

INTRODUCTION
TO

COMPUTER
THEORY

INTRODUCTION
TO COMPUTER

THEORY
SECOND EDITION

Daniel I. A. Cohen
Hunter College
City Unil•ersity <>f New York

John Wiley & Sons, Inc.

ACQUISITIONS EDITOR Regina Brooks

MARKETING MANAGER Jay Kirsch

SENIOR PRODUCTION EDITOR Tony VenGraitis

DESIGN SUPERVISOR Anne Marie Renzi

MANUFACTURING MANAGER Mark Cirillo

ILLUS TRATION COORDINATOR Rosa Bryant

PRODUCTION MANAGEMENT 1. Carey Publishing Service

Recognizing the importance of preserving what has been written. it is a

policy of John Wiley & Sons. Inc. to have books of enduring value published

in the United States printed on acid-free paper. and we exert our best

efforts to that end.

The paper in this book was manufactured by a mill whose forest management programs include

sustained yield harvesting of its timberlands. Sustained yield harvesting principles ensure that

the number of trees cut each year does not exceed the amount of new growth.

Copyright© 1991, 1997, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning

or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,

(201) 748-6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please, call 1(800)-CALL-WILEY (225-5945).

0-471-13772-3

20 19 18 17 16 15 14 13 12

Au Professeur M.-P. Schiitzenberger

rnmme un temoignage de profonde
et ajjectueuse reconnaissance

During the preparation of this sernnd edition Alonzo Church has
passed away at the age of92. As a mathematical logician he was a
theoretician par excellence and preeminent in the developmenr <If'

Computer Theory. His students include Stephen C. Kleene who
figures prominenrly in this book. When Alan Turing was working on

the consequences and ramifications of his model of rnmputation it
was to G6del and Church in Princeton that he went to study. 1 too

was a student of Church's. He was a formative influence on my
dei·elopment-a blessed memory and a saintly man.

PREFACE
TO THE FIRST EDITION

It has become clear that some abstract Computer Theory should be incl uded in the education
of undergraduate Computer Science majors.

Leav ing aside the obv ious worth of knowledge for its own sake, the terminology, nota
tions, and techniques of Computer Theory are necessary in the teaching of courses on com
puter design, Artificial Intel l igence, the analysis of algori thms, and so forth. Of all the pro
gramming ski lls undergraduate students learn, two of the most important are the abi l i ties to
recognize and manipulate context-free grammars and to understand the power of the recur
sive interaction of parts of a procedure. Very little can be accomplished if each advanced
course has to begin at the level of defining rules of production and derivations. Every inter
esting career a student of Computer Science might pursue wil l make significant use of some
aspects of the subject matter of this book.

Yet we find today, that the subjects of Automata Theory, Formal Languages, and Turing
machines are almost exclusively relegated to the very advanced student. Only textbooks de
manding intense mathematical sophistication discuss these topics. Undergraduate Computer
Science majors are unl ikely to develop the fami liarity with set theory, logic, and the fac i l ity
with abstract manipulation early enough in their college careers to digest the material in the
existing excellent but difficult texts.

Bringing the level of sophistication to the exact point where it meets the expected prepa
ration of the intended student population is the responsibi l ity of every careful ly prepared
textbook. Of all the branches of Mathematics, Computer Science is one of the newest and
most independent. Rigorous mathematical proofs of the most profound theorems in th is sub
ject can be constructed without the aid of Calculus, Number Theory, Algebra, or Topology.
Some degree of understanding of the notion of proof is, of course, required, but the tech
niques employed are so idiosyncratic to this subject that i t is preferable to introduce them to
the student from first principles. Characteristic methods, such as making accurate conclu
sions from diagrams, analyzing graphs, or searching trees, are not tools with which a typical
mathematics major is famil iar. Hardly any students come prepared for the convoluted sur
prise of the Halting Problem. These then are the goals of this textbook: (I) to introduce a
student of Computer Science to the need for and the working of mathematical proof; (2) to
develop faci l i ty with the concepts, notations, and techniques of the theories of Automata,
Formal Languages, and Turing machines; and (3) to prov ide historical perspective on the
creation of the computer with a profound understanding of some of its capabi lities and l imi
tations.

