

Pushing	the	Limits	with	iOS	5
Programming:	Advanced	Application
Development	for	Apple	iPhone®,
iPad®,	and	iPod®	Touch
Table	of	Contents

Introduction

Who	This	Book	Is	For
What	This	Book	Covers
How	This	Book	Is	Structured

Part	I:	What’s	New?
Part	II:	Getting	the	Most	Out	of	Everyday	Tools
Part	III:	The	Right	Tool	for	the	Job
Part	IV:	Pushing	the	Limits

What	You	Need	to	Use	This	Book
Finding	Apple	Documentation
Source	Code

Part	I:	What’s	New?

Chapter	1:	The	Brand	New	Stuff

The	History	of	iOS
What’s	New

iCloud
LLVM	3.0	Compiler
Automatic	Reference	Counting
Storyboards—Draw	Your	Flow
UIKit	Customization—Appearance	Proxy
Twitter	Framework	and	Accounts	Framework
Other	New	Features

Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	2:	Getting	Comfortable	with	Xcode	4

Getting	to	Know	the	New	User	Interface

Tabbed	Editor
Changes	to	Key	Bindings
Project	Settings	Editor
Integrated	Version	Control
Workspaces

All	in	One	Window
Navigating	the	Navigators

Project	Navigator
Symbol	Navigator
Search	Navigator
Issue	Navigator
Debug	Navigator
Breakpoint	Navigator
Log	Navigator

Help	from	Your	Assistant
Integrated	Interface	Builder

Interface	Builder	Panels

LLVM	Compiler	3.0:	A	Tryst	with	the	Brain

The	Clang	Front	End
I’m	a	Bug!	Fix	Me

Git	Your	Versions	Here

Integrated	Git	Version	Control	System
Versions	Editor
Git	Best	Practices

Schemes

Why	Schemes?
Think	of	Schemes	as	Implementing	Your	Intentions
Creating	a	Scheme
Sharing	Your	Schemes

Build	Configurations	You	Can	Comment

Creating	an	xcconfig	File
Refactoring	the	Build	Configuration	File

Xcode	4	Organizer

Automatic	Device	Provisioning
Viewing	Crash	Logs	and	Console	NSLog	Statements
Viewing	Applications’	Sandbox	Data
Managing	Repositories
Accessing	Your	Application	Archives

Viewing	Objective-C	and	SDK	Documentation

Summary
Further	Reading

Apple	Documentation
Blogs
Web	Resources
Books

Part	II:	Getting	the	Most	Out	of	Everyday	Tools

Chapter	3:	Everyday	Objective-C

Naming	Conventions
Automatic	Reference	Counting
Properties

Property	Attributes
Property	Best	Practices
Private	Ivars

Accessors
Categories	and	Extensions

+load
Category	Data	using	Associative	References
Category	Data	using	the	Flyweight	Pattern
Class	Extensions

Formal	and	Informal	Protocols
Summary
Further	Reading

Apple	Documentation

Other	Resources

Chapter	4:	Hold	On	Loosely:	Cocoa	Design	Patterns

Understanding	Model-View-Controller

Using	Model	Classes
Using	View	Classes
Using	Controller	Classes

Understanding	Delegates	and	Data	Sources
Working	with	the	Command	Pattern

Using	Target-Action
Using	Method	Signatures	and	Invocations
Using	Trampolines
Using	Undo

Working	with	the	Observer	Pattern
Working	with	the	Singleton	Pattern
Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	5:	Getting	Table	Views	Right

UITableView	Class	Hierarchy
Understanding	Table	Views

UITableViewController
UITableViewCell
Speed	Up	Your	Tables
Custom	Nonrepeating	Cells

Advanced	Table	Views
Animating	a	UITableView
Table	View	Best	Practices:	Writing	Clean	Code	with
Lean	Controllers

Storyboards

Getting	Started	with	Storyboards
Segues
Building	Table	Views	with	Storyboard
Custom	Transitions

Customizing	Your	Views	Using	UIAppearance	Protocol
Summary
Further	Reading

Apple	Documentation
WWDC	Videos
Other	Resources

Chapter	6:	Better	Drawing

iOS’s	Many	Drawing	Systems
UIKit	and	the	View	Drawing	Cycle
View	Drawing	versus	View	Layout
Custom	View	Drawing

Drawing	with	UIKit
Paths
Understanding	Coordinates
Resizing	and	contentMode
Transforms
Drawing	with	Core	Graphics
Mixing	UIKit	and	Core	Graphics

Managing	Graphics	Contexts

Optimizing	UIView	Drawing

Avoid	Drawing
Caching	and	Background	Drawing
Custom	Drawing	Versus	Prerendering
Pixel	Alignment	and	Blurry	Text
Alpha,	Opaque,	Hidden

CGLayer
Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	7:	Layers	Like	an	Onion:	Core	Animation

View	Animations
Managing	User	Interaction
Drawing	with	Layers

Setting	Contents	Directly
Implementing	Display
Custom	Drawing
Drawing	in	Your	Own	Context

Moving	Things	Around

Implicit	Animations
Explicit	Animations
Model	and	Presentation
A	Few	Words	on	Timings

Into	the	Third	Dimension
Decorating	Your	Layers
Auto-animate	with	Actions
Animating	Custom	Properties
Core	Animation	and	Threads
Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	8:	Tackling	Those	Pesky	Errors

Error	Handling	Patterns
Assertions
Exceptions
Catching	and	Reporting	Crashes
Errors	and	NSError

Error	Localization
Error	Recovery	Attempter

Logs

Logging	Sensitive	Information
Getting	Your	Logs

Summary
Further	Reading

Apple	Documentation
Other	Resources

Part	III:	The	Right	Tool	for	the	Job

Chapter	9:	Controlling	Multitasking

Best	Practices	for	Backgrounding:	With	Great	Power	Comes
Great	Responsibility
Understanding	Run	Loops
Threading
Developing	Operation-Centric	Multitasking
Multitasking	with	Grand	Central	Dispatch

Creating	Synchronization	Points	with	Dispatch	Barriers
Queue	Targets	and	Priority
New	in	iOS	5

Summary
Further	Reading

Apple	Documentation
WWDC	Sessions
Other	Resources

Chapter	10:	REST	for	the	Weary

The	REST	Philosophy
Choosing	Your	Data	Exchange	Format

Parsing	XML	on	iOS
Parsing	JSON	on	iOS
XML	Versus	JSON
Model	Versioning

A	Hypothetical	Web	Service
Important	Reminders
RESTEngine	Architecture	(iHotelApp	Sample	Code)

Creating	the	RESTEngine
Authenticating	Your	API	Calls	with	Access	Tokens
Canceling	Requests
Request	Responses
Key	Coding	JSONs
List	Versus	Detail	JSON	Objects
Nested	JSON	Objects
Less	Is	More
Error	Handling
Localization
Handling	Additional	Formats	Using	Category	Classes
Tips	to	Improve	Performance	on	iOS

Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	11:	Batten	the	Hatches	with	Security	Services

Understanding	the	iOS	Sandbox
Securing	Network	Communications

How	Certificates	Work
Checking	Certificate	Validity
Determining	Certificate	Trust

Employing	File	Protection
Using	Keychains

Sharing	Data	with	Access	Groups

Using	Encryption

Overview	of	AES
Converting	Passwords	to	Keys	with	PBKDF2
Applying	PKCS7	Padding
Selecting	the	Mode	and	the	Initialization	Vector	(IV)
Performing	One-Shot	Encryption
Improving	CommonCrypto	Performance
Combining	Encryption	and	Compression

Summary
Further	Reading

Apple	Documentation
WWDC	Sessions
Other	Resources

Chapter	12:	Running	on	Multiple	iPlatforms	and	iDevices

Developing	for	Multiple	Platforms

Configurable	Target	Settings:	Base	SDK	Versus
Deployment	Target
Considerations	for	Multiple	SDK	Support:Frameworks,
Classes,	and	Methods
Checking	the	Availability	of	Frameworks,	Classes,	and
Methods

Detecting	Device	Capabilities

Detecting	Devices	and	Assuming	Capabilities
Detecting	Hardware	and	Sensors

In	App	Email	and	SMS
Checking	Multitasking	Awareness

Obtaining	the	UIDevice+Additions	Category

UIRequiredDeviceCapabilities
Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	13:	Internationalization	and	Localization

What	is	Localization?
Localizing	Strings
Auditing	for	Nonlocalized	Strings
Formatting	Numbers	and	Dates
Localizing	Nib	Files
Summary
Further	Reading

Apple	Documentation

Chapter	14:	Selling	Past	the	Sale	with	In	App	Purchases

Before	You	Start
In	App	Purchase	Products

Prohibited	Items
Rethinking	Your	Business	Model

Setting	Up	Products	on	iTunes	Connect

Step	1:	Create	a	New	App	ID	for	Your	App
Step	2:	Generate	Provisioning	Profiles
Step	3:	Create	the	App’s	Product	Entry
Step	4:	Create	the	In	App	Purchase	Product	Entries

Step	5:	Generating	the	Shared	Secret
Step	6:	Creating	Test	User	Accounts

In	App	Purchase	Implementation
Introduction	to	MKStoreKit

Why	MKStoreKit?
Design	of	MKStoreKit
Customizing	MKStoreKit

Making	the	Purchase
Testing	Your	In	App	Purchase
Troubleshooting

Invalid	Product	IDs
Cannot	Connect	to	iTunes	Store
You	Have	Already	Purchased	This	Product,	but	It’s
Still	Not	Downloaded

Summary
Further	Reading

Apple	Documentation
Blogs
Other	Resources

Part	IV:	Pushing	the	Limits

Chapter	15:	Cocoa’s	Biggest	Trick:	Key-Value	Coding	and
Observing

Key-Value	Coding

Setting	Values	with	KVC
Traversing	Properties

KVC	and	Collections
KVC	and	Dictionaries
KVC	and	Nonobjects
Higher-Order	Messaging	with	KVC
Collection	Operators

Key-Value	Observing

KVO	and	Collections
How	Is	KVO	Implemented?

KVO	Tradeoffs
Summary
Further	Reading

Apple	Documentation

Chapter	16:	Think	Different:	Blocks	and	Functional
Programming

What	Is	a	Block?

Why	Use	Functional	Programming?
A	‘Functional’	UIAlertView

Declaring	a	Block

Scope	of	Variables
Stack	Versus	Heap

Implementing	a	Block

Blocks-based	UIAlertView
Blocks-based	RESTEngine

Blocks	and	Concurrency

Dispatch	Queues	in	GCD
NSOperationQueue	Versus	GCD	Dispatch	Queue

Block-based	Cocoa	Methods

UIView	Animations	using	Blocks
Presenting	and	Dismissing	View	Controllers
TweetComposer	Versus	In	App	Email/SMS
Dictionary	Enumeration	Using	NSDictionary
enumerateWithBlock
Looking	for	Block-based	Methods

Supported	Platforms
Summary
Further	Reading

Apple	Documentation
Blogs
Source	Code	References

Chapter	17:	Going	Offline

Reasons	for	Going	Offline
Strategies	for	Caching

Methods	for	Storing	Your	Cache
Cache	Versioning

AppCache	Architecture
Cache	Versioning

Invalidating	the	Cache

Creating	an	In-Memory	Cache

Designing	the	AppCache
Handling	Memory	Warnings
Handling	Termination	and	Enter	Background
Notifications

Caching	Images

Components	of	ImageCache

Using	iCloud

Managing	Document	and	Key-Value	Data	Storage
on	iCloud
Understanding	the	iCloud	Data	Store

Summary
Further	Reading

Apple	Documentation
Books
Other	Resources

Chapter	18:	Fancy	Text	Layout

The	Normal	Stuff:	Fields,	Views,	and	Labels
Web	Views	for	Rich	Text

Displaying	and	Accessing	HTML	in	a	Web	View
Responding	to	User	Interaction
Drawing	Web	Views	in	Scroll	and	Table	Views
Rich	Editing	with	Web	Views

Core	Text

Understanding	Bold,	Italic,	and	Underline
Attributed	Strings
Paragraph	Styles
Simple	Layout	with	CTFramesetter
Creating	Frames	for	Noncontiguous	Paths
Typesetters,	Lines,	Runs,	and	Glyphs
Drawing	Text	Along	a	Curve

Comparison	of	Rich	Text	Options
Third-Party	Options

NSAttributedString-Additions-for-HTML
CoreTextWrapper
OmniUI

Summary
Further	Reading

Apple	Documentation
WWDC	Sessions
Other	Resources

Chapter	19:	Building	a	(Core)	Foundation

Core	Foundation	Types
Naming	and	Memory	Management
Allocators
Introspection
Strings	and	Data

Constant	Strings
Creating	Strings
Converting	to	C	Strings
Other	String	Operations

Backing	Storage	for	Strings
CFData

Collections

CFArray
CFDictionary
CFSet,	CFBag
Other	Collections
Callbacks

Toll-free	Bridging
Summary
Further	Reading

Apple	Documentation
Other	Resources

Chapter	20:	Deep	Objective-C

Understanding	Classes	and	Objects
Working	with	Methods	and	Properties
How	Message	Passing	Really	Works

Dynamic	Implementations
Fast	Forwarding
Normal	Forwarding
Forwarding	Failure
The	Flavors	of	objc_msgSend

Method	Swizzling
ISA	Swizzling
Method	Swizzling	Versus	ISA	Swizzling
Summary

Further	Reading

Apple	Documentation
Other	Resources

Pushing	the	Limits	with	iOS	5
Programming

Advanced	Application	Development
for	Apple	iPhone®,	iPad®,	and	iPod®

Touch
Rob	Napier	and	Mugunth

Kumar

This	edition	first	published	2012

©	2012	John	Wiley	and	Sons,	Ltd.

Registered	office

John	Wiley	&	Sons	Ltd,	The	Atrium,	Southern	Gate,	Chichester,
West	Sussex,	PO19	8SQ,	United	Kingdom

For	details	of	our	global	editorial	offices,	for	customer	services	and
for	information	about	how	to	apply	for	permission	to	reuse	the
copyright	material	in	this	book	please	see	our	website	at
www.wiley.com.

The	right	of	the	author	to	be	identified	as	the	author	of	this	work
has	been	asserted	in	accordance	with	the	Copyright,	Designs	and

http://www.wiley.com

Patents	Act	1988.

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,
stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording	or
otherwise,	except	as	permitted	by	the	UK	Copyright,	Designs	and
Patents	Act	1988,	without	the	prior	permission	of	the	publisher.

Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats.
Some	content	that	appears	in	print	may	not	be	available	in
electronic	books.

Designations	used	by	companies	to	distinguish	their	products	are
often	claimed	as	trademarks.	All	brand	names	and	product	names
used	in	this	book	are	trade	names,	service	marks,	trademarks	or
registered	trademarks	of	their	respective	owners.	The	publisher	is
not	associated	with	any	product	or	vendor	mentioned	in	this	book.
This	publication	is	designed	to	provide	accurate	and	authoritative
information	in	regard	to	the	subject	matter	covered.	It	is	sold	on
the	understanding	that	the	publisher	is	not	engaged	in	rendering
professional	services.	If	professional	advice	or	other	expert
assistance	is	required,	the	services	of	a	competent	professional
should	be	sought.

Trademarks:	Wiley	and	the	John	Wiley	&	Sons,	Ltd.	logo	are
trademarks	or	registered	trademarks	of	John	Wiley	and	Sons,	Ltd.
and/	or	its	affiliates	in	the	United	States	and/or	other	countries,	and
may	not	be	used	without	written	permission.	iPhone,	iPad	and	iPod
are	trademarks	of	Apple	Computer,	Inc.	All	other	trademarks	are
the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Ltd.	is
not	associated	with	any	product	or	vendor	mentioned	in	the	book.
This	book	is	not	endorsed	by	Apple	Computer,	Inc.

A	catalogue	record	for	this	book	is	available	from	the	British
Library.

ISBN	978-1-119-96132-1	(paperback);	ISBN	978-1-119-96158-1
(ebook);	978-1-119-96159-8	(ebook);	978-1-119-96160-4	(ebook)

Set	in	9.5/12	Myriad	Pro	Regular	by	Wiley	Composition	Services

Printed	in	the	United	States	by	Bind-Rite

Dedication
To	Neverwood.	Thanks	for	your	patience.
Rob

To	my	mother	who	shaped	the	first	twenty	years	of	my	life
Mugunth

Publisher’s	Acknowledgements
Some	of	the	people	who	helped	bring	this	book	to	market	include
the	following:

Editorial	and	Production

VP	Consumer	and	Technology	Publishing	Director:	Michelle	Leete

Associate	Director–Book	Content	Management:	Martin	Tribe

Associate	Publisher:	Chris	Webb

Acquisitions	Editor:	Chris	Katsaropolous

Assistant	Editor:	Ellie	Scott

Development	Editor:	Tom	Dinse

Copy	Editor:	Maryann	Steinhart

Technical	Editor:	Mithilesh	Kumar

Editorial	Manager:	Jodi	Jensen

Senior	Project	Editor:	Sara	Shlaer

Editorial	Assistant:	Leslie	Saxman

Marketing

Associate	Marketing	Director:	Louise	Breinholt

Marketing	Executive:	Kate	Parrett

Composition	Services

Compositor:	Wiley	Indianapolis	Composition	Services

Proofreaders:	Laura	Albert,	Lindsay	Amones,	Melissa	D.
Buddendeck,	Melissa	Cossell

Indexer:	Potomac	Indexing,	LLC

About	the	Authors
Rob	Napier	is	a	builder	of	tree	houses,	hiker,	and	proud	father.	He	began
developing	for	the	Mac	in	2005,	and	picked	up	iPhone	development	when	the
first	SDK	was	released,	working	on	products	such	as	The	Daily,	PandoraBoy,
and	Cisco	Mobile.	He	is	a	major	contributor	to	Stack	Overflow	and	maintains
the	Cocoaphony	blog	(cocoaphony.com).

Mugunth	Kumar	is	an	independent	iOS	developer	based	in	Singapore.	He
graduated	in	2009	and	holds	a	Masters	degree	from	Nanyang	Technological
University,	Singapore,	majoring	in	Information	Systems.	He	writes	about
mobile	development,	software	usability,	and	iOS-related	tutorials	on	his	blog
(blog.mugunthkumar.com).Prior	to	iOS	development	he	worked	for	Fortune
500	companies	GE	and	Honeywell	as	a	software	consultant	on	Windows	and
.NET	platforms.	His	core	areas	of	interest	include	programming
methodologies	(Object	Oriented	and	Functional),	mobile	development	and
usability	engineering.	If	he	were	not	coding,	he	would	probably	be	found	at
some	exotic	place	capturing	scenic	photos	of	Mother	Nature.

About	the	Technical	Editor
Mithilesh	Kumar	is	a	software	engineer	with	a	passion	for	user	interface
design,	Internet	protocols,	and	virtual	worlds.	He	likes	to	prototype	and	build
applications	for	iOS	and	Mac	OS	X	platforms.	He	has	extensive	experience	in
developing	UI	and	core	components	for	telephony	clients	capable	of	voice,
video,	instant	messaging,	presence,	and	voicemail.

Mithilesh	graduated	with	a	Masters	degree	in	Computer	Science	from
Virginia	Tech	with	emphasis	on	Human-Computer	Interaction.	While	at
graduate	school,	he	co-authored	several	research	papers	in	the	area	of	user
interfaces,	computer	graphics	and	network	protocols.

http://cocoaphony.com
http://blog.mugunthkumar.com

Authors’	Acknowledgements
Rob	thanks	his	family	for	giving	up	many	evenings	that	he	spent	in	the
basement	writing,	hacking,	and	otherwise	failing	to	come	upstairs.	Mugunth
thanks	his	parents	and	friends	for	their	support	while	writing	this	book.
Thanks	to	Wiley	for	making	this	book	possible.	It	went	extremely	well,
particularly	due	to	Sara	Shlaer’s	continual	guiding	hand.	Thanks	to	Mithilesh
Kumar	who	made	sure	what	we	said	was	true,	and	Tom	Dinse	who	made	sure
that	it	was	intelligible.	Thanks	to	Chris	Katsaropoulos	for	first	reaching	out
and	getting	this	project	rolling.	Thanks	to	the	Apple	engineers	who	answer
questions	on	development	forums	on	all	those	still-under-NDA	issues,	and	the
whole	iOS	developer	community	who	share	so	much.	And	special	thanks	to
Steve	Jobs	for	building	toys	we	could	build	a	career	around.

Introduction

Apple	has	a	history	of	alternating	its	releases	between	user-focus	and
developer-focus.	The	good	news	about	iOS	5	is	that	it’s	all	about	the
developers.	The	addition	of	Automatic	Reference	Counting	(ARC)	alone	is
worth	the	upgrade	for	developers.	In	one	move,	Apple	has	eliminated	the
number	one	cause	of	crashes	in	iOS	applications,	while	making	the	code
easier	to	write	and	faster	to	run.	Moving	to	ARC	is	the	single	best	thing	you
can	do	for	your	application.	It’s	the	most	important	Objective-C	feature	since
the	autorelease	pool.

But	iOS	5	adds	many	more	features	for	the	developer.	From	iCloud	to
automatic	data	protection,	the	operating	system	now	takes	care	of	more	of	the
hard	problems,	letting	developers	focus	on	making	the	best	apps.

Most	visible	to	developers	is	the	new	Xcode.	Some	of	it	is	better,	some	of	it	is
just	different,	and	some	of	it	will	make	you	crazy.	It’s	the	new	game	in	town,
though,	and	everyone	needs	to	get	used	to	it.	This	book	will	help	you	figure	it
out.

If	you’re	ready	to	take	on	the	newest	Apple	release	and	push	your	application
to	the	limits,	this	is	the	book	to	get	you	there.

Who	This	Book	Is	For
This	is	not	an	introductory	book.	There	are	many	books	out	there	that	will
teach	you	Objective-C	and	take	you	step	by	step	through	Interface	Builder.
This	is	not	that	book.	This	book	assumes	that	you	have	a	little	experience
with	iOS.	Maybe	you’re	self-taught,	or	maybe	you’ve	taken	a	class.	You’ve
hopefully	written	at	least	most	of	an	application,	even	if	you	haven’t
submitted	it	yet.	If	you’re	ready	to	move	beyond	the	basics,	to	learn	the	best
practices	and	the	secrets	that	the	authors	have	learned	from	practical
experience	writing	real	applications,	then	this	is	the	book	for	you.

This	book	also	is	not	just	a	list	of	recipes.	There’s	plenty	of	sample	code	here,

but	the	focus	is	on	learning	how	to	design,	code,	and	maintain	great	iOS	apps.
A	lot	of	this	book	is	about	why	rather	than	just	how.	You’ll	learn	about	as
much	about	design	patterns	and	writing	reusable	code	as	about	syntax	and
new	frameworks.

All	the	examples	use	Xcode	4.	If	you’re	not	comfortable	with	Xcode	4	yet,
don’t	worry.	Chapter	2	is	devoted	to	getting	you	up	to	speed.

What	This	Book	Covers
The	iOS	platforms	always	move	forward,	and	so	does	this	book.	Most	of	the
examples	here	require	iOS	5.	All	examples	use	Automatic	Reference
Counting.	Except	in	a	very	few	places,	this	book	will	not	cover	backward
compatibility.	If	you’ve	been	shipping	code	long	enough	to	need	backward
compatibility,	you	probably	know	how	to	deal	with	it.	This	book	is	about
writing	the	best-possible	apps	using	the	best	features	available.

This	book	focuses	on	the	iPhone	4	and	iPad	2.	Most	topics	here	are	applicable
to	the	original	iPad,	iPod	touch,	iPhone	3GS,	and	Apple	TV.	At	the	time	of
writing	the	iPhone	5	and	iPad	3	have	not	been	released,	but	everything	here
should	apply	to	them	as	well.	Chapter	12	is	devoted	to	dealing	with	the
differences	between	the	platforms.

How	This	Book	Is	Structured
iOS	has	an	extremely	rich	set	of	tools,	from	high-level	frameworks	like	UIKit
to	very	low-level	tools	like	Core	Text.	Often,	there	are	several	ways	to
achieve	a	goal.	As	a	developer,	how	do	you	pick	the	right	tool	for	the	job?

This	book	separates	the	everyday	from	the	special	purpose,	helping	you	pick
the	right	solution	to	each	problem.	You’ll	learn	why	each	framework	exists,
how	the	frameworks	relate	to	each	other,	and	when	to	choose	one	over
another.	Then	you’ll	learn	how	to	make	the	most	of	each	framework	for
solving	its	type	of	problem.

There	are	four	parts	to	this	book,	moving	from	the	most	common	tools	to	the
most	powerful:

Part	I:	What’s	New?
If	you’re	familiar	with	iOS	4,	then	this	section	quickly	introduces	you	to	the
new	features	of	iOS	5.

■	Chapter	1:	The	Brand	New	Stuff	—	iOS	adds	a	lot	of	new	features,
and	here	you	get	a	quick	overview	of	what’s	available.
■	Chapter	2:	Getting	Comfortable	with	Xcode	4	—	Apple	recently
redesigned	the	Xcode	interface,	and	it	can	take	some	getting	used	to.	This
chapter	shows	you	how	to	get	the	most	out	of	it.

Part	II:	Getting	the	Most	Out	of	Everyday	Tools
As	an	iOS	developer,	you’ve	encountered	a	wide	variety	of	common	tools,
from	notifications	to	table	views	to	animation	layers.	But	are	you	using	these
tools	to	their	full	potential?	In	this	part,	you	learn	the	best	practices	in	Cocoa
development	from	seasoned	developers.

■	Chapter	3:	Everyday	Objective-C—If	you’re	ready	to	move	to	the	next
level	in	Objective-C,	this	chapter	introduces	you	to	the	tools	experienced
developers	use	every	day	to	improve	application	design,	maintainability,
and	reusability.
■	Chapter	4:	Hold	On	Loosely:	Cocoa	Design	Patterns—Cocoa	relies
on	a	number	of	common	and	consistent	design	patterns.	You	learn	what
they	are	so	you	can	solve	problems	the	same	way	Apple	does.

■	Chapter	5:	Getting	Table	Views	Right—Table	views	are	perhaps	the
most	complex	and	commonly	used	UI	element	in	iOS.	They	are	simple	and
elegant	in	design,	but	confusing	to	developers	who	don’t	understand	how
they	work.	You	learn	how	to	use	them	correctly	and	to	solve	some	special
problems	like	infinite	scrolling.
■	Chapter	6:	Better	Drawing—Custom	drawing	is	intimidating	to	many
new	developers,	but	it’s	a	key	part	of	building	beautiful	and	fast	user
interfaces.	You’ll	discover	the	available	drawing	options	from	UIKit	to
Core	Graphics,	and	how	to	optimize	them	to	look	their	best	while	keeping
them	fast.

■	Chapter	7:	Layers	Like	an	Onion:	Core	Animation—iOS	devices
have	incredible	facilities	for	animation.	With	a	powerful	GPU	and	the

highly	optimized	Core	Animation,	you	can	build	engaging,	exciting,	and
intuitive	interfaces.	In	this	chapter,	you	go	beyond	the	basics	and	learn	the
secrets	of	animation.
■	Chapter	8:	Tackling	Those	Pesky	Errors—You	try	to	write	perfect
code,	but	sometimes	things	go	wrong.	How	your	application	reacts	to	the
unexpected	is	what	separates	decent	apps	from	extraordinary	apps.	You’ll
learn	the	common	patterns	for	error	handling,	how	to	log,	and	how	to	make
your	code	more	resilient	against	the	unexpected.

Part	III:	The	Right	Tool	for	the	Job
There	are	tools	that	are	part	of	nearly	every	application,	and	there	are	tools
that	you	only	need	from	time	to	time.	In	this	section,	you	learn	about	those
tools	and	techniques	that	are	a	little	more	specialized.

■	Chapter	9:	Controlling	Multitasking—Multitasking	is	an	important
part	of	many	applications,	and	you	learn	how	to	do	multiple	things	at	once
while	your	application	is	running	and	when	your	application	is	in	the
background.

■	Chapter	10:	REST	for	the	Weary—REST-based	services	are	a
mainstay	of	modern	applications,	and	you	learn	how	to	best	implement
them	in	iOS.
■	Chapter	11:	Batten	the	Hatches	with	Security	Services—User
security	and	privacy	are	paramount	today,	and	you	learn	how	to	protect
your	application	and	user	data	from	attackers	with	the	keychain,
certificates,	and	encryption.

■	Chapter	12:	Running	on	Multiple	iPlatforms	and	iDevices—The	iOS
landscape	gets	more	complex	every	year	with	iPod	touch,	iPhone,	iPad,
Apple	TV,	and	a	steady	stream	of	new	editions.	It’s	not	enough	just	to	write
once,	run	everywhere.	You	need	your	applications	to	be	their	best
everywhere.	You’ll	learn	how	to	adapt	your	apps	to	the	hardware	and	get
the	most	out	of	every	platform.
■	Chapter	13:	Internationalization	and	Localization—While	you	may
want	to	focus	on	a	single	market	today,	there	are	small	things	you	can	do	to
ease	the	transition	to	a	global	market	tomorrow.	Save	money	and
headaches	later,	without	interrupting	today’s	development.

■	Chapter	14:	Selling	Past	the	Sale	with	In	App	Purchases—In	App
Purchases	are	still	an	untapped	market	for	many	developers.	Users	like	the
add-on	content,	and	developers	love	the	extra	revenue.	You	learn	the	best
ways	to	make	this	important	feature	a	reality	in	your	application.

Part	IV:	Pushing	the	Limits
This	section	is	what	this	book	is	all	about.	You’ve	learned	the	basics.	You’ve
learned	the	everyday.	Now	push	the	limits	with	the	most	advanced	tools
available.	You	learn	the	ins	and	outs	of	deep	iOS.

■	Chapter	15:	Cocoa’s	Biggest	Trick:	Key-Value	Observing—Many	of
Apple’s	most	powerful	frameworks	rely	on	KVO	for	their	performance	and
flexibility.	You	learn	how	to	leverage	the	flexibility	and	speed	of	KVO,	as
well	as	the	trick	that	makes	it	so	transparent.
■	Chapter	16:	Think	Different:	Blocks	and	Functional	Programming
—Many	developers	are	still	absorbing	the	addition	of	blocks	to	Objective-
C.	They’re	valuable	for	interacting	with	Apple	frameworks,	but	they	also
open	new	ways	of	thinking	about	your	program.	Embrace	a	new	style,	and
maximize	its	benefits	in	your	next	project.

■	Chapter	17:	Going	Offline—Network	programming	is	hard,	but	even
harder	is	providing	a	seamless	offline	experience.	Learn	how	to	best	cache
your	data	and	integrate	it	into	your	network	engine.
■	Chapter	18:	Fancy	Text	Layout—From	UIKit	to	Core	Text,	iOS	is	full
of	ways	to	display	text.	There’s	no	perfect	solution	for	displaying	rich	text
in	iOS,	so	it’s	important	to	learn	the	trade-offs	so	you	can	choose	the	right
solution	and	use	it	correctly.

■	Chapter	19:	Building	a	(Core)	Foundation—When	you	want	the	most
powerful	frameworks	available	on	iOS,	you’re	going	to	want	the	Core
frameworks	like	Core	Graphics,	Core	Animation,	and	Core	Text.	All	of
these	rely	on	Core	Foundation.	In	this	chapter	you	learn	how	to	work	Core
Foundation	data	types	so	you	can	leverage	everything	iOS	has	to	offer.
■	Chapter	20:	Deep	Objective-C—When	you’re	ready	to	pull	back	the
curtain	on	how	Objective-C	really	works,	this	is	the	chapter	for	you.	You
learn	how	to	use	the	Objective-C	runtime	directly	to	dynamically	modify
classes	and	methods.	You	also	learn	how	Objective-C	method	calls	are

dispatched	to	C	function	calls,	and	how	you	can	take	control	of	the	system
to	extend	your	programs	in	incredible	ways.

You	can	skip	around	in	this	book	to	focus	on	the	topics	you	need	most.	Each
chapter	stands	alone,	except	for	those	that	require	Core	Foundation	data
objects	(particularly	Core	Graphics,	Core	Animation,	and	Core	Text).	Those
chapters	direct	you	to	Chapter	19,	“Building	a	(Core)	Foundation,”	when	you
need	that	information.

What	You	Need	to	Use	This	Book
All	examples	in	this	book	were	developed	with	Xcode	4.2	on	Mac	OS	X	10.7
and	iOS	5.	You	need	an	Apple	developer	account	to	access	most	of	the	tools
and	documentation,	and	you	need	a	developer	license	to	run	applications	on
your	iOS	device.	Visit	http://developer.apple.com/programs/ios	to	sign
up.

Most	of	the	examples	in	this	book	will	run	in	the	iOS	Simulator	that	comes
with	Xcode	4.2.	You	can	use	the	iOS	Simulator	without	an	Apple	developer
license.

There	are	few	differences	between	Xcode	4.2	on	Mac	OS	X	10.6	and	10.7,	so
all	examples	should	work	under	10.6.

Finding	Apple	Documentation
Apple	provides	extensive	documentation	at	its	website	and	within	Xcode.	The
URLs	change	frequently	and	are	often	very	long.	This	book	refers	to	Apple
documents	by	title	rather	than	by	URL.	To	find	documents	in	Xcode,	press
Cmd-Option-?	or	click	Help	→	Documentation	and	API	Reference.	In	the
Documentation	Organizer,	click	the	Search	icon,	type	in	the	name	of	the
document,	and	then	select	the	document	from	the	search	results.	See	Figure	1
for	an	example	of	how	to	search	for	the	Coding	Guidelines	for	Cocoa.

http://developer.apple.com/programs/ios

Figure	1	Searching	for	Coding	Guidelines	for	Cocoa

To	find	documents	at	the	Apple	developer	site,	visit	developer.apple.com,
click	Member	Center	and	log	in.	Select	the	iOS	Dev	Center,	and	enter	the
document	title	in	the	Search	Developer	search	box.

The	online	documentation	is	generally	identical	to	the	Xcode	documentation.
You	may	receive	results	for	both	iOS	and	Mac.	Make	sure	to	choose	the	iOS
version.	Many	iOS	documents	are	copies	of	their	Mac	counterparts,	and
occasionally	include	function	calls	or	constants	that	are	not	available	on	iOS.
This	book	guides	you	about	which	features	are	available	on	iOS.

Source	Code
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to
type	in	all	the	code	manually	or	to	use	the	source	code	files	that	accompany
the	book.	All	of	the	source	code	used	in	this	book	is	available	for	download	at

http://developer.apple.com/

www.wrox.com/go/ptl/ios5programming.	For	example,	you	will	find	the
following	sample	code	online	in	the	Chapter	18	folder,	in	the	SimpleLayout
project,	and	the	CoreTextLabel.m	file:

CoreTextLabel.m	(SimpleLayout)

-	(id)initWithFrame:(CGRect)frame	{

		if	((self	=	[super	initWithFrame:frame]))	{

				CGAffineTransform

				transform	=	CGAffineTransformMakeScale(1,	-1);

				CGAffineTransformTranslate(transform,

																															0,	-self.bounds.size.height);

				self.transform	=	transform;

				self.backgroundColor	=	[UIColor	whiteColor];

		}

	return	self;

	}

Some	source	code	snippets	shown	in	the	book	are	not	comprehensive	and	are
meant	to	help	you	understand	the	chapter.	For	those	instances,	you	should
refer	to	the	files	available	on	the	website	for	the	complete	source	code.

http://www.wrox.com/go/ptl/ios5programming

Part	I:	What’s	New?

Chapter	1	The	Brand	New	Stuff

Chapter	2	Getting	Comfortable	with	Xcode	4

Chapter	1:	The	Brand	New	Stuff

In	2007,	the	late	Steve	Jobs	took	the	stage	at	Macworld	and	proclaimed	that
software	running	on	iPhone	was	at	least	five	years	ahead	of	the	competition.
Since	its	initial	release,	Apple	has	been	iterating	the	operating	system	year
after	year,	and	has	even	added	two	new	devices,	the	iPad	and	Apple	TV,	to
the	list	of	products	capable	of	running	it.	As	the	operating	system	was
customized	to	run	on	more	devices	than	just	the	iPhone,	it	was	rebranded	as
iOS.	Today,	it’s	almost	5	years	old,	and	iOS	5	is	easily	the	biggest	update	to
iOS	since	the	original	launch,	possibly	making	the	software	five	years	ahead
of	the	competition	again.

This	book	is	about	programming	with	iOS	5.	Targeting	intermediate	to
advanced	iOS	developers,	this	book,	unlike	most	others,	covers	advanced
topics	of	iOS	development.	Rather	than	learning	about	frameworks	and	the
features	available	on	the	iOS	SDK,	you	learn	about	how	to	make	the	best	use
of	those	features	to	help	push	your	apps	to	the	next	level.	This	chapter	briefly
describes	the	new	features	covered	in	detail	in	the	book	and	tells	you	the
chapters	in	which	they	are	discussed.

The	History	of	iOS
The	second	version,	iPhone	OS	2,	was	the	first	to	have	a	public	SDK.	From
then	on,	with	every	release	of	the	operating	system,	Apple	introduced	several
major	features	and	a	lot	more	minor	API	changes.	This	section	briefly
describes	the	history	of	the	iOS.	The	remaining	sections	in	the	chapter
provide	an	overview	of	what’s	new	in	iOS	5.

iPhone	OS	3	brought	Core	Data	from	Mac	to	iPhone.	Other	additions	include
Apple	Push	Notification	Service,	External	Accessory	Kit,	In	App	Purchases
through	the	StoreKit.framework,	in	app	email	sheets,	the	MapKit.framework
that	allows	developers	to	embed	Google	Maps	into	their	apps,	read-only
access	to	the	iPod	library,	and	keychain	data	sharing.	OS	3.1	added	video
editor	support,	a	minor	update.	iPhone	OS	3.2	added	Core	Text	and	gesture
recognizers,	file	sharing,	and	PDF	generation	support,	another	minor	(yet	so

major)	update.	OS	3.2	also	added	a	whole	new	product,	iPad,	support	for
developing	apps	that	run	on	iPad,	and	universal	apps	that	run	on	iPad	(3.2)
and	iPhone	(3.1.3).	3.2	was	iPad	only	and	didn’t	run	on	iPhone	or	iPod	touch
devices.

iPhone	OS	4	(rebranded	as	iOS	4)	introduced	much-awaited	multitasking
support,	local	notifications,	read-only	access	to	calendar	(Event	Kit
framework,	EventKit.framework),	blocks,	Grand	Central	Dispatch	(GCD),
in	app	message	composer	sheets	(SMS),	and	Retina	display	support.	This
version	was	iPhone	only	and	didn’t	support	developing	apps	for	iPad.	A
minor	update,	iOS	4.2,	unified	iPhone	and	iPad	operating	systems.

What’s	New
iOS	5	introduces	several	important	features	like	iCloud,	Automatic	Reference
Counting	(ARC),	Storyboards,	built-in	Twitter	framework,	and	several	other
minor	features.	The	next	few	sections	introduce	you	to	the	key	features	added
to	iOS	5	and	the	chapters	in	which	they	are	discussed	in	detail	and	where	I
provide	guidance	about	how	to	push	your	apps	to	the	next	level.

iCloud
iCloud	is	a	new	cloud	service	provided	by	Apple.	iCloud	differs	from
competing	similar	offerings	in	that	it’s	more	a	cloud-based	service	than
cloud-based	storage.	Developers	have	been	using	third-party	services	for
synchronizing	data	across	multiple	devices.	Dropbox	is	the	most	popular	of
these	services;	however,	even	Dropbox	API	version	0	(the	latest	version	as	of
this	writing),	doesn’t	support	conflict	handling,	something	that’s	critical	for
data	integrity.	While	Dropbox	has	conflict	resolution,	it’s	not	exposed	to
developers	via	their	API.	iCloud,	on	the	other	hand,	supports	file	storage	and
has	conflict	resolution	built	into	the	iOS	5	SDK.

iCloud	also	supports	storing	key-value	data	on	the	cloud,	which	is	good
enough	for	apps	that	need	settings	and	other	similar	data	to	be	kept	in	sync.

iCloud	is	not	just	a	hard	disk	on	the	cloud.	Think	of	iCloud	as	a	cloud-based
service	that	just	happens	to	support	data	storage.

iOS	5	adds	several	new	APIs	for	adding	iCloud	support:

■	UIDocument	(very	similar	to	its	kin,	NSDocument,	on	Mac)

■	UIManagedDocument,	for	managing	your	Core	Data	storage

■	Additions	to	NSFileManager	to	move	and	restore	files	from	iCloud

iCloud	is	covered	in	detail	in	Chapter	17.

LLVM	3.0	Compiler
LLVM	(Low	Level	Virtual	Machine)	is	a	new	compiler	project	partly	funded
by	Apple.	While	technically	not	a	part	of	iOS	5,	developers	should	be
equipped	with	the	knowledge	of	the	new	features	available	in	LLVM.
Improved	auto	complete	and	speedier	compilation	are	just	a	part	of	LLVM’s
new	features.	In	Chapter	2	you	learn	about	the	features	of	LLVM	and	how
LLVM	augments	Xcode	4’s	features.

Automatic	Reference	Counting
Another	important	feature	of	iOS	5	is	Automatic	Reference	Counting	(ARC).
It	is	a	compiler-level	feature	provided	by	the	new	LLVM	compiler.	This
means	that	you	can	use	it	without	increasing	the	minimum	SDK	support	to
iOS	5.	ARC	can	be	used	in	apps	targeting	iOS	4	onward,	and	Xcode	4.2	also
provides	support	for	migrating	your	code	to	use	ARC	using	the	Convert	to
Objective-C	ARC	tool.	With	the	new	LLVM	compiler	slowly	becoming
mainstream,	ARC	will	supercede	the	current	retain/release	memory
management.

Automatic	Reference	Counting	is	not	like	garbage	collection	offered	on	Mac	OS	X	from	version
10.5	(Leopard).	Garbage	collection	is	automatic	memory	management.	This	means	that
developers	don’t	have	to	write	a	matching	release	for	every	retain	statement.	The	compiler
automatically	inserts	them	for	you.

ARC	adds	two	new	lifetime	qualifiers—strong	and	weak—and	it	also
imposes	new	rules,	such	as	that	you	can	no	longer	invoke	release,	retain	on
any	object.	This	applies	to	custom	dealloc	methods	as	well.	When	using
ARC,	your	custom	dealloc	methods	should	only	release	resources	(files	or
ports)	and	not	instance	variables.

ARC	is	covered	in	detail	in	Chapter	3.

Storyboards—Draw	Your	Flow
Storyboards	is	a	new	way	to	design	your	user	interface.	Prior	to	iOS	5	you
used	Interface	Builder	nib	files	to	define	your	UI	one	view	controller	at	a
time.	With	Storyboards,	you	can	define	in	one	file	the	complete	UI	flow	of
your	app,	including	interaction	among	the	different	view	controllers.

You	can	use	Storyboards	to	define	all	view	controllers	in	your	app.	You	don’t
have	to	create	multiple	Storyboards	or	worry	about	performance.	The
Interface	Builder	build	tool	automatically	splits	your	storyboard	file	into	parts
and	loads	it	individually	at	runtime	without	affecting	performance.

On	iOS	5,	storyboards	replace	MainWindow.xib	nib	file	(and	possibly	every
other	view	controller’s	nib	file).	The	new	project	template	in	Xcode	4.2	helps
in	creating	storyboards.	You	can	also	add	a	storyboard	to	your	old	projects
and	optionally	make	it	the	main	storyboard	by	adding	an	entry	to	the
Info.plist	file.

Storyboards,	unlike	ARC,	is	an	iOS	5-specific	feature,	and	using	Storyboards	means	that	you
need	to	raise	your	minimum	supported	OS	to	iOS	5.

You	will	learn	more	about	storyboards	in	Chapter	5.

UIKit	Customization—Appearance	Proxy
Apple	(and	even	Microsoft)	has	always	been	against	UI	customization,	or
theming.	Its	reasoning	is	that	theming	makes	it	difficult	for	users	to
understand	the	user	interface.	The	Web,	on	the	other	hand,	has	made	a	huge
revolution	on	this	front	and	this	has	had	an	effect	on	the	latest	release	of	iOS
as	well.	Beginning	with	iOS	5,	some	native	apps	like	Reminders	get	some
rich	customization.	With	iOS	5,	most	properties	of	UIKit	elements	can	be
customized.	This	includes	backgroundColor,	tintColor,	and	a	lot	more.
Customization	is	supported	by	a	UIView	subclass	if	it	implements	the
UIAppearance	protocol.	The	protocol	also	allows	customization	based	on	the
contained	view.	For	example,	you	can	have	a	different	tint	when	a	custom
view	of	yours	is	within	a	navigation	bar.

Chapter	5	covers	UI	customization.

Twitter	Framework	and	Accounts	Framework
iOS	5	integrates	Twitter	experience	right	into	the	OS.	This	means	sending	a
tweet	from	your	app	is	as	easy	as	sending	an	email	using	an	in	app	email
sheet.	The	framework	also	handles	authentication	for	you,	which	means	you
no	longer	need	to	do	the	oAuth/xAuth	authentication	yourself.	Twitter
framework	on	iOS	5	integrates	with	Accounts	framework	to	provide	account
authentication.	As	of	this	writing,	Twitter	is	the	only	third-party
authentication	system	supported	natively	on	iOS	5.	But,	by	looking	at	the
decoupled	design	of	Twitter	framework	and	Accounts	framework,	there	is	a
possibility	that	additional	services	might	be	introduced	later	on.	While	there
are	some	advantages	of	using	these	frameworks,	it’s	still	an	iOS	5-specific
feature,	which	means	that	using	it	requires	you	to	limit	your	app	to	devices
running	iOS	5	and	later.	Additionally,	when	you	send	out	a	tweet	through
iOS,	you	will	not	be	able	to	customize	the	sender	(via	text).	As	such,	your
tweet	will	be	sent	as	“via	iOS.”	(See	Figure	1-1.)

©	Twitter	2011

Figure	1-1	Screenshot	from	Twitter.com	showing	the	“via”	text

When	you	create	a	new	application	on	Twitter,	you	can	name	it	so	when	you
tweet	using	this	application’s	credentials,	its	name	shows	up	in	the	“via”	text.
The	built-in	Twitter.framework	on	iOS	5	doesn’t	allow	setting	this	text,	so	if
you	are	considering	using	Twitter	for	increasing	your	brand’s	reach,	you	may

have	to	evaluate	branding	versus	ease	of	development.

Adding	Twitter	experience	to	your	app	with	the	new	Twitter.Framework	is
as	easy	as	sending	an	in	app	email.	This	differs	from	an	app	email	in	one
aspect.	Instead	of	providing	a	delegate	callback,	the
TWTweetComposeViewController	of	Twitter.Framework	provides	a
completionHandler.	Chapter	16	shows	you	an	example	of	this	in	action.

Other	New	Features
In	addition	to	the	“big”	features	discussed	in	the	preceding	sections,	iOS	5
also	adds	several	other	features,	including	dedicated	support	for	magazine
apps,	a	native	image	processing	library,	AirPlay	mirroring	support,	and	new
controls	added	to	UIKit.framework.

Newsstand	Kit
Newspaper	or	magazine	apps	can	make	use	of	the	NewsstandKit.framework
to	deliver	digital	content.	Although	it	was	technically	possible	to	do
something	similar	with	iOS	4,	iOS	5	introduces	several	new	APIs	to	enable
content	for	the	latest	release	to	be	downloaded	in	the	background.
Additionally	it	also	enables	publishers	to	provide	a	cover	art	image	(front
cover)	for	their	magazine	instead	of	an	icon.	Apps	developed	using	this
framework	appear	within	the	Newsstand	app	and	display	the	cover	art	instead
of	the	app	icon.

Core	Image	for	Image	Processing
Camera	apps	can	use	features	in	Core	Image	to	apply	image	processing
filters.	The	classes	CIImage	and	CIFilter	add	basic	image-editing	functions
like	cropping,	rotation	(affine	transform),	and	color	inversion,	to	advanced
features	like	gamma	correction,	white	point	adjustment,	false	color,	sepia
toning,	temperature	and	tint	correction,	and	many	more	that	would	be	present
in	any	entry-level	image	editor.	This	feature	of	iOS	5	will	be	tremendously
useful	for	camera-enhancement	apps	that	compete	with	apps	like	Instagram
or	Camera+.	iPhone	camera	is	already	the	most	popular	camera	on	Flickr.
This	framework	will	take	it	even	further.

Core	Image	for	Feature	Detection

Core	Image	has	another	important	element:	feature	detection.	At	WWDC
2011,	Apple	demonstrated	a	feature	of	Photo	Booth	that	tracks	the	location	of
a	face	and	adorns	it	with	birds	circling	the	head.	With	Core	Image,	you	can
add	such	features	with	very	little	programming	effort.	The	class	CIDetector
has	a	convenient	featuresInImage:	method	that	returns	a	list	of	CIFeature
objects	detected	in	the	given	image.

Core	Image	is	discussed	in	Chapter	6.

Other	Minor	Enhancements
iOS	5	adds	many	other	minor	enhancements	like	AirPlay	video	support,
mirroring	(which	can	be	disabled	by	your	app	if	you	are	showing	protected
content);	better	document	support;	improvements	in	data	protection	(Chapter
11);	a	new	control,	UIStepper;	capability	to	add	a	password	entry	field	to	the
UIAlertView	just	like	the	AppStore	password	prompt;	a	new
UIPageViewController	for	creating	page	curl	effects	like	iBooks;	and	much
more.	All	these	major	and	minor	enhancements	together	make	iOS	5	the
biggest	enhancement	since	its	inception.

Summary
Adoption	rates	of	iOS	have	always	been	way	ahead	of	the	competition.	A
couple	of	years	ago,	when	iPhone	OS	3.0	was	launched,	adoption	rates	were
partly	hindered	on	iPod	touch	because	the	upgrade	cost	$10.	However,	Apple
soon	made	it	free	and	adoption	rates	increased.	Similarly,	when	Apple
released	iOS	4,	the	adoption	rate	was	initially	slow	because	of	performance
issues	on	older	phones	such	as	iPhone	3G	and	the	original	iPhone	(and
equivalent	iPod	touches).	Some	features—mainly	multitasking—were	also
not	available	for	older	devices.	Nevertheless,	the	latest	iOS	usually	gets
adopted	on	more	than	90	percent	of	devices	within	the	first	two	months	of
launch.

With	iOS	5,	adoption	rates	should	be	the	fastest	ever	for	the	following
reasons.	First,	the	update	is	free	for	all	devices,	unlike	iPhone	OS	3.	Second,
unlike	iOS	4,	iOS	5	doesn’t	make	older	devices	(the	iPhone	3GS)	run	slower.
Finally,	for	end	users,	cleaner	notifications,	iTunes	wi-fi	sync,	and	iMessage
are	killer	features	that	should	accelerate	iOS	5	adoption.

All	this	means	that	you	should	start	using	every	iOS	5	feature	as	soon	as
possible	to	get	your	app	to	shine	in	all	its	glory.	Features	like	iCloud	and
UIKit	customizations	alone	should	be	reason	enough	to	update	your	apps	to
iOS	5.	That	said,	the	next	chapters	start	you	on	your	iOS	5	journey.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

iCloud
What’s	New	in	iOS	5
Twitter	Framework

Accounts	Framework

Other	Resources
How	is	a	file	conflict	detected	using	the	API	-	Dropbox	forums
http://forums.dropbox.com/topic.php?id=40492

http://developer.apple.com/
http://forums.dropbox.com/topic.php?id=40492

Chapter	2:	Getting	Comfortable	with
Xcode	4

Apple	officially	announced	Xcode	4	at	WWDC	2010	(June	2010),	and	the
beta	version	was	available	to	attendees.	It	was	in	beta	for	quite	a	while
(around	9	months)	and	a	Gold	Master	was	made	available	through	iOS/Mac
developer	center	in	February	2011.	Weeks	later,	in	March,	Xcode	4	was
officially	released	and	developers	who	subscribe	to	the	iOS	or	Mac	developer
programs	were	able	to	get	it	for	free.	Others	were	able	to	buy	it	from	the	Mac
App	Store.

Xcode	4	is	a	completely	rewritten	IDE	(integrated	development	environment)
replacing	Xcode	3.	The	major	features	include,	but	are	not	limited	to,	single
window	editing,	navigators,	integrated	Interface	Builder,	an	integrated	Git
version	control	system,	and	schemes	(a	new	way	to	configure	and	share	build
settings	in	your	product).	You	learn	in	detail	about	every	major	feature	in	this
chapter.

Xcode	4	features	are	not	just	skin	deep—they	come	with	some	huge
compiler-level	changes	as	well.	The	LLVM	compiler	is	the	new	brain	behind
Xcode.	Apple	made	LLVM-GCC	the	default	compiler	in	the	original	version
of	Xcode.	Beginning	with	Xcode	4.0	and	in	the	version	that	is	released	with
iOS	5	(Xcode	4.2),	LLVM	3.0	is	the	default	compiler;	it	uses	Clang	as	its
front	end.	Using	Clang	as	the	front	end	over	GCC	has	several	advantages,	and
several	new	features	of	Xcode	4	were	added	because	of	this	change.	Because
Apple	is	moving	from	GCC	to	LLVM,	you	should	know	how	to	harness	the
power	of	the	new	compiler	to	increase	your	coding	and	debugging	speed,	and
how	to	use	the	IDE	to	be	more	productive.	The	most	important	feature	of	the
LLVM	compiler	is	better	and	faster	compilation	with	the	Clang	front	end,
which	provides	better	code	completion	support.

This	chapter	covers	the	important	features	of	the	IDE,	the	new	features
offered	by	the	LLVM	compiler,	the	built-in	integrated	version	control	system,
schemes	(new	to	Xcode	4),	writing	readable	and	commentable	project

configuration	files,	and	finally,	the	features	of	the	new	Xcode	4	Organizer.

Getting	to	Know	the	New	User	Interface
Xcode	4	features	a	whole	new	iTunes-like	user	interface	(UI).	The	toolbar	is
gone	in	favor	of	iTunes-like	Play/Stop	buttons.	The	build	setting	chooser	is
gone	in	favor	of	the	new	schemes	selector.	There’s	a	new	LED-like	status
display	similar	to	iTunes.	Developers	who	are	used	to	Xcode	3	will	feel	at
home	once	they	know	where	things	are,	what	has	been	removed,	and	what
has	been	superseded.	You’ll	welcome	the	new	additions	and	actually	be	more
productive	than	ever.	This	section	helps	you	bridge	the	gap	between	Xcode	3
and	Xcode	4.

This	section	covers	the	six	most	important	changes	to	Xcode	4.	The	first
important	change	is	the	new	navigators.	There	are	seven	navigators	that	can
be	accessed	by	clicking	the	buttons	highlighted	in	Figure	2-1.	They	can	also
be	accessed	via	the	shortcut	keys	Cmd-1	to	Cmd-7.

Figure	2-1	The	Xcode	navigator	items

The	same	navigators	can	be	accessed	from	the	Xcode’s	View	menu	item	as
shown	in	Figure	2-2.

Figure	2-2	Accessing	the	new	navigators	from	the	menu	bar

The	first	view	in	the	Navigators	area	is	the	project	navigator.	Previously,	this
was	the	Groups	and	Files	list.	From	the	Groups	and	Files	list	you	were	able	to
add	frameworks	and	edit	the	target’s	properties.	With	Xcode	4,	however,	this
functionality	is	moved	to	the	project	and	build	settings	editor	view.	The
Xcode	4	workspace	pane	can	now	edit	more	types	of	files	than	just	Objective-
C	or	property	list	files,	and	the	project	and	build	settings	editor	just	happens
to	be	one	such	editor.	You	can	access	the	build	settings	editor	by	selecting	the
project	file	from	the	project	navigator.	Figure	2-3	shows	Xcode	4	project
navigator.

Figure	2-3	Xcode	project	navigator	view

The	subsequent	navigators	are	Symbol,	Search,	Issue,	Debug,	Breakpoint,
and	Log.	You	look	at	them	in	detail	later	in	this	chapter.

Tabbed	Editor
The	second	major	change	is	the	new	tabbed	editor.	Unlike	its	predecessor,
Xcode	4	supports	opening	multiple	tabs	within	the	same	window.	This	means
that	you	will	spend	less	time	searching	for	the	window	that	displays	your
source	file.	Figure	2-4	shows	Xcode	4’s	tabbed	editor	in	action.

Figure	2-4	Xcode	4	window	showing	a	several	opened	tabs

The	tabbed	editor	in	Xcode	4	behaves	differently	from	tabbed	editors	in,	for
example,	Eclipse,	Visual	Studio,	or	TextMate.	Think	of	Xcode	4’s	tabs	as
virtual	workspaces	instead	of	just	file	editors.	The	navigator	pane’s	file
selection	and	search	criteria	are	preserved	when	you	switch	back	and	forth

between	tabs.	I	recommend	opening	three	to	four	tabs,	each	showing	a	related
group	of	files.	For	example,	you	can	use	one	tab	to	show	your	model	classes,
use	another	tab	for	your	view	controllers,	a	third	tab	for	Interface	Builder
files,	and	maybe,	if	you	use	Core	Data,	use	a	fourth	tab	for	showing	Core
Data-related	files.	Use	tabs	to	make	the	workspace	suit	your	thought	process
or	workflow.	Going	to	work	on	your	Core	Data	files?	Switch	to	the	Core	Data
tab.	Going	to	work	on	Interface	Builder?	Switch	to	the	Interface	Builder	tab.

Changes	to	Key	Bindings
The	third	major	change	is	to	key	bindings.	Xcode	4	has	changed	most	of	its
keyboard	shortcuts,	which	means	you	have	to	learn	those	quick	shortcut	keys
again.	Three	commonly	used	shortcuts	for	debugging	are	changed	to	F6	(Step
over),	F7	(Step	into),	and	F8	(Step	out).	Another	commonly	used	shortcut	that
has	been	changed	is	for	switching	between	header	and	source	code
counterparts.	Xcode	3	used	Cmd-Opt-Up	Arrow;	Xcode	4	uses	Cmd-Ctrl-Up
Arrow.	The	shortcut	for	Build	and	Run,	which	was	Cmd-Return,	is	now	Cmd-
R.

For	a	good,	comprehensive	list	of	keyboard	shortcuts,	I	recommend	Cocoa	Samurai’s	list,
available	for	download	at	http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-
shortcuts-now.html,	and	another	by	The	Pragmatic	Studio,	available	at
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf.

Project	Settings	Editor
The	fourth	major	change	is	the	new	project	settings	editor.	In	Xcode	3	you
normally	edit	your	project	settings	by	Cmd-clicking	your	target	from	the
Groups	and	Files	list	and	choosing	Edit.	This	has	been	completely	revamped
and	moved	to	the	project	settings	editor.	The	project	settings	editor	also
allows	you	to	edit	your	build	settings	and	other	commonly	accessed	functions
like	the	NSZombieEnabled	and	GuardMalloc	options.	Furthermore,	adding
additional	frameworks	to	your	product	and	passing	command	line	arguments
are	all	now	a	part	of	this	build	settings	panel	of	the	project	settings	editor.

Integrated	Version	Control
The	fifth	major	change	is	the	supported	integrated	version	control	system.
Xcode	3	supported	Subversion	(SVN),	Perforce,	and	Concurrent	Versions
System	(CVS)	for	versioning	your	source	code.	Xcode	4	removes	support	for

http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-shortcuts-now.html
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf

Perforce	and	CVS	and	adds	Git.	Later	in	this	chapter	you	learn	how	to	get	the
best	out	of	your	version	control	system.

Workspaces
The	sixth	major	change	is	the	addition	of	workspaces	to	projects.	In	Xcode	3,
the	top	level	of	your	app	is	the	project.	In	Xcode	4	you	can	create	a
workspace	and	add	multiple	projects	within	it.	For	example,	if	you	are
writing	a	Mac	+	iOS	app,	you	can	share	a	wealth	of	code.	Instead	of	manually
copying	and	pasting	code,	you	can	extract	the	common	code	into	a	separate
static	library	project	and	add	it	to	the	workspace.	The	primary	advantage	of	a
workspace	is	implicit	dependencies.	This	means	that	when	you	build	your
Mac	app	(or	iOS	app),	Xcode	4	automatically	detects	that	it’s	dependent	on
your	static	library	project	and	builds	it	first,	without	you	explicitly	requesting
it	to	do	so.

All	in	One	Window
Unlike	Xcode	3,	Xcode	4	is	a	single	window	IDE	like	Eclipse	or	Visual
Studio.	Every	file	you	use	in	your	project	can	be	opened	without	“switching”
to	it	using	Mac’s	Exposé.	With	full	screen	editing	in	Lion,	you	will	appreciate
the	single	window	IDE	and	find	yourself	spending	less	time	switching	or
searching	for	a	window.

The	IDE,	as	you	saw	earlier	in	this	chapter,	consists	of	a	set	of	navigators,	a
workspace	area,	and	the	utility	area.	There	are	seven	navigators	that	replace
the	functionality	of	the	Groups	and	Files	view.

The	workspace	area	is	where	you	edit	your	files,	which	can	be	either	source
code	or	plist	or	even	Interface	Builder	(IB)	files.	There	are	three	different
kinds	of	editors:	the	Standard	editor	that	you	use	for	editing	files,	the
Assistant	editor	for	editing	files	related	to	the	current	file	in	Standard	editor,
and	a	Versions	editor	that	shows	the	version	history	of	a	file.

The	Utility	area	is	akin	to	the	Inspector	pane	found	on	most	other
applications.	Below	the	Utility	area	is	the	library	from	where	you	can	drag
user	interface	elements	into	your	IB	or	code	snippets	into	your	source	code.
Let’s	take	a	closer	look	at	the	different	navigators	available	in	Xcode	4.

Navigating	the	Navigators
Seven	navigator	panes	are	built	into	Xcode	4.	These	features	were	also
present	in	Xcode	3	(in	the	Groups	and	Files	view),	but	are	presented	in	a
more	meaningful	way	in	Xcode	4.

In	Xcode	3,	there	used	to	be	a	single	view—the	Groups	and	Files	view—where	you	did	pretty
much	everything.	You	chose	the	file	to	edit,	edited	project	settings,	added	frameworks,	accessed
breakpoints	and	debug	logs,	and	a	lot	more	all	from	the	same	view.	Xcode	4	groups	these	actions
into	seven	different	navigators.

All	navigators	have	a	filter	and	scope	box	(shown	in	Figure	2-5)	that	can	be
accessed	using	Cmd-Opt-J.	This	shortcut	puts	the	focus	on	the	filter	and
scope	box	below	the	navigator	from	where	you	can	search	for	a	project	file.
The	keyboard	shortcut	works	for	all	navigators,	so	if	you	are	in,	say,	the
symbol	navigator,	you	can	use	this	to	quickly	filter	symbols.	The	filter	box
might	have	additional	buttons	to	restrict	the	scope,	and	sometimes	(as	in	the
debug	navigator)	it	might	be	replaced	with	a	UI	that	looks	different	but	offers
the	same	functionality.

You	can	press	the	shortcut	key	Cmd-Opt-J	to	quickly	jump	to	the	filter	and	scope	box.

Navigators	provide	a	clear	separation	of	duties	on	the	UI.	For	example,	there
is	a	dedicated	navigator	for	breakpoints,	a	dedicated	navigator	for	issues,	and
another	for	logs.	Although	it	might	be	difficult	to	switch	to	the	new,	separate
navigators,	you	will	appreciate	them	once	you	get	accustomed	to	them.

Some	features,	like	the	capability	to	create	smart	groups,	were	dropped
probably	because	few	people	use	them.	However,	if	you	have	a	project	in
Xcode	3	that	uses	smart	groups,	opening	it	in	Xcode	4	and	saving	it	doesn’t
remove	them	from	the	project	file.	So	when	you	open	the	project	again	on
Xcode	3,	you	will	still	see	your	smart	groups.

Project	Navigator
The	project	navigator	is	equivalent	to	the	Groups	and	Files	view	in	Xcode	3.
As	its	name	suggests,	the	project	navigator	helps	you	locate	your	source	code
files,	frameworks,	and	targets.	Similar	to	Xcode	3,	the	project	navigator	also
serves	as	a	source	code	control	UI.	This	means	that	when	you	add	files	to	the
project	navigator,	they	are	automatically	added	to	your	source	control	(if	you

use	one)	and	the	project	navigator	also	updates	the	UI	with	the	files’	source
control	status.

Figure	2-5	Xcode	navigator	showing	the	search	and	scope	bar

Symbol	Navigator
You	can	jump	to	the	symbol	navigator	with	the	Cmd-2	shortcut.	The	symbol
navigator	makes	it	easy	to	locate	a	specific	symbol	or	class	in	your	project.
The	Clang	front	end	of	the	LLVM	compiler	integrates	well	with	Xcode	4	and
has	made	it	faster	to	browse	through	symbols	in	the	project.

Search	Navigator
The	search	navigator	is	functionally	exactly	the	same	as	the	Xcode	3’s	Find
and	Replace	feature.	You	can	access	this	navigator	with	the	traditional	Cmd-
Shift-F	shortcut	or	the	navigator	shortcut	Cmd-3.

Issue	Navigator
When	you	build	your	project,	compiler	warnings,	error	messages,	or	analyzer
warnings	appear	on	the	issue	navigator.	The	issue	navigator	on	Xcode	4	is
clear	of	build	log	messages,	unlike	Xcode	3’s	equivalent	debug	view.	In
Xcode	4,	build	logs	are	moved	to	a	separate	navigator	called	the	log
navigator,	which	maintains	every	build	log	in	chronological	order.	You	can
access	this	using	the	navigator	shortcut	Cmd-4.

Debug	Navigator
The	debug	panel	in	Xcode	3,	which	you	access	by	pressing	Cmd-Shift-Y,	is
equivalent	to	Xcode	4’s	debug	navigator.	You	can	access	the	debug	navigator
in	Xcode	4	using	the	navigator	shortcut	Cmd-5.	The	most	important	addition
is	the	scope	slider.	Instead	of	the	filter	and	scope	search	box	present	in	other
navigators,	the	debug	navigator	uses	a	scope	slider.	Drag	the	scope	slider	to
customize	your	scope	preference.

Breakpoint	Navigator
The	sixth	navigator	is	the	breakpoint	navigator.	On	Xcode	3,	this	was
managed	in	a	separate	window.	The	nifty	addition	here	is	the	ability	to
quickly	add	a	symbolic	breakpoint	or	an	exception	breakpoint.	You	can
access	the	breakpoint	navigator	using	the	shortcut	Cmd-6.

A	noteworthy	feature	of	the	breakpoint	navigator	is	the	ability	to	share	your	breakpoints	with	co-
workers.	From	the	breakpoint	navigator,	Cmd-Click	the	project	file	and	click	Share	Breakpoints.

Log	Navigator
On	Xcode	3,	logs	can	be	either	configured	to	either	clear	themselves	for
every	build	or	continue	to	add	to	the	current	project	log.	On	Xcode	4,	this	is
no	longer	the	case.	With	the	log	navigator,	every	build	gets	its	own	log	entry
and	you	can	even	search	for	entries	in	a	log	that	was	created	several	builds
ago.	You	can	access	the	log	navigator	using	the	shortcut	Cmd-7.

Help	from	Your	Assistant
Xcode	4	has	three	main	editors,	and	they	are	akin	to	multiwindow	document
editing	present	in	other	competing	IDEs.	The	two	editors	that	augment	Xcode
4’s	Standard	editor	are	the	Assistant	editor	and	the	Versions	editor.	The	best
thing	about	the	Assistant	editor	is	that,	when	you	turn	in	on,	it	intelligently
knows	the	most	relevant	file	to	the	file	you	are	currently	working	with.

For	example,	when	you	are	editing	a	Core	Data	model,	turning	on	Assistant
editor	opens	the	corresponding	Core	Data’s	model	file.	Similarly,	when	you
are	editing	an	Interface	Builder	file,	it	opens	the	corresponding	header	file.

A	common	action	like	adding	an	IBAction	declaration	in	your	header	and
coming	back	to	the	Interface	Builder	to	connect	it	can	be	easily	done	within
the	same	window	using	the	Assistant	editor.

Integrated	Interface	Builder
Prior	to	Xcode	4,	Interface	Builder	was	a	standalone	application,	and	the
most	common	mistake	a	programmer	would	make	was	failing	to	sync
Interface	Builder	and	Xcode	properly.	For	example,	forgetting	to	save	an
Interface	Builder	connection	could	crash	your	app	at	runtime.	Additionally,
the	very	fact	that	there	are	two	applications	for	writing	iOS	apps	confuses
developers	coming	from	an	Eclipse	or	Visual	Studio	background.	Those
difficulties	are	in	the	past	because	Xcode	4	integrates	Interface	Builder	right
into	the	main	IDE,	and	it’s	now	very	easy	to	sync	your	user	interface	with	the
controller	code.

Interface	Builder	Panels
Interface	Builder	on	Xcode	3	usually	has	multiple	windows	floating	around.
At	a	bare	minimum,	you	have	the	main	document	window,	the	library	panel,
the	inspector,	and	the	actual	user	interface	view.	In	Xcode	4,	the	library	and
inspector	are	brought	into	the	utility	area.	The	document	window	is	docked	to
the	left.	Figure	2-6	shows	a	classical	Interface	Builder	file	open	in	Xcode	4.

Figure	2-6	Xcode	4	Interface	Builder

The	left	pane	now	contains	the	objects	in	the	Interface	Builder	file.	The	utility
area	shows	properties	for	the	selected	object.

When	you	turn	on	the	Assistant	editor,	Xcode	4	will	automatically	open	the	correct	header	file	for
you.

Generating	Code	Using	Assistant	Editor	and	Integrated	Interface
Builder

The	most	important	feature	that	has	been	added	to	Xcode	4’s	integrated
Interface	Builder	is	the	capability	to	generate	properties	(IBOutlet)	or	event
handling	(IBAction)	code	directly	from	IB.	When	the	Assistant	editor	is
open,	all	you	have	to	do	is	command-click	and	drag	objects	to	the	header	file
to	generate	properties,	or	command-click	and	drag	events	from	the	Utility
area	to	the	header	to	generate	IBActions.	If	your	drag	destination	is	valid,
Xcode	shows	an	insertion	marker	and	adds	the	code	right	in.	No	connections
needed.	It’s	all	done	for	you.

LLVM	Compiler	3.0:	A	Tryst	with	the	Brain
Xcode	3	and	prior	versions	were	not	as	“intelligent”	compared	to	competing
IDE	such	as	Eclipse	or	Visual	Studio.	The	main	reason	for	this	is	that	Xcode
3	used	GCC	as	the	compiler.	While	GCC	is	a	good	compiler,	it	doesn’t	offer
much	interoperability	with	the	IDE.	A	compiler	normally	has	a	front	end	that
converts	source	code	into	an	intermediate	representation	and	expands
preprocessor	macro	definitions.	It	also	has	a	back	end	that	generates	code	and
optimizes	it.	The	GCC	compiler	is	essentially	a	back-end	compiler,	which
means	that	when	you	provide	it	with	source	code,	it	generates	compiled
binary	for	it.	It	was	primarily	developed	for	compiling	code	and	not	for
parsing	it.	Essentially,	this	means	that	Apple	has	to	write	its	own	version	of
parsers	to	assist	you	with	debugging.	GCC	is	GPL,	so	Apple’s	version	of
parsers	cannot	use	the	same	GCC	code	without	changing	the	Xcode	license	to
GPL.	Because	Apple’s	parsers	and	GCC	are	from	different	code	base,	there
were	always	some	discrepancies	between	what	the	GCC	compiler	“thinks”
and	what	Xcode	“thinks.”

The	Clang	Front	End
To	alleviate	this	problem,	Apple	is	slowly	switching	to	the	LLVM	compiler.
With	Xcode	4.2	debuting	with	iOS	5,	the	default	compiler	is	LLVM	compiler
3.0.	Although	LLVM	is	not	as	“efficient”	as	GCC	in	code	generation,	it’s
more	modular	and	extensible.	LLVM	is	also	more	than	twice	as	fast	in	terms
of	compile	time	(thereby	increasing	your	productivity).	A	number	of	front
ends	have	been	developed	for	LLVM,	and	one	of	these	is	Clang,	which	is
heavily	funded	by	Apple.	(Clang	stands	for	C	language.)	Clang	supports
incremental	compilation,	which	means	that	the	IDE	can	actually	compile	the

code	as	you	type	and	show	you	near-instantaneous	compilation	errors.	You
will	find	this	very	useful	when	you	start	using	Xcode	4.

A	clear	example	of	this	is	that	Xcode	3	suggests	nearly	every	symbol	indexed
after	you	type	@synthesize,	but	Xcode	4	shows	suggestions	only	of	the
properties	in	the	corresponding	header	file.	Moreover,	the	modular	nature	of
Clang	makes	it	easy	to	support	code	refactoring	and	features	like	Edit	All	in
Scope.

I’m	a	Bug!	Fix	Me
LLVM’s	tighter	integration	with	IDE	also	helps	Xcode	4	to	offer	suggestions
about	what	the	developer	must	do	when	the	compiler	encounters	an	error.
This	feature	is	called	Fix-it.

Figure	2-7	shows	a	suggestion	to	remove	the	closing	square	brackets	to	match
the	number	of	opening	brackets.

Figure	2-7	Xcode	4	Fix-it	in	action

Git	Your	Versions	Here
Another	interesting	feature	addition	to	Xcode	4	is	the	integrated	Git	version
control	system.	Git	is	a	distributed	version	control	system	written	by	Linus
Torvalds	(yes,	the	same	guy	behind	the	Linux	kernel)	primarily	to	maintain
the	Linux	kernel	repository.	The	distributed	nature,	speed,	reliability,	cheap
branching,	and	the	ability	to	easily	do	nonlinear	software	development
encouraged	more	and	more	users	to	adopt	Git.

Integrated	Git	Version	Control	System

Git	is	primarily	a	command-line	system,	much	like	most	other	Unix/Linux
systems.	Don’t	fret.	Xcode	4	has	built-in	support	for	Git,	and	the	project
navigator	even	shows	the	commit	statuses	of	your	file.	However,	the	decision
to	use	Git	over	any	other	version	control	system	shouldn’t	be	based	solely	on
this.	The	main	reason	I	advocate	using	Git	for	your	next	iOS	app	is	its	cheap
branching	and	its	nonlinear	development	support.

Versions	Editor
The	Versions	editor	is	the	third	type	of	editor	available	in	Xcode	4.	(As
mentioned	previously	in	this	chapter,	the	other	two	editor	types	are	the
Standard	editor	and	the	Assistant	editor.)	The	integrated	Versions	editor
comes	in	handy	when	you	want	to	visually	analyze	differences	between	two
versions	of	a	file.	If	your	project	uses	Git	(or	SVN),	you	can	compare	a	file
with	a	previous	revision	from	its	repository.	The	Versions	editor	allows	you	to
pick	any	older	version	of	a	file	by	scrubbing	through	a	timeline	resembling
the	classical	Time	Machine	UI.	With	OS	X	Lion,	Apple	might	even	consider
adding	local	versions	support	to	Xcode	and	you	would	be	able	to	compare
local	versions	of	files	in	addition	to	the	versions	in	the	repository.

Git	Best	Practices
Apple’s	AppStore	is	a	walled	garden,	and	if	you	are	an	active	developer,
Apple	has	probably	rejected	you	at	least	once.	Imagine	a	product
development	with,	say,	ten	features.	Out	of	these	ten	features,	you	develop
four	for	version	1.0,	and	another	two	for	version	1.5,	and	remaining	four	for
version	2.0.	You	have	submitted	version	1.0	and	are	working	on	the	fifth	and
sixth	features.	A	couple	of	weeks	into	development,	you	get	a	reply	from
Apple	that	your	app	is	rejected.	Let’s	assume	that	the	third	feature	violates
some	of	Apple’s	policies	and	is	not	allowed	in	its	current	state.	In	a	traditional
SCM	system,	you	check	out	the	old	code,	work	on	the	fix,	and	submit	the	fix
to	Apple.	You	then	come	back	to	your	code	that	has	the	fifth	and	sixth
features	added	and	painstakingly	merge	these	bug	fixes	to	your	latest-and-
greatest	code.	While	SVN	and	other	source	code	control	systems	offer
branching,	it’s	quite	hard	to	use	and	as	the	size	of	project	grows,	branching
becomes	an	expensive	operation	(both	timewise	and	disk-usagewise).	With
Git,	this	kind	of	merging,	branching,	and	parallel	development	is	very	easy
mostly	because	of	the	way	Git	stores	change	sets.

For	a	deeper	introduction	to	Git,	I	recommend	reading	Pro	Git	or	Version	Control	With	Git.	(See
the	“Further	Reading”	section	at	the	end	of	the	chapter	for	details.)	The	first	book	gives	you	an
in-depth	understanding	about	how	Git	works;	the	second	helps	you	get	started	with	and	make	the
best	use	of	Git	in	your	project.

I	suggest	you	follow	these	steps	when	using	Git	in	your	next	iOS	app:

1.	Let	your	master	branch	reflect	your	latest-and-greatest	code	for	the
version	available	on	the	App	Store.
2.	For	every	new	version	you	are	working	on,	create	a	new	branch.

3.	For	every	major	feature	you	implement,	create	a	branch	from	the	version
branch.
4.	Merge	your	branch	with	the	master	whenever	you	submit	your	app	to	the
App	Store.
5.	Optionally	tag	your	master	branch	after	the	app	is	approved.

When	you	follow	these	steps,	you	can	easily	fix	bugs	and	issues	with	a
particular	version	and	merge	your	changes	with	the	latest	branch	you	are
working	on,	all	within	couple	of	minutes.

For	example,	if	Apple	were	to	reject	your	app,	all	you	would	need	to	do	is
check	out	the	master	branch,	make	your	fixes,	resubmit	to	the	App	Store,
check	out	your	current	working	branch,	and	merge	the	changes	you	made	in
the	master	to	it.	With	Git,	nonlinear	development	gets	really	easy.	Try	using
it.	You	will	not	regret	it.

Schemes
The	most	powerful	yet	most	confusing	addition	to	Xcode	4	is	schemes.	In
Xcode	3,	there	is	a	build	configuration	selection	combo	box,	where	you
specify	an	active	configuration;	an	active	target;	an	active	executable;	the
active	architecture	(instruction	set);	and	the	target	device	before	running	the
app.	Even	the	default	set	of	options	has	an	overwhelmingly	high	combination
of	selections,	and	for	complicated	project	settings,	choosing	the	right
executable	for	the	right	target	or	device	and	instruction	set	becomes
challenging.	To	top	it	off,	Xcode	3	even	allows	choosing	a	wrong	executable
as	active	for	a	given	target.	Schemes	have	been	introduced	in	Xcode	4	to	help

developers	handle	these	issues	easily.	A	scheme	is	a	single	entity	that
combines	all	of	the	above-mentioned	settings.	A	scheme	is	a	set	of
instructions	for	building	a	product.	The	product	can	be	(in	most	cases	will	be)
a	collection	of	targets	with	its	own	build	configurations.	You	can	also	use
your	existing	xcconfig	files	for	those	targets.	You	learn	about	this	later	in	this
chapter.

Why	Schemes?
The	previous	method	of	choosing	four	different	options	whenever	you	want
to	build	something	makes	it	difficult	to	do	it	right	every	time.	There	are	times
when	you	would	have	built	and	submitted	the	debug	version	of	the	app	to	the
App	Store	or	tried	to	debug	the	release	configuration	of	the	app,	only	to	find
your	breakpoints	were	not	getting	hit.	With	schemes	in	place,	all	you	have	to
do	is	to	choose	your	scheme	and	every	other	option	is	automatically	applied.
When	you	are	building	your	product	for	debugging,	you	obviously	don’t	want
to	strip	off	debug	statements.	On	the	other	hand,	when	you	are	building	for
the	App	Store,	you	almost	always	want	to	optimize	your	build	for
performance	and	strip	off	debug	statements.	That	holds	good	for	Ad	Hoc
deployments	as	well.	Wait!	It	doesn’t	end	there.	These	schemes	can	also	be
shared	among	co-workers	by	committing	into	the	repository.

Think	of	Schemes	as	Implementing	Your	Intentions
With	schemes	you	can	automatically	choose	the	correct	configuration	for	a
target	by	choosing	a	scheme	that	matches	your	intent.	That	is,	if	your	intent
is,	“I	want	to	debug	this	product,”	choose	the	Run	scheme.	If	your	intent	is,	“I
want	to	submit	this	product	to	AppStore/Adhoc	distribution,”	choose	the
Archive	scheme.

With	schemes,	you	select	one	option	based	on	your	intent.	All	your	other
settings	are	applied	automatically.	With	some	tweaks,	you	can	customize	the
settings	that	are	applied	when	a	scheme	is	created.	You	will	learn	this	in	the
next	section.

Creating	a	Scheme
The	easiest	way	to	create	a	scheme	is	to	let	Xcode	4	auto-create	one	for	you.
When	you	open	a	project	created	on	Xcode	3	in	Xcode	4,	it	automatically

creates	a	default	scheme.	Every	scheme	has	its	own	unique	settings	panel	that
allows	you	to	customize	or	tweak	the	default	scheme	setting.	The	following
list	discusses	actions	in	a	scheme.

■	Run—The	Run	action	builds	the	included	targets	using	the	debug	build
configuration.	On	the	settings	panel	of	this	action	you	can	change	the
debugger	you	want	to	use	(GDB	or	LLDB)	and	the	build	configuration,	the
default	being	Debug.	The	Run	action’s	settings	panel	is	where	you	specify
command-line	arguments,	provide	default	data,	or	provide	mock	location
data	(using	GPX	files)	to	your	app.	You	can	also	enable	diagnostics-related
arguments	like	Enabling	Zombies	or	Guard	Malloc	from	here	(from	Xcode
4.1	onward).
To	take	it	even	further,	you	can	duplicate	the	scheme	and	try	different
debuggers	(and/or	settings)	on	each.

■	Test—The	Test	action	runs	your	test	targets.	On	the	settings	panel,	you
can	customize	which	tests	should	be	executed.	Schemes	are	fully	integrated
with	the	OCUnit	Objective-C	testing	framework	and	tests	written	will
show	up	on	the	settings	panel.	Test	failures	show	up	on	the	Issue	and	Log
navigators	instead	of	the	console,	which	means	that	navigating	to	the
correct	method	that	caused	the	test	case	to	fail	is	now	easier.
By	duplicating	this	scheme,	you	can	create	two	test	schemes:	one	testing
your	model	classes,	and	one	testing,	say,	your	helper	methods.

■	Profile—The	Profile	action	builds	your	target	and	attaches	it	to
Instruments.	When	you	choose	this,	Instruments	automatically	launches
and	shows	you	the	list	of	instruments	available.	You	can	edit	the	scheme	to
always	launch	the	Time	Profiler	tool	or	the	Leaks	tool	(or	any	other)
automatically.
You	can	duplicate	the	profile	scheme	so	that	you	have	two	schemes:	one
launching	Leaks	and	the	other	launching	Time	Profiler.
■	Analyze—The	Analyze	action	runs	the	Clang	static	analyzer	on	your
code	and	warns	you	of	potential	memory	leaks.	There	isn’t	much	to
customize	here	except	the	build	configuration	to	use	for	this	scheme.

■	Archive—The	Archive	action	is	used	for	making	xcarchive	files	(or	ipa
files)	used	for	submitting	to	the	App	Store.	Archives	automatically	appear
on	the	Xcode	organizer	from	where	you	can	validate/submit	to	the	App

Store.	With	a	dedicated	Archive	scheme,	you	are	no	longer	required	to
create	an	Ad	Hoc	build	configuration	or	an	“App	Store”	build
configuration	for	your	product	like	you	do	in	Xcode	3.	These	specific
distribution	configurations	differ	in	most	cases	from	the	release
configuration	only	by	the	signing	certificate.	Because	the	signing	happens
later,	you	can	use	the	release	configuration	for	archiving	your	apps.
Signing	it	for	submitting	to	the	App	Store	or	for	Ad	Hoc	distribution	is
done	through	the	Xcode	organizer.

Sharing	Your	Schemes
By	default,	a	scheme	created	by	Xcode	4	is	saved	to	the	project	bundle	under
the	xcuserdata	directory.	Normally	this	directory	is	excluded	from
repositories,	which	means	schemes	generated	on	your	machine	stay	on	your
machine.	In	some	cases,	you	might	want	to	share	schemes	with	co-workers.
To	do	so,	go	to	the	Manage	scheme	options	panel	and	select	the	Shared
checkbox	for	every	scheme	you	want	to	share.	This	is	illustrated	in	Figure	2-
8.

Figure	2-8	Sharing	Schemes

When	you	check	the	Shared	option,	your	schemes	are	copied	over	to	the
xcshareddata	directory.	By	adding	this	directory	to	your	repository,	you	can
share	your	custom	schemes	with	co-workers.

Schemes	are	actually	a	better	way	to	customize	your	IDE/Environment	than
Xcode	3’s	method	of	using	multiple	configurations.	Give	it	a	try	and	you	will
like	it.

Build	Configurations	You	Can	Comment
In	most	projects,	you	would	have	depended	on	Xcode’s	build	settings	panel	to
edit/change	your	build	settings.	But	this	build	settings	panel	has	one	major
drawback.	You	cannot	easily	comment	on	a	particular	change	you	made	on
your	project’s	configuration.	Xcode	(both	3	and	4)	provides	an	easy	way	to

do	this	by	using	xcconfig	files.

Creating	an	xcconfig	File
An	xcconfig	file	is	a	plaintext	file	that	contains	build	configurations	for	your
target.	Start	by	adding	a	Debug	configuration	file	to	your	project.	You	can
choose	this	from	the	templates	in	the	new	file	wizard’s	Other	section.	Figure
2-9	illustrates	this.

Figure	2-9	Adding	a	new	configuration	file

Name	the	file	debug.xcconfig.	Now	open	the	build	settings	editor	and	select
Basic	and	Levels	as	options.	Copy	these	build	settings	to	the	configuration
file	you	just	created.	You	can	select	a	row	and	use	Cmd-C	to	copy	and	paste
them	on	the	configuration	file.

Repeat	these	steps	for	the	Release	configurations	in	another	file	called
release.xcconfig.	Once	you	create	this	basic	configuration,	you	can	set	all
settings	to	default	in	the	build	settings	editor.

Now,	you	need	to	tell	Xcode	to	use	this	build	configuration	file	instead	of	the
specified	build	settings.	To	do	so,	select	the	project	and	then,	in	the	project
settings	editor,	choose	the	project	again.	In	the	Info	panel,	expand	the
configuration	section	and	choose	your	config	file.

That’s	it.	You	have	now	created	a	build	configuration	file	that’s	readable	and
commentable,	which	you	can	share	with	co-workers	through	your	SCM.
Ready	to	refactor	this?

Refactoring	the	Build	Configuration	File
When	you	created	the	build	configuration	file,	you	probably	noticed	that
many	identical	settings	appear	on	both	the	debug	and	release	configurations.
You	can	easily	avoid	duplicating	them	by	creating	a	shared.xcconfig	file
and	copying	those	settings	to	it.	Once	you	are	done	with	the
shared.xcconfig	file,	remove	those	entries	from	the	debug.xcconfig	and
release.xcconfig	files.	Now	use	the	include	statement	to	add	the
shared.xcconfig	entries	to	both	files:

#include	“shared.xcconfig”

This	will	automatically	import	all	the	shared	settings	into	both	the
configuration	files.	Now	when	you	run	your	app,	everything	should	work.
You	can	even	add	this	to	every	new	project	you	create	or	even	to	Xcode’s
new	project	templates.

Xcode	4	Organizer
Xcode	4	Organizer	is	a	one-stop	shop	for	anything	related	to	Xcode	that’s	not
programming	specific.	From	the	Organizer,	you	can	manage	project
repositories,	perform	SCM	operations,	and	manage	your	application	archives,
provisioning	profiles,	and	devices.	Open	the	Organizer	window	by	pressing
Cmd-Shift-2	or	clicking	the	rightmost	button	on	your	Xcode	4	toolbar.	You
will	use	the	Xcode	4	Organizer	mostly	to	access	your	application	archives,
submit	your	apps	to	the	App	Store	and	to	manage	your	devices	and
provisioning	profiles.	Xcode	4	also	has	a	new	feature	called	Automatic
Device	Provisioning,	discussed	in	the	next	section.

The	first	tab	of	Xcode	4	Organizer	shows	the	list	of	devices	and	provisioning
profiles	currently	loaded.	Xcode	4	provides	an	easy	way	to	export	this	list	and
import	it	on	a	new	machine.	If	you	ever	want	to	migrate	your	developer
settings	to	another	computer,	this	is	the	place	you	should	look	for.

Automatic	Device	Provisioning
From	the	provisioning	profiles	list	on	the	Devices	tab,	you	can	see	a
checkbox	near	the	footer	called	Automatic	Device	Provisioning.	When
enabled,	Xcode	4	can	automatically	download	and	install	a	developer
certificate	and	a	distribution	certificate	from	your	iOS	developer	program
portal.	Xcode	4	can	also	create	a	wild	card	provisioning	profile	(with	an
Implicit	App	ID)	automatically,	and	that	profile	can	be	used	for	your	apps	that
don’t	require	an	Explicit	App	ID.

Apps	with	any	of	the	following	features—Push	Notification,	Game	Center,	iCloud,	or	In	App
Purchases—cannot	use	the	implicit	App	ID	and	hence	cannot	depend	on	Xcode’s	Automatic
Device	Provisioning.

Viewing	Crash	Logs	and	Console	NSLog	Statements
The	Devices	tab	shows	you	a	list	of	devices	that	have	been	connected	to	your
development	machine	at	least	once.	When	you	expand	the	device	by	clicking
the	disclosure	triangle,	you	will	be	able	to	see	Device	logs	and	screenshots
for	that	device.	When	a	device	is	connected,	you	will	see	additional	entries
like	Console	logs,	provisioning	profiles	installed	on	the	device,	and	a	list	of
applications	provisioned.	(This	includes	apps	you	run	via	Xcode	or	apps	that
you	install	via	Ad	Hoc	distribution.)

Viewing	Applications’	Sandbox	Data
With	Xcode	4	(beginning	with	Xcode	4.2),	you	can	view,	delete,	or	add	files
to	an	app’s	sandbox	inside	a	device.	This	makes	debugging	on	the	device
easier.	To	access	the	device’s	sandbox,	select	the	connected	device	from	the
left	pane,	choose	Applications	from	the	list,	and	choose	the	application	for
which	you	want	to	see	the	sandbox.	Delete	or	add	files	from	here	or	copy
them	locally	to	your	computer.

Managing	Repositories

Xcode	4	automatically	adds	the	repositories	for	any	project	you	have	opened
into	the	Repositories	tab.	The	repositories	section	serves	as	a	pretty	good
alternative	for	Git	(or	SVN)	GUI	access	for	most	purposes.

If	you	are	a	“Unix-y”	person	and	prefer	to	use	the	command	line,	I	suggest
you	stay	away	from	any	GUI	tools,	and	use	them	only	for	viewing	diffs.	A
quick,	lightweight	tool	I	recommend	is	GitX.	It	has	a	command	line	tool	to
“pipe”	Git	diff	output	and	shows	you	a	visual	diff.	My	workflow	has	always
been	like	this:

git	diff	|	gitx

Accessing	Your	Application	Archives
You	can	access	your	application	archives	from	the	Xcode	4	Organizer	and
validate	or	submit	your	apps	from	there.	In	the	previous	section,	you	saw	how
to	archive	an	application	using	the	archive	scheme	action.	This	archive	can	be
accessed	from	the	Archives	tab	of	Xcode	4	Organizer.

Viewing	Objective-C	and	SDK	Documentation
Organizer	also	makes	it	easy	to	access	the	SDK	documentation.	The
Documentation	tab	of	Organizer	shows	the	list	of	docsets	installed.	In	most
cases	that	would	be	the	latest	two	iOS	SDKs,	the	latest	two	Mac	OS	X	SDKs,
and	the	current	Xcode	library.

Summary
Xcode	4	IDE	is	a	huge	improvement	over	Xcode	3.	While	it	is	still	not	as
stable	as	Xcode	3,	you	should	start	using	and	getting	accustomed	to	it.	Some
features	such	as	new	key-bindings,	schemes,	and	integrated	Interface	Builder
might	look	different	and	confusing	at	first,	but	as	you	get	used	to	them	you
will	start	appreciating	them,	especially	for	the	time	they	save.	Apple	has
already	stopped	supporting	Xcode	3,	and	new	features	like	storyboarding	and
ARC	migration	tools	are	available	only	on	Xcode	4.	It	only	makes	sense	to
start	using	the	latest-and-greatest	IDE	as	soon	as	possible.

Further	Reading

Apple	Documentation
The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Apple	Developer:	Debugging	with	Xcode	4
Apple	Developer:	Orientation	to	Xcode	4
Apple	Developer:	Designing	User	Interfaces	with	Xcode	4

WWDC	Videos
The	following	session	videos	are	available	at	developer.apple.com.

Session	307:	Moving	to	the	Apple	LLVM	Compiler

Session	316:	LLVM	Technologies	in	Depth
WWDC	2011	Session	313:	Mastering	Schemes	with	Xcode	4

Blogs
Cocoa	Samurai.	“Xcode	4	keyboard	shortcuts	now	available!”
http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-

shortcuts-now.html

The	Pragmatic	Studio.	“Xcode	4	shortcuts”
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf

Pilky.me.	“Xcode	4:	the	super	mega	awesome	review”
http://pilky.me/view/15

Napier,	Rob.	Cocoaphony:	Mac	and	iPhone,	on	the	brain.	“Building	the
Build	System	–	Part	1	–	Abandoning	the	Build	Panel”
http://robnapier.net/blog/build-system-1-build-panel-360

Web	Resources
GitX.Mac	OS	X	Git	Client	http://gitx.frim.nl/

Books
Chacon,	Scott.	Pro	Git	(Apress	2009,	ISBN	978-1430218333).
http://progit.org/book/

Loeliger,	Jon.	Version	Control	With	Git:	Powerful	Tools	and	Techniques	for

http://developer.apple.com/
http://cocoasamurai.blogspot.com/2011/03/xcode-4-keyboard-shortcuts-now.html
http://pragmaticstudio.com/media/Xcode4Shortcuts.pdf
http://pilky.me/view/15
http://robnapier.net/blog/build-system-1-build-panel-360
http://gitx.frim.nl/
http://progit.org/book/

Collaborative	Software	Development	(O’Reilly	Media	2009,	ISBN	978-
0596520120)	http://oreilly.com/catalog/9780596520137

http://oreilly.com/catalog/9780596520137

Part	II:	Getting	the	Most	Out	of
Everyday	Tools

Chapter	3	Everyday	Objective-C

Chapter	4	Hold	On	Loosely:	Cocoa	Design	Patterns

Chapter	5	Getting	Table	Views	Right

Chapter	6	Better	Drawing

Chapter	7	Layers	Like	an	Onion:	Core	Animation

Chapter	8	Tackling	Those	Pesky	Errors

Chapter	3:	Everyday	Objective-C

This	chapter	covers	many	everyday	best	practices	for	Cocoa	development,
along	with	several	underused	features	that	more	developers	should	be
familiar	with.	Chapter	4	delves	deeper	into	broad	Cocoa	patterns;	here	you
focus	on	language	features.

You	begin	by	learning	the	critical	Cocoa	naming	conventions	that	will
improve	your	code’s	readability.	Next	you	are	introduced	to	one	of	the	most
exciting	new	features	of	iOS	5:	Automatic	Reference	Counting	(ARC).	This
will	change	how	you	develop	your	applications	and	dramatically	reduce	bugs
and	crashes.	Then	you	learn	how	to	best	use	properties	and	accessors	to
manage	data	in	your	objects.	Finally,	you	learn	about	categories,	extensions,
and	protocols,	which	are	all	commonly	used	throughout	Cocoa.

By	the	end	of	this	chapter,	you	should	be	very	comfortable	with	the	most
important	language	features	of	Objective-C	and	feel	confident	that	you	are
using	the	best	practices	of	experienced	Cocoa	developers.

Naming	Conventions
Throughout	iOS,	naming	conventions	are	extremely	important.	If	you
understand	how	to	read	them	correctly,	the	names	of	methods	and	functions
throughout	the	iOS	SDK	tell	you	a	great	deal	about	how	they	are	supposed	to
be	called	and	what	they	do.	Once	you’re	used	to	the	naming	conventions,	you
can	often	guess	what	the	name	of	a	class	or	method	is,	making	it	much	easier
to	find	the	documentation	for	it.	This	section	touches	on	some	of	the	most
important	naming	convention	rules	and	those	that	cause	problems	for
developers	with	experience	in	other	languages.

The	best	source	of	information	on	Cocoa	naming	conventions	is	Apple’s	Coding	Guidelines	for
Cocoa,	which	is	available	at	developer.apple.com.

The	first	thing	to	know	is	that	in	Cocoa,	ease	of	reading	is	more	important
than	ease	of	writing.	Code	spends	much	more	of	its	life	being	read,
maintained,	and	debugged	than	written.	Cocoa	naming	conventions	always

http://developer.apple.com/

favor	the	reader	by	striving	for	clarity	over	brevity.	This	is	in	stark	contrast	to
C,	which	favors	extremely	terse	naming.	Because	Objective-C	is	a	dynamic
language,	the	compiler	provides	far	fewer	safeguards	than	a	static	language
like	C++.	Good	naming	is	a	critical	part	of	writing	bug-free	code.

The	most	important	attribute	of	a	good	name	is	clarity.	The	names	of	methods
should	make	it	clear	what	types	they	accept	and	return.	For	instance,	this
method	is	extremely	confusing:

-	(void)add;		//	Confusing

It	looks	like	add	should	take	a	parameter,	but	it	doesn’t.	Does	it	add	some
default	object?

Yes,	so	names	like	these	are	much	clearer:

-	(void)addEmptyRecord;

-	(void)addRecord:(Record	*)record;

Now	it’s	clear	that	addRecord:	accepts	a	Record.	The	type	of	the	object
should	match	the	name	if	there	is	any	chance	of	confusion.	For	instance,	this
is	a	common	mistake:

-	(void)setURL:(NSString	*)URL;		//	Incorrect

It’s	incorrect	because	something	called	setURL:	should	accept	an	NSURL,	not
an	NSString.	If	you	need	a	string,	then	you	should	add	some	kind	of	indicator
to	make	this	clear:

-	(void)setURLString:(NSString	*)string;

-	(void)setURL:(NSURL	*)URL;

This	rule	shouldn’t	be	overapplied.	It’s	better	to	have	a	property	called	name
than	nameString,	as	long	as	there	is	no	Name	class	in	your	system	that	might
confuse	the	reader.

Clear	naming	also	means	that	you	should	avoid	abbreviations	in	most	cases.
Use	backgroundColor	rather	than	bgcolor,	and	stringValue	rather	than
to_str.	There	are	exceptions	to	the	use	of	abbreviations,	particularly	for
things	that	are	best	known	by	their	abbreviation.	For	example,	URL	is	better
than	uniformResourceLocator.	An	easy	way	to	determine	whether	an

abbreviation	is	appropriate	is	to	say	the	name	out	loud.	You	say	“source”	not
“src.”	But	most	people	say	“URL”	as	either	“u-ar-el”	or	“earl.”	No	one	says
“uniform	resource	locator”	in	speech,	so	you	shouldn’t	in	code.	There	are	a
few	abbreviations	such	as	alloc,	init,	rect,	and	pboard	that	Cocoa	uses	for
historical	reasons	that	are	considered	acceptable.	Apple	has	generally	been
moving	away	from	even	these	abbreviations	as	it	releases	new	frameworks.

There	are	several	kinds	of	variables	in	a	program:	instance	variables,	static
variables,	automatic	(stack)	variables,	and	so	on.	It	can	be	very	difficult	to
understand	code	if	you	don’t	know	what	kind	of	variable	you’re	looking	at.
Naming	conventions	should	make	the	intent	of	a	variable	clear.	After	coding
in	many	different	styles	with	different	teams,	my	recommendations	are	the
following:

■	Prefix	static	(package-scoped)	variables	with	s	and	nonconstant	global
variables	with	g.	Generally	you	should	avoid	nonconstant	globals;	for
example,	the	following	is	a	static	declaration:

static	MYThing	*sSharedInstance;

■	Constants	are	named	differently	in	Cocoa	from	the	way	they	are	named
in	Core	Foundation.	In	Core	Foundation,	constants	are	prefixed	with	a	k.	In
Cocoa,	they	are	not.	File-local	(static)	constants	should	generally	be
prefixed	with	k	in	my	opinion,	but	there	is	no	hard-and-fast	rule	here.	The
following	are	examples	of	a	file	constant	and	a	public	constant:

static	const	NSUInteger	kMaximumNumberOfRows	=	3;

NSString	*	const	MYSomethingHappenedNotification	=

																																						@”SomethingHappened”;

■	Method	arguments	are	generally	prefixed	with	an	article	such	as	a,	an,	or
the.	The	last	is	less	common	and	sometimes	suggests	a	particularly
important	or	unique	object.	Prefixing	your	arguments	this	way	helps	avoid
confusing	them	with	local	variables	and	ivars.	It	is	particularly	helpful	to
avoid	modifying	them	unintentionally.
■	Suffix	instance	variables	(ivars)	with	an	underscore	or	prefix	them	with
m.	I	avoid	prefixing	with	underscore	because	Apple	reserves	the	leading
underscore,	and	I’ve	occasionally	collided	with	instance	variables	in	the
superclass.	Also,	key-value	coding	(KVC)	automatically	retrieves	private
instance	variables	that	begin	with	an	underscore.	This	breaks	encapsulation

in	a	way	that	isn’t	obvious	in	the	code	and	provides	no	warning.	To	avoid
that,	I	use	another	naming	convention	(trailing	underscore,	based	on
Google’s	approach).
■	Classes	should	always	begin	with	a	capital	letter.	Methods	and	variables
should	always	begin	with	a	lowercase	letter.	All	classes	and	methods
should	use	camel	case—never	underscores—to	separate	words.

Cocoa	and	Core	Foundation	use	slightly	different	naming	conventions,	but	their	basic	approach	is
the	same.	For	more	information	on	Core	Foundation	naming,	see	Chapter	19.

Cocoa	naming	is	tightly	coupled	with	memory	management.	With	the
addition	of	ARC,	this	is	no	longer	as	critical,	but	it	is	important	to	understand
when	working	on	non-ARC	code.	The	naming	convention	is	quite	simple,	as
the	following	extract	from	the	Memory	Management	Programming	Guide
(developer.apple.com)	shows:

You	take	ownership	of	an	object	if	you	create	it	using	a	method	whose	name
begins	with	alloc	or	new	or	contains	copy	(for	example,	alloc,	newObject,	or
mutableCopy),	or	if	you	send	it	a	retain	message.	You	are	responsible	for
relinquishing	ownership	of	objects	you	own	using	release	or	autorelease.
Any	other	time	you	receive	an	object,	you	must	not	release	it.

Even	in	ARC	code,	you	should	be	aware	of	this	naming	convention	and	avoid
using	alloc,	new,	copy,	retain,	and	release	to	mean	anything	other	than
their	traditional	meanings.

Automatic	Reference	Counting
One	of	the	most	powerful	additions	to	iOS	5	is	ARC.	ARC	greatly	reduces
the	most	common	programmer	error	in	Cocoa	development:	mismatching
retain	and	release.	ARC	does	not	eliminate	retain	and	release,	it	just
makes	them	a	compiler	problem	rather	than	a	developer	problem	most	of	the
time.	In	the	vast	majority	of	cases	this	is	a	major	win,	but	it’s	important	to
understand	that	retain	and	release	are	still	going	on.	ARC	is	not	the	same
thing	as	garbage	collection.	Consider	the	following	code,	which	assigns	a
value	to	an	ivar:

@property	(strong,	nonatomic)	NSString	*title;

http://developer.apple.com/

...

@synthesize	title	=	title_;

...

title_	=	[NSString	stringWithFormat:@”Title”];

Without	ARC,	title_	is	underretained	in	the	preceding	code.	The	NSString
assigned	to	it	is	autoreleased,	so	it	will	disappear	at	the	end	of	the	run	loop,
and	the	next	time	someone	accesses	title_,	the	program	will	crash.	This
kind	of	error	is	incredibly	common	and	can	be	very	difficult	to	debug.
Moreover,	if	title_	had	a	previous	value,	then	that	old	value	has	been	leaked
because	it	wasn’t	released.

Using	ARC,	the	compiler	automatically	inserts	extra	code	to	create	the
equivalent	of	this:

id	oldTitle	=	title_;

title_	=	[NSString	stringWithFormat:@”Title”];

[title_	retain];

[oldTitle	release];

The	calls	to	release	and	retain	still	happen,	so	there	is	a	small	overhead,
and	there	may	be	a	call	to	dealloc	during	the	release.	But	generally	this
makes	the	code	behave	the	way	the	programmer	intended	it	to	without
creating	an	extra	garbage	collection	step.	Memory	is	reclaimed	faster	than
with	garbage	collection,	and	decisions	are	made	at	compile	time	rather	than	at
runtime,	which	generally	improves	overall	performance.	As	with	other
compiler	optimizations,	the	compiler	is	free	to	optimize	memory	management
in	various	ways	that	would	be	impractical	for	the	programmer	to	do	by	hand.
ARC-generated	memory	management	is	often	dramatically	faster	than	the
equivalent	hand-coded	memory	management.

But	this	is	not	garbage	collection.	In	particular,	it	cannot	handle	reference
(retain)	loops	the	way	Snow	Leopard	garbage	collection	can.	For	example,
the	object	graph	in	Figure	3-1	shows	a	retain	loop	between	Object	A	and
Object	B:

Figure	3-1	A	retain	loop

If	the	link	from	“External	Object”	to	“Object	A”	is	broken,	then	under	Snow
Leopard	garbage	collection	both	Object	A	and	Object	B	will	be	destroyed
because	they	are	orphaned	from	the	program.	Under	ARC,	Object	A	and
Object	B	will	not	be	destroyed	because	each	still	has	a	retain	count	greater
than	zero.	So	in	iOS,	you	need	to	keep	track	of	your	strong	relationships	to
avoid	reference	loops.

Property	relationships	have	two	main	forms:	strong	and	weak,	which	map	to
the	former	retain	and	assign.	As	long	as	there	is	a	strong	reference	to	an
object,	it	will	continue	to	exist.	This	is	nearly	identical	to	shared_ptr	in	C++,
except	that	the	code	to	manage	the	reference	counts	is	injected	by	the
compiler	rather	than	determined	at	runtime	with	operator	overloads.

Objective-C	has	always	had	the	problem	of	reference	loops,	but	they	really
don’t	come	up	that	often	in	practice.	Anywhere	you	would	have	used	an
assign	property	in	the	past,	use	a	weak	property	under	ARC	and	you	should
be	fine.	Most	reference	loops	are	caused	by	delegates,	and	a	delegate
property	should	almost	always	be	weak.	Weak	references	have	the	advantage

of	automatically	being	set	to	nil	when	the	referenced	object	is	destroyed.
This	is	a	significant	improvement	over	assign	properties,	which	can	point	to
freed	memory.

Prior	to	ARC,	the	default	storage	class	for	synthesized	properties	was	assign.	Under	ARC,	there
is	no	default	storage	class	for	synthesized	properties.	You	must	provide	one	in	the	@property	line.

There	are	two	major	changes	when	switching	to	ARC	for	most	code:

■	Don’t	use	retain,	release,	or	autorelease.	You	can	just	delete	these.
ARC	should	do	the	right	thing.
■	If	your	dealloc	only	releases	ivars,	you	don’t	need	dealloc.	This	will	be
done	automatically	for	you,	and	you	can’t	call	release	in	any	case.	If	you
still	need	dealloc	to	do	other	things	(remove	KVO	observations,	for
instance),	don’t	call	[super	dealloc].	This	last	change	is	surprising,	but
the	compiler	will	give	you	errors	if	you	forget.

As	noted	previously,	ARC	is	not	garbage	collection.	It	is	a	compiler	feature
that	injects	calls	to	retain	and	release	at	appropriate	places	in	the	code.
This	means	that	it	is	fully	interoperable	with	existing,	manual	memory
management	code,	as	long	as	all	the	code	uses	the	correct	naming
conventions.	For	example,	if	you	call	a	method	named	copySomething,	ARC
will	expect	the	result	of	that	method	to	have	a	+1	retain	count.	If	needed,	it
will	insert	a	balancing	release.	It	doesn’t	matter	to	ARC	whether	that	+1
retain	count	was	created	by	ARC	code	inside	of	copySomething,	or	manual
memory	management	inside	of	copySomething.

This	breaks	if	you	violate	Cocoa’s	naming	conventions.	For	instance,	if	you
have	a	method	that	returns	the	copyright	notice	as	an	autoreleased	string,	and
call	the	method	copyRight,	then	how	ARC	behaves	depends	on	whether	the
calling	and	called	code	are	both	compiled	with	ARC.

ARC	looks	at	the	name	copyRight,	sees	that	it	begins	with	copy,	and	so
assumes	that	it	returns	a	+1	retain	count	object.	If	copyRight	is	compiled
with	ARC,	and	the	calling	code	is	compiled	with	ARC,	everything	will	still
work.	ARC	will	inject	an	extra	retain	in	copyRight	because	of	its	name,	and
it	will	inject	an	extra	release	in	the	calling	code.	It	may	be	a	little	less
efficient,	but	the	code	will	neither	crash	nor	leak.

If,	however,	the	calling	code	is	compiled	with	ARC,	but	copyRight	is	not,
then	the	calling	code	will	inject	an	extra	release,	and	the	code	will	crash.	If
the	calling	code	is	not	compiled	with	ARC,	but	copyRight	is,	then	ARC	will
inject	an	extra	retain,	and	the	code	will	leak.

The	best	solution	to	this	problem	is	to	follow	Cocoa’s	naming	conventions.	In
this	example,	you	could	name	this	method	copyright	and	avoid	the	problem
entirely.	ARC	determines	the	memory	management	rules	based	on	whole
camel	case	words	in	the	method.

If	renaming	an	incorrect	method	is	impossible,	you	can	add	the	attribute
NS_RETURNS_RETAINED	or	NS_RETURNS_NOT_RETAINED	to	your	method
declaration	to	tell	the	compiler	which	memory	management	rule	to	use.	These
are	defined	in	NSObjCRuntime.h.

ARC	introduces	four	restrictions	on	your	code	so	that	it	can	properly	add
retain	and	release	calls	for	you:

■	No	calls	to	retain,	release,	or	autorelease.	This	is	usually	the	easiest
rule.	Just	delete	them.	It	also	means	that	you	cannot	override	these
methods,	but	you	should	almost	never	do	that	anyway.	If	you	were
overriding	these	methods	to	implement	the	Singleton	pattern,	see	Chapter	4
for	information	about	how	to	properly	implement	this	pattern	without
overriding	these	methods.
■	No	object	pointers	in	C	structs.	This	seldom	comes	up,	but	if	you	have
been	storing	an	object	in	a	C	struct,	you	either	need	to	store	it	in	an	object,
or	you	need	to	cast	it	to	void*	(see	the	next	rule	for	more	information	on
casting	to	void*).	C	structs	can	be	destroyed	at	any	time	by	calling	free,
and	this	interferes	with	automatically	tracking	objects	that	are	stored	in
them.

■	No	casting	between	id	and	void*	without	a	bridging	cast.	This	mostly
impacts	Core	Foundation	code.	See	Chapter	19	for	full	details	on	bridging
casts	and	how	to	use	them	with	ARC.
■	No	NSAutoreleasePool.	Rather	than	creating	your	own	autorelease
pools	by	hand,	just	wrap	any	code	you	want	to	have	its	own	pool	in	a
@autoreleasepool{}	block.	If	you	had	special	code	to	control	when	you

drained	your	pool,	it	is	almost	certainly	unnecessary.	@autoreleasepool	is
up	to	20×	faster	than	NSAutoreleasePool.

Most	code	will	have	no	problem	with	these	rules.	There	is	a	new	tool	in
Xcode	under	the	Edit>Refactor	menu	called	Convert	to	Objective-C
ARC....	It	will	do	the	majority	of	the	work	for	you.

ARC	is	perhaps	the	greatest	advancement	in	Objective-C	since	the
autorelease	pool.	If	at	all	possible,	you	should	convert	your	code	to	ARC.	If
you	can’t	convert	everything,	convert	as	much	as	you	can.	It	is	faster,	less
buggy,	and	easier	to	write	than	manual	memory	management.	Switch	to	ARC
today.

Properties
Objective-C	2.0	introduced	several	interesting	changes.	A	key	improvement
was	nonfragile	ivars.	This	allows	classes	to	add	ivars	without	recompiling
their	subclasses.	This	feature	mostly	affects	framework	developers	like	Apple
rather	than	application	developers,	but	it	has	some	useful	side	effects.	The
most	popular	is	synthesized	properties.

What	few	people	realize	is	that	synthesized	properties	can	generate	their	own
ivar.	For	example:

MyClass.h

@interface	MyClass	:	NSObject

@property	(copy)	NSString	*string;

@end

MyClass.m

@implementation	MyClass

@synthesize	string=string_;

@end

The	ivar	string_	is	automatically	generated,	even	though	it	is	not	listed	in
the	header.	Even	more	interesting,	you	could	put	the	property	declaration	in	a
private	extension	or	the	@implementation	block	making	a	fully	private

property.	(You	cannot	synthesize	an	ivar	for	a	property	defined	in	a	category.
See	“Categories	and	Extensions”	later	in	this	chapter	for	more	information	on
the	differences.)

In	your	code,	I	encourage	you	either	to	declare	all	of	your	ivars	in	the
interface	or	to	synthesize	all	of	your	ivars.	Don’t	have	some	declared	in	the
interface	and	some	not	declared	in	the	interface.

My	recommendation	is	to	switch	entirely	to	properties	and	fully	synthesized
ivars.	Put	your	public	properties	in	the	header,	and	your	private	properties	in
an	extension	in	the	.m	file.	So	a	full	example	might	look	like	this:

MyClass.h

@interface	MyClass	:	NSObject

@property	(readwrite,	weak)	id	delegate;

@property	(readonly,	strong)	NSString	*readonlyString;

@end

MyClass.m

@interface	MyClass	()	//	Private	methods

@property	(readwrite,	strong)	NSString	*readonlyString;

@property	(readwrite,	strong)	NSString	*privateString;

@end

@implementation	MyClass

@synthesize	delegate=delegate_;

@synthesize	readonlyString=readonlyString_;

@synthesize	privateString=privateString_;

@end

Note	how	readonlyString	is	redefined	in	the	class	extension	to	be
readwrite.	This	allows	you	to	create	a	private	setter.

Property	Attributes
While	we’re	discussing	properties,	you	should	also	consider	the	attributes	you
apply	to	your	properties.	Let’s	consider	each	category	in	turn.

■	Atomicity	—	nonatomic.	There	is	no	atomic	attribute.	Anything	not
declared	nonatomic	is	atomic.	This	is	an	easy	attribute	to	misunderstand.

Its	purpose	is	to	make	setting	and	getting	the	property	thread	safe.	That
does	not	mean	that	the	underlying	object	is	thread	safe.	For	instance,	if	you
declare	an	NSMutableArray	property	called	stuff	to	be	atomic,	then
self.stuff	is	thread	safe	and	self.stuff=otherStuff	is	thread	safe.	But
accessing	the	array	with	objectAtIndex:	is	not	thread	safe.	You	will	need
additional	locking	to	handle	that.	The	atomic	attribute	is	implemented
similar	to	this:

[_propertyLock	lock];

id	result	=	[[value	retain]	autorelease];

[_propertyLock	unlock];

return	result;

The	pattern	of	retain/autorelease	ensures	that	the	object	will	not	be
destroyed	until	the	caller’s	autorelease	pool	drains.	This	protects	the	caller
from	other	threads	releasing	the	object	in	the	middle	of	access.	Managing
the	lock	and	calling	retain	and	autorelease	can	be	expensive	(though
atomic	properties	are	much	cheaper	with	ARC).	If	you	will	never	access
this	property	from	another	thread,	or	if	you	need	more	elaborate	locking
anyway,	then	this	kind	of	atomicity	is	wasteful.	It	turns	out	that	this	is	the
case	most	of	the	time,	and	you	usually	want	to	use	nonatomic.	In	the	fairly
small	number	of	cases	where	this	kind	of	atomicity	is	useful,	there
unfortunately	is	no	way	to	call	it	out	because	there	is	no	atomic	attribute.
It’s	helpful	to	add	a	comment	in	these	cases	to	make	it	clear	that	you’re
making	the	property	atomic	on	purpose.

ARC	provides	significant	performance	benefits	to	atomic	properties,	and	best	practices	regarding
nonatomic	may	change	in	the	near	future.

■	Writability	—	readwrite,	readonly.	These	should	be	fairly	self-
explanatory.	If	a	property	is	readonly,	then	only	a	getter	will	be	available.
If	it	is	readwrite,	then	both	a	setter	and	getter	will	be	available.	There	is
no	writeonly	attribute.

■	Setter	Semantics	—	weak,	strong,	copy.	These	should	be	fairly
obvious,	but	there	are	some	things	to	consider.	First,	you	often	should	use
copy	for	immutable	classes	such	as	NSString	and	NSArray.	It	is	possible
that	there	is	a	mutable	subclass	of	your	property’s	class.	For	instance,	if
you	have	an	NSString	property,	you	might	be	passed	an
NSMutableString.	If	that	happens,	and	you	only	hold	a	reference	to	the

value	(strong),	your	property	might	change	behind	your	back	as	the	caller
mutates	it.	That	often	isn’t	what	you	want,	and	so	you	will	note	that	most
NSString	properties	use	the	copy	semantic.	This	is	also	usually	true	for
collections	like	NSArray.	Copying	immutable	classes	is	generally	very
cheap	because	it	can	almost	always	be	implemented	with	retain.

Property	Best	Practices
Properties	should	represent	the	state	of	the	object.	Getters	should	have	no
externally	visible	side	effects	(they	may	have	internal	side	effects	such	as
caching,	but	those	should	be	invisible	to	callers).	Generally	they	should	be
efficient	to	call	and	certainly	should	not	block.

Private	Ivars
While	I	prefer	properties	for	everything,	some	people	prefer	ivars,	especially
for	private	variables.	In	iOS	5,	you	can	declare	ivars	in	the	@implementation
block	like	this:

@implementation	Something{

		NSString	*name;

}

This	syntax	moves	the	private	ivar	out	of	the	public	header,	which	is	good	for
encapsulation,	and	keeps	the	public	header	easier	to	read.	ARC	automatically
retains	and	releases	ivars,	just	like	other	variables.	The	default	storage	class	is
strong,	but	you	can	create	weak	ivars	as	shown	here:

@implementation	Something{

		__weak	NSString	*name;

}

Accessors
Avoid	accessing	ivars	directly.	Use	accessors	instead.	There	are	a	few
exceptions	that	I	discuss	in	a	moment,	but	first	I	discuss	why	you	should	use
accessors.

Prior	to	ARC,	one	of	the	most	common	iOS	bugs	was	failure	to	use
accessors.	Developers	would	fail	to	retain	and	release	their	ivars	correctly,

and	the	program	would	leak	or	crash.	Because	ARC	automatically	manages
retains	and	releases,	some	developers	may	believe	that	this	rule	is	no	longer
important,	but	there	are	other	reasons	to	use	accessors.

■	Key-value	observing:	Perhaps	the	most	critical	reason	to	use	accessors
is	that	properties	can	be	observed.	If	you	do	not	use	accessors,	you	need	to
make	calls	to	willChangeValueForKey:	and	didChangeValueForKey:
every	time	you	modify	a	property.	Using	the	accessor	will	automatically
call	these	when	they	are	needed.
■	Side	effects:	You	or	one	of	your	subclasses	may	include	side	effects	in
the	setter.	There	may	be	notifications	posted	or	events	registered	with
NSUndoManager.	You	shouldn’t	bypass	these	unless	it’s	necessary.
Similarly,	you	or	a	subclass	may	add	caching	to	the	getter	that	direct	ivar
access	will	bypass.

