several
NSTimer objects than it is to be the delegate of several UITableVview objects.
To listen to multiple NSTimer objects, you only need to configure them with
different actions:

[NSTimer scheduledTimerWithTimeInterval:1 target:self

selector:@selector(firstTimerFired:) ...];
[NSTimer scheduledTimerWithTimeInterval:1 target:self
selector:@selector(secondTimerFired:) ...];

To listen to multiple table views, you need to check which table view sent the
request:

- (NSInteger)numberOfSectionsInTableView: (UITableView*)tv {
if (tv == self.tableviewl) {
return [self.datasetl count];

}
else if (tv == self.tableView2) {

return [self.dataset2 count];

}

else {
NSAssert(NO, @”Bad tv: %@", tv);
return 0O;

b
}

Each delegate method must include this if logic, which can become very
cumbersome. For this reason, multiple instances of a class generally do not
share the same delegate.

On the other hand, delegation allows you to verify at compile time that the
required methods are implemented. The compiler cannot verify that the target
of an NSTimer implements a given action.

While the compiler cannot determine if a target implements a given action, you can check for
simple typos by turning on the Undeclared Selector warning (6CC_WARN_UNDECLARED_SELECTOR, -
Wundeclared-selector). This generates a warning if an @selector(...) expression references an
unknown selector.

As a general rule, if your object will send only one message to its target
object, use target-action. If it will send multiple messages, use delegation.

Using Method Signatures and Invocations

NSInvocation is a traditional implementation of the Command pattern. It
bundles a target, a selector, a method signature, and all the parameters into an
object that can be stored and invoked at a later time. When the invocation is
invoked, it will send the message and the Objective-C runtime will find the
correct method implementation to execute.

A method implementation (IMP) is a function pointer to a C function with the
following signature:

id function(id self, SEL _cmd, ...)

Every method implementation takes two parameters, self and _cmd. The first
parameter is the self pointer that you are familiar with. The second
parameter, _cmd, is the selector that was sent to this object. This is a reserved
symbol in the language and is accessed exactly like self. For more details on
how to work with method implementations, see Chapter 20.

While the 1vP typedef suggests that every Objective-C method returns an id, obviously there are
many Objective-C methods that return other types such as integers or floating-point numbers,
and many Objective-C methods return nothing at all. The actual return type is defined by the
message signature, discussed below, not the IMp typedef.

NSInvocation includes a target and a selector. As discussed in the section
“Using Target-Action,” a target is the object to send the message to, and the
selector is the message to send. A selector is roughly the name of a method. I
say “roughly” because selectors don’t have to map exactly to methods. A
selector is just a name, like initwithBytes:length:encoding:. A selector
isn’t bound to any particular class or any particular return value or parameter
types. It isn’t even specifically a class or instance selector. You can think of a
selector as a string. So -[NSString length] and -[NSData length] have the
same selector, even though they map to different methods’ implementations.

NSInvocation also includes a method signature (NSMethodSignature). This
encapsulates the return type and the parameter types of a method. An
NSMethodSignature does not include the name of a method, only the return
value and the parameters. Here is how you can create one by hand:

NSMethodSignature *sig =

[NSMethodSignature signatureWithObjCTypes:"@@:*"];

This is the signature for -[NSString initWithUTF8String:]. The first
character (@) indicates that the return value is an id. To the message passing
system, all Objective-C objects are the same. It can’t tell the difference
between an NSString and an NSArray. The next two characters (@:) indicate
that this method takes an id and a SEL. As discussed above, every Objective-
C method takes these as its first two parameters. They’re implicitly passed as
self and _cmd. Finally, the last character (*) indicates that the first “real”
parameter is a character string (char*).

If you do work with type encoding directly, you can use @encode(type) to get the string that
represents that type rather than hard-coding letter. For example, @encode (id) is the string “@”.

You should seldom call signaturewithobjCTypes:. I only do it here to show
it’s possible to build a method signature by hand. The way you generally get a
method signature is to ask a class or instance for it. Before you do that, you
need to consider whether the method is an instance method or a class method.
The method -init is an instance method and is marked with a leading
hyphen (-). The method +alloc is a class method and is marked with a
leading plus (+). You can request instance method signatures from instances
and class method signatures from classes using
methodSignatureForSelector:. If you want the instance method signature
from a class, you use instanceMethodSignatureForSelector:. The
following example demonstrates this for +alloc and -init.

SEL initSEL = @selector(init);

SEL allocSEL = @selector(alloc);

NSMethodSignature *initSig, *allocSig;

// Instance method signature from instance

initSig = [@"”String” methodSignatureForSelector:initSEL];

// Instance method signature from class

initSig = [NSString
instanceMethodSignatureForSelector:initSEL];

// Class method signature from class

allocSig = [NSString

methodSignatureForSelector:allocSEL];

If you compare initSig and allocSig, you will discover that they are the
same. They each take no additional parameters (besides self and _cmd) and
return an id. This is all that matters to the message signature.

Now that you have a selector and a signature, you can combine them with a
target and parameter values to construct an NSInvocation. An NSInvocation
bundles everything needed to pass a message. Here is how you create an
invocation of the message [set addObject:stuff] and invoke it:

NSMutableSet *set = [NSMutableSet set];
NSString *stuff = @”"Stuff”;
SEL selector = @selector(addObject:);
NSMethodSignature *sig =
[set methodSignatureForSelector:selector];

NSInvocation *invocation =

[NSInvocation invocationWithMethodSignature:sig];
[invocation setTarget:set];
[invocation setSelector:selector];
// Place the first argument at index 2.
[invocation setArgument:&stuff atIndex:2];
[invocation invoke];

Note that the first argument is placed at index 2. As discussed above, index 0
is the target (self) and index 1 is the selector (_cmd). NSInvocation sets
these automatically. Also note that you must pass a pointer to the argument,
not the argument itself.

Invocations are extremely flexible, but they’re not fast. Creating an
invocation is hundreds of times slower than passing a message. Invoking an
invocation is cheap, however, and invocations can be reused. They can be
dispatched to different targets using invokewithTarget: or setTarget:. You
can also change their parameters between uses. Much of the cost of creating
an invocation is in methodSignatureForSelector :, so caching this result can
significantly improve performance.

Invocations do not retain their object arguments by default, nor do they make
a copy of C string arguments. To store the invocation for later use, you should
call retainArguments on it. This retains all object arguments and copies all C
string arguments. When the invocation is released, it releases the objects and
frees its copies of the C strings. Invocations do not provide any handling for
pointers other than Objective-C objects and C strings. If you’re passing raw
pointers to an invocation, you’re responsible for managing the memory
yourself.

If you use an invocation to create an NSTimer, such as by using

timerWithTimeInterval:invocation:repeats:, the timer automatically calls retainArguments on
the invocation.

Invocations are a key part of the Objective-C message dispatching system.
This integration with the message dispatching system makes them central to
creating trampolines and undo management.

Using Trampolines

A trampoline “bounces” a message from one object to another. This allows a
proxy object to move messages to another thread, cache results, coalesce
duplicate messages, or any other intermediary processing you’d like.
Trampolines generally use forwardInvocation: to handle arbitrary
messages. If an object does not respond to a selector, before Objective-C
throws an error it creates an NSInvocation and passes it to the object’s
forwardInvocation:. You can use this to forward the message in any way
that you’d like. For full details, see Chapter 20.

In this example, you create a trampoline called RNObserverManager. Any
message sent to the trampoline will be forwarded to registered observers that
respond to that selector. This provides functionality similar to
NSNotification, but is easier to use and faster if there are many observers.

Here is the public interface for RNObserverManager:
RNObserverManager.h (ObserverTrampoline)

#import <objc/runtime.h>

@interface RNObserverManager: NSObject

- (id)initwWithProtocol: (Protocol *)protocol
observers: (NSSet *)observers;

- (void)addObserver: (id)observer;

- (void)removeObserver:(id)observer;

@end

You initialize this trampoline with a protocol and an initial set of observers.
You can then add or remove observers. Any method defined in the protocol
will be forwarded to all the current observers if they implement it.

Here is the skeleton implementation for RNObserverManager, without the
trampoline piece. Everything should be fairly obvious.

RNObserverManager.m (ObserverTrampoline)

@interface RNObserverManager ()
@property (nonatomic, readonly, strong)
NSMutableSet *observers;
@property (nonatomic, readonly, strong) Protocol *protocol;
@end
@implementation RNObserverManager
@synthesize observers = observers_;
@synthesize protocol = protocol_;
- (id)initwWithProtocol: (Protocol *)protocol
observers: (NSSet *)observers {
if ((self = [super init])) {

protocol_ = protocol;

observers_ = [NSMutableSet setWithSet:observers];
}
return self;

- (void)addObserver: (id)observer {
NSAssert([observer conformsToProtocol:self.protocol],
@"0Observer must conform to protocol.”);
[self.observers addObject:observer];

- (void)removeObserver:(id)observer {
[self.observers removeObject:observer];

}
@end

Now you override methodSignatureForSelector:. The Objective-C
message dispatcher uses this method to construct an NSInvocation for
unknown selectors. You override it to return method signatures for methods
defined in protocol, using protocol_getMethodDescription. You need to
get the method signature from the protocol rather than from the observers
because the method may be optional, and the observers might not implement
it.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)sel

{
// Check the trampoline itself
NSMethodSignature *
result = [super methodSignatureForSelector:sel];
if (result) {
return result;

}

// Look for a required method
struct objc_method_description desc =
protocol_getMethodDescription(self.protocol,
sel, YES, YES);
if (desc.name == NULL) {
// Couldn’t find it. Maybe it’s optional
desc = protocol_getMethodDescription(self.protocol,
sel, NO, YES);
}

if (desc.name == NULL) {
// Couldn’t find it. Raise NSInvalidArgumentException
[self doesNotRecognizeSelector: sel];
return nil;

}

return [NSMethodSignature
signaturewWithObjCTypes:desc.types];
}

Finally, you override forwardInvocation: to forward the invocation to the
observers that respond to the selector:

- (void)forwardInvocation: (NSInvocation *)invocation {
SEL selector = [invocation selector];
for (id responder in self.observers) {
if ([responder respondsToSelector:selector]) {
[invocation setTarget:responder];
[invocation invoke];
3
}
3

To use this trampoline, you create an instance, set the observers, and then
send messages to it as the following code shows. Variables that hold a
trampoline should generally be of type id so that you can send any message
to it without generating a compiler warning.

@protocol MyProtocol <NSObject>
- (void)doSomething;
@end

id observerManager = [[RNObserverManager alloc]
initWithProtocol:@protocol(MyProtocol)
observers:observers];

[observerManager doSomething];

This behaves similarly to posting a notification. You can use this technique to
solve a variety of problems. For example, you can create a proxy trampoline
that forwards all messages to the main thread as shown here:

RNMainThreadTrampoline.h (ObserverTrampoline)

@interface RNMainThreadTrampoline : NSObject
@property (nonatomic, readwrite, strong) id target;
- (id)initwWithTarget: (id)aTarget;

@end

RNMainThreadTrampoline.m (ObserverTrampoline)

@implementation RNMainThreadTrampoline
@synthesize target = target_;
- (id)initwWithTarget: (id)aTarget {
if ((self = [super init])) {
target_ = aTarget;
}

return self;
(NSMethodSignature *)methodSignatureForSelector:(SEL)sel

return [self.target methodSignatureForSelector:sel];

1YY [L

(void)forwardInvocation: (NSInvocation *)invocation {
[invocation setTarget:self.target];
[invocation retainArguments];
[invocation performSelectorOnMainThread:@selector (invoke)
withObject:nil
waitUntilDone:NO];

}
@end

forwardInvocation: can transparently coalesce duplicate messages, add
logging, forward messages to other machines, and perform a wide variety of
other functions. See Chapter 20 for more discussion, including how to couple
with NSProxy.

Using Undo

The Command pattern is central to undo management. By storing Command
objects (NSInvocation) in a stack, you can provide arbitrary undo and redo
functionality.

Before performing an action that the user should be able to undo, you pass its
inverse to NSUndoManager. A convenient way to do this is with
prepareWithInvocationTarget:. For example:

- (void)setString: (NSString *)aString {
// Make sure there is really a change
if (! [aString isEqualToString:string_]) {
// Send the undo action to the trampoline
[[self.undoManager prepareWithInvocationTarget:self]
setString:string_];
// Perform the action
string_ = aString;
¥
}

When you call preparewithInvocationTarget:, the undo manager returns a
trampoline that you can send arbitrary messages to. These are converted into
NSInvocation objects and stored on a stack. When the user wants to undo an
operation, the undo manager just invokes the last command on the stack.

The Command pattern is used throughout Cocoa and is a useful tool for your
architectures. It helps separate request dispatching from the requests
themselves, improving code reusability and flexibility.

Working with the Observer Pattern

The Observer pattern allows an object to notify many observers of changes in
its state, without requiring that the observed object have special knowledge of
the observers. The Observer pattern comes in many forms in Cocoa,
including NSNotification, delegate observations, and key-value observing
(KVO). It encourages weak coupling between objects, which makes
components more reusable and robust.

Delegate observations are discussed in “Understanding Delegates and Data
Sources” earlier in this chapter. KVO is discussed fully in Chapter 15. The
rest of this section focuses on NSNotification.

Most Cocoa developers have encountered NSNotificationCenter. It
provides loose coupling by allowing one object to register to be notified of
events defined by string names. This can be simpler to implement and
understand than KVO. Here’s an example of how to use it well.

Poster.h

// Define a string constant for the notification
extern NSString * const PosterDidSomethingNotification;

Poster.m

NSString * const PosterDidSomethingNotification =
@"PosterDidSomethingNotification”;

// Include the poster as the object in the notification
[[NSNotificationCenter defaultCenter]

postNotificationName:PosterDidSomethingNotification
object:self];

Observer.m

// Import Poster.h to get the string constant
#import “Poster.h”

// Register to receive a notification

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(posterDidSomething:)
name:PosterDidSomethingNotification object:nil];

- (void) posterDidSomething: (NSNotification *)note {
// Handle the notification here

- (void)dealloc {
// Always remove your observations
[[NSNotificationCenter defaultCenter]
removeObserver:self];
[super dealloc];

Notice the name PosterDidSomethingNotification. It begins with the class
of the poster, which should always be the class of the object. It then follows
a “will” or “did” pattern. This is very similar to delegate methods and that’s

intentional. The ending Notification is traditional for notification names to
distinguish them from other string constants like keys or paths.

This example uses a string constant for the notification name. This is critical
for avoiding typos. Notification string constants do not traditionally begin
with a k as some constants do. I recommend the value of the string constant
match the name of the string constant as shown in this example. This makes
obvious which constant is being used when you see the value in debug logs.

The placement of const is important when declaring string constants. This declaration is correct:

extern NSString * const RNFooDidCompleteNotification;

This declaration is incorrect:

extern const NSString * RNFooDidCompleteNotification;
The former is a constant pointer to an immutable string. The latter is a changeable pointer to an
immutable string. NSString is always immutable because it is an immutable class. So NSString *

const is useful. const NSString * is useless. This is easier to remember if you read the declaration
from right to left: “const pointer to NSString.”

As I mentioned earlier, the beginning of the notification name should always
be the class of object. In this case that is Poster. This is almost always self
(the object posting the notification). For consistency, the notification should
always include an object, even if it is a singleton.

The observer should consider carefully whether to observe a specific object
or nil (all notifications with a given name, regardless of the value of
object). Observing a specific object can be cleaner and ensures that the
observer won’t receive notifications from instances that it is unaware of. A
class that has a single instance today may have additional instances tomorrow.

If you observe a specific instance, it should generally be something you
retain in an ivar. Observing something does not retain it, and the object
you are observing could deallocate. That won’t cause a crash; you just won’t
receive notifications from that object anymore. But it’s sloppy and likely
indicates a flaw in your design. It also uses unneeded slots in the notification
table, which is bad for performance.

While observing an object that deallocates won’t cause a crash, notifying a
deallocated observer will. This is why you should always call

removeObserver: in your dealloc if any part of your object calls
addObserver: Make a habit of this. It’s one of the most common and
preventable causes of crashes in code that uses notifications.

Calling addobserver:selector:name:object: multiple times with the same
parameters causes you to receive multiple callbacks. This is almost never
what you want. Generally it is easiest to start observing notifications in init
and stop in dealloc. But what if you want to watch notifications from one of
your properties, and that property can change? This example shows how to
write setPoster: so that it properly adds and removes observations for a
poster property:

- (void)setPoster: (Poster *)aPoster {
NSNotificationCenter *nc =
[NSNotificationCenter defaultCenter];
if (poster_ != nil) {
// Remove all observations for the old value
[nc removeObserver:self name:nil object:poster_];

¥
poster_ = aPoster;
if (poster_ != nil) {

// Add the new observation
[nc addObserver:self
selector:@selector (anEventDidHappen:)
name :PosterDidSomethingNotification
object:poster_];

b
b

The checks for nil are very important here. Passing nil as the object or the
name means “any object” or “any notification.”

While observing specific instances is cleaner and protects you against
surprises when new objects are added to the system, there are reasons to
avoid it. First, you may not really care which object is posting the
notification. The object may not actually exist when you want to start
observing notifications it might post, or the object instance may change over
time.

There are also performance considerations when observing notifications.
Every time a notification is posted, NSNotificationCenter has to search

through the list of all registered observers to determine which observers to
notify. The time required to search this list is proportional to the total number
of observations registered in the NSNotificationCenter. When the total
number of observations in the program reaches a few hundred, the time to
search this list can become noticeable on an iPhone, particularly older
models. The time required to call removeObserver: is similarly proportional
to the total number of observations. This can cause serious performance
problems if you have a large number of observations and post many
notifications or remove observers often.

What if you want to observe a notification from a large number of objects,
but not necessarily every object that might post that notification? For
instance, you might be interested in changes to music tracks, but only the
tracks in your current playlist. You could observe every track, but that can be
very expensive. A better technique is to observe nil and check in the callback
whether you were actually interested, as shown here:

// Observe all objects, whether in your tracklist or not
[[NSNotificationCenter defaultCenter]
addObserver:self selector:@selector(trackDidChange:)
name:TrackDidChangeNotification object:nil];

- (void)trackbidChange: (NSNotification *)note {
// Verify that you cared about this track
if ([self.tracks containsObject:[note object]]) {

b
b

This reduces the number of observations, but adds an extra check during the
callback. It depends on the situation whether this is faster or slower, but it is
generally better than creating hundreds of observations.

Posting notifications is synchronous. This trips up many developers who
expect the notification to execute on another thread or otherwise run
asynchronously. When you call postNotification:, observers are notified
one at a time before returning. The order of notification is not guaranteed.

Notifications are a critical part of many Cocoa programs. You just need to
keep the preceding issues in mind, and they’ll be a very useful part of your

architecture.

Working with the Singleton Pattern

The Singleton pattern is in many ways just a global variable. It provides a
global way to access a specific object. The Singleton pattern is common
throughout Cocoa. In most cases you can identify it by a class method that
begins with shared, such as +sharedAccelerometer, +sharedApplication,
and +sharedURLCache. Some singleton access methods have other prefixes,
such as +[NSNotificationCenter defaultCenter] and +[NSUserDefaults
standardUserDefaults]. These are generally older classes inherited from
NeXTSTEP. Most new frameworks use the shared prefix followed by their
class name (without its namespace prefix).

The Singleton pattern is one of the most misused patterns in Cocoa because
of some unfortunate sample code published by Apple. In the Cocoa
Fundamentals Guide, Apple includes an implementation of the Singleton
pattern that overrides the major memory management methods,
allocWithzone:, copyWithzone:, retain, retainCount, release, and
autorelease. Using Apple’s example, multiple calls to [[Singleton alloc]
init] return the same object. This is almost never needed or appropriate.
Apple’s explanation to this code indicates that it is only useful in cases where
it is mandatory that there only be one instance of the class. That is seldom the
case. Most of the time, it is only convenient that there be one instance of the
class that is easily accessible. Many classes, such as NSNotificationCenter,
work perfectly well if multiple instances exist. Unfortunately, many
developers do not carefully read the explanation, and incorrectly copy this
example.

Sometimes a strict singleton is appropriate. For example, if a class manages a
unique shared resource, it may be impossible to have more than one instance.
In this case it is often better to treat the creation of multiple instances as a
programming error with NSAssert rather than transparently returning a shared
instance. You will see how to implement this kind of assertion later in this
section.

If you are creating a transparently strict singleton, make sure that it is an

implementation detail and not something the caller must know. For instance,
the class should be immutable. If the caller has requested distinct instances
using +alloc, then it is very confusing if changes to one modify the other.

In the vast majority of cases, you should use a shared singleton rather than a
strict singleton. A shared singleton is just a specific instance that is easy to
fetch with a class method. It is generally stored in a static variable. There are
many ways to do this, but my recommendation is this pattern, using
+initialize:

static Singleton *sSingleton;

@implementation Singleton

+ (void)initialize {

NSAssert(self == [Singleton class],

@”Singleton is not designed to be subclassed.”);
sSingleton = [Singleton new];

}
+ (Singleton *)sharedSingleton {

return sSingleton;

}
@end

This approach is easy to write, fast, and thread safe. Other approaches
achieve thread safety by adding an @synchronize in +sharedSingleton, but
this adds a significant performance penalty every time +sharedSingleton is
called. +initialize is automatically called exactly once per class, so it is
inherently thread safe.

It is possible to subclass singleton, but it’s seldom necessary so I prefer to
forbid it rather than include the extra complexity needed to allow it. In most
cases, the best way to customize a singleton is using the Strategy pattern
described in “Understanding Delegates and Data Sources” earlier in this
chapter. Rather than subclassing, put the changeable logic into a separate
object and assign it to the singleton as a delegate. You can provide a default
delegate object if the caller doesn’t provide one. This is a rare case where the
object (the singleton) should retain its delegate. A major advantage of this
approach is that replacing the delegate immediately changes the singleton’s
behavior for all users of the singleton, even if they’ve stored the singleton in
their own ivars.

Most of the problems with subclassing are eliminated if you can determine
the correct subclass in +initialize. For example, you might make a
compile-time decision like this:

+ (void)initialize {
if (self == [Singleton class]) {

#1f DEBUG
sSingleton = [SingletonDebug new];
#else
sSingleton = [SingletonRelease new];
#endif
}
}

You could make similar runtime decisions such as checking the version of
iOS or whether you are on an iPhone or iPad. In those cases, there’s no
problem with subclassing Singleton because it can only be set once.

If you really need to change the singleton instance at runtime, you can
provide a +setSharedSingleton: method:

+ (void)initialize {
if (self == [Singleton class]) {
sSingleton = [Singleton new];

}

}
+ (Singleton *)sharedSingleton {

return sSingleton;

}
+ (void)setSharedSingleton: (Singleton *)aSingleton {

sSingleton = aSingleton;

}

The problem with this approach is that other objects may already have
pointers to the previous object when you call setSharedsingleton:. The
preceding code is also not fully thread safe.

While a shared singleton is usually the best approach, sometimes you do
require a strict singleton. For example, you may have a singleton that
manages the connection to the server, and the server protocol may forbid
multiple simultaneous connections from the same device. As a general rule,
you should first try to redesign the protocol so that it doesn’t have this
restriction, but there are cases where this is impractical and a strictly enforced

singleton is the best approach.

In most cases the best way to implement this is as a shared singleton, but treat
calls to init as a programming error with NSAssert as shown here:

- (id)init {
// Forbid calls to -init or +new
NSAssert(NO, @”Cannot create instance of Singleton”);
// You can return nil or [self initSingleton] here,
// depending on how you prefer to fail.
return nil;
}
// Real init method
- (id)initSingleton {
self = [super init];
if ((self = [super init])) {
// Init code
}

return self;

}
+ (void)initialize {
NSAssert(self == [Singleton class],
@”Singleton is not designed to be subclassed.”);
sSingleton = [[Singleton alloc] initSingleton];

}

The advantage of this approach is that it prevents callers from believing they
are creating multiple instances when that is forbidden. Frameworks should
avoid silently fixing programming errors. This just makes bugs hard to track
down.

As discussed in “Understanding Model-View-Controller,” developers often
use the application delegate to store global variables like this:

// Do not do this
MyAppDelegate *appDelegate =
(MyAppDelegate*)[[UIApplication sharedApplication]

delegate];
Something *something = [appDelegate something];
// Do not do this

In almost all cases, this would be better implemented with a Something
singleton like the following:

Something *something = [Something sharedSomething];

This way, when you copy the Something class to another project, it’s self-
contained. You don’t have to extract bits of the application delegate along
with it. If the application delegate is storing configuration information, it’s
best to move that into NSUserDefaults or a singleton Configuration object.

The Singleton pattern is one of the most common patterns in well-designed
Cocoa applications. Don’t overuse it. If an object is only used in a few places,
just pass it to the objects that need it. But for objects that have
applicationwide scope, it is a very good way to maintain loose coupling and
improve code reusability.

Summary

This chapter explored the most pervasive patterns in Cocoa, particularly
Strategy, Observer, Command, and Singleton. You learned how several
patterns combine to facilitate Cocoa’s central architecture: model-view-
controller. Cocoa uses design patterns focused on loose coupling and code
reusability. Understanding these patterns will help you anticipate how Apple
frameworks are structured and improve your code’s integration with iOS. The
patterns Apple uses in iOS are well established and have been studied and
refined for years throughout industry and academia. Correctly applying these
patterns will improve the quality and reusability of your own programs.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

“Cocoa Design Patterns,” Cocoa Fundamentals Guide. This entire
document is valuable to understanding Cocoa, but the section “Cocoa
Design Patterns” focuses on how Cocoa applies the well-established
software patterns.

The Elements (Sample Code). Historically, Apple sample code has not

http://developer.apple.com/

demonstrated good design or coding practices. The focus has typically
been to show how a specific feature works, and the sample code typically
ignores Apple’s recommendations and common best practice. Apple
appears to have changed its approach to sample code, and some recent
examples are well designed and written. The Elements is a good example
that developers can use to model their own projects.

Notification Programming Guide. Explains the Observer pattern
implemented with NSNotification.

Undo Architecture. Explains how to use NSUndoManager using the
Command pattern.

Other Resources

Gamma, Erich et al. Design Patterns: Elements of Reusable Object-
Oriented Software. (Addison-Wesley Professional, 1994. ISBN: 978-
0201633610) This book is a collection of well-known design patterns,
explained in practical terms with code examples in C++ and Smalltalk. It
should be part of every developer’s library. Erich Gamma and his co-
authors did not invent these patterns and Design Patterns is not an
exhaustive list of all patterns. This book attempts to catalog patterns that
the authors found in common use among developers, and provide a
framework by which developers can apply known solutions to their unique
problems.

AgentM, “Elegant Delegation,” Borkware Rants. AgentM provides a
somewhat different MDelegateManager class than my RNObserverManager.
It was designed for Objective-C 1.0, so it does not rely on @protocol, but

is still worth studying. borkware.com/rants/agentm/elegant-
delegation

Burbeck, Steve. “Applications Programming in Smalltalk-80™: How to
use Model-View-Controller (MVC).” (1987, 1992). This is the definitive
paper defining the MV C pattern in Smalltalk. NeXTSTEP (and later
Cocoa) modified the pattern somewhat, but the Smalltalk approach is still

the foundation of MVC. st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html

http://borkware.com/rants/agentm/elegant-delegation/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

Chapter 5: Getting Table Views Right

Table views are arguably the most ubiquitous and often used control on the
iOS platform. Most of the quality apps on the App Store use table views, and
not just for showing a hierarchical list of data. They are also used for complex
structured, scrollable views. Table views are used as cheap substitute for
creating vertically scrollable views even if the content they display is not a
list of data. For example, in the built-in contacts app, the contacts list is a
UITableView but so is the view for adding a new contact. Additionally, new
interaction patterns have been introduced by third-party application
developers, and have been quite commonly used on other apps as well.

iOS has been around for four years, so this chapter assumes that you are well
versed with concepts like UITableviewDelegate and
UITableViewDataSource.

If you are not familiar with uITableviewDelegates and UITableviewDataSource, read Chapter 8 in
Beginning iPhone Development: Exploring the iPhone SDK by Dave Mark and Jeff Lamarche
(Apress 2009, ISBN 978-1430216261) before finishing this chapter.

This chapter focuses on the advanced aspects of table views and shows you
how to create complex (yet common) Uls like Pull-To-Refresh and infinite
scrolling lists. It also briefly explains how to use table view row animations
to create accordions or options drawers (a Ul that shows available toolbar
elements just below the table view cell that is acted upon) and several other
interesting Ul paradigms.

After exploring new user interaction paradigms, you learn about the best
practices that you should adopt to write cleaner UITableviewController
code (code that is easy to modify later).

The second part of the chapter shows you how to create and use storyboards
and introduces you to the new UIAppearance protocol, a new feature in iOS
5. You also learn how to add storyboards to your existing iOS app without
completely rewriting them. With that, let’s get started.

UlTableView Class Hierarchy

A UITableView is a subclass of UIScrollview that allows users to scroll
through a list of UITableviewCells, which are a subclass of UIview.

UITableView and UIScrollView share several things in common. For a
heavily customized view that is not a list of data, you can directly use a
UIScrollview and populate it with UIView or UIControl subclasses, but there
are certain advantages to using a UITableView in this case. First, it’s always
advisable to use a higher-level abstraction whenever possible. Second, there
are several subtle functionalities that a UITableVview takes care of
automatically. One of them is the ability to dequeue and reuse
UITableViewCells easily, which improves performance and reduces memory
consumption. Another is its elegant and easy way to populate content through
its data source and receive feedback on actions through the delegate. If you
use a custom UIScrollview, you have to do these two by yourself. While it’s
not difficult to do this, you probably will not get any added advantage by
doing it yourself.

Understanding Table Views

A UITableview is normally used in conjunction with several other classes like
UITableViewController, UITableViewDelegate, UITableViewDataSource,
and UITableviewCell. This section briefly discusses the functionalities of
each of these classes.

UlITableViewController

A UITableviewController is a subclass of a UIviewController that
performs some additional functions related to table view loading. If you are
initializing a UITableviewController from a nib file, it loads the archived
table view. If not, it creates a unconfigured table view. In both cases, you can
access the table view using the tableview property of the
UITableViewController.

Additionally, a UITableviewController reloads the table and clears cell
selection, as it is about to appear for the first time (viewwillAppear). It then,

in viewDidAppear, flashes the scroll indicators to indicate that the view is
scrollable. You can override these methods and provide custom
implementations as well.

The UITableviewController also handles the delegates and data source for
your table. For table views created without a nib file, the delegate and data
source becomes the table view controller. For table views created with a nib
file, the delegate and data source is set from that file.

My recommendation is to use a separate UITableViewController for every
table view you use within your view. Using multiple
UITableViewControllers makes it easy to understand (and modify) the code
later in the project’s lifecycle. You learn how to use multiple
UITableViewControllers within a single view/nib file later in this chapter.

UlTableViewCell

UITableViewCell is a subclass of UIVview that adds certain properties and
functionalities to a UIView that are useful when used in a UITableView.
Instead of you manually adding custom elements, a UITableViewCell adds
often-used elements like a textLabel, detailedTextLabel, and an
imageView that are exposed using properties. You specify the kind of cell you
need by choosing a UITableviewCellStyle. The second most important
property provided by a UITableviewCell is the capability to maintain distinct
selected and highlighted states.

In most cases, you will be using a custom subclass of a UITableviewCell in
your app. The next section discusses the different ways of creating a
UITableVviewCell and the pros and cons of using it.

Speed Up Your Tables

You might already know how to create a custom table view cell that scrolls
butter-smooth like Tweetie (Twitter for iPhone). Loren Brichter has open-
sourced his custom table view cell and explained in his blog how to do it (see
the “Further Reading” section)." In this section, you develop a table view and
populate it with cells created using different techniques, including Loren’s,
and you learn to analyze performance using Instruments. When you finish

this section, you will understand why Loren’s method makes your table view
scroll smoothly. You also learn how to troubleshoot and find performance
bottlenecks if your table views aren’t scrolling as fast as they should. Once
you know the “how” behind a technique, you can apply that techniques
elsewhere.

A Word on Performance and Interface Builder

Whenever you talk about performance, the first thing you hear from most iOS
developers is, “Don’t use Interface Builder.” Using Interface Builder (IB) to
build interfaces is quite a controversial topic in the iOS developer community.
Veteran Mac developers, or those who have switched from developing native
Windows apps (using VB or C#), understand what IB does and why should it
be used. Some web developers, on the other hand, often correlate IB to web-
authoring tools and thus assume that IB slows down the app and degrades
performance. My advice is that you should never pay attention to any advice
about improving the performance of your app without measuring it. Tools like
Instruments can help you with performance measurement; later in this chapter
you learn how to use them.

Keep in mind that IB is not a code generator. It is an editor that generates
XML-based archives of your view. In most cases, nib files do not lower the
performance compared to an equivalently coded UI. (I illustrate this later in
this chapter.) Additionally, using a nib file helps you isolate your “view” to a
separate file, which keeps your controller free of view-related code
(especially in your viewDidLoad method). That’s a cleaner way to implement
and adhere to the MVC design pattern.

To Use or Not to Use Interface Builder?

Having said that, the only place where I recommend using coded UI over IB
is for high-performance uITableviewCells. The iOS rendering mechanism
slows down when your UITableviewCell has many subviews. As of this
writing, based on informal testing, only the latest, dual-core A5-powered iPad
2 gives acceptable scrolling performance for a fairly customized
UITableviewCell (probably because of the super-fast graphics processor).
By “acceptable scrolling performance,” I mean getting at least 60 frames per
second when scrolling the table. You learn how to measure this later in this
chapter. The old iPhone 3G was slowest at 25 fps; other devices fall

somewhere between 60 and 25 fps.

The performance hit when using a table view cell isn’t caused by unarchiving
nib files, but by rendering multiple subviews. Hence, a coded UI doesn’t
mean moving your addSubView: methods to the
initwithStyle:reuseIdentifier method, but rather overriding the
drawRect method and directly drawing your content instead of using
subviews. Avoiding subviews (especially subviews that have transparency
and blends with other views behind), improves performance.

In the next section you first write a table view with a thousand rows and
measure the scrolling performance using Instruments. You also learn how to
use Instruments to identify areas with alpha blended layers that are time-
consuming to render. You gradually improve the performance by avoiding
subviews and measuring performance in each step.