Basical ly, this book is written for students with no presumed background of any k ind.
Every mathematical concept used is introduced from scratch. Extensive examples and

vii

viii Preface to the First Edition

i l lustrations spell out everything in detail to avoid any possibility of confusion. The bright
student is encouraged to read at whatever pace or depth seems appropriate.

For their excellent care with this project I thank the staff at John Wiley & Sons : Richard
J. Bonacci, acquisitions editor, and Lorraine F. Mellon, Eugene Patti , Elaine Rauschal, and
Ruth Greif of the editorial and production staffs. Of the technical people who reviewed the
manuscript I thank Martin Kal iski, Adrian Tang, Martin Davis, and especial ly H. P. Edmund
son, whose comments were invaluable and Martin J. Smith whose splendid special support
was dispositive. Rarely has an author had an assistant as enthusiastic, dedicated, knowledge
able and meticulous as I was so fortunate to find in Mara Chibnik. Every aspect of this pro
ject from the classnotes to the page proofs benefited immeasurably from her scrutiny. Very
little that is within these covers-except for the few mistakes inserted by mischievous Mar
tians-does not bare the mark of her relentless precision and impeccable taste . Every large
project is the result of the toil of the craftsmen and the sacrifice and forebearance of those
they were forced to neglect. Rubies are beneath their worth.

Daniel I. A . Cohen

PREFACE
TO THE SECOND EDITION

In the first edition I intentionally omitted some topics because their discussion and/or proof
involved mathematics that I felt was hopelessly beyond the scope of my intended audience .
Students have not gotten more mathematically sophisticated but I have figured out how to
demystify some of these themes in a much simpler way with no loss of rigor. Along the way
various proofs that used to be cumbersome have been somewhat streaml ined, and some
embarrassing errors have been unearthed and demolished.

Undergraduate Computer Science majors general ly do not speak the language of math
ematical symbolism fluently, nor is it important at their level that they do more than try. The
value of mathematical iconography is that i t enables professionals to perform their research
and communicate their results more efficiently. The symbolism is not a profound discovery
in and of itself. It is at best a means, not an end. To those to whom it is opaque, it is a hin
drance to understanding. When th is happens it is mathematical ly dysfunctional and a peda
gogical anathema. Anyone who bel ieves that I j: 1 :5 j :5 n l is somehow more rigorous than
1 1 . 2, . . . n l is misguided. He has forgotten how the typography "1 :5 j :5 n" was de tined
to him in the first place. All mathematical symbol ism can be reduced to human language be
cause it is through i terations of human language substitutes that it was defined init ial ly. In
stead of introducing "mathematics" i n an alienating form that only has to be expounded any
way, I prefer to skip the pretentious detour and prov ide the explanation itself directly.
Computer science has needlessly carried an inferiority complex among the branches of
mathematics, causing a defensive embedding into mainstream symbolism to lend it an aura
of legitimacy. Yet it has been, as Hi lbert himself predicted, one of the pri ncipal departments
of mathematical discovery in the last century.

St i l l no pretense is made to encyclopedic completeness. This textbook is an introduction
to computer theory and contains the minimum col legiate requirements of theory for com
puter science majors . No, I have not added a chapter on NP-completeness, primitive and par
tial recursion , program verification, artificial intell igence, nor Renaissance archi tecture .
These are al l topics worthy of being included in some course but to squeeze them in here
would necessari ly displace some of the more pertinent and fundamental aspects of theory,
and would thereby disadvantage the student.

High on my l ist of cheap tricks is the inclusion of material in textbooks that is never
meant to be covered in the intended course in the first place. I have heard members of text
book selection committees who say, "Let 's adopt X's elementary calculus text because he
has a chapter on general relativity while our current textbook contains only calculus ." Sales
manship should not be the business of textbook authors-educating students shou ld. Mak-

ix

x Preface to the Second Edition

ing students pay for 300 extra pages of material that is not intended to be covered in the
course harms them in financial, muscular, and psychological ways.

Ideally a textbook should begin at the level of understanding of the students taking the
course. It should include all the material they have contracted to learn presented in a fashion
maximally suited for them to absorb. When it has completed the syllabus it should stop. Al
lowances may be made for instructor discretion in choosing material that is basic to the
course and in the selection of which topics warrant special emphasis . However, there are
some fanatics who have the grandiose notion that to be a great teacher is to stuff more mater
ial into a course than their students can learn. I view this as sheer and simple breach of con
tract . Let these zealots adopt a graduate textbook and let their students protest accordingly.
There is no compari son between the error of covering too l i ttle and covering too much. To
attempt to cover too much is to rob the students of the chance to learn and to undermine their
self-confidence.