■	Locking:	If	you	introduce	locking	to	a	property	in	order	to	manage
multithreaded	code,	direct	ivar	access	will	break	this	and	likely	crash	your
program.
■	Consistency:	One	could	argue	that	you	should	just	use	accessors	when
you	know	you	need	them	for	one	of	the	preceding	reasons,	but	this	makes
the	code	very	hard	to	maintain.	It	is	better	that	every	direct	ivar	access	be
suspicious	and	explained	rather	than	having	to	constantly	remember	which
ivars	require	accessors	and	which	do	not.	This	makes	the	code	much	easier
to	audit,	review,	and	maintain.	Accessors,	particularly	synthesized
accessors,	are	highly	optimized	in	Objective-C,	and	they	are	worth	the
overhead.

That	said,	there	are	a	few	places	where	you	should	not	use	accessors:

■	Inside	of	accessors:	Obviously	you	cannot	use	an	accessor	within	itself.
Generally	you	should	also	not	use	the	get	accessor	inside	of	the	setter
either	(this	can	create	infinite	loops	in	some	patterns).	An	accessor	may
speak	to	its	own	ivar.

■	Dealloc:	ARC	greatly	reduces	the	need	for	dealloc,	but	it	still	comes	up
sometimes.	It	is	best	not	to	call	external	objects	inside	of	dealloc.	The
object	may	be	in	an	inconsistent	state,	and	it	is	likely	confusing	to	the
observer	to	receive	several	notifications	that	properties	are	changing	when

what	is	really	meant	is	that	the	entire	object	is	being	destroyed.
■	Initialization:	Similar	to	dealloc,	the	object	may	be	in	an	inconsistent
state	during	initialization	and	you	generally	shouldn’t	fire	notifications	or
have	other	side	effects	during	this	time.	This	is	also	a	common	place	to
initialize	readonly	variables	like	an	NSMutableArray.	This	avoids	declaring
a	property	readwrite	just	so	you	can	initialize	it.

Accessors	are	highly	optimized	in	Objective-C	and	provide	important
features	for	maintainability	and	flexibility.	As	a	general	rule,	you	should	refer
to	all	properties,	even	your	own,	using	their	accessors.

Categories	and	Extensions
Categories	allow	you	to	add	methods	to	an	existing	class	at	runtime.	Any
class,	even	Cocoa	classes	provided	by	Apple,	can	be	extended	with
categories,	and	those	new	methods	will	be	available	to	all	instance	of	the
class.	This	approach	was	inherited	from	Smalltalk	and	is	somewhat	similar	to
extension	methods	in	C#.

Categories	were	designed	to	break	up	large	classes	into	more	manageable
pieces,	hence	the	name.	If	you	look	at	large	Foundation	classes,	you	will	find
that	sometimes	they	are	broken	into	several	pieces.	For	instance,	NSArray
includes	the	NSExtendedArray,	NSArrayCreation,	and	NSDeprecated
categories	defined	in	NSArray.h,	plus	the	NSArrayPathExtensions	category
defined	in	NSPathUtilities.h.	Most	of	these	are	split	up	to	make	it	simpler
to	implement	in	multiple	files,	but	some	categories,	like	the	UIStringDrawing
category	on	NSString,	exist	specifically	to	allow	different	code	to	be	loaded
at	runtime.	On	Mac,	AppKit	loads	the	NSStringDrawing	category.	On	iOS,
UIKit	loads	the	UIStringDrawing	category.	This	provides	a	more	elegant
way	to	split	up	the	code	than	#ifdef.	On	each	platform,	you	simply	compile
the	appropriate	implementation	(.m)	files,	and	the	functionality	becomes
available.

Prior	to	Objective-C	2.0,	@protocol	definitions	could	not	include	optional
methods.	Developers	used	categories	as	“informal	protocols.”	The	complier
knows	the	methods	defined	in	a	category,	but	it	will	not	generate	a	warning	if
the	methods	are	not	implemented.	This	made	all	the	protocol’s	methods

optional.	I	discuss	this	further	in	“Formal	and	Informal	Protocols”	later	in	this
chapter,	but	for	iOS	I	do	not	recommend	this	use	of	categories.	Formal
protocols	now	support	optional	methods	directly.

Because	the	compiler	will	not	check	that	you	have	implemented	methods	in
the	category,	using	categories	solely	to	break	up	large	classes	has	trade-offs.
An	implementation	file	that’s	getting	overly	large	is	often	an	indication	that
you	need	to	refactor	your	class	to	make	it	more	focused	rather	than	define
categories	to	split	it	up.	But	if	your	class	is	correctly	scoped,	you	may	find
splitting	up	the	code	with	categories	is	convenient.	On	the	other	hand,	using
categories	can	scatter	the	methods	into	different	files,	which	can	be
confusing,	so	use	your	best	judgment.

Declaration	of	a	category	is	straightforward.	It	looks	like	a	class	interface
declaration	with	the	name	of	the	category	in	parentheses:

@interface	NSMutableString	(Capitalize)

-	(void)capitalize;

@end

Capitalize	is	the	name	of	the	category,	but	it	isn’t	used	for	anything.	Note
that	there	are	no	ivars	declared	here.	Categories	cannot	declare	ivars,	nor	can
they	synthesize	properties	(which	is	the	same	thing).	You’ll	see	how	to	add
category	data	later	in	this	chapter.

The	Capitalize	category	does	not	require	that	capitalize	actually	be
implemented	anywhere.	If	it	isn’t	and	a	caller	attempts	to	invoke	it,	it	will
raise	an	exception.	The	compiler	gives	you	no	protection	here.	If	you	do
implement	it,	then	by	convention	it	looks	like	this:

@implementation	NSMutableString	(Capitalize)

-	(void)capitalize	{

		[self	setString:[self	capitalizedString]];

}

@end

I	say	“by	convention”	because	there	is	no	requirement	that	this	be	defined	in
a	category	implementation	or	that	the	category	implementation	have	the	same
name	as	the	category	interface.	However,	if	you	provide	an	@implementation
block	named	Capitalize,	then	it	must	implement	all	the	methods	from	the

@interface	block	named	Capitalize.	Adding	the	parentheses	and	category
name	after	the	class	name	allows	you	to	continue	adding	methods	in	another
compile	unit	(.m	file).	You	can	implement	your	category	methods	in	the	main
implementation	block,	in	a	named	category	implementation	block	for	the
class,	or	not	implement	them	at	all.

Technically	a	category	can	override	methods,	but	that’s	dangerous	and	not
recommended.	If	two	categories	implement	the	same	method,	then	it	is
undefined	which	one	is	used.	If	a	class	is	later	split	into	categories	for
maintenance	reasons,	your	override	could	become	undefined	behavior,	which
is	a	maddening	kind	of	bug	to	track	down.	Moreover,	using	this	feature	can
make	the	code	hard	to	understand.	Category	overrides	also	provide	no	way	to
call	the	original	method.	I	recommend	against	using	categories	to	override
existing	methods,	except	for	debugging.	Even	for	debugging,	I	prefer
swizzling,	which	is	covered	in	Chapter	20.

A	very	good	use	of	categories	is	to	provide	utility	methods	to	existing	classes.
When	doing	this,	I	recommend	naming	the	header	and	implementation	files
using	the	name	of	the	original	class	plus	the	name	of	the	extension.	For
example,	you	might	create	a	simple	MyExtensions	category	on	NSDate:

NSDate+MYExtensions.h

@interface	NSDate	(MYExtensions)

-	(NSTimeInterval)timeIntervalUntilNow;

@end

NSDate+MYExtensions.m

@implementation	NSDate	(MYExtensions)

-	(NSTimeInterval)timeIntervalUntilNow	{

		return	[self	timeIntervalSinceNow];

}

@end

If	you	have	only	a	few	utility	methods,	it	is	convenient	to	put	them	together
into	a	single	category	with	a	name	like	MYExtensions	(or	whatever	prefix	you
use	for	your	code).	This	makes	it	easy	to	drop	your	favorite	extensions	into
each	project.	Of	course,	this	is	also	code	bloat,	so	be	careful	about	how	much
you	throw	into	a	“utility”	category.	Objective-C	can’t	do	dead-code	stripping

as	effectively	as	C	or	C++.

If	you	have	a	large	group	of	related	methods,	particularly	a	collection	that
might	not	always	be	useful,	it’s	a	good	idea	to	break	those	into	their	own
category.	Look	at	UIStringDrawing.h	in	UIKit	for	a	good	example	of	this.

+load
Categories	are	attached	to	classes	at	runtime.	It’s	possible	that	the	library	that
defines	the	category	is	dynamically	loaded,	so	categories	can	be	added	quite
late.	(While	you	can’t	write	your	own	dynamic	libraries	in	iOS,	the	system
frameworks	are	dynamically	loaded	and	include	categories.)	Objective-C
provides	a	hook	called	+load	that	you	can	run	when	the	category	is	first
attached.	Like	+initialize,	you	can	use	this	to	implement	category-specific
setup	such	as	initializing	static	variables.	You	can’t	safely	use	+initialize	in
a	category	because	the	class	may	implement	this	already.	If	multiple
categories	implemented	+initialize,	it	would	be	undefined	which	one
would	run.

Hopefully	you’re	ready	to	ask	the	obvious	question:	“If	categories	can’t	use
+initialize	because	they	might	collide	with	other	categories,	what	if
multiple	categories	implement	+load?”	This	turns	out	to	be	one	of	the	few
really	magical	parts	of	the	Objective-C	runtime.	The	+load	method	is	special-
cased	in	the	runtime	so	that	every	category	may	implement	it	and	all	the
implementations	will	run.	There	are	no	guarantees	on	order,	and	you
shouldn’t	try	to	call	+load	by	hand.

+load	is	called	regardless	of	whether	the	category	is	statically	or	dynamically
loaded.	It	is	called	when	the	category	is	added	to	the	runtime,	which	often	is
at	program	launch,	before	main,	but	could	be	much	later.

Classes	can	have	their	own	+load	method	(not	defined	in	a	category)	and
those	will	be	called	when	the	classes	are	added	to	the	runtime.	This	is	seldom
useful	unless	you’re	dynamically	adding	classes.

You	don’t	need	to	protect	against	being	run	multiple	times	in	+load	the	way
you	do	with	+initialize.	The	+load	message	is	only	sent	to	classes	that
actually	implement	it,	so	you	won’t	accidentally	get	calls	from	your

subclasses	the	way	you	can	in	+initialize.	Every	+load	will	be	called
exactly	once.	You	shouldn’t	call	[super	load].

Category	Data	using	Associative	References
While	categories	can’t	create	new	ivars,	they	can	do	the	next	best	thing:	They
can	create	associative	references.	Associative	references	allow	you	to	attach
key-value	data	to	arbitrary	objects.

Consider	the	case	of	a	Person	class.	You’d	like	to	use	a	category	to	add	a	new
property	called	emailAddress.	Maybe	you	use	Person	in	other	programs,	and
sometimes	it	makes	sense	to	have	an	email	address	and	sometimes	it	doesn’t,
so	a	category	can	be	a	good	solution	to	avoid	the	overhead	when	you	don’t
need	it.	Or	maybe	you	don’t	own	the	Person	class,	and	the	maintainers	won’t
add	the	property	for	you.	In	any	case,	how	do	you	attack	this	problem?	First,
just	for	reference,	take	a	look	at	the	Person	class:

@interface	Person	:	NSObject

@property	(readwrite,	copy)	NSString	*name;

@end

@implementation	Person

@synthesize	name=name_;

@end

Now	you	can	add	a	new	property,	emailAddress,	in	a	category	using	an
associative	reference:

#import	<objc/runtime.h>

@interface	Person	(EmailAddress)

@property	(readwrite,	copy)	NSString	*emailAddress;

@end

@implementation	Person	(EmailAddress)

static	char	emailAddressKey;

-	(NSString	*)emailAddress	{

		return	objc_getAssociatedObject(self,	&emailAddressKey);

}

-	(void)setEmailAddress:(NSString	*)emailAddress	{

		objc_setAssociatedObject(self,	&emailAddressKey,

																											emailAddress,

																											OBJC_ASSOCIATION_COPY);

}

@end

Note	that	associative	references	are	based	on	the	key’s	memory	address,	not
its	value.	It	does	not	matter	what	is	stored	in	emailAddressKey;	it	only	needs
to	have	a	unique	address.	That’s	why	it’s	common	to	use	an	unassigned
static	char	as	the	key.

Associative	references	have	good	memory	management,	correctly	handling
copy,	assign,	or	retain	semantics	according	to	the	parameter	passed	to
objc_setAssociatedObject.	They	are	correctly	released	when	the	related
object	is	deallocated.

Associative	references	are	a	great	way	of	attaching	a	relevant	object	to	an
alert	panel	or	control.	For	example,	you	can	attach	a	“represented	object”	to
an	alert	panel,	as	shown	in	the	following	code.	This	code	is	available	in	the
sample	code	for	this	chapter.

ViewController.m	(AssocRef)

		id	interestingObject	=	...;

		UIAlertView	*alert	=	[[UIAlertView	alloc]

																								initWithTitle:@”Alert”	message:nil

																								delegate:self

																								cancelButtonTitle:@”OK”

																								otherButtonTitles:nil];

		objc_setAssociatedObject(alert,	&kRepresentedObject,

																											interestingObject,

																								OBJC_ASSOCIATION_RETAIN_NONATOMIC);

		[alert	show];

Now,	when	the	alert	panel	is	dismissed,	you	can	figure	out	why	you	cared:

-	(void)alertView:(UIAlertView	*)alertView

clickedButtonAtIndex:(NSInteger)buttonIndex	{

		UIButton	*sender	=	objc_getAssociatedObject(alertView,

																																														&kRepresentedObject);

		self.buttonLabel.text	=	[[sender	titleLabel]	text];

}

Many	programs	handle	this	with	an	ivar	in	the	caller	like
currentAlertObject,	but	associative	references	are	much	cleaner	and
simpler.	For	those	familiar	with	Mac	development,	this	is	similar	to
representedObject,	but	more	flexible.

One	limitation	of	associative	references	(or	any	other	approach	to	adding	data
via	a	category),	is	that	it	doesn’t	integrate	with	encodeWithCoder:,	so	they’re
difficult	to	serialize	via	a	category.

Category	Data	using	the	Flyweight	Pattern
If	you’re	sharing	code	with	pre-10.6	Mac	OS	X,	then	associative	references
aren’t	an	option	and	you’ll	need	to	use	the	older	approach:	the	Flyweight
pattern.	Rather	than	store	the	data	inside	the	object,	you	store	it	outside	the
object	and	keep	track	of	some	key	to	find	it.	In	this	case,	each	Person
instance	must	have	a	unique	identifier,	as	shown	in	this	code:

Person.h	(Flyweight)

@interface	Person	:	NSObject

@property	(readonly,	copy)	NSString	*identifier;

@property	(readwrite,	copy)	NSString	*name;

-	(Person	*)initWithIdentifier:(NSString	*)anIdentifier;

@end

Person.m	(Flyweight)

@implementation	Person

@synthesize	identifier=identifier_;

@synthesize	name=name_;

-	(Person	*)initWithIdentifier:(NSString	*)anIdentifier	{

		if	((self	=	[super	init]))	{

				identifier_	=	[anIdentifier	copy];

		}

		return	self;

}

@end

Now	you	create	a	static	NSMutableDictionary	to	keep	track	of	your
emailAddress	data:

Person+EmailAddress.h	(Flyweight)

@interface	Person	(EmailAddress)

@property	(readwrite,	copy)	NSString	*emailAddress;

@end

Person+EmailAddress.m	(Flyweight)

@implementation	Person	(EmailAddress)

static	NSMutableDictionary	*sEmailAddressForIdentifier	=	nil;

+	(void)load	{

		sEmailAddressForIdentifier	=

				[[NSMutableDictionary	alloc]	init];

}

-	(NSString	*)emailAddress	{

		return	[sEmailAddressForIdentifier

											objectForKey:[self	identifier]];

}

-	(void)setEmailAddress:(NSString	*)anAddress	{

		[sEmailAddressForIdentifier	setObject:[anAddress	copy]

																																	forKey:[self	identifier]];

}

@end

You	can	now	set	an	email	address	for	a	Person	object	just	as	you	would	set	a
name,	as	shown	here:

main.m	(Flyweight)

...

Person	*person	=	[[Person	alloc]	initWithIdentifier:@”someone”];

person.name	=	@”A	Name”;

person.emailAddress	=	@”myaddress@example.org”;

...

There	are	some	problems	with	this	approach.	There’s	no	good	way	to	release
memory,	unless	you	can	somehow	track	when	Person	objects	are	destroyed.
But	for	a	wide	variety	of	problems,	this	approach	works	pretty	well	in	cases
where	associative	references	aren’t	an	option.

Class	Extensions
Objective-C	2.0	adds	a	useful	twist	on	categories,	called	class	extensions.
These	are	declared	exactly	like	categories,	except	the	name	of	the	category	is
empty:

@interface	MYObject	()

-	(void)doSomething;

@end

Class	extensions	are	a	great	way	to	declare	private	methods	inside	of	your	.m
file.	The	difference	between	a	category	and	an	extension	is	that	methods

declared	by	an	extension	are	exactly	the	same	as	methods	declared	in	the
main	interface.	The	compiler	will	make	sure	you	implement	them	all,	and
they	will	be	added	to	the	class	at	compile	time	rather	than	runtime	as
categories	are.	You	can	even	declare	synthesized	properties	in	extensions.

Formal	and	Informal	Protocols
Protocols	are	an	important	part	of	Objective-C,	and	in	Objective-C	2.0	formal
protocols	have	become	common.	In	Objective-C	1.0,	there	was	no	@optional
tag	for	protocol	methods,	so	all	methods	were	mandatory.	It	is	rare	that	this	is
useful.	Often	you	want	some	or	all	of	the	protocol	to	be	optional.	Because
this	wasn’t	possible	in	Objective-C	1.0,	developers	commonly	used	“informal
protocols”	and	sometimes	you’ll	still	come	across	these.

An	informal	protocol	is	a	category	on	NSObject.	Categories	tell	the	compiler
that	a	method	exists,	but	do	not	require	that	the	method	be	implemented.	This
technique	allowed	developers	to	document	the	interface	and	prevent	compiler
warnings,	while	indicating	that	any	child	of	NSObject	could	implement	the
methods.	This	isn’t	a	great	approach	to	defining	an	interface,	but	in
Objective-C	1.0,	it	was	the	best	there	was.

With	Objective-C	2.0,	formal	protocols	can	declare	optional	methods,	and
many	informal	protocols	on	Mac	are	migrating	to	formal	protocols.	Luckily,
iOS	has	always	used	Objective-C	2.0,	so	formal	protocols	are	the	norm.

Most	developers	are	familiar	with	how	to	declare	that	a	class	implements	a
formal	protocol.	You	simply	include	the	protocols	in	angle	brackets	after	the
superclass:

@interface	MyAppDelegate	:	NSObject	<UIApplicationDelegate,

																																					UITableViewDatasource>

Declaring	a	protocol	is	similarly	easy:

@protocol	UITableViewDataSource	<NSObject>

@required

-	(NSInteger)tableView:(UITableView	*)tableView

numberOfRowsInSection:(NSInteger)section;

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

									cellForRowAtIndexPath:(NSIndexPath	*)indexPath;

@optional

-	(NSInteger)numberOfSectionsInTableView:(UITableView	*)tv;

-	(NSString	*)tableView:(UITableView	*)tableView

titleForHeaderInSection:(NSInteger)section;

...

There	are	some	important	points	to	note	in	this	example.	First,	protocols	can
inherit	just	like	classes.	The	UITableViewDataSource	protocol	inherits	from
the	<NSObject>	protocol.	Your	protocols	should	almost	always	inherit	from
<NSObject>,	just	as	your	classes	inherit	from	NSObject.

NSObject	is	split	into	both	a	class	and	a	protocol.	This	is	primarily	to	support	NSProxy,	which
inherits	from	the	protocol,	but	not	the	class.

For	delegate	protocols,	the	delegating	object	is	always	the	first	parameter.
This	is	important	because	it	allows	a	single	delegate	to	manage	multiple
delegating	objects.	For	instance,	one	controller	could	be	the	delegate	for
multiple	UIAlertView	instances.	Note	the	slight	difference	in	naming
convention	when	there	are	parameters	other	than	the	delegating	object.	If
there	are	no	other	parameters,	the	class	name	comes	last
(numberOfSectionsInTableView:).	If	there	are	other	parameters,	the	class
name	comes	first	as	its	own	parameter
(tableView:numberOfRowsInSection:).

Once	you’ve	created	your	protocol,	you	will	often	need	a	property	to	hold	it.
The	typical	type	for	this	property	is	id<Protocol>:

@property(nonatomic,	weak)	id<MyDelegate>	delegate;

This	means	“any	object	that	conforms	to	the	MyDelegate	protocol.”	It	is
possible	to	declare	both	a	specific	class	and	a	protocol,	and	it’s	possible	to
declare	multiple	protocols	in	the	type:

@property(nonatomic,	weak)	MyClass*	<MyDelegate,

																													UITableViewDelegate>	delegate;

This	indicates	that	delegate	must	be	a	subclass	of	MyClass	and	must
conform	to	both	the	<MyDelegate>	and	<UITableViewDelegate>	protocols.

Protocols	are	an	excellent	alternative	to	subclassing	in	many	cases.	A	single
object	can	conform	to	multiple	protocols	without	suffering	the	problems	of

multiple	inheritance	(as	found	in	C++).	If	you	are	considering	an	abstract
class,	a	protocol	is	often	the	better	choice.	Protocols	are	extremely	common
in	well-designed	Cocoa	applications.

Summary
Much	of	good	Objective-C	is	“by	convention”	rather	than	enforced	by	the
compiler.	This	chapter	covers	several	of	the	important	techniques	you’ll	use
every	day	to	get	your	programs	to	the	next	level.	Conforming	to	Cocoa’s
naming	conventions	will	greatly	improve	the	reliability	and	maintainability	of
your	code,	and	give	you	key-value	coding	and	observing	for	free.	Correct	use
of	properties	will	make	memory	management	easy,	especially	since	the
addition	of	ARC.	And	good	use	of	categories	and	protocols	will	keep	your
code	easy	to	understand	and	extend.

Further	Reading
Apple	Documentation

The	following	document	is	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Coding	Guidelines	for	Cocoa

Other	Resources
Gallagher,	Matt,	“Method	names	in	Objective-C,”	Cocoa	With	Love.
cocoawithlove.com/2009/06/method-names-in-objective-c.html

Stevenson,	Scott,	“Cocoa	Style	for	Objective-C,”	CocoaDevCentral.
cocoadevcentral.com/articles/000082.php

http://developer.apple.com/
http://cocoawithlove.com/2009/06/method-names-in-objective-c.html
http://cocoadevcentral.com/articles/000082.php

Chapter	4:	Hold	On	Loosely:	Cocoa
Design	Patterns

If	you’re	like	most	iOS	developers,	Objective-C	is	not	your	first	language.
You	probably	have	a	background	in	other	object-oriented	languages	like	Java,
C++,	or	C#.	You	may	have	done	development	in	C.	None	of	these	languages
really	prepare	you	for	how	to	think	in	Objective-C.

In	the	beginning	there	was	Simula,	and	Simula	had	two	children:	C++	from
Bell	Labs	and	Smalltalk	from	Xerox	PARC.	From	C++	sprung	Java,	which
tried	to	make	things	easier.	Microsoft	wrote	Java.NET	and	called	it	C#.
Today,	most	developers	are	trained	in	this	branch	of	Simula.	Its	patterns
include	generic	programming,	static	typing,	customization	through
subclassing,	method	calling,	and	strong	object	ownership.

Objective-C	and	Cocoa	come	from	the	Smalltalk	fork.	NeXT	developed	a
framework	called	NeXTSTEP.	It	was	written	in	Objective-C	and
implemented	many	of	Smalltalk’s	patterns.	When	Apple	brought	NeXTSTEP
to	the	Mac,	it	renamed	it	Cocoa,	although	the	NS	prefix	remains	to	this	day.
Cocoa	has	very	different	patterns,	and	this	is	what	sometimes	gives	new
developers	trouble.	Common	Cocoa	patterns	include	protocols,	dynamic
typing,	customization	through	delegation,	message	passing,	and	shared	object
ownership.

I’m	not	going	to	give	a	computer	science	history	lesson	here,	but	it’s
important	to	understand	that	Objective-C	is	not	Java	and	it’s	not	C++.	It’s
really	Smalltalk.	Because	few	developers	learn	Smalltalk,	most	need	to	adjust
their	thinking	to	get	the	most	out	of	Objective-C.

In	this	chapter	I	use	the	terms	Objective-C	and	Cocoa	interchangeably.
Technically,	Objective-C	is	a	language	and	Cocoa	is	a	collection	of
frameworks	implemented	in	Objective-C.	In	principle	you	could	use
Objective-C	without	Cocoa,	but	in	practice	this	is	never	done.	In	the
following	sections	you	learn	the	major	Cocoa	design	patterns	and	how	best	to

apply	them	in	your	programs.

The	pattern	names	used	in	this	chapter	come	from	the	book	Design	Patterns
(Addison-Wesley	Professional	1994.	ISBN:	978-0201633610)	by	Eric
Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides—sometimes
called	“The	Gang	of	Four.”	Apple	maps	its	patterns	to	the	Design	Pattern
names	in	the	chapter	“Cocoa	Design	Patterns”	of	the	Cocoa	Fundamentals
Guide	(see	the	“Further	Reading”	section	at	the	end	of	this	chapter).

Understanding	Model-View-Controller
The	most	important	pattern	in	Smalltalk	and	Cocoa	is	called	model-view-
controller	(MVC).	This	is	an	approach	to	assigning	responsibilities	within	a
program.	Model	classes	are	responsible	for	representing	information.	View
classes	are	responsible	for	interfacing	with	the	user.	Controller	classes	are
responsible	for	coordinating	between	models	and	views.

There	are	subtle	differences	between	how	Smalltalk	and	Cocoa	implement	MVC.	This	chapter
discusses	only	how	Cocoa	uses	MVC.

Using	Model	Classes
A	good	model	class	encapsulates	a	piece	of	data	in	a	presentation-
independent	way.	A	classic	example	of	a	good	model	class	is	Person.	A
Person	might	have	a	name,	an	address,	a	birthdate,	and	an	image.	The	Person
class,	or	related	model	classes,	would	encapsulate	storing	and	retrieving
related	information	from	a	data	source,	but	would	have	no	display	or	editing
features.	The	same	Person	class	should	be	easily	reusable	on	an	iPhone,	iPad,
Mac,	or	a	command-line	program.	Model	classes	should	reference	only	other
model	classes.	They	should	never	reference	views	or	controllers.	A	model
class	might	have	a	delegate	that	happens	to	be	a	controller,	but	it	should
implement	this	using	a	protocol	so	that	it	does	not	need	to	reference	the
specific	controller	class.

Model	class	names	are	generally	simple	nouns	like	Person,	Dog,	and	Record.
You	often	include	a	two-	or	three-letter	prefix	to	identify	them	as	your	code
and	prevent	collisions,	such	as	RNPerson.

Model	classes	can	be	mutable	or	immutable.	An	immutable	class	cannot

change	once	it	is	created.	NSString	is	a	good	example	of	this.	A	mutable
class	like	NSMutableString	can	change	after	it	is	created.	In	this	context,
“change”	refers	only	to	changes	that	are	visible	outside	the	object.	It	doesn’t
matter	if	internal	data	structures	like	caches	change.

There	are	many	advantages	to	immutable	objects.	They	can	save	time	and
memory.	Immutable	objects	can	implement	copy	by	calling	retain.	Because
it’s	impossible	for	the	object	to	change,	you	don’t	have	to	make	a	real	copy.
Immutable	objects	are	inherently	thread	safe	without	locking,	which	makes
them	much	faster	and	safer	to	access	in	multithreaded	code.	Because
everything	is	configured	at	initialization	time,	it	is	much	easier	to	ensure	the
object	is	always	in	a	consistent	state.	You	should	use	immutable	model
classes	unless	there	is	a	reason	to	make	them	mutable.

Model	classes	are	often	the	most	testable	and	reusable	classes	in	the	system.
Designing	them	well	is	one	of	the	best	ways	to	improve	the	overall	quality	of
your	code.	Historically,	Apple	sample	code	has	not	included	well-designed
model	classes.	This	confuses	new	developers	who	believed	that	controllers
(or	worse,	views)	are	supposed	to	hold	data.	More	recent	sample	code	from
Apple	has	improved,	and	the	example	project	TheElements	includes	good
examples	of	model	classes.	Look	at	AtomicElement	and	PeriodicElements.
(See	the	“Further	Reading”	section	at	the	end	of	this	chapter.)

Using	View	Classes
View	classes	are	responsible	for	interfacing	with	the	user.	They	present
information	and	accept	user	events.	(This	is	the	biggest	deviation	from
Smalltalk	MVC,	where	controller	classes	are	responsible	for	user	events.)
View	classes	should	not	reference	controller	classes.	As	with	model	classes,
view	classes	may	have	a	delegate	that	happens	to	be	a	controller,	but	they
shouldn’t	reference	the	controller	class	directly.	They	also	shouldn’t	reference
other	views,	except	their	immediate	superview	and	subviews.	Views	may
reference	model	classes,	but	generally	only	the	specific	model	object	that
they	are	displaying.	For	instance	a	PersonView	object	might	display	a	single
Person	object.	It	is	easier	to	reuse	view	objects	that	do	not	reference	custom
model	objects.	For	instance,	a	UITableViewCell	is	highly	reusable	because	it
displays	only	strings	and	images.	There	is	sometimes	a	trade-off	between
reusability	and	ease-of-use	in	view	objects,	and	finding	the	right	balance	is	an

important	part	of	your	architecture.	In	my	experience,	specialized	views	that
handle	a	specific	model	class	are	often	very	useful	for	application	writers.
Framework	writers,	such	as	the	UIKit	team,	need	to	emphasize	reusability.

Model-specific	view	class	names	often	append	View	to	the	model	class,	such
as	PersonView	or	RecordView.	You	should	do	this	only	if	the	view	is	a
subclass	of	UIView.	Some	kinds	of	view	classes	have	special	names.	Reusable
views	are	generally	called	cells	such	as	UITableViewCell	on	iOS	or	NSCell
on	Mac.	Lightweight,	hardware-optimized	view	classes	are	generally	called
layers	such	as	CALayer	or	CGLayer.	Whether	or	not	they	are	subclasses	of
UIView	or	NSView,	they	are	still	MVC	view	classes.

Views	are	responsible	for	accepting	events	from	users,	but	not	for	processing
them.	When	a	user	touches	a	view,	the	view	may	respond	by	alerting	a
delegate	that	it	has	been	touched,	but	it	should	not	perform	logic	or	modify
other	views.	For	example,	pressing	a	Delete	button	should	simply	tell	a
delegate	that	the	Delete	button	has	been	pressed.	It	should	not	tell	the	model
classes	to	delete	the	data,	nor	tell	the	table	view	to	remove	the	data	from	the
screen.	Those	functions	are	the	responsibility	of	a	controller.

Using	Controller	Classes
Between	the	models	and	the	views	lie	the	controllers,	which	implement	most
of	the	application-specific	logic.	Most	controllers	coordinate	between	model
classes	and	view	classes.	For	example	UITableViewController	coordinates
between	the	data	model	and	the	UITableView.

Some	controllers	coordinate	between	model	objects	or	between	view	objects.
These	sometimes	have	names	ending	in	Manager	such	as	CALayoutManager
and	CTFontManager.	It	is	common	for	managers	to	be	singletons.

Controllers	are	often	the	least-reusable	parts	of	a	program,	which	is	why	it	is
so	critical	not	to	allow	view	and	model	classes	to	reference	them	directly.
Even	controllers	should	avoid	referencing	other	controllers	directly.	In	this
context,	“directly”	means	referring	to	specific	classes.	It	is	fine	to	refer	to
protocols	that	are	implemented	by	a	controller.	For	instance,	UITableView
references	<UITableViewDelegate>,	but	should	not	reference
MyTableViewController.

A	common	mistake	is	to	allow	many	objects	to	reference	the	application
delegate	directly.	For	example,	you	may	want	to	access	a	global	object.	A
common,	but	incorrect,	solution	is	to	add	this	global	object	as	a	property	on
the	application	delegate,	and	access	it	as	shown	here:

		//	Do	not	do	this

		MyAppDelegate	*appDelegate	=

				(MyAppDelegate*)[[UIApplication	sharedApplication]	delegate];

		Something	*something	=	[appDelegate	something];

		//	Do	not	do	this

It	is	very	difficult	to	reuse	code	that	uses	this	pattern.	It	relies	on
MyAppDelegate,	which	is	hard	to	move	to	other	programs	that	have	their	own
application	delegate.	The	better	way	to	access	global	objects	is	the	Singleton
pattern,	discussed	later	in	this	chapter.

The	model-view-controller	pattern	is	very	effective	at	improving	code	reuse.
Applying	it	properly	to	your	programs	helps	them	fit	into	the	Cocoa
framework	and	simplify	development.

Understanding	Delegates	and	Data	Sources
A	delegate	is	a	helper	object	that	manages	the	behavior	of	another	object.	For
example,	UITableView	needs	to	know	how	tall	each	row	should	be.
UITableView	has	a	rowHeight	property,	but	this	isn’t	sufficient	for	all
problems.	What	if	the	first	row	should	be	taller	than	the	other	rows?	Apple
might	have	added	a	firstRowHeight	property	for	that	case.	Then	it	might
have	added	lastRowHeight	and	evenRowHeight	properties.	UITableView
would	become	much	more	complicated,	and	still	would	be	limited	to	uses	that
Apple	had	specifically	designed	for.

Instead	UITableView	takes	a	delegate,	which	can	be	any	object	class	that
conforms	to	the	<UITableViewDelegate>	protocol.	Every	time	UITableView
is	ready	to	draw	a	row,	it	asks	its	delegate	how	tall	that	row	should	be.	This
allows	you	to	implement	arbitrary	logic	for	row	height.	It	could	be	based	on
the	data	in	that	row,	or	a	user	configuration	option,	or	any	other	criteria	that	is
appropriate	for	your	application.	Delegation	makes	customization	extremely
flexible.

Some	objects	have	a	special	kind	of	delegate	called	a	data	source.
UITableView	has	a	data	source	protocol	called	<UITableViewDataSource>.
Generally	a	delegate	is	responsible	for	appearance	and	behavior,	while	a	data
source	is	responsible	for	the	data	to	be	displayed.	Splitting	the	responsibilities
this	way	can	be	useful	in	some	cases,	but	most	of	the	time	the	delegate	and
the	data	source	are	the	same	object.	This	object	is	generally	the	controller.	For
instance,	UITableViewController	conforms	to	both
<UITableViewDelegate>	and	<UITableViewDataSource>.

As	a	general	rule,	objects	do	not	retain	their	delegates.	If	you	create	a	class
with	a	delegate	property,	it	should	almost	always	be	declared	weak.	In	most
cases,	an	object’s	delegate	is	also	its	controller,	and	the	controller	almost
always	retains	the	original	object.	If	the	object	retained	its	delegate,	you
would	have	a	retain	loop	and	would	leak	memory.	There	are	exceptions	to
this	rule.	For	example,	NSURLConnection	retains	its	delegate,	but	only	while
the	connection	is	loading.	After	that	NSURLConnection	releases	its	delegate,
avoiding	a	permanent	retain	loop.

Delegates	are	often	observers	(see	“Working	with	the	Observer	Pattern”	later
in	this	chapter).	It	is	common	for	objects	to	have	delegate	methods	that
parallel	their	notifications.	For	example,	UIApplication	sends	its	delegate
applicationWillTerminate:.	It	also	posts	the	notification
UIApplicationWillTerminateNotification.

Configuring	your	objects	using	delegation	is	a	form	of	the	Strategy	pattern.
The	Strategy	pattern	encapsulates	an	algorithm,	and	allows	you	to	change
how	an	object	behaves	by	attaching	different	strategy	(algorithm)	objects.	A
delegate	is	a	kind	of	Strategy	object	that	encapsulates	the	algorithms
determining	the	behavior	of	another	object.	For	instance,	a	table	view’s
delegate	implements	an	algorithm	that	determines	how	high	the	table	view’s
rows	should	be.	Delegation	reduces	the	need	for	subclassing	by	moving
customization	logic	into	helper	objects.	This	improves	reusability	and	can
simplify	your	code	by	moving	complex	customization	logic	out	of	the	main
program	flow.	Before	adding	configuration	properties	to	your	classes,
consider	adding	a	delegate	instead.

Working	with	the	Command	Pattern

The	Command	pattern	encapsulates	a	request	as	an	object.	Rather	than	calling
a	method	directly,	you	package	the	method	call	into	an	object	and	dispatch	it,
possibly	at	a	later	time.	This	can	provide	significant	flexibility	and	allows
requests	to	be	queued,	redirected,	logged,	and	serialized.	It	also	supports
undoing	operations	by	storing	the	inverse	of	the	commands.	Cocoa
implements	the	Command	pattern	using	target-action	and	NSInvocation.	In
this	section	you	will	learn	how	to	use	NSInvocation	to	create	more	complex
dispatch	objects	such	as	trampolines.

Using	Target-Action
The	simplest	form	of	the	Command	pattern	in	Cocoa	is	called	target-action.
This	isn’t	a	full	implementation	of	the	Command	pattern	because	it	doesn’t
encapsulate	the	request	into	a	separate	object,	but	it	allows	similar	flexibility.

UIControl	is	an	excellent	example	of	target-action.	You	configure	a
UIControl	by	calling	addTarget:action:forControlEvents:.	This
establishes	a	target,	which	is	the	object	to	send	a	message,	an	action,	which	is
the	message	to	send,	and	a	set	of	events	that	will	trigger	the	message.	The
action	selector	must	conform	to	a	particular	signature.	In	the	case	of
UIControl,	the	signature	must	be	in	one	of	the	following	forms:

		-	(void)action;

		-	(void)action:(id)sender;

		-	(void)action:(id)sender	forEvent:(UIEvent	*)event;

UIControl	can	then	dispatch	its	action	like	this:

		[target	performSelector:action

															withObject:self

															withObject:event];

Because	of	how	Objective-C	message	passing	works,	this	use	of
performSelector:...	works	whether	action	takes	one,	two,	or	no
parameters.	(See	Chapter	20	for	details	of	how	Objective-C	message	passing
is	implemented.)

Target-action	is	very	common	in	Objective-C.	Controls,	timers,	toolbars,
gesture	recognizers,	IBAction,	notifications,	and	other	parts	of	Cocoa	rely	on
this	pattern.

Target-action	is	similar	to	delegation.	The	main	difference	is	that	in	target-
action	the	selector	is	configurable,	while	in	delegation	the	selector	is	defined
by	a	protocol.	It	is	easier	for	a	single	object	to	be	the	target	of	several
NSTimer	objects	than	it	is	to	be	the	delegate	of	several	UITableView	objects.
To	listen	to	multiple	NSTimer	objects,	you	only	need	to	configure	them	with
different	actions:

[NSTimer	scheduledTimerWithTimeInterval:1	target:self

																selector:@selector(firstTimerFired:)	...];

[NSTimer	scheduledTimerWithTimeInterval:1	target:self

																selector:@selector(secondTimerFired:)	...];

To	listen	to	multiple	table	views,	you	need	to	check	which	table	view	sent	the
request:

-	(NSInteger)numberOfSectionsInTableView:(UITableView*)tv	{

		if	(tv	==	self.tableView1)	{

				return	[self.dataset1	count];

		}

		else	if	(tv	==	self.tableView2)	{

				return	[self.dataset2	count];

		}

		else	{

				NSAssert(NO,	@”Bad	tv:	%@”,	tv);

				return	0;

		}

}

Each	delegate	method	must	include	this	if	logic,	which	can	become	very
cumbersome.	For	this	reason,	multiple	instances	of	a	class	generally	do	not
share	the	same	delegate.

On	the	other	hand,	delegation	allows	you	to	verify	at	compile	time	that	the
required	methods	are	implemented.	The	compiler	cannot	verify	that	the	target
of	an	NSTimer	implements	a	given	action.

While	the	compiler	cannot	determine	if	a	target	implements	a	given	action,	you	can	check	for
simple	typos	by	turning	on	the	Undeclared	Selector	warning	(GCC_WARN_UNDECLARED_SELECTOR,	-
Wundeclared-selector).	This	generates	a	warning	if	an	@selector(...)	expression	references	an
unknown	selector.

As	a	general	rule,	if	your	object	will	send	only	one	message	to	its	target
object,	use	target-action.	If	it	will	send	multiple	messages,	use	delegation.

Using	Method	Signatures	and	Invocations
NSInvocation	is	a	traditional	implementation	of	the	Command	pattern.	It
bundles	a	target,	a	selector,	a	method	signature,	and	all	the	parameters	into	an
object	that	can	be	stored	and	invoked	at	a	later	time.	When	the	invocation	is
invoked,	it	will	send	the	message	and	the	Objective-C	runtime	will	find	the
correct	method	implementation	to	execute.

A	method	implementation	(IMP)	is	a	function	pointer	to	a	C	function	with	the
following	signature:

id	function(id	self,	SEL	_cmd,	...)

Every	method	implementation	takes	two	parameters,	self	and	_cmd.	The	first
parameter	is	the	self	pointer	that	you	are	familiar	with.	The	second
parameter,	_cmd,	is	the	selector	that	was	sent	to	this	object.	This	is	a	reserved
symbol	in	the	language	and	is	accessed	exactly	like	self.	For	more	details	on
how	to	work	with	method	implementations,	see	Chapter	20.

While	the	IMP	typedef	suggests	that	every	Objective-C	method	returns	an	id,	obviously	there	are
many	Objective-C	methods	that	return	other	types	such	as	integers	or	floating-point	numbers,
and	many	Objective-C	methods	return	nothing	at	all.	The	actual	return	type	is	defined	by	the
message	signature,	discussed	below,	not	the	IMP	typedef.

NSInvocation	includes	a	target	and	a	selector.	As	discussed	in	the	section
“Using	Target-Action,”	a	target	is	the	object	to	send	the	message	to,	and	the
selector	is	the	message	to	send.	A	selector	is	roughly	the	name	of	a	method.	I
say	“roughly”	because	selectors	don’t	have	to	map	exactly	to	methods.	A
selector	is	just	a	name,	like	initWithBytes:length:encoding:.	A	selector
isn’t	bound	to	any	particular	class	or	any	particular	return	value	or	parameter
types.	It	isn’t	even	specifically	a	class	or	instance	selector.	You	can	think	of	a
selector	as	a	string.	So	-[NSString	length]	and	-[NSData	length]	have	the
same	selector,	even	though	they	map	to	different	methods’	implementations.

NSInvocation	also	includes	a	method	signature	(NSMethodSignature).	This
encapsulates	the	return	type	and	the	parameter	types	of	a	method.	An
NSMethodSignature	does	not	include	the	name	of	a	method,	only	the	return
value	and	the	parameters.	Here	is	how	you	can	create	one	by	hand:

		NSMethodSignature	*sig	=

									[NSMethodSignature	signatureWithObjCTypes:”@@:*”];

This	is	the	signature	for	–[NSString	initWithUTF8String:].	The	first
character	(@)	indicates	that	the	return	value	is	an	id.	To	the	message	passing
system,	all	Objective-C	objects	are	the	same.	It	can’t	tell	the	difference
between	an	NSString	and	an	NSArray.	The	next	two	characters	(@:)	indicate
that	this	method	takes	an	id	and	a	SEL.	As	discussed	above,	every	Objective-
C	method	takes	these	as	its	first	two	parameters.	They’re	implicitly	passed	as
self	and	_cmd.	Finally,	the	last	character	(*)	indicates	that	the	first	“real”
parameter	is	a	character	string	(char*).

If	you	do	work	with	type	encoding	directly,	you	can	use	@encode(type)	to	get	the	string	that
represents	that	type	rather	than	hard-coding	letter.	For	example,	@encode(id)	is	the	string	“@”.

You	should	seldom	call	signatureWithObjCTypes:.	I	only	do	it	here	to	show
it’s	possible	to	build	a	method	signature	by	hand.	The	way	you	generally	get	a
method	signature	is	to	ask	a	class	or	instance	for	it.	Before	you	do	that,	you
need	to	consider	whether	the	method	is	an	instance	method	or	a	class	method.
The	method	–init	is	an	instance	method	and	is	marked	with	a	leading
hyphen	(-).	The	method	+alloc	is	a	class	method	and	is	marked	with	a
leading	plus	(+).	You	can	request	instance	method	signatures	from	instances
and	class	method	signatures	from	classes	using
methodSignatureForSelector:.	If	you	want	the	instance	method	signature
from	a	class,	you	use	instanceMethodSignatureForSelector:.	The
following	example	demonstrates	this	for	+alloc	and	–init.

		SEL	initSEL	=	@selector(init);

		SEL	allocSEL	=	@selector(alloc);

		NSMethodSignature	*initSig,	*allocSig;

		//	Instance	method	signature	from	instance

		initSig	=	[@”String”	methodSignatureForSelector:initSEL];

		//	Instance	method	signature	from	class

		initSig	=	[NSString

															instanceMethodSignatureForSelector:initSEL];

		//	Class	method	signature	from	class

		allocSig	=	[NSString

																						methodSignatureForSelector:allocSEL];

If	you	compare	initSig	and	allocSig,	you	will	discover	that	they	are	the
same.	They	each	take	no	additional	parameters	(besides	self	and	_cmd)	and
return	an	id.	This	is	all	that	matters	to	the	message	signature.

Now	that	you	have	a	selector	and	a	signature,	you	can	combine	them	with	a
target	and	parameter	values	to	construct	an	NSInvocation.	An	NSInvocation
bundles	everything	needed	to	pass	a	message.	Here	is	how	you	create	an
invocation	of	the	message	[set	addObject:stuff]	and	invoke	it:

		NSMutableSet	*set	=	[NSMutableSet	set];

		NSString	*stuff	=	@”Stuff”;

		SEL	selector	=	@selector(addObject:);

		NSMethodSignature	*sig	=

																	[set	methodSignatureForSelector:selector];

		NSInvocation	*invocation	=

										[NSInvocation	invocationWithMethodSignature:sig];

		[invocation	setTarget:set];

		[invocation	setSelector:selector];

		//	Place	the	first	argument	at	index	2.

		[invocation	setArgument:&stuff	atIndex:2];

		[invocation	invoke];

Note	that	the	first	argument	is	placed	at	index	2.	As	discussed	above,	index	0
is	the	target	(self)	and	index	1	is	the	selector	(_cmd).	NSInvocation	sets
these	automatically.	Also	note	that	you	must	pass	a	pointer	to	the	argument,
not	the	argument	itself.

Invocations	are	extremely	flexible,	but	they’re	not	fast.	Creating	an
invocation	is	hundreds	of	times	slower	than	passing	a	message.	Invoking	an
invocation	is	cheap,	however,	and	invocations	can	be	reused.	They	can	be
dispatched	to	different	targets	using	invokeWithTarget:	or	setTarget:.	You
can	also	change	their	parameters	between	uses.	Much	of	the	cost	of	creating
an	invocation	is	in	methodSignatureForSelector:,	so	caching	this	result	can
significantly	improve	performance.

Invocations	do	not	retain	their	object	arguments	by	default,	nor	do	they	make
a	copy	of	C	string	arguments.	To	store	the	invocation	for	later	use,	you	should
call	retainArguments	on	it.	This	retains	all	object	arguments	and	copies	all	C
string	arguments.	When	the	invocation	is	released,	it	releases	the	objects	and
frees	its	copies	of	the	C	strings.	Invocations	do	not	provide	any	handling	for
pointers	other	than	Objective-C	objects	and	C	strings.	If	you’re	passing	raw
pointers	to	an	invocation,	you’re	responsible	for	managing	the	memory
yourself.

If	you	use	an	invocation	to	create	an	NSTimer,	such	as	by	using

timerWithTimeInterval:invocation:repeats:,	the	timer	automatically	calls	retainArguments	on
the	invocation.

Invocations	are	a	key	part	of	the	Objective-C	message	dispatching	system.
This	integration	with	the	message	dispatching	system	makes	them	central	to
creating	trampolines	and	undo	management.

Using	Trampolines
A	trampoline	“bounces”	a	message	from	one	object	to	another.	This	allows	a
proxy	object	to	move	messages	to	another	thread,	cache	results,	coalesce
duplicate	messages,	or	any	other	intermediary	processing	you’d	like.
Trampolines	generally	use	forwardInvocation:	to	handle	arbitrary
messages.	If	an	object	does	not	respond	to	a	selector,	before	Objective-C
throws	an	error	it	creates	an	NSInvocation	and	passes	it	to	the	object’s
forwardInvocation:.	You	can	use	this	to	forward	the	message	in	any	way
that	you’d	like.	For	full	details,	see	Chapter	20.

In	this	example,	you	create	a	trampoline	called	RNObserverManager.	Any
message	sent	to	the	trampoline	will	be	forwarded	to	registered	observers	that
respond	to	that	selector.	This	provides	functionality	similar	to
NSNotification,	but	is	easier	to	use	and	faster	if	there	are	many	observers.

Here	is	the	public	interface	for	RNObserverManager:

RNObserverManager.h	(ObserverTrampoline)

#import	<objc/runtime.h>

@interface	RNObserverManager:	NSObject

-	(id)initWithProtocol:(Protocol	*)protocol

													observers:(NSSet	*)observers;

-	(void)addObserver:(id)observer;

-	(void)removeObserver:(id)observer;

@end

You	initialize	this	trampoline	with	a	protocol	and	an	initial	set	of	observers.
You	can	then	add	or	remove	observers.	Any	method	defined	in	the	protocol
will	be	forwarded	to	all	the	current	observers	if	they	implement	it.

Here	is	the	skeleton	implementation	for	RNObserverManager,	without	the
trampoline	piece.	Everything	should	be	fairly	obvious.

RNObserverManager.m	(ObserverTrampoline)

@interface	RNObserverManager()

@property	(nonatomic,	readonly,	strong)

																																			NSMutableSet	*observers;

@property	(nonatomic,	readonly,	strong)	Protocol	*protocol;

@end

@implementation	RNObserverManager

@synthesize	observers	=	observers_;

@synthesize	protocol	=	protocol_;

-	(id)initWithProtocol:(Protocol	*)protocol

													observers:(NSSet	*)observers	{

		if	((self	=	[super	init]))	{

				protocol_	=	protocol;

				observers_	=	[NSMutableSet	setWithSet:observers];

		}

		return	self;

}

-	(void)addObserver:(id)observer	{

			NSAssert([observer	conformsToProtocol:self.protocol],

											@”Observer	must	conform	to	protocol.”);

		[self.observers	addObject:observer];

}

-	(void)removeObserver:(id)observer	{

		[self.observers	removeObject:observer];

}

@end

Now	you	override	methodSignatureForSelector:.	The	Objective-C
message	dispatcher	uses	this	method	to	construct	an	NSInvocation	for
unknown	selectors.	You	override	it	to	return	method	signatures	for	methods
defined	in	protocol,	using	protocol_getMethodDescription.	You	need	to
get	the	method	signature	from	the	protocol	rather	than	from	the	observers
because	the	method	may	be	optional,	and	the	observers	might	not	implement
it.

-	(NSMethodSignature	*)methodSignatureForSelector:(SEL)sel

{

		//	Check	the	trampoline	itself

		NSMethodSignature	*

		result	=	[super	methodSignatureForSelector:sel];

		if	(result)	{

				return	result;

		}

		

		//	Look	for	a	required	method

		struct	objc_method_description	desc	=

													protocol_getMethodDescription(self.protocol,

																																											sel,	YES,	YES);

		if	(desc.name	==	NULL)	{

				//	Couldn’t	find	it.	Maybe	it’s	optional

				desc	=	protocol_getMethodDescription(self.protocol,

																																								sel,	NO,	YES);

		}

		

		if	(desc.name	==	NULL)	{

				//	Couldn’t	find	it.	Raise	NSInvalidArgumentException

				[self	doesNotRecognizeSelector:	sel];

				return	nil;

		}

		

		return	[NSMethodSignature

																								signatureWithObjCTypes:desc.types];

}

Finally,	you	override	forwardInvocation:	to	forward	the	invocation	to	the
observers	that	respond	to	the	selector:

-	(void)forwardInvocation:(NSInvocation	*)invocation	{

		SEL	selector	=	[invocation	selector];

		for	(id	responder	in	self.observers)	{

				if	([responder	respondsToSelector:selector])	{

						[invocation	setTarget:responder];

						[invocation	invoke];

				}

		}

}

To	use	this	trampoline,	you	create	an	instance,	set	the	observers,	and	then
send	messages	to	it	as	the	following	code	shows.	Variables	that	hold	a
trampoline	should	generally	be	of	type	id	so	that	you	can	send	any	message
to	it	without	generating	a	compiler	warning.

		@protocol	MyProtocol	<NSObject>

		-	(void)doSomething;

		@end

		...

		id	observerManager	=	[[RNObserverManager	alloc]

																					initWithProtocol:@protocol(MyProtocol)

																												observers:observers];

		

		[observerManager	doSomething];

This	behaves	similarly	to	posting	a	notification.	You	can	use	this	technique	to
solve	a	variety	of	problems.	For	example,	you	can	create	a	proxy	trampoline
that	forwards	all	messages	to	the	main	thread	as	shown	here:

RNMainThreadTrampoline.h	(ObserverTrampoline)

@interface	RNMainThreadTrampoline	:	NSObject

@property	(nonatomic,	readwrite,	strong)	id	target;

-	(id)initWithTarget:(id)aTarget;

@end

RNMainThreadTrampoline.m	(ObserverTrampoline)

@implementation	RNMainThreadTrampoline

@synthesize	target	=	target_;

-	(id)initWithTarget:(id)aTarget	{

		if	((self	=	[super	init]))	{

				target_	=	aTarget;

		}

		return	self;

}

-	(NSMethodSignature	*)methodSignatureForSelector:(SEL)sel

{

		return	[self.target	methodSignatureForSelector:sel];

}

-	(void)forwardInvocation:(NSInvocation	*)invocation	{

		[invocation	setTarget:self.target];

		[invocation	retainArguments];

		[invocation	performSelectorOnMainThread:@selector(invoke)

																															withObject:nil

																												waitUntilDone:NO];

}

@end

forwardInvocation:	can	transparently	coalesce	duplicate	messages,	add
logging,	forward	messages	to	other	machines,	and	perform	a	wide	variety	of
other	functions.	See	Chapter	20	for	more	discussion,	including	how	to	couple
with	NSProxy.

Using	Undo

The	Command	pattern	is	central	to	undo	management.	By	storing	Command
objects	(NSInvocation)	in	a	stack,	you	can	provide	arbitrary	undo	and	redo
functionality.

Before	performing	an	action	that	the	user	should	be	able	to	undo,	you	pass	its
inverse	to	NSUndoManager.	A	convenient	way	to	do	this	is	with
prepareWithInvocationTarget:.	For	example:

		-	(void)setString:(NSString	*)aString	{

				//	Make	sure	there	is	really	a	change

				if	(!	[aString	isEqualToString:string_])	{

						//	Send	the	undo	action	to	the	trampoline

						[[self.undoManager	prepareWithInvocationTarget:self]

								setString:string_];

						//	Perform	the	action

						string_	=	aString;

				}

		}

When	you	call	prepareWithInvocationTarget:,	the	undo	manager	returns	a
trampoline	that	you	can	send	arbitrary	messages	to.	These	are	converted	into
NSInvocation	objects	and	stored	on	a	stack.	When	the	user	wants	to	undo	an
operation,	the	undo	manager	just	invokes	the	last	command	on	the	stack.

The	Command	pattern	is	used	throughout	Cocoa	and	is	a	useful	tool	for	your
architectures.	It	helps	separate	request	dispatching	from	the	requests
themselves,	improving	code	reusability	and	flexibility.

Working	with	the	Observer	Pattern
The	Observer	pattern	allows	an	object	to	notify	many	observers	of	changes	in
its	state,	without	requiring	that	the	observed	object	have	special	knowledge	of
the	observers.	The	Observer	pattern	comes	in	many	forms	in	Cocoa,
including	NSNotification,	delegate	observations,	and	key-value	observing
(KVO).	It	encourages	weak	coupling	between	objects,	which	makes
components	more	reusable	and	robust.

Delegate	observations	are	discussed	in	“Understanding	Delegates	and	Data
Sources”	earlier	in	this	chapter.	KVO	is	discussed	fully	in	Chapter	15.	The
rest	of	this	section	focuses	on	NSNotification.

Most	Cocoa	developers	have	encountered	NSNotificationCenter.	It
provides	loose	coupling	by	allowing	one	object	to	register	to	be	notified	of
events	defined	by	string	names.	This	can	be	simpler	to	implement	and
understand	than	KVO.	Here’s	an	example	of	how	to	use	it	well.

Poster.h

//	Define	a	string	constant	for	the	notification

extern	NSString	*	const	PosterDidSomethingNotification;

Poster.m

							NSString	*	const	PosterDidSomethingNotification	=

																														@”PosterDidSomethingNotification”;

							...

									//	Include	the	poster	as	the	object	in	the	notification

									[[NSNotificationCenter	defaultCenter]

											postNotificationName:PosterDidSomethingNotification

				object:self];

Observer.m

//	Import	Poster.h	to	get	the	string	constant

#import	“Poster.h”

...

		//	Register	to	receive	a	notification

		[[NSNotificationCenter	defaultCenter]	addObserver:self

				selector:@selector(posterDidSomething:)

				name:PosterDidSomethingNotification	object:nil];

...

-	(void)	posterDidSomething:(NSNotification	*)note	{

		//	Handle	the	notification	here

}

-	(void)dealloc	{

		//	Always	remove	your	observations

		[[NSNotificationCenter	defaultCenter]

				removeObserver:self];

		[super	dealloc];

}

Notice	the	name	PosterDidSomethingNotification.	It	begins	with	the	class
of	the	poster,	which	should	always	be	the	class	of	the	object.	It	then	follows
a	“will”	or	“did”	pattern.	This	is	very	similar	to	delegate	methods	and	that’s

intentional.	The	ending	Notification	is	traditional	for	notification	names	to
distinguish	them	from	other	string	constants	like	keys	or	paths.

This	example	uses	a	string	constant	for	the	notification	name.	This	is	critical
for	avoiding	typos.	Notification	string	constants	do	not	traditionally	begin
with	a	k	as	some	constants	do.	I	recommend	the	value	of	the	string	constant
match	the	name	of	the	string	constant	as	shown	in	this	example.	This	makes
obvious	which	constant	is	being	used	when	you	see	the	value	in	debug	logs.

The	placement	of	const	is	important	when	declaring	string	constants.	This	declaration	is	correct:

extern	NSString	*	const	RNFooDidCompleteNotification;

This	declaration	is	incorrect:

extern	const	NSString	*	RNFooDidCompleteNotification;

The	former	is	a	constant	pointer	to	an	immutable	string.	The	latter	is	a	changeable	pointer	to	an
immutable	string.	NSString	is	always	immutable	because	it	is	an	immutable	class.	So	NSString	*
const	is	useful.	const	NSString	*	is	useless.	This	is	easier	to	remember	if	you	read	the	declaration
from	right	to	left:	“const	pointer	to	NSString.”

As	I	mentioned	earlier,	the	beginning	of	the	notification	name	should	always
be	the	class	of	object.	In	this	case	that	is	Poster.	This	is	almost	always	self
(the	object	posting	the	notification).	For	consistency,	the	notification	should
always	include	an	object,	even	if	it	is	a	singleton.

The	observer	should	consider	carefully	whether	to	observe	a	specific	object
or	nil	(all	notifications	with	a	given	name,	regardless	of	the	value	of
object).	Observing	a	specific	object	can	be	cleaner	and	ensures	that	the
observer	won’t	receive	notifications	from	instances	that	it	is	unaware	of.	A
class	that	has	a	single	instance	today	may	have	additional	instances	tomorrow.

If	you	observe	a	specific	instance,	it	should	generally	be	something	you
retain	in	an	ivar.	Observing	something	does	not	retain	it,	and	the	object
you	are	observing	could	deallocate.	That	won’t	cause	a	crash;	you	just	won’t
receive	notifications	from	that	object	anymore.	But	it’s	sloppy	and	likely
indicates	a	flaw	in	your	design.	It	also	uses	unneeded	slots	in	the	notification
table,	which	is	bad	for	performance.

While	observing	an	object	that	deallocates	won’t	cause	a	crash,	notifying	a
deallocated	observer	will.	This	is	why	you	should	always	call

removeObserver:	in	your	dealloc	if	any	part	of	your	object	calls
addObserver:....	Make	a	habit	of	this.	It’s	one	of	the	most	common	and
preventable	causes	of	crashes	in	code	that	uses	notifications.

Calling	addObserver:selector:name:object:	multiple	times	with	the	same
parameters	causes	you	to	receive	multiple	callbacks.	This	is	almost	never
what	you	want.	Generally	it	is	easiest	to	start	observing	notifications	in	init
and	stop	in	dealloc.	But	what	if	you	want	to	watch	notifications	from	one	of
your	properties,	and	that	property	can	change?	This	example	shows	how	to
write	setPoster:	so	that	it	properly	adds	and	removes	observations	for	a
poster	property:

		-	(void)setPoster:(Poster	*)aPoster	{

				NSNotificationCenter	*nc	=

																						[NSNotificationCenter	defaultCenter];

				if	(poster_	!=	nil)	{

						//	Remove	all	observations	for	the	old	value

						[nc	removeObserver:self	name:nil	object:poster_];

				}

				poster_	=	aPoster;

				if	(poster_	!=	nil)	{

						//	Add	the	new	observation

						[nc	addObserver:self

													selector:@selector(anEventDidHappen:)

																	name:PosterDidSomethingNotification

															object:poster_];

				}

		}

The	checks	for	nil	are	very	important	here.	Passing	nil	as	the	object	or	the
name	means	“any	object”	or	“any	notification.”

While	observing	specific	instances	is	cleaner	and	protects	you	against
surprises	when	new	objects	are	added	to	the	system,	there	are	reasons	to
avoid	it.	First,	you	may	not	really	care	which	object	is	posting	the
notification.	The	object	may	not	actually	exist	when	you	want	to	start
observing	notifications	it	might	post,	or	the	object	instance	may	change	over
time.

There	are	also	performance	considerations	when	observing	notifications.
Every	time	a	notification	is	posted,	NSNotificationCenter	has	to	search

through	the	list	of	all	registered	observers	to	determine	which	observers	to
notify.	The	time	required	to	search	this	list	is	proportional	to	the	total	number
of	observations	registered	in	the	NSNotificationCenter.	When	the	total
number	of	observations	in	the	program	reaches	a	few	hundred,	the	time	to
search	this	list	can	become	noticeable	on	an	iPhone,	particularly	older
models.	The	time	required	to	call	removeObserver:	is	similarly	proportional
to	the	total	number	of	observations.	This	can	cause	serious	performance
problems	if	you	have	a	large	number	of	observations	and	post	many
notifications	or	remove	observers	often.

What	if	you	want	to	observe	a	notification	from	a	large	number	of	objects,
but	not	necessarily	every	object	that	might	post	that	notification?	For
instance,	you	might	be	interested	in	changes	to	music	tracks,	but	only	the
tracks	in	your	current	playlist.	You	could	observe	every	track,	but	that	can	be
very	expensive.	A	better	technique	is	to	observe	nil	and	check	in	the	callback
whether	you	were	actually	interested,	as	shown	here:

		//	Observe	all	objects,	whether	in	your	tracklist	or	not

		[[NSNotificationCenter	defaultCenter]

				addObserver:self	selector:@selector(trackDidChange:)

				name:TrackDidChangeNotification	object:nil];

		...

		-	(void)trackDidChange:(NSNotification	*)note	{

				//	Verify	that	you	cared	about	this	track

				if	([self.tracks	containsObject:[note	object]])	{

						...

				}

		}

This	reduces	the	number	of	observations,	but	adds	an	extra	check	during	the
callback.	It	depends	on	the	situation	whether	this	is	faster	or	slower,	but	it	is
generally	better	than	creating	hundreds	of	observations.

Posting	notifications	is	synchronous.	This	trips	up	many	developers	who
expect	the	notification	to	execute	on	another	thread	or	otherwise	run
asynchronously.	When	you	call	postNotification:,	observers	are	notified
one	at	a	time	before	returning.	The	order	of	notification	is	not	guaranteed.

Notifications	are	a	critical	part	of	many	Cocoa	programs.	You	just	need	to
keep	the	preceding	issues	in	mind,	and	they’ll	be	a	very	useful	part	of	your

architecture.

Working	with	the	Singleton	Pattern
The	Singleton	pattern	is	in	many	ways	just	a	global	variable.	It	provides	a
global	way	to	access	a	specific	object.	The	Singleton	pattern	is	common
throughout	Cocoa.	In	most	cases	you	can	identify	it	by	a	class	method	that
begins	with	shared,	such	as	+sharedAccelerometer,	+sharedApplication,
and	+sharedURLCache.	Some	singleton	access	methods	have	other	prefixes,
such	as	+[NSNotificationCenter	defaultCenter]	and	+[NSUserDefaults
standardUserDefaults].	These	are	generally	older	classes	inherited	from
NeXTSTEP.	Most	new	frameworks	use	the	shared	prefix	followed	by	their
class	name	(without	its	namespace	prefix).

The	Singleton	pattern	is	one	of	the	most	misused	patterns	in	Cocoa	because
of	some	unfortunate	sample	code	published	by	Apple.	In	the	Cocoa
Fundamentals	Guide,	Apple	includes	an	implementation	of	the	Singleton
pattern	that	overrides	the	major	memory	management	methods,
allocWithZone:,	copyWithZone:,	retain,	retainCount,	release,	and
autorelease.	Using	Apple’s	example,	multiple	calls	to	[[Singleton	alloc]
init]	return	the	same	object.	This	is	almost	never	needed	or	appropriate.
Apple’s	explanation	to	this	code	indicates	that	it	is	only	useful	in	cases	where
it	is	mandatory	that	there	only	be	one	instance	of	the	class.	That	is	seldom	the
case.	Most	of	the	time,	it	is	only	convenient	that	there	be	one	instance	of	the
class	that	is	easily	accessible.	Many	classes,	such	as	NSNotificationCenter,
work	perfectly	well	if	multiple	instances	exist.	Unfortunately,	many
developers	do	not	carefully	read	the	explanation,	and	incorrectly	copy	this
example.

Sometimes	a	strict	singleton	is	appropriate.	For	example,	if	a	class	manages	a
unique	shared	resource,	it	may	be	impossible	to	have	more	than	one	instance.
In	this	case	it	is	often	better	to	treat	the	creation	of	multiple	instances	as	a
programming	error	with	NSAssert	rather	than	transparently	returning	a	shared
instance.	You	will	see	how	to	implement	this	kind	of	assertion	later	in	this
section.

If	you	are	creating	a	transparently	strict	singleton,	make	sure	that	it	is	an

implementation	detail	and	not	something	the	caller	must	know.	For	instance,
the	class	should	be	immutable.	If	the	caller	has	requested	distinct	instances
using	+alloc,	then	it	is	very	confusing	if	changes	to	one	modify	the	other.

In	the	vast	majority	of	cases,	you	should	use	a	shared	singleton	rather	than	a
strict	singleton.	A	shared	singleton	is	just	a	specific	instance	that	is	easy	to
fetch	with	a	class	method.	It	is	generally	stored	in	a	static	variable.	There	are
many	ways	to	do	this,	but	my	recommendation	is	this	pattern,	using
+initialize:

		static	Singleton	*sSingleton;

		@implementation	Singleton

		+	(void)initialize	{

				NSAssert(self	==	[Singleton	class],

											@”Singleton	is	not	designed	to	be	subclassed.”);

				sSingleton	=	[Singleton	new];

		}

		+	(Singleton	*)sharedSingleton	{

				return	sSingleton;

		}

		@end

This	approach	is	easy	to	write,	fast,	and	thread	safe.	Other	approaches
achieve	thread	safety	by	adding	an	@synchronize	in	+sharedSingleton,	but
this	adds	a	significant	performance	penalty	every	time	+sharedSingleton	is
called.	+initialize	is	automatically	called	exactly	once	per	class,	so	it	is
inherently	thread	safe.

It	is	possible	to	subclass	Singleton,	but	it’s	seldom	necessary	so	I	prefer	to
forbid	it	rather	than	include	the	extra	complexity	needed	to	allow	it.	In	most
cases,	the	best	way	to	customize	a	singleton	is	using	the	Strategy	pattern
described	in	“Understanding	Delegates	and	Data	Sources”	earlier	in	this
chapter.	Rather	than	subclassing,	put	the	changeable	logic	into	a	separate
object	and	assign	it	to	the	singleton	as	a	delegate.	You	can	provide	a	default
delegate	object	if	the	caller	doesn’t	provide	one.	This	is	a	rare	case	where	the
object	(the	singleton)	should	retain	its	delegate.	A	major	advantage	of	this
approach	is	that	replacing	the	delegate	immediately	changes	the	singleton’s
behavior	for	all	users	of	the	singleton,	even	if	they’ve	stored	the	singleton	in
their	own	ivars.

Most	of	the	problems	with	subclassing	are	eliminated	if	you	can	determine
the	correct	subclass	in	+initialize.	For	example,	you	might	make	a
compile-time	decision	like	this:

		+	(void)initialize	{

				if	(self	==	[Singleton	class])	{

		#if	DEBUG

						sSingleton	=	[SingletonDebug	new];

		#else

						sSingleton	=	[SingletonRelease	new];

		#endif

				}

		}

You	could	make	similar	runtime	decisions	such	as	checking	the	version	of
iOS	or	whether	you	are	on	an	iPhone	or	iPad.	In	those	cases,	there’s	no
problem	with	subclassing	Singleton	because	it	can	only	be	set	once.

If	you	really	need	to	change	the	singleton	instance	at	runtime,	you	can
provide	a	+setSharedSingleton:	method:

		+	(void)initialize	{

				if	(self	==	[Singleton	class])	{

						sSingleton	=	[Singleton	new];

				}

		}

		+	(Singleton	*)sharedSingleton	{

				return	sSingleton;

		}

		+	(void)setSharedSingleton:(Singleton	*)aSingleton	{

				sSingleton	=	aSingleton;

		}

The	problem	with	this	approach	is	that	other	objects	may	already	have
pointers	to	the	previous	object	when	you	call	setSharedSingleton:.	The
preceding	code	is	also	not	fully	thread	safe.

While	a	shared	singleton	is	usually	the	best	approach,	sometimes	you	do
require	a	strict	singleton.	For	example,	you	may	have	a	singleton	that
manages	the	connection	to	the	server,	and	the	server	protocol	may	forbid
multiple	simultaneous	connections	from	the	same	device.	As	a	general	rule,
you	should	first	try	to	redesign	the	protocol	so	that	it	doesn’t	have	this
restriction,	but	there	are	cases	where	this	is	impractical	and	a	strictly	enforced

singleton	is	the	best	approach.

In	most	cases	the	best	way	to	implement	this	is	as	a	shared	singleton,	but	treat
calls	to	init	as	a	programming	error	with	NSAssert	as	shown	here:

		-	(id)init	{

				//	Forbid	calls	to	–init	or	+new

				NSAssert(NO,	@”Cannot	create	instance	of	Singleton”);

				//	You	can	return	nil	or	[self	initSingleton]	here,

				//	depending	on	how	you	prefer	to	fail.

				return	nil;

		}

		//	Real	init	method

		-	(id)initSingleton	{

				self	=	[super	init];

				if	((self	=	[super	init]))	{

						//	Init	code

				}

				return	self;

		}

		+	(void)initialize	{

				NSAssert(self	==	[Singleton	class],

											@”Singleton	is	not	designed	to	be	subclassed.”);

				sSingleton	=	[[Singleton	alloc]	initSingleton];

		}

The	advantage	of	this	approach	is	that	it	prevents	callers	from	believing	they
are	creating	multiple	instances	when	that	is	forbidden.	Frameworks	should
avoid	silently	fixing	programming	errors.	This	just	makes	bugs	hard	to	track
down.

As	discussed	in	“Understanding	Model-View-Controller,”	developers	often
use	the	application	delegate	to	store	global	variables	like	this:

		//	Do	not	do	this

		MyAppDelegate	*appDelegate	=

						(MyAppDelegate*)[[UIApplication	sharedApplication]

delegate];

		Something	*something	=	[appDelegate	something];

		//	Do	not	do	this

In	almost	all	cases,	this	would	be	better	implemented	with	a	Something
singleton	like	the	following:

		Something	*something	=	[Something	sharedSomething];

This	way,	when	you	copy	the	Something	class	to	another	project,	it’s	self-
contained.	You	don’t	have	to	extract	bits	of	the	application	delegate	along
with	it.	If	the	application	delegate	is	storing	configuration	information,	it’s
best	to	move	that	into	NSUserDefaults	or	a	singleton	Configuration	object.

The	Singleton	pattern	is	one	of	the	most	common	patterns	in	well-designed
Cocoa	applications.	Don’t	overuse	it.	If	an	object	is	only	used	in	a	few	places,
just	pass	it	to	the	objects	that	need	it.	But	for	objects	that	have
applicationwide	scope,	it	is	a	very	good	way	to	maintain	loose	coupling	and
improve	code	reusability.

Summary
This	chapter	explored	the	most	pervasive	patterns	in	Cocoa,	particularly
Strategy,	Observer,	Command,	and	Singleton.	You	learned	how	several
patterns	combine	to	facilitate	Cocoa’s	central	architecture:	model-view-
controller.	Cocoa	uses	design	patterns	focused	on	loose	coupling	and	code
reusability.	Understanding	these	patterns	will	help	you	anticipate	how	Apple
frameworks	are	structured	and	improve	your	code’s	integration	with	iOS.	The
patterns	Apple	uses	in	iOS	are	well	established	and	have	been	studied	and
refined	for	years	throughout	industry	and	academia.	Correctly	applying	these
patterns	will	improve	the	quality	and	reusability	of	your	own	programs.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

“Cocoa	Design	Patterns,”	Cocoa	Fundamentals	Guide.	This	entire
document	is	valuable	to	understanding	Cocoa,	but	the	section	“Cocoa
Design	Patterns”	focuses	on	how	Cocoa	applies	the	well-established
software	patterns.
The	Elements	(Sample	Code).	Historically,	Apple	sample	code	has	not

http://developer.apple.com/

demonstrated	good	design	or	coding	practices.	The	focus	has	typically
been	to	show	how	a	specific	feature	works,	and	the	sample	code	typically
ignores	Apple’s	recommendations	and	common	best	practice.	Apple
appears	to	have	changed	its	approach	to	sample	code,	and	some	recent
examples	are	well	designed	and	written.	The	Elements	is	a	good	example
that	developers	can	use	to	model	their	own	projects.
Notification	Programming	Guide.	Explains	the	Observer	pattern
implemented	with	NSNotification.

Undo	Architecture.	Explains	how	to	use	NSUndoManager	using	the
Command	pattern.

Other	Resources
Gamma,	Erich	et	al.	Design	Patterns:	Elements	of	Reusable	Object-
Oriented	Software.	(Addison-Wesley	Professional,	1994.	ISBN:	978-
0201633610)	This	book	is	a	collection	of	well-known	design	patterns,
explained	in	practical	terms	with	code	examples	in	C++	and	Smalltalk.	It
should	be	part	of	every	developer’s	library.	Erich	Gamma	and	his	co-
authors	did	not	invent	these	patterns	and	Design	Patterns	is	not	an
exhaustive	list	of	all	patterns.	This	book	attempts	to	catalog	patterns	that
the	authors	found	in	common	use	among	developers,	and	provide	a
framework	by	which	developers	can	apply	known	solutions	to	their	unique
problems.

AgentM,	“Elegant	Delegation,”	Borkware	Rants.	AgentM	provides	a
somewhat	different	MDelegateManager	class	than	my	RNObserverManager.
It	was	designed	for	Objective-C	1.0,	so	it	does	not	rely	on	@protocol,	but
is	still	worth	studying.	borkware.com/rants/agentm/elegant-
delegation

Burbeck,	Steve.	“Applications	Programming	in	Smalltalk-80™:	How	to
use	Model-View-Controller	(MVC).”	(1987,	1992).	This	is	the	definitive
paper	defining	the	MVC	pattern	in	Smalltalk.	NeXTSTEP	(and	later
Cocoa)	modified	the	pattern	somewhat,	but	the	Smalltalk	approach	is	still
the	foundation	of	MVC.	st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html

http://borkware.com/rants/agentm/elegant-delegation/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

Chapter	5:	Getting	Table	Views	Right

Table	views	are	arguably	the	most	ubiquitous	and	often	used	control	on	the
iOS	platform.	Most	of	the	quality	apps	on	the	App	Store	use	table	views,	and
not	just	for	showing	a	hierarchical	list	of	data.	They	are	also	used	for	complex
structured,	scrollable	views.	Table	views	are	used	as	cheap	substitute	for
creating	vertically	scrollable	views	even	if	the	content	they	display	is	not	a
list	of	data.	For	example,	in	the	built-in	contacts	app,	the	contacts	list	is	a
UITableView	but	so	is	the	view	for	adding	a	new	contact.	Additionally,	new
interaction	patterns	have	been	introduced	by	third-party	application
developers,	and	have	been	quite	commonly	used	on	other	apps	as	well.

iOS	has	been	around	for	four	years,	so	this	chapter	assumes	that	you	are	well
versed	with	concepts	like	UITableViewDelegate	and
UITableViewDataSource.

If	you	are	not	familiar	with	UITableViewDelegates	and	UITableViewDataSource,	read	Chapter	8	in
Beginning	iPhone	Development:	Exploring	the	iPhone	SDK	by	Dave	Mark	and	Jeff	Lamarche
(Apress	2009,	ISBN	978-1430216261)	before	finishing	this	chapter.

This	chapter	focuses	on	the	advanced	aspects	of	table	views	and	shows	you
how	to	create	complex	(yet	common)	UIs	like	Pull-To-Refresh	and	infinite
scrolling	lists.	It	also	briefly	explains	how	to	use	table	view	row	animations
to	create	accordions	or	options	drawers	(a	UI	that	shows	available	toolbar
elements	just	below	the	table	view	cell	that	is	acted	upon)	and	several	other
interesting	UI	paradigms.

After	exploring	new	user	interaction	paradigms,	you	learn	about	the	best
practices	that	you	should	adopt	to	write	cleaner	UITableViewController
code	(code	that	is	easy	to	modify	later).

The	second	part	of	the	chapter	shows	you	how	to	create	and	use	storyboards
and	introduces	you	to	the	new	UIAppearance	protocol,	a	new	feature	in	iOS
5.	You	also	learn	how	to	add	storyboards	to	your	existing	iOS	app	without
completely	rewriting	them.	With	that,	let’s	get	started.

UITableView	Class	Hierarchy
A	UITableView	is	a	subclass	of	UIScrollView	that	allows	users	to	scroll
through	a	list	of	UITableViewCells,	which	are	a	subclass	of	UIView.

UITableView	and	UIScrollView	share	several	things	in	common.	For	a
heavily	customized	view	that	is	not	a	list	of	data,	you	can	directly	use	a
UIScrollView	and	populate	it	with	UIView	or	UIControl	subclasses,	but	there
are	certain	advantages	to	using	a	UITableView	in	this	case.	First,	it’s	always
advisable	to	use	a	higher-level	abstraction	whenever	possible.	Second,	there
are	several	subtle	functionalities	that	a	UITableView	takes	care	of
automatically.	One	of	them	is	the	ability	to	dequeue	and	reuse
UITableViewCells	easily,	which	improves	performance	and	reduces	memory
consumption.	Another	is	its	elegant	and	easy	way	to	populate	content	through
its	data	source	and	receive	feedback	on	actions	through	the	delegate.	If	you
use	a	custom	UIScrollView,	you	have	to	do	these	two	by	yourself.	While	it’s
not	difficult	to	do	this,	you	probably	will	not	get	any	added	advantage	by
doing	it	yourself.

Understanding	Table	Views
A	UITableView	is	normally	used	in	conjunction	with	several	other	classes	like
UITableViewController,	UITableViewDelegate,	UITableViewDataSource,
and	UITableViewCell.	This	section	briefly	discusses	the	functionalities	of
each	of	these	classes.

UITableViewController
A	UITableViewController	is	a	subclass	of	a	UIViewController	that
performs	some	additional	functions	related	to	table	view	loading.	If	you	are
initializing	a	UITableViewController	from	a	nib	file,	it	loads	the	archived
table	view.	If	not,	it	creates	a	unconfigured	table	view.	In	both	cases,	you	can
access	the	table	view	using	the	tableView	property	of	the
UITableViewController.

Additionally,	a	UITableViewController	reloads	the	table	and	clears	cell
selection,	as	it	is	about	to	appear	for	the	first	time	(viewWillAppear).	It	then,

in	viewDidAppear,	flashes	the	scroll	indicators	to	indicate	that	the	view	is
scrollable.	You	can	override	these	methods	and	provide	custom
implementations	as	well.

The	UITableViewController	also	handles	the	delegates	and	data	source	for
your	table.	For	table	views	created	without	a	nib	file,	the	delegate	and	data
source	becomes	the	table	view	controller.	For	table	views	created	with	a	nib
file,	the	delegate	and	data	source	is	set	from	that	file.

My	recommendation	is	to	use	a	separate	UITableViewController	for	every
table	view	you	use	within	your	view.	Using	multiple
UITableViewControllers	makes	it	easy	to	understand	(and	modify)	the	code
later	in	the	project’s	lifecycle.	You	learn	how	to	use	multiple
UITableViewControllers	within	a	single	view/nib	file	later	in	this	chapter.

UITableViewCell
UITableViewCell	is	a	subclass	of	UIView	that	adds	certain	properties	and
functionalities	to	a	UIView	that	are	useful	when	used	in	a	UITableView.
Instead	of	you	manually	adding	custom	elements,	a	UITableViewCell	adds
often-used	elements	like	a	textLabel,	detailedTextLabel,	and	an
imageView	that	are	exposed	using	properties.	You	specify	the	kind	of	cell	you
need	by	choosing	a	UITableViewCellStyle.	The	second	most	important
property	provided	by	a	UITableViewCell	is	the	capability	to	maintain	distinct
selected	and	highlighted	states.

In	most	cases,	you	will	be	using	a	custom	subclass	of	a	UITableViewCell	in
your	app.	The	next	section	discusses	the	different	ways	of	creating	a
UITableViewCell	and	the	pros	and	cons	of	using	it.

Speed	Up	Your	Tables
You	might	already	know	how	to	create	a	custom	table	view	cell	that	scrolls
butter-smooth	like	Tweetie	(Twitter	for	iPhone).	Loren	Brichter	has	open-
sourced	his	custom	table	view	cell	and	explained	in	his	blog	how	to	do	it	(see
the	“Further	Reading”	section)."	In	this	section,	you	develop	a	table	view	and
populate	it	with	cells	created	using	different	techniques,	including	Loren’s,
and	you	learn	to	analyze	performance	using	Instruments.	When	you	finish

this	section,	you	will	understand	why	Loren’s	method	makes	your	table	view
scroll	smoothly.	You	also	learn	how	to	troubleshoot	and	find	performance
bottlenecks	if	your	table	views	aren’t	scrolling	as	fast	as	they	should.	Once
you	know	the	“how”	behind	a	technique,	you	can	apply	that	techniques
elsewhere.

A	Word	on	Performance	and	Interface	Builder
Whenever	you	talk	about	performance,	the	first	thing	you	hear	from	most	iOS
developers	is,	“Don’t	use	Interface	Builder.”	Using	Interface	Builder	(IB)	to
build	interfaces	is	quite	a	controversial	topic	in	the	iOS	developer	community.
Veteran	Mac	developers,	or	those	who	have	switched	from	developing	native
Windows	apps	(using	VB	or	C#),	understand	what	IB	does	and	why	should	it
be	used.	Some	web	developers,	on	the	other	hand,	often	correlate	IB	to	web-
authoring	tools	and	thus	assume	that	IB	slows	down	the	app	and	degrades
performance.	My	advice	is	that	you	should	never	pay	attention	to	any	advice
about	improving	the	performance	of	your	app	without	measuring	it.	Tools	like
Instruments	can	help	you	with	performance	measurement;	later	in	this	chapter
you	learn	how	to	use	them.

Keep	in	mind	that	IB	is	not	a	code	generator.	It	is	an	editor	that	generates
XML-based	archives	of	your	view.	In	most	cases,	nib	files	do	not	lower	the
performance	compared	to	an	equivalently	coded	UI.	(I	illustrate	this	later	in
this	chapter.)	Additionally,	using	a	nib	file	helps	you	isolate	your	“view”	to	a
separate	file,	which	keeps	your	controller	free	of	view-related	code
(especially	in	your	viewDidLoad	method).	That’s	a	cleaner	way	to	implement
and	adhere	to	the	MVC	design	pattern.

To	Use	or	Not	to	Use	Interface	Builder?
Having	said	that,	the	only	place	where	I	recommend	using	coded	UI	over	IB
is	for	high-performance	UITableViewCells.	The	iOS	rendering	mechanism
slows	down	when	your	UITableViewCell	has	many	subviews.	As	of	this
writing,	based	on	informal	testing,	only	the	latest,	dual-core	A5-powered	iPad
2	gives	acceptable	scrolling	performance	for	a	fairly	customized
UITableViewCell	(probably	because	of	the	super-fast	graphics	processor).
By	“acceptable	scrolling	performance,”	I	mean	getting	at	least	60	frames	per
second	when	scrolling	the	table.	You	learn	how	to	measure	this	later	in	this
chapter.	The	old	iPhone	3G	was	slowest	at	25	fps;	other	devices	fall

somewhere	between	60	and	25	fps.

The	performance	hit	when	using	a	table	view	cell	isn’t	caused	by	unarchiving
nib	files,	but	by	rendering	multiple	subviews.	Hence,	a	coded	UI	doesn’t
mean	moving	your	addSubView:	methods	to	the
initWithStyle:reuseIdentifier	method,	but	rather	overriding	the
drawRect	method	and	directly	drawing	your	content	instead	of	using
subviews.	Avoiding	subviews	(especially	subviews	that	have	transparency
and	blends	with	other	views	behind),	improves	performance.

In	the	next	section	you	first	write	a	table	view	with	a	thousand	rows	and
measure	the	scrolling	performance	using	Instruments.	You	also	learn	how	to
use	Instruments	to	identify	areas	with	alpha	blended	layers	that	are	time-
consuming	to	render.	You	gradually	improve	the	performance	by	avoiding
subviews	and	measuring	performance	in	each	step.

To	complete	the	example,	you	need	to	have	an	iOS	device	provisioned	for
development,	as	some	of	these	things	cannot	be	done	on	the	iOS	Simulator.

UITableView	with	Subviews	in	a	Custom	UITableViewCell
Create	a	view-based	iPhone	application	with	Xcode	and	call	it
TableViewPerformance.	You	can	leave	storyboards,	but	enable	ARC.	You	can
download	this	code	from	the	Chapter	5/TableViewPerformance	folder	on
the	book’s	website.	Open	TableViewPerformanceViewController.xib	and
drag	a	UITableView	to	it.	You	will	populate	this	UITableView	with	three
different	types	of	cells.

Add	a	UITableViewCell	subclass	and	call	it	CustomCell	and	create	an	IB	file
for	it.	Add	a	title	label,	a	subtitle	label,	a	time	label,	and	a	thumbnail	image	to
it.	Your	IB	file	should	look	like	Figure	5-1.

Figure	5-1	Custom	cell	nib

Now	open	TableViewPerformanceViewController.m	and	add	the	following
code	for	the	TableViewDataSource.

-	(NSInteger)numberOfSectionsInTableView:(UITableView	*)tableView

{

return	1;

}

-	(NSInteger)tableView:(UITableView	*)tableView

											numberOfRowsInSection:(NSInteger)section	{

return	1000;

}

//	table	with	with	normal	XIB	based	cells

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

											cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				static	NSString	*CellIdentifier	=	@”CustomCell”;

		

				CustomCell	*cell	=	(CustomCell*)[tableView

dequeueReusableCellWithIdentifier:	CellIdentifier];

				if	(cell	==	nil)	{

				NSArray	*nib	=	[[NSBundle	mainBundle

loadNibNamed:@”CustomCell”	owner:self	options:nil];

				cell	=	(CustomCell*)[nib	objectAtIndex:0];

		}

		cell.titleLabel.text	=	[NSString	stringWithFormat:@”Row	%d”,

		indexPath.row];

		cell.subTitleLabel.text	=	[NSString	stringWithFormat:@”Row	%d”,

		indexPath.row];

		cell.timeTitleLabel.text	=	@”yesterday”;

		cell.imageView.image	=	[UIImage	imageNamed:@”ios5”];				

		cell.selectionStyle	=	UITableViewCellSelectionStyleNone;

		return	cell;

}

Nothing	fancy	here.	What	you	have	done	is	to	set	some	arbitrary	values	to	the
cells.	Now	profile	this	app	in	Instruments.	Click	and	hold	the	Play	button	and
choose	Profile	to	profile	the	app.	Choose	the	Core	Animation	trace	template
as	shown	in	Figure	5-2.

Figure	5-2	Choosing	the	Core	Animation	trace	template	from	Instruments

Expand	the	debug	options	panel	in	Instruments	by	clicking	View	→	Detail	in
Instruments.	(This	should	be	selected	and	showing	up	by	default).	Select	the
Color	Blended	Layers	checkbox.

Figure	5-3	Select	Color	Blended	Layers

The	app	should	be	running	on	your	device.	Because	you	turned	on	Color
Blended	Layers,	your	iPhone	screen	should	look	similar	to	Figure	5-4.	Now
scroll	your	table	view	and	look	at	the	frames	per	second	measurement	on
Instruments.	Depending	on	your	debug	device’s	processor	and	GPU	speed,
this	might	vary.	I	got	somewhere	around	38-45	fps	on	the	iPhone	4	running	a
beta	of	iOS	5.

With	Color	Blended	Layers,	iOS	shows	transparent	layers	in	red	and	opaque
layers	in	green.	In	Figure	5-4,	most	of	the	areas	around	the	labels	in	the
custom	cell	are	transparent	and	blended.	These	transparent	layers	have	a
computational	cost	to	render.	The	system	has	to	blend	the	layer	with	the	layer
below	it	to	compute	its	color	and	then	draw	it.	The	rendering	speed	can	be
drastically	improved	by	avoiding	this.	You	see	a	couple	of	techniques	to	do
that	in	the	next	section.	When	you	implement	them,	you	will	find	that	the	fps
measurements	improve	as	well.

Figure	5-4	iOS	device	screen	using	custom	cells

UITableView	with	a	Default	UITableViewCell
Replace	the	code	in	cellForRowAtIndexPath:	in	the	controller	file	with	this:

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				

				static	NSString	*CellIdentifier	=	@”Cell”;				

				UITableViewCell	*cell	=	[tableView

dequeueReusableCellWithIdentifier:CellIdentifier];

				if	(cell	==	nil)	{

								cell	=	[[[UITableViewCell	alloc]

initWithStyle:UITableViewCellStyleSubtitle

reuseIdentifier:CellIdentifier]	autorelease];

		}				

cell.textLabel.text	=	[NSString	stringWithFormat:

@”Row	%d”,	indexPath.row];

		cell.detailTextLabel.text	=	[NSString	stringWithFormat:

@”Row	%d”,	indexPath.row];				

		cell.imageView.image	=	[UIImage	imageNamed:@”ios5”];

		return	cell;

}

Instead	of	using	your	custom	cell	in	this	code,	you	use	the	framework’s	built-
in	UITableViewCell	with	UITableViewCellStyleSubtitle.	Now	profile	the
app	again.	When	you	turn	on	Color	Blended	Layers,	your	iPhone	screen
should	look	like	Figure	5-5.

Observe	that	the	transparent	layers	are	all	gone	except	for	a	few	near	the
images.	When	you	scroll	the	list,	you	find	that	the	performance	is	slightly
better	and	feels	smoother	than	how	it	was	previously.	Observe	that	the	fps
measurement	hits	60.	When	you	hit	60	fps,	you	can	technically	stop
improving	the	scrolling	performance,	but	in	this	case,	only	the	latest	iPhone	4
was	able	to	reach	60	fps	while	scrolling.	The	iPhone	3G	and	3GS	were	much
slower.

Moreover,	with	built-in	cells	you	are	limited	to	just	four	styles,	and	in	any
normal	case,	that	just	might	not	be	enough.	In	the	next	method	you	use	a
custom	cell	that	uses	CoreGraphics	methods	to	draw	the	image	and	text
directly	on	the	cell	without	using	subviews.

Figure	5-5	iOS	device	screen	using	built-in	cells

UITableView	with	a	Custom	Drawn	UITableViewCell
Loren	Brichter	of	Tweetie	(now	known	as	Twitter	for	iPhone)	wrote	about
butter-smooth	scrolling	in	Tweetie.	In	this	example,	you	use	Loren’s
technique	to	create	a	custom	cell	for	your	UITableView.

Create	a	custom	UITableViewCell	class	and	do	your	custom	drawing	so	as	to
render	the	content	similar	to	the	nib	file.	You	can	get	the	complete	code	for
this	from	the	Chapter	5/TableViewPerformance	folder	on	the	book’s
website.	The	code	for	this	custom	drawn	cell	is	in	file	CustomDrawnCell.m.

When	you	run	this	code	on	your	device	and	turn	on	Color	Blended	Layers,
you	see	something	like	Figure	5-6.

With	your	custom	drawn	cells,	every	part	of	the	table	view	cell	is	opaque	and
your	table	view	scrolling	is	fast	and	smooth.	I	was	getting	60	frames	per
second	on	nearly	every	device,	including	the	oldest,	iPhone	3G.

The	only	problem	with	this	method	is	that	the	code	you	write	to	draw	the
content	gets	annoyingly	difficult	to	read	(although	it’s	not	difficult	to	write).
Whatever	technique	you	use,	try	to	make	your	cells	as	opaque	as	possible.

Now	that	you	know	why	Loren’s	method	is	fast,	you	can	troubleshoot	your
apps	for	any	performance	bottlenecks	quite	easily.	In	the	next	section,	you
briefly	look	at	what	could	slow	down	UITableViewCell	rendering.

Things	to	Avoid	in	the	UITableViewCell	Rendering	Method
You	should	always	avoid	allocating	resources	while	drawing.	This	includes
allocating	objects	like	NSDateFormatter,	UIFont,	or	anything	that	you	need
while	drawing.	I	recommend	that	you	do	your	allocation	in	a	class-level
initialize	method	and	store	it	in	a	static	variable.	Use	it	for	every	instance	of
your	cell.

If	you	still	find	the	performance	to	be	low,	use	Instruments’s	Time	Profiler	on
your	project	and	look	for	bottlenecks.	Now	that	you	know	how	to	use
Instruments	to	measure	your	table	view	scrolling	performance,	it	should	be

quite	easy	for	you	to	improve	when	you	find	bottlenecks.

Figure	5-6	iOS	device	screen	using	custom	drawn	cells

Custom	Nonrepeating	Cells
Table	views	are	used	not	just	for	showing	a	list	of	data	but	also	for	complex
and	structured	scrollable	layouts.	If	your	table	view	structure	has	a
nonrepeating	pattern	of	cells,	you	can	add	the	custom	cell	into	the	same	nib
file	as	the	table	view	and	connect	IBOutlets.	Figure	5-7	illustrates	this.	This
way,	you	can	just	return	a	pointer	to	this	IBOutlet	in
cellForRowAtIndexPath:.

Figure	5-7	The	different	objects	in	the	nib	file	and	their	connections

The	following	code	snippet	shows	how	to	return	these	objects	from	the
UITableViewDataSource	methods.

UITableViewDataSource	Methods

-(CGFloat)	tableView:(UITableView*)	tableView

heightForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				

				switch	(indexPath.row)	{

												

								case	0:

												return	self.headerCell.frame.size.height;

												break;

								case	1:

												return	self.bodyCell.frame.size.height;

												break;

								case	2:

												return	self.footerCell.frame.size.height;

												break;

												

								default:

												return	0;

												break;

				}

}

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				

				switch	(indexPath.row)	{

												

								case	0:

												return	self.headerCell;

												break;

								case	1:

												return	self.bodyCell;

												break;

								case	2:

												return	self.footerCell;

												break;

												

								default:

												return	nil;

												break;

				}

}

You	can	get	the	code	from	the	Chapter	5/NonRepeatingCellsExample	folder
on	the	books’	website.	Note	that	UIKit	objects	don’t	conform	to	NSCopying	or
NSMutableCopying	protocols	and	hence	cannot	be	copied	or	cloned.	That
means	that	if	you	need	two	body	cells—say	one	in	row	1	and	another	in	row
2—you	have	to	load	them	from	their	nib	files	every	time	you	need	them.	But
fret	not;	the	nib	file-loading	methods	are	optimized	for	performance	and	once
loaded,	nibs	are	cached.

You	can	use	a	similar	technique	as	in	the	previous	example	for	creating	custom	table	view	headers
and	footers.	Just	create	custom	table	header/footer	views	within	the	same	nib	file	and	drag	them
to	the	UITableView	in	IB.	Your	view	gets	added	as	a	header	or	footer	depending	on	where	you
dropped	it.

Advanced	Table	Views
So	far	you’ve	seen	some	of	the	basic,	often-used	implementations	of	table
views.	Now	you’re	ready	to	look	at	some	advanced	implementations	of	table
views,	beginning	with	Pull-to-Refresh.

Pull-To-Refresh
In	this	section	you	write	a	PullToRefreshTableView	class	based	on
enormego’s	excellent	open	source	implementation	(see	“Further	Reading”
section).	This	class	isolates	most	of	the	Pull-To-Refresh	code	into	a	super
class.	Later	on,	when	you	need	to	add	a	Pull-to-Refresh	feature	to	your	table
view,	all	you	need	to	do	is	inherit	your	view	controller	from
PullToRefreshTableViewController	instead	of	UIViewController	and
override	methods	to	perform	the	actual	refresh.

Sounds	object-oriented,	right?	Let’s	delve	into	the	code.	First,	download	the
files	from	the	book’s	website,	in	the	Chapter	5	\
PullToRefreshTableViewExample	folder.

Create	a	view-based	project	and	add	these	files:

EGORefreshTableHeaderView.h

EGORefreshTableHeaderView.m

PullToRefreshViewController.h

PullToRefreshViewController.m

RefreshArrow.png

RefreshArrow@2x.png

The	PullToRefreshTableViewController	is	a	subclass	of
UIViewController	that	abstracts	the	mechanics	behind	the	Pull-To-Refresh.
It	handles	the	UIScrollView	delegates	and	adds	the	EGORefreshHeaderView
to	the	top	of	your	UITableView	when	it	is	pulled	beyond	a	certain	threshold.
It	also	remembers	the	last	refreshed	state.	By	default	this	is	stored	in	a	key
that	uses	your	subclass	name	and	a	suffix	string.	In	case	this	is	not	enough

and	you	have	multiple	instances	of	the	same	class	displaying	different	data,
you	can	customize	the	key	in	which	the	last	refreshed	date	is	remembered.
The	key	is	stored	in	a	property	called	keyNameForDataStore.

To	implement	Pull-To-Refresh	in	your	code,	inherit	your	view	controller	from
PullToRefreshViewController	and	override	the	doRefresh	method	to
perform	the	actual	refresh.	Once	the	refresh	is	done,	set	the	loading	state	to
NO.	It’s	as	simple	as	that.	The	PullToRefreshViewController	also	needs	you	to
link	your	target	with	QuartzCore.Framework.

When	you	inherit	your	view	controller	from	PullToRefreshViewController,
you	will	see	a	tableView	in	the	IBOutlet	list	in	IB.	Connect	this	tableView	to
the	table	in	your	nib	file.

Now	in	the	controller,	override	the	doRefresh	method	and	perform	your
network	call	(or	any	time-consuming	refresh	operation).	Once	the	refresh
operation	is	complete,	set	the	loading	state	to	NO.

Following	is	the	sample	code	snippet	for	your	view	controller:

Sample	doRefresh	Implementation

-(void)	doRefresh		{

				

//	Do	your	time	consuming	operation	here.

//	The	performSelector	shown	below	is	for	your	illustration

				[self	performSelector:@selector(loadingComplete)

				withObject:nil	afterDelay:2];

}

-(void)	loadingComplete		{

				

				self.loading	=	NO;

//	the	loading	property	is	exposed	by

PullToRefreshViewController.	When	you	set	this	to	NO,

it	restores	the	tableview	back	to	its	normal	position.

}

Enormego	did	an	excellent	job	of	writing	the	mechanics	behind	Pull-to-
Refresh.	This	takes	it	to	the	next	level	by	abstracting	the	logic	out	and
providing	a	super-easy	way	to	implement	it	in	any	of	your	view	controllers
with	under	five	lines	of	code.	Along	similar	lines,	let’s	now	look	at	another

commonly	used	technique:	infinite	scrolling.

Infinite	Scrolling
Infinite	scrolling	is	normally	used	in	Twitter	clients	or	any	app	that	displays
chronologically	ordered	data.	Data	for	which	the	number	of	items	are
unknown	or	is	immensely	large,	(unlike	a	contacts	list),	is	the	right	candidate
for	infinite	scrolling.

For	this	example,	you	extend	the	same	PullToRefreshTableViewExample
sample	code,	and	add	methods	for	implementing	the	infinite	scrolling
mechanics.	The	class	adds	a	section	to	the	end	of	your	table	view	that	shows
a	single	“Loading”	cell.	For	this,	you	add	a	couple	properties	called
numberOfSections	and	endReached	to	the	class	PullToRefreshTableView.

@property	(nonatomic)	NSInteger	numberOfSections;

@property	(nonatomic)	BOOL	endReached;

You	then	add	a	method,	loadMore,	that	will	be	called	when	the	user	reaches
the	end	of	the	current	page	in	the	table	view.	The	super	class	implementation
for	this	will	be	empty	and	you	will	leave	that	for	the	subclasses	to	implement.
For	the	complete	code,	get	it	from	the	book’s	website	Chapter
5/InfiniteScrollingExample	folder.	Do	not	implement	the
numberOfSectionsInTableView:	in	your	subclass.	The	super	class
(PullToRefreshViewController)	does	this	automatically	for	you.	Instead,	set
the	number	of	sections	using	the	super	class	property	numberOfSections.	The
parent	class	adds	an	additional	section	to	the	end	of	your	table	to	show	the
loading	cell.

You	should	override	the	method	loadMore	defined	in	the	super	class	and
provide	implementation	for	loading	more	content.	When	your	server	returns
no	content,	you	can	set	the	endReached	property	to	YES.	This	prevents	the
loading	cell	from	being	shown	again.	The	following	sample	code	snippet
explains	this.

Sample	loadMore	Implementation

-(void)	incrementPageCount		{				

				self.pageCount	++;

				if(self.pageCount	==	5)	self.endReached	=	YES;

				[self.tableView	reloadData];

}

-(void)	loadMore		{				

				[self	performSelector:@selector(incrementPageCount)

withObject:nil	afterDelay:2];	//	simulate	a	network	operation

}

The	super	class	adds	a	loading	section	as	the	last	section	of	the	table	view,
and	your	table	view	data	source	methods	will	be	called	for	sections	you	are
not	aware	of.	You	should	forward	these	calls	to	the	super	class	of	the
tableView:numberOfRowsInSection:	method	and
tableView:cellForRowAtIndexPath:	for	sections	greater	than	your	section
count.	In	other	words,	let	the	super	class	handle	sections	greater	that	the
numberOfSections	for	you.	This	implementation	shows	the	loadingCell.

The	following	code	snippet	explains	this.

Sample	TableView	Data	Source

-	(NSInteger)tableView:(UITableView	*)tableView

numberOfRowsInSection:(NSInteger)section	{

				//	Return	the	number	of	rows	in	the	section.

				if(section	==	self.numberOfSections)		{

								return	[super	tableView:tableView

numberOfRowsInSection:section];

				}

				return	20	*	self.pageCount;	//	we	are	assuming	20	rows	per

page

}

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				

				if(indexPath.section	==	self.numberOfSections)		{

								return	[super	tableView:tableView

cellForRowAtIndexPath:indexPath];

				}

				static	NSString	*CellIdentifier	=	@”Cell”;

				

				UITableViewCell	*cell	=

[tableView	dequeueReusableCellWithIdentifier:CellIdentifier];

				if	(cell	==	nil)	{

								cell	=	[[[UITableViewCell	alloc]

initWithStyle:UITableViewCellStyleSubtitle

reuseIdentifier:CellIdentifier]	autorelease];

				}

				

cell.textLabel.text	=	[NSString	stringWithFormat:

@”Row	%d”,	indexPath.row];

				cell.detailTextLabel.text	=	[NSString	stringWithFormat:

@”Row	%d”,	indexPath.row];

				

				cell.imageView.image	=	[UIImage	imageNamed:@”ios5”];

				cell.selectionStyle	=	UITableViewCellSelectionStyleNone;

				return	cell;

}

That	completes	it.	With	very	few	changes,	you	have	added	infinite	scrolling
support	to	the	Pull-To-Refresh	example	code.	Implementing	infinite	scrolling
in	your	apps	should	be	a	lot	easier	with	this	code.

Inline	Editing	and	Keyboard
Form-filling	is	a	common	UI	pattern	found	on	both	web	and	mobile
environments.	On	iOS,	forms	are	usually	developed	using	UITableView	with
each	cell	representing	one	data	entry	field.	It	is	also	possible	to	use	a
UIScrollView,	but	I	recommend	against	that	for	the	reasons	stated	in	the	first
few	sections	of	this	chapter.

The	most	important	point	to	remember	here	is	to	show	data	entry	fields	above
the	keyboard	when	the	keyboard	is	shown.	To	do	so,	you	need	to	dynamically
adjust	your	table	views.

When	your	table	view	contains	data	entry	fields	like	a	UITextField	or	a
UITextView,	and	the	table	view	is	long	enough	to	cover	the	screen,	you	will
have	a	problem	accessing	data	entry	fields	that	are	hidden	by	the	keyboard.
The	easiest—and	recommended—way	to	overcome	this	problem	is	to	use	a
UITableViewController	for	your	form.	Otherwise,	if	you	use	a
UIViewController	and	a	UITableView	as	its	subview,	you	must	explicitly
code	for	scrolling	your	UI	so	that	elements	that	might	get	hidden	by	the
keyboard	stay	visible.

You	can	scroll	your	UI’s	frame	by	observing	the	UIKeyBoardDidShowNotification	and
UIKeyBoardDidHideNotification.	The	notification	posts	an	object	(NSDictionary)	containing
information	pertaining	to	the	size	of	the	keyboard,	the	animation	duration,	and	the	animation
curve.

Also	note	that,	as	the	table	view	is	scrolled,	your	cells	are	recycled	and
reused.	Any	data	entered	is	lost	when	the	cell	is	recycled,	so	you	should	copy
the	entered	data	from	the	UI	to	your	model	classes	(or	NSString)
immediately	after	the	entry	is	made.	Implementing	this	is	quite	easy.	One	way
is	to	set	the	delegate	of	your	UITextField	to	the	table	view	controller	and
handle	textFieldDidEndEditing.	But	a	good	design	practice	is	to	let	the
table	cell	handle	the	delegate	and	notify	its	super	class.	(You	learn	more	about
such	best	practices	throughout	this	chapter.)	The	super	class	should	save	the
data	to	the	corresponding	model	object	and	prepopulate	the	table	view	cell
with	values	from	the	model	when	it’s	created	or	dequeued	in
cellForRowAtIndexPath.

The	following	code	segment	shows	you	how	to	do	this.

Saving	and	Restoring	Data	from	UITextField	Inside	a	Custom
UITableViewCell

cell.inputText.text	=	[self.data	objectAtIndex:indexPath.row];

				cell.onTextEntered	=	^(NSString*	enteredString)	{

								

								[self.data	insertObject:enteredString

atIndex:indexPath.row];

				};

This	code	assumes	that	the	cell	handles	IBAction	and
textFieldDidEndEditing	and	passes	the	enteredString	value	to	the	table
view	controller	using	a	block.	The	data	entered	is	stored	in	a	member	variable
(data),	and	is	restored	on	the	line	above.	Two	lines	and	that’s	it.	You	can	use
delegates	as	well,	but	blocks	are	cleaner	and	result	in	much	less	code.	You
learn	more	about	blocks	in	Chapter	16.

Animating	a	UITableView
You	have	now	seen	some	practical	implementations	of	UITableView.	Next,
you	take	it	to	the	next	level	by	learning	how	to	make	the	best	use	of	the
animations	provided	by	it.	The	UIKit	framework	provides	some	default
animation	styles	for	animating	rows	in	a	UITableView.	These	animations	play
a	very	important	role	in	giving	subtle	hints	to	the	user	about	what	is
happening	behind	the	scenes.

A	good	example	of	this	is	the	phone	app	on	your	iPhone.	When	you	toggle
between	all	calls	and	missed	calls,	the	complete	list	animates	to	show	or	hide
the	relevant	data.	Similarly,	on	the	settings	app,	when	you	turn	on	Airplane
mode,	the	Carrier	row	hides	because	it’s	no	longer	relevant.	But	if	these
actions	happen	without	animations,	users	will	be	confused	about	what	is
happening.	One	thing	that	sets	iOS	apart	from	its	competitor	is	that	it	is	easy
to	create	a	compelling	user	experience	that	blends	well	with	the	OS.	In	this
case,	implementing	these	animations	is	very	easy	with	UITableView.	Using
methods	in	UITableView,	you	can	animate	a	row	insertion,	row	deletion,	or
row	updates	with	fewer	than	ten	lines	of	code.

The	most	important	thing	to	remember	here	is	that	prior	to	your	table	updates,
you	should	update	your	models.	Failure	to	do	so	will	result	in	an
NSInteralInconsistencyException	(crash).	In	other	words,	if	you	are
displaying	a	list	of	items,	inserting	a	new	row	in	the	table	view	should	be
done	after	updating	the	model.

Remember,	if	you	have	to	perform	a	batch	of	animated	updates	on
UITableView,	you	can	sandwich	them	between	calls	to	beginUpdates	and
endUpdates.	iOS	automatically	computes	the	changes	and	performs	the
correct	animation	sequence	for	you.	The	following	are	the	commonly	used
methods	for	performing	animated	updates	to	a	UITableView:

insertRowsAtIndexPaths:withRowAnimation:

deleteRowsAtIndexPaths:withRowAnimation:

reloadRowsAtIndexPaths:withRowAnimation:

In	the	following	list,	the	first	parameter	is	the	array	of	index	paths	you	need
to	add	and	the	second	is	the	animation	style	that	should	be	used.	The
animation	style	can	be	one	of	the	following	values	(the	last	item	in	this	list	is
new	in	iOS	5):

UITableViewRowAnimationFade,	UITableViewRowAnimationNone

UITableViewRowAnimationRight,	UITableViewRowAnimationLeft

UITableViewRowAnimationTop,	UITableViewRowAnimationBottom
UITableViewRowAnimationMiddle

UITableViewRowAnimationAutomatic

On	iOS	5,	you	can	use	a	new	style,	UITableViewRowAnimationAutomatic,	and	the	system
automatically	chooses	the	correct	animation	for	you.	iOS	5	also	introduces	two	new	methods	to
move	a	complete	section	from	one	location	to	another.	This	is	helpful	in	case	you	want	to	visually
show	movement	of	a	complete	section.

The	following	are	methods	for	moving	rows	and/or	sections	in	a
UITableView:

moveSection:	toSection:

moveRowAtIndexPath:	toIndexPath:

Partially	Reloading	Tables
You	can	use	the	reloadRowsAtIndexPaths:withRowAnimation:	method	to
partially	reload	a	table	view.	For	example,	if	you	get	a	push	notification	that
data	currently	displayed	on	the	table	view	should	be	updated,	you	can	reload
just	that	single	row	in	a	UITableView.	I	recommend	using	the
UITableViewRowAnimationFade	or	UITableViewRowAnimationNone	style	on
iOS	4	and	earlier,	and	UITableViewRowAnimationAutomatic	on	iOS	5	for
this.

Practical	Implementations	of	Table	View	Animations
With	the	built-in	UITableView	animations	you	can	easily	implement	custom
controls	like	accordion	or	show	and	hide	drawers	that	expose	additional
controls.	The	next	sections	provide	some	ideas	for	implementing	them.
Custom	controls	like	these	can	be	implemented	in	multiple	ways.	So	instead
of	focusing	on	code,	you	learn	the	process	behind	building	them.

Implementing	an	Accordion	List
Accordion	is	a	control	that	is	often	found	on	content-rich	websites	to
categorize	navigational	links.	It	contains	a	list	of	sections	and	subitems	under
each	section.	Sections	can	be	opened	to	reveal	the	items	within	and	can	be
closed	or	collapsed	to	hide	them.	On	iOS,	accordions	are	often	used	to	model
a	single-level	hierarchical	navigation	menu.	The	USA	Today	app’s	pictures
tab	is	an	example	of	this.	Let’s	dissect	the	view	and	analyze	how	a	control
like	that	could	be	created.

From	the	UI,	it	appears	that	the	section	headers	are	tappable	and	every
section	has	either	one	row	or	zero	rows	based	on	whether	it	is	in	an	expanded

state	or	not.	This	means	you	need	a	custom	section	view	that	tells	the	parent
controller	(your	table	view	controller)	that	it	was	tapped.

For	this	example,	design	a	custom	UIView	that	has	one	big	tappable	button.
You	will	use	this	view	as	the	custom	section	view	for	your	table.	Override	the
tableView:viewForHeaderInSection:	method,	create	your	UIView,	and
return	it.	These	views	should	notify	(via	a	delegate	or	handler)	the	table	view
of	the	button-tapped	event	back	to	the	table	view.	On	this	handler,	the	table
view	controller	should	do	two	things.	First,	it	should	update	the	models	and
secondly	the	table	view.	For	updating	models,	you	can	save	the	tapped
section’s	index	as	the	currently	expanded	index.	Once	this	is	done,	you	can
refresh	the	table	view.	This	can	be	done	in	two	ways,	either	by	firing
reloadData	to	the	table	view	or	by	calculating	the	changes	and	calling	the
necessary	addRowsAtIndexPaths:withRowAnimation:	and
deleteRowsAtIndexPaths:withRowAnimation:	methods.	The	reload	data
method	refreshes	the	entire	table	and	users	will	not	know	what	happened
behind	the	scenes.	For	getting	the	accordionlike	UI	effect,	you	should	call
deleteRowsAtIndexPaths:withRowAnimation:	for	the	old	section	(currently
expanded	row)	and	addRowsAtIndexPaths:withRowAnimation:	for	the
tapped	section.	Because	you	are	doing	two	operations	on	the	table	view	and
you	don’t	want	the	table	to	update	itself	for	every	operation,	you	should
sandwich	them	between	the	methods	beginUpdates	and	endUpdates.

The	most	complicated	part	here	is	to	match	the	changes	to	the	model	and	the
UI	synchronously.	When	your	model	doesn’t	exactly	reflect	your	UI,	your
code	will	crash	with	an	NSInternalInconsitencyException.

Animating	rows	on	iOS	4	and	before	must	be	done	manually.	For	rows	that	are	deleted,	use
UITableViewRowAnimationTop;	for	rows	inserted,	use	UITableViewRowAnimationBottom.	For	rows
that	are	updated,	use	UITableViewRowAnimationFade	or	UITableViewRowAnimationNone.	On	iOS	5,
you	can	use	UITableViewRowAnimationAutomatic	and	the	framework	automatically	chooses	the
right	animation	for	you.

Implementing	a	Drawer
Implementing	a	drawerlike	UI	is	done	similarly	to	implementing	an
accordion	list.	A	drawer	is	a	unique	row	in	the	table	view	that,	instead	of
showing	data,	shows	tools	to	manipulate	the	data.	The	Twitter	client
TweetBot	(and	many	other	apps)	uses	this	to	show	context-sensitive	menu
options	for	a	table	view	row.

Implementing	a	drawer	is	slightly	easier	(programmatically)	than
implementing	an	accordion.	Create	a	custom	UITableViewCell	for	your
drawer	in	your	table	view	nib	file	and	connect	it	to	an	IBOutlet.	Next,
maintain	an	NSIndexPath	pointer	that	will	store	the	currently	tapped	row	and
update	this	when	a	row	is	selected
(TableView:didSelectRowAtIndexPath:).	Insert	a	new	row	below	the
selected	row	and	remove	the	previously	added	drawer	(if	any)	using
insertRowsAtIndexPaths:withRowAnimation:	methods.

Now	comes	the	tricky	part.	Your	data	source	methods
(numberOfRowsInSection)	should	return	one	additional	row	if	your	stored
index	path	is	not	nil.	Your	cellForRowAtIndexPath	should	return	the	pointer
to	the	drawer	cell	(remember	that	IBOutlet	connection	you	made)	for
indexPath	that	is	one	row	higher	than	the	saved	indexPath.	Play	around	with
these	methods	and	you	should	get	it.	Implementation	is	mathematically
complicated,	but	programmatically	easy.

Using	Gesture	Recognizers	in	Table	View	Cells
Swipe	gestures	like	the	swipe-to-delete	or	swipe-to-reveal	options	on	Twitter
for	iPhone	are	another	interesting	type	of	interaction	pattern.	With	gesture
recognizers	introduced	in	iOS	3.2,	you	can	attach	a	swipe	gesture	recognizer
(UISwipeGestureRecognizer)	to	your	table	cells’	contentView.	Attaching	a
long	press	gesture	recognizer	(UILongPressGestureRecognizer)	can	help	in
showing	a	context-sensitive	menu	(using	a	UIActionSheet)	for	a	given	table
view	cell	element.

Table	views	can	be	customized	pretty	easily	to	create	a	wealth	of	new	UI
elements	and	interaction	patterns	like	the	two	commonly	used	patterns
covered	earlier	in	this	chapter.	In	most	cases,	the	UI	boils	down	to	techniques
explained	in	the	previous	sections.

With	that,	let’s	proceed	to	the	next	section	where	you	learn	about	writing
cleaner	and	leaner	code	that	is	easier	to	manage,	read,	and	understand.

Table	View	Best	Practices:	Writing	Clean	Code	with
Lean	Controllers

If	you	have	been	doing	iOS	development	for	quite	a	while,	you	know	that
your	controller’s	cellForRowAtIndexPath:	can	easily	get	messy	and
unmanageable	as	your	project	evolves.	When	you	use	the	model-view-
controller	paradigm	in	your	software	project	(not	just	iOS),	strive	to	make
your	controller	as	lean	as	possible.	Keeping	the	controller	lean	is	arguably	the
easiest	way	to	keep	your	code	readable	and	manageable.	The	next	section
discusses	briefly	how	to	refactor	your	code	adhering	to	these	ideas.

Data	Binding	Guidelines
When	you	are	writing	a	table	view	controller	subclass,	the	bulk	of	your	code
is	written	in	the	UITableViewDelegate	and	UITableViewDataSource
methods.	Focusing	on	how	to	write	these	methods	clearly	solves	the	problem.
The	cellForRowAtIndexPath	method	often	contains	code	that	sets	values	for
every	individual	UI	element	of	the	cell.	The	best	way	to	set	the	values	for
individual	UI	elements	in	the	cell	is	to	move	this	code	elsewhere.	Now,	where
should	it	be	moved?	That	depends	on	the	kind	of	custom	cell	you	are	using.
Based	on	your	app’s	functionality,	your	table	views	need	to	be	bound	with
associated	data.