To complete the example, you need to have an iOS device provisioned for
development, as some of these things cannot be done on the iOS Simulator.

UlTableView with Subviews in a Custom UITableViewCell

Create a view-based iPhone application with Xcode and call it
TableViewPerformance. You can leave storyboards, but enable ARC. You can
download this code from the Chapter 5/TableViewPerformance folder on
the book’s website. Open TableViewPerformanceViewController.xib and
drag a UITableView to it. You will populate this UITableVview with three
different types of cells.

Add a urTableviewCell subclass and call it CustomCell and create an IB file
for it. Add a title label, a subtitle label, a time label, and a thumbnail image to
it. Your IB file should look like Figure 5-1.

7 Placeholders

File's Owner
-If First Responder

V¥ Objects

v Custom Cell - CustomCell
Label - Row 1
Label - Row 1
Label - yesterday Row 1
Image View

Figure 5-1 Custom cell nib

Now open TableViewPerformanceViewController.m and add the following
code for the TableViewDataSource.

- (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView
{

return 1,

3

- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section {

return 1000,

3

// table with with normal XIB based cells

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *CellIdentifier = @”CustomCell”;

CustomCell *cell = (CustomCell*)[tableView
dequeueReusableCellWithIdentifier: CellIdentifier];
if (cell == nil) {

NSArray *nib = [[NSBundle mainBundle
loadNibNamed:@”CustomCell” owner:self options:nil];
cell = (CustomCell*)[nib objectAtIndex:0];

}

cell.titlelLabel.text = [NSString stringWithFormat:@”"Row %d”,
indexPath.row];

cell.subTitleLabel.text = [NSString stringWithFormat:@”Row %d”,
indexPath.row];

cell.timeTitlelLabel.text = @"yesterday”;

cell.imageView.image = [UIImage imageNamed:@”ios5"];
cell.selectionStyle = UITableViewCellSelectionStyleNone;

return cell;

Nothing fancy here. What you have done is to set some arbitrary values to the
cells. Now profile this app in Instruments. Click and hold the Play button and
choose Profile to profile the app. Choose the Core Animation trace template
as shown in Figure 5-2.

Choose Trace Template or Existing Document:

1! 08 _
Memory . |
CPU

File System

Blank Core Animation OpenCL ES Driver OpenGL ES Analysis

‘ Document

Open
Recent

|“I Core Animation

This template measures application graphics performance as well as CPU usage of a process.

| Cance

Figure 5-2 Choosing the Core Animation trace template from Instruments

Expand the debug options panel in Instruments by clicking View — Detail in
Instruments. (This should be selected and showing up by default). Select the
Color Blended Layers checkbox.

Instruments

&,/ Core Animation

Pro!

B\ Core Animation Pl::
v Sampling Rate (1/10th sec) -
! I | I | I | I I | !\7 10
v Debug Options
Color Blended Layers

.| Color Hits Green and Misses Red

| Color Copied Images
| Color Immediately
| Color Misaligned Images

| Color Offscreen-Rendered Yellow

| Color OpenGL Fast Path Blue
__| Flash Updated Regions

Figure 5-3 Select Color Blended Layers

The app should be running on your device. Because you turned on Color
Blended Layers, your iPhone screen should look similar to Figure 5-4. Now
scroll your table view and look at the frames per second measurement on
Instruments. Depending on your debug device’s processor and GPU speed,
this might vary. I got somewhere around 38-45 fps on the iPhone 4 running a
beta of iOS 5.

With Color Blended Layers, iOS shows transparent layers in red and opaque
layers in green. In Figure 5-4, most of the areas around the labels in the
custom cell are transparent and blended. These transparent layers have a
computational cost to render. The system has to blend the layer with the layer
below it to compute its color and then draw it. The rendering speed can be
drastically improved by avoiding this. You see a couple of techniques to do
that in the next section. When you implement them, you will find that the fps
measurements improve as well.

Figure 5-4 iOS device screen using custom cells

UlTableView with a Default UI'TableViewCell

Replace the code in cellForRowAtIndexPath: in the controller file with this:

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *CellIdentifier = @”"Cell”;
UITableViewCell *cell = [tableView
dequeueReusableCellwWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
reuseldentifier:CellIdentifier] autorelease];

}
cell.textLabel.text = [NSString stringWithFormat:

@"Row %d”, indexPath.row];
cell.detailTextlLabel.text = [NSString stringWithFormat:
@"Row %d”, indexPath.row];
cell.imageView.image = [UIImage imageNamed:@”ios5"];
return cell;

}

Instead of using your custom cell in this code, you use the framework’s built-
in UITableviewCell with UITableviewCellStyleSubtitle. Now profile the
app again. When you turn on Color Blended Layers, your iPhone screen
should look like Figure 5-5.

Observe that the transparent layers are all gone except for a few near the
images. When you scroll the list, you find that the performance is slightly
better and feels smoother than how it was previously. Observe that the fps
measurement hits 60. When you hit 60 fps, you can technically stop
improving the scrolling performance, but in this case, only the latest iPhone 4
was able to reach 60 fps while scrolling. The iPhone 3G and 3GS were much
slower.

Moreover, with built-in cells you are limited to just four styles, and in any
normal case, that just might not be enough. In the next method you use a
custom cell that uses CoreGraphics methods to draw the image and text
directly on the cell without using subviews.

Figure 5-5 iOS device screen using built-in cells

UlTableView with a Custom Drawn UITableViewCell

Loren Brichter of Tweetie (now known as Twitter for iPhone) wrote about
butter-smooth scrolling in Tweetie. In this example, you use Loren’s
technique to create a custom cell for your UITableView.

Create a custom UITableViewCell class and do your custom drawing so as to
render the content similar to the nib file. You can get the complete code for
this from the Chapter 5/TableViewPerformance folder on the book’s
website. The code for this custom drawn cell is in file CustombDrawnCell.m.

When you run this code on your device and turn on Color Blended Layers,
you see something like Figure 5-6.

With your custom drawn cells, every part of the table view cell is opaque and
your table view scrolling is fast and smooth. I was getting 60 frames per
second on nearly every device, including the oldest, iPhone 3G.

The only problem with this method is that the code you write to draw the
content gets annoyingly difficult to read (although it’s not difficult to write).
Whatever technique you use, try to make your cells as opaque as possible.

Now that you know why Loren’s method is fast, you can troubleshoot your
apps for any performance bottlenecks quite easily. In the next section, you
briefly look at what could slow down UITableviewCell rendering.

Things to Avoid in the UI'TableViewCell Rendering Method

You should always avoid allocating resources while drawing. This includes
allocating objects like NSDateFormatter, UIFont, or anything that you need
while drawing. I recommend that you do your allocation in a class-level
initialize method and store it in a static variable. Use it for every instance of
your cell.

If you still find the performance to be low, use Instruments’s Time Profiler on
your project and look for bottlenecks. Now that you know how to use
Instruments to measure your table view scrolling performance, it should be

quite easy for you to improve when you find bottlenecks.

Figure 5-6 iOS device screen using custom drawn cells

Custom Nonrepeating Cells

Table views are used not just for showing a list of data but also for complex
and structured scrollable layouts. If your table view structure has a
nonrepeating pattern of cells, you can add the custom cell into the same nib
file as the table view and connect IBoutlets. Figure 5-7 illustrates this. This
way, you can just return a pointer to this IBoutlet in
cellForRowAtIndexPath:.

Build Succeeded | Today at 12:38 PM] BEag ooE =

@ D ellsExa... iPhone 4.3 Simulator] (= |
Run Stop Scheme Breakpoints | No Issues Editor View Organizer
e > | B i T T iewController.xib (English)) File's Owner | n B ¥ |0

D Placeholders

- =3
) First Responder
% Objects :
v View Brea
Table View Lorem Ipsum Title
v Header Cell - HeaderCell Burlingame
Label - Lorem Ipsum Title
Image View
Bod CgH BodyCell canoga Park
¥ L o Lorem ipsum dolor sit amet, consectetur adipiscing
Label - Lorem Ipsurw dolor si Carlsbad elit. Sed cursus pretium lorem quis bibendum. Sed
v . Footer Cell - FooterCell arisba metus eros, sodales sit amet eleifend in, faucibus a
Label - Copyright (C) My Co. dolor. Phasellus dignissim, sapien non gravida
Chula Vista dictum, nisi est viverra leo, non interdum augue diam
eu velit. Curabitur sit amet quam in turpis vestibulum
venenatis. Maecenas posuere, enim molestie
Corte Madera consequat ultrices, velit nunc faucibus eros, sed
omare dui justo sed elit.
Costa Mesa Phasellus bibendum commodo vestibulum. Nam
sagittis, diam id rutrum auctor, ligula nunc orare
Emeryville libero, eu sodales tellus justo vel metus. Vestibulum

et enim at odio adipiscing tristique. Phasellus non
i lacus massa. Praesent non ultricies leo. Nam at
Escondido bibendum leo. Cras vitae tellus dii, et commodo
enim. Suspendisse potenti. Donec venenatis eros id..

Copyright (C) My Company 2011

0D {} || =

il Objects

Label - A variably sized amount of
Label gaic text.

Round Rect Button - Intercepts touch
events and an action message to a

vents and sends e
target object when it's tapped.

©Q

Figure 5-7 The different objects in the nib file and their connections

The following code snippet shows how to return these objects from the
UITableViewDataSource methods.

UlTableViewDataSource Methods

-(CGFloat) tableView: (UITableView*) tableView
heightForRowAtIndexPath: (NSIndexPath *)indexPath {

switch (indexPath.row) {

case 0:
return self.headerCell.frame.size.height;
break;

case 1:
return self.bodyCell.frame.size.height;
break;

case 2:
return self.footerCell.frame.size.height;
break;

default:
return 0;
break;
¥
}
- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

switch (indexPath.row) {

case 0:
return self.headerCell;
break;

case 1:
return self.bodyCell;
break;

case 2:
return self.footerCell;
break;

default:
return nil;
break;

You can get the code from the Chapter 5/NonRepeatingCellsExample folder
on the books’ website. Note that UIKit objects don’t conform to NSCopying or
NSMutableCopying protocols and hence cannot be copied or cloned. That
means that if you need two body cells—say one in row 1 and another in row
2—you have to load them from their nib files every time you need them. But
fret not; the nib file-loading methods are optimized for performance and once

loaded, nibs are cached.

You can use a similar technique as in the previous example for creating custom table view headers
and footers. Just create custom table header/footer views within the same nib file and drag them
to the UITableview in IB. Your view gets added as a header or footer depending on where you
dropped it.

Advanced Table Views

So far you’ve seen some of the basic, often-used implementations of table
views. Now you’re ready to look at some advanced implementations of table
views, beginning with Pull-to-Refresh.

Pull-To-Refresh

In this section you write a PullToRefreshTableView class based on
enormego’s excellent open source implementation (see “Further Reading”
section). This class isolates most of the Pull-To-Refresh code into a super
class. Later on, when you need to add a Pull-to-Refresh feature to your table
view, all you need to do is inherit your view controller from
PullToRefreshTableViewController instead of UIviewController and
override methods to perform the actual refresh.

Sounds object-oriented, right? Let’s delve into the code. First, download the
files from the book’s website, in the Chapter 5 \
PullToRefreshTableViewExample folder.

Create a view-based project and add these files:

EGORefreshTableHeaderView.h
EGORefreshTableHeaderView.m
PullToRefreshViewController.h
PullToRefreshViewController.m
RefreshArrow.png

RefreshArrow@2x.png

The PullToRefreshTableViewController is a subclass of
UIViewController that abstracts the mechanics behind the Pull-To-Refresh.
It handles the UIScrollview delegates and adds the EGORefreshHeaderVview
to the top of your UITableView when it is pulled beyond a certain threshold.
It also remembers the last refreshed state. By default this is stored in a key
that uses your subclass name and a suffix string. In case this is not enough

and you have multiple instances of the same class displaying different data,
you can customize the key in which the last refreshed date is remembered.
The key is stored in a property called keyNameForDataStore.

To implement Pull-To-Refresh in your code, inherit your view controller from
PullToRefreshviewController and override the doRefresh method to
perform the actual refresh. Once the refresh is done, set the loading state to
NO. It’s as simple as that. The PullToRefreshViewController also needs you to
link your target with QuartzCore.Framework.

When you inherit your view controller from PullToRefreshViewController,
you will see a tableview in the IBOutlet list in IB. Connect this tableview to
the table in your nib file.

Now in the controller, override the dorRefresh method and perform your
network call (or any time-consuming refresh operation). Once the refresh
operation is complete, set the loading state to NO.

Following is the sample code snippet for your view controller:
Sample doRefresh Implementation

-(void) doRefresh {

// Do your time consuming operation here.

// The performSelector shown below is for your illustration
[self performSelector:@selector(loadingComplete)
withObject:nil afterDelay:2];

}
-(void) loadingComplete {

self.loading = NO;
// the loading property is exposed by
PullToRefreshViewController. When you set this to NO,
it restores the tableview back to its normal position.

}

Enormego did an excellent job of writing the mechanics behind Pull-to-
Refresh. This takes it to the next level by abstracting the logic out and
providing a super-easy way to implement it in any of your view controllers
with under five lines of code. Along similar lines, let’s now look at another

commonly used technique: infinite scrolling.

Infinite Scrolling

Infinite scrolling is normally used in Twitter clients or any app that displays
chronologically ordered data. Data for which the number of items are
unknown or is immensely large, (unlike a contacts list), is the right candidate
for infinite scrolling.

For this example, you extend the same PullToRefreshTableViewExample
sample code, and add methods for implementing the infinite scrolling
mechanics. The class adds a section to the end of your table view that shows
a single “Loading” cell. For this, you add a couple properties called
numberOfSections and endReached to the class PullToRefreshTableView.

@property (nonatomic) NSInteger numberOfSections;
@property (nonatomic) BOOL endReached;

You then add a method, 1loadMore, that will be called when the user reaches
the end of the current page in the table view. The super class implementation
for this will be empty and you will leave that for the subclasses to implement.
For the complete code, get it from the book’s website Chapter
5/InfiniteScrollingExample folder. Do not implement the
numberOfSectionsInTableView: in your subclass. The super class
(PullToRefreshviewController) does this automatically for you. Instead, set
the number of sections using the super class property numberofSections. The
parent class adds an additional section to the end of your table to show the
loading cell.

You should override the method loadMore defined in the super class and
provide implementation for loading more content. When your server returns
no content, you can set the endReached property to YES. This prevents the
loading cell from being shown again. The following sample code snippet
explains this.

Sample loadMore Implementation

-(void) incrementPageCount {
self.pageCount ++;

if(self.pageCount == 5) self.endReached = YES;
[self.tableView reloadData];

}
-(void) loadMore {

[self performSelector:@selector(incrementPageCount)
withObject:nil afterDelay:2]; // simulate a network operation

}

The super class adds a loading section as the last section of the table view,
and your table view data source methods will be called for sections you are
not aware of. You should forward these calls to the super class of the
tableView:numberOfRowsInSection: method and
tableVview:cellForRowAtIndexPath: for sections greater than your section
count. In other words, let the super class handle sections greater that the
numberofSections for you. This implementation shows the loadingCell.

The following code snippet explains this.
Sample TableView Data Source

- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section {

// Return the number of rows in the section.

if(section == self.numberOfSections) {

return [super tableView:tableView

numberOfRowsInSection:section];

}

return 20 * self.pageCount; // we are assuming 20 rows per
page
}
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

if(indexPath.section == self.numberOfSections) ({
return [super tableView:tableView
cellForRowAtIndexPath:indexPath];

}
static NSString *CellIdentifier = @”"Cell”;

UITableViewCell *cell =
[tableView dequeueReusableCellwWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle

reuseldentifier:CellIdentifier] autorelease];

}

cell.textLabel.text = [NSString stringWithFormat:
@"Row %d”, indexPath.row];

cell.detailTextLabel.text = [NSString stringWithFormat:
@"Row %d”, indexPath.row];

cell.imageView.image = [UIImage imageNamed:@”1i0s5"];
cell.selectionStyle = UITableViewCellSelectionStyleNone;
return cell;

}

That completes it. With very few changes, you have added infinite scrolling
support to the Pull-To-Refresh example code. Implementing infinite scrolling
in your apps should be a lot easier with this code.

Inline Editing and Keyboard

Form-filling is a common UI pattern found on both web and mobile
environments. On iOS, forms are usually developed using UITableview with
each cell representing one data entry field. It is also possible to use a
UIScrollview, but I recommend against that for the reasons stated in the first
few sections of this chapter.

The most important point to remember here is to show data entry fields above
the keyboard when the keyboard is shown. To do so, you need to dynamically
adjust your table views.

When your table view contains data entry fields like a UITextField or a
UITextView, and the table view is long enough to cover the screen, you will
have a problem accessing data entry fields that are hidden by the keyboard.
The easiest—and recommended—way to overcome this problem is to use a
UITableViewController for your form. Otherwise, if you use a
UIViewController and a UITableView as its subview, you must explicitly
code for scrolling your Ul so that elements that might get hidden by the
keyboard stay visible.

You can scroll your UI’s frame by observing the uIKeyBoardbidShowNotification and
UIKeyBoardDidHideNotification. The notification posts an object (NSDictionary) containing
information pertaining to the size of the keyboard, the animation duration, and the animation
curve.

Also note that, as the table view is scrolled, your cells are recycled and
reused. Any data entered is lost when the cell is recycled, so you should copy
the entered data from the UI to your model classes (or NSString)
immediately after the entry is made. Implementing this is quite easy. One way
is to set the delegate of your UITextField to the table view controller and
handle textFieldDidEndEditing. But a good design practice is to let the
table cell handle the delegate and notify its super class. (You learn more about
such best practices throughout this chapter.) The super class should save the
data to the corresponding model object and prepopulate the table view cell
with values from the model when it’s created or dequeued in
cellForRowAtIndexPath.

The following code segment shows you how to do this.

Saving and Restoring Data from UlTextField Inside a Custom
UlTableViewCell

cell.inputText.text = [self.data objectAtIndex:indexPath.row];
cell.onTextEntered = A(NSString* enteredString) {

[self.data insertObject:enteredString
atIndex:indexPath.row];

i¥

This code assumes that the cell handles 1BAction and
textFieldDidEndEditing and passes the enteredString value to the table
view controller using a block. The data entered is stored in a member variable
(data), and is restored on the line above. Two lines and that’s it. You can use
delegates as well, but blocks are cleaner and result in much less code. You
learn more about blocks in Chapter 16.

Animating a UITableView

You have now seen some practical implementations of UITableview. Next,
you take it to the next level by learning how to make the best use of the
animations provided by it. The UIKit framework provides some default
animation styles for animating rows in a UITableview. These animations play
a very important role in giving subtle hints to the user about what is
happening behind the scenes.

A good example of this is the phone app on your iPhone. When you toggle
between all calls and missed calls, the complete list animates to show or hide
the relevant data. Similarly, on the settings app, when you turn on Airplane
mode, the Carrier row hides because it’s no longer relevant. But if these
actions happen without animations, users will be confused about what is
happening. One thing that sets iOS apart from its competitor is that it is easy
to create a compelling user experience that blends well with the OS. In this
case, implementing these animations is very easy with UITableview. Using
methods in UITableView, you can animate a row insertion, row deletion, or
row updates with fewer than ten lines of code.

The most important thing to remember here is that prior to your table updates,
you should update your models. Failure to do so will result in an
NSInteralInconsistencyException (crash). In other words, if you are
displaying a list of items, inserting a new row in the table view should be
done after updating the model.

Remember, if you have to perform a batch of animated updates on
UITableView, you can sandwich them between calls to beginUpdates and
endUpdates. iOS automatically computes the changes and performs the
correct animation sequence for you. The following are the commonly used
methods for performing animated updates to a UITableView:

insertRowsAtIndexPaths:withRowAnimation:
deleteRowsAtIndexPaths:withRowAnimation:

reloadRowsAtIndexPaths:withRowAnimation:

In the following list, the first parameter is the array of index paths you need
to add and the second is the animation style that should be used. The
animation style can be one of the following values (the last item in this list is
new in iOS 5):

UITableViewRowAnimationFade, UITableViewRowAnimationNone

UITableViewRowAnimationRight, UITableViewRowAnimationLeft

UITableViewRowAnimationTop, UITableViewRowAnimationBottom
UITableViewRowAnimationMiddle
UITableViewRowAnimationAutomatic

On iOS 5, you can use a new style, UITableViewRowAnimationAutomatic, and the system
automatically chooses the correct animation for you. iOS 5 also introduces two new methods to
move a complete section from one location to another. This is helpful in case you want to visually
show movement of a complete section.

The following are methods for moving rows and/or sections in a
UITableView:

moveSection: toSection:
moveRowAtIndexPath: toIndexPath:

Partially Reloading Tables

You can use the reloadRowsAtIndexPaths:withRowAnimation: method to
partially reload a table view. For example, if you get a push notification that
data currently displayed on the table view should be updated, you can reload
just that single row in a UITableView. I recommend using the
UITableViewRowAnimationFade or UITableViewRowAnimationNone style on
iOS 4 and earlier, and uITableViewRowAnimationAutomatic on iOS 5 for
this.

Practical Implementations of Table View Animations

With the built-in UITableview animations you can easily implement custom
controls like accordion or show and hide drawers that expose additional
controls. The next sections provide some ideas for implementing them.
Custom controls like these can be implemented in multiple ways. So instead
of focusing on code, you learn the process behind building them.

Implementing an Accordion List

Accordion is a control that is often found on content-rich websites to
categorize navigational links. It contains a list of sections and subitems under
each section. Sections can be opened to reveal the items within and can be
closed or collapsed to hide them. On iOS, accordions are often used to model
a single-level hierarchical navigation menu. The USA Today app’s pictures
tab is an example of this. Let’s dissect the view and analyze how a control
like that could be created.

From the Ul, it appears that the section headers are tappable and every
section has either one row or zero rows based on whether it is in an expanded

state or not. This means you need a custom section view that tells the parent
controller (your table view controller) that it was tapped.

For this example, design a custom UIView that has one big tappable button.
You will use this view as the custom section view for your table. Override the
tableView:viewForHeaderInSection: method, create your UIView, and
return it. These views should notify (via a delegate or handler) the table view
of the button-tapped event back to the table view. On this handler, the table
view controller should do two things. First, it should update the models and
secondly the table view. For updating models, you can save the tapped
section’s index as the currently expanded index. Once this is done, you can
refresh the table view. This can be done in two ways, either by firing
reloadData to the table view or by calculating the changes and calling the
necessary addRowsAtIndexPaths:withRowAnimation: and
deleteRowsAtIndexPaths:withRowAnimation: methods. The reload data
method refreshes the entire table and users will not know what happened
behind the scenes. For getting the accordionlike UI effect, you should call
deleteRowsAtIndexPaths:withRowAnimation: for the old section (currently
expanded row) and addRowsAtIndexPaths:withRowAnimation: for the
tapped section. Because you are doing two operations on the table view and
you don’t want the table to update itself for every operation, you should
sandwich them between the methods beginUpdates and endUpdates.

The most complicated part here is to match the changes to the model and the
UI synchronously. When your model doesn’t exactly reflect your Ul, your
code will crash with an NSInternalInconsitencyException.

Animating rows on iOS 4 and before must be done manually. For rows that are deleted, use
UITableViewRowAnimationTop; for rows inserted, use UITableViewRowAnimationBottom. For rows
that are updated, use UITableViewRowAnimationFade or UITableViewRowAnimationNone. On iOS 5,
you can use UITableviewRowAnimationAutomatic and the framework automatically chooses the
right animation for you.

Implementing a Drawer

Implementing a drawerlike Ul is done similarly to implementing an
accordion list. A drawer is a unique row in the table view that, instead of
showing data, shows tools to manipulate the data. The Twitter client
TweetBot (and many other apps) uses this to show context-sensitive menu
options for a table view row.

Implementing a drawer is slightly easier (programmatically) than
implementing an accordion. Create a custom UITableViewCell for your
drawer in your table view nib file and connect it to an IBoutlet. Next,
maintain an NSIndexPath pointer that will store the currently tapped row and
update this when a row is selected
(Tableview:didSelectRowAtIndexPath:). Insert a new row below the
selected row and remove the previously added drawer (if any) using
insertRowsAtIndexPaths:withRowAnimation: methods.

Now comes the tricky part. Your data source methods
(numberofRowsInSection) should return one additional row if your stored
index path is not nil. Your cellForRowAtIndexPath should return the pointer
to the drawer cell (remember that IBoutlet connection you made) for
indexPath that is one row higher than the saved indexPath. Play around with
these methods and you should get it. Implementation is mathematically
complicated, but programmatically easy.

Using Gesture Recognizers in Table View Cells

Swipe gestures like the swipe-to-delete or swipe-to-reveal options on Twitter
for iPhone are another interesting type of interaction pattern. With gesture
recognizers introduced in iOS 3.2, you can attach a swipe gesture recognizer
(UISwipeGestureRecognizer) to your table cells’ contentview. Attaching a
long press gesture recognizer (UILongPressGestureRecognizer) can help in
showing a context-sensitive menu (using a UIActionSheet) for a given table
view cell element.

Table views can be customized pretty easily to create a wealth of new Ul
elements and interaction patterns like the two commonly used patterns
covered earlier in this chapter. In most cases, the Ul boils down to techniques
explained in the previous sections.

With that, let’s proceed to the next section where you learn about writing
cleaner and leaner code that is easier to manage, read, and understand.

Table View Best Practices: Writing Clean Code with
Lean Controllers

If you have been doing iOS development for quite a while, you know that
your controller’s cel1ForRowAtIndexPath: can easily get messy and
unmanageable as your project evolves. When you use the model-view-
controller paradigm in your software project (not just iOS), strive to make
your controller as lean as possible. Keeping the controller lean is arguably the
easiest way to keep your code readable and manageable. The next section
discusses briefly how to refactor your code adhering to these ideas.

Data Binding Guidelines

When you are writing a table view controller subclass, the bulk of your code
is written in the UITableViewDelegate and UITableViewDataSource
methods. Focusing on how to write these methods clearly solves the problem.
The cellForRowAtIndexPath method often contains code that sets values for
every individual UI element of the cell. The best way to set the values for
individual UI elements in the cell is to move this code elsewhere. Now, where
should it be moved? That depends on the kind of custom cell you are using.
Based on your app’s functionality, your table views need to be bound with
associated data.

This technique, often called data binding, is a bit underrepresented on iOS, at
least when compared to Mac. The best way to bind data is to pass your data
model object to the custom table view cell and let it bind the data. Let’s
classify table view cells into three types based on how you would normally
associate data with them.

The first type is a subclass of UITableviewCell and is a custom cell designed
to display a specific kind of data, which in most cases is closely tied to the
specifics of the app. An example for a RSS Reader app would be a
“Feedcell” that displays a feed.

The second type is designed and developed in a generic way similar to
Apple’s UITableviewCell implementation. You create your cells by
specifying a style and these cells can be used in other classes or projects for
displaying many different types of data models. For example, you could
create generic cells like MyTableviewSwitchCell for displaying a title text
and an on/off UISwitch or MyTableviewInputCell for displaying a title text
and a UITextField for data entry.

The third type of cell is a native UITableviewCell provided by the UIKit
framework. In any of these three cases, as far as possible, try to move the data
binding code to the cell itself.

The first case is straightforward. Write a method within the Feedcel1l that
accepts your model object as a parameter and set the individual UI elements
to the values in the Feed model object. That is, move your data binding code
to the FeedCell, the subclass of UITableviewCell. For example, in the case
of a RSS Reader app, the FeedCell should have a public method that looks
similar to this:

Bind Method in Your FeedCell

-(void) bind:(Feed*) feedToBeDisplayed {
self.titlelLabel.text = feedToBeDisplayed.text;
self.timeStampLabel.text = feedToBeDisplayed.modifiedDateString;

}
Instead of writing this code in the view controller’s data source method,
cellForRowAtIndexPath:, it’s moved to the UITableViewCell subclass. This
means that if the format of the cell needs to be changed at a later stage, like

adding an author name field to your Feed model object and FeedCell, you can
do it in one place.

When you use the system default UITableviewCell for displaying your data,
I recommend adding this bind method to a category class on
UITableViewCell.

If you have multiple models using the same UITableviewCell, consider
creating multiple category classes, one for each model; for example, create
UITableViewCell+Feed.h/m for displaying feeds and say,
UITableViewCell+Subscription.h/m for displaying subscriptions on the
same cell. Be careful when naming the bind method. When a category
contains a duplicated method name, it overrides the previously defined
method and there is no defined order in which this overriding happens. I
recommend naming them bind<ModelClassName>, which is readable and
understandable. For example, the names bindFeed: (Feed*) and
bindSubscription: (Subscription*) follow this convention.

The third case is when you have a generic custom table cell like the
MyTableViewSwitchCell. In this case, too, you can apply the previous
technique. Add category methods on your generic custom table view cell.

More often than not, you would be reusing the same FeedCell in multiple
tables and in multiple view controllers. Moving the data binding code out of
the table view controller (or any generic view controller) will reduce the
clutter on the controllers and make it easy to maintain your code.

Multiple UlTableViewControllers Inside a Single
UlViewController

The next often-seen UI is multiple table views within a same
UIViewController. Figure 5-8 shows a project with multiple table views
within a single UIviewController.

Spaghetti code starts creeping in when both the table’s data source and
delegate are set to the file’s owner—the parent UIviewController. The
second stage of “spaghettiness” creeps in when you add
UISearchDisplayController to both these tables. Now your
cellForRowAtIndexPath: method will look similar to this:

Sample cellForRowAtIndexPath

-(UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
if(tableview == self.firstTable) {
//return first table’s cell
else if(tableview == self.secondTable) {
//return second table’s cell

}
else if(tableview ==
self.firstSearchDisplayController.searchTableView) {
//return first table’s search cell
}

else if(tablevView ==
self.secondSearchDisplayController.searchTableView) {
//return second table’s search cell

[T Placeholders

File's Owner
@ First Responder

v | |View -
¥ Toolbar -
¥ 8 Bar Button Item |

1 21 Segmented Control - Fi... || A

v First Table

= Search Bar Brea
v Second Table |
= Search Bar : Burlingame
) First Search Display Controller |
) Second Search Display Controller canoga Park
Carlsbad

Chula Vista
Corte Madera

Costa Mesa

Figure 5-8 Interface Builder showing a project with multiple UITableViews
within a single view

Obviously, there should be a better way, right? As it happens, there is. Instead
of setting the delegate and data source to the file’s owner, create custom
UITableViewController subclasses for each table and set the delegate and
data source to its own controller. This is illustrated in Figure 5-9.

Create custom subclasses called FirstTableviewController and
SecondTableViewController and move the cellForRowAtIndexPath
methods in the file’s owner to these two classes. You will reduce the number
of if statements used by half. You can do something similar to this to isolate
the search display controller’s delegate as well if the code for it gets long and
unmanageable. You might end up creating more files and more classes, but

that’s just fine.

[Placeholders

e i — e = -
4! First Responder
i
V% Objects ‘ ‘
v View California
¥ Toolbar
» s Bar Button Item Brea
v First Table View
 Search Bar B 3
urlingam
v Second Table View ga e
~ Search Bar
@ First Search Display Controller Canoga Park
L) Second Search Display Controller
First Table View Controller ca rlsbad b 2
Second Table View Controller Vie View
Chula Vista

Corte Madera
Costa Mesa

Emeryville

Figure 5-9 Interface Builder showing a better way to add multiple
UlTableViews within a single view

The first rule of thumb for refactoring is to revisit your code to check whether the if statements
you are using are truly for a logical branching and not for class-based switching.

The second rule is to check if you are using an if condition to branch code for different kinds of
tables, like in the cel1ForRowAtIndexPath: method. As I showed you previously, code like this
should be refactored and solved elegantly using object-oriented techniques. Every class-based
switching like this can be solved in an object-oriented way. This refactoring technique holds good
for any language, not just Objective-C.

Adhering to these two refactoring techniques should reduce much of the code
in your controller class. Remember that your controller should act as a
mediator among your models and Ul elements defined at that level and not at
the subclass level. In other words, a view controller can set the property of a
UI element defined in its scope but not that of a UI element that is inside a
subclass. For example:

self.textLabel.text = NSLocalizedString(@”Hello”, @"")

is okay, but

self.customView. textLabel.text = NSLocalizedString(@”“Hello”, @"")

should be avoided. The recommended way is to move this code into the

customvView’s class. Apply these techniques and start writing cleaner and
leaner controllers.

Let’s now move on to storyboards, a new, powerful concept that will help you
write even less code. This is something new to iOS 5 and requires your app’s
minimum deployment OS version to be 5.0.

Storyboards

Prior to iOS 5, interface elements and views were created using IB and saved
in nib files. Storyboards are a new way to create them, and in addition to
creating interface elements, you can now specify the navigation (called
segues) between those interfaces when you use storyboards. This was
something you could not do previously without writing code. You can think
of storyboards as a graph of all your view controllers connected by segues
that dictate the transition between them.

The benefits of storyboards don’t stop there. They also make it easy for
developers to create static table views without a data source. How many times
have you wanted to create a table view that’s not bound to a real data source?
(For example, a table that shows a list of options instead of data.) A common-
use case for this is your app’s settings page. Storyboards also help co-
developers and/or clients understand the complete workflow of the app.

Let’s get started with storyboards and discuss how to do things that you do
with nib files using storyboards, like communicating between controllers.
Later on, you learn how to create a static table view without a data source and
finally, the most interesting aspect of Storyboards, which is writing your own
custom transition animations.

Getting Started with Storyboards

You can use storyboards for new projects or add them to an existing project
that doesn’t have a storyboard yet. For existing projects you can add
storyboards just like how you add a new file to a project. You learn more
about how to instantiate view controllers in this storyboard later in this
chapter.

For new projects, storyboards can be created in Xcode 4.2 by using the new
project template and selecting the Use Storyboard option as shown in Figure
5-10. This is selected by default for you.

When you create a new project using storyboards, the info.plist key of
your app contains a key called UIMainStoryboardFile. This key supersedes
NSMainNibFile that was used prior to iOS 5. You can continue to use
NSMainNibFile if your app’s main window is loaded from a nib file instead of
a storyboard. However, you can’t use both UIMainStoryboardFile and
NSMainNibFile in the same app. UIMainStoryboardFile takes precedence
and your nib file specified in NSMainNibFile never gets loaded.