This book is unabashedly easy to read. I t is intentionally slow-paced and repetitive. Let
the bright student blitz through it, but let the slower student find comfort and elucidation .
The nuances in this material are unlike anything (mathematical or otherwise) seen before in
a course or textbook. A leisurely stroll through these charming gems can be enjoyable. stim
ulating, and rewarding. My duty to computer science students is to protect them against their
own fear of mathematics, to demonstrate to them that a proof is no more or less than an un
derstanding of why the theorem is true, and to al low them to savor the intellectual richness
of the theoretical foundations of what is ultimately the most important invention since antiq
uity.

Is this book ideal? That would be unlikely, wouldn't it? But it is designed with good sci
entific intentions and sincere concern for those interested in learning.

I t gives me pleasure to thank Chanah Brenenson who served as the technical editor and
tireless critic to this edition. May she l ive long and prosper.

DIAC

CONTENTS

PART I AUTOMATA THEORY

1 Background 2
2 Languages 7

Languages in the Abstract 7
Introduction to Defining Languages 1 0
Kleene Closure 14

Problems 19

3 Recursive Definitions

A New Method for Defining Languages 2 1
An Important Language: Arithemetic Expressions 25
Problems 28

4 Regular Expressions

Defining Languages by Another New Method 3 1
Formal Definition of Regular Expressions 35
Languages Associated with Regular Expressions 43
Finite Languages Are Regular 44
How Hard It Is To Understand a Regular Expression 45
Introducing EVEN-EVEN 48
Problems 49

5 Finite Automata

Yet Another Method for Defining Languages 52
FAs and Their Languages 59

EVEN-EVEN Revisited 69
Problems 71

6 Transition Graphs

Relaxing the Restriction on Inputs 76
Looking at TGs 8 1
Generalized Transition Graphs 86
Nondeterminism 87
Problems 88

21

31

52

76

xi

xii Contents

7 Kleene's Theorem

Unification 92
Turning TGs into Regular Expressions 93
Converting Regular Expressions into FAs 1 08
Nondetenninistic Finite Automata 1 35
NFAs and Kleene 's Theorem 140
Problems 1 42

8 Finite Automata with Output

Moore Machines 149
Mealy Machines 1 52
Moore= Mealy 1 56
Transducers as Models of Sequential Circuits 1 6 1
Problems 1 64

92

149

9 Regular Languages 169

Closure Properties 1 69
Complements and Intersections 172
Problems 1 85

10 Nonregular Languages 187

The Pumping Lemma 1 87
The Myhil l -Nerode Theorem 196
Quotient Languages 200
Problems 203

1 1 Decidability 207

Equivalence 207
Finiteness 2 1 4
Problems 2 1 7

PART I I PUSHDOWN AUTOMATA THEORY
12 Context-Free Grammars

Syntax as a Method for Defining Languages 224
Symbol ism for Generative Grammars 230
Trees 24 1
Lukasiewicz Notation 245
Ambiguity 250
The Total Language Tree 252
Problems 254

13 Grammatical Format

Regular Grammars 259
Kill ing A-Productions 265
Kil l ing Unit Productions 272
Chomsky Nonna! Fonn 275
Leftmost Derivations 282
Problems 285

224

259

Contents

14 Pushdown Automata

A New Format for FAs 289
Adding a Pushdown Stack 293
Defining the PDA 307
Problems 3 1 2

1 5 CFG = PDA

Building a PDA for Every CFG 3 1 8
Building a CFG for Every PDA 327
Problems 348

16 Non-Context-Free Languages

Self-Embeddedness 35 1
The Pumping Lemma for CFLs 360
Problems 373

xiii

289

318

351

17 Context-Free Languages 376

Closure Properties 376
Intersection and Complement 385
Mixing Context-Free and Regular Languages 393
Problems 398

18 Decidability 402

Emptiness and Uselessness 402
Finiteness 408
Membership-The CYK Algorithm 4 1 0
Parsing Simple Arithmetic 4 1 5
Problems 429