This	technique,	often	called	data	binding,	is	a	bit	underrepresented	on	iOS,	at
least	when	compared	to	Mac.	The	best	way	to	bind	data	is	to	pass	your	data
model	object	to	the	custom	table	view	cell	and	let	it	bind	the	data.	Let’s
classify	table	view	cells	into	three	types	based	on	how	you	would	normally
associate	data	with	them.

The	first	type	is	a	subclass	of	UITableViewCell	and	is	a	custom	cell	designed
to	display	a	specific	kind	of	data,	which	in	most	cases	is	closely	tied	to	the
specifics	of	the	app.	An	example	for	a	RSS	Reader	app	would	be	a
“FeedCell”	that	displays	a	feed.

The	second	type	is	designed	and	developed	in	a	generic	way	similar	to
Apple’s	UITableViewCell	implementation.	You	create	your	cells	by
specifying	a	style	and	these	cells	can	be	used	in	other	classes	or	projects	for
displaying	many	different	types	of	data	models.	For	example,	you	could
create	generic	cells	like	MyTableViewSwitchCell	for	displaying	a	title	text
and	an	on/off	UISwitch	or	MyTableViewInputCell	for	displaying	a	title	text
and	a	UITextField	for	data	entry.

The	third	type	of	cell	is	a	native	UITableViewCell	provided	by	the	UIKit
framework.	In	any	of	these	three	cases,	as	far	as	possible,	try	to	move	the	data
binding	code	to	the	cell	itself.

The	first	case	is	straightforward.	Write	a	method	within	the	FeedCell	that
accepts	your	model	object	as	a	parameter	and	set	the	individual	UI	elements
to	the	values	in	the	Feed	model	object.	That	is,	move	your	data	binding	code
to	the	FeedCell,	the	subclass	of	UITableViewCell.	For	example,	in	the	case
of	a	RSS	Reader	app,	the	FeedCell	should	have	a	public	method	that	looks
similar	to	this:

Bind	Method	in	Your	FeedCell

-(void)	bind:(Feed*)	feedToBeDisplayed	{

self.titleLabel.text	=	feedToBeDisplayed.text;

self.timeStampLabel.text	=	feedToBeDisplayed.modifiedDateString;

…

}

Instead	of	writing	this	code	in	the	view	controller’s	data	source	method,
cellForRowAtIndexPath:,	it’s	moved	to	the	UITableViewCell	subclass.	This
means	that	if	the	format	of	the	cell	needs	to	be	changed	at	a	later	stage,	like
adding	an	author	name	field	to	your	Feed	model	object	and	FeedCell,	you	can
do	it	in	one	place.

When	you	use	the	system	default	UITableViewCell	for	displaying	your	data,
I	recommend	adding	this	bind	method	to	a	category	class	on
UITableViewCell.

If	you	have	multiple	models	using	the	same	UITableViewCell,	consider
creating	multiple	category	classes,	one	for	each	model;	for	example,	create
UITableViewCell+Feed.h/m	for	displaying	feeds	and	say,
UITableViewCell+Subscription.h/m	for	displaying	subscriptions	on	the
same	cell.	Be	careful	when	naming	the	bind	method.	When	a	category
contains	a	duplicated	method	name,	it	overrides	the	previously	defined
method	and	there	is	no	defined	order	in	which	this	overriding	happens.	I
recommend	naming	them	bind<ModelClassName>,	which	is	readable	and
understandable.	For	example,	the	names	bindFeed:(Feed*)	and
bindSubscription:(Subscription*)	follow	this	convention.

The	third	case	is	when	you	have	a	generic	custom	table	cell	like	the
MyTableViewSwitchCell.	In	this	case,	too,	you	can	apply	the	previous
technique.	Add	category	methods	on	your	generic	custom	table	view	cell.

More	often	than	not,	you	would	be	reusing	the	same	FeedCell	in	multiple
tables	and	in	multiple	view	controllers.	Moving	the	data	binding	code	out	of
the	table	view	controller	(or	any	generic	view	controller)	will	reduce	the
clutter	on	the	controllers	and	make	it	easy	to	maintain	your	code.

Multiple	UITableViewControllers	Inside	a	Single
UIViewController

The	next	often-seen	UI	is	multiple	table	views	within	a	same
UIViewController.	Figure	5-8	shows	a	project	with	multiple	table	views
within	a	single	UIViewController.

Spaghetti	code	starts	creeping	in	when	both	the	table’s	data	source	and
delegate	are	set	to	the	file’s	owner—the	parent	UIViewController.	The
second	stage	of	“spaghettiness”	creeps	in	when	you	add
UISearchDisplayController	to	both	these	tables.	Now	your
cellForRowAtIndexPath:	method	will	look	similar	to	this:

Sample	cellForRowAtIndexPath

-(UITableViewCell	*)tableView:(UITableView	*)tableView

			cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

		if(tableView	==	self.firstTable)		{

				//return	first	table’s	cell

		else	if(tableView	==	self.secondTable)	{

				//return	second	table’s	cell

}

		else	if(tableView	==

				self.firstSearchDisplayController.searchTableView)	{

											//return	first	table’s	search	cell

}

		else	if(tableView	==

				self.secondSearchDisplayController.searchTableView)	{

											//return	second	table’s	search	cell

		}

}

Figure	5-8	Interface	Builder	showing	a	project	with	multiple	UITableViews
within	a	single	view

Obviously,	there	should	be	a	better	way,	right?	As	it	happens,	there	is.	Instead
of	setting	the	delegate	and	data	source	to	the	file’s	owner,	create	custom
UITableViewController	subclasses	for	each	table	and	set	the	delegate	and
data	source	to	its	own	controller.	This	is	illustrated	in	Figure	5-9.

Create	custom	subclasses	called	FirstTableViewController	and
SecondTableViewController	and	move	the	cellForRowAtIndexPath
methods	in	the	file’s	owner	to	these	two	classes.	You	will	reduce	the	number
of	if	statements	used	by	half.	You	can	do	something	similar	to	this	to	isolate
the	search	display	controller’s	delegate	as	well	if	the	code	for	it	gets	long	and
unmanageable.	You	might	end	up	creating	more	files	and	more	classes,	but

that’s	just	fine.

Figure	5-9	Interface	Builder	showing	a	better	way	to	add	multiple
UITableViews	within	a	single	view

The	first	rule	of	thumb	for	refactoring	is	to	revisit	your	code	to	check	whether	the	if	statements
you	are	using	are	truly	for	a	logical	branching	and	not	for	class-based	switching.

The	second	rule	is	to	check	if	you	are	using	an	if	condition	to	branch	code	for	different	kinds	of
tables,	like	in	the	cellForRowAtIndexPath:	method.	As	I	showed	you	previously,	code	like	this
should	be	refactored	and	solved	elegantly	using	object-oriented	techniques.	Every	class-based
switching	like	this	can	be	solved	in	an	object-oriented	way.	This	refactoring	technique	holds	good
for	any	language,	not	just	Objective-C.

Adhering	to	these	two	refactoring	techniques	should	reduce	much	of	the	code
in	your	controller	class.	Remember	that	your	controller	should	act	as	a
mediator	among	your	models	and	UI	elements	defined	at	that	level	and	not	at
the	subclass	level.	In	other	words,	a	view	controller	can	set	the	property	of	a
UI	element	defined	in	its	scope	but	not	that	of	a	UI	element	that	is	inside	a
subclass.	For	example:

self.textLabel.text	=	NSLocalizedString(@”Hello”,	@””)

is	okay,	but

self.customView.textLabel.text	=	NSLocalizedString(@”Hello”,	@””)

should	be	avoided.	The	recommended	way	is	to	move	this	code	into	the

customView’s	class.	Apply	these	techniques	and	start	writing	cleaner	and
leaner	controllers.

Let’s	now	move	on	to	storyboards,	a	new,	powerful	concept	that	will	help	you
write	even	less	code.	This	is	something	new	to	iOS	5	and	requires	your	app’s
minimum	deployment	OS	version	to	be	5.0.

Storyboards
Prior	to	iOS	5,	interface	elements	and	views	were	created	using	IB	and	saved
in	nib	files.	Storyboards	are	a	new	way	to	create	them,	and	in	addition	to
creating	interface	elements,	you	can	now	specify	the	navigation	(called
segues)	between	those	interfaces	when	you	use	storyboards.	This	was
something	you	could	not	do	previously	without	writing	code.	You	can	think
of	storyboards	as	a	graph	of	all	your	view	controllers	connected	by	segues
that	dictate	the	transition	between	them.

The	benefits	of	storyboards	don’t	stop	there.	They	also	make	it	easy	for
developers	to	create	static	table	views	without	a	data	source.	How	many	times
have	you	wanted	to	create	a	table	view	that’s	not	bound	to	a	real	data	source?
(For	example,	a	table	that	shows	a	list	of	options	instead	of	data.)	A	common-
use	case	for	this	is	your	app’s	settings	page.	Storyboards	also	help	co-
developers	and/or	clients	understand	the	complete	workflow	of	the	app.

Let’s	get	started	with	storyboards	and	discuss	how	to	do	things	that	you	do
with	nib	files	using	storyboards,	like	communicating	between	controllers.
Later	on,	you	learn	how	to	create	a	static	table	view	without	a	data	source	and
finally,	the	most	interesting	aspect	of	Storyboards,	which	is	writing	your	own
custom	transition	animations.

Getting	Started	with	Storyboards
You	can	use	storyboards	for	new	projects	or	add	them	to	an	existing	project
that	doesn’t	have	a	storyboard	yet.	For	existing	projects	you	can	add
storyboards	just	like	how	you	add	a	new	file	to	a	project.	You	learn	more
about	how	to	instantiate	view	controllers	in	this	storyboard	later	in	this
chapter.

For	new	projects,	storyboards	can	be	created	in	Xcode	4.2	by	using	the	new
project	template	and	selecting	the	Use	Storyboard	option	as	shown	in	Figure
5-10.	This	is	selected	by	default	for	you.

When	you	create	a	new	project	using	storyboards,	the	info.plist	key	of
your	app	contains	a	key	called	UIMainStoryboardFile.	This	key	supersedes
NSMainNibFile	that	was	used	prior	to	iOS	5.	You	can	continue	to	use
NSMainNibFile	if	your	app’s	main	window	is	loaded	from	a	nib	file	instead	of
a	storyboard.	However,	you	can’t	use	both	UIMainStoryboardFile	and
NSMainNibFile	in	the	same	app.	UIMainStoryboardFile	takes	precedence
and	your	nib	file	specified	in	NSMainNibFile	never	gets	loaded.

Your	application	can	store	the	complete	storyboard	in	one	file	and	IB	automatically	builds	it	into
separate	files	optimized	for	loading.	In	short,	you	don’t	have	to	be	worried	about	loading	time	or
performance	when	using	Storyboards.

Figure	5-10	New	Project	Template	in	Xcode	4.2	showing	the	Use	Storyboard
option

Instantiating	a	Storyboard

When	your	UIMainStoryboardFile	is	set,	the	compiler	automatically
generates	code	for	instantiating	it	and	loads	it	as	your	application’s	startup
window.	If	you	are	adding	storyboards	in	an	existing	app,	you	should	be
doing	this	programmatically.	The	methods	for	instantiating	view	controllers
within	a	storyboard	are	defined	in	the	UIStoryboard	class.

When	you	want	to	display	a	view	controller	specified	in	your	storyboard,	you
load	the	storyboard	using	this	method:

+	storyboardWithName:bundle:

Loading	View	Controllers	within	a	Storyboard
Loading	view	controllers	within	a	storyboard	is	very	similar	to	the	nib
loading	method,	and	with	the	UIStoryboard	object,	you	can	instantiate	view
controllers	using	the	following	method:

–	instantiateInitialViewController

–	instantiateViewControllerWithIdentifier:

Segues
Segues	are	transitions	defined	in	your	storyboard	file.	UIKit	provides	two
default	transition	styles,	Push	and	Modal.	They	behave	similar	to	the
pushViewController:animated:	and
presentModalViewController:animated:	methods	you	use	in	iOS	4.	In
addition	to	this,	you	can	create	custom	segues	and	create	new	kinds	of
transitions	between	view	controllers.	You	look	at	this	later	in	this	chapter.

You	create	segues	by	connecting	certain	events	on	view	controllers	with	other
view	controllers	on	your	storyboard	file.	You	can	drag	from	a	button	to	a
view	controller,	from	a	gesture	recognizer	object	to	a	view	controller,	and	so
on.	IB	creates	a	segue	between	them,	and	you	can	select	the	segue	and	use	the
inspector	panel	to	modify	the	transition	styles.

The	inspector	panel	also	allows	you	to	set	a	custom	class	if	you	select	a
custom	transition	style.	You	can	think	of	a	segue	as	something	that	connects
an	action	with	a	transition.	Actions	that	can	trigger	segues	can	be	button	tap
events,	row	selection	events	on	static	table	views,	a	recognized	gesture,	or
even	audio	events.	The	compiler	automatically	generates	the	necessary	code

to	perform	a	segue	when	the	event	to	which	you	connected	the	segue	occurs.

When	a	segue	is	about	to	be	performed,	a	prepareForSegue:sender:	method
is	invoked	on	the	source	view	controller	and	an	object	of	type
UIStoryboardSegue	is	passed	to	it.	You	can	override	this	method	to	pass	data
to	the	destination	view	controller.	The	next	section	explains	how	to	do	this.

When	a	view	controller	performs	multiple	segues,	the	same	prepareForSegue:sender:	method
gets	called	for	every	segue.	To	identify	the	performed	segue,	you	should	use	the	segue	identifier	to
check	if	the	performed	segue	is	the	intended	one	and	pass	data	accordingly.	As	a	defensive
programming	practice,	I	would	advise	you	to	perform	this	check	even	if	the	view	controller
performs	only	one	segue.	This	would	ensure	that	later	on,	when	you	add	a	new	segue,	your	app
will	continue	to	run	without	crashing.

Passing	Data
Now	that	storyboards	automatically	handle	view	navigation,	how	will	you	be
passing	data	to	the	new	view?	In	iOS	4,	you	instantiate	a	view	controller,	get
a	pointer	to	it,	fill	in	the	initial	data,	and	pass	it	to
presentViewController:animated:	or	pushViewController:animated:.

On	iOS	5,	when	you	use	Storyboards,	instantiating	view	controllers	and
presenting	them	to	the	user	are	done	automatically	for	you.	You	are	given	a
chance	to	fill	in	data	by	overriding	the	prepareForSegue:sender:	method.
By	overriding	this	method,	you	can	get	the	pointer	to	the	destination	view
controller	and	set	the	initial	values	there.

The	framework	calls	the	same	methods	that	you	used	before	like
viewDidLoad,	initWithCoder:	or	NSObject’s	awakeFromNib	method,	and	this
means	that	you	can	continue	writing	your	view	controller’s	initialization	code
as	you	would	do	on	iOS	4.

Returning	Data
With	Storyboards,	there	is	no	change	in	how	you	communicate	data	back	to
the	parent	view	controller.	Data	created/entered	by	the	user	on	modal	forms
that	you	present	can	be	retuned	to	the	parent	via	delegates	or	blocks.	The	only
difference	is	that	on	your	parent	view	controller,	you	have	to	set	the	delegate
in	the	prepareForSeque:sender:	method	to	self.

Instantiating	Other	View	Controllers

On	iOS	5,	UIViewController	has	a	storyboard	property	that	retains	a	pointer
to	the	storyboard	object	(UIStoryBoard)	from	which	it	was	instantiated.	This
is	nil	when	your	view	controller	was	created	manually	or	from	a	nib	file.
With	this	back	reference,	you	can	instantiate	other	view	controllers	defined	in
your	storyboard	from	any	other	view	controller.	You	do	this	by	identifying	the
view	controller	by	its	identifier.	The	following	method	on	UIStoryBoard
allows	you	to	do	this:

–	instantiateViewControllerWithIdentifier:

This	means	that	you	can	still	have	view	controllers	on	your	storyboard	that
are	not	connected	with	any	other	view	controllers	through	segues	and	yet	they
can	be	initialized	and	used.

Performing	Segues	Manually
While	Storyboards	can	automatically	trigger	segues	based	on	actions,	there
might	be	cases	when	you	need	to	perform	segues	programmatically.	You
might	use	this	is	to	handle	actions	that	cannot	be	handled	by	the	storyboard
file.	To	perform	a	segue,	you	call	the
performSegueWithIdentifier:sender:	method	of	the	view	controller.
When	you	perform	segues	manually,	you	can	pass	the	caller	and	the	context
objects	in	the	sender	parameter.	This	will	be	sent	to	the
prepareForSegue:sender:	method	later.

Building	Table	Views	with	Storyboard
One	of	the	important	advantages	of	Storyboards	is	the	capability	to	create
static	tables	from	IB.	With	Storyboards,	you	can	build	two	types	of	table
views:	a	static	table	that	doesn’t	need	a	special	class	for	providing	a	data
source,	and	a	table	view	containing	a	prototype	cell	(similar	to	custom	table
view	cells	in	iOS	4)	that	binds	data	from	a	model.

Static	Tables
You	can	create	static	tables	in	your	storyboard	by	dragging	a	table,	selecting
it,	and	from	the	inspector,	choosing	Static	Cells.This	is	shown	in	Figure	5-11.

Static	cells	are	great	for	creating	settings	pages	(or	pages	whose	content
doesn’t	come	from	a	Core	Data	model	or	a	web	service	or	any	such	data

source)	like	Apple’s	own	Settings	app.

Static	cells	can	be	created	only	for	table	views	that	are	from	a	UITableViewController.	You
cannot	create	static	cell	for	table	views	that	are	added	as	a	subview	of	a	UIViewController	view.

Prototype	Cells
Prototype	cells	are	similar	to	custom	table	view	cells,	but	instead	of	creating
this	on	separate	nib	files	and	loading	them	in	the	data	source	method,
cellForRowAtIndexPath:,	you	create	them	in	IB	on	your	storyboard	and	just
set	the	data	on	your	data	source	methods.

All	prototype	cells	should	be	identified	using	a	custom	identifier.	This	is	to	ensure	proper
functioning	of	the	table	view	cell	queuing	methods.

Figure	5-11	A	storyboard	illustrating	static	table	view	creation

Custom	Transitions
Another	advantage	of	Storyboards	is	that	it	is	now	easy	to	create	custom
transition	effects	for	your	view	controllers.

When	segues	are	performed,	the	compiler	generates	necessary	code	to	present
or	push	the	destination	controller	based	on	the	transition	style	you	set	on	your

storyboard.	You	learned	that	there	are	two	types	of	transition	styles,	Push	and
Modal,	supported	natively	by	iOS.	There	is	also	a	third	type	(Custom)	and
when	you	choose	this,	you	can	provide	your	own	subclass	of
UIStoryboardSegue	that	handles	your	custom	transition	effects.

Create	a	subclass	of	UIStoryBoardSegue	and	override	the	perform	method.
In	the	perform	method,	access	the	pointer	to	the	source	view	controller’s
main	view’s	layer	and	do	your	custom	transition	animation	(using	Core
Animation).	Once	the	animation	is	complete,	push	or	present	your	destination
view	controller	(you	can	get	a	pointer	to	this	from	the	segue	object).	It’s	as
simple	as	that.

Another	Advantage
When	you	use	storyboards,	it	becomes	easy	for	co-developers	(and/or	clients)
to	understand	the	app’s	flow.	Instead	of	going	through	multiple	nib	files	and
cross-referencing	the	instantiation	code	for	understanding	the	flow,	co-
developers	can	open	the	storyboard	file	and	see	the	complete	flow.	This	alone
should	be	a	compelling	reason	to	use	them.

A	Disadvantage
The	only	drawback	I	can	think	of	is	that	storyboards	are	iOS	5	only.	Writing
code	to	selectively	use	storyboards	for	iOS	5	devices	and	falling	back	to
normal	nib	files	for	iOS	4	devices	is	too	cumbersome	and	not	worth	the
effort.	When	you	use	storyboards,	raise	your	target’s	deployment	target	to
iOS	5.	If	your	app	were	an	iPad-only	app,	I	would	recommend	using	iOS	5
because	most	iPad	users	will	already	be	on	that	because	iOS	5	doesn’t
alienate	iPad	1	and	all	new	features	of	iOS	5	are	available	on	both	iPad	1	and
2.	But	otherwise,	on	iPhone	apps	or	universal	apps,	my	recommendation	is	to
wait	until	you	can	avoid	using	iOS	4	completely.

Customizing	Your	Views	Using
UIAppearance	Protocol

This	last	section	covers	a	small,	important	addition	to	iOS	5:	a	method	to
customize	your	view	appearance	through	Apple’s	native	classes.	Prior	to	iOS
5,	customizing	the	look	and	feel	of	native	controls	was	not	natively	supported

and	was	often	difficult	for	developers.	A	common	problem	developers	face	is
to	change	the	appearance	of	all	instances	of	a	control.	The	proper	way	of
doing	this	was	to	create	the	complete	control	from	scratch.	But	because	that
was	time-consuming,	some	developers	resorted	to	overriding	or	swizzling
methods	like	drawRect:.

With	iOS	5,	Apple	has	provided	default	support	for	most	UIKit	controls	by
formalizing	customization	using	a	couple	protocols—namely	UIAppearance
and	UIAppearanceContainer.	Any	UI	control	that	adheres	to	the
UIAppearance	protocol	can	be	customized	to	have	a	different	look	and	feel.
Want	more?	The	UIAppearance	protocol	even	allows	you	to	specify	a
different	look	and	feel	based	on	where	the	control	is	contained.	That	is,	you
can	specify	the	appearance	of	a	control	(say	the	tintColor	of	a
UIBarButtonItem	for	example)	to	be	different	when	it	is	contained	within	a
specific	view	(UINavigationBar	or	UIPopoverViewController).	You	do	this
by	getting	an	appearance	proxy	object	for	the	control’s	class	and	using	that	to
customize	the	appearance.	Let’s	look	at	an	example.

To	customize	the	tint	color	of	a	bar	button	throughout	your	application,	you
set	the	tintColor	to	the	UIBarButtonItem’s	appearance	proxy	like	this:

[[UIBarButtonItem	appearance]	setTintColor:[UIColor	redColor]];

Note	that	the	setTintColor	method	existed	in	iOS	4,	in	UIBarButtonItem.
But	it	was	applicable	only	to	a	particular	instance	of	the	control.	With	the
appearance	proxy	object,	you	are	now	able	to	customize	the	appearance	of
any	object	created	using	the	said	class.

On	similar	lines,	you	can	also	customize	the	appearance	of	a	control
depending	on	the	contained	view,	by	using	the	following	method:

[[UIBarButtonItem	appearanceWhenContainedIn:[UINavigationBar

class],	nil]	setTintColor:[UIColor	redColor]];

The	first	parameter	is	a	nil	terminated	list	of	all	container	classes	like
UINavigatorBar,	UIPopOverController	that	adheres	to	the
UIAppearanceContainer	protocol.

Starting	with	iOS	5,	most	UI	elements	have	added	support	to	UIAppearance

protocol.	Additionally,	controls	like	the	UISwitch.in	iOS	5	allow	you	to
easily	to	change	the	color	of	the	“on”	gradient	to	the	designer’s	choice.

While	Apple	was	against	UI	customization	in	the	beginning	(on	both	Mac
and	iOS),	it	is	slowly	changing,	and	you	could	see	Apple’s	own	native	apps
(like	the	new	Reminders	app)	having	customized	user	interfaces.	With
UIAppearance	protocol	you	should	be	able	to	achieve	the	same	with	far	less
code.

Summary
By	customizing	the	UI	appearance	and	writing	unique	custom	controls,	you
can	take	your	app	to	the	next	level.	To	help	you	do	so,	this	chapter	discussed
some	of	the	advanced	table	view	concepts,	including	measuring	and
improving	the	performance	of	your	table	view	scrolling	using	Instruments,
creating	custom	controls	like	accordion,	and	drawers	using	table	views.	You
then	learned	about	some	important	refactoring	techniques	to	keep	your
controller	code	cleaner.	After	that	you	learned	about	Storyboards	and	how	to
integrate	them	within	your	existing	apps.	Finally,	you	learned	about	the	UI
customization	protocol	introduced	in	iOS	5.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

What’s	New	in	iOS	5—Apple	Developer
TableView	Programming	Guide	iOS	Developer	Documentation
TableViewSuite—iOS	Developer	Library

UIViewController	Programming	Guide:	iOS	Developer	Documentation
(Storyboards)

WWDC	Videos

http://developer.apple.com/

The	following	session	video	is	available	at	developer.apple.com.

Session	309	-	Introducing	Interface	Builder	Storyboarding	WWDC	2011

Other	Resources
Fast	scrolling	in	Tweetie	with	UITableView
http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-

uitableview/

Enormego’s	Pull-To-Refresh	–	Github
https://github.com/enormego/EGOTableViewPullRefresh

http://developer.apple.com
http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-uitableview/
https://github.com/enormego/EGOTableViewPullRefresh

Chapter	6:	Better	Drawing

Your	users	expect	a	beautiful,	engaging,	and	intuitive	interface.	It	is	up	to	you
to	deliver.	No	matter	how	powerful	your	features,	if	your	interface	seems
“clunky,”	you’re	going	to	have	a	hard	time	making	the	sale.	This	is	about
more	than	just	pretty	colors	and	flashy	animations.	A	truly	beautiful	and
elegant	user	interface	is	a	key	part	of	a	user-centric	application.	Keeping	your
focus	on	delighting	your	user	is	the	key	to	building	exceptional	applications.

One	of	the	tools	you	need	to	create	an	exceptional	user	interface	is	custom
drawing.	In	this	chapter	you	will	learn	the	mechanics	of	drawing	in	iOS,	with
focus	on	flexibility	and	performance.	This	chapter	will	not	cover	iOS	UI
design.	For	information	on	how	to	design	iOS	interfaces,	you	should	start
with	Apple’s	iOS	Human	Interface	Guidelines	and	iOS	Application
Programming	Guide,	available	in	the	iOS	Developer	Documentation.

In	this	chapter,	you	will	learn	about	the	several	drawing	systems	in	iOS,	with
a	focus	on	UIKit	and	Core	Graphics.	By	the	end	of	this	chapter,	you	will	have
a	strong	grasp	of	the	UIKit	drawing	cycle,	drawing	coordinate	systems,
graphic	contexts,	paths,	and	transforms.	You	will	know	how	to	optimize	your
drawing	speed	through	correct	view	configuration,	caching,	pixel	alignment,
and	use	of	layers.	You	will	be	able	to	avoid	bloating	your	application	bundle
with	avoidable	prerendered	graphics.

With	the	right	tools,	you	can	achieve	your	goal	of	a	beautiful,	engaging,	and
intuitive	interface,	while	maintaining	high	performance,	low	memory	usage,
and	small	application	size.

iOS’s	Many	Drawing	Systems
iOS	has	several	major	drawing	systems:	UIKit,	Core	Graphics	(Quartz),	Core
Animation,	Core	Image,	and	OpenGL	ES.	Each	is	useful	for	a	different	kind
of	problem.

■	UIKit—This	is	the	highest-level	interface,	and	the	only	interface	in

Objective-C.	It	provides	easy	access	to	layout,	compositing,	drawing,
fonts,	images,	animation,	and	more.	You	can	recognize	UIKit	elements	by
the	prefix	UI,	such	as	UIView	and	UIBezierPath.	UIKit	also	extends
NSString	to	simplify	drawing	text	with	methods	like
drawInRect:withFont:.

■	Core	Graphics	(also	called	Quartz	2D)—The	primary	drawing	system
underlying	UIKit,	this	is	what	you	use	most	frequently	to	draw	custom
views.	Core	Graphics	is	highly	integrated	with	UIView	and	other	parts	of
UIKit.	Core	Graphics	data	structures	and	functions	can	be	identified	by	the
prefix	CG.

■	Core	Animation—This	provides	powerful	two-	and	three-dimensional
animation	services.	It	is	also	highly	integrated	into	UIView.	Chapter	7
covers	Core	Animation	in	detail.
■	Core	Image—A	Mac	technology	first	available	in	iOS	5,	Core	Image
provides	very	fast	image	filtering	such	as	cropping,	sharpening,	warping,
and	just	about	any	other	transformation	you	can	imagine.	The	basics	of
Core	Image	are	covered	in	Chapter	1.

■	OpenGL	ES—Most	useful	for	writing	high-performance	games—
particularly	3D	games—Open	GL	ES	is	a	subset	of	the	OpenGL	drawing
language.	For	other	applications	on	iOS,	Core	Animation	is	generally	a
better	choice.	OpenGL	ES	is	portable	between	most	platforms.	A
discussion	of	OpenGL	ES	is	beyond	the	scope	of	this	book,	but	there	are
many	good	books	available	on	the	subject.

UIKit	and	the	View	Drawing	Cycle
When	you	change	the	frame	or	visibility	of	a	view,	draw	a	line,	or	change	the
color	of	an	object,	the	change	is	not	immediately	displayed	on	the	screen.
This	sometimes	confuses	developers	who	incorrectly	write	code	like	this:

		progressView.hidden	=	NO;	//	This	line	does	nothing

		[self	doSomethingTimeConsuming];

		progressView.hidden	=	YES;

It’s	important	to	understand	that	the	first	line	(progressView.hidden	=	NO)
does	absolutely	nothing	useful.	This	code	does	not	cause	the	progress	view	to

be	displayed	while	the	time-consuming	operation	is	in	progress.	No	matter
how	long	this	method	runs,	you	will	never	see	the	view	displayed.	Figure	6-1
shows	what	actually	happens	in	the	drawing	loop.

All	drawing	occurs	on	the	main	thread,	so	as	long	as	your	code	is	running	on
the	main	thread,	nothing	can	be	drawn.	That	is	one	of	the	reasons	you	should
never	execute	a	long-running	operation	on	the	main	thread.	Not	only	does	it
prevent	drawing	updates	but	it	also	prevents	event	handling	(such	as
responding	to	touches).	As	long	as	your	code	is	running	on	the	main	thread,
your	application	is	effectively	“hung”	to	the	user.	This	isn’t	noticeable	as	long
as	you	make	sure	that	your	main	thread	routines	return	quickly.

You	may	now	be	thinking,	“Well,	I’ll	just	run	my	drawing	commands	on	a
background	thread.”	You	can’t	do	that	because	UIKit	isn’t	thread-safe.	Any
attempt	to	modify	a	view	on	a	background	thread	leads	to	undefined	behavior,
including	drawing	corruption	and	crashes.	(See	the	section	“Caching	and
Background	Drawing”	later	in	the	chapter	for	more	information	on	how	you
can	draw	in	the	background.)

This	behavior	is	not	a	problem	to	be	overcome.	The	consolidation	of	drawing
events	is	one	part	of	iOS’s	capability	to	render	complex	drawings	on	limited
hardware.	As	you	see	throughout	this	chapter,	much	of	UIKit	is	dedicated	to
avoiding	unnecessary	drawing,	and	this	consolidation	is	one	of	the	first	steps.

Figure	6-1	How	the	Cocoa	drawing	cycle	consolidates	changes

So	how	do	you	start	and	stop	an	activity	indicator	for	a	long-running
operation?	You	use	dispatch	or	operation	queues	to	put	your	expensive	work
in	the	background,	while	making	all	of	your	UIKit	calls	on	the	main	thread,
as	shown	in	the	following	code.

ViewController.m	(TimeConsuming)

-	(IBAction)doSomething:(id)sender	{

		[sender	setEnabled:NO];

		[self.activity	startAnimating];

		

		dispatch_queue_t	bgQueue	=	dispatch_get_global_queue(

																							DISPATCH_QUEUE_PRIORITY_DEFAULT,	0);

		

		dispatch_async(bgQueue,	^{

				[self	somethingTimeConsuming];

				

				dispatch_async(dispatch_get_main_queue(),	^{

						[self.activity	stopAnimating];

						[sender	setEnabled:YES];

				});

		});

}

When	the	IBAction	is	called,	you	start	animating	the	activity	indicator.	You
then	put	a	call	to	somethingTimeConsuming	on	the	default	background
dispatch	queue.	When	that	finishes,	you	put	a	call	to	stopAnimating	on	the
main	dispatch	queue.	Dispatch	and	operation	queues	are	covered	in	Chapter
9.

To	summarize

■	iOS	consolidates	all	drawing	requests	during	the	run	loop,	and	draws
them	all	at	once.
■	You	must	not	block	the	main	thread	to	do	complex	processing.

■	You	must	not	draw	into	the	main	view	graphics	context	except	on	the
main	thread.	You	should	check	each	UIKit	method	to	ensure	it	does	not
have	a	main	thread	requirement.	Some	UIKit	methods	can	be	used	on
background	threads	as	long	as	you	are	not	drawing	into	the	main	view

context.	See	“CGLayer”	later	in	this	chapter	for	examples.

View	Drawing	versus	View	Layout
UIView	separates	the	layout	(“rearranging”)	of	subviews	from	drawing	(or
“display”).	This	is	important	for	maximizing	performance	because	layout	is
generally	cheaper	than	drawing.	Layout	is	cheap	because	UIView	caches
drawing	operations	onto	GPU-optimized	bitmaps.	These	bitmaps	can	be
moved	around,	shown,	hidden,	rotated,	and	otherwise	transformed	and
composited	very	inexpensively	using	the	GPU.

When	you	call	setNeedsDisplay	on	a	view,	it	is	marked	“dirty”	and	will	be
redrawn	during	the	next	drawing	cycle.	You	should	not	call	it	unless	the
content	of	the	view	has	really	changed.	Most	UIKit	views	automatically
manage	redrawing	when	their	data	is	changed,	so	you	generally	don’t	need	to
call	it	except	on	custom	views.

When	a	view’s	subviews	need	to	be	rearranged	because	of	an	orientation
change	or	scrolling,	UIKit	calls	setNeedsLayout.	This,	in	turn,	calls
layoutSubviews	on	the	affected	views.	By	overriding	layoutSubviews,	you
can	make	your	application	much	smoother	during	rotation	and	scrolling
events.	You	can	rearrange	your	subviews’	frames	without	necessarily	having
to	redraw	them,	and	you	can	hide	or	show	views	based	on	orientation.	You
can	also	call	setNeedsLayout	if	your	data	changes	in	ways	that	only	need
layout	updates	rather	than	drawing.

Custom	View	Drawing
Views	can	provide	their	content	by	including	subviews,	including	layers,	or
implementing	drawRect:.	Typically	if	you	implement	drawRect:,	you	don’t
mix	this	with	layers	or	subviews,	although	it’s	legal	and	sometimes	useful	to
do	so.	Most	custom	drawing	is	done	with	UIKit	or	Core	Graphics,	although
OpenGL	ES	has	become	easier	to	integrate	when	needed.

2D	drawing	generally	breaks	down	into	several	operations:

■	Lines

■	Paths	(filled	or	outlined	shapes)
■	Text

■	Images
■	Gradients

2D	drawing	does	not	include	manipulation	of	individual	pixels	because	that	is
destination	dependent.	You	can	achieve	this	with	a	bitmap	context,	but	not
directly	with	UIKit	or	Core	Graphics	functions.

Both	UIKit	and	Core	Graphics	use	a	“painter”	drawing	model.	This	means
that	each	command	is	drawn	in	sequence,	overlaying	previous	drawings.
Order	is	very	important	in	this	model,	and	you	must	draw	back	to	front.

Drawing	with	UIKit
In	the	“old	days”	before	iPad,	most	custom	drawing	had	to	be	done	with	Core
Graphics	because	there	was	no	way	to	draw	arbitrary	shapes	with	UIKit.	In
iPhoneOS	3.2,	Apple	added	UIBezierPath	and	made	it	much	easier	to	draw
entirely	in	Objective-C.	UIKit	still	lacks	support	for	lines,	gradients,	shading,
and	some	advanced	features	like	controlling	anti-aliasing	and	precise	color
management.	Even	so,	UIKit	is	now	a	very	convenient	way	to	manage	the
most	common	custom	drawing	needs.

The	simplest	way	to	draw	rectangles	is	with	UIRectFrame	or	UIRectFill,	as
shown	in	the	following	code.

-	(void)drawRect:(CGRect)rect	{

		[[UIColor	redColor]	setFill];

		UIRectFill(CGRectMake(10,	10,	100,	100));

}

Notice	how	you	first	set	the	pen	color	using	–[UIColor	setFill].	Drawing
is	done	into	a	graphics	context	provided	by	the	system	before	calling
drawRect:.	That	context	includes	a	lot	of	information	including	stroke	color,
fill	color,	text	color,	font,	transform,	and	more.	At	any	given	time,	there	is	just
one	stroke	pen	and	one	fill	pen,	and	their	colors	are	used	to	draw	everything.
The	“Managing	Graphics	Contexts”	section	later	in	this	chapter	covers	how
to	save	and	restore	contexts,	but	for	now	just	note	that	drawing	commands	are

orderdependent,	and	that	includes	commands	that	change	the	pens.

The	graphics	context	provided	to	drawRect:	is	specifically	a	view	graphics	context.	There	are
other	types	of	graphics	contexts,	including	PDF	and	bitmap	contexts.	All	of	them	use	the	same
drawing	techniques,	but	a	view	graphics	context	is	optimized	for	drawing	onto	the	screen.	This
distinction	will	be	important	when	I	discuss	CGLayer.

Paths
UIKit	includes	much	more	powerful	drawing	commands	than	its	rectangle
functions.	It	can	draw	arbitrary	curves	and	lines	using	UIBezierPath.	A
Bézier	curve	is	a	mathematical	way	of	expressing	a	line	or	curve	using	a
small	number	of	control	points.	Most	of	the	time,	you	don’t	need	to	worry
about	the	math	because	UIBezierPath	has	simple	methods	to	handle	the	most
common	paths:	lines,	arcs,	rectangles	(optionally	rounded),	and	ovals.	With
these,	you	can	quickly	draw	most	shapes	needed	for	UI	elements.	The
following	code	is	an	example	of	a	simple	shape	scaled	to	fill	the	view,	as
shown	in	Figure	6-2.	You	draw	this	several	ways	in	the	upcoming	examples.

FlowerView.m	(Paths)

-	(void)drawRect:(CGRect)rect	{

		CGSize	size	=	self.bounds.size;

		CGFloat	margin	=	10;

		CGFloat	radius	=	rint(MIN(size.height	-	margin,

																												size.width	-	margin)	/	4);

		CGFloat	xOffset,	yOffset;

		CGFloat	offset	=	rint((size.height	-	size.width)	/	2);

		if	(offset	>	0)	{

				xOffset	=	rint(margin	/	2);

				yOffset	=	offset;

		}

		else	{

				xOffset	=	-offset;

				yOffset	=	rint(margin	/	2);

		}

		

		[[UIColor	redColor]	setFill];

		UIBezierPath	*path	=	[UIBezierPath	bezierPath];

		[path	addArcWithCenter:CGPointMake(radius	*	2	+	xOffset,

																																					radius	+	yOffset)

																		radius:radius

														startAngle:-M_PI

																endAngle:0

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(radius	*	3	+	xOffset,

																																					radius	*	2	+	yOffset)

																		radius:radius

														startAngle:-M_PI_2

																endAngle:M_PI_2

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(radius	*	2	+	xOffset,

																																					radius	*	3	+	yOffset)

																		radius:radius

														startAngle:0

																endAngle:M_PI

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(radius	+	xOffset,

																																					radius	*	2	+	yOffset)

																		radius:radius

														startAngle:M_PI_2

																endAngle:-M_PI_2

															clockwise:YES];

		[path	closePath];

		[path	fill];

}

This	creates	a	path	made	up	of	a	series	of	arcs	and	fills	it	with	red.	Creating	a
path	does	not	cause	anything	to	be	drawn.	A	UIBezierPath	is	just	a	sequence
of	curves,	like	an	NSString	is	a	sequence	of	characters.	Only	when	you	call
fill	is	the	curve	drawn	into	the	current	context.

Note	the	use	of	the	M_PI	(π)	and	M_PI_2	(π⁄2)	constants.	Arcs	are	described	in
radians,	so	π	and	fractions	of	π	are	important.	math.h	defines	many	such
constants	that	you	should	use	rather	than	recomputing	them.	Arcs	measure
their	angles	clockwise,	with	0	radians	pointing	to	the	right,	π⁄2	radians
pointing	down,	π	(or	-π)	radians	pointing	left,	and	-π⁄2	radians	pointing	up.
You	can	use	3π⁄2	for	up	if	you	prefer,	but	I	find	-M_PI_2	easier	to	visualize
than	3*M_PI_2.	If	radians	give	you	a	headache,	you	can	make	a	function	out
of	it:

CGFloat	RadiansFromDegrees(CGFloat	d)	{

		return	d	*	M_PI	/	180;

}

Generally	I	recommend	just	getting	used	to	radians	rather	than	doing	so	much
math,	but	if	you	need	unusual	angles,	it	can	be	easier	to	work	in	degrees.

When	calculating	radius	and	offset,	you	use	rint	(round	to	closest	integer)
to	ensure	that	you’re	point	aligned	(and	therefore	pixel	aligned).	That	helps
improve	drawing	performance	and	avoids	blurry	edges.	Most	of	the	time
that’s	what	you	want,	but	in	cases	where	an	arc	meets	a	line,	it	can	lead	to	off-
by-one	drawing	errors.	Usually	the	best	approach	is	to	move	the	line	so	that
all	the	values	are	integers,	as	discussed	in	the	following	section.

Figure	6-2	Output	of	FlowerView

Understanding	Coordinates
There	are	subtle	interactions	between	coordinates,	points,	and	pixels	that	can
lead	to	poor	drawing	performance	and	blurry	lines	and	text.	Consider	the
following	code:

		CGContextSetLineWidth(context,	3.);

		//	Draw	3pt	horizontal	line	from	{10,100}	to	{200,100}

		CGContextMoveToPoint(context,	10.,	100.);

		CGContextAddLineToPoint(context,	200.,	100.);

		CGContextStrokePath(context);

		

		//	Draw	3pt	horizontal	line	from	{10,105.5}	to	{200,105.5}

		CGContextMoveToPoint(context,	10.,	105.5);

		CGContextAddLineToPoint(context,	200.,	105.5);

		CGContextStrokePath(context);

Figure	6-3	shows	the	output	of	this	program	on	a	non-Retina	display,	scaled
to	make	the	differences	more	obvious.

Figure	6-3:	Comparison	of	line	from	{10,100}	and	line	from	{10,105.5}

The	line	from	{10,	100}	to	{200,	100}	is	much	more	blurry	than	the	line	from
{10,	105.5}	to	{200,	105.5}.	The	reason	is	because	of	how	iOS	interprets
coordinates.

When	you	construct	a	CGPath,	you	work	in	so-called	geometric	coordinates.
These	are	the	same	kind	of	coordinates	that	mathematicians	use,	representing
the	zero-dimensional	point	at	the	intersection	of	two	grid	lines.	It	is
impossible	to	draw	a	geometric	point	or	a	geometric	line	because	they	are
infinitely	small	and	thin.	When	iOS	draws,	it	has	to	translate	these	geometric
objects	into	pixel	coordinates.	These	are	two-dimensional	boxes	that	can	be

set	to	a	specific	color.	A	pixel	is	the	smallest	unit	of	display	area	that	the
device	can	control.

Figure	6-4	shows	the	geometric	line	from	{10,	100}	to	{200,	100}.

Figure	6-4	Geometric	line	from	{10,	100}	to	{200,	100}

When	you	call	CGContextStrokePath,	iOS	centers	the	line	along	the	path.
Ideally,	the	line	would	be	3	pixels	wide,	from	y	=	98.5	to	y	=	101.5,	as	shown
in	Figure	6-5.

Figure	6-5	Ideal	three-pixel	line

This	line	is	impossible	to	draw,	however.	Each	pixel	must	be	a	single	color,
and	the	pixels	at	the	top	and	bottom	of	the	line	include	two	colors.	Half	is	the
stroke	color,	and	half	is	the	background	color.	iOS	solves	this	problem	by
averaging	the	two.	This	is	the	same	technique	used	in	anti-aliasing.	This	is
shown	in	Figure	6-6.

Figure	6-6	Anti-aliased	three-pixel	line

On	the	screen,	this	line	will	look	slightly	blurry.	The	solution	to	this	problem
is	to	move	horizontal	and	vertical	lines	to	the	half-point	so	that	when	iOS
centers	the	line,	the	edges	fall	along	pixel	boundaries,	or	to	make	your	line	an
even	width.

You	can	also	encounter	this	problem	with	nonintegral	line-widths,	or	if	your
coordinates	aren’t	integers	or	half-integers.	Any	situation	that	forces	iOS	to
draw	fractional	pixels	will	cause	blurriness.

Fill	is	not	the	same	as	stroke.	A	stroke	line	is	centered	on	the	path,	but	fill
colors	all	the	pixels	up	to	the	path.	If	you	fill	the	rectangle	from	{10,100}	to
{200,103},	then	each	pixel	is	filled	correctly,	as	shown	in	Figure	6-7.

Figure	6-7	Filling	the	rectangle	from	{10,100}	to	{200,103}

The	discussion	so	far	has	equated	points	with	pixels.	On	a	Retina	display,
these	are	not	equivalent.	The	iPhone	4	has	four	pixels	per	point	and	a	scale
factor	of	two.	That	subtly	changes	things,	but	generally	for	the	better.
Because	all	the	coordinates	used	in	Core	Graphics	and	UIKit	are	expressed	in
points,	all	integral	line	widths	are	effectively	an	even	number	of	pixels.	For
example,	if	you	request	a	1-point	stroke	width,	this	is	the	same	as	a	2-pixel
stroke	width.	To	draw	that	line,	iOS	needs	to	fill	one	pixel	on	each	side	of	the
path.	That’s	an	integral	number	of	pixels,	so	there’s	no	anti-aliasing.	You	can
still	encounter	blurriness	if	you	use	coordinates	that	are	neither	integers	nor
half-integers.

Offsetting	by	a	half-point	is	unnecessary	on	a	Retina	display,	but	it	doesn’t
hurt.	As	long	as	you	intend	to	support	iPhone	3GS	or	iPad	2,	you	need	to
apply	a	half-point	offset	for	drawing	horizontal	and	vertical	lines.

All	of	this	only	applies	to	horizontal	and	vertical	lines.	Sloping	or	curved
lines	should	be	anti-aliased	so	that	they’re	not	jagged,	so	there’s	generally	no

reason	to	offset	them.

Resizing	and	contentMode
Returning	to	FlowerView	from	the	section	“Paths”	earlier	in	this	chapter,	if
you	rotate	the	device	as	shown	in	Figure	6-8,	you’ll	see	that	the	view	is
distorted,	even	though	you	have	code	that	adjusts	for	the	size	of	the	view.

Figure	6-8	Rotated	FlowerView

iOS	optimizes	drawing	by	taking	a	snapshot	of	the	view	and	adjusting	it	for
the	new	frame.	The	drawRect:	method	isn’t	called.	The	property
contentMode	determines	how	the	view	is	adjusted.	The	default,
UIViewContentModeScaleToFill,	scales	the	image	to	fill	the	new	view	size,
changing	the	aspect	ratio	if	needed.	That’s	why	the	shape	is	distorted.

There	are	a	lot	of	ways	to	automatically	adjust	the	view.	You	can	move	it
around	without	resizing	it,	or	you	can	scale	it	in	various	ways	that	preserve	or
modify	the	aspect	ratio.	The	key	is	to	make	sure	that	any	mode	you	use
exactly	matches	the	results	of	your	drawRect:	in	the	new	orientation.
Otherwise,	your	view	will	“jump”	the	next	time	you	redraw.	This	usually
works	as	long	as	your	drawRect:	doesn’t	consider	its	bounds	during	drawing.
In	FlowerView,	you	use	the	bounds	to	determine	the	size	of	your	shape,	so	it’s
hard	to	get	automatic	adjustments	to	work	correctly.

Use	the	automatic	modes	if	you	can	because	they	can	improve	performance.
When	you	can’t,	ask	the	system	to	call	drawRect:	when	the	frame	changes	by
using	UIViewContentModeRedraw,	as	shown	in	the	following	code.

-	(void)awakeFromNib	{

		self.contentMode	=	UIViewContentModeRedraw;

}

Transforms
iOS	platforms	have	access	to	a	very	nice	GPU	that	can	do	matrix	operations
very	quickly.	If	you	can	convert	your	drawing	calculations	into	matrix
operations,	then	you	can	leverage	the	GPU	and	get	excellent	performance.
Transforms	are	just	such	a	matrix	operation.

iOS	has	two	kinds	of	transforms:	affine	and	3D.	UIView	handles	only	affine
transforms,	so	that’s	all	I	discuss	right	now.	An	affine	transform	is	a	way	of
expressing	rotation,	scaling,	shear,	and	translation	(shifting)	as	a	matrix.
These	transforms	are	shown	in	Figure	6-9.

Figure	6-9	Affine	transforms

A	single	transform	combines	any	number	of	these	operations	into	a	3x3
matrix.	iOS	has	functions	to	support	rotation,	scaling,	and	translation.	If	you
want	shear,	you’ll	have	to	write	the	matrix	yourself.	(You	can	also	use
CGAffineTransformMakeShear	from	Jeff	LaMarche;	see	“Further	Reading”	at
the	end	of	the	chapter.)

Transforms	can	dramatically	simplify	and	speed	up	your	code.	Often	it	is
much	easier	and	faster	to	draw	in	a	simple	coordinate	space	around	the	origin
and	then	to	scale,	rotate,	and	translate	your	drawing	to	where	you	want	it.	For
instance,	FlowerView	includes	a	lot	of	code	like	this:

		CGPointMake(radius	*	2	+	xOffset,	radius	+	yOffset)

That’s	a	lot	of	typing,	a	lot	of	math,	and	a	lot	of	things	to	keep	straight	in	your
head.	What	if	instead	you	just	draw	it	in	a	41×4	box	as	shown	in	Figure	6-10?

Now	all	the	interesting	points	fall	on	nice,	easy	coordinates	like	{0,1}	and
{1,0}.	The	following	code	shows	how	to	draw	using	this	transform.	Compare
the	highlighted	sections	with	the	FlowerView	code	earlier	in	this	chapter.

Figure	6-10	Drawing	FlowerView	in	a	4×4	box

FlowerTransformView.m	(Transforms)

static	inline	CGAffineTransform

CGAffineTransformMakeScaleTranslate(CGFloat	sx,	CGFloat	sy,

																																				CGFloat	dx,	CGFloat	dy)

{

		return	CGAffineTransformMake(sx,	0.f,	0.f,	sy,	dx,	dy);

}

-	(void)drawRect:(CGRect)rect	{

		CGSize	size	=	self.bounds.size;

		CGFloat	margin	=	10;

		[[UIColor	redColor]	set];

		UIBezierPath	*path	=	[UIBezierPath	bezierPath];

		[path	addArcWithCenter:CGPointMake(0,	-1)

																		radius:1

														startAngle:-M_PI

																endAngle:0

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(1,	0)

																		radius:1

														startAngle:-M_PI_2

																endAngle:M_PI_2

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(0,	1)

																		radius:1

														startAngle:0

																endAngle:M_PI

															clockwise:YES];

		[path	addArcWithCenter:CGPointMake(-1,	0)

																		radius:1

														startAngle:M_PI_2

																endAngle:-M_PI_2

															clockwise:YES];

		[path	closePath];

		

		CGFloat	scale	=	floor((MIN(size.height,	size.width)

																									-	margin)	/	4);

		

		CGAffineTransform	transform;

		transform	=	CGAffineTransformMakeScaleTranslate(scale,

																																																		scale,

																																													size.width/2,

																																												size.height/2);

		[path	applyTransform:transform];

		[path	fill];

}

When	you’re	done	constructing	your	path,	you	compute	a	transform	to	move
it	into	your	view’s	coordinate	space.	You	scale	it	by	the	size	you	want	divided
by	the	size	it	currently	is	(4),	and	you	translate	it	to	the	center	of	the	view.

The	utility	function	CGAffineTransformMakeScaleTranslate	isn’t	just	for
speed	(although	it	is	faster).	It’s	easier	to	get	the	transform	correct	this	way.	If
you	try	to	build	up	the	transform	one	step	at	a	time,	each	step	affects	later
steps.	Scaling	and	then	translating	is	not	the	same	as	translating	and	then
scaling.	If	you	build	the	matrix	all	at	once,	you	don’t	have	to	worry	about
that.

This	technique	can	be	used	to	draw	complicated	shapes	at	unusual	angles.	For
instance,	to	draw	an	arrow	pointing	to	the	upper	right,	it’s	generally	easier	to
draw	it	pointing	to	the	right	and	then	rotate	it.

You	have	a	choice	between	transforming	the	path	using	applyTransform:
and	transforming	the	whole	view	by	setting	the	transform	property.	Which	is
best	depends	on	the	situation,	but	I	usually	prefer	to	transform	the	path	rather
than	the	view	when	practical.	Modifying	the	view’s	transform	makes	the
results	of	frame	and	bounds	more	difficult	to	interpret,	so	I	avoid	it	when	I
can.	As	you	see	in	the	following	section,	you	can	also	transform	the	current
context,	which	sometimes	is	the	best	approach.

Drawing	with	Core	Graphics
Core	Graphics,	sometimes	called	Quartz	2D	or	just	Quartz,	is	the	main
drawing	system	in	iOS.	It	provides	destination-independent	drawing,	so	you
can	use	the	same	commands	to	draw	to	the	screen,	layer,	bitmap,	PDF,	or
printer.	Anything	starting	with	CG	is	part	of	Core	Graphics.	Figure	6-11	and
the	following	code	provide	an	example	of	a	simple	scrolling	graph.

GraphView.h	(Graph)

@interface	GraphView	:	UIView

@property	(nonatomic,	readonly,	strong)

																																				NSMutableArray	*values;

@property	(nonatomic,	readonly,	strong)	NSTimer	*timer;

@end

Figure	6-11	Simple	scrolling	graph

GraphView.m	(Graph)

#import	“GraphView.h”

@implementation	GraphView

@synthesize	values=values_;

@synthesize	timer=timer_;

const	double	kXScale	=	5.0;

const	double	kYScale	=	100.0;

-	(void)awakeFromNib	{

		values_	=	[NSMutableArray	array];

		timer_	=	[NSTimer	scheduledTimerWithTimeInterval:0.25

																																												target:self

																										selector:@selector(updateValues:)

																																										userInfo:nil

																																											repeats:YES];

}

-	(void)updateValues:(NSTimer	*)timer	{

		double	nextValue	=	sin(CFAbsoluteTimeGetCurrent())

																						+	((double)rand()/(double)RAND_MAX);

		[self.values	addObject:

																				[NSNumber	numberWithDouble:nextValue]];

		NSUInteger	maxValues	=

																		floorl(self.bounds.size.width	/	kXScale);

		if	([self.values	count]	>	maxValues)	{

				[self.values	removeObjectsInRange:

					NSMakeRange(0,	[self.values	count]	-	maxValues)];

		}

		[self	setNeedsDisplay];

}

-	(void)dealloc	{

		[timer_	invalidate];

}

-	(void)drawRect:(CGRect)rect	{

		if	([self.values	count]	==	0)	{

				return;

		}

		

		CGContextRef	ctx	=	UIGraphicsGetCurrentContext();

		CGContextSetStrokeColorWithColor(ctx,

																													[[UIColor	redColor]	CGColor]);

		CGContextSetLineJoin(ctx,	kCGLineJoinRound);

		CGContextSetLineWidth(ctx,	5);

		

		CGFloat	yOffset	=	self.bounds.size.height	/	2;

		double	y	=	[[self.values	objectAtIndex:0]	doubleValue];

		CGContextMoveToPoint(ctx,	0,	y	*	kYScale	+	yOffset);

		for	(NSUInteger	x	=	1;	x	<	[self.values	count];	++x)	{

				y	=	[[self.values	objectAtIndex:x]	doubleValue];

				CGContextAddLineToPoint(ctx,	x	*	kXScale,

																												y	*	kYScale	+	yOffset);

		}

		

		CGContextStrokePath(ctx);

}

@end

Every	second,	this	code	adds	a	new	number	to	the	end	of	the	data	and
removes	an	old	number	from	the	beginning.	Then	it	marks	the	view	as	dirty
with	setNeedsDisplay.	The	drawing	code	gets	the	current	context,	sets
various	advanced	line	drawing	options	not	available	with	UIBezierPath,	and
moves	to	the	first	point.	For	each	number,	it	adds	a	line	to	that	point	in	the
graph	and	finally	strokes	the	path.

Note	that	the	“current	path”	is	an	attribute	of	the	CGContext,	not	a	separate
object.	Instead,	you	could	use	a	CGPath	as	shown	in	the	following	code.

GraphView.m	(Graph)

-	(void)drawRect:(CGRect)rect	{

		if	([self.values	count]	==	0)	{

				return;

		}

		

		CGContextRef	ctx	=	UIGraphicsGetCurrentContext();		

		CGContextSetStrokeColorWithColor(ctx,

																													[[UIColor	redColor]	CGColor]);

		CGContextSetLineJoin(ctx,	kCGLineJoinRound);

		CGContextSetLineWidth(ctx,	5);

		CGMutablePathRef	path	=	CGPathCreateMutable();

		

		CGFloat	yOffset	=	self.bounds.size.height	/	2;

		CGAffineTransform	transform	=

		CGAffineTransformMakeScaleTranslate(kXScale,	kYScale,

																																						0,	yOffset);

		

		double	y	=	[[self.values	objectAtIndex:0]	doubleValue];

		CGPathMoveToPoint(path,	&transform,	0,	y);

		

		for	(NSUInteger	x	=	1;	x	<	[self.values	count];	++x)	{

				y	=	[[self.values	objectAtIndex:x]	doubleValue];

				CGPathAddLineToPoint(path,	&transform,	x,	y);

		}

		CGContextAddPath(ctx,	path);

		CGPathRelease(path);

		CGContextStrokePath(ctx);

}

Using	a	CGPath	this	way	allows	you	to	simplify	your	math	with	a	transform.
You	can’t	apply	a	scaling	transform	to	the	view	or	the	context	because	that
would	distort	the	line.

Core	Graphics	uses	the	Core	Foundation	memory	management	rules.	Core	Foundation	objects
require	manual	retain	and	release,	even	under	ARC.	Note	the	use	of	CGPathRelease.	For	full
details,	see	Chapter	19.

You	may	be	tempted	to	cache	the	CGPath	here	so	that	you	don’t	have	to
compute	it	every	time.	That’s	a	good	instinct,	but	in	this	case	it	wouldn’t	help.
iOS	already	avoids	calling	drawRect:	except	when	the	view	is	dirty,	which
only	happens	when	the	data	changes.	When	the	data	changes,	you	need	to
calculate	a	new	path.	Caching	the	old	path	in	this	case	would	just	complicate
the	code	and	waste	memory.

Mixing	UIKit	and	Core	Graphics
Within	drawRec:,	UIKit	and	Core	Graphics	can	generally	intermix	without
issue,	but	outside	of	drawRect:	you	may	find	that	things	drawn	with	Core
Graphics	appear	upside	down.	UIKit	uses	an	upper-left	origin	(ULO)
coordinate	system,	while	Core	Graphics	uses	a	lower-left	origin	(LLO)
system	by	default.	As	long	as	you	use	the	context	returned	by
UIGraphicsGetCurrentContext	inside	of	drawRect:,	everything	is	fine
because	this	context	is	already	flipped.	But	if	you	create	your	own	context
using	functions	like	CGBitmapContextCreate,	it’ll	be	LLO.	You	can	either	do
your	math	backward	or	you	can	flip	the	context:

		CGContextTranslateCTM(ctx,	0.0f,	height);

		CGContextScaleCTM(ctx,	1.0f,	-1.0f);

This	moves	(translates)	the	height	of	the	context,	and	then	flips	it	using	a
negative	scale.	When	going	from	UIKit	to	Core	Graphics,	the	transform	is

reversed:

		CGContextScaleCTM(ctx,	1.0f,	-1.0f);

		CGContextTranslateCTM(ctx,	0.0f,	-height);

First	flip	it,	and	then	translate	it.

Managing	Graphics	Contexts
Before	calling	drawRect:,	the	drawing	system	creates	a	graphics	context.
(CGContext).	A	context	includes	a	lot	of	information	such	as	a	pen	color,	text
color,	current	font,	transform,	and	more.	Sometimes	you	may	want	to	modify
the	context	and	then	put	it	back	the	way	you	found	it.	For	instance,	you	may
have	a	function	to	draw	a	specific	shape	with	a	specific	color.	There	is	only
one	stroke	pen,	so	when	you	change	the	color,	this	would	change	things	for
your	caller.	To	avoid	side	effects,	you	can	push	and	pop	the	context	using
CGContextSaveGState	and	CGContextRestoreGState.

Do	not	confuse	this	with	the	similar-sounding	UIGraphicsPushContext	and
UIGraphicsPopContext.	They	do	not	do	the	same	thing.
CGContextSaveGState	remembers	the	current	state	of	a	context.
UIGraphicsPushContext	changes	the	current	context.	Here’s	an	example	of
CGContextSaveGState.

		[[UIColor	redColor]	setStroke];

		CGContextSaveGState(UIGraphicsGetCurrentContext());

		[[UIColor	blackColor]	setStroke];

		CGContextRestoreGState(UIGraphicsGetCurrentContext());

		UIRectFill(CGRectMake(10,	10,	100,	100));	//	Red

This	code	sets	the	stroke	pen	color	to	red	and	saves	off	the	context.	It	then
changes	the	pen	color	to	black	and	restores	the	context.	When	you	draw,	the
pen	is	red	again.

The	following	code	illustrates	a	common	error.

		[[UIColor	redColor]	setStroke];

		//	Next	line	is	nonsense

		UIGraphicsPushContext(UIGraphicsGetCurrentContext());

		[[UIColor	blackColor]	setStroke];

		UIGraphicsPopContext();

		UIRectFill(CGRectMake(10,	10,	100,	100));	//	Black

In	this	case,	you	set	the	pen	color	to	red	and	then	switch	context	to	the	current
context,	which	does	nothing	useful.	You	then	change	the	pen	color	to	black,
and	pop	the	context	back	to	the	original	(which	effectively	does	nothing).	You
now	will	draw	a	black	rectangle,	which	is	almost	certainly	not	what	was
meant.

The	purpose	of	UIGraphicsPushContext	is	not	to	save	the	current	state	of	the
context	(pen	color,	line	width,	etc.),	but	to	switch	contexts	entirely.	Say	you
are	in	the	middle	of	drawing	something	into	the	current	view	context,	and
now	want	to	draw	something	completely	different	into	a	bitmap	context.	If
you	want	to	use	UIKit	to	do	any	of	your	drawing,	you’d	want	to	save	off	the
current	UIKit	context,	including	all	the	drawing	that	had	been	done,	and
switch	to	a	completely	new	drawing	context.	That’s	what
UIGraphicsPushContext	does.	When	you	finish	creating	your	bitmap,	you
pop	the	stack	and	get	your	old	context	back.	That’s	what
UIGraphicsPopContext	does.	This	only	matters	in	cases	where	you	want	to
draw	into	the	new	bitmap	context	with	UIKit.	As	long	as	you	use	Core
Graphics	functions,	you	don’t	need	to	push	or	pop	contexts	because	Core
Graphics	functions	take	the	context	as	a	parameter.

This	is	a	pretty	useful	and	common	operation.	It’s	so	common	that	Apple	has
made	a	shortcut	for	it	called	UIGraphicsBeginImageContext.	It	takes	care	of
pushing	the	old	context,	allocating	memory	for	a	new	context,	creating	the
new	context,	flipping	the	coordinate	system,	and	making	it	the	current
context.	Most	of	the	time,	that’s	just	what	you	want.

Here’s	an	example	of	how	to	create	an	image	and	return	it	using
UIGraphicsBeginImageContext.	The	result	is	shown	in	Figure	6-12.

MYView.m	(Drawing)

-	(UIImage	*)reverseImageForText:(NSString	*)text	{

		const	size_t	kImageWidth	=	200;

		const	size_t	kImageHeight	=	200;

		CGImageRef	textImage	=	NULL;

		UIFont	*font	=	[UIFont	boldSystemFontOfSize:17.0];

				

		UIGraphicsBeginImageContext(CGSizeMake(kImageWidth,

																																									kImageHeight));

		

		[[UIColor	redColor]	set];

		[text	drawInRect:CGRectMake(0,	0,

																														kImageWidth,	kImageHeight)

										withFont:font];

		textImage	=

							UIGraphicsGetImageFromCurrentImageContext().CGImage;

		

		UIGraphicsEndImageContext();

		

		return	[UIImage	imageWithCGImage:textImage

																													scale:1.0

																	orientation:UIImageOrientationUpMirrored];

}

Figure	6-12	Text	drawn	with	reverseImageForText:

Optimizing	UIView	Drawing
UIView	and	its	subclasses	are	highly	optimized,	and	when	possible	you
should	use	them	rather	than	custom	drawing.	For	instance,	UIImageView	is
faster	and	uses	less	memory	than	anything	you’re	likely	to	put	together	in	an
afternoon	with	Core	Graphics.	The	following	sections	cover	a	few	things	to
keep	in	mind	when	using	UIView	to	keep	it	drawing	as	well	as	it	can.

Avoid	Drawing
The	fastest	drawing	is	the	drawing	you	never	do.	iOS	goes	to	great	lengths	to
avoid	calling	drawRect:.	It	caches	an	image	of	your	view	and	moves,	rotates,
and	scales	it	without	any	intervention	from	you.	Using	an	appropriate
contentMode	lets	the	system	adjust	your	view	during	rotation	or	resizing
without	calling	drawRect:.	The	most	common	cause	for	drawRect:	running
is	when	you	call	setNeedsDisplay.	Avoid	calling	setNeedsDisplay
unnecessarily.	Remember,	though,	setNeedsDisplay	just	schedules	the	view
to	be	redrawn.	Calling	setNeedsDisplay	many	times	in	a	single	event	loop	is
no	more	expensive,	practically,	than	calling	it	once,	so	don’t	coalesce	your
calls.	iOS	is	already	doing	that	for	you.

Those	familiar	with	Mac	development	may	be	familiar	with	partial	view
drawing	using	setNeedsDisplayInRect:.	iOS	does	not	perform	partial	view
drawing,	and	setNeedsDisplayInRect:	is	the	same	as	setNeedsDisplay.
The	entire	view	will	be	redrawn.	If	you	want	to	partially	redraw	of	a	view,
you	should	use	CALayer	(discussed	in	Chapter	7)	or	use	subviews.

Caching	and	Background	Drawing
If	you	need	to	do	a	lot	of	calculations	during	your	drawing,	cache	the	results
when	you	can.	At	the	lowest	level,	you	can	cache	the	raw	data	you	need
rather	than	asking	for	it	from	your	delegate	every	time.	Beyond	that,	you	can
cache	static	elements	like	CGFont	or	CGGradient	objects	so	that	you	only
generate	them	once.	Fonts	and	gradients	are	useful	to	cache	this	way	because
they	are	often	reused.	Finally,	you	can	cache	the	entire	result	of	a	complex

drawing	operation.	Often	the	best	place	to	cache	such	a	result	is	in	a	CGLayer,
which	is	discussed	later	in	the	section	“CGLayer.”	Alternatively,	you	can
cache	the	result	in	a	bitmap,	generally	using	UIGraphicsBeginImageContext
as	discussed	in	“Managing	Graphics	Contexts”	earlier	in	this	chapter.

Much	of	this	caching	or	precalculation	can	be	done	in	the	background.	You
may	have	heard	that	you	must	always	draw	on	the	main	thread,	but	this	isn’t
completely	true.	There	are	several	UIKit	functions	that	must	only	be	called	on
the	main	thread,	such	as	UIGraphicsBeginImageContext,	but	you	are	free	to
create	a	CGBitmapContext	object	on	any	thread	using
CGBitmapCreateContext	and	draw	into	it.	Since	iOS	4,	you	can	use	UIKit
drawing	methods	like	drawAtPoint:	on	background	threads	as	long	as	you
draw	into	your	own	CGContext	and	not	the	main	view	graphics	context	(the
one	returned	by	UIGraphicsGetCurrentContext).	You	should	only	access	a
given	CGContext	on	one	thread,	however.

Custom	Drawing	Versus	Prerendering
There	are	two	major	approaches	to	managing	complex	drawing.	You	can
draw	everything	programmatically	with	CGPath	and	CGGradient,	or	you	can
prerender	everything	in	a	graphics	program	like	Adobe	Photoshop	and
display	it	as	an	image.	If	you	have	an	art	department	and	plan	to	have
extremely	complex	visual	elements,	then	Photoshop	is	often	the	only	way	to
go.

There	are	a	lot	of	disadvantages	to	prerendering,	however.	First,	it	introduces
resolution	dependence.	You	may	need	to	manage	1-scale	and	2-scale	versions
of	your	images	and	possibly	different	images	for	iPad	and	iPhone.	This
complicates	workflow	and	bloats	your	product.	It	can	make	minor	changes
difficult	and	lock	you	into	precise	element	sizes	and	colors	if	every	change
requires	a	round	trip	to	the	artist.	Many	artists	are	still	unfamiliar	with	how	to
draw	stretchable	images	and	how	to	best	provide	images	to	be	composited	for
iOS.

Apple	originally	encouraged	developers	to	prerender	because	early	iPhones
couldn’t	compute	gradients	fast	enough.	Since	the	iPhone	3GS,	this	has	been
less	of	an	issue,	and	each	generation	makes	custom	drawing	more	attractive.

Today,	I	recommend	custom	drawing	when	you	can	do	it	in	a	reasonable
amount	of	code.	This	is	usually	the	case	for	small	elements	like	buttons.
When	you	do	use	prerendered	artwork,	I	suggest	that	you	keep	the	art	files
fairly	“flat”	and	composit	in	code.	For	instance,	you	may	use	an	image	for	a
button’s	background,	but	handle	the	rounding	and	shadows	in	code.	That	way,
as	you	want	to	make	minor	tweaks,	you	don’t	have	to	rerender	the
background.

Pixel	Alignment	and	Blurry	Text
One	of	the	most	common	causes	of	subtle	drawing	problems	is	pixel
misalignment.	If	you	ask	Core	Graphics	to	draw	at	a	point	that	is	not	aligned
with	a	pixel,	it	performs	anti-aliasing,	as	discussed	in	“Understanding
Coordinates”	earlier	in	this	chapter.	This	means	it	draws	part	of	the
information	on	one	pixel	and	part	on	another,	giving	the	illusion	that	the	line
is	between	the	two.	This	illusion	makes	things	smoother,	but	that	also	makes
them	fuzzy.	Anti-aliasing	also	takes	processing	time,	so	it	slows	down
drawing.	When	possible,	you	want	to	make	sure	that	your	drawing	is	pixel
aligned	to	avoid	this.

Prior	to	the	Retina	display,	pixel	aligned	meant	integer	coordinates.	As	of	iOS
4,	coordinates	are	in	points,	not	pixels.	There	are	two	pixels	to	the	point	on
the	current	Retina	display,	so	half-points	(1.5,	2.5)	are	also	pixel	aligned.	In
the	future,	there	might	be	four	or	more	pixels	to	the	point,	and	it	could	be
different	from	device	to	device.	Even	so,	unless	you	need	pixel	accuracy,	it	is
easiest	to	just	make	sure	you	use	integer	coordinates	for	your	frames.

Generally	it	is	the	frame	origin	that	matters	for	pixel	alignment.	This	causes
an	unfortunate	problem	for	the	center	property.	If	you	set	the	center	to	an
integral	coordinate,	your	origin	may	be	misaligned.	This	is	particularly
noticeable	with	text,	especially	with	UILabel.	Figure	6-13	demonstrates	this
problem.	It	is	subtle,	and	may	be	difficult	to	see	in	print,	so	you	can	also
demonstrate	it	with	the	program	BlurryText	available	with	the	online	files
for	this	chapter.

Figure	6-13	Text	that	is	pixel	aligned	(top)	and	unaligned	(bottom)

There	are	two	solutions.	First,	odd	font	sizes	(13	rather	than	12	for	instance)
will	typically	align	correctly.	If	you	make	a	habit	of	using	odd	font	sizes,	you
can	often	avoid	the	problem.	To	be	certain	to	avoid	the	problem,	you	need	to
make	sure	that	the	frame	is	integral	either	by	using	setFrame:	instead	of
setCenter:,	or	by	using	a	UIView	category	like	setAlignedCenter::

-	(void)setAlignedCenter:(CGPoint)center	{

		self.center	=	center;

		self.frame	=	CGRectIntegral(self.frame);

}

Because	this	effectively	sets	the	frame	twice,	it	is	not	the	fastest	solution,	but
it	is	very	easy	and	fast	enough	for	most	problems.	CGRectIntegral()	returns
the	smallest	integral	rectangle	that	encloses	the	given	rectangle.

As	pre-Retina	displays	phase	out,	this	will	be	less	of	an	issue	as	long	as	you
set	center	to	integer	coordinates.	For	now,	though,	it	is	still	a	concern.

Alpha,	Opaque,	Hidden
Views	have	three	properties	that	appear	related,	but	are	actually	orthogonal:
alpha,	opaque,	and	hidden.

The	alpha	property	determines	how	much	information	a	view	contributes	to
the	pixels	within	its	frame.	So	an	alpha	of	1	means	that	all	of	the	view’s
information	is	used	to	color	the	pixel.	An	alpha	of	0	means	that	none	of	the
view’s	information	is	used	to	color	the	pixel.	Remember,	nothing	is	really
transparent	on	an	iPhone	screen.	If	you	set	the	entire	screen	to	transparent
pixels,	the	user	isn’t	going	to	see	the	circuit	board	or	the	ground.	In	the	end,
it’s	just	a	matter	of	what	color	to	draw	the	pixel.	So	as	you	raise	and	lower	the
alpha,	you’re	changing	how	much	this	view	contributes	to	the	pixel	versus
views	“below”	it.

Marking	a	view	opaque	or	not	does	not	actually	make	its	content	more	or	less
transparent.	Opaque	is	a	promise	that	the	drawing	system	can	use	for
optimization.	When	you	mark	a	view	as	opaque,	you’re	promising	the
drawing	system	that	you	will	draw	every	pixel	in	your	rectangle	with	fully
opaque	colors.	That	allows	the	drawing	system	to	ignore	views	below	yours
and	that	can	improve	performance,	particularly	when	applying	transforms.
You	should	mark	your	views	opaque	whenever	possible,	especially	views	that
scroll	like	UITableViewCell.	However,	if	there	are	any	partially	transparent
pixels	in	your	view,	or	if	you	don’t	draw	every	pixel	in	your	rectangle,	setting
opaque	can	have	unpredictable	results.	Setting	a	nontransparent
backgroundColor	ensures	that	all	pixels	are	drawn.

Closely	related	to	opaque	is	clearsContextBeforeDrawing.	This	is	YES	by
default,	and	sets	the	context	to	transparent	black	before	calling	drawRect:.
This	avoids	any	garbage	data	in	the	view.	It’s	a	pretty	fast	operation,	but	if
you’re	going	to	draw	every	pixel	anyway,	you	can	get	a	small	benefit	by
setting	it	to	NO.

Finally,	hidden	indicates	that	the	view	should	not	be	drawn	at	all	and	is
generally	equivalent	to	an	alpha	of	0.	The	hidden	property	cannot	be
animated,	so	it’s	common	to	hide	views	by	animating	alpha	to	0.

Hidden	and	transparent	views	do	not	receive	touch	events.	The	meaning	of
transparent	is	not	well	defined	in	the	documentation,	but	through
experimentation	I’ve	found	that	it	is	an	alpha	less	than	0.1.	You	should	not
rely	on	this	particular	value,	but	the	point	is	that	“nearly	transparent”	is
generally	treated	as	transparent.	You	cannot	create	a	“transparent	overlay”	to

catch	touch	events	by	setting	the	alpha	very	low.

You	can	make	a	view	transparent	and	still	receive	touch	events	by	setting	its
alpha	to	1,	opaque	to	NO,	and	backgroundColor	to	nil	or	[UIColor
clearColor].	A	view	with	a	transparent	background	is	still	considered	visible
for	the	purposes	of	hit	detection.

CGLayer
CGLayer	is	a	very	effective	way	to	cache	things	you	draw	often.	This	should
not	be	confused	with	CALayer,	which	is	a	more	powerful	and	complicated
layer	object	from	Core	Animation.	CGLayer	is	a	Core	Graphics	layer	that	is
optimized,	often	hardware	optimized,	for	drawing	into	CGContext.

There	are	several	kinds	of	CGContext.	The	most	common	is	a	view	graphics
context,	designed	to	draw	to	the	screen,	which	is	returned	by
UIGraphicsCurrentContext.	Contexts	are	also	used	for	bitmaps	and	printing,
however.	Each	of	these	has	different	attributes,	including	maximum
resolution,	color	details,	and	available	hardware	acceleration.

At	its	simplest,	a	CGLayer	is	similar	to	a	CGBitmapContext.	You	can	draw	into
it,	save	it	off,	and	use	it	to	draw	the	result	into	a	CGContext	later.	The
difference	is	that	you	can	optimize	CGLayer	for	use	with	a	particular	kind	of
graphics	context.	If	a	CGLayer	is	destined	for	a	view	graphics	context,	it	can
cache	its	data	directly	on	the	GPU,	which	can	significantly	improve
performance.	CGBitmapContext	can’t	do	this	because	it	doesn’t	know	that
you	plan	to	draw	it	on	the	screen.

The	following	example	demonstrates	caching	a	CGLayer.	In	this	case	it’s
cached	in	a	static	variable	the	first	time	the	view	is	drawn.	You	can	then
“stamp”	the	CGLayer	repeatedly	while	rotating	the	context.	You	use
UIGraphicsPushContext	so	that	you	can	use	UIKit	to	draw	the	text	into	the
layer	context,	and	UIGraphicsPopContext	to	return	to	the	normal	context.
This	could	be	done	with	CGContextShowTextAtPoint	instead,	but	UIKit
makes	it	very	easy	to	draw	an	NSString.	Figure	6-14	shows	the	ouput.

LayerView.m	(Layer)

@implementation	LayerView

-	(void)drawRect:(CGRect)rect	{

		static	CGLayerRef	sTextLayer	=	NULL;

		CGContextRef	ctx	=	UIGraphicsGetCurrentContext();

		

		if	(sTextLayer	==	NULL)	{

				CGRect	textBounds	=	CGRectMake(0,	0,	200,	100);

				sTextLayer	=	CGLayerCreateWithContext(ctx,

																																										textBounds.size,

																																										NULL);

				CGContextRef	textCtx	=	CGLayerGetContext(sTextLayer);

				CGContextSetRGBFillColor	(textCtx,	1.0,	0.0,	0.0,	1);

				UIGraphicsPushContext(textCtx);

				UIFont	*font	=	[UIFont	systemFontOfSize:13.0];

				[@”Pushing	The	Limits”	drawInRect:textBounds

																													withFont:font];

				UIGraphicsPopContext();

		}

		

		CGContextTranslateCTM(ctx,	self.bounds.size.width	/	2,

																								self.bounds.size.height	/	2);

		

		for	(NSUInteger	i	=	0;	i	<	10;	++i)	{

				CGContextRotateCTM(ctx,	2	*	M_PI	/	10);

				CGContextDrawLayerAtPoint(ctx,

																														CGPointZero,

																														sTextLayer);

		}

}

@end

Figure	6-14	Output	of	LayerView

Summary
iOS	has	a	rich	collection	of	drawing	tools.	This	chapter	focused	on	Core
Graphics	and	its	Objective-C	descendant,	UIKit.	By	now	you	should	have	a
good	understanding	of	how	systems	interact	and	how	to	optimize	your	iOS
drawing.

Chapter	7	discusses	Core	Animation,	which	puts	your	interface	in	motion.
Also	covered	is	CALayer,	a	powerful	addition	to	UIView	and	CGLayer,	and	an
important	tool	for	your	drawing	toolbox	even	if	you’re	not	animating.

iOS	5	brings	Core	Image	to	iOS	for	tweaking	pictures.	That	is	discussed
briefly	in	Chapter	1.	iOS	also	has	ever-growing	support	for	OpenGL	ES	for
drawing	advanced	3D	graphics	and	textures.	OpenGL	ES	is	a	book-length
subject	of	its	own,	so	it	isn’t	tackled	here,	but	you	can	get	a	good	introduction
in	Apple’s	“OpenGL	ES	Programming	Guide	for	iOS”	(see	the	“Further
Reading”	section).

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Drawing	and	Printing	Guide	for	iOS
iOS	Human	Interface	Guidelines
iOS	Application	Programming	Guide

OpenGL	ES	Programming	Guide	for	iOS
Quartz	2D	Programming	Guide

Technical	Q&A	QA1708:	Improving	Image	Drawing	Performance	on	iOS
View	Programming	Guide	for	iOS

http://developer.apple.com/

Other	Resources
LaMarche,	Jeff,	iPhone	Development.	Jeff	has	several	articles	that	provide
a	lot	of	insight	into	using	CGAffineTransform.
iphonedevelopment.blogspot.com/search/label/CGAffineTransform.

http://iphonedevelopment.blogspot.com/search/label/CGAffineTransform

Chapter	7:	Layers	Like	an	Onion:
Core	Animation

The	iPhone	has	made	animation	central	to	the	mobile	experience.	Views	slide
in	and	out,	applications	zoom	into	place,	pages	fly	into	the	bookmark	list.
Apple	has	made	animation	not	just	a	beautiful	part	of	the	experience,	but	a
better	way	to	let	the	user	know	what’s	happening	and	what	to	expect.	When
views	slide	into	place	from	right	to	left,	it	is	natural	to	press	the	left-pointing
button	to	go	back	to	where	you	were.	When	you	create	a	bookmark	and	it
flies	to	the	toolbar,	it’s	more	obvious	where	you	should	look	to	get	back	to
that	bookmark.	These	subtle	cues	are	a	critical	part	of	making	your	user
interface	intuitive	as	well	as	engaging.	To	facilitate	all	this	animation,	iOS
devices	include	a	powerful	GPU	and	frameworks	that	let	you	harness	that
GPU	easily.

In	this	chapter	you	discover	the	two	main	animation	systems	of	iOS:	view
animations	and	the	Core	Animation	framework.	You	learn	how	to	draw	with
Core	Animation	layers	and	how	to	move	layers	around	in	two	and	three
dimensions.	Common	decorations	like	rounded	corners,	colored	borders,	and
shadows	are	trivial	with	CALayer,	and	you	learn	to	apply	them	quickly	and
easily.	You	learn	how	to	create	custom	automatic	animations,	including
animating	your	own	properties.	Finally,	Core	Animation	is	all	about
performance,	so	you	learn	how	to	manage	layers	in	multithreaded
applications.

This	chapter	focuses	on	animations	for	view-based	programming.	These
frameworks	are	ideal	for	most	iOS	applications	except	games.	Game
development	is	outside	the	scope	of	this	book,	and	is	usually	best	served	by
built-in	frameworks	like	OpenGL	ES	or	third-party	frameworks	like
Cocos2D.	For	more	information	on	OpenGL	ES,	see	the	OpenGL	ES	for	iOS
portal	at	developer.apple.com.	For	more	information	on	Cocos2D,	see
cocos2d-iphone.org.

View	Animations
UIView	provides	rich	animation	functionality	that	is	very	easy	to	use	and	well
optimized.	Most	common	animations	can	be	handled	with
+animateWithDuration:animations:	and	related	methods.	You	can	use
UIView	to	animate	frame,	bounds,	center,	transform,	alpha,
backgroundColor,	and	contentStretch.	Most	of	the	time	you’ll	animate
frame,	center,	transform,	and	alpha.

It’s	likely	that	you	are	familiar	with	basic	view	animations,	so	I’ll	just	touch
on	the	high	points	in	this	section	and	then	move	on	to	more	advanced	layer-
based	drawing	and	animation.

Let’s	start	with	a	very	simple	animation	of	a	ball	that	falls	when	you	tap	the
view.	CircleView	just	draws	a	circle	in	its	frame.	The	following	code	creates
the	animation	shown	in	Figure	7-1.

Figure	7-1	CircleView	animation

ViewAnimationViewController.m	(ViewAnimation)

#import	“ViewAnimationViewController.h”

#import	“CircleView.h”

@implementation	ViewAnimationViewController

@synthesize	circleView	=	circleView_;

-	(void)viewDidLoad	{

		[super	viewDidLoad];

		self.circleView	=	[[CircleView	alloc]	initWithFrame:

																					CGRectMake(0,	0,	20,	20)];

		self.circleView.center	=	CGPointMake(100,	20);

		[[self	view]	addSubview:self.circleView];

		

		UITapGestureRecognizer	*g;

		g	=	[[UITapGestureRecognizer	alloc]

							initWithTarget:self

							action:@selector(dropAnimate)];

		[[self	view]	addGestureRecognizer:g];

}

-	(void)viewDidUnload	{

		[super	viewDidUnload];

		self.circleView	=	nil;

}

-	(void)dropAnimate	{

		[UIView	animateWithDuration:3	animations:^{

				self.circleView.center	=	CGPointMake(100,	300);

		}];

}

@end

This	is	the	simplest	kind	of	view-based	animation,	and	it	can	handle	most
common	problems,	particularly	animating	size,	location,	and	opacity.	It’s	also
common	to	animate	transform	to	scale,	rotate,	or	translate	the	view	over
time.	Less	commonly,	you	can	animate	backgroundColor	and
contentStretch.	Animating	the	background	color	is	particularly	useful	in
HUD-style	interfaces	to	move	between	mostly	transparent	and	mostly	opaque
backgrounds.	This	can	be	more	effective	than	just	animating	the	overall
alpha.

Chaining	animations	is	also	straightforward,	as	shown	in	the	following	code.

-	(void)dropAnimate	{

		[UIView

			animateWithDuration:3	animations:^{

					self.circleView.center	=	CGPointMake(100,	300);

			}

			completion:^(BOOL	finished){

					[UIView	animateWithDuration:1	animations:^{

							self.circleView.center	=	CGPointMake(250,	300);

					}

];

			}];

}

Now	the	ball	will	drop	and	the	move	to	the	right.	But	there’s	a	subtle	problem
with	this	code.	If	you	tap	the	screen	while	the	animation	is	in	progress,	the
ball	will	jump	to	the	lower	left	and	then	animate	to	the	right.	That’s	probably

not	what	you	want.	The	issue	is	that	every	time	you	tap	the	view,	this	code
runs.	If	an	animation	is	in	progress,	then	it’s	canceled	and	the	completion
block	runs	with	finished==NO.	You	look	at	how	to	handle	that	next.

Managing	User	Interaction
The	problem	mentioned	in	the	previous	section	is	caused	by	a	user	experience
mistake:	allowing	the	user	to	send	new	commands	while	you’re	animating	the
last	command.	Sometimes	that’s	what	you	want,	but	in	this	case	it	isn’t.
Anytime	you	create	an	animation	in	response	to	user	input,	you	need	to
consider	this	issue.

When	you	animate	a	view,	by	default	it	automatically	stops	responding	to
user	interaction.	So	while	the	ball	is	dropping,	tapping	it	won’t	generate	any
events.	In	this	example,	however,	tapping	the	main	view	causes	the
animation.	There	are	two	solutions.	First,	you	can	change	your	user	interface
so	that	tapping	the	ball	causes	the	animation:

[self.circleView	addGestureRecognizer:g];

The	other	solution	is	to	ignore	taps	while	the	ball	is	animating.	The	following
code	shows	how	to	disable	the	UIGestureRecognizer	in	the	gesture
recognizer	callback	,	and	then	enable	it	when	the	animation	completes.

-	(void)dropAnimate:(UIGestureRecognizer	*)recognizer	{

		[UIView

			animateWithDuration:3	animations:^{

					recognizer.enabled	=	NO;

					self.circleView.center	=	CGPointMake(100,	300);

			}

			completion:^(BOOL	finished){

					[UIView

						animateWithDuration:1	animations:^{

								self.circleView.center	=	CGPointMake(250,	300);

						}

						completion:^(BOOL	finished){

								recognizer.enabled	=	YES;

						}

];

			}];

This	technique	is	nice	because	it	minimizes	side	effects	to	the	rest	of	the

view,	but	you	might	want	to	prevent	all	user	interaction	for	the	view	while	the
animation	runs.	In	that	case	you	would	replace	recognizer.enabled	with
self.view.userInteractionEnabled.

Drawing	with	Layers
View	animations	are	powerful,	and	you	should	rely	on	them	whenever	you
can,	especially	for	basic	layout	animation.	They	also	provide	a	small	number
of	stock	transitions	that	you	can	read	about	in	the	Animations	section	of	the
View	Programming	Guide	for	iOS	available	at	developer.apple.com.	If	you
have	basic	needs,	these	are	great	tools.

But	you’re	here	to	go	beyond	the	basic	needs,	and	view	animations	have	a	lot
of	limitations.	Their	basic	unit	of	animation	is	UIView,	which	is	a	pretty
heavyweight	object,	so	you	need	to	be	careful	about	how	many	of	them	you
use.	UIView	also	doesn’t	support	three-dimensional	layout,	except	for	basic	z-
ordering,	so	it	can’t	create	anything	like	Cover	Flow.	To	move	your	UI	to	the
next	level,	you	need	to	learn	to	use	Core	Animation.

Core	Animation	provides	a	variety	of	tools,	several	of	which	are	useful	even
if	you	don’t	intend	to	animate	anything.	The	most	basic	and	important	part	of
Core	Animation	is	CALayer.	This	section	explains	how	to	draw	with	CALayer
without	animations.	You	explore	animating	later	in	the	chapter.

Don’t	confuse	CALayer	from	Core	Animation	with	CGLayer	from	Core	Graphics.	Both	are	layers,
but	they	have	dramatically	different	purposes.	See	Chapter	6	for	more	information	on	CGLayer.	In
this	chapter,	when	I	refer	to	a	layer,	I	mean	CALayer.

In	many	ways,	CALayer	is	very	much	like	UIView.	It	has	a	location,	size,
transform,	and	content.	You	can	override	a	draw	method	to	draw	custom
content,	usually	with	Core	Graphics.	There	is	a	layer	hierarchy	exactly	like
the	view	hierarchy.	You	might	ask,	why	even	have	separate	objects?

The	most	important	answer	is	that	UIView	is	a	fairly	heavyweight	object	that
manages	drawing	and	event	handling,	particularly	touch	events.	CALayer	is
all	about	drawing.	In	fact,	UIView	relies	on	a	CALayer	to	manage	its	drawing,
which	allows	the	two	to	work	very	well	together.

Every	UIView	has	a	CALayer	to	do	its	drawing.	And	every	CALayer	can	have

http://developer.apple.com/

sublayers,	just	like	every	UIView	can	have	subviews.	Figure	7-2	shows	the
hierarchy.

Figure	7-2	View	and	layer	hierarchies

Layers	draw	whatever	is	in	its	contents	property,	which	is	a	CGImage	(see	the
note	at	the	end	of	this	section).	It’s	your	job	to	set	this	somehow,	and	there	are
various	ways	of	doing	that.	The	simplest	approach	is	to	assign	it	directly,	as
shown	here,	and	discussed	more	fully	in	“Setting	Contents	Directly”	later	in
this	section.

UIImage	*image	=	...;

CALayer	*layer	=	...;

layer.contents	=	(__bridge	id)[image	CGImage];

If	you	do	not	set	the	contents	property	directly,	then	Core	Animation	will	go
through	the	following	methods	to	create	it.

1.	[CALayer	setNeedsDisplay]—Your	code	needs	to	call	this.	It	marks	the
layer	as	dirty,	requesting	that	contents	be	updated	using	the	following
steps.	Unless	setNeedsDisplay	is	called,	the	contents	property	is	never
updated,	even	if	it’s	nil.

2.	[CALayer	displayIfNeeded]—The	drawing	system	automatically	calls
this	as	needed.	If	the	layer	has	been	marked	dirty	by	a	call	to

setNeedsDisplay,	then	the	drawing	system	will	continue	with	the
following	steps.
3.	[CALayer	display]—This	is	called	by	displayIfNeeded	when
appropriate.	You	shouldn’t	call	it	directly.	The	default	implementation	calls
the	delegate	method	displayLayer:	if	the	delegate	implements	it.	If	not,
display	calls	drawInContext:.	You	can	override	display	in	a	subclass	to
set	contents	directly.

4.	[delegate	displayLayer:]—The	default	[CALayer	display]	calls
this	if	the	delegate	implements	it.	Its	job	is	to	set	contents.	If	this	method
is	implemented,	even	if	it	does	nothing,	then	no	further	custom	drawing
code	will	be	run.
5.	[CALayer	drawInContext:]—The	default	display	method	creates	a
view	graphics	context	and	passes	it	to	drawInContext:.	This	is	similar	to
[UIView	drawRect:],	but	no	UIKit	context	is	set	up	for	you	automatically.
To	draw	with	UIKit,	you	need	to	call	UIGraphicsPushContext()	to	make
the	passed	context	the	current	context.	Otherwise,	just	use	the	passed
context	to	draw	with	Core	Graphics.	The	default	display	method	takes	the
resulting	context,	creates	a	CGImage	(see	note	below)	and	assigns	it	to
contents.	The	default	[CALayer	drawInContext:]	calls	[delegate
drawLayer:inContext:]	if	it’s	implemented.	Otherwise	it	does	nothing.
Note	that	you	may	call	this	directly.	See	the	section	“Drawing	in	Your	Own
Context”	later	in	this	section	for	information	on	why	you	would	call	this
directly.

6.	[delegate	drawLayer:inContext:]—If	implemented,	the	default
drawInContext:	calls	this	to	update	the	context	so	that	display	can	create
a	CGImage.

As	you	can	see,	there	are	several	ways	to	set	the	contents	of	a	layer.	You	can
set	it	directly	with	setContent:,	you	can	implement	display	or
displayLayer:,	or	you	can	implement	drawInContext:	or
drawLayer:inContext:.	In	the	rest	of	this	section	I	discuss	each	approach.

The	drawing	system	almost	never	automatically	updates	contents	in	the	way
that	UIView	is	often	automatically	refreshed.	For	instance,	UIView	draws	itself
the	first	time	it’s	put	on	screen.	CALayer	does	not.	Marking	a	UIView	as	dirty

with	setNeedsDisplay	automatically	redraws	all	the	subviews	as	well.
Marking	a	CALayer	as	dirty	with	setNeedsDisplay	does	not	impact
sublayers.	The	thing	to	remember	is	that	the	default	behavior	of	a	UIView	is	to
draw	when	it	thinks	you	need	it.	The	default	behavior	of	a	CALayer	is	to	never
draw	unless	you	explicitly	ask	for	it.	CALayer	is	a	much	lower-level	object,
and	it	is	optimized	to	not	waste	time	doing	anything	that	wasn’t	explicitly
asked	for.

The	contents	property	is	usually	a	CGImage,	but	this	is	not	always	the	case.	If	you	use	custom
drawing,	then	Core	Animation	will	use	a	private	class,	CABackingStorage,	for	contents.	You	can
set	contents	to	either	a	CGImage	or	the	contents	of	another	layer.

Setting	Contents	Directly
Providing	a	content	image	(shown	in	the	following	code)	is	the	easiest
solution	if	you	already	have	an	image	handy.

LayersViewController.m	(Layers)

#import	<QuartzCore/QuartzCore.h>

...

		UIImage	*image	=	[UIImage	imageNamed:@”pushing.png”];

		self.view.layer.contents	=	(__bridge	id)[image	CGImage];

You	must	always	import	QuartzCore.h	and	link	with	QuartzCore.framework	to	use	Core
Animation.	This	is	an	easy	thing	to	forget.

The	cast	to	__bridge	id	is	needed	because	contents	is	defined	as	an	id,	but
actually	expects	a	CGImageRef.	To	make	this	work	with	ARC,	a	cast	is
required.	(This	may	be	resolved	in	a	later	version	of	iOS.)	A	common	error	is
to	pass	a	UIImage	here	instead	of	a	CGImageRef.	You	won’t	get	a	compiler
error	or	runtime	warning.	Your	view	will	just	be	blank.

By	default,	the	contents	are	scaled	to	fill	the	view,	even	if	that	distorts	the
image.	As	with	contentMode	and	contentStretch	in	UIView,	CALayer	can	be
configured	to	scale	its	image	in	different	ways	using	contentsCenter	and
contentsGravity.

Implementing	Display
The	job	of	display	or	displayLayer:	is	to	set	contents	to	a	correct

CGImage.	You	can	do	this	any	way	you’d	like.	The	default	implementation
creates	an	CGContext,	passes	it	to	drawInContext:,	turns	the	result	into	a
CGImage,	and	assigns	it	to	contents.	The	most	common	reason	to	override
this	is	if	your	layer	has	several	states,	and	you	have	an	image	for	each.
Buttons	often	work	this	way.	You	can	create	those	images	by	loading	them
from	your	bundle,	drawing	them	with	Core	Graphics,	or	any	other	way	you’d
like.

Whether	to	subclass	CALayer	or	use	a	delegate	is	really	a	matter	of	taste	and
convenience.	UIView	has	a	layer	and	it	must	be	that	layer’s	delegate.	In	my
experience	it’s	dangerous	to	make	a	UIView	the	delegate	for	any	of	the
sublayers.	This	can	create	infinite	recursion	when	the	UIView	tries	to	copy	its
sublayers	in	certain	operations	such	as	transitions.	So	you	can	implement
displayLayer:	in	UIView	to	manage	its	layer,	or	you	can	have	some	other
object	be	the	delegate	for	sublayers.

Having	UIView	implement	displayLayer:	seldom	makes	sense	in	my
opinion.	If	your	view	content	is	basically	several	images,	it’s	usually	a	better
idea	to	use	a	UIImageView	or	a	UIButton	rather	than	a	custom	UIView	with
hand-loaded	layer	content.	UIImageView	is	highly	optimized	for	displaying
images.	UIButton	is	very	good	at	switching	images	based	on	state,	and
includes	a	lot	of	good	user	interface	mechanics	that	are	a	pain	to	reproduce.
Don’t	try	to	reinvent	UIKit	in	Core	Animation.	UIKit	likely	does	it	better
than	you	will.

What	can	make	more	sense	is	to	make	your	UIViewController	the	delegate
for	the	layers,	particularly	if	you	aren’t	subclassing	UIView.	This	avoids	extra
objects	and	subclasses	if	your	needs	are	pretty	simple.	Just	don’t	let	your
UIViewController	get	overcomplicated.

Custom	Drawing
As	with	UIView,	you	can	provide	completely	custom	drawing	with	CALayer.
Typically	you’ll	draw	with	Core	Graphics,	but	using
UIGraphicsPushContext,	you	can	also	draw	with	UIKit.

See	Chapter	6	for	information	on	how	to	draw	with	Core	Graphics	and	UIKit.

Using	drawInContext:	is	just	another	way	of	setting	contents.	It’s	called	by
display,	which	is	called	only	when	the	layer	is	explicitly	marked	dirty	with
setNeedsDisplay.	The	advantage	of	this	over	setting	contents	directly	is
that	display	automatically	creates	a	CGContext	appropriate	for	the	layer.	In
particular,	the	coordinate	system	is	flipped	for	you.	(See	Chapter	6	for	a
discussion	of	Core	Graphics	and	flipped	coordinate	systems.)	The	following
code	shows	how	to	implement	the	delegate	method	drawLayer:inContext:
to	draw	the	string	“Pushing	The	Limits”	at	the	top	of	the	layer	using	UIKit.
Because	Core	Animation	does	not	set	a	UIKit	graphics	context,	you	need	to
call	UIGraphicsPushContext	before	calling	UIKit	methods,	and
UIGraphicsPopContext	before	returning.

DelegateView.m	(Layers)

@implementation	DelegateView

-	(id)initWithFrame:(CGRect)frame	{

				self	=	[super	initWithFrame:frame];

				if	(self)	{

						[self.layer	setNeedsDisplay];

				}

				return	self;

}

-	(void)drawLayer:(CALayer	*)layer	inContext:(CGContextRef)ctx	{

		UIGraphicsPushContext(ctx);

		[[UIColor	whiteColor]	set];

		UIRectFill(layer.bounds);

		[[UIColor	blackColor]	set];

		UIFont	*font	=	[UIFont	systemFontOfSize:48.0];

		[@”Pushing	The	Limits”	drawInRect:[layer	bounds]

																											withFont:font

																						lineBreakMode:UILineBreakModeWordWrap

																										alignment:UITextAlignmentCenter];

		UIGraphicsPopContext();

}

@end

Note	the	call	to	setNeedsDisplay	in	initWithFrame:.	As	discussed	earlier,
layers	do	not	automatically	draw	themselves	when	put	on	screen.	You	need	to
mark	them	as	dirty	with	setNeedsDisplay.

You	may	also	notice	the	hand-drawing	of	the	background	rather	than	using
the	backgroundColor	property.	This	is	intentional.	Once	you	engage	in

custom	drawing	with	drawLayer:inContext:,	most	automatic	layer	settings
like	backgroundColor	and	cornerRadius	are	ignored.	Your	job	in
drawLayer:inContext:	is	to	draw	everything	needed	for	the	layer.	There
isn’t	helpful	compositing	going	on	for	you	like	in	UIView.	If	you	want	layer
effects	like	rounded	corners	together	with	custom	drawing,	then	put	the
custom	drawing	onto	a	sublayer,	and	round	the	corners	on	the	superlayer.

Drawing	in	Your	Own	Context
Unlike	[UIView	drawRect:],	it	is	completely	legal	to	call	[CALayer
drawInContext:]	yourself.	You	just	need	to	generate	a	context	and	pass	it	in.
This	is	nice	for	capturing	the	contents	of	a	layer	onto	a	bitmap	or	PDF	so	you
can	save	it	or	print	it.	This	is	mostly	useful	if	you	want	to	composite	this	layer
with	something	else	because	if	all	you	want	is	a	bitmap,	you	could	just	use
contents.

drawInContext:	only	draws	the	current	layer,	not	any	of	its	sublayers.	If	you
want	to	draw	the	layer	and	its	sublayers,	use	renderInContext:.	That	also
captures	the	current	state	of	the	layer	if	it’s	animating.	It	use	the	current	state
of	the	render	tree	that	Core	Animation	maintains	internally,	so	it	doesn’t	call
drawInContext:.

Moving	Things	Around
Now	that	you	can	draw	in	a	layer,	let’s	look	into	how	to	use	those	layers	to
create	powerful	animations.

Layers	naturally	animate.	In	fact,	you	need	to	do	a	small	amount	of	work	to
prevent	them	from	animating.	Consider	this	example:

LayerAnimationViewController.m	(LayerAnimation)

-	(void)viewDidLoad	{

		[super	viewDidLoad];

		CALayer	*squareLayer	=	[CALayer	layer];

		squareLayer.backgroundColor	=	[[UIColor	redColor]	CGColor];

		squareLayer.frame	=	CGRectMake(100,	100,	20,	20);

		[self.view.layer	addSublayer:squareLayer];

		UIView	*squareView	=	[UIView	new];

		squareView.backgroundColor	=	[UIColor	blueColor];

		squareView.frame	=	CGRectMake(200,	100,	20,	20);

		[self.view	addSubview:squareView];

		

		[self.view	addGestureRecognizer:

			[[UITapGestureRecognizer	alloc]

				initWithTarget:self

				action:@selector(drop:)]];

}

-	(void)drop:(UIGestureRecognizer	*)recognizer	{

		NSArray	*layers	=	self.view.layer.sublayers;

		CALayer	*layer	=	[layers	objectAtIndex:0];

		[layer	setPosition:CGPointMake(200,	250)];

		NSArray	*views	=	self.view.subviews;

		UIView	*view	=	[views	objectAtIndex:0];

		[view	setCenter:CGPointMake(100,	250)];

}

This	draws	a	small	red	sublayer	and	a	small	blue	subview.	When	the	view	is
tapped,	both	are	moved.	The	view	jumps	immediately	to	the	new	location.
The	layer	animates	over	a	quarter	second.	It’s	fast,	but	it’s	not	instantaneous
like	the	view.

CALayer	implicitly	animates	all	properties	that	support	animation.	You	can
prevent	this	by	disabling	actions:

[CATransaction	setDisableActions:YES];

I	discuss	actions	further	in	the	“Auto-animate	with	Actions”	section	later	in
this	chapter.

disableActions	is	a	very	poorly	named	property.	Because	it	begins	with	a	verb,	you	would	expect
it	to	have	a	side	effect	(disabling	actions)	rather	than	returning	the	current	value	of	the	property.
It	should	be	actionsDisabled	(or	actionsEnabled	to	be	parallel	with	userInteractionEnabled).
Apple	may	remedy	this	eventually,	as	it	has	with	other	misnamed	properties.	In	the	meantime,
make	sure	to	call	setDisableActions:	when	you	mean	to	change	it.	You	won’t	get	a	warning	or
error	if	you	call	[CATransaction	disableActions]	in	a	void	context.

Implicit	Animations
You	now	know	all	the	basics	of	animation.	Just	set	layer	properties	and	your
layers	animate	in	the	default	way.	But	what	if	you	don’t	like	the	defaults?	For
instance,	you	may	want	to	change	the	duration	of	the	animation.	First,	you
need	to	understand	transactions.

Most	of	the	time	when	you	change	several	layer	properties,	you	want	them	all
to	animate	together.	You	also	don’t	want	to	waste	the	renderer’s	time
calculating	animations	for	one	property	change	if	the	next	property	change
affects	it.	For	instance,	opacity	and	backgroundColor	are	interrelated
properties.	Both	affect	the	final	displayed	pixel	color,	so	you	want	to	know
about	both	animations	when	working	out	the	intermediate	values.

Core	Animation	bundles	property	changes	into	atomic	transactions
(CATransaction).	An	implicit	CATransaction	is	created	for	you	the	first	time
you	modify	a	layer	on	a	thread	that	includes	a	run	loop.	(If	that	last	sentence
piqued	your	interest,	see	the	“Core	Animation	and	Threads”	section	later	in
this	chapter.)	During	the	run	loop,	all	layer	changes	are	collected,	and	when
the	run	loop	completes,	all	the	changes	are	committed	to	the	layer	tree.

To	modify	the	animation	properties,	you	need	to	make	changes	to	the	current
transaction.	The	following	changes	the	duration	of	the	current	transaction	to	5
seconds	rather	than	the	default	quarter-second.

[CATransaction	setAnimationDuration:2.0];

You	can	also	set	a	completion	block	to	run	after	the	current	transaction
finishes	animating	using	[CATransaction	setCompletionBlock:].	You	can
use	this	to	chain	animations	together,	among	other	things.

While	the	run	loop	creates	a	transaction	for	you	automatically,	you	can	also
create	your	own	explicit	transactions	using	[CATransaction	begin]	and
[CATransaction	commit].	These	allow	you	to	assign	different	durations	to
different	parts	of	the	animation,	or	to	disable	animations	for	only	a	part	of	the
event	loop.

See	the	“Auto-animate	with	Actions”	section	of	this	chapter	for	more	information	on	how	implicit
animations	are	implemented	and	how	you	can	extend	them.

Explicit	Animations
Implicit	animations	are	powerful	and	convenient,	but	sometimes	you	want
more	control.	That’s	where	CAAnimation	comes	in.	With	CAAnimation,	you
can	manage	repeating	animations,	precisely	control	timing	and	pacing,	and
employ	layer	transitions.	Implicit	animations	are	implemented	using

CAAnimation,	so	everything	you	can	do	with	an	implicit	animation	can	be
done	explicitly	as	well.

The	most	basic	animation	is	a	CABasicAnimation.	It	interpolates	a	property
over	a	range	using	a	timing	function,	as	shown	in	the	following	code.

		CABasicAnimation	*anim	=	[CABasicAnimation

																												animationWithKeyPath:@”opacity”];

		anim.fromValue	=	[NSNumber	numberWithDouble:1.0];

		anim.toValue	=	[NSNumber	numberWithDouble:0.0];

		anim.autoreverses	=	YES;

		anim.repeatCount	=	INFINITY;

		anim.duration	=	2.0;

		[layer	addAnimation:anim	forKey:@”anim”];

This	pulses	the	layer	forever,	animating	the	opacity	from	one	to	zero	and	back
over	2	seconds.	When	you	want	to	stop	the	animation,	remove	it:

		[layer	removeAnimationForKey:@”anim”];

An	animation	has	a	key,	a	fromValue,	a	toValue,	a	timingFunction,	a
duration,	and	some	other	configuration	options.	The	way	it	works	is	to	make
several	copies	of	the	layer,	send	setValue:forKey:	messages	to	the	copies
and	then	display.	It	captures	the	generated	contents	and	displays	them.

If	you	have	custom	properties	in	your	layer,	you	may	notice	that	they’re	not
set	correctly	during	animation.	This	is	because	the	layer	is	copied.	You	must
override	initWithLayer:	to	copy	your	custom	properties	if	you	want	them	to
be	available	during	an	animation.	I	discuss	this	later	in	the	“Animating
Custom	Properties”	section	of	this	chapter.

CABasicAnimations	are	basic,	as	the	name	implies.	They’re	easy	to	set	up
and	use,	but	they’re	not	very	flexible.	If	you	want	more	control	over	the
animation,	you	can	move	to	CAKeyframeAnimation.	The	major	difference	is
that	instead	of	giving	a	fromValue	and	toValue,	you	now	can	give	a	path	or	a
sequence	of	points	to	animate	through,	along	with	individual	timing	for	each
segment.	The	Animation	Types	and	Timing	Programming	Guide	on
developer.apple.com	provides	excellent	examples.	They’re	not	technically
difficult	to	set	up.	Most	of	the	work	is	on	the	creative	side	to	find	just	the
right	path	and	timing.

Model	and	Presentation
A	common	problem	in	animations	is	the	dreaded	“jump	back.	”	The	mistake
looks	like	this:

		CABasicAnimation	*fade;

		fade	=	[CABasicAnimation	animationWithKeyPath:@”opacity”];

		fade.duration	=	1;

		fade.fromValue	=	[NSNumber	numberWithDouble:1.0];

		fade.toValue	=	[NSNumber	numberWithDouble:0.0];

		[circleLayer	addAnimation:fade	forKey:@”fade”];

This	fades	the	circle	out	over	1	second,	just	as	expected,	and	then	suddenly
the	circle	reappears.	To	understand	why	this	happens,	you	need	to	be	aware	of
the	difference	between	the	model	layer	and	the	presentation	layer.

The	model	layer	is	defined	by	the	properties	of	the	“real”	CALayer	object.
Nothing	in	the	preceding	code	modifies	any	property	of	circleLayer	itself.
Instead,	CAAnimation	makes	copies	of	circleLayer	and	modifies	those.
These	become	the	presentation	layer.	They	represent	roughly	what	is	shown
on	the	screen.	There	is	technically	another	layer	called	the	render	layer	that
really	represents	what’s	on	the	screen,	but	it’s	internal	to	Core	Animation	and
you	very	seldom	encounter	it.

So	what	happens	in	the	preceding	code?	CAAnimation	modifies	the
presentation	layer,	which	is	drawn	to	the	screen,	and	when	it	completes,	all	its
changes	are	thrown	away	and	the	model	layer	is	used	to	determine	the	new
state.	The	model	layer	hasn’t	changed,	so	you	snap	back	to	where	you	started.
The	solution	to	this	is	to	set	the	model	layer,	as	shown	here:

		circleLayer.opacity	=	0;

		CABasicAnimation	*fade;

		fade	=	[CABasicAnimation	animationWithKeyPath:@”opacity”];

		...

		[circleLayer	addAnimation:fade	forKey:@”fade”];

Sometimes	this	works	fine,	but	sometimes	the	implicit	animation	in
setOpacity:	fights	with	the	explicit	animation	from
animationWithKeyPath:.	The	best	solution	to	that	is	to	turn	off	implicit
animations	if	you’re	doing	explicit	animations:

		[CATransaction	begin];

		[CATransaction	setDisableActions:YES];

		circleLayer.opacity	=	0;

		CABasicAnimation	*fade;

		fade	=	[CABasicAnimation	animationWithKeyPath:@”opacity”];

		...

		[circleLayer	addAnimation:fade	forKey:@”fade”];

		[CATransaction	commit];

Sometimes	you	see	people	recommend	setting	removedOnCompletion	to	NO	and	fillMode	to
kCAFillModeBoth.	This	is	not	a	good	solution.	It	essentially	makes	the	animation	go	on	forever,
which	means	the	model	layer	is	never	updated.	If	you	ask	for	the	property’s	value,	you	continue
to	see	the	model	value,	not	what	you	see	on	the	screen.	If	you	try	to	implicitly	animate	the
property	afterward,	it	won’t	work	correctly	because	the	CAAnimation	is	still	running.	If	you	ever
remove	the	animation	by	replacing	it	with	another	with	the	same	name,	calling
removeAnimationForKey:	or	removeAllAnimations,	the	old	value	snaps	back.	On	top	of	all	of	that,
it	wastes	memory.

All	of	this	becomes	a	bit	of	a	pain,	so	you	may	like	the	following	category	on
CALayer	that	wraps	it	all	together	and	lets	you	set	the	duration	and	delay.
Most	of	the	time	I	still	prefer	implicit	animation,	but	this	can	make	explicit
animation	a	bit	simpler.

CALayer+RNAnimation.m	(LayerAnimation)

@implementation	CALayer	(RNAnimations)

-	(void)setValue:(id)value

						forKeyPath:(NSString	*)keyPath

								duration:(CFTimeInterval)duration

											delay:(CFTimeInterval)delay	{

		[CATransaction	begin];

		[CATransaction	setDisableActions:YES];

		[self	setValue:value	forKeyPath:keyPath];

		CABasicAnimation	*anim;

		anim	=	[CABasicAnimation	animationWithKeyPath:keyPath];

		anim.duration	=	duration;

		anim.beginTime	=	CACurrentMediaTime()	+	delay;

		anim.fillMode	=	kCAFillModeBoth;

		anim.fromValue	=	[[self	presentationLayer]	valueForKey:keyPath];

		anim.toValue	=	value;

		[self	addAnimation:anim	forKey:keyPath];

		[CATransaction	commit];

}

@end

A	Few	Words	on	Timings
As	in	the	universe	at	large,	in	Core	Animation,	time	is	relative.	A	second	does
not	always	have	to	be	a	second.	Just	like	coordinates,	time	can	be	scaled.

CAAnimation	conforms	to	the	CAMediaTiming	protocol,	and	you	can	set	the
speed	property	to	scale	its	timing.	Because	of	this,	when	considering	timings
between	layers,	you	need	to	convert	them,	just	like	you	need	to	convert	points
that	occur	in	different	views	or	layers.

localPoint	=	[self	convertPoint:remotePoint	fromLayer:otherLayer];

localTime	=	[self	convertTime:remotetime	fromLayer:otherLayer];

This	isn’t	very	common,	but	it	comes	up	when	you’re	trying	to	coordinate
animations.	You	might	ask	another	layer	for	a	particular	animation	and	when
that	animation	will	end	so	that	you	can	start	your	animation.

		CAAnimation	*otherAnim	=	[layer	animationForKey:@”anim”];

		CFTimeInterval	finish	=	otherAnim.beginTime	+

otherAnim.duration;

		myAnim.beginTime	=	[self	convertTime:finish	fromLayer:layer];

Setting	beginTime	like	this	is	a	nice	way	to	chain	animations,	even	if	you
hard-code	the	time	rather	than	ask	the	other	layer.	To	reference	“now,”	just
use	CACurrentMediaTime().

This	raises	another	issue,	however.	What	value	should	your	property	have
between	now	and	when	the	animation	begins?	You	would	assume	that	it
would	be	the	fromValue,	but	that	isn’t	how	it	works.	It’s	the	current	model
value	because	the	animation	hasn’t	begun.	Typically	this	is	the	toValue.

		[CATransaction	begin];

		[CATransaction	setDisableActions:YES];

		anim	=	[CABasicAnimation	animationWithKeyPath:@”opacity”];

		anim.fromValue	=	[NSNumber	numberWithDouble:1.0];

		anim.toValue	=	[NSNumber	numberWithDouble:0.5];

		anim.duration	=	5.0;

		anim.beginTime	=	CACurrentMediaTime()	+	3.0;

		[layer	addAnimation:anim	forKey:@”fade”];

		layer.opacity	=	0.5;

		[CATransaction	commit];

This	animation	does	nothing	for	3	seconds.	During	that	time,	the	default

property	animation	is	used	to	fade	opacity	from	1.0	to	0.5.	Then	the
animation	begins,	setting	the	opacity	to	its	fromValue	and	interpolating	to	its
toValue.	So	the	layer	begins	with	opacity	of	1.0,	fades	to	0.5	over	a	quarter-
second,	then	3	seconds,	and	later	jumps	back	to	1.0	and	fades	again	to	0.5
over	5	seconds.	This	almost	certainly	isn’t	what	you	want.

You	can	resolve	this	using	fillMode.	The	default	is	kCAFillModeRemoved,
which	means	that	the	animation	has	no	influence	on	the	values	before	or	after
its	execution.	This	can	be	changed	to	“clamp”	values	before	or	after	the
animation	by	setting	the	fill	mode	to	kCAFillModeBackwards,
kCAFillModeForwards,	or	kCAFillModeBoth.	Figure	7-3	illustrates	this.

In	most	cases,	you	want	to	set	this	to	kCAFillModeBackwards	or
kCAFillModeBoth.

Into	the	Third	Dimension
Chapter	6	discussed	how	to	use	CAAffineTransform	to	make	UIView	drawing
much	more	efficient.	This	technique	limits	you	to	two-dimensional
transformations:	translate,	rotate,	scale,	and	skew.	With	layers,	however,	you
can	apply	three-dimensional	transformations	by	adding	perspective.	This	is
often	called	2.5D	rather	than	3D	because	it	doesn’t	make	layers	into	truly
three-dimensional	objects	in	the	way	that	OpenGL	ES	does.	But	it	does	allow
you	to	give	the	illusion	of	three-dimensional	movement.

You	rotate	layers	around	an	anchor	point.	By	default,	the	anchor	point	is	in
the	center	of	the	layer,	designated	{0.5,	0.5}.	It	can	be	moved	anywhere
within	the	layer,	making	it	convenient	to	rotate	around	an	edge	or	corner.	The
anchor	point	is	described	in	terms	of	a	unit	square	rather	than	in	points.	So
the	lower-right	corner	is	{1.0,	1.0},	no	matter	how	large	or	small	the	layer	is.

Figure	7-3	Effect	of	fill	modes	on	media	timing	functions

Here’s	a	simple	example	of	a	three-dimensional	box.