Your application can store the complete storyboard in one file and IB automatically builds it into
separate files optimized for loading. In short, you don’t have to be worried about loading time or
performance when using Storyboards.

Choose options for your new project:

—

Product Name isia_ry_'soard Example
Company Identifier com.mugunthkumar
Bundle Identifier com.m ugunthkumar.StoryBoardExample
Class Prefix |XYZ
Device Family | iPhone

IET Use Storyboard
_| Use Core Data
@ Use Automatic Reference Counting

Include Unit Tests

Cancel | Previous | Next |

Figure 5-10 New Project Template in Xcode 4.2 showing the Use Storyboard
option

Instantiating a Storyboard

When your UIMainStoryboardFile is set, the compiler automatically
generates code for instantiating it and loads it as your application’s startup
window. If you are adding storyboards in an existing app, you should be
doing this programmatically. The methods for instantiating view controllers
within a storyboard are defined in the UIStoryboard class.

When you want to display a view controller specified in your storyboard, you
load the storyboard using this method:

+ storyboardwithName:bundle:

Loading View Controllers within a Storyboard

Loading view controllers within a storyboard is very similar to the nib
loading method, and with the UIStoryboard object, you can instantiate view
controllers using the following method:

- instantiateInitialViewController
- instantiateViewControllerwithIdentifier:

Segues

Segues are transitions defined in your storyboard file. UIKit provides two
default transition styles, Push and Modal. They behave similar to the
pushviewController:animated: and
presentModalViewController:animated: methods you use in iOS 4. In
addition to this, you can create custom segues and create new kinds of
transitions between view controllers. You look at this later in this chapter.

You create segues by connecting certain events on view controllers with other
view controllers on your storyboard file. You can drag from a button to a
view controller, from a gesture recognizer object to a view controller, and so
on. IB creates a segue between them, and you can select the segue and use the
inspector panel to modify the transition styles.

The inspector panel also allows you to set a custom class if you select a
custom transition style. You can think of a segue as something that connects
an action with a transition. Actions that can trigger segues can be button tap
events, row selection events on static table views, a recognized gesture, or
even audio events. The compiler automatically generates the necessary code

to perform a segue when the event to which you connected the segue occurs.

When a segue is about to be performed, a prepareForSegue:sender: method
is invoked on the source view controller and an object of type
UIStoryboardSegue is passed to it. You can override this method to pass data
to the destination view controller. The next section explains how to do this.

When a view controller performs multiple segues, the same prepareForSegue: sender : method
gets called for every segue. To identify the performed segue, you should use the segue identifier to
check if the performed segue is the intended one and pass data accordingly. As a defensive
programming practice, I would advise you to perform this check even if the view controller
performs only one segue. This would ensure that later on, when you add a new segue, your app
will continue to run without crashing.

Passing Data

Now that storyboards automatically handle view navigation, how will you be
passing data to the new view? In iOS 4, you instantiate a view controller, get
a pointer to it, fill in the initial data, and pass it to
presentViewController:animated: or pushViewController:animated:.

On iOS 5, when you use Storyboards, instantiating view controllers and
presenting them to the user are done automatically for you. You are given a
chance to fill in data by overriding the prepareForSegue: sender: method.
By overriding this method, you can get the pointer to the destination view
controller and set the initial values there.

The framework calls the same methods that you used before like
viewDidLoad, initWithCoder: or NSObject’s awakeFromNib method, and this
means that you can continue writing your view controller’s initialization code
as you would do on iOS 4.

Returning Data

With Storyboards, there is no change in how you communicate data back to
the parent view controller. Data created/entered by the user on modal forms
that you present can be retuned to the parent via delegates or blocks. The only
difference is that on your parent view controller, you have to set the delegate
in the prepareForSeque:sender: method to self.

Instantiating Other View Controllers

On iOS 5, Ul'ViewController has a storyboard property that retains a pointer
to the storyboard object (UIStoryBoard) from which it was instantiated. This
is nil when your view controller was created manually or from a nib file.
With this back reference, you can instantiate other view controllers defined in
your storyboard from any other view controller. You do this by identifying the
view controller by its identifier. The following method on UIStoryBoard
allows you to do this:

- instantiateViewControllerwithIdentifier:

This means that you can still have view controllers on your storyboard that
are not connected with any other view controllers through segues and yet they
can be initialized and used.

Performing Segues Manually

While Storyboards can automatically trigger segues based on actions, there
might be cases when you need to perform segues programmatically. You
might use this is to handle actions that cannot be handled by the storyboard
file. To perform a segue, you call the
performSegueWithIdentifier:sender: method of the view controller.
When you perform segues manually, you can pass the caller and the context
objects in the sender parameter. This will be sent to the
prepareForSegue:sender: method later.

Building Table Views with Storyboard

One of the important advantages of Storyboards is the capability to create
static tables from IB. With Storyboards, you can build two types of table
views: a static table that doesn’t need a special class for providing a data
source, and a table view containing a prototype cell (similar to custom table
view cells in iOS 4) that binds data from a model.

Static Tables
You can create static tables in your storyboard by dragging a table, selecting
it, and from the inspector, choosing Static Cells.This is shown in Figure 5-11.

Static cells are great for creating settings pages (or pages whose content
doesn’t come from a Core Data model or a web service or any such data

source) like Apple’s own Settings app.

Static cells can be created only for table views that are from a UITableviewController. You
cannot create static cell for table views that are added as a subview of a UIViewController view.

Prototype Cells

Prototype cells are similar to custom table view cells, but instead of creating
this on separate nib files and loading them in the data source method,
cellForRowAtIndexPath:, you create them in IB on your storyboard and just
set the data on your data source methods.

All prototype cells should be identified using a custom identifier. This is to ensure proper
functioning of the table view cell queuing methods.

Bao g OFEE &

@ m) [Stor iPad5.0 Simulator. (] ‘ Build Succeeded | Today at 11:58 AM ‘

Run Stop Scheme Breakpoints No lssues Editor View Organizer
L ot [pe— :
w4 > B El toryboard) [=] toryboard (E...) [] Table View Controller Scene) () Table View Controller) Table View | &) B |%| s ©

—e ¥ Table Vier

[Navigation Controller Scene ! Dynamic Prototypes

X 28 7 Static Cells)
@ First Responder - = = —_———
» @ Navigation Controller Sectcn 1
Relationship from UINavigati... General Style [Plain)|
[E] Master View Controller - Master. Separator [Single Line 2
@ First Responder Airplane Mode [on @) (= Defaut 3]
» () Master View Controller - Master Selection | Single Selection
Segue from UlBarButtonitem t i e .
9 Carrier AT&T > Editing [No Selection During Editing + |
{4 Show Selection on Touch
Wii Home Wifi > Index Row Limit o3
¥ Scroll View

[Table View Controller Scene Style [Default

@ First Responder Scrollers (¥ Shows Horizontal Scrollers

v () Table View Controller ‘ 4 Shows Vertical Scrollers

v # Scrolling Enabled
v B Table View Section | | Paging Enabled
L Table View Cell |
Label - General
v Table View Cell Boun
Label - Airplane Mode) Bounce Horizontally
Switch | @ Bounce Vertically
¥ Table View Cell Zoom 15 1)
Label - Carrier L s
Label - AT&T Touch (¥ Bounces Zoom
¥ Table View Cell | (¥ Delays Content Touches
Label - Wifi L ™ Cancellable Content Touches
Label - Home Wifi v View
@ Mode [Scale To Fill
0D {} || =

- il objects & B
E um @ & 2 |NoSelec i R

Local § Q All Output 3 Ci (=) |fs]

)

Figure 5-11 A storyboard illustrating static table view creation

Custom Transitions

Another advantage of Storyboards is that it is now easy to create custom

transition effects for your view controllers.

When segues are performed, the compiler generates necessary code to present
or push the destination controller based on the transition style you set on your

storyboard. You learned that there are two types of transition styles, Push and
Modal, supported natively by iOS. There is also a third type (Custom) and
when you choose this, you can provide your own subclass of
UIStoryboardSegue that handles your custom transition effects.

Create a subclass of uIStoryBoardSegue and override the perform method.
In the perform method, access the pointer to the source view controller’s
main view’s layer and do your custom transition animation (using Core
Animation). Once the animation is complete, push or present your destination
view controller (you can get a pointer to this from the segue object). It’s as
simple as that.

Another Advantage

When you use storyboards, it becomes easy for co-developers (and/or clients)
to understand the app’s flow. Instead of going through multiple nib files and
cross-referencing the instantiation code for understanding the flow, co-
developers can open the storyboard file and see the complete flow. This alone
should be a compelling reason to use them.

A Disadvantage

The only drawback I can think of is that storyboards are iOS 5 only. Writing
code to selectively use storyboards for iOS 5 devices and falling back to
normal nib files for iOS 4 devices is too cumbersome and not worth the
effort. When you use storyboards, raise your target’s deployment target to
iOS 5. If your app were an iPad-only app, I would recommend using iOS 5
because most iPad users will already be on that because iOS 5 doesn’t
alienate iPad 1 and all new features of iOS 5 are available on both iPad 1 and
2. But otherwise, on iPhone apps or universal apps, my recommendation is to
wait until you can avoid using iOS 4 completely.

Customizing Your Views Using
UIAppearance Protocol

This last section covers a small, important addition to iOS 5: a method to
customize your view appearance through Apple’s native classes. Prior to iOS
5, customizing the look and feel of native controls was not natively supported

and was often difficult for developers. A common problem developers face is
to change the appearance of all instances of a control. The proper way of
doing this was to create the complete control from scratch. But because that
was time-consuming, some developers resorted to overriding or swizzling
methods like drawRect : .

With iOS 5, Apple has provided default support for most UIKit controls by
formalizing customization using a couple protocols—namely UIAppearance
and UIAppearanceContainer. Any UI control that adheres to the
UIAppearance protocol can be customized to have a different look and feel.
Want more? The UIAppearance protocol even allows you to specify a
different look and feel based on where the control is contained. That is, you
can specify the appearance of a control (say the tintColor of a
UIBarButtonItem for example) to be different when it is contained within a
specific view (UINavigationBar or UIPopoverViewController). You do this
by getting an appearance proxy object for the control’s class and using that to
customize the appearance. Let’s look at an example.

To customize the tint color of a bar button throughout your application, you
set the tintColor to the UIBarButtonItem’s appearance proxy like this:

[[UIBarButtonItem appearance] setTintColor:[UIColor redColor]];

Note that the setTintColor method existed in iOS 4, in UIBarButtonItem.
But it was applicable only to a particular instance of the control. With the
appearance proxy object, you are now able to customize the appearance of
any object created using the said class.

On similar lines, you can also customize the appearance of a control
depending on the contained view, by using the following method:

[[UIBarButtonItem appearanceWhenContainedIn:[UINavigationBar
class], nil] setTintColor:[UIColor redColor]];

The first parameter is a nil terminated list of all container classes like
UINavigatorBar, UIPopOverController that adheres to the
UIAppearanceContainer protocol.

Starting with iOS 5, most Ul elements have added support to UIAppearance

protocol. Additionally, controls like the UISwitch.in iOS 5 allow you to
easily to change the color of the “on” gradient to the designer’s choice.

While Apple was against Ul customization in the beginning (on both Mac
and iOS), it is slowly changing, and you could see Apple’s own native apps
(like the new Reminders app) having customized user interfaces. With
UIAppearance protocol you should be able to achieve the same with far less
code.

Summary

By customizing the Ul appearance and writing unique custom controls, you
can take your app to the next level. To help you do so, this chapter discussed
some of the advanced table view concepts, including measuring and
improving the performance of your table view scrolling using Instruments,
creating custom controls like accordion, and drawers using table views. You
then learned about some important refactoring techniques to keep your
controller code cleaner. After that you learned about Storyboards and how to
integrate them within your existing apps. Finally, you learned about the Ul
customization protocol introduced in iOS 5.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

What’s New in iOS 5—Apple Developer
TableView Programming Guide iOS Developer Documentation
TableViewSuite—iOS Developer Library

UlIViewController Programming Guide: iOS Developer Documentation
(Storyboards)

WWDC Videos

http://developer.apple.com/

The following session video is available at developer.apple.com.

Session 309 - Introducing Interface Builder Storyboarding WWDC 2011

Other Resources

Fast scrolling in Tweetie with UlTableView
http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-
uitableview/

Enormego’s Pull-To-Refresh — Github
https://github.com/enormego/EGOTableViewPullRefresh

http://developer.apple.com
http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-uitableview/
https://github.com/enormego/EGOTableViewPullRefresh

Chapter 6: Better Drawing

Your users expect a beautiful, engaging, and intuitive interface. It is up to you
to deliver. No matter how powerful your features, if your interface seems
“clunky,” you’re going to have a hard time making the sale. This is about
more than just pretty colors and flashy animations. A truly beautiful and
elegant user interface is a key part of a user-centric application. Keeping your
focus on delighting your user is the key to building exceptional applications.

One of the tools you need to create an exceptional user interface is custom
drawing. In this chapter you will learn the mechanics of drawing in iOS, with
focus on flexibility and performance. This chapter will not cover iOS UI
design. For information on how to design iOS interfaces, you should start
with Apple’s iOS Human Interface Guidelines and iOS Application
Programming Guide, available in the iOS Developer Documentation.

In this chapter, you will learn about the several drawing systems in iOS, with
a focus on UIKit and Core Graphics. By the end of this chapter, you will have
a strong grasp of the UIKit drawing cycle, drawing coordinate systems,
graphic contexts, paths, and transforms. You will know how to optimize your
drawing speed through correct view configuration, caching, pixel alignment,
and use of layers. You will be able to avoid bloating your application bundle
with avoidable prerendered graphics.

With the right tools, you can achieve your goal of a beautiful, engaging, and
intuitive interface, while maintaining high performance, low memory usage,
and small application size.

i0S’s Many Drawing Systems

iOS has several major drawing systems: UIKit, Core Graphics (Quartz), Core
Animation, Core Image, and OpenGL ES. Each is useful for a different kind
of problem.

m UIKit—This is the highest-level interface, and the only interface in

Objective-C. It provides easy access to layout, compositing, drawing,
fonts, images, animation, and more. You can recognize UIKit elements by
the prefix UI, such as UIview and UIBezierPath. UIKit also extends
NSString to simplify drawing text with methods like
drawInRect:withFont:.

® Core Graphics (also called Quartz 2D)—The primary drawing system
underlying UIKit, this is what you use most frequently to draw custom
views. Core Graphics is highly integrated with UIview and other parts of
UIKit. Core Graphics data structures and functions can be identified by the
prefix CG.

® Core Animation—This provides powerful two- and three-dimensional
animation services. It is also highly integrated into UIview. Chapter 7
covers Core Animation in detail.

® Core Image—A Mac technology first available in iOS 5, Core Image
provides very fast image filtering such as cropping, sharpening, warping,
and just about any other transformation you can imagine. The basics of
Core Image are covered in Chapter 1.

® OpenGL ES—Most useful for writing high-performance games—
particularly 3D games—Open GL ES is a subset of the OpenGL drawing
language. For other applications on iOS, Core Animation is generally a
better choice. OpenGL ES is portable between most platforms. A
discussion of OpenGL ES is beyond the scope of this book, but there are
many good books available on the subject.

UIKit and the View Drawing Cycle

When you change the frame or visibility of a view, draw a line, or change the
color of an object, the change is not immediately displayed on the screen.
This sometimes confuses developers who incorrectly write code like this:

progressView.hidden = NO; // This line does nothing
[self doSomethingTimeConsuming];
progressView.hidden = YES;

It’s important to understand that the first line (progressview.hidden = NO)
does absolutely nothing useful. This code does not cause the progress view to

be displayed while the time-consuming operation is in progress. No matter
how long this method runs, you will never see the view displayed. Figure 6-1
shows what actually happens in the drawing loop.

All drawing occurs on the main thread, so as long as your code is running on
the main thread, nothing can be drawn. That is one of the reasons you should
never execute a long-running operation on the main thread. Not only does it
prevent drawing updates but it also prevents event handling (such as
responding to touches). As long as your code is running on the main thread,
your application is effectively “hung” to the user. This isn’t noticeable as long
as you make sure that your main thread routines return quickly.

You may now be thinking, “Well, I’'ll just run my drawing commands on a
background thread.” You can’t do that because UIKit isn’t thread-safe. Any
attempt to modify a view on a background thread leads to undefined behavior,
including drawing corruption and crashes. (See the section “Caching and
Background Drawing” later in the chapter for more information on how you
can draw in the background.)

This behavior is not a problem to be overcome. The consolidation of drawing
events is one part of iOS’s capability to render complex drawings on limited
hardware. As you see throughout this chapter, much of UIKit is dedicated to
avoiding unnecessary drawing, and this consolidation is one of the first steps.

Event Loop
Begins

Y
Your method

is called

A 4

progressView.hidden = NO

| The hidden flag

is cleared

Y

View is marked

L

[self
doSomethingTimeConsuming]

Y

progressView.hidden =YES

for redraw

The hidden flag

Your method completes
and returns

Any views
marked for
redraw?

Yes. progressView

Check
hidden
flag

It's set —

Y

is set

4

View is marked
for redraw

Nothing to draw

Event Loop
Completes

Figure 6-1 How the Cocoa drawing cycle consolidates changes

So how do you start and stop an activity indicator for a long-running
operation? You use dispatch or operation queues to put your expensive work
in the background, while making all of your UIKit calls on the main thread,
as shown in the following code.

ViewController.m (TimeConsuming)

- (IBAction)doSomething: (id)sender {
[sender setEnabled:NO];
[self.activity startAnimating];

dispatch_queue_t bgQueue = dispatch_get_global_queue(
DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_async(bgQueue, 2{
[self somethingTimeConsuming];

dispatch_async(dispatch_get_main_queue(), ~{
[self.activity stopAnimating];
[sender setEnabled:YES];

1),
1)
}

When the IBAction is called, you start animating the activity indicator. You
then put a call to somethingTimeConsuming on the default background
dispatch queue. When that finishes, you put a call to stopAnimating on the
main dispatch queue. Dispatch and operation queues are covered in Chapter
9.

To summarize

m iOS consolidates all drawing requests during the run loop, and draws
them all at once.

® You must not block the main thread to do complex processing.

® You must not draw into the main view graphics context except on the
main thread. You should check each UIKit method to ensure it does not
have a main thread requirement. Some UIKit methods can be used on
background threads as long as you are not drawing into the main view

context. See “CGLayer” later in this chapter for examples.

View Drawing versus View Layout

UIView separates the layout (“rearranging”) of subviews from drawing (or
“display”). This is important for maximizing performance because layout is
generally cheaper than drawing. Layout is cheap because UIview caches
drawing operations onto GPU-optimized bitmaps. These bitmaps can be
moved around, shown, hidden, rotated, and otherwise transformed and
composited very inexpensively using the GPU.

When you call setNeedsDisplay on a view, it is marked “dirty” and will be
redrawn during the next drawing cycle. You should not call it unless the
content of the view has really changed. Most UIKit views automatically
manage redrawing when their data is changed, so you generally don’t need to
call it except on custom views.

When a view’s subviews need to be rearranged because of an orientation
change or scrolling, UIKit calls setNeedsLayout. This, in turn, calls
layoutSubviews on the affected views. By overriding layoutSubviews, you
can make your application much smoother during rotation and scrolling
events. You can rearrange your subviews’ frames without necessarily having
to redraw them, and you can hide or show views based on orientation. You
can also call setNeedsLayout if your data changes in ways that only need
layout updates rather than drawing.

Custom View Drawing

Views can provide their content by including subviews, including layers, or

implementing drawRect :. Typically if you implement drawRect :, you don’t
mix this with layers or subviews, although it’s legal and sometimes useful to
do so. Most custom drawing is done with UIKit or Core Graphics, although

OpenGL ES has become easier to integrate when needed.

2D drawing generally breaks down into several operations:

Hm Lines

m Paths (filled or outlined shapes)
| Text
m Images

m Gradients

2D drawing does not include manipulation of individual pixels because that is
destination dependent. You can achieve this with a bitmap context, but not
directly with UIKit or Core Graphics functions.

Both UIKit and Core Graphics use a “painter” drawing model. This means
that each command is drawn in sequence, overlaying previous drawings.
Order is very important in this model, and you must draw back to front.

Drawing with UIKit

In the “old days” before iPad, most custom drawing had to be done with Core
Graphics because there was no way to draw arbitrary shapes with UIKit. In
iPhoneOS 3.2, Apple added UIBezierPath and made it much easier to draw
entirely in Objective-C. UIKit still lacks support for lines, gradients, shading,
and some advanced features like controlling anti-aliasing and precise color
management. Even so, UIKit is now a very convenient way to manage the
most common custom drawing needs.

The simplest way to draw rectangles is with UIRectFrame or UIRectFill, as
shown in the following code.

- (void)drawRect:(CGRect)rect {
[[UIColor redColor] setFill];
UIRectFill(CGRectMake(10, 10, 100, 100));

}

Notice how you first set the pen color using -[UIColor setFill]. Drawing
is done into a graphics context provided by the system before calling
drawRect :. That context includes a lot of information including stroke color,
fill color, text color, font, transform, and more. At any given time, there is just
one stroke pen and one fill pen, and their colors are used to draw everything.
The “Managing Graphics Contexts” section later in this chapter covers how
to save and restore contexts, but for now just note that drawing commands are

orderdependent, and that includes commands that change the pens.

The graphics context provided to drawRect : is specifically a view graphics context. There are
other types of graphics contexts, including PDF and bitmap contexts. All of them use the same
drawing techniques, but a view graphics context is optimized for drawing onto the screen. This
distinction will be important when I discuss cGLayer.

Paths

UIKit includes much more powerful drawing commands than its rectangle
functions. It can draw arbitrary curves and lines using UIBezierPath. A
Bézier curve is a mathematical way of expressing a line or curve using a
small number of control points. Most of the time, you don’t need to worry
about the math because UIBezierPath has simple methods to handle the most
common paths: lines, arcs, rectangles (optionally rounded), and ovals. With
these, you can quickly draw most shapes needed for UI elements. The
following code is an example of a simple shape scaled to fill the view, as
shown in Figure 6-2. You draw this several ways in the upcoming examples.

FlowerView.m (Paths)

- (void)drawRect:(CGRect)rect {
CGSize size = self.bounds.size;
CGFloat margin = 10;
CGFloat radius = rint(MIN(size.height - margin,

size.width - margin) / 4);

CGFloat xOffset, yOffset;
CGFloat offset = rint((size.height - size.width) / 2);
if (offset > 0) {

x0ffset = rint(margin / 2);
yOffset = offset;
}
else {
x0ffset = -offset;
yOffset = rint(margin / 2);
}

[[UIColor redColor] setFill];
UIBezierPath *path = [UIBezierPath bezierPath];
[path addArcwWithCenter:CGPointMake(radius * 2 + xOffset,
radius + yOffset)
radius:radius
startAngle:-M_PI
endAngle:0

}

clockwise:YES];

[path addArcwWithCenter:CGPointMake(radius * 3 + xOffset,
radius * 2 + yOffset)
radius:radius
startAngle:-M_PI 2
endAngle:M_PI 2
clockwise:YES];
[path addArcwWithCenter:CGPointMake(radius * 2 + xOffset,

+

radius * 3 yOffset)
radius:radius
startAngle:0
endAngle:M_PI
clockwise:YES];
[path addArcwWithCenter:CGPointMake(radius + xOffset,

radius 2 + yOffset)

*

radius:radius
startAngle:M_PI_2
endAngle:-M_PI 2
clockwise:YES];
[path closePath];
[path fill],

This creates a path made up of a series of arcs and fills it with red. Creating a
path does not cause anything to be drawn. A UIBezierPath is just a sequence
of curves, like an NSString is a sequence of characters. Only when you call
fill is the curve drawn into the current context.

Note the use of the M_PI () and M_PI_2 (w2) constants. Arcs are described in
radians, so m and fractions of m are important. math.h defines many such
constants that you should use rather than recomputing them. Arcs measure
their angles clockwise, with 0 radians pointing to the right, 72 radians
pointing down, T (or -1) radians pointing left, and -w?2 radians pointing up.
You can use 3w2 for up if you prefer, but I find -M_PI_2 easier to visualize
than 3*M_PI_2. If radians give you a headache, you can make a function out
of it:

CGFloat RadiansFromDegrees(CGFloat d) {

}

return d * M_PI / 180;

Generally I recommend just getting used to radians rather than doing so much
math, but if you need unusual angles, it can be easier to work in degrees.

When calculating radius and offset, you use rint (round to closest integer)
to ensure that you’re point aligned (and therefore pixel aligned). That helps
improve drawing performance and avoids blurry edges. Most of the time
that’s what you want, but in cases where an arc meets a line, it can lead to off-
by-one drawing errors. Usually the best approach is to move the line so that
all the values are integers, as discussed in the following section.

_—

Carrier =<

Figure 6-2 Output of FlowerView

Understanding Coordinates

There are subtle interactions between coordinates, points, and pixels that can
lead to poor drawing performance and blurry lines and text. Consider the
following code:

CGContextSetLinewWidth(context, 3.);

// Draw 3pt horizontal line from {10,100} to {200,100}
CGContextMoveToPoint(context, 10., 100.);
CGContextAddLineToPoint(context, 200., 100.);
CGContextStrokePath(context);

// Draw 3pt horizontal line from {10,105.5} to {200,105.5}
CGContextMoveToPoint(context, 10., 105.5);
CGContextAddLineToPoint (context, 200., 105.5);
CGContextStrokePath(context);

Figure 6-3 shows the output of this program on a non-Retina display, scaled
to make the differences more obvious.

Figure 6-3: Comparison of line from {10,100} and line from {10,105.5}

The line from {10, 100} to {200, 100} is much more blurry than the line from
{10, 105.5} to {200, 105.5}. The reason is because of how iOS interprets
coordinates.

When you construct a CGPath, you work in so-called geometric coordinates.
These are the same kind of coordinates that mathematicians use, representing
the zero-dimensional point at the intersection of two grid lines. It is
impossible to draw a geometric point or a geometric line because they are
infinitely small and thin. When iOS draws, it has to translate these geometric
objects into pixel coordinates. These are two-dimensional boxes that can be

set to a specific color. A pixel is the smallest unit of display area that the
device can control.

Figure 6-4 shows the geometric line from {10, 100} to {200, 100}.

{0,0}

110,10 o {200,100}

Figure 6-4 Geometric line from {10, 100} to {200, 100}

When you call cGContextStrokePath, iOS centers the line along the path.
Ideally, the line would be 3 pixels wide, from y = 98.5 to y = 101.5, as shown
in Figure 6-5.

{0,0}

{10,98.5}

{10,100} {200,100}

{10,101.5}

Figure 6-5 Ideal three-pixel line

This line is impossible to draw, however. Each pixel must be a single color,
and the pixels at the top and bottom of the line include two colors. Half is the
stroke color, and half is the background color. iOS solves this problem by
averaging the two. This is the same technique used in anti-aliasing. This is
shown in Figure 6-6.

{0,0}

{10,98.5}

{10,100} {200,100}

{10,101.5}

Figure 6-6 Anti-aliased three-pixel line

On the screen, this line will look slightly blurry. The solution to this problem
is to move horizontal and vertical lines to the half-point so that when iOS
centers the line, the edges fall along pixel boundaries, or to make your line an
even width.

You can also encounter this problem with nonintegral line-widths, or if your
coordinates aren’t integers or half-integers. Any situation that forces iOS to
draw fractional pixels will cause blurriness.

Fill is not the same as stroke. A stroke line is centered on the path, but fill
colors all the pixels up to the path. If you fill the rectangle from {10,100} to
{200,103}, then each pixel is filled correctly, as shown in Figure 6-7.

{0,0}

{10,100} {200,100}

{10,103} {200,103}

Figure 6-7 Filling the rectangle from {10,100} to {200,103}

The discussion so far has equated points with pixels. On a Retina display,
these are not equivalent. The iPhone 4 has four pixels per point and a scale
factor of two. That subtly changes things, but generally for the better.
Because all the coordinates used in Core Graphics and UIKit are expressed in
points, all integral line widths are effectively an even number of pixels. For
example, if you request a 1-point stroke width, this is the same as a 2-pixel
stroke width. To draw that line, iOS needs to fill one pixel on each side of the
path. That’s an integral number of pixels, so there’s no anti-aliasing. You can
still encounter blurriness if you use coordinates that are neither integers nor
half-integers.

Offsetting by a half-point is unnecessary on a Retina display, but it doesn’t
hurt. As long as you intend to support iPhone 3GS or iPad 2, you need to
apply a half-point offset for drawing horizontal and vertical lines.

All of this only applies to horizontal and vertical lines. Sloping or curved
lines should be anti-aliased so that they’re not jagged, so there’s generally no

reason to offset them.

Resizing and contentMode

Returning to FlowerView from the section “Paths” earlier in this chapter, if
you rotate the device as shown in Figure 6-8, you’ll see that the view is
distorted, even though you have code that adjusts for the size of the view.

J/ Carrier = [l \

A

Figure 6-8 Rotated FlowerView

/

iOS optimizes drawing by taking a snapshot of the view and adjusting it for
the new frame. The drawRect: method isn’t called. The property
contentMode determines how the view is adjusted. The default,
UIViewContentModeScaleToFill, scales the image to fill the new view size,
changing the aspect ratio if needed. That’s why the shape is distorted.

There are a lot of ways to automatically adjust the view. You can move it
around without resizing it, or you can scale it in various ways that preserve or
modify the aspect ratio. The key is to make sure that any mode you use
exactly matches the results of your drawRect : in the new orientation.
Otherwise, your view will “jump” the next time you redraw. This usually
works as long as your drawRect : doesn’t consider its bounds during drawing.
In FlowerView, you use the bounds to determine the size of your shape, so it’s
hard to get automatic adjustments to work correctly.

Use the automatic modes if you can because they can improve performance.
When you can’t, ask the system to call drawRect : when the frame changes by
using UIViewContentModeRedraw, as shown in the following code.

- (void)awakeFromNib {
self.contentMode = UIViewContentModeRedraw;

}

Transforms

iOS platforms have access to a very nice GPU that can do matrix operations
very quickly. If you can convert your drawing calculations into matrix
operations, then you can leverage the GPU and get excellent performance.
Transforms are just such a matrix operation.

iOS has two kinds of transforms: affine and 3D. uiview handles only affine
transforms, so that’s all I discuss right now. An affine transform is a way of
expressing rotation, scaling, shear, and translation (shifting) as a matrix.
These transforms are shown in Figure 6-9.

|dentity Scale

Rotate Shear

Translate

Figure 6-9 Affine transforms

A single transform combines any number of these operations into a 3x3
matrix. iOS has functions to support rotation, scaling, and translation. If you
want shear, you’ll have to write the matrix yourself. (You can also use
CGAffineTransformMakeShear from Jeff LaMarche; see “Further Reading” at
the end of the chapter.)

Transforms can dramatically simplify and speed up your code. Often it is
much easier and faster to draw in a simple coordinate space around the origin
and then to scale, rotate, and translate your drawing to where you want it. For
instance, FlowerView includes a lot of code like this:

CGPointMake(radius * 2 + xOffset, radius + yOffset)

That’s a lot of typing, a lot of math, and a lot of things to keep straight in your
head. What if instead you just draw it in a 41x4 box as shown in Figure 6-10?

Now all the interesting points fall on nice, easy coordinates like {0,1} and
{1,0}. The following code shows how to draw using this transform. Compare
the highlighted sections with the Flowerview code earlier in this chapter.

Figure 6-10 Drawing FlowerView in a 4x4 box
FlowerTransformView.m (Transforms)

static inline CGAffineTransform
CGAffineTransformMakeScaleTranslate(CGFloat sx, CGFloat sy,

}

CGFloat dx, CGFloat dy)
return CGAffineTransformMake(sx, 0.f, 0.f, sy, dx, dy);

(void)drawRect: (CGRect)rect {
CGSize size self.bounds.size;
CGFloat margin 10;

[[UIColor redColor] set];

UIBezierPath *path

clockwise

clockwise

clockwise

clockwise
[path closePath];

CGFloat scale

[UIBezierPath bezierPath];
[path addArcwWithCenter:
radius:

startAngle:

endAngle:

:YES];
[path addArcwWithCenter:
radius:

startAngle:

endAngle:

:YES];
[path addArcwWithCenter:
radius:

startAngle:

endAngle:

:YES];
[path addArcwWithCenter:
radius:

startAngle:

endAngle:

:YES];

CGPointMake (0,
1

-M_PI

(0]

-1)

CGPointMake(1, 0)
1

-M_PI_2

M_PI_2

CGPointMake(0, 1)
1

(0]

M_PI

CGPointMake(-1, 0)
1

M_PI_2

-M_PI_2

floor ((MIN(size.height, size.width)

- margin) / 4);

CGAffineTransform transform;

transform

CGAffineTransformMakeScaleTranslate(scale,

scale,
size.width/2,
size.height/2);

[path applyTransform:transform];

[path fill];

When you’re done constructing your path, you compute a transform to move
it into your view’s coordinate space. You scale it by the size you want divided
by the size it currently is (4), and you translate it to the center of the view.

The utility function CGAffineTransformMakeScaleTranslate isn’t just for
speed (although it is faster). It’s easier to get the transform correct this way. If
you try to build up the transform one step at a time, each step affects later
steps. Scaling and then translating is not the same as translating and then
scaling. If you build the matrix all at once, you don’t have to worry about
that.

This technique can be used to draw complicated shapes at unusual angles. For
instance, to draw an arrow pointing to the upper right, it’s generally easier to
draw it pointing to the right and then rotate it.

You have a choice between transforming the path using applyTransform:
and transforming the whole view by setting the transform property. Which is
best depends on the situation, but I usually prefer to transform the path rather
than the view when practical. Modifying the view’s transform makes the
results of frame and bounds more difficult to interpret, so I avoid it when I
can. As you see in the following section, you can also transform the current
context, which sometimes is the best approach.

Drawing with Core Graphics

Core Graphics, sometimes called Quartz 2D or just Quartz, is the main
drawing system in iOS. It provides destination-independent drawing, so you
can use the same commands to draw to the screen, layer, bitmap, PDF, or
printer. Anything starting with CG is part of Core Graphics. Figure 6-11 and
the following code provide an example of a simple scrolling graph.