PART III TURING THEORY
19 Turing Machines 434

The Turing Machine 434
The Subprogram INSERT 449
The Subprogram DELETE 452
Problems 454

20 Post Machines 457

The Post Machine 457
Simulating a PM on a TM 462
Simulating a TM on a PM 468
Problems 477

21 Minsky's Theorem 480

The Two-Stack PDA 480
Just Another TM 482
Problems 492

22 Variations on the TM

The Move-in-State Machine 494

494

xiv Contents

The Stay-Option Machine 499
The k-Track TM 502
The Two-Way Infinite TAPE Model 5 1 1
The Nondeterministic TM 5 1 8
The Read-Only TM 524
Problems 53 1

23 TM Languages 535

Recursively Enumerable Languages 535
The Encoding of Turing Machines 545
A Non-Recursively Enumerable Language 549
The Universal Turing Machine 552
Not All r.e. Languages Are Recursive 557
Decidabil ity 558
Problems 562

24 The Chomsky Hierarchy 565

Phrase-Structure Grammars 565
Type O =TM 574
The Product and Kleene Closure of r.e. Languages 586
Context-Sensitive Grammars 588
Problems 590

25 Computers 594

Defining the Computer 594
Computable Functions 599
Church 's Thesis 6 1 0
TMs as Language Generators 6 1 2
Problems 6 1 6

Bibliography

Theorem Index

Index

619

621

625

PART I

Automata
Theory

2

CHAPTER 1

Background

The twentieth century has been fil led with the most incredible shocks and surprises: the the
ory of relativi ty, the rise and fall of communism, psychoanalysis, nuclear war, te levision,
moon walks, genetic engineering, and so on. As astounding as any of these is the advent of
the computer and its development from a mere calculating dev ice into what seems l ike a
"thinking machine."

The birth of the computer was not wholly independent of the other events of this cen
tury. I ts inception was certainly impelled if not provoked by war and its development was fa
ci l i tated by the evolution of psycho-l inguistics, and it has interacted symbiotical ly with al l
the aforementioned upheavals . The h istory of the computer is a fascinating story; however, i t
is not the subject of this course. We are concerned instead with the theory of computers,
which means that we shall form several mathematical models that wil l describe with varying
degrees of accuracy parts of computers, types of computers, and similar mach ines. The con
cept of a "mathematical model" is itself a very modern construct. It is , in the broadest sense,
a game that describes some important real-world behav ior. Un l ike games that are simula
tions and used for practice or simply for fun, mathematical models abstract, simpl ify. and
codify to the point that the subtle observations and conclusions that can be made about the
game relate back in a meaningful way to the physical world, shedding light on that which
was not obvious before. We may assert that chess is a mathematical model for war, but it is a
very poor model because wars are not real ly won by the simple assassination of the leader of
the opposing country.

The adjective "mathematical " in th is phrase does not necessari ly mean that classical
mathematical tools such as Euclidean geometry or calculus will be employed. Indeed, these
areas are completely absent from the present volume. What is mathematical about the mod
els we shall be creating and analyzing is that the only conclusions that we shall be al lowed
to draw are claims that can be supported by pure deductive reasoning; in other words , we are
obliged to prove the truth about whatever we discover. Most professions, even the sciences.
are composed of an accumulation of wisdom in the form of general principles and rules that
usually work wel l in practice, such as "on such and such a wood we recommend this under
coat," or "these symptoms typical ly respond to a course of medication X." This is com
pletely opposi te from the type of thing we are going to be doing. While most of the world is
(correctly) preoccupied by the question of how best to do something, we shall be completely
absorbed with the question of whether certain tasks can be done at al l . Our main concl usions
wil l be of the form, "this can be done" or "th is can never be done.'' When we reach conclu
sions of the second type, we shall mean not just that techniques for performing these tasks

CHAPTER 1 Background 3

are unknown at the present time, but that such techniques wil l never exist in the future no
matter how many clever people spend millennia attempting to discover them.

The nature of our discussion will be the frontiers of capability in an absolute and time
less sense. This is the excitement of mathematics. The fact that the mathematical models that
we create serve a practical purpose through their appl ication to computer science, both in the
development of structures and techniques necessary and useful to computer programming
and in the engineering of computer architecture, means that we are priv i leged to be playing a
game that is both fun and important to civi l ization at the same time.