BoxViewController.h	(Box)

@interface	BoxViewController	:	UIViewController

@property	(nonatomic,	readwrite,	strong)	CALayer	*topLayer;

@property	(nonatomic,	readwrite,	strong)	CALayer	*bottomLayer;

@property	(nonatomic,	readwrite,	strong)	CALayer	*leftLayer;

@property	(nonatomic,	readwrite,	strong)	CALayer	*rightLayer;

@property	(nonatomic,	readwrite,	strong)	CALayer	*frontLayer;

@property	(nonatomic,	readwrite,	strong)	CALayer	*backLayer;

@end

BoxViewController.m	(Box)

@implementation	BoxViewController

@synthesize	topLayer=topLayer_;

@synthesize	bottomLayer=bottomLayer_;

@synthesize	leftLayer=leftLayer_;

@synthesize	rightLayer=rightLayer_;

@synthesize	frontLayer=frontLayer_;

@synthesize	backLayer=backLayer_;

const	CGFloat	kSize	=	100.;

const	CGFloat	kPanScale	=	1./100.;

-	(CALayer	*)layerWithColor:(UIColor	*)color	transform:

(CATransform3D)transform	{

		CALayer	*layer	=	[CALayer	layer];

		layer.backgroundColor	=	[color	CGColor];

		layer.bounds	=	CGRectMake(0,	0,	kSize,	kSize);

		layer.position	=	self.view.center;

		layer.transform	=	transform;

		[self.view.layer	addSublayer:layer];

		return	layer;

}

static	CATransform3D	MakePerspetiveTransform()	{

		CATransform3D	perspective	=	CATransform3DIdentity;

		perspective.m34	=	-1./2000.;

		return	perspective;

}

-	(void)viewDidLoad	{

		CATransform3D	transform;

		

		[super	viewDidLoad];

		transform	=	CATransform3DMakeTranslation(0,	-kSize/2,	0);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	1.0,	0,	0);

		self.topLayer	=	[self	layerWithColor:[UIColor	redColor]

																													transform:transform];

		

		transform	=	CATransform3DMakeTranslation(0,	kSize/2,	0);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	1.0,	0,	0);

		self.bottomLayer	=	[self	layerWithColor:[UIColor	greenColor]

																																transform:transform];

		transform	=	CATransform3DMakeTranslation(kSize/2,	0,	0);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	0,	1,	0);

		self.rightLayer	=	[self	layerWithColor:[UIColor	blueColor]

																															transform:transform];

		

		transform	=	CATransform3DMakeTranslation(-kSize/2,	0,	0);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	0,	1,	0);

		self.leftLayer	=	[self	layerWithColor:[UIColor	cyanColor]

																														transform:transform];

		

		transform	=	CATransform3DMakeTranslation(0,	0,	-kSize/2);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	0,	0,	0);

		self.backLayer	=	[self	layerWithColor:[UIColor	yellowColor]

																														transform:transform];

		

		transform	=	CATransform3DMakeTranslation(0,	0,	kSize/2);

		transform	=	CATransform3DRotate(transform,	M_PI_2,	0,	0,	0);

		self.frontLayer	=	[self	layerWithColor:[UIColor	magentaColor]

																															transform:transform];

		self.view.layer.sublayerTransform	=	MakePerspetiveTransform();		

		

		UIGestureRecognizer	*g	=	[[UIPanGestureRecognizer	alloc]

																												initWithTarget:self

																												action:@selector(pan:)];

		[self.view	addGestureRecognizer:g];

}

-	(void)pan:(UIPanGestureRecognizer	*)recognizer	{

		CGPoint	translation	=	[recognizer	translationInView:self.view];

		CATransform3D	transform	=	MakePerspetiveTransform();

		transform	=	CATransform3DRotate(transform,

																																		kPanScale	*	translation.x,

																																		0,	1,	0);

		transform	=	CATransform3DRotate(transform,

																																		-kPanScale	*	translation.y,

																																		1,	0,	0);

		self.view.layer.sublayerTransform	=	transform;

}

@end

This	shows	how	to	build	a	simple	box	and	rotate	it	based	on	panning.	All	the
layers	are	created	with	layerWithColor:transform:.	Notice	that	all	the
layers	have	the	same	position.	They	only	appear	to	be	in	the	shape	of	a	box
through	transforms	that	translate	and	rotate	them.

You	apply	a	perspective	sublayerTransform	(a	transform	applied	to	all
sublayers,	but	not	the	layer	itself).	I	won’t	go	into	the	math	here,	but	the	m34
position	of	the	3D	transform	matrix	should	be	set	to	-1/EYE_DISTANCE.	For
most	cases,	2000	units	works	well,	but	you	can	adjust	this	to	“zoom	the
camera.”

You	could	also	build	this	box	by	setting	position	and	zPosition	rather	than
translating,	as	shown	in	the	following	code.	This	may	be	more	intuitive	for
some	developers.

BoxTransformViewController.m	(BoxTransform)

-	(CALayer	*)layerAtX:(CGFloat)x	y:(CGFloat)y	z:(CGFloat)z

																color:(UIColor	*)color

												transform:(CATransform3D)transform	{

		CALayer	*layer	=	[CALayer	layer];

		layer.backgroundColor	=	[color	CGColor];

		layer.bounds	=	CGRectMake(0,	0,	kSize,	kSize);

		layer.position	=	CGPointMake(x,	y);

		layer.zPosition	=	z;

		layer.transform	=	transform;

		[self.contentLayer	addSublayer:layer];

		return	layer;

}

-	(void)viewDidLoad	{

		[super	viewDidLoad];

		CATransformLayer	*contentLayer	=	[CATransformLayer	layer];

		contentLayer.frame	=	self.view.layer.bounds;

		CGSize	size	=	contentLayer.bounds.size;

		contentLayer.transform	=

				CATransform3DMakeTranslation(size.width/2,	size.height/2,	0);

		[self.view.layer	addSublayer:contentLayer];

		

		self.contentLayer	=	contentLayer;

				

		self.topLayer	=	[self	layerAtX:0	y:-kSize/2	z:0

																											color:[UIColor	redColor]

																							transform:MakeSideRotation(1,	0,	0)];

...		

}

-	(void)pan:(UIPanGestureRecognizer	*)recognizer	{

		CGPoint	translation	=	[recognizer	translationInView:self.view];

		CATransform3D	transform	=	CATransform3DIdentity;

		transform	=	CATransform3DRotate(transform,

																																		kPanScale	*	translation.x,

																																		0,	1,	0);

		transform	=	CATransform3DRotate(transform,

																																		-kPanScale	*	translation.y,

																																		1,	0,	0);

		self.view.layer.sublayerTransform	=	transform;

}

You	now	need	to	insert	a	CATransformLayer	to	work	with.	If	you	just	use	a
CALayer,	then	zPosition	is	only	used	for	calculating	layer	order.	It’s	not	used
to	determine	location	in	space.	This	makes	the	box	look	completely	flat.
CATransformLayer	supports	full	use	of	zPosition,	without	requiring	you	to
apply	a	perspective	transform.

Decorating	Your	Layers
A	major	advantage	of	CALayer	over	UIView,	even	if	you’re	only	working	in
2D,	is	the	automatic	border	effects	that	CALayer	provides.	For	instance,
CALayer	can	automatically	give	you	rounded	corners,	a	colored	border,	and	a
drop	shadow.	All	of	these	can	be	animated,	which	can	provide	some	nice
visual	effects.	For	instance,	you	can	adjust	the	position	and	shadow	to	give
the	illusion	of	clicking	as	the	user	presses	and	releases	a	layer.	The	following
code	will	create	the	layer	shown	in	Figure	7-4.

Figure	7-4	Layer	with	colored,	rounded	border	and	shadow.

DecorationViewController.m	(Decoration)

		CALayer	*layer	=	[CALayer	layer];

		layer.frame	=	CGRectMake(100,	100,	100,	100);

		layer.cornerRadius	=	10;

		layer.backgroundColor	=	[[UIColor	redColor]	CGColor];

		layer.borderColor	=	[[UIColor	blueColor]	CGColor];

		layer.borderWidth	=	5;

		layer.shadowOpacity	=	0.5;

		layer.shadowOffset	=	CGSizeMake(3.0,	3.0);

		[self.view.layer	addSublayer:layer];

Auto-animate	with	Actions
Most	of	the	time,	implicit	animations	do	what	you	want,	but	there	are	times
you’d	like	to	configure	them.	You	can	turn	off	all	implicit	animations	using
CATransaction,	but	that	only	applies	to	the	current	transaction	(generally	the
current	run	loop).	To	modify	how	an	implicit	animation	behaves,	and
especially	if	you	want	it	to	always	behave	that	way	for	this	layer,	you	need	to
configure	the	layer’s	actions.	This	allows	you	to	configure	your	animations
when	you	create	the	layer	rather	than	applying	an	explicit	animation	every
time	you	change	a	property.

Layer	actions	are	fired	in	response	to	various	changes	on	the	layer,	such	as
adding	or	removing	the	layer	from	the	hierarchy	or	modifying	a	property.
When	you	modify	the	position	property,	for	instance,	the	default	action	is	to
animate	it	over	a	quarter	second.	In	the	following	examples,	CircleLayer	is	a
layer	that	draws	a	red	circle	in	its	center	with	the	given	radius.

ActionsViewController.m	(Actions)

		CircleLayer	*circleLayer	=	[CircleLayer	new];

		circleLayer.radius	=	20;

		circleLayer.frame	=	self.view.bounds;

		[self.view.layer	addSublayer:circleLayer];

		...

		[circleLayer	setPosition:CGPointMake(100,	100)];

Let’s	modify	this	so	that	changes	in	position	always	animate	over	2	seconds:

		CircleLayer	*circleLayer	=	[CircleLayer	new];

		circleLayer.radius	=	20;

		circleLayer.frame	=	self.view.bounds;

		[self.view.layer	addSublayer:circleLayer];

		CABasicAnimation	*anim	=	[CABasicAnimation

																							animationWithKeyPath:@”position”];

		anim.duration	=	2;

		NSMutableDictionary	*actions	=	[NSMutableDictionary

																																		dictionaryWithDictionary:

																																		[circleLayer	actions]];

		[actions	setObject:anim	forKey:@”position”];

		circleLayer.actions	=	actions;

		...

		[circleLayer	setPosition:CGPointMake(100,	100)];

Setting	the	action	to	[NSNull	null]	disables	implicit	animations	for	that
property.	A	dictionary	cannot	hold	nil,	so	you	need	to	use	the	NSNull	class.

There	are	some	special	actions	for	when	the	layer	is	added	to	the	layer	tree
(kCAOnOrderIn)	and	when	it’s	removed	(kCAOnOrderOut).	For	example,	you
can	make	a	group	animation	of	growing	and	fade-in	like	this:

		CABasicAnimation	*fadeAnim	=	[CABasicAnimation

																																animationWithKeyPath:@”opacity”];

		fadeAnim.fromValue	=	[NSNumber	numberWithDouble:0.4];

		fadeAnim.toValue	=	[NSNumber	numberWithDouble:1.0];

		CABasicAnimation	*growAnim	=	[CABasicAnimation

																																animationWithKeyPath:

																																@”transform.scale”];

		growAnim.fromValue	=	[NSNumber	numberWithDouble:0.8];

		growAnim.toValue	=	[NSNumber	numberWithDouble:1.0];

		

		CAAnimationGroup	*groupAnim	=	[CAAnimationGroup	animation];

		groupAnim.animations	=	[NSArray	arrayWithObjects:fadeAnim,

																										growAnim,	nil];

		

		[actions	setObject:groupAnim	forKey:kCAOnOrderIn];

Actions	are	also	important	when	dealing	with	transitions	(kCATransition)
when	one	layer	is	replaced	with	another.	This	is	commonly	used	with	a
CATransition	(a	special	type	of	CAAnimation).	You	can	apply	a
CATransition	as	the	action	for	the	contents	property	to	create	special	effects

like	slide	show	whenever	the	contents	change.	By	default,	the	fade	transition
is	used.

Animating	Custom	Properties
Core	Animation	implicitly	animates	several	layer	properties,	but	what	about
custom	properties	on	CALayer	subclasses?	For	instance,	in	the	CircleLayer,
you	have	a	radius	property.	By	default,	radius	is	not	animated,	but
contents	is	(using	a	fade	CATransition).	So	changing	the	radius	causes	your
current	circle	to	cross-fade	with	your	new	circle.	This	probably	isn’t	what	you
want.	You	want	radius	to	animate	just	like	position.	There	are	a	few	steps
to	make	this	work	correctly,	as	shown	in	the	following	example.

CircleLayer.m	(Actions)

@implementation	CircleLayer

@dynamic	radius;

-	(id)init	{

				self	=	[super	init];

				if	(self)	{

						[self	setNeedsDisplay];

				}

				

				return	self;

}

-	(id)initWithLayer:(id)layer	{

		self	=	[super	initWithLayer:layer];

		[self	setRadius:[layer	radius]];

		return	self;

}

-	(void)drawInContext:(CGContextRef)ctx	{

		CGContextSetFillColorWithColor(ctx,

																																	[[UIColor	redColor]	CGColor]);

		CGFloat	radius	=	self.radius;

		CGRect	rect;

		rect.size	=	CGSizeMake(radius,	radius);

		rect.origin.x	=	(self.bounds.size.width	-	radius)	/	2;

		rect.origin.y	=	(self.bounds.size.height	-	radius)	/	2;

		CGContextAddEllipseInRect(ctx,	rect);

		CGContextFillPath(ctx);

}

+	(BOOL)needsDisplayForKey:(NSString	*)key	{

		if	([key	isEqualToString:@”radius”])	{

				return	YES;

		}

		return	[super	needsDisplayForKey:key];

}

-	(id	<	CAAction	>)actionForKey:(NSString	*)key	{

		if	([self	presentationLayer]	!=	nil)	{

				if	([key	isEqualToString:@”radius”])	{

						CABasicAnimation	*anim	=	[CABasicAnimation

																																animationWithKeyPath:@”radius”];

						anim.fromValue	=	[[self	presentationLayer]

																								valueForKey:@”radius”];

						return	anim;

				}

		}

		

		return	[super	actionForKey:key];

}

@end

I’ll	start	with	a	reminder	of	the	basics.	You	call	setNeedsDisplay	in	init	so
that	your	custom	drawInContext:	is	called	the	first	time	you’re	added	to	the
layer	tree.	You	implement	initWithLayer:	so	that	you	copy	your	custom
property	to	the	presentation	layer.	You	override	needsDisplayForKey:	so	that
whenever	radius	is	modified,	you	automatically	redraw.

Now	you	come	to	your	actions.	You	implement	actionForKey:	to	return	an
animation	with	a	fromValue	of	the	currently	displayed	(presentationLayer)
radius.	This	means	that	you’ll	animate	smoothly	if	the	animation	is	changed
midflight.

It	is	critical	to	note	that	you	implemented	the	radius	property	using	@dynamic	here,	not
@synthesize.	CALayer	automatically	generates	accessors	for	its	properties	at	runtime,	and	those
accessors	have	important	logic.	It	is	vital	that	you	not	override	it	by	either	implementing	your
own	accessors	or	using	@synthesize	to	do	so.

Core	Animation	and	Threads
It’s	worth	noting	that	Core	Animation	is	very	tolerant	of	threading.	You	can
generally	modify	CALayer	properties	on	any	thread,	unlike	UIView	properties.
drawInContext:	may	be	called	from	any	thread	(although	a	given	CGContext
should	be	modified	on	only	one	thread	at	a	time).	Changes	to	CALayer
properties	are	batched	into	transactions	using	CATransaction.	This	happens

automatically	if	you	have	a	run	loop.	If	you	don’t	have	a	run	loop,	you	need
to	call	[CATransaction	flush]	periodically.	If	at	all	possible,	though,	you
should	perform	Core	Animation	actions	on	a	thread	with	a	run	loop	to
improve	performance.

Summary
Core	Animation	is	one	of	the	most	important	frameworks	in	iOS.	It	puts	a
fairly	easy-to-use	API	in	front	of	an	incredibly	powerful	engine.	There	are
still	a	few	rough	edges	to	it,	however,	and	sometimes	things	need	to	be	“just
so”	to	make	it	work	correctly	(for	example,	implementing	your	properties
with	@dynamic	rather	than	@synthesize).	When	it	doesn’t	work	correctly,	it
can	be	challenging	to	debug,	so	having	a	good	understanding	of	how	it	works
is	crucial.	Hopefully	this	chapter	has	made	you	confident	enough	with	the
architecture	and	the	documentation	to	dive	in	and	make	some	really	beautiful
apps.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Animation	Types	and	Timing	Programming	Guide
Core	Animation	Programming	Guide

Other	Resources
Dzhumerov,	Milen,	“Core	Animation’s	3D	Model,”	Code	Juggler.	An
excellent	overview	of	the	math	behind	the	perspective	transform,	including
the	magic	-1/2000.	http://milen.me/technical/core-animation-3d-
model/

Gallagher,	Matt,	“Parametric	acceleration	curves	in	Core	Animation,”
Cocoa	With	Love.	Explains	how	to	implement	timing	curves	that	cannot	be
implemented	with	CAMediaTimingFunction,	such	as	damped	ringing	and

http://developer.apple.com/
http://milen.me/technical/core-animation-3d-model/

exponential	decay.	cocoawithlove.com/2008/09/parametric-
acceleration-curves-in-core.html

http://cocoawithlove.com/2008/09/parametric-acceleration-curves-in-core.html

Chapter	8:	Tackling	Those	Pesky
Errors

Error	management	can	be	one	of	the	most	frustrating	parts	of	development.
It’s	hard	enough	getting	everything	to	work	when	things	go	well,	but	to	build
really	great	apps	you	need	to	manage	things	gracefully	when	they	go	wrong.
Cocoa	provides	some	tools	to	make	the	job	easier.

In	this	chapter	you	learn	the	major	patterns	that	Cocoa	uses	to	handle	errors
that	you	should	use	in	your	own	projects.	You	also	learn	the	major	error-
handling	tools,	including	assertions,	exceptions,	and	NSError	objects.
Because	your	program	may	crash	in	the	field,	you	learn	how	to	get	those
crash	reports	from	your	users,	and	how	to	log	effectively	and	efficiently.

Error	Handling	Patterns
There	are	several	useful	approaches	to	handling	errors.	The	first	and	most
obvious	is	to	crash.	This	isn’t	a	great	solution,	but	don’t	discount	it	too
quickly.	I’ve	seen	a	lot	of	very	elaborate	code	around	handling	extremely
unlikely	errors,	or	errors	you	won’t	be	able	to	recover	from	anyway.	The	most
common	of	these	is	failure	to	allocate	memory.	Consider	the	following	code:

		NSString	*string	=	[NSString	stringWithFormat:@”%d”,	1];

		NSArray	*array	=	[NSArray	arrayWithObject:string];

It	is	conceivable	(not	really,	but	let’s	pretend)	that	stringWithFormat:	might
fail	because	Foundation	isn’t	able	to	allocate	memory.	In	that	case	it	returns
nil,	and	the	call	to	arrayWithObject:	throws	an	exception	for	trying	to
insert	nil	into	an	array,	and	your	app	probably	crashes.	You	could	(and	in	C
you	often	would)	include	a	check	here	to	make	sure	that	doesn’t	happen.
Don’t	do	that.	It	needlessly	complicates	the	code,	and	there’s	nothing	you’re
going	to	be	able	to	do	anyway.	If	you	can’t	allocate	small	amounts	of
memory,	the	OS	is	very	likely	about	to	shut	you	down	anyway.	Besides,	it’s
almost	impossible	to	write	error-handling	code	in	Objective-C	that	does	not
itself	allocate	memory.	Accept	that	in	this	impossible	case	you	may	crash,	and

keep	the	code	simple.

The	next,	closely	related	error-handling	approach	is	NSAssert.	This	raises	an
NSInternalInconsistencyException,	which	by	default	crashes	your
program.	Particularly	during	development,	this	is	a	very	good	thing.	It	“fails
fast,”	which	means	the	failure	tends	to	happen	close	to	the	bug.	One	of	the
worst	things	I	see	in	code	is	something	like	this:

-	(void)doSomething:(NSUInteger)index	{

		if	(index	>	self.maxIndex)	{

				return;

		}

		...		

}

Clearly	passing	an	out-of-range	index	is	a	programming	error.	This	code
swallows	that	error,	turning	it	into	a	no-op.	That	is	incredibly	difficult	to
debug.	Note	how	NSArray	handles	this	situation.	If	you	pass	an	index	out	of
range	it	raises	an	exception	very	similar	to	NSAssert.	It’s	the	caller’s	job	to
pass	good	values.	The	worst	thing	NSArray	could	do	is	to	silently	ignore	bad
values.	It’s	better	to	crash.	I’ll	discuss	assertions	more	in	the	following	two
sections,	“Assertions”	and	“Exceptions,”	including	how	to	manage
development	and	release	builds,	and	how	to	make	these	a	bit	more	graceful.

The	lesson	here	is	that	crashing	is	not	the	worst-possible	outcome.	Data
corruption	is	generally	the	worst-possible	outcome,	and	if	getting	into	a
deeply	unknown	state	could	corrupt	user	data,	it’s	definitely	better	to	crash.

Expected	errors	should	be	handled	gracefully	and	should	never	crash.	The
common	pattern	for	managing	expected	errors	is	to	return	an	NSError	object
by	reference.	I’ll	discuss	this	in	“Errors	and	NSError”	later	in	this	chapter.

There	is	a	major	difference	between	expected	and	unexpected	errors.	In	iOS,
failure	to	allocate	small	amounts	of	memory	is	an	unexpected	error.	It	should
never	happen	in	normal	operation.	You	should	have	received	a	memory
warning	and	been	terminated	long	before	you	got	to	that	state.	You	can
generally	ignore	truly	unexpected	errors	and	let	them	crash	you.	On	the	other
hand,	running	out	of	disk	space	is	a	rare	but	expected	error.	It	can	easily
happen	if	the	user	has	requested	that	iTunes	fill	the	device	with	music.	You

need	to	recover	gracefully	when	you	cannot	write	a	file.

In	the	middle	are	programming	errors.	These	should	generally	be	handled
with	assertions.

Assertions
Assertions	are	an	important	defense	against	programming	errors.	An	assertion
requires	that	something	must	be	true	at	a	certain	point	in	the	program.	If	it	is
not	true,	then	the	program	is	in	an	undefined	state	and	should	not	proceed.
Consider	the	following	example	of	NSAssert:

NSAssert(x	==	4,	@”x	must	be	four”);

NSAssert	tests	a	condition,	and	if	it	returns	NO,	raises	an	exception.	This	is
processed	by	the	current	exception	handler,	which	by	default	calls	abort	and
crashes	the	program.	If	you	are	familiar	with	Mac	development,	you	may	be
used	to	exceptions	terminating	only	the	current	run	loop,	but	iOS	calls	abort
by	default,	which	terminates	the	program	no	matter	what	thread	it	runs	on.

Technically	abort	sends	the	process	a	SIGABRT,	which	can	be	caught	by	a	signal	handler.	Generally
I	do	not	recommend	catching	SIGABRT.	See	“Catching	and	Reporting	Crashes”	later	in	this
chapter	for	information	about	how	to	handle	crashes.

You	can	disable	NSAssert	by	setting	NS_BLOCK_ASSERTIONS.	There	are
differing	opinions	on	whether	NSAssert	should	be	disabled	in	release	code.	It
really	comes	down	to	this:	When	your	program	is	in	an	illegal	state,	would
you	rather	it	stop	running,	or	would	you	prefer	that	it	run	in	a	possibly
random	way?	Different	people	come	to	different	conclusions	here.	My
opinion	is	that	it’s	generally	better	to	disable	assertions	in	release	code.	I’ve
seen	too	many	cases	where	the	programming	error	would	have	only	caused	a
minor	problem,	but	the	assertion	causes	a	crash.	Xcode	4	templates
automatically	disable	assertions	when	you	build	for	the	Release
configuration.

That	said,	while	I	like	removing	assertions	in	the	Release	configuration,	I
don’t	like	ignoring	them.	They’re	exactly	the	kind	of	“this	should	never
happen”	error	condition	that	you’d	want	to	find	in	your	logs.	Setting
NS_BLOCK_ASSERTIONS	completely	eliminates	them	from	the	code.	My

solution	is	to	wrap	assertions	so	that	they	log	in	all	cases.	The	following	code
assumes	you	have	an	RNLogBug	function	that	logs	to	your	log	file.	It’s	mapped
to	NSLog	as	an	example.	Generally	I	don’t	like	to	use	#define,	but	it’s
necessary	here,	because	__FILE__	and	__LINE__	need	to	be	evaluated	at	the
point	of	the	original	caller.

This	also	defines	RNCAssert	as	a	wrapper	around	NSCAssert	and	a	helper
function	called	RNAbstract.	NSCAssert	is	required	when	using	assertions
within	C	functions,	rather	than	Objective-C	methods.

RNAssert.h

#import	<Foundation/Foundation.h>

#define	RNLogBug	NSLog	//	Use	DDLogError	if	you’re	using

Lumberjack

//	RNAssert	and	RNCAssert	work	exactly	like	NSAssert	and	NSCAssert

//	except	they	log,	even	in	release	mode

#define	RNAssert(condition,	desc,	...)	\

		if	(!(condition))	{	\

				RNLogBug((desc),	##	__VA_ARGS__);	\

				NSAssert((condition),	(desc),	##	__VA_ARGS__);	\

		}

#define	RNCAssert(condition,	desc)	\

		if	(!(condition))	{	\

				RNLogBug((desc),	##	__VA_ARGS__);	\

				NSCAssert((condition),	(desc),	##	__VA_ARGS__);	\

		}

Assertions	often	precede	code	that	would	crash	if	the	assertion	were	not	valid.
For	example	(assuming	you’re	using	RNAssert	to	log	even	in	the	Release
configuration):

		RNAssert(foo	!=	nil,	@”foo	must	not	be	nil”);

		[array	addObject:foo];

The	problem	with	this	is	that	in	the	field,	even	with	assertions	turned	off,	this
still	crashes.	What	was	the	point	of	turning	off	assertions	if	you’re	going	to
crash	anyway	in	many	cases?	That	leads	to	code	like	this:

		RNAssert(foo	!=	nil,	@”foo	must	not	be	nil”);

		if	(foo	!=	nil)	{

				[array	addObject:foo];

		}

That’s	a	little	better,	using	RNAssert	so	that	you	log,	but	you’ve	got
duplicated	code.	This	raises	more	opportunities	for	bugs	if	the	assertion	and
conditional	don’t	match.	Instead,	I	recommend	this	pattern	when	you	want	an
assertion:

		if	(foo	!=	nil)	{

				[array	addObject:foo];

		}

		else	{

				RNAssert(NO,	@”foo	must	not	be	nil”);

		}

This	ensures	that	the	assertion	always	matches	the	conditional.	Sometimes
assertions	are	overkill,	but	this	is	a	good	pattern	in	cases	where	you	want	one.
I	almost	always	recommend	an	assertion	as	the	default	case	of	a	switch
statement,	however.

		switch	(foo)	{

				case	kFooOptionOne:

						...

						break;

				case	kFooOptionTwo:

						...

						break;

				default:

						RNAssert1(NO,	@”Unexpected	value	for	foo:	%d”,	foo):

						break;

		}

This	way,	if	you	add	a	new	enumeration	item,	it	will	help	you	catch	any
switch	blocks	that	you	failed	to	update.

Exceptions
Exceptions	are	not	a	normal	way	of	handling	errors	in	Objective-C.	From
Exception	Programming	Topics	(developer.apple.com):

The	Cocoa	frameworks	are	generally	not	exception-safe.	The	general	pattern
is	that	exceptions	are	reserved	for	programmer	error	only,	and	the	program
catching	such	an	exception	should	quit	soon	afterwards.

In	short,	exceptions	are	not	for	handling	recoverable	errors	in	Objective-C.

http://developer.apple.com/

Exceptions	are	for	handling	those	things	that	should	never	happen	and	which
should	terminate	the	program.	This	is	similar	to	NSAssert,	and	in	fact
NSAssert	is	implemented	as	an	exception.

Objective-C	has	language-level	support	for	exceptions	using	directives	such
as	@throw	and	@catch,	but	you	generally	should	not	use	these.	There	is
seldom	a	good	reason	to	catch	exceptions	except	at	the	top	level	of	your
program,	which	is	done	for	you	with	the	global	exception	handler.	If	you
want	to	raise	an	exception	to	indicate	a	programming	error,	it’s	best	to	use
NSAssert	to	raise	an	NSInternalInconsistencyException,	or	create	and
raise	your	own	NSException	object.	You	can	build	these	by	hand,	but	I
recommend	+raise:format:	for	simplicity.

		[NSException	raise:NSRangeException

														format:@”Index	(%d)	out	of	range	(%d...%d)”,

																index,	min,	max];

There	seldom	is	much	reason	to	do	this.	In	almost	all	cases,	it	would	be	just
as	clear	and	useful	to	use	NSAssert.	Because	you	generally	shouldn’t	catch
exceptions	directly,	the	difference	between
NSInternalInconsistencyException	and	NSRangeException	is	rarely
useful.

Automatic	Reference	Counting	is	not	exception	safe	by	default	in	Objective-
C.	You	should	expect	significant	memory	leaks	from	exceptions.	In	principle
ARC	is	exception	safe	in	Objective-C++,	but	@autoreleasepool	blocks	are
still	not	released,	which	can	lead	to	leaks	on	background	threads.	Making
ARC	exception	safe	incurs	performance	penalties,	which	is	one	of	many
reasons	to	avoid	significant	use	of	Objective-C++.	The	clang	flag	-fobjc-
arc-exceptions	controls	this.

Catching	and	Reporting	Crashes
iTunes	Connect	is	supposed	to	provide	crash	reports,	but	it	has	a	lot	of
limitations.	Apple	makes	a	single	blanket	request	to	the	user	for	permission	to
upload	crash	reports.	Many	users	decline.	Reports	are	updated	only	once	a
day.	iTunes	Connect	only	supports	applications	deployed	on	the	App	Store,	so
you	need	a	different	system	during	development	and	internal	betas.	In	short,

if	iTunes	Connect	works	for	you,	great,	but	often	it	doesn’t.

The	best	replacement	I’ve	found	is	Quincy	Kit	(quincykit.net).	It’s	easy	to
integrate	into	an	existing	project,	and	it	uploads	reports	to	your	own	web
server	after	asking	user	permission.	Currently	it	does	not	handle	uploading
logs	to	go	along	with	the	crash	report.

Quincy	Kit	is	built	on	top	of	PLCrashReporter	from	Plausible	Labs.
PLCrashReporter	handles	the	complex	problem	of	capturing	crash
information.	Quincy	Kit	provides	a	friendly	front	end	for	uploading	that
information.	If	you	need	more	flexibility,	you	might	consider	writing	your
own	version	of	Quincy	Kit.	It’s	handy	and	nice,	but	not	all	that	complicated.
You	probably	should	not	try	to	rewrite	PLCrashReporter.	While	a	program	is
in	the	middle	of	crashing,	it	can	be	in	a	bizarre	and	unknown	state.	Properly
handling	all	of	the	subtle	issues	that	go	with	that	is	not	simple,	and	Landon
Fuller	has	been	working	on	PLCrashReporter	for	years.	Even	something	as
simple	as	allocating	or	freeing	memory	can	deadlock	the	system	and	rapidly
drain	the	battery.	That’s	why	Quincy	Kit	uploads	the	crash	files	when	the
program	restarts	rather	than	during	the	crash.	You	should	do	as	little	work	as
possible	during	the	crash	event.

When	you	get	your	crash	reports,	depending	on	how	your	image	was	built,
they	may	have	symbols	or	they	may	not.	Xcode	generally	does	a	good	job	of
automatically	symbolicating	the	reports	(replacing	addresses	with	method
names)	in	Organizer	as	long	as	you	keep	the	.dSYM	file	for	every	binary	you
ship.	Xcode	uses	Spotlight	to	find	these	files,	so	make	sure	they’re	available
in	a	place	that	Spotlight	can	search.

Errors	and	NSError
There	is	a	major	difference	between	a	user	or	environment	error,	and	a
programming	error.	Programming	errors	should	be	handled	with	exceptions
in	debug	mode,	and	with	logging	in	release	mode.	If	data	corruption	is
possible,	programming	errors	should	also	raise	exceptions	in	release	mode.
Failure	to	allocate	small	amounts	of	memory	should	be	treated	as	a
programming	error	in	iOS	because	it	shouldn’t	be	possible	and	almost
certainly	indicates	a	programming	error.

User	errors	or	environment	errors	(network	failures,	disk	full,	etc.)	should
never	raise	exceptions.	They	should	return	errors,	generally	using	an	NSError
object.	NSFileManager	is	a	good	example	of	an	object	that	uses	NSError
extensively.

-	(BOOL)copyItemAtPath:(NSString	*)srcPath

																toPath:(NSString	*)dstPath

																	error:(NSError	**)error

This	method	copies	a	file	or	directory	from	one	location	to	another.
Obviously	that	might	fail	for	a	variety	of	reasons.	If	it	does,	the	method
returns	NO	and	updates	an	NSError	object	that	the	caller	passes	by	reference
(pointer	to	a	pointer),	as	shown	in	this	example.

		NSError	*error;

		if	(!	[fileManager	copyItemAtPath:srcPath

																													toPath:toPath

																													error:&error])	{

				[self	handleError:error];

		}

This	pattern	is	convenient	because	the	return	value	is	consistent	with	the
success	of	the	operation.	If	the	method	instead	returned	an	NSError,	then	nil
would	indicate	success.	This	would	be	confusing	and	error	prone.

Internally	the	method	might	look	something	like	this:

-	(BOOL)copyItemAtPath:(NSString	*)srcPath

																toPath:(NSString	*)dstPath

																	error:(NSError	**)error	{

		

		BOOL	success	=	...;

		if	(!	success)	{

				if	(error	!=	NULL)	{

						*error	=	[NSError	errorWithDomain:...];

				}

		}

		return	success;

}

Note	how	this	checks	that	error	(a	pointer	to	a	pointer)	is	non-NULL	before
dereferencing	it.	This	allows	callers	to	pass	NULL	to	indicate	that	they	do	not
care	about	the	error	details.	They	might	still	check	the	return	value	to

determine	the	overall	success	or	failure	of	the	operation.

NSError	encapsulates	information	about	an	error	in	a	consistent	package	that
is	easy	to	pass	around.	It	can	obviously	be	passed	within	a	program,	but
because	it	conforms	to	NSCoding,	it’s	easy	to	write	to	disk	or	over	a	network.
It	can	even	encapsulate	error	recovery	mechanisms	using	the
NSErrorRecoveryAttempting	protocol.

Errors	are	primarily	defined	by	their	domain	and	a	code.	The	code	is	an
integer,	and	the	domain	is	a	string	that	allows	you	to	identify	the	meaning	of
that	integer.	For	instance,	in	NSPOSIXErrorDomain	the	error	code	4	indicates
that	a	system	call	was	interrupted	(EINTR),	but	in	NSCocoaErrorDomain	the
error	code	4	indicates	that	a	file	was	not	found	(NSFileNoSuchFileError).
Without	a	domain,	the	caller	would	have	to	guess	how	to	interpret	the	error
code.	You	are	encouraged	to	create	your	own	domains	for	your	own	errors.
You	should	generally	use	a	Uniform	Type	Indicator	(UTI)	for	this,	such	as
com.example.MyApp.ErrorDomain.

NSError	includes	a	user	info	dictionary	that	can	contain	any	information	you
like.	There	are	several	pre-defined	keys	for	this	dictionary	such	as
NSLocalizedDescriptionKey,	NSUnderlyingErrorKey,	and
NSRecoveryAttempterErrorKey.	You’re	free	to	create	new	keys	to	provide
domain-specific	information.	Several	domains	already	do	this,	such	as
NSStringEncodingErrorKey	for	passing	the	relevant	string	encoding	or
NSURLErrorKey	passing	an	URL.

Error	Localization
Where	to	localize	errors	is	always	a	tricky	subject.	Low-level	frameworks
tend	to	present	errors	in	very	user-unfriendly	ways.	Errors	like	“Interrupted
system	call	(4)”	are	generally	not	useful	to	the	user.	Translating	such	an	error
message	into	French	and	Spanish	doesn’t	help	anything.	It	just	wastes	money
and	confuses	users	in	more	languages.	Localizing	these	kinds	of	error
messages	actually	makes	things	more	difficult	to	debug	because	logs	may	be
sent	to	you	reporting	errors	in	a	language	you	can’t	read.

This	last	point	bears	emphasizing.	You	should	never	localize	a	string	that	you	do	not	intend	to
display	to	a	user.

Because	errors	often	need	to	be	logged	in	the	developer’s	language,	I
recommend	against	using	NSLocalizedDescriptionKey	and	its	relatives	in
most	cases	for	NSError.	Instead,	localize	only	at	the	point	of	displaying	the
error.	You	can	keep	localized	strings	for	various	error	codes	using	a	localized
string	table	with	the	same	name	as	your	error	domain	with	.strings
appended.	For	instance,	for	the	error	domain
com.example.MyApp.ErrorDomain,	you	would	have	a	localized	strings	file
named	com.example.MyApp.ErrorDomain.strings.	In	that	file,	just	map	the
error	code	to	the	localized	value:

		“1”	=	“File	not	found.”

Then,	to	read	the	file,	just	use	NSBundle:

		NSString	*key	=	[NSString	stringWithFormat:@”%d”,	[error	code]];

		NSString	*localizedMessage	=	[[NSBundle	mainBundle]

																													localizedStringForKey:key

																																													value:nil

																																													table:[error

domain]];

Error	Recovery	Attempter
An	error	recovery	attempter	is	a	way	to	encode	error	recovery	options	into	the
NSError	object.	If	the	error	is	passed	through	several	layers,	this	lets	the	UI
communicate	back	to	the	original	subsystem	to	let	it	attempt	to	recover.	The
error	recovery	system	encapsulates	localized	options,	some	description	text
(called	the	“suggestion”),	and	an	object	to	inform	of	the	selected	option.	This
object	should	conform	to	the	NSRecoveryAttempting	informal	protocol.

iOS	provides	no	UI	integration	for	error	recovery,	but	it’s	not	hard	to	roll	your
own.	Here’s	an	example	singleton	that	will	manage	a	UIActionSheet	based
on	the	error-recovery	options.

RNErrorManager.h	(ErrorRecovery)

@interface	RNErrorManager	:	NSObject	<UIActionSheetDelegate>

+	(RNErrorManager	*)sharedManager;

-	(UIActionSheet	*)actionSheetForError:(NSError	*)error;

@end

RNErrorManager.m	(ErrorRecovery)

#import	“RNErrorManager.h”

static	const	char	kRNErrorKey;

static	RNErrorManager	*sSharedManager;

@implementation	RNErrorManager

+	(void)initialize	{

		sSharedManager	=	[[RNErrorManager	alloc]	init];

}

+	(RNErrorManager	*)sharedManager	{

		return	sSharedManager;

}

-	(UIActionSheet	*)actionSheetForError:(NSError	*)error	{

		UIActionSheet	*sheet	=	[[UIActionSheet	alloc]	init];

		

		sheet.title	=	[error	localizedRecoverySuggestion];

		sheet.delegate	=	self;

		for	(NSString	*option	in	[error	localizedRecoveryOptions])	{

				[sheet	addButtonWithTitle:option];

		}

		

		objc_setAssociatedObject(sheet,	&kRNErrorKey,	error,

																											OBJC_ASSOCIATION_RETAIN_NONATOMIC);

		return	sheet;

}

-	(void)actionSheet:(UIActionSheet	*)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex	{

		NSError	*error	=	objc_getAssociatedObject(actionSheet,

																																												&kRNErrorKey);

		id	attempter	=	[error	recoveryAttempter];

		

		if	([attempter	respondsToSelector:

							@selector(attemptRecoveryFromError:optionIndex:)])	{

				[[error	recoveryAttempter]	attemptRecoveryFromError:error

																																										optionIndex:buttonIndex];

		}

		else	{

				NSAssert(NO,

															@”Recovery	attempter	does	not	implement

protocol.”);

		}

}

@end

In	actionSheetForError:,	this	generates	a	UIActionSheet,	sets	itself	as	the
delegate,	and	uses	objc_setAssociatedObject	to	attach	the	original	NSError

to	the	sheet.	That	way	when	you	are	called	back,	you	can	figure	out	the
relevant	error.	When	the	button	is	clicked,	you	fetch	the	error	using
objc_getAssociatedObject	and	call	the	delegate	method	on	the	recovery
attempter.

The	calling	code	might	look	like	this:

ErrorRecoveryViewController.m	(ErrorRecovery)

		NSArray	*options	=	[NSArray	arrayWithObjects:

																						NSLocalizedString(@”Run	away”,

																															@”OPTION:	Avoid	error	by

leaving.”),

																						NSLocalizedString(@”Hide”,

																																@”OPTION:	Avoid	error	by

hiding.”),

																						NSLocalizedString(@”Fix”,

																																								@”OPTION:	Fix	error”),

																						nil];

		NSMutableDictionary	*userInfo	=	[NSMutableDictionary

dictionary];

		[userInfo	setObject:self	forKey:NSRecoveryAttempterErrorKey];

		[userInfo	setObject:options

															forKey:NSLocalizedRecoveryOptionsErrorKey];

		

		[userInfo	setObject:NSLocalizedString(@”What	do	you	want	to

do?”,

																																								@”Request	decision.”)

															forKey:NSLocalizedRecoverySuggestionErrorKey];

		NSError	*error	=	[NSError	errorWithDomain:RNAppErrorDomain

																																							code:kRNAppBadThingError

																																			userInfo:userInfo];

		UIActionSheet	*sheet	=	[[RNErrorManager	sharedManager]

																										actionSheetForError:error];

		[sheet	showInView:self.view];

Because	you	can	display	UIActionSheet	many	different	ways,	it’s	convenient
to	have	RNErrorManager	return	the	sheet	rather	than	present	the	sheet	itself.	If
your	application	only	presents	these	in	one	way,	then	it’s	easy	to	move	the
showIn...:	call	to	RNErrorManager.

Finally,	you	actually	respond	to	the	user’s	choice	in	the	original	caller.	This
nicely	separates	error	recovery	logic	from	error	presentation,	allowing	you	to

provide	a	consistent	error	UI	throughout	your	application.

ErrorRecoveryViewController.m	(ErrorRecovery)

-	(void)attemptRecoveryFromError:(NSError	*)error

																					optionIndex:(NSUInteger)recoveryOptionIndex	{

		switch	(recoveryOptionIndex)	{

				case	kRecoveryOptionRunAway:

						NSLog(@”Run	Away!”);

						break;

				case	kRecoveryOptionHide:

						NSLog(@”Hide!”);

						break;

				case	kRecoveryOptionFix:

						NSLog(@”OK,	fix	it....”);

						break;

				default:

						NSAssert(NO,	@”Unknown	recovery	option:	%d”,

															recoveryOptionIndex);

						break;

		}			

}

Logs
Logging	is	a	critical	part	of	debugging.	It’s	also	very	hard	to	get	right.	You
want	to	log	the	right	things	and	you	want	to	log	in	the	right	way.	Let’s	start
with	logging	in	the	right	way.

Foundation	provides	a	single	logging	call:	NSLog.	The	only	advantage	NSLog
has	is	that	it’s	convenient.	It	is	inflexible	and	incredibly	slow.	Worst	of	all,	it
logs	to	the	console,	which	is	never	appropriate	in	released	code.	NSLog	should
never	appear	in	production	code.

Some	people	deal	with	this	issue	simply:

#ifdef	DEBUG

#define	MYLog	NSLog

#else

#define	MYLog

#end

That’s	fine	for	pulling	out	NSLog,	but	now	you	have	no	logs	at	all,	which	is

not	ideal.	What	you	need	is	a	logging	engine	that	adapts	to	both	development
and	release.	Here	are	some	of	the	things	to	consider	in	your	logging	engine:

■	It	should	log	to	console	in	debug	mode	and	to	a	file	in	release	mode.	If
you	don’t	log	to	console	in	debug	mode,	you	won’t	see	logging	output	in
Xcode.	Ideally	it	should	be	able	to	log	to	both	at	the	same	time.
■	It	should	include	logging	levels	(error,	warning,	info,	verbose).

■	It	should	make	sure	that	logging	to	disabled	logging	levels	is	cheap.
■	It	should	not	block	the	calling	thread	while	it	writes	to	a	file	or	the
console.

■	It	must	support	log	aging	to	avoid	filling	the	hard	disk.
■	It	should	be	very	easy	to	call,	generally	using	a	C	syntax	with	varargs
rather	than	an	Objective-C	syntax.	The	NSLog	interface	is	very	easy	to	use,
and	you	want	something	that	looks	basically	like	that.	You	definitely	don’t
want	simple	logging	statements	to	require	multiple	lines	of	code.

My	current	recommendation	for	iOS	logging	is	Lumberjack	from	Robbie
Hanson	of	Deusty	Designs.	See	“Further	Reading”	at	the	end	of	this	chapter
for	the	link.	In	general,	it	requires	only	a	few	extra	lines	of	code	to	configure,
and	a	simple	substitution	of	NSLog	calls	to	DDLog...	calls	to	implement.

This	still	leaves	the	question	of	what	to	log.	If	you	log	too	little,	you	won’t
have	the	information	you	need	to	debug	issues.	If	you	log	too	much,	you’ll
overwhelm	even	the	best	system,	hurt	performance,	and	age	your	logs	so
quickly	that	you	probably	still	won’t	have	the	information	you	need.	Middle
ground	is	very	application	specific,	but	there	are	some	general	rules.

When	adding	a	logging	statement,	ask	yourself	what	you	would	ever	do	with
it.	Are	you	just	relogging	something	that	is	already	covered	by	another	log
statement?	This	is	particularly	important	if	you’re	logging	data	rather	than
just	“I’m	in	this	method	now.”

Avoid	calculating	complex	data	if	you	might	not	log	it.	Consider	the
following	code:

		NSString	*expensiveValue	=	[self	expensiveCall];

		DDLogVerbose(@”expensiveValue=%@”,	expensiveValue);

If	you	never	use	expensiveValue	in	the	upcoming	code	and	verbose	logging
isn’t	turned	on,	you’ve	wasted	time	calculating	it.	Lumberjack	is	written	in
such	a	way	that	this	stays	cheap:

		DDLogVerbose(@”expensiveValue=%@”,	[self	expensiveCall]);

This	translates	to

		do	{

				if(ddLogLevel	&&	LOG_FLAG_VERBOSE)

						[DDLog	log:...

													format:@”expensiveValue=%@”,	[self	expensiveCall]];

		}	while(0);

In	this	case,	expensiveCall	is	not	executed	unless	needed.	The	log	level	is
checked	twice	(once	in	the	macro	and	once	in	[DDLog	log:...]),	but	this	is	a
very	cheap	operation	compared	to	expensiveCall.	If	you	build	your	own
logging	engine,	this	is	a	good	technique	to	emulate.

A	similar	logging	trick	is	to	make	sure	you	need	to	log	before	entering	a	loop.
In	Lumberjack	it’s	done	this	way:

		if	(LOG_VERBOSE)	{

				for	(id	object	in	list)	{

						DDLogVerbose(@”object=%@”,	object);

				}

		}

The	point	of	this	is	to	avoid	repeatedly	calculating	whether	to	log	and	to
avoid	calculating	the	log	string.	That’s	even	more	important	if	complex	work
needs	to	be	done	to	generate	the	log.

Most	of	the	time,	verbose	logging	is	turned	off	so	even	if	DDLogVerbose
checks	the	level	again,	the	above	code	is	cheaper	in	most	cases,	and	avoids
creating	a	string	for	object.	When	verbose	logging	is	turned	on	the	extra
LOG_VERBOSE	check	is	trivial	compared	to	the	rest	of	the	loop.

Logging	Sensitive	Information
Logging	opens	up	serious	privacy	concerns.	Many	applications	process
information	that	should	never	go	into	a	log.	Obviously	you	should	not	log
passwords	or	credit	card	numbers,	but	this	is	sometimes	trickier	than	it

sounds.	What	if	sensitive	information	is	sent	over	a	network	and	you	log	the
packets?	You	may	need	to	filter	your	logs	before	writing	them	to	avoid	this.

Don’t	ask	your	customers	to	“just	trust	you”	with	their	sensitive	information.
Not	only	does	it	put	the	customer	at	risk,	but	the	more	of	their	information	in
your	possession,	the	more	legal	issues	you	have	to	consider.	Few	things	eat
up	profits	as	quickly	as	consulting	lawyers.

Regularly	audit	your	logs	to	make	sure	you’re	not	logging	sensitive
information.	After	running	your	program	at	the	maximum	logging	level,
search	the	logs	for	your	password	and	any	other	sensitive	information.	If	you
have	automated	tests,	this	generally	can	be	added	fairly	easily.

Encrypting	your	logs	does	nothing	to	help	this	situation.	The	problem	is	that
the	users	send	their	logs	to	you,	and	you	have	the	decryption	key.	If	you	feel
you	need	to	encrypt	your	logs,	you’re	probably	logging	something	you
shouldn’t	be.

During	development,	it	is	occasionally	important	to	see	the	real	data	in	the
logs.	I	spent	quite	some	time	tracking	down	a	bug	where	we	were	dropping
the	last	character	of	the	password.	Had	we	logged	the	password,	this	would
have	been	much	easier	to	discover.	If	you	need	this	kind	of	functionality,	just
make	sure	it	doesn’t	stay	in	place	in	production	code.

Getting	Your	Logs
Logs	aren’t	very	useful	if	you	can’t	get	to	them.	Don’t	forget	to	include	some
way	to	get	the	logs	from	the	user.	If	you	have	a	network	protocol,	you	could
upload	them.	Otherwise	you	can	use	MFMailComposeViewController	to	send
them	as	an	attachment.	Keep	in	mind	the	potential	size	of	your	logs.	You
often	will	want	to	compress	them	first.	I’ve	had	good	luck	using	Minizip	for
this	(see	“Further	Reading”).	There	are	some	wrappers	for	Minizip	such	as
Objective-Zip	and	ZipArchive,	but	I’m	not	particularly	impressed	with	them.

Be	sure	to	ask	permission	before	sending	logs.	Not	only	are	there	privacy
concerns,	but	sending	logs	can	use	a	lot	of	bandwidth	and	battery.	Generally
you	should	only	need	to	send	logs	in	response	to	a	problem	report.

Summary
Error	handling	is	one	of	the	trickiest	parts	of	any	environment.	It’s	much
easier	to	manage	things	when	they	go	right	than	when	they	go	wrong.	In	this
chapter	you’ve	seen	how	to	best	handle	things	when	they	go	wrong.	There’s
nothing	that	will	make	this	an	easy	process,	but	you	should	have	the	tools	to
make	it	a	manageable	one.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Exception	Programming	Topics
Error	Handling	Programming	Guide
TN2151:	Understanding	and	Analyzing	iPhone	OS	Application	Crash
Reports

Other	Resources
Clang	documentation,	“Automatic	Reference	Counting.”	This	is	the
official	documentation	on	how	ARC	and	exceptions	interact.
clang.llvm.org/docs/AutomaticReferenceCounting.html#misc.exceptions

Lumberjack.	Mac	and	iOS	logger.	code.
code.google.com/p/cocoalumberjack/

Olsson,	Fredrik,	“Exceptions	and	Errors	on	iOS,”	Jayway	Team	Blog.	A
good	discussion	of	programmer	versus	user	errors	and	how	to	deal	with
exceptions	versus	other	kinds	of	errors.
blog.jayway.com/2010/10/13/exceptions-and-errors-on-ios

Quincy	Kit.	A	nice	crash-catcher	for	iOS.	quincykit.net

Volant,	Gilles.	zLib	and	Minizip.	The	standard	for	ZIP	file	handling.	Don’t
let	the	“win”	and	“Dll”	fool	you.	This	is	highly	portable.
www.winimage.com/zLibDll/minizip.html

http://developer.apple.com/
http://clang.llvm.org/docs/AutomaticReferenceCounting.html#misc.exceptions
http://code.google.com/p/cocoalumberjack/
http://blog.jayway.com/2010/10/13/exceptions-and-errors-on-ios/
http://quincykit.net/
http://www.winimage.com/zLibDll/minizip.html

Part	III:	The	Right	Tool	for	the	Job

Chapter	9	Controlling	Multitasking

Chapter	10	REST	for	the	Weary

Chapter	11	Batten	the	Hatches	with	Security	Services

Chapter	12	Running	on	Multiple	iPlatforms	and	iDevices

Chapter	13	Internationalization	and	Localization

Chapter	14	Selling	Past	the	Sale	with	In	App	Purchase

Chapter	9:	Controlling	Multitasking

There	are	two	broad	meanings	of	“multitasking”	in	iOS.	First,	it	refers	to
running	multiple	applications	at	the	same	time	by	allowing	one	or	more
applications	to	run	“in	the	background.”	Second,	it	refers	to	when	a	single
application	runs	multiple	operations	simultaneously.	Both	are	important	parts
of	many	iOS	applications,	and	this	chapter	discusses	both.

You	learn	the	best	practices	for	multitasking	and	discover	the	major	iOS
frameworks	for	multitasking:	run	loops,	threads,	operations,	and	Grand
Central	Dispatch	(GCD).	If	you	are	familiar	with	thread-based	multitasking
from	other	platforms,	you	learn	how	to	reduce	your	reliance	on	explicit
threads	and	make	the	best	use	of	iOS’s	frameworks	that	avoid	threads	or
handle	threading	automatically.	Perhaps	most	importantly,	you	learn	how	to
give	your	users	the	illusion	of	multitasking	without	wasting	system	resources.

In	this	chapter,	I	assume	that	you	understand	the	basics	of	running	tasks	in	the
background,	and	that	you	are	familiar	with
beginBackgroundTaskWithExpirationHandler:,	registering	an	app	as
location	aware,	and	similar	backgrounding	issues.	If	you	need	information
about	the	fundamental	technologies,	see	“Executing	Code	in	the	Background”
in	the	iOS	Application	Programming	Guide.

Similarly,	this	chapter	assumes	that	you	have	at	least	a	passing	familiarity
with	operation	queues	and	Grand	Central	Dispatch,	though	you	may	never
have	used	them	in	real	code.	If	you	have	never	heard	of	them,	you	should
skim	the	Concurrency	Programming	Guide	before	continuing.

The	sample	code	for	this	chapter	can	be	found	in	the	projects	SimpleGCD,
SimpleOperation,	and	SimpleThread.

Best	Practices	for	Backgrounding:	With
Great	Power	Comes	Great	Responsibility

In	iPhoneOS	3,	only	one	third-party	application	could	run	at	a	time.	When	the

user	left	your	application,	it	was	terminated.	This	ensured	that	third-party
background	applications	couldn’t	waste	resources	like	memory	or	battery.
Apple	wanted	to	make	certain	that	the	iPhone	didn’t	suffer	the	same
performance	and	stability	problems	of	earlier	mobile	platforms,	most
pointedly	Windows	Mobile.

Starting	with	iOS	4,	Apple	began	to	permit	third-party	applications	to	run	in
the	background,	but	only	in	limited	ways.	This	continued	Apple’s	focus	on
not	allowing	third-party	applications	to	destabilize	the	platform	or	waste
resources.	It	can	be	very	frustrating,	but	the	policy	has	generally	met	its	goal.
iOS	remains	focused	on	the	user,	not	the	developer.

Your	application	should	give	the	illusion	that	it’s	always	running,	even
though	it	isn’t.	Although	your	application	may	be	terminated	without	warning
any	time	it	is	suspended,	it	should	give	the	impression	that	nothing	has
changed	when	it	launches	again.	This	means	that	you	should	avoid	displaying
a	splash	screen	during	loading,	and	you	should	save	sufficient	state	when	you
enter	the	background	to	resume	seamlessly	if	terminated.	NSUserDefaults	is
a	good	place	to	stash	small	amounts	of	data	during
applicationWillResignActive:.	Larger	data	structures	need	to	be	written	to
files,	usually	in	~/Library/Caches.

Reducing	your	app’s	memory	footprint	is	important	when	going	into	the
background,	but	so	is	minimizing	the	time	required	to	resume.	If	throwing
away	your	cached	information	makes	resuming	from	the	background	as
expensive	as	launching	from	scratch,	there	wasn’t	any	point	to	suspending.
Be	thoughtful	about	what	you	throw	away	and	how	long	it	will	take	you	to	re-
create	it.	Everything	you	do	drains	the	battery,	so	always	look	to	avoid
wasteful	processing,	even	if	it	doesn’t	visibly	delay	your	app.

When	your	application	is	suspended,	it	does	not	receive	memory	warnings.	If
its	memory	footprint	is	very	large,	your	application	is	likely	to	be	terminated
when	there	is	memory	pressure,	and	you	won’t	have	an	opportunity	to	do
anything	about	it.	NSCache	and	NSPurgeableData	are	invaluable	in	addressing
this	issue.	NSPurgeableData	is	an	NSData	object	that	you	can	flag	as	currently
in	use	or	currently	purgeable.	If	you	store	it	in	an	NSCache	object,	and	mark	it
as	purgeable	with	endContentAccess,	the	OS	saves	it	until	there	is	memory
pressure.	At	that	point,	it	discards	that	data,	even	if	your	app	is	suspended	at

the	time.	This	saves	you	the	cost	of	throwing	away	this	object	and	re-creating
it	every	time	the	user	leaves	your	app	briefly,	while	ensuring	that	it	can	be
thrown	away	if	needed.

A	lot	of	framework	data	is	automatically	managed	for	you	when	your	app
goes	into	the	background.	The	data	for	images	loaded	with	imageNamed:	are
discarded	automatically	and	reread	from	disk	when	needed	again.	Views
automatically	throw	away	their	backing	stores	(their	bitmap	cache).	You
should	expect	your	drawRect:	methods	to	be	called	when	you	resume.	There
is	a	major	exception	to	this	rule.	UIImageView	does	not	discard	its	data	and
this	can	be	quite	large.	If	you	have	a	large	image	shown	in	a	UIImageView,
you	should	generally	remove	it	before	going	into	the	background.	However,
decompressing	images	can	be	very	expensive,	so	you	shouldn’t	throw	them
away	too	often.	There	is	no	one	right	answer.	You	need	to	profile	your
application.

In	Instruments,	the	VM	Tracker	is	useful	for	determining	how	much	memory
you’re	using	while	in	the	background.	It’s	part	of	the	Allocations	template.
First	create	a	“memory	pressure”	app	that	displays	a	massive	image.	Then	run
your	program	with	the	VM	Tracker.	Note	the	amount	of	memory	you’re
using.	Press	the	Home	button	and	note	the	amount	of	memory	you’re	using
now.	This	is	what	you’re	releasing	when	you	go	into	the	background.	Now
launch	the	memory	pressure	app.	Note	how	much	memory	you	release.
Ideally,	your	background	usage	should	be	less	than	your	normal	usage
without	being	so	low	that	you	delay	resuming.	Your	usage	under	memory
pressure	should	be	as	low	as	possible.

In	Instruments,	you	will	see	two	kinds	of	memory:	dirty	memory	and	resident
memory.	Dirty	memory	is	the	memory	that	iOS	can’t	automatically	reclaim
when	you	go	into	the	background.	Resident	memory	is	your	total	current
memory	utilization.	Both	are	important	for	different	reasons.	Minimizing
dirty	memory	reduces	the	likelihood	that	you	will	be	terminated	in	the
background.	Reducing	it	should	be	your	primary	focus.	Your	application
should	consume	as	little	resources	as	possible	when	it	is	not	the	foreground
application.	NSCache	and	NSPurgeableData	are	excellent	tools	for	reducing
dirty	memory.	Resident	memory	is	your	entire	memory	footprint.	Minimizing
this	helps	prevent	low	memory	warnings	while	you’re	in	the	foreground.

In	the	Instruments	VM	Tracker,	you	may	see	references	to	“Memory	Tag	70.”	That’s	memory	for
decompressed	images	and	is	primarily	caused	by	UIImage.

Memory	is	important,	but	it’s	not	the	only	resource.	Avoid	excessive	network
activity,	disk	access,	or	anything	else	that	will	waste	battery	life.	Generally
you	should	complete	any	user-initiated	download	using
beginBackgroundTaskWithExpirationHandler:.	Users	don’t	want	to	have	to
sit	and	stare	at	your	application	while	their	data	downloads;	they	want	to	go
play	a	game.	However,	you	should	abort	or	pause	any	downloads	that	weren’t
requested	by	the	user,	provided	that	you	can	resume	them	later.

Some	actions	are	forbidden	while	in	the	background.	The	most	significant	is
OpenGL	calls.	You	must	stop	updating	OpenGL	views	when	you	go	into	the
background.	A	subtle	issue	here	is	application	termination.	The	application	is
allowed	to	run	for	a	brief	time	after	applicationWillTerminate:	is	called.
During	that	time,	the	application	is	“in	the	background”	and	must	not	make
OpenGL	calls.	If	it	does,	it’s	killed	immediately,	which	could	prevent	it	from
finishing	other	application-termination	logic.

Make	sure	to	shut	down	your	OpenGL	updates	when	the	application	is	terminating	as	well	as
when	going	into	the	background.	GLKViewController	automatically	handles	all	of	this	for	you,
which	is	the	controller	used	by	the	OpenGL	Game	template	in	Xcode.

Running	in	the	background	creates	new	challenges	for	developers,	but	users
expect	this	key	feature.	Just	make	sure	to	keep	the	user	as	your	top	priority,
test	heavily,	and	watch	your	resource	utilization.	Your	application	should
delight,	even	when	it’s	not	on	screen.

Understanding	Run	Loops
Every	iOS	program	is	driven	by	a	do/while	loop	that	blocks	waiting	for	an
event,	and	then	dispatches	that	event	to	interested	listeners,	and	repeats	until
something	tells	it	to	stop.	The	object	that	handles	this	is	called	a	run	loop
(NSRunLoop).

You	almost	never	need	to	understand	the	internals	of	a	run	loop.	There	are
mach	ports	and	message	ports	and	CFRunLoopSourceRef	types,	and	a	variety
of	other	arcana.	These	are	incredibly	rare	in	normal	programs,	even	in	very
complex	programs.	What’s	important	to	understand	is	that	the	run	loop	is	just

a	big	do/while	loop,	running	on	one	thread,	pulling	events	off	of	various
queues	and	dispatching	them	to	listeners	one	at	a	time	on	that	same	thread.
This	is	the	heart	of	an	iOS	program.

When	your	applicationWillResignActive:	method,	IBAction,	or	any	other
entry	point	to	your	program	is	called,	it’s	because	an	event	fired	somewhere
that	traced	its	way	to	a	delegate	call	that	you	implemented.	The	system	is
waiting	for	you	to	return	so	it	can	continue.	While	your	code	is	running	on
the	main	thread,	scroll	views	can’t	scroll,	buttons	can’t	highlight,	timers	can’t
fire.	The	entire	UI	is	hanging,	waiting	for	you	to	finish.	Keep	that	in	mind
when	you’re	writing	your	code.

This	doesn’t	mean	everything	is	on	the	main	run	loop.	Each	thread	has	its
own	run	loop.	Animations	generally	run	on	background	threads,	as	does
much	of	NSURLConnection	network	handling.	But	the	heart	of	the	system	runs
on	a	single,	shared	run	loop.

While	each	thread	has	a	run	loop,	this	doesn’t	mean	that	each	thread	processes	its	run	loop.	Run
loops	only	execute	their	do/while	loop	in	response	to	commands	like	runUntilDate:	as	discussed
in	the	section	“Threading”	below.	The	call	to	UIApplicationMain	in	main.m	of	almost	every	project
runs	the	main	run	loop.

NSTimer	relies	on	the	run	loop	to	dispatch	messages.	When	you	schedule	an
NSTimer,	it	asks	the	current	run	loop	to	dispatch	a	selector	at	a	certain	time.
Each	time	the	run	loop	iterates,	it	checks	what	time	it	is	and	fires	any	timers
that	have	expired.	Delay-action	methods	like
performSelector:withObject:afterDelay:	are	implemented	by	scheduling
a	timer.

Most	of	the	time	all	of	this	happens	behind	the	scenes	and	you	don’t	need	to
worry	about	the	run	loop.	UIApplicationMain	sets	up	the	main	thread’s	run
loop	for	you,	and	keeps	it	running	until	the	program	terminates.	But	what
about	other	threads?	The	next	section	covers	those.

Threading
Blocking	the	main	thread	hangs	your	program,	so	that’s	not	acceptable.	But
some	operations	take	a	long	time	to	run.	When	that	happens,	you	may	need	to
spin	off	new	threads.	This	is	not	as	common	as	it	may	appear.	You	can	write

quite	complex	programs	without	explicitly	creating	any	additional	threads.
The	frameworks	create	and	manage	threads	for	you	in	most	cases,	completely
transparently.	But	sometimes	you	need	to	explicitly	create	your	own	worker
threads.	In	this	section	you	learn	how	to	do	this	by	hand,	and	in	the	later
sections	you	learn	better	abstractions	for	handling	threads.

Cocoa	offers	a	useful	thread	abstraction	called	NSThread.	While	operation
queues	and	Grand	Central	Dispatch	are	becoming	the	preferred	way	to	handle
threading,	it’s	very	helpful	to	understand	how	NSThread	works	by	itself,	and
how	to	integrate	it	with	a	run	loop.	For	this	example,	you	create	an
application	that	updates	a	simple	counter	on	the	screen.	This	could	easily	be
done	with	an	NSTimer,	but	pretend	the	operation	is	too	expensive	to	do	on	the
main	thread.	The	source	code	for	this	example	is	in	the	SimpleThread	project.

First,	create	an	abstract	NSThread	class	called	CounterThread.	This	will
simplify	showing	various	techniques.

CounterThread.h	(SimpleThread)

@protocol	CounterThreadDelegate	<NSObject>

@property	(assign)	NSUInteger	count;

@end

@interface	CounterThread	:	NSThread

@property	(strong)	id<CounterThreadDelegate>	delegate;

@property	(assign)	BOOL	shouldRun;

-	(CounterThread	*)initWithDelegate:(id)delegate;

-	(void)stop;

//	Methods	for	our	subclasses

-	(void)processThread;

-	(void)updateDelegate;

@end

CounterThread.m	(SimpleThread)

@implementation	CounterThread

@synthesize	delegate=delegate_;

@synthesize	shouldRun=shouldRun_;

-	(CounterThread	*)initWithDelegate:(id)delegate	{

		if	((self	=	[super	init]))	{

				self.delegate	=	delegate;

		}

		return	self;

}

-	(void)stop	{

		self.shouldRun	=	NO;

}

-	(void)processThread	{

		NSAssert(NO,	@”Abstract	method.	Must	be	overridden”);

}

-	(void)updateDelegate	{

		//	Whatever	interesting	work	we	want	to	do.

		//	This	call	is	made	on	a	background	thread,	so	make	sure

		//	it’s	threadsafe

		self.delegate.count	=	self.delegate.count	+	1;

}

-	(void)main	{

		@autoreleasepool	{

				self.shouldRun	=	YES;

				while	(self.shouldRun)	{

						@autoreleasepool	{

								[self	processThread];

						}

				}

		}

}

@end

The	main	routine	is	run	when	the	thread	starts.	When	the	main	routine	ends,
the	thread	will	terminate.	Releasing	an	NSThead	object	does	not	terminate	the
thread.	The	main	routine	must	finish	and	return.	It	is	possible	to	call	cancel
on	a	thread,	but	you	should	avoid	this.	It	leaves	memory	in	an	unknown	state.

Each	thread	is	responsible	for	managing	its	own	autorelease	pool.	The	first
@autoreleasepool	takes	care	of	any	autoreleased	objects	that	might	be
generated	before	reaching	the	loop.	In	this	code,	there	aren’t	any	such	objects,
so	there’s	no	real	need	for	this	extra	pool,	but	it’s	a	good	habit	to	create	one	at
the	top	of	the	thread	just	as	main.m	does	for	the	main	thread.	With	ARC
(Automatic	Reference	Counting),	the	compiler	optimizes	it	out	if	it	isn’t
really	needed.

The	@autoreleasepool	in	the	loop	is	important.	The	pool	isn’t	drained	until
you	reach	the	end	of	the	@autoreleasepool	block,	so	without	a	block	inside
the	loop,	autoreleased	objects	may	be	retained	until	the	thread	terminates.

The	updateDelegate	method	does	whatever	interesting	work	you	want	to	do.

It	has	to	be	thread-safe,	however.	In	this	example,	the	delegate’s	count
accessors	looks	like	this:

STViewController.m	(SimpleThread)

//	Thread-safe

-	(NSUInteger)count	{

		return	count_;

}

//	Thread-safe

-	(void)setCount:(NSUInteger)count	{

		@synchronized(self)	{

				count_	=	count;

				NSString	*string	=	[NSString	stringWithFormat:@”%d”,	count];

				[self.label	performSelectorOnMainThread:@selector(setText:)

																																	withObject:string

																														waitUntilDone:NO];

		}

}

The	@synchronized	makes	sure	that	the	calls	to	setText:	are	made	in	order,
not	to	ensure	reading	and	writing	the	ivar	are	atomic.	The	count	getter
doesn’t	require	an	@synchronized	because	there	is	no	point	at	which	reading
the	scalar	is	unsafe.	Because	setText:	modifies	a	UIKit	object,	it	has	to	run
on	the	main	thread.	That’s	why	you	need	to	call	it	with
performSelectorOnMainThread:withObject:waitUntilDone:.

CounterThread	is	an	abstract	class.	In	the	following	examples,	concrete
subclasses	override	processThread	to	demonstrate	different	approaches.
There	are	two	critical	features	of	processThread:

■	It	needs	to	block	for	some	period	of	time.	If	it	immediately	returns,	it
busy-waits.	That	means	it	very	rapidly	checks	shouldRun	over	and	over.
This	puts	a	dramatic	load	on	the	CPU,	quickly	drains	the	battery,	and
causes	the	device	to	heat	up.
■	It	needs	to	return	periodically.	If	it	blocks	indefinitely,	the	thread	cannot
check	shouldRun	very	often,	and	the	thread	may	not	terminate	when	it
needs	to.	This	can	lead	to	leaking	threads,	which	cause	your	process’s
thread	count	to	grow	over	time.	There	are	a	limited	number	of	threads	in
the	system,	so	this	can	eventually	crash	your	program.	Threads	also	use

memory	and	other	kernel	resources,	so	they	need	to	be	terminated	at
appropriate	times.

It	is	generally	better	to	block	too	long	than	to	check	shouldRun	too	often	as
long	as	you	are	not	rapidly	generating	and	destroying	threads	(which	you
shouldn’t	do	anyway).	An	appropriate	timeout	is	often	between	1	and	10
seconds.

The	simplest	concrete	implementation	of	CounterThread	is
SimpleCounterThread:

@implementation	SimpleCounterThread

-	(void)processThread	{

		[NSThread	sleepForTimeInterval:1];

		[self	updateDelegate];

}

This	just	sleeps	for	1	second	and	updates	the	delegate.	Then	main	checks
shouldRun	and	executes	processThread	again	if	appropriate.	This	kind	of
thread	is	useful	for	many	operations,	but	it	has	a	problem.	What	if	you
created	an	NSTimer	inside	updateDelegate?	It	would	never	execute.	That’s
because	this	thread	is	not	processing	its	run	loop,	and	it’s	the	run	loop	that	is
responsible	for	checking	the	current	time	and	dispatching	any	timers	that
have	expired.	Every	thread	has	a	run	loop,	but	something	needs	to	process	it
(sometimes	called	“pumping	the	run	loop”).	RunLoopThread	is	a	subclass	of
CounterThread	that	demonstrates	how	to	do	this	by	calling	runUntilDate:.

RunLoopThread.m	(SimpleThread)

-	(void)processThread	{

		if	(!	self.timer)	{

				self.timer	=	[NSTimer

																		scheduledTimerWithTimeInterval:1

																		target:self

																		selector:@selector(updateDelegate)

																		userInfo:nil

																		repeats:YES];

		}

		

		NSRunLoop	*runLoop	=	[NSRunLoop	currentRunLoop];

		[runLoop	runUntilDate:[NSDate	dateWithTimeIntervalSinceNow:1]];

}

Using	this	approach,	the	thread	behaves	very	much	like	the	main	run	loop.
The	call	to	runUntilDate:	will	block	for	no	more	than	1	second,	allowing
processThread	to	return	and	the	calling	main	function	to	check	whether	the
thread	should	terminate.	Using
performSelector:onThread:withObject:waitUntilDone:,	you	can	now	run
arbitrary	methods	on	this	thread.

I	recommend	against	using	performSelectorInBackground:withObject:	in
most	cases.	This	method	automatically	generates	a	thread	for	you,	but	gives
you	no	access	to	the	thread	once	it’s	been	created.	This	makes	it	easy	to
accidentally	leak	threads.	The	most	common	mistake	is	to	call
performSelectorInBackground:withObject:	in	methods	like	viewDidLoad
that	can	be	called	more	than	once.	Because	you	have	no	ivar	holding	the
thread	object,	you	can’t	easily	determine	that	there	is	already	a	thread	running
for	this	operation.

You	should	generally	create	a	thread	object	and	assign	it	to	a	property	to	keep
track	of	it.	In	your	setter	for	that	property,	check	whether	a	thread	is	already
assigned.	If	it	is,	that’s	either	a	programming	error	and	you	should	use
NSAssert,	or	it’s	acceptable	and	you	should	terminate	the	old	thread	before
creating	the	new	one.	If	you	just	call	performSelectorInBackground:...,
you	can	quickly	generate	enough	threads	to	crash	your	program	and	even
cause	the	device	to	become	unresponsive	for	a	while.

For	simple	threading	needs,	NSThread	can	be	a	good	fit.	It	makes	it	easy	to
create	producer-consumer	queues,	particularly	when	coupled	with
@synchronize.	It	is	especially	good	for	architectures	that	require	a	small
number	of	long-lived	threads.	For	more	complex	problems,	iOS	provides
more	powerful	tools	such	as	operations	and	dispatch	queues	that	are
discussed	in	the	next	sections.

Developing	Operation-Centric	Multitasking
With	the	many	things	expected	from	modern	applications,	Apple	has	begun
encouraging	developers	to	move	toward	a	more	operation-centric	rather	than
thread-centric	architecture	for	multitasking.	An	operation	is	an	encapsulated
unit	of	work,	often	expressed	in	the	form	of	an	Objective-C	block.	Blocks	are

more	fully	covered	in	Chapter	16.

In	this	example,	you	create	the	same	timer	program	as	before,	but	using
NSOperation.	To	simplify	creation,	you	use	NSBlockOperation.	Again,	the
actual	work	is	trivial	(sleep	a	second	and	update	a	counter),	but	the	same
approach	works	for	much	more	time-consuming	operations.	The	bolded
statements	are	discussed	in	more	detail	following	the	code.

ViewController.m	(SimpleOperation)

-	(void)addNextOperation	{

		__block	typeof(self)	myself	=	self;

		NSOperation	*op	=	[NSBlockOperation	blockOperationWithBlock:^{

				[NSThread	sleepForTimeInterval:1];

				myself.count	=	myself.count	+	1;

		}];

		op.completionBlock	=	^{[myself	addNextOperation];};

		

		[self.queue	addOperation:op];

}

-	(void)viewDidLoad	{

		[super	viewDidLoad];

		self.queue	=	[[NSOperationQueue	alloc]	init];

		self.count	=	0;

		[self	addNextOperation];

}

//	Thread-safe

-	(void)setCount:(NSUInteger)count	{

		count_	=	count;

		__block	typeof(self)	myself	=	self;

		[[NSOperationQueue	mainQueue]	addOperationWithBlock:^{

				myself.label.text	=	[NSString	stringWithFormat:@”%d”,	count];

		}];

}

//	Thread-safe

-	(NSUInteger)count	{

		return	count_;

}

-	(void)viewDidUnload	{

		self.queue.suspended	=	YES;

		self.queue	=	nil;

		[self	setLabel:nil];

		[super	viewDidUnload];

}

In	addNextOperation	and	setCount:	you	create	a	strange	variable	called
myself.	If	you	reference	an	object	inside	of	a	block,	the	block	automatically
retains	that	object.	If	you	reference	self,	a	retain	loop	is	created	because
self	retains	queue,	which	retains	the	block.	This	is	such	a	common	retain
loop	that	the	compiler	gives	you	a	warning	if	you	do	this	accidentally.	The
extra	variable	myself	breaks	this	loop	because	it	is	marked	as	__block	scope,
which	means	it's	shared	with	the	block,	but	not	retained	by	the	block.	The
typeof	shorthand	just	makes	it	easier	to	paste	this	extra	line	when	needed.

In	addNextOperation,	you	use	a	completion	block	to	schedule	another
operation.	The	completion	block	is	useful	for	handling	all	kinds	of	cleanup.
This	is	somewhat	contrived	because	you	normally	would	schedule	all	the
operations	at	once,	but	this	is	a	useful	way	to	add	delays	with	operations.

Note	that	the	count	accessors	again	need	to	be	thread-safe	because	operations
may	access	them	from	any	thread.	Rather	than	using
performSelectorOnMainThread:...,	this	example	uses	the	mainQueue,
which	is	an	NSOperationQueue	that	runs	on	the	main	thread.

Operations	have	some	overhead	compared	to	Grand	Central	Dispatch,	which
is	discussed	in	the	next	section.	Generally	you	shouldn’t	generate	huge
numbers	of	very	small	operations.	For	example,	you	should	not	generate	a
separate	operation	for	every	pixel	in	a	bitmap.	Instead,	you	would	create	an
operation	for	every	row,	or	perhaps	several	rows.	iOS	devices	currently	do
not	have	many	cores,	so	there	is	only	so	much	parallel	work	that	they	can	do.
Operations	are	also	not	fully	as	integrated	into	GCD	queues	on	iOS	as	they
are	in	OS	X.	This	is	likely	to	improve,	however,	and	you	should	expect
NSOperation	to	grow	as	the	preferred	multitasking	API	in	Cocoa.

Multitasking	with	Grand	Central	Dispatch
Grand	Central	Dispatch	is	at	the	heart	of	multitasking	in	iOS.	It	is	used
throughout	the	system	layer	for	nearly	everything.	With	iOS	5,	GCD	has
added	powerful	I/O	handling	routines	that	make	it	even	more	potent.

Much	of	GCD	is	very	similar	to	NSOperation.	In	this	example,	you
implement	the	same	timer	as	in	the	earlier	sections.	Notice	how	the	GCD

calls	almost	exactly	match	the	NSOperation	calls.	The	changes	are	bolded.

ViewController.m	(SimpleGCD)

-	(void)addNextOperation	{

		__block	typeof(self)	myself	=	self;

		double	delayInSeconds	=	1.0;

		dispatch_time_t	popTime	=	dispatch_time(DISPATCH_TIME_NOW,

																																				delayInSeconds	*

NSEC_PER_SEC);

		dispatch_after(popTime,	self.queue,	^(void){

				myself.count	=	myself.count	+	1;

				[self	addNextOperation];

		});

}

-	(void)viewDidLoad	{

		[super	viewDidLoad];

		self.queue	=	dispatch_queue_create(“net.robnapier.SimpleGCD.VC”,

																																					DISPATCH_QUEUE_CONCURRENT);

		self.count	=	0;

		[self	addNextOperation];

}

-	(void)viewDidUnload	{

		dispatch_suspend(self.queue);

		dispatch_release(self.queue);

		self.queue	=	nil;

		[self	setLabel:nil];

		[super	viewDidUnload];

}

...

-	(void)setCount:(NSUInteger)count	{

		count_	=	count;

		__block	typeof(self)	myself	=	self;

		dispatch_async(dispatch_get_main_queue(),	^{

				myself.label.text	=	[NSString	stringWithFormat:@”%d”,	count];

		});

}

One	small	change	from	NSOperation	is	that	GCD	offers	dispatch_after,
allowing	you	to	schedule	the	next	operation	rather	than	sleeping.	The	time	is
in	nanoseconds,	which	can	lead	to	some	confusion	because	nearly	every	time
interval	in	iOS	is	in	seconds.	Luckily,	Xcode	automatically	provides	a
conversion	snippet	if	you	type	dispatch_after	and	press	Enter.	Using
nanoseconds	is	optimized	for	the	hardware,	not	the	programmer.	Passing	the

time	in	seconds	would	require	floating	point	math,	which	is	more	expensive
and	less	precise.	GCD	is	a	very	low-level	framework	and	does	not	waste
many	cycles	on	programmer	convenience.

Creating	Synchronization	Points	with	Dispatch
Barriers

GCD	offers	a	rich	system	of	serial	and	concurrent	queues.	With	some
thought,	you	can	use	these	to	create	many	things	other	than	simple	thread
management.	For	instance,	GCD	queues	can	be	used	to	solve	many	common
locking	problems	at	a	fraction	of	the	overhead.

A	dispatch	barrier	creates	a	synchronization	point	within	a	concurrent	queue.
While	it	is	running,	no	other	block	on	the	queue	is	allowed	to	run,	even	if
there	are	other	cores	available.	If	that	sounds	like	an	exclusive	(write)	lock,	it
is.	Nonbarrier	blocks	can	be	thought	of	as	shared	(read)	locks.	As	long	as	all
access	to	the	resource	is	performed	through	the	queue,	this	provides	very
cheap	synchronization.

For	comparison,	you	could	manage	multithreaded	access	with	@synchronize,
which	takes	an	exclusive	lock	on	its	parameter,	as	shown	in	the	following
code.

-	(id)objectAtIndex:(NSUInteger)index	{

		@synchronized(self)	{

				return	[self.array	objectAtIndex:index];

		}

}

-	(void)insertObject:(id)obj	atIndex:(NSUInteger)index	{

		@synchronized(self)	{

				[self.array	insertObject:obj	atIndex:index];

		}

}

This	is	simple	to	use,	but	very	expensive	even	when	there	is	little	contention.
There	are	many	other	approaches.	Most	are	either	complicated	and	fast,	or
simple	and	slow.	GCD	barriers	offer	a	nice	trade-off.

-	(id)objectAtIndex:(NSUInteger)index	{

		__block	id	obj;

		dispatch_sync(self.concurrentQueue,	^{

				obj	=	[self.array	objectAtIndex:index];

		});

		return	obj;

}

-	(void)insertObject:(id)obj	atIndex:(NSUInteger)index	{

dispatch_barrier_async(self.concurrentQueue,	^{

		[self.array	insertObject:obj	atIndex:index];

});

}

All	that	is	required	is	a	concurrentQueue	property,	created	by	calling
dispatch_queue_create	with	the	DISPATCH_QUEUE_CONCURRENT	option.	In
the	reader	(objectAtIndex:),	you	use	dispatch_sync	to	wait	for	it	to
complete.	Creating	and	dispatching	blocks	in	GCD	has	very	little	overhead,
so	this	is	much	faster	than	using	a	mutex.	The	queue	can	process	as	many
reads	in	parallel	as	it	has	cores	available.	In	the	writer,	you	use
dispatch_barrier_async	to	ensure	exclusive	access	to	the	queue	while
writing.	By	making	the	call	asynchronous,	the	writer	returns	quickly,	but	any
future	reads	on	the	same	thread	are	guaranteed	to	return	the	value	the	writer
set.	GCD	queues	are	FIFO,	so	any	requests	on	the	queue	before	the	write	are
completed	first,	the	write	runs	alone,	and	only	then	are	requests	that	were
placed	on	the	queue	after	the	write	processed.	This	prevents	writer	starvation,
and	ensures	that	immediately	reading	after	a	write	always	yields	the	correct
result.

Queue	Targets	and	Priority
Queues	are	hierarchical	in	GCD.	Only	the	global	system	queues	are	actually
scheduled	to	run.	You	can	access	these	queues	with
dispatch_get_global_queue	and	a	priority	constant,
DISPATCH_QUEUE_PRIORITY_HIGH,	..._DEFAULT,	..._LOW,	or
..._BACKGROUND.	The	BACKGROUND	queue	was	added	in	iOS	5	and	is	the
lowest-possible	priority.	All	of	these	queues	are	concurrent.	GCD	schedules
as	many	blocks	as	there	are	threads	available	from	the	HIGH	queue.	When	the
HIGH	queue	is	empty,	it	moves	on	to	the	DEFAULT	queue,	and	so	on.	The
system	creates	and	destroys	threads	as	needed,	based	on	the	number	of	cores
available	and	system	load.

When	you	create	your	own	queue,	it	is	attached	to	one	of	these	global	queues
(its	target).	By	default,	it	is	attached	to	the	DEFAULT	queue.	When	a	block

reaches	the	front	of	your	queue,	the	block	is	effectively	moved	to	the	end	of
its	target	queue.	When	it	reaches	the	front	of	the	global	queue,	it’s	executed.
You	can	change	the	target	queue	with	dispatch_set_target_queue.

Once	a	block	is	added	to	a	queue,	it	runs	in	the	order	it	was	added.	There	is
no	way	to	cancel	it,	and	there	is	no	way	to	change	its	order	relative	to	other
blocks	on	the	queue.	But	what	if	you	want	a	high-priority	block	to	“skip	to
the	head	of	the	line?”	As	shown	in	the	following	code,	create	two	queues,	a
high	priority	queue	and	a	low	priority	queue,	and	make	the	high	priority
queue	the	target	of	the	low	priority	queue.

		dispatch_queue_t

		low	=	dispatch_queue_create(“low”,	DISPATCH_QUEUE_SERIAL);

		

		dispatch_queue_t

		high	=	dispatch_queue_create(“high”,	DISPATCH_QUEUE_SERIAL);

		dispatch_set_target_queue(low,	high);

Dispatching	to	the	low	priority	queue	is	normal:

		dispatch_async(low,	^{	/*	Low	priority	block	*/	});

To	dispatch	to	the	high	priority	queue,	suspend	the	low	queue	and	resume	it
after	the	high	priority	block	finishes:

		dispatch_suspend(low);

		dispatch_async(high,	^{

				/*	High	priority	block	*/

				dispatch_resume(low);

		});

Suspending	a	queue	prevents	scheduling	any	blocks	that	were	initially	put	on
that	queue,	as	well	as	any	queues	that	target	the	suspended	queue.	It	won’t
stop	currently	executing	blocks,	but	even	if	the	low	priority	block	is	next	in
line	for	the	CPU,	it	won’t	be	scheduled	until	dispatch_resume	is	called.

You	need	to	balance	dispatch_suspend	and	dispatch_resume	exactly	like
retain	and	release.	If	the	queue	is	suspended	multiple	times,	it	requires	an
equal	number	of	resumes.

New	in	iOS	5

iOS	5	adds	several	GCD	features	that	are	particularly	useful	for	high-
performance	operations.	These	are	mostly	applicable	to	the	operating	system
itself,	and	generally	you	should	rely	on	the	OS	to	handle	these	things	for	you.
This	chapter	won’t	go	into	them	deeply,	but	it’s	useful	to	know	they’re
available.	You	should	expect	these	technologies	to	become	more	central	in
later	versions	of	iOS.

Queue-Specific	Data
Much	like	associative	references	discussed	in	Chapter	3,	queue-specific	data
allows	you	to	attach	a	piece	of	data	directly	to	a	queue.	This	can	sometimes
be	a	useful	and	extremely	fast	way	to	pass	information	in	and	out	of	a	queue.
This	is	combined	with	dispatch	data,	discussed	in	the	next	section,	to	allow
extremely	high-performance	data	passing	that	reduces	memory	copying	and
allocation/deallocation	churn.

Like	associative	references,	queue-specific	data	uses	a	unique	address	as	its
key,	rather	than	a	string	or	other	identifier.	This	is	usually	achieved	by
passing	the	address	of	a	static	char.	Unlike	associative	references,	queue-
specific	data	does	not	know	how	to	retain	and	release.	You	have	to	pass	it	a
destructor	function	that	it	calls	when	the	value	is	replaced.	For	memory
you’ve	allocated	with	malloc,	this	is	free.	It’s	difficult	to	use	this	with
Objective-C	objects	under	ARC,	but	Core	Foundation	objects	are	a	bit	easier
to	use,	as	demonstrated	here.	In	this	example,	value	is	released	automatically
when	the	queue	is	destroyed	or	if	another	value	is	set	for	kMyKey.

		static	char	kMyKey;

		CFStringRef	*value	=	CFStringCreate...;

		dispatch_queue_set_specific(queue,

																														&kMyKey,

																														(void*)value,

																														(dispatch_function_t)CFRelease);

		...

		dispatch_sync(queue,	^{

				CFStringRef	*string	=	dispatch_get_specific(&kMyKey);

				...

		});

One	nice	thing	about	queue-specific	data	is	that	they	respect	queue
hierarchies.	So	if	the	current	queue	doesn’t	have	the	given	key	assigned,
dispatch_queue_get_specific	automatically	checks	the	target	queue,	then

that	queue’s	target	queue,	and	on	up	the	chain.

Dispatch	Data
Dispatch	data	is	the	foundation	of	one	of	the	most	powerful	low-level
performance	advances	in	iOS	5,	and	you	will	likely	never	need	to	use	it
directly.	Dispatch	data	are	blocks	of	noncontiguous,	immutable	memory
buffers	that	can	be	very	quickly	joined	and	split	up	between	blocks	with
minimal	copying.	Buffers	can	also	be	incrementally	released	as	they	are
processed,	improving	memory	usage.

This	is	an	incredibly	robust	system,	and	is	the	basis	for	a	feature	called
dispatch	I/O,	which	promises	significant	I/O	performance	improvements	on
multicore	iOS	devices,	and	particularly	on	the	Mac.	However,	in	most	cases,
you	will	get	most	of	the	benefit	for	free	by	using	the	higher-level	abstractions
without	taking	on	the	complexity	of	using	dispatch	I/O	directly.	My
recommendation	is	to	leave	this	technology	alone	while	it	finishes	maturing
and	Apple	works	out	the	best	patterns	for	using	it.	You	may	want	to	start
looking	at	it	now	if	your	application	needs	to	process	very	large	amounts	of
data	very	quickly,	and	you’ve	found	that	memory	allocation	or	disk	access	are
your	major	bottlenecks.	These	types	of	problems	are	very	common	for	the
OS,	but	less	common	at	the	application	layer.	See	the	“Further	Reading”
section	for	links	to	more	information.

Summary
The	future	of	iOS	development	is	multitasking.	Apps	will	need	to	do	more
operations	in	parallel	to	leverage	multicore	hardware	and	provide	the	best
experience	for	users.	Traditional	threading	techniques	are	still	useful,	but
operation	queues	and	Grand	Central	Dispatch	are	more	effective	and	promise
greater	performance	with	less	contention	and	less	locking.	Learning	to
manage	your	internal	multitasking,	and	behaving	appropriately	when
multitasking	with	other	applications,	is	a	foundational	part	of	today’s	iOS
development.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

iOS	Application	Programming	Guide,	“Executing	Code	in	the
Background”
File	System	Programming	Guide.	“Techniques	for	Reading	and	Writing
Files.”	The	section	“Processing	a	File	Using	GCD”	includes	example	code
explaining	dispatch	I/O	channels.
Threading	Programming	Guide

WWDC	Sessions
The	following	session	videos	are	available	at	developer.apple.com.

WWDC	2011,	“Session	320:	Adopting	Multitasking	in	Your	App”
WWDC	2011,	“Session	210:	Mastering	Grand	Central	Dispatch”

Other	Resources
Ash,	Mike.	NSBlog.	Mike	Ash	is	one	of	the	most	prolific	writers	on	low-
level	threading	issues	out	there.	While	some	of	this	is	now	dated,	many	of
his	blog	posts	are	still	required	reading.	http://mikeash.com/pyblog/

■	Friday	Q&A	2010-01-01:	NSRunLoop	Internals

■	Friday	Q&A	2009-07-10:	Type	Specifiers	in	C,	Part	3
■	Friday	Q&A	2010-07-02:	Background	Timers

■	Friday	Q&A	2010-12-03:	Accessors,	Memory	Management,	and
Thread	Safety

CocoaDev,	“LockingAPIs.”	CocoaDev	collects	much	of	the	accumulated
wisdom	of	the	Cocoa	developer	community.	The	Locking	APIs	page
includes	links	and	discussion	of	the	available	technologies	and	tradeoffs.
http://www.cocoadev.com/index.pl?LockingAPIs

http://developer.apple.com/
http://mikeash.com/pyblog/
http://www.cocoadev.com/index.pl?LockingAPIs

Chapter	10:	REST	for	the	Weary

Most	iOS	applications	have	to	communicate	with	a	remote	web	server	in	one
way	or	another	at	some	point.	Some	apps	can	run	and	be	useful	without	a
network	connection,	and	web	server	communication	might	be	short-lived	(or
even	optional)	for	the	application.	Apps	that	fall	into	this	category	are	those
that	sync	data	with	a	remote	server	when	a	connection	is	present,	such	as	to-
do	lists.

Another	set	of	apps	needs	nearly	continuous	network	connectivity	to	provide
any	meaningful	value	to	the	user.	These	are	typically	apps	that	act	as	a	mobile
client	for	a	web	service.	Twitter	clients,	foursquare,	Gowalla,	and	most	apps
you	write	fall	into	this	category.	This	chapter	presents	some	techniques	for
writing	apps	the	right	way	for	consuming	a	web	service.	Caching	data	offline
or	synchronizing	data	with	a	remote	server	is	discussed	in	Chapter	17.

It’s	2011,	and	a	quick	search	for	Twitter	in	Apple’s	App	Store	turns	up	nearly
650	iPad	apps	and	more	than	3,000	iPhone	apps.	Today,	if	you	want	to	create
the	next	Twitter	client,	you	don’t	have	to	know	anything	about	web	services
or	the	Twitter	REST	API.	There	are	more	than	a	dozen	implementations	of
the	Twitter	API	in	Objective-C.	The	same	is	true	for	most	public	services	like
Facebook’s	Graph	API	and	Dropbox.	Hence,	rather	than	explaining	how	to
build	your	next	Twitter	client,	this	chapter	provides	some	insights	and	best
practices	for	designing	your	next	iPhone	app	that	consumes	a	generic,	simple,
and	hypothetical	web	service.	The	ideas	and	techniques	presented	here	are
generic	enough	to	be	applied	easily	on	any	of	the	projects	you	might
undertake.	If	you	have	been	an	iPhone	developer	for	at	least	a	year,	you	might
already	have	implemented	a	project	like	this,	where	your	customer	sends	you
a	REST	documentation	of	his	server	APIs.	You	would	have	been	introduced
to	the	server	developer	and	probably	had	some	control	over	negotiating	the
output	format	and	error	handling	stuff.	In	most	cases,	both	the	client	and	the
server	code	would	have	been	developed	in	tandem.

In	addition	to	discussing	the	REST	implementation	on	iOS,	this	chapter
provides	some	guidelines	for	the	server	that	will	help	you	achieve	the

following	goals:

■	Improve	the	code	quality
■	Reduce	development	time

■	Improve	code	readability	and	maintainability
■	Increase	the	perceived	performance	of	the	app

The	Worldwide	Web	Consortium	has	identified	two	major	classes	of	web	services.	(W3C	Web
Services	Architecture	2004):	RESTful	services	that	manipulate	XML	representation	of	web
resources	using	a	uniform	set	of	stateless	operations,	and	arbitrary	services	that	might	expose	any
operation.	SOAP	and	WSDL	fall	under	the	second	category.	Web	services	used	in	2011	are	mostly
RESTful,	including	but	not	limited	to	Twitter	APIs,	foursquare,	and	Dropbox.	This	chapter
focuses	on	consuming	a	RESTful	service	in	your	application.

The	REST	Philosophy
The	three	most	important	features	of	a	RESTful	server	that	an	iOS	developer
should	know	about	are	its	statelessness,	uniform	resource	identification,	and
cacheability.

A	RESTful	server	is	always	stateless.	This	means	every	API	is	treated	as	a
new	request	and	no	client	context	is	remembered	on	the	server.	Clients	do
maintain	the	state	of	the	server,	which	includes	but	is	not	limited	to	caching
responses	and	login	access	tokens.

Resource	identification	on	a	RESTful	server	is	done	through	URLs.	For
example,	instead	of	accepting	a	resource	ID	as	a	parameter,	a	REST	server
accepts	it	as	a	part	of	the	URL.	For	example,
http://example.com/resource?id=1234	becomes
http://example.com/resources/1234.

This	method	of	resource	identification,	along	with	the	fact	that	a	RESTful
server	doesn’t	maintain	the	state	of	the	client,	allows	clients	to	cache
responses	based	on	the	URL,	just	as	a	browser	caches	web	pages.

Response	from	a	RESTful	server	is	usually	sent	in	a	uniform,	agreed-upon
format,	usually	to	decouple	the	client/server	interface.	The	client	iOS	app
communicates	with	a	RESTful	server	through	this	agreed-upon	data	exchange
format.	As	of	today,	the	most	commonly	used	formats	are	XML	and	JSON.

The	next	section	discusses	the	differences	among	the	formats	and	the	ways
you	can	parse	them	in	your	app.

Choosing	Your	Data	Exchange	Format
Web	services	traditionally	support	two	major	kinds	of	data	exchange	format:
JSON	(JavaScript	Object	Notation)	and	XML	(eXtensible	Markup
Language).	Microsoft	pioneered	XML	as	the	default	data	exchange	format	for
its	SOAP	services,	while	JSON	became	an	open	standard	described	in	RFC
4627.	While	there	are	debates	over	which	is	superior,	as	an	iOS	developer
you	should	be	able	to	handle	both	kinds	of	data	format	on	your	app.

There	are	several	parsers	available	for	both	XML	and	JSON	for	Objective-C.
The	following	sections	discuss	some	of	the	most	commonly	used	toolkits.

Parsing	XML	on	iOS
XML	parsing	can	be	done	using	two	kinds	of	parsers,	a	DOM	parser	or	a
SAX	parser.	A	SAX	parser	is	a	sequential	parser	and	returns	parsed	data	on	a
callback	as	it	steps	through	the	XML	document.	Most	SAX	parsers	work	by
taking	in	a	URL	as	a	parameter	and	giving	you	data	as	it	becomes	available.
For	example,	the	NSXMLParser	foundation	class	has	a	method	called
initWithContentsOfURL:.

(id)initWithContentsOfURL:(NSURL	*)url;

You	essentially	initialize	a	parser	object	with	the	URL	and	the	NSXMLParser
does	the	rest.	Parsed	data	becomes	available	through	callback	via	delegate
methods	defined	in	NSXMLParserDelegate.	The	most	commonly	handled
methods	are

parserDidStartDocument:

parserDidEndDocument:

parser:didStartElement:namespaceURI:

qualifiedName:attributes:

parser:didEndElement:namespaceURI:qualifiedName:

parser:foundCharacters:

Because	the	parser	uses	delegation	to	return	data,	you	need	a	subclass	of
NSXMLParser	for	every	object	you	are	handling.	This	tends	to	make	your	code
base	a	bit	more	verbose	compared	to	a	DOM	parser.

A	DOM	parser,	on	the	other	hand,	loads	the	complete	XML	before	it	starts
parsing.	The	advantage	of	using	a	DOM	parser	is	its	capability	to	access	data
at	random	using	XPath	queries	and	there	is	no	delegation	like	in	the	SAX
model.	The	most	commonly	used	methods	in	NSXMLDocument	are

(id)initWithContentsOfURL:(NSURL	*)url	options:(NSUInteger)mask

error:(NSError	**)error

initWithData:options:error:

initWithXMLString:options:error:

Once	you	initialize	the	NSXMLDocument	you	can	access	the	contents	using
NSXMLNode	and	NSXMLElement	methods	like

nodesForXPath:error:

Using	a	DOM	parser	makes	your	code	cleaner	and	easier	to	read.	While	this
comes	at	the	expense	of	execution	time	for	handling	web	service	requests,	the
effect	is	minor	because	DOM	parsers	become	slower	only	for	documents
larger	than	a	megabyte	or	so.	A	web	service	response	generally	is	less	than
that.	Any	performance	gain	you	get	is	negligible	compared	to	the	time	of	the
network	operation.	These	performance	gains	make	a	lot	of	sense	when	you
are	parsing	XML	from	your	resource	bundle.

To	learn	more	about	XML	performance,	download	and	test	the	XML
Performance	app	published	by	Apple	(see	the	“Further	Reading”	section	at
the	end	of	this	chapter).

Parsing	JSON	on	iOS
The	second	data	exchange	format	is	JSON,	which	is	much	more	commonly
used	than	XML.	While	Apple	has	a	JSON	processing	framework,	it	was	a
private	API	in	iOS	4	and	Snow	Leopard	and	was	not	available	for	general
use.	However,	there	are	many	other	alternatives	to	choose	from.	The	most
commonly	used	frameworks	by	far	are	SBJson,	TouchJSON,	YAJL,	and
JSONKit.	(See	the	“Further	Reading”	section	for	the	links	to	download	these

frameworks.)	Almost	all	frameworks	have	category	extensions	on	NSString,
NSArray,	and	NSDictionary	to	convert	to	and	from	JSON.	The	code	samples
in	this	chapter	use	JSONKit.	With	iOS	5,	Apple	introduced
NSJSONSerialization	that	can	be	used	for	parsing	if	your	app	is	iOS	5	only.
You	learn	about	NSJSONSerialization	later	in	this	chapter.

JSONKit	has	convenience	category	extensions	for	NSString,	NSArray,	and
NSDictionary.	To	convert	a	JSON	response	from	your	web	service	into	a
foundation	class	object	(either	a	NSArray	or	a	NSDictionary),	use	the
extension	method	on	NSString,	as	in	the	following	sample	code	fragment.

NSMutableDictionary	*responseDict	=	[responseString

mutableObjectFromJSONString];

Similarly,	converting	your	Foundation	objects	into	JSON	strings	is	also
straightforward.	The	following	code	explains	how	to	serialize	a	Foundation
object	(NSDictionary	in	this	case)	to	a	JSON	string	for	sending	it	to	the
server	as	a	post	data.

NSMutableDictionary	*postDict	=	[NSMutableDictionary	dictionary];

[postDict	setObject:@”theAccessToken”	forKey:@”access_token”];

[postDict	setObject:@”abcde12345”	forKey:@”emp_id”];

//	…	fill	in	other	parameters

NSString	*jsonString	=	[postDict	JSONString];

The	category	methods	mutableObjectFromJSONString	and	JSONString
defined	in	the	JSONKit	come	in	very	handy	when	processing	JSON	on	iOS.
In	most	cases,	these	are	the	only	two	methods	you	will	ever	need	while
handling	JSON.	Note	that	the	other	frameworks,	namely	SBJson,
TouchJSON,	and	YAJL,	have	equivalent	implementations.	In	short,	whatever
library	you	use,	JSON	processing	is	almost	always	much	simpler	than	XML.

NSJSONSerializer
In	iOS	5,	Apple	introduced	its	own	JSON	parsing	and	serializing	framework,
called	NSJSONSerialization.	Apple’s	classes	are	fast	compared	to	other
frameworks,	but	you	should	use	this	framework	only	if	you	are	willing	to
support	only	iOS	5.	NSJSONSerialization	also	lacks	the	capability	to
serialize	custom	objects,	something	JSONKit	can	do.	JSONKit	has	a	couple
of	convenient	methods	that	accomplish	this:

serializeUnsupportedClassesUsingDelegate:selector:error:	and
serializeUnsupportedClassesUsingBlock:error:.

If	your	JSON	parsing	needs	unsupported	class	handling,	you	will	not	be	able
to	use	NSJSONSerialization.

When	you	are	choosing	a	library	for	your	app,	you	might	have	to	do	some	performance
evaluation.	(You	can	compare	the	frameworks	using	the	open	source	test	project	json-
benchmarks	on	Github.	See	the	“Further	Reading”	section	for	the	link	to	this	tool.)	Because	all
five	(SBJson,	TouchJSON,	YAJL,	JSONKit,	and	NSJSONSerialization)	are	actively	developed,
every	library	is	equally	good	and	there	is	no	one	best	library	as	of	this	date.	Keep	a	close	eye	on
them	and	be	ready	to	swap	frameworks	if	one	seems	superior	to	another.	Usually,	swapping	a
JSON	library	shouldn’t	require	monumental	refactoring	since	in	most	cases	it	involves	changing
the	class	category	extension	methods.

XML	Versus	JSON
Source	code	fragments	in	this	chapter	are	based	on	using	JSON.	You	will
learn	how	to	design	your	classes	to	make	it	easy	to	add	XML	support	without
affecting	the	rest	of	the	code	base.	In	every	case,	JSON	processing	on	iOS	is
an	order	of	magnitude	easier	than	XML.	So	if	your	server	supports	both	XML
and	JSON	formats,	choosing	JSON	is	a	wise	decision.	If	your	server	code	is
not	yet	developed,	start	by	supporting	JSON	initially.

Designing	the	Data	Exchange	Format
It’s	essential	to	keep	in	mind	that	we	are	talking	about	data	exchange	between
client	and	server.	The	most	common	mistake	iOS	developers	make	is	to	think
of	JSON	as	some	arbitrary	data	sent	by	the	server	in	response	to	an	API	call.
While	that’s	true	to	some	extent,	a	quick	look	at	what	happens	on	the	server
will	give	you	a	better	picture	of	what	JSON	actually	is.

Internally,	every	server	is	coded	using	some	object-oriented	programming
language.	Whether	it’s	Java,	Scala,	Ruby,	or	C#	(even	PHP	and	Python
support	objects	to	some	extent),	any	data	you	need	on	your	iOS	app	will
likely	be	an	object	on	the	server	as	well.	Whether	the	object	is	an	ORM
(object	relational	mapping)-mapped	entity	or	a	business	object	is	of	little
importance.	Let’s	call	them	model	objects	and	these	objects	are	serialized	to
JSON	only	at	the	transport	level.	Most	object-oriented	languages	provide
interfaces	to	serialize	objects	and	developers	usually	harness	this	to	convert
their	objects	to	JSON.	This	means	the	JSON	you	see	on	the	response	is	just	a

different	representation	of	the	objects	(or	object	list)	on	the	server.

Keep	this	concept	in	mind	while	writing	your	code,	and	you	will	probably
create	model	objects	for	every	equivalent	server	model	object.	When	you	do
that,	you	need	not	worry	about	changes	affecting	your	code	later.	Refactoring
will	be	far	easier.

Rather	than	thinking	in	terms	of	JSON	strings,	it	makes	more	sense	to	think
in	terms	of	objects.	Design	and	develop	your	code	such	that	you	always
reconstruct	model	objects	for	every	object	on	the	server.	When	the
reconstructed	objects	on	your	iOS	app	match	100	percent	with	the	objects	on
the	server,	the	goal	of	data	exchange	is	attained	and	your	app	will	be	error
free.

In	short,	think	of	JSON	as	a	data	exchange	format	instead	of	a	language	with
a	bunch	of	syntax.	Consider	documenting	the	data	exchange	contracts	on	an
object	basis	rather	than	as	primitive	data	types.	These	objects	in	turn	become
the	model	objects	for	your	app.	You	see	this	in	detail	a	little	later	in	this
chapter,	and	you	look	at	how	to	convert	JSON	dictionaries	into	models	by
using	Objective-C’s	key-value	coding/observing	(KVC/KVO)	mechanism.

Model	Versioning
In	the	past,	at	least	from	the	late	1990s	or	early	2000s	until	the	first	iPhone
was	launched	in	2007,	most	client/server	development	happened	in	tandem
with	a	web-based	interface.	Native	clients	were	not	commonly	used.	The
client	app	running	on	the	web	browser	is	always	deployed	together	with	the
server.	As	such,	it	wasn’t	really	necessary	to	handle	versioning	in	your
models.	However,	on	iOS,	deploying	the	client	requires	that	the	app	be
physically	installed	on	your	user’s	device.	This	could	take	days	or	months,	so
you	should	also	handle	situations	when	the	server	is	accessed	with	an	older
client.	How	many	older	versions	of	the	client	you	want	to	support	depends	on
your	business	goals.	As	an	iOS	developer,	you	should	probably	build	support
for	catering	to	those	business	needs.	Using	class	clusters	on	your	iOS	app	is
one	way	to	do	that.	You	learn	more	about	this	shortly.

A	Hypothetical	Web	Service

From	here	on,	as	we	delve	deeper	into	the	topic	for	each	chapter,	we	describe
a	hypothetical	app	concept	and	develop	the	iOS	code	for	it.	As	an	iOS
developer	you	probably	do	mostly	projects	that	talk	to	an	arbitrary	web
service	instead	of	a	known,	publicly	available	service	like	Twitter	or
Facebook	or	Flickr.	Second,	nearly	every	such	popular	service	has	an	open
source	implementation	for	iOS.

Assume	that	you	are	in	charge	of	developing	an	iPhone	app	for	a	restaurant.
The	restaurant	uses	iPads	to	take	orders.	Orders	can	be	placed	directly	with
waiters	who	enter	it	into	their	iPads.	Customers	can	also	directly	place	orders
using	the	kiosks	(a	dedicated	iPad	running	your	app)	on	their	tables.	Here’s	a
brief	description	of	the	top-level	functionalities	of	the	app:

1.	Customer	orders	are	sent	to	the	remote	servers	based	on	the	customers’
table	numbers,	whereas	waiters	pick	a	table	number	along	with	every	order
they	send	through	their	own	login	accounts.	So	it’s	clear	that	there	are	two
kinds	of	login/authentication	mechanisms.	One	is	the	traditional
username/password-based	type,	and	the	other	is	based	on	customer	table
numbers.	In	all	cases	the	server	will	exchange	an	access	token	for	a	given
authentication	information.	The	important	point	is	that	you	should	develop
one	code	base	that	caters	to	both	types	of	login.	After	logging	in,	every
web	service	requires	you	to	send	an	access	token	with	every	subsequent
call	you	make.
■	This	requirement	translates	to	the	/loginwaiter	and	/logintable	web
service	endpoints.

■	Both	these	endpoints	returns	an	access	token.	In	the	iOS	client
implementation	you	will	learn	how	to	“remember”	this	access	token	and
send	it	along	with	every	request.

2.	Customers	should	be	able	to	see	the	menu,	along	with	the	details	of
every	menu	item	including	the	photos/videos	of	the	food	and	ratings	left	by
other	customers.

■	This	requirement	translates	to	a	web	service	/menuitems	endpoint	and
a	/menuitem/<itemid>	that	returns	a	JSON	object	that	will	be	modeled
as	a	MenuItem	object.

■	In	the	iOS	implementation	you	will	learn	how	to	map	the	JSON	keys	to
your	model	object	with	as	little	code	as	possible	by	making	use	of

Objective-C’s	most	powerful	technique,	key-value	coding	(KVC).
3.	Customers	should	be	able	to	submit	reviews	of	an	item.

■	This	requirement	translates	to	a	web	service	endpoint
/menuitem/<itemid>/review.

■	In	these	cases,	some	iOS	apps	show	a	floating	heads-up	display
(commonly	known	as	HUD)	that	prevents	users	from	doing	any
operation	until	the	review	is	posted.	This	is	clearly	bad	from	a	user
experience	point.	You	will	see	how	to	post	reviews	in	the	background
without	showing	a	modal	HUD.

While	there	are	other	requirements	for	this	app,	these	three	cover	the	most
commonly	used	patterns	when	talking	to	a	web	service.

Important	Reminders
Keep	these	essential	points	in	mind	as	you	build	your	app:

■	Never	make	a	synchronous	network	call—Even	if	they	are	on	a
background	thread,	synchronous	calls	do	not	report	progress.	Another
reason	is	that	to	cancel	a	synchronous	request	running	on	a	background
thread,	you	have	to	kill	the	thread,	which	is	again	not	a	good	idea.
Additionally,	you	will	not	be	able	to	control	the	number	of	network	calls	in
your	app.	This	is	very	critical	to	the	performance	of	your	app.	You	learn
about	this	later	in	this	chapter.

■	Avoid	using	runloop-based	threading	directly	for	network	operations
(unless	your	project	is	small	and	has	just	a	couple	of	API	calls)—
Running	your	own	threads	has	some	caveats,	as	explained	above.
■	Use	NSOperationQueue	or	GCD-based	threading	instead
—NSOperationQueue	helps	with	controlling	the	queue	length	and	the
number	of	concurrent	network	operations.	Later	in	this	chapter	you	learn
the	benefits	of	using	a	NSOperationQueue.

Let’s	start	designing	the	iOS	app’s	web	service	architecture.

RESTEngine	Architecture	(iHotelApp

Sample	Code)
iOS	apps	traditionally	use	model-view-controller	(MVC)	as	the	primary
design	pattern.	When	you	are	developing	a	REST	client	in	your	app,	you
should	isolate	the	REST	calls	to	their	own	class.	The	stateless	nature	of	REST
and	its	cachable	nature	can	be	best	applied	when	it’s	written	in	its	own	class.
Moreover,	it	also	provides	a	layer	of	isolation	(which	is	also	good	for	unit
testing),	and	helps	in	keeping	your	controller	code	cleaner.	Now	let’s	get
started	with	choosing	a	network	management	framework.

NSURLConnection	versus	Third-Party	Frameworks
Apple	provides	classes	in	CFNetwork.framework,	such	as	NSURLConnection,
for	making	asynchronous	requests.	However,	for	developing	RESTful
services,	you	need	to	customize	those	classes	by	subclassing	them.	Rather
than	reinvent	what’s	already	available	for	the	development	of	web	services,	I
recommend	using	ASIHTTPRequest	(see	the	entry	for	Copsey,
ASIHTTPRequest	Documentation	2011	in	the	“Further	Reading”	section	at
the	end	of	this	chapter).	ASIHTTPRequest	encapsulates	many	often-used
features	like	basic	or	digest	authentication,	form	posts,	and	uploading	or
downloading	files.	Another	important	feature	it	provides	is	an
NSOperationQueue	encapsulation,	which	you	can	use	to	queue	network
requests.

My	advice	is	generally	to	refrain	from	using	third-party	code	when	you’re	developing	for	iOS.
However,	there	are	some	components	and	frameworks	that	are	worth	using.	My	advice	here	is	to
avoid	third-party	code	that	is	heavily	interdependent.	ASIHTTPRequest	is	a	nice	wrapper	that
doesn’t	bloat	your	code	base	while	providing	very	powerful	features.	You	can	add	just	the
necessary	classes	from	the	framework	into	your	app	(as	opposed	to	other	libraries	where	you
have	to	link	your	app	against	the	complete	library).	In	our	case,	rather	than	reinvent	what’s
already	available,	for	the	development	of	web	services	I	recommend	using	ASIHTTPRequest.
ASIHTTPRequest	encapsulates	many	often-used	features	like	basic	or	digest	authentication,
message	formats	for	form	posts,	and	uploading	or	downloading	files.	More	importantly,	it
provides	an	NSOperationQueue	encapsulation,	which	you	can	use	to	queue	network	requests	and
control	the	number	of	concurrent	operations.

The	code	sample	provided	in	the	download	files	for	this	chapter	uses
ASIHTTPRequest.	You	can	find	the	code	for	this	in	the	Chapter	10	folder
(iHotelApp)	on	the	book’s	website.

Note	that	the	code	download	for	this	chapter	is	quite	vast.	The	chapter	provides	important	code

snippets,	and	you	should	look	at	the	corresponding	files.	Open	the	project	in	Xcode	to	better
understand	the	code	and	the	architecture.

The	RESTEngine	mocks	calls	to	the	API	by	reading	them	out	of	sample	JSON	files	because	the
API	is	not	set	up.	This	shouldn’t	affect	the	architecture	of	the	code.

Creating	the	RESTEngine
The	RESTEngine	is	the	heart	of	the	iHotelApp.	This	class	encapsulates	every
call	to	the	web	service	standalone	class,	which	handles	your	network	calls.
Data	should	be	passed	from	RESTEngine	to	view	controllers	only	as	Model
objects	instead	of	JSON	or	NSDictionary	objects.	(The	process	of	creating
model	classes	is	discussed	in	the	next	section.)	Now	what	should	happen
when	there	is	a	back	end-related	error?	Communicating	errors	from
RESTEngine	to	the	view	controller	will	be	covered	in	the	subsequent	section.
The	following	are	the	first	two	important	steps	that	need	to	be	done.

1.	Create	a	RESTEngine	and	add	it	to	your	project.	This	class	will	also
manage	the	network	operation	queue.	For	a	demo	implementation,	refer	to
this	chapter’s	source	code	on	the	book’s	website.

2.	Create	a	property	of	type	ASINetworkQueue	in	this	RESTEngine	and
initialize	it	inside	the	initialization	method.	For	using	ASINetworkQueue
you	should	add	the	ASIHTTPRequest	framework	into	your	project.	Refer	to
the	“Further	Reading”	section	at	the	end	of	this	chapter	for	a	link	to
information	about	how	to	integrate	ASIHTTPRequest	with	your	project.

The	networkQueue	Initialization	in	RESTEngine.h

@interface	RESTEngine	:	NSObject	{}

+	(RESTEngine*)	sharedInstance;

@property	(nonatomic,	retain)	ASINetworkQueue	*networkQueue;

The	networkQueue	Initialization	in	RESTEngine.m

@synthesize	delegate;

@synthesize	networkQueue;

You	will	set	the	maximum	number	of	concurrent	operation	count	to	6.	Setting
this	number	correctly	has	a	huge	performance	impact,	which	is	explained	in
the	“Tips	to	Improve	Performance	on	iOS”	section	later	in	this	chapter.

Adding	Authentication	to	the	RESTEngine
Now	that	the	class	is	ready,	you	will	add	methods	to	handle	web	service	calls;
first	and	foremost,	authentication.	ASIHTTPRequest	provides	wrapper
methods	for	a	variety	of	authentication	schemes	including,	but	not	limited	to,
HTTP	Basic	Authentication,	HTTP	Digest	Authentication	scheme,	NTLM
Authentication,	and	so	on.	I	won’t	go	through	the	details	of	the	authentication
mechanisms	in	this	chapter,	so	simply	assume	that	you	exchange	an	access
token	with	the	server	by	sending	the	username	and	password	to	the
/loginwaiter	request	or	to	the	/logintable	request.	You	need	to	define
macros	for	these	URL	endpoints.	Add	the	following	code	to	the	RESTEngine
class	header	file:

The	Constants	in	RESTEngine.h

#define	BASE_URL	@”http://api.example.com”

#define	LOGIN_URL	[NSString	stringWithFormat:@”%@%@”,	BASE_URL,

@”/loginwaiter”]

Next,	create	a	property	in	RESTEngine	to	hold	the	access	token	and	then
create	a	new	method,	initWithLoginName:password:,	as	in	the	following
code:

The	init	Method	(and	Property	Declaration)	in	RESTEngine.h

@property	(nonatomic,	retain)	NSString	*sessionKey;

-(id)	initWithLoginName:(NSString*)	loginName	password:(NSString*)

password;

The	init	Method	(and	Property	Declaration)	in	RESTEngine.m

@synthesize	networkQueue;

@synthesize	sessionKey;

…

…

-(id)	initWithLoginName:(NSString*)	loginName	password:(NSString*)

password

{

		self.networkQueue	=	[ASINetworkQueue	queue];

		[self.networkQueue	setMaxConcurrentOperationCount:6];

		[self.networkQueue	setDelegate:self];

		[self.networkQueue	go];

		

		ASIFormDataRequest	*request	=	[ASIFormDataRequest

requestWithURL:[NSURL	URLWithString:LOGIN_URL]];

		

		[request	setUsername:loginName];

		[request	setPassword:password];		

		

		[request	setDelegate:self];

		

		[request	setDidFinishSelector:@selector(loginDone:)];

		[request	setDidFailSelector:@selector(loginFailed:)];		

		

		[self.networkQueue	addOperation:request];

		

		return	self;

}

That	completes	your	web	service	call.	Now	you	should	notify	the	caller,
(which	is	usually	the	view	controller)	about	the	outcome	of	the	web	service
call.	You	will	use	delegates	for	this.

Adding	Delegates	to	the	RESTEngine
For	every	web	service	call	this	RESTEngine	class	exposes	two	delegate
methods,	one	for	notifying	a	successful	call	and	another	for	error	notification.
Usually	this	delegate	is	implemented	by	the	view	controller	that	calls	the
methods	in	the	RESTEngine.

Another,	arguably	cleaner	way	to	notify	the	caller	is	by	using	blocks.	Blocks	have	their	own
advantages	and	drawbacks,	as	discussed	in	Chapter	16,	which	also	covers	when	to	use	blocks	and
when	to	use	delegates.	In	that	chapter,	you	modify	this	RESTEngine	to	return	data	and	errors	using
blocks.

1.	Use	the	following	code	to	add	a	delegate	definition	to	your	RESTEngine
class:

Code	showing	the	delegate	in	RESTEngine.h

@protocol	RESTEngineDelegate	<NSObject>

@optional

-(void)	loginSucceeded:(NSString*)	accessToken;

-(void)	loginFailedWithError:(NSError*)	error;

@end

..

..

//DELEGATES

+(id)delegate;

+(void)setDelegate:(id)newDelegate;

Code	showing	the	delegate	in	RESTEngine.m

+	(id)delegate	{

		return	_delegate;

}

+	(void)setDelegate:(id)newDelegate	{

		_delegate	=	newDelegate;

}

2.	Now	change	the	loginDone	and	loginFailed	methods	to	call	this
delegate.	Because	the	delegate	is	marked	optional	in	the	delegate
declaration,	you	should	check	if	the	delegate	responds	to	it	before	sending
the	message.