GraphView.h (Graph)

@interface GraphView : UIView
@property (nonatomic, readonly, strong)

NSMutableArray *values;
@property (nonatomic, readonly, strong) NSTimer *timer;
@end

Carrier =

Figure 6-11 Simple scrolling graph
GraphView.m (Graph)

#import “GraphView.h”
@implementation GraphView
@synthesize values=values_;
@synthesize timer=timer_;
const double kXScale = 5.0;
const double kYScale = 100.0;
- (void)awakeFromNib {
values_ = [NSMutableArray array];
timer_ = [NSTimer scheduledTimerWithTimeInterval:0.25
target:self
selector:@selector(updateValues:)
userInfo:nil
repeats:YES];

- (void)updateValues: (NSTimer *)timer {
double nextValue = sin(CFAbsoluteTimeGetCurrent())
+ ((double)rand()/(double)RAND_MAX);
[self.values addObject:
[NSNumber numberWithDouble:nextValue]];
NSUInteger maxValues =
floorl(self.bounds.size.width / kXScale);
if ([self.values count] > maxValues) {
[self.values removeObjectsInRange:
NSMakeRange(0, [self.values count] - maxValues)];

3
[self setNeedsDisplay];

- (void)dealloc {
[timer_ invalidate];

}
- (void)drawRect:(CGRect)rect {
if ([self.values count] == 0) {
return;
}

CGContextRef ctx = UIGraphicsGetCurrentContext();
CGContextSetStrokeColorwithColor(ctx,

[[UIColor redColor] CGColor]);
CGContextSetLineJoin(ctx, kCGLineJoinRound);
CGContextSetLinewidth(ctx, 5);

CGFloat yOffset = self.bounds.size.height / 2;
double y = [[self.values objectAtIndex:0] doubleValue];
CGContextMoveToPoint(ctx, 0, y * kYScale + yOffset);
for (NSUInteger x = 1; x < [self.values count]; ++x) {
y = [[self.values objectAtIndex:x] doublevalue];
CGContextAddLineToPoint(ctx, x * kXScale,
y * kYScale + yOffset);
}

CGContextStrokePath(ctx);

}
@end

Every second, this code adds a new number to the end of the data and
removes an old number from the beginning. Then it marks the view as dirty
with setNeedsDisplay. The drawing code gets the current context, sets
various advanced line drawing options not available with UIBezierPath, and
moves to the first point. For each number, it adds a line to that point in the
graph and finally strokes the path.

Note that the “current path” is an attribute of the cGContext, not a separate
object. Instead, you could use a cGPath as shown in the following code.

GraphView.m (Graph)

- (void)drawRect:(CGRect)rect {
if ([self.values count] == 0) {
return;

}

CGContextRef ctx = UIGraphicsGetCurrentContext();
CGContextSetStrokeColorwithColor(ctx,

[[UIColor redColor] CGColor]);
CGContextSetLineJoin(ctx, kCGLineJoinRound);
CGContextSetLinewWidth(ctx, 5);
CGMutablePathRef path = CGPathCreateMutable();

CGFloat yOffset = self.bounds.size.height / 2;

CGAffineTransform transform =

CGAffineTransformMakeScaleTranslate(kXScale, kYScale,
0, yoffset);

double y = [[self.values objectAtIndex:0] doubleValue];
CGPathMoveToPoint (path, &transform, 0, y);

for (NSUInteger x = 1; x < [self.values count]; ++x) {
y = [[self.values objectAtIndex:x] doubleValue];
CGPathAddLineToPoint (path, &transform, x, y);

}
CGContextAddPath(ctx, path);

CGPathRelease(path);
CGContextStrokePath(ctx);

Using a cGPath this way allows you to simplify your math with a transform.
You can’t apply a scaling transform to the view or the context because that
would distort the line.

Core Graphics uses the Core Foundation memory management rules. Core Foundation objects
require manual retain and release, even under ARC. Note the use of cGPathRelease. For full
details, see Chapter 19.

You may be tempted to cache the cGPath here so that you don’t have to
compute it every time. That’s a good instinct, but in this case it wouldn’t help.
iOS already avoids calling drawrect : except when the view is dirty, which
only happens when the data changes. When the data changes, you need to
calculate a new path. Caching the old path in this case would just complicate
the code and waste memory.

Mixing UIKit and Core Graphics

Within drawRec :, UIKit and Core Graphics can generally intermix without
issue, but outside of drawRect: you may find that things drawn with Core
Graphics appear upside down. UIKit uses an upper-left origin (ULO)
coordinate system, while Core Graphics uses a lower-left origin (LLO)
system by default. As long as you use the context returned by
UIGraphicsGetCurrentContext inside of drawRect:, everything is fine
because this context is already flipped. But if you create your own context
using functions like CGBitmapContextCreate, it’ll be LLO. You can either do
your math backward or you can flip the context:

CGContextTranslateCTM(ctx, 0.0f, height);
CGContextScaleCTM(ctx, 1.0f, -1.0f);

This moves (translates) the height of the context, and then flips it using a
negative scale. When going from UIKit to Core Graphics, the transform is

reversed:

CGContextScaleCTM(ctx, 1.0f, -1.0f);
CGContextTranslateCTM(ctx, 0.0f, -height);

First flip it, and then translate it.

Managing Graphics Contexts

Before calling drawRect :, the drawing system creates a graphics context.
(cGcontext). A context includes a lot of information such as a pen color, text
color, current font, transform, and more. Sometimes you may want to modify
the context and then put it back the way you found it. For instance, you may
have a function to draw a specific shape with a specific color. There is only
one stroke pen, so when you change the color, this would change things for
your caller. To avoid side effects, you can push and pop the context using
CGContextSaveGState and CGContextRestoreGState.

Do not confuse this with the similar-sounding UIGraphicsPushContext and
UIGraphicsPopContext. They do not do the same thing.
CGContextSaveGState remembers the current state of a context.
UIGraphicsPushContext changes the current context. Here’s an example of
CGContextSaveGState.

[[UIColor redColor] setStroke];
CGContextSaveGState(UIGraphicsGetCurrentContext());
[[UIColor blackColor] setStroke];
CGContextRestoreGState(UIGraphicsGetCurrentContext());
UIRectFill(CGRectMake (10, 10, 100, 100)); // Red

This code sets the stroke pen color to red and saves off the context. It then
changes the pen color to black and restores the context. When you draw, the
pen is red again.

The following code illustrates a common error.

[[UIColor redColor] setStroke];

// Next line is nonsense

UIGraphicsPushContext (UIGraphicsGetCurrentContext());
[[UIColor blackColor] setStroke];
UIGraphicsPopContext();

UIRectFill(CGRectMake (10, 10, 100, 100)); // Black

In this case, you set the pen color to red and then switch context to the current
context, which does nothing useful. You then change the pen color to black,
and pop the context back to the original (which effectively does nothing). You
now will draw a black rectangle, which is almost certainly not what was
meant.

The purpose of UIGraphicsPushContext is not to save the current state of the
context (pen color, line width, etc.), but to switch contexts entirely. Say you
are in the middle of drawing something into the current view context, and
now want to draw something completely different into a bitmap context. If
you want to use UIKit to do any of your drawing, you’d want to save off the
current UIKit context, including all the drawing that had been done, and
switch to a completely new drawing context. That’s what
UIGraphicsPushContext does. When you finish creating your bitmap, you
pop the stack and get your old context back. That’s what
UIGraphicsPopContext does. This only matters in cases where you want to
draw into the new bitmap context with UIKit. As long as you use Core
Graphics functions, you don’t need to push or pop contexts because Core
Graphics functions take the context as a parameter.

This is a pretty useful and common operation. It’s so common that Apple has
made a shortcut for it called UIGraphicsBeginImageContext. It takes care of
pushing the old context, allocating memory for a new context, creating the
new context, flipping the coordinate system, and making it the current
context. Most of the time, that’s just what you want.

Here’s an example of how to create an image and return it using
UIGraphicsBeginImageContext. The result is shown in Figure 6-12.

MY View.m (Drawing)

- (UIImage *)reverselImageForText:(NSString *)text {
const size_t kImageWidth = 200;
const size_t kImageHeight = 200;
CGImageRef textImage = NULL;
UIFont *font = [UIFont boldSystemFontOfSize:17.0];

UIGraphicsBeginImageContext (CGSizeMake(kImagewidth,
kImageHeight));

[[UIColor redColor] set];
[text drawInRect:CGRectMake(0, 0,
kImagewidth, kImageHeight)
withFont:font];

textImage =
UIGraphicsGetImageFromCurrentImageContext().CGImage;

UIGraphicsEndImageContext();

return [UIImage imageWithCGImage:textImage
scale:1.0
orientation:UIImageOrientationUpMirrored];

Carrier = [7:35 PM

blhoW ollsH

Figure 6-12 Text drawn with reverselmageForText:

Optimizing UIView Drawing

UIView and its subclasses are highly optimized, and when possible you
should use them rather than custom drawing. For instance, UIImageView is
faster and uses less memory than anything you’re likely to put together in an
afternoon with Core Graphics. The following sections cover a few things to
keep in mind when using UIView to keep it drawing as well as it can.

Avoid Drawing

The fastest drawing is the drawing you never do. iOS goes to great lengths to
avoid calling drawRect :. It caches an image of your view and moves, rotates,
and scales it without any intervention from you. Using an appropriate
contentMode lets the system adjust your view during rotation or resizing
without calling drawrect :. The most common cause for drawRect : running
is when you call setNeedsDisplay. Avoid calling setNeedsDisplay
unnecessarily. Remember, though, setNeedsDisplay just schedules the view
to be redrawn. Calling setNeedsDisplay many times in a single event loop is
no more expensive, practically, than calling it once, so don’t coalesce your
calls. iOS is already doing that for you.

Those familiar with Mac development may be familiar with partial view
drawing using setNeedsDisplayInRect:. iOS does not perform partial view
drawing, and setNeedsDisplayInRect: is the same as setNeedsDisplay.
The entire view will be redrawn. If you want to partially redraw of a view,
you should use CALayer (discussed in Chapter 7) or use subviews.

Caching and Background Drawing

If you need to do a lot of calculations during your drawing, cache the results
when you can. At the lowest level, you can cache the raw data you need
rather than asking for it from your delegate every time. Beyond that, you can
cache static elements like CGFont or CGGradient objects so that you only
generate them once. Fonts and gradients are useful to cache this way because
they are often reused. Finally, you can cache the entire result of a complex

drawing operation. Often the best place to cache such a result is in a CGLayer,
which is discussed later in the section “CGLayer.” Alternatively, you can
cache the result in a bitmap, generally using UIGraphicsBeginImageContext
as discussed in “Managing Graphics Contexts™ earlier in this chapter.

Much of this caching or precalculation can be done in the background. You
may have heard that you must always draw on the main thread, but this isn’t
completely true. There are several UIKit functions that must only be called on
the main thread, such as UIGraphicsBeginImageContext, but you are free to
create a CGBitmapContext object on any thread using
CGBitmapCreateContext and draw into it. Since iOS 4, you can use UIKit
drawing methods like drawAtPoint: on background threads as long as you
draw into your own CGContext and not the main view graphics context (the
one returned by UIGraphicsGetCurrentContext). You should only access a
given CGContext on one thread, however.

Custom Drawing Versus Prerendering

There are two major approaches to managing complex drawing. You can
draw everything programmatically with CGPath and CGGradient, or you can
prerender everything in a graphics program like Adobe Photoshop and
display it as an image. If you have an art department and plan to have
extremely complex visual elements, then Photoshop is often the only way to

go.

There are a lot of disadvantages to prerendering, however. First, it introduces
resolution dependence. You may need to manage 1-scale and 2-scale versions
of your images and possibly different images for iPad and iPhone. This
complicates workflow and bloats your product. It can make minor changes
difficult and lock you into precise element sizes and colors if every change
requires a round trip to the artist. Many artists are still unfamiliar with how to
draw stretchable images and how to best provide images to be composited for
iOS.

Apple originally encouraged developers to prerender because early iPhones
couldn’t compute gradients fast enough. Since the iPhone 3GS, this has been
less of an issue, and each generation makes custom drawing more attractive.

Today, I recommend custom drawing when you can do it in a reasonable
amount of code. This is usually the case for small elements like buttons.
When you do use prerendered artwork, I suggest that you keep the art files
fairly “flat” and composit in code. For instance, you may use an image for a
button’s background, but handle the rounding and shadows in code. That way,
as you want to make minor tweaks, you don’t have to rerender the
background.

Pixel Alignment and Blurry Text

One of the most common causes of subtle drawing problems is pixel
misalignment. If you ask Core Graphics to draw at a point that is not aligned
with a pixel, it performs anti-aliasing, as discussed in “Understanding
Coordinates” earlier in this chapter. This means it draws part of the
information on one pixel and part on another, giving the illusion that the line
is between the two. This illusion makes things smoother, but that also makes
them fuzzy. Anti-aliasing also takes processing time, so it slows down
drawing. When possible, you want to make sure that your drawing is pixel
aligned to avoid this.

Prior to the Retina display, pixel aligned meant integer coordinates. As of iOS
4, coordinates are in points, not pixels. There are two pixels to the point on
the current Retina display, so half-points (1.5, 2.5) are also pixel aligned. In
the future, there might be four or more pixels to the point, and it could be
different from device to device. Even so, unless you need pixel accuracy, it is
easiest to just make sure you use integer coordinates for your frames.

Generally it is the frame origin that matters for pixel alignment. This causes
an unfortunate problem for the center property. If you set the center to an
integral coordinate, your origin may be misaligned. This is particularly
noticeable with text, especially with uILabel. Figure 6-13 demonstrates this
problem. It is subtle, and may be difficult to see in print, so you can also
demonstrate it with the program BlurryText available with the online files
for this chapter.

Some Text

Some Text

Figure 6-13 Text that is pixel aligned (top) and unaligned (bottom)

There are two solutions. First, odd font sizes (13 rather than 12 for instance)
will typically align correctly. If you make a habit of using odd font sizes, you
can often avoid the problem. To be certain to avoid the problem, you need to
make sure that the frame is integral either by using setFrame: instead of
setCenter:, or by using a UIView category like setAlignedCenter::

- (void)setAlignedCenter:(CGPoint)center {
self.center = center;
self.frame = CGRectIntegral(self.frame);

}

Because this effectively sets the frame twice, it is not the fastest solution, but
it is very easy and fast enough for most problems. CGRectIntegral() returns
the smallest integral rectangle that encloses the given rectangle.

As pre-Retina displays phase out, this will be less of an issue as long as you
set center to integer coordinates. For now, though, it is still a concern.

Alpha, Opaque, Hidden

Views have three properties that appear related, but are actually orthogonal:
alpha, opaque, and hidden.

The alpha property determines how much information a view contributes to
the pixels within its frame. So an alpha of 1 means that all of the view’s
information is used to color the pixel. An alpha of 0 means that none of the
view’s information is used to color the pixel. Remember, nothing is really
transparent on an iPhone screen. If you set the entire screen to transparent
pixels, the user isn’t going to see the circuit board or the ground. In the end,
it’s just a matter of what color to draw the pixel. So as you raise and lower the
alpha, you’re changing how much this view contributes to the pixel versus
views “below” it.

Marking a view opaque or not does not actually make its content more or less
transparent. Opaque is a promise that the drawing system can use for
optimization. When you mark a view as opaque, you’re promising the
drawing system that you will draw every pixel in your rectangle with fully
opaque colors. That allows the drawing system to ignore views below yours
and that can improve performance, particularly when applying transforms.
You should mark your views opaque whenever possible, especially views that
scroll like UITableviewCell. However, if there are any partially transparent
pixels in your view, or if you don’t draw every pixel in your rectangle, setting
opaque can have unpredictable results. Setting a nontransparent
backgroundColor ensures that all pixels are drawn.

Closely related to opaque is clearsContextBeforeDrawing. This is YES by
default, and sets the context to transparent black before calling drawRrect :.
This avoids any garbage data in the view. It’s a pretty fast operation, but if
you’re going to draw every pixel anyway, you can get a small benefit by
setting it to NO.

Finally, hidden indicates that the view should not be drawn at all and is
generally equivalent to an alpha of 0. The hidden property cannot be
animated, so it’s common to hide views by animating alpha to 0.

Hidden and transparent views do not receive touch events. The meaning of
transparent is not well defined in the documentation, but through
experimentation I’ve found that it is an alpha less than 0.1. You should not
rely on this particular value, but the point is that “nearly transparent™ is
generally treated as transparent. You cannot create a “transparent overlay” to

catch touch events by setting the alpha very low.

You can make a view transparent and still receive touch events by setting its
alpha to 1, opaque to NO, and backgroundColor to nil or [UIColor
clearcolor]. A view with a transparent background is still considered visible
for the purposes of hit detection.

CGLayer

CGLayer is a very effective way to cache things you draw often. This should
not be confused with cALayer, which is a more powerful and complicated
layer object from Core Animation. CGLayer is a Core Graphics layer that is
optimized, often hardware optimized, for drawing into CGContext.

There are several kinds of cGContext. The most common is a view graphics
context, designed to draw to the screen, which is returned by
UIGraphicsCurrentContext. Contexts are also used for bitmaps and printing,
however. Each of these has different attributes, including maximum
resolution, color details, and available hardware acceleration.

At its simplest, a CGLayer is similar to a CGBitmapContext. You can draw into
it, save it off, and use it to draw the result into a cGContext later. The
difference is that you can optimize CGLayer for use with a particular kind of
graphics context. If a cGLayer is destined for a view graphics context, it can
cache its data directly on the GPU, which can significantly improve
performance. CGBitmapContext can’t do this because it doesn’t know that
you plan to draw it on the screen.

The following example demonstrates caching a CGLayer. In this case it’s
cached in a static variable the first time the view is drawn. You can then
“stamp” the CGLayer repeatedly while rotating the context. You use
UIGraphicsPushContext so that you can use UIKit to draw the text into the
layer context, and UIGraphicsPopContext to return to the normal context.
This could be done with cGContextShowTextAtPoint instead, but UIKit
makes it very easy to draw an NSString. Figure 6-14 shows the ouput.

LayerView.m (Layer)

@implementation LayerView
- (void)drawRect:(CGRect)rect {
static CGLayerRef sTextLayer = NULL;
CGContextRef ctx = UIGraphicsGetCurrentContext();

if (sTextLayer == NULL) {
CGRect textBounds = CGRectMake(0, 0, 200, 100);

sTextLayer = CGLayerCreateWithContext(ctx,
textBounds.size,

NULL);
CGContextRef textCtx = CGLayerGetContext(sTextLayer);
CGContextSetRGBFillColor (textCtx, 1.0, 0.0, 0.0, 1);
UIGraphicsPushContext (textCtx);
UIFont *font = [UIFont systemFontOfSize:13.0];
[@”"Pushing The Limits” drawInRect:textBounds

withFont:font];

UIGraphicsPopContext();

}

CGContextTranslateCTM(ctx, self.bounds.size.width / 2,
self.bounds.size.height / 2);

for (NSUInteger i = 0; i < 10; ++1i) {
CGContextRotateCTM(ctx, 2 * M_PI / 10);
CGContextDrawLayerAtPoint(ctx,
CGPointZero,
sTextLayer);

@end

Carrier = [

2:27 PM

mits

Figure 6-14 Output of LayerView

Summary

iOS has a rich collection of drawing tools. This chapter focused on Core
Graphics and its Objective-C descendant, UIKit. By now you should have a
good understanding of how systems interact and how to optimize your iOS
drawing.

Chapter 7 discusses Core Animation, which puts your interface in motion.
Also covered is CALayer, a powerful addition to UIView and CGLayer, and an
important tool for your drawing toolbox even if you’re not animating.

iOS 5 brings Core Image to iOS for tweaking pictures. That is discussed
briefly in Chapter 1. iOS also has ever-growing support for OpenGL ES for
drawing advanced 3D graphics and textures. OpenGL ES is a book-length
subject of its own, so it isn’t tackled here, but you can get a good introduction
in Apple’s “OpenGL ES Programming Guide for iOS” (see the “Further
Reading” section).

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Drawing and Printing Guide for iOS

i0OS Human Interface Guidelines

iOS Application Programming Guide

OpenGL ES Programming Guide for iOS

Quartz 2D Programming Guide

Technical Q&A QA1708: Improving Image Drawing Performance on iOS

View Programming Guide for iOS

http://developer.apple.com/

Other Resources

LaMarche, Jeff, iPhone Development. Jeff has several articles that provide
a lot of insight into using CGAffineTransform.
iphonedevelopment.blogspot.com/search/label/CGAffineTransform.

http://iphonedevelopment.blogspot.com/search/label/CGAffineTransform

Chapter 7: Layers Like an Onion:
Core Animation

The iPhone has made animation central to the mobile experience. Views slide
in and out, applications zoom into place, pages fly into the bookmark list.
Apple has made animation not just a beautiful part of the experience, but a
better way to let the user know what’s happening and what to expect. When
views slide into place from right to left, it is natural to press the left-pointing
button to go back to where you were. When you create a bookmark and it
flies to the toolbar, it’s more obvious where you should look to get back to
that bookmark. These subtle cues are a critical part of making your user
interface intuitive as well as engaging. To facilitate all this animation, iOS
devices include a powerful GPU and frameworks that let you harness that
GPU easily.

In this chapter you discover the two main animation systems of iOS: view
animations and the Core Animation framework. You learn how to draw with
Core Animation layers and how to move layers around in two and three
dimensions. Common decorations like rounded corners, colored borders, and
shadows are trivial with CALayer, and you learn to apply them quickly and
easily. You learn how to create custom automatic animations, including
animating your own properties. Finally, Core Animation is all about
performance, so you learn how to manage layers in multithreaded
applications.

This chapter focuses on animations for view-based programming. These
frameworks are ideal for most iOS applications except games. Game
development is outside the scope of this book, and is usually best served by
built-in frameworks like OpenGL ES or third-party frameworks like
Cocos2D. For more information on OpenGL ES, see the OpenGL ES for iOS
portal at developer.apple.com. For more information on Cocos2D, see
cocos2d-iphone.org.

View Animations

UIView provides rich animation functionality that is very easy to use and well
optimized. Most common animations can be handled with
+animateWithDuration:animations: and related methods. You can use
UIView to animate frame, bounds, center, transform, alpha,
backgroundColor, and contentStretch. Most of the time you’ll animate
frame, center, transform, and alpha.

It’s likely that you are familiar with basic view animations, so I'll just touch
on the high points in this section and then move on to more advanced layer-
based drawing and animation.

Let’s start with a very simple animation of a ball that falls when you tap the
view. CircleView just draws a circle in its frame. The following code creates
the animation shown in Figure 7-1.

Carrier = [5:41 PM Carrier = [5:41 PM

Figure 7-1 CircleView animation
ViewAnimationViewController.m (ViewAnimation)

#import “ViewAnimationViewController.h”
#import “CircleView.h”
@implementation ViewAnimationViewController
@synthesize circleView = circleView_;
- (void)viewDidLoad {
[super viewDidLoad];
self.circleView = [[CircleView alloc] initWithFrame:
CGRectMake(0, 0, 20, 20)];
self.circleView.center = CGPointMake (100, 20);
[[self view] addSubview:self.circleView];

UITapGestureRecognizer *g;

g = [[UITapGestureRecognizer alloc]
initwWithTarget:self
action:@selector(dropAnimate)];

[[self view] addGestureRecognizer:g];

- (void)viewDidUnload {
[super viewDidUnload];
self.circleVview = nil;

- (void)dropAnimate {
[UIView animateWithDuration:3 animations:/"{
self.circleView.center = CGPointMake (100, 300);

11,

}
@end

This is the simplest kind of view-based animation, and it can handle most
common problems, particularly animating size, location, and opacity. It’s also
common to animate transform to scale, rotate, or translate the view over
time. Less commonly, you can animate backgroundColor and
contentStretch. Animating the background color is particularly useful in
HUD-style interfaces to move between mostly transparent and mostly opaque
backgrounds. This can be more effective than just animating the overall
alpha.

Chaining animations is also straightforward, as shown in the following code.

- (void)dropAnimate {
[UIView
animateWithDuration:3 animations:A{
self.circleView.center = CGPointMake (100, 300);
¥

completion:~(BOOL finished){
[UIView animateWithDuration:1 animations:/{
self.circleView.center = CGPointMake (250, 300);
}
17
31
}

Now the ball will drop and the move to the right. But there’s a subtle problem
with this code. If you tap the screen while the animation is in progress, the
ball will jump to the lower left and then animate to the right. That’s probably

not what you want. The issue is that every time you tap the view, this code
runs. If an animation is in progress, then it’s canceled and the completion
block runs with finished==N0. You look at how to handle that next.

Managing User Interaction

The problem mentioned in the previous section is caused by a user experience
mistake: allowing the user to send new commands while you’re animating the
last command. Sometimes that’s what you want, but in this case it isn’t.
Anytime you create an animation in response to user input, you need to
consider this issue.

When you animate a view, by default it automatically stops responding to
user interaction. So while the ball is dropping, tapping it won’t generate any
events. In this example, however, tapping the main view causes the
animation. There are two solutions. First, you can change your user interface
so that tapping the ball causes the animation:

[self.circleView addGestureRecognizer:g];

The other solution is to ignore taps while the ball is animating. The following
code shows how to disable the UIGestureRecognizer in the gesture
recognizer callback , and then enable it when the animation completes.

- (void)dropAnimate: (UIGestureRecognizer *)recognizer {
[UIView
animatewWithDuration:3 animations:A{
recognizer.enabled = NO;
self.circleView.center = CGPointMake (100, 300);
}
completion:A(BOOL finished){
[UIView
animatewWithDuration:1 animations:A{
self.circleView.center = CGPointMake (250, 300);
}

completion:A(BOOL finished){
recognizer.enabled = YES;
¥

1;
11

This technique is nice because it minimizes side effects to the rest of the

view, but you might want to prevent all user interaction for the view while the
animation runs. In that case you would replace recognizer.enabled with
self.view.userInteractionEnabled.

Drawing with Layers

View animations are powerful, and you should rely on them whenever you
can, especially for basic layout animation. They also provide a small number
of stock transitions that you can read about in the Animations section of the
View Programming Guide for iOS available at developer.apple.com. If you
have basic needs, these are great tools.

But you’re here to go beyond the basic needs, and view animations have a lot
of limitations. Their basic unit of animation is UIView, which is a pretty
heavyweight object, so you need to be careful about how many of them you
use. UIView also doesn’t support three-dimensional layout, except for basic z-
ordering, so it can’t create anything like Cover Flow. To move your Ul to the
next level, you need to learn to use Core Animation.

Core Animation provides a variety of tools, several of which are useful even

if you don’t intend to animate anything. The most basic and important part of
Core Animation is CALayer. This section explains how to draw with CALayer
without animations. You explore animating later in the chapter.

Don’t confuse CALayer from Core Animation with cGLayer from Core Graphics. Both are layers,
but they have dramatically different purposes. See Chapter 6 for more information on cGLayer. In
this chapter, when I refer to a layer, I mean cALayer.

In many ways, CALayer is very much like UIview. It has a location, size,
transform, and content. You can override a draw method to draw custom
content, usually with Core Graphics. There is a layer hierarchy exactly like
the view hierarchy. You might ask, why even have separate objects?

The most important answer is that UIView is a fairly heavyweight object that
manages drawing and event handling, particularly touch events. CALayer is
all about drawing. In fact, UIView relies on a CALayer to manage its drawing,
which allows the two to work very well together.

Every UIView has a CALayer to do its drawing. And every CALayer can have

http://developer.apple.com/

sublayers, just like every UIview can have subviews. Figure 7-2 shows the

hierarchy.

UlView

UlView

UlView

CAlLayer

CAlLayer

CALayer

Figure 7-2 View and layer hierarchies

Layers draw whatever is in its contents property, which is a CGImage (see the
note at the end of this section). It’s your job to set this somehow, and there are
various ways of doing that. The simplest approach is to assign it directly, as
shown here, and discussed more fully in “Setting Contents Directly” later in

this section.

UIImage *image
CALayer *layer
layer.contents

(__bridge id)[image CGImage];

If you do not set the contents property directly, then Core Animation will go

through the following methods to create it.

1. [CALayer setNeedsDisplay]—Your code needs to call this. It marks the
layer as dirty, requesting that contents be updated using the following
steps. Unless setNeedsDisplay is called, the contents property is never

updated, even if it’s nil.

2. [CALayer displayIfNeeded]—The drawing system automatically calls
this as needed. If the layer has been marked dirty by a call to

setNeedsDisplay, then the drawing system will continue with the
following steps.

3. [CALayer display]—This is called by displayIfNeeded when
appropriate. You shouldn’t call it directly. The default implementation calls
the delegate method displayLayer: if the delegate implements it. If not,
display calls drawInContext:. You can override display in a subclass to
set contents directly.

4. [delegate displaylLayer:]—The default [CALayer display] calls
this if the delegate implements it. Its job is to set contents. If this method
is implemented, even if it does nothing, then no further custom drawing
code will be run.

5. [CALayer drawInContext:]—The default display method creates a
view graphics context and passes it to drawInContext:. This is similar to
[UIView drawRect:], but no UIKit context is set up for you automatically.
To draw with UIKit, you need to call UIGraphicsPushContext() to make
the passed context the current context. Otherwise, just use the passed
context to draw with Core Graphics. The default display method takes the
resulting context, creates a CGImage (see note below) and assigns it to
contents. The default [CALayer drawInContext:] calls [delegate
drawLayer:inContext:] if it’s implemented. Otherwise it does nothing.
Note that you may call this directly. See the section “Drawing in Your Own
Context” later in this section for information on why you would call this
directly.

6. [delegate drawLayer:inContext:]—If implemented, the default
drawInContext: calls this to update the context so that display can create
a CGImage.

As you can see, there are several ways to set the contents of a layer. You can
set it directly with setContent:, you can implement display or
displaylLayer:, or you can implement drawInContext: or
drawLayer:inContext:. In the rest of this section I discuss each approach.

The drawing system almost never automatically updates contents in the way
that UIView is often automatically refreshed. For instance, UIView draws itself
the first time it’s put on screen. CALayer does not. Marking a UIView as dirty

with setNeedsDisplay automatically redraws all the subviews as well.
Marking a CALayer as dirty with setNeedsDisplay does not impact
sublayers. The thing to remember is that the default behavior of a UIView is to
draw when it thinks you need it. The default behavior of a CALayer is to never
draw unless you explicitly ask for it. CALayer is a much lower-level object,
and it is optimized to not waste time doing anything that wasn’t explicitly
asked for.

The contents property is usually a c6Image, but this is not always the case. If you use custom
drawing, then Core Animation will use a private class, CABackingStorage, for contents. You can
set contents to either a cGImage or the contents of another layer.

Setting Contents Directly

Providing a content image (shown in the following code) is the easiest
solution if you already have an image handy.

LayersViewController.m (Layers)

#import <QuartzCore/QuartzCore.h>

UIImage *image = [UIImage imageNamed:@"”pushing.png”];
self.view.layer.contents = (__bridge id)[image CGImage];

You must always import Quartzcore.h and link with Quartzcore. framework to use Core
Animation. This is an easy thing to forget.

The castto __bridge id is needed because contents is defined as an id, but
actually expects a CGImageRef. To make this work with ARC, a cast is
required. (This may be resolved in a later version of iOS.) A common error is
to pass a UIImage here instead of a CGImageRef. You won’t get a compiler
error or runtime warning. Your view will just be blank.

By default, the contents are scaled to fill the view, even if that distorts the
image. As with contentMode and contentStretch in UIView, CALayer can be
configured to scale its image in different ways using contentsCenter and
contentsGravity.

Implementing Display

The job of display or displayLayer: is to set contents to a correct

CGImage. You can do this any way you’d like. The default implementation
creates an CGContext, passes it to drawInContext:, turns the result into a
CGImage, and assigns it to contents. The most common reason to override
this is if your layer has several states, and you have an image for each.
Buttons often work this way. You can create those images by loading them

from your bundle, drawing them with Core Graphics, or any other way you’d
like.

Whether to subclass CALayer or use a delegate is really a matter of taste and
convenience. UIView has a layer and it must be that layer’s delegate. In my
experience it’s dangerous to make a UIView the delegate for any of the
sublayers. This can create infinite recursion when the UIView tries to copy its
sublayers in certain operations such as transitions. So you can implement
displaylLayer: in UIView to manage its layer, or you can have some other
object be the delegate for sublayers.

Having UIview implement displayLayer: seldom makes sense in my
opinion. If your view content is basically several images, it’s usually a better
idea to use a UIImageView or a UIButton rather than a custom UIView with
hand-loaded layer content. UIImageView is highly optimized for displaying
images. UIButton is very good at switching images based on state, and
includes a lot of good user interface mechanics that are a pain to reproduce.
Don’t try to reinvent UIKit in Core Animation. UIK:it likely does it better
than you will.

What can make more sense is to make your UIViewController the delegate
for the layers, particularly if you aren’t subclassing UIview. This avoids extra
objects and subclasses if your needs are pretty simple. Just don’t let your
UIViewController get overcomplicated.

Custom Drawing

As with UIView, you can provide completely custom drawing with CALayer.
Typically you’ll draw with Core Graphics, but using
UIGraphicsPushContext, you can also draw with UIKit.

See Chapter 6 for information on how to draw with Core Graphics and UIKit.

Using drawInContext: is just another way of setting contents. It’s called by
display, which is called only when the layer is explicitly marked dirty with
setNeedsDisplay. The advantage of this over setting contents directly is
that display automatically creates a CGContext appropriate for the layer. In
particular, the coordinate system is flipped for you. (See Chapter 6 for a
discussion of Core Graphics and flipped coordinate systems.) The following
code shows how to implement the delegate method drawLayer:inContext:
to draw the string “Pushing The Limits” at the top of the layer using UIKit.
Because Core Animation does not set a UIKit graphics context, you need to
call UIGraphicsPushContext before calling UIKit methods, and
UIGraphicsPopContext before returning.