The term computer is practically never encountered in this book -we do not even de
fine the term unti l the final pages . The way we shall be studying about computers is to build
mathematical models, which we shal l call machines, and then to study their l imitations by
analyzing the types of inputs on which they operate successfully. The collection of these
successful inputs we shall call the language of the machine, by analogy to humans who can
understand instructions given to them in one language but not another. Every time we intro
duce a new machine we wil l learn its language, and every time we develop a new language
we shall try to find a machine that corresponds to it. Thi s interplay between languages and
machines wi l l be our way of investigating problems and their potential solution by auto
matic procedures, often called algorithms, which we shall describe in a l ittle more detail
shortly.

The history of the subject of computer theory is interesting. It was formed by fortunate
coincidences, involving several seemingly unrelated branches of intellectual endeavor. A
small series of contemporaneous discoveries, by very dissimi lar people, separately moti
vated, flowed together to become our subject. Until we have established more of a founda
tion, we can only describe in general terms the different schools of thought that have melded
into this field.

The most fundamental component of computer theory is the theory of mathematical
logic . As the twentieth century started, mathematics was facing a dilemma. Georg Cantor
had recently invented the theory of sets (unions, intersections, inclusion, cardinality, etc .) .
But at the same time he had di scovered some very uncomfortable paradoxes-he created
things that looked l ike contradictions in what seemed to be rigorously proven mathematical
theorems. Some of his unusual findings could be tolerated (such as the idea that infinity
comes in different sizes), but some could not (such as the notion that some set is bigger than
the universal set) . This left a cloud over mathematics that needed to be resolved.

To some the obvious solution was to ignore the existence of set theory. Some others
thought that set theory had a disease that needed to be cured, but they were not quite sure
where the trouble was. The naive notion of a general "set" seemed quite reasonable and in
nocent. When Cantor provided sets with a mathematical notation, they should have become
mathematical objects capable of having theorems about them proven. Al l the theorems that
dealt with finite sets appeared to be unchallengeable, yet there were defini te problems with
the acceptabil ity of infinite sets . In other branches of mathematics the leap from the finite to
the infinite can be made without violating intuitive notions. Calculus is full of infinite sums
that act much the way finite sums do; for example, if we have an infinite sum of infinitesi
mals that add up to 3, when we double each term, the total wil l be 6. The Euclidean notion
that the whole is the sum of its parts seems to carry over to infinite sets as wel l ; for example,
when the even integers are united with the odd integers, the result i s the set of all integers.
Yet, there was definitely an unsettl ing problem in that some of Cantor\ "theorems" gave
contradictory results.

In the year 1 900, Dav id Hi lbert, as the greatest l iving mathematician, was invited to ad
dress an international congress to predict what problems would be important in the century
to come. Either due to his influence alone, or as a result of his keen analysis, or as a tribute

4 CHAPTER 1 Background

to his gift for prophecy, for the most part he was completely correct. The 23 areas he indi
cated in that speech have turned out to be the major thrust of mathematics for the twentieth
century. Although the invention of the computer itself was not one of his predictions, several
of his topics tum out to be of seminal importance to computer science.

First of all , he wanted the confusion in set theory resolved. He wanted a precise ax
iomatic system built for set theory that would parallel the one that Euclid had laid down for
geometry. In Euclid 's classic texts, each true proposition is provided with a rigorous proof in
which every line is either an axiom or follows from the axioms and previously proven theo
rems by a specified small set of rules of inference. Hi lbert thought that such an axiom sys
tem and set of rules of inference could be developed to avoid the paradoxes Cantor (and oth
ers) had found in set theory.

Second, Hilbert was not merely satisfied that every provable result should be true; he
also presumed that every true result was provable. And even more significant, he wanted a
methodology that would show mathematicians how to find this proof. He had in his mind a
specific model of what he wanted.

In the nineteenth century, mathematicians had completely resolved the question of solv
ing systems of l inear equations. Given any algebraic problem having a specified number of
linear equations, in a specified set of unknowns, with specified coefficients, a system had
been developed (cal led linear algebra) that would guarantee one could decide weather the
equations had any simultaneous solution at al l , and find the solutions if they did exist .