Login	Request	Handling	in	RESTEngine.m

-	(void)loginDone:(ASIHTTPRequest	*)request		{

		NSDictionary	*responseDict	=	[[request	responseString]

mutableObjectFromJSONString];

		self.accessToken	=	[responseDict	objectForKey:@”accessToken”];

		if([_delegate	respondsToSelector:@selector(loginSucceeded:)])

				

				[_delegate	performSelector:@selector(loginSucceeded:)

withObject:self.accessToken];

}

-	(void)loginFailed:(ASIHTTPRequest	*)request		{

		self.accessToken	=	nil;

		if([_delegate

respondsToSelector:@selector(loginFailedWithError:)])

				[_delegate	performSelector:@selector(loginFailedWithError:)

withObject:[request	error]];

}

3.	Now	that	the	RESTEgine	class	implementation	is	complete,	you	can	call
the	initialize	method	from	the	view	controller	(which	is	usually	the	login
page	that	shows	the	user	name	and	password	fields):

Login	Button	Event	Handling	in	iHotelAppViewController.m

-(IBAction)	loginButtonTapped:(id)	sender		{

				[[RESTEngine	sharedInstance]	initWithLoginName:@”mugunth”

password:@”abracadabra”];

}

-(void)	loginSucceeded:(NSString*)	accessToken		{

				NSLog(@”Login	is	successful	and	this	is	the	access	token	%@”,

accessToken);

}

-(void)	loginFailedWithError:(NSError*)	error		{

				NSLog(@”Login	failed.	Check	your	password.	Error	is	:%@”,

[error	localizedDescription]);				

}

Thus,	with	just	a	few	lines	of	code,	you	are	able	to	implement	the	login
functionality	of	the	web	service.
4.	Remember	the	access	token.	If	your	access	token	is	simply	a	string,	you
can	store	it	in	keychain	or	in	NSUserDefaults.	Storing	it	in	keychain	is
more	secure	than	NSUserDefaults.	Choose	one	based	on	your	security
requirements.	The	easiest	and	probably	the	cleanest	way	to	do	this	is	to
remove	the	synthesize	method	for	accessToken	and	write	it	manually	like
this:

Access	Token	Custom	Accessor	in	RESTEngine.m

-(NSString*)	accessToken

{

				if(!_accessToken)

				{

								_accessToken	=	[[NSUserDefaults	standardUserDefaults]

stringForKey:kAccessTokenDefaultsKey];

								[_accessToken	retain];

				}

				

				return	[[_accessToken	retain]	autorelease];

}

-(void)	setAccessToken:(NSString	*)	aAccessToken

{

				[_accessToken	release];

				_accessToken	=	[aAccessToken	retain];

				

				[[NSUserDefaults	standardUserDefaults]

setObject:self.accessToken	forKey:kAccessTokenDefaultsKey];

				[[NSUserDefaults	standardUserDefaults]	synchronize];

}

When	you	write	a	custom	accessor,	ensure	that	the	method	sends	KVO	notifications	by	sending
willChangeValueForKey	and	didChangeValueForKey	messages.	This	is	omitted	here	for	the	sake	of

clarity.	Get	the	full	source	code	from	the	book’s	website.

If	your	web	server	sends	user	profile	information	at	login,	you	might	need	a
bit	more	sophisticated	mechanism	to	cache	the	data.	You	look	at	caching	in
Chapter	17.

Whew!	That	completes	your	first	endpoint,	but	you	are	not	done	yet!	Next
you	create	a	second	endpoint,	/menuitems,	which	is	used	to	download	a	list
of	menu	items	from	the	server.

Authenticating	Your	API	Calls	with	Access	Tokens
In	most	web	services,	every	call	after	login	is	probably	protected	and	can	be
accessed	only	by	passing	the	access	token.	Instead	of	sending	the	access
token	in	every	method,	a	cleaner	way	is	to	write	a	factory	method	in	your
RestEngine	that	creates	a	request	object.	This	request	object	can	then	be
filled	with	parameters	specific	to	the	call.

In	the	following	example,	you	create	a	new	method	called
prepareRequestWithURLString:.	It	returns	an	ASIFormDataRequest	for	a
given	URL.	Did	I	mention	that	the	entire	method	is	going	to	be	under	five
lines	long?

Preparing	a	URL	Request	Using	a	Factory	Method	in	RESTEngine.m

-	(ASIFormDataRequest*)	prepareRequestForURLString:(NSString*)

urlString

{

		ASIFormDataRequest	*request	=	[ASIFormDataRequest

requestWithURL:[NSURL	URLWithString:urlString]];

		

		if(self.accessToken)

				[request	setPostValue:self.accessToken	forKey:@”AccessToken”];

		

		return	request;

}

If	you	need	a	request	object	from	any	other	method,	you	can	call	this	factory
method.	You	will	never	again	have	a	buggy	API	call	where	you	accidentally
forgot	to	set	the	access	token.	Note	that	this	factory	method	can	also	have
additional	parameters	set	depending	on	your	web	service	requirements.

Should	your	web	service	require	you	to	turn	on	gzip	encoding	for	all	calls,	or
need	you	to	send	the	application	version	number	and	the	device-related
information,	this	factory	method	is	the	best	place	to	add	it.

Now	add	a	method	to	your	RESTEngine	class	for	fetching	menu	items	from
the	server:

Method	to	Fetch	the	List	of	Menu	Items	in	RESTEngine.m

-(ASIFormDataRequest*)	fetchMenuItems		{

		ASIFormDataRequest	*request	=	[self

prepareRequestForURLString:MENU_ITEMS_URL];

				

		[request	setDidFinishSelector:@selector(menuFetchDone:)];

		[request	setDidFailSelector:@selector(menuFetchFailed:)];

		[self.networkQueue	addOperation:request];

				

		return	request;

}

If	your	method	accepts	post	parameters,	this	is	the	method	to	add	them.	Your
view	controller	code	remains	clean	of	any	unnecessary	strings/dictionaries.

Canceling	Requests
View	controllers	that	need	to	display	the	information	from	your	web	service
call	methods	like	fetchMenuItems:	on	the	RestEngine.	To	ensure	that	it
plays	nicely	with	others,	it	is	the	responsibility	of	the	view	controller	to
cancel	any	request	it	creates	when	the	user	navigates	out	of	the	view.	For
example,	tapping	the	Back	button	means	that	even	if	the	request	returns,	the
response	is	not	used.	Canceling	the	request	at	this	point	means	that	other
requests	queued	in	the	RESTEngine	get	a	chance	to	run,	and	your	subsequent
views’	requests	get	executed	faster.	To	enable	this	behavior,	every	method
that	is	written	on	your	RestEngine	class	should	return	the	request	object	back
to	the	view	controller.	Canceling	a	running	request	speeds	up	the	execution
waiting	time	for	the	request	submitted	by	the	next	view.	A	good	example	of
this	scenario	from	the	foursquare	app	is	the	user	tapping	on	a	profile	view	and
then	tapping	on	the	Mayorships	button.	In	this	case,	the	profile	view	submits
a	request	to	fetch	the	user’s	profile,	but	the	user	has	already	navigated	to	the
Mayorship	view	without	viewing	the	profile.	It’s	now	the	responsibility	of	the

profile	view	to	cancel	its	request.	Canceling	the	profile	fetch	request	naturally
speeds	up	the	Mayorship	fetch	request	by	freeing	up	the	bandwidth.	This	is
applicable	not	just	to	foursquare,	but	to	every	web	service	apps	you	develop.

Request	Responses
When	you	call	the	fetchMenuItems:	method,	the	response	from	server	for
this	is	a	list	of	menu	items.	In	the	last	web	service	call	example,	the	response
was	an	access	token,	a	simple	string,	so	you	didn’t	need	to	design	a	model.	In
this	case,	you	create	a	model	class.	Assume	that	the	JSON	returned	by	the
server	is	of	the	following	format:

{

“menuitems”	:	[{

		“id”:	“JAP122”,						

		“image”:	“http://d1.myhotel.com/food_image1.jpg”,

		“name”:	“Teriyaki	Bento”,

		“spicyLevel”:	2,

		“rating”	:	4,

		“description”	:	“Teriyaki	Bento	is	one	of	the	best	lorem	ipsum

dolor	sit”,

		“waitingTime”	:	“930”,

		“reviewCount”	:	4

}]

One	easy	way	to	create	a	model	from	a	JSON	is	to	write	verbose	code	to	fill
in	your	model	class	with	the	JSON.	The	other,	much	more	elegant	way	is	to
piggyback	on	Objective-C’s	arguably	most	important	feature:	key-value
coding.	The	JSONKit	classes	(or	any	other	JSON	parsing	framework,
including	Apple’s	NSJSONSerialization)	discussed	earlier,	converts	a	JSON-
formatted	string	into	a	NSMutableDictionary	(or	a	NSMutableArray).	In	this
case,	you	get	a	dictionary	with	two	entries,	“status”	and	“menuitems”.	The
call	shown	in	the	following	code	can	extract	the	menu	items	dictionary	from
the	response.

NSMutableDictionary	*responseDict	=	[[request	responseString]

mutableObjectFromJSONString];

NSMutableArray	*menuItems	=	[responseDict

objectForKey:@”menuitems”];

Now	that	you	have	an	array	of	menu	items,	you	can	iterate	through	them,
extract	the	JSON	dictionary	of	every	menuitem,	and	use	KVO	to	convert

them	into	model	objects.	This	process	is	covered	in	the	next	section.	I	come
back	to	the	“status”	entry	in	the	“Error	Handling”	section	later	in	this
chapter.

Key	Coding	JSONs
Before	you	start	writing	your	first	model	class,	you	need	to	learn	a	bit	about
the	model	class	inheritance	architecture.	Any	web	service-based	app	includes
more	than	one	model.	In	fact,	a	count	of	ten	models	for	a	single	app	is	not
uncommon.	Instead	of	writing	the	KVC	code	in	ten	different	classes,	you
write	a	base	class	that	does	the	bulk	of	KVC	and	delegates	very	little	work	to
the	subclasses.	Call	this	base	class	JSONModel.	Any	model	class	in	the	app
that	models	a	JSON	and	needs	JSON	observing	will	inherit	from	this
JSONModel.

Because	you	will	be	making	copies	and/or	mutable	copies	of	your	model	classes,	implement
NSCopying	and	NSMutableCopying	in	this	base	class.	Derived	classes	must	override	this	base	class
implementation	and	provide	their	own	deep	copy	methods.

To	start,	add	a	method	called	initWithDictionary:	to	the	base	class.	Your
JSONModel.h	should	look	similar	to	the	following.

JSONModel.h

@interface	JSONModel	:	NSObject	<NSCopying,	NSMutableCopying>	{

}

-(id)	initWithDictionary:(NSMutableDictionary*)	jsonDictionary;

@end

Then	implement	the	initWithDictionary:	method:

JSONModel.m

-(id)	initWithDictionary:(NSMutableDictionary*)	jsonObject

{

				if((self	=	[super	init]))

				{

								[self	init];

								[self	setValuesForKeysWithDictionary:jsonObject];

				}

				return	self;

}

The	important	part	of	this	procedure	is	the	method
setValuesForKeysWithDictionary:	This	method	is	a	part	of	Objective-C
KVC	that	matches	each	property	in	the	class	that	has	the	same	name	as	a	key
in	the	dictionary,	and	sets	its	value	to	the	value	of	that	entry.	Most
importantly,	if	self	is	a	derived	class,	it	automatically	matches	the	derived
class	properties	and	sets	their	values.	There	are	some	exception	cases	to	be
handled,	which	are	covered	shortly.

Voilá!	With	just	one	line	of	code,	you	have	“mapped”	the	JSON	into	your
model	class.	But	will	everything	work	automatically	when	you	have	a	derived
class?	Isn’t	there	a	catch	here?	Before	going	into	details,	you	should
understand	how	the	method	setValuesForKeysWithDictionary:	works.
Your	MenuItem	dictionary	looks	like	this:

“id”:	“JAP122”,						

“image”:	“http://d1.myhotel.com/food_image1.jpg”,

“name”:	“Teriyaki	Bento”,

“spicyLevel”:	2,

“rating”	:	4,

“description”	:	“Teriyaki	Bento	is	one	of	the	best	lorem	ipsum

dolor	sit”,

“waitingTime”	:	“930”,

“reviewCount”	:	4

When	you	pass	this	dictionary	to	the	setValuesForKeysWithDictionary:
method,	it	sends	the	following	messages	along	with	their	corresponding
values:	setId,	setImage,	setName,	setSpicyLevel,	setRating,
setDescription,	setWaitingTime,	and	setReviewCount.	So	a	class
modeling	this	JSON	should	implement	these	methods.	The	easiest	way	to
implement	this	is	to	use	the	Objective-C’s	built-in	@property	and
@synthesize,	so	your	MenuItem.h	model	class	should	look	like	the
following:

MenuItem.h

@interface	MenuItem	:	JSONModel

@property	(nonatomic,	strong)	NSString	*itemId;

@property	(nonatomic,	strong)	NSString	*image;

@property	(nonatomic,	strong)	NSString	*name;

@property	(nonatomic,	strong)	NSString	*spicyLevel;

@property	(nonatomic,	strong)	NSString	*rating;

@property	(nonatomic,	strong)	NSString	*itemDescription;

@property	(nonatomic,	strong)	NSString	*waitingTime;

@property	(nonatomic,	strong)	NSString	*reviewCount;

@end

MenuItem.m

@synthesize	itemId;

@synthesize	image;

@synthesize	name;

@synthesize	spicyLevel;

@synthesize	rating;

@synthesize	itemDescription;

@synthesize	waitingTime;

@synthesize	reviewCount;

Note	that	the	property	names	for	id	and	description	have	been	changed	to
itemId	and	itemDescription.	That’s	because	id	is	a	reserved	keyword	and
description	is	a	method	in	NSObject	that	prints	out	the	address	of	the
object.	To	avoid	conflicts	you	have	to	rename	them.	However,	you	should
handle	these	exception	cases	because	the	default	implementation	of	the
setValuesForKeysWithDictionary:	method	crashes	with	a	familiar	error
message	stating,	“This	class	is	not	key	value	coding-compliant	for	the
key:id.”	To	handle	this	case,	KVC	provides	a	method	called
setValue:forUndefinedKey:.

In	fact,	it	is	the	default	implementation	of	this	method	that	raises	the
NSUndefinedKeyException.	Override	this	method	in	your	derived	class	and
set	the	values	accordingly.

Your	MenuItem.m	should	look	like	this	now:

MenuItem.m

-	(void)setValue:(id)value	forUndefinedKey:(NSString	*)key

{

				if([key	isEqualToString:@”id”])

								self.itemId	=	value;

				if([key	isEqualToString:@”description”])

								self.itemDescription	=	value;

				else

								[super	setValue:value	forKey:key];

}

To	avoid	crashes	in	the	future	because	of	spurious	keys	in	JSON,	and	be	a	bit
more	defensive	in	your	programming	style,	you	could	override	this
setValue:forUndefinedKey:	method	in	the	base	class,	JSONModel.m,	like
this:

-	(void)setValue:(id)value	forUndefinedKey:(NSString	*)key		{

		NSLog(@”Undefined	Key:	%@”,	key);

}

Now	in	your	RESTEngine,	add	the	handlers	for	the	fetchMenuItems	method
to	convert	the	JSON	to	model	objects:

RESTEngine.m

-	(void)menuFetchDone:(ASIHTTPRequest	*)request

{

		NSMutableArray	*responseArray	=	[[request	responseString]

mutableObjectFromJSONString];

		NSMutableArray	*menuItems	=	[NSMutableArray	array];

		

		for(NSMutableDictionary	*menuItemDict	in	responseArray)

				[menuItems	addObject:[[[MenuItem	alloc]

initWithDictionary:menuItemDict]	autorelease]];

		

		if([_delegate

respondsToSelector:@selector(menuFetchSucceeded:)])

				[_delegate	performSelector:@selector(menuFetchSucceeded:)

withObject:menuItems];

}

-	(void)menuFetchFailed:(ASIHTTPRequest	*)request

{

		if([_delegate

respondsToSelector:@selector(loginFailedWithError:)])

				[_delegate	performSelector:@selector(loginFailedWithError:)

withObject:[request	error]];

}

As	you	see,	you	call	the	MenuItem	init	method	with	a	JSON	dictionary	to
initialize	itself	from	the	dictionary	keys.	In	short,	by	overriding	a	method	only
for	special	cases,	you	have	successfully	mapped	a	JSON	dictionary	to	your
custom	model	and	this	model	is	clean	of	any	JSON	key	strings!	That’s	the
power	of	KVC.	The	code	is	also	inherently	defensive,	in	the	sense	that

whenever	there	is	a	change	in	JSON	keys	that	the	server	sends	(probably
rising	from	a	bug	on	server	side),	you	see	NSLog	statements	displaying	the
wrong	undefined	key	on	the	console,	and	you	can	probably	notify	the	server
developers	or	make	changes	to	your	client	to	support	the	new	keys.

It’s	also	a	good	idea	to	add	methods	for	performing	deep	copy	to	the	derived
class.	Just	override	methods	in	NSCopying	and	NSMutableCopying	and	you
are	done.	Tools	like	Accessorizer	available	from	the	Mac	App	Store	can	help
you	with	that.	(See	the	“Further	Reading”	section	for	a	link	to	the	app.)

List	Versus	Detail	JSON	Objects
A	JSON	object	is	a	payload	that	gets	transferred	from	the	server	to	the	client.
To	improve	performance	and	reduce	payload	size,	it’s	common	for	server
developers	to	use	two	kinds	of	payload	for	the	same	object.	One	is	a	large
payload	format	that	contains	all	information	about	the	object;	the	second	is	a
small	payload	that	contains	information	that	is	needed	just	to	display	the
information	on	a	list.	For	the	example	in	this	chapter,	a	minimal	amount	of
information	about	the	menu	item	will	be	displayed	on	the	listing	page,	and
most	of	the	other	content,	including	images,	photos,	and	reviews,	will	be
displayed	on	the	detail	page.

This	technique	goes	a	long	way	toward	improving	an	iOS	app’s	perceived
performance.	On	the	implementation	side,	the	iOS	app	doesn’t	have	to	be
changed	for	mapping	two	kinds	of	JSON.	You	get	either	a	complete	JSON,	or
a	JSON	that	fills	your	object	partially.	The	code	written	to	map	the	detailed
JSON	should	work	without	any	modification	in	this	scenario.	For	example,
the	server	can	send	the	small	payload	JSON	for	/menuitems,	and	a	detailed
payload	for	/menuitems/<menuitemid>.	The	detailed	payload	will	contain
exactly	the	same	data	plus	the	first	page	of	reviews	and	links	to	the	photos	of
the	dishes	and	so	on.

Nested	JSON	Objects
In	the	example,	every	menu	item	is	going	to	have	an	array	of	reviews	left	by
the	user.	If	you	depend	on	the	default	implementation	of	KVC,	and	declare	an
NSMutableArray	property	on	your	model,	the	KVC	binding	will	set	it	to	an
array	of	NSMutableDictionary.	But	what	you	actually	want	is	to	map	that

dictionary	as	well	in	a	recursive	fashion.	This	case	is	handled	by	the
overriding	the	setValue:forKey:	method.

Assume	that	the	following	represents	the	format	of	JSON	sent	by	the
/menuitems/<itemid>	method:

{

“menuitems”	:	[{

		“id”:	“JAP122”,						

		“image”:	“http://d1.myhotel.com/food_image1.jpg”,

		“name”:	“Teriyaki	Bento”,

		“spicyLevel”:	2,

		“rating”	:	4,

		“description”	:	“Teriyaki	Bento	is	one	of	the	best	lorem	ipsum

dolor	sit”,

		“waitingTime”	:	“930”,

		“reviewCount”	:	4,

		“reviews”:	[{

				“id”:	“rev1”,

				“reviewText”:	“This	is	an	awesome	place	to	eat”,

						“reviewerName”:	“Awesome	Man”,

				“reviewedDate”:	“10229274633”,

				“rating”:	“5”

		}]

}],

“status”	:	“OK”

}

This	code	is	very	similar	to	what	you	already	saw,	but	has	one	additional
payload:	an	array	of	reviews.	In	a	real-life	scenario,	there	might	be	multiple
such	additions,	like	a	list	of	photos,	a	list	of	“likes,”	and	so	on.	But	for	the
sake	of	simplicity,	just	assume	that	the	detailed	listing	of	a	menu	item	has
only	one	additional	piece	of	information,	which	is	the	array	of	reviews.	Now
before	overriding	the	setValue:forKey:	method,	create	a	model	object	for	a
review	entry.	This	class’s	header	file	will	look	similar	to	the	one	below.	The
implementation	contains	nothing	but	synthesizers	and	overridden	NSCopying
and	NSMutableCopying	(deep	copy)	methods.

Review.m

@property	(nonatomic,	strong)	NSString	*rating;

@property	(nonatomic,	strong)	NSString	*reviewDate;

@property	(nonatomic,	strong)	NSString	*reviewerName;

@property	(nonatomic,	strong)	NSString	*reviewId;

@property	(nonatomic,	strong)	NSString	*reviewText;

Again,	you	can	generate	these	accessors	using	tools	like	Accessorizer.	Your
review	JSON	doesn’t	have	any	special	keys	that	might	be	in	conflict	with
Objective-C’s	reserved	list,	so	you	don’t	even	have	to	write	any	explicit	code
for	converting	JSON	to	a	review	model.	The	initialization	code	is	in	the	base
class	and	the	KVC	compliant	code	is	generated	by	the	property/synthesizers.
That’s	the	power	of	KVC.

Next,	override	the	setValue:forKey:	method	in	the	MenuItem	model	to
convert	review	dictionaries	to	Review	models:

Custom	Handling	of	KVC’s	setValue:forKey:	Method	in	MenuItem.m

-(void)	setValue:(id)value	forKey:(NSString	*)key

{

		if([key	isEqualToString:@”reviews”])

		{

				for(NSMutableDictionary	*reviewArrayDict	in	value)

				{

						Review	*thisReview	=	[[[Review	alloc]

initWithDictionary:reviewArrayDict]	autorelease];

						[self.reviews	addObject:thisReview];

				}

		}		

		else

				[super	setValue:value	forKey:key];

}

The	idea	behind	this	code	is	to	handle	the	reviews	key	of	the	JSON	in	a
specialized	way	and	to	let	the	other	keys	be	handled	by	the	default	superclass
implementation.

Less	Is	More
You	might	have	heard	about	KVC	and	KVO,	on	the	Internet	from	blogs	of
veteran	Objective-C	developers	explaining	how	great	they	are.	Now	that	you
have	understood	them,	you	can	put	these	concepts	to	use	in	your	next	app.
You	will	realize	how	powerful	they	are	and	how	easily	they	allow	you	to
write	less	code	in	a	more	efficient	way.	Next,	you	move	on	to	error	handling.

Error	Handling
Recall	that	you	saw	a	key	called	status	in	the	JSON	payload.	Every	web
service	has	some	way	to	communicate	error	messages	to	the	client.	In	some
cases	it’s	sent	through	a	special	key,	like	status.	In	other	cases,	the	web
server	sends	an	error	key	with	more	information	about	the	actual	error	and
no	such	key	is	sent	for	a	successful	call.	This	section	shows	you	how	to
model	this	on	iOS,	so	that	you	write	as	little	code	as	possible,	yet	write	it	in	a
way	that	is	clear	to	read	and	understand.

The	first	thing	to	understand	is	that	not	all	API	errors	can	be	mapped	to	a
custom	HTTP	error	code.	In	fact,	a	server	might	throw	errors	even	when
everything	is	perfectly	fine,	but	the	user	input	is	wrong.	A	website
registration	web	service	might	throw	an	error	if	the	user	tries	to	register	with
an	email	address	that’s	already	taken.	This	is	just	one	example,	and	in	most
cases,	you	need	specialized	error	handling	for	handling	your	own	internal
business	logic	errors.	In	this	example,	for	instance,	a	missing	menu	item
results	in	a	404	error.	Most	web	services	send	a	custom	error	message	along
with	the	404	notice	so	that	clients	can	understand	what	caused	that	404.	A
client	implementation	should	not	just	report	the	HTTP	error	as	a	error
message	to	the	user,	but	also	understand	the	internal	business	logic	error	for
elegant	error	reporting	and	do	proper	error	reporting.	Otherwise,	the	only
error	you	can	ever	show	is	“Sorry,	something	bad	happened,	please	try	again
later”	and	no	one,	including	your	customer,	is	interested	in	seeing	that	kind	of
vague	message.	This	section	shows	you	how	to	handle	these	cases	in	an
elegant	fashion.

In	the	following	steps	you	subclass	ASIHTTPRequest	or	ASIFormDataRequest
to	handle	custom	API	errors.	If	your	app	needs	to	make	only	“form	post”
kinds	of	requests,	subclass	ASIFormDataRequest,	otherwise	subclass	its
parent,	ASIHTTPRequest.

1.	Create	a	subclass	of	ASIFormDataRequest.	This	subclass	will	have	a
property	to	store	the	business	logic	errors	thrown	from	the	server.
2.	Create	an	NSError*	property	called	restError	in	the	subclass.

3.	Override	two	methods	to	handle	error	conditions.	The	first	method	to
override	is	the	failWithError:

Code	in	RESTRequest.m	that	illustrate	error	handling

-(void)	failWithError:(NSError	*)theError

{

		NSMutableDictionary	*errorDict	=	[[self	responseDictionary]

objectForKey:@”error”];

		if(errorDict	==	nil)

		{

				self.restError	=	[[NSError	alloc]

initWithDomain:kRequestErrorDomain	code:[theError	code]

userInfo:[theError	userInfo]];

		}

		else

		{

				self.restError	=	[[NSError	alloc]

initWithDomain:kBusinessErrorDomain	code:[[errorDict

objectForKey:@”code”]	intValue]userInfo:errorDict];				

		}

		[super	failWithError:theError];

}

Using	this	class,	you	check	for	the	presence	of	the	“error”	JSON	key	and
process	it	appropriately.	The	failWithError	method	will	be	called	when
there	is	a	HTTP	error.	You	should	handle	non-HTTP,	business	logic	errors
in	the	same	manner.	As	you	saw	earlier,	not	every	business	logic	error	can
be	mapped	to	an	equivalent	HTTP	error	code.	Moreover,	in	some	cases,
there	might	be	a	benign	error	that	is	sent	along	with	your	response	and	the
server	might	delegate	the	responsibility	of	treating	that	as	an	error	or
normal	condition	to	the	client.	For	handling	both	these	cases	you	have	to
override	another	method,	requestFinished:,	as	shown	in	the	following
code:

Code	in	RESTRequest.m	that	illustrate	request	handling	for	successful
conditions	and	report	business	logic	error	if	any

-	(void)requestFinished

{		

		NSMutableDictionary	*errorDict	=	[[self	responseDictionary]

objectForKey:@”error”];

		

		if(errorDict)

		{

				self.restError	=	[[NSError	alloc]

initWithDomain:kBusinessErrorDomain	code:[[errorDict

objectForKey:@”code”]	intValue]	userInfo:errorDict];

				[super	failWithError:self.restError];

		}

		else

		{

				[super	requestFinished];

		}

}

Both	these	methods	remember	the	business	logic	errors	in	the	restError
property	of	your	subclassed	request	object.	This	enables	the	client	to	know
both	the	HTTP	error	(by	accessing	the	RestRequest’s	superclass’s	error
object)	and	the	business	layer	error,	from	the	local	property	restError.

Because	this	handling	is	done	on	a	subclass,	the	class	RestEngine	doesn’t
have	to	do	any	additional	error	handling.	All	it	gets	is	a	nicely	wrapped
NSError	object	for	both	kinds	of	error,	HTTP	or	business	logic.	The	view
controller	implementation	will	now	be	as	simple	as	checking	whether	the
error	is	nil;	if	it’s	not	nil,	show	the	message	inside	the	[[request
restError]	userInfo].

With	that,	I	move	on	to	a	discussion	of	localization.

Localization
This	section	is	about	localizing	web	service-related	error	messages	and	not
localizing	your	app.	Adding	internationalization	and	localization	support	to
your	app	is	explained	in	detail	in	Chapter	13.

Some	implementations	require	you	to	localize	error	messages	in	multiple
languages.	For	errors	generated	within	the	app,	this	is	simple	and	can	be
handled	using	the	foundation	classes	and	macros.	For	server-related	errors,
the	previous	implementation	just	showed	the	server	errors	on	the	UI.	The	best
way	to	show	localized	errors	is	for	the	server	to	return	errors	in	agreed	upon
codes.	The	iOS	client	can	then	look	into	a	localized	string	table	and	show	the
correct	error	for	a	given	code.

RESTError.m

+	(void)	initialize

{

		NSString	*fileName	=	[NSString	stringWithFormat:@”Errors_%@”,

[[NSLocale	currentLocale]	localeIdentifier]];

		NSString	*filePath	=	[[NSBundle	mainBundle]

pathForResource:fileName	ofType:@”plist”];

		

		if(filePath	!=	nil)

		{

				errorCodes	=	[[NSMutableDictionary	alloc]

initWithContentsOfFile:filePath];		

		}

		else

		{				

				//	fall	back	to	English	for	unsupported	languages

				NSString	*filePath	=	[[NSBundle	mainBundle]

pathForResource:@”Errors_en_US”	ofType:@”plist”];

				errorCodes	=	[[NSMutableDictionary	alloc]

initWithContentsOfFile:filePath];						

		}

}

This	RESTError	class	can	again	by	initialized	with	the	error	dictionary	you
get	from	the	server	using	the	KVC	technique	you	learned	earlier	in	this
chapter.	Override	NSError’s	localizedDescription	and
localizedRecoverySuggestion	methods	to	provide	proper	user-readable
error	methods.	In	case	your	web	service	provides	error	codes	to	you	along
with	error	messages,	this	is	the	best	way	to	handle	and	show	error	messages
instead	of	showing	the	server	error	from	the	userInfo	dictionary.

Handling	Additional	Formats	Using	Category	Classes
Assume	that	you	have	written	and	delivered	your	app,	and	for	some	reason,
your	client	wants	to	move	the	server	implementation	to	a	Windows-based
system	and	the	server	now	sends	you	XML	data	instead	of	JSON.	With	this
current	architecture	in	place,	it’s	easy	to	add	an	additional	format	parsing	to
your	model.	The	recommended	way	to	do	so	is	to	write	a	category	extension
on	your	model	that	has	a	method	to	convert	XML	to	dictionaries.	In	short,
write	a	method	in	your	category	extension	to	convert	an	XML	tree	into	a
NSMutableDictionary	and	pass	this	dictionary	to	the	initWithDictionary:
method,	which	you	previously	wrote.	Category	classes	like	this	provide	a
very	powerful	way	to	extend	and	add	features	to	your	existing

implementation	without	creating	any	unwanted	side	effects.

Tips	to	Improve	Performance	on	iOS
The	best	tip	for	improving	performance	for	a	web	service-based	app	is	to
avoid	sending	data	that’s	not	immediately	necessary.	Unlike	a	web-based	app,
an	iPhone	app	has	very	limited	bandwidth,	and	in	most	cases	it	will	be
connected	to	a	3G	network.	Trying	to	implement	techniques	like	prefetching
contents	for	what	could	be	the	user’s	next	page	will	only	slow	down	your
app.

Avoid	multiple	small	AJAX-like	API	calls.	In	the	“Creating	the
RESTEngine”	section	earlier	in	this	chapter,	you	initialized	the	networkQueue
to	run	six	concurrent	operations	because	most	servers	don’t	allow	more	than
six	parallel	HTTP	connections	from	a	single	IP	address.	Running	more	than
six	operations	will	only	result	in	the	seventh	and	subsequent	operations
timing	out.	On	a	3G	network,	at	least	in	2011,	most	network	operators	throttle
the	bandwidth	and	limit	the	number	of	outbound	connections	from	a	mobile
device	to	two.	This	is	usually	one	on	EDGE.	As	such	you	can	even	listen	for
reachability	notifications	using	the	Reachability	classes	provided	by	Apple
(Apple	2011)	and	change	the	queue	size	dynamically	as	and	when	the
connectivity	changes.	Again,	this	count	of	two	on	3G	and	one	on	EDGE	is
not	absolute	and	you	should	test	the	network	of	your	customer	base	and	use
the	results	accordingly.

If	you	have	control	over	the	server	development,	the	following	tips	might
help	to	get	the	best	out	of	the	iOS	app	you	develop.

■	A	server	that	caters	to	a	web-based	client	should	almost	always	have
multiple	small	web	service	calls	that	are	usually	performed	using	AJAX.
On	iOS,	it's	best	to	avoid	these	APIs	and	possibly	use	or	develop	a	custom
API	that	gives	more	customized	data	per	call.
■	Unlike	a	browser,	most	carrier	networks	throttle	the	number	of	parallel
data	connections.	Again,	it’s	safe	to	assume	that	you	shouldn’t	run	more
than	one	network	operation	on	an	EDGE	connection,	more	than	two
parallel	network	operations	on	a	3G	network,	and	six	on	a	wi-fi
connection.

Summary
In	this	chapter	you	learned	how	to	architect	a	iOS	application	that	uses	a	web
service.	The	chapter	also	presented	the	different	data	exchange	formats	and
ways	to	parse	them	in	Objective-C,	and	you	learned	a	very	powerful	method
of	processing	responses	from	a	RESTful	service	using	Objective-C’s
powerful	method,	KVC.	You	then	learned	about	using	queues	for	handing
concurrent	requests	and	how	to	maximize	performance	by	altering	the
maximum	concurrent	operations	on	the	queue-based	available	network.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Reachability.	Apple	Developer	Documentation.
Apple	XMLPerformance	Sample	Code
Apple.	NSXMLDocument	Class	Reference

Other	Resources
Callahan,	Kevin.	Mac	App	Store.	2011
http://itunes.apple.com/gb/app/accessorizer/id402866670?mt=12

Cocoanetics.	JSON	vs	Plist,	the	ultimate	showdown	2011
http://www.cocoanetics.com/2011/03/json-versus-plist-the-

ultimate-showdown/

Crockford,	Douglas.	RFC	4627.	07	01,	2006
http://tools.ietf.org/html/rfc4627

W3C.	Web	Services	Architecture.	2	11,	2004	http://www.w3.org/TR/ws-
arch/#relwwwrest

Copsey,	Ben.	ASIHTTPRequest	Documentation.	2011	http://allseeing-
i.com/ASIHTTPRequest/

ASIHTTPRequest	-	How	To	Use.	2011	http://allseeing-
i.com/ASIHTTPRequest/How-to-use#handling_http_authentication

http://developer.apple.com/
http://itunes.apple.com/gb/app/accessorizer/id402866670?mt=12
http://www.cocoanetics.com/2011/03/json-versus-plist-the-ultimate-showdown/
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/ws-arch/%23relwwwrest
http://allseeing-i.com/ASIHTTPRequest/
http://allseeing-i.com/ASIHTTPRequest/How-to-use%23handling_http_authentication

Brautaset,	Stig.	JSON	Framework.	1	1,	2011
http://stig.github.com/json-framework/

Wight,	Jonathan.	TouchCode/TouchJSON.	1	1,	2011
https://github.com/TouchCode/TouchJSON

Gabriel.	YAJL-ObjC.	2011	https://github.com/gabriel/yajl-objc

Johnezang.	JSONKit.	2011	https://github.com/johnezang/JSONKit

mbrugger	json-benchmarks	on	Github
https://github.com/mbrugger/json-benchmarks/

http://stig.github.com/json-framework/
https://github.com/TouchCode/TouchJSON
https://github.com/gabriel/yajl-objc
https://github.com/johnezang/JSONKit
https://github.com/mbrugger/json-benchmarks/

Chapter	11:	Batten	the	Hatches	with
Security	Services

iOS	is	likely	the	first	platform	that	most	developers	encounter	that	employs	a
true	least-privilege	security	model.	Most	modern	operating	systems	employ
some	kind	of	privilege	separation,	allowing	different	processes	to	run	with
different	permissions,	but	this	is	almost	always	used	in	a	very	coarse	way.
Most	applications	on	Unix,	OS	X,	and	Windows	run	as	either	the	current	user
or	a	superuser,	which	can	do	nearly	anything.	Attempts	to	segment	this
further,	whether	with	Security	Enhanced	Linux	(SELinux)	or	Windows	User
Account	Control	(UAC),	have	generally	led	to	developer	revolt.	The	most
common	questions	about	SELinux	are	not	how	to	best	develop	for	it,	but	how
to	turn	it	off.

Coming	from	these	backgrounds,	developers	tend	to	be	shocked	when
encountering	the	iOS	security	model.	Rather	than	ensure	maximal	flexibility,
Apple’s	approach	has	been	to	give	developers	the	least	privileges	it	can	and
see	what	software	developers	are	incapable	of	making	with	those	privileges.
Then	Apple	provides	the	least	additional	privileges	that	allow	the	kinds	of
software	it	wants	for	the	platform.	This	can	be	very	restrictive	on	developers,
but	it’s	also	kept	iOS	quite	stable	and	free	of	malware.	Apple	is	unlikely	to
change	its	stance	on	this,	so	understanding	and	dealing	with	the	security
model	is	critical	to	iOS	development.

This	chapter	shows	the	way	around	the	iOS	security	model,	dives	into	the
numerous	security	services	that	iOS	offers,	and	provides	the	fundamentals
you	need	to	really	understand	Apple’s	security	documentation.	Along	the	way
you’ll	gain	a	deeper	understanding	of	how	certificates	and	encryption	work	in
practice,	so	that	you	can	leverage	these	features	to	really	improve	the	security
of	your	products.

The	code	for	this	chapter	is	available	in	the	online	sample	code.	There	is	also
a	simple	project	called	FileExplorer	so	you	can	investigate	the	public	parts
of	the	file	system.

Understanding	the	iOS	Sandbox
The	heart	of	the	iOS	security	model	is	the	sandbox.	When	an	application	is
installed,	it	is	given	its	own	home	directory	in	the	file	system,	readable	only
by	that	application.	This	makes	it	difficult	to	share	information	between
applications,	but	also	makes	it	difficult	for	malicious	or	poorly	written
software	to	read	or	modify	your	data.

Applications	are	not	separated	from	each	other	using	standard	Unix	file
permissions.	All	applications	run	as	the	same	user	ID	(501,	mobile).	Calling
stat	on	another	application’s	home	directory	fails,	however,	because	of
operating	system	restrictions.	Similar	restrictions	prevent	your	application
from	reading	/var/log	while	allowing	access	to
/System/Library/Frameworks.

Within	your	sandbox,	there	are	four	important	top-level	directories:	your	.app
bundle,	Documents,	Library,	and	tmp.	While	you	can	create	new	directories
within	your	sandbox,	it	is	not	well	defined	how	iTunes	will	deal	with	them.	I
recommend	keeping	everything	in	one	of	these	top-level	directories.	You	can
always	create	subdirectories	under	Library	if	you	need	more	organization.

Your	.app	bundle	is	the	package	built	by	Xcode	and	copied	to	the	device.
Everything	within	it	is	digitally	signed,	so	you	can’t	modify	it.	In	particular,
this	includes	your	Resources	directory.	If	you	want	to	modify	files	that	you
install	as	part	of	your	bundle,	you’ll	need	to	copy	them	elsewhere	first,
usually	somewhere	in	Library.

The	Documents	directory	is	where	you	store	user-visible	data,	particularly
files	like	word-processing	documents	or	drawings	that	the	user	assigns	a
filename.	These	files	can	be	made	available	to	the	desktop	through	file
sharing	if	UIFileSharingEnabled	is	turned	on	in	Info.plist.

The	Library	directory	stores	files	that	shouldn’t	be	directly	user	visible.	The
Library/Caches	directory	is	special	because	it	isn’t	backed	up,	but	is
preserved	between	application	upgrades.	This	is	where	you	should	put	most
things	you	don’t	want	copied	to	the	desktop.

The	tmp	directory	is	special	because	it	is	neither	backed	up	nor	preserved
between	application	upgrades.	This	makes	it	ideal	for	temporary	files,	as	the
name	implies.

When	considering	the	security	of	the	user’s	data,	backups	are	an	important
consideration.	Users	may	choose	whether	to	encrypt	the	iTunes	backup	with	a
password.	If	there	is	data	that	shouldn’t	be	stored	unencrypted	on	the	desktop
machine,	you	should	store	it	in	the	keychain	(see	the	“Using	Keychains”
section	later	in	this	chapter).	iTunes	only	backs	up	the	keychain	if	backup
encryption	is	enabled.

If	you	have	information	that	you	would	rather	the	user	not	have	access	to,	you
can	store	it	in	the	keychain	or	in	Library/Caches	because	these	are	not
backed	up.	This	is	weak	protection,	however,	because	the	user	can	always
jailbreak	the	phone	to	read	any	file	or	the	keychain.	There	is	no	certain	way
to	prevent	the	owner	of	a	device	from	reading	data	on	that	device.	iOS
security	is	about	protecting	the	user	from	attackers,	not	about	protecting	the
application	from	the	user.

Securing	Network	Communications
The	greatest	risk	to	most	systems	is	their	network	communication.	Attackers
don’t	need	access	to	the	device,	only	to	the	device’s	network.	The	most
dangerous	areas	are	generally	coffee	shops,	airports,	and	other	public	wi-fi
networks.	It’s	your	responsibility	to	make	sure	that	the	user’s	information	is
safe,	even	on	hostile	networks.

The	first	and	easiest	solution	is	to	use	Hypertext	Transfer	Protocol	Secure
(HTTPS)	for	your	network	communication.	Most	iOS	network	APIs
automatically	handle	HTTPS,	and	the	protocol	eliminates	many	of	the	easiest
attacks.	In	the	simplest	deployment,	you	put	a	self-signed	certificate	on	the
web	server,	turn	on	HTTPS,	and	configure	NSURLConnection	to	accept
untrusted	certificates,	as	discussed	shortly.	This	is	still	vulnerable	to	several
kinds	of	attacks,	but	it’s	easy	to	deploy	and	addresses	the	most	basic	attacks.

In	iOS	5,	the	informal	delegate	protocol	of	NSURLConnection	has	been
replaced	with	two	formal	protocols,	NSURLConnectionDelegate	and
NSURLConnectionDataDelegate.	Although	there	are	now	two	protocols,	there

is	still	only	a	single	delegate	(of	type	id),	so	this	mostly	impacts	how	the
documentation	is	organized.

The	major	NSURLConnection	change	in	iOS	5	is	to	the	authentication
methods.	Instead	of	three	methods
—connection:canAuthenticateAgainstProtectionSpace,
connection:didReceiveAuthenticationChallenge,	and
connection:didCancelAuthenticationChallenge—there	is	now	just	one:
connection:willSendRequestForAuthenticationChallenge:.	In	this
method,	you	are	supposed	to	determine	if	you	are	willing	to	authenticate	to
this	server,	and	if	so,	to	provide	the	credentials.	The	following	code
authenticates	to	any	server	that	presents	a	noncorrupt	certificate,	whether	or
not	the	certificate	is	valid	or	trusted:

-	(void)connection:(NSURLConnection	*)connection

		willSendRequestForAuthenticationChallenge:

		(NSURLAuthenticationChallenge	*)challenge

{

		SecTrustRef	trust	=	challenge.protectionSpace.serverTrust;

		NSURLCredential	*cred;

		cred	=	[NSURLCredential	credentialForTrust:trust];

		[challenge.sender	useCredential:cred

							forAuthenticationChallenge:challenge];		

}

This	code	extracts	the	trust	object,	discussed	later,	and	creates	a	credential
object	for	it.	HTTPS	connections	always	require	a	credential	object,	even	if
you	are	not	passing	credentials	to	the	server.	The	“Checking	Certificate
Validity”	section	later	in	this	chapter	explains	how	to	more	carefully	validate
the	certificate.

ASIHTTPRequest,	covered	in	Chapter	10,	can	support	untrusted	certificates	without	requiring	you
to	implement	delegate	methods.	You	can	configure	the	request	as	follows:

		[request	setValidatesSecureCertificate:NO];

How	Certificates	Work
Hopefully	you	have	encountered	public-private	key	infrastructure	(PKI)
systems	before.	This	section	gives	a	quick	overview	of	the	technology,	and
then	discusses	how	it	affects	the	security	of	your	application.

Asymmetric	cryptography	is	based	on	the	mathematical	fact	that	you	can	find
two	very	large	numbers	(call	them	A	and	B)	that	are	related	in	such	a	way	that
anything	encrypted	with	one	can	be	decrypted	with	the	other,	and	vice	versa.
Key	A	cannot	decrypt	things	that	key	A	encrypted,	nor	can	key	B	decrypt
things	that	key	B	encrypted.	Each	can	only	decrypt	the	other’s	ciphertext.
There	is	no	real	difference	between	key	A	and	key	B,	but	for	the	purposes	of
public	key	cryptography,	one	is	termed	the	public	key,	which	generally
everyone	is	allowed	to	know,	and	the	other	is	designated	the	private	key,
which	is	secret.

You	can	use	a	public	key	to	encrypt	data	such	that	only	a	computer	with	the
private	key	can	decrypt	it.	This	is	an	important	property	that	is	used
repeatedly	in	public	key	systems.	If	you	want	to	prove	that	some	entity
(person	or	machine)	has	the	private	key,	you	make	up	a	random	number,
encrypt	it	with	the	entity’s	public	key	and	send	it.	That	entity	decrypts	the
message	with	the	entity’s	private	key,	encrypts	it	with	your	public	key	and
sends	it	back	to	you.	Because	only	the	private	key	could	have	decrypted	the
message,	the	entity	you’re	communicating	with	must	have	the	private	key.

This	property	also	allows	you	to	digitally	sign	data.	Given	some	data,	you
first	hash	it	with	some	well-known	hashing	algorithm,	and	then	encrypt	it
with	your	private	key.	The	resulting	ciphertext	is	the	signature.	To	validate
the	signature,	you	hash	the	data	again	with	the	same	algorithm,	decrypt	the
signature	using	the	public	key,	and	compare	the	hashes.	If	they	match,	you
know	the	signature	was	created	by	some	entity	that	had	access	to	the	private
key.

Just	because	an	entity	has	access	to	the	private	key	does	not	prove	he	is	who
he	says	he	is.	There	are	two	questions	you	need	to	ask.	First,	how	well	is	the
private	key	protected?	Anyone	with	access	to	the	private	key	can	forge	a
signature	with	it.	Second,	how	do	you	know	that	the	public	key	you	have	is
related	to	the	entity	you	care	about?	If	I	approach	you	on	the	street	and	hand
you	a	business	card	that	says	I’m	the	President	of	the	United	States,	it	hardly
proves	anything.	I’m	the	one	who	handed	you	the	business	card.	Similarly,	if
a	server	presents	you	a	public	key	that	claims	to	be	for	www.apple.com,	why
should	you	believe	it?	This	is	where	a	certificate	chain	comes	in,	and	it’s
relevant	to	both	questions.

A	certificate	is	made	up	of	a	public	key,	some	metadata	about	the	certificate
(more	on	that	later),	and	a	collection	of	signatures	from	other	certificates.	In
most	cases,	there	is	a	short	chain	of	certificates,	each	signing	the	one	below	it.
In	very	rare	cases,	there	may	be	multiple	signatures	on	one	certificate.	An
example	of	a	certificate	chain	is	shown	in	Figure	11-1.

In	this	example,	the	server	daw.apple.com	presents	a	certificate	that	includes
its	own	public	key,	signed	by	an	intermediate	certificate	from	VeriSign,	which
is	signed	by	a	root	certificate	from	VeriSign.	Mathematically,	you	can
determine	that	the	controllers	of	each	of	these	certificates	did	sign	the	next
certificate	in	the	chain,	but	why	would	you	trust	any	of	them?	You	trust	them
because	Apple	trusts	the	VeriSign	root	certificate,	which	has	signed	the
intermediate	certificate,	which	has	signed	the	Apple	certificate.	Apple	ships
the	VeriSign	root	certificate	in	the	trusted	root	store	of	every	iOS	device,
along	with	more	than	a	hundred	other	trusted	root	certificates.	The	trusted
root	store	is	a	list	of	certificates	that	is	treated	as	explicitly	trustworthy.
Explicitly	trusted	certificates	are	called	anchors.	You	can	set	your	own
anchors	if	don’t	want	to	trust	Apple’s	list.

This	brings	you	to	the	much-misused	term	self-signed	certificate.	For
cryptographic	reasons,	every	certificate	includes	a	signature	from	itself.	A
certificate	that	only	has	this	signature	is	called	self-signed.	Often,	when
people	talk	about	a	self-signed	certificate,	they	mean	a	certificate	that	you
shouldn’t	trust.	But	the	VeriSign	root	certificate	is	a	self-signed	certificate,
and	it’s	one	of	the	most	trusted	certificates	in	the	world.	Every	root
certificate,	by	definition,	is	a	self-signed	certificate.	What’s	the	difference?	It
isn’t	how	many	signatures	a	certificate	has	in	its	chain	that	matters,	but	how
well	all	of	the	private	keys	in	the	chain	are	protected,	and	whether	the	identity
of	the	owner	has	been	authenticated.

If	you	generate	your	own	self-signed	certificate	and	protect	the	private	key
very	well,	then	that’s	more	secure	than	a	certificate	that	VeriSign	issues	you.
In	both	cases,	you’re	dependent	on	protecting	your	private	key,	but	in	the
latter	case	you	also	have	to	worry	about	VeriSign	protecting	its	private	key.
VeriSign	spends	a	lot	of	money	and	effort	doing	that,	but	protecting	two	keys
is	always	more	risky	than	protecting	just	one	of	them.

This	isn’t	to	say	that	commercial	certificates	from	VeriSign,	DigiTrust,	and

other	providers	are	bad.	But	you	don’t	get	a	commercial	certificate	to
improve	the	security	of	your	system.	You	get	one	for	convenience	because	the
commercial	certs	are	already	in	the	root	key	store.	But	remember,	you	control
the	root	key	store	in	your	own	application.	This	leads	to	a	surprising	fact:
There	is	no	security	reason	to	purchase	a	commercial	certificate	to	secure
your	application’s	network	protocol	to	your	own	server.

Figure	11-1	The	certificate	chain	for	daw.apple.com

Commercial	certificates	are	valuable	only	for	websites	visited	by	browsers	or
other	software	you	don’t	control.	Generating	your	own	certificate	and
shipping	the	public	key	in	your	application	is	marginally	more	secure	than
using	a	commercial	certificate.	If	you	already	have	a	commercial	certificate
for	your	server,	it	is	somewhat	more	convenient	to	use	it	for	your
application’s	network	protocol,	it’s	just	not	more	secure.	This	is	not	to	say
that	it’s	okay	to	trust	random	certificates	(that	is,	turning	off	certificate
validation).	It’s	to	say	that	it’s	okay	to	trust	only	your	certificates	rather	than
trusting	commercial	certificates.

Certificates	can	be	corrupt	or	not,	valid	or	not,	and	trusted	or	not.	These	are
separate	attributes	that	need	to	be	understood	individually.	The	first	question
is	whether	a	certificate	is	corrupt.	A	certificate	is	corrupt	if	it	does	not
conform	to	the	X.509	data	format,	or	if	its	signatures	are	incorrectly
computed.	A	corrupt	certificate	should	never	be	used	for	anything,	and	the
iOS	certificate	function	generally	rejects	them	automatically.

X.509	refers	to	the	data	format	specification	and	semantics	originally	defined	by	ITU-T
(itu.int/ITU-T).	The	current	version	(v3)	is	defined	by	IETF	RFC	5280
(ietf.org/rfc/rfc5280.txt).

Checking	Certificate	Validity
Given	that	a	certificate	is	not	corrupt,	is	it	valid?	Certificates	contain	a	great
deal	of	metadata	about	the	public	key	they	contain.	The	public	key	is	just	a
very	large	number.	It	doesn’t	represent	anything	by	itself.	It’s	the	metadata
that	gives	that	number	meaning.

The	most	important	piece	of	metadata	is	the	subject.	For	servers,	this	is
generally	the	fully	qualified	domain	name	(FQDN)	such	as
www.example.org.	The	first	test	of	validity	is	a	name	match.	If	you	walk	into
a	bank	and	identify	yourself	as	“John	Smith,”	you	might	be	asked	for	your
driver’s	license.	If	you	hand	over	a	license	that	says	“Susan	Jones,”	that
would	not	help	in	identifying	you	no	matter	how	authentic	the	driver’s
license.	Similarly,	if	you	are	visiting	a	site	named	www.example.org,	and	the
site	presents	a	certificate	with	a	common	name	www.badguy.com,	you	should
generally	reject	it.	Unfortunately	it’s	not	always	that	simple.

What	if	you	visit	example.org,	and	it	presents	a	certificate	that	says

http://www.itu.int/ITU-T/
http://www.ietf.org/rfc/rfc5280.txt

www.example.org?	Should	you	accept	that	certificate?	Most	humans	would
assume	that	example.org	and	www.example.org	refer	to	the	same	server
(which	may	or	may	not	be	true),	but	certificates	use	a	simple	string	match.	If
the	strings	don’t	match,	the	certificate	is	invalid.	Some	servers	present	wild
card	certificates	with	subjects	like	*.example.org	and	iOS	will	accept	that,
but	there	are	still	some	cases	when	it	will	reject	a	certificate	because	of	a
name	mismatch	you	believe	it	should	accept.	Unfortunately,	iOS	does	not
make	this	easy	to	manage,	but	it	can	be	done.

In	this	example,	you’re	trying	to	connect	to	the	IP	address	72.14.204.113,
which	is	encrypted.google.com.	The	certificate	you	receive	is
*.google.com,	which	is	a	mismatch.	The	string	72.14.204.113	does	not
include	the	string	.google.com.	You	decide	to	accept	any	trusted	certificate
that	includes	google.com	in	its	subject.	To	compile	this	example,	you	will
need	to	link	Security.framework	into	your	project.

ConnectionViewController.m	(Connection)

-	(void)connection:(NSURLConnection	*)connection

		willSendRequestForAuthenticationChallenge:

		(NSURLAuthenticationChallenge	*)challenge

{

		NSURLProtectionSpace	*protSpace	=	challenge.protectionSpace;

		SecTrustRef	trust	=	protSpace.serverTrust;

		SecTrustResultType	result	=	kSecTrustResultFatalTrustFailure;

		

		OSStatus	status	=	SecTrustEvaluate(trust,	&result);

		if	(status	==	errSecSuccess	&&

						result	==	kSecTrustResultRecoverableTrustFailure)	{

				SecCertificateRef	cert	=	SecTrustGetCertificateAtIndex(trust,

																																																											0);

				CFStringRef	subject	=	SecCertificateCopySubjectSummary(cert);

				

				NSLog(@”Trying	to	access	%@.	Got	%@.”,	protSpace.host,

										(__bridge	id)subject);

				CFRange	range	=	CFStringFind(subject,	CFSTR(“.google.com”),

																																	kCFCompareAnchored|

																																	kCFCompareBackwards);

				if	(range.location	!=	kCFNotFound)	{

						status	=	RNSecTrustEvaluateAsX509(trust,	&result);

				}

				CFRelease(subject);

http://www.example.org

		}

		if	(status	==	errSecSuccess)	{

				switch	(result)	{

						case	kSecTrustResultInvalid:

						case	kSecTrustResultDeny:

						case	kSecTrustResultFatalTrustFailure:

						case	kSecTrustResultOtherError:

//	We’ve	tried	everything:

						case	kSecTrustResultRecoverableTrustFailure:		

								NSLog(@”Failing	due	to	result:	%lu”,	result);

								[challenge.sender

cancelAuthenticationChallenge:challenge];

								break;

								

						case	kSecTrustResultProceed:

						case	kSecTrustResultConfirm:

						case	kSecTrustResultUnspecified:	{

								NSLog(@”Successing	with	result:	%lu”,	result);

								NSURLCredential	*cred;

								cred	=	[NSURLCredential	credentialForTrust:trust];

								[challenge.sender	useCredential:cred

													forAuthenticationChallenge:challenge];		

								}

								break;

								

						default:

								NSAssert(NO,	@”Unexpected	result	from	trust

evaluation:%d”,

																	result);

								break;

				}

		}

		else	{

				//	Something	was	broken

				NSLog(@”Complete	failure	with	code:	%lu”,	status);

				[challenge.sender	cancelAuthenticationChallenge:challenge];

		}

}

In	this	routine,	you	are	passed	a	challenge	object	and	extract	the	trust	object.
You	evaluate	the	trust	object	(SecTrustEvaluate)	and	receive	a	recoverable
failure.	You	fetch	the	subject	and	determine	if	it’s	“close	enough”	(in	this
case,	checking	if	it	includes	.google.com).	If	you’re	okay	with	the	name	you
were	passed,	you	reevaluate	the	certificate	as	a	simple	X.509	certificate	rather
than	as	part	of	an	SSL	handshake	(that	is,	you	evaluate	it	while	ignoring	the

hostname).	This	is	done	with	a	custom	function	RNSecTrustEvaluateAsX509.

static	OSStatus	RNSecTrustEvaluateAsX509(SecTrustRef	trust,

																																									SecTrustResultType

*result

)

{

		OSStatus	status	=	errSecSuccess;

		SecPolicyRef	policy	=	SecPolicyCreateBasicX509();

		SecTrustRef	newTrust;

		CFIndex	numberOfCerts	=	SecTrustGetCertificateCount(trust);

		CFMutableArrayRef	certs;

		certs	=	CFArrayCreateMutable(NULL,

																															numberOfCerts,

																															&kCFTypeArrayCallBacks);

		for	(NSUInteger	index	=	0;	index	<	numberOfCerts;	++index)	{

				SecCertificateRef	cert;

				cert	=	SecTrustGetCertificateAtIndex(trust,	index);

				CFArrayAppendValue(certs,	cert);

		}

		status	=	SecTrustCreateWithCertificates(certs,

																																										policy,

																																										&newTrust);

		if	(status	==	errSecSuccess)	{

				status	=	SecTrustEvaluate(newTrust,	result);

		}

		CFRelease(policy);

		CFRelease(newTrust);

		CFRelease(certs);

		

		return	status;

}

This	function	creates	a	new	trust	object	by	copying	all	the	certificates	from
the	original	trust	object	created	by	the	URL	loading	system.	This	trust	object
uses	the	simpler	X.509	policy,	which	only	checks	the	validity	and	trust	of	the
certificate	itself,	without	considering	the	hostname	as	the	original	SSL	policy
does.

A	certificate	may	also	be	invalid	because	it	has	expired.	Unfortunately,	while
you	can	reevaluate	the	certificate	using	any	date	you	want	using
SecTrustSetVerifyDate,	there	is	no	easy,	public	way	to	determine	the
validity	dates	for	the	certificate.	The	following	private	methods	allow	you	to
work	out	the	valid	range:

CFAbsoluteTime	SecCertificateNotValidBefore(SecCertificateRef);

CFAbsoluteTime	SecCertificateNotValidAfter(SecCertificateRef);

As	with	all	private	methods,	these	may	change	at	any	time,	and	may	be	rejected	by	Apple.	The
only	other	practical	way	to	parse	the	certificate	is	to	export	it	with	SecCertificateCopyData	and
parse	it	again	using	OpenSSL.	Building	and	using	OpenSSL	on	iOS	is	beyond	the	scope	of	this
book.	Search	the	Web	for	“OpenSSL	iOS”	for	several	explanations	of	how	to	build	this	library.

After	evaluating	the	trust	object,	the	final	result	will	be	a
SecTrustResultType.	There	are	several	results	that	represent	“good”	or
“possibly	good”	certificates:

■	kSecTrustResultProceed—The	certificate	is	valid,	and	the	user	has
explicitly	accepted	it.
■	kSecTrustResultConfirm—The	certificate	is	valid,	and	you	should	ask
the	user	whether	to	accept	it.

■	kSecTrustResultUnspecified—The	certificate	is	valid,	and	the	user	has
not	explicitly	accepted	or	rejected	it.	Generally	you	accept	it	in	this	case.
■	kSecTrustResultRecoverableTrustFailure—The	certificate	is	invalid,
but	in	a	way	that	may	be	acceptable,	such	as	a	name	mismatch,	expiration,
or	lack	of	trust	(such	as	a	self-signed	certificate).

The	following	results	indicate	that	the	certificate	should	not	be	accepted:

■	kSecTrustResultDeny—The	certificate	is	valid,	and	the	user	has
explicitly	rejected	it.
■	kSecTrustResultInvalid—The	validation	was	unable	to	complete,
likely	because	of	a	bug	in	your	code.

■	kSecTrustResultFatalTrustFailure—The	certificate	itself	was
defective	or	corrupted.
■	kSecTrustResultOtherError—The	validation	was	unable	to	complete,
likely	because	of	a	bug	in	Apple’s	code.	You	should	never	see	this	error.

Determining	Certificate	Trust
So	far,	you’ve	learned	to	determine	if	a	certificate	is	valid,	but	that	doesn’t
mean	it’s	trusted.	Returning	to	the	example	of	identifying	yourself	at	the
bank,	if	you	present	your	Metallica	fan	club	membership	card,	it	probably

would	not	be	accepted	as	identification.	The	bank	has	no	reason	to	believe
that	your	fan	club	has	done	a	good	job	making	sure	you	are	who	you	say	you
are.	That’s	the	same	situation	that	an	application	faces	when	presented	with	a
certificate	signed	by	an	unknown	authority.

To	be	trusted,	a	certificate	must	ultimately	be	signed	by	one	of	the	certificates
in	the	trust	object’s	list	of	anchor	certificates.	Anchor	certificates	are	those
certificates	that	are	explicitly	trusted	by	the	system.	iOS	ships	with	more	than
a	hundred	of	them	from	companies	and	government	agencies.	Some	are
global	names	like	VeriSign	and	DigiTrust;	others	are	more	localized	like
QuoVadis	and	Vaestorekisterikeskus.	Each	of	these	organizations	went
through	a	complex	audit	process	and	paid	significant	amounts	of	money	to	be
in	the	root	store,	but	that	doesn’t	mean	your	application	needs	to	trust	them.

If	you	generate	your	own	certificate,	you	can	embed	the	public	key	in	your
application	and	configure	your	trust	object	to	accept	only	that	certificate	or
certificates	signed	by	it.	This	gives	you	greater	control	over	your	security	and
can	save	you	some	money.

For	this	example,	you	create	a	self-signed	root	certificate.

1.	Open	Keychain	Access.
2.	Select	Keychain	Access	menu	→	Certificate	Assistant	→	Create	a
Certificate.

3.	Enter	any	name	you	like,	set	the	Identity	Type	to	Self	Signed	Root,	set
the	Certificate	Type	to	SSL	Client,	and	create	the	certificate.	You	will
receive	a	warning	that	this	is	a	self-signed	certificate.	That	is	the	intent	of
this	process,	so	you	should	click	Continue.	Your	newly	created	certificate
will	display	a	warning	that	“This	root	certificate	is	not	trusted.”	That	is	also
as	expected	because	it	is	not	in	the	root	keychain.
4.	Back	in	the	Keychain	Access	window,	select	the	login	keychain	and
select	the	category	Certificates.

5.	Find	your	certificate	and	drag	it	to	the	desktop	to	export	it.	This	file
includes	only	the	public	key.	Keychain	does	not	export	the	private	key	by
default.	Drag	the	public	key	file	into	your	Xcode	project.

You	can	test	that	the	certificate	presented	is	signed	by	your	certificate	as

follows:

		NSError	*error;

		NSString	*path	=	[[NSBundle	mainBundle]

pathForResource:@”MyCert”

																																																			ofType:@”cer”];

		NSData	*certData	=	[NSData	dataWithContentsOfFile:path

																																												options:0

																																														error:&error];

		

		SecCertificateRef	certificate;

		certificate	=	SecCertificateCreateWithData(NULL,

																																				(__bridge	CFDataRef)certData);

		CFArrayRef	certs	=	CFArrayCreate(NULL,

																																			(const	void**)&certificate,

																																			1,

																																			&kCFTypeArrayCallBacks);

		SecTrustSetAnchorCertificates(trust,	certs);

		

		CFRelease(certs);

		CFRelease(certificate);

You	load	the	certificate	from	your	resource	bundle	into	an	NSData,	convert	it
into	a	SecCertificate,	and	set	it	as	the	anchor	for	the	trust	object.	The	trust
object	will	now	only	accept	the	certificates	passed	to
SecTrustSetAnchorCertificates	and	will	ignore	the	system’s	anchors.	If
you	would	like	to	accept	both,	you	can	use
SecTrustSetAnchorCertificatesOnly	to	reconfigure	the	trust	object.

Using	these	techniques,	you	can	correctly	respond	to	any	certificate	in	your
connection:willSendRequestForAuthenticationChallenge:	method,	and
control	which	certificates	you	accept	or	reject.

Employing	File	Protection
iOS	provides	hardware-level	encryption	of	files.	Files	marked	for	protection
are	encrypted	using	a	per-device	key,	which	itself	is	encrypted	using	the
user’s	password	or	PIN.	Ten	seconds	after	the	device	is	locked,	the
unencrypted	per-device	key	is	removed	from	memory.	When	the	user	unlocks
the	device,	the	password	or	personal	identification	number	(PIN)	is	used	to
decrypt	the	per-device	key	again,	which	is	then	used	to	decrypt	the	files.

The	weakest	link	in	this	scheme	is	the	user’s	password.	On	an	iPhone,	users
almost	exclusively	use	a	4-digit	PIN,	which	offers	only	10,000	combinations
(far	fewer	are	used	in	practice).	In	May	2011,	ElcomSoft	Co.	Ltd
demonstrated	that	it	could	brute-force	a	4-digit	PIN	in	about	20–40	minutes.
This	doesn’t	protect	against	forensics	or	device	theft,	but	does	protect	against
attackers	who	only	have	access	to	the	device	for	a	few	minutes.	On	iPad,
typing	a	real	password	is	much	more	convenient,	so	the	security	is	similar	to
file	encryption	on	a	laptop.

For	a	developer,	the	specifics	of	the	iOS	encryption	scheme	aren’t	critical.
The	scheme	is	effective	enough	for	users	to	expect	it	from	any	application
that	holds	sensitive	information.

You	can	configure	the	protection	of	individual	files	that	you	create	with
NSFileManager	or	NSData.	The	options,	shown	in	the	following	list,	have
slightly	different	names.	NSFileManager	applies	string	attributes	to	the	file,
while	NSData	uses	numeric	options	during	creation,	but	the	meanings	are	the
same.	The	FileManager	constants	begin	with	NSFileProtection...,	and	the
NSData	constants	begin	with	NSDataWritingFileProtection....

■	...None—The	file	is	not	protected	and	can	be	read	or	written	at	any
time.	This	is	the	default	value.
■	...Complete—Any	file	with	this	setting	is	protected	10	seconds	after	the
device	is	locked.	This	is	the	highest	level	of	protection,	and	the	setting	you
should	generally	use.	Files	with	this	setting	may	not	be	available	when
your	program	is	running	in	the	background.	When	the	device	is	unlocked,
these	files	are	unprotected.

■	...CompleteUnlessOpen—Files	with	this	setting	are	protected	10
seconds	after	the	device	is	locked	unless	they	are	currently	open.	This
allows	your	program	to	continue	accessing	the	file	while	running	in	the
background.	When	the	file	is	closed,	it	will	be	protected	if	the	device	is
locked.
■	...CompleteUntilFirstUserAuthentication—Files	with	this	setting
are	only	protected	between	the	time	the	device	boots	and	the	first	time	the
user	unlocks	the	device.	The	files	are	unprotected	from	that	point	until	the
device	is	rebooted.	This	allows	your	application	to	open	existing	files

while	running	in	the	background.	You	can	create	open	new	files	using
...CompleteUnlessOpen.	This	is	better	than	the	None	setting,	but	should	be
avoided	if	at	all	possible	because	it	provides	very	limited	protection.

To	create	a	new	file	with	file	protection	turned	on,	convert	it	to	an	NSData	and
then	use	writeToFile:options:error:.	This	is	preferable	to	creating	the	file
and	then	using	NSFileManager	to	set	its	protection	attribute.

		[data	writeToFile:dataPath

												options:NSDataWritingFileProtectionComplete

														error:&writeError];

To	create	a	protected	file	in	the	background,	you	can	apply	the	option
...CompleteUnlessOpen,	which	allows	you	to	read	as	long	as	it	is	open	when
the	device	locks.	You	should	generally	avoid	this	unless	you’re	actually	in	the
background.	The	easiest	way	to	achieve	this	is	like	this:

[data	writeToFile:	path

											options:	NSDataWritingFileProtectionComplete

													error:	&error]	||

[data	writeToFile:	path

											options:	NSDataWritingFileProtectionCompleteUnlessOpen

													error:	&error];

If	you	use	this	technique,	upgrade	your	file	protection	at	startup	with	a
routine	like	this:

-(void)upgradeFilesInDirectory:(NSString	*)dir

																									error:(NSError	**)error	{

		NSFileManager	*fm	=	[NSFileManager	defaultManager];

		NSDirectoryEnumerator	*dirEnum	=	[fm	enumeratorAtPath:dir];

		for	(NSString	*path	in	dirEnum)	{

				NSDictionary	*attrs	=	[dirEnum	fileAttributes];

				if	(![[attrs	objectForKey:	NSFileProtectionKey]

								isEqual:NSFileProtectionComplete])	{

						attrs	=	[NSDictionary	dictionaryWithObject:

														NSFileProtectionComplete

forKey:NSFileProtectionKey];

						[fm	setAttributes:attrs	ofItemAtPath:path	error:error];

				}

		}

}

If	your	application	needs	to	know	whether	protected	data	is	available	or	not,

you	can	use	one	of	the	following:

■	Implement	the	methods
applicationProtectedDataWillBecomeUnavailable:	and
applicationProtectedDataDidBecomeAvailable:	in	your	application
delegate,
■	Observe	the	notifications
UIApplicationProtectedDataWillBecomeUnavailable	and
UIApplicationProtectedDataDidBecomeAvailable	(these	constants	lack
the	traditional	Notification	suffix),

■	Check	[[UIApplication	sharedApplication]
protectedDataAvailable].

For	foreground-only	applications,	file	protection	is	very	easy.	Because	it’s	so
simple	and	it’s	hardware	optimized,	you	should	generally	protect	your	files
unless	you	have	a	good	reason	not	to.	If	your	application	runs	in	the
background,	you	need	to	give	more	careful	thought	to	how	to	apply	file
protection,	but	you	should	still	make	sure	to	protect	all	sensitive	information
as	well	as	possible.

Using	Keychains
File	protection	is	intended	to	protect	data.	Keychain	is	intended	to	protect
secrets.	In	this	context,	a	secret	is	a	small	piece	of	data	used	to	access	other
data.	The	most	common	secrets	are	passwords	and	private	keys.

The	keychain	is	protected	by	the	operating	system	and	is	encrypted	when	the
device	is	locked.	In	practice,	it	works	very	similarly	to	file	protection.
Unfortunately,	the	Keychain	API	is	anything	but	friendly.	Many	people	have
written	wrappers	around	the	Keychain	API,	but	my	recommendation	is
Apple’s	KeyChainItemWrapper	from	the	GenericKeychain	sample	code
(2010).	This	is	what	I’ll	discuss	in	this	section,	after	a	brief	introduction	to
the	low-level	data	structures.

An	item	in	the	keychain	is	called	a	SecItem,	but	is	stored	in	a	CFDictionary.
There	is	no	SecItemRef	type.	There	are	five	classes	of	SecItem:	generic
password,	Internet	password,	certificate,	key,	and	identity.	In	most	cases,	you

want	to	use	a	generic	password.	Many	problems	come	from	developers	trying
to	use	an	Internet	password,	which	is	more	complicated	and	provides	little
benefit.	KeyChainItemWrapper	only	uses	generic	password	items,	which	is
one	reason	I	like	it.	Storing	private	keys	and	identities	is	rare	in	iOS
applications	and	it	won’t	be	discussed	in	this	book.	Certificates	that	contain
only	public	keys	should	generally	be	stored	in	files	rather	than	in	keychain.

You	eventually	need	to	search	the	keychain	for	the	item	you	want.	There	are
many	pieces	of	the	key	to	search	for,	but	the	best	way	is	to	assign	your	own
identifier	and	search	for	that.	Generic	password	items	include	an	attribute
kSecAttrGeneric,	which	you	can	use	to	store	your	identifier.	This	is	how
KeyChainItemWrapper	operates.

Keychain	items	have	several	searchable	attributes	and	a	single	encrypted
value.	For	a	generic	password	item,	some	of	the	more	important	attributes	are
the	account	(kSecAttrAccount),	service	(kSecAttrService),	and	identifier
(kSecAttrGeneric).	The	value	is	generally	the	password.

So	with	that	background,	let’s	see	how	to	use	KeychainItemWrapper.	First,	as
shown	in	the	following	code,	you	create	one	with
initWithIdentifier:accessGroup:.	I	discuss	access	groups	in	the	section
“Sharing	Data	with	Access	Groups,”	but	for	now	leave	it	nil.

		KeychainItemWrapper	*

		wrapper	=	[[KeychainItemWrapper	alloc]

																															initWithIdentifier:@”MyKeychainItem”

																																						accessGroup:nil];

You	can	now	read	from	and	write	to	wrapper	like	you	would	an
NSDictionary.	It	automatically	synchronizes	with	the	keychain.	The
__bridge	casts	are	to	allow	you	to	pass	Core	Foundation	constants	to	a	Cocoa
method	under	ARC.

		id	kUsernameKey	=	(__bridge	id)kSecAttrAccount;

		id	kPasswordKey	=	(__bridge	id)kSecValueData;

		NSString	*username	=	[wrapper	objectForKey:kUsernameKey];

		[wrapper	setObject:password	forKey:kPasswordKey];

KeychainItemWrapper	caches	reads,	but	not	writes.	Writing	to	the	keychain
can	be	expensive,	so	you	shouldn’t	do	it	too	often.	The	keychain	is	not	a

place	to	store	sensitive	data	that	changes	often.	That	should	be	written	an
encrypted	file	as	described	in	the	section	“Employing	File	Protection.”

Sharing	Data	with	Access	Groups
The	iOS	sandbox	creates	a	significant	headache	for	application	suites.	If	you
have	multiple	applications	that	work	together,	there	is	no	easy	way	to	share
information	among	them.	Of	course	you	can	save	the	data	on	a	server,	but	the
user	still	needs	to	enter	credentials	for	each	of	your	applications.

iOS	offers	a	solution	to	this	with	access	groups.	Multiple	applications	can
share	keychain	data	as	long	as	they	share	an	access	group.	To	create	an	access
group,	open	the	target	in	Xcode.	At	the	bottom	of	the	summary	pane	enable
Entitlements.	Then	add	a	new	keychain	access	group	as	shown	in	Figure	11-
2.

Using	KeychainItemWrapper,	you	can	use	this	access	group	by	passing	the
identifier	to	initWithIdentifier:accessGroup:.	For	more	information	on
this	feature,	see	the	documentation	for	SecItemAdd	in	the	Keychain	Services
Reference	(developer.apple.com).

http://developer.apple.com/

Figure	11-2	Creating	the	serversettings	access	group

Storing	small	pieces	of	sensitive	information	in	the	keychain	is	quite	simple
with	KeychainItemWrapper.	Unless	you	have	a	very	good	reason,	I
recommend	using	it	instead	of	directly	accessing	the	Keychain	API,	which	is
much	more	complicated.

Using	Encryption
Most	of	the	time,	iOS	handles	all	your	encryption	needs	for	you.	It
automatically	encrypts	and	decrypts	HTTPS	for	network	traffic	and	manages
encrypted	files	using	file	protections.	If	you	have	certificates,	SecKeyEncrypt
and	SecKeyDecrypt	handle	asymmetric	(public/private	key)	encryption	for
you.

But	what	about	simple,	symmetric	encryption	using	a	password?	iOS	has
good	support	for	this,	but	limited	documentation.	The	available

documentation	is	in	/usr/include/CommonCrypto.	Most	of	it	assumes	that
you	have	some	background	in	cryptography.	This	section	covers	what	you
need	to	use	it	successfully.

Overview	of	AES
The	Advanced	Encryption	Standard,	or	AES,	is	a	symmetric	encryption
algorithm.	Given	a	key,	it	converts	plaintext	into	ciphertext.	The	same	key	is
used	to	convert	ciphertext	back	into	plaintext.	Originally	named	Rijndael,	in
2001	the	algorithm	was	selected	by	the	U.S.	government	as	its	standard	for
encryption.

It’s	a	very	good	algorithm.	Unless	you	need	another	algorithm	for
compatibility	with	an	existing	system,	you	should	always	use	AES	for
symmetric	encryption.	The	best	cryptographers	in	the	world	have	carefully
scrutinized	it,	and	it’s	hardware	optimized	on	iOS	devices,	making	it
extremely	fast.

Converting	Passwords	to	Keys	with	PBKDF2
AES	offers	three	key	lengths:	128,	192,	and	256	bits.	There	are	slight
differences	in	the	algorithm	for	each	length.	Unless	you	have	very	specialized
needs,	I	recommend	AES-128.	It	offers	an	excellent	trade-off	of	security	and
performance,	including	time	performance	and	battery	life	performance.

A	key	is	not	the	same	thing	as	a	password.	A	key	is	a	very	large	number,	used
to	encrypt	and	decrypt	data.	All	possible	keys	for	an	encryption	system	are
called	its	key	space.	A	password	is	something	a	human	can	type.	Long
passwords	that	include	spaces	are	sometimes	called	passphrases,	but	for
simplicity	I	just	use	the	word	“password”	no	matter	the	construction.	If	you
try	to	use	a	password	as	an	AES	key,	you	significantly	shrink	the	number	of
available	keys.	If	the	user	selects	a	random	16-character	password	using	the
94	characters	on	a	standard	keyboard,	that	only	creates	about	a	104-bit	key
space,	approximately	one	ten-millionth	the	size	of	the	full	AES	key	space.
Real	users	select	passwords	from	a	much	smaller	set	of	characters.	Worse	yet,
if	the	user	has	a	password	longer	than	16	bytes	(16	single-byte	characters	or	8
double-byte	characters),	you	will	throw	away	part	of	it	when	using	AES	128.

You	need	a	way	to	convert	a	password	into	a	useable	key	that	makes	it	as

hard	as	possible	on	the	attacker	to	search	every	possible	password.	The
answer	is	a	password-based	key	derivation	function.	Specifically,	you	will	use
PBKDF2,	which	is	defined	by	RSA	Laboratories’	Public-Key	Cryptography
Standards	(PKCS)	#5.	You	don’t	need	to	know	the	internals	of	PBKDF2	or
PKCS	#5,	but	it’s	important	to	know	the	names	because	they	show	up	in	the
documentation.	What	is	important	is	that	PBKDF2	converts	a	password	into	a
key.

To	use	PBKDF2,	you	need	to	generate	a	salt,	which	is	just	a	large	random
number.	The	standard	recommends	at	least	64	bits.	The	salt	is	combined	with
the	password	to	prevent	identical	passwords	from	generating	identical	keys.
You	then	iterate	through	the	PBKDF2	function	a	specific	number	of	times,
and	the	resulting	data	is	your	key.	To	decrypt	the	data,	you	need	to	preserve
the	salt	and	the	number	of	iterations.	Typically	the	salt	is	saved	with	the
encrypted	data,	and	the	number	of	iterations	is	a	constant	in	your	source	code,
but	you	can	also	save	the	number	of	iterations	with	the	encrypted	data.

The	important	fact	here	is	that	the	salt,	the	number	of	iterations,	and	the	final
ciphertext	are	all	public	information.	Only	the	key	and	the	original	password
are	secrets.

Generating	the	salt	is	easy.	It’s	just	a	large	random	number.	You	can	create	it
with	a	method	like	randomDataOfLength:,	shown	in	the	following	code:

RNCryptManager.m	(CryptPic)

const	NSUInteger	kPBKDFSaltSize	=	8;

+	(NSData	*)randomDataOfLength:(size_t)length	{

		NSMutableData	*data	=	[NSMutableData	dataWithLength:length];

		

int	result	=	SecRandomCopyBytes(kSecRandomDefault,

																																		length,

																																		data.mutableBytes);

NSAssert(result	==	0,	@”Unable	to	generate	random	bytes:	%d”,

											errno);

		return	data;

}

...

NSData	*salt	=	[self	randomDataOfLength:kPBKDFSaltSize];

Originally,	the	standard	called	for	1,000	iterations	of	PBKDF2,	but	this	has

gone	up	as	CPUs	have	improved.	I	recommend	between	10,000	and	100,000
iterations	on	an	iPhone	4	and	50,000	to	500,000	iterations	on	a	modern
MacBook	Pro.	The	reason	for	the	large	number	is	to	slow	down	brute-force
attacks.	An	attacker	generally	tries	passwords	rather	than	raw	AES	keys
because	the	number	of	practical	passwords	is	much	smaller.	By	requiring
10,000	iterations	of	the	PBKDF2	function,	the	attacker	must	waste	about
80ms	per	attempt	on	an	iPhone	4.	That	adds	up	to	13	minutes	of	search	time
for	a	4-digit	PIN,	and	months	or	years	to	search	for	even	a	very	simple
password.	The	extra	80ms	for	a	single	key	generation	is	generally	negligible.
Going	up	to	100,000	iterations	adds	nearly	a	second	to	key	generation	on	an
iPhone,	but	provides	much	better	protection	if	the	password	guessing	is	done
on	a	desktop,	even	if	the	password	is	very	weak.

PBKDF2	requires	a	pseudorandom	function	(PRF),	which	is	just	a	function
that	can	generate	a	very	long	series	of	statistically	random	numbers.	The	only
algorithm	supported	on	iOS	for	this	purpose	is	SHA1,	so	you	always	pass
kCCPRFHmacAlgSHA1	for	this	parameter.

Luckily	it’s	easier	to	use	PBKDF2	than	it	is	to	explain	it.	The	following
method	accepts	a	password	string	and	salt	data	and	returns	an	AES	key.

RNCryptManager.m	(CryptPic)

#import	<CommonCrypto/CommonKeyDerivation.h>

const	NSUInteger	kAlgorithmKeySize	=	kCCKeySizeAES128;

const	NSUInteger	kPBKDFRounds	=	10000;		//	~80ms	on	an	iPhone	4

+	(NSData	*)AESKeyForPassword:(NSString	*)password

																									salt:(NSData	*)salt	{

		NSMutableData	*

		derivedKey	=	[NSMutableData	dataWithLength:kAlgorithmKeySize];

		

		int

		result	=	CCKeyDerivationPBKDF(kCCPBKDF2,									//	algorithm

																													password.UTF8String,		//	password

																													password.length,					//

passwordLength

																													salt.bytes,											//	salt

																													salt.length,										//	saltLen

																													kCCPRFHmacAlgSHA1,				//	PRF

																													kPBKDFRounds,									//	rounds

																													derivedKey.mutableBytes,	//

derivedKey

																													derivedKey.length);			//

derivedKeyLen

		

		//	Do	not	log	password	here

		NSAssert(result	==	kCCSuccess,

											@”Unable	to	create	AES	key	for	password:	%d”,	result);

		

		return	derivedKey;

}

Applying	PKCS7	Padding
AES	is	a	block	cipher,	which	means	that	it	operates	on	a	fixed-sized	block	of
data.	AES	works	on	exactly	128	bits	(16	bytes)	of	input	at	a	time.	Because	the
data	you	want	to	encrypt	may	not	be	an	exact	multiple	of	16	bytes,	it	may	be
necessary	to	pad	the	last	block	with	extra	data.	PKCS	#7	defines	a	standard
way	to	do	this,	and	you	generally	request	it	by	passing	the
kCCOptionPKCS7Padding	option.

Selecting	the	Mode	and	the	Initialization	Vector	(IV)
AES	can	operate	in	two	modes,	electronic	codebook	(ECB)	and	cipher-block
chaining	(CBC).	Unless	you	have	special	requirements,	you	should	always
use	CBC,	and	it	is	the	default	in	iOS.	In	this	mode,	each	block	influences	the
encryption	of	the	next	block,	which	greatly	improves	overall	security.

ECB	is	faster	than	CBC.	The	one	case	where	ECB	makes	sense	is	if	you	are	encrypting	a	large
number	of	small	(16	byte	or	less)	random	numbers.	An	example	of	this	is	using	AES	to	encrypt
other	AES	keys.	In	that	one	case,	ECB	is	no	less	secure	than	CBC.	It	is	extremely	uncommon	to
encounter	this	situation	in	iOS,	so	you	should	always	use	CBC.

The	first	block	is	a	special	case	because	there	is	no	previous	block.	CBC
allows	you	to	define	an	extra	block	called	the	initialization	vector	(IV)	to
begin	the	chain.	This	is	often	labeled	optional,	but	you	should	always	provide
one.	Otherwise,	an	all-zero	block	is	used,	and	that	leaves	your	data	vulnerable
to	certain	attacks.	The	IV	is	very	similar	to	the	salt	discussed	in	the	section
“Converting	Passwords	to	Keys	with	PBKDF2.”	It	ensures	that	if	the	same
plaintext	is	encrypted	with	the	same	key,	the	resulting	ciphertext	will	still	be
different.

As	with	the	salt,	the	IV	is	just	a	random	series	of	bytes	that	you	save	with	the

ciphertext	and	use	during	decryption.

		iv	=	[self	randomDataOfLength:kAlgorithmIVSize];

Performing	One-Shot	Encryption
That’s	really	all	the	theory	you	need.	iOS	provides	all	the	math	functions,	so
you	can	ignore	the	implementation	details.	Key	generation	with	PBKDF2	was
added	in	iOS	5.

The	first	example	is	one-shot	encryption	and	decryption	routines.	These	take
an	NSData	and	return	an	NSData.	They	use	the	convenience	function	CCCrypt
from	CommonCryptor.

The	encryption	routine	accepts	plaintext	data	and	a	password,	and	returns
ciphertext	data,	an	IV,	and	a	salt.

RNCryptManager.m	(CryptPic)

#import	<CommonCrypto/CommonCryptor.h>

const	CCAlgorithm	kAlgorithm	=	kCCAlgorithmAES128;

const	NSUInteger	kAlgorithmKeySize	=	kCCKeySizeAES128;

const	NSUInteger	kAlgorithmBlockSize	=	kCCBlockSizeAES128;

const	NSUInteger	kAlgorithmIVSize	=	kCCBlockSizeAES128;

const	NSUInteger	kPBKDFSaltSize	=	8;

const	NSUInteger	kPBKDFRounds	=	10000;		//	~80ms	on	an	iPhone	4

+	(NSData	*)encryptedDataForData:(NSData	*)data

																								password:(NSString	*)password

																														iv:(NSData	**)iv

																												salt:(NSData	**)salt

																											error:(NSError	**)error	{

		NSAssert(iv,	@”IV	must	not	be	NULL”);

		NSAssert(salt,	@”salt	must	not	be	NULL”);

		

		*iv	=	[self	randomDataOfLength:kAlgorithmIVSize];

		*salt	=	[self	randomDataOfLength:kPBKDFSaltSize];

		

		NSData	*key	=	[self	AESKeyForPassword:password	salt:*salt];

		

		size_t	outLength;

		NSMutableData	*

		cipherData	=	[NSMutableData	dataWithLength:data.length	+

																kAlgorithmBlockSize];

		CCCryptorStatus

		result	=	CCCrypt(kCCEncrypt,	//	operation

																			kAlgorithm,	//	Algorithm

																			kCCOptionPKCS7Padding,	//	options

																			key.bytes,	//	key

																			key.length,	//	keylength

																			(*iv).bytes,//	iv

																			data.bytes,	//	dataIn

																			data.length,	//	dataInLength,

																			cipherData.mutableBytes,	//	dataOut

																			cipherData.length,	//	dataOutAvailable

																			&outLength);	//	dataOutMoved

		if	(result	==	kCCSuccess)	{

				cipherData.length	=	outLength;

		}

		else	{

			//	...	Handle	Error	...

				return	nil;

		}

		

		return	cipherData;

}

The	decryption	routine	accepts	ciphertext	data,	a	password,	IV,	and	salt.	The
IV	and	salt	are	the	same	values	returned	from	the	encryption	method.

RNCryptManager.m	(CryptPic)

+	(NSData	*)decryptedDataForData:(NSData	*)data

																								password:(NSString	*)password

																														iv:(NSData	*)iv

																												salt:(NSData	*)salt

																											error:(NSError	**)error	{

		NSData	*key	=	[self	AESKeyForPassword:password	salt:salt];

		

		size_t	outLength;

		NSMutableData	*

		decryptedData	=	[NSMutableData	dataWithLength:data.length];

		CCCryptorStatus

		result	=	CCCrypt(kCCDecrypt,	//	operation

																			kAlgorithm,	//	Algorithm

																			kCCOptionPKCS7Padding,	//	options

																			key.bytes,	//	key

																			key.length,	//	keylength

																			iv.bytes,//	iv

																			data.bytes,	//	dataIn

																			data.length,	//	dataInLength,

																			decryptedData.mutableBytes,	//	dataOut

																			decryptedData.length,	//	dataOutAvailable

																			&outLength);	//	dataOutMoved

		

		if	(result	==	kCCSuccess)	{

				[decryptedData	setLength:outLength];

		}

		else	{

				if	(result	!=	kCCSuccess)	{

						//	...	Handle	Error	...

						return	nil;

				}

		}

		

		return	decryptedData;

}

Improving	CommonCrypto	Performance
The	CCCrypt	function	is	fairly	straightforward.	It	has	a	lot	of	parameters	and
you	need	to	generate	a	key,	but	once	you	have	your	data	in	place,	it's	just	one
function	call.	As	presented	in	in	the	section	“Performing	One-Shot
Encryption,”	however,	CCCrypt	requires	enough	memory	to	hold	two	copies
of	your	plaintext.	It	also	requires	that	all	the	plaintext	be	available	when	it
gets	started.

You	can	save	half	the	memory	by	reusing	the	buffer	in	CCCrypt.	The	dataIn
and	dataOut	parameters	can	point	to	the	same	buffer	as	long	as	it’s	as	large	as
the	ciphertext.	For	AES	that’s	the	size	of	the	plaintext	plus	one	16-byte	block.

This	still	requires	that	all	the	plaintext	be	available	in	memory	at	the	same
time.	That	can	be	expensive	for	large	files,	especially	on	a	mobile	device.	It
also	prevents	you	from	decrypting	as	the	data	is	read	from	the	network.	This
is	particularly	useful	in	cases	when	you	want	to	store	data	on	an	untrusted
server.	HTTPS	protects	it	on	the	network	but	that	doesn’t	help	if	you	don’t
trust	the	server.	It’s	easiest	to	use	file	protection	locally	on	the	device	and	use
AES	to	protect	the	file	remotely.

CCCrypt	is	just	a	convenience	function	around	the	normal	CommonCrypto
routines:	CCCryptorCreate,	CCCryptorUpdate,	and	CCCryptorFinal.	In	this
example,	you	use	these	to	handle	encryption	and	decryption	with	NSStream

objects.	The	full	source	code	is	available	in	the	CryptPic	sample	code	for	this
chapter.

This	routine	handles	either	encrypting	or	decrypting,	based	on	the	operation
parameter	(kCCEncrypt	or	kCCDecrypt).	First,	it	reads	or	writes	the	IV	and
salt	at	the	beginning	of	the	stream.	The	_CM...Data	methods	are	helpers	for
dealing	with	NSStream.	They’re	available	in	the	sample	code.

RNCryptManager.m	(CryptPic)

		switch	(operation)	{

				case	kCCEncrypt:

						//	Generate	a	random	IV	for	this	file.

						iv	=	[self	randomDataOfLength:kAlgorithmIVSize];

						salt	=	[self	randomDataOfLength:kPBKDFSaltSize];

						if	(!	[outStream	_CMwriteData:iv	error:error]	||

										!	[outStream	_CMwriteData:salt	error:error])	{

								return	NO;

						}

						break;

				case	kCCDecrypt:

						//	Read	the	IV	and	salt	from	the	encrypted	file

						if	(!	[inStream	_CMgetData:&iv

																							maxLength:kAlgorithmIVSize

																											error:error]	||

										!	[inStream	_CMgetData:&salt

																							maxLength:kPBKDFSaltSize

																											error:error])	{

								return	NO;

						}

						break;

				default:

						NSAssert(NO,	@”Unknown	operation:	%d”,	operation);

						break;

		}

Next,	it	generates	the	key	from	the	password	and	creates	the	CCCryptor
object.	This	is	the	object	that	performs	the	encryption	or	decryption.

		NSData	*key	=	[self	AESKeyForPassword:password	salt:salt];

		

		//	Create	the	cryptor

		CCCryptorRef	cryptor	=	NULL;

		CCCryptorStatus	result;

		result	=	CCCryptorCreate(operation,													//	operation

																											kAlgorithm,												//	algorithim

																											kCCOptionPKCS7Padding,	//	options

																											key.bytes,													//	key

																											key.length,												//	keylength

																											iv.bytes,														//	IV

																											&cryptor);													//	OUT

cryptorRef

Next,	it	allocates	some	buffers	to	use.	According	to	the	documentation,	you
should	be	able	to	use	a	single	buffer	to	manage	the	plaintext	and	ciphertext,
but	there	is	a	bug	in	CCCryptorUpdate	that	prevents	this	(radar://9930555).
If	you	use	padding	and	call	CCCryptorUpdate	multiple	times,	you	can’t	do	“in
place”	encryption.	That	isn’t	a	major	problem	in	this	case	because	the	buffer
size	is	small.

CCCryptorGetOutputLength	returns	the	size	of	the	buffer	required	to	process
the	requested	number	of	bytes,	including	any	extra	data	that	may	be	needed
for	the	final	block.	You	could	also	use	kMaxReadSize	+
kAlgorithmBlockSize,	which	are	always	greater	than	or	equal	to	the	result	of
CCCryptorGetOutputLength.	There’s	no	problem	with	allocating	a	little	too
much	memory	here.	Using	NSMutableData	rather	than	malloc	lets	ARC	take
care	of	the	memory	management	for	you,	even	if	there’s	an	error.

		dstBufferSize	=	CCCryptorGetOutputLength(cryptor,	//	cryptor

																																						kMaxReadSize,	//	input

length

																																													true);	//	final

		NSMutableData	*

		dstData	=	[NSMutableData	dataWithLength:dstBufferSize];

		

		NSMutableData	*

		srcData	=	[NSMutableData	dataWithLength:kMaxReadSize];

		uint8_t	*srcBytes	=	srcData.mutableBytes;

		uint8_t	*dstBytes	=	dstData.mutableBytes;

Now	the	routine	reads	a	block	of	data,	encrypts	or	decrypts	it,	and	writes	it	to
the	output	stream.	processResult:bytes:length:toStream:error:	just
checks	the	result	and	handles	the	file	writing	in	a	way	that	simplifies	error
handling.	The	important	call	is	CCCryptorUpdate.	This	reads	data	from
srcBytes	and	writes	them	to	dstBytes.	It	updates	dstLength	with	the
number	of	bytes	written.

		ssize_t	srcLength;

		size_t	dstLength	=	0;

		

		while	((srcLength	=	[inStream	read:srcBytes

																											maxLength:kMaxReadSize])	>	0)	{

				result	=	CCCryptorUpdate(cryptor,							//	cryptor

																													srcBytes,						//	dataIn

																													srcLength,					//	dataInLength

																													dstBytes,						//	dataOut

																													dstBufferSize,	//	dataOutAvailable

																													&dstLength);			//	dataOutMoved

				

				if	(![self	processResult:result

																							bytes:dstBytes

																						length:dstLength

																								toStream:outStream

																							error:error])	{

						CCCryptorRelease(cryptor);

						return	NO;

				}

		}

When	you’ve	read	the	entire	file	(srcLength	==	0),	there	may	still	be	some
unprocessed	data	in	the	CCCryptor.	CCCryptorUpdate	only	processes	data	in
block-sized	units	(16	bytes	for	AES).	If	padding	was	enabled,	you	need	to
call	CCCryptorFinal	to	deal	with	whatever’s	left	over.	If	you	did	not	enable
padding,	then	you	can	skip	this	step,	but	it’s	generally	not	worth	writing
special	code	to	avoid	it.

		result	=	CCCryptorFinal(cryptor,								//	cryptor

																										dstBytes,							//	dataOut

																										dstBufferSize,		//	dataOutAvailable

																										&dstLength);				//	dataOutMoved

		if	(![self	processResult:result

																					bytes:dstBytes

																				length:dstLength

																						toStream:outStream

																					error:error])	{

				CCCryptorRelease(cryptor);

				return	NO;

		}

		

		CCCryptorRelease(cryptor);

		return	YES;

Note	the	calls	to	CCCryptorRelease.	Unlike	other	...Release	functions,	this
immediately	frees	the	memory.	There	is	no	retain	counting	on	CCCryptor.
CCCryptorRelease	also	overwrites	the	memory	with	zeros,	which	is	good
security	practice	for	sensitive	data	structures.

The	fact	that	CCCryptorRelease	overwrites	the	memory	with	zeros	is	not	documented	in
CCCommonCryptor.h,	but	can	be	verified	in	the	source	code.	CommonCrypto	is	open	source,	and	the
source	is	available	from	http://opensource.apple.com/.	Look	in	the	OS	X	tree,	not	the	iOS	tree.

You	can	use	this	routine	to	encrypt	and	decrypt	from	any	NSStream,	which
can	handle	file	paths,	URLs,	or	NSData.	You	would	normally	wrap	it	in	a
method	like	this	one:

+	(BOOL)encryptFromStream:(NSInputStream	*)fromStream

																	toStream:(NSOutputStream	*)toStream

																	password:(NSString	*)password

																				error:(NSError	**)error	{

		return	[self	applyOperation:kCCEncrypt

																			fromStream:fromStream

																					toStream:toStream

																					password:password

																								error:error];

}

You	would	then	use	it	like	this	to	encrypt	an	NSData	directly	to	disk.

CPCryptController.m	(CryptPic)

		NSInputStream	*pictureStream	=	[NSInputStream

																																		inputStreamWithData:data];

		[pictureStream	open];

		

		NSOutputStream	*

		outputStream	=	[NSOutputStream

																		outputStreamToFileAtPath:encryptedPath

																		append:NO];

		[outputStream	open];

		

		BOOL	result	=	[RNCryptManager	encryptFromStream:pictureStream

																																									toStream:outputStream

																																									password:password

																																												error:error];

		[pictureStream	close];

		[outputStream	close];

http://opensource.apple.com/

Combining	Encryption	and	Compression
It’s	sometimes	a	good	idea	to	compress	data	before	encrypting	it.	There	is	a
theoretical	security	benefit	to	doing	this,	but	generally	it’s	just	to	make	the
data	smaller.	The	important	thing	to	remember	is	that	you	must	compress
before	you	encrypt.	You	can’t	compress	encrypted	data.	If	you	could,	that
would	suggest	patterns	in	the	ciphertext,	which	would	indicate	a	poor
encryption	algorithm.	In	most	cases,	encrypting	and	then	compressing	leads
to	a	larger	output	than	the	original	plaintext.

Summary
iOS	provides	a	rich	collection	of	security	frameworks	to	make	it	as	easy	as
possible	to	secure	your	users’	data.	This	chapter	showed	you	how	to	secure
network	communications,	files,	and	passwords.	You	also	learned	how	to
properly	validate	certificates	so	that	you	can	ensure	your	application	only
communicates	with	trusted	sources.	Securing	your	application	requires	a	few
extra	lines	of	code,	but	taking	care	of	the	basics	is	generally	not	difficult
using	the	code	provided	in	this	chapter.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Certificate,	Key,	and	Trust	Services	Programming	Guide

iOS	Application	Programming	Guide,	“The	Application	Runtime
Environment”
Secure	Coding	Guide	(/usr/lib/CommonCrypto)

WWDC	Sessions
The	following	session	videos	are	available	at	developer.apple.com.

WWDC	2010,	“Session	204:	Creating	Secure	Applications”

http://developer.apple.com/
http://developer.apple.com/

WWDC	2011,	“Session	208:	Securing	iOS	Applications”

Other	Resources
Aleph	One,	Phrack	vol.	7,	issue	49,	“Smashing	The	Stack	For	Fun	And
Profit,”	1996.	Fifteen	years	later,	this	is	still	one	of	the	best	introductions	to
buffer	overflows	available,	with	examples.
www.phrack.org/issues.html?issue=49&id=14#article

Schneier,	Bruce,	Applied	Cryptography.	1996.	Anyone	interested	in	the
guts	of	cryptography	should	read	this	book.	The	main	problem	is	that	after
reading	it,	you	may	think	you	can	create	your	own	cryptography
implementations.	You	shouldn’t.	Read	this	book	as	a	fascinating,	if	dated,
introduction	to	cryptography.	Then	put	it	down	and	use	a	well-established
implementation.

http://www.phrack.org/issues.html?issue=49&id=14#article

Chapter	12:	Running	on	Multiple
iPlatforms	and	iDevices

The	iOS	SDK	was	announced	to	the	public	in	February	2008.	At	that	time
there	were	only	two	devices	using	it:	iPhone	and	iPod	touch.	Apple	has	since
been	innovating	vigorously	and	in	2010,	it	introduced	another	bigger	brother
to	the	family,	the	iPad.	In	2010,	another	new	device	running	iOS	was
introduced:	the	Apple	TV.	Who	knows	what	the	future	might	hold—Apple
might	even	announce	an	SDK	for	Apple	TV	development	and	may	even
enable	running	games	from	Apple	TV	controlled	by	your	iPhone	on	iPod
touch.

Every	year,	a	new	version	of	the	SDK	comes	out	along	with	at	least	two	or
three	new	device	updates,	and	these	new	devices	often	come	with	additional
sensors.	The	GPS	sensor	debuted	with	iPhone	3G,	the	magnetometer—a
sensor	used	to	show	the	direction	of	magnetic	north	(more	commonly	known
as	a	compass)—debuted	in	iPhone	3GS,	and	the	gyroscope	(for	lifelike	game
play)	in	iPhone	4.	The	iPad	was	introduced	later	with	a	whole	new	UI,	a	far
bigger	screen	than	the	iPhone,	but	without	a	camera.	iPad	added	a	couple	of
cameras	(including	a	front-facing	camera)	in	the	second	iteration,	iPad	2.

Similarly	every	version	of	the	SDK	comes	with	powerful	new	features:	In
App	Purchases,	Push	Notification	Service,	Core	Data,	and	MapKit	support	in
iOS	3;	multitasking,	blocks,	and	Grand	Central	Dispatch	in	iOS	4;	iCloud,
Twitter	integration,	and	Storyboards	in	iOS	5,	to	name	a	few.	When	you	use
one	of	these	features,	you	might	be	interested	in	providing	backward
compatibility	to	users	running	an	older	version	of	the	operating	system.	Keep
in	mind,	however,	that	if	you	are	using	a	feature	available	in	a	newer	version
of	the	SDK,	you	must	either	forget	about	old	users	(not	a	good	idea)	or	write
code	that	adapts	to	both	users	(either	by	supporting	an	equivalent	feature	for
older	users	or	by	prompting	them	that	additional	features	are	available	if	they
run	a	newer	version).

As	a	developer	you	should	know	how	to	write	code	that	easily	adapts	to	any

device	(known	or	unknown)	and	platform.	For	that	purpose,	it’s	easier	to
depend	on	Cocoa	framework	APIs	to	detect	capabilities	than	writing	code
assuming	that	a	certain	sensor	would	be	present	on	a	given	hardware.	In
short,	developers	should	avoid	making	assumptions	about	hardware
capabilities	based	on	device	model	strings.

This	chapter	looks	at	some	strategies	that	can	help	you	write	code	that	adapts
easily	to	multiple	platforms	and	devices	using	the	various	APIs	provided	by
Cocoa	framework.	In	the	course	of	this	chapter,	you	write	a	category
extension	on	the	UIDevice	class,	and	add	methods	that	check	for	features	that
are	not	readily	exposed	by	the	framework.

Developing	for	Multiple	Platforms
The	iOS	debuted	with	a	public	SDK	in	version	2.0,	and	version	5.0	is	the
fourth	iteration	that	is	available	for	developers.	One	important	advantage	of
iOS	over	competing	platforms	is	that	users	don’t	have	to	wait	for	carriers	to
“approve”	their	OS	updates	and,	because	the	updates	are	free	of	charge,	most
users	(more	than	75%)	get	the	latest	available	OS	within	a	month.	As	an	iOS
developer,	it’s	usually	fine	to	support	just	the	two	latest	iterations	of	the	SDK.
That	is,	in	late	2010	and	early	2011,	it	was	enough	to	support	iOS	4	and	iOS
3;	now,	in	late	2011–early	2012,	it	should	be	enough	to	support	iOS	5	and
iOS	4.	That	makes	life	easier	for	developers.

Configurable	Target	Settings:	Base	SDK	Versus
Deployment	Target

To	customize	all	features	your	app	can	use	and	all	devices	and	OS	versions
your	app	can	run,	Xcode	provides	two	configurable	settings	for	the	target	you
build.	The	first	is	your	base	SDK	setting	and	the	second	is	the	iOS
Deployment	Target.

Configuring	the	Base	SDK	Setting
The	first	configurable	setting	is	called	Base	SDK.	You	can	configure	this
setting	by	editing	your	target.	To	do	so,	follow	these	steps:

1.	Open	your	project	and	select	the	project	file	on	the	project	navigator.

2.	On	the	editor	pane,	select	the	target	and	select	the	Build	Settings	tab.
The	Base	SDK	setting	is	usually	the	third	option	here,	but	the	easiest	way
to	look	for	a	setting	in	this	pane	is	to	search	for	it	in	the	search	bar.

You	can	change	the	value	to	“Latest	iOS	SDK”	or	any	version	of	SDK
installed	on	your	development	machine.	The	Base	SDK	setting	instructs	the
compiler	to	use	that	version	of	SDK	to	compile	and	build	your	app	and	this
means	it	directly	controls	which	APIs	are	available	for	your	app.	By	default,
new	projects	created	with	Xcode	always	use	the	latest-available	SDK	and
Apple	handles	API	deprecation.	Unless	you	have	very	specific	reasons	not	to,
stick	to	this	default	value.

Configuring	the	Deployment	Target	Setting
The	second	setting	is	the	Deployment	Target,	which	governs	the	minimum
required	OS	version	necessary	for	using	your	app.	If	you	set	this	to	a
particular	version,	say	5.0,	the	AppStore	app	automatically	prevents	users
running	previous	operating	systems	from	downloading	or	installing	your	app.
To	cater	to	a	wider	audience,	I	recommend	providing	backward	compatibility
for	at	least	one	previous	version	of	the	OS.	For	example,	if	iOS	5	is	the	latest
version,	you	should	also	support	at	least	iOS	4.	You	can	set	the	Deployment
Target	on	the	same	Build	Settings	tab	as	the	Base	SDK	setting.

When	you	are	using	a	feature	available	in	iOS	5	SDK,	but	still	want	to
support	older	versions,	your	Base	SDK	setting	should	be	set	to	the	latest	SDK
(or	iOS	5)	and	your	Deployment	Target	should	be	set	to	at	least	iOS	4.
However,	when	your	app	is	running	on	iOS	4	devices,	some	frameworks	and
features	might	not	be	available.	It’s	your	responsibility	as	a	developer	to
adapt	your	app	to	work	properly	without	crashing.

Considerations	for	Multiple	SDK
Support:Frameworks,	Classes,	and	Methods

There	are	three	cases	that	you	need	to	handle	when	you	support	multiple
SDKs:	frameworks,	classes,	and	methods.	In	the	following	sections,	you	learn
about	the	ways	to	make	this	possible.

Framework	Availability

Sometimes	a	new	SDK	might	add	a	whole	new	framework,	which	means	that
a	complete	framework	is	not	available	on	older	operating	systems.	An
example	from	iOS	4	is	the	EventKit.framework.	This	framework	is	available
only	to	users	running	iOS	4	and	above.	You	have	two	choices	here.	Either	set
the	deployment	target	to	iOS	4	and	build	your	app	only	for	customers	running
iOS	4	and	above,	or	check	if	the	given	framework	is	present	on	the	user’s
operating	system	and	hide	necessary	UI	elements	that	invoke	a	call	to	this
framework.	Clearly,	the	second	choice	is	the	optimal.

When	you	use	a	symbol	that’s	defined	in	a	framework	that	is	not	available	on
older	versions,	your	app	will	not	load.	To	avoid	this	and	to	selectively	load	a
framework,	you	must	weak-link	it.	To	weak-link	a	framework,	open	the	target
settings	page	from	the	project	settings	editor.	Then	open	the	Build	Phases	tab
and	expand	the	fourth	section	(Link	Binary	With	Libraries).	You	will	see	a
list	of	frameworks	that	are	currently	linked	to	your	target.	If	you	haven’t	yet
changed	a	setting	here,	all	the	frameworks	are	set	to	Required	by	default.
Click	the	Required	combo	box	and	change	it	to	Optional,	which	will	weak-
link	a	framework.

When	you	weak-link	a	framework,	missing	symbols	automatically	become
null	pointers	and	you	can	use	this	null	check	to	enable	or	disable	UI	elements.

An	example	on	iOS	5	is	the	Twitter.Framework.	When	you	use	the	built-in
Twitter	framework	for	sending	tweets,	you	should	weak-link	it	and	do	a
runtime	check	to	see	if	it	is	available.	If	not,	you	have	to	show	your	own
Tweet	Composer	UIs	instead.

When	you	link	a	framework	that	is	present	only	on	a	newer	version	of	the	SDK,	but	still	specify
the	iOS	Deployment	target	to	a	SDK	older	than	that,	your	application	will	fail	to	launch	and
crash	almost	immediately.	This	will	cause	your	app	to	be	rejected.	When	you	receive	a	crash
report	from	the	Apple	review	team	stating	that	the	app	crashes	immediately	on	launch	(mostly
without	any	useful	crash	dumps),	this	is	what	you	have	to	look	for.

Class	Availability
Sometimes	a	new	SDK	might	add	new	classes	to	an	existing	framework.	This
means	that	even	if	the	framework	gets	linked,	not	all	symbols	would	be
available	to	you	on	older	operating	systems.	An	example	from	iOS	4	is	the
UILocalNotification	class	defined	in	UIKit.Framework.	This	framework	is
linked	with	every	iOS	app,	so	when	you	are	using	this	class,	you	should

check	for	its	presence	by	instantiating	an	object	using	the
NSClassFromString	method.	If	it	returns	nil,	that	class	is	not	present	on	the
target	device.	An	example	from	iOS	5	is	the	UIStepper	control.	If	you	are
using	this	class,	check	for	its	existence.

Another	method	to	check	for	class	availability	is	to	use	the	class	method
instead	of	NSClassFromString,	as	shown	in	the	following	code.

Checking	for	Availability	of	the	UIStepper	Control

if	([UIStepper	class])		{

			//	Create	an	instance	and	add	it	to	the	subview

}	else	{

			//	create	instance	of	a	equivalent	control	and	add	it	to

subview

}

To	use	the	class	method,	you	should	use	the	LLVM	Clang	compiler	and	the	deployment	target
should	be	3.1	or	later.

Method	Availability
In	some	cases,	new	methods	are	added	to	an	existing	class	in	the	new	SDK.	A
classic	example	from	iOS	4	is	multitasking	support.	The	class	UIDevice	has	a
method	called	isMultiTaskingAvailable.	The	following	code	checks	for
this	class.

Code	for	Checking	Whether	a	Method	Is	Available	in	a	Class

if	([[UIDevice	currentDevice]

respondsToSelector:@selector(isMultitaskingSupported)])		{

if([UIDevice	currentDevice].isMultitaskingSupported)		{

				//	Code	to	support	multitasking	goes	here

		}

}

To	check	if	a	method	is	available	in	a	given	class,	use	the
respondsToSelector:	method.	If	it	returns	YES,	you	can	use	the	method	you
checked	for.

If	the	method	you	are	checking	is	a	global	C	function,	you	should	equate	it	to
NULL	instead,	as	shown	in	the	following	code.

Checking	Availability	of	a	C	Function

if	(CFunction	!=	NULL)	{

		CFunction(a);

}

You	have	to	equate	the	function	name	explicitly	to	NULL.	Implicitly	assuming	pointers	as	nil	or
NULL	will	not	work.

Checking	the	Availability	of	Frameworks,	Classes,
and	Methods

Although	it	should	quite	easy	to	remember	framework	availability,	it	can	be
challenging	to	remember	the	availability	of	every	single	class	and	method.
Equally	difficult	is	reading	through	the	complete	iOS	documentation	to	learn
which	method	is	available	and	which	method	is	not.	I	recommend	two
different	ways	to	check	the	availability	of	a	framework,	class,	or	method.

Developer	Documentation
The	straightforward	way	to	check	the	availability	of	symbols	or	frameworks
is	to	search	in	the	Availability	section	of	the	developer	documentation.	Figure
12-1	is	a	screenshot	from	the	developer	documentation	showing	how	to	look
for	multitasking	availability.

Figure	12-1	Multitasking	availability	in	developer	documentation

Macros	in	iOS	Header	Files
The	other	method	for	checking	the	availability	of	a	method	or	class	is	to	read

through	the	header	files.	I	find	this	easier	than	fiddling	through	the
documentation.	Just	command-click	the	symbol	from	your	source	code	and
Xcode	opens	the	header	file	where	it’s	defined.	Most	newly	added	methods
have	either	one	of	the	macro	decorations	shown	in	Figure	12-2:

Availability	Macros

UIKIT_CLASS_AVAILABLE

__OSX_AVAILABLE_STARTING

__OSX_AVAILABLE_BUT_DEPRECATED

Figure	12-2	Multitasking	availability	in	header	file

It’s	usually	easier	and	faster	to	check	availability	of	a	class	or	method	for	a
given	SDK	version	from	the	header	file.	But	not	all	methods	will	have	this
macro	decoration.	If	it	doesn’t,	you	have	to	look	at	the	developer
documentation.

If	a	method	doesn’t	have	a	macro	decoration,	it	probably	means	that	the	method	was	added	ages
ago	to	the	SDK	and	you	normally	don’t	have	to	worry	if	you	are	targeting	the	two	most	recent
SDKs.

Now	that	you	know	how	to	support	multiple	SDK	versions,	let’s	focus	on	the
meat	of	the	chapter:	supporting	multiple	devices.	In	the	next	section,	you
learn	about	the	subtle	differences	between	the	devices	and	learn	the	right	way
to	check	for	availability	of	a	particular	feature.	In	parallel,	you	also	write	a
category	extension	class	on	UIDevice	that	adds	methods	and	properties	for
checking	features	not	exposed	by	the	framework.

Detecting	Device	Capabilities
The	first	and	most	common	mistake	that	developers	made	in	the	past,	when
there	were	only	two	devices	(iPod	touch	and	iPhone),	was	to	detect	the	model
name	and	check	if	it	was	an	“iPhone,”	thereby	assuming	capabilities.	This
worked	well	for	a	year	or	so.	But	soon,	when	new	devices	with	new	hardware
sensors	became	available,	the	method	became	highly	error	prone.	For
example,	the	initial	version	of	the	iPod	touch	didn’t	have	a	microphone;
however,	after	the	iPhone	OS	2.2	software	update,	users	can	add	one	by

connecting	an	external	microphone/headset.	If	your	code	assumes	device
capabilities	based	on	model	name,	it	will	still	work,	but	it’s	not	correct	and
not	the	right	thing	to	do.

Detecting	Devices	and	Assuming	Capabilities
Consider	the	following	code	fragment,	which	assumes	the	capabilities	of	the
iPhone.

Detecting	a	Microphone	the	Wrong	Way

if(![[UIDevice	currentDevice].model	isEqualToString:@”iPhone”])		{

								UIAlertView	*alertView	=	[[UIAlertView	alloc]

initWithTitle:@”Error”

message:@”Microphone	not	present”

delegate:self

							cancelButtonTitle:@”Dismiss”

otherButtonTitles:	nil];

								[alertView	show];

				}

The	problem	with	the	preceding	code	is	that	the	developer	has	made	a	broad
assumption	that	only	iPhones	will	ever	have	microphones.	This	code	worked
well	initially.	But	with	the	iOS	software	2.2	update,	when	Apple	added
external	microphone	capability	to	iPod	touch,	the	above	code	prevents	users
from	using	the	app.	Another	problem	is	that	this	code	shows	an	error	for	any
new	device	introduced	later,	say	iPad.

You	should	instead	use	some	other	method	for	detecting	hardware	or	sensor
availability	than	assuming	devices’	capabilities.	Fortunately	or	unfortunately,
these	methods	are	scattered	around	on	various	frameworks.	Let's	now	start
looking	at	various	methods	for	checking	device	capabilities	the	right	way	and
grouping	them	under	a	UIDevice	category	class.

Detecting	Hardware	and	Sensors
The	first	thing	to	understand	is	that	instead	of	assuming	capabilities,	you
should	check	for	the	presence	of	the	exact	hardware	or	sensor	you	need.	For
example,	instead	of	assuming	that	only	iPhones	have	a	microphone,	use	APIs
to	check	for	the	presence	of	a	microphone.	The	first	advantage	of	the
following	code	is	that	it	automatically	works	for	new	devices	to	be	introduced

in	the	future	and	for	externally	connected	microphones.

What’s	the	second	advantage?	The	code	is	a	one-liner.

Correct	Way	to	Check	for	Microphone	Availability

-	(BOOL)	microphoneAvailable		{

AVAudioSession	*session	=	[AVAudioSession	sharedInstance];

return	session.inputIsAvailable;

}

In	the	case	of	a	microphone,	you	should	also	consider	detecting	input	device
change	notifications.	That	is,	enable	your	Record	button	on	the	UI	when	the
user	plugs	in	a	microphone,	in	addition	to	viewDidAppear.	Sounds	cool,
right?	Here’s	how	to	do	that.

Detecting	Whether	a	Microphone	Is	Being	Plugged	In

void	audioInputPropertyListener(void*	inClientData,

AudioSessionPropertyID	inID,	UInt32	inDataSize,	const	void

*inData)		{

				UInt32	isAvailable	=	*(UInt32*)inData;				

				BOOL	micAvailable	=	(isAvailable	>	0);

				//	update	your	UI	here

}

-	(void)viewDidLoad		{

				[super	viewDidLoad];				

AudioSessionAddPropertyListener(

kAudioSessionProperty_AudioInputAvailable,

audioInputPropertyListener,	nil);

}

All	you	need	to	do	here	is	to	add	a	property	listener	for
kAudioSessionProperty_AudioInputAvailable	and	on	the	call	back	check
for	the	value.

With	just	few	extra	lines	of	code,	you	are	able	to	write	the	correct	version	of
device	detection	code.	Next	you	extend	this	for	other	hardware	and	sensors.

AudioSessionPropertyListeners	behave	much	like	observing	NSNotification	events.	When	you
add	a	property	listener	to	a	class,	it’s	your	responsibility	to	remove	it	at	the	right	time.	In	the
example	above,	because	you	added	the	property	listener	in	viewDidLoad,	you	should	remove	it	in
viewDidUnload.

Detecting	Camera	Types
The	iPhone	shipped	with	a	single	camera	originally	and	added	a	front-facing
camera	later	in	iPhone	4.	The	iPod	touch	had	no	camera	until	the	fourth
generation.	While	the	iPhone	4	has	a	front-facing	camera,	the	iPad	1	(its
bigger	brother)	doesn’t	have	one,	while	the	newer	iPad	2	has	both	a	front-
facing	and	a	back-facing	camera.	All	this	means	that	you	should	not	write
code	with	device-based	assumptions.	It	is	actually	far	easier	to	use	the	API.

The	UIImagePickerController	class	has	class	methods	to	detect	source	type
availability.