DelegateView.m (Layers)

@implementation DelegateView
- (id)initWithFrame: (CGRect)frame {
self = [super initWithFrame:frame];
if (self) {
[self.layer setNeedsDisplay];
}

return self;
}
- (void)drawLayer: (CALayer *)layer inContext:(CGContextRef)ctx {
UIGraphicsPushContext(ctx);
[[UIColor whiteColor] set];
UIRectFill(layer.bounds);
[[UIColor blackColor] set];
UIFont *font = [UIFont systemFontOfSize:48.0];
[@"Pushing The Limits” drawInRect:[layer bounds]
withFont:font
lineBreakMode:UILineBreakModeWordwrap
alignment:UITextAlignmentCenter];
UIGraphicsPopContext();

}
@end

Note the call to setNeedsDisplay in initwithFrame:. As discussed earlier,
layers do not automatically draw themselves when put on screen. You need to
mark them as dirty with setNeedsDisplay.

You may also notice the hand-drawing of the background rather than using
the backgroundColor property. This is intentional. Once you engage in

custom drawing with drawLayer :inContext :, most automatic layer settings
like backgroundColor and cornerRadius are ignored. Your job in
drawLayer :inContext: is to draw everything needed for the layer. There
isn’t helpful compositing going on for you like in UIview. If you want layer
effects like rounded corners together with custom drawing, then put the
custom drawing onto a sublayer, and round the corners on the superlayer.

Drawing in Your Own Context

Unlike [UIView drawRect:], it is completely legal to call [CALayer
drawInContext:] yourself. You just need to generate a context and pass it in.
This is nice for capturing the contents of a layer onto a bitmap or PDF so you
can save it or print it. This is mostly useful if you want to composite this layer
with something else because if all you want is a bitmap, you could just use
contents.

drawInContext: only draws the current layer, not any of its sublayers. If you
want to draw the layer and its sublayers, use renderInContext:. That also
captures the current state of the layer if it’s animating. It use the current state
of the render tree that Core Animation maintains internally, so it doesn’t call
drawInContext:.

Moving Things Around

Now that you can draw in a layer, let’s look into how to use those layers to
create powerful animations.

Layers naturally animate. In fact, you need to do a small amount of work to
prevent them from animating. Consider this example:

LayerAnimationViewController.m (LayerAnimation)

- (void)viewDidLoad {
[super viewDidLoad];
CALayer *squareLayer = [CALayer layer];
squarelLayer .backgroundColor = [[UIColor redColor] CGColor];
squarelLayer.frame = CGRectMake (100, 100, 20, 20);
[self.view.layer addSublayer:squareLayer];
UIView *squareView = [UIView new];

squareView.backgroundColor = [UIColor blueColor];
squareView.frame = CGRectMake(200, 100, 20, 20);
[self.view addSubview:squareView];

[self.view addGestureRecognizer:
[[UITapGestureRecognizer alloc]
initWithTarget:self
action:@selector(drop:)]];

- (void)drop: (UIGestureRecognizer *)recognizer {
NSArray *layers = self.view.layer.sublayers;
CALayer *layer = [layers objectAtIndex:0];
[layer setPosition:CGPointMake(200, 250)];
NSArray *views = self.view.subviews;

UIView *view = [views objectAtIndex:0];
[view setCenter:CGPointMake(100, 250)];

This draws a small red sublayer and a small blue subview. When the view is
tapped, both are moved. The view jumps immediately to the new location.
The layer animates over a quarter second. It’s fast, but it’s not instantaneous
like the view.

CALayer implicitly animates all properties that support animation. You can
prevent this by disabling actions:

[CATransaction setDisableActions:YES];

I discuss actions further in the “Auto-animate with Actions” section later in
this chapter.

disableActions is a very poorly named property. Because it begins with a verb, you would expect
it to have a side effect (disabling actions) rather than returning the current value of the property.
It should be actionsbisabled (or actionsEnabled to be parallel with userInteractionEnabled).
Apple may remedy this eventually, as it has with other misnamed properties. In the meantime,
make sure to call setbisableActions: when you mean to change it. You won’t get a warning or
error if you call [CATransaction disableActions] in a void context.

Implicit Animations

You now know all the basics of animation. Just set layer properties and your
layers animate in the default way. But what if you don’t like the defaults? For
instance, you may want to change the duration of the animation. First, you
need to understand transactions.

Most of the time when you change several layer properties, you want them all
to animate together. You also don’t want to waste the renderer’s time
calculating animations for one property change if the next property change
affects it. For instance, opacity and backgroundColor are interrelated
properties. Both affect the final displayed pixel color, so you want to know
about both animations when working out the intermediate values.

Core Animation bundles property changes into atomic transactions
(CATransaction). An implicit CATransaction is created for you the first time
you modify a layer on a thread that includes a run loop. (If that last sentence
piqued your interest, see the “Core Animation and Threads” section later in
this chapter.) During the run loop, all layer changes are collected, and when
the run loop completes, all the changes are committed to the layer tree.

To modify the animation properties, you need to make changes to the current
transaction. The following changes the duration of the current transaction to 5
seconds rather than the default quarter-second.

[CATransaction setAnimationDuration:2.0];

You can also set a completion block to run after the current transaction
finishes animating using [CATransaction setCompletionBlock:]. You can
use this to chain animations together, among other things.

While the run loop creates a transaction for you automatically, you can also
create your own explicit transactions using [CATransaction begin] and
[CATransaction commit]. These allow you to assign different durations to
different parts of the animation, or to disable animations for only a part of the
event loop.

See the “Auto-animate with Actions” section of this chapter for more information on how implicit
animations are implemented and how you can extend them.

Explicit Animations

Implicit animations are powerful and convenient, but sometimes you want
more control. That’s where CAAnimation comes in. With CAAnimation, you
can manage repeating animations, precisely control timing and pacing, and
employ layer transitions. Implicit animations are implemented using

CAAnimation, so everything you can do with an implicit animation can be
done explicitly as well.

The most basic animation is a CABasicAnimation. It interpolates a property
over a range using a timing function, as shown in the following code.

CABasicAnimation *anim = [CABasicAnimation
animationwWithKeyPath:@"opacity”];

anim.fromValue = [NSNumber numberWithDouble:1.0];

anim.toValue = [NSNumber numberWithDouble:0.0];

anim.autoreverses = YES;

anim.repeatCount = INFINITY;

anim.duration = 2.0;

[layer addAnimation:anim forKey:@”anim”];

This pulses the layer forever, animating the opacity from one to zero and back
over 2 seconds. When you want to stop the animation, remove it:

[layer removeAnimationForKey:@"anim”];

An animation has a key, a fromvalue, a tovalue, a timingFunction, a
duration, and some other configuration options. The way it works is to make
several copies of the layer, send setvalue:forKey: messages to the copies
and then display. It captures the generated contents and displays them.

If you have custom properties in your layer, you may notice that they’re not
set correctly during animation. This is because the layer is copied. You must
override initwWithLayer: to copy your custom properties if you want them to
be available during an animation. I discuss this later in the “Animating
Custom Properties” section of this chapter.

CABasicAnimations are basic, as the name implies. They’re easy to set up
and use, but they’re not very flexible. If you want more control over the
animation, you can move to CAKeyframeAnimation. The major difference is
that instead of giving a fromvalue and tovalue, you now can give a path or a
sequence of points to animate through, along with individual timing for each
segment. The Animation Types and Timing Programming Guide on
developer.apple.com provides excellent examples. They’re not technically
difficult to set up. Most of the work is on the creative side to find just the
right path and timing.

Model and Presentation

A common problem in animations is the dreaded “jump back. ” The mistake
looks like this:

CABasicAnimation *fade;

fade = [CABasicAnimation animationWithKeyPath:@"”opacity”];
fade.duration = 1;

fade.fromValue = [NSNumber numberwWithDouble:1.0];
fade.toValue = [NSNumber numberWithDouble:0.0];
[circlelLayer addAnimation:fade forKey:@”fade”];

This fades the circle out over 1 second, just as expected, and then suddenly
the circle reappears. To understand why this happens, you need to be aware of
the difference between the model layer and the presentation layer.

The model layer is defined by the properties of the “real” CALayer object.
Nothing in the preceding code modifies any property of circleLayer itself.
Instead, CAAnimation makes copies of circleLayer and modifies those.
These become the presentation layer. They represent roughly what is shown
on the screen. There is technically another layer called the render layer that
really represents what’s on the screen, but it’s internal to Core Animation and
you very seldom encounter it.

So what happens in the preceding code? cAAnimation modifies the
presentation layer, which is drawn to the screen, and when it completes, all its
changes are thrown away and the model layer is used to determine the new
state. The model layer hasn’t changed, so you snap back to where you started.
The solution to this is to set the model layer, as shown here:

circlelLayer.opacity = 0;
CABasicAnimation *fade;
fade = [CABasicAnimation animationWithKeyPath:@"”opacity”];

[circleLayer addAnimation:fade forKey:@”fade”];

Sometimes this works fine, but sometimes the implicit animation in
setOpacity: fights with the explicit animation from
animationwithKeyPath:. The best solution to that is to turn off implicit
animations if you’re doing explicit animations:

[CATransaction begin];

[CATransaction setDisableActions:YES];

circlelLayer.opacity = 0;

CABasicAnimation *fade;

fade = [CABasicAnimation animationWithKeyPath:@”opacity”];

[circleLayer addAnimation:fade forKey:@”fade”];
[CATransaction commit];

Sometimes you see people recommend setting removedonCompletion to NO and fillMode to
kcAFillModeBoth. This is not a good solution. It essentially makes the animation go on forever,
which means the model layer is never updated. If you ask for the property’s value, you continue
to see the model value, not what you see on the screen. If you try to implicitly animate the
property afterward, it won’t work correctly because the cAAnimation is still running. If you ever
remove the animation by replacing it with another with the same name, calling
removeAnimationForKey: or removeAllAnimations, the old value snaps back. On top of all of that,
it wastes memory.

All of this becomes a bit of a pain, so you may like the following category on
CALayer that wraps it all together and lets you set the duration and delay.
Most of the time I still prefer implicit animation, but this can make explicit
animation a bit simpler.

CALayer+RNAnimation.m (LayerAnimation)

@implementation CALayer (RNAnimations)
- (void)setValue:(id)value
forKeyPath: (NSString *)keyPath
duration: (CFTimeInterval)duration
delay: (CFTimeInterval)delay {
[CATransaction begin];
[CATransaction setDisableActions:YES];
[self setValue:value forKeyPath:keyPath];
CABasicAnimation *anim;
anim = [CABasicAnimation animationWithKeyPath:keyPath];
anim.duration = duration;
anim.beginTime = CACurrentMediaTime() + delay;
anim.fillMode = kCAFillModeBoth;
anim.fromValue = [[self presentationLayer] valueForKey:keyPath];
anim.toValue = value;
[self addAnimation:anim forKey:keyPath];
[CATransaction commit];

}
@end

A Few Words on Timings

As in the universe at large, in Core Animation, time is relative. A second does
not always have to be a second. Just like coordinates, time can be scaled.

CAAnimation conforms to the CAMediaTiming protocol, and you can set the
speed property to scale its timing. Because of this, when considering timings
between layers, you need to convert them, just like you need to convert points
that occur in different views or layers.

localPoint = [self convertPoint:remotePoint fromLayer:otherLayer];
localTime = [self convertTime:remotetime fromLayer:otherlLayer];

This isn’t very common, but it comes up when you’re trying to coordinate
animations. You might ask another layer for a particular animation and when
that animation will end so that you can start your animation.

CAAnimation *otherAnim = [layer animationForKey:@”anim”];
CFTimeInterval finish = otherAnim.beginTime +

otherAnim.duration;
myAnim.beginTime = [self convertTime:finish fromLayer:layer];

Setting beginTime like this is a nice way to chain animations, even if you
hard-code the time rather than ask the other layer. To reference “now,” just
use CACurrentMediaTime().

This raises another issue, however. What value should your property have
between now and when the animation begins? You would assume that it
would be the fromvalue, but that isn’t how it works. It’s the current model
value because the animation hasn’t begun. Typically this is the tovalue.

[CATransaction begin];

[CATransaction setDisableActions:YES];

anim = [CABasicAnimation animationWithKeyPath:@"”opacity”];
anim.fromValue = [NSNumber numberWithDouble:1.0];
anim.toValue = [NSNumber numberWithDouble:0.5];
anim.duration = 5.0;

anim.beginTime = CACurrentMediaTime() + 3.0;

[layer addAnimation:anim forKey:@”fade”];

layer.opacity = 0.5;

[CATransaction commit];

This animation does nothing for 3 seconds. During that time, the default

property animation is used to fade opacity from 1.0 to 0.5. Then the
animation begins, setting the opacity to its fromvalue and interpolating to its
tovalue. So the layer begins with opacity of 1.0, fades to 0.5 over a quarter-
second, then 3 seconds, and later jumps back to 1.0 and fades again to 0.5
over 5 seconds. This almost certainly isn’t what you want.

You can resolve this using fillMode. The default is kCAFillModeRemoved,
which means that the animation has no influence on the values before or after
its execution. This can be changed to “clamp” values before or after the
animation by setting the fill mode to kCAFillModeBackwards,
kCAFillModeForwards, or kCAFillModeBoth. Figure 7-3 illustrates this.

In most cases, you want to set this to kCAFillModeBackwards or
kCAFillModeBoth.

Into the Third Dimension

Chapter 6 discussed how to use CAAffineTransform to make UIView drawing
much more efficient. This technique limits you to two-dimensional
transformations: translate, rotate, scale, and skew. With layers, however, you
can apply three-dimensional transformations by adding perspective. This is
often called 2.5D rather than 3D because it doesn’t make layers into truly
three-dimensional objects in the way that OpenGL ES does. But it does allow
you to give the illusion of three-dimensional movement.

You rotate layers around an anchor point. By default, the anchor point is in
the center of the layer, designated {0.5, 0.5}. It can be moved anywhere
within the layer, making it convenient to rotate around an edge or corner. The
anchor point is described in terms of a unit square rather than in points. So
the lower-right corner is {1.0, 1.0}, no matter how large or small the layer is.

kCAFillMode Removed

opacity

1 —

0,5 T NN

3 8

[« model >«—— animation ——>}« model >|

time

kCAFillMode Backwards

opacity
‘I |
05 +—
| |
! ! time
3 8
| d
}(—C 3;?5: >l«—— animation ——>}« model >
kCAFillMode forwards
opacity
‘| S
0.5 R T e W
| |
! ! time
3 8

[« model »«—— animation 4>|¢clamped*|

value

Figure 7-3 Effect of fill modes on media timing functions
Here’s a simple example of a three-dimensional box.
BoxViewController.h (Box)

@interface BoxViewController : UIViewController

@property (nonatomic, readwrite, strong) CALayer *toplLayer;
@property (nonatomic, readwrite, strong) CALayer *bottomLayer;
@property (nonatomic, readwrite, strong) CALayer *leftlLayer;
@property (nonatomic, readwrite, strong) CALayer *rightlLayer;
@property (nonatomic, readwrite, strong) CALayer *frontLayer;
@property (nonatomic, readwrite, strong) CALayer *backLayer;
@end

BoxViewController.m (Box)

@implementation BoxViewController

@synthesize topLayer=toplLayer_;

@synthesize bottomLayer=bottomLayer_;

@synthesize leftLayer=leftLayer_;

@synthesize rightLayer=rightLayer_;

@synthesize frontLayer=frontLayer_;

@synthesize backLayer=backLayer_;

const CGFloat kSize = 100.;

const CGFloat kPanScale = 1./100.;

- (CALayer *)layerWithColor:(UIColor *)color transform:

(CATransform3D)transform {
CALayer *layer = [CALayer layer];
layer.backgroundColor = [color CGColor];
layer.bounds = CGRectMake(0, 0, kSize, kSize);
layer.position = self.view.center;
layer.transform = transform;
[self.view.layer addSublayer:layer];
return layer;

}

static CATransform3D MakePerspetiveTransform() {
CATransform3D perspective = CATransform3DIdentity;
perspective.m34 = -1./2000.;
return perspective;

- (void)viewDidLoad {
CATransform3D transform;

[super viewDidLoad];

transform CATransform3DMakeTranslation(®, -kSize/2, 0);

transform CATransform3DRotate(transform, M_PI_2, 1.0, 0, 0);

self.topLayer = [self layerWithColor:[UIColor redColor]
transform:transform];

transform CATransform3DMakeTranslation(0, kSize/2, 0);

transform CATransform3DRotate(transform, M_PI_2, 1.0, 0, 0);

self.bottomLayer = [self layerWithColor:[UIColor greenColor]
transform:transform];

transform CATransform3DMakeTranslation(kSize/2, 0, 0);

transform CATransform3DRotate(transform, M_PI_2, 0, 1, 0);

self.rightLayer = [self layerWithColor:[UIColor blueColor]
transform:transform];

transform CATransform3DMakeTranslation(-kSize/2, 0, 0);

transform CATransform3DRotate(transform, M_PI_2, 0, 1, 0);

self.leftLayer = [self layerWithColor:[UIColor cyanColor]
transform:transform];

transform CATransform3DMakeTranslation(®, 0, -kSize/2);

transform CATransform3DRotate(transform, M_PI_2, 0, 0, 0);

self.backLayer = [self layerWithColor:[UIColor yellowColor]
transform:transform];

transform = CATransform3DMakeTranslation(®, 0, kSize/2);
transform = CATransform3DRotate(transform, M_PI_2, 0, 0, 0);
self.frontLayer = [self layerWithColor:[UIColor magentaColor]
transform:transform];
self.view.layer.sublayerTransform = MakePerspetiveTransform();

UIGestureRecognizer *g = [[UIPanGestureRecognizer alloc]
initwWithTarget:self
action:@selector(pan:)];

[self.view addGestureRecognizer:g];

- (void)pan: (UIPanGestureRecognizer *)recognizer {
CGPoint translation = [recognizer translationInView:self.view];
CATransform3D transform = MakePerspetiveTransform();
transform = CATransform3DRotate(transform,
kPanScale * translation.x,
0, 1, 0);
transform = CATransform3DRotate(transform,
-kPanScale * translation.y,
1, 0, 0);
self.view.layer.sublayerTransform = transform;

}
@end

This shows how to build a simple box and rotate it based on panning. All the
layers are created with layerwithColor:transform:. Notice that all the
layers have the same position. They only appear to be in the shape of a box
through transforms that translate and rotate them.

You apply a perspective sublayerTransform (a transform applied to all
sublayers, but not the layer itself). I won’t go into the math here, but the m34
position of the 3D transform matrix should be set to -1/EYE_DISTANCE. For
most cases, 2000 units works well, but you can adjust this to “zoom the
camera.”

You could also build this box by setting position and zPosition rather than
translating, as shown in the following code. This may be more intuitive for
some developers.

BoxTransformViewController.m (BoxTransform)

- (CALayer *)layerAtX:(CGFloat)x y:(CGFloat)y z:(CGFloat)z
color:(UIColor *)color

transform: (CATransform3D)transform {

CALayer *layer = [CALayer layer];

layer.backgroundColor = [color CGColor];

layer.bounds = CGRectMake(0, 0, kSize, kSize);

layer.position = CGPointMake(x, y);

layer.zPosition = z;

layer.transform = transform;

[self.contentLayer addSublayer:layer];

return layer;

- (void)viewDidLoad {
[super viewDidLoad];
CATransformLayer *contentLayer = [CATransformLayer layer];
contentLayer.frame = self.view.layer.bounds;
CGSize size = contentLayer.bounds.size;
contentLayer.transform =

CATransform3DMakeTranslation(size.width/2, size.height/2, 0);

[self.view.layer addSublayer:contentLayer];

self.contentLayer = contentLayer;
self.topLayer = [self layerAtX:0 y:-kSize/2 z:0

color:[UIColor redColor]
transform:MakeSideRotation(1, 0, 0)];

- (void)pan: (UIPanGestureRecognizer *)recognizer {
CGPoint translation = [recognizer translationInView:self.view];
CATransform3D transform = CATransform3DIdentity;
transform = CATransform3DRotate(transform,
kPanScale * translation.x,
0, 1, 0);
transform = CATransform3DRotate(transform,
-kPanScale * translation.y,
1, 0, 0);
self.view.layer.sublayerTransform = transform;

}

You now need to insert a CATransformLayer to work with. If you just use a
CALayer, then zPosition is only used for calculating layer order. It’s not used
to determine location in space. This makes the box look completely flat.
CATransformLayer supports full use of zPosition, without requiring you to
apply a perspective transform.

Decorating Your Layers

A major advantage of CALayer over UIView, even if you’re only working in
2D, is the automatic border effects that CALayer provides. For instance,
CALayer can automatically give you rounded corners, a colored border, and a
drop shadow. All of these can be animated, which can provide some nice
visual effects. For instance, you can adjust the position and shadow to give
the illusion of clicking as the user presses and releases a layer. The following
code will create the layer shown in Figure 7-4.

Carrier

_—

-

VPN

10:52 AM

Figure 7-4 Layer with colored, rounded border and shadow.
DecorationViewController.m (Decoration)

CALayer *layer = [CALayer layer];

layer.frame = CGRectMake(100, 100, 100, 100);
layer.cornerRadius = 10;

layer.backgroundColor = [[UIColor redColor] CGColor];
layer.borderColor = [[UIColor blueColor] CGColor];
layer.borderwidth = 5;

layer.shadowOpacity = 0.5;

layer.shadowOffset = CGSizeMake(3.0, 3.0);
[self.view.layer addSublayer:layer];

Auto-animate with Actions

Most of the time, implicit animations do what you want, but there are times
you’d like to configure them. You can turn off all implicit animations using
CATransaction, but that only applies to the current transaction (generally the
current run loop). To modify how an implicit animation behaves, and
especially if you want it to always behave that way for this layer, you need to
configure the layer’s actions. This allows you to configure your animations
when you create the layer rather than applying an explicit animation every
time you change a property.

Layer actions are fired in response to various changes on the layer, such as
adding or removing the layer from the hierarchy or modifying a property.
When you modify the position property, for instance, the default action is to
animate it over a quarter second. In the following examples, CircleLayer is a
layer that draws a red circle in its center with the given radius.

ActionsViewController.m (Actions)

CirclelLayer *circlelLayer = [CirclelLayer new];
circleLayer.radius = 20;

circlelLayer.frame = self.view.bounds;
[self.view.layer addSublayer:circlelLayer];

[circleLayer setPosition:CGPointMake (100, 100)];

Let’s modify this so that changes in position always animate over 2 seconds:

CirclelLayer *circlelLayer = [CirclelLayer new];

circlelLayer.radius = 20;

circlelLayer.frame = self.view.bounds;

[self.view.layer addSublayer:circlelLayer];

CABasicAnimation *anim = [CABasicAnimation

animationWithKeyPath:@"”position”];

anim.duration = 2;

NSMutableDictionary *actions = [NSMutableDictionary
dictionarywWithDictionary:
[circleLayer actions]];

[actions setObject:anim forKey:@”position”];

circlelLayer.actions = actions;

[circleLayer setPosition:CGPointMake (100, 100)];

Setting the action to [NSNull null] disables implicit animations for that
property. A dictionary cannot hold nil, so you need to use the NSNull class.

There are some special actions for when the layer is added to the layer tree
(kcAonorderIn) and when it’s removed (kCAOnOrderout). For example, you
can make a group animation of growing and fade-in like this:

CABasicAnimation *fadeAnim = [CABasicAnimation
animationwWithKeyPath:@"opacity”];
fadeAnim.fromvValue = [NSNumber numberWithDouble:0.4];
fadeAnim.toValue = [NSNumber numberWithDouble:1.0];
CABasicAnimation *growAnim = [CABasicAnimation
animationWithKeyPath:
@"transform.scale”];
growAnim.fromValue = [NSNumber numberWithDouble:0.8];
growAnim.toValue = [NSNumber numberWithDouble:1.0];

CAAnimationGroup *groupAnim = [CAAnimationGroup animation];
groupAnim.animations = [NSArray arrayWithObjects:fadeAnim,
growAnim, nil];

[actions setObject:groupAnim forKey:kCAOnOrderIn];

Actions are also important when dealing with transitions (kCATransition)
when one layer is replaced with another. This is commonly used with a
CATransition (a special type of CAAnimation). You can apply a
CATransition as the action for the contents property to create special effects

like slide show whenever the contents change. By default, the fade transition
is used.

Animating Custom Properties

Core Animation implicitly animates several layer properties, but what about
custom properties on CALayer subclasses? For instance, in the CircleLayer,
you have a radius property. By default, radius is not animated, but
contents is (using a fade CATransition). So changing the radius causes your
current circle to cross-fade with your new circle. This probably isn’t what you
want. You want radius to animate just like position. There are a few steps
to make this work correctly, as shown in the following example.

CircleLayer.m (Actions)

@implementation CirclelLayer
@dynamic radius;
- (id)init {
self = [super init];
if (self) {
[self setNeedsDisplay];
¥

return self;

}

(id)initWithLayer:(id)layer {

self = [super initWithLayer:layer];
[self setRadius:[layer radius]];
return self;

}

(void)drawInContext: (CGContextRef)ctx {
CGContextSetFillColorwithColor(ctx,

[[UIColor redColor] CGColor]);
CGFloat radius = self.radius;
CGRect rect,
rect.size = CGSizeMake(radius, radius);
rect.origin.x = (self.bounds.size.width - radius) / 2;
rect.origin.y = (self.bounds.size.height - radius) / 2;
CGContextAddEllipseInRect(ctx, rect);
CGContextFillPath(ctx);

+ -

(BOOL)needsDisplayForKey: (NSString *)key {
if ([key isEqualToString:@"radius”]) {

return YES;
}

return [super needsDisplayForKey:key];

}
- (id < CAAction >)actionForKey: (NSString *)key {
if ([self presentationLayer] !'= nil) {
if ([key isEqualToString:@”radius”]) {
CABasicAnimation *anim = [CABasicAnimation
animationWithKeyPath:@"radius”];
anim.fromValue = [[self presentationLayer]
valueForKey:@"radius”];

return anim;

b
3

return [super actionForKey:key];

}
@end

I’1l start with a reminder of the basics. You call setNeedsDisplay in init so
that your custom drawInContext: is called the first time you’re added to the
layer tree. You implement initwWithLayer: so that you copy your custom
property to the presentation layer. You override needsbisplayForKey: so that
whenever radius is modified, you automatically redraw.

Now you come to your actions. You implement actionForKey: to return an
animation with a fromvalue of the currently displayed (presentationLayer)

radius. This means that you’ll animate smoothly if the animation is changed
midflight.

It is critical to note that you implemented the radius property using @dynamic here, not
@synthesize. CALayer automatically generates accessors for its properties at runtime, and those
accessors have important logic. It is vital that you not override it by either implementing your
own accessors or using @synthesize to do so.

Core Animation and Threads

It’s worth noting that Core Animation is very tolerant of threading. You can
generally modify CALayer properties on any thread, unlike UIView properties.
drawInContext: may be called from any thread (although a given cGContext
should be modified on only one thread at a time). Changes to CALayer
properties are batched into transactions using CATransaction. This happens

automatically if you have a run loop. If you don’t have a run loop, you need
to call [CATransaction flush] periodically. If at all possible, though, you
should perform Core Animation actions on a thread with a run loop to
improve performance.

Summary

Core Animation is one of the most important frameworks in iOS. It puts a
fairly easy-to-use API in front of an incredibly powerful engine. There are
still a few rough edges to it, however, and sometimes things need to be “just
so” to make it work correctly (for example, implementing your properties
with @dynamic rather than @synthesize). When it doesn’t work correctly, it
can be challenging to debug, so having a good understanding of how it works
is crucial. Hopefully this chapter has made you confident enough with the
architecture and the documentation to dive in and make some really beautiful

apps.
Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Animation Types and Timing Programming Guide

Core Animation Programming Guide

Other Resources

Dzhumerov, Milen, “Core Animation’s 3D Model,” Code Juggler. An
excellent overview of the math behind the perspective transform, including

the magic -1/2000. http://milen.me/technical/core-animation-3d-
model/

Gallagher, Matt, “Parametric acceleration curves in Core Animation,”
Cocoa With Love. Explains how to implement timing curves that cannot be
implemented with CAMediaTimingFunction, such as damped ringing and

http://developer.apple.com/
http://milen.me/technical/core-animation-3d-model/

exponential decay. cocoawithlove.com/2008/09/parametric-

acceleration-curves-in-core.html

http://cocoawithlove.com/2008/09/parametric-acceleration-curves-in-core.html

Chapter 8: Tackling Those Pesky
Errors

Error management can be one of the most frustrating parts of development.
It’s hard enough getting everything to work when things go well, but to build
really great apps you need to manage things gracefully when they go wrong.
Cocoa provides some tools to make the job easier.

In this chapter you learn the major patterns that Cocoa uses to handle errors
that you should use in your own projects. You also learn the major error-
handling tools, including assertions, exceptions, and NSError objects.
Because your program may crash in the field, you learn how to get those
crash reports from your users, and how to log effectively and efficiently.

Error Handling Patterns

There are several useful approaches to handling errors. The first and most
obvious is to crash. This isn’t a great solution, but don’t discount it too
quickly. I’ve seen a lot of very elaborate code around handling extremely
unlikely errors, or errors you won’t be able to recover from anyway. The most
common of these is failure to allocate memory. Consider the following code:

NSString *string = [NSString stringWithFormat:@"%d"”, 1];
NSArray *array = [NSArray arrayWithObject:string];

It is conceivable (not really, but let’s pretend) that stringwithFormat: might
fail because Foundation isn’t able to allocate memory. In that case it returns
nil, and the call to arraywithobject: throws an exception for trying to
insert nil into an array, and your app probably crashes. You could (and in C
you often would) include a check here to make sure that doesn’t happen.
Don’t do that. It needlessly complicates the code, and there’s nothing you’re
going to be able to do anyway. If you can’t allocate small amounts of
memory, the OS is very likely about to shut you down anyway. Besides, it’s
almost impossible to write error-handling code in Objective-C that does not
itself allocate memory. Accept that in this impossible case you may crash, and

keep the code simple.

The next, closely related error-handling approach is NSAssert. This raises an
NSInternalInconsistencyException, which by default crashes your
program. Particularly during development, this is a very good thing. It “fails
fast,” which means the failure tends to happen close to the bug. One of the
worst things I see in code is something like this:

- (void)doSomething: (NSUInteger)index {
if (index > self.maxIndex) {
return;

}

Clearly passing an out-of-range index is a programming error. This code
swallows that error, turning it into a no-op. That is incredibly difficult to
debug. Note how NSArray handles this situation. If you pass an index out of
range it raises an exception very similar to NSAssert. It’s the caller’s job to
pass good values. The worst thing NSArray could do is to silently ignore bad
values. It’s better to crash. I’ll discuss assertions more in the following two
sections, “Assertions” and “Exceptions,” including how to manage
development and release builds, and how to make these a bit more graceful.

The lesson here is that crashing is not the worst-possible outcome. Data
corruption is generally the worst-possible outcome, and if getting into a
deeply unknown state could corrupt user data, it’s definitely better to crash.

Expected errors should be handled gracefully and should never crash. The
common pattern for managing expected errors is to return an NSError object
by reference. I'll discuss this in “Errors and NSError” later in this chapter.

There is a major difference between expected and unexpected errors. In iOS,
failure to allocate small amounts of memory is an unexpected error. It should
never happen in normal operation. You should have received a memory
warning and been terminated long before you got to that state. You can
generally ignore truly unexpected errors and let them crash you. On the other
hand, running out of disk space is a rare but expected error. It can easily
happen if the user has requested that iTunes fill the device with music. You

need to recover gracefully when you cannot write a file.

In the middle are programming errors. These should generally be handled
with assertions.

Assertions

Assertions are an important defense against programming errors. An assertion
requires that something must be true at a certain point in the program. If it is
not true, then the program is in an undefined state and should not proceed.
Consider the following example of NSAssert:

NSAssert(x == 4, @’x must be four”);

NSAssert tests a condition, and if it returns NO, raises an exception. This is
processed by the current exception handler, which by default calls abort and
crashes the program. If you are familiar with Mac development, you may be
used to exceptions terminating only the current run loop, but iOS calls abort
by default, which terminates the program no matter what thread it runs on.

Technically abort sends the process a SIGABRT, which can be caught by a signal handler. Generally
I do not recommend catching SIGABRT. See “Catching and Reporting Crashes” later in this
chapter for information about how to handle crashes.

You can disable NSAssert by setting NS_BLOCK_ASSERTIONS. There are
differing opinions on whether NSAssert should be disabled in release code. It
really comes down to this: When your program is in an illegal state, would
you rather it stop running, or would you prefer that it run in a possibly
random way? Different people come to different conclusions here. My
opinion is that it’s generally better to disable assertions in release code. I’ve
seen too many cases where the programming error would have only caused a
minor problem, but the assertion causes a crash. Xcode 4 templates
automatically disable assertions when you build for the Release
configuration.

That said, while I like removing assertions in the Release configuration, I
don’t like ignoring them. They’re exactly the kind of “this should never
happen” error condition that you’d want to find in your logs. Setting
NS_BLOCK_ASSERTIONS completely eliminates them from the code. My

solution is to wrap assertions so that they log in all cases. The following code
assumes you have an RNLogBug function that logs to your log file. It’s mapped
to NSLog as an example. Generally I don’t like to use #define, but it’s
necessary here, because _ FILE__ and _ LINE__ need to be evaluated at the
point of the original caller.

This also defines RNCAssert as a wrapper around NSCAssert and a helper
function called RNAbstract. NSCAssert is required when using assertions
within C functions, rather than Objective-C methods.