Thi s would have been an even more satisfactory situation than existed in Euclidean
geometry at the time. If we are presented with a correct Euclidean proposition relating l ine
segments and angles in a certain diagram, we have no guidance as to how to proceed to pro
duce a mathematically rigorous proof of its truth. We have to be creative-we may make
false starts, we may get completely lost, frustrated, or angry. We may never find the proof.
even if many simple, short proofs exist. Linear algebra guarantees that none of this wil l ever
happen with equations. As long as we are tireless and precise in fol lowing the rules, we must
prevai l , no matter how little imagination we ourselves possess. Notice how well this de
scribes the nature of a computer. Today, we might rephrase Hi lbert 's request as a demand for
a set of computer programs to solve mathematical problems. When we input the problem,
the machine generates the proof.

It was not easy for mathematicians to figure out how to follow Hilbert 's plan. Math
ematicians are usual ly in the business of creating the proofs themselves, not the proof-gener
ating techniques. What had to be invented was a whole field of mathematics that dealt with
algorithms or procedures or programs (we use these words interchangeably) . From this we
see that even before the first computer was ever built, some people were asking the question
of what programs can be written. It was necessary to codify the universal language in which
algorithms could be stated. Addition and circumscribing circles were certainly allowable
steps in an algorithm, but such activities as guessing and trying infinitely many possibil ities
at once were definitely prohibited. The language of algorithms that Hilbert required evolved
in a natural way into the language of computer programs.

The road to studying algorithms was not a smooth one. The first bump occurred in 1931

when Kurt Godel proved that there was no algori thm to provide proofs for all the true state
ments in mathematics. In fact, what he proved was even worse. He showed that either there
were some true statements in mathematics that had no proofs, in which case there were cer
tainly no algorithms that could provide these proofs, or else there were some false state
ments that did have proofs of their correctness, in which case the algorithm would be disas
trous.

Mathematic ians then had to retreat to the question of what statements do have proofs
and how can we generate these proofs? The people who worked on this problem. Alonzo

CHAPTER 1 Background 5

Church, Stephen Kleene, Emi l Post, Andrei Andreev ich Markov, John von Neumann, and
Alan Turing, worked mostly independently and came up with an extraordinari ly s imple
set of building blocks that seemed to be the atoms from which al l mathematical algo
rithms can be comprised. They each fashioned various (but simi lar) versions of a univer
sal model for all algorithms- what, from our perspective, we wou ld cal l a un iversal al
gorithm machine. Turing then went one step farther. He proved that there were
mathematically definable fundamental questions about the machine itself that the ma
chine could not answer.

On the one hand, this theorem completely destroyed all hope of ever achieving any part
of Hilbert 's program of mechanizing mathematics, or even of deciding which classes of
problems had mechanical answers. On the other hand, Turing 's theoretical model for an al
gorithm machine employing a very simple set of mathematical structures held out the possi
bil ity that a physical model of Turing's idea could actually be constructed. If some human
could figure out an algorithm to solve a particular class of mathematical problem, then the
machine could be told to follow the steps in the program and execute this exact sequence of
instructions on any inserted set of data (tirelessly and with complete precision).

The electronic discoveries that were needed for the implementation of such a dev ice in
cluded vacuum tubes, which just coincidentally had been developed recently for engineering
purposes completely unrelated to the possibil ity of building a calculating machine. Th is was
another fortuitous phenomenon of this period of history. All that was required was the impe
tus for someone with a vast source of money to be motivated to invest in thi s highly specula
tive project. It is practical ly sacrilegious to maintain that World War II had a serendipitous
impact on civil ization no matter how unintentional, yet it was exactly in this way that the
first computer was born- sponsored by the Al l ied mil itary to break the German secret code,
with Turing himself taking part in the construction of the machine.

What started out as a mathematical theorem about mathematical theorems-an abstrac
tion about an abstraction -became the single most practically appl ied invention since the
wheel and axle. Not only was this an ironic twist of fate, but it all happened within the re
markable span of IO years . It was as incredible as if a mathematical proof of the existence of
intel l igent creatures in outer space were to provoke them to land immediately on Earth.