Checking	for	Camera	Presence

-	(BOOL)	cameraAvailable		{

		return	[UIImagePickerController	isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera];

}

Checking	for	a	Front-Facing	Camera

-	(BOOL)	frontCameraAvailable

{

#ifdef	__IPHONE_4_0

		return	[UIImagePickerController	isCameraDeviceAvailable:

UIImagePickerControllerCameraDeviceFront];

#else

		return	NO;

#endif

}

For	detecting	a	front-facing	camera,	you	should	be	running	on	iOS	4	and
above.	The	enumeration	UIImagePickerControllerCameraDeviceFront	is
available	only	on	iOS	4	and	above	because	any	device	that	has	a	front-facing
camera	(iPhone	4	and	iPad	2)	always	runs	iOS	4	and	above.	So	you	use	a
macro	and	return	NO	if	the	device	runs	iOS	3	or	below.

Similarly,	you	can	check	if	the	camera	attached	has	video-recording
capabilities.	Cameras	on	iPhone	3GS	and	above	can	record	videos.	You	can
check	that	using	the	following	code.

Checking	for	a	Video-Recording	Capable	Camera

-	(BOOL)	videoCameraAvailable		{

		UIImagePickerController	*picker	=

[[UIImagePickerController	alloc]	init];

//	First	call	our	previous	method	to	check	for	camera	presence.

if(![self	cameraAvailable])		return	NO;

NSArray	*sourceTypes	=

[UIImagePickerControlleravailableMediaTypesForSourceType:

UIImagePickerControllerSourceTypeCamera];

		

		if	(![sourceTypes	containsObject:(NSString	*)kUTTypeMovie]){

				return	NO;

		}

		return	YES;

}

This	enumerates	the	available	media	types	for	a	given	camera	and	determines
if	it	contains	kUTTypeMovie.

Detecting	Whether	a	Photo	Library	Is	Empty
If	you	are	using	a	camera,	you	will	almost	always	use	the	user’s	photo	library.
Before	calling	UIImagePicker	to	show	the	user’s	photo	album,	you	should
ensure	that	there	are	photos	in	it.	You	can	check	this	the	same	way	as	you
check	for	camera	presence.	Just	pass
UIImagePickerControllerSourceTypePhotoLibrary	or
UIImagePickerControllerSourceTypeSavedPhotosAlbum	for	the	source
type.

Detecting	the	Presence	of	a	Camera	Flash
So	far,	the	only	device	to	have	a	camera	flash	is	the	iPhone	4.	In	coming
years,	more	and	more	devices	will	have	this.	It’s	easy	to	check	for	camera
flash	presence	using	UIImagePickerController’s	class	method:

Checking	for	a	Camera	Flash

-	(BOOL)	cameraFlashAvailable		{

#ifdef	__IPHONE_4_0

		return	[UIImagePickerController	isFlashAvailableForCameraDevice:

UIImagePickerControllerCameraDeviceRear];

#else

		return	NO;

#endif

}

Detecting	a	Gyroscope
The	gyroscope	is	an	interesting	addition	to	the	iPhone	4.	It	allows	developers
to	measure	relative	changes	to	the	physical	position	of	the	device.	By
comparison,	an	accelerometer,	can	measure	only	force.	Twisting	movements
cannot	be	measured	by	accelerometer.	Using	a	gyroscope,	it’s	possible	for
game	developers	to	implement	6-axis	control	like	that	found	in	Sony’s
PlayStation	3	controller	or	Nintendo’s	Wii	controller.	You	can	detect	the
presence	of	a	gyroscope	using	an	API	provided	in	the
CoreMotion.framework.

Code	to	Detect	the	Presence	of	a	Gyroscope

-	(BOOL)	gyroscopeAvailable		{

#ifdef	__IPHONE_4_0

		CMMotionManager	*motionManager	=	[[CMMotionManager	alloc]	init];

		BOOL	gyroAvailable	=	motionManager.gyroAvailable;

		return	gyroAvailable;

#else

		return	NO;

#endif

}

If	a	gyroscope	is	a	core	feature	of	your	app	but	your	target	device	doesn’t	have	a	gyroscope,	you
have	to	design	your	app	with	alternative	input	methods,	or	you	can	specify	them	in	the
UIRequiredDeviceCapablities	key	in	your	app’s	info.plist,	preventing	devices	without	a
gyroscope	from	installing	the	app.	You	learn	more	about	this	key	later	in	the	chapter.

Detecting	a	Compass	or	Magnetometer
Compass	availability	can	be	checked	using	the	CoreLocation.framework
class	CLLocationManager.	Call	the	method	headingAvailable	in
CLLocationManager	and	if	it	returns	true,	you	can	use	compass	in	your	app.	A
compass	is	more	useful	in	a	location-based	application	and	augmented
reality-based	applications.

Detecting	a	Retina	Display
As	an	iOS	developer,	you	already	know	that	catering	to	a	retina	display	is	as
easy	as	adding	an	@2x	image	file	for	every	resource	you	use	in	the	app.	But
in	cases	where	you	download	the	image	from	a	remote	server,	you	should
download	images	at	twice	the	resolution	on	devices	with	retina	display.

A	good	example	of	this	is	a	photo	browser	app	like,	say,	a	Flickr	viewer	or
Instagram.	When	your	user	launches	the	app	in	iPhone	4	(the	only	device
with	a	retina	display	as	of	this	writing)	you	should	be	downloading	images	of
double	the	resolution	you	do	for	non-retina	display	devices.	Some	developers
choose	to	ignore	this	and	download	higher	resolution	images	for	all	devices,
but	that	is	a	waste	of	bandwidth	and	might	even	be	slower	to	download	over
EDGE.	Instead,	download	higher-resolution	files	after	determining	that	the
device	has	a	retina	display.	Checking	for	this	is	easy.

Retina	Display	Capable

-	(BOOL)	retinaDisplayCapable		{

int	scale	=	1.0;

UIScreen	*screen	=	[UIScreen	mainScreen];

if([screen	respondsToSelector:@selector(scale)])

		scale	=	screen.scale;

if(scale	==	2.0f)	return	YES;

else	return	NO;

}

With	this	code	you	look	for	the	mainScreen	of	the	device	and	check	if	the
device	is	capable	of	showing	high-resolution	retina	display-capable	graphics.
This	way,	if	Apple	introduces	an	external	retina	display	(maybe	the	newer
Apple	Cinema	Displays)	and	allows	the	current	generation	iPads	to	project	to
it	in	retina	mode,	your	app	will	still	work	without	changes.

Detecting	Alert	Vibration	Capability
As	of	this	writing,	only	iPhones	are	capable	of	vibrating	to	alert	the	user.
Unfortunately,	there	is	no	public	API	for	checking	if	the	device	is	vibration
capable.	However,	the	AudioToolbox.framework	has	methods	(shown	below)
to	selectively	vibrate	only	iPhones.

AudioServicesPlayAlertSound(kSystemSoundID_Vibrate);

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

The	first	method	vibrates	the	iPhone	and	plays	a	beep	sound	on	iPod	touch.
The	second	method	just	vibrates	the	iPhone.	On	devices	not	capable	of
vibrating,	they	don’t	do	anything.	If	you	are	developing	a	game	that	vibrates
the	device	to	signify	danger	or	a	Labyrinth	game	where	you	want	to	vibrate
whenever	the	player	hits	the	wall,	you	should	use	the	second	method.	The

first	method	is	for	alerting	the	user,	which	includes	vibration	plus	beeps	while
the	second	is	just	for	vibrations.

Detecting	Remote	Control	Capability
iOS	apps	can	handle	remote	control	events	generated	by	buttons	pressed	on
the	external	headset.	To	handle	this,	use	the	following	method	to	start
receiving	notifications:

[[UIApplication	sharedApplication]

beginReceivingRemoteControlEvents];

Implement	the	following	method	in	your	firstResponder:

remoteControlReceivedWithEvent:

Be	sure	to	turn	this	off	when	you	no	longer	need	the	events	by	calling

[[UIApplication	sharedApplication]

endReceivingRemoteControlEvents];

Detecting	Phone	Call	Capability
You	can	check	if	a	device	can	make	phone	calls	by	checking	if	it	can	open
URLs	of	type	tel:.	The	UIApplication	class’s	canOpenURL:	method	is
handy	for	checking	if	a	device	has	an	app	that	can	handle	URLs	of	a	specific
type.	tel:	URLs	are	handled	by	the	phone	app	on	iPhone.	The	same	method
can	also	be	used	to	check	if	a	specific	app	that	can	handle	a	given	URL	is
installed	on	a	device.

Phone	Call	Capabilities

-	(BOOL)	canMakePhoneCalls		{

		return	[[UIApplication	sharedApplication]

canOpenURL:[NSURL	URLWithString:@”tel://”]];

}

A	word	about	usability:	Developers	should	completely	hide	features	specific	to	phones	on	iPod
touch	devices.	For	example,	if	you	are	developing	a	Yellow	Pages	app	that	lists	phone	numbers
from	the	Internet,	show	the	button	to	place	a	call	only	on	devices	that	are	capable	of	making
phone	calls.	Do	not	simply	disable	it	(because	nothing	can	be	done	by	the	user	to	enable	it)	or
show	an	error	alert.	There	have	been	cases	where	showing	a	“Not	an	iPhone”	error	on	an	iPod
touch	leads	to	rejection	of	the	app	by	the	app	review	team.

In	App	Email	and	SMS
While	In	App	email	and	In	App	SMS	are	technically	not	sensors	or	hardware,
not	every	device	can	send	emails	or	SMSs.	This	includes	iPhones	as	well—
even	those	that	run	iOS	4	and	above.	Although	MFMessageViewController
and	MFMailComposeViewController	are	available	from	iOS	4,	and	even	if
your	app’s	minimum	deployment	target	is	set	to	iOS	4,	you	still	need	to	know
and	understand	the	common	pitfalls	when	using	these	classes.

For	example,	an	iOS	device	with	no	configured	email	accounts	cannot	send
email,	even	when	it’s	technically	capable	of	sending	one.	The	same	applies	to
SMS/MMS.	An	iPhone	that	doesn’t	have	a	SIM	card	cannot	send	text
messages.	You	should	be	aware	of	this	and	always	check	for	capabilities
before	attempting	to	use	this	feature.

Checking	for	this	capability	is	easy.	Both	MFMessageComposeViewController
(for	In	App	SMS)	and	MFMailComposeViewController	(for	In	App	email)
have	class	methods	canSendText	and	canSendMail,	respectively,	that	can	be
used.

Checking	Multitasking	Awareness
Checking	if	a	device	can	multitask	is	straightforward.	As	you	saw	earlier	in
this	chapter,	you	have	to	check	if	the	method	isMultitaskingSupported	is
available,	as	shown	in	the	following	code.	If	it	returns	YES,	you	can	write
multitasking-related	code.	Otherwise,	you	should	remember	your	app’s	state
and	continue	when	the	app	is	launched	again.

Is	Multitasking	Available?

if	([[UIDevice	currentDevice]	respondsToSelector:

@selector(isMultitaskingSupported)])		{

		if([UIDevice	currentDevice].isMultitaskingSupported)		{

				//	Code	to	support	multitasking	goes	here

		}

}

But	there	is	something	more.	On	devices	that	don’t	support	multitasking,	your
application	delegate	will	not	receive	the	following	callbacks.

–	applicationDidEnterBackground:

–	applicationWillEnterForeground:

This	means	that	any	part	of	your	startup	code	and	initialization	sequence	you
write	in	applicationWillEnterForeground:	should	be	written	in
applicationDidFinishLaunchingWithOptions:	as	well	for	nonmultitasking
capable	devices.

Similarly,	the	teardown	code	(including	your	Core	Data-managed	context
save	methods)	that	you	write	in	applicationDidEnterBackground:	should
be	written	in	applicationWillTerminate:	as	well.

Obtaining	the	UIDevice+Additions	Category
The	code	fragments	you've	seen	so	far	in	this	chapter	are	available	as	a
UIDevice	category	addition.	You	can	download	that	from	the	book’s	website.

It	has	just	two	files:	UIDevice+Additions.h	and	UIDevice+Additions.m.
You	have	to	link	necessary	frameworks	to	avoid	those	pesky	linker	errors
because	this	class	links	to	various	Apple	library	frameworks.	But	don’t
worry;	they	are	dynamically	loaded	so	they	don’t	bloat	your	app.

UIRequiredDeviceCapabilities
So	far,	you've	learned	how	to	conditionally	check	a	device	for	specific
capabilities	and	use	them	if	they	are	present.	In	some	cases,	your	app	depends
solely	on	the	presence	of	particular	hardware	and	without	that	hardware	your
app	will	be	unusable.	Examples	include	a	camera	app	like	Instagram	or
Camera+.	The	core	functionality	of	the	app	doesn’t	work	without	a	camera.	In
this	case,	you	need	something	more	than	just	checking	for	device	capabilities
and	hiding	specific	parts	of	your	app.	You	normally	won’t	need	devices
without	a	camera	to	use	or	download	your	app.

Apple	provides	a	way	to	ensure	this	using	the
UIRequiredDeviceCapablities	key	in	the	Info	plist	file.	The	following
values	are	supported	for	this	key:	telephony,	wifi,	sms,	still-camera,
auto-focus-camera,	front-facing-camera,	camera-flash,	video-camera,
accelerometer,	gyroscope,	location-services,	gps,	magnetometer,

gamekit,	opengles-1,	opengles-2,	armv6,	armv7,	peer-peer.

You	can	explicitly	require	particular	device	capabilities	or	prohibit
installation	of	your	app	on	devices	without	a	specific	capability.	For	example,
you	can	prevent	your	apps	from	running	on	devices	with	video-camera	by
setting	the	video-camera	key	to	NO.	Alternatively,	you	can	mandate	the
presence	of	video-camera	by	setting	the	video-camera	key	to	YES.

Apple	doesn’t	allow	you	to	submit	an	update	to	an	existing	app	and	prevent	it	from	running	on	a
specific	device	that	was	supported	before	the	update.	For	example,	if	your	app	supported	both
iPhone	and	iPod	touch	in	version	1.0,	you	cannot	submit	an	update	that	prevents	it	from	running
on	either	device.	Put	another	way,	you	cannot	introduce	a	mandate	for	the	presence	of	particular
hardware	later	in	your	app’s	product	life	cycle.	The	submission	process	on	iTunes	connect	will	fail
and	show	you	an	error.	The	converse	is	allowed,	however.	That	is,	if	you	have	been	excluding	a
device	previously,	you	can	allow	installations	on	it	in	a	subsequent	version.	In	other	words,	if
version	1	of	your	app	supported	only	iPhones,	you	can	submit	a	version	2	to	support	all	devices.

Adding	values	to	the	UIRequiredDeviceCapablities	key	will	prohibit	your
app	from	being	installed	on	devices	without	the	capabilities	you	requested.	If
you	specify	that	telephony	is	needed,	users	cannot	even	download	the	app	on
their	iPod	touch	or	iPad.	You	must	be	certain	that	this	is	your	expected
behavior	before	using	this	key.

Summary
This	chapter	discussed	various	techniques	and	tricks	to	help	run	your	app	on
multiple	platforms.	It	also	looked	at	the	various	hardware	and	sensors
available	for	iOS	developers	and	how	to	detect	their	presence	the	right	way.
You	incrementally	wrote	a	category	extension	on	UIDevice	that	could	be	used
for	detecting	most	device	capabilities.	Finally,	you	learned	about	the
UIRequiredDeviceCapablities	key	and	how	to	completely	exclude	devices
without	a	required	capability.	My	recommendation	is	to	depend	on	the
methods	explained	in	this	chapter	and	use	the
UIRequiredDeviceCapablities	key	sparingly.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at

developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Understanding	the	UIRequiredDeviceCapablities	key
iOS	Build	Time	Configuration	Details

Other	Resources
MKBlog,	“iPhone	Tutorial:	Better	way	to	check	capabilities	of	iOS
devices”	http://blog.mugunthkumar.com/coding/iphone-tutorial-
better-way-to-check-capabilities-of-ios-devices/

Github.	“MugunthKumar/DeviceHelper”
https://github.com/MugunthKumar/DeviceHelper

http://developer.apple.com/
http://blog.mugunthkumar.com/coding/iphone-tutorial-better-way-to-check-capabilities-of-ios-devices/
https://github.com/MugunthKumar/DeviceHelper

Chapter	13:	Internationalization	and
Localization

Localization	is	a	key	concern	for	any	application	with	a	global	market.	Users
want	to	interact	in	their	own	languages,	with	their	familiar	formatting.
Supporting	this	in	your	application	is	called	internationalization	(sometimes
abbreviated	“i18n”	for	the	18	characters	between	the	“i”	and	the	“n”)	and
localization	(“L10n”).	The	differences	between	i18n	and	L10n	aren’t	really
important	or	consistently	agreed	upon.	Apple	says,	“Internationalization	is	the
process	of	designing	and	building	an	application	to	facilitate	localization.
Localization,	in	turn,	is	the	cultural	and	linguistic	adaptation	of	an
internationalized	application	to	two	or	more	culturally-distinct	markets.”	(See
“Internationalization	Programming	Topics”	at	developer.apple.com.)	This
chapter	uses	the	terms	interchangeably.

After	reading	this	chapter,	you	will	have	a	solid	understanding	of	what
localization	is	and	how	to	approach	it.	Even	if	you’re	not	ready	to	localize
your	application	yet,	this	chapter	provides	easy	steps	to	dramatically	simplify
localization	later.	You	learn	how	to	localize	strings,	numbers,	dates	and	nib
files,	and	how	to	regularly	audit	your	project	to	make	sure	it	stays	localizable.

What	is	Localization?
Localization	is	more	than	just	translating	strings.	Localization	means	making
your	application	culturally	appropriate	to	your	target	audience.	iOS	requires
that	nib	files	be	localized	for	each	language	individually	rather	than	providing
an	auto-layout	framework	like	Adobe’s	Adam	and	Eve.	This	is	generally	on
purpose.	Auto-layout	tends	to	create	layouts	that	look	mediocre	in	all
languages.	Apple	wants	your	layouts	to	look	ideal	in	all	languages,	which
means	laying	them	out	manually	and	individually	rather	than	by	algorithm.
Russian	and	German	are	bigger	languages	than	English.	Chinese	is	smaller
but	denser.	Arabic	and	Hebrew	run	right	to	left.	Different	languages	need
different	layouts	to	look	their	best.

That	said,	there	are	many	things	you	can	do	to	make	iOS	localization	easier.

■	Keep	nib	files	simple.	This	isn’t	difficult	on	iOS	because	there	aren’t	as
many	complicated	things	you	can	do	in	a	nib	as	you	can	on	Mac.	But	just
remember	that	every	IBOutlet	and	IBAction	connection	you	make	has	to
be	made	in	every	localized	nib	file.
■	Separate	nib	files	that	require	localization	from	ones	that	don’t.	Many
iOS	nib	files	have	no	strings	or	localized	images	in	them	at	all.	You	don’t
need	to	localize	these.	If	you	just	need	a	localized	title,	then	make	it	an
IBOutlet	and	set	the	localized	value	at	runtime	rather	than	localizing	the
nib	file.	String	localization	is	much	easier	to	maintain	than	nib	file
localization.

■	Remember	right-to-left	languages.	This	is	one	of	the	hardest	things	to	fix
later,	especially	if	you	have	custom	text	views.
■	Don’t	assume	that	comma	is	the	thousands	separator	or	dot	is	the
decimal	point.	These	are	different	in	different	languages,	so	build	your
regular	expressions	using	NSLocale.

■	Glyphs	(drawn	symbols)	and	characters	do	not	always	map	one-to-one.
If	you’re	doing	custom	text	layout,	this	can	be	particularly	surprising.
Apple’s	frameworks	generally	handle	this	well	automatically,	but	don’t	try
to	circumvent	systems	like	Core	Text	when	they	force	you	to	calculate	the
number	of	glyphs	in	a	string	rather	than	using	length.	This	issue	is
particularly	common	in	Thai,	but	exists	in	many	languages	(even
occasionally	in	English,	as	I’ll	discuss	in	Chapter	18).

In	my	experience,	it	is	best	to	do	all	of	your	development	up	to	the	point	of
release	and	then	translate	rather	than	try	to	translate	as	you	go.	The	cost	of
localization	is	best	absorbed	at	fixed	points	during	development,	generally	at
the	end.	It’s	expensive	to	retranslate	things	every	time	you	tweak	the	UI.

While	translation	is	best	done	near	the	time	of	release,	you	should	line	up
your	localization	provider	fairly	early	in	the	development	cycle	and	prepare
for	localization	throughout	the	process.	A	good	localization	provider	does
more	than	just	translate	a	bunch	of	strings	you	send	it.	Ideally	your
localization	provider	will	provide	testing	services	to	make	sure	your
application	“makes	sense”	in	the	target	culture.	Getting	the	provider	involved

early	in	the	process	can	save	expensive	rework	later	if	your	interface	is	hard
to	localize.

An	example	of	a	“hard-to-localize”	application	is	one	that	includes	large
blocks	of	text.	Translating	large	blocks	of	text	can	play	havoc	with	layout,
particularly	on	iPhone.	Remembering	that	you	will	often	pay	by	the	word	for
translation	may	help	you	focus	on	reducing	the	number	of	words	you	use.
Redesign	your	UI	so	it	doesn’t	need	so	much	text	to	let	the	user	know	what	to
do.	Rely	on	Apple’s	UI	elements	and	icons	as	much	as	possible.	Apple’s	done
the	hard	and	expensive	work	for	you	to	make	them	internationally
appropriate.	Don’t	waste	that.	For	example,	when	using	a	UIToolBarItem,
you	should	use	a	system	item	whenever	appropriate	rather	than	drawing	your
own	icons.	If	the	icon’s	meaning	matches	your	intent,	you	should	always	try
to	use	the	system	icon,	even	you	believe	you	could	create	a	better	one.	In	my
opinion,	the	“action”	icon	(an	arrow	coming	out	of	a	box)	is
incomprehensible,	but	users	are	used	to	it.	Apple	has	trained	them	in	what	it
means,	so	you	should	use	it.	Never	use	a	system	icon	for	something	other
than	its	intended	meaning,	however.	For	example,	do	not	use
UIBarButtonSystemItemReply	to	mean	“go	left”	or	“go	back.”

Another	frequent	localization	problem	is	icons	that	assume	a	cultural
background,	such	as	a	decorated	tree	to	indicate	“winter.”	Checkmarks	can
also	cause	problems,	because	they	are	not	used	in	all	cultures	(French	for
instance),	and	in	some	cultures	a	checkmark	means	“incorrect”	(Finnish	for
instance).	Involving	a	good	localization	provider	before	producing	your	final
artwork	can	save	you	a	lot	of	money	re-creating	your	assets.

Localizing	Strings
The	most	common	tool	for	localizing	strings	is	NSLocalizedString.	This
function	looks	up	the	given	key	in	Localizeable.strings	and	returns	the
value	found	there,	or	the	key	itself	if	no	value	is	found.
Localizeable.strings	is	a	localized	file,	so	there	is	a	different	version	for
each	language,	and	NSLocalizedString	automatically	selects	the	correct	one
based	on	the	current	locale.	A	command-line	tool	called	genstrings
automatically	searches	your	files	for	calls	to	NSLocalizedString	and	writes
your	initial	Localizeable.strings	file	for	you.

The	easiest	approach	is	to	use	the	string	as	its	own	key	(the	second	parameter
is	a	comment	to	the	localizer):

NSString	*string	=

				NSLocalizedString(@”Welcome	to	the	show.”,

																						@”Welcome	message”);

To	run	genstrings,	you	should	open	a	terminal,	change	to	your	source	code
directory,	and	run	it	as	shown	here	(assuming	an	English	localization):

genstrings	-o	en.lproj	*.m

This	will	create	a	file	called	en.lproj/Localizeable.string	that	contains
the	following:

/*	Welcome	message	*/

“Welcome	to	the	show.”	=	“Welcome	to	the	show.”;

Even	if	you	don’t	run	genstrings,	this	works	in	the	developer’s	language
because	it	automatically	returns	the	key	as	the	localized	string.

In	most	cases	I	recommend	using	the	string	as	its	own	key	and	automatically
generating	the	Localizeable.strings	file	when	you’re	ready	to	hand	the
project	off	to	localizers.	This	approach	simplifies	development	and	helps
keep	the	Localizeable.strings	file	from	accumulating	keys	that	are	no
longer	used.

Auditing	for	Nonlocalized	Strings
During	development,	you	should	periodically	audit	your	program	to	make
sure	that	you’re	using	NSLocalizedString	as	you	should.	I	recommend	a
script	like	this:

find_nonlocalized

#!/usr/bin/perl	-w

#	Usage:

#					find_nonlocalized	[<directory>	...]

#

#	Scans	.m	and	.mm	files	for	potentially	nonlocalized

#			strings	that	should	be.

#	Lines	marked	with	DNL	(Do	Not	Localize)	are	ignored.

#	String	constant	assignments	of	this	form	are	ignored	if

#			they	have	no	spaces	in	the	value:

#			NSString	*	const	<...>	=	@”...”;

#	Strings	on	the	same	line	as	NSLocalizedString	are

#			ignored.

#	Certain	common	methods	that	take	nonlocalized	strings	are

#			ignored

#	URLs	are	ignored

#

#	Exits	with	1	if	there	were	strings	found

use	File::Basename;

use	File::Find;

use	strict;

#	Include	the	basenames	of	any	files	to	ignore

my	@EXCLUDE_FILENAMES	=	qw();

#	Regular	expressions	to	ignore

my	@EXCLUDE_REGEXES	=	(

				qr/\bDNL\b/,

				qr/NSLocalizedString/,

				qr/NSString\s**\s*const\s[^@]*@”[^]*”;/,

				qr/NSLog\(/,

				qr/@”http/,	qr/@”mailto/,	qr/@”ldap/,

				qr/predicateWithFormat:@”/,

				qr/Key(?:[pP]ath)?:@”/,

				qr/setDateFormat:@”/,

				qr/NSAssert/,

				qr/imageNamed:@”/,

				qr/NibNamed?:@”/,

				qr/pathForResource:@”/,

				qr/fileURLWithPath:@”/,

				qr/fontWithName:@“/,

				qr/stringByAppendingPathComponent:@“/,

);

my	$FoundNonLocalized	=	0;

sub	find_nonlocalized	{

				return	unless	$File::Find::name	=~	/\.mm?$/;

				return	if	grep($_,	@EXCLUDE_FILENAMES);

				

				open(FILE,	$_);

				LINE:			

				while	(<FILE>)	{

								if	(/@“[^“]*[a-z]{3,}/)	{

												foreach	my	$regex	(@EXCLUDE_REGEXES)	{

																next	LINE	if	$_	=~	$regex;

												}

												print	„$File::Find::name:$.:$_“;

												$FoundNonLocalized	=	1;

								}

				}

				close(FILE);

}

my	@dirs	=	scalar	@ARGV	?	@ARGV	:	(„.“);

find(\&find_nonlocalized,	@dirs);

exit	$FoundNonLocalized	?	1	:	0;

Periodically	run	this	script	over	your	source	to	make	sure	that	there	are	no
nonlocalized	strings.	If	you	use	Jenkins	(jenkins-ci.org)	or	another
continuous-integration	tool,	you	can	make	this	script	part	of	the	build	process,
or	you	can	add	it	as	a	script	step	in	your	Xcode	build.	Whenever	it	returns	a
new	string,	you	can	decide	whether	to	fix	it,	update	the	regular	expressions	to
ignore	it,	or	mark	the	specific	line	with	DNL	(Do	Not	Localize).

Formatting	Numbers	and	Dates
Numbers	and	dates	are	displayed	differently	in	different	locales.	This	is
generally	straightforward	using	NSDateFormatter	and	NSNumberFormatter,
which	you	are	likely	already	familiar	with.

For	an	introduction	to	NSDateFormatter	and	NSNumberFormatter,	see	the	“Data	Formatting
Guide”	in	Apple’s	documentation	at	developer.apple.com.

There	are	a	few	things	to	keep	in	mind,	however.	First,	formatters	are	needed
for	input	as	well	as	output.	Most	developers	remember	to	use	a	formatter	for
date	input,	but	may	forget	to	use	one	for	numeric	input.	The	decimal	point	is
not	universally	used	to	separate	whole	from	fractional	digits	on	input.	Some
countries	use	a	comma	or	an	apostrophe.	It’s	best	to	validate	number	input
using	an	NSDateFormatter	rather	than	custom	logic.

Digit	groupings	have	a	bewildering	variety.	Some	countries	split	thousands
groups	with	space,	comma,	or	apostrophe.	China	sometimes	groups	ten
thousands	(four	digits).	Don’t	guess.	Use	a	formatter.	Remember	that	this	can
impact	the	length	of	your	string.	If	you	only	leave	room	for	seven	characters
for	one	hundred	thousand	(“100,000”)	you	may	overflow	in	India,	which	uses
eight	(“1,00,000”	or	one	lakh).

Percentages	are	another	place	that	you	should	be	careful	because	different

http://developer.apple.com/

cultures	place	the	percent	sign	at	the	beginning	or	end	of	the	number,	and
some	use	a	slightly	different	symbol.	Using
NSNumberFormatterPercentStyle	will	behave	correctly.

Be	especially	careful	with	currency.	Don’t	store	currency	as	a	float	because
that	can	lead	to	rounding	errors	as	you	convert	between	binary	and	decimal.
Always	store	currency	as	an	NSDecimalNumber,	which	does	its	math	in
decimal.	Keep	track	of	the	currency	you’re	working	in.	If	your	user	switches
locale	from	the	U.S.	to	France,	you	shouldn’t	switch	his	$1	purchase	to	€1.
Generally	you	need	to	persist	what	currency	a	given	value	is	expressed	in.
The	RNMoney	class	is	an	example	of	how	to	do	this.	First,	the	following	code
demonstrates	how	to	use	the	class	to	store	Rubles	and	Euros.

main.m	(Money)

		NSLocale	*russiaLocale	=	[[NSLocale	alloc]

																								initWithLocaleIdentifier:@”ru_RU”];

		

		RNMoney	*money	=	[[RNMoney	alloc]

																				initWithIntegerAmount:100];

		NSLog(@”Local	display	of	local	currency:	%@”,	money);

		NSLog(@”Russian	display	of	local	currency:	%@”,

								[money	localizedStringForLocale:russiaLocale]);

		

		RNMoney	*euro	=[[RNMoney	alloc]	initWithIntegerAmount:200

																																						currencyCode:@”EUR”];

		NSLog(@”Local	display	of	Euro:	%@”,	euro);

		NSLog(@”Russian	display	of	Euro:	%@”,

								[euro	localizedStringForLocale:russiaLocale]);

RNMoney	is	an	immutable	object	that	stores	an	amount	and	a	currency	code.	If
you	do	not	provide	a	currency	code,	it	defaults	to	the	current	locale’s
currency.	It	is	a	very	simple	data	class	designed	to	be	simple	to	initialize,
serialize,	and	format.	Here	is	the	code.

RNMoney.h	(Money)

#import	<Foundation/Foundation.h>

@interface	RNMoney	:	NSObject	<NSCoding>

@property	(nonatomic,	readonly,	strong)

																																			NSDecimalNumber	*amount;

@property	(nonatomic,	readonly,	strong)

																																				NSString	*currencyCode;

-	(RNMoney	*)initWithAmount:(NSDecimalNumber	*)anAmount

									currencyCode:(NSString	*)aCode;

-	(RNMoney	*)initWithAmount:(NSDecimalNumber	*)anAmount;

-	(RNMoney	*)initWithIntegerAmount:(NSInteger)anAmount

																						currencyCode:(NSString	*)aCode;

-	(RNMoney	*)initWithIntegerAmount:(NSInteger)anAmount;

-	(NSString	*)localizedStringForLocale:(NSLocale	*)aLocale;

-	(NSString	*)localizedString;

@end

RNMoney.m	(Money)

#import	“RNMoney.h”

@implementation	RNMoney

@synthesize	amount=amount_;

@synthesize	currencyCode=currencyCode_;

static	NSString	*	const	kRNMoneyAmountKey	=	@”amount”;

static	NSString	*	const	kRNMoneyCurrencyCodeKey	=

																																											@”currencyCode”;

-	(RNMoney	*)initWithAmount:(NSDecimalNumber	*)anAmount

															currencyCode:(NSString	*)aCode	{

		if	((self	=	[super	init]))	{

				amount_	=	anAmount;

				if	(aCode	==	nil)	{

						NSNumberFormatter	*formatter	=	[[NSNumberFormatter	alloc]

init];

						currencyCode_	=	[formatter	currencyCode];

				}

				else	{

						currencyCode_	=	aCode;

				}

		}

		return	self;

}

-	(RNMoney	*)initWithAmount:(NSDecimalNumber	*)anAmount	{

		return	[self	initWithAmount:anAmount

																	currencyCode:nil];

}

-	(RNMoney	*)initWithIntegerAmount:(NSInteger)anAmount

																						currencyCode:(NSString	*)aCode	{

				return	[self	initWithAmount:

												[NSDecimalNumber	decimalNumberWithDecimal:

													[[NSNumber	numberWithInteger:anAmount]

														decimalValue]]

																			currencyCode:aCode];

}

-	(RNMoney	*)initWithIntegerAmount:(NSInteger)anAmount	{

		return	[self	initWithIntegerAmount:anAmount

																								currencyCode:nil];

}

-	(id)init	{

		return	[self	initWithAmount:[NSDecimalNumber	zero]];

}

-	(id)initWithCoder:(NSCoder	*)coder	{

		

		NSDecimalNumber	*amount	=	[coder	decodeObjectForKey:

																													kRNMoneyAmountKey];

		NSString	*currencyCode	=	[coder	decodeObjectForKey:

																												kRNMoneyCurrencyCodeKey];

		return	[self	initWithAmount:amount

																	currencyCode:currencyCode];

}

-	(void)encodeWithCoder:(NSCoder	*)aCoder	{

		[aCoder	encodeObject:amount_	forKey:kRNMoneyAmountKey];

		[aCoder	encodeObject:currencyCode_

																forKey:kRNMoneyCurrencyCodeKey];

}

-	(NSString	*)localizedStringForLocale:(NSLocale	*)aLocale

{

		NSNumberFormatter	*formatter	=	[[NSNumberFormatter	alloc]

																																		init];

		[formatter	setLocale:aLocale];

		[formatter	setCurrencyCode:self.currencyCode];

		[formatter	setNumberStyle:NSNumberFormatterCurrencyStyle];

		return	[formatter	stringFromNumber:self.amount];

}

-	(NSString	*)localizedString	{

		return	[self	localizedStringForLocale:

										[NSLocale	currentLocale]];

}

-	(NSString	*)description	{

		return	[self	localizedString];

}

@end

Localizing	Nib	Files
Localizing	nib	files	is	one	of	the	most	tedious	and	risky	parts	of	localization.
Consider	the	following	common	case:

■	Your	project	has	a	nib	file	with	a	button	connected	to	the	method
doThis:.

■	You	send	your	nib	file	off	to	be	translated	and	receive	back	a	dozen
versions	of	it.

■	Now	you	want	to	change	the	button’s	action	to	doThat:.

You	open	your	master	nib	file	(usually	English)	and	make	the	change,	but
now	you	have	11	other	versions	of	the	nib	file	that	are	incorrect,	and	you
don’t	discover	this	until	someone	clicks	on	the	button	in	another	language	and
the	application	crashes.

About	that	time	you	start	to	think	that	nib	files	are	a	terrible	idea	and	swear
you’ll	never	use	them	again,	but	that’s	the	wrong	conclusion.	Nib	files	are
incredibly	powerful	and	an	important	part	of	iOS	development.	They’re
worth	the	trouble	once	you	learn	some	best	practices	for	managing	them.

First,	don’t	localize	a	nib	file	if	you	don’t	have	to.	If	there’s	nothing	to
localize,	then	you	only	need	one	copy.	iOS	will	automatically	load	your
master	nib	file	if	there	is	no	localized	version	available.

If	the	localizable	parts	of	a	nib	file	don’t	require	layout	changes,	then	you
may	want	to	use	an	IBOutlet	and	plug	in	the	localized	value	in	viewDidLoad.
It’s	easier	to	localize	programmatic	strings	than	nib	files.	This	is	particularly
good	for	handling	titles	and	items	such	as	UINavigationItem	and
UITabBarItem	that	are	automatically	sized.	You	can	usually	get	away	with
this	technique	for	UIButton	if	it	stretches	across	the	entire	view.

UILabel	generally	requires	individual	localization	because	the	label	will
almost	certainly	need	to	be	resized.

Sentence	structure	is	radically	different	between	languages.	This	means	that
you	can	almost	never	safely	compose	a	string	from	parts	like	this:

		NSString	*intro	=	@”There	was	an	error	deleting”;

		NSString	*num	=	[NSString	stringWithFormat:@”%d”,	5];

		NSString	*tail	=	@”objects.”;

		NSString	*str	=	[NSString	stringWithFormat:@”%@	%@	%@”,

																						intro,	num,	tail];	//	Wrong

The	problem	with	this	code	is	that	when	you	translate	“There	was	an	error
deleting”	and	“objects”	into	other	languages,	you	may	not	be	able	to	glue
them	together	in	the	same	order.	Instead,	you	need	to	localize	the	entire	string
together	like	this:

		NSString	*format	=	NSLocalizedString(

																	@”There	was	an	error	deleting	%d	objects”,

																	@”Error	when	deleting	objects.”);

		NSString	*str	=	[NSString	stringWithFormat:format,	5];

Some	languages	have	more	complex	plurals	than	English.	For	instance,	there
may	be	special	word	forms	for	describing	two	of	something	versus	more	than
two.	Don’t	assume	you	can	check	for	greater-than-one	and	easily	determine
linguistic	plurals.	Solving	this	well	can	be	very	difficult,	so	try	to	avoid	it
instead.	Don’t	have	special	code	that	tries	to	add	an	s	to	the	end	of	plurals
because	this	is	almost	impossible	to	translate.	A	good	translator	will	help	you
word	your	messages	in	ways	that	translate	better	in	your	target	languages.

Talk	with	your	localization	provider	early	on	to	understand	its	process	and
how	to	adjust	your	development	practice	to	facilitate	working	with	it.	Figure
13-1	demonstrates	a	good	approach.

Figure	13-1	Localization	workflow

1.	Pseudo-Localize—During	development,	it’s	a	good	idea	to	start	doing
experimental	localization	to	work	out	any	localization	bugs	early	in	the
process.	Pseudo-localization	is	the	process	of	localizing	into	a	nonsense
language.	A	common	nonsense	language	is	one	that	substitutes	all	vowels
with	the	letter	x.	For	example,	“Press	here	to	continue”	would	become
“Prxss	hxrx	tx	cxntxnxx.”	This	kind	of	“translation”	can	be	done	by
developers,	generally	with	a	simple	Perl	script,	and	will	make	it	more
obvious	where	you	have	used	nonlocalized	strings.	This	won’t	find	every
problem.	In	particular,	it	is	not	good	at	discovering	strings	that	are	pieced
together	from	other	strings,	but	it	can	find	many	simple	problems	before
you	pay	for	real	translation	services.	You	will	need	a	language	code	for	this
localization.	Pick	a	language	that	you	do	not	plan	to	localize	your
application	for.	If	you’re	an	American	English	speaker	and	don’t	plan	to
localize	for	British	English,	it	is	particularly	useful	to	use	the	British
English	slot	for	this	purpose	because	you’ll	still	be	able	to	easily	read	the
rest	of	the	iPhone’s	interface.
2.	UI	Freeze—There	should	be	a	clear	point	in	the	development	cycle	that
you	freeze	the	UI.	After	that	point,	you	should	strongly	avoid	any	changes
that	affect	localizable	resources.	Many	teams	ship	a	monolingual	version	of
their	product	at	this	point	and	then	ship	a	localization	update.	That’s	the
easiest	approach	if	your	market	is	tolerant	of	the	delay.

3.	Localize—You	will	send	your	resource	files	to	your	localizers	and	they
will	send	you	back	localized	files.	Nib	files	can	be	locked	in	Xcode	to
prevent	changing	localizable,	nonlocalizable,	or	all	properties.	Before
sending	nib	files	to	a	localizer,	lock	nonlocalizable	properties	to	protect
your	nib	files	against	changes	to	connections,	class	names,	and	other
nonvisible	attributes	of	the	nib	file.	Figure	13-2	shows	the	lock	option	in
Interface	Builder.
4.	Version	Control—As	you	make	changes	to	your	nib	files,	you	will	need
to	keep	track	of	the	original	files	your	localizer	sent	to	you.	Lock	the
localizable	properties	in	the	nib	files	(unlocking	the	nonlocalizable
properties).	Then	put	these	into	a	version	control	system	or	save	them	in	a
separate	directory.

5.	Testing—You’ll	need	to	do	extensive	testing	to	make	sure	that
everything	is	correct.	Ideally	you	will	have	native	speakers	of	each	of	your
localized	languages	test	all	your	UI	elements	to	ensure	they	make	sense
and	that	there	aren’t	any	leftover	nonlocalized	strings.	A	good	localizer	can
assist	in	this.
6a.	Merge	Logic	Changes—Certain	nib	file	changes	do	not	affect
localization.	Changes	to	connections	or	class	names	don’t	change	the
layout	or	the	resources.	These	are	logic	changes	rather	than	localization
(L10N)	changes.	You	can	merge	the	localized	nib	files	like	this:

ibtool	--previous-file	${OLD}/en.lproj/MyNib.nib

							--incremental-file	${OLD}/fr.lproj/MyNib.nib

							--strings-file	${NEW}/fr.lproj/Localizeable.strings

							--localize-incremental

							--write	${NEW}/fr.lproj/MyNib.nib

							${NEW}/en.lproj/MyNib.nib

This	computes	the	nonlocalization	changes	between	the	old	and	new
English	MyNib.nib.	It	then	applies	these	changes	to	the	old	French
MyNib.nib	and	writes	it	as	the	new	French	nib	file.	As	long	as	you	keep
track	of	the	original	files	you	were	sent	by	the	localizer,	this	works	quite
well	for	nonlayout	changes,	and	can	be	scripted	fairly	easily.
6b.	L10N	Changes—If	you	make	localization	changes	such	as	changing
the	layout	of	a	localized	nib	file	or	changing	a	string,	you’ll	need	to	start
the	process	over	and	send	the	changes	to	the	localizer.	You	can	reuse	the
previous	string	translations,	which	makes	things	much	cheaper,	but	it	is
still	a	lot	of	work	so	avoid	making	these	changes	late	in	the	development
cycle.

Figure	13-2	Interface	Builder	localization	locking	option

Summary
Localization	is	never	an	easy	subject,	but	if	you	work	with	a	good
localization	partner	early	and	follow	the	best	practices	detailed	here,	you	can
greatly	expand	the	market	for	your	applications.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Data	Formatting	Guide

http://developer.apple.com/

Internationalization	Programming	Topics
Locales	Programming	Guide

Chapter	14:	Selling	Past	the	Sale	with
In	App	Purchases

The	iOS	SDK	makes	it	possible	for	many	developers	to	make	a	living
independently,	and	there	are	a	variety	of	business	models	from	which	to
choose.	The	first	model	is	easily	understandable	(and	arguably	the	most
profitable):	Make	an	app	and	sell	it	on	the	App	Store.	Another	model	is	to
release	two	versions—a	free	lite	version	and	a	pro	(paid)	version	of	the	same
app.	Yet	another	model,	probably	pioneered	by	Web	2.0,	is	advertisement
based.	Developers	use	a	third-party	advertiser’s	SDK	(or	iAds)	to	show
advertisements	and	developers	get	paid	for	impressions	or	click-throughs.
While	all	these	augment	the	earnings	of	a	developer,	the	first	model,	selling
apps	on	the	App	Store,	has	been	by	far	the	most	successful	model.	In	App
Purchases	offer	yet	another	unique	way	to	sell	premium	content	or	features	on
your	iOS	app.	Some	apps	take	advantage	of	this	and	make	money	only
through	In	App	Purchases.	They	fall	into	a	category	called	freemium	apps
and	they	have	been	quite	successful,	at	least	when	you	look	at	the	top-
grossing	apps	list	on	the	U.S.	App	Store.

This	chapter	introduces	you	to	Apple’s	In	App	Purchase	framework,
StoreKit.framework,	and	moves	on	to	a	wrapper	framework,	the
MKStoreKit.	You	learn	how	to	use	it	to	integrate	a	mini	In	App	Store	within
your	app.	This	chapter	also	provides	solutions	to	the	problems	that	developers
most	commonly	face	while	integrating	StoreKit	within	their	apps.

Before	You	Start
The	chapter	is	broadly	divided	into	two	major	sections.	The	first	half	focuses
on	creating	and	customizing	products	on	iTunes	Connect,	and	the	second	half
tackles	the	programming	aspects.	You	will	use	MKStoreKit	and	will	go
through	the	features	it	offers,	including	how	to	customize	it	for	every	allowed
business	model.	At	the	end	of	the	chapter	you	look	at	the	most	common
issues	and	problems	faced	by	developers	and	at	solutions	to	get	around	them.
Throughout	the	chapter,	pay	special	attention	to	the	shaded	boxes,	which

offer	helpful	tips	and	important	warnings.	The	information	in	those	boxes
explains	what	could	go	awry	during	implementation	when	you	do	something
wrong.	Let’s	start	the	journey.

In	App	Purchase	Products
Products	that	can	be	sold	using	In	App	Purchases	broadly	fall	under	the
following	four	categories:	content,	functionality,	service,	and	subscription.
The	latest	SDK	provides	support	for	all	of	these.	Apple	allows	four	different
product	types,	namely:	consumable,	non-consumable,	auto-renewable
subscriptions,	and	non-renewable	subscriptions.	In	a	generic	sense,	a
consumable	is	a	product	that	depletes	when	it	is	used.	A	nonconsumable,	on
the	other	hand,	is	a	product	that	is	available	for	use	any	number	of	times	after
purchase.	Your	printer	is	an	example	of	a	non-consumable	while	the	ink	it
uses	is	a	common	example	of	a	consumable.	Subscriptions,	both	auto-
renewable	and	non-renewable,	are	analogous	to	real	world	subscriptions.	You
should	match	the	following	category	of	product	to	one	of	these	four	based	on
your	business	model.

■	Content—Products	that	are	categorized	as	content	include	digital	books,
magazines,	additional	level	packs,	music,	ringtones,	and	a	variety	of	other
data.	Content	can	be	sold	as	either	consumable	or	non-consumable
depending	on	your	business	model.	Thinking	from	the	user’s	perspective,
content	is	generally	considered	non-consumable.	For	example,	when	a	user
gets	a	book,	it’s	your	responsibility	as	a	developer	to	remember	his
purchase	and	make	it	available	to	him	for	free.	The	SDK,	in	most	cases,
provides	this	feature	for	free.
■	Functionality—Products	that	are	categorized	as	functionality	mainly
include	locked	features.	For	example,	a	task	manager	app	can	allow	users
to	create	a	maximum	of	n	tasks;	to	create	tasks	after	that	limit,	the	user	has
to	unlock	by	paying	a	fee.	Functionality	is	almost	always	considered	non-
consumable.

■	Service—Products	that	are	categorized	as	service	are	mostly
functionality	that	incurs	a	recurring	expense	to	the	developer.	Service	is
very	similar	to	the	functionality	category,	except	that	it	involves	serious
computation	power	and	is	done	on	a	remote	server.	A	classic	example	of

this	is	push	notifications.	A	Twitter	client,	for	instance,	may	provide	push
notifications	as	a	consumable	selling,	say	a	1,000	notifications	for	a	dollar.
Service	can	also	be	subscription	based	if	your	business	model	requires	it	to
be	so.

■	Subscription—Products	that	are	categorized	as	subscription	are	mostly
content	or	service.	Subscriptions	usually	provide	the	said	content	or	service
over	a	period	of	time	as	opposed	to	at	the	time	of	purchase.	For	example,	a
Twitter	client	may	provide	unlimited	push	notifications	as	a	subscription
costing	99	cents	every	three	months.

Treating	a	product	as	a	consumable	or	a	subscription	or	a	non-consumable	is
up	to	the	business	owner.

Subscriptions	were	originally	available	in	iOS	3.0,	but	they	were	complicated	to	use	and	the
burden	of	renewing	and/or	restoring	them	to	other	devices	relied	on	the	developer.	As	such,
adoption	was	low	and	very	few	developers	used	this.	With	iOS	4.3,	Apple	introduced	a	new	kind
of	product	called	auto-renewable	subscription,	for	which	restoring	and	renewing	subscriptions
happens	automatically	and	is	taken	care	of	by	Apple.	From	now	on,	you	should	almost	always	use
auto-renewable	subscriptions.	Use	the	older	subscription	style	only	if	your	business	already	has
proper	server-side	subscription	handling	in	place	and	customers	are	already	using	it.

Prohibited	Items
The	previous	section	explained	about	the	products	that	you	can	sell	via	In
App	Purchase.	While	Apple	is	okay	with	most	kinds	of	business	models,
there	are	a	couple	kinds	of	items	that	you	cannot	sell	via	the	App	Store	as	of
this	writing.

The	first	kind	of	item	(and	this	is	arguably	the	most	important	point	to
remember)	you	cannot	sell	through	In	App	Purchases	is	physical	goods	or
services.	For	example,	if	you	develop	a	wallpaper	app,	you	can	sell	digital
wallpapers,	but	you	cannot	sell	printed	posters	of	the	same	wallpapers
through	In	App	Purchase.	Similarly,	if	you	are	a	hotel	owner	and	make	an	app
for	booking	reservations,	you	cannot	collect	reservation	fees	or	booking	fees
through	In	App	Purchase.

The	second	kind	of	item	that	is	not	allowed	is	intermediate	currency.	If	you
make	a	music	subscription	app,	you	have	to	sell	music	directly.	You	cannot
sell	“points”	and	allow	the	user	to	download	music	for	those	points.
Subscription	passes,	prepurchasable	coupons,	and	anything	that	is	not

offering	the	product	at	the	time	of	purchase	is	not	allowed.

Warning:	There	might	be	some	app	that	already	does	this	on	the	App	Store.	That	doesn’t
automatically	entitle	you.	You	run	the	risk	of	being	rejected	by	Apple.	If	you	see	an	app	that	sells
an	item	that	is	prohibited	by	rule,	chances	are	that	it	slipped	past	the	App	Store	review.	Such
apps	risk	the	chance	of	getting	approved	during	every	subsequent	product	update.

Lotteries	or	sweepstakes	are	allowed	in	some	cases,	if	the	developer	is
permitted	by	law	to	run	a	lottery	business.	Again,	you	can	only	sell	those
apps	in	countries	where	you	have	the	legal	right	to	do	so.	Having	a	lottery
app	on	the	U.S.	App	Store	doesn’t	automatically	entitle	you	to	sell	the	same
app	on	the	U.K.	App	Store	or	the	Australian	App	Store.	You	might	need	to
submit	additional	documents	to	the	Apple	review	process	along	with	your
app.

Apple’s	developer	documentation	doesn’t	contain	any	information	on	what	is	allowed	and	what	is
not	allowed.	Read	the	App	Store	Review	Guidelines	on	developer.apple.com	and	your	iOS
developer	license	agreement	to	understand	what	is	and	is	not	permitted.

Rethinking	Your	Business	Model
All	items	that	you	are	planning	to	sell	through	In	App	Purchase	(especially
content)	have	to	go	through	Apple’s	formal	review	process,	which	usually
take	a	week	and	sometimes	longer.	Remember	this	when	coming	up	with
your	business	plan.

If	you	are	making	an	app	that	provides	premium	wallpapers	for	download,
you	probably	won’t	be	able	to	sell	a	“wallpaper	of	the	day”	through	In	App
Purchases—at	least	not	easily.	You	can,	however,	think	of	different	business
plans,	like	offering	a	free	download	for	any	wallpaper	of	the	day	if	the	user	is
subscribed	to	a	premium	membership.	Another	suggestion	is	to	submit	your
app’s	“wallpaper	of	the	day”	for	at	least	the	next	30	days	so	that	you	have	full
control	of	releasing	it	on	the	correct	dates.	Ensure	that	your	buffer	is	bigger
than	the	worst-case	approval	times.

Finally,	every	product	you	submit	to	the	App	Store	needs	to	be	configured	on
iTunes	Connect.	This	configuration	might	take	anywhere	from	a	couple	of
minutes	to	an	hour	(if	complex	screenshots	are	needed).	If	you	are	selling
digital	books	or	any	other	digital	content	like	wallpapers,	it	might	not	be
feasible	(timewise)	to	configure	every	product	on	iTunes	Connect.	Moreover,
there	is	a	limit	of	5,000	Stock	Keeping	Units	(SKUs)	that	you	can	add	to	your

http://developer.apple.com/

product	via	In	App	Purchases.	A	recommended	alternative	in	such	a	case	is	to
make	them	consumable.

At	this	point	you	should	have	decided	whether	to	sell	your	In	App	product	as
a	consumable,	non-consumable,	or	subscription.

Setting	Up	Products	on	iTunes	Connect
Implementing	In	App	Purchases	in	your	app	is	20%	configuration,	10%
getting	the	right	business	model	for	your	app,	and	70%	implementation.	With
MKStoreKit	that	70%	coding	reduces	to	somewhere	near	zero.	However,	the
addition	of	new	types	of	products	has	made	configuration	confusing	and
changes	to	rules	and	lack	of	proper	documentation	on	what	is	acceptable	and
what	is	not	acceptable	has	made	choosing	the	right	business	model	difficult,
so	configuration	remains	the	most	challenging	aspect	of	the	integration.

This	section	walks	you	through	the	steps	involved	in	setting	up	products	on
iTunes	Connect.	I	assume	that	you	are	already	signed	up	with	the	iOS
developer	program	and	have	the	necessary	credentials	to	log	in	to	various
portals	like	iOS	developer	program	portal	and	iTunes	Connect.

I	refer	to	the	iOS	developer	program	portal	and	iTunes	Connect	throughout	the	next	few	pages.
The	following	links	will	be	of	help.	The	URLs	are	pretty	easy	to	remember:

iOS	developer	program	portal—http://developer.apple.com/devcenter/ios/index.action

iTunes	Connect—http://itunesconnect.apple.com

Step	1:	Create	a	New	App	ID	for	Your	App
Every	app	that	requires	In	App	Purchases	should	have	an	App	ID	that	is
unique	to	the	application.	The	ID	cannot	include	a	wild	card	character	(*).
The	recommended	convention	for	this	is	reverse	DNS	notation.	Here	are	a
couple	of	examples:

com.mycompany.myapp.levelpack1

org.mycompany.myapp.levelpack2

To	create	a	new	App	ID,	log	in	to	iOS	Developer	Program	portal	and	navigate
to	the	iOS	Provisioning	Portal,	as	shown	in	Figure	14-1.

http://developer.apple.com/devcenter/ios/index.action
https://itunesconnect.apple.com/WebObjects/iTunesConnect.woa

Figure	14-1	iOS	Provisioning	Portal

Click	the	New	App	ID	button	and	follow	the	wizard	to	create	an	App	ID.
Ensure	that	you	use	a	fully	qualified	App	ID	without	any	wild	card
characters.

Warning:	A	wild	card	character	in	your	App	ID	will	prevent	you	from	adding	products	for	In
App	Purchase	later.	If	you	already	have	a	product	on	App	Store	and	want	to	integrate	In	App
Purchases	in	the	next	release,	but	the	live	app	isn’t	using	a	unique	App	ID,	it	will	still	work,	but
your	users	will	not	be	notified	about	this	update	automatically	through	the	App	Store;	they	have
to	download	it	again.	To	push	update	notifications,	the	App	Store	relies	on	the	fact	that
subsequent	updates	to	a	product	use	the	same	App	ID	and	incrementing	version	numbers.	While
there	are	workarounds	to	associate	a	new	App	ID	to	an	existing	Bundle	ID	(Apple	Technical	Note
QA1680),	I	would	still	recommend	using	a	unique	product	ID	for	each	app	you	develop.	As	of	this
writing,	with	iOS	5,	there	are	several	features	that	rely	on	a	unique	App	ID	including	but	not
limited	to	push	notifications,	Game	Center	integration,	and	iCloud	integration.	If	your	app	might
use	any	one	of	these	features	(even	in	a	future	release),	you	should	use	a	unique	App	ID	from	the
beginning.

Step	2:	Generate	Provisioning	Profiles
In	App	Purchases	cannot	be	run	on	a	simulator;	you	need	a	device	to	run	and
test	them.	This	means	you	should	create	a	provisioning	profile	for	running
your	app	on	a	device.	That’s	the	second	step.	Go	to	the	fifth	link	on	the	left
navigation	pane	in	the	iOS	Provisioning	Portal.	This	step	is	done	in	exactly
same	way	as	for	any	other	app.	Remember	to	choose	the	same	App	ID	that
you	created	in	step	1.

Step	3:	Create	the	App’s	Product	Entry

Before	you	create	In	App	Purchase	products,	you	need	to	have	an	app	that
sells	your	In	App	Purchase	products.	Let’s	start	by	creating	an	application	on
iTunes	Connect.	Open	iTunes	Connect	and	click	Manage	Your	Applications.
That’s	the	first	link	in	the	right	column,	as	shown	in	Figure	14-2.

Figure	14-2	iTunes	Connect	home	page

Create	a	new	application	from	the	Manage	Your	Applications	link.	It’s	most
important	for	you	to	choose	your	Bundle	ID	correctly.	Choose	the	App	ID
you	created	in	step	1	as	your	Bundle	ID	here,	as	shown	in	Figure	14-3.

The	Bundle	ID	and	App	ID	are	the	same.	Apple	just	uses	a	different	name	here.

Later	in	your	app	you	query	the	App	Store	for	information	about	your
product.	This	information	includes	the	price	in	the	currency	of	the	user’s	App
Store	account,	the	localized	product	name,	and	the	product	description.
Making	a	mistake	in	this	step	means	that	you	will	not	be	able	to	get	detailed
information	about	an	In	App	Product	programmatically	later.	The	product
identifiers	will	be	returned	as	Invalid	Product	Ids,	described	later	in	this
chapter.	This	is	because	your	In	App	Purchase	products	are	tied	to	an	app
using	the	Bundle	ID	(App	ID).

An	app	with	a	specific	Bundle	ID	cannot	sell	In	App	Purchase	products	that	are	meant	for	a
different	app	that	uses	a	different	Bundle	ID.

Figure	14-3	New	application	form

Step	4:	Create	the	In	App	Purchase	Product	Entries
Click	on	the	app	and	you	will	see	a	screen	like	that	shown	in	Figure	14-4.

Figure	14-4	App	information

Click	the	Manage	In-App	Purchases	link	to	create	your	first	In	App	Purchase
product.

If	you	don’t	see	the	Manage	In-App	Purchases	option	on	your	iTunes	Connect,	be	sure	your
iTunes	Connect	account	has	Admin	privileges.	Then,	check	that	your	Contract	Tax	and	Banking
information	is	correct.	If	this	is	your	first	app	and	you	haven’t	yet	submitted	your	tax	documents
and/or	haven’t	accepted	the	Paid	Applications	Contract,	you	will	not	see	this	link	on	the	page.	In
that	case,	correct	the	situation	appropriately	and	wait;	Apple	normally	takes	a	week	or	two	to
approve	your	documents,	depending	on	your	location.

On	the	first	page,	you	see	four	different	types	of	products	available	for	you	to
create.	You	should	know	what	kind	of	product	you	are	creating	(discussed
earlier	in	the	chapter).	Choose	that	product	type	and	proceed.

To	create	the	Product	ID	for	your	In	App	products,	I	recommend	suffixing	the	product	identifier
with	your	Bundle	ID.	For	example,	if	your	Bundle	ID	is	com.mycompany.myapp,	your	In	App
product	ID	would	be	com.mycompany.myapp.inapp.	This	will	ensure	that	product	IDs	across	your
other	apps	don’t	clash	with	each	other.

Consumables,	Non-consumables,	Non-renewing	Subscriptions
For	all	product	types	except	auto-renewable	subscriptions,	you	have	to	enter	a
product	identifier	and	choose	its	price	tier.	Add	a	description	that	shows	up
when	the	user	buys	your	product.	If	your	product	is	multilingual,	add
descriptions	in	all	supported	languages	in	this	page.

You	now	have	to	add	a	screenshot	of	the	product	(yes,	that’s	for	the	product
you	have	not	yet	created)	before	you	can	submit	the	form.	For	the	time	being,
upload	a	320×480	iPhone	screenshot.	This	screenshot	is	only	for	iOS	App
Store	review	purposes.	In	most	cases,	you	need	this	only	for	content.	For
features	or	other	consumables,	it’s	okay	to	upload	a	screenshot	displaying	the
In	App	Store.

Nonrenewing	subscriptions	are	not	recommended	after	Apple	announced	the	new	auto-renewing
subscriptions.	Functionally,	auto-renewing	subscriptions	offer	everything	that	nonrenewing
subscriptions	offer	and	add	features	like	automatic	renewal	without	user	intervention,	and
restoring	subscriptions	on	customers’	other	devices.

Auto-renewable	Subscriptions
Auto-renewable	subscriptions	are	slightly	different.	You	create	a	subscription
family	and	add	duration	of	the	subscription	to	that	family.	This	allows	you	to
create	the	same	magazine	subscription	with	different	durations.	For	instance,
you	can	create	a	weekly	subscription	at	$5	or	a	monthly	subscription	at	$20
or	a	yearly	subscription	at	$300.	Other	options	within	a	subscription	family
are	similar	to	consumables.

Step	5:	Generating	the	Shared	Secret
For	auto-renewable	subscriptions,	you	need	to	do	one	more	very	important
step:	Generate	a	shared	secret.

In	the	App	Information	page	(shown	in	Figure	14-4),	click	the	Manage	In
App	Purchases	link.	On	this	page,	you	will	see	a	link	titled,	“View	or	generate
a	shared	secret.”	Copy	the	shared	secret	safely.	You	will	need	it	when	you
write	the	real	code.

Step	6:	Creating	Test	User	Accounts
The	final	step	is	to	create	user	accounts	that	you	will	use	for	testing	In	App
Purchases	after	implemention.	You	can	do	this	later,	after	implementation,	but
doing	it	now	completes	all	steps	needed	for	configuring	In	App	Purchases.

To	create	test	user	accounts,	open	the	iTunes	Connect	home	page	(see	Figure
14-2)	and	click	Manage	Users.	You	will	see	two	links,	one	for	creating	an
iTunes	Connect	user	and	another	for	creating	a	Test	User.	Click	the	second
link	and	create	a	Test	User.	This	should	be	fairly	simple.

That	completes	the	configuration	part	of	In	App	Purchasing.	If	you	have	done
all	the	steps	correctly,	you	have	completed	30%	of	the	In	App	Purchase
integration.	The	remaining	70%	is	the	real	code,	which	you	dive	into	next.

In	App	Purchase	Implementation
The	configuration	of	In	App	Purchases	was	hard,	and	so	is	the	programming
involved	in	the	implementation.	In	App	Purchase	implementation	requires
you	to	complete	some	tedious	coding.	The	following	is	a	comprehensive	list
of	the	important	tasks	that	you	have	to	do	for	implementing	In	App	Purchases
in	your	app.

■	First	and	foremost,	your	app	could	be	closed	(probably	by	a	phone	call)
while	a	transaction	is	in	progress.	Given	that	transactions	can	continue
outside	of	your	app,	you	should	have	a	Store	Observer	class	that	initializes
at	application	launch	and	receives	any	purchases	made	while	the	app	is	in
the	background.
■	Remember	the	actual	number	of	consumable	items	purchased.
■	Remember	the	non-consumable	purchase	and	allow	the	user	to	restore	it
on	his	other	devices.

■	Remembering	these	purchases	should	be	done	securely	using	iOS

keychain.
■	Post	nonrenewing	subscriptions	to	your	server	and	“remember”	them
there.	You	should	also	have	the	capability	to	restore	them	on	any	other
device	when	the	user	logs	into	your	app	from	another	device.

■	Consumable	contents	can	be	occasionally	delivered	digitally	from	your
server.	In	that	case,	your	server	should	be	able	to	verify	the	authenticity	of
the	receipt	and	provide	content.	This	also	means	that	your	iOS	app	should
post	App	Store	purchase	receipts	to	your	server	before	it	starts
downloading	content.
■	Verify	whether	auto-renewing	subscription	receipts	are	still	valid.	Even
though	auto-renewing	subscriptions	are	renewed	automatically	without
manual	user	intervention,	you	are	still	required	to	check	this	because	a	user
might	have	cancelled	the	subscription.	A	cancelled	subscription	remains
valid	only	until	the	end	of	the	current	subscription	period.	This	means	that
you	as	a	developer	should	remember	purchases,	purchase	receipts,	and
verify	the	receipts’	validity,	probably	during	app	launch.	If	they	are	no
longer	valid,	stop	providing	the	content.

■	To	validate	auto-renewing	subscriptions,	post	your	receipt	and	the	shared
secret	you	generated	in	step	5	of	the	previous	section	to	the	App	Store,
parse	the	returned	JSON	(JavaScript	Object	Notation),	and	get	the
subscription’s	latest	purchase	date.
■	The	StoreKit.framework	doesn’t	tell	you	when	an	auto-renewable
subscription	ends.	Instead,	the	API	returns	the	actual	date	of	the	latest
receipt.	From	this	date,	you	should	calculate	the	actual	date	of	expiry.
■	Display	localized	product	prices	and	descriptions	on	your	Store	View
Controller.

While	this	might	sound	complicated,	MKStoreKit	wraps	most	of	these
functionalities.	Next	you	see	how	to	add	MKStoreKit	into	your	app	and	build
it.

Introduction	to	MKStoreKit
MKStoreKit	is	an	open	source	framework	(In	App	Purchases	Tutorial	|
MKBlog,	2011)	that	makes	integrating	In	App	Purchases	simpler.	As	of	this

writing,	the	latest	version	is	4.0	and	that’s	the	version	used	in	this	chapter.
You	can	download	the	source	code	for	this	from	the	book’s	website	or	from
Github	(see	the	"Further	Reading"	section	at	the	end	of	this	chapter).

Why	MKStoreKit?
MKStoreKit	automatically	takes	care	of	the	following	items	you	saw	in	the
list	in	the	preceding	section.

■	When	your	app	is	closed	while	a	transaction	is	in	progress,	MKStoreKit
automatically	tracks	this,	continues	to	observe	StoreKit	delegates,	and
remembers	any	purchases	made	outside	of	your	app.	This	takes	care	of	the
first	item.
■	For	consumables	and	nonconsumables,	MKStoreKit	automatically
remembers	your	purchases	in	iOS	keychain.	Purchases	are	remembered
using	your	product	identifiers	as	the	key	so	in	most	cases	you	don’t	have	to
customize	anything	here.	Items	2,	3,	and	4	are	thus	taken	care	of
automatically.
■	The	MKSKProduct	class	posts	nonrenewing	subscriptions	to	your	server.
So	the	fifth	item	is	taken	care	of,	if	you	do	the	server	customization	with
the	PHP	code	that	comes	with	MKStoreKit.	You	learn	about	this	later	in
the	“Customizing	MKStoreKit”	section.

■	For	consumables	or	any	content	you	deliver	digitally	from	your	server,
you	have	to	post	the	App	Store	receipt	to	your	server.	The	server	should
verify	the	receipt	and	validate	it.	If	it’s	valid,	it	should	deliver	the	content
to	your	app.	The	MKSKProduct	class	takes	care	of	this	in	tandem	with	some
server	configuration,	which	you	learn	about	later	in	this	chapter.	This
handles	item	6.
■	For	auto-renewing	subscriptions,	you	need	to	verify	the	latest	receipt
when	your	app	is	launched	and	disable	access	to	content	when	the	user	has
cancelled	the	subscription.	The	MKSKSubscriptionProduct	class	does	this
automatically,	including	parsing	the	response	JSON	from	the	App	Store
and	verifying	that	the	subscriptions	are	still	valid;	it	notifies	you	via
NSNotificationCenter.	You	should	tell	MKStoreKit	how	many	days	a
subscription	is	valid.	You	learn	how	to	do	this	later	in	this	chapter.	This
takes	care	of	items	7,	8,	and	9.

■	MKStoreKit	has	helper	methods	that	return	your	product	descriptions
and	price	formatted	in	the	local	currency	of	the	user.	That	takes	care	of	the
last	item.

Customizing	MKStoreKit	to	work	with	your	app	takes	less	than	25	lines	of
code.	In	some	cases	it	should	be	less	than	ten	lines	of	code.

Now,	before	you	actually	integrate	the	framework,	it’s	always	good	to	know
how	it	works	internally.	The	next	section	explains	this.

Design	of	MKStoreKit
MKStoreKit	uses	blocks	instead	of	delegates	to	notify	you	of	product
purchases.	(You	learn	more	about	blocks	in	Chapter	16.)	Other	notifications
like	subscription	expiry	are	posted	to	NSNotificationCenter.	The
framework	comprises	a	main	singleton	class,	the	MKStoreManager,	and
several	other	support	classes	listed	here:

■	MKStoreManager.h	and	MKStoreManager.m—This	is	the	main
singleton	class	that	handles	most	of	the	implementation.	You	have	to
initialize	this	singleton	in	your	AppDelegate’s
applicationDidFinishLaunchingWithOptions:	method.

■	MKStoreObserver.h	and	MKStoreObserver.m—This	is	the	class	that
implements	of	the	StoreKit.framework’s
SKPaymentTransactionObserver.	It	notifies	product	purchases,	or	restores
notifications	to	MKStoreManager	singleton.

■	MKSKProduct.h	and	MKSKProduct.m—This	is	an	internal	class
used	by	MKStoreKit	to	validate	purchases.	MKStoreManager	uses	this	class
to	communicate	with	your	server	to	check	whether	the	receipt	is	valid	and
the	actual	product	can	be	downloaded.	This	is	used	only	for	Server	Product
Model,	where	you	verify	receipts	on	server	and	deliver	content	digitally.

■	MKSKSubscriptionProduct.h	and	MKSKSubscriptionProduct.m—
This	is	another	internal	class	used	by	MKStoreKit	to	validate	your	auto-
renewable	subscription	purchases.	MKStoreManager	uses	this	class	to
communicate	with	your	server	to	check	if	the	latest	subscription	receipts
are	still	valid.	If	the	user	has	cancelled	his	subscription,	this	class	notifies
MKStoreManager	that	the	subscription	is	no	longer	valid	and

MKStoreManager	posts	a	notification.	You	have	to	observe	these
notifications	(shown	below)	on	your	view	controller	and	enable	or	disable
your	Subscribe	buttons	accordingly.	If	your	app	doesn’t	use	auto-renewable
subscriptions,	you	don’t	have	to	do	this.

kSubscriptionsPurchasedNotification

kSubscriptionsInvalidNotification

■	MKStoreKitConfigs.h	and	MKStoreKitConfigs.plist—These	two	files
in	the	framework	require	customization	based	on	your	app.	You	will	learn
about	customizing	them	later	in	this	chapter.

■	Remembering	purchases—MKStoreKit	uses	iOS	keychain	to
remember	a	purchase	automatically	when	it’s	purchased.

Customizing	MKStoreKit
Two	important	files	in	MKStoreKit	that	you	should	change	are

■	MKStoreKitConfigs.h

■	MKStoreKitConfigs.plist

The	plist	file	contains	the	list	of	products	that	you	configured	on	iTunes
Connect.	You	add	your	products	under	the	corresponding	keys	in	the	plist
depending	on	the	product	type.	You	should	add	your	consumables	under	the
consumable	key,	nonconsumables	under	the	nonconsumable	key,	and
subscriptions	under	the	subscriptions	key.	Every	type	of	key	has	its	own
suboptions.	You	learn	how	to	configure	them	later	in	this	chapter.

Initializing	MKStoreKit
Before	you	configure	MKStoreKit,	initialize	it	in	your	AppDelegate’s
applicationDidFinishLaunchingWithOptions:	method.	This	ensures	that
the	StoreObservers	are	initialized	properly	to	receive	transactions	completed
outside	of	the	app.	Just	initialize	the	singleton	by	calling	the	following	in
your	AppDelegate:

[MKStoreManager	sharedManager];

Configuring	for	Use	with	Server	Product	Model
When	you	sell	content	in	your	app	and	allow	users	to	stream	or	download	the

content	from	your	server,	you	should	use	the	Server	Product	Model.	In	the
Server	Product	Model,	the	iOS	app	makes	a	purchase	and	sends	the
transaction	receipt	over	to	the	server	for	verification.	The	server	then	verifies
the	receipt	with	Apple’s	receipt	verification	server	and	if	the	receipt	is	valid,
redirects	the	request	to	the	requested	content.

Server	Setup
MKStoreKit	comes	with	server	code	in	PHP	ready	to	verify	receipts	from	the
server.	Copy	the	Server	Code	directory	and	open	it	up	for	access.	Copy	the
public	URL	for	this	directory.	Let’s	assume	that	it	can	be	accessed	at	this
location:

http://api.example.com/servercode

Now	go	back	to	your	iOS	source,	open	the	file	MKStoreKitConfigs.h,	and
locate	these	lines:

#define	SERVER_PRODUCT_MODEL	0

#define	OWN_SERVER	nil

#define	REVIEW_ALLOWED	1

Set	the	OWN_SERVER	value	to	@”http://api.example.com/servercode”.

You	are	all	set.	MKStoreKit	will	ping	the	featureCheck.php	endpoint	in	this
directory	to	verify	receipts	and	remember	the	purchase	only	when	the	server
says	receipts	are	valid.	Receipt	validation	is	done	by	posting	the	receipt	to
Apple’s	receipt	validation	URL:

https://buy.itunes.apple.com/verifyReceipt

For	sandbox	testing,	you	should	use

https://sandbox.itunes.apple.com/verifyReceipt

The	server	code	automatically	switches	this	based	on	the	configuration	you
defined.	The	default	implementation	of	featureCheck.php	returns	plain
strings—YES	or	NO—based	on	whether	the	receipts	are	valid	or	not.	You
might	need	to	modify	it	to	return	in	JSONs	along	with	the	URL	of	the	content
location.

https://buy.itunes.apple.com/verifyReceipt
https://sandbox.itunes.apple.com/verifyReceipt

Configuring	for	Use	with	Consumables
In	a	generic	sense,	a	consumable	is	a	product	that	depletes	when	it	is	used.
Printer	ink	is	a	common	example.	In	App	Purchases	consumables	behave	the
same	way.	When	a	user	purchases	a	consumable	product,	it’s	stored	on	the
device	and	stays	there	until	he	uses	it.	You	are	not	obliged	to	restore
consumables	on	other	devices.	When	implementing	consumables,	you	often
encounter	a	business	case	where	bulk	purchases	are	subsidized	to	the	user,
just	like	real	world	consumables.

For	example,	you	might	have	two	products	in	your	game,	a	small	box	of
ammo	containing	one	hundred	bullets	at	99	cents,	and	a	larger	box	containing
a	thousand	at	$5.99.	Within	your	game,	both	the	products	are	synonymous.
However,	SKU	wise,	they	are	treated	differently	and	they	cost	differently.	To
implement	this	model,	MKStoreKit	allows	you	to	specify	names	for	your
products.	That	way	you	can	tell	MKStoreKit	to	treat	them	separately	during
purchase,	but	treat	them	the	same	when	consumed.	Essentially,	this	means
that	buying	either	of	the	products	increases	the	count	of	the	same	item.	To
configure	MKStoreKit	this	way,	use	the	suboptions	inside	the	consumable
key	in	MKStoreKitConfigs.plist	illustrated	in	Figure	14-5.

Figure	14-5	Configuring	consumables	in	MKStoreKit

You	add	the	product	identifier	of	every	consumable	within	the	Consumables
dictionary.	Every	product	has	a	Name	and	Count.	From	the	previous	example
(the	ammo	box	case),	imagine	you	have	two	products:
com.myapp.mygame.ammopackSmall	and	com.myapp.mygame.ammopackLarge.
The	Count	key	will	let	you	set	the	count	of	the	virtual	consumable	for	this
product	purchase.	The	Name	key	will	let	you	set	the	real	name	of	the
consumable.	MKStoreKit	normally	remembers	purchases	with	product
identifier.	But	for	consumables,	it	uses	the	Name	key	because	multiple	SKUs
can	actually	mean	the	same	within	your	app.

Now,	in	the	course	of	your	game/app,	if	the	user	consumes	your	product,	you

should	first	check	if	it’s	available	by	calling	these	methods:

-	(BOOL)	canConsumeProduct:(NSString*)	productName	quantity:(int)

quantity;

-	(BOOL)	consumeProduct:(NSString*)	productName	quantity:(int)

quantity;

consumeProduct	will	properly	deduct	the	quantity	of	the	product	consumed
from	the	purchased	quantity	and	stores	the	remaining	available	quantity	in	the
keychain,	all	automatically.

Configuring	for	Use	with	Auto-renewable	Subscriptions
Auto-renewable	subscription	configuration	is	very	similar	to	consumables
configuration.	The	first	step	is	to	specify	your	shared	secret.	Copy	the	shared
secret	you	generated	earlier	in	the	chapter	and	paste	it	here	in	the	file
MKStoreKitConfigs.h:

#warning	Shared	Secret	Missing	Ignore	this	warning	if	you	don’t

use	auto-renewable	subscriptions

#define	kSharedSecret	@”<FILL	IN	YOUR	SHARED	SECRET	HERE>”

You	can	now	remove	the	#warning	line.	Also,	if	you	don’t	use	auto-
renewable	subscriptions	(and	thus	don’t	have	a	shared	secret),	you	can	ignore
this	warning.	Just	remove	the	#warning	line.

Now	open	the	plist	file	and	as	you	would	for	consumables,	instead	of
specifying	the	count,	specify	the	duration	of	the	subscription.	Now,	on	your
view	controllers	that	display	the	store,	you	should	observe	the
kSubscriptionsPurchasedNotification	and/or
kSubscriptionsInvalidNotification	and	enable	or	disable	your	subscribe
buttons	accordingly.

Making	the	Purchase
Now	that	you	have	configured	MKStoreKit,	making	the	real	purchase	is	very
simple.	It’s	just	a	single	method	call	like	this:

[[MKStoreManager	sharedManager]	buyFeature:@”com.myapp.myfeature”

									onComplete:^(NSString*)	purchasedProduct

{

		//	provide	the	content	for	the	product	“purchasedProduct”.

}

								onCancelled:^

{

		//	optionally	display	an	error

}];

Once	you	configure	MKStoreKit	properly,	it	takes	just	a	single	method	call	to
initiate	a	purchase.	Remembering	the	purchase	is	automatically	done	for	you.
To	check	if	a	product	has	been	purchased	previously,	you	can	call	this
method:

[MKStoreManager	isProductPurchased:@”com.myapp.feature1”];

This	returns	a	Boolean	that	states	if	the	product	is	purchased	or	not.	Restoring
purchases	is	done	with	another	one-liner.	Read	the	MKStoreManger.h	file	to
see	the	functionalities	exposed	by	MKStoreKit.

Now	that’s	fewer	than	10	lines	to	get	it	all	running,	and	maybe	another	15
lines	of	configuration,	as	I	promised	at	the	beginning	of	the	chapter.

Testing	Your	In	App	Purchase
Now	that	you	have	implemented	In	App	Purchasing,	let’s	go	ahead	and	test	if
they	work.	You	will	need	the	credentials	of	the	test	user	account	you	created
earlier	in	this	chapter	for	testing.	Before	you	start,	open	the	settings	app	on
the	device	you	will	be	using	for	testing	and	tap	on	the	Store	menu.	Log	out	of
the	App	Store	and	ensure	that	no	user	is	logged	into	the	store.

Run	the	app	on	a	device	and	initiate	a	purchase.	You	are	prompted	to	enter	or
create	a	new	iTunes	account	or	use	an	existing	account.	Choose	to	use	an
existing	account	and	enter	the	Test	User	name	and	password	you	created
previously.	The	App	Store	will	now	ask	you	to	confirm	the	purchase	of	your
In	App	Purchase	product.	Tap	on	Buy	(or	Subscribe),	and	your	product	is
now	purchased.	You	have	successfully	completed	the	In	App	Purchase
integration	in	your	app.

All	this	sounds	good,	but	what	happens	when	there	is	a	problem?	Let’s	see
about	some	quick	troubleshooting	techniques	in	the	next	section.

Troubleshooting
Even	after	all	the	explanation	on	this	chapter,	In	App	Purchases	remains	one
of	the	most	difficult	frameworks	to	troubleshoot.

Invalid	Product	IDs
The	most	common	problem	occurs	when	the	App	Store	returns	your	product
as	invalid.	If	you	have	been	following	the	chapter	closely,	reading	every	tip
and	warning,	you	shouldn’t	encounter	this.	However,	the	problem	could
happen	if	you	have	any	of	the	following	issues.

■	The	product	Bundle	ID	in	Info.plist	file	doesn’t	match	the	App	ID	you
created.
■	Your	contract	and	tax	statements	are	not	yet	submitted	and	or	you	have
not	yet	accepted	the	iOS	developer	paid	applications	contract.	To	correct
these	issues,	go	to	iTunes	Connect	and	click	the	Contracts,	Tax,	and
Banking	link.	It’s	very	important	to	check	this	when	you	submit	your	first
app.
■	Jailbroken	devices	sometimes	don’t	work	well	with	the	App	Store.	An
app	called	AppSync	from	Cydia	seems	to	be	the	cause	of	most	problems
associated	with	In	App	Purchasing.	In	App	Purchases	are	best	tested	with	a
device	running	an	unmodified	operating	system.

Sometimes,	even	after	you	ensure	that	none	of	these	issues	is	a	problem,	the
App	Store	still	indicates	that	your	products	are	invalid.	This	happens	more
often	to	non-U.S.	based	developers.	Wait	several	hours	before	retrying	(see
“Retrieving	Store	Information”	in	the	Apple	Developer	Documentation,
2011).	Apple	uses	distributed	servers	and	it	might	take	several	hours	to
migrate	the	products	you	created	from	the	U.S.	servers	to	other	mirror	servers
near	your	country.

Cannot	Connect	to	iTunes	Store
The	other	common	problem	is	when	you	get	the	message	“Cannot	connect	to
iTunes	store:	Code:	-1003.”	This	happens	when	your	firewall	blocks	iTunes.
Test	the	In	App	Purchases	by	connecting	to	a	different	network	or	ensure	if

you	have	proper	Internet	connectivity.

You	Have	Already	Purchased	This	Product,	but	It’s
Still	Not	Downloaded

This	error	is	common	when	you	work	with	consumables.	It	happens	mostly
when	you	tap	on	the	Buy	button	too	often.	The	workaround	is	to	disable	the
Buy	button	once	the	purchase	is	initiated	and	reenable	it	after	the	transaction
completes.	Follow	the	interaction	pattern	similar	to	the	built-in	App	Store.

If	your	problem	is	still	not	solved,	the	old	school	method	of	deleting	the	app
and	redoing	all	the	steps	often	works.

Summary
In	App	Purchases,	although	tricky	to	implement,	offer	an	innovative	and
unique	way	to	monetize	your	apps.	Carefully	deciding	on	your	business
model	and	implementing	In	App	Purchases	can	vastly	increase	the	money
you	make	from	the	App	Store.	A	quick	look	at	the	top-grossing	apps	on	the
U.S.	App	Store	shows	that	at	least	25%	follow	the	freemium	model	whereby
the	app	is	free	but	content	and	features	are	provided	through	In	App
Purchases.	This	clearly	proves	that	freemium	is	successful	on	the	App	Store.
With	frameworks	like	MKStoreKit	minimizing	your	coding	efforts,	why	not
give	it	a	try?

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

App	Store	Review	Guidelines

In	App	Purchase	Programming	Guide
Retrieving	Store	Information

http://developer.apple.com/

Blogs
iPhone	Tutorial:	In	App	Purchases	|	MKBlog
http://blog.mugunthkumar.com/coding/iphone-tutorial-–-in-app-

purchases/

MKStoreKit	4.0	–	Supporting	Auto	Renewable	Subscriptions	|	MKBlog
http://blog.mugunthkumar.com/coding/mkstorekit-4-0-supporting-

auto-renewable-subscriptions/

Other	Resources
MKStoreKit	on	Github	https://github.com/MugunthKumar/MKStoreKit

Can’t	use	in-app	purchase:	This	is	not	a	test	user	account	/	Boxcar	support
http://help.boxcar.io/kb/general/cant-use-in-app-purchase-this-

is-not-a-test-user-account

http://blog.mugunthkumar.com/coding/iphone-tutorial-�-in-app-purchases/
http://blog.mugunthkumar.com/coding/mkstorekit-4-0-supporting-auto-renewable-subscriptions/
https://github.com/MugunthKumar/MKStoreKit
http://help.boxcar.io/kb/general/cant-use-in-app-purchase-this-is-not-a-test-user-account

Part	IV:	Pushing	the	Limits

Chapter	15	Cocoa’s	Biggest	Trick:	Key-Value	Coding	and	Observing

Chapter	16	Think	Different:	Blocks	and	Functional	Programming

Chapter	17	Going	Offline

Chapter	18	Fancy	Text	Layout

Chapter	19	Building	a	(Core)	Foundation

Chapter	20	Deep	Objective-C

Chapter	15:	Cocoa’s	Biggest	Trick:
Key-Value	Coding	and	Observing

There	is	no	magic	in	Cocoa.	It’s	just	C.	But	there’s	one	particular	trick	that
borders	on	magic,	and	that’s	key-value	observing	(KVO).	This	chapter
explores	how	and	when	to	use	KVO,	as	well	as	its	nonmagical	cousin,	key-
value	coding	(KVC).

Key-value	coding	is	a	mechanism	that	allows	you	to	access	an	object’s
properties	by	name	rather	than	by	calling	explicit	accessors.	This	allows	you
to	determine	property	bindings	at	run	time	rather	than	at	compile	time.	For
instance,	you	can	request	the	value	of	the	property	named	by	the	string
variable	someProperty	using	[object	valueForKey:someProperty].	You
can	set	the	value	of	someProperty	using	[object	setValue:someValue
forKey:someProperty].	This	indirection	allows	you	to	determine	the	specific
properties	to	access	at	run	time	rather	than	at	compile	time,	allowing	more
flexible	and	reusable	objects.	To	get	this	flexibility,	your	objects	need	to	name
their	methods	in	specific	ways.	This	naming	convention	is	called	key-value
coding,	and	in	this	chapter	you	learn	these	rules	to	create	indirect	getters	and
setters,	access	items	in	collections,	and	manage	KVC	with	nonobjects.	You
also	learn	to	implement	advanced	KVC	techniques	such	as	Higher	Order
Messaging	and	collection	operators.

If	your	objects	follow	the	KVC	naming	rules,	then	you	can	also	make	use	of
key-value	observing.	KVO	is	a	mechanism	for	notifying	objects	of	changes	in
the	properties	of	other	objects.	Cocoa	has	several	observer	mechanisms
including	delegation	and	NSNotification,	but	KVO	is	the	fastest.	The
observed	object	does	not	have	to	include	any	special	code	to	notify	observers,
and	if	there	are	no	observers,	KVO	has	no	run	time	cost.	The	KVO	system
adds	the	notification	code	only	when	the	class	is	actually	observed.	This
makes	it	very	attractive	for	situations	where	performance	is	at	a	premium.	In
this	chapter	you	learn	how	to	use	KVO	with	properties	and	collections,	and
the	trick	Cocoa	uses	to	make	KVO	so	transparent.

All	code	samples	in	this	chapter	can	be	found	in	the	online	files	for	Chapter
15	in	the	projects	KVC,	KVC-Collection,	and	KVO.

Key-Value	Coding
Key-value	coding	is	a	standard	part	of	Cocoa	that	allows	your	properties	to	be
accessed	by	name	(“key”)	rather	than	by	calling	an	explicit	accessor.	It	allows
other	parts	of	the	system	to	ask	for	“the	property	named	foo”	rather	than
calling	foo	directly.	This	permits	dynamic	access	by	parts	of	the	system	that
do	not	know	your	keys	at	compile	time.	This	particularly	supports	nib	file
loading	and	Core	Data	in	iOS.	On	Mac,	KVC	is	a	fundamental	part	of	the
AppleScript	interface.

The	following	code	listings	demonstrate	how	KVC	works	with	an	example	of
a	cell	that	can	display	any	object	using	valueForKeyPath:.

KVCTableViewCell.h	(KVC)

@interface	KVCTableViewCell	:	UITableViewCell

-	(id)initWithReuseIdentifier:(NSString*)identifier;

//	Object	to	display.

@property	(nonatomic,	readwrite,	strong)	id	target;

//	Name	of	property	of	object	to	display

@property	(nonatomic,	readwrite,	copy)	NSString	*property;

@end

KVCTableViewCell.m	(KVC)

@implementation	KVCTableViewCell

@synthesize	target=target_;

@synthesize	property=property_;

-	(BOOL)isReady	{

		//	Only	display	something	if	configured

		return	(self.target	&&	[self.property	length]	>	0);

}

-	(void)update	{

		NSString	*text;

		if	(self.isReady)	{

				//	Ask	the	target	for	the	value	of	its	property	that	has	the

				//	name	given	in	self.property.	Then	convert	that	into	a	human

				//	readable	string

				id	value	=	[self.target	valueForKeyPath:self.property];

				text	=	[value	description];

		}

		else	{

				text	=	@””;

		}

		self.textLabel.text	=	text;

}

-	(id)initWithReuseIdentifier:(NSString	*)identifier	{

		return	[self	initWithStyle:UITableViewCellStyleDefault

													reuseIdentifier:identifier];

}

-	(void)setTarget:(id)aTarget	{

		target_	=	aTarget;

		[self	update];

}

-	(void)setProperty:(NSString	*)aProperty	{

		property_	=	aProperty;

		[self	update];

}

@end

KVCTableViewController.m	(KVC)

@implementation	KVCTableViewController

-	(NSInteger)tableView:(UITableView	*)tableView

numberOfRowsInSection:(NSInteger)section	{

		return	100;

}

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

									cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

		

		static	NSString	*CellIdentifier	=	@”KVCTableViewCell”;

		

		KVCTableViewCell	*cell	=	[tableView

									dequeueReusableCellWithIdentifier:CellIdentifier];

		

		if	(cell	==	nil)	{

				cell	=	[[KVCTableViewCell	alloc]

												initWithReuseIdentifier:CellIdentifier];

				//	You	want	the	“intValue”	of	the	row’s	NSNumber.

				//	The	property	will	be	the	same	for	every	row,	so	you	set	it

				//	here	in	the	cell	construction	section.

				cell.property	=	@”intValue”;

		}

		

		//	Each	row’s	target	is	an	NSNumber	representing	that	integer

		//	Since	each	row	has	a	different	object	(NSNumber),	you	set

		//	the	target	here,	in	the	cell	configuration	section.

		cell.target	=	[NSNumber	numberWithInt:indexPath.row];

		

		return	cell;

}

@end

This	example	is	quite	simple,	displaying	100	rows	of	integers,	but	imagine	if
KVCTableViewCell	had	animation	effects	or	special	selection	behaviors.	You
could	apply	those	to	arbitrary	objects	without	the	object	or	the	cell	needing	to
know	anything	about	the	other.	That’s	the	ultimate	goal	of	a	good	model-
view-controller	(MVC)	design,	which	is	the	heart	of	Cocoa’s	architecture.
(See	Chapter	4	for	more	information	on	the	MVC	pattern.)

The	update	method	of	KVCTableViewCell	demonstrates	valueForKeyPath:,
which	is	the	main	KVC	method	you	use	in	this	example.	Here	is	the
important	section:

id	value	=	[self.target	valueForKeyPath:self.property];

text	=	[value	description];

In	this	example,	self.property	is	the	string	“intValue”	and	self.target	is
an	NSNumber	object	representing	the	row	index.	So	the	first	line	is	effectively
the	same	as	this	code:

id	value	=	[NSNumber	numberWithInt:[self.target	intValue]];

The	call	to	numberWithInt:	is	automatically	inserted	by	valueForKeyPath:,
which	automatically	converts	number	types	(int,	float,	etc.)	into	NSNumber
objects,	and	all	other	nonobject	types	(structs,	pointers)	into	NSValue	objects.

While	this	example	utilizes	an	NSNumber,	the	key	take-away	is	that	target
could	be	any	object,	and	property	could	be	the	name	of	any	property	of
target.

Setting	Values	with	KVC
KVC	can	also	modify	writable	properties	using	setValue:forKey:.	For
example,	the	following	two	lines	are	roughly	identical:

cell.property	=	@”intValue”;

[cell	setValue:@”intValue”	forKey:@”property”];

Both	of	these	will	call	setProperty:,	as	long	as	property	is	an	object.	See
the	section	“KVC	and	Nonobjects”	for	a	discussion	of	how	to	handle	nil	and
nonobject	properties.

Methods	that	modify	properties	are	generally	called	mutators	in	the	Apple
documentation.

Traversing	Properties
You	may	have	noticed	that	KVC	methods	have	key	and	keyPath	versions.
For	instance,	there	is	valueForKey:	and	valueForKeyPath:.	The	difference
between	a	key	and	a	key	path	is	that	a	key	path	can	have	nested	relationships,
separated	by	a	period.	The	valueForKeyPath:	method	traverses	the
relationships.	For	instance,	the	following	two	lines	are	roughly	identical:

[[self	department]	name];

[self	valueForKeyPath:@”department.name”];

On	the	other	hand,	valueForKey:@”department.name”	would	try	to	retrieve
the	property	department.name,	which	in	many	cases	would	throw	an
exception.

The	keyPath	version	is	more	flexible,	while	the	key	version	is	slightly	faster.
If	the	key	is	passed	to	me,	I	generally	use	valueForKeyPath:	to	provide	the
most	flexibility	to	my	caller.	If	the	key	is	hard-coded,	I	generally	use
valueForKey:.

KVC	and	Collections
Object	properties	can	be	one-to-one	or	one-to-many.	One-to-many	properties
are	either	ordered	(arrays)	or	unordered	(sets).

Immutable	ordered	(NSArray)	and	unordered	(NSSet)	collection	properties
can	be	fetched	normally	using	valueForKey:.	If	you	have	an	NSArray
property	called	items,	then	valueForKey:@”items”	returns	it	as	you’d
expect.	But	there	are	more	flexible	ways	of	managing	this.

For	this	example,	you	create	a	table	of	multiples	of	two.	The	data	model

object	only	keeps	track	of	the	number	of	rows,	not	the	actual	results,	but	it
provides	the	results	as	though	it	were	an	NSArray.	This	project	is	available	as
KVC-Collection	in	the	sample	code.	Here	is	how	to	create	it:

■	Create	a	new	iPhone	project	in	Xcode	using	the	Model-Detail
Application	template	with	storyboard	and	automatic	reference	counting.
■	Select	MainStoryboard.storyboard	and	remove	the	“Master	View
Controller”	and	“Detail	View	Controller.”

■	Drag	a	view	controller	from	the	library	and	set	its	class	to
RootViewController.	Click-drag	from	the	navigation	controller	to	your
new	view	controller	and	set	the	relationship	to	rootViewController.

■	Add	labels	and	buttons	as	shown	in	Figure	15-1.	The	hash	marks	(###)
are	separate	labels	from	the	titles.

Figure	15-1	Storyboard	for	KVC-Collection	project

■	Delete	the	MasterViewController	and	DetailViewController	source
files.

■	Add	a	new	source	file	using	the	UIViewController	template	and	name	it
RootViewController.	Do	not	use	a	XIB	for	its	user	interface.

■	In	the	storyboard,	select	the	root	view	controller	and	show	the	assistant
editor.	Click-drag	from	the	labels	and	buttons	to	RootViewController.h	to
create	the	outlets	shown	in	Figure	15-2.	For	the	“View”	button,	click-drag
to	the	table	view	controller	and	select	the	push	segue.

Figure	15-2	KVC-Collection	Root	View	Controller	layout

The	following	code	implements	the	example	project	and	demonstrates	KVC
access	to	a	collection.	When	you	press	the	Add	button,	the	number	of	items

stored	in	DataModel	will	be	incremented.	When	you	press	the	View	button,	a
table	view	will	be	constructed	to	display	the	information	in	the	DataModel
using	KVC	proxy	collections	in	RootViewController,	and	KVC	collection
accessors	in	KVCTableViewController.	After	the	code	I	explain	how	both	of
these	access	mechanism	work.

RootViewController.h

@interface	RootViewController	:	UIViewController

@property	(nonatomic,	strong)	IBOutlet	UILabel	*countLabel;

@property	(nonatomic,	strong)	IBOutlet	UILabel	*entryLabel;

-	(IBAction)performAdd;

@end

RootViewController.m

@implementation	RootViewController

@synthesize	countLabel=countLabel_;

@synthesize	entryLabel=entryLabel_;

-	(void)refresh	{

		DataModel	*model	=	[DataModel	sharedModel];

		//	There	is	no	property	called	“items”	in	DataModel.	KVC	will

		//	automatically	create	a	proxy	for	you.

		NSArray	*items	=	[model	valueForKey:@”items”];

		NSUInteger	count	=	[items	count];

		self.countLabel.text	=	[NSString	stringWithFormat:@”%d”,

																										count];

		

		if	(count	>	0)	{

				self.entryLabel.text	=	[[items	objectAtIndex:(count-1)]

																												description];

		}	else	{

				self.entryLabel.text	=	@””;

		}

}

-	(void)viewWillAppear:(BOOL)animated	{

		[self	refresh];

		[super	viewWillAppear:animated];

}

-	(IBAction)performAdd	{

		[[DataModel	sharedModel]	addItem];

		[self	refresh];

}

@end

KVCTableViewController.m

@implementation	KVCTableViewController

-	(NSInteger)tableView:(UITableView	*)tableView

numberOfRowsInSection:(NSInteger)section	{

		//	countOfItems	is	a	KVC	method,	but	you	can	call	it	directly

		//	rather	than	creating	an	“items”	proxy.

		return	[[DataModel	sharedModel]	countOfItems];

}

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

									cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

		static	NSString	*CellIdentifier	=	@”Cell”;

		

		UITableViewCell	*cell	=	[tableView

									dequeueReusableCellWithIdentifier:CellIdentifier];

		

		if	(cell	==	nil)	{

				cell	=	[[UITableViewCell	alloc]

												initWithStyle:UITableViewCellStyleDefault

												reuseIdentifier:CellIdentifier];

		}

		

		DataModel	*model	=	[DataModel	sharedModel];

		id	object	=	[model	objectInItemsAtIndex:indexPath.row];

		cell.textLabel.text	=	[object	description];

		

		return	cell;

}

@end

DataModel.h

@interface	DataModel	:	NSObject

+	(DataModel*)sharedModel;

-	(void)addItem;

-	(NSUInteger)countOfItems;

-	(id)objectInItemsAtIndex:(NSUInteger)index;

@end

DataModel.m

@interface	DataModel	()

@property	(nonatomic,	readwrite,	assign)	NSUInteger	count;

@end

@implementation	DataModel

@synthesize	count=count_;

+	(DataModel*)sharedModel	{

		static	DataModel	*sharedModel;

		static	dispatch_once_t	onceToken;

		dispatch_once(&onceToken,	^{	sharedModel	=	[DataModel	new];	});

		return	sharedModel;

}

-	(NSUInteger)countOfItems	{

		return	self.count;

}

-	(id)objectInItemsAtIndex:(NSUInteger)index	{

		return	[NSNumber	numberWithInt:index	*	2];

}

-	(void)addItem	{

		self.count++;

}

@end

Note	how	RootViewController	accesses	the	array	of	items	from	DataModel:

NSArray	*items	=	[model	valueForKey:@”items”];

Normally	you	would	expect	this	to	call	[DataModel	items],	but	there	is	no
such	method.	DataModel	doesn’t	ever	create	an	array.	So	where	does	this
NSArray	come	from?

DataModel	implements	countOfItems	and	objectInItemsAtIndex:.	These
are	very	specially	named	methods.	When	valueForKey:	looks	for	items,	it
searches	for	the	following	methods:

■	getItems	or	items	or	isItems—If	any	of	these	are	found,	it	is	used	to
return	the	value.
■	countOfItems	and	either	objectInItemsAtIndex:	or	itemsAtIndexes—
This	is	the	combination	you	use	in	this	example.	KVC	generates	a	proxy
array	that	is	discussed	shortly.

■	countOfItems	and	enumeratorOfItems	and	memberOfItems—This
combination	causes	KVC	to	return	a	proxy	set.
■	An	instance	variable	named	_items,	_isItems,	items	or	isItems—KVC
will	directly	access	the	ivar.	You	generally	should	avoid	this	behavior,	and
it’s	a	good	reason	to	name	your	ivars	with	something	other	than	a	leading
underscore.	Direct	instance	variable	access	breaks	encapsulation	and

makes	the	code	more	fragile.

In	this	example,	valueForKey:	automatically	generates	and	returns	a	proxy
NSKeyValueArray.	This	is	a	subclass	of	NSArray,	and	you	can	use	it	like	any
other	array,	but	calls	to	count,	objectAtIndex:	and	related	methods	are
forwarded	to	the	appropriate	KVC	methods.	The	proxy	caches	its	requests,
making	it	very	efficient.	See	the	Key-Value	Coding	Programming	Guide	in
the	iOS	Developer	Library	for	the	full	set	of	methods	you	can	implement	for
this	form.

In	this	example,	the	property	is	items,	so	KVC	looks	for	countOfItems	for
instance.	Had	the	property	been	boxes,	then	KVC	would	look	for
countOfBoxes.	KVC	requires	that	you	name	your	methods	in	a	standard	way
so	that	it	can	construct	these	method	names.	This	is	why	getters	must	begin
with	a	lowercase	letter.

For	mutable	collection	properties,	there	are	two	options.	You	can	use	the
mutator	(property-changing)	methods	such	as	the	following	(again,	see	the
Key-Value	Coding	Programming	Guide	for	the	full	list):

-	(void)insertObject:(id)object

			inChildrenAtIndex:(NSUInteger)index;

-	(void)removeObject:(id)object

			inChildrenAtIndex:(NSUInteger)index;

Or	you	can	return	a	special	proxy	object	by	calling
mutableArrayValueForKey:	or	mutableSetValueForKey:.	Modifying	this
object	automatically	calls	the	appropriate	KVC	methods	on	your	object.

KVC	and	Dictionaries
Dictionaries	are	just	a	special	kind	of	nested	relationship.	For	most	keys,
calling	valueForKey:	is	the	same	as	calling	objectForKey:	(the	exception	is
if	the	key	begins	with	@,	which	is	used	to	refer	to	the	NSDictionary	itself	if
needed).

KVC	and	Nonobjects
Not	every	method	returns	an	object,	but	valueForKey:	always	returns	an	id.
Nonobject	return	values	are	wrapped	in	an	NSValue	or	NSNumber.	These	two

classes	can	handle	just	about	anything	from	numbers	and	Booleans	to
pointers	and	structures.	While	valueForKey:	will	automatically	wrap	scalar
values	into	objects,	you	cannot	pass	nonobjects	to	setValue:forKey:.	You
must	wrap	scalars	in	NSValue	or	NSNumber	yourself.

Setting	a	nonobject	property	to	nil	presents	a	special	case.	Whether	that	is
legal	or	not	depends	on	the	situation,	so	KVC	does	not	guess.	If	you	call
setValue:forKey:	with	a	value	of	nil,	the	key	will	be	passed	to
setNilValueForKey:.	You	need	to	override	this	method	to	do	the	right	thing
if	you	want	to	handle	setting	nil	for	a	nonobject	property.

Higher-Order	Messaging	with	KVC
setValue:forKey:	is	filled	with	useful	special	cases,	such	as	the	fact	that	it	is
overridden	for	collections	like	NSArray	and	NSSet.	Rather	than	operating	on
the	collection	itself,	setValue:forKey:	is	passed	to	each	member	of	the
collection.	The	results	are	added	to	the	returned	collection.	This	allows	you	to
easily	construct	collections	from	other	collections	such	as

		NSArray	*array	=	[NSArray	arrayWithObjects:@”foo”,

																				@”bar”,	@”baz”,	nil];

		NSArray	*capitals	=

																	[array	valueForKey:@”capitalizedString”];

This	passes	the	method	capitalizedString	to	each	item	in	the	NSArray	and
returns	a	new	NSArray	with	the	results.	Passing	messages
(capitalizedString)	as	parameters	is	called	Higher	Order	Messaging.
Multiple	messages	can	be	passed	using	key	paths:

		NSArray	*array	=	[NSArray	arrayWithObjects:@”foo”,

																				@”bar”,	@”baz”,	nil];

		NSArray	*capitalLengths	=

							[array	valueForKeyPath:@”capitalizedString.length”];

The	above	code	calls	capitalizedString	on	each	element	of	array,	then
calls	length,	and	wraps	the	return	into	an	NSNumber	object.	The	results	are
collected	into	a	new	array	called	capitalLengths.

You	looked	at	more	flexible	approaches	using	trampolines	in	Chapter	4,	but
KVC	provides	a	very	easy	solution	for	many	problems,	as	long	as	you	don’t

need	to	pass	parameters.

Collection	Operators
KVC	provides	a	few	complex	functions	as	well.	It	can,	for	instance,	sum	or
average	a	list	of	numbers	automatically.	Consider	this:

				NSArray	*array	=	[NSArray	arrayWithObjects:@”foo”,

																						@”bar”,	@”baz”,	nil];

				NSUInteger	totalLength	=

								[[array	valueForKeyPath:@”@sum.length”]	intValue];

@sum	is	an	operator	that	sums	the	indicated	property	(length).	Note	that	this
can	be	hundreds	of	times	slower	than	the	equivalent	loop:

		NSArray	*array	=	[NSArray	arrayWithObjects:@”foo”,

																				@”bar”,	@”baz”,	nil];

		NSUInteger	totalLength	=	0;

		for	(NSString	*string	in	array)	{

				totalLength	+=	[string	length];

		}

The	performance	issues	are	generally	significant	when	dealing	with	arrays	of
thousands	or	tens	of	thousands	of	elements.	Beyond	@sum,	there	are	many
other	operators	that	you	can	find	in	the	Key-Value	Coding	Programming
Guide	in	the	iOS	Developer	Library.	The	operations	are	particularly	valuable
when	working	with	Core	Data,	and	can	be	faster	than	the	equivalent	loop,
because	they	can	be	optimized	into	database	queries.	You	cannot	create	your
own	operations,	however.

Key-Value	Observing
Key-value	observing	is	a	mechanism	for	transparently	notifying	observers	of
changes	in	object	properties.	At	the	beginning	of	the	“Key-Value	Coding”
section,	you	built	a	table	view	cell	that	could	display	any	object.	In	that
example,	the	data	was	static.	If	you	changed	the	data,	the	cell	wouldn’t
update.	Let’s	improve	that	now.	You	can	make	the	cell	automatically	update
whenever	its	object	changes.	You	need	a	changeable	object,	so	use	the	current
date	and	time.	You	use	key-value	observing	to	get	a	callback	every	time	a
property	you	care	about	changes.

KVO	has	a	lot	of	similarities	to	NSNotificationCenter.	You	start	observing
using	addObserver:forKeyPath:options:context:.	To	stop	observing,	you
use	removeObserver:forKeyPath:.	The	callback	is	always
observeValueForKeyPath:ofObject:change:context:.	Here	are	the
modifications	required	to	create	1,000	rows	of	date	cells	that	automatically
update	every	second.

KVCTableViewCell.m	(KVO)

@implementation	KVCTableViewCell

...

-	(void)removeObservation	{

		if	(self.isReady)	{

				[self.target	removeObserver:self

																					forKeyPath:self.property];

		}

}

-	(void)addObservation	{

		if	(self.isReady)	{

				[self.target	addObserver:self	forKeyPath:self.property

																					options:0

																					context:(__bridge	void*)self];

		}

}

-	(void)observeValueForKeyPath:(NSString	*)keyPath

																						ofObject:(id)object

																								change:(NSDictionary	*)change

																							context:(void	*)context	{

		if	((__bridge	id)context	==	self)	{

				//	Our	notification,	not	our	superclass’s

						[self	update];

		}

		else	{

				[super	observeValueForKeyPath:keyPath	ofObject:object

																											change:change	context:context];

		}

}

-	(void)dealloc	{

		if	(target_	&&	[property_	length]	>	0)	{

				[target_	removeObserver:self	forKeyPath:property_];

		}

}

-	(void)setTarget:(id)aTarget	{

		[self	removeObservation];

		target_	=	aTarget;

		[self	addObservation];

		[self	update];

}

-	(void)setProperty:(NSString	*)aProperty	{

		[self	removeObservation];

		property_	=	aProperty;

		[self	addObservation];

		[self	update];

}

@end

KVCTableViewController.m	(KVO)

@interface	KVCTableViewController	()

@property	(readwrite,	retain)	NSTimer	*timer;

@property	(readwrite,	retain)	NSDate	*now;

@end

@implementation	KVCTableViewController

@synthesize	timer	=	timer_;

@synthesize	now	=	now_;

-	(void)updateNow	{

		self.now	=	[NSDate	date];

}

-	(void)viewDidLoad	{

		[self	updateNow];

		self.timer	=	[NSTimer

				scheduledTimerWithTimeInterval:1

																												target:self

																										selector:@selector(updateNow)

																										userInfo:nil

																											repeats:YES];

}

-	(void)viewDidUnload	{

		[self.timer	invalidate];

		self.timer	=	nil;

		self.now	=	nil;

}

...

-	(UITableViewCell	*)tableView:(UITableView	*)tableView

									cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

		static	NSString	*CellIdentifier	=	@”KVCTableViewCell”;

				

		id	cell	=	[tableView

				dequeueReusableCellWithIdentifier:CellIdentifier];

				

		if	(cell	==	nil)	{

				cell	=	[[[KVCTableViewCell	alloc]

						initWithReuseIdentifier:CellIdentifier]	autorelease];

				[cell	setProperty:@”now”];

				[cell	setTarget:self];

		}

				

		return	cell;

}

-	(void)dealloc	{

		[timer_	invalidate];

}

@end

In	KVCTableViewCell,	you	observe	the	requested	property	on	your	target	in
addObservation.	When	you	register	for	KVO,	you	pass	self	as	the	context
pointer	(after	casting	to	void*	for	ARC)	so	that	in	the	callback	you	can
determine	if	this	was	your	observation.	Because	there	is	only	one	KVO
callback	for	a	class,	you	may	be	receiving	a	callback	for	a	property	your
superclass	registered	for.	If	so,	you	need	to	pass	it	along	to	super.
Unfortunately,	you	can’t	always	pass	to	super	because	NSObject	will	throw
an	exception.	So	you	use	a	unique	context	to	identify	your	observations.
There’s	more	about	this	in	“KVO	Tradeoffs.”

In	RootViewController,	you	create	a	property	now	and	ask	the	cell	to	observe
it.	Once	a	second,	you	update	it.	Observers	are	notified	and	the	cells	update.
This	is	all	quite	efficient	because	at	any	given	time	there	is	only	about	one
screen’s	worth	of	cells	because	of	cell	reuse.

The	real	power	of	KVO	is	seen	in	[KVCTableViewController	updateNow]:

-	(void)updateNow	{

		self.now	=	[NSDate	date];

}

The	only	thing	you	have	to	do	is	update	your	data.	You	don’t	have	to	worry
that	someone	might	be	observing	you,	and	if	no	one	is	observing	you,	then
you	don’t	pay	any	overhead	like	you	would	for	NSNotificationCenter.	This
is	discussed	further	in	“KVO	Tradeoffs,”	but	the	incredible	simplicity	on	the
part	of	the	model	class	is	the	real	benefit	of	KVO.	As	long	as	you	use
accessors	to	modify	your	ivars,	all	the	observation	mechanism	is	handled

automatically,	with	no	cost	when	you	don’t	need	it.	All	the	complexity	is
moved	into	the	observer	rather	than	the	observed.	It’s	no	wonder	that	KVO	is
becoming	very	popular	in	low-level	Apple	frameworks.

KVO	and	Collections
Observing	collections	often	causes	confusion.	The	thing	to	remember	is	that
observing	a	collection	is	not	the	same	as	observing	the	objects	in	it.	If	a
collection	contains	Adam,	Bob,	and	Carol,	then	adding	Denise	changes	the
collection.	Changes	to	Adam	do	not	change	the	collection.	If	you	want	to
observe	changes	to	the	objects	in	a	collection,	you	must	observe	those
objects,	not	the	collection.	Generally	that’s	done	by	observing	the	collection,
and	then	observing	objects	as	they	are	added,	and	stopping	when	they’re
removed.

How	Is	KVO	Implemented?
Key-value	observing	notifications	rely	on	two	NSObject	methods:
willChangeValueForKey:	and	didChangeValueForKey:.	Before	an	observed
property	change	is	made,	something	must	call	willChangeValueForKey:.
This	will	record	the	old	value.	After	the	change	is	made,	something	must	call
didChangeValueForKey:,	which	calls
observeValueForKeyPath:ofObject:change:context:.	You	can	do	this	by
hand,	but	that’s	fairly	uncommon.	Generally	you	only	do	this	if	you’re	trying
to	control	when	the	callbacks	are	made.	Most	of	the	time,	it’s	handled
automatically.

There	is	very	little	magic	in	Objective-C.	Even	message	dispatching,	which
can	seem	mysterious	at	first,	is	actually	pretty	straightforward.	(Message
dispatching	is	covered	in	Chapter	20.)	However,	KVO	borders	on	magic.
Somehow	when	you	call	setNow:,	there	is	an	extra	call	to
willChangeValueForKey:,	didChangeValueForKey:,	and
observeValueForKeyPath:ofObject:change:context:	in	the	middle.	You
might	think	that	this	is	because	you	synthesized	setNow:,	and	occasionally
you’ll	see	people	write	code	like	this:

-	(void)setNow:(NSDate	*)aDate	{

		[self	willChangeValueForKey:@”now”];	//	Unnecessary

		now_	=	aDate;

		[self	didChangeValueForKey:@”now”];	//	Unnecessary

}

This	is	redundant	and	you	shouldn’t	do	it	because	then	the	KVO	methods	will
be	called	twice.	KVO	always	calls	willChangeValueForKey:	before	an
accessor	and	didChangeValueForKey:	afterward.	How?	The	answer	is	class
swizzling.	Swizzling	is	discussed	further	in	Chapter	20,	but	when	you	first
call	addObserver:forKeyPath:options:context:	on	an	object,	the
framework	creates	a	new	KVO	subclass	of	the	class	and	converts	the
observed	object	to	that	new	subclass.	In	that	special	KVO	subclass,	it	creates
setters	for	the	observed	properties	that	work	effectively	like	this:

-	(void)setNow:(NSDate	*)aDate	{

				[self	willChangeValueForKey:@”now”];

				[super	setValue:aDate	forKey:@”now”];

				[self	didChangeValueForKey:@”now”];

}

This	is	done	at	run	time,	not	compile	time.	That’s	why	it’s	so	important	that
you	name	things	correctly.	KVO	can	figure	this	out	only	if	you	use	the	KVC
naming	convention.

It’s	difficult	to	detect	the	KVO	class	swizzling.	It	overrides	class	to	return	the	original	class.	But
occasionally	you’ll	see	references	to	NSKVONotifying_MYClass	instead	of	MYClass.

KVO	Tradeoffs
KVC	is	powerful	technology,	but	other	than	possibly	being	slower	than	direct
method	calls,	it	generally	is	a	good	thing.	The	one	major	downside	is	that	you
lose	compile-time	checks	of	your	property	names.	You	should	always	code
following	KVC	naming	conventions,	whether	you	use	KVC	directly	or	not.
That	will	save	you	a	lot	of	grief	when	you	want	to	instantiate	objects	from	a
nib	file,	which	requires	KVC.	It	also	makes	your	code	readable	by	other
Objective-C	developers,	who	expect	certain	names	to	mean	certain	things.
For	the	most	part,	this	means	naming	your	getters	and	setters	property	and
setProperty:	respectively.

KVO,	on	the	other	hand,	is	a	mixed	bag.	It	can	be	useful	and	it	can	cause
trouble.	It’s	implemented	in	a	highly	magical	way	and	some	of	its	usage	is
quite	awkward.	Calls	to	addObserver:forKeyPath:options:context:	do	not

exactly	balance	with	calls	to	removeObserver:forKeyPath:.	Consider	the
following	code:

[target	addObserver:self	forKeyPath:@”foo”	options:0

												context:@”first”];

[target	addObserver:self	forKeyPath:@”foo”	options:0

												context:@”second”];

[target	removeObserver:self	forKeyPath:@”foo”];

[target	removeObserver:self	forKeyPath:@”foo”];

The	first	call	to	removeObsever:forKeyPath:	removes	both	previous
observers.	The	second	call	will	crash.	This	may	sound	contrived,	but	consider
the	case	where	both	you	and	your	superclass	are	observing	the	same	object’s
property.	There	is	no	easy	way	to	implement	that	without	special	knowledge
about	your	superclass’s	implementation.	If	your	superclass	is	a	UIKit	class,
you	don’t	have	the	source	code	to	even	find	out	what	it’s	observing.	You	just
have	to	hope	it	doesn’t	collide	with	you	now	or	in	the	future.

This	problem	alone	makes	it	difficult	to	use	KVO	as	easily	as
NSNotification.	Similarly,	because	removeObsever:forKeyPath:	will	crash
if	you	are	not	an	observer	for	that	key	path,	you	must	keep	track	of	exactly
which	properties	you	are	observing.	KVO	has	no	equivalent	to
NSNotificationCenter	removeObserver:,	which	conveniently	cleans	up	all
observations	you	might	have.

KVO	creates	subtle	code-path	surprises.	When	you	call	postNotification:,
you	know	that	some	other	code	may	run.	You	can	search	your	code	for	the
notification	name	and	generally	find	all	of	the	things	that	might	happen.	It
can	be	quite	surprising	that	just	setting	one	of	your	own	properties	can	cause
arbitrary	code	in	an	unknown	part	of	the	program	to	execute,	and	it	can	be
even	harder	to	search	the	code	to	discover	this.	That	can	make	it	very	difficult
to	solve	bugs.	KVO	bugs	in	general	are	difficult	to	solve	because	so	much	of
the	activity	“just	happens”	without	there	being	any	visible	code	causing	it.

So	KVO’s	greatest	strength	is	also	its	greatest	danger.	It	can	sometimes
dramatically	reduce	the	amount	of	common	code	you	write.	In	particular,	it
can	get	rid	of	the	common	problem	of	hand-building	all	your	setters	just	so
you	can	call	some	updateSelf	method.	In	this	way	it	can	reduce	bugs
because	of	incorrectly	cut-and-pasted	code.	But	it	can	also	inject	really

confusing	bugs,	and	with	the	introduction	of	Automatic	Reference	Counting,
handwritten	setters	are	even	easier	to	write	correctly.

My	recommendation	is	to	use	KVO	sparingly,	simply,	and	only	in	places
where	it’s	a	real	benefit.	Its	performance	scales	much	better	than
NSNotification	if	you	need	a	very	large	number	of	observations	(a	few
hundred	or	more).	It	lets	you	get	the	advantages	of	NSNotification	without
modifying	the	observed	class.	And	it	sometimes	requires	less	code,	although
you	need	to	include	all	the	special-case	code	you	may	need	to	work	around
subtle	KVO	problems.	In	the	KVCTableViewCell	example,	hand-coding
setProperty:	and	setTarget:	saves	about	15	lines	versus	the	equivalent
KVO	solution	that	observes	property	and	target.

Avoid	KVO	in	situations	where	you	have	complex	interdependencies	or	a
complicated	class	hierarchy.	Simple	solutions	with	delegates	and
NSNotification	are	often	better	than	excessively	clever	solutions	using
KVO.

On	the	other	hand,	Apple	is	clearly	moving	toward	KVO	in	performance-
critical	frameworks.	It	is	the	primary	way	to	deal	with	CALayer	and
NSOperation.	You	should	expect	to	see	it	more	often	in	new	low-level
classes.	It	has	the	advantage	of	zero-overhead	observation.	If	there	are	no
observers	of	a	given	instance,	then	KVO	is	free.	Delegate	methods	and
NSNotification	still	have	to	do	work	even	if	there	are	no	observers.	For	low-
level,	performance-critical	objects,	KVO	is	a	clear	win.	Use	it	wisely.