RNAssert.h

#import <Foundation/Foundation.h>
#define RNLogBug NSLog // Use DDLogError if you’re using
Lumberjack
// RNAssert and RNCAssert work exactly like NSAssert and NSCAssert
// except they log, even in release mode
#define RNAssert(condition, desc, ...) \
if (!(condition)) { \
RNLogBug((desc), ## _ VA ARGS__); \
NSAssert((condition), (desc), ## _ _VA_ARGS__); \
}
#define RNCAssert(condition, desc) \
if (!(condition)) { \
RNLogBug((desc), ## _ VA ARGS__); \
NSCAssert((condition), (desc), ## __ VA _ARGS__); \

}

Assertions often precede code that would crash if the assertion were not valid.
For example (assuming you’re using RNAssert to log even in the Release
configuration):

RNAssert(foo != nil, @”foo must not be nil”);
[array addObject:foo];

The problem with this is that in the field, even with assertions turned off, this
still crashes. What was the point of turning off assertions if you’re going to
crash anyway in many cases? That leads to code like this:

RNAssert(foo != nil, @”foo must not be nil”);
if (foo != nil) {

[array addObject:foo];
}

That’s a little better, using RNAssert so that you log, but you’ve got
duplicated code. This raises more opportunities for bugs if the assertion and
conditional don’t match. Instead, I recommend this pattern when you want an
assertion:

if (foo != nil) {
[array addObject:foo];
}

else {
RNAssert(NO, @”foo must not be nil”);

}

This ensures that the assertion always matches the conditional. Sometimes
assertions are overkill, but this is a good pattern in cases where you want one.
I almost always recommend an assertion as the default case of a switch
statement, however.

switch (foo) {
case kFooOptionOne:

break;

case kFooOptionTwo:
break;

default:

RNAssert1(NO, @”Unexpected value for foo: %d”, foo):
break;

}

This way, if you add a new enumeration item, it will help you catch any
switch blocks that you failed to update.

Exceptions

Exceptions are not a normal way of handling errors in Objective-C. From
EXxception Programming Topics (developer.apple.com):

The Cocoa frameworks are generally not exception-safe. The general pattern
is that exceptions are reserved for programmer error only, and the program
catching such an exception should quit soon afterwards.

In short, exceptions are not for handling recoverable errors in Objective-C.

http://developer.apple.com/

Exceptions are for handling those things that should never happen and which
should terminate the program. This is similar to NSAssert, and in fact
NSAssert is implemented as an exception.

Objective-C has language-level support for exceptions using directives such
as @throw and @catch, but you generally should not use these. There is
seldom a good reason to catch exceptions except at the top level of your
program, which is done for you with the global exception handler. If you
want to raise an exception to indicate a programming error, it’s best to use
NSAssert to raise an NSInternalInconsistencyException, or create and
raise your own NSException object. You can build these by hand, but I
recommend +raise:format: for simplicity.

[NSException raise:NSRangeException
format:@"Index (%d) out of range (%d...%d)”,
index, min, max];

There seldom is much reason to do this. In almost all cases, it would be just
as clear and useful to use NSAssert. Because you generally shouldn’t catch
exceptions directly, the difference between
NSInternalInconsistencyException and NSRangeException is rarely
useful.

Automatic Reference Counting is not exception safe by default in Objective-
C. You should expect significant memory leaks from exceptions. In principle
ARC is exception safe in Objective-C++, but @autoreleasepool blocks are
still not released, which can lead to leaks on background threads. Making
ARC exception safe incurs performance penalties, which is one of many
reasons to avoid significant use of Objective-C++. The clang flag -fobjc-
arc-exceptions controls this.

Catching and Reporting Crashes

iTunes Connect is supposed to provide crash reports, but it has a lot of
limitations. Apple makes a single blanket request to the user for permission to
upload crash reports. Many users decline. Reports are updated only once a
day. iTunes Connect only supports applications deployed on the App Store, so
you need a different system during development and internal betas. In short,

if iTunes Connect works for you, great, but often it doesn’t.

The best replacement I've found is Quincy Kit (quincykit.net). It’s easy to
integrate into an existing project, and it uploads reports to your own web
server after asking user permission. Currently it does not handle uploading
logs to go along with the crash report.

Quincy Kit is built on top of PLCrashReporter from Plausible Labs.
PLCrashReporter handles the complex problem of capturing crash
information. Quincy Kit provides a friendly front end for uploading that
information. If you need more flexibility, you might consider writing your
own version of Quincy Kit. It’s handy and nice, but not all that complicated.
You probably should not try to rewrite PLCrashReporter. While a program is
in the middle of crashing, it can be in a bizarre and unknown state. Properly
handling all of the subtle issues that go with that is not simple, and Landon
Fuller has been working on PLCrashReporter for years. Even something as
simple as allocating or freeing memory can deadlock the system and rapidly
drain the battery. That’s why Quincy Kit uploads the crash files when the
program restarts rather than during the crash. You should do as little work as
possible during the crash event.

When you get your crash reports, depending on how your image was built,
they may have symbols or they may not. Xcode generally does a good job of
automatically symbolicating the reports (replacing addresses with method
names) in Organizer as long as you keep the .dsyM file for every binary you
ship. Xcode uses Spotlight to find these files, so make sure they’re available
in a place that Spotlight can search.

Errors and NSError

There is a major difference between a user or environment error, and a
programming error. Programming errors should be handled with exceptions
in debug mode, and with logging in release mode. If data corruption is
possible, programming errors should also raise exceptions in release mode.
Failure to allocate small amounts of memory should be treated as a
programming error in iOS because it shouldn’t be possible and almost
certainly indicates a programming error.

User errors or environment errors (network failures, disk full, etc.) should
never raise exceptions. They should return errors, generally using an NSError
object. NSFileManager is a good example of an object that uses NSError
extensively.

- (BOOL)copyItemAtPath: (NSString *)srcPath
toPath: (NSString *)dstPath
error: (NSError **)error

This method copies a file or directory from one location to another.
Obviously that might fail for a variety of reasons. If it does, the method
returns NO and updates an NSError object that the caller passes by reference
(pointer to a pointer), as shown in this example.

NSError *error;
if (! [fileManager copyItemAtPath:srcPath
toPath:toPath
error:&error]) {
[self handleError:error];

}

This pattern is convenient because the return value is consistent with the
success of the operation. If the method instead returned an NSError, then nil
would indicate success. This would be confusing and error prone.

Internally the method might look something like this:

- (BOOL)copyItemAtPath: (NSString *)srcPath
toPath: (NSString *)dstPath
error: (NSError **)error {

BOOL success = ...;
if (! success) {
if (error != NULL) {
*error = [NSError errorWithDomain:...];

b
b

return success;

}

Note how this checks that error (a pointer to a pointer) is non-NULL before
dereferencing it. This allows callers to pass NULL to indicate that they do not
care about the error details. They might still check the return value to

determine the overall success or failure of the operation.

NSError encapsulates information about an error in a consistent package that
is easy to pass around. It can obviously be passed within a program, but
because it conforms to NSCoding, it’s easy to write to disk or over a network.
It can even encapsulate error recovery mechanisms using the
NSErrorRecoveryAttempting protocol.

Errors are primarily defined by their domain and a code. The code is an
integer, and the domain is a string that allows you to identify the meaning of
that integer. For instance, in NSPOSIXErrorDomain the error code 4 indicates
that a system call was interrupted (EINTR), but in NSCocoaErrorDomain the
error code 4 indicates that a file was not found (NSFileNoSuchFileError).
Without a domain, the caller would have to guess how to interpret the error
code. You are encouraged to create your own domains for your own errors.
You should generally use a Uniform Type Indicator (UTI) for this, such as
com.example.MyApp.ErrorDomain.

NSError includes a user info dictionary that can contain any information you
like. There are several pre-defined keys for this dictionary such as
NSLocalizedDescriptionKey, NSUnderlyingErrorKey, and
NSRecoveryAttempterErrorKey. You're free to create new keys to provide
domain-specific information. Several domains already do this, such as
NSStringEncodingErrorKey for passing the relevant string encoding or
NSURLErrorKey passing an URL.

Error Localization

Where to localize errors is always a tricky subject. Low-level frameworks
tend to present errors in very user-unfriendly ways. Errors like “Interrupted
system call (4)” are generally not useful to the user. Translating such an error
message into French and Spanish doesn’t help anything. It just wastes money
and confuses users in more languages. Localizing these kinds of error
messages actually makes things more difficult to debug because logs may be
sent to you reporting errors in a language you can’t read.

This last point bears emphasizing. You should never localize a string that you do not intend to
display to a user.

Because errors often need to be logged in the developer’s language, |
recommend against using NSLocalizedDescriptionKey and its relatives in
most cases for NSError. Instead, localize only at the point of displaying the
error. You can keep localized strings for various error codes using a localized
string table with the same name as your error domain with .strings
appended. For instance, for the error domain
com.example.MyApp.ErrorDomain, you would have a localized strings file
named com.example.MyApp.ErrorDomain.strings. In that file, just map the
error code to the localized value:

“1" = “File not found.”
Then, to read the file, just use NSBundle:

NSString *key = [NSString stringWithFormat:@”%d”, [error code]];
NSString *localizedMessage = [[NSBundle mainBundle]
localizedStringForKey:key
value:nil
table:[error
domain]];

Error Recovery Attempter

An error recovery attempter is a way to encode error recovery options into the
NSError object. If the error is passed through several layers, this lets the UI
communicate back to the original subsystem to let it attempt to recover. The
error recovery system encapsulates localized options, some description text
(called the “suggestion”), and an object to inform of the selected option. This
object should conform to the NSRecoveryAttempting informal protocol.

iOS provides no Ul integration for error recovery, but it’s not hard to roll your
own. Here’s an example singleton that will manage a UTActionSheet based
on the error-recovery options.

RNErrorManager.h (ErrorRecovery)

@interface RNErrorManager : NSObject <UIActionSheetDelegate>
+ (RNErrorManager *)sharedManager;

- (UIActionSheet *)actionSheetForError:(NSError *)error;
@end

RNErrorManager.m (ErrorRecovery)

#import “RNErrorManager.h”

static const char kRNErrorKey;

static RNErrorManager *sSharedManager;
@implementation RNErrorManager

+ (void)initialize {

}

sSharedManager = [[RNErrorManager alloc] init];

+ (RNErrorManager *)sharedManager {

}

}

return sSharedManager;

(UIActionSheet *)actionSheetForError:(NSError *)error {
UIActionSheet *sheet = [[UIActionSheet alloc] init];

sheet.title = [error localizedRecoverySuggestion];

sheet.delegate = self;

for (NSString *option in [error localizedRecoveryOptions]) {
[sheet addButtonwWithTitle:option];

}

objc_setAssociatedObject(sheet, &kRNErrorKey, error,
OBJC_ASSOCIATION_RETAIN_NONATOMIC);
return sheet;

(void)actionSheet: (UIActionSheet *)actionSheet

clickedButtonAtIndex: (NSInteger)buttonIndex {

NSError *error = objc_getAssociatedObject(actionSheet,
&KkRNErrorKey);
id attempter = [error recoveryAttempter];

if ([attempter respondsToSelector:
@selector(attemptRecoveryFromError:optionIndex:)]) {
[[error recoveryAttempter] attemptRecoveryFromError:error
optionIndex:buttonIndex]

}
else {

NSAssert(NO,

@"Recovery attempter does not implement

protocol.”);

}

}

@end

In actionSheetForError:, this generates a UIActionSheet, sets itself as the
delegate, and uses objc_setAssociatedObject to attach the original NSError

to the sheet. That way when you are called back, you can figure out the
relevant error. When the button is clicked, you fetch the error using
objc_getAssociatedObject and call the delegate method on the recovery
attempter.

The calling code might look like this:
ErrorRecoveryViewController.m (ErrorRecovery)

NSArray *options = [NSArray arrayWithObjects:
NSLocalizedString(@”Run away”,
@"OPTION: Avoid error by
leaving.”),
NSLocalizedString(@”Hide”,
@"OPTION: Avoid error by
hiding.”),
NSLocalizedString(@”Fix"”,
@”"OPTION: Fix error”),
nil];
NSMutableDictionary *userInfo = [NSMutableDictionary
dictionary];
[userInfo setObject:self forKey:NSRecoveryAttempterErrorKey];
[userInfo setObject:options
forKey:NSLocalizedRecoveryOptionsgErrorKey];

[userInfo setObject:NSLocalizedString(@”"What do you want to
do?”,
@"Request decision.”)
forKey:NSLocalizedRecoverySuggestionErrorKey];
NSError *error = [NSError errorWithDomain:RNAppErrorDomain
code: kRNAppBadThingError
userInfo:userInfo];
UIActionSheet *sheet = [[RNErrorManager sharedManager]
actionSheetForError:error];
[sheet showInView:self.view];

Because you can display UIActionSheet many different ways, it’s convenient
to have RNErrorManager return the sheet rather than present the sheet itself. If
your application only presents these in one way, then it’s easy to move the
showIn...: call to RNErrorManager.

Finally, you actually respond to the user’s choice in the original caller. This
nicely separates error recovery logic from error presentation, allowing you to

provide a consistent error Ul throughout your application.
ErrorRecoveryViewController.m (ErrorRecovery)

- (void)attemptRecoveryFromError: (NSError *)error
optionIndex: (NSUInteger)recoveryOptionIndex {
switch (recoveryOptionIndex) {
case kRecoveryOptionRunAway:
NSLog(@"Run Away!"”);
break;
case kRecoveryOptionHide:
NSLog(@"Hide!");
break;
case kRecoveryOptionFix:
NSLog(@"0K, fix it....");
break;
default:
NSAssert(NO, @”Unknown recovery option: %d”,
recoveryOptionIndex);
break;

Logs

Logging is a critical part of debugging. It’s also very hard to get right. You
want to log the right things and you want to log in the right way. Let’s start
with logging in the right way.

Foundation provides a single logging call: NSLog. The only advantage NSLog
has is that it’s convenient. It is inflexible and incredibly slow. Worst of all, it
logs to the console, which is never appropriate in released code. NSLog should
never appear in production code.

Some people deal with this issue simply:

#ifdef DEBUG
#define MYLog NSLog
#else

#define MYLog

#end

That’s fine for pulling out NSLog, but now you have no logs at all, which is

not ideal. What you need is a logging engine that adapts to both development
and release. Here are some of the things to consider in your logging engine:

m [t should log to console in debug mode and to a file in release mode. If
you don’t log to console in debug mode, you won’t see logging output in
Xcode. Ideally it should be able to log to both at the same time.

m It should include logging levels (error, warning, info, verbose).
m [t should make sure that logging to disabled logging levels is cheap.

m [t should not block the calling thread while it writes to a file or the
console.

® [t must support log aging to avoid filling the hard disk.

m [t should be very easy to call, generally using a C syntax with varargs
rather than an Objective-C syntax. The NSLog interface is very easy to use,
and you want something that looks basically like that. You definitely don’t
want simple logging statements to require multiple lines of code.

My current recommendation for iOS logging is Lumberjack from Robbie
Hanson of Deusty Designs. See “Further Reading” at the end of this chapter
for the link. In general, it requires only a few extra lines of code to configure,
and a simple substitution of NSLog calls to DDLog. . . calls to implement.

This still leaves the question of what to log. If you log too little, you won’t
have the information you need to debug issues. If you log too much, you’ll
overwhelm even the best system, hurt performance, and age your logs so
quickly that you probably still won’t have the information you need. Middle
ground is very application specific, but there are some general rules.

When adding a logging statement, ask yourself what you would ever do with
it. Are you just relogging something that is already covered by another log
statement? This is particularly important if you’re logging data rather than
just “I’m in this method now.”

Avoid calculating complex data if you might not log it. Consider the
following code:

NSString *expensiveValue = [self expensiveCall];
DDLogVerbose(@”expensiveValue=%@"”, expensiveValue);

If you never use expensiveVvalue in the upcoming code and verbose logging
isn’t turned on, you’ve wasted time calculating it. Lumberjack is written in
such a way that this stays cheap:

DDLogVerbose (@"expensiveValue=%@"”, [self expensiveCall]);

This translates to

do {
if(ddLogLevel && LOG_FLAG_VERBOSE)
[DDLog log:...
format:@”expensiveValue=%@"”, [self expensiveCalll]];
} while(0);

In this case, expensivecCall is not executed unless needed. The log level is
checked twice (once in the macro and once in [DDLog log:...]), but thisis a
very cheap operation compared to expensiveCall. If you build your own
logging engine, this is a good technique to emulate.

A similar logging trick is to make sure you need to log before entering a loop.
In Lumberjack it’s done this way:

if (LOG_VERBOSE) {
for (id object in list) {
DDLogVerbose(@”object=%@"”, object);
3
}

The point of this is to avoid repeatedly calculating whether to log and to
avoid calculating the log string. That’s even more important if complex work
needs to be done to generate the log.

Most of the time, verbose logging is turned off so even if DDLogVerbose
checks the level again, the above code is cheaper in most cases, and avoids
creating a string for object. When verbose logging is turned on the extra
LOG_VERBOSE check is trivial compared to the rest of the loop.

Logging Sensitive Information

Logging opens up serious privacy concerns. Many applications process
information that should never go into a log. Obviously you should not log
passwords or credit card numbers, but this is sometimes trickier than it

sounds. What if sensitive information is sent over a network and you log the
packets? You may need to filter your logs before writing them to avoid this.

Don’t ask your customers to “just trust you” with their sensitive information.
Not only does it put the customer at risk, but the more of their information in
your possession, the more legal issues you have to consider. Few things eat
up profits as quickly as consulting lawyers.

Regularly audit your logs to make sure you’re not logging sensitive
information. After running your program at the maximum logging level,
search the logs for your password and any other sensitive information. If you
have automated tests, this generally can be added fairly easily.

Encrypting your logs does nothing to help this situation. The problem is that
the users send their logs to you, and you have the decryption key. If you feel
you need to encrypt your logs, you’re probably logging something you
shouldn’t be.

During development, it is occasionally important to see the real data in the
logs. I spent quite some time tracking down a bug where we were dropping
the last character of the password. Had we logged the password, this would
have been much easier to discover. If you need this kind of functionality, just
make sure it doesn’t stay in place in production code.

Getting Your Logs

Logs aren’t very useful if you can’t get to them. Don’t forget to include some
way to get the logs from the user. If you have a network protocol, you could
upload them. Otherwise you can use MFMailComposeViewController to send
them as an attachment. Keep in mind the potential size of your logs. You
often will want to compress them first. I've had good luck using Minizip for
this (see “Further Reading”). There are some wrappers for Minizip such as
Objective-Zip and ZipArchive, but I’m not particularly impressed with them.

Be sure to ask permission before sending logs. Not only are there privacy
concerns, but sending logs can use a lot of bandwidth and battery. Generally
you should only need to send logs in response to a problem report.

Summary

Error handling is one of the trickiest parts of any environment. It’s much
easier to manage things when they go right than when they go wrong. In this
chapter you’ve seen how to best handle things when they go wrong. There’s
nothing that will make this an easy process, but you should have the tools to
make it a manageable one.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Exception Programming Topics
Error Handling Programming Guide

TN2151: Understanding and Analyzing iPhone OS Application Crash
Reports

Other Resources

Clang documentation, “Automatic Reference Counting.” This is the

official documentation on how ARC and exceptions interact.
clang.llvm.org/docs/AutomaticReferenceCounting.html#misc.except

Lumberjack. Mac and iOS logger. code.
code.google.com/p/cocoalumberjack/

Olsson, Fredrik, “Exceptions and Errors on iOS,” Jayway Team Blog. A
good discussion of programmer versus user errors and how to deal with

exceptions versus other kinds of errors.
blog.jayway.com/2010/10/13/exceptions-and-errors-on-ios

Quincy Kit. A nice crash-catcher for iOS. guincykit.net

Volant, Gilles. zLib and Minizip. The standard for ZIP file handling. Don’t

let the “win” and “DIl” fool you. This is highly portable.
www.winimage.com/zLibDl1/minizip.html

http://developer.apple.com/
http://clang.llvm.org/docs/AutomaticReferenceCounting.html#misc.exceptions
http://code.google.com/p/cocoalumberjack/
http://blog.jayway.com/2010/10/13/exceptions-and-errors-on-ios/
http://quincykit.net/
http://www.winimage.com/zLibDll/minizip.html

Part II1: The Right Tool for the Job

Chapter 9 Controlling Multitasking

Chapter 10 REST for the Weary

Chapter 11 Batten the Hatches with Security Services
Chapter 12 Running on Multiple iPlatforms and iDevices
Chapter 13 Internationalization and Localization

Chapter 14 Selling Past the Sale with In App Purchase

Chapter 9: Controlling Multitasking

There are two broad meanings of “multitasking” in iOS. First, it refers to
running multiple applications at the same time by allowing one or more
applications to run “in the background.” Second, it refers to when a single
application runs multiple operations simultaneously. Both are important parts
of many iOS applications, and this chapter discusses both.

You learn the best practices for multitasking and discover the major iOS
frameworks for multitasking: run loops, threads, operations, and Grand
Central Dispatch (GCD). If you are familiar with thread-based multitasking
from other platforms, you learn how to reduce your reliance on explicit
threads and make the best use of iOS’s frameworks that avoid threads or
handle threading automatically. Perhaps most importantly, you learn how to
give your users the illusion of multitasking without wasting system resources.

In this chapter, I assume that you understand the basics of running tasks in the
background, and that you are familiar with
beginBackgroundTaskWithExpirationHandler :, registering an app as
location aware, and similar backgrounding issues. If you need information
about the fundamental technologies, see “Executing Code in the Background”
in the iOS Application Programming Guide.

Similarly, this chapter assumes that you have at least a passing familiarity

with operation queues and Grand Central Dispatch, though you may never
have used them in real code. If you have never heard of them, you should

skim the Concurrency Programming Guide before continuing.

The sample code for this chapter can be found in the projects SimpleGcCD,
SimpleOperation, and SimpleThread.

Best Practices for Backgrounding: With
Great Power Comes Great Responsibility

In iPhoneOS 3, only one third-party application could run at a time. When the

user left your application, it was terminated. This ensured that third-party
background applications couldn’t waste resources like memory or battery.
Apple wanted to make certain that the iPhone didn’t suffer the same
performance and stability problems of earlier mobile platforms, most
pointedly Windows Mobile.

Starting with iOS 4, Apple began to permit third-party applications to run in
the background, but only in limited ways. This continued Apple’s focus on
not allowing third-party applications to destabilize the platform or waste
resources. It can be very frustrating, but the policy has generally met its goal.
iOS remains focused on the user, not the developer.

Your application should give the illusion that it’s always running, even
though it isn’t. Although your application may be terminated without warning
any time it is suspended, it should give the impression that nothing has
changed when it launches again. This means that you should avoid displaying
a splash screen during loading, and you should save sufficient state when you
enter the background to resume seamlessly if terminated. NSUserDefaults is
a good place to stash small amounts of data during
applicationwillResignActive:. Larger data structures need to be written to
files, usually in ~/Library/Caches.

Reducing your app’s memory footprint is important when going into the
background, but so is minimizing the time required to resume. If throwing
away your cached information makes resuming from the background as
expensive as launching from scratch, there wasn’t any point to suspending.
Be thoughtful about what you throw away and how long it will take you to re-
create it. Everything you do drains the battery, so always look to avoid
wasteful processing, even if it doesn’t visibly delay your app.

When your application is suspended, it does not receive memory warnings. If
its memory footprint is very large, your application is likely to be terminated
when there is memory pressure, and you won’t have an opportunity to do
anything about it. NSCache and NSPurgeableData are invaluable in addressing
this issue. NSPurgeableData is an NSData object that you can flag as currently
in use or currently purgeable. If you store it in an NSCache object, and mark it
as purgeable with endContentAccess, the OS saves it until there is memory
pressure. At that point, it discards that data, even if your app is suspended at

the time. This saves you the cost of throwing away this object and re-creating
it every time the user leaves your app briefly, while ensuring that it can be
thrown away if needed.

A lot of framework data is automatically managed for you when your app
goes into the background. The data for images loaded with imageNamed: are
discarded automatically and reread from disk when needed again. Views
automatically throw away their backing stores (their bitmap cache). You
should expect your drawRect : methods to be called when you resume. There
is a major exception to this rule. UIImageview does not discard its data and
this can be quite large. If you have a large image shown in a UIImageView,
you should generally remove it before going into the background. However,
decompressing images can be very expensive, so you shouldn’t throw them
away too often. There is no one right answer. You need to profile your
application.

In Instruments, the VM Tracker is useful for determining how much memory
you’re using while in the background. It’s part of the Allocations template.
First create a “memory pressure” app that displays a massive image. Then run
your program with the VM Tracker. Note the amount of memory you’re
using. Press the Home button and note the amount of memory you’re using
now. This is what you’re releasing when you go into the background. Now
launch the memory pressure app. Note how much memory you release.
Ideally, your background usage should be less than your normal usage
without being so low that you delay resuming. Your usage under memory
pressure should be as low as possible.

In Instruments, you will see two kinds of memory: dirty memory and resident
memory. Dirty memory is the memory that iOS can’t automatically reclaim
when you go into the background. Resident memory is your total current
memory utilization. Both are important for different reasons. Minimizing
dirty memory reduces the likelihood that you will be terminated in the
background. Reducing it should be your primary focus. Your application
should consume as little resources as possible when it is not the foreground
application. NSCache and NSPurgeableData are excellent tools for reducing
dirty memory. Resident memory is your entire memory footprint. Minimizing
this helps prevent low memory warnings while you’re in the foreground.

In the Instruments VM Tracker, you may see references to “Memory Tag 70.” That’s memory for
decompressed images and is primarily caused by uIImage.

Memory is important, but it’s not the only resource. Avoid excessive network
activity, disk access, or anything else that will waste battery life. Generally
you should complete any user-initiated download using
beginBackgroundTaskWithExpirationHandler:. Users don’t want to have to
sit and stare at your application while their data downloads; they want to go
play a game. However, you should abort or pause any downloads that weren’t
requested by the user, provided that you can resume them later.

Some actions are forbidden while in the background. The most significant is
OpenGL calls. You must stop updating OpenGL views when you go into the
background. A subtle issue here is application termination. The application is
allowed to run for a brief time after applicationwillTerminate: is called.
During that time, the application is “in the background” and must not make
OpenGL calls. If it does, it’s killed immediately, which could prevent it from
finishing other application-termination logic.

Make sure to shut down your OpenGL updates when the application is terminating as well as
when going into the background. GLKvViewController automatically handles all of this for you,
which is the controller used by the OpenGL Game template in Xcode.

Running in the background creates new challenges for developers, but users
expect this key feature. Just make sure to keep the user as your top priority,
test heavily, and watch your resource utilization. Your application should
delight, even when it’s not on screen.

Understanding Run Loops

Every iOS program is driven by a do/while loop that blocks waiting for an
event, and then dispatches that event to interested listeners, and repeats until
something tells it to stop. The object that handles this is called a run loop
(NSRunLoop).

You almost never need to understand the internals of a run loop. There are
mach ports and message ports and CFRunLoopSourceRef types, and a variety
of other arcana. These are incredibly rare in normal programs, even in very
complex programs. What’s important to understand is that the run loop is just

a big do/while loop, running on one thread, pulling events off of various
queues and dispatching them to listeners one at a time on that same thread.
This is the heart of an iOS program.

When your applicationwWillResignActive: method, IBAction, or any other
entry point to your program is called, it’s because an event fired somewhere
that traced its way to a delegate call that you implemented. The system is
waiting for you to return so it can continue. While your code is running on
the main thread, scroll views can’t scroll, buttons can’t highlight, timers can’t
fire. The entire Ul is hanging, waiting for you to finish. Keep that in mind
when you’re writing your code.

This doesn’t mean everything is on the main run loop. Each thread has its
own run loop. Animations generally run on background threads, as does
much of NSURLConnection network handling. But the heart of the system runs
on a single, shared run loop.

While each thread has a run loop, this doesn’t mean that each thread processes its run loop. Run
loops only execute their do/while loop in response to commands like rununtilbate: as discussed
in the section “Threading” below. The call to UIApplicationMain in main.m of almost every project
runs the main run loop.

NSTimer relies on the run loop to dispatch messages. When you schedule an
NSTimer, it asks the current run loop to dispatch a selector at a certain time.
Each time the run loop iterates, it checks what time it is and fires any timers
that have expired. Delay-action methods like
performSelector:withObject:afterDelay: are implemented by scheduling
a timer.

Most of the time all of this happens behind the scenes and you don’t need to
worry about the run loop. UIApplicationMain sets up the main thread’s run
loop for you, and keeps it running until the program terminates. But what
about other threads? The next section covers those.

Threading

Blocking the main thread hangs your program, so that’s not acceptable. But
some operations take a long time to run. When that happens, you may need to
spin off new threads. This is not as common as it may appear. You can write

quite complex programs without explicitly creating any additional threads.
The frameworks create and manage threads for you in most cases, completely
transparently. But sometimes you need to explicitly create your own worker
threads. In this section you learn how to do this by hand, and in the later
sections you learn better abstractions for handling threads.

Cocoa offers a useful thread abstraction called NSThread. While operation
queues and Grand Central Dispatch are becoming the preferred way to handle
threading, it’s very helpful to understand how NSThread works by itself, and
how to integrate it with a run loop. For this example, you create an
application that updates a simple counter on the screen. This could easily be
done with an NSTimer, but pretend the operation is too expensive to do on the
main thread. The source code for this example is in the SimpleThread project.

First, create an abstract NSThread class called counterThread. This will
simplify showing various techniques.

CounterThread.h (SimpleThread)

@protocol CounterThreadDelegate <NSObject>
@property (assign) NSUInteger count;

@end

@interface CounterThread : NSThread

@property (strong) id<CounterThreadDelegate> delegate;
@property (assign) BOOL shouldRun;

- (CounterThread *)initWithDelegate:(id)delegate;
- (void)stop;

// Methods for our subclasses

- (void)processThread;

- (void)updateDelegate;

@end

CounterThread.m (SimpleThread)

@implementation CounterThread
@synthesize delegate=delegate_;
@synthesize shouldRun=shouldRun_;
- (CounterThread *)initWithDelegate:(id)delegate {
if ((self = [super init])) {
self.delegate = delegate;
}

return self;

- (void)stop {
self.shouldRun = NO;

- (void)processThread {
NSAssert(NO, @”Abstract method. Must be overridden”);

- (void)updateDelegate {
// Whatever interesting work we want to do.
// This call is made on a background thread, so make sure
// it’s threadsafe
self.delegate.count = self.delegate.count + 1;

- (void)main {
@autoreleasepool {
self.shouldRun = YES;
while (self.shouldRun) {
@autoreleasepool {
[self processThread];
}

b
b

}
@end

The main routine is run when the thread starts. When the main routine ends,
the thread will terminate. Releasing an NSThead object does not terminate the
thread. The main routine must finish and return. It is possible to call cancel
on a thread, but you should avoid this. It leaves memory in an unknown state.

Each thread is responsible for managing its own autorelease pool. The first
@autoreleasepool takes care of any autoreleased objects that might be
generated before reaching the loop. In this code, there aren’t any such objects,
so there’s no real need for this extra pool, but it’s a good habit to create one at
the top of the thread just as main.m does for the main thread. With ARC
(Automatic Reference Counting), the compiler optimizes it out if it isn’t
really needed.

The @autoreleasepool in the loop is important. The pool isn’t drained until
you reach the end of the @autoreleasepool block, so without a block inside
the loop, autoreleased objects may be retained until the thread terminates.

The updateDelegate method does whatever interesting work you want to do.

It has to be thread-safe, however. In this example, the delegate’s count
accessors looks like this:

STViewController.m (SimpleThread)

// Thread-safe

- (NSUInteger)count {
return count_;

3

// Thread-safe
- (void)setCount:(NSUInteger)count {
@synchronized(self) {
count_ = count;
NSString *string = [NSString stringWithFormat:@”%d”, count];
[self.label performSelectorOnMainThread:@selector(setText:)
withObject:string
waitUntilDone:NO];

The @synchronized makes sure that the calls to setText: are made in order,
not to ensure reading and writing the ivar are atomic. The count getter
doesn’t require an @synchronized because there is no point at which reading
the scalar is unsafe. Because setText: modifies a UIKit object, it has to run
on the main thread. That’s why you need to call it with
performSelectorOnMainThread:withObject:waitUntilDone:.

CounterThread is an abstract class. In the following examples, concrete
subclasses override processThread to demonstrate different approaches.
There are two critical features of processThread:

m It needs to block for some period of time. If it immediately returns, it
busy-waits. That means it very rapidly checks shouldRun over and over.
This puts a dramatic load on the CPU, quickly drains the battery, and
causes the device to heat up.

® It needs to return periodically. If it blocks indefinitely, the thread cannot
check shouldRun very often, and the thread may not terminate when it
needs to. This can lead to leaking threads, which cause your process’s
thread count to grow over time. There are a limited number of threads in
the system, so this can eventually crash your program. Threads also use

memory and other kernel resources, so they need to be terminated at
appropriate times.

It is generally better to block too long than to check shouldRun too often as
long as you are not rapidly generating and destroying threads (which you
shouldn’t do anyway). An appropriate timeout is often between 1 and 10
seconds.

The simplest concrete implementation of CounterThread is
SimpleCounterThread:

@implementation SimpleCounterThread
- (void)processThread {
[NSThread sleepForTimeInterval:1];
[self updateDelegate];

}

This just sleeps for 1 second and updates the delegate. Then main checks
shouldRun and executes processThread again if appropriate. This kind of
thread is useful for many operations, but it has a problem. What if you
created an NSTimer inside updateDelegate? It would never execute. That’s
because this thread is not processing its run loop, and it’s the run loop that is
responsible for checking the current time and dispatching any timers that
have expired. Every thread has a run loop, but something needs to process it
(sometimes called “pumping the run loop”). RunLoopThread is a subclass of
CounterThread that demonstrates how to do this by calling rununtilbate:.

RunLoopThread.m (SimpleThread)

- (void)processThread {
if (! self.timer) {
self.timer = [NSTimer
scheduledTimerWithTimeInterval:1
target:self
selector:@selector(updateDelegate)
userInfo:nil
repeats:YES];

}

NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
[runLoop runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];

Using this approach, the thread behaves very much like the main run loop.
The call to rununtilbate: will block for no more than 1 second, allowing
processThread to return and the calling main function to check whether the
thread should terminate. Using
performSelector:onThread:withObject:waitUntilDone:, you can now run
arbitrary methods on this thread.

I recommend against using performSelectorInBackground:withObject: in
most cases. This method automatically generates a thread for you, but gives
you no access to the thread once it’s been created. This makes it easy to
accidentally leak threads. The most common mistake is to call
performSelectorInBackground:withObject: in methods like viewDidLoad
that can be called more than once. Because you have no ivar holding the
thread object, you can’t easily determine that there is already a thread running
for this operation.

You should generally create a thread object and assign it to a property to keep
track of it. In your setter for that property, check whether a thread is already
assigned. If it is, that’s either a programming error and you should use
NSAssert, or it’s acceptable and you should terminate the old thread before
creating the new one. If you just call performSelectorInBackground:. ..,
you can quickly generate enough threads to crash your program and even
cause the device to become unresponsive for a while.