Independently of all the work being done in mathematical logic, other fields of science
and social science were beginning to develop mathematical models to describe and analyze
difficult problems of their own. As we have noted before, there is a natural correspondence
between the study of models of computation and the study of l inguistics in an abstract and
mathematical sense. It is also natural to assume that the study of th inking and learning
branches of psychology and neurology-play an important part in understanding and facil i
tating computer theory. What is again of singular novelty is the historical fact that, rather
than turning their attention to mathematical models to computerize their own applications,
their initial development of mathematical models for aspects of their own science directly
aided the evolution of the computer itself. It seems that half the intel lectual forces in the
world were leading to the invention of the computer, while the other half were producing ap
pl ications that were desperate for its arrival .

Two neurophysiologists, Warren McCulloch and Walter Pitts , constructed a mathemati
cal model for the way in which sensory receptor organs in an imals behave. The mode l they
constructed for a "neural net" was a theoretical machine of the same nature as the one Turing
invented, but with certain limitations.

Modern linguists, some influenced by the prevalent trends in mathematical logic and
some by the emerging theories of developmental psychology, had been investigating a very
similar subject : What is language in general? How could primitive humans have developed
language? How do people understand i t? How do they learn it as chi ldren? What ideas can

6 CHAPTER I Background

be expressed, and in what ways? How do people construct sentences from the ideas in the ir
minds?

Noam Chomsky created the subject of mathematical models for the description of lan
guages to answer these questions . His theory grew to the point where it began to shed light
on the study of computer languages. The languages humans invented to communicate with
one another and the languages necessary for humans to communicate with machines shared
many basic properties. Although we do not know exactly how humans understand language,
we do know how machines digest what they are told. Thus, the formulations of mathematical
logic became useful to l inguistics, a previously nonmathematical subject. Metaphorical ly,
we could say that the computer then took on l inguistic abilit ies. It became a word processor,
a translator, and an interpreter of simple grammar, as well as a compiler of computer lan
guages. The software invented to interpret programming languages was applied to human
languages as wel l . One point that wil l be made clear in our studies is why computer lan
guages are easy for a computer to understand, whereas human languages are very difficult.

Because of the many influences on its development, the subject of this book goes by
various names. It includes three major fundamental areas: the theory of automata, the the
ory of formal languages, and the theory of Turing machines. This book is divided into
three parts corresponding to these topics.

Our subject is sometimes called computation theory rather than computer theory, be
cause the items that are central to it are the types of tasks (algorithms or programs) that can
be performed, not the mechanical nature of the physical computer itself. However, the name
"computation" is misleading, since it popularly connotes arithmetical operations which com
prise only a fraction of what computers can do. The term computation is inaccurate when de
scribing word processing, sorting, and searching and awkward in discussions of program
verification. Just as the term "number theory" is not l imited to a description of calligraphic
displays of number systems but focuses on the question of which equations can be solved in
integers, and the term "graph theory" does not include bar graphs, pie charts, and his
tograms, so too "computer theory" need not be limited to a description of physical machines
but can focus on the question of which tasks are possible for which machines.

We shall study different types of theoretical machines that are mathematical models for
actual physical processes. By considering the possible inputs on which these machines can
work, we can analyze their various strengths and weaknesses. We then arrive at what we
may bel ieve to be the most powerful machine possible. When we do, we shall be surprised to
find tasks that even it cannot perform. This will be our ultimate result, that no matter what
machine we build, there will always be questions that are simple to state that it cannot an
swer. Along the way, we shall begin to understand the concept of computability, which is
the foundation of further research in this field. This is our goal . Computer theory extends
further to such topics as complexity and verification , but these are beyond our intended
scope. Even for the topics we do cover-automata, languages, Turing machines-much
more is known than we present here . As intriguing and engaging as the field has proven so
far, with any luck the most fascinating theorems are yet to be discovered.

CHAPTER 2

Languages

1f LANGUAGES IN THE ABSTRACT

In English we distinguish the three different entities: letters, words, and sentences. There is a
certain paral lelism between the fact that groups of letters make up words and the fact that
groups of words make up sentences. Not all col lections of letters form a val id word, and not
all collections of words form a valid sentence. The analogy can be continued. Certain groups
of sentences make up coherent paragraphs, certain groups of paragraphs make up coherent
stories, and so on. What is more important to note is that, to a large degree, humans agree on
which sequences are valid and which are not. How do they do that?