Summary
In	this	chapter	you	have	learned	two	of	the	most	powerful	techniques	in
Objective-C,	KVC	and	KVO.	These	techniques	provide	a	level	of	run-time
flexibility	that	is	difficult	to	achieve	in	other	languages.	Writing	your	code	to
conform	to	KVC	is	a	critical	part	of	a	Cocoa	program,	whether	you	call
valueForKey:	directly	or	not.	KVO	can	be	challenging	to	use	well,	but	is	a
powerful	tool	when	you	need	high-performance	observations.	As	a	Cocoa
developer,	you	need	to	keep	KVC	and	KVO	in	mind	when	designing	your
classes.	Following	a	few	simple	naming	rules	will	make	all	the	difference.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Key-Value	Coding	Programming	Guide
Key-Value	Observing	Programming	Guide
NSKeyValueCoding	Protocol	Reference

NSKeyValueObserving	Protocol	Reference

http://developer.apple.com/

Chapter	16:	Think	Different:	Blocks
and	Functional	Programming

Programming	paradigms	fall	into	three	major	categories:	procedural
programming,	object-oriented	programming,	and	functional	programming.
Most	modern	programming	languages—such	as	Java,	C#,	or	Objective-C—
don’t	fall	purely	into	a	specific	paradigm.	They	are	usually	inclined	to	one
while	including	some	methodologies	from	the	others.	Objective-C	is
primarily	object-oriented,	yet	it	borrows	some	functional	aspects	using
blocks.	This	chapter	is	about	the	functional	programming	aspects	in
Objective-C.

The	functional	programming	(FP)	paradigm	is	easy	to	explain	theoretically,
but	its	highly	abstract	nature	makes	it	hard	to	understand	and	realize	its
power.	The	easiest	way	to	really	comprehend	and	appreciate	FP	is	to
implement	a	practical	system.	Later	in	this	chapter,	you	dirty	your	hands	with
a	dash	of	FP	by	writing	an	FP	equivalent	of	a	commonly	used	Cocoa	method,
and	then	go	deeper	by	refactoring	the	RESTEngine	you	wrote	in	Chapter	10
to	use	blocks.	Finally,	you	learn	about	some	of	the	block-based	methods
added	to	the	Cocoa	framework	from	iOS	4	onward.	Now	let’s	get	started.

What	Is	a	Block?
Simply	defined,	a	block	is	an	ad	hoc	piece	of	code.	Just	as	you	would	with	a
primitive	data	type	like	an	integer	or	double,	you	declare	a	block	and	start
using	it.	You	can	pass	blocks	as	parameters,	“copy”	them	for	use	later,	and	do
pretty	much	anything	that	you	would	normally	do	to	a	primitive	data	type.
Veteran	C	programmers	have	been	using	function	pointers	to	do	pretty	much
what	I	just	explained.	What	sets	a	block	apart	from	a	function	pointer	(which
is	different	enough	to	be	called	a	programming	paradigm	by	itself)	is	that	it
can	be	declared	within	the	lexical	scope	of	another	method,	and	that	it	can
“capture	the	state”	of	the	variables	in	that	scope.	This	means	that	a	block	has
contextual	information	without	the	programmer	needing	to	do	anything,
unlike	a	function	pointer.

A	block	differs	from	a	function	pointer	by	the	way	it	is	written	and	by	its	inherent	nature	to
capture	the	state	of	local	variables	and	optionally	modify	them.

Now,	that	paragraph	doesn’t	really	help	you	to	understand	the	concept.	It	is
analogous	to	a	chapter	about	object-oriented	programming	that	says:	An
object	is	an	“entity”	that	encapsulates	code	with	data.	You	will	be	hesitant	to
use	blocks	and	the	functional	programming	paradigm	if	you	don’t
comprehend	it	conceptually.	So,	before	I	talk	about	another	abstract	point,
let’s	get	this	one	straight	by	thinking	outside	the	box.	To	do	that,	I’ll	show
you	a	practical,	nonprogramming–related	example.

Why	Use	Functional	Programming?
To	understand	why	you	should	use	functional	programming	paradigm,	it
might	help	to	relate	it	to	something	outside	of	the	programming	world.	I’m
going	to	digress	a	bit	here,	but	I	promise	it	will	take	fewer	than	a	couple	of
minutes	of	your	reading	time.

The	Human	Brain	Versus	the	Microprocessor
A	microprocessor	stores	data	in	an	addressable	fashion	and	executes
instructions	to	process	them.	The	human	brain,	on	the	other	hand,	thinks	and
stores	“data”	associatively.	Here’s	an	example:	On	a	microprocessor,	you
“store”	a	number,	the	value	10,	and	access	it	by	its	address,	0x8BADF00D.
When	you	ask	the	microprocessor	about	the	location	of	the	number,	it	returns
the	address.	The	human	brain	works	differently.	The	answer	to	the	question,
“Where	is	my	iPhone?”	would	probably	be	similar	to,	“It’s	in	the	living	room
on	top	of	the	DVD	player.”	The	human	answer	won’t	even	remotely	be	like
“It’s	5.04	meters	northeast	at	an	angle	27.23	degrees	from	the	main	entrance
to	the	living	room.”	Humans	associate	the	location	of	the	iPhone	to	the
location	of	the	DVD	player	and	the	location	of	the	DVD	player	to	the
location	of	the	living	room.	That’s	a	huge	difference	in	the	thought	processes
between	how	a	microprocessor	works	and	how	a	human	brain	works.	This
difference	in	thought	process	is	akin	to	the	difference	between	the	procedural
and	functional	programming	paradigm.

Procedural	Versus	Functional	Paradigm
Procedural	programming	is	all	about	feeding	your	microprocessor	with
instructions.	While	that	has	worked	very	well	for	decades,	some	real-world

programming	tasks	are	easier	to	think	about	and	express	as	abstract	concepts
than	as	a	bunch	of	instructions.	Let	me	give	you	an	example.	(No,	not	that
clichéd	factorial	example;	read	on,	this	is	going	to	be	Objective-C).

A	‘Functional’	UIAlertView
For	this	example,	you	want	to	show	a	UIAlertView	and	take	an	action	when
the	user	taps	on	the	Affirmative	button.	The	procedural	way	of	doing	this	is	to
create	a	UIAlertView	object,	own	its	delegate	and	implement	the	callbacks,
show	the	UIAlertView,	and	release	it.

UIAlertView	Example	(The	Procedural	Way)

-(IBAction)	buttonTapped:(id)	sender		{

		UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@”Send

email”

		message:@”Are	you	sure	you	want	to	send	it	now?”

		delegate:self

		cancelButtonTitle:@”Cancel”

		otherButtonTitles:@”Send”,	nil];

		[alert	show];

		[alert	release];

}

-(void)alertView:(UIAlertView*)	alertView

didDismissWithButtonIndex:(NSInteger)	buttonIndex		{

		

		if(buttonIndex	!=	[alertView	cancelButtonIndex])		{

				[self	sendTheMail];

		}

}

-(void)	sendTheMail		{

		//	write	actual	code	for	sending	the	mail

}

Implementation	(and	syntax)	aside,	let’s	now	look	at	how	you	would	call	a
UIAlertView	that	adheres	to	the	functional	paradigm.

UIAlertView	Example	(The	Functional	Way)

[UIAlertView	showAlertViewWithTitle:@”Send	email”

message:@”Are	you	sure	you	want	to	send	it	now?”

cancelButtonTitle:@”Cancel”

otherButtonTitles:[NSArray	arrayWithObjects:@”Send”,	nil]

onCompletion:^{

		//	write	actual	code	for	sending	the	mail

}

onCancel:^{

		//	write	code	for	handling	other	cases

}];

That’s	much	cleaner.

■	You	don’t	have	to	implement	a	delegate.
■	You	don’t	have	to	allocate	or	release	objects.

■	You	don’t	have	to	explicitly	show	the	alert.

Instead,	you	specify	your	intent	and	things	happen	behind	the	scenes
automatically	for	you.

In	the	functional	paradigm	example,	your	code	reads	like	English.	You
declaratively	say	what	your	title	is,	and	what	the	message	you	need	to	show
is.	When	the	user	closes	the	alert,	you	declaratively	say	what	code	to	execute
for	both	cases,	closing	by	accepting	the	alert	and	closing	by	cancelling	the
alert	instead	of	implementing	a	delegate.

The	point	is	that	instead	of	instructing,	you	specify	your	intent	and	the	code
becomes	much	cleaner	to	read	and	follow.

You	will	appreciate	this	code	when	you	show	multiple	alerts	in	a	single	view
controller	and	use	tags	to	differentiate	the	alert	views	on	the	callback
delegate.	If	you	understand	this,	you	have	grasped	the	essence	of	the
functional	programming	paradigm.

Later	in	this	chapter	you	learn	about	implementing	this	method	as	a	category
addition	to	UIAlertView	along	with	syntax	and	other	associated	stuff.

You	might	wonder	why,	because	microprocessors	still	execute	instructions	one	by	one,	you	should
bother	about	functional	programming.	That’s	a	valid	question.	The	functional	paradigm	is	almost
always	for	writing	software	that’s	easy	for	co-developers	to	read	and	understand.	In	nearly	every
case,	an	equivalent	imperative	logic	is	less	expensive	to	execute,	but	with	Moore’s	law,	and	the
rate	at	which	microprocessor	speed	increases,	code	clarity	is	often	more	important	than	writing
efficient	code.	Again,	that	doesn’t	always	mean	you	should	adhere	to	a	functional	paradigm.	Not
every	real-world	problem	can	be	represented	in	a	functional	way.

I	hope	I’ve	persuaded	you	to	learn	and	use	the	functional	paradigm,	so	let’s
dive	into	the	technical	bits	of	it.

Declaring	a	Block
You	declare	a	block	using	the	^	(caret)	character.

int	(^MyBlock)	(int	parameter1,	double	parameter2);

This	syntax	is	for	a	block	called	MyBlock	that	takes	an	int	and	double	as
parameters	and	returns	an	integer.	In	most	applications,	you	would	typedef	a
block	like	this:

typedef	int	(^MyBlock)	(int	parameter1,	double	parameter2);

You	can	now	declare	instances	of	your	block	as	you	would	declare	any	other
data	type.

MyBlock	firstBlock,	secondBlock;

You	assign	a	block	like	this:

firstBlock	=	^(int	parameter1,	double	parameter2)		{

//	your	block	code	here

NSLog(@”%d,	%f”,	parameter1,	parameter2);

}

Because	the	block	takes	in	an	integer	and	a	double	as	parameters,	you	can
invoke	them	like	this:

firstBlock(5,	2.3);

Invoking	this	block	in	this	case	will	NSLog	the	numbers	to	the	console.	That’s
pretty	much	all	for	the	syntax.

Scope	of	Variables
You	learned	earlier	in	this	chapter	that,	compared	to	a	function	pointer,	a
block	has	access	to	the	variables	in	its	lexical	scope.	Optionally,	a	block	can
modify	a	variable	in	the	lexical	scope	even	if	the	variable	goes	out	of	scope.
To	allow	a	block	to	access	variables	within	a	lexical	scope,	the	Objective-C
runtime	allocates	blocks	on	the	stack.

When	you	are	passing	a	block	as	a	parameter	to	other	methods,	you	should
copy	the	block	to	the	heap.	This	is	because,	blocks,	when	used	as	parameters,
will	be	invoked	after	the	stack	in	which	it	was	originally	created	is
deallocated.	You	can	use	the	normal	Objective-C	copy	message	to	copy	a
block.	This	also	copies/retains	variables	in	its	lexical	scope.	This	is	a	very
important	concept	you	should	understand	when	you	use	blocks	in	your	code.
In	the	next	section,	you	learn	the	scenarios	for	when	a	variable	would	be
copied	and	when	it	would	be	retained.

Warning:	A	block	cannot	be	retained.	Sending	a	retain	message	is	a	no-op	and	doesn’t	increase
the	retain	count.	Normally	you	wouldn’t	send	a	retain	message	explicitly.	But	you	should	keep	an
eye	on	the	storage	semantics	you	use,	when	you	declare	a	block	as	a	property.	Even	the
omniscient	LLVM	compiler	doesn’t	warn	you	when	you	use	retain	as	a	storage	type	for	a	block
property.

Stack	Versus	Heap
A	block	is	a	different	kind	of	Objective-C	object.	Unlike	traditional	objects,
blocks	are	not	created	on	the	heap.	This	is	primarily	for	two	reasons.	The	first
is	performance:	A	stack	allocation	is	almost	always	faster	than	heap.	The
second	reason	is	the	necessity	to	access	other	local	variables.

Now,	a	stack	gets	destroyed	when	the	scope	of	the	function	ends.	If	your
block	is	passed	to	a	method	that	needs	it	even	after	its	scope	is	destroyed,	you
should	copy	your	block.	This	is	where	Objective-C	runtime	performs	some
magic	behind	the	scenes.	When	a	block	is	copied,	it’s	moved	from	stack	to
heap.	Along	with	the	block,	the	local	variables	defined	in	its	scope	are	copied
when	you	reference	it	within	your	block.	All	NSObject	subclasses	that	are
referenced	are	retained	instead	of	copied	(because	they	are	already	on	heap
and	retain	is	less	time-consuming	than	a	copy).	The	Objective-C	runtime
gives	a	const	reference	to	every	local	variable	to	a	block.	This	also	means
that	a	block	cannot	modify	the	contextual	data	by	default,	and	code	like	the
following	will	result	in	a	compilation	error.

int	statusCode		=	-1;

Myblock	b	=	^{

		statusCode	=	4;

};

But	I	previously	said	that	blocks	could	“optionally”	modify	the	local
variables.	To	allow	modification,	you	declare	variables	with	a	__block

modifier.	So	the	declaration	of	statusCode	is	now

__block	int	statusCode	=	-1;

The	reason	for	this	additional	modifier	is	to	instruct	the	compiler	to	copy	the
__block	variables	when	the	block	is	copied.	Copying	is	a	more	time-
consuming	operation	than	either	retain	or	passing	by	a	const	reference	and
the	implementers	decided	to	leave	this	in	the	hands	of	the	developer.

__block	variables	are	copied	instead	of	being	retained.

Now,	coming	back	to	the	previous	example	of	a	blocks-based	UIAlertView,
your	block	has	all	contextual	information	available	without	declaring	any
additional	data	structures.	Your	UIAlertView	onDismiss	or	onCancel	block
methods	can	access	the	local	variables	without	the	developer	managing	them
(through	context	parameters).

However,	it	comes	with	a	minor	catch	that	you	should	be	wary	of:	the	retain
cycle.

The	Retain	Cycle	Problem

__block	TWTweetComposeViewController	*controller	=

[[TWTweetComposeViewController	alloc]	init];

								[controller	setInitialText:@”Test	Tweet”];

								

								controller.completionHandler	=

									^(TWTweetComposeViewControllerResult	result)		{

												

												controller	=	nil;	//	retain	cycle	issue

												[self	dismissModalViewControllerAnimated:YES];

								};

If	you	attempt	to	capture	a	variable	within	a	block	like	the	preceding	code,
you	end	up	with	a	retain	cycle	that	never	gets	deallocated.	With	the	new
LLVM	compiler,	you	normally	don’t	have	to	worry	much	about	this	because
it’s	clever	enough	to	point	the	issue.

Implementing	a	Block
Now	that	you	know	the	workings	of	a	block,	let’s	implement	the

UIAlertView	block-based	example	I	showed	you	in	the	previous	section.
After	this,	you	refactor	your	RESTEngine	to	use	blocks.

Blocks-based	UIAlertView
You	want	the	syntax	for	this	example	to	be	like	the	following:

[UIAlertView	showAlertViewWithTitle:(NSString*)title

message:(NSString*)	message

cancelButtonTitle:	(NSString*)	cancelTitle

otherButtonTitles:	(NSArrat*)	otherButtons

onCompletion:^{

		//	write	actual	code	for	sending	the	mail

}

onCancel:^{

		//	write	code	for	handling	other	cases

}];

Follow	these	steps	to	implement	the	UIAlertView	block-based	example.

1.	Add	a	Category	class	on	UIAlertView.	You	can	use	the	Category
template	provided	in	Xcode	4.2.	Call	the	Category	class	UIAlertView
(Blocks).
2.	Typedef	your	Dismiss	and	Cancel	blocks.

typedef	void	(^DismissBlock)(int	buttonIndex);

typedef	void	(^CancelBlock)();

3.	Add	the	method	definition	to	the	header	file:
+	(UIAlertView*)	showAlertViewWithTitle:(NSString*)	title

																																message:(NSString*)	message

																						cancelButtonTitle:(NSString*)

cancelButtonTitle

																						otherButtonTitles:(NSArray*)	otherButtons

																														onDismiss:(DismissBlock)	dismissed

																															onCancel:(CancelBlock)	cancelled;

4.	Declare	static	storage	for	the	blocks	on	the	implementation.
static	DismissBlock	_dismissBlock;

static	CancelBlock	_cancelBlock;

5.	Implement	your	block-based	method.
+	(UIAlertView*)	showAlertViewWithTitle:(NSString*)	title

																																message:(NSString*)	message

																						cancelButtonTitle:(NSString*)

cancelButtonTitle

																						otherButtonTitles:(NSArray*)	otherButtons

																														onDismiss:(DismissBlock)	dismissed

																															onCancel:(CancelBlock)	cancelled	{

		

		[_cancelBlock	release];

		_cancelBlock		=	[cancelled	copy];

		

		[_dismissBlock	release];

		_dismissBlock		=	[dismissed	copy];

		

		UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:title

																																																		message:message

																																																	delegate:[self

self]

																																								cancelButtonTitle:cancelButtonTitle

																																								otherButtonTitles:nil];

		

		for(NSString	*buttonTitle	in	otherButtons)

				[alert	addButtonWithTitle:buttonTitle];

		

		[alert	show];

		return	[alert	autorelease];

}

Note	that	you	have	copied	the	block	parameters	passed	to	the	method	to	the
static	storage.	That’s	because	you	have	to	invoke	those	block	methods	later
in	the	UIAlertViewDelegate.

6.	Handle	the	UIAlertViewDelegate:
+	(void)alertView:(UIAlertView*)	alertView

didDismissWithButtonIndex:(NSInteger)	buttonIndex	{

		

		if(buttonIndex	==	[alertView	cancelButtonIndex])		{

				_cancelBlock();

		}

		else		{

				_dismissBlock(buttonIndex	-	1);//	cancel	button	is	button	0

		}

		

		[_cancelBlock	autorelease];

		[_dismissBlock	autorelease];

}

The	delegate	method	is	nothing	fancy.	Just	handle	it	and	call	the
appropriate	block	method.

With	about	50	lines	of	code,	you	implemented	a	block-based	UIAlertView.
This	should	help	write	clean,	readable	code	on	your	view	controllers.	You	can
implement	similar	methods	for	UIActionSheet	as	well.

You	can	download	the	complete	source	code	from	the	book’s	website.	In	the
next	section,	you	refactor	your	RESTEngine	by	following	the	same
methodology.

Blocks-based	RESTEngine
In	Chapter	10	you	implemented	a	class	to	talk	to	a	REST-based	web	service.
As	shown	in	the	following	code,	the	login	method	took	a	username	and
password	as	parameters	and	returned	success	or	failure	on	delegates.

Login	Method	in	RESTEngine

-(IBAction)	loginButtonTapped:(id)	sender		{

				[[RESTEngine	sharedInstance]	initWithLoginName:@”mugunth”

password:@”abracadabra”];

}

-(void)	loginSucceeded:(NSString*)	accessToken		{

				NSLog(@”Login	is	successful	and	this	is	the	access	token	%@”,

					accessToken);

}

-(void)	loginFailedWithError:(NSError*)	error		{

				NSLog(@”Login	failed.	Check	your	password.	Error	is	:%@”,

					[error	localizedDescription]);

}

Wouldn’t	it	be	cleaner	and	more	elegant	if	you	refactor	the	code	like	you	did
for	the	UIAlertView?	That	is,	instead	of	implementing	delegates,	wouldn’t	be
great	if	you	could	just	pass	a	block	of	code	that	should	be	executed	when
login	succeeds	and	another	block	of	code	that	should	be	executed	when	login
fails?	That’s	the	calling	code,	which	should	look	like	the	following.

RESTEngine	Login	Method	(Functional	Paradigm)

-(IBAction)	loginButtonTapped:(id)	sender

{

		AppDelegate.engine	=

		[[[RESTEngine	alloc]	initWithLoginName:@”mugunth”

																																password:@”abracadabra”

																								onLoginSucceeded:^(NSString*

accessToken)		{

																										NSLog(@”Login	is	successful	and	this	is

the

																												access	token	%@”,	accessToken);

																								}

				

																																	onError:^(NSError*	error)		{

																																			

																																			NSLog(@”Login	failed.	Check

your

																																			password.	Error	is	:%@”,	[error

																																			localizedDescription]);			

																																			

																																	}]	autorelease];

		AppDelegate.engine.delegate	=	self;

}

That	code	reads	like	English	and	looks	as	if	the	complete	network	operation
is	synchronous.	To	refactor	your	RESTEngine	code	so	that	your	view
controller	code	looks	like	this,	you	are	going	to	remove	some	code.	Yes,
remove	code	to	make	it	adhere	to	the	functional	pardigm.

Removing	is	the	best	form	of	refactoring.	Remove	as	much	code	as	possible	until	you	can’t
remove	any	more.

The	following	code	shows	the	login	method’s	implementation	in	RESTEngine
class.

RESTEngine	Login	Method	Implementation

-(id)	initWithLoginName:(NSString*)	loginName	password:(NSString*)

password

		onLoginSucceeded:(StringBlock)	loginSucceeded	onError:

(ErrorBlock)	error		

		{

		

		self.networkQueue	=	[ASINetworkQueue	queue];

		[self.networkQueue	setMaxConcurrentOperationCount:6];

		[self.networkQueue	setDelegate:self];

		[self.networkQueue	go];

		

		ASIFormDataRequest	*request	=	[ASIFormDataRequest

				requestWithURL:[NSURL	URLWithString:LOGIN_URL]];

		

		[request	setUsername:loginName];

		[request	setPassword:password];

		[request	setCompletionBlock:^		{

					

				NSDictionary	*responseDict	=	[[request	responseString]

JSONValue];

				self.accessToken	=	[responseDict

objectForKey:@”accessToken”];		

				loginSucceeded(self.accessToken);

			}];

		

		[request	setFailedBlock:^		{

				self.accessToken	=	nil;

				error([request	error]);

		}];

		[self.networkQueue	addOperation:request];

		

		return	self;

}

As	you	see,	the	code	that	has	to	be	executed	is	passed	along	as	a	block
parameter,	making	your	view	controller	much	cleaner.	In	any	normal	case,
your	delegate	almost	always	has	to	differentiate	the	request	using	tags	(or
request	objects)	and	then	switch	code	accordingly.	With	blocks,	this	is	no
longer	necessary.	Instead	of	setting	the	completion	and	error	selectors	and
calling	delegates	from	there,	you	are	invoking	the	blocks	from	the	operation’s
completionBlock	and	failedBlock.

The	complete	code	for	this	example	is	available	for	download	on	the	book’s	website.

By	refactoring	the	RESTEngine,	you	removed	at	least	four	methods	from
your	project:	the	requestSucceeded:	and	requestFailed:	callback	methods
of	your	request	in	RESTEngine	class	and	the	loginDone:	and	loginFailed:
methods	in	your	view	controller	class,	and	this	is	for	just	one	web	service
call.	Now	multiply	this	by	the	number	of	web	service	calls	you	have	and
imagine	the	obvious	code	cleanup	you	can	do	using	blocks!

This	should	give	you	a	complete	understanding	of	how	to	use	blocks	in	a
much	more	sophisticated	example.	That	completes	the	example;	in	the	next

section,	you	learn	about	Cocoa	functions	that	take	blocks	as	parameters.

Blocks	and	Concurrency
By	now,	you	have	learned	enough	to	know	how	to	use	blocks	and	should	be
comfortable	with	the	syntax.	Let’s	now	talk	about	one	other	important	benefit
you	get	from	blocks:	concurrency.

Managing	concurrency	has	always	been	the	hardest	part	of	programming.
Blocks	are	an	excellent	use	case	here	because	they	can	be	used	for	creating
units	of	programming	or	tasks	that	can	be	executed	independently.	Blocks	can
be	used	with	dispatch	queues	in	Grand	Central	Dispatch	(GCD)	or
NSOperationQueue	without	needing	to	create	threads	explicitly.	Using	an
NSOperationQueue	is	something	you	have	already	done	before	in	the
RESTEngine	implementation.

In	the	next	section,	you	briefly	go	through	a	feature	of	iOS	and	OS	X	called
GCD	and	learn	how	blocks	and	dispatch	queues	in	GCD	work	together	to
make	concurrency	implementation	easier.	Later	on,	I’ll	compare	GCD	with
NSOperationQueue	and	provide	suggestions	on	when	to	use	what.

Dispatch	Queues	in	GCD
Grand	Central	Dispatch	is	a	very	powerful	feature	that	allows	you	to	write
concurrent	code	easily.	It	shifts	the	burden	of	managing	multiple	threads	and
thread	synchronization	to	the	operating	system	(iOS	or	OS	X).	When	you	use
GCD,	you	create	units	that	can	be	executed	independently	of	each	other	and
let	the	operating	system	handle	the	queuing	and	synchronization	for	you.	The
GCD	implementation	on	iOS	(and	OS	X)	consists	of	a	set	of	C	language
extensions,	APIs,	and	a	runtime	engine.	GCD	automatically	ensures	that	your
independent	units	are	executed	on	multiple	processors	if	available	(like	iPad
2).	As	a	developer,	the	only	thing	you	have	to	focus	on	is	designing	your
heavy	worker	processes	so	that	they	work	independently	of	each	other	(as
opposed	to	threads	with	shared	synchronized	data).	GCD	also	provides
context	pointers	to	share	data	across	your	blocks,	but	discussing	them	is
outside	the	scope	of	this	chapter.

GCD	provides	three	types	of	dispatch	queues—serial,	concurrent,	and	main—

to	which	you	can	enqueue	your	task.	The	serial	queue	executes	one	task	at	a
time	in	first-in-first-out	(FIFO)	order	and	the	concurrent	queue	executes	them
in	parallel,	also	in	FIFO	order.	The	main	dispatch	queue	executes	operations
on	the	main	thread,	which	is	usually	used	to	synchronize	execution	across
threads	executing	in	different	serial/concurrent	queues.	Let’s	now	see	how	to
create	a	dispatch	queue	and	submit	tasks	to	it.

Creating	a	dispatch	queue	is	as	easy	as	one	C	function	call:

myQueue	=

dispatch_queue_create(“com.mycompany.myapp.myfirstqueue”,	NULL);

To	dispatch	tasks	asynchronously	to	this	queue,	use	the	dispatch_async
method.	That	method	takes	your	block	as	the	second	parameter.	It	essentially
queues	your	block	to	the	queue	specified	in	the	first	parameter.	This	is	yet
another	few	lines	of	code.

dispatch_async(myQueue,	^(void)	{

		[self	doHeavyWork];

});

That’s	it.	Without	explicitly	using	a	thread	and	in	less	than	ten	lines	of	code,
you	have	implemented	GCD	in	your	app!	Designing	your	blocks	in	an
independent	way	already	solved	most	of	the	complexities	involved	around
synchronization.	For	example	in	the	preceding	code,	the	doHeavyWork	method
is	designed	to	work	independently	with	its	own	data.

Imagine	that	the	doHeavyWork	method	is	an	image	manipulation	method.	To	design	it	so	that	it
runs	independently,	slice	the	image	(vertically	or	horizontally),	pass	each	slice	to	a	block,	and
send	this	to	a	dispatch	queue	instead	of	using	the	complete	image	data	on	a	shared	synchronized
variable.	That’s	if	you	have	a	3200×2000-pixels	image	and	you	want	to	apply	a	filter	on	it,	slice	it
to	10	different	images	of	320×2000	pixels	each	and	process	them	independently.	After	processing
is	done,	stitch	them	back	together	on	the	main	dispatch	queue	and	notify	the	relevant	observers.

NSOperationQueue	Versus	GCD	Dispatch	Queue
You	already	know	that	iOS	provides	another	queuing	mechanism	called
NSOperationQueue.	This	also	takes	blocks	as	parameters	and	queues	them
just	like	a	dispatch	queue.	Now,	you	might	have	a	question:	When	should	I
use	GCD	and	when	should	I	use	NSOperationQueue?

There	are	some	similarities	and	differences	between	NSOperationQueue	and

GCD.

■	NSOperationQueue	is	built	using	GCD	and	is	a	higher-level	abstraction
of	it.
■	GCD	supports	only	FIFO	queues	whereas	operations	queued	to	an
NSOperationQueue	can	be	reordered	(reprioritized).

■	Setting	dependencies	between	operations	is	possible	with
NSOperationQueue	but	not	with	GCD.	If	one	of	your	operations	needs	data
that	is	generated	by	the	other,	you	can	set	the	operation	to	be	dependent	on
the	other	operation	and	NSOperationQueue	automatically	executes	them	in
the	correct	order.	With	GCD,	there	is	no	built-in	support	to	set
dependencies.
■	NSOperationQueue	is	KVO	compliant.	This	means	you	can	observe	the
state	of	the	tasks.	Does	that	mean	you	should	always	use
NSOperationQueue	instead	of	GCD?	The	answer	is	no.	NSOperationQueue
is	slower	than	GCD	in	terms	of	execution	speeds.	If	you	profile	your	code
using	Instruments	and	you	think	you	need	more	performance,	use	GCD.
Usually	in	lower-level	code,	you	might	not	have	task	dependencies	or	a
necessity	to	observe	state	using	KVO.	As	always,	follow	Donald	Knuth’s
quote:	“We	should	forget	about	small	efficiencies,	say	about	97%	of	the
time:	premature	optimization	is	the	root	of	all	evil,”	and	use	the	lower-level
GCD	only	if	it	improves	performance	gains	when	profiled	with
Instruments.

Block-based	Cocoa	Methods
With	iOS	4	and	the	introduction	of	blocks,	many	of	the	built-in	Cocoa
framework	methods	have	block-based	equivalents.	Covering	every	single
block-based	method	is	impossible	in	a	single	chapter	and	demands	a	complete
book	of	its	own.	But	Apple	follows	a	pattern.	In	this	section,	I	briefly	explain
some	of	the	methods	that	take	block	parameters	and	give	some	hints	and	tips
on	when	to	look	out	for	a	block-based	equivalent	method	in	the	framework.

UIView	Animations	using	Blocks
Prior	to	iOS	4,	view-based	animations	were	usually	done	using	UIView’s	class

methods,	beginAnimations	and	commitAnimations.	You	write	the	code	you
want	to	be	animated	within	these	two	statements	and	the	animation	is
performed	after	the	call	to	commitAnimations.

Code	to	animate	the	alpha	value	of	a	view	will	look	something	like	the
following.

Animation	in	iOS	3	(without	Blocks)

[UIView	beginAnimations:@”com.mycompany.myapp.animation1”

context:&myContext];

[UIView	setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView	setAnimationDuration:1.0f];

[UIView	setAnimationDelay:1.0f];	//	start	after	1	second

[UIView

setAnimationDidStopSelector:@selector(animationDidStop:finished:)];

		self.imageView.alpha	=	0.0;

[UIView	commitAnimations];

Starting	with	iOS	4,	UIView	has	several	equivalent	block-based	animation
methods.	One	method	that	you	will	quite	commonly	use	is
animateWithDuration:delay:options:animations:completion:	The
previous	code	snippet	can	be	expressed	using	this	method	as	follows.

Animation	in	iOS	4	and	above	(with	Blocks)

[UIView	animateWithDuration:1.0	delay:1.0

options:UIViewAnimationCurveEaseInOut

																					animations:^	{

																									self.imageView.alpha	=	0.0;

																					}

																					completion:^(BOOL	finished)	{

																									[self.	imageView	removeFromSuperView];

																					}];

Note	that	the	blocks	version	also	removes	the	imageView	after	animation	is
complete,	something	that	is	done	on	the	callback	method
animationDidStop:animated:	in	the	iOS	3	version	(not	illustrated).	Other
block-based	animation	methods	are	permutations	of	this	method,	omitting
parameters	like	delay,	options,	and	completion	block.	A	huge	advantage	of
this	method	is	that	you	don’t	have	to	maintain	context	you	normally	set	with
the	methods	setAnimationWillStartSelector:	and

setAnimationDidStopSelector:.	Because	a	block	is	aware	of	the	local
context,	you	don’t	even	need	a	context	parameter.

Presenting	and	Dismissing	View	Controllers
iOS	5	introduces	a	new	method	for	presenting	and	dismissing	view
controllers	that	takes	a	block	parameter	that	must	be	called	when	the
presenting	(or	dismissing)	animation	is	completed.	This	block	parameter	is
called	after	viewDidDisappear	is	called.	Prior	to	iOS	5,	you	might	have	done
some	cleanup	code	in	viewDidDisappear.	With	this	method	in	iOS	5,	you	can
easily	do	that	in	the	completion	block.	The	methods	can	be	invoked	like	this.

Presenting

[self	presentViewController:myViewController	animated:YES

completion:^		{

		//Add	code	that	should	be	executed	after	view	is	presented

								}];

Dismissing

[self	dismissViewControllerAnimated:YES	completion:^		{

		//Add	code	that	should	be	executed	after	view	is	presented

}];

TweetComposer	Versus	In	App	Email/SMS
In	iOS	5,	Apple	added	native	support	for	Twitter,	and	apps	that	need	to	send
out	a	tweet	could	just	instantiate	a	TWTweetComposerViewController,
prepopulated	with	the	text	to	be	tweeted,	and	present	it	to	the	user.	The
implementation	is	very	similar	to	how	you	normally	send	an	in	app	email	or
SMS.	However,	the	TWTweetComposeViewController	reports	completion	by	a
block	parameter	instead	of	a	delegate.	Your	completion	handler	will	look
something	like	the	following	code.

TwTweetComposeViewController	completion	handler

controller.completionHandler	=

^(TWTweetComposeViewControllerResult	result)		

		{

												[self	dismissModalViewControllerAnimated:YES];

												switch	(result)	{

																case	TWTweetComposeViewControllerResultCancelled:

																				break;

																case	TWTweetComposeViewControllerResultDone:

																				break;

												}

								};

Dictionary	Enumeration	Using	NSDictionary
enumerateWithBlock

Dictionary	enumeration	using	block-based	methods	is	sure	to	make	your	code
cleaner.	You	no	longer	have	to	deal	with	keyEnumerator	or	objectForKey
methods.	With	block-based	equivalents,	it’s	much	easier,	as	shown	here:

				[dictionary	enumerateKeysAndObjectsUsingBlock:^(id	key,	id

val,	BOOL

						*stop)		{

								

								//NSLog(@”%@,	%@”,	key,	val);

				}];

Looking	for	Block-based	Methods
The	Cocoa	framework	follows	a	pattern	when	using	blocks.	I’ve	listed	a	few
of	these	that	would	help	you	in	searching	for	equivalent	block-based	methods
in	the	Cocoa	framework.

■	Check	whether	the	current	method	has	a	context	parameter	for	a	Cocoa
method.	If	it	does,	then	the	chances	are	that	there	will	be	a	block-based
equivalent.

■	Look	for	delegates	with	one	or	two	optional	methods.	You	might	find	a
completionHandler	for	classes	that	were	previously	notifying	results	via
delegates.
■	Enumeration,	sorting,	and	filtering	methods	mostly	have	block
equivalents.	Examples	include,	NSArray,	NSDictionary,	NSString,
NSAttributedString,	NSFileManager,	and	several	others.

Once	you	get	used	to	the	Cocoa	framework	design	pattern	and	functional
programming	paradigm,	you	should	be	able	to	intuitively	guess	whether	a

method	might	have	an	equivalent	block-based	method.

Supported	Platforms
Blocks	are	fairly	new	and	are	supported	from	iOS	4	and	Snow	Leopard
onward.	This	means	that	when	you	use	blocks,	you	should	raise	your
minimum	deployment	target	to	iOS	4.0	for	iOS	projects	and	Mac	OS	X	10.6
for	Mac	projects.	Statistics	from	various	blogs	show	that	more	than	95%	of
devices	run	iOS	4	and	above.	(See,	for	example,	Cocoanetics	August	2011
discussion	of	Marco	Arment’s	published	statistics	about	users	of	Instapaper
[see	the	“Further	Reading”	section].)This	is	going	to	approach	100%	soon.
On	iOS	projects,	there	should	be	nothing	that	stops	you	from	using	blocks.
On	Mac,	Leopard	and	prior	operating	systems	don’t	support	blocks	natively.
But	there	is	a	third-party,	open-source	block-based	runtime	called	PLBlocks
(see	“Further	Reading”	section)	that	allows	support	for	blocks	on	those
operating	systems.	For	Mac	projects,	my	recommendation	is	to	start	using
Apple’s	equivalent	block-based	Cocoa	methods	using	conditional	compilation
and	then	remove	it	altogether	when	Snow	Leopard/Lion	usage	is	high
enough.	My	prediction	is	that	that	isn’t	more	than	a	year	away.

Summary
This	chapter	discussed	the	functional	paradigm,	a	very	powerful	paradigm
that	can	make	your	code	more	readable	(as	in	case	of	the	UIAlertView
example)	and	help	you	write	less	code	(as	in	case	on	the	RESTEngine
example).	Functional	programming	will	be	the	next	big	programming
paradigm	change	after	object-oriented	programming,	and	you	will	be	seeing
more	and	more	Cocoa	methods	using	and	accepting	blocks.

Apple	usually	makes	older	technologies	obsolete	faster	than	its	competitors.
As	much	as	it	is	true	for	products	it	makes,	it	holds	good	for	its	API	too.	The
TWTweetComposeViewController	class	is	a	perfect	example	of	this.	While	it
is	similar	to	the	MFMailComposeViewController	class,	handling	responses
from	TWTweetComposeViewController	is	via	a	completionHandler	block,
unlike	MFMailComposeViewController	that	uses	a
MFMailComposeViewControllerDelegate.	Note	that
TWTweetComposeViewController	doesn’t	even	support	delegates.

On	similar	lines,	for	maybe	another	couple	of	years,	there	will	be	block-based
additions	to	existing	methods,	but	newer	classes	will	have	only	block-based
parameters	and	you	will	be	eventually	forced	to	use	them.	A	paradigm	change
like	this	is	tough.	But	the	sooner	you	get	accustomed,	the	better.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Blocks	Programming	topics	-	iOS	Programming	Guide
Concurrency	Programming	Guide	-	Migrating	away	from	threads	–	Apple
Developer

Blogs
mikeash.com:	Friday	Q&A	2009-08-14:	Practical	Blocks
http://www.mikeash.com/pyblog/friday-qa-2009-08-14-practical-

blocks.html

How	blocks	are	implemented	(and	the	consequences)	|	Cocoawithlove
http://cocoawithlove.com/2009/10/how-blocks-are-implemented-

and.html

Cocoanetics	–	iOS	versions	in	the	wild	(2011-08)
http://www.cocoanetics.com/2011/08/ios-versions-in-the-wild/

iOS	device	and	OS	version	stats	from	Instapaper	3.0
http://www.marco.org/2011/03/24/ios-device-and-os-version-

stats-from-instapaper-3-0

Is	it	worth	supporting	iOS	3	devices?	–	JCMultimedia
http://blog.jcmultimedia.com.au/2011/03/is-it-worth-supporting-

ios-3-in-2011.html

Plblocks	Block-capable	Toolchain/Runtime	for	Mac	OS	X	10.5	and	iPhone
OS	2.2+	http://code.google.com/p/plblocks/

When	to	use	NSOperation	vs.	GCD	–	Eschatology
http://eschatologist.net/blog/?p=232

http://developer.apple.com/
http://www.mikeash.com/pyblog/friday-qa-2009-08-14-practical-blocks.html
http://cocoawithlove.com/2009/10/how-blocks-are-implemented-and.html
http://www.cocoanetics.com/2011/08/ios-versions-in-the-wild/
http://www.marco.org/2011/03/24/ios-device-and-os-version-stats-from-instapaper-3-0
http://blog.jcmultimedia.com.au/2011/03/is-it-worth-supporting-ios-3-in-2011.html
http://code.google.com/p/plblocks/
http://eschatologist.net/blog/?p=232

Source	Code	References
UIKitCategoryAdditions	-	Github
https://github.com/MugunthKumar/UIKitCategoryAdditions

https://github.com/MugunthKumar/UIKitCategoryAdditions

Chapter	17:	Going	Offline

The	iPhone	can	connect	to	the	Internet	from	nearly	anywhere.	Most	iOS	apps
use	this	capability,	which	makes	it	one	of	the	best	Internet-powered	devices
ever	made.	However,	because	it’s	constantly	on	the	move,	connectivity,
reception,	or	both	can	be	poor.	This	poses	a	problem	for	iOS	developers,	who
should	ensure	that	their	apps’	perceived	response	time	remains	more	or	less
constant,	as	though	the	complete	content	were	available	locally.	You	do	this
by	caching	your	data	locally.	Caching	data	means	saving	it	temporarily	so
that	it	can	be	accessed	faster	than	making	a	round	trip	to	the	server.

This	chapter	shows	you	the	caching	techniques	you	could	use	for	solving	the
problem	of	slow	performance	caused	when	connectivity	is	poor	or
unavailable.	As	you	saw	in	Chapter	10,	Internet-connected	apps	fall	into	two
major	categories.	In	the	first	category	are	apps	that	behave	like	a	front	end	to
an	online	web	service,	and	in	this	chapter	you	begin	by	designing	a	caching
subsystem	for	the	web	service-based	app	you	developed	in	Chapter	10	(the
iHotel	app).	The	second	category	of	apps	synchronizes	user-generated	content
with	a	remote	server.	In	iOS	5,	Apple	introduced	a	new	cloud	platform	for
syncing	data	across	all	Apple	devices	the	user	owns,	and	later	in	this	chapter
you	look	at	different	ways	of	syncing	users’	data	across	their	devices	through
the	new	iCloud	service.

Reasons	for	Going	Offline
The	main	reason	why	your	app	might	need	to	work	offline	is	to	improve	the
perceived	speed	of	the	app.	You	go	offline	by	caching	your	app’s	content.
There	are	two	kinds	of	caching	that	can	be	used	to	make	your	app	work
offline.	The	first	is	on-demand	caching,	where	the	app	caches	request
responses	as	and	when	they	are	made,	much	like	your	web	browser	does.	The
second	is	precaching,	where	you	cache	your	contents	completely	for	offline
access.

Web	service	apps	like	the	one	we	developed	in	Chapter	10	use	on	demand
caching	techniques	to	improve	the	perceived	speed	of	the	app	rather	than	to

provide	offline	access.	Offline	access	just	happens	to	be	an	added	advantage.
Twitter,	Facebook,	and	foursquare	are	great	examples	of	this.	The	data	that
these	apps	bring	in	often	quickly	becomes	stale.	How	often	are	you	interested
in	a	tweet	that	was	posted	a	couple	of	days	ago,	or	in	knowing	where	a	friend
was	last	week?	Generally,	the	relevance	of	a	tweet	or	a	check-in	is	important
only	for	a	couple	of	hours,	but	loses	some	or	all	of	its	importance	after	24
hours.	Nevertheless,	most	Twitter	clients	cache	tweets,	and	the	official
foursquare	client	shows	you	the	last	state	of	the	app	when	you	open	it	without
an	active	Internet	connection.	You	can	even	try	this	on	your	favorite	twitter
client,	Twitter	for	iPhone,	Tweetbot,	or	whatever	you	prefer;	open	one	of	your
friends’	profiles,	and	view	his	timeline.	The	app	fetches	the	timeline	and
populates	the	page.	While	it	loads	the	timeline,	you	see	a	loading	spinner.
Now	go	to	a	different	page	and	come	back	again	and	open	the	timeline.	You
will	see	that	it	is	loaded	instantly.	The	app	still	refreshes	the	content	in	the
background	(based	on	when	you	previously	opened	it),	but	instead	of
showing	a	rather	uninteresting	spinner,	it	shows	previously	cached	content,
thereby	making	it	appear	fast.	Without	this	caching,	users	will	see	the	spinner
for	every	single	page,	which	slowly	frustrates	them.	Whether	the	Internet
connection	is	fast	or	slow,	it’s	your	responsibility	as	an	iOS	developer	to
mitigate	this	effect	and	provide	the	perception	that	the	app	is	loading	fast.
This	goes	a	long	way	toward	improving	your	customers’	satisfaction	and
thereby	boosting	your	app’s	ratings	on	the	App	Store.

The	other	kind	of	caching	gives	more	importance	to	the	data	being	cached.
Examples	include	apps	like	Google	Reader	clients,	read-later	apps	like
Instapaper,	and	so	on.	Now	you	have	the	background;	in	the	next	section	you
learn	how	to	add	a	caching	layer	to	the	iHotel	app	you	designed	and
developed	in	Chapter	10.

Strategies	for	Caching
The	two	caching	techniques	discussed	in	the	previous	section—on-demand
caching	and	precaching—are	quite	different	when	it	comes	to	design	and
implementation.	With	on-demand	caching,	you	store	the	content	fetched	from
the	web	service	locally	on	the	file	system	(in	some	format)	and	then,	for
every	request,	you	check	for	the	presence	of	this	data	in	the	cache	and
perform	a	fetch	from	the	server	only	if	the	data	is	not	available	(or	is	stale).

Hence	your	cache	layer	should	behave	more	or	less	like	cache	memory	on
your	processor.	The	speed	of	fetching	the	data	is	more	important	than	the	data
itself.	On	the	other	hand,	when	you	precache,	you	save	content	locally	for
future	access.	With	precaching,	a	loss	of	data	is	not	acceptable.	For	example,
consider	a	scenario	where	the	user	has	downloaded	articles	for	reading	in	the
subway,	only	to	find	that	they	are	no	longer	present	on	his	device.

Apps	like	Twitter,	Facebook,	and	foursquare	fall	into	the	on-demand
category,	whereas	apps	like	Instapaper	and	Google	Reader	clients	fall	into	the
precache	type.

To	implement	precaching,	you	will	probably	use	a	background	thread	that
accesses	data	and	stores	it	locally	in	a	meaningful	representation.	By
"meaningful,"	I	mean	you	should	save	your	contents	in	a	way	that	allows	you
to	make	modifications	locally.	Core	Data	is	one	way	to	do	this.	On-demand
caching	doesn’t	mandate	this	requirement.	Implementation	is	very	specific	to
the	app	you	are	building.

On-demand	caching	works	like	caching	on	your	browser,	allowing	you	to
view	content	that	you	have	viewed	before.	Caching	happens	as	and	when	you
open	a	view	controller	(on-demand),	rather	than	on	a	background	thread.

The	next	section	discusses	and	compares	both	these	caching	techniques.

Methods	for	Storing	Your	Cache
When	an	app	saves	information,	it	normally	saves	it	to	the	application’s
sandbox.	Because	cached	data	is	not	user	created,	it	should	not	be	saved	to
the	NSDocumentsDirectory,	but	rather	to	the	NSCachesDirectory.	A	good
practice	is	to	create	a	self-contained	directory	for	all	your	cached	data.	In	this
example,	you	will	create	in	the	caches	folder	a	directory	named	MyAppCache.
You	can	create	this	directory	using	the	following	code:

NSArray	*paths	=

NSSearchPathForDirectoriesInDomains(NSCachesDirectory,

NSUserDomainMask,	YES);

NSString	*cachesDirectory	=	[paths	objectAtIndex:0];

cachesDirectory	=	[cachesDirectory

stringByAppendingPathComponent:@”MyAppCache”];

The	reason	for	creating	this	directory	in	the	caches	folder	is	that	iCloud	(and
iTunes)	backups	don’t	include	this	directory.	If	you	create	large	cache	files	in
the	Documents	directory,	they	get	uploaded	to	iCloud	during	backup	and	use
up	the	limited	space	(~5GB	at	the	time	of	writing)	fairly	quickly.	You	don’t
want	to	do	that—you	want	to	be	a	good	citizen	on	your	user’s	iPhone,	right?
NSCachesDirectory	is	meant	for	that.

Caching	or	saving	data	can	be	done	either	by	storing	it	as	archives	of	your
data	models	(using	NSKeyedArchiver)	or	using	a	higher-level	database	like
raw	SQLite	or	using	object	serialization	framework	like	Core	Data.	You
should	carefully	choose	the	technology	based	on	your	requirements.	I	offer
suggestions	on	when	to	use	NSKeyedArchiver	and	when	to	use	Core	Data	in
the	“NSKeyedArchiver	versus	Core	Data”	section	later	in	this	chapter.	Before
that,	you	work	through	the	implementation-level	details	of	NSKeyedArchiver
and	Core	Data.

Implementing	NSKeyedArchiver
NSKeyedArchiver	is	implemented	by	implementing	the	NSCoding	protocol.
Conform	your	model	classes	to	the	NSCoding	protocol,	as	shown	in	the
following	code:

NSCoding	Protocol	Methods

-	(void)encodeWithCoder:(NSCoder	*)aCoder;

-	(id)initWithCoder:(NSCoder	*)aDecoder;

When	your	models	conform	to	NSCoding,	archiving	them	is	as	easy	as
calling	one	of	the	following	methods:

[NSKeyedArchiver	archiveRootObject:objectForArchiving

toFile:archiveFilePath];

[NSKeyedArchiver

archivedDataWithRootObject:objectForArchiving];

The	first	method	creates	an	archive	file	specified	at	the	path
archiveFilePath.	The	second	method	returns	an	NSData	object.	NSData	is
usually	faster	because	there	is	no	file	access	overhead,	but	it	is	stored	in	your
application’s	memory	and	would	soon	use	up	memory	if	it	is	not	periodically
checked.	Periodic	caching	to	flash	memory	on	the	iPhone	is	also	not

advisable	because	cache	memory,	unlike	hard	drives,	comes	with	limited
read/write	cycles.	You	should	balance	both	in	an	optimized	way.	You	get	a
detailed	look	at	this	later	in	the	“AppCache	Architecture”	section	of	this
chapter.

Creating	your	model	object	from	the	archive	is	another	one-liner.	You	can	use
either	one	of	the	following	class	methods,	depending	from	where	you	have	to
unarchive.

[NSKeyedUnarchiver	unarchiveObjectWithData:data];

[NSKeyedUnarchiver	unarchiveObjectWithFile:archiveFilePath];

These	two	methods	come	in	handy	when	converting	to	and	from	serialized
data.

Using	any	of	the	NSArchiving	methods	requires	your	models	to	implement
the	NSCoding	protocol,	as	shown	above.

However,	this	is	very	easy,	and	simple	enough	that	you	can	even	automate	it
using	tools	like	Accessorizer.	(See	the	“Further	Reading”	section	for	a	link	to
Accessorizer	on	the	Mac	App	Store.)

The	next	sections	describe	using	a	more	structured	data	format,	Core	Data
and	SQLite.

Core	Data
Core	Data,	as	Marcus	Zarra	says,	is	more	of	an	object	serialization
framework	than	just	a	database	API:

It’s	a	common	misconception	that	Core	Data	is	a	database	API	for	Cocoa.
[…]	It’s	an	object	framework	that	can	be	persisted	to	disk	(Zarra,	2009).

For	a	good,	in-depth	explanation	of	Core	Data,	read	Core	Data:	Apple’s	API	for	Persisting	Data
on	Mac	OS	X	by	Marcus	Zarra	(Pragmatic	Bookshelf,	2009.	ISBN	9781934356326).

To	store	data	in	Core	Data,	first	create	a	Core	Data	model	file	and	design	your
Entities	and	Relationships;	then	write	methods	to	save	and	retrieve	data.	Core
Data	isn’t	simple	stuff	to	be	explained	in	a	couple	of	pages.

While	technically	Core	Data	can	be	used	to	cache	data,	I	advise	that	you	use

it	only	if	you	are	going	to	do	pre-caching,	not	on-demand	caching.	The
benefit	Core	Data	offers	over	NSKeyedArchiver	is	individual	access	to	the
models’	properties	without	unarchiving	the	complete	data.	But	the	complexity
of	implementing	Core	Data	in	your	app	defeats	the	benefits,	especially	when
you	want	to	implement	on-demand	caching.	Moreover,	as	you	learned
previously,	precaching	requires	you	to	store	data	in	a	meaningful
representation	that	allows	you	to	make	local	changes	easily.	Core	Data	is
meant	for	that.

Raw	SQLite
SQLite	can	be	embedded	into	your	app	by	linking	against	the	libsqlite3
libraries,	but	it	has	significant	drawbacks.	Any	sqlite3	library	or	an	Object
Relational	Mapping	(ORM)	is	almost	always	going	to	be	slower	than	Core
Data.	In	addition,	while	sqlite3	is	thread-safe,	the	binary	bundled	with	iOS	is
not.	So	unless	you	ship	a	custom-built	sqlite3	library	(compiled	with	the
thread-safe	flag),	it	becomes	your	responsibility	to	ensure	that	data	access	to
and	from	the	sqlite3	database	is	thread-safe.	Because	Core	Data	has	so	much
more	to	offer	and	is	thread-safe,	I	suggest	avoiding	native	SQLite	as	far	as
possible	on	iOS.

The	only	exception	to	using	Raw	SQLite	over	Core	Data	in	your	iOS	app	is	when	you	have
application-specific	data	in	the	resource	bundle	that	is	shared	by	all	other	third-party	platforms
your	app	supports—for	example,	a	location	database	for	an	app	that	runs	on	iPhone,	Android,
BlackBerry,	and,	say,	Windows	Phone.	But	again,	that’s	not	caching	either.

NSKeyedArchiver	versus	Core	Data
Of	the	different	techniques	available	to	save	data	locally,	two	of	them	stand
out:	NSKeyedArchiver	and	Core	Data.	In	this	section,	you’ll	see	when	to	use
each	of	them.

If	you	are	developing	an	app	that	needs	to	cache	data	only	to	improve	its
perceived	performance,	it’s	advisable	to	use	NSKeyedArchiver.	The	only
drawback	to	this	is	that	an	archive	created	by	NSKeyedArchiver	needs	to	be
completely	unarchived	and	brought	into	memory	before	accessing	even	one
variable	inside.	Core	Data	makes	it	easy	to	access	individual	models	or	even
search	for	a	list	of	items	matching	a	given	predicate,	but	if	your	application
needs	to	cache	just	for	performance	improvements,	you	will	not	be	required
to	access	individual	properties	from	the	cached	models.	You	will	mostly	use

the	complete	cached	contents	at	one	go.

On	the	other	hand,	if	you	need	your	data	to	be	available	offline	and	in	a	more
meaningful	way	than	in	just	a	raw	serialized	form,	use	a	higher-level
serialization	like	Core	Data.	In	short,	if	your	app	requires	precaching	rather
than	on-demand	caching,	consider	using	Core	Data.	Note,	however,	that	Core
Data-based	caching	is	extremely	complicated	and	requires	heavy	changes	to
your	iOS	app.	Use	this	only	if	you	want	true	offline	access	for	your	app	like
the	Apple’s	built-in	Mail	or	Calendar	app.

When	you	use	Core	Data,	you	must	periodically	delete	data	that’s	no	longer
needed,	otherwise	your	cache	will	start	growing	and	slow	down	the	app’s
speed.

A	programmer’s	quick-and-dirty	way	of	deciding	whether	to	go	for	Core	Data
or	stay	with	NSKeyedArchiver	is	to	determine	whether	you	would	ever
download	data	in	a	background	thread	or	perform	any	post-processing	of	data
after	downloading	(precaching).	If	you	download	data	in	a	background
thread,	that	probably	means	you	need	the	data	in	a	more	meaningful	format
than	an	archive	and	should	use	Core	Data.	If	you	are	post-processing	the
downloaded	data,	(for	example	caching	an	HTML	web	page	for	offline	access
and	rewriting	image	links	to	point	to	locally	cached	images)	you	might	need
to	save	the	HTML	text	in	Core	Data	and	cache	images	later	on,	and	then	edit
the	HTML	text	to	point	to	your	locally	cached	images.

Because	Core	Data-based	caching	is	highly	specific	to	the	app	you	develop,
this	chapter	focuses	more	on	the	NSKeyedArchiver	technique.

Cache	Versioning
When	you	cache	data,	you	need	to	decide	whether	to	support	version
migration.	If	you	are	using	an	on-demand	caching	technique,	no	version
migration	is	necessary:	You	can	delete	your	cache	when	the	user	downloads
the	new	version	because	old	data	is	not	important.	On	the	other	hand,	if	your
app	needs	a	precaching	technique,	chances	are	that	you	have	cached	multiple
megabytes	of	data,	which	only	makes	sense	if	you	migrate	them	to	the	new
version.	With	Core	Data,	data	migration	across	versions	is	easy	(at	least
compared	to	raw	sqlite).

AppCache	Architecture
In	this	section	you	add	caching	support	to	the	iHotelApp	from	Chapter	10.
The	iHotelApp	doesn’t	need	true	offline	access;	what	it	needs	is	on-demand
caching.	On-demand	caching	is	done	as	and	when	the	view	disappears	from
the	hierarchy	(technically	in	your	viewWillDisappear:	method).	The	basic
construct	of	the	view	controller	that	supports	caching	is	shown	in	Figure	17-
1.	The	complete	code	that	has	AppCache	Architecture	can	be	obtained	from
the	downloaded	source	code	for	this	chapter.	This	chapter,	from	here	on,
assumes	you	have	this	code	ready.

Figure	17-1	Control	flow	in	your	view	controller	that	implements	on-demand
caching

In	your	viewWillAppear	method,	check	your	cache	for	the	data	necessary	to
display	this	view.	If	it	is	available,	fetch	it	and	update	your	user	interface	with
cached	data.	Now	check	whether	your	data	from	the	cache	is	old.	Your
business	rule	should	dictate	what’s	new	and	what’s	old.	If	you	decide	that	the

content	is	old,	show	the	data	on	the	UI	and,	in	the	background,	fetch	data
from	the	server	and	update	the	UI	again.	If	the	data	is	not	available	in	cache,
fetch	the	data	from	the	server	while	showing	a	loading	spinner.	After	fetching
data,	update	your	UI.

The	flowchart	shown	above	assumes	that	what	you	show	on	the	UI	are
models	that	can	be	archived.	Implement	the	NSCoding	protocol	in	the
MenuItem	model	in	the	iHotelApp.	The	NSKeyedArchiver	mandates	that	this
protocol	be	implemented.	The	code	snippets	shown	below	illustrate	this.

NSCoding	encodeWithCoder	Method	for	the	MenuItem	Class
(MenuItem.m)

-	(void)encodeWithCoder:(NSCoder	*)encoder

{

				[encoder	encodeObject:self.itemId	forKey:@”ItemId”];

				[encoder	encodeObject:self.image	forKey:@”Image”];

				[encoder	encodeObject:self.name	forKey:@”Name”];

				[encoder	encodeObject:self.spicyLevel	forKey:@”SpicyLevel”];

				[encoder	encodeObject:self.rating	forKey:@”Rating”];

				[encoder	encodeObject:self.itemDescription

forKey:@”ItemDescription”];

				[encoder	encodeObject:self.waitingTime	forKey:@”WaitingTime”];

				[encoder	encodeObject:self.reviewCount	forKey:@”ReviewCount”];

}

initWithCoder	Method	for	the	MenuItem	Class	(MenuItem.m)

-	(id)initWithCoder:(NSCoder	*)decoder

{

				if	((self	=	[super	init]))	{

								self.itemId	=	[decoder	decodeObjectForKey:@”ItemId”];

								self.image	=	[decoder	decodeObjectForKey:@”Image”];

								self.name	=	[decoder	decodeObjectForKey:@”Name”];

								self.spicyLevel	=	[decoder

decodeObjectForKey:@”SpicyLevel”];

								self.rating	=	[decoder	decodeObjectForKey:@”Rating”];

								self.itemDescription	=	[decoder

decodeObjectForKey:@”ItemDescription”];

								self.waitingTime	=	[decoder

decodeObjectForKey:@”WaitingTime”];

								self.reviewCount	=	[decoder

decodeObjectForKey:@”ReviewCount”];

				}

				return	self;

}

As	I	mentioned	previously,	you	can	generate	the	NSCoding	protocol
implementation	using	Accessorizer.

Based	on	the	cache	flow	flowchart	you	saw	in	Figure	17-1,	you	have	to
implement	the	actual	caching	logic	in	the	viewWillAppear:	method.	The
following	code	added	to	viewWillAppear:	implements	that.

Code	Snippet	in	the	viewWillAppear:	of	Your	View	Controller	that
Restores	Your	Model	Objects	from	Cache

NSArray	*paths	=

NSSearchPathForDirectoriesInDomains(NSCachesDirectory,

NSUserDomainMask,	YES);

NSString	*cachesDirectory	=	[paths	objectAtIndex:0];

NSString	*archivePath	=	[cachesDirectory

stringByAppendingPathComponent:@”AppCache/MenuItems.archive”];		

NSMutableArray	*cachedItems	=	[NSKeyedUnarchiver

unarchiveObjectWithFile:archivePath];

if(cachedItems	==	nil)

		self.menuItems	=	[AppDelegate.engine	localMenuItems];

else

		self.menuItems	=	cachedItems;

NSTimeInterval	stalenessLevel	=	[[[[NSFileManager	defaultManager]

attributesOfItemAtPath:archivePath	error:nil]

fileModificationDate]	timeIntervalSinceNow];

if(stalenessLevel	>	THRESHOLD)

		self.menuItems	=	[AppDelegate.engine	localMenuItems];

[self	updateUI];

The	logical	flow	of	the	caching	mechanism	is

1.	The	view	controller	checks	for	previously	cached	items	in	the	archive
file	MenuItems.archive	and	unarchives	it.

2.	If	the	MenuItems.archive	is	not	present	it	makes	a	call	to	fetch	data
from	server.

3.	If	MenuItems.archive	is	present,	it	checks	the	archive	file	modification
date	to	determine	how	stale	this	cached	data	is.	If	it’s	old	(as	determined	by
your	business	requirements),	fetch	the	data	again	from	the	server.

Otherwise	display	the	cached	data.

Next,	the	following	code	added	to	the	viewDidDisappear	method	saves	(as
NSKeyedArchiver	archives)	your	models	to	the	caches	directory.

Code	Snippet	in	the	viewWillDisappear:	of	Your	View	Controller	that
Caches	Your	Models

NSArray	*paths	=

NSSearchPathForDirectoriesInDomains(NSCachesDirectory,

NSUserDomainMask,	YES);

NSString	*cachesDirectory	=	[paths	objectAtIndex:0];

NSString	*archivePath	=	[cachesDirectory

stringByAppendingPathComponent:@”AppCache/MenuItems.archive”];

[NSKeyedArchiver	archiveRootObject:self.menuItems

toFile:archivePath];

As	the	view	disappears,	you	save	the	contents	of	the	menuItems	array	to	an
archive	file.	Take	care	not	to	cache	this	if	you	didn’t	fetch	from	the	server	in
viewWillAppear.

So	just	by	adding	fewer	than	ten	lines	in	the	view	controller	(and	a	bunch	of
Accessorizer	generated	lines	in	the	model),	you	add	caching	support	to	your
app.

Refactoring
You	will	be	using	this	caching	logic	in	several	view	controllers	in	your	app.
This	means	that	you	will	have	lots	of	duplicated	code	in	viewWillAppear	and
viewWillDisappear.	To	make	this	easier,	you	will	learn	how	to	refactor	this
code	and	extract	the	filenames	into	a	different	class.	Let’s	call	that	class
AppCache.	Refactor	this	code	so	that	your	view	controller’s
viewWillAppear/viewWillDisappear	block	looks	like	the	following	code.
The	lines	in	bold	show	the	changes	made	while	refactoring,	and	are	explained
following	the	code.

Refactored	Code	Snippet	in	the	viewWillAppear:	of	Your	View	Controller
that	Caches	Your	Models	Using	the	AppCache	Class.
(MenuItemsViewController.m)

-	(void)viewWillAppear:(BOOL)animated

{

		NSMutableArray	*cachedItems	=	[AppCache	getCachedMenuItems];

		

		if(cachedItems	==	nil)

				self.menuItems	=	[AppDelegate.engine	localMenuItems];

		else

				self.menuItems	=	cachedItems;

		

		if([AppCache	isMenuItemsStale])

				self.menuItems	=	[AppDelegate.engine	localMenuItems];

		

		[self	updateUI];

		[super	viewWillAppear:animated];

}

-	(void)viewWillDisappear:(BOOL)animated

{		

		[AppCache	cacheMenuItems:self.menuItems];

		[super	viewWillDisappear:animated];

}

There	are	a	couple	of	major	changes	in	your	view	controller	that	include
adding	the	AppCache	class.	The	AppCache	class	abstracts	the	knowledge	of
staleness	from	the	view	controller.	It	also	abstracts	exactly	where	the	cache	is
stored.	Later	in	this	chapter	you	modify	this	AppCache	to	introduce	another
layer	of	cache	where	the	content	is	stored	in	memory.

Because	the	AppCache	class	abstracts	out	where	the	cache	is	exactly	stored,
you	don’t	have	to	worry	about	copying	and	pasting	code	that	gets	the
application’s	cache	directory.	In	case	your	app	is	like	the	iHotelApp	example,
you	also	easily	add	security	to	the	cached	data	by	creating	subdirectories	for
every	user.	The	helper	method	in	AppCache	then	currently	returns	the	cache
directory	that	can	be	modified	to	return	the	correct	subdirectory	for	the
currently	logged-in	user.	This	way,	data	cached	by	user	1	will	not	be	visible	to
user	2,	who	logs	in	later.

The	complete	code	listing	is	available	from	the	source	code	download	for
Chapter	17	on	the	book’s	website.

Cache	Versioning
The	AppCache	class	implemented	on-demand	caching.	When	the	view

appears	and	disappears,	caching	happens	behind	the	scenes.	However,	when
you	update	the	app,	you	might	change	your	model	classes.	That	means	that
any	previously	archived	data	will	no	longer	be	restored	on	your	new	models.
As	you	learned	earlier,	in	on-demand	caching	your	data	is	not	that	important
and	you	can	delete	it	when	you	update	the	app.	In	the	sample	code,	you	do
that	by	just	deleting	the	cache	folder	and	rebuilding	it	again	on-demand.	You
don’t	really	have	to	migrate	data	because	the	data	might	already	be	stale
across	version	updates.

Invalidating	the	Cache
In	this	section	you	add	the	necessary	methods	to	delete	the	cache	directory
contents	when	the	app	is	updated.	To	detect	version	updates,	you	have	to	save
your	application	version	inside	NSUserDefaults	every	time	the	app	launches,
and	check	whether	the	previously	saved	version	is	older	than	the	app’s
current	version.	If	yes,	delete	the	cache	folder	and	resave	the	new	version	to
NSUserDefaults.

The	following	is	the	code	for	doing	this.	Add	it	to	your	AppCache	init
method.

Code	Snippet	in	the	AppCache	Initialize	Method	that	Handles	Cache
Versioning	(AppCache.m)

+(void)	initialize

{

		NSString	*cacheDirectory	=	[AppCache	cacheDirectory];

		if(![[NSFileManager	defaultManager]

fileExistsAtPath:cacheDirectory])

		{

				[[NSFileManager

defaultManager]		createDirectoryAtPath:cacheDirectory

				withIntermediateDirectories:YES

				attributes:nil

				error:nil];

		}

		

		double	lastSavedCacheVersion	=	[[NSUserDefaults

standardUserDefaults]	doubleForKey:@”CACHE_VERSION”];

		double	currentAppVersion	=	[[AppCache	appVersion]	doubleValue];

		

		if(lastSavedCacheVersion	==	0.0f	||	lastSavedCacheVersion	<

currentAppVersion)

		{

				[AppCache	clearCache];

				//	assigning	current	version	to	preference

				[[NSUserDefaults	standardUserDefaults]

setDouble:currentAppVersion	forKey:@”CACHE_VERSION”];

				[[NSUserDefaults	standardUserDefaults]	synchronize];

		}

}

Note	that	this	code	depends	on	a	helper	method	that	gets	the	application’s
current	version.	You	can	read	the	version	from	your	app’s	Info.plist	file
using	this	block	of	code:

Code	to	Get	the	Current	App	Version	from	the	Info.plist	file
(AppCache.m)

+(NSString*)	appVersion

{

		CFStringRef	versStr	=

(CFStringRef)CFBundleGetValueForInfoDictionaryKey(CFBundleGetMainBundle(),

kCFBundleVersionKey);

		NSString	*version	=	[NSString

stringWithUTF8String:CFStringGetCStringPtr(versStr,kCFStringEncodingMacRoman)];

		return	version;

}

The	preceding	code	calls	a	method	to	clear	the	cache	directory.	The	following
snippet	illustrates	that.

Code	Snippet	that	Clears	All	Cached	Files	from	the	Cache	Directory
(AppCache.m)

+(void)	clearCache

{

		NSArray	*cachedItems	=	[[NSFileManager	defaultManager]

contentsOfDirectoryAtPath:[AppCache	cacheDirectory]	error:nil];

		

		for(NSString	*path	in	cachedItems)

				[[NSFileManager	defaultManager]	removeItemAtPath:path

error:nil];

}

Creating	an	In-Memory	Cache
Every	iOS	device	shipped	so	far	has	included	flash	memory,	and	this	flash
memory	has	one	little	problem:	It	has	limited	read-write	cycles	before	it
wears	out.	While	this	limit	is	generally	very	high	compared	to	the	device’s
life	span,	it’s	still	important	to	avoid	writing	to	and	reading	from	flash
memory	too	often.	In	the	previous	example,	you	were	caching	directly	to	disk
when	the	view	hides	and	reading	directly	from	disk	whenever	the	view	is
shown.	This	could	be	taxing	to	the	flash	memory	on	users’	devices.	To	avoid
this,	you	can	introduce	another	cache	layer,	which	stores	your	archives	in
memory	(NSMutableDictionary).	In	the	“Implementing	NSKeyedArchiver”
section,	you	learned	two	methods	for	creating	archives:	one	for	saving	them
to	a	file	and	one	for	saving	them	as	NSData	objects.	You	will	use	the	second
method,	which	gives	you	a	NSData	pointer	that	you	can	store	in	a
NSMutableDictionary	rather	than	as	flat	files	in	file	system.	The	other
advantage	you	get	by	introducing	an	in-memory	cache	layer	is	slightly	higher
performance	when	you	archive	and	unarchive	contents.	While	this	sounds
complicated,	it	isn’t	really.	In	this	section	you	look	at	how	to	add	a
transparent	in-memory	cache	to	the	AppCache	class.	(In-memory	cache	is
transparent	in	the	sense	that	the	calling	code—the	ViewController—doesn’t
even	know	about	its	presence	and	doesn’t	need	any	code	changes.)	You	also
design	a	least-recently-used	algorithm	to	save	the	cached	data	back	to	disk	if
it	hasn’t	been	used	recently.

The	following	list	outlines	the	steps	you	follow	to	create	the	in-memory
cache.	These	steps	are	explained	in	more	detail	in	the	following	sections.

1.	Add	some	variables	to	hold	your	cached	data	in	memory.
2.	Limit	the	size	of	the	in-memory	cache	and	write	the	least-recently-used
items	to	a	file	and	remove	it	from	in-memory.	RAM	is	limited,	and	when
you	hit	the	limit,	you	will	get	a	memory	warning.	Failing	to	release
memory	when	you	receive	this	warning	will	crash	your	app.	You	obviously
don’t	want	that	to	happen,	right?	So	you	set	a	maximum	threshold	for	the
memory	cache.	When	anything	is	added	to	the	cache	after	it’s	full,	the	last
used	object	should	be	saved	to	file	(flash	memory).

3.	Handle	memory	warnings	and	write	the	in-memory	cache	to	flash

memory	(as	files).
4.	Write	all	in-memory	cache	to	flash	memory	(files)	when	the	app	is
closed	or	quit.

Designing	the	AppCache
Let’s	start	designing	the	AppCache	class	by	adding	the	variables	to	hold	the
cache	data.	Add	an	NSMutableDictionary	for	storing	your	cache	data,	an
NSMutableArray	to	keep	track	of	recently	used	items,	in	chronological	order,
and	an	integer	that	limits	the	maximum	size	of	this	cache,	as	shown	in	the
following	code.

Variables	in	AppCache

static	NSMutableDictionary	*memoryCache;

static	NSMutableArray	*recentlyAccessedKeys;

static	int	kCacheMemoryLimit;

Now	you	have	to	make	changes	to	the	cacheMenuItems:	and
getCachedMenuItems	methods	in	AppCache	to	save	the	model	objects
transparently	to	this	in-memory	cache.

+(void)	cacheMenuItems:(NSMutableArray*)	menuItems

{

		[self	cacheData:[NSKeyedArchiver

archivedDataWithRootObject:menuItems]

											toFile:@”MenuItems.archive”];		

}

+(NSMutableArray*)	getCachedMenuItems

{

		return	[NSKeyedUnarchiver	unarchiveObjectWithData:[self

dataForFile:@”MenuItems.archive”]];

}

Instead	of	writing	directly	to	file,	the	preceding	code	calls	a	helper	method,
cacheData:toFile:.	This	method	will	save	the	NSData	from	the
NSKeyedArchiver	to	the	in-memory	cache.	It	also	checks	and	removes	the
least-recently-accessed	data	and	save	it	to	file	when	the	prefixed	memory
limit	for	the	number	of	in-memory	items	is	reached.	The	implementation	for
this	is	shown	in	the	following	code.

Helper	Method	that	Transparently	Caches	Data	to	In-Memory	Cache
(AppCache.m)

+(void)	cacheData:(NSData*)	data	toFile:(NSString*)	fileName

{

		[memoryCache	setObject:data	forKey:fileName];

		if([recentlyAccessedKeys	containsObject:fileName])

		{

				[recentlyAccessedKeys	removeObject:fileName];

		}

		[recentlyAccessedKeys	insertObject:fileName	atIndex:0];

		

		if([recentlyAccessedKeys	count]	>	kCacheMemoryLimit)

		{

				NSString	*leastRecentlyUsedDataFilename	=

[recentlyAccessedKeys	lastObject];

				NSData	*leastRecentlyUsedCacheData	=	[memoryCache

objectForKey:leastRecentlyUsedDataFilename];

				NSString	*archivePath	=	[[AppCache	cacheDirectory]

stringByAppendingPathComponent:fileName];		

				[leastRecentlyUsedCacheData	writeToFile:archivePath

atomically:YES];

				

				[recentlyAccessedKeys	removeLastObject];

				[memoryCache

removeObjectForKey:leastRecentlyUsedDataFilename];

		}

}

Similar	to	the	preceding	code,	which	caches	data	(cacheData:toFile:),	you
should	write	a	method	that	checks	the	in-memory	cache	and	returns	this	data,
instead	of	directly	reading	from	a	file.	The	method	should	access	the	file	only
if	it	isn’t.

Helper	Method	that	Transparently	Retrieves	the	Cached	Data	from	In-
Memory	Cache	(AppCache.m)

+(NSData*)	dataForFile:(NSString*)	fileName

{

		NSData	*data	=	[memoryCache	objectForKey:fileName];		

		if(data)	return	data;	//	data	is	present	in	memory	cache

				

NSString	*archivePath	=	[[AppCache	cacheDirectory]

stringByAppendingPathComponent:fileName];

		data	=	[NSData	dataWithContentsOfFile:archivePath];

		

		if(data)

				[self	cacheData:data	toFile:fileName];	//	put	the	recently

accessed	data	to	memory	cache

		

		return	data;

}

This	method	also	saves	the	data	read	from	flash	memory	back	to	in-memory
cache,	which	is	just	like	how	a	least-recently-used	caching	algorithm	works.

Handling	Memory	Warnings
For	the	most	part,	the	AppCache	is	now	complete	and	you	have	added	a
transparent	in-memory	cache	without	modifying	the	calling	code.	However,
there	is	one	more	important	thing	that	you	should	do.	Because	you	are
retaining	data	used	by	views	in	AppCache,	the	memory	consumption	of	your
app	continues	to	grow,	and	the	chances	of	receiving	a	memory	warning
become	very	high.	To	avoid	this,	you	handle	the	memory	warning
notifications	in	AppCache.	In	the	static	initialize	method,	add	a	notification
observer	to	UIApplicationDidReceiveMemoryWarningNotification:

[[NSNotificationCenter	defaultCenter]	addObserver:self

selector:@selector(saveMemoryCacheToDisk:)

name:UIApplicationDidReceiveMemoryWarningNotification	object:nil];

Now	write	a	method	to	save	the	in-memory	cache	items	to	files:

+(void)	saveMemoryCacheToDisk:(NSNotification	*)notification

{

		for(NSString	*filename	in	[memoryCache	allKeys])

		{

				NSString	*archivePath	=	[[AppCache	cacheDirectory]

stringByAppendingPathComponent:filename];		

				NSData	*cacheData	=	[memoryCache	objectForKey:filename];

				[cacheData	writeToFile:archivePath	atomically:YES];

		}

		

		[memoryCache	removeAllObjects];		

}

This	method	ensures	that	your	AppCache	doesn’t	eat	up	the	available	system
memory,	yet	be	faster	than	writing	directly	to	files	from	your	view	controller.

Handling	Termination	and	Enter	Background
Notifications

You	should	also	ensure	that	your	in-memory	cache	is	saved	when	the	app
quits	or	enters	background.	This	gives	an	added	advantage	to	your	on-
demand	caching:	offline	access.	Let’s	add	the	third	and	final	step,	which	is	to
observe	for	app’s	resigning	active	or	closing	notifications	and	do	the	same
thing	as	above.	No	extra	methods	are	needed;	just	add	observers	in	the
initialize	method	for	UIApplicationDidEnterBackgroundNotification	and
UIApplicationWillTerminateNotification:	This	is	to	ensure	that	your	in-
memory	cache	is	saved	to	file	system.

Observing	Notifications	and	Saving	In-Memory	Cache	to	Disk
(AppCache.m)

[[NSNotificationCenter	defaultCenter]	addObserver:self

selector:@selector(saveMemoryCacheToDisk:)

name:	UIApplicationDidEnterBackgroundNotification	object:nil];

[[NSNotificationCenter	defaultCenter]	addObserver:self

selector:@selector(saveMemoryCacheToDisk:)

name:	UIApplicationWillTerminateNotification	object:nil];

Remember	to	call	removeObserver	in	dealloc	as	well.	For	the	complete
AppCache	code,	download	the	code	sample	from	the	book’s	website.

The	next	section	presents	a	popular	use	for	caching	(caching
thumbnails/avatars)	as	well	as	guidance	on	how	to	design	an	ImageCache
utility	based	on	what	you’ve	learned	in	this	chapter.

Caching	Images
In	most	of	the	web	service-related	apps,	the	data	you	display	often	contains
images	and	thumbnails	attached	to	it.	iOS	by	default	doesn’t	provide	a	built-
in	mechanism	to	cache	these	images	and	thumbnails.	To	make	these
thumbnails	load	faster,	you	have	to	cache	them.	Invalidating	these	caches	can
be	done	when	the	cached	image	is	“stale.”	“Stale”	here	is	again	business-rule
specific.	In	an	app	that	sells	wallpapers,	thumbnails	older	than	30	minutes
might	be	considered	“old,”	whereas	in	a	social	networking	app	that	caches
your	friends’	avatar	thumbnails,	2-	or	3-day-old	avatars	are	still	acceptable.

This	section	offers	suggestions	for	designing	an	ImageCache	utility	that	is
configurable	and	works	in	a	way	that’s	very	similar	to	the	AppCache	you
wrote	earlier.

Components	of	ImageCache
The	image	cache	you	are	going	to	write	is	very	similar	to	AppCache	in
architecture.	It’s	composed	of	two	major	components.	The	first	component	is
a	singleton	class	that	encapsulates	the	complete	caching	logic	like	the
AppCache.	The	second	component	(that	is	different	from	AppCache)	is	an
NSOperation	that	performs	the	actual	download.	In	many	ways	this	singleton
behaves	like	the	AppCache	you	wrote	in	the	previous	section.	The	same	way
that	AppCache	has	public	methods	to	read	and	write	data	to	it,	the	ImageCache
singleton	will	expose	methods	to	request	a	new	image.	In	the	“Implementing
NSKeyedArchiver”	section	you	learned	two	methods	for	creating	archives:
one	for	saving	them	to	a	file	and	one	for	saving	them	as	NSData	objects.

Any	such	cache	component	should	check	whether	the	requested	file	is	already
present	before	attempting	a	download.	Similar	to	the	design	of	AppCache,	the
ImageCache	should	have	two	levels	of	cache.	One	is	the	file	system	(the	flash
storage)	and	the	other	is	the	in-memory	cache.

Creating	the	ImageCache	Singleton
In	this	section	you	create	the	singleton	class	and	add	a	public	method	to
accept	URLs	for	fetching	images.	In	addition,	the	method	also	encapsulates
certain	state	variables	like	the	list	of	images	cached	in-memory.	This	in-
memory	cache	should	be	shared	across	every	instance	(as	though	it	weren’t	a
singleton)	of	ImageCache	that’s	created	in	the	app.	This	was	not	a
requirement	for	AppCache,	which	is	why	it	wasn’t	a	singleton.

One	difference	between	AppCache	and	ImageCache	is	that	AppCache	returns
data	immediately	when	you	request	it.	The	data	you	fetch	is	either	in	memory
or	in	a	file.	If	the	data	is	not	present,	AppCache	just	returns	nil,	which	is
perfectly	acceptable	in	that	scenario.	That’s	not	the	case	for	ImageCache.	If
the	image	you	requested	is	not	present	locally,	you	have	to	fetch	it	from	the
URL.	This	also	means	that	ImageCache	cannot	return	data	on	the	same
method	that	called	it.	In	Chapter	16,	you	learned	about	blocks	and	how	to

pass	function	blocks	as	parameters.	You	will	use	the	techniques	learned	there
to	design	your	ImageCache.	ImageCache	will	return	data	by	invoking	a	block
after	the	image	is	fetched	from	the	remote	source.	The	caller	will	be	notified
of	the	image	fetch	asynchronously	after	the	image	is	fetched.

Here’s	the	first	and	only	public	method	of	the	ImageCache	singleton:

-(void)	imageAtURL:(NSURL*)	url	onCompletion:(void(^)(UIImage*

image,	NSURL*	url))	imageFetchedBlock;

Now	you	have	a	method	that	accepts	two	parameters:	a	URL	and	a	block.	The
following	list	outlines	the	flow	of	the	method.

1.	The	ImageCache	singleton	checks	whether	the	image	at	this	URL	is
already	present	in	the	memory	cache.	If	it’s	present,	return	the	image	by
invoking	the	block	method.
2.	Check	whether	the	image	is	present	in	the	file	system	(cached
previously).	Then,	depending	on	the	result	of	this	check,	do	one	of	the
following:

•	If	it’s	present,	the	image	should	be	brought	back	and	stored	in	the
memory	cache	and	then	returned	to	the	caller	by	invoking	the	block
method.
•	If	the	image	is	not	present	in	any	of	the	local	caches,	fetch	it	from	the
remote	source.	For	this,	you	write	an	NSOperation	subclass
(ImageFetchOperation),	and	queue	image	requests	coming	in.	When	the
operation	completes,	the	ImageFetchOperation	notifies	the	caller	by
invoking	the	block	method.	ImageCache	should	pass	the	block	to	the
ImageFetchOperation	class	so	that	ImageFetchOperation	can	directly
pass	the	fetched	image	to	the	caller.

One	important	step	that	you	must	do	to	improve	the	performance	is	to	check
whether	the	image	request	has	been	queued	previously.	If	the	requested	URL
is	currently	in	the	queue,	but	not	yet	downloaded,	just	add	the	new	block	to
that	ImageFetchOperation.	This	ensures	that	both	callers	are	notified	when
the	image	is	fetched,	yet	performs	the	actual	fetch	operation	exactly	once.
This	is	essentially	a	performance	enhancement	to	the	ImageCache.

The	properties	in	the	ImageCache	singleton	are

Properties	in	the	ImageCache	Singleton	(ImageCache.m)

@property	(nonatomic,	strong)	NSOperationQueue	*imageFetchQueue;

@property	(nonatomic,	strong)

NSMutableDictionary	*runningOperations;

@property	(nonatomic,	strong)	NSMutableDictionary	*memoryCache;

@property	(nonatomic,	strong)	NSMutableArray	*memoryCacheKeys;

ImageFetchOperation	–	NSOperation	Subclass
The	NSOperation	subclass	is	fairly	simple	and	straightforward	in
implementation.	All	it	does	is	accept	a	URL	and	a	couple	of	blocks	to	be
invoked.	One	is	a	block	that	is	invoked	when	the	operation	ends	so	that	the
ImageCache	singleton	can	mark	this	URL	as	complete,	and	the	other	is	a
block	that	passes	the	fetched	image	to	the	caller.	This	is	the	same	block
received	by	ImageCache	from	its	caller,	copied	to	this	operation.

The	basic	methods	in	the	ImageFetchOperation	header	looks	like	this:

Properties	and	Methods	in	ImageFetchOperation
(ImageFetchOperation.m)

@property	(nonatomic,	strong)	NSURL	*photoURL;

@property	(nonatomic,	strong)	NSMutableArray	*observerBlocks;

-(id)	initWithURL:(NSURL*)	url	onCompletion:(void(^)())

completionBlock;

-(void)	addImageFetchObserverBlock:(void(^)(UIImage*	image,	NSURL*

url))	observerBlock;

The	implementation	is	fairly	simple.	Fetch	the	URL	and	check	whether	the
returned	mime-type	is	an	image.	If	it’s	an	image,	construct	a	UIImage	object
and	invoke	all	the	blocks.	If	it	is	not	an	image,	log	a	message.

Based	on	what	you	learned	in	the	last	few	sections	and	in	the	previous	section
on	AppCache,	try	implementing	ImageCache	on	your	own.	If	you	need	help,
there	is	always	the	complete	source	code	for	this	chapter	waiting	for	you	on
the	book’s	website.

Using	iCloud

In	iOS	5	(and	Mac	OS	X	Lion),	Apple	introduced	a	new	and	arguably	most
important	feature,	or	service,	called	iCloud.	iCloud	stores	your	content	and
continuously	pushes	it	to	all	devices	associated	with	a	specific	Apple	account.
To	the	end	user,	the	integration	is	seamless	and	happens	“automatically.”
However,	to	give	your	customers	that	kind	of	user	experience,	some	hard
development	work	must	be	done.

Prior	to	iCloud,	developers	supported	Dropbox	Sync	to	synchronize	data
across	user	devices.	While	this	handles	the	problem	of	syncing	data	in	the
iOS	4	era,	it’s	still	limited	to	flat	files,	and	most	importantly,	your	users
should	have	a	Dropbox	account	and	they	should	sign	in	with	their	Dropbox
credentials	on	your	app.	With	iCloud,	no	such	signing	in	is	necessary.	You	get
access	to	the	iCloud	data	store	you	declare	for	your	app	if	the	user	is	running
iOS	5.	No	extra	steps	or	actions	are	necessary	from	your	user.	Moreover,
iCloud	has	support	for	key-value	data	storage	and	excellent	support	for	your
Core	Data-managed	app.	If	your	app	is	data-centric,	iCloud	alone	should	be	a
reason	to	migrate	your	app	to	iOS	5.

Managing	Document	and	Key-Value	Data	Storage	on
iCloud

You	can	store	two	kinds	of	data	on	iCloud:	traditional	files	(document	file
storage)	and	key-value	data.	If	your	app	currently	uses	NSUserDefaults	to
store	app-specific	settings,	you	might	consider	using	iCloud	key-value	data
storage	to	sync	those	settings	across	the	user’s	devices.	The	preferred	way	to
store	documents	on	iCloud	is	to	design	your	persistent	models	as	subclasses
of	UIDocument	or	UIManagedDocument.	The	next	sections	discuss	the
differences	between	them.

UIDocument
Using	UIDocument	is	not	a	prerequisite	for	iCloud;	however,	if	you	manage
individual	files	yourself,	you	should	also	manage	file	presenters	and
coordinators	to	support	the	iCloud’s	locking	mechanism.	UIDocument	has
built-in	support	for	this.	Additionally,	it	helps	resolve	version	conflicts	made
by	updates	on	other	devices.

Another	important	feature	provided	by	UIDocument	is	its	excellent	support	for

managing	file	packages.	(A	file	package	is	a	directory	of	files	that	appear	to
the	user	as	a	single	file.	On	your	Mac,	applications	in	your	/Applications
folder	are	file	packages.)	File	packages	can	store	individual	components	in
your	app	as	separate	files,	so	a	change	to	one	of	those	components	means	that
only	the	changed	file	needs	to	be	sent	to	iCloud.	For	example,	in	a	drawing
app	you	might	consider	saving	the	actual	drawing	in	a	file,	and	sets	of	custom
brushes	and	fonts	in	separate	files	within	the	same	file	package.	You	can	still
manage	the	entire	file	package	using	just	one	UIDocument	subclass.	Now
when	a	user	opens	a	large	drawing	and	edits	a	custom	brush,	only	the	file
representing	the	custom	brush	needs	to	be	sent,	and	that	is	usually	far	smaller
than	the	drawing.

UIManagedDocument
UIManagedDocument	is	a	concrete	subclass	of	UIDocument	that	integrates	with
Core	Data.	You	initialize	it	with	the	URL	of	your	persistent	store	and	the
document	object	does	the	rest.	It	then	creates	a	Core	Data	stack	based	on	your
core	data	model	file	(.xcdatamodeld	file).	If	you	are	currently	using	Core
Data	to	store	your	user	content,	you	should	adopt	UIManagedDocument	in	your
app	to	support	iCloud	data	syncing.	This	is	arguably	the	easiest	way	to
migrate	apps	that	currently	use	Core	Data.

Key-Value	Data	Storage
The	second	type	of	data	you	can	store	is	key-value	data.	If	your	app	currently
stores	app-specific	settings	in	NSUserDefaults,	consider	using	the	iCloud’s
key-value	data	storage	to	sync	these	settings	across	users'	devices.	The	total
size	of	data	you	store	here	cannot	exceed	64KB	and	no	key	can	be	more	than
4KB.	In	most	cases,	you	will	be	saving	a	Boolean	or	an	integer	or	a	string,
which	usually	is	less	than	4KB.	If	you	are	storing	serialized	models,	however,
ensure	that	they’re	less	than	4KB,	or	use	UIDocument	as	discussed	in	the
previous	section.

Understanding	the	iCloud	Data	Store
To	start	using	iCloud	in	your	app,	you	first	need	to	configure	your	App	ID	for
iCloud	usage.	After	doing	so,	generate	your	provisioning	profile	and	request
entitlements	in	your	app.	Depending	on	the	data	storage	requirements	in	your
app,	you	need	to	request	either	one	or	both	of	the	following	entitlements.

iCloud	Entitlements	key

com.apple.developer.ubiquity-container-identifiers		

com.apple.developer.ubiquity-kvstore-identifier

The	first	one	is	used	for	document	storage	and	the	second	is	used	for	key-
value	storage.	Once	this	is	done,	you	can	start	moving	documents	from	your
application’s	sandbox	to	iCloud	storage.	The	entitlements	ensure	that	data
generated	by	your	app	is	sandboxed	and	will	not	be	accessible	to	other	apps.

Sharing	Data	within	Apps	(or	App	Suites)
On	iCloud,	you	identify	and	request	a	data	store	container	by	its	unique	id.
This	is	normally	your	application’s	App	ID,	but	not	necessarily.	You	can	use
the	same	iCloud	data	store	container	for	two	of	your	apps	and	share	data
within	them.	This	is	a	very	powerful	feature,	especially	if	you	are	developing
a	“lite”	and	“pro”	versions	of	an	app.	You	can	now	use	the	same	ubiquitous
container	identifier,	which	means	that	data	created	by	a	user	using	the	lite
version	becomes	automatically	available	if	he	purchases	your	pro	version,
making	the	migration	process	easier.	You	can	also	use	this	technique	to	share
data	among	a	suite	of	apps	you	build.

The	iCloud	data	store	resides	initially	on	the	user’s	iPhone	until	it’s	moved	to
iCloud	by	the	iCloud	daemon	running	on	the	iOS	device.	Once	you	move	the
document	to	iCloud	storage,	you	can	safely	delete	the	original	copy	because
all	subsequent	edits	will	happen	directly	to	the	file	stored	on	iCloud.	As	a
developer,	you	don’t	have	to	worry	about	uploading	to	a	remote	source	or	be
bothered	about	network	disconnection.	The	iCloud	daemon	automatically
takes	care	of	this	syncing.	You	should,	however,	handle	conflict	resolutions.
The	default	conflict	resolution	strategy	iCloud	follows	is	to	choose	the	“last
modified”	document.	While	this	might	be	okay	in	some	cases,	you	should
evaluate	this	strategy	on	a	case-by-case	basis	for	your	app.

Storing	Data	within	Your	iCloud	Container
With	iOS	5,	the	Settings	app	on	every	device	has	an	iCloud	section	that
allows	users	to	see	how	much	data	they	have	used	on	iCloud	for	backup	and
how	much	data	apps	syncing	with	iCloud	use.	When	you	store	your	files
inside	the	iCloud	container,	it	appears	as	a	big	blob	of	data	to	the	user.	When
you	store	them	inside	the	Documents	directory,	users	can	see	the	individual

files	and	their	sizes.	Files	inside	this	Documents	directory	can	be	deleted	one
by	one,	whereas	data	stored	outside	of	this	directory	appears	as	a	big	blob	and
can	be	deleted	only	all	at	once.	To	avoid	confusion	and	to	play	nice,	always
store	any	user-generated	files	inside	this	Documents	directory,	and	store
miscellaneous	metadata	that	you	don’t	want	the	users	to	see	outside	of	this
directory.

A	Word	about	iCloud	Backup
With	versions	of	iOS	prior	to	iOS	5,	when	the	device	syncs	with	iTunes,	the
contents	of	your	app’s	documents	folder	is	automatically	backed	up.	With
iOS	5	devices,	the	same	contents	are	backed	up	to	the	iCloud,	but	documents
you	store	on	iCloud	manually	are	not	included	in	the	backup	because	they	are
already	on	iCloud.	Do	note	that,	this	automatic	backup	is	different	from
iCloud	syncing.	Backed-up	documents	are	treated	as	opaque	data	that	can	be
used	only	to	completely	restore	an	iOS	device.	Individual	file	access	is	not
possible	programmatically	or	by	the	user.

Summary
In	this	chapter	you	designed	a	very	powerful	yet	simple	way	to	implement
caching	in	your	app.	You	also	designed	a	similar	utility	class	to	cache	image
thumbnails.	Finally,	you	learned	about	the	new	iCloud	service	and	explained
a	fairly	important	technique	for	sharing	data	across	your	own	apps	and	among
a	user’s	devices.	The	techniques	discussed	here	will	help	you	take	your	app	to
the	next	level	by	improving	its	overall	usability.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Archives	and	Serializations	Programming	Guide
iCloud	–	Apple	Developer

http://developer.apple.com/

Books
The	Pragmatic	Bookshelf	|	Core	Data
http://pragprog.com/titles/mzcd/core-data

Other	Resources
Callahan,	Kevin.	Mac	App	Store.	2011
http://itunes.apple.com/gb/app/accessorizer/id402866670?mt=12

http://pragprog.com/titles/mzcd/core-data
http://itunes.apple.com/gb/app/accessorizer/id402866670?mt=12

Chapter	18:	Fancy	Text	Layout

There	are	several	options	for	displaying	text	in	iOS.	There	are	simple	controls
like	UILabel	and	full	rendering	engines	like	UIWebView.	For	complete
control,	including	laying	out	columns	or	drawing	text	along	a	path,	you	can
implement	your	own	layout	engine	with	Core	Text.	Unfortunately,	there	is	no
easy-to-use	rich	text	control	available.	Each	option	has	significant
restrictions.	In	this	chapter	you	explore	the	choices	available	and	learn	how	to
make	the	most	of	them	within	their	limitations,	while	we	all	wait	for	the	day
that	Apple	finally	provides	UIRichTextView.	You	also	take	a	brief	look	at
some	of	the	third-party	options	available.

The	Normal	Stuff:	Fields,	Views,	and	Labels
You’re	probably	already	familiar	with	UILabel,	UITextField,	and
UITextView,	so	I	discuss	them	only	briefly	here.	They	are	the	basic	controls
you	use	for	day-to-day	text	layout.

UILabel	is	a	lightweight,	static	text	control.	It	is	very	common	for	developers
to	have	problems	with	dynamic	labels	(labels	with	contents	set
programmatically)	they	create	in	Interface	Builder.	Here	are	a	few	tips	for
using	UILabel:

■	UILabel	can	display	multiline	text.	Just	set	its	numberOfLines	property
in	code	or	the	Lines	property	in	Interface	Builder.	This	is	the	maximum
number	of	lines.	If	you	want	it	to	be	unbounded,	set	it	to	zero.

■	By	default,	Interface	Builder	turns	on	adjustsFontSizeToFitWidth.
This	can	be	surprising	if	you	assign	text	that	is	wider	than	the	label.	Rather
than	truncating	or	overflowing	the	label,	the	text	shrinks.	Generally	it’s	a
good	idea	to	make	your	dynamic	labels	very	wide	to	avoid	truncating	or
resizing.
■	Unlike	other	views,	user	interaction	is	disabled	by	default	for	UILabel.	If
you	attach	a	UIGestureRecognizer	to	a	UILabel,	it	won’t	work	unless	you
remember	to	set	userInteractionEnabled	to	YES.	Don’t	confuse	this	with

the	enabled	property,	which	only	controls	the	appearance	of	the	label.

■	UILabel	is	not	a	UIControl	and	does	not	have	a
contentVerticalAlignment	property.	Text	is	always	vertically	centered.	If
you	want	to	adjust	the	vertical	location	of	the	text,	you	need	to	resize	the
label	with	sizeToFit	and	then	adjust	the	label’s	frame.origin.

UITextField	provides	simple,	single-line	text	entry.	It	includes	an	optional
“clear”	button	and	optional	overlay	views	on	the	left	and	right	(leftView	and
rightView).	The	overlay	views	can	be	used	to	provide	hints	about	the	field’s
purpose.	For	instance,	a	search	icon	on	the	left	is	a	very	space-efficient	way
of	indicating	a	search	field.	Remember	that	the	overlay	views	are	UIView
objects.	You	can	use	a	UIButton	here	or	any	other	kind	of	interactive	view.
Just	make	sure	they’re	large	enough	for	the	user	to	touch	easily.	You
generally	should	not	move	these	views	with	setFrame:.	Override	the
methods	leftViewRectForBounds:	or	rightViewRectForBounds:.
UITextField	then	lays	them	out	appropriately.	The	text	rectangle
(textRectForBounds:)	is	clipped	automatically	so	it	does	not	overlap	these
rectangles.

A	common	problem	with	UITextField	is	detecting	when	the	user	presses	the
Return	key.	In	many	cases	you	would	like	to	use	this	to	automatically	process
the	data	and	dismiss	the	keyboard.	To	do	so,	you	need	to	implement	a
UITextFieldDelegate	method,	as	shown	here:

ViewController.m	(AutoReturn)

-	(BOOL)textField:(UITextField	*)textField

								shouldChangeCharactersInRange:(NSRange)range

								replacementString:(NSString	*)string	{

		if	([string	isEqualToString:@”\n”])	{

				self.outputLabel.text	=	[textField	text];

				[textField	resignFirstResponder];

				return	NO;

		}

		return	YES;

}

Whenever	the	user	presses	the	Return	key,	a	newline	character	(\n)	is	sent	to
this	method.	When	that	happens,	you	apply	whatever	processing	you	would

like	(in	this	case,	setting	the	text	of	another	label),	and	then	call
resignFirstResponder	to	dismiss	the	keyboard.	A	similar	technique	can	be
used	with	UITextView.

UITextView	is	easily	confused	with	UITextField,	but	serves	a	somewhat
different	function.	It	is	intended	for	multiline,	scrolling	text,	editing,	or
viewing.	It	is	a	type	of	UIScrollView,	not	a	UIControl.	You	can	apply	a	font
to	the	text,	but	the	same	font	is	used	for	the	entire	view.	UITextView	cannot
display	rich	text	from	an	NSAttributedString.	There	is	no	Apple-provided
view	that	can	do	that.	Generally	the	choice	between	UITextField	and
UITextView	is	obvious	based	on	how	much	text	the	user	is	going	to	type.

Web	Views	for	Rich	Text
Apple’s	recommendation	for	viewing	rich	text	is	to	use	UIWebView.	This	is
unfortunate	because	while	UIWebView	is	well	adapted	to	displaying	web
pages,	it’s	not	ideal	for	displaying	rich	text.	First,	UIWebView	requires	HTML.
The	native	rich-text	data	structure	in	Cocoa	is	NSAttributedString,	but	iOS
provides	no	mechanism	for	converting	between	NSAttributedString	and
HTML.	Furthermore,	UIWebView	is	slow,	its	loading	API	is	asynchronous,
and	it	provides	no	easy	access	to	its	current	contents.	In	short,	UIWebView	is
almost	the	opposite	of	what	you’d	want	in	a	good	rich-text	viewer.
Regrettably,	it	is	often	the	best	option	available.	This	section	shows	you	how
to	use	it	most	effectively.

Displaying	and	Accessing	HTML	in	a	Web	View
The	code	to	load	HTML	into	a	UIWebView	is	fairly	straightforward:

		NSString	*html	=	@”This	is	<i>some</i>	rich	text”;

		[self.webView	loadHTMLString:html	baseURL:nil];

webView	does	not	yet	contain	the	HTML	string.	This	is	only	a	request	to	load
the	string	at	some	point	in	the	future.	You	need	to	wait	for	the	delegate
callback	webViewDidFinishLoad:.	At	that	point,	you	can	read	the	data	in	the
web	view	using	JavaScript:

-	(void)webViewDidFinishLoad:(UIWebView	*)webView	{

		NSString	*

		body	=	[self.webView

										stringByEvaluatingJavaScriptFromString:

										@”document.body.innerHTML”];

		//	Use	body

}

The	only	way	to	access	the	data	inside	the	web	view	is	through	JavaScript
and	stringByEvaluatingJavaScriptFromString:.	I	recommend	isolating
this	JavaScript	to	a	single	object	to	provide	a	simpler	interface.	For	instance,
you	could	create	a	MyWebViewController	object	that	owns	the	UIWebView	and
provides	a	body	property	to	set	and	retrieve	the	contents.

Responding	to	User	Interaction
It	is	fairly	common	in	a	rich-text	viewer	to	support	some	kind	of	user
interaction.	When	the	user	taps	on	a	button	or	link,	you	may	want	to	run	some
Objective-C	code.	You	can	achieve	this	by	creating	a	special	URL	scheme.
Rather	than	http,	pick	a	custom	scheme	identifier.	For	example,	you	might
have	the	following	HTML:

<p>Click	here	to	do	something.

</p>

In	this	example	the	URL	scheme	is	do-something	and	the	resource	specifier
is	First.	When	this	link	is	tapped,	the	entire	URL	is	sent	to	the	delegate	and
you	can	act	on	it	like	this:

-	(BOOL)webView:(UIWebView	*)webView

shouldStartLoadWithRequest:(NSURLRequest	*)request

navigationType:(UIWebViewNavigationType)navigationType	{

		NSURL	*URL	=	request.URL;

		if	([URL.scheme	isEqualToString:@”do-something”])	{

				NSString	*message	=	URL.resourceSpecifier;

				//	Do	something	with	message

				return	NO;

		}

		return	YES;

}

Returning	YES	from	this	delegate	method	allows	UIWebView	to	load	the
request.	You	should	return	NO	for	your	custom	scheme.	Otherwise,	UIWebView
will	try	to	load	it	and	pass	an	error	to	webView:didFailLoadWithError:.

URL	schemes	are	case-insensitive.	The	result	of	request.URL.scheme	will
always	be	lowercase,	even	if	you	use	mixed-case	in	the	HTML.	I	recommend
using	a	hyphen	(-)	to	separate	words	in	the	scheme.	You	can	also	use	a	period
(.)	or	plus	(+).	The	rest	of	the	URL	is	case-sensitive.

Drawing	Web	Views	in	Scroll	and	Table	Views
UIWebView	cannot	be	embedded	in	a	UIScrollView	or	UITableView	because
the	web	view’s	event	handling	will	interfere	with	the	scroll	view.	This	makes
it	effectively	unusable	for	table	view	cells.	Because	web	views	have
significant	performance	issues,	they’re	not	appropriate	for	table	view	cells	in
any	case.	You	should	generally	draw	table	view	cells	using	UIKit	drawing
(drawInRect:withFont:)	or	Core	Text.

Instead	of	directly	embedding	the	web	view,	you	can	capture	the	web	view	as
a	UIImage	and	then	draw	that	image	in	the	scroll	view	or	table	view.	To
capture	a	web	view	as	a	UIImage,	you	need	to	call	renderInContext:	on	its
layer	as	shown	here:

		UIGraphicsBeginImageContext(self.webView.bounds.size);

		[webView.layer	renderInContext:UIGraphicsGetCurrentContext()];

		UIImage	*image	=	UIGraphicsGetImageFromCurrentImageContext();

		UIGraphicsEndImageContext();

For	web	views	larger	than	1024×1024,	you	need	to	break	them	up	into
smaller	pieces	and	render	them	individually.

Rich	Editing	with	Web	Views
There	are	several	options	for	rich-text	editing	with	UIWebView.	Recent
versions	of	WebKit	have	added	significant	new	features	to	facilitate	rich-text
editing.	Most	important	is	the	contentEditable	DOM	attribute.	Applying
this	to	the	body	or	any	div	automatically	makes	the	element	editable.	If	you
are	interested	in	the	approach,	you	should	generally	go	with	an	established
web-based	editor	like	TinyMCE	or	CKEditor.	Both	of	these	include	good
WebKit	optimizations.	See	“Further	Reading”	at	the	end	of	the	chapter	for
links	to	more	information	on	these.

Web	views	are	useful	for	their	intended	purpose	of	displaying	web	pages	and

work	fairly	well	for	rich-text	editing.	They	are	somewhat	slow	and
complicated	to	use,	though,	particularly	if	there	is	significant	interaction
between	Objective-C	and	JavaScript.	If	you	choose	to	develop	parts	of	your
application	in	JavaScript,	I	recommend	that	you	separate	the	parts	that	are	in
Objective-C	from	the	parts	in	JavaScript,	and	try	to	move	data	between	them
as	infrequently	as	possible.	If	you	make	portions	of	your	application	pure
JavaScript,	you	can	develop	those	using	normal	web-development	tools	and
techniques,	including	the	features	in	Safari’s	Develop	menu.	This	is	much
easier	to	develop	and	debug	than	code	that	includes	both	Objective-C	and
JavaScript.

The	ultimate	extension	of	this	is	to	use	a	framework	like	PhoneGap	(see
“Further	Reading”)	to	develop	a	web	application	with	a	thin	Objective-C
wrapper.	It	is	difficult	to	get	the	full	power	of	iOS	this	way,	but	it	could
simplify	development	for	applications	that	rely	heavily	on	JavaScript.

Core	Text
Core	Text	is	the	low-level	text	layout	and	font-handling	engine	in	iOS.	It	is
extremely	fast	and	powerful.	With	it	you	can	handle	complex	layouts	like
multicolumn	text	and	even	curved	text.

Core	Text	is	a	C-based	API	that	uses	Core	Foundation	naming	and	memory	management.	If
you’re	not	familiar	with	Core	Foundation	patterns,	see	Chapter	19.

Understanding	Bold,	Italic,	and	Underline
Before	diving	into	text	layout,	be	sure	you	understand	the	three	most	common
rich-text	attributes:	bold,	italic,	and	underline.	These	are	generally	presented
to	the	user	as	simple	attributes,	but	they	are	quite	different	from	each	other.

In	typography,	you	do	not	“bold”	a	font	by	drawing	it	with	thicker	lines.
Instead,	the	font	designer	provides	a	heavier	weight	version	of	the	font,	called
a	variation.	In	iOS	the	Helvetica	font	has	a	variation	called	Helvetica-
Bold.	While	these	fonts	are	related,	they	are	completely	different	CTFont
objects.	To	find	font	variations,	you	use
CTFontCreateCopyWithSymbolicTraits.

Italic	is	similar,	but	there	are	two	related	typefaces	that	are	commonly	treated

as	“italic.”	True	italic	type	is	based	on	calligraphy	and	uses	different	shapes
(glyphs)	than	the	regular	(or	roman)	font.	Some	fonts	do	not	have	a	true	italic
variation	and	merely	slant	the	roman	type	to	the	right.	This	is	called	oblique.
When	users	request	italic,	they	generally	mean	either	italic	or	oblique.	If	you
pass	kCTFontItalicTrait	to	CTFontCreateCopyWithSymbolicTraits,	it
returns	the	best	font	that	matches	this	looser	definition.	Text	with	both	bold
and	italic	requires	yet	another	font	variation	such	as	Helvetica-
BoldOblique.

Unlike	bold	and	italic,	underline	is	a	decoration	like	color	or	shadow.	You	do
not	change	font	when	you	add	decorations.	See	Figure	18-1	for	examples	of
bold,	italic,	and	underline.	Note	carefully	the	significant	difference	between
the	glyphs	of	the	roman	font	and	the	italic	variation,	while	the	underlined
glyphs	are	identical	to	the	roman	font.	Also	note	that	underline	is	not	as
simple	as	drawing	a	line	under	the	text.	Proper	underline	includes	breaks	for
descenders	like	p.	All	of	these	small	details	greatly	improve	the	appearance
and	legibility	of	text	in	iOS.

Figure	18-1	Variations	and	decorations	of	Baskerville

You	generally	do	not	need	to	be	aware	of	these	subtleties	when	developing
for	iOS,	but	when	using	Core	Text	these	issues	can	be	important.

Attributed	Strings
The	fundamental	data	type	in	Core	Text	is	CFAttributedString.	An
attributed	string	is	a	string	that	applies	attributes	to	ranges	of	characters.	The
attributes	can	be	any	key-value	pair,	but	for	the	purposes	of	Core	Text,	they
usually	contain	style	information	such	as	font,	color,	and	indentation.

It	is	usually	best	to	use	CFMutableAttributedString	so	you	can	modify	the
attributes	of	various	parts	of	the	string.	CFAttributedString	requires	that	all
of	the	string	have	the	same	attributes.

In	the	following	example,	you	create	a	basic,	rectangular	layout	to	display
some	rich	text.	First,	you	create	an	NSAttributedString	and	apply	attributes
to	it.	In	later	examples,	you	will	use	this	NSAttributedString.	You	must	link
with	CoreText.framework	and	CoreGraphics.framework	for	the	examples	in
this	section.

ViewController.m	(SimpleLayout)

		CFMutableAttributedStringRef	attrString;

		CTFontRef	baseFont,	boldFont,	italicFont;

		

		//	Create	the	base	string.

		//	Note	how	you	can	define	a	string	over	multiple	lines.

		CFStringRef	string	=	CFSTR

		(

			“Here	is	some	simple	text	that	includes	bold	and	italics.\n”

			“\n”

			“We	can	even	include	some	color.”

);

		

		//	Create	the	mutable	attributed	string

		attrString	=	CFAttributedStringCreateMutable(NULL,	0);

		CFAttributedStringReplaceString(attrString,

																																		CFRangeMake(0,	0),

																																		string);

		

		//	Set	the	base	font

		baseFont	=	CTFontCreateUIFontForLanguage(kCTFontUserFontType,

																																											16.0,

																																											NULL);

		CFIndex	length	=	CFStringGetLength(string);

		CFAttributedStringSetAttribute(attrString,

																																	CFRangeMake(0,	length),

																																	kCTFontAttributeName,

																																	baseFont);

		//	Apply	bold	by	finding	the	bold	version	of	the	current	font.

		boldFont	=	CTFontCreateCopyWithSymbolicTraits(baseFont,

																																																0,

																																																NULL,

																																																kCTFontBoldTrait,

																																																kCTFontBoldTrait);

		CFAttributedStringSetAttribute(attrString,

																																	CFStringFind(string,

																																														CFSTR(“bold”),

																																														0),

																																	kCTFontAttributeName,

																																	boldFont);

		

		//	...	Apply	italics	the	same	way	...

		//	Apply	color

		CGColorRef	color	=	[[UIColor	redColor]	CGColor];

		CFAttributedStringSetAttribute(attrString,

																																	CFStringFind(string,

																																														CFSTR(“color”),

																																														0),

																																	kCTForegroundColorAttributeName,

																																	color);		

		//	...	Use	the	attributed	string	...

		CFRelease(attrString);

		CFRelease(baseFont);

		CFRelease(boldFont);

		CFRelease(italicFont);

CFAttributedString	is	toll-free	bridged	with	NSAttributedString	if	you’d
rather	do	more	of	this	in	Objective-C.	Because	Core	Text	constants	are	Core
Foundation	types,	this	can	require	a	lot	of	type	casting,	but	either	approach	is
fine.

Paragraph	Styles
Some	styles	apply	to	paragraphs	rather	than	characters.	These	include
alignment,	line	break,	and	spacing.	Paragraph	attributes	are	bundled	into	a
CTParagraphStyle	object.	To	create	a	CTParagraphStyle,	you	first	need	a
collection	of	CTParagraphStyleSetting	structures.	Each	of	these	includes
the	setting	key	(such	as	kCTParagraphStyleSpecifierAlignment),	the	size
of	the	value,	and	a	pointer	to	the	value.	This	is	somewhat	complicated	to

declare,	but	allows	Core	Text	to	process	it	very	quickly.	Here’s	an	example	of
how	to	center	a	paragraph	of	text:

ViewController.m	(SimpleLayer)

		CTTextAlignment	alignment	=	kCTCenterTextAlignment;

		CTParagraphStyleSetting	setting	=	{

				kCTParagraphStyleSpecifierAlignment,

				sizeof(alignment),	&alignment	};

		

		CTParagraphStyleRef	style	=	CTParagraphStyleCreate(&setting,	1);

		CFRange	lastLineRange	=	//	...	Range	of	text	to	center	...

		CFAttributedStringSetAttribute(attrString,	lastLineRange,

																																	kCTParagraphStyleAttributeName,

																																	style);

The	call	to	CTParagraphStyleCreate	takes	a	pointer	to	a	C	array	of
CTParagraphStyleSetting	structs,	and	the	number	of	structs	in	that	C	array.
This	is	not	a	problem	for	static	formatting,	but	it	can	be	a	little	more
challenging	for	dynamic	formatting	because	CTParagraphStyle	is
immutable.	One	way	to	address	this	problem	is	by	allocating	an	array	of
styles,	and	resizing	it	as	needed	with	realloc,	as	shown	here:

		NSUInteger	countOfSettings	=	0;

		CTParagraphStyleSetting	*settings	=	NULL;

		...

		//	Center	if	needed

		if	(isCentered(...))	{

				CTTextAlignment	alignment	=	kCTCenterTextAlignment;

				++countOfSettings;

			settings	=	realloc(settings,

																							countOfSettings	*	sizeof(*settings));

				CTParagraphStyleSetting	setting	=	{

						kCTParagraphStyleSpecifierAlignment,

						sizeof(alignment),	&alignment	};

				settings[countOfSettings	-	1]	=	setting;

		}

		...

		//	Apply	the	accumulated	settings,	and	release	memory

		if	(countOfSettings	>	0)	{

				CTParagraphStyleRef	style	=	CTParagraphStyleCreate(settings,

																																																		countOfSettings);

				free(settings),	settings	=	NULL;

				CFAttributedStringSetAttribute(attrString,	range,

																												kCTParagraphStyleAttributeName,

style);

		}

Paragraph	settings	are	a	little	more	complicated	to	manage,	but	provide	very
powerful	layout	options	including	centering,	justification,	indentation,	and
spacing.	Making	the	most	of	them	is	worth	the	few	extra	lines	of	code.

Simple	Layout	with	CTFramesetter
Once	you	have	an	attributed	string,	you	generally	lay	out	the	text	using
CTFramesetter.	A	framesetter	is	responsible	for	creating	frames	of	text.	A
CTFrame	(frame)	is	an	area	enclosed	by	a	CGPath	containing	one	or	more	lines
of	text.	Once	you	generate	a	frame,	you	draw	it	into	a	graphics	context	using
CTFrameDraw.	In	the	next	example,	you	draw	an	attributed	string	into	the
current	view	using	drawRect:.

First,	you	need	to	flip	the	view	context.	Core	Text	was	originally	designed	on
the	Mac,	and	it	performs	all	calculations	in	Mac	coordinates.	The	origin	is	in
the	lower-left	corner—lower-left	origin	(LLO)—and	the	y-coordinates	run
from	bottom	to	top	like	in	a	mathematical	graph.	CTFramesetter	does	not
work	properly	unless	you	invert	the	coordinate	space,	as	shown	in	the
following	code.

CoreTextLabel.m	(SimpleLayout)

-	(id)initWithFrame:(CGRect)frame	{

		if	((self	=	[super	initWithFrame:frame]))	{

				CGAffineTransform

				transform	=	CGAffineTransformMakeScale(1,	-1);

				CGAffineTransformTranslate(transform,

																															0,	-self.bounds.size.height);

				self.transform	=	transform;

				self.backgroundColor	=	[UIColor	whiteColor];

		}

		return	self;

}

Before	drawing	the	text,	you	need	to	set	the	text	transform,	or	matrix.	The
text	matrix	is	not	part	of	the	graphics	state	and	is	not	always	initialized	the
way	you	would	expect.	It	is	not	included	in	the	state	saved	by

CGContextSaveGState.	If	you	are	going	to	draw	text,	you	should	always	call
CGContextSetTextMatrix	in	drawRect:.

-	(void)drawRect:(CGRect)rect	{

		CGContextRef	context	=	UIGraphicsGetCurrentContext();

		CGContextSetTextMatrix(context,	CGAffineTransformIdentity);

		//	Create	a	path	to	fill.	In	this	case,	use	the	whole	view

		CGPathRef	path	=	CGPathCreateWithRect(self.bounds,	NULL);

		CFAttributedStringRef

		attrString	=	(__bridge	CFTypeRef)self.attributedString;

		//	Create	the	framesetter	using	the	attributed	string

		CTFramesetterRef	framesetter	=

CTFramesetterCreateWithAttributedString(attrString);

		//	Create	a	single	frame	using	the	entire	string	(CFRange(0,0))

		//	that	fits	inside	of	path.

		CTFrameRef

		frame	=	CTFramesetterCreateFrame(framesetter,

																																			CFRangeMake(0,	0),

																																			path,

																																			NULL);

		

		//	Draw	the	frame	into	the	current	context

		CTFrameDraw(frame,	context);

		CFRelease(frame);

		CFRelease(framesetter);

		CGPathRelease(path);

}

There	is	no	guarantee	that	all	of	the	text	will	fit	within	the	frame.
CTFramesetterCreateFrame	simply	lays	out	text	within	the	path	until	it	runs
out	of	space	or	runs	out	of	text.

Creating	Frames	for	Noncontiguous	Paths
Since	at	least	iOS	4.2,	CTFramesetterCreateFrame	has	accepted
nonrectangular	and	noncontiguous	frames.	The	Core	Text	Programming
Guide	has	not	been	updated	since	before	the	release	of	iPhoneOS	3.2	and	is
occasionally	ambiguous	on	this	point.	Because	CTFramePathFillRule	was
added	in	iOS	4.2,	Core	Text	has	explicitly	supported	complex	paths	that	cross
themselves,	including	paths	with	embedded	holes.