For simple threading needs, NSThread can be a good fit. It makes it easy to
create producer-consumer queues, particularly when coupled with
@synchronize. It is especially good for architectures that require a small
number of long-lived threads. For more complex problems, iOS provides
more powerful tools such as operations and dispatch queues that are
discussed in the next sections.

Developing Operation-Centric Multitasking

With the many things expected from modern applications, Apple has begun
encouraging developers to move toward a more operation-centric rather than
thread-centric architecture for multitasking. An operation is an encapsulated
unit of work, often expressed in the form of an Objective-C block. Blocks are

more fully covered in Chapter 16.

In this example, you create the same timer program as before, but using
NSoperation. To simplify creation, you use NSBlockOperation. Again, the
actual work is trivial (sleep a second and update a counter), but the same
approach works for much more time-consuming operations. The bolded
statements are discussed in more detail following the code.

ViewController.m (SimpleOperation)

- (void)addNextOperation {
__block typeof(self) myself = self;
NSOperation *op = [NSBlockOperation blockOperationwWithBlock:/{
[NSThread sleepForTimeInterval:1];
myself.count = myself.count + 1;
317
op.completionBlock = "A{[myself addNextOperation];};

[self.queue addOperation:op];

- (void)viewDidLoad {
[super viewDidLoad];
self.queue = [[NSOperationQueue alloc] init];
self.count = 0;
[self addNextOperation];
}
// Thread-safe
- (void)setCount:(NSUInteger)count {
count_ = count;
__block typeof(self) myself = self;
[[NSOperationQueue mainQueue] addOperationWithBlock:A{
myself.label.text = [NSString stringWithFormat:@”%d"”, count];
317

}
// Thread-safe

- (NSUInteger)count {
return count_;

}

- (void)viewDidUnload {
self.queue.suspended = YES;
self.queue = nil;

[self setLabel:nil];
[super viewDidUnload];

In addNextOperation and setCount: you create a strange variable called
myself. If you reference an object inside of a block, the block automatically
retains that object. If you reference self, a retain loop is created because
self retains queue, which retains the block. This is such a common retain
loop that the compiler gives you a warning if you do this accidentally. The
extra variable myself breaks this loop because it is marked as __block scope,
which means it's shared with the block, but not retained by the block. The
typeof shorthand just makes it easier to paste this extra line when needed.

In addNextOperation, you use a completion block to schedule another
operation. The completion block is useful for handling all kinds of cleanup.
This is somewhat contrived because you normally would schedule all the
operations at once, but this is a useful way to add delays with operations.

Note that the count accessors again need to be thread-safe because operations
may access them from any thread. Rather than using
performSelectorOnMainThread: . .., this example uses the mainQueue,
which is an NSOperationQueue that runs on the main thread.

Operations have some overhead compared to Grand Central Dispatch, which
is discussed in the next section. Generally you shouldn’t generate huge
numbers of very small operations. For example, you should not generate a
separate operation for every pixel in a bitmap. Instead, you would create an
operation for every row, or perhaps several rows. iOS devices currently do
not have many cores, so there is only so much parallel work that they can do.
Operations are also not fully as integrated into GCD queues on iOS as they
are in OS X. This is likely to improve, however, and you should expect
NSOperation to grow as the preferred multitasking API in Cocoa.

Multitasking with Grand Central Dispatch

Grand Central Dispatch is at the heart of multitasking in iOS. It is used
throughout the system layer for nearly everything. With iOS 5, GCD has
added powerful I/O handling routines that make it even more potent.

Much of GCD is very similar to NSOperation. In this example, you
implement the same timer as in the earlier sections. Notice how the GCD

calls almost exactly match the NSoperation calls. The changes are bolded.
ViewController.m (SimpleGCD)

- (void)addNextOperation {
__block typeof(self) myself = self;
double delayInSeconds = 1.0;
dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW,
delayInSeconds *
NSEC_PER_SEC) ;
dispatch_after(popTime, self.queue, "(void)({
myself.count = myself.count + 1;
[self addNextOperation];

1)

- (void)viewDidLoad {
[super viewDidLoad];
self.queue = dispatch_queue_create(“net.robnapier.SimpleGCD.VC",
DISPATCH_QUEUE_CONCURRENT);
self.count = 0;
[self addNextOperation];

- (void)viewDidUnload {
dispatch_suspend(self.queue);
dispatch_release(self.queue);
self.queue = nil;

[self setLabel:nil];
[super viewDidUnload];

- (void)setCount:(NSUInteger)count {
count_ = count;
__block typeof(self) myself = self;
dispatch_async(dispatch_get_main_queue(), ~{
myself.label.text = [NSString stringWithFormat:@”%d"”, count];
1);

One small change from NSOperation is that GCD offers dispatch_after,
allowing you to schedule the next operation rather than sleeping. The time is
in nanoseconds, which can lead to some confusion because nearly every time
interval in iOS is in seconds. Luckily, Xcode automatically provides a
conversion snippet if you type dispatch_after and press Enter. Using
nanoseconds is optimized for the hardware, not the programmer. Passing the

time in seconds would require floating point math, which is more expensive
and less precise. GCD is a very low-level framework and does not waste
many cycles on programmer convenience.

Creating Synchronization Points with Dispatch
Barriers

GCD offers a rich system of serial and concurrent queues. With some
thought, you can use these to create many things other than simple thread
management. For instance, GCD queues can be used to solve many common
locking problems at a fraction of the overhead.

A dispatch barrier creates a synchronization point within a concurrent queue.
While it is running, no other block on the queue is allowed to run, even if
there are other cores available. If that sounds like an exclusive (write) lock, it
is. Nonbarrier blocks can be thought of as shared (read) locks. As long as all
access to the resource is performed through the queue, this provides very
cheap synchronization.

For comparison, you could manage multithreaded access with @synchronize,
which takes an exclusive lock on its parameter, as shown in the following
code.

- (id)objectAtIndex: (NSUInteger)index {
@synchronized(self) {
return [self.array objectAtIndex:index];

}
}
- (void)insertObject: (id)obj atIndex:(NSUInteger)index {

@synchronized(self) {
[self.array insertObject:obj atIndex:index];

b
}

This is simple to use, but very expensive even when there is little contention.
There are many other approaches. Most are either complicated and fast, or
simple and slow. GCD barriers offer a nice trade-off.

- (id)objectAtIndex: (NSUInteger)index {
__block id obj;
dispatch_sync(self.concurrentQueue, 7{

obj = [self.array objectAtIndex:index];
1)

return obj;

}

- (void)insertObject: (id)obj atIndex:(NSUInteger)index {

dispatch_barrier_async(self.concurrentQueue, A{
[self.array insertObject:obj atIndex:index];

1),
}

All that is required is a concurrentQueue property, created by calling
dispatch_queue_create with the DISPATCH_QUEUE_CONCURRENT option. In
the reader (objectAtIndex:), you use dispatch_sync to wait for it to
complete. Creating and dispatching blocks in GCD has very little overhead,
so this is much faster than using a mutex. The queue can process as many
reads in parallel as it has cores available. In the writer, you use
dispatch_barrier_async to ensure exclusive access to the queue while
writing. By making the call asynchronous, the writer returns quickly, but any
future reads on the same thread are guaranteed to return the value the writer
set. GCD queues are FIFO, so any requests on the queue before the write are
completed first, the write runs alone, and only then are requests that were
placed on the queue after the write processed. This prevents writer starvation,
and ensures that immediately reading after a write always yields the correct
result.

Queue Targets and Priority

Queues are hierarchical in GCD. Only the global system queues are actually
scheduled to run. You can access these queues with
dispatch_get_global queue and a priority constant,
DISPATCH_QUEUE_PRIORITY_HIGH, ... DEFAULT, ..._LOW, Or

. ._BACKGROUND. The BACKGROUND queue was added in iOS 5 and is the
lowest-possible priority. All of these queues are concurrent. GCD schedules
as many blocks as there are threads available from the HIGH queue. When the
HIGH queue is empty, it moves on to the DEFAULT queue, and so on. The
system creates and destroys threads as needed, based on the number of cores
available and system load.

When you create your own queue, it is attached to one of these global queues
(its target). By default, it is attached to the DEFAULT queue. When a block

reaches the front of your queue, the block is effectively moved to the end of
its target queue. When it reaches the front of the global queue, it’s executed.
You can change the target queue with dispatch_set_target_queue.

Once a block is added to a queue, it runs in the order it was added. There is
no way to cancel it, and there is no way to change its order relative to other
blocks on the queue. But what if you want a high-priority block to “skip to
the head of the line?” As shown in the following code, create two queues, a
high priority queue and a low priority queue, and make the high priority
queue the target of the low priority queue.

dispatch_queue_t
low = dispatch_queue_create(“low”, DISPATCH_QUEUE_SERIAL);

dispatch_queue_t
high = dispatch_queue_create(“high”, DISPATCH_QUEUE_SERIAL);
dispatch_set_target_queue(low, high);

Dispatching to the low priority queue is normal:
dispatch_async(low, A{ /* Low priority block */ });

To dispatch to the high priority queue, suspend the low queue and resume it
after the high priority block finishes:

dispatch_suspend(low);
dispatch_async(high, A{
/* High priority block */
dispatch_resume(low);

1)

Suspending a queue prevents scheduling any blocks that were initially put on
that queue, as well as any queues that target the suspended queue. It won’t
stop currently executing blocks, but even if the low priority block is next in
line for the CPU, it won’t be scheduled until dispatch_resume is called.

You need to balance dispatch_suspend and dispatch_resume exactly like
retain and release. If the queue is suspended multiple times, it requires an
equal number of resumes.

New iniOS 5

iOS 5 adds several GCD features that are particularly useful for high-
performance operations. These are mostly applicable to the operating system
itself, and generally you should rely on the OS to handle these things for you.
This chapter won’t go into them deeply, but it’s useful to know they’re
available. You should expect these technologies to become more central in
later versions of iOS.

Queue-Specific Data

Much like associative references discussed in Chapter 3, queue-specific data
allows you to attach a piece of data directly to a queue. This can sometimes
be a useful and extremely fast way to pass information in and out of a queue.
This is combined with dispatch data, discussed in the next section, to allow
extremely high-performance data passing that reduces memory copying and
allocation/deallocation churn.

Like associative references, queue-specific data uses a unique address as its
key, rather than a string or other identifier. This is usually achieved by
passing the address of a static char. Unlike associative references, queue-
specific data does not know how to retain and release. You have to pass it a
destructor function that it calls when the value is replaced. For memory
you’ve allocated with malloc, this is free. It’s difficult to use this with
Objective-C objects under ARC, but Core Foundation objects are a bit easier
to use, as demonstrated here. In this example, value is released automatically
when the queue is destroyed or if another value is set for kMyKey.

static char kMyKey;
CFStringRef *value = CFStringCreate...;
dispatch_queue_set_specific(queue,
&kMyKey,
(void*)value,
(dispatch_function_t)CFRelease);

dispatch_sync(queue, 7{
CFStringRef *string = dispatch_get_specific(&kMyKey);

Y

One nice thing about queue-specific data is that they respect queue
hierarchies. So if the current queue doesn’t have the given key assigned,
dispatch_queue_get_specific automatically checks the target queue, then

that queue’s target queue, and on up the chain.

Dispatch Data

Dispatch data is the foundation of one of the most powerful low-level
performance advances in iOS 5, and you will likely never need to use it
directly. Dispatch data are blocks of noncontiguous, immutable memory
buffers that can be very quickly joined and split up between blocks with
minimal copying. Buffers can also be incrementally released as they are
processed, improving memory usage.

This is an incredibly robust system, and is the basis for a feature called
dispatch I/0O, which promises significant I/O performance improvements on
multicore iOS devices, and particularly on the Mac. However, in most cases,
you will get most of the benefit for free by using the higher-level abstractions
without taking on the complexity of using dispatch I/O directly. My
recommendation is to leave this technology alone while it finishes maturing
and Apple works out the best patterns for using it. You may want to start
looking at it now if your application needs to process very large amounts of
data very quickly, and you’ve found that memory allocation or disk access are
your major bottlenecks. These types of problems are very common for the
OS, but less common at the application layer. See the “Further Reading”
section for links to more information.

Summary

The future of iOS development is multitasking. Apps will need to do more
operations in parallel to leverage multicore hardware and provide the best
experience for users. Traditional threading techniques are still useful, but
operation queues and Grand Central Dispatch are more effective and promise
greater performance with less contention and less locking. Learning to
manage your internal multitasking, and behaving appropriately when
multitasking with other applications, is a foundational part of today’s iOS
development.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

iOS Application Programming Guide, “Executing Code in the
Background”

File System Programming Guide. “Techniques for Reading and Writing
Files.” The section “Processing a File Using GCD” includes example code
explaining dispatch I/O channels.

Threading Programming Guide
WWDC Sessions

The following session videos are available at developer.apple.com.

WWDC 2011, “Session 320: Adopting Multitasking in Your App”
WWDC 2011, “Session 210: Mastering Grand Central Dispatch”

Other Resources

Ash, Mike. NSBlog. Mike Ash is one of the most prolific writers on low-
level threading issues out there. While some of this is now dated, many of
his blog posts are still required reading. http://mikeash.com/pyblog/

m Friday Q&A 2010-01-01: NSRunLoop Internals
® Friday Q&A 2009-07-10: Type Specifiers in C, Part 3
® Friday Q&A 2010-07-02: Background Timers

® Friday Q&A 2010-12-03: Accessors, Memory Management, and
Thread Safety

CocoaDev, “LockingAPIs.” CocoaDev collects much of the accumulated
wisdom of the Cocoa developer community. The Locking APIs page

includes links and discussion of the available technologies and tradeoffs.
http://www.cocoadev.com/index.pl?LockingAPIs

http://developer.apple.com/
http://mikeash.com/pyblog/
http://www.cocoadev.com/index.pl?LockingAPIs

Chapter 10: REST for the Weary

Most iOS applications have to communicate with a remote web server in one
way or another at some point. Some apps can run and be useful without a
network connection, and web server communication might be short-lived (or
even optional) for the application. Apps that fall into this category are those
that sync data with a remote server when a connection is present, such as to-
do lists.

Another set of apps needs nearly continuous network connectivity to provide
any meaningful value to the user. These are typically apps that act as a mobile
client for a web service. Twitter clients, foursquare, Gowalla, and most apps
you write fall into this category. This chapter presents some techniques for
writing apps the right way for consuming a web service. Caching data offline
or synchronizing data with a remote server is discussed in Chapter 17.

It’s 2011, and a quick search for Twitter in Apple’s App Store turns up nearly
650 iPad apps and more than 3,000 iPhone apps. Today, if you want to create
the next Twitter client, you don’t have to know anything about web services
or the Twitter REST API. There are more than a dozen implementations of
the Twitter API in Objective-C. The same is true for most public services like
Facebook’s Graph API and Dropbox. Hence, rather than explaining how to
build your next Twitter client, this chapter provides some insights and best
practices for designing your next iPhone app that consumes a generic, simple,
and hypothetical web service. The ideas and techniques presented here are
generic enough to be applied easily on any of the projects you might
undertake. If you have been an iPhone developer for at least a year, you might
already have implemented a project like this, where your customer sends you
a REST documentation of his server APIs. You would have been introduced
to the server developer and probably had some control over negotiating the
output format and error handling stuff. In most cases, both the client and the
server code would have been developed in tandem.

In addition to discussing the REST implementation on iOS, this chapter
provides some guidelines for the server that will help you achieve the

following goals:

® Improve the code quality
® Reduce development time
® Improve code readability and maintainability

® Increase the perceived performance of the app

The Worldwide Web Consortium has identified two major classes of web services. (W3C Web
Services Architecture 2004): RESTful services that manipulate XML representation of web
resources using a uniform set of stateless operations, and arbitrary services that might expose any
operation. SOAP and WSDL fall under the second category. Web services used in 2011 are mostly
RESTful, including but not limited to Twitter APIs, foursquare, and Dropbox. This chapter
focuses on consuming a RESTful service in your application.

The REST Philosophy

The three most important features of a RESTful server that an iOS developer
should know about are its statelessness, uniform resource identification, and
cacheability.

A RESTful server is always stateless. This means every API is treated as a
new request and no client context is remembered on the server. Clients do
maintain the state of the server, which includes but is not limited to caching
responses and login access tokens.

Resource identification on a RESTful server is done through URLs. For
example, instead of accepting a resource ID as a parameter, a REST server
accepts it as a part of the URL. For example,
http://example.com/resource?id=1234 becomes
http://example.com/resources/1234.

This method of resource identification, along with the fact that a RESTful
server doesn’t maintain the state of the client, allows clients to cache
responses based on the URL, just as a browser caches web pages.

Response from a RESTful server is usually sent in a uniform, agreed-upon
format, usually to decouple the client/server interface. The client iOS app
communicates with a RESTful server through this agreed-upon data exchange
format. As of today, the most commonly used formats are XML and JSON.

The next section discusses the differences among the formats and the ways
you can parse them in your app.

Choosing Your Data Exchange Format

Web services traditionally support two major kinds of data exchange format:
JSON (JavaScript Object Notation) and XML (eXtensible Markup
Language). Microsoft pioneered XML as the default data exchange format for
its SOAP services, while JSON became an open standard described in RFC
4627. While there are debates over which is superior, as an iOS developer
you should be able to handle both kinds of data format on your app.

There are several parsers available for both XML and JSON for Objective-C.
The following sections discuss some of the most commonly used toolkits.

Parsing XML on 10S

XML parsing can be done using two kinds of parsers, a DOM parser or a
SAX parser. A SAX parser is a sequential parser and returns parsed data on a
callback as it steps through the XML document. Most SAX parsers work by
taking in a URL as a parameter and giving you data as it becomes available.
For example, the NSXMLParser foundation class has a method called
initwWithContentsOfURL:.

(id)initwWithContentsOfURL: (NSURL *)url;

You essentially initialize a parser object with the URL and the NSXMLParser
does the rest. Parsed data becomes available through callback via delegate
methods defined in NSXMLParserDelegate. The most commonly handled
methods are

parserDidStartDocument:

parserDidEndDocument:
parser:didStartElement:namespaceURI:
qualifiedName:attributes:
parser:dideEndElement:namespaceURI:qualifiedName:

parser:foundCharacters:

Because the parser uses delegation to return data, you need a subclass of
NSXMLParser for every object you are handling. This tends to make your code
base a bit more verbose compared to a DOM parser.

A DOM parser, on the other hand, loads the complete XML before it starts
parsing. The advantage of using a DOM parser is its capability to access data
at random using XPath queries and there is no delegation like in the SAX
model. The most commonly used methods in NSXMLDocument are

(id)initwWithContentsOfURL: (NSURL *)url options:(NSUInteger)mask
error: (NSError **)error

initwWithData:options:error:

initWithXMLString:options:error:

Once you initialize the NSXMLDocument you can access the contents using
NSXMLNode and NSXMLElement methods like

nodesForXPath:error:

Using a DOM parser makes your code cleaner and easier to read. While this
comes at the expense of execution time for handling web service requests, the
effect is minor because DOM parsers become slower only for documents
larger than a megabyte or so. A web service response generally is less than
that. Any performance gain you get is negligible compared to the time of the
network operation. These performance gains make a lot of sense when you
are parsing XML from your resource bundle.

To learn more about XML performance, download and test the XML
Performance app published by Apple (see the “Further Reading” section at
the end of this chapter).

Parsing JSON on iOS

The second data exchange format is JSON, which is much more commonly
used than XML. While Apple has a JSON processing framework, it was a
private API in iOS 4 and Snow Leopard and was not available for general
use. However, there are many other alternatives to choose from. The most
commonly used frameworks by far are SBJson, TouchJSON, YAJL, and
JSONK:it. (See the “Further Reading” section for the links to download these

frameworks.) Almost all frameworks have category extensions on NSString,
NSArray, and NSDictionary to convert to and from JSON. The code samples
in this chapter use JSONKit. With iOS 5, Apple introduced
NSJSONSerialization that can be used for parsing if your app is iOS 5 only.
You learn about NSJSONSerialization later in this chapter.

JSONK:it has convenience category extensions for NSString, NSArray, and
NSDictionary. To convert a JSON response from your web service into a
foundation class object (either a NSArray or a NSDictionary), use the
extension method on NSString, as in the following sample code fragment.

NSMutableDictionary *responseDict = [responseString
mutableObjectFromJSONString];

Similarly, converting your Foundation objects into JSON strings is also
straightforward. The following code explains how to serialize a Foundation
object (NSbictionary in this case) to a JSON string for sending it to the
server as a post data.

NSMutableDictionary *postDict = [NSMutableDictionary dictionary];
[postDict setObject:@”theAccessToken” forKey:@"”access_token”];
[postDict setObject:@”abcdel2345” forKey:@"emp_id”];

// .. fill in other parameters

NSString *jsonString = [postDict JSONString];

The category methods mutableObjectFromJSONString and JSONString
defined in the JSONK:it come in very handy when processing JSON on iOS.
In most cases, these are the only two methods you will ever need while
handling JSON. Note that the other frameworks, namely SBJson,
TouchJSON, and YAJL, have equivalent implementations. In short, whatever
library you use, JSON processing is almost always much simpler than XML.

NSJSONSerializer

In iOS 5, Apple introduced its own JSON parsing and serializing framework,
called NSJSoNSerialization. Apple’s classes are fast compared to other
frameworks, but you should use this framework only if you are willing to
support only iOS 5. NSJSONSerialization also lacks the capability to
serialize custom objects, something JSONKit can do. JSONKIit has a couple
of convenient methods that accomplish this:

serializeUnsupportedClassesUsingDelegate:selector:error: and
serializeUnsupportedClassesUsingBlock:error:.

If your JSON parsing needs unsupported class handling, you will not be able
to use NSJSONSerialization.

When you are choosing a library for your app, you might have to do some performance
evaluation. (You can compare the frameworks using the open source test project json-
benchmarks on Github. See the “Further Reading” section for the link to this tool.) Because all
five (SBJson, TouchJSON, YAJL, JSONKit, and NSJSONSerialization) are actively developed,
every library is equally good and there is no one best library as of this date. Keep a close eye on
them and be ready to swap frameworks if one seems superior to another. Usually, swapping a
JSON library shouldn’t require monumental refactoring since in most cases it involves changing
the class category extension methods.

XML Versus JSON

Source code fragments in this chapter are based on using JSON. You will
learn how to design your classes to make it easy to add XML support without
affecting the rest of the code base. In every case, JSON processing on iOS is
an order of magnitude easier than XML. So if your server supports both XML
and JSON formats, choosing JSON is a wise decision. If your server code is
not yet developed, start by supporting JSON initially.

Designing the Data Exchange Format

It’s essential to keep in mind that we are talking about data exchange between
client and server. The most common mistake iOS developers make is to think
of JSON as some arbitrary data sent by the server in response to an API call.
While that’s true to some extent, a quick look at what happens on the server
will give you a better picture of what JSON actually is.

Internally, every server is coded using some object-oriented programming
language. Whether it’s Java, Scala, Ruby, or C# (even PHP and Python
support objects to some extent), any data you need on your iOS app will
likely be an object on the server as well. Whether the object is an ORM
(object relational mapping)-mapped entity or a business object is of little
importance. Let’s call them model objects and these objects are serialized to
JSON only at the transport level. Most object-oriented languages provide
interfaces to serialize objects and developers usually harness this to convert
their objects to JSON. This means the JSON you see on the response is just a

different representation of the objects (or object list) on the server.

Keep this concept in mind while writing your code, and you will probably
create model objects for every equivalent server model object. When you do
that, you need not worry about changes affecting your code later. Refactoring
will be far easier.

Rather than thinking in terms of JSON strings, it makes more sense to think
in terms of objects. Design and develop your code such that you always
reconstruct model objects for every object on the server. When the
reconstructed objects on your iOS app match 100 percent with the objects on
the server, the goal of data exchange is attained and your app will be error
free.

In short, think of JSON as a data exchange format instead of a language with
a bunch of syntax. Consider documenting the data exchange contracts on an
object basis rather than as primitive data types. These objects in turn become
the model objects for your app. You see this in detail a little later in this
chapter, and you look at how to convert JSON dictionaries into models by
using Objective-C’s key-value coding/observing (KVC/KVO) mechanism.

Model Versioning

In the past, at least from the late 1990s or early 2000s until the first iPhone
was launched in 2007, most client/server development happened in tandem
with a web-based interface. Native clients were not commonly used. The
client app running on the web browser is always deployed together with the
server. As such, it wasn’t really necessary to handle versioning in your
models. However, on iOS, deploying the client requires that the app be
physically installed on your user’s device. This could take days or months, so
you should also handle situations when the server is accessed with an older
client. How many older versions of the client you want to support depends on
your business goals. As an iOS developer, you should probably build support
for catering to those business needs. Using class clusters on your iOS app is
one way to do that. You learn more about this shortly.

A Hypothetical Web Service

From here on, as we delve deeper into the topic for each chapter, we describe
a hypothetical app concept and develop the iOS code for it. As an iOS
developer you probably do mostly projects that talk to an arbitrary web
service instead of a known, publicly available service like Twitter or
Facebook or Flickr. Second, nearly every such popular service has an open
source implementation for iOS.

Assume that you are in charge of developing an iPhone app for a restaurant.
The restaurant uses iPads to take orders. Orders can be placed directly with
waiters who enter it into their iPads. Customers can also directly place orders
using the kiosks (a dedicated iPad running your app) on their tables. Here’s a
brief description of the top-level functionalities of the app:

1. Customer orders are sent to the remote servers based on the customers’
table numbers, whereas waiters pick a table number along with every order
they send through their own login accounts. So it’s clear that there are two
kinds of login/authentication mechanisms. One is the traditional
username/password-based type, and the other is based on customer table
numbers. In all cases the server will exchange an access token for a given
authentication information. The important point is that you should develop
one code base that caters to both types of login. After logging in, every
web service requires you to send an access token with every subsequent
call you make.

® This requirement translates to the /loginwaiter and /logintable web
service endpoints.

® Both these endpoints returns an access token. In the iOS client
implementation you will learn how to “remember” this access token and
send it along with every request.

2. Customers should be able to see the menu, along with the details of
every menu item including the photos/videos of the food and ratings left by
other customers.

m This requirement translates to a web service /menuitems endpoint and
a /menuitem/<itemid> that returns a JSON object that will be modeled
as a MenuItem object.

® In the iOS implementation you will learn how to map the JSON keys to
your model object with as little code as possible by making use of

Objective-C’s most powerful technique, key-value coding (KVC).
3. Customers should be able to submit reviews of an item.

m This requirement translates to a web service endpoint
/menuitem/<itemid>/review.

® In these cases, some iOS apps show a floating heads-up display
(commonly known as HUD) that prevents users from doing any
operation until the review is posted. This is clearly bad from a user
experience point. You will see how to post reviews in the background
without showing a modal HUD.

While there are other requirements for this app, these three cover the most
commonly used patterns when talking to a web service.

Important Reminders
Keep these essential points in mind as you build your app:

® Never make a synchronous network call—Even if they are on a
background thread, synchronous calls do not report progress. Another
reason is that to cancel a synchronous request running on a background
thread, you have to kill the thread, which is again not a good idea.
Additionally, you will not be able to control the number of network calls in
your app. This is very critical to the performance of your app. You learn
about this later in this chapter.

® Avoid using runloop-based threading directly for network operations
(unless your project is small and has just a couple of API calls)—
Running your own threads has some caveats, as explained above.

m Use NSOperationQueue or GCD-based threading instead
—NSOperationQueue helps with controlling the queue length and the
number of concurrent network operations. Later in this chapter you learn
the benefits of using a NSOperationQueue.

Let’s start designing the iOS app’s web service architecture.

RESTEngine Architecture (iHotelApp

Sample Code)

iOS apps traditionally use model-view-controller (MVC) as the primary
design pattern. When you are developing a REST client in your app, you
should isolate the REST calls to their own class. The stateless nature of REST
and its cachable nature can be best applied when it’s written in its own class.
Moreover, it also provides a layer of isolation (which is also good for unit
testing), and helps in keeping your controller code cleaner. Now let’s get
started with choosing a network management framework.

NSURLConnection versus Third-Party Frameworks

Apple provides classes in CFNetwork . framework, such as NSURLConnection,
for making asynchronous requests. However, for developing RESTful
services, you need to customize those classes by subclassing them. Rather
than reinvent what’s already available for the development of web services, I
recommend using ASIHTTPRequest (see the entry for Copsey,
ASIHTTPRequest Documentation 2011 in the “Further Reading” section at
the end of this chapter). ASTHTTPRequest encapsulates many often-used
features like basic or digest authentication, form posts, and uploading or
downloading files. Another important feature it provides is an
NSOperationQueue encapsulation, which you can use to queue network
requests.

My advice is generally to refrain from using third-party code when you’re developing for iOS.
However, there are some components and frameworks that are worth using. My advice here is to
avoid third-party code that is heavily interdependent. ASIHTTPRequest is a nice wrapper that
doesn’t bloat your code base while providing very powerful features. You can add just the
necessary classes from the framework into your app (as opposed to other libraries where you
have to link your app against the complete library). In our case, rather than reinvent what’s
already available, for the development of web services I recommend using ASIHTTPRequest.
ASIHTTPRequest encapsulates many often-used features like basic or digest authentication,
message formats for form posts, and uploading or downloading files. More importantly, it
provides an NSoperationQueue encapsulation, which you can use to queue network requests and
control the number of concurrent operations.

The code sample provided in the download files for this chapter uses
ASIHTTPRequest. You can find the code for this in the Chapter 10 folder
(iHotelApp) on the book’s website.

Note that the code download for this chapter is quite vast. The chapter provides important code

snippets, and you should look at the corresponding files. Open the project in Xcode to better
understand the code and the architecture.

The RESTEngine mocks calls to the API by reading them out of sample JSON files because the
API is not set up. This shouldn’t affect the architecture of the code.

Creating the RESTEngine

The RESTEngine is the heart of the iHotel App. This class encapsulates every
call to the web service standalone class, which handles your network calls.
Data should be passed from RESTEngine to view controllers only as Model
objects instead of JSON or NSDictionary objects. (The process of creating
model classes is discussed in the next section.) Now what should happen
when there is a back end-related error? Communicating errors from
RESTEngine to the view controller will be covered in the subsequent section.
The following are the first two important steps that need to be done.

1. Create a RESTEngine and add it to your project. This class will also
manage the network operation queue. For a demo implementation, refer to
this chapter’s source code on the book’s website.

2. Create a property of type ASINetworkQueue in this RESTEngine and
initialize it inside the initialization method. For using ASINetworkQueue
you should add the ASIHTTPRequest framework into your project. Refer to
the “Further Reading” section at the end of this chapter for a link to
information about how to integrate ASIHTTPRequest with your project.

The networkQueue Initialization in RESTEngine.h
@interface RESTEngine : NSObject {}

+ (RESTEngine*) sharedInstance;
@property (nonatomic, retain) ASINetworkQueue *networkQueue;

The networkQueue Initialization in RESTEngine.m

@synthesize delegate;
@synthesize networkQueue;

You will set the maximum number of concurrent operation count to 6. Setting
this number correctly has a huge performance impact, which is explained in
the “Tips to Improve Performance on iOS” section later in this chapter.

Adding Authentication to the RESTEngine

Now that the class is ready, you will add methods to handle web service calls;
first and foremost, authentication. ASIHTTPRequest provides wrapper
methods for a variety of authentication schemes including, but not limited to,
HTTP Basic Authentication, HTTP Digest Authentication scheme, NTLM
Authentication, and so on. I won’t go through the details of the authentication
mechanisms in this chapter, so simply assume that you exchange an access
token with the server by sending the username and password to the
/loginwaiter request or to the /logintable request. You need to define
macros for these URL endpoints. Add the following code to the RESTEngine
class header file:

The Constants in RESTEngine.h

#define BASE_URL @"http://api.example.com”
#define LOGIN_URL [NSString stringWithFormat:@"”%@%@"”, BASE_URL,
@”/loginwaiter”]

Next, create a property in RESTEngine to hold the access token and then
create a new method, initWithLoginName:password:, as in the following
code:

The init Method (and Property Declaration) in RESTEngine.h

@property (nonatomic, retain) NSString *sessionKey;
-(id) initWithLoginName: (NSString*) loginName password:(NSString*)
password;

The init Method (and Property Declaration) in RESTEngine.m

@synthesize networkQueue;
@synthesize sessionKey;

-(id) initwWithLoginName: (NSString*) loginName password: (NSString*)
password
{
self.networkQueue = [ASINetworkQueue queue];
[self.networkQueue setMaxConcurrentOperationCount:6];
[self.networkQueue setDelegate:self];
[self.networkQueue go];

ASIFormDataRequest *request = [ASIFormDataRequest
requestWithURL: [NSURL URLWithString:LOGIN_URL]];

[request setUsername:loginName];
[request setPassword:password];

[request setDelegate:self];

[request setDidFinishSelector:@selector(loginDone:)];
[request setDidFailSelector:@selector(loginFailed:)];

[self.networkQueue addOperation:request];

return self;

That completes your web service call. Now you should notify the caller,
(which is usually the view controller) about the outcome of the web service
call. You will use delegates for this.

Adding Delegates to the RESTEngine

For every web service call this RESTEngine class exposes two delegate
methods, one for notifying a successful call and another for error notification.
Usually this delegate is implemented by the view controller that calls the
methods in the RESTEngine.

Another, arguably cleaner way to notify the caller is by using blocks. Blocks have their own
advantages and drawbacks, as discussed in Chapter 16, which also covers when to use blocks and
when to use delegates. In that chapter, you modify this RESTEngine to return data and errors using
blocks.

1. Use the following code to add a delegate definition to your RESTEngine
class:

Code showing the delegate in RESTEngine.h

@protocol RESTEngineDelegate <NSObject>
@optional

-(void) loginSucceeded: (NSString*) accessToken;
-(void) loginFailedWithError:(NSError*) error;
@end

//DELEGATES
+(id)delegate;
+(void)setDelegate: (id)newDelegate;

Code showing the delegate in RESTEngine.m

+ (id)delegate {
return _delegate;
}

+ (void)setDelegate: (id)newDelegate {
_delegate = newDelegate;
}

2. Now change the loginDone and loginFailed methods to call this
delegate. Because the delegate is marked optional in the delegate
declaration, you should check if the delegate responds to it before sending
the message.

Login Request Handling in RESTEngine.m

- (void)loginDone: (ASIHTTPRequest *)request {
NSDictionary *responseDict = [[request responseString]
mutableObjectFromJSONString];
self.accessToken = [responseDict objectForKey:@"accessToken”];
if([_delegate respondsToSelector:@selector(loginSucceeded:)])

[_delegate performSelector:@selector(loginSucceeded:)
withObject:self.accessToken];

}
- (void)loginFailed: (ASIHTTPRequest *)request {

self.accessToken = nil;
if([_delegate
respondsToSelector:@selector(loginFailedWithError:)])
[_delegate performSelector:@selector(loginFailedWithError:)
withObject:[request error]];

}

3. Now that the RESTEgine class implementation is complete, you can call
the initialize method from the view controller (which is usually the login
page that shows the user name and password fields):

Login Button Event Handling in iHotelAppViewController.m

- (IBAction) loginButtonTapped:(id) sender {
[[RESTEngine sharedInstance] initWithLoginName:@”mugunth”

password:@”abracadabra”];

}

-(void) loginSucceeded: (NSString*) accessToken {
NSLog(@”Login is successful and this is the access token %@”,
accessToken);

}

-(void) loginFailedWithError:(NSError*) error {
NSLog(@”Login failed. Check your password. Error is :%@",
[error localizedDescription]);

}

Thus, with just a few lines of code, you are able to implement the login
functionality of the web service.

4. Remember the access token. If your access token is simply a string, you
can store it in keychain or in NSUserDefaults. Storing it in keychain is
more secure than NSUserDefaults. Choose one based on your security
requirements. The easiest and probably the cleanest way to do this is to
remove the synthesize method for accessToken and write it manually like
this:

Access Token Custom Accessor in RESTEngine.m

-(NSString*) accessToken

{

if(!_accessToken)

{
_accessToken = [[NSUserDefaults standardUserDefaults]
stringForKey:kAccessTokenDefaultsKey];
[_accessToken retain];

}

return [[_accessToken retain] autorelease];
}
-(void) setAccessToken:(NSString *) aAccessToken
{

[_accessToken release];
_accessToken = [aAccessToken retain];

[[NSUserDefaults standardUserDefaults]
setObject:self.accessToken forKey:kAccessTokenDefaultsKey];
[[NSUserDefaults standardUserDefaults] synchronize];

}

When you write a custom accessor, ensure that the method sends KVO notifications by sending
willchangevalueForKey and didChangevValueForKey messages. This is omitted here for the sake of

clarity. Get the full source code from the book’s website.

If your web server sends user profile information at login, you might need a
bit more sophisticated mechanism to cache the data. You look at caching in
Chapter 17.

Whew! That completes your first endpoint, but you are not done yet! Next
you create a second endpoint, /menuitems, which is used to download a list
of menu items from the server.

Authenticating Your API Calls with Access Tokens

In most web services, every call after login is probably protected and can be
accessed only by passing the access token. Instead of sending the access
token in every method, a cleaner way is to write a factory method in your
RestEngine that creates a request object. This request object can then be
filled with parameters specific to the call.

In the following example, you create a new method called
prepareRequestWithURLString:. It returns an ASIFormDataRequest for a
given URL. Did I mention that the entire method is going to be under five
lines long?

Preparing a URL Request Using a Factory Method in RESTEngine.m

- (ASIFormDataRequest™*) prepareRequestForURLString: (NSString*)
urlString

{
ASIFormDataRequest *request = [ASIFormDataRequest

requestWithURL: [NSURL URLWithString:urlString]];

if(self.accessToken)
[request setPostValue:self.accessToken forKey:@”AccessToken”];

return request;

}

If you need a request object from any other method, you can call this factory
method. You will never again have a buggy API call where you accidentally
forgot to set the access token. Note that this factory method can also have
additional parameters set depending on your web service requirements.

Should your web service require you to turn on gzip encoding for all calls, or
need you to send the application version number and the device-related
information, this factory method is the best place to add it.

Now add a method to your RESTEngine class for fetching menu items from
the server:

Method to Fetch the List of Menu Items in RESTEngine.m

- (ASIFormbataRequest*) fetchMenuItems {
ASIFormDataRequest *request = [self
prepareRequestForURLString:MENU_ITEMS_URL];

[request setDidFinishSelector:@selector(menuFetchDone:)];
[request setDidFailSelector:@selector(menuFetchFailed:)];
[self.networkQueue addOperation:request];

return request;

}

If your method accepts post parameters, this is the method to add them. Your
view controller code remains clean of any unnecessary strings/dictionaries.

Canceling Requests

View controllers that need to display the information from your web service
call methods like fetchMenuItems: on the RestEngine. To ensure that it
plays nicely with others, it is the responsibility of the view controller to
cancel any request it creates when the user navigates out of the view. For
example, tapping the Back button means that even if the request returns, the
response is not used. Canceling the request at this point means that other
requests queued in the RESTEngine get a chance to run, and your subsequent
views’ requests get executed faster. To enable this behavior, every method
that is written on your RestEngine class should return the request object back
to the view controller. Canceling a running request speeds up the execution
waiting time for the request submitted by the next view. A good example of
this scenario from the foursquare app is the user tapping on a profile view and
then tapping on the Mayorships button. In this case, the profile view submits
a request to fetch the user’s profile, but the user has already navigated to the
Mayorship view without viewing the profile. It’s now the responsibility of the

profile view to cancel its request. Canceling the profile fetch request naturally
speeds up the Mayorship fetch request by freeing up the bandwidth. This is
applicable not just to foursquare, but to every web service apps you develop.

Request Responses

When you call the fetchMenuItems: method, the response from server for
this is a list of menu items. In the last web service call example, the response
was an access token, a simple string, so you didn’t need to design a model. In
this case, you create a model class. Assume that the JSON returned by the
server is of the following format:

{

“menuitems” : [{

“jd"”: “JAP122",

“image”: “http://d1l.myhotel.com/food_imagel.jpg”,

“name”: “Teriyaki Bento”,

“spicyLevel”: 2,

“rating” : 4,

“description” : “Teriyaki Bento is one of the best lorem ipsum
dolor sit”,

“waitingTime” : “930",

“reviewCount” : 4

3]

One easy way to create a model from a JSON is to write verbose code to fill
in your model class with the JSON. The other, much more elegant way is to
piggyback on Objective-C’s arguably most important feature: key-value
coding. The JSONK:it classes (or any other JSON parsing framework,
including Apple’s NSJSONSerialization) discussed earlier, converts a JSON-
formatted string into a NSMutableDictionary (or a NSMutableArray). In this
case, you get a dictionary with two entries, “status” and “menuitems”. The
call shown in the following code can extract the menu items dictionary from
the response.

NSMutableDictionary *responseDict = [[request responseString]
mutableObjectFromJSONString];

NSMutableArray *menuItems = [responseDict
objectForKey:@”"menuitems”];

Now that you have an array of menu items, you can iterate through them,
extract the JSON dictionary of every menuitem, and use KVO to convert

them into model objects. This process is covered in the next section. I come
back to the “status” entry in the “Error Handling” section later in this
chapter.

Key Coding JSONSs

Before you start writing your first model class, you need to learn a bit about
the model class inheritance architecture. Any web service-based app includes
more than one model. In fact, a count of ten models for a single app is not
uncommon. Instead of writing the KVC code in ten different classes, you
write a base class that does the bulk of KVC and delegates very little work to
the subclasses. Call this base class JSONModel. Any model class in the app
that models a JSON and needs JSON observing will inherit from this
JSONModel.

Because you will be making copies and/or mutable copies of your model classes, implement
NSCopying and NSMutableCopying in this base class. Derived classes must override this base class
implementation and provide their own deep copy methods.

To start, add a method called initwithDictionary: to the base class. Your
JSONModel.h should look similar to the following.

JSONModel.h

@interface JSONModel : NSObject <NSCopying, NSMutableCopying> {
}

-(id) initwithDictionary:(NSMutableDictionary*) jsonDictionary;
@end

Then implement the initwithDictionary: method:
JSONModel.m

-(id) initwWithDictionary:(NSMutableDictionary*) jsonObject
{
if((self = [super init]))
{
[self init];
[self setValuesForKeysWithDictionary:jsonObject];
}

return self;

The important part of this procedure is the method
setValuesForKeyswWithDictionary: This method is a part of Objective-C
KVC that matches each property in the class that has the same name as a key
in the dictionary, and sets its value to the value of that entry. Most
importantly, if self is a derived class, it automatically matches the derived
class properties and sets their values. There are some exception cases to be
handled, which are covered shortly.

Voila! With just one line of code, you have “mapped” the JSON into your
model class. But will everything work automatically when you have a derived
class? Isn’t there a catch here? Before going into details, you should
understand how the method setvaluesForKeysWithDictionary: works.
Your MenuItem dictionary looks like this:

“id”: "JAP122",
“image”: “http://d1.myhotel.com/food_imagel. jpg”,
“name”: “Teriyaki Bento”,

“spicylLevel”: 2,

“rating”

: 4,
“description”

dolor sit”,

“waitingTime”

“reviewCount” : 4

11936",

“Teriyaki Bento is one of the best lorem ipsum

When you pass this dictionary to the setvaluesForKeysWithDictionary:
method, it sends the following messages along with their corresponding
values: setId, setImage, setName, setSpicyLevel, setRating,

setDescription, setWaitingTime, and setReviewCount. So a class
modeling this JSON should implement these methods. The easiest way to
implement this is to use the Objective-C’s built-in @property and
@synthesize, so your MenuItem.h model class should look like the

following:

Menultem.h

@interface Menultem

@property
@property
@property
@property
@property

(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,
(nonatomic,

: JSONModel

strong) NSString *itemId;
strong) NSString *image;
strong) NSString *name;
strong) NSString *spicylLevel;
strong) NSString *rating;

@property (nonatomic, strong) NSString *itemDescription;
@property (nonatomic, strong) NSString *waitingTime;
@property (nonatomic, strong) NSString *reviewCount;
@end

Menultem.m

@synthesize itemId;
@synthesize image;
@synthesize name;
@synthesize spicylLevel;
@synthesize rating;
@synthesize itemDescription;
@synthesize waitingTime;
@synthesize reviewCount;

Note that the property names for id and description have been changed to
itemId and itemDescription. That’s because id is a reserved keyword and
description is a method in NSObject that prints out the address of the
object. To avoid conflicts you have to rename them. However, you should
handle these exception cases because the default implementation of the
setValuesForKeysWithDictionary: method crashes with a familiar error
message stating, “This class is not key value coding-compliant for the
key:id.” To handle this case, KVC provides a method called
setValue:forUndefinedKey:.

In fact, it is the default implementation of this method that raises the
NSUndefinedKeyException. Override this method in your derived class and
set the values accordingly.

Your MenuItem.m should look like this now:
Menultem.m

- (void)setValue:(id)value forUndefinedKey:(NSString *)key
{
if([key isEqualToString:@"id”])
self.itemId = value;
if([key isEqualToString:@"description”])
self.itemDescription = value;
else
[super setValue:value forKey:key];

To avoid crashes in the future because of spurious keys in JSON, and be a bit
more defensive in your programming style, you could override this
setValue:forUndefinedkey: method in the base class, JSONModel.m, like
this:

- (void)setValue:(id)value forUndefinedKey: (NSString *)key {
NSLog(@”Undefined Key: %@"”, key);
}

Now in your RESTEngine, add the handlers for the fetchMenuItems method
to convert the JSON to model objects:

RESTEngine.m

- (void)menuFetchDone: (ASIHTTPRequest *)request

{

NSMutableArray *responseArray = [[request responseString]
mutableObjectFromJSONString];

NSMutableArray *menultems = [NSMutableArray array];

for (NSMutableDictionary *menultemDict in responseArray)
[menuItems addObject:[[[MenuIltem alloc]
initwithDictionary:menultemDict] autorelease]];

if([_delegate
respondsToSelector:@selector (menuFetchSucceeded:)])
[_delegate performSelector:@selector(menuFetchSucceeded:)
withObject:menultems];

}
- (void)menuFetchFailed: (ASIHTTPRequest *)request

{
if([_delegate
respondsToSelector:@selector(loginFailedWithError:)])
[_delegate performSelector:@selector(loginFailedWithError:)
withObject:[request error]];

}

As you see, you call the MenuItem init method with a JSON dictionary to
initialize itself from the dictionary keys. In short, by overriding a method only
for special cases, you have successfully mapped a JSON dictionary to your
custom model and this model is clean of any JSON key strings! That’s the
power of KVC. The code is also inherently defensive, in the sense that

whenever there is a change in JSON keys that the server sends (probably
rising from a bug on server side), you see NSLog statements displaying the
wrong undefined key on the console, and you can probably notify the server
developers or make changes to your client to support the new keys.

It’s also a good idea to add methods for performing deep copy to the derived
class. Just override methods in NSCopying and NSMutableCopying and you
are done. Tools like Accessorizer available from the Mac App Store can help
you with that. (See the “Further Reading” section for a link to the app.)

List Versus Detail JSON Objects

A JSON object is a payload that gets transferred from the server to the client.
To improve performance and reduce payload size, it’s common for server
developers to use two kinds of payload for the same object. One is a large
payload format that contains all information about the object; the second is a
small payload that contains information that is needed just to display the
information on a list. For the example in this chapter, a minimal amount of
information about the menu item will be displayed on the listing page, and
most of the other content, including images, photos, and reviews, will be
displayed on the detail page.

This technique goes a long way toward improving an iOS app’s perceived
performance. On the implementation side, the iOS app doesn’t have to be
changed for mapping two kinds of JSON. You get either a complete JSON, or
a JSON that fills your object partially. The code written to map the detailed
JSON should work without any modification in this scenario. For example,
the server can send the small payload JSON for /menuitems, and a detailed
payload for /menuitems/<menuitemid>. The detailed payload will contain
exactly the same data plus the first page of reviews and links to the photos of
the dishes and so on.

Nested JSON Objects

In the example, every menu item is going to have an array of reviews left by
the user. If you depend on the default implementation of KVC, and declare an
NSMutableArray property on your model, the KVC binding will set it to an
array of NSMutableDictionary. But what you actually want is to map that

dictionary as well in a recursive fashion. This case is handled by the
overriding the setvalue: forKey: method.

Assume that the following represents the format of JSON sent by the
/menuitems/<itemid> method:

{

“menuitems” : [{
“id”: "JAP122",
“image”: “http://d1.myhotel.com/food_imagel.jpg”,
“name”: “Teriyaki Bento”,
“spicyLevel”: 2,
“rating” : 4,
“description” : “Teriyaki Bento is one of the best lorem ipsum
dolor sit”,
“waitingTime” : “930",
“reviewCount” : 4,
“reviews”: [{
IIidII : llrevllI,
“reviewText”: “This is an awesome place to eat”,
“reviewerName”: “Awesome Man”,
“reviewedDate”: “10229274633",
Ilrating": 115"
1]
11,

“status” : “OK”

}

This code is very similar to what you already saw, but has one additional
payload: an array of reviews. In a real-life scenario, there might be multiple
such additions, like a list of photos, a list of “likes,” and so on. But for the
sake of simplicity, just assume that the detailed listing of a menu item has
only one additional piece of information, which is the array of reviews. Now
before overriding the setvalue:forkKey: method, create a model object for a
review entry. This class’s header file will look similar to the one below. The
implementation contains nothing but synthesizers and overridden NSCopying
and NSMutableCopying (deep copy) methods.

Review.m

@property (nonatomic, strong) NSString *rating;
@property (nonatomic, strong) NSString *reviewDate;

@property (nonatomic, strong) NSString *reviewerName;
@property (nonatomic, strong) NSString *reviewId;
@property (nonatomic, strong) NSString *reviewText;

Again, you can generate these accessors using tools like Accessorizer. Your
review JSON doesn’t have any special keys that might be in conflict with
Objective-C’s reserved list, so you don’t even have to write any explicit code
for converting JSON to a review model. The initialization code is in the base
class and the KVC compliant code is generated by the property/synthesizers.
That’s the power of KVC.

Next, override the setvalue: forKey: method in the MenuItem model to
convert review dictionaries to Review models:

Custom Handling of KVC'’s setValue:forKey: Method in Menultem.m

-(void) setValue:(id)value forKey:(NSString *)key

{
if([key isEqualToString:@"reviews”])

{

for(NSMutableDictionary *reviewArrayDict in value)

{

Review *thisReview = [[[Review alloc]
initwithDictionary:reviewArrayDict] autorelease];
[self.reviews addObject:thisReview];

¥

}

else
[super setValue:value forKey:key];

}

The idea behind this code is to handle the reviews key of the JSON in a
specialized way and to let the other keys be handled by the default superclass
implementation.

Less Is More

You might have heard about KVC and KVO, on the Internet from blogs of
veteran Objective-C developers explaining how great they are. Now that you
have understood them, you can put these concepts to use in your next app.
You will realize how powerful they are and how easily they allow you to
write less code in a more efficient way. Next, you move on to error handling.

Error Handling

Recall that you saw a key called status in the JSON payload. Every web
service has some way to communicate error messages to the client. In some
cases it’s sent through a special key, like status. In other cases, the web
server sends an error key with more information about the actual error and
no such key is sent for a successful call. This section shows you how to
model this on iOS, so that you write as little code as possible, yet write it in a
way that is clear to read and understand.

The first thing to understand is that not all API errors can be mapped to a
custom HTTP error code. In fact, a server might throw errors even when
everything is perfectly fine, but the user input is wrong. A website
registration web service might throw an error if the user tries to register with
an email address that’s already taken. This is just one example, and in most
cases, you need specialized error handling for handling your own internal
business logic errors. In this example, for instance, a missing menu item
results in a 404 error. Most web services send a custom error message along
with the 404 notice so that clients can understand what caused that 404. A
client implementation should not just report the HTTP error as a error
message to the user, but also understand the internal business logic error for
elegant error reporting and do proper error reporting. Otherwise, the only
error you can ever show is “Sorry, something bad happened, please try again
later” and no one, including your customer, is interested in seeing that kind of
vague message. This section shows you how to handle these cases in an
elegant fashion.

In the following steps you subclass ASIHTTPRequest or ASIFormDataRequest
to handle custom API errors. If your app needs to make only “form post”
kinds of requests, subclass ASIFormbDataRequest, otherwise subclass its
parent, ASIHTTPRequest.

1. Create a subclass of ASIFormbataRequest. This subclass will have a
property to store the business logic errors thrown from the server.

2. Create an NSError* property called restError in the subclass.

3. Override two methods to handle error conditions. The first method to
override is the failwithError:

Code in RESTRequest.m that illustrate error handling

-(void) failWithError:(NSError *)theError
{

NSMutableDictionary *errorDict = [[self responseDictionary]
objectForKey:@"error”];
if(errorDict == nil)

{

self.restError = [[NSError alloc]
initwWithDomain:kRequestErrorDomain code:[theError code]
userInfo:[theError userInfo]];

}

else

{

self.restError = [[NSError alloc]
initwWithDomain:kBusinessErrorDomain code:[[errorDict
objectForKey:@”code”] intValue]userInfo:errorDict];

}

[super failwWithError:theError];

}

Using this class, you check for the presence of the “error” JSON key and
process it appropriately. The failwithError method will be called when
there is a HTTP error. You should handle non-HTTP, business logic errors
in the same manner. As you saw earlier, not every business logic error can
be mapped to an equivalent HTTP error code. Moreover, in some cases,
there might be a benign error that is sent along with your response and the
server might delegate the responsibility of treating that as an error or
normal condition to the client. For handling both these cases you have to
override another method, requestFinished:, as shown in the following
code:

Code in RESTRequest.m that illustrate request handling for successful
conditions and report business logic error if any

- (void)requestFinished

{

NSMutableDictionary *errorDict = [[self responseDictionary]
objectForKey:@"error”];

if(errorDict)

{

self.restError = [[NSError alloc]

initwWithDomain:kBusinessErrorDomain code:[[errorDict
objectForKey:@”code”] intValue] userInfo:errorDict];
[super failWithError:self.restError];

}

else

{

[super requestFinished];

3
}

Both these methods remember the business logic errors in the restError
property of your subclassed request object. This enables the client to know
both the HTTP error (by accessing the RestRequest’s superclass’s error
object) and the business layer error, from the local property restError.

Because this handling is done on a subclass, the class RestEngine doesn’t
have to do any additional error handling. All it gets is a nicely wrapped
NSError object for both kinds of error, HTTP or business logic. The view
controller implementation will now be as simple as checking whether the
error is nil; if it’s not nil, show the message inside the [[request
restError] userInfo].

With that, I move on to a discussion of localization.

L.ocalization

This section is about localizing web service-related error messages and not
localizing your app. Adding internationalization and localization support to
your app is explained in detail in Chapter 13.

Some implementations require you to localize error messages in multiple
languages. For errors generated within the app, this is simple and can be
handled using the foundation classes and macros. For server-related errors,
the previous implementation just showed the server errors on the UI. The best
way to show localized errors is for the server to return errors in agreed upon
codes. The iOS client can then look into a localized string table and show the
correct error for a given code.

RESTError.m

+ (void) initialize
{
NSString *fileName = [NSString stringWithFormat:@”Errors_%@",

[[NSLocale currentLocale] localelIdentifier]];
NSString *filePath = [[NSBundle mainBundle]
pathForResource:fileName ofType:@"plist”];

if(filePath !'= nil)
{

errorCodes = [[NSMutableDictionary alloc]
initwWithContentsOfFile:filePath];

}

else

{
// fall back to English for unsupported languages

NSString *filePath = [[NSBundle mainBundle]
pathForResource:@”Errors_en_US” ofType:@"plist”];
errorCodes = [[NSMutableDictionary alloc]

initwWithContentsOfFile:filePath];

3
}

This RESTError class can again by initialized with the error dictionary you
get from the server using the KVC technique you learned earlier in this
chapter. Override NSError’s localizedDescription and
localizedRecoverySuggestion methods to provide proper user-readable
error methods. In case your web service provides error codes to you along
with error messages, this is the best way to handle and show error messages
instead of showing the server error from the userInfo dictionary.

Handling Additional Formats Using Category Classes

Assume that you have written and delivered your app, and for some reason,
your client wants to move the server implementation to a Windows-based
system and the server now sends you XML data instead of JSON. With this
current architecture in place, it’s easy to add an additional format parsing to
your model. The recommended way to do so is to write a category extension
on your model that has a method to convert XML to dictionaries. In short,
write a method in your category extension to convert an XML tree into a
NSMutableDictionary and pass this dictionary to the initwithDictionary:
method, which you previously wrote. Category classes like this provide a
very powerful way to extend and add features to your existing

implementation without creating any unwanted side effects.

Tips to Improve Performance on iOS

The best tip for improving performance for a web service-based app is to
avoid sending data that’s not immediately necessary. Unlike a web-based app,
an iPhone app has very limited bandwidth, and in most cases it will be
connected to a 3G network. Trying to implement techniques like prefetching
contents for what could be the user’s next page will only slow down your

app.

Avoid multiple small AJAX-like API calls. In the “Creating the
RESTEngine” section earlier in this chapter, you initialized the networkQueue
to run six concurrent operations because most servers don’t allow more than
six parallel HTTP connections from a single IP address. Running more than
six operations will only result in the seventh and subsequent operations
timing out. On a 3G network, at least in 2011, most network operators throttle
the bandwidth and limit the number of outbound connections from a mobile
device to two. This is usually one on EDGE. As such you can even listen for
reachability notifications using the Reachability classes provided by Apple
(Apple 2011) and change the queue size dynamically as and when the
connectivity changes. Again, this count of two on 3G and one on EDGE is
not absolute and you should test the network of your customer base and use
the results accordingly.

If you have control over the server development, the following tips might
help to get the best out of the iOS app you develop.

m A server that caters to a web-based client should almost always have
multiple small web service calls that are usually performed using AJAX.
On i0S, it's best to avoid these APIs and possibly use or develop a custom
API that gives more customized data per call.

m Unlike a browser, most carrier networks throttle the number of parallel
data connections. Again, it’s safe to assume that you shouldn’t run more
than one network operation on an EDGE connection, more than two
parallel network operations on a 3G network, and six on a wi-fi
connection.

Summary

In this chapter you learned how to architect a iOS application that uses a web
service. The chapter also presented the different data exchange formats and
ways to parse them in Objective-C, and you learned a very powerful method
of processing responses from a RESTful service using Objective-C’s
powerful method, KVC. You then learned about using queues for handing
concurrent requests and how to maximize performance by altering the
maximum concurrent operations on the queue-based available network.

Further Reading

Apple Documentation

The following documents are available in the iOS Developer Library at
developer.apple.com or through the Xcode Documentation and API
Reference.

Reachability. Apple Developer Documentation.
Apple XMLPerformance Sample Code
Apple. NSXMLDocument Class Reference

Other Resources

Callahan, Kevin. Mac App Store. 2011
http://itunes.apple.com/gb/app/accessorizer/id402866670?2mt=12

Cocoanetics. JSON vs Plist, the ultimate showdown 2011
http://www.cocoanetics.com/2011/03/json-versus-plist-the-
ultimate-showdown/

Crockford, Douglas. RFC 4627. 07 01, 2006
http://tools.ietf.org/html/rfc4627

W3C. Web Services Architecture. 2 11, 2004 http://www.w3.0rg/TR/ws-
arch/#relwwwrest

Copsey, Ben. ASIHTTPRequest Documentation. 2011 http://allseeing-
i.com/ASIHTTPRequest/

ASIHTTPRequest - How To Use. 2011 http://allseeing-
i.com/ASIHTTPRequest/How-to-use#handling http authentication

http://developer.apple.com/
http://itunes.apple.com/gb/app/accessorizer/id402866670?mt=12
http://www.cocoanetics.com/2011/03/json-versus-plist-the-ultimate-showdown/
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/ws-arch/%23relwwwrest
http://allseeing-i.com/ASIHTTPRequest/
http://allseeing-i.com/ASIHTTPRequest/How-to-use%23handling_http_authentication

Brautaset, Stig. JSON Framework. 1 1, 2011
http://stig.github.com/json-framework/

Wight, Jonathan. TouchCode/TouchJSON. 1 1, 2011
https://github.com/TouchCode/TouchJSON

Gabriel. YAJL-ObjC. 2011 https://github.com/gabriel/yajl-objc

Johnezang. JSONKit. 2011 https://github.com/johnezang/JSONKit

mbrugger json-benchmarks on Github
https://github.com/mbrugger/json-benchmarks/

http://stig.github.com/json-framework/
https://github.com/TouchCode/TouchJSON
https://github.com/gabriel/yajl-objc
https://github.com/johnezang/JSONKit
https://github.com/mbrugger/json-benchmarks/

Chapter 11: Batten the Hatches with
Security Services

iOS is likely the first platform that most developers encounter that employs a
true least-privilege security model. Most modern operating systems employ
some kind of privilege separation, allowing different processes to run with
different permissions, but this is almost always used in a very coarse way.
Most applications on Unix, OS X, and Windows run as either the current user
or a superuser, which can do nearly anything. Attempts to segment this
further, whether with Security Enhanced Linux (SELinux) or Windows User
Account Control (UAC), have generally led to developer revolt. The most
common questions about SELinux are not how to best develop for it, but how
to turn it off.

Coming from these backgrounds, developers tend to be shocked when
encountering the iOS security model. Rather than ensure maximal flexibility,
Apple’s approach has been to give developers the least privileges it can and
see what software developers are incapable of making with those privileges.
Then Apple provides the least additional privileges that allow the kinds of
software it wants for the platform. This can be very restrictive on developers,
but it’s also kept iOS quite stable and free of malware. Apple is unlikely to
change its stance on this, so understanding and dealing with the security
model is critical to iOS development.

This chapter shows the way around the iOS security model, dives into the
numerous security services that iOS offers, and provides the fundamentals
you need to really understand Apple’s security documentation. Along the way
you’ll gain a deeper understanding of how certificates and encryption work in
practice, so that you can leverage these features to really improve the security
of your products.

The code for this chapter is available in the online sample code. There is also
a simple project called FileExplorer so you can investigate the public parts
of the file system.

Understanding the i0OS Sandbox

The heart of the iOS security model is the sandbox. When an application is
installed, it is given its own home directory in the file system, readable only
by that application. This makes it difficult to share information between
applications, but also makes it difficult for malicious or poorly written
software to read or modify your data.

Applications are not separated from each other using standard Unix file
permissions. All applications run as the same user ID (501, mobile). Calling
stat on another application’s home directory fails, however, because of
operating system restrictions. Similar restrictions prevent your application
from reading /var/log while allowing access to
/System/Library/Frameworks.

Within your sandbox, there are four important top-level directories: your .app
bundle, Documents, Library, and tmp. While you can create new directories
within your sandbox, it is not well defined how iTunes will deal with them. I
recommend keeping everything in one of these top-level directories. You can
always create subdirectories under Library if you need more organization.

Your .app bundle is the package built by Xcode and copied to the device.
Everything within it is digitally signed, so you can’t modify it. In particular,
this includes your Resources directory. If you want to modify files that you
install as part of your bundle, you’ll need to copy them elsewhere first,
usually somewhere in Library.

The Documents directory is where you store user-visible data, particularly
files like word-processing documents or drawings that the user assigns a
filename. These files can be made available to the desktop through file
sharing if UIFileSharingEnabled is turned on in Info.plist.

The Library directory stores files that shouldn’t be directly user visible. The
Library/Caches directory is special because it isn’t backed up, but is
preserved between application upgrades. This is where you should put most
things you don’t want copied to the desktop.

The tmp directory is special because it is neither backed up nor preserved
between application upgrades. This makes it ideal for temporary files, as the
name implies.

When considering the security of the user’s data, backups are an important
consideration. Users may choose whether to encrypt the iTunes backup with a
password. If there is data that shouldn’t be stored unencrypted on the desktop
machine, you should store it in the keychain (see the “Using Keychains”
section later in this chapter). iTunes only backs up the keychain if backup
encryption is enabled.

If you have information that you would rather the user not have access to, you
can store it in the keychain or in Library/cCaches because these are not
backed up. This is weak protection, however, because the user can always
jailbreak the phone to read any file or the keychain. There is no certain way
to prevent the owner of a device from reading data on that device. iOS
security is about protecting the user from attackers, not about protecting the
application from the user.

Securing Network Communications

The greatest risk to most systems is their network communication. Attackers
don’t need access to the device, only to the device’s network. The most
dangerous areas are generally coffee shops, airports, and other public wi-fi
networks. It’s your responsibility to make sure that the user’s information is
safe, even on hostile networks.

The first and easiest solution is to use Hypertext Transfer Protocol Secure
(HTTPS) for your network communication. Most iOS network APIs
automatically handle HTTPS, and the protocol eliminates many of the easiest
attacks. In the simplest deployment, you put a self-signed certificate on the
web server, turn on HTTPS, and configure NSURLConnection to accept
untrusted certificates, as discussed shortly. This is still vulnerable to several
kinds of attacks, but it’s easy to deploy and addresses the most basic attacks.

In iOS 5, the informal delegate protocol of NSURLConnection has been
replaced with two formal protocols, NSURLConnectionDelegate and
NSURLConnectionDataDelegate. Although there are now two protocols, there

is still only a single delegate (of type id), so this mostly impacts how the
documentation is organized.

The major NSURLConnection change in iOS 5 is to the authentication
methods. Instead of three methods
——connection:canAuthenticateAgainstProtectionSpace,
connection:didReceiveAuthenticationChallenge, and
connection:didCancelAuthenticationChallenge—there is now just one:
connection:willSendRequestForAuthenticationChallenge:. In this
method, you are supposed to determine if you are willing to authenticate to
this server, and if so, to provide the credentials. The following code
authenticates to any server that presents a noncorrupt certificate, whether or
not the certificate is valid or trusted:

- (void)connection: (NSURLConnection *)connection
willSendRequestForAuthenticationChallenge:
(NSURLAuthenticationChallenge *)challenge

{

SecTrustRef trust = challenge.protectionSpace.serverTrust;

NSURLCredential *cred;

cred = [NSURLCredential credentialForTrust:trust];

[challenge.sender useCredential:cred
forAuthenticationChallenge:challenge];

This code extracts the trust object, discussed later, and creates a credential
object for it. HTTPS connections always require a credential object, even if
you are not passing credentials to the server. The “Checking Certificate
Validity” section later in this chapter explains how to more carefully validate
the certificate.

ASIHTTPRequest, covered in Chapter 10, can support untrusted certificates without requiring you
to implement delegate methods. You can configure the request as follows:

[request setValidatesSecureCertificate:NO];

How Certificates Work

Hopefully you have encountered public-private key infrastructure (PKI)
systems before. This section gives a quick overview of the technology, and
then discusses how it affects the security of your application.

Asymmetric cryptography is based on the mathematical fact that you can find
two very large numbers (call them A and B) that are related in such a way that
anything encrypted with one can be decrypted with the other, and vice versa.
Key A cannot decrypt things that key A encrypted, nor can key B decrypt
things that key B encrypted. Each can only decrypt the other’s ciphertext.
There is no real difference between key A and key B, but for the purposes of
public key cryptography, one is termed the public key, which generally
everyone is allowed to know, and the other is designated the private key,
which is secret.

You can use a public key to encrypt data such that only a computer with the
private key can decrypt it. This is an important property that is used
repeatedly in public key systems. If you want to prove that some entity
(person or machine) has the private key, you make up a random number,
encrypt it with the entity’s public key and send it. That entity decrypts the
message with the entity’s private key, encrypts it with your public key and
sends it back to you. Because only the private key could have decrypted the
message, the entity you’re communicating with must have the private key.

This property also allows you to digitally sign data. Given some data, you
first hash it with some well-known hashing algorithm, and then encrypt it
with your private key. The resulting ciphertext is the signature. To validate
the signature, you hash the data again with the same algorithm, decrypt the
signature using the public key, and compare the hashes. If they match, you
know the signature was created by some entity that had access to the private
key.

Just because an entity has access to the private key does not prove he is who
he says he is. There are two questions you need to ask. First, how well is the
private key protected? Anyone with access to the private key can forge a
signature with it. Second, how do you know that the