CTFramesetter	always	typesets	the	text	from	top	to	bottom	(or	right	to	left
for	vertical	layouts	such	as	Japanese).	This	works	well	for	contiguous	paths,

but	can	be	a	problem	for	noncontiguous	paths	such	as	for	multicolumn	text.
For	example,	you	could	define	a	series	of	columns	this	way:

ColumnView.m	(Columns)

-	(CGRect	*)copyColumnRects	{

		CGRect	bounds	=	CGRectInset([self	bounds],	20.0,	20.0);

		

		int	column;

		CGRect*	columnRects	=	(CGRect*)calloc(kColumnCount,

																																								sizeof(*columnRects));

		

		//	Start	by	setting	the	first	column	to	cover	the	entire	view.

		columnRects[0]	=	bounds;

		//	Divide	the	columns	equally	across	the	frame’s	width.

		CGFloat	columnWidth	=	CGRectGetWidth(bounds)	/	kColumnCount;

		for	(column	=	0;	column	<	kColumnCount	-	1;	column++)	{

				CGRectDivide(columnRects[column],	&columnRects[column],

												&columnRects[column	+	1],	columnWidth,

CGRectMinXEdge);

		}

		

		//	Inset	all	columns	by	a	few	pixels	of	margin.

		for	(column	=	0;	column	<	kColumnCount;	column++)	{

				columnRects[column]	=	CGRectInset(columnRects[column],

																																						10.0,	10.0);

		}

		return	columnRects;

}

You	have	two	choices	of	how	to	combine	these	rectangles.	First,	you	could
create	a	single	path	that	contains	all	of	them,	like	this:

						CGRect	*columnRects	=	[self	copyColumnRects];

						

						//	Create	a	single	path	that	contains	all	columns

						CGMutablePathRef	path	=	CGPathCreateMutable();

						for	(int	column	=	0;	column	<	kColumnCount;	column++)	{

								CGPathAddRect(path,	NULL,	columnRects[column]);

						}

						free(columnRects);

This	would	typeset	the	text	as	shown	in	Figure	18-2.

Figure	18-2	Column	layout	using	a	single	path

Most	of	the	time	that	isn’t	what	you	want.	Instead,	you	need	to	typeset	the
first	column,	then	the	second	column,	and	finally	the	third.	To	do	so,	you
need	to	create	three	paths	and	add	them	to	a	CFMutableArray	called	paths:

						CGRect	*columnRects	=	[self	copyColumnRects];

						//	Create	an	array	of	layout	paths,	one	for	each	column.

						for	(int	column	=	0;	column	<	kColumnCount;	column++)	{

								CGPathRef

								path	=	CGPathCreateWithRect(columnRects[column],	NULL);

								CFArrayAppendValue(paths,	path);

								CGPathRelease(path);

						}

						free(columnRects);

You	then	iterate	over	this	array,	typesetting	the	text	that	hasn’t	been	drawn
yet:

		CFIndex	pathCount	=	CFArrayGetCount(paths);

		CFIndex	charIndex	=	0;

		for	(CFIndex	pathIndex	=	0;	pathIndex	<	pathCount;	++pathIndex)

{

				CGPathRef	path	=	CFArrayGetValueAtIndex(paths,	pathIndex);

				

				CTFrameRef

				frame	=	CTFramesetterCreateFrame(framesetter,

																																					CFRangeMake(charIndex,	0),

																																					path,

																																					NULL);

				CTFrameDraw(frame,	context);

				CFRange	frameRange	=	CTFrameGetVisibleStringRange(frame);

				charIndex	+=	frameRange.length;						

				CFRelease(frame);

		}

The	call	to	CTFrameGetVisibleStringRange	returns	the	range	of	characters
within	the	attributed	string	that	are	included	in	this	frame.	That	lets	you	know
where	to	start	the	next	frame.	The	zero-length	range	passed	to
CTFramesetterCreateFrame	indicates	that	the	framesetter	should	typeset	as

much	of	the	attributed	string	as	will	fit.

Using	these	techniques,	you	can	typeset	text	into	any	shape	you	can	draw
with	CGPath,	as	long	as	the	text	fits	into	lines.	You	learn	how	to	handle	more
complicated	cases	in	“Drawing	Text	Along	a	Curve”	later	in	this	chapter.

Typesetters,	Lines,	Runs,	and	Glyphs
The	framesetter	is	responsible	for	combining	typeset	lines	into	frames	that
can	be	drawn.	The	typesetter	is	responsible	for	choosing	and	positioning	the
glyphs	in	those	lines.	CTFramesetter	automates	this	process	so	you	generally
don’t	need	to	deal	with	the	underlying	typesetter	(CTTypesetter).	In	recent
versions	of	iOS	(since	around	4.2),	improvements	in	CTFramesetter	have
made	it	even	less	common	to	use	CTTypesetter	directly.	You	will	generally
use	the	framesetter,	or	move	further	down	the	stack	to	lines,	runs,	and	glyphs.

Starting	at	the	bottom	of	the	stack,	a	glyph	(CGGlyph)	is	a	shape	that
represents	some	piece	of	language	information.	This	includes	letters,
numbers,	and	punctuation.	It	also	includes	whitespace,	ligatures,	and	other
marks.	A	ligature	is	when	letters	or	other	fundamental	language	units
(graphemes)	are	combined	to	form	a	single	glyph.	The	most	common	in
English	is	the	fi	ligature	formed	when	the	letter	f	is	followed	by	the	letter	i.	In
many	fonts,	these	are	combined	into	a	single	glyph	to	improve	readability.
The	important	thing	is	that	a	string	may	have	a	different	number	of	glyphs
than	characters;	the	number	of	glyphs	depends	on	the	font	and	the	layout	of
the	characters.

A	font	can	be	thought	of	as	a	collection	of	glyphs,	along	with	some	metadata
such	as	the	size	and	name.	The	CGGlyph	type	is	implemented	as	an	index	into
a	CGFont.	This	should	not	be	confused	with	CTFont	or	UIFont.	Each	drawing
system	has	its	own	font	type.	Core	Text	also	has	a	CTGlyphInfo	type	for
controlling	how	Unicode	characters	are	mapped	to	glyphs.	This	is	rarely	used.

The	typesetter	is	responsible	for	choosing	the	glyphs	for	a	given	attributed
string,	and	for	collecting	them	into	runs.	A	run	(CTRun)	is	a	series	of	glyphs
that	has	the	same	attributes	and	direction	(such	as	left-to-right	or	right-to-
left).	Attributes	include	font,	color,	shadow,	and	paragraph	style.	You	cannot
directly	create	CTRun	objects,	but	you	can	draw	them	into	a	context	with

CTRunDraw.	Each	glyph	is	positioned	in	the	run,	taking	into	account	individual
glyph	size	and	kerning.	Kerning	is	small	adjustments	to	the	spacing	between
glyphs	to	make	text	more	readable.	For	example,	the	letters	V	and	A	are	often
kerned	very	close	together.

The	typesetter	combines	runs	into	lines.	A	line	(CTLine)	is	a	series	of	runs
oriented	either	horizontally	or	vertically	(for	languages	such	as	Japanese).
CTLine	is	the	lowest-level	typesetting	object	that	you	can	directly	create	from
an	attributed	string.	This	is	convenient	for	drawing	small	blocks	of	rich	text.
You	can	directly	draw	a	line	into	a	context	using	CTLineDraw.

Generally	in	Core	Text	you	work	with	either	a	CTFramesetter	for	large
blocks	or	a	CTLine	for	small	labels.	From	any	level	in	the	hierarchy,	you	can
fetch	the	lower-level	objects.	For	example,	given	a	CTFramesetter,	you
create	a	CTFrame,	and	from	that	you	can	fetch	its	array	of	CTLine	objects.
Each	line	includes	an	array	of	CTRun	objects,	and	within	each	run	is	a	series
of	glyphs,	along	with	positioning	information	and	attributes.	Behind	the
scenes	is	the	CTTypesetter	doing	most	of	the	work,	but	you	seldom	interact
with	it	directly.

In	the	next	section,	“Drawing	Text	Along	a	Curve,”	you	put	all	of	these
pieces	together	to	perform	complex	text	layout.

Drawing	Text	Along	a	Curve
In	this	example	you	use	all	the	major	parts	of	Core	Text.	Apple	provides	a
somewhat	simple	example	called	CoreTextArcCocoa	that	demonstrates	how
to	draw	text	along	a	semicircular	arc.	The	Apple	sample	code	is	not	very
flexible,	however,	and	is	difficult	to	use	for	shapes	other	than	a	perfect	circle
centered	in	the	view.	It	also	forces	the	text	to	be	evenly	spaced	along	the
curve.	In	this	example,	you	learn	how	to	draw	text	on	any	Bézier	curve,	and
the	techniques	are	applicable	to	drawing	on	any	path.	You	also	preserve	Core
Text’s	kerning	and	ligatures.	The	end	result	is	shown	in	Figure	18-3.	This
example	is	available	from	the	downloads	for	this	chapter,	in
CurvyTextView.m	in	the	CurvyText	project.

Figure	18-3	Output	of	CurvyTextView

While	CGPath	can	represent	a	Bézier	curve	and	Core	Graphics	can	draw	it,
there	are	no	functions	in	iOS	that	allow	you	to	calculate	the	points	along	the
curve.	You	need	these	points,	provided	by	Bezier(),	and	the	slope	along	the
curve,	provided	by	BezierPrime():

static	double	Bezier(double	t,	double	P0,	double	P1,	double	P2,

																					double	P3)	{

		return	pow(1-t,3)*P0	+	3*pow(1-t,2)*t*P1	+	3*(1-t)*pow(t,2)*P2

									+	pow(t,3)*P3;

}

static	double	BezierPrime(double	t,	double	P0,	double	P1,

																										double	P2,	double	P3)	{

		return	-	3*pow(1-t,2)*P0	+	3*pow(1-t,2)*P1	-	6*t*(1-t)*P1

									-	3*pow(t,2)*P2	+	6*t*(1-t)*P2	+	3*pow(t,2)*P3;

}

P0	is	the	starting	point,	drawn	in	green	by	CurvyTextView.	P1	and	P2	are	the
control	points,	drawn	in	black.	P3	is	the	end	point,	drawn	in	red.	You	call
these	functions	twice,	once	for	the	x	coordinate,	and	once	for	y	coordinate.	To
get	a	point	and	angle	along	the	curve,	you	pass	a	number	between	0	and	1	to

pointForOffset:	and	angleForOffset:

-	(CGPoint)pointForOffset:(double)t	{

		double	x	=	Bezier(t,	P0_.x,	P1_.x,	P2_.x,	P3_.x);

		double	y	=	Bezier(t,	P0_.y,	P1_.y,	P2_.y,	P3_.y);

		return	CGPointMake(x,	y);

}

-	(double)angleForOffset:(double)t	{		

		double	dx	=	BezierPrime(t,	P0_.x,	P1_.x,	P2_.x,	P3_.x);

		double	dy	=	BezierPrime(t,	P0_.y,	P1_.y,	P2_.y,	P3_.y);		

		return	atan2(dy,	dx);

}

These	methods	are	called	so	many	times	that	I’ve	made	an	exception	to	the	rule	always	to	use
accessors.	This	is	the	major	hotspot	of	this	program,	and	optimizations	to	speed	it	up	or	call	it	less
frequently	are	worthwhile.	The	Accelerate	framework	may	be	useful	here	by	combining	the	x	and
y	calculations	into	a	single	vector	calculation.	See	Taking	Advantage	of	the	Accelerate
Framework	in	the	Apple	documentation	for	more	information.

With	these	two	functions	to	define	your	path,	you	can	now	lay	out	the	text.
The	following	is	a	method	to	draw	an	attributed	string	into	the	current	context
along	this	path.

-	(void)drawText	{

		if	([self.attributedString	length]	==	0)	{	return;	}

		

		//	Initialize	the	text	matrix	(transform).	This	isn’t	reset

		//	automatically,	so	it	might	be	in	any	state.		

		CGContextRef	context	=	UIGraphicsGetCurrentContext();

		CGContextSetTextMatrix(context,	CGAffineTransformIdentity);

		//	Create	a	typeset	line	object

		CTLineRef	line	=	CTLineCreateWithAttributedString(

																								(__bridge

CFTypeRef)self.attributedString);

		

		//	The	offset	is	where	you	are	in	the	curve,	from	[0,	1]

		double	offset	=	0.;

		

		//	Fetch	the	runs	and	process	one	at	a	time

		CFArrayRef	runs	=	CTLineGetGlyphRuns(line);

		CFIndex	runCount	=	CFArrayGetCount(runs);

		for	(CFIndex	runIndex	=	0;	runIndex	<	runCount;	++runIndex)	{

				CTRunRef	run	=	CFArrayGetValueAtIndex(runs,	runIndex);

				//	Apply	the	attributes	from	the	run	to	the	current	context

				[self	prepareContext:context	forRun:run];

				

				//	Fetch	the	glyphs	as	a	CGGlyph*	array

				NSMutableData	*glyphsData	=	[self	glyphDataForRun:run];

				CGGlyph	*glyphs	=	[glyphsData	mutableBytes];

				//	Fetch	the	advances	as	a	CGSize*	array.	An	advance	is	the

				//	distance	from	one	glyph	to	another.

				NSMutableData	*advancesData	=	[self	advanceDataForRun:run];

				CGSize	*advances	=	[advancesData	mutableBytes];

				

				//	Loop	through	the	glyphs	and	display	them

				CFIndex	glyphCount	=	CTRunGetGlyphCount(run);

				for	(CFIndex	glyphIndex	=	0;

									glyphIndex	<	glyphCount	&&	offset	<	1.0;

									++glyphIndex)	{

						//	You’re	going	to	modify	the	transform,	so	save	the	state

						CGContextSaveGState(context);

						//	Calculate	the	location	and	angle.	This	could	be	any

						//	function,	but	here	you	use	a	Bezier	curve

						CGPoint	glyphPoint	=	[self	pointForOffset:offset];						

						double	angle	=	[self	angleForOffset:offset];

						

						//	Rotate	the	context

						CGContextRotateCTM(context,	angle);

						//	Translate	the	context	after	accounting	for	rotation

						CGPoint

						translatedPoint	=	CGPointApplyAffineTransform(glyphPoint,

																												CGAffineTransformMakeRotation(-

angle));

						CGContextTranslateCTM(context,

																												translatedPoint.x,

translatedPoint.y);						

						//	Draw	the	glyph

						CGContextShowGlyphsAtPoint(context,	0,	0,

																																	&glyphs[glyphIndex],	1);

						

						//	Move	along	the	curve	in	proportion	to	the	advance.

						offset	=	[self	offsetAtDistance:advances[glyphIndex].width

																												fromPoint:glyphPoint	offset:offset];

						CGContextRestoreGState(context);

				}

		}

}

The	translation	at	the	end	of	drawText	is	particularly	important.	All	the
glyphs	are	drawn	at	the	origin.	You	use	a	transform	to	move	the	glyph	into
the	correct	position.	The	transform	includes	a	rotation	and	a	translation,	and
the	order	matters.	If	you	rotate	the	context	halfway	around,	and	then	translate

the	context	up	one	point,	the	net	effect	would	be	to	translate	down	one	point.
To	account	for	this,	you	need	to	apply	the	inverse	transform	to	the	translation
using	CGPointApplyAffineTransform.	The	inverse	of	rotating	by	angle
radians	is	to	rotate	by	–angle	radians.	You	could	also	use
CGAffineTransformInvert	to	get	the	same	effect.

There	are	a	few	more	methods	that	you	need.	First,	you	need	to	apply	the
attributes	to	the	context.	In	this	example,	you	just	set	the	font	and	color,	but
you	could	support	any	of	the	attributes	listed	in	CTStringAttributes.h,	or
add	your	own.

-	(void)prepareContext:(CGContextRef)context	forRun:(CTRunRef)run

{

		CFDictionaryRef	attributes	=	CTRunGetAttributes(run);

		//	Set	font

		CTFontRef	runFont	=	CFDictionaryGetValue(attributes,

																																											kCTFontAttributeName);

		CGFontRef	cgFont	=	CTFontCopyGraphicsFont(runFont,	NULL);

		CGContextSetFont(context,	cgFont);

		CGContextSetFontSize(context,	CTFontGetSize(runFont));

		CFRelease(cgFont);

		

		//	Set	color

		CGColorRef	color	=	(CGColorRef)CFDictionaryGetValue(attributes,

																																		kCTForegroundColorAttributeName);

		CGContextSetFillColorWithColor(context,	color);

}

Fetching	the	glyph	and	advance	information	is	easy.	You	just	allocate	a	buffer
and	pass	it	to	CTRunGetGlyphs	or	CTRunGetAdvances.	The	problem	with	these
routines	is	that	they	copy	all	the	data,	which	can	be	slow.	There	are	faster
versions	(CTRunGetGlyphsPtr	and	CTRunGetAdvancesPtr)	that	return	a
pointer	without	making	a	copy.	These	versions	can	fail,	however,	if	the	data
hasn’t	been	calculated	yet.	glyphDataForRun:,	shown	in	the	following	code,
handles	both	cases	and	returns	an	NSMutableData	that	automatically	handles
memory	management.	advanceDataForRun:	is	nearly	identical.	You	can	find
the	source	for	it	in	CurvyTextView.m.

-	(NSMutableData	*)glyphDataForRun:(CTRunRef)run	{

		NSMutableData	*data;

		CFIndex	glyphsCount	=	CTRunGetGlyphCount(run);

		const	CGGlyph	*glyphs	=	CTRunGetGlyphsPtr(run);

		size_t	dataLength	=	glyphsCount	*	sizeof(*glyphs);

		if	(glyphs)	{

				data	=	[NSMutableData	dataWithBytesNoCopy:(void*)glyphs

																																length:dataLength

freeWhenDone:NO];

}

		else	{

				data	=	[NSMutableData	dataWithLength:dataLength];

				CTRunGetGlyphs(run,	CFRangeMake(0,	0),	data.mutableBytes);

		}

		return	data;

}

Finally,	to	maintain	proper	spacing,	you	need	to	find	the	point	along	the	curve
that	is	the	same	distance	as	the	advance.	This	is	not	trivial	for	a	Bézier	curve.
Offsets	are	not	linear,	and	it	is	almost	certain	that	the	offset	0.25	will	not	be	a
quarter	of	the	way	along	the	curve.	A	simple	solution	is	to	repeatedly
increment	the	offset	and	calculate	a	new	point	on	the	curve	until	the	distance
to	that	point	is	at	least	equal	to	your	advance.	The	larger	the	increment	you
choose,	the	more	characters	tend	to	spread	out.	The	smaller	the	increment	you
choose,	the	longer	it	takes	to	calculate.	My	experience	is	that	values	between
1/1000	(0.001)	and	1/10,000	(0.0001)	work	well.	While	1/1000	has	visible
errors	when	compared	to	1/10,000,	the	speed	improvement	is	generally	worth
it.	You	could	try	to	optimize	this	with	a	binary	search,	but	that	can	fail	if	the
loop	wraps	back	on	itself	or	crosses	itself.	Here	is	a	simple	implementation	of
the	search	algorithm:

-	(double)offsetAtDistance:(double)aDistance

																	fromPoint:(CGPoint)aPoint

																				offset:(double)anOffset	{

		const	double	kStep	=	0.001;	//	0.0001	-	0.001	work	well

		double	newDistance	=	0;

		double	newOffset	=	anOffset	+	kStep;

		while	(newDistance	<=	aDistance	&&	newOffset	<	1.0)	{

				newOffset	+=	kStep;

				newDistance	=	Distance(aPoint,

																											[self	pointForOffset:newOffset]);

		}

		return	newOffset;

For	more	information	on	finding	lengths	on	a	curve,	search	the	Web	for	“arc	length
parameterization.”

With	these	tools,	you	can	typeset	rich	text	along	any	path	you	can	calculate.

Comparison	of	Rich	Text	Options
With	all	of	these	options	available,	which	one	is	right	for	your	project?	In	the
vast	majority	of	cases,	UIKit	views	like	UILabel	are	perfectly	adequate.	If
you	need	a	just	few	stylized	words,	you	can	break	the	sentence	into	multiple
UILabel	views.

For	complex	styles,	UIKit	views	are	insufficient.	The	next	tool	you	should
consider	is	custom	view	drawing	with	NSString	methods	such	as
drawInRect:withFont:.	This	approach	is	very	good	for	static	text.

If	you	need	to	draw	highly	stylized,	dynamic	text,	then	you	basically	have
two	options:	web	views	and	Core	Text.	For	selectable	and	editable	text,	the
best	option	is	typically	a	web	view.	If	you	go	this	way,	I	recommend	starting
with	a	well-established	JavaScript	editor	like	TinyMCE	or	CKEditor.	You
should	also	try	to	make	your	editing	code	as	standalone	as	possible	so	that
you	can	develop	and	debug	it	in	a	web	browser	rather	than	in	Xcode.

If	you	don’t	need	to	edit	your	rich	text,	then	Core	Text	is	a	good	choice.	If
you	need	to	perform	very	complex	layout,	such	as	drawing	along	curves,
Core	Text	may	be	your	only	option.	Core	Text	does	not	include	any	capability
for	text	selection,	or	copy	and	paste.	If	the	user	needs	to	select	text,	you	need
to	implement	that	by	hand.

Whichever	option	you	choose,	try	to	keep	your	text	rendering	isolated	to	a
small	number	of	classes	so	that	you	can	swap	out	the	engine	later.	Apple
often	tries	out	complicated	APIs	in	its	own	code	before	making	them	public.
The	release	of	Pages,	perhaps	the	most	advanced	rich-text	application	for
iOS,	suggests	that	an	editable	rich-text	view	may	be	on	its	way.	When	it
comes,	you’ll	want	to	be	able	to	drop	it	in	as	easily	as	possible.

Third-Party	Options
So	far	in	this	chapter,	you’ve	learned	to	use	all	the	major	text	layout	options
that	come	with	iOS.	Each	has	trade-offs,	however.	The	ideal	solution	would
handle	NSAttributedString	or	HTML	simply,	while	preserving	the
capability	to	select	text	for	copy	and	paste	operations.	There	are	several	third-

party	attempts	to	achieve	this	ideal.	None	is	perfect,	but	each	can	be	useful	in
some	situations.

NSAttributedString-Additions-for-HTML
As	you’ve	likely	noticed,	creating	an	NSAttributedString	can	be	very
tedious,	and	the	code	is	difficult	to	read	and	understand.	On	Mac,	you	can
create	an	NSAttributedString	directly	from	HTML	using
[NSAttributedString	initWithHTML:documentAttributes:],	but	there	is
no	equivalent	on	iOS.

Cocoanetics	(Drobnik	KG)	has	developed	a	category	for
NSAttributedString	called	NSAttributedString-Additions-for-HTML	on
iOS	to	provide	similar	functionality	as	on	Mac.	For	simple	conversions,	the
Cocoanetics	version	is	better	than	the	Mac	solution	(which	is	notorious	for
strange	WebKit-related	side	effects).	You	should	not	consider	this	a	general-
purpose	converter,	but	for	many	problems	it	is	very	useful.

CoreTextWrapper
Adrian	Kosmaczewski	maintains	a	nice	Cocoa	interface	for	Core	Text	called
CoreTextWrapper,	focused	on	multicolumn	layout.	This	wrapper	is	fairly
limited	in	what	it	provides,	but	it	is	very	good	at	the	problem	it	is	intended	to
solve.	It	also	provides	a	wrapper	for	loading	custom	fonts	from	your	bundle.

OmniUI
Omni	Group,	the	creators	of	OmniGraffle,	OmniOutliner,	and	other	popular
products,	makes	much	of	its	core	code	available	under	an	open-source
license.	One	of	the	many	things	in	its	library	is	OUIEditableFrame,	a	rich-text
editor	based	on	Core	Text	that	includes	cut	and	paste.	In	some	ways,	it	is	the
mythical	UIRichTextView	that	everyone	would	like	Apple	to	provide.	It	is
part	of	the	larger	OmniUI	framework.

OUIEditableFrame	is	very	powerful,	but	it	has	problems.	First,	at	least	in
mid-2011,	it	isn’t	complete.	There	are	a	few	pieces	that	are	unimplemented
and	cause	it	to	crash.	Just	as	importantly,	using	Omni	Group	code	is	a
commitment.	It’s	difficult	to	use	just	a	little	of	it.	OUIEditableFrame	relies	on
numerous	other	frameworks.	Omni	Group	writes	code	for	its	products,	and

then	generously	makes	it	available	to	others.	It	doesn't	spend	a	great	deal	of
time	making	it	is	easy	to	use	in	your	product.	Just	getting	Omni	Group	code
to	compile	successfully	can	be	a	challenge.	Even	so,	if	rich-text	editing	is
important	to	your	project,	you	should	certainly	consider	OUIEditableFrame.
If	you	just	need	text	selection,	look	at	OUILoupeOverlay,	which	provides	the
magnifying	view.	Build	its	TextEditor	sample	project	to	see	it	in	action.

Summary
Apple	provides	a	variety	of	powerful	text-layout	tools,	from	UILabel	to
UIWebView	to	Core	Text.	In	this	chapter	you	looked	at	the	major	options	and
how	to	choose	among	them.	Most	of	all,	you	should	have	a	good
understanding	of	how	to	use	Core	Text	to	create	beautiful	text	layout	in	even
the	most	complex	applications.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Core	Text	Programming	Guide
Quartz	2D	Programming	Guide.	“Text”
String	Programming	Guide.	“Drawing	Strings”

Text,	Web,	and	Editing	Programming	Guide

WWDC	Sessions
The	following	session	videos	are	available	at	developer.apple.com.

WWDC	2011.	“Session	511	–	Rich	Text	Editing	in	Safari	on	iOS”

Other	Resources
Clegg,	Jay.	Jay’s	Projects.	“Warping	Text	to	a	Bézier	curves.”	Useful
background	on	techniques	for	laying	out	text	along	a	curve.	The	article	is

http://developer.apple.com
http://developer.apple.com/

in	C#	and	GDI+,	but	the	math	is	useful	on	any	platform.
planetclegg.com/projects/WarpingTextToSplines.html

Drobnik,	Oliver.	NSAttributedString-Additions-for-HTML.	Category	to
convert	between	formatted	NSAttributedString	objects	and	HTML.
github.com/Cocoanetics/NSAttributedString-Additions-for-HTML

Kosmaczewski,	Adrian.	CoreTextWrapper	–	Wrapper	to	simplify
multicolumn	layout	using	Core	Text.
github.com/akosma/CoreTextWrapper

Knabben,	Frederico.	CKEditor	–	A	major	JavaScript-rich	text	editor.
CKEditor	is	a	major	rewrite	of	FCKEditor.	ckeditor.com

Moxiecode	Systems	AB.	TinyMCE	–	One	of	the	most	popular	JavaScript
rich-text	editors	available.	tinymce.com

Nitobi.	PhoneGap	–	API	that	allows	web	applications	to	access	native
portions	of	the	iOS	device.	This	essentially	allows	web	applications	to
behave	as	native	applications.	phonegap.com

Omni	Group.	OmniUI	–	Rich	text	editor	framework	based	using	Core	Text.
github.com/omnigroup/OmniGroup/tree/master/Frameworks/OmniUI

http://planetclegg.com/projects/WarpingTextToSplines.html
https://github.com/Cocoanetics/NSAttributedString-Additions-for-HTML
https://github.com/akosma/CoreTextWrapper
http://ckeditor.com/
http://www.tinymce.com/
http://www.phonegap.com/
https://github.com/omnigroup/OmniGroup/tree/master/Frameworks/OmniUI

Chapter	19:	Building	a	(Core)
Foundation

As	an	iOS	developer,	you	will	spend	most	of	your	time	using	the	UIKit	and
Foundation	frameworks.	UIKit	provides	user	interface	elements	like	UIView
and	UIButton.	Foundation	provides	basic	data	structures	like	NSArray	and
NSDictionary.	These	can	handle	the	vast	majority	of	problems	the	average
iOS	application	will	encounter.	But	there	are	some	things	that	require	lower-
level	frameworks.	The	names	of	these	lower-level	frameworks	often	start
with	the	word	“Core”:	Core	Text,	Core	Graphics,	and	Core	Video,	for
example.	What	they	all	have	in	common	are	C-based	APIs	based	on	Core
Foundation.

Core	Foundation	provides	a	C	API	that	is	similar	to	the	Objective-C
Foundation	framework.	It	provides	a	consistent	object	model	with	reference
counting	and	containers,	just	like	Foundation,	and	simplifies	passing	common
data	types	to	low-level	frameworks.	As	you	see	later	in	this	chapter,	Core
Foundation	is	tightly	coupled	with	Foundation,	making	it	easy	to	pass	data
between	C	and	Objective-C.

In	this	chapter,	you	learn	the	Core	Foundation	data	types	and	naming
conventions.	You	learn	about	Core	Foundation	allocators	and	how	they
provide	greater	flexibility	than	+alloc	provides	in	Objective-C.	This	chapter
extensively	covers	Core	Foundation	string	and	binary	data	types.	You
discover	Core	Foundation	collection	types,	which	are	more	flexible	than	their
Foundation	counterparts	and	include	some	not	found	Objective-C	like	tree
structures.	Finally,	you	learn	how	to	move	data	easily	between	Core
Foundation	and	Objective-C	using	toll-free	bridging.	When	you	are	finished,
you	will	have	the	tools	you	need	to	use	the	powerful	Core	frameworks,	as
well	as	more	flexible	data	structures	to	improve	your	own	projects.

All	code	samples	in	this	chapter	can	be	found	in	main.m	and
MYStringConversion.c	in	the	online	files	for	Chapter	19.

Core	Foundation	Types
Core	Foundation	is	made	up	primarily	of	opaque	types,	which	are	simply	C
structs.	Opaque	types	are	similar	to	classes	in	that	they	provide	encapsulation,
and	some	inheritance	and	polymorphism.	The	similarity	should	not	be
overstated,	however.	Core	Foundation	is	implemented	in	pure	C,	where	there
is	no	language	support	for	inheritance	or	polymorphism,	so	sometimes	the
class	metaphor	can	become	strained.	But	for	general	usage,	Core	Foundation
can	be	thought	of	as	an	object	model	with	CFType	as	its	root	“class.”

Like	Objective-C,	Core	Foundation	deals	with	pointers	to	instances.	In	Core
Foundation,	these	pointers	are	given	the	suffix	Ref.	For	example,	a	pointer	to
a	CFType	is	a	CFTypeRef	and	a	pointer	to	a	string	is	a	CFStringRef.	Mutable
versions	of	opaque	types	include	the	word	Mutable,	so	a
CFMutableStringRef	is	the	mutable	form	of	a	CFStringRef.	Generally
mutable	types	can	be	treated	as	if	they	were	a	subclass	of	the	nonmutable
type,	just	as	in	Foundation.	For	simplicity,	and	to	match	the	Apple
documentation,	this	chapter	uses	the	term	CFString	to	refer	to	the	thing	a
CFStringRef	points	to,	even	though	Core	Foundation	does	not	define	the
symbol	CFString.

Because	Core	Foundation	is	implemented	in	C,	and	C	has	no	language
support	for	inheritance	or	polymorphism,	how	does	Core	Foundation	give	the
illusion	of	an	object	hierarchy?	First,	CFTypeRef	is	just	a	void*.	This
provides	a	crude	kind	of	polymorphism	because	it	allows	arbitrary	types	to	be
passed	to	certain	functions,	particularly	CFCopyDescription,	CFEqual,
CFHash,	CFRelease,	and	CFRetain.

Except	for	CFTypeRef,	opaque	types	are	structs.	A	mutable	and	immutable
pair	is	usually	of	the	form

typedef	const	struct	__CFString	*	CFStringRef;

typedef	struct	__CFString	*	CFMutableStringRef;

This	way,	the	compiler	can	enforce	const	correctness	to	provide	a	kind	of
inheritance.	It	should	be	clear	that	this	isn’t	real	inheritance.	There	is	no	good
way	to	provide	arbitrary	subclasses	of	CFString	that	the	compiler	will	type
check.	For	example,	consider	the	following	code:

		CFStringRef	errName	=	CFSTR(“error”);

		CFErrorRef	error	=	CFErrorCreate(NULL,	errName,	0,	NULL);

		CFPropertyListRef	propertyList	=	error;

A	CFError	is	not	a	CFPropertyList,	so	line	3	should	generate	a	warning.	It
doesn’t	because	CFPropertyListRef	is	defined	as	CFTypeRef,	which	is
required	because	it	has	several	“subclasses”	including	CFString,	CFDate,	and
CFNumber.	Once	something	has	several	subclasses,	it	generally	has	to	be
treated	as	a	void*	(CFTypeRef)	in	Core	Foundation.	This	isn’t	obvious	from
looking	at	the	code,	but	luckily	it	doesn’t	come	up	that	often.	Most	types	are
defined	as	a	specific	struct	or	const	struct.

Naming	and	Memory	Management
As	in	Cocoa,	naming	conventions	are	critical	in	Core	Foundation.	The	most
important	rule	is	the	Create	Rule:	If	a	function	has	the	word	Create	or	Copy
in	its	name,	you	are	an	owner	of	the	resulting	object	and	must	eventually
release	your	ownership	using	CFRelease.	Like	Cocoa,	objects	are	reference
counted	and	can	have	multiple	“owners.”	When	the	last	owner	calls
CFRelease,	the	object	is	destroyed.

There	is	no	equivalent	of	NSAutoreleasePool	in	Core	Foundation,	so
functions	with	Copy	in	the	name	are	much	more	common	than	in	Cocoa.
Some	functions,	however,	return	a	reference	to	an	internal	data	structure	or	to
a	constant	object.	These	functions	generally	include	the	word	Get	in	their
name	(the	Get	Rule).	The	caller	is	not	an	owner	and	does	not	need	to	release
them.

Get	in	Core	Foundation	is	not	the	same	as	get	in	Cocoa.	Core	Foundation	functions	including	Get
return	an	opaque	type	or	a	C	type.	Cocoa	methods	that	begin	with	get	update	a	pointer	passed	by
reference.

There	is	no	automatic	reference	counting	in	Core	Foundation.	Memory
management	in	Core	Foundation	is	very	similar	to	manual	memory
management	in	Cocoa:

■	If	you	Create	or	Copy	an	object,	you	are	an	owner.

■	If	you	do	not	Create	or	Copy	an	object,	you	are	not	an	owner.	If	you
want	to	prevent	the	object	from	being	destroyed,	you	must	become	an

owner	by	calling	CFRetain.

■	If	you	are	an	owner	of	an	object,	you	must	call	CFRelease	when	you	are
done	with	it.

CFRelease	is	very	similar	to	release	in	Objective-C,	but	there	are	important	differences.	The
most	critical	is	that	you	cannot	call	CFRelease(NULL).	This	is	somewhat	unfortunate,	and	many
specialized	versions	of	CFRelease	exist	that	do	allow	you	to	pass	NULL	(CGGradientRelease	for
instance).	CFRelease	also	behaves	differently	than	retain	in	garbage-collected	environments.	This
doesn’t	apply	to	iOS,	so	it	isn’t	covered	here,	but	you	can	read	Apple’s	Memory	Management
Programming	Guide	for	Core	Foundation	for	more	information.

Some	functions	have	both	Create	and	Copy	in	their	name.	For	example,
CFStringCreateCopy	creates	a	copy	of	another	CFString.	Why	not	just
CFStringCopy?	That’s	because	Create	tells	you	other	things	about	the
function	than	just	the	ownership	rule.	It	indicates	that	the	first	parameter	is	a
CFAllocatorRef,	which	lets	you	customize	how	the	newly	created	object	is
allocated.	In	almost	all	cases	you	pass	NULL	for	this	parameter,	which
specifies	the	default	allocator:	kCFAllocatorDefault.	(I’ll	cover	allocators	in
more	depth	in	a	moment.)	Knowing	that	the	function	is	a	creator,	the	name
also	tells	you	that	it	makes	a	copy	of	the	passed	string.

Conversely,	a	function	with	NoCopy	in	its	name	does	not	make	a	copy.	For
example,	CFStringCreateWithBytesNoCopy	takes	a	pointer	to	a	buffer	and
creates	a	string	without	copying	the	bytes.	So	who	is	now	responsible	for
releasing	the	buffer?	That	brings	us	back	to	allocators.

Allocators
A	CFAllocatorRef	is	a	strategy	for	allocating	and	freeing	memory.	In	almost
all	cases	you	want	the	default	allocator,	kCFAllocatorDefault,	which	is	the
same	as	passing	NULL.	This	allocates	and	frees	memory	in	“the	normal	way”
according	to	Core	Foundation.	This	way	is	subject	to	change,	and	you
shouldn’t	rely	on	any	particular	behavior.	It	is	rare	to	need	a	specialized
allocator,	but	in	a	few	cases	it	can	be	useful.	Here	are	the	standard	allocators
to	give	an	idea	of	what	they	can	do:

■	kCFAllocatorDefault—The	default	allocator.	Equivalent	to	passing
NULL.

■	kCFAllocatorSystemDefault—The	original	default	system	allocator.
This	is	available	in	case	you	have	changed	the	default	allocator	using
CFAllocatorSetDefault.	This	is	very	rarely	necessary.

■	kCFAllocatorMalloc—Calls	malloc,	realloc,	and	free.	This	is
particularly	useful	as	a	deallocator	for	CFData	and	CFString	if	you	created
the	memory	with	malloc.

■	kCFAllocatorMallocZone—Creates	and	frees	memory	in	the	default
malloc	zone.	This	can	be	useful	with	garbage	collection	on	Mac,	but	is
almost	never	useful	in	iOS.
■	kCFAllocatorNull—Does	nothing.	Like	kCFAllocatorMalloc,	this	can
be	useful	with	CFData	or	CFString	as	a	deallocator	if	you	do	not	want	to
free	the	memory.

■	kCFAllocatorUseContext—Only	used	by	the	CFAllocatorCreate
function.	When	you	create	a	CFAllocator,	the	system	needs	to	allocate
memory.	Like	all	other	Create	methods,	this	requires	an	allocator.	This
special	allocator	tells	CFAllocatorCreate	to	use	the	functions	passed	to	it
to	allocate	the	CFAllocator.

See	the	section	“Backing	Storage	for	Strings”	for	examples	of	how	these
would	be	used	in	a	practical	problem.

Introspection
Core	Foundation	allows	a	variety	of	type	introspection,	primarily	for
debugging	purposes.	The	most	fundamental	is	the	CFTypeID,	which	uniquely
identifies	the	opaque	type	of	the	object,	similar	to	Class	in	Objective-C.	You
can	determine	the	type	of	a	Core	Foundation	instance	by	calling
CFGetTypeID.	The	returned	value	is	opaque	and	subject	to	change	between
versions	of	iOS.	You	can	compare	the	CFTypeID	of	two	instances,	but	most
often	you	compare	the	result	of	CFGetTypeID	to	the	value	from	a	function	like
CFArrayGetTypeID.	All	opaque	types	have	a	related	GetTypeID	function.

As	in	Cocoa,	Core	Foundation	instances	have	a	description	for	debugging
purposes,	returned	by	CFCopyDescription.	This	returns	a	CFString	that	you
are	responsible	for	releasing.	CFCopyTypeIDDescription	provides	a	similar

string	that	describes	a	CFTypeID.	You	should	not	rely	on	the	format	or	content
of	these	because	they’re	subject	to	change.

To	write	debugging	output	to	the	console,	use	CFShow.	It	will	display	the
value	of	a	CFString,	or	the	description	of	other	types.	To	display	the
description	of	a	CFString,	use	CFShowStr.	For	example,	given	the	following
definitions

		CFStringRef	string	=	CFSTR(“Hello”);

		CFArrayRef	array	=	CFArrayCreate(NULL,	(const	void**)&string,	1,

																																			&kCFTypeArrayCallBacks);

Here	are	the	results	for	each	kind	of	CFShow	call:

		CFShow(array);

		<CFArray	0x6d47850	[0x1445b38]>{type	=	immutable,	count	=	1,

					values	=	(

							0	:	<CFString	0x410c	[0x1445b38]>{contents	=	“Hello”}

)}

		CFShow(string);

		Hello

		CFShowStr(string);

		Length	5

		IsEightBit	1

		HasLengthByte	0

		HasNullByte	1

		InlineContents	0

		Allocator	SystemDefault

		Mutable	0

		Contents	0x3ba7

Strings	and	Data
CFString	is	a	Unicode-based	storage	container	that	provides	rich	and
efficient	functionality	for	manipulating,	searching,	and	converting
international	strings.	Closely	related	are	the	CFCharacterSet	and
CFAttributedString	classes.	CFCharacterSet	represents	a	set	of	characters
for	efficiently	searching,	including	or	excluding	certain	characters	from	a
string.	CFAttributedString	combines	a	string	with	ranges	of	attributes.	This
is	most	commonly	used	to	handle	rich	text,	but	can	be	used	for	a	variety	of
metadata	storage.

CFString	is	closely	related	to	NSString	and	they	are	generally
interchangeable,	as	you’ll	see	in	“Toll-free	Bridging”	later	in	this	chapter.
This	section	focuses	on	the	differences	between	CFString	and	NSString.

Constant	Strings
In	Cocoa,	a	literal	NSString	is	indicated	by	an	ampersand,	as	in	@”string”.
In	Core	Foundation,	a	literal	CFString	is	indicated	by	the	macro	CFSTR,	as	in
CFSTR(“string”).	If	you’re	using	the	Apple-provided	gcc	and	the	option	-
fconstant-cfstrings,	this	macro	uses	a	special	built-in	compiler	hook	that
creates	constant	CFString	cobjects	at	compile	time.	clang	also	has	this	built-
in	compiler	hook.	If	you’re	using	standard	gcc,	then	an	explicit
CFStringMakeConstantString	function	is	used	to	create	these	objects	at
runtime.

Because	CFSTR	has	neither	Create	nor	Copy	in	its	name,	you	do	not	need	to
call	CFRelease	on	the	result.	You	may,	however,	call	CFRetain	normally	if
you	like.	If	you	do,	you	should	balance	it	with	CFRelease	as	usual.	This
allows	you	to	treat	constant	strings	in	the	same	way	as	programmatically
created	strings.

Creating	Strings
A	common	way	to	generate	a	CFString	is	from	a	C	string.	For	example

const	char	*cstring	=	“Hello	World!”;

CFStringRef	string	=	CFStringCreateWithCString(NULL,	cstring,

kCFStringEncodingUTF8);

CFShow(string);

CFRelease(string);

While	many	developers	are	most	familiar	with	NULL-terminated	C	strings,
there	are	other	ways	to	store	strings,	and	understanding	them	can	be	useful	in
improving	code	efficiency.	In	network	protocols,	it	can	be	very	efficient	to
encode	strings	as	a	length	value	followed	by	a	sequence	of	characters.	If
parsers	are	likely	to	need	only	a	part	of	the	packet,	it	is	faster	to	use	length
bytes	to	skip	over	the	parts	you	don’t	need	than	to	read	everything	looking	for
NULL.	If	this	length	encoding	is	1	byte	long,	then	the	buffer	is	a	Pascal	string
and	Core	Foundation	can	use	it	directly	as	shown	in	the	following	code.

		//	A	common	type	of	network	buffer

		struct	NetworkBuffer	{

				UInt8	length;

				UInt8	data[];

		};

		

		//	Some	data	we	pulled	off	of	the	network	into	the	buffer

		static	struct	NetworkBuffer	buffer	=	{

				4,	{‘T’,	‘e’,	‘x’,	‘t’}};

		

		CFStringRef	string	=

				CFStringCreateWithPascalString(NULL,

																																	(ConstStr255Param)&buffer,

																																			kCFStringEncodingUTF8);

		CFShow(string);

		CFRelease(string);

If	you	have	length	some	other	way,	or	if	the	length	is	not	1	byte	long,	you	can
use	CFStringCreateWithBytes	similarly:

CFStringRef	string	=	CFStringCreateWithBytes(NULL,

																																													buffer.data,

																																													buffer.length,

																																					kCFStringEncodingUTF8,

																																													false);

The	final	false	indicates	this	string	does	not	have	a	byte	order	mark	(BOM)
at	the	beginning.	The	BOM	indicates	whether	the	string	was	generated	on	a
big	endian	or	little	endian	system.	A	BOM	is	not	needed	or	recommended	for
UTF-8	encodings.	This	is	one	of	many	reasons	to	prefer	UTF-8	when
possible.

Core	Foundation	constants	begin	with	a	k,	unlike	their	Cocoa	counterparts.	For	example,	the
Core	Foundation	counterpart	to	NSUTF8StringEncoding	is	kCFStringEncodingUTF8.

Converting	to	C	Strings
While	converting	from	C	strings	is	very	simple,	converting	back	into	C
strings	can	be	deceptively	difficult.	There	are	two	ways	to	get	a	C	string	out
of	a	CFString:	Request	the	pointer	to	the	internal	C	string	representation,	or
copy	the	bytes	out	into	your	own	buffer.

Obviously	the	easiest	and	fastest	way	to	get	the	C	string	is	to	request	the
internal	C	string	pointer:

const	char	*

cstring	=	CFStringGetCStringPtr(string,	kCFStringEncodingUTF8);

This	appears	to	be	the	best	of	all	worlds.	It’s	extremely	fast	and	you	don’t
have	to	allocate	or	free	memory.	Unfortunately,	it	may	not	work,	depending
on	how	the	string	is	currently	encoded	inside	of	the	CFString.	If	there	isn’t	an
internal	C	string	representation	available,	then	this	routine	returns	NULL	and
you	have	to	use	CFStringGetCString	and	pass	your	own	buffer	although	it	is
not	obvious	how	large	a	buffer	you	need.	Here’s	an	example	of	how	to	solve
this	problem.

char	*	MYCFStringCopyUTF8String(CFStringRef	aString)	{

		if	(aString	==	NULL)	{

				return	NULL;

		}

		

		CFIndex	length	=	CFStringGetLength(aString);

		CFIndex	maxSize	=

				CFStringGetMaximumSizeForEncoding(length,

																																								kCFStringEncodingUTF8);

		char	*buffer	=	(char	*)malloc(maxSize);

		if	(CFStringGetCString(aString,	buffer,	maxSize,

																									kCFStringEncodingUTF8))	{

				return	buffer;

		}

		return	NULL;

}

...

CFStringRef	string	=	CFSTR(“Hello”);

char	*	cstring	=	MYCFStringCopyUTF8String(string);

printf(“%s\n”,	cstring);

free(cstring);

MYCFStringCopyUTF8String	is	not	the	fastest	way	to	convert	a	CFString	to	a
C	string	because	it	allocates	a	new	buffer	for	every	conversion,	but	it	is	easy
to	use	and	quick	enough	for	many	problems.	If	you’re	converting	a	lot	of
strings	and	want	to	improve	speed	and	minimize	memory	churn,	you	might
use	a	function	like	this	one	that	supports	reusing	a	common	buffer:

#import	<malloc/malloc.h>	//	For	malloc_size()

const	char	*	MYCFStringGetUTF8String(CFStringRef	aString,

																																					char	**buffer)	{

		if	(aString	==	NULL)	{

				return	NULL;

		}

		

		const	char	*cstr	=	CFStringGetCStringPtr(aString,

																																				kCFStringEncodingUTF8);

		if	(cstr	==	NULL)	{

				CFIndex	length	=	CFStringGetLength(aString);

				CFIndex	maxSize	=

						CFStringGetMaximumSizeForEncoding(length,

																	kCFStringEncodingUTF8)	+	1;	//	+1	for	NULL

				if	(maxSize	>	malloc_size(buffer))	{

						*buffer	=	realloc(*buffer,	maxSize);

				}

				if	(CFStringGetCString(aString,	*buffer,	maxSize,

																											kCFStringEncodingUTF8))	{

						cstr	=	*buffer;

				}

		}

		return	cstr;

}

The	caller	of	MYCFStringGetUTF8String	is	responsible	for	passing	a	reusable
buffer.	The	buffer	may	point	to	NULL	or	to	preallocated	memory.	Keep	in
mind	that	the	returned	C	string	points	into	either	the	CFString	or	into	buffer,
so	invalidating	either	of	those	can	cause	the	returned	C	string	to	become
invalid.	In	particular,	passing	the	same	buffer	repeatedly	to	this	function	may
invalidate	old	results.	That’s	the	trade-off	for	its	speed.	Here’s	how	it	would
be	used.

CFStringRef	strings[3]	=	{	CFSTR(“One”),	CFSTR(“Two”),

																											CFSTR(“Three”)	};

char	*	buffer	=	NULL;

const	char	*	cstring	=	NULL;

for	(unsigned	i	=	0;	i	<	3;	++i)	{

		cstring	=	MYCFStringGetUTF8String(strings[i],	&buffer);

									printf(“%s\n”,	cstring);				

}

free(buffer);

If	you	need	conversion	to	be	as	fast	as	possible,	and	you	know	the	maximum
string	length,	then	the	following	is	even	faster.

CFStringRef	string	=	...;

const	CFIndex	kBufferSize	=	1024;

char	buffer[kBufferSize];

CFStringEncoding	encoding	=	kCFStringEncodingUTF8;

const	char	*cstring;

cstring	=	CFStringGetCStringPtr(string,	encoding);

if	(cstring	==	NULL)	{

		if	(CFStringGetCString(string,	buffer,	kBufferSize,

																									encoding))	{

				cstring	=	buffer;

		}

}

printf(“%s\n”,	cstring);

Because	this	approach	relies	on	a	stack	variable	(buffer),	it	is	difficult	to
wrap	this	into	a	simple	function	call,	but	it	avoids	any	extra	memory
allocations.

Other	String	Operations
To	developers	familiar	with	NSString,	most	of	CFString	should	be	fairly
obvious.	You	can	find	ranges	of	characters,	append,	trim	and	replace
characters,	compare,	search,	and	sort	as	in	Cocoa.
CFStringCreateWithFormat	provides	identical	functionality	to
stringWithFormat:.	I	won’t	explore	all	the	functions	here.	You	can	find
them	all	in	the	documentation	for	CFString	and	CFMutableString.

Backing	Storage	for	Strings
Generally	a	CFString	will	allocate	the	required	memory	to	store	its
characters.	This	memory	is	called	the	backing	storage.	If	you	have	an
existing	buffer,	it	is	sometimes	more	efficient	or	convenient	to	continue	using
it	rather	than	copying	all	the	bytes	into	a	new	CFString.	You	might	do	this
because	you	have	a	buffer	of	bytes	you	want	to	convert	into	a	string,	or
because	you	want	to	continue	to	have	access	to	the	raw	bytes	while	also	using
convenient	string	functions.

In	the	first	case,	where	you	already	have	a	buffer,	you	generally	use	a
function	like

		CFStringCreateWithBytesNoCopy.

		const	char	*cstr	=	“Hello”;

		char	*bytes	=	CFAllocatorAllocate(kCFAllocatorDefault,

																																				strlen(cstr)	+	1,	0);

		strcpy(bytes,	cstr);

		CFStringRef	str	=

				CFStringCreateWithCStringNoCopy(kCFAllocatorDefault,

																																				bytes,

																																				kCFStringEncodingUTF8,

																																				kCFAllocatorDefault);

		CFShow(str);

		CFRelease(str);

Because	you	passed	the	default	allocator	(kCFAllocatorDefault)	as	the
destructor,	the	CFString	owns	the	buffer	and	will	free	it	when	it’s	done	using
the	default	allocator.	This	matches	the	earlier	call	to	CFAllocatorAllocate.
If	you	had	allocated	the	buffer	with	malloc,	the	code	would	look	like	this:

		const	char	*cstr	=	“Hello”;

		char	*bytes	=	malloc(strlen(cstr)	+	1);

		strcpy(bytes,	cstr);

		CFStringRef	str	=

				CFStringCreateWithCStringNoCopy(NULL,	bytes,

																																				kCFStringEncodingUTF8,

																																				kCFAllocatorMalloc);

		CFShow(str);

		CFRelease(str);

In	both	cases,	the	allocated	buffer	would	be	freed	when	the	string	is
destroyed.	But	what	if	you	wanted	to	keep	the	buffer	for	other	uses?	Consider
the	following	code:

		const	char	*cstr	=	“Hello”;

		char	*bytes	=	malloc(strlen(cstr)	+	1);

		strcpy(bytes,	cstr);

		CFStringRef	str	=

				CFStringCreateWithCStringNoCopy(NULL,	bytes,

																																				kCFStringEncodingUTF8,

																																				kCFAllocatorNull);

		CFShow(str);

		CFRelease(str);

		printf(“%s\n”,	bytes);

		free(bytes);

You	pass	kCFAllocatorNull	as	the	destructor.	You	still	release	the	string
because	you	created	it	with	a	Create	function.	But	now,	the	buffer	pointed	to
by	bytes	is	still	valid	after	the	call	to	CFRelease.	You	are	responsible	for
calling	free	on	bytes	when	you	are	done	with	it.

There	is	no	guarantee	that	the	buffer	you	pass	will	be	the	actual	buffer	used.

Core	Foundation	may	call	the	deallocator	at	any	time	and	create	its	own
internal	buffer.	Most	critically,	you	must	not	modify	the	buffer	after	creating
the	string.	If	you	have	a	buffer	that	you	want	to	access	as	a	CFString	while
allowing	changes	to	it,	then	you	need	to	use
CFStringCreateMutableWithExternalCharactersNoCopy.	This	creates	a
mutable	string	that	always	uses	the	provided	buffer	as	its	backing	store.	If	you
change	the	buffer,	you	need	to	let	the	string	know	by	calling
CFStringSetExternalCharactersNoCopy.	Using	these	functions	bypasses
many	string	optimizations,	so	they	should	be	used	with	care.

CFData
CFData	is	the	Core	Foundation	equivalent	to	NSData.	It	is	much	like	CFString
with	similar	creation	functions,	backing	store	management,	and	access
functions.	The	primary	difference	is	that	CFData	does	not	manage	encodings
like	CFString.	You	can	find	the	full	list	of	functions	in	the	CFData	and
CFMutableData	references.

Collections
Core	Foundation	provides	a	rich	set	of	object	collection	types.	Most	have
Cocoa	counterparts	like	CFArray	and	NSArray.	There	are	a	few	specialized
Core	Foundation	collections	such	as	CFTree	that	have	no	Cocoa	counterpart.
Core	Foundation	collections	provide	greater	flexibility	in	how	they	manage
their	contents.	In	this	section	you	learn	about	the	Core	Foundation	collections
that	have	Objective-C	equivalents:	CFArray,	CFDictionary,	CFSet,	and
CFBag.	The	other	Core	Foundation	collections	are	seldom	used,	but	I	will
introduce	them	so	that	you’re	aware	of	what’s	available	if	you	need	it.

Cocoa	collections	can	only	hold	Objective-C	objects	and	must	retain	them.
Core	Foundation	collections	can	hold	anything	that	can	fit	in	the	size	of	a
pointer	(32	bits	for	the	ARM	processor),	and	can	perform	any	action	when
adding	or	removing	items.	The	default	behavior	is	very	similar	to	the	Cocoa
equivalents,	and	Core	Foundation	collections	generally	retain	and	release
instances	when	adding	and	removing.

Core	Foundation	uses	a	structure	of	function	pointers	that	define	how	to	treat

items	in	the	collection.	Configuring	these	callbacks	allows	you	to	highly
customize	your	collection.	You	can	store	nonobjects	like	integers,	create
weak	collections	that	do	not	retain	their	objects,	or	modify	how	objects	are
compared	for	equality.	The	“Callbacks”	section	covers	this.	Each	collection
type	has	a	default	set	of	callbacks	defined	in	the	header.	For	example,	the
default	callbacks	for	CFArray	are	kCFTypeArrayCallBacks.	While
introducing	the	major	collections,	I	will	focus	on	these	default	behaviors.

CFArray
CFArray	corresponds	to	NSArray,	and	holds	an	ordered	list	of	items.	Creating
a	CFArray	takes	an	allocator,	a	series	of	values,	and	a	set	of	callbacks,	as
shown	in	the	following	code.

CFStringRef	strings[3]	=

		{	CFSTR(“One”),	CFSTR(“Two”),	CFSTR(“Three”)	};

CFArrayRef	array	=	CFArrayCreate(NULL,	(void	*)strings,	3,

																																	&kCFTypeArrayCallBacks);

CFShow(array);

CFRelease(array);

Creating	a	CFMutableArray	takes	an	allocator,	a	size,	and	a	set	of	callbacks.
Unlike	NSMutableArray	capacity,	which	is	only	an	initial	size,	the	size	passed
to	CFMutableArray	is	a	fixed	maximum.	To	allocate	an	array	that	can	grow,
pass	a	size	of	zero.

CFMutableArrayRef	array	=	CFArrayCreateMutable(NULL,	0,

																												&kCFTypeArrayCallBacks);

CFDictionary
CFDictionary	corresponds	to	NSDictionary,	and	hold	key-value	pairs.
Creating	a	CFDictionary	takes	an	allocator,	a	series	of	keys,	a	series	of
values,	a	set	of	callbacks	for	the	keys,	and	a	set	of	callbacks	for	the	values.

		#define	kCount	3

		CFStringRef	keys[kCount]	=

				{	CFSTR(“One”),	CFSTR(“Two”),	CFSTR(“Three”)	};

		CFStringRef	values[kCount]	=

				{	CFSTR(“Foo”),	CFSTR(“Bar”),	CFSTR(“Baz”)	};

		CFDictionaryRef	dict	=

				CFDictionaryCreate(NULL,

																							(void	*)keys,

																							(void	*)values,

																							kCount,

																							&kCFTypeDictionaryKeyCallBacks,

																							&kCFTypeDictionaryValueCallBacks);

Creating	a	CFMutableDictionary	is	like	creating	a	CFMutableArray,	except
there	are	separate	callbacks	for	the	keys	and	values.	As	with
CFMutableArray,	the	size	is	fixed	if	given.	For	a	dictionary	that	can	grow,
pass	a	size	of	0.

CFSet,	CFBag
CFSet	corresponds	to	NSSet	and	is	an	unordered	collection	of	unique	objects.
CFBag	corresponds	to	NSCountedSet	and	allows	duplicate	objects.	As	with
their	Cocoa	counterparts,	uniqueness	is	defined	by	equality.	The	function	that
determines	equality	is	one	of	the	callbacks.

Like	CFDictionary,	CFSet	and	CFBag	can	hold	NULL	values	by	passing	NULL
as	their	callback	structure	pointer.

Other	Collections
Core	Foundation	includes	several	collections	that	do	not	have	a	Cocoa
counterpart:

■	CFTree	provides	a	convenient	way	to	manage	tree	structures	that	might
otherwise	be	stored	less	efficiently	in	a	CFDictionary.	There	is	a	short
example	of	CFTree	in	the	section	“Toll-free	Bridging.”

■	CFBinaryHeap	provides	a	binary-searchable	container,	similar	to	a	sorted
queue.
■	CFBitVector	provides	a	convenient	way	to	store	bit	values.

Full	information	on	CFTree	is	available	in	Apple’s	Collections	Programming
Topics	for	Core	Foundation.	See	the	Apple	documentation	on	CFBinaryHeap
and	CFBitVector	for	more	information	on	their	usage.	These	are	not	often
used	and	are	not	heavily	documented.

Callbacks

Core	Foundation	uses	a	structure	of	function	pointers	that	define	how	to	treat
items	in	the	collection.	The	structure	includes	the	following	members:

■	retain—Called	when	an	item	is	added	to	the	collection.	The	default
behavior	is	similar	to	CFRetain	(you’ll	learn	what	“similar”	means	below).
If	it	is	NULL,	no	action	is	performed.

■	release—Called	when	an	item	is	removed	from	the	collection,	and
when	the	collection	is	destroyed.	The	default	behavior	is	similar	to
CFRelease.	If	it	is	NULL,	no	action	is	performed.

■	copyDescription—Called	for	each	object	in	response	to	functions	that
want	a	human-readable	description	for	the	entire	collection,	such	as	CFShow
or	CFCopyDescription.	The	default	value	is	CFCopyDescription.	If	this	is
NULL,	the	collection	has	some	built-in	logic	to	construct	a	simple
description.
■	equal—Called	to	compare	a	collection	object	with	another	object	to
determine	if	they’re	equal.	The	default	value	is	CFEqual.	If	this	is	NULL,	the
collection	will	use	strict	equality	(==)	of	the	values.	If	the	items	are
pointers	to	objects	(as	is	the	usual	case),	then	this	means	that	objects	are
only	equal	to	themselves.

■	hash—This	only	applies	to	hashing	collections	like	dictionaries	and	sets.
This	function	is	used	to	determine	the	hash	value	of	an	object.	A	hash	is	a
fast	way	to	compare	objects.	Given	an	object,	a	hash	function	returns	an
integer	such	that	if	two	objects	are	equal,	then	their	hashes	are	equal.	This
allows	the	collection	to	quickly	determine	unequal	objects	with	a	simple
integer	comparison,	saving	the	expensive	call	to	CFEqual	for	objects	that
are	possibly	equal.	The	default	value	is	CFHash.	If	this	is	NULL,	the	value
(usually	a	pointer)	is	used	as	its	own	hash.

The	default	values	for	retain	and	release	act	like	CFRetain	and	CFRelease,
but	are	actually	pointers	to	the	private	functions	__CFTypeCollectionRetain
and	__CFTypeCollectionRelease.	The	retain	and	release	function	pointers
include	the	collection’s	allocator	in	case	you	would	like	to	create	a	new	object
rather	than	retain	an	existing	one.	This	is	incompatible	with	CFRetain	and
CFRelease,	which	do	not	take	an	allocator.	Usually	this	doesn’t	matter
because	in	most	cases	you	will	either	leave	retain	and	release	as	default,	or

set	them	to	NULL.

Each	collection	type	has	a	default	set	of	callbacks	defined	in	the	header.	For
example,	the	default	callbacks	for	CFArray	are	kCFTypeArrayCallBacks.
These	can	be	used	to	easily	modify	default	behavior.	The	following	creates	a
nonretaining	array,	which	could	also	hold	nonobjects	such	as	integers.

CFArrayCallBacks	nrCallbacks	=	kCFTypeArrayCallBacks;

nrCallbacks.retain	=	NULL;

nrCallbacks.release	=	NULL;

CFMutableArrayRef	nrArray	=	CFArrayCreateMutable(NULL,	0,

																														&nrCallbacks);

CFStringRef	string	=

		CFStringCreateWithCString(NULL,	“Stuff”,

																												kCFStringEncodingUTF8);

CFArrayAppendValue(nrArray,	string);

CFRelease(nrArray);

CFRelease(string);

Another	example	of	callback	configuration	is	to	allow	NULL	values	or	keys.
Dictionaries,	sets,	and	bags	can	hold	NULL	values	or	keys	if	the	retain	and
release	callbacks	are	NULL.	These	types	have	CFTypeGetValueIfPresent
functions	to	handle	this	case.	For	example,	the	function
CFDictionaryGetValueIfPresent()	allows	you	to	determine	whether	the
value	was	NULL	versus	missing,	as	shown	in	the	following	code:

CFDictionaryKeyCallBacks	cb	=	kCFTypeDictionaryKeyCallBacks;

cb.retain	=	NULL;

cb.release	=	NULL;

CFMutableDictionaryRef	dict	=

		CFDictionaryCreateMutable(NULL,	0,	&cb,

																												&kCFTypeDictionaryValueCallBacks);

CFDictionarySetValue(dict,	NULL,	CFSTR(“Foo”));

const	void	*value;

Boolean	fooPresent	=

		CFDictionaryGetValueIfPresent(dict,	NULL,	&value);

CFRelease(dict);

Other	collections,	such	as	CFArray,	cannot	hold	NULL	values.	As	in
Foundation,	you	must	use	a	special	placeholder	NULL	constant	called	kCFNull.
It	is	an	opaque	type	(CFNull),	so	it	can	be	retained	and	released.

Core	Foundation	collections	are	much	more	flexible	than	their	Cocoa

equivalents.	As	you	see	in	the	next	section,	however,	you	can	bring	this
flexibility	almost	transparently	Cocoa	through	the	power	of	toll-free	bridging.

Toll-free	Bridging
One	of	the	cleverest	aspects	of	Core	Foundation	is	its	capability	to
transparently	exchange	data	with	Foundation.	For	example,	any	function	or
method	that	accepts	an	NSArray	also	accepts	a	CFArray	with	only	a	bridge
cast.	A	bridge	cast	in	an	instruction	to	the	compiler	of	how	to	apply	automatic
reference	counting.

In	many	cases,	you	only	need	to	use	the	__bridge	modifier,	as	shown	in	the
following	code.

NSArray	*nsArray	=	[NSArray	arrayWithObject:@”Foo”];

printf(“%ld\n”,	CFArrayGetCount((__bridge	CFArrayRef)nsArray));

This	essentially	tells	the	compiler	to	do	nothing	special.	It	should	simply	cast
nsArray	as	a	CFArrayRef	and	pass	it	to	CFArrayGetCount.	There	is	no	change
to	the	reference	count	of	nsArray.

This	works	in	reverse	as	well:

CFMutableArrayRef	cfArray	=

		CFArrayCreateMutable(NULL,	0,	&kCFTypeArrayCallBacks);

CFArrayAppendValue(cfArray,	CFSTR(“Foo”));

NSLog(@”%ld”,	[(__bridge	id)cfArray	count]);

CFRelease(cfArray);

The	__bridge	cast	works	as	long	as	there	is	no	Core	Foundation	memory
management	involved.	In	the	preceding	examples,	you	are	not	assigning	the
results	to	variables	or	returning	them.	Consider	this	case,	however:

-	(NSString	*)firstName	{

		CFStringRef	cfString	=	CFStringCreate...;

		return	(???)cfString;

}

How	can	you	cast	cfString	correctly?	Before	ARC,	you	would	have	cast	this
to	an	NSString	and	called	autorelease.	With	ARC,	you	can’t	call
autorelease,	and	ARC	doesn’t	know	that	cfString	has	an	extra	retain	on	it

from	CFStringCreate....	You	again	use	a	bridge	cast,	this	time	in	the	form
of	a	function	as	in	this	example:

		return	CFBridgingRelease(cfString);

This	function	transfers	ownership	from	Core	Foundation	to	ARC.	In	the
process,	it	reduces	the	retain	count	by	one	to	balance	the	CFStringCreate....
You	must	use	a	bridge	cast	to	achieve	this.	Calling	CFRelease	before
returning	the	object	would	destroy	the	object.

When	transferring	an	object	from	ARC	to	Core	Foundation,	you	use
CFBridgingRetain,	which	increases	the	retain	count	by	one,	as	shown	in	the
following	code:

CFStringRef	cfStr	=	CFBridgingRetain([nsString	copy]);

...

CFRelease(cfStr);

The	bridging	functions	can	also	be	written	in	a	typecast	style	as	follows:

NSString	*nsString	=	CFBridgingRelease(cfString);

NSString	*nsString	=	(__bridge_transfer	id)cfString;

CFStringRef	cfString	=	CFBridgingRetain(nsString);

CFStringRef	cfString	=	(__bridge_retained	CFTypeRef)nsString;

CFTypeRef	is	a	generic	pointer	to	a	Core	Foundation	object	and	id	is	a	generic	pointer	to	an
Objective-C	object.	You	could	also	use	explicit	types	here	like	CFStringRef	and	NSString*.

The	function	form	is	shorter,	and	in	my	opinion	easier	to	understand.
CFBridgingRelease	and	CFBridgingRetain	should	only	be	used	when	an
object	is	being	transferred	between	ARC	and	Core	Foundation.	They	are	not
replacements	for	CFRetain	or	CFRelease,	or	a	way	to	“trick”	the	compiler
into	adding	an	extra	retain	or	release	on	Objective-C	objects.

Not	only	is	toll-free	bridging	very	convenient	for	moving	information
between	C	and	Objective-C,	it	enables	Cocoa	developers	to	make	use	of
certain	Core	Foundation	functions	that	have	no	Objective-C	equivalent.	For
example,	CFURLCreateStringByAddingPercentEscapes	allows	much	more
powerful	transformations	than	the	equivalent	NSURL
stringByAddingPercentEscapesUsingEncoding:.

Even	types	that	are	not	explicitly	toll-free	bridged	are	still	bridged	to
NSObject.	This	means	that	you	can	store	Core	Foundation	objects	(even	ones
with	no	Cocoa	equivalent)	in	Cocoa	collections,	as	shown	in	this	example:

CFTreeContext	ctx	=	{0,	(void*)CFSTR(“Info”),	CFRetain,

																					CFRelease,	CFCopyDescription};

CFTreeRef	tree	=	CFTreeCreate(NULL,	&ctx);

NSArray	*array	=	[NSArray	arrayWithObject:(__bridge	id)tree];

CFRelease(tree);

NSLog(@”%@”,	array);

Toll-free	bridging	is	implemented	in	a	fairly	straightforward	way.	Every
Objective-C	object	structure	begins	with	an	ISA	pointer	to	a	Class:

typedef	struct	objc_class	*Class;

typedef	struct	objc_object	{

		Class	isa;

}	*id;

Core	Foundation	opaque	types	begin	with	a	CFRuntimeBase,	and	the	first
element	of	that	is	also	an	ISA	pointer:

typedef	struct	__CFRuntimeBase	{

		uintptr_t	_cfisa;

		uint8_t	_cfinfo[4];

#if	__LP64__

		uint32_t	_rc;

#endif

}	CFRuntimeBase;

_cfisa	points	to	the	toll-free	bridged	Cocoa	class.	These	are	subclasses	of	the
equivalent	Cocoa	class;	they	forward	Objective-C	method	calls	to	the
equivalent	Core	Foundation	function	call.	For	instance,	CFString	is	bridged
to	the	private	toll-free	bridging	class	NSCFString.

If	there	is	no	explicit	bridging	class,	then	_cfisa	points	to	__NSCFType,	which
is	a	subclass	of	NSObject,	and	forwards	calls	like	retain	and	release.

To	handle	Objective-C	classes	passed	to	Core	Foundation	functions,	all
public	toll-free	functions	look	something	like	this:

CFIndex	CFStringGetLength(CFStringRef	str)	{

		CF_OBJC_FUNCDISPATCH0(__kCFStringTypeID,	CFIndex,	str,

“length”);

		__CFAssertIsString(str);

		return	__CFStrLength(str);

}

CF_OBJC_FUNCDISPATCH0	checks	the	_cfisa	pointer.	If	it	matches	the	Core
Foundation	bridging	class	for	the	given	CFTypeID,	then	it	passes	the	call
along	to	the	real	Core	Foundation	function.	Otherwise	it	translates	the	call
into	an	Objective-C	message	(length	in	this	case,	given	as	a	C	string).

Summary
Core	Foundation	bridges	the	gap	between	C	and	Objective-C	code,	providing
powerful	data	structures	for	C,	and	near-transparent	data	passing	to	and	from
low-level	code.	As	Apple	releases	more	low-level	Core	frameworks	that
require	these	types,	Core	Foundation	is	an	increasingly	important	part	of	an
iOS	developer’s	toolkit.

Core	Foundation	data	structures	are	generally	more	flexible	than	their	Cocoa
equivalents.	They	provide	better	control	over	how	memory	is	managed
through	allocators,	and	often	include	functions	for	more	specialized	problems
like	handling	Pascal	strings	or	very	configurable	URL	percent	substitutions.
Core	Foundation	collections	can	be	configured	to	be	nonretaining,	and	can
even	store	nonobjects	such	as	integers.

While	Objective-C	is	extremely	powerful,	you	can	still	generally	write	code
that	is	faster	and	more	efficient	in	pure	C,	which	is	why	the	lowest-level	APIs
are	all	C	APIs.	For	those	parts	of	your	programs	that	require	the	kind	of
performance	you	can	only	get	from	C,	Core	Foundation	provides	an	excellent
collection	of	abstract	data	types	that	you	can	easily	exchange	with	the	higher-
level	parts	of	your	program.	The	vast	majority	of	problems	in	iOS	are	best
solved	in	Cocoa	and	Objective-C,	but	for	those	places	that	C	is	appropriate,
Core	Foundation	is	a	powerful	tool.

Further	Reading
Apple	Documentation

The	following	documents	are	available	in	the	iOS	Developer	Library	at

developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Collections	Programming	Topics	for	Core	Foundation
Core	Foundation	Design	Concepts

Data	Formatting	Guide	for	Core	Foundation
Dates	and	Times	Programming	Guide	for	Core	Foundation

“Managing	Toll-Free	Bridging,”	Programming	With	ARC	Release	Notes
Memory	Management	Programming	Guide	for	Core	Foundation
Property	List	Programming	Topics	for	Core	Foundation

Strings	Programming	Guide	for	Core	Foundation

Other	Resources
“Automatic	Reference	Counting,”	Clang	documentation
clang.llvm.org/docs/AutomaticReferenceCounting.html

ridiculous_fish,	“Bridge.”	An	entertaining	introduction	to	toll-free	bridging
internals	by	one	of	the	AppKit	and	Foundation	team	at	Apple.
ridiculousfish.com/blog/archives/2006/09/09/bridge

http://developer.apple.com/
http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://ridiculousfish.com/blog/archives/2006/09/09/bridge

Chapter	20:	Deep	Objective-C

Much	of	Objective-C	is	very	straightforward	in	practice.	There	is	no	multiple
inheritance	or	operator	overloading	like	in	C++.	All	objects	have	the	same
memory-management	rules,	which	rely	on	a	simple	set	of	naming
conventions.	With	the	addition	of	ARC,	you	don’t	even	need	to	worry	about
memory	management	in	most	cases.	The	Cocoa	framework	is	designed	with
readability	in	mind,	so	most	things	do	exactly	what	they	say	they	do.

Still,	there	are	many	parts	of	Objective-C	that	can	appear	mysterious	until
you	dig	into	them,	such	as	creating	new	methods	and	classes	at	runtime,
introspection,	and	message	passing.	Most	of	the	time	you	don’t	need	to
understand	how	this	works,	but	for	some	problems	it	is	very	useful	to	harness
the	full	power	of	Objective-C.	The	flexibility	of	Core	Data	relies	heavily	on
the	dynamic	nature	of	Objective-C.

The	heart	of	this	power	is	the	Objective-C	runtime,	provided	by	libobjc.	The
Objective-C	runtime	is	a	collection	of	functions	that	provides	the	dynamic
features	of	Objective-C.	It	includes	such	core	functions	as	objc_msgSend,
which	is	called	every	time	you	use	the	[object	message]	syntax.	It	also
includes	functions	to	allow	you	to	inspect	and	modify	the	class	hierarchy	at
runtime,	including	creating	new	classes	and	methods.

This	chapter	shows	you	how	to	use	these	features	to	achieve	the	same	kind	of
flexibility,	power,	and	speed	as	Core	Data	and	other	Apple	frameworks.	All
code	samples	in	this	chapter	can	be	found	in	the	online	files	for	Chapter	20.

Understanding	Classes	and	Objects
The	first	thing	to	understand	about	Objective-C	objects	is	that	they	are	really
C	structs.	Every	Objective-C	object	has	the	same	layout,	as	shown	in	Figure
20-1.

First	there	is	a	pointer	to	your	class	definition.	Then	each	of	your
superclasses’	ivars	(instance	variables)	are	laid	out	as	struct	properties,	and

then	your	class’s	ivars	are	laid	out	as	struct	properties.	This	structure	is	called
objc_object,	and	a	pointer	to	it	is	called	id:

typedef	struct	objc_object	{

				Class	isa;

}	*id;

Figure	20-1	Layout	of	an	Objective-C	object

The	Class	structure	contains	a	metaclass	pointer	(more	on	that	in	a	moment),
a	superclass	pointer,	and	data	about	the	class.	The	data	of	particular	interest
are	the	name,	ivars,	methods,	properties,	and	protocols.	Don’t	worry	too
much	about	the	internal	structure	of	Class.	There	are	public	functions	to
access	all	the	information	you	need.

The	Objective-C	runtime	is	open	source,	so	you	can	see	exactly	how	it’s	implemented.	Go	to	the
Apple	Open	Source	site	(opensource.apple.com),	and	look	for	the	package	objc	in	the	Mac	code.
It	doesn't	include	it	in	the	iOS	packages,	but	the	Mac	code	is	identical	or	very	similar.	These
particular	structures	are	defined	in	objc.h	and	objc-runtime-new.h.	There	are	two	definitions	of
many	things	in	these	files	because	of	the	switch	from	Objective-C	1.0	to	Objective-C	2.0.	Look	for
things	marked	“new”	when	there	is	a	conflict.

Class	is	itself	much	like	an	object.	You	can	send	messages	to	a	Class
instance—for	example,	when	you	call	[Foo	alloc]—so	there	has	to	be	a
place	to	store	the	list	of	class	methods.	These	are	stored	in	the	metaclass,
which	is	the	isa	pointer	for	a	Class.	It	is	extremely	rare	to	need	to	access
metaclasses,	so	let’s	not	dwell	on	them	here;	see	the	“Further	Reading”
section	at	the	end	of	this	chapter	for	links	to	more	information.	See	the
section	“How	Message	Passing	Really	Works”	for	more	information	on
message	passing.

The	superclass	pointer	creates	the	hierarchy	of	classes,	and	the	list	of	ivars,
methods,	properties,	and	protocols	defines	what	the	class	can	do.	An
important	point	here	is	that	the	methods,	properties,	and	protocols	are	all
stored	in	the	writable	section	of	the	class	definition.	These	can	be	changed	at
runtime,	and	that’s	exactly	how	categories	are	implemented	(see	Chapter	3
for	more	information	about	categories).	Ivars	are	stored	in	the	read-only
section	and	cannot	be	modified	(because	that	could	impact	existing
instances).	That’s	why	categories	cannot	add	ivars.

Notice	in	the	definition	of	objc_object	shown	at	the	beginning	of	this
section	that	the	isa	pointer	is	not	const.	That	is	not	an	oversight.	The	class	of
an	object	can	be	changed	at	runtime.	The	superclass	pointer	of	Class	is	also
not	const.	The	hierarchy	can	be	modified.	This	is	covered	in	more	detail	in
the	“ISA	Swizzling”	section	later	in	this	chapter.

Now	that	you’ve	seen	the	data	structures	underlying	Objective-C	objects,	you
next	look	at	the	kinds	of	functions	you	can	use	to	inspect	and	manipulate
them.	These	functions	are	written	in	C,	and	they	use	naming	conventions
somewhat	similar	to	Core	Foundation.	All	the	functions	shown	here	are
public	and	are	documented	in	the	Objective-C	Runtime	Reference.	The
following	is	the	simplest	example:

#import	<objc/objc-runtime.h>

...

const	char	*name	=	class_getName([NSObject	class]);

printf(“%s\n”,	name);

Runtime	methods	begin	with	the	name	of	the	thing	they	act	upon,	which	is
almost	always	also	their	first	parameter.	Because	this	example	includes	get
rather	than	copy,	you	don’t	own	the	memory	that	is	returned	to	you	and
should	not	call	free.

The	next	example	prints	a	list	of	the	selectors	that	NSObject	responds	to.	The
call	to	class_copyMethodList	returns	a	copied	buffer	that	you	must	dispose
of	with	free.

PrintObjectMethods.m	(Runtime)

void	PrintObjectMethods()	{

		unsigned	int	count	=	0;

		Method	*methods	=	class_copyMethodList([NSObject	class],

																																									&count);

		for	(unsigned	int	i	=	0;	i	<	count;	++i)	{

				SEL	sel	=	method_getName(methods[i]);

				const	char	*name	=	sel_getName(sel);

				printf(“%s\n”,	name);

		}

		free(methods);

}

There	is	no	reference	counting	(automatic	or	otherwise)	in	the	runtime,	so
there	is	no	equivalent	to	retain	or	release.	If	you	fetch	a	value	with	a
function	that	includes	the	word	copy,	you	should	call	free	on	it.	If	you	don’t
use	a	function	that	includes	the	word	copy,	you	must	not	call	free	on	it.

Working	with	Methods	and	Properties

The	Objective-C	runtime	defines	several	important	types:

■	Class—Defines	an	Objective-C	class,	as	described	in	the	section
“Understanding	Classes	and	Objects.”
■	Ivar—Defines	an	instance	variable	of	an	object,	including	its	type	and
name.

■	Protocol—Defines	a	formal	protocol.

■	objc_property_t—Defines	a	property.	Its	unusual	name	is	probably	to
avoid	colliding	with	user	types	defined	in	Objective-C	1.0	before
properties	existed.

■	Method—Defines	an	object	method	or	a	class	method.	This	provides	the
name	of	the	method	(its	selector),	the	number	and	types	of	parameters	it
takes	and	its	return	type	(collectively	its	signature),	and	a	function	pointer
to	its	code	(its	implementation).
■	SEL—Defines	a	selector.	A	selector	is	a	unique	identifier	for	the	name	of
a	method.
■	IMP—Defines	a	method	implementation.	It’s	just	a	pointer	to	a	function
that	takes	an	object,	a	selector,	and	a	variable	list	of	other	parameters
(varargs),	and	returns	an	object:

typedef	id	(*IMP)(id,	SEL,	...);

Now	you	use	this	knowledge	to	build	your	own	simplistic	message
dispatcher.	A	message	dispatcher	maps	selectors	to	function	pointers	and
calls	the	referenced	function.	The	heart	of	the	Objective-C	runtime	is	the
message	dispatcher	objc_msgSend,	which	you	learn	much	more	about	in	the
section	“How	Message	Passing	Really	Works.”	The	example	myMsgSend	is
how	objc_msgSend	might	be	implemented	if	it	only	needed	to	handle	the
simplest	cases.

The	following	code	is	written	in	C	just	to	prove	that	Objective-C	runtime	is
really	just	C.	I’ve	added	comments	to	demonstrate	the	equivalent	Objective-
C.

MyMsgSend.c	(Runtime)

static	const	void	*myMsgSend(id	receiver,	const	char	*name)	{

		SEL	selector	=	sel_registerName(name);

		IMP	methodIMP	=

		class_getMethodImplementation(object_getClass(receiver),

																																selector);

		return	methodIMP(receiver,	selector);

}

void	RunMyMsgSend()	{

		//	NSObject	*object	=	[[NSObject	alloc]	init];

		Class	class	=	(Class)objc_getClass(“NSObject”);

		id	object	=	class_createInstance(class,	0);

		myMsgSend(object,	“init”);

		

		//	id	description	=	[object	description];

		id	description	=	(__bridge	id)myMsgSend(object,	“description”);

		

		//	const	char	*cstr	=	[description	UTF8String];

		const	char	*cstr	=	myMsgSend(description,	“UTF8String”);

		

		printf(“%s\n”,	cstr);

}

With	the	addition	of	Automatic	Reference	Counting	(ARC)	in	IOS	5,	converting	a	void*	to	an	id
requires	an	appropriate	bridging	cast	so	that	ARC	knows	where	to	add	retain	and	release	calls.
You	need	to	tell	the	compiler	that	the	NSString	returned	by	description	is	an	auto-released	object
by	using	the	cast	__bridge	id.	UTF8String	returns	a	nonobject,	so	you	can	use	it	as-is.

You	can	use	this	same	technique	in	Objective-C	using	methodForSelector:
to	avoid	the	complex	message	dispatch	of	objc_msgSend.	This	only	makes
sense	if	you’re	going	to	call	the	same	method	thousands	of	times	on	an
iPhone.	On	a	Mac,	you	won’t	see	much	improvement	unless	you’re	calling
the	same	method	millions	of	times.	Apple	has	highly	optimized
objc_msgSend.	But	for	very	simple	methods	called	many	times,	you	may	be
able	to	improve	performance	5–10%	this	way	if	you	are	not	using	Automatic
Reference	Counting.	With	ARC,	bypassing	objc_msgSend	can	be	slower
because	ARC	adds	an	extra	retain/release	to	the	return	value	in	some	cases
where	it	isn’t	required	(such	as	a	void	method).	This	may	be	improved	in
later	versions	of	LLVM	(radar://10002493),	but	the	point	is	that	bypassing	the
normal	message	dispatch	system	is	not	an	easy	way	to	improve	performance.

The	following	example	demonstrates	how	to	do	this	and	shows	the
performance	impact.	Try	it	with	and	without	ARC.

FastCall.m	(Runtime)

const	NSUInteger	kTotalCount	=	10000000;

void	FastCall()	{

		NSMutableString	*string	=	[NSMutableString	string];

		NSTimeInterval	totalTime	=	0;

		NSDate	*start	=	nil;

		NSUInteger	count	=	0;

		

		//	With	objc_msgSend

		start	=	[NSDate	date];

		for	(count	=	0;	count	<	kTotalCount;	++count)	{

				[string	setString:@”stuff”];

		}

		

		totalTime	=	-[start	timeIntervalSinceNow];

		printf(“w/	objc_msgSend	=	%f\n”,	totalTime);

		

		//	Skip	objc_msgSend.

		start	=	[NSDate	date];

		SEL	selector	=	@selector(setString:);

		IMP	setStringMethod	=[string	methodForSelector:selector];

		

		for	(count	=	0;	count	<	kTotalCount;	++count)	{

				setStringMethod(string,	selector,	@”stuff”);

		}

		

		totalTime	=	-[start	timeIntervalSinceNow];

		printf(“w/o	objc_msgSend		=	%f\n”,	totalTime);

}

How	Message	Passing	Really	Works
As	demonstrated	in	the	“Working	with	Methods	and	Properties”	section
earlier	in	this	chapter,	calling	a	method	in	Objective-C	eventually	translates
into	calling	a	method	implementation	function	pointer	and	passing	it	an
object	pointer,	a	selector,	and	a	set	of	function	parameters.	Like	the	example
myMsgSend,	every	Objective-C	message	expression	is	converted	into	a	call	to
objc_msgSend	(or	a	closely	related	function;	I’ll	get	to	that	in	“The	Flavors	of
objc_msgSend”	later	in	this	chapter).	However,	objc_msgSend	is	much	more
powerful	than	myMsgSend.	Here	is	how	it	works:

1.	Check	if	the	receiver	is	nil.	If	so,	then	call	the	nil-handler.	This	is

really	obscure,	undocumented,	unsupported,	and	difficult	to	make	useful.
The	default	is	to	do	nothing	and	I	won’t	go	into	it	more	here.	See	the
“Further	Reading”	section	for	more	information.
2.	In	a	garbage-collected	environment	(which	iOS	doesn’t	support,	but	I
include	for	completeness),	check	for	one	of	the	short-circuited	selectors
(retain,	release,	autorelease,	retainCount)	and	if	it	matches,	return
self.	Yes,	that	means	retainCount	returns	self	in	a	garbage-collected
environment.	You	shouldn’t	have	been	calling	it	anyway.

3.	Check	the	class’s	cache	to	see	if	it’s	already	worked	out	this	method
implementation.	If	so,	call	it.
4.	Compare	the	requested	selector	to	the	selectors	defined	in	the	class.	If
the	selector	is	found,	call	its	method	implementation.

5.	Compare	the	requested	selector	to	the	selectors	defined	in	the	superclass,
and	then	its	superclass,	and	so	on.	If	the	selector	is	found,	call	its	method
implementation.
6.	Call	resolveInstanceMethod:	(or	resolveClassMethod:).	If	it	returns
YES,	start	over.	The	object	is	promising	that	the	selector	will	resolve	this
time,	generally	because	it	has	called	class_addMethod.

7.	Call	forwardingTargetForSelector:.	If	it	returns	non-nil,	send	the
message	to	the	returned	object.	Don’t	return	self	here.	That	would	be	an
infinite	loop.

8.	Call	methodSignatureForSelector:,	and	if	it	returns	non-nil,	create	an
NSInvocation	and	pass	it	to	forwardInvocation:.

9.	Call	doesNotRecognizeSelector:.	The	default	implementation	of	this
just	throws	an	exception.

Dynamic	Implementations
The	first	interesting	thing	you	can	do	with	message	dispatch	is	provide	an
implementation	at	runtime	using	resolveInstanceMethod:	and
resolveClassMethod:.	This	is	usually	how	@dynamic	synthesis	is	handled.
When	you	declare	a	property	to	be	@dynamic,	you	are	promising	the	compiler
that	there	will	be	an	implementation	available	at	runtime	even	though	the
compiler	can’t	find	one	now.	This	suppresses	the	compiler	error	indicating

that	you	have	failed	to	implement	the	required	methods	for	a	property.

Here’s	an	example	of	how	to	use	this	to	dynamically	create	getters	and	setters
for	properties	stored	in	an	NSMutableDictionary.

Person.h	(Person)

@interface	Person	:	NSObject

@property	(copy)	NSString	*givenName;

@property	(copy)	NSString	*surname;

@end

Person.m	(Person)

@interface	Person	()

@property	(strong)	NSMutableDictionary	*properties;

@end

@implementation	Person

@dynamic	givenName,	surname;

@synthesize	properties	=	properties_;

-	(id)init	{

		if	((self	=	[super	init]))	{

				properties_	=	[[NSMutableDictionary	alloc]	init];

		}

		return	self;

}

static	id	propertyIMP(id	self,	SEL	_cmd)	{

		return	[[self	properties]	valueForKey:

										NSStringFromSelector(_cmd)];

}

static	void	setPropertyIMP(id	self,	SEL	_cmd,	id	aValue)	{

		id	value	=	[aValue	copy];

		

		NSMutableString	*key	=

		[NSStringFromSelector(_cmd)	mutableCopy];

		

		//	Delete	“set”	and	“:”	and	lowercase	first	letter

		[key	deleteCharactersInRange:NSMakeRange(0,	3)];

		[key	deleteCharactersInRange:

																									NSMakeRange([key	length]	-	1,	1)];

		NSString	*firstChar	=	[key	substringToIndex:1];

		[key	replaceCharactersInRange:NSMakeRange(0,	1)

																		withString:[firstChar	lowercaseString]];

		

		[[self	properties]	setValue:value	forKey:key];

}

+	(BOOL)resolveInstanceMethod:(SEL)aSEL	{

		if	([NSStringFromSelector(aSEL)	hasPrefix:@”set”])	{

				class_addMethod([self	class],	aSEL,

																				(IMP)setPropertyIMP,	“v@:@”);

		}

		else	{

				class_addMethod([self	class],	aSEL,

																				(IMP)propertyIMP,	“@@:”);

		}

		return	YES;

}

@end

main.m	(Person)

int	main(int	argc,	char	*argv[])	{

		@autoreleasepool	{

				Person	*person	=	[[Person	alloc]	init];

				[person	setGivenName:@”Bob”];

				[person	setSurname:@”Jones”];

				

				NSLog(@”%@	%@”,	[person	givenName],	[person	surname]);

		}

}

In	this	example,	you	use	propertyIMP	as	the	generic	getter	and
setPropertyIMP	as	the	generic	setter.	Note	how	these	functions	make	use	of
the	selector	to	determine	the	name	of	the	property.	Also	note	that
resolveInstanceMethod:	assumes	that	any	unrecognized	selector	is	a
property	setter	or	getter.	In	many	cases,	this	is	okay.	You	still	get	compiler
warnings	if	you	pass	unknown	methods	like	this:

		[person	addObject:@”Bob”];

But	if	you	do	it	this	way,	you	get	a	slightly	surprising	result:

		NSArray	*persons	=	[NSArray	arrayWithObject:person];

		id	object	=	[persons	objectAtIndex:0];

		[object	addObject:@”Bob”];

You	get	no	compiler	warning	because	you	can	send	any	message	to	id.	And
you	won’t	get	a	runtime	error	either.	You	just	retrieve	the	key	addObject:
(including	the	colon)	from	the	properties	dictionary	and	do	nothing	with	it.

This	kind	of	bug	can	be	difficult	to	track	down,	and	you	may	want	to	add
additional	checking	in	resolveInstanceMethod:	to	guard	against	it.	But	the
approach	is	extremely	powerful.	Although	dynamic	getters	and	setters	are	the
most	common	use	of	resolveInstanceMethod:,	it	can	also	be	used	to
dynamically	load	code	in	environments	that	allow	dynamic	loading.	iOS
doesn’t	allow	this	approach,	but	on	Mac	you	can	use
resolveInstanceMethod:	to	avoid	loading	entire	libraries	until	the	first	time
one	of	the	library’s	classes	is	accessed.	This	can	be	useful	for	large	but	rarely
used	classes.

Fast	Forwarding
The	runtime	gives	you	one	more	fast	option	before	falling	back	to	the
standard	forwarding	system.	You	can	implement
forwardingTargetForSelector:	and	return	another	object	to	pass	the
message	to.	This	is	particularly	useful	for	proxy	objects	or	objects	that	add
functionality	to	another	object.	The	CacheProxy	example	demonstrates	an
object	that	caches	the	getters	and	setters	for	another	object.

CacheProxy.h	(Person)

@interface	CacheProxy	:	NSProxy

-	(id)initWithObject:(id)anObject

										properties:(NSArray	*)properties;

@end

@interface	CacheProxy	()

@property	(readonly,	strong)	id	object;

@property	(readonly,	strong)

																				NSMutableDictionary	*valueForProperty;

@end

CacheProxy	is	a	subclass	of	NSProxy	rather	than	NSObject.	NSProxy	is	a	very
thin	root	class	designed	for	classes	that	forward	most	of	their	methods,
particularly	classes	that	forward	their	methods	to	objects	hosted	on	another
machine	or	on	another	thread.	It	is	not	a	subclass	of	NSObject,	but	it	does
conform	to	the	<NSObject>	protocol.	The	NSObject	class	implements	dozens
of	methods	that	might	be	very	hard	to	proxy.	For	example,	methods	that
require	the	local	run	loop	like	performSelector:withObject:afterDelay:,
might	not	make	sense	for	a	proxied	object.	NSProxy	avoids	most	of	these
methods.

To	implement	a	subclass	of	NSProxy,	you	must	override
methodSignatureForSelector:	and	forwardInvocation:.	These	throw
exceptions	if	they’re	called	otherwise.

First,	you	should	create	the	getter	and	setter	implementations,	as	in	the	Person
example.	In	this	case,	if	the	value	is	not	found	in	the	local	cache	dictionary,
you	will	forward	the	request	to	the	proxied	object.

CacheProxy.m	(Person)

@implementation	CacheProxy

@synthesize	object	=	object_;

@synthesize	valueForProperty	=	valueForProperty_;

//	setFoo:	=>	foo

static	NSString	*propertyNameForSetter(SEL	selector)	{

		NSMutableString	*name	=

		[NSStringFromSelector(selector)	mutableCopy];

		[name	deleteCharactersInRange:NSMakeRange(0,	3)];

		[name	deleteCharactersInRange:

																								NSMakeRange([name	length]	-	1,	1)];

		NSString	*firstChar	=	[name	substringToIndex:1];

		[name	replaceCharactersInRange:NSMakeRange(0,	1)

																		withString:[firstChar	lowercaseString]];

		return	name;

}

//	foo	=>	setFoo:

static	SEL	setterForPropertyName(NSString	*property)	{

		NSMutableString	*name	=	[property	mutableCopy];

		NSString	*firstChar	=	[name	substringToIndex:1];

		[name	replaceCharactersInRange:NSMakeRange(0,	1)

																						withString:[firstChar	uppercaseString]];

		[name	insertString:@”set”	atIndex:0];

		[name	appendString:@”:”];

		return	NSSelectorFromString(name);

}

//	Getter	implementation

static	id	propertyIMP(id	self,	SEL	_cmd)	{

		NSString	*propertyName	=	NSStringFromSelector(_cmd);

		id	value	=	[[self	valueForProperty]	valueForKey:propertyName];

		if	(value	==	[NSNull	null])	{

				return	nil;

		}

		

		if	(value)	{

				return	value;

		}

		

		value	=	[[self	object]	valueForKey:propertyName];

		[[self	valueForProperty]	setValue:value

																													forKey:propertyName];

		return	value;

}

//	Setter	implementation

static	void	setPropertyIMP(id	self,	SEL	_cmd,	id	aValue)	{

		id	value	=	[aValue	copy];

		NSString	*propertyName	=	propertyNameForSetter(_cmd);

		[[self	valueForProperty]	setValue:(value	!=	nil	?	value	:

																																					[NSNull	null])

																													forKey:propertyName];

		[[self	object]	setValue:value	forKey:propertyName];

}

Note	the	usage	of	[NSNull	null]	to	manage	nil	values.	You	cannot	store
nil	in	an	NSDictionary.	In	the	next	block	of	code,	you	will	synthesize
accessors	for	the	properties	requested.	All	other	methods	will	be	forwarded	to
the	proxied	object.

-	(id)initWithObject:(id)anObject

										properties:(NSArray	*)properties	{

		object_	=	anObject;

		valueForProperty_	=	[[NSMutableDictionary	alloc]	init];

		for	(NSString	*property	in	properties)	{

				//	Synthesize	a	getter

				class_addMethod([self	class],

																				NSSelectorFromString(property),

																				(IMP)propertyIMP,

																				“@@:”);

				//	Synthesize	a	setter

				class_addMethod([self	class],

																				setterForPropertyName(property),

																				(IMP)setPropertyIMP,

																				“v@:@”);

		}

		return	self;

}

The	next	block	of	code	overrides	methods	that	are	implemented	by	NSProxy.
Because	NSProxy	has	default	implementations	for	these	methods,	they	won’t
be	automatically	forwarded	by	forwardingTargetForSelector:.

-	(NSString	*)description	{

		return	[NSString	stringWithFormat:@”%@	(%@)”,

										[super	description],	self.object];

}

-	(BOOL)isEqual:(id)anObject	{

		return	[self.object	isEqual:anObject];

}

-	(NSUInteger)hash	{

		return	[self.object	hash];

}

-	(BOOL)respondsToSelector:(SEL)aSelector	{

		return	[self.object	respondsToSelector:aSelector];

}

-	(BOOL)isKindOfClass:(Class)aClass	{

		return	[self.object	isKindOfClass:aClass];

}

Finally,	you	will	implement	the	forwarding	methods.	Each	of	them	simply
passes	unknown	messages	to	the	proxied	object.	See	Chapter	4	for	more
details	on	message	signatures	and	invocations.

Whenever	an	unknown	selector	is	sent	to	CacheProxy,	objc_msgSend	will	call
forwardingTargetForSelector:.	If	it	returns	an	object,	then	objc_msgSend
will	try	to	send	the	selector	to	that	object.	This	is	called	“fast	forwarding.”	In
this	example,	CacheProxy	sends	all	unknown	selectors	to	the	proxied	object.
If	the	proxied	object	doesn’t	appear	to	respond	to	that	selector,	then
objc_msgSend	will	fall	back	to	normal	forwarding	by	calling
methodSignatureForSelector:	and	forwardInvocation:.	This	will	be
covered	in	the	next	section,	“Normal	Forwarding.”	CacheProxy	forwards
these	requests	to	the	proxied	object	as	well.

-	(id)forwardingTargetForSelector:(SEL)selector	{

		return	self.object;

}

-	(NSMethodSignature	*)methodSignatureForSelector:(SEL)sel

{

		return	[self.object	methodSignatureForSelector:sel];

}

-	(void)forwardInvocation:(NSInvocation	*)anInvocation	{

		[anInvocation	setTarget:self.object];

		[anInvocation	invoke];

}

@end

Normal	Forwarding
After	trying	everything	described	in	the	previous	sections,	the	runtime	tries
the	slowest	of	the	forwarding	options:	forwardInvocation:.	This	can	be	tens
to	hundreds	of	times	slower	than	the	mechanisms	covered	in	the	previous
sections,	but	it	is	also	the	most	flexible.	You	are	passed	an	NSInvocation,
which	bundles	the	target,	the	selector,	the	method	signature,	and	the
arguments.	You	may	then	do	whatever	you	want	with	it.	The	most	common
thing	to	do	is	to	change	the	target	and	invoke	it,	as	demonstrated	in	the
CacheProxy	example.	NSInvocation	and	NSMethodSignature	are	explained
in	Chapter	4.

If	you	implement	forwardInvocation:,	you	also	must	implement
methodSignatureForSelector:.	That’s	how	the	runtime	determines	the
method	signature	for	the	NSInvocation	it	passes	to	you.	Often	this	is
implemented	by	asking	the	object	you’re	forwarding	to.

There	is	a	special	limitation	of	forwardInvocation:.	It	doesn’t	support
vararg	methods.	These	are	methods	such	as	arrayWithObjects:	that	take	a
variable	number	of	arguments.	There’s	no	way	for	the	runtime	to
automatically	construct	an	NSInvocation	for	this	kind	of	method	because	it
has	no	way	to	know	how	many	parameters	will	be	passed.	While	many	vararg
methods	terminate	their	parameter	list	with	a	nil,	that	is	not	required	or
universal	(stringWithFormat:	does	not),	so	determining	the	length	of	the
parameter	list	is	implementation	dependent.	The	other	forwarding	methods,
such	as	Fast	Forwarding,	do	support	vararg	methods.

Even	though	forwardInvocation:	returns	nothing	itself,	the	runtime	system
will	return	the	result	of	the	NSInvocation	to	the	original	caller.	It	does	so	by
calling	getReturnValue:	on	the	NSInvocation	after	forwardInvocation:
returns.	Generally	you	call	invoke	and	the	NSInvocation	stores	the	return
value	of	the	called	method,	but	that	isn’t	required.	You	could	call
setReturnValue:	yourself	and	return.	This	can	be	handy	for	caching
expensive	calls.

Forwarding	Failure
Okay,	so	you’ve	made	it	through	the	entire	message	resolution	chain,	and

haven’t	found	a	suitable	method.	What	happens	now?	Technically,
forwardInvocation:	is	the	last	link	in	the	chain.	If	it	does	nothing,	then
nothing	happens.	You	can	use	it	to	swallow	certain	methods	if	you	want	to.
But	the	default	implementation	of	forwardInvocation:	does	do	something.
It	calls	doesNotRecognizeSelector:.	The	default	implementation	of	that
method	just	raises	an	NSInvalidArgumentException,	but	you	could	override
this	behavior.	That’s	not	of	particularly	great	utility	because	this	method	is
required	to	raise	NSInvalidArgumentException	(either	directly	or	by	calling
super),	but	it’s	legal.

You	can	also	call	doesNotRecongizeSelector:	yourself	in	some	situations.
For	example,	if	you	do	not	want	anyone	to	call	your	init,	you	could	override
it	like	this:

-	(id)init	{

		

[self	doesNotRecognizeSelector:_cmd];

}

This	makes	calling	init	a	runtime	error.	Personally,	I	often	do	it	this	way
instead:

-	(id)init	{

		NSAssert(NO,	@”Use	-initWithOptions:”);

		return	nil;

}

That	way	it	crashes	when	I’m	developing,	but	not	in	the	field.	Which	form
you	prefer	is	somewhat	a	matter	of	taste.

You	should,	of	course,	call	doesNotRecognizeSelector:	in	methods	like
forwardInvocation:	when	the	method	is	unknown.	Don’t	just	return	unless
you	specifically	mean	to	swallow	the	error.	That	can	lead	to	very	challenging
bugs.

The	Flavors	of	objc_msgSend
In	this	chapter,	I’ve	referred	generally	to	objc_msgSend,	but	there	are	several
related	functions:	objc_msgSend_fpret,	objc_msgSend_stret,
objc_msgSendSuper,	and	objc_msgSendSuper_stret.	The	SendSuper	form	is

obvious.	It	sends	the	message	to	the	superclass.	The	stret	forms	handle	most
cases	when	you	return	a	struct.	This	is	for	processor-specific	reasons	related
to	how	arguments	are	passed	and	returned	in	registers	versus	on	the	stack.	I
won’t	go	into	all	the	details	here,	but	if	you’re	interested	in	this	kind	of	low-
level	detail,	then	you	should	read	Hamster	Emporium	(see	“Further
Reading”).	Similarly,	the	fpret	form	handles	the	case	when	you	return	a
floating-point	value	on	an	Intel	processor.	It	isn’t	used	on	the	ARM-based
processors	that	iOS	runs	on,	but	it	is	used	when	you	compile	for	the
simulator.	There	is	no	objc_msgSendSuper_fpret	because	the	floating-point
return	only	matters	when	the	object	you’re	messaging	is	nil	(on	an	Intel
processor),	and	that’s	not	possible	when	you	message	super.

The	point	of	all	this	is	not,	obviously,	to	address	the	processor-specific
intricacies	of	message	passing.	If	you’re	interested	in	that,	read	Hamster
Emporium.	The	point	is	that	not	all	message	passing	is	handled	by
objc_msgSend,	and	you	cannot	use	objc_msgSend	to	handle	any	arbitrary
method	call.	In	particular,	you	cannot	return	a	“large”	struct	with
objc_msgSend	on	any	processor,	and	you	cannot	safely	return	a	floating	point
with	objc_msgSend	on	Intel	processors	(such	as	when	compiling	for	the
simulator).	This	generally	translates	into:	Be	careful	when	you	try	to	bypass
the	compiler	by	calling	objc_msgSend	by	hand.

Method	Swizzling
In	Objective-C,	swizzling	refers	to	transparently	swapping	one	thing	for
another.	Generally,	it	means	replacing	methods	at	runtime.	Using	method
swizzling,	you	can	modify	the	behavior	of	objects	that	you	do	not	have	the
code	for,	including	system	objects.	In	practice,	swizzling	is	fairly
straightforward,	but	it	can	be	a	little	confusing	to	read.	For	this	example,	you
add	logging	every	time	you	add	an	observer	to	NSNotificationCenter.

Since	iOS	4.0,	Apple	has	rejected	some	applications	from	the	AppStore	for	using	this	technique.

First	you	add	a	category	on	NSObject	to	simplify	swizzling:

RNSwizzle.h	(MethodSwizzle)

@interface	NSObject	(RNSwizzle)

+	(IMP)swizzleSelector:(SEL)origSelector

															withIMP:(IMP)newIMP;

@end

RNSwizzle.m	(MethodSwizzle)

@implementation	NSObject	(RNSwizzle)

+	(IMP)swizzleSelector:(SEL)origSelector

															withIMP:(IMP)newIMP	{

		Class	class	=	[self	class];

		Method	origMethod	=	class_getInstanceMethod(class,

																																													origSelector);

		IMP	origIMP	=	method_getImplementation(origMethod);

		

		if(!class_addMethod(self,	origSelector,	newIMP,

																						method_getTypeEncoding(origMethod)))	{

				method_setImplementation(origMethod,	newIMP);

		}

		

		return	origIMP;

}

@end

Let’s	look	at	this	in	more	detail.	You	pass	a	selector	and	a	function	pointer
(IMP)	to	this	method.	What	you	want	to	do	is	to	swap	the	current
implementation	of	that	method	with	the	new	implementation	and	return	a
pointer	to	the	old	implementation	so	you	can	call	it	later.	You	have	to
consider	three	cases:	The	class	may	implement	this	method	directly,	the
method	may	be	implemented	by	one	of	the	superclass	hierarchy,	or	the
method	may	not	be	implemented	at	all.	The	call	to
class_getInstanceMethod	returns	an	IMP	if	either	the	class	or	one	of	its
superclasses	implements	the	method,	otherwise	it	returns	NULL.

If	the	method	was	not	implemented	at	all,	or	if	it	is	implemented	by	a
superclass,	then	you	need	to	add	the	method	with	class_addMethod.	This	is
identical	to	overriding	the	method	normally.	If	class_addMethod	fails,	you
know	the	class	directly	implemented	the	method	you	are	swizzling.	You
instead	need	to	replace	the	old	implementation	with	the	new	implementation
using	method_setImplementation.

When	you’re	done,	you	return	the	original	IMP,	and	it’s	your	caller’s	problem
to	make	use	of	it.	You	do	that	in	a	category	on	the	target	class,

NSNotificationCenter,	as	shown	in	the	following	code.

NSNotificationCenter+RNSwizzle.h	(MethodSwizzle)

@interface	NSNotificationCenter	(RNSwizzle)

+	(void)swizzleAddObserver;

@end

NSNotificationCenter+RNSwizzle.m	(MethodSwizzle)

@implementation	NSNotificationCenter	(RNSwizzle)

static	IMP	sOrigAddObserver	=	NULL;

static	void	MYAddObserver(id	self,	SEL	_cmd,	id	observer,

																										SEL	selector,

																										NSString	*name,

																										id	sender)	{

		NSLog(@”Adding	observer:	%@”,	observer);

		

		//	Call	the	old	implementation

		NSAssert(sOrigAddObserver,

											@”Original	addObserver:	method	not	found.”);

		if	(sOrigAddObserver)	{

				sOrigAddObserver(self,	_cmd,	observer,	selector,	name,

																					sender);

		}

}

+	(void)swizzleAddObserver	{

		NSAssert(!sOrigAddObserver,

											@”Only	call	swizzleAddObserver	once.”);

		SEL	sel	=	@selector(addObserver:selector:name:object:);

		sOrigAddObserver	=	(void	*)[self	swizzleSelector:sel

																														withIMP:(IMP)MYAddObserver];

}

@end

You	call	swizzleSelector:withIMP:,	passing	a	function	pointer	to	your	new
implementation.	Notice	that	this	is	a	function,	not	a	method,	but	as	covered	in
“How	Message	Passing	Really	Works”	earlier	in	this	chapter,	a	method
implementation	is	just	a	function	that	accepts	an	object	pointer	and	a	selector.
You	then	save	off	the	original	implementation	in	a	static	variable,
sOrigAddObserver.	In	the	new	implementation,	you	add	the	functionality	you
want,	and	then	call	the	original	function	directly.

Finally,	you	need	to	actually	perform	the	swizzle	somewhere	near	the

beginning	of	your	program:

		[NSNotificationCenter	swizzleAddObserver];

Some	people	suggest	doing	the	swizzle	in	a	+load	method	in	the	category.
That	makes	it	much	more	transparent,	which	is	why	I	don’t	recommend	it.
Method	swizzling	can	lead	to	very	surprising	behaviors.	Using	+load	means
that	just	linking	the	category	implementation	will	cause	it	to	be	applied.	I’ve
personally	encountered	this	when	bringing	old	code	into	a	new	project.	One
of	the	debugging	assistants	from	the	old	project	had	this	kind	of	auto-load
trick.	It	wasn’t	being	compiled	in	the	old	project,	it	just	happened	to	be	in	the
sources	directory.	When	I	used	“add	folder”	in	Xcode,	even	though	I	didn’t
make	any	other	changes	to	the	project,	the	debug	code	started	running.
Suddenly	the	new	project	had	massive	debug	files	showing	up	on	customer
machines,	and	it	was	very	difficult	to	figure	out	where	they	were	coming
from.	So	my	experience	is	that	using	+load	for	this	can	be	dangerous.	On	the
other	hand,	it’s	very	convenient	and	automatically	ensures	that	it’s	only	called
once.	Use	your	best	judgment	here.

Method	swizzling	is	a	very	powerful	technique	and	can	lead	to	bugs	that	are
very	hard	to	track	down.	It	allows	you	to	modify	the	behaviors	of	Apple-
provided	frameworks,	but	that	can	make	your	code	much	more	dependent	on
implementation	details.	It	always	makes	the	code	more	difficult	to
understand.	I	typically	do	not	recommend	it	for	production	code	except	as	a
last	resort,	but	it	is	extremely	useful	for	debugging,	performance	profiling,
and	exploring	Apple’s	frameworks.

There	are	several	other	method	swizzling	techniques.	The	most	common	is	to	use
method_exchangeImplementations	to	swap	one	implementation	for	another.	That	approach
modifies	the	selector,	which	can	sometimes	break	things.	It	also	creates	an	awkward	pseudo-
recursive	call	in	the	source	code	that	is	very	misleading	to	the	reader.	This	is	why	I	recommend
using	the	function	pointer	approach	detailed	here.	For	more	information	on	swizzling	techniques,
see	the	“Further	Reading”	section.

ISA	Swizzling
As	discussed	in	the	“Understanding	Classes	and	Objects”	section	earlier	in
this	chapter,	an	object’s	ISA	pointer	defines	its	class.	And,	as	discussed	in
“How	Message	Passing	Really	Works”	(also	earlier	in	this	chapter),	message
dispatch	is	determined	at	runtime	by	consulting	the	list	of	methods	defined	on

that	class.	So	far,	then,	you’ve	learned	ways	of	modifying	the	list	of	methods,
but	it’s	also	possible	to	modify	an	object’s	class	(ISA	swizzling).	The	next
example	demonstrates	ISA	swizzing	to	achieve	the	same
NSNotificationCenter	logging	you	did	in	the	previous	section,	“Method
Swizzling.”

First,	you	create	a	normal	subclass	of	NSNotificationCenter,	which	you	will
use	to	replace	the	default	NSNotificationCenter.

MYNotificationCenter.h	(ISASwizzle)

@interface	MYNotificationCenter	:	NSNotificationCenter

//	You	MUST	NOT	define	any	ivars	or	synthesized	properties	here.

@end

@implementation	MYNotificationCenter

-	(void)addObserver:(id)observer	selector:(SEL)aSelector

															name:(NSString	*)aName	object:(id)anObject

{

		NSLog(@”Adding	observer:	%@”,	observer);

		[super	addObserver:observer	selector:aSelector	name:aName

														object:anObject];

}

@end

There’s	nothing	really	special	about	this	subclass.	You	could	+alloc	it
normally	and	use	it,	but	you	want	to	replace	the	default
NSNotificationCenter	with	your	class.

Next,	you	create	a	category	on	NSObject	to	simplify	changing	the	class:

NSObject+SetClass.h	(ISASwizzle)

@interface	NSObject	(SetClass)

-	(void)setClass:(Class)aClass;

@end

NSObject+SetClass.m	(ISASwizzle)

@implementation	NSObject	(SetClass)

-	(void)setClass:(Class)aClass	{

		NSAssert(

				class_getInstanceSize([self	class])	==

						class_getInstanceSize(aClass),

				@”Classes	must	be	the	same	size	to	swizzle.”);

		object_setClass(self,	aClass);

}

@end

Now	you	can	change	the	class	of	the	default	NSNotificationCenter:

		id	nc	=	[NSNotificationCenter	defaultCenter];

		[nc	setClass:[MYNotificationCenter	class]];

The	most	important	thing	to	note	here	is	that	the	size	of
MYNotificationCenter	must	be	the	same	as	the	size	of
NSNotificationCenter.	In	other	words,	you	can’t	declare	any	ivars	or
synthesized	properties	(synthesized	properties	are	just	ivars	in	disguise).
Remember,	the	object	you	are	swizzling	has	already	been	allocated.	If	you
added	ivars,	then	they	would	point	to	offsets	beyond	the	end	of	that	allocated
memory.	This	has	a	pretty	good	chance	of	overwriting	the	isa	pointer	of
some	other	object	that	just	happens	to	be	after	this	object	in	memory.	In	all
likelihood,	when	you	finally	do	crash,	the	other	(innocent)	object	will	appear
to	be	the	problem.	This	is	an	incredibly	difficult	bug	to	track	down,	which	is
why	I	take	the	trouble	of	building	a	category	to	wrap	object_setClass.	I
believe	it’s	worth	it	to	include	the	NSAssert	ensuring	the	two	classes	are	the
same	size.

After	you’ve	performed	the	swizzle,	the	impacted	object	is	identical	to	a
normally	created	subclass.	This	means	that	it	is	very	low-risk	for	classes	that
are	designed	to	be	subclassed.	As	discussed	in	Chapter	15,	key-value
observing	(KVO)	is	implemented	with	ISA	swizzling.	This	allows	the	system
frameworks	to	inject	notification	code	into	your	classes,	just	as	you	can	inject
code	into	the	system	frameworks.

Method	Swizzling	Versus	ISA	Swizzling
Both	method	and	ISA	swizzling	are	powerful	techniques	that	can	cause	a	lot
of	problems	if	used	incorrectly.	In	my	experience,	ISA	swizzling	is	a	better
technique	and	should	be	used	when	possible	because	it	only	impacts	the
specific	objects	you	target,	rather	than	all	instances	of	the	class.	However,
sometimes	your	goal	is	to	impact	every	instance	of	the	class,	so	method

swizzling	is	the	only	option.	The	following	list	defines	the	differences
between	method	swizzling	and	ISA	swizzling:

■	Method	Swizzling
■	Impacts	every	instance	of	the	class

■	Highly	transparent.	All	objects	retain	their	class.
■	Requires	unusual	implementations	of	override	methods

■	ISA	Swizzling
■	Only	impacts	the	targeted	instance
■	Objects	change	class	(though	this	can	be	hidden	by	overriding	class)

■	Override	methods	are	written	with	standard	subclass	techniques

Summary
The	Objective-C	runtime	can	be	an	incredibly	powerful	tool	once	you
understand	it.	With	it	you	can	modify	classes	and	instances	at	runtime,
injecting	new	methods	and	even	whole	new	classes.	Used	recklessly,	these
techniques	can	lead	to	incredibly	difficult	bugs,	but	used	carefully	and	in
isolation,	the	Objective-C	runtime	is	an	important	part	of	advanced	iOS
development.

Further	Reading
Apple	Documentation

The	following	document	is	available	in	the	iOS	Developer	Library	at
developer.apple.com	or	through	the	Xcode	Documentation	and	API
Reference.

Objective-C	Runtime	Programming	Guide

Other	Resources
Ash,	Mike.	NSBlog.	A	very	insightful	blog	covering	all	kinds	of	low-level
topics.	www.mikeash.com/pyblog

http://developer.apple.com/
http://www.mikeash.com/pyblog

■	Friday	Q&A	2009-03-20:	Objective-C	Messaging
■	Friday	Q&A	2010-01-29:	Method	Replacement	for	Fun	and	Profit	–
The	method-swizzling	approach	in	this	chapter	is	a	refinement	of	Mike
Ash’s	approach.

bbum.	weblog-o-mat.	bbum	is	a	prolific	contributor	to	Stackoverflow,	and
his	blog	has	some	of	my	favorite	low-level	articles,	particularly	his	four-
part	opcode-by-opcode	analysis	of	objc_msgSend.	friday.com/bbum

■	Objective-C:	Logging	Messages	to	Nil

■	objc_msgSend()	Tour
CocoaDev,	“MethodSwizzling.”	CocoaDev	is	an	invaluable	wiki	of	all-
things-Cocoa.	The	MethodSwizzling	page	covers	the	major
implementations	out	there.	www.cocoadev.com/index.pl?
MethodSwizzling

Parker,	Greg.	Hamster	Emporium.	While	there	aren’t	a	lot	of	posts	here,
this	blog	provides	incredibly	useful	insights	into	the	Objective-C	runtime.
www.sealiesoftware.com/blog/archive

■	[objc	explain]:	Classes	and	metaclasses
■	[objc	explain]:	objc_msgSend_fpret

■	[objc	explain]:	objc_msgSend_stret
■	[objc	explain]:	So	you	crashed	in	objc_msgSend()
■	[objc	explain]:	Non-fragile	ivars

http://www.friday.com/bbum/
http://www.cocoadev.com/index.pl?MethodSwizzling
http://www.sealiesoftware.com/blog/archive

	Cover
	Table of Contents
	Title Page
	Introduction
	Part I: What's New?
	Chapter 1: The Brand New Stuff
	Chapter 2: Getting Comfortable with Xcode 4

	Part II: Getting the Most Out of Everyday Tools
	Chapter 3: Everyday Objective-C
	Chapter 4: Hold On Loosely: Cocoa Design Patterns
	Chapter 5: Getting Table Views Right
	Chapter 6: Better Drawing
	Chapter 7: Layers Like an Onion: Core Animation
	Chapter 8: Tackling Those Pesky Errors

	Part III: The Right Tool for the Job
	Chapter 9: Controlling Multitasking
	Chapter 10: REST for the Weary
	Chapter 11: Batten the Hatches with Security Services
	Chapter 12: Running on Multiple iPlatforms and iDevices
	Chapter 13: Internationalization and Localization
	Chapter 14: Selling Past the Sale with In App Purchases

	Part IV: Pushing the Limits
	Chapter 15: Cocoa's Biggest Trick: Key-Value Coding and Observing
	Chapter 16: Think Different: Blocks and Functional Programming
	Chapter 17: Going Offline
	Chapter 18: Fancy Text Layout
	Chapter 19: Building a (Core) Foundation
	Chapter 20: Deep Objective-C