This situation also exists with computer languages. Certain character strings are recog
nizable words (DO, IF, END . . .). Certain strings of words are recognizable commands.
Certain sets of commands become a program (with or without data) that can be compi led,
which means translated into machine commands.

To construct a general theory that unifies all these examples, it is necessary for us to
adopt a definition of a "language structure," that is, a structure in which the decis ion of
whether a given string of units constitutes a valid larger unit is not a matter of guesswork,
but is based on explicitly stated rules. For our purposes at this time, it is more important that
there be rules for recognizing whether an input is a valid communication than rules for deci
phering exactly what the communication means. It is important that the program compiles
whether or not it does what the programmer intended. If it compiles, it was a val id example
of a statement or communication in the language and the machine i s responsible for execut
ing the specified sequence of instructions. What we are looking for are ways of determining
whether the input is a valid communication . Just as with any set, it is important for a lan
guage to be able to tell who is in and who is out.

It is very hard to state all the rules for the language "spoken Engl ish," since many seem
ingly incoherent strings of words are actually understandable utterances. This is due to
slang, idiom, dialect, and our abi l ity to interpret poetic metaphor and to correct unintentional
grammatical errors in the sentences we hear. However, as a first step to defining a general
theory of abstract languages, it is right for us to insist on precise rules, espec ial ly s ince com
puters are not quite as forgiving about imperfect input commands as l i steners are about in
formal speech.

When we call our study the theory of formal languages, the word "formal" refers to
the fact that all the rules for the language are explicitly stated in terms of what strings of
symbols can occur. No l iberties are tolerated, and no reference to any "deeper understand-

7

8 CHAPTER i Languages

ing" is required. Language will be considered solely as symbols on paper and not as expres
sions of ideas in the minds of humans. In this basic model, language is not communication
among intel lects, but a game of symbols with formal rules. The term "formal" used here em
phasizes that it is the form of the string of symbols we are interested in, not the meaning.

We begin with only one finite set of fundamental units out of which we build structures.
We shall call th is the alphabet. A certain specified set of strings of characters from the al
phabet will be called the language. Those strings that are permissible in the language we
call words. The symbols in the alphabet do not have to be Latin letters, and the sole univer
sal requirement for a possible string is that it contains only finitely many symbols. The ques
tion of what it means to "specify" a set of strings is, in real ity, the major issue of this book.

We shall wish to al low a string to have no letters. This we call the empty string or null
string, and we shall denote it by the symbol A. No matter what "alphabet" we are consider
ing, the null string is always A and for all languages the null word, if it is a word in the lan
guage, is also A. Two words are considered the same if all their letters are the same and in
the same order, so there is only one possible word of no letters . For clarity, we usually do not
allow the symbol A to be part of the alphabet for any language.

There is a subtle but important difference between the word that has no letters. A, and
the language that has no words. We shall denote the language that has no words by the stan
dard symbol for the null set, <f>. It is not true that A is a word in the language <!> since this
language has no words at al l . If a certain language L does not contain the word A and we
wish to add it to L, we use the "union of sets" operation denoted by "+" to form L + I A f .
This language i s not the same as L. On the other hand, L + <!> is the same as L since no new
words have been added.

The fact that <t> is a language even though it has no words will tum out to be an impor
tant distinction . If we have a method for producing a language and in a certain instance the
method produces nothing, we can say either that the method failed miserably, or that it suc
cessfully produced the language <f>. We shal l face just such a s ituation later.

The most famil iar example of a language for us is English. The alphabet is the usual set
of letters plus the apostrophe and hyphen. Let us denote the whole alphabet by the Greek let
ter capi tal sigma:

l = !a h c d e :: - l
It is customary to use this symbol to denote whichever collection of letters form the alphabet
for the words in the language L. This is not because the Greek word for "alphabet" starts
with the letter sigma-the Greek word for alphabet is alphahetor and starts with an A. How
ever, this subject started as a branch of mathematics well before computers and desktop pub
lishing, and when researchers were looking for a symbol less ambiguous than A to denote al
phabet, they employed the special characters already found in mathematical printing: l and
r as well as <t> and A for other purposes. This has become a time-honored tradition. To some
it makes computer theory seem more mathematical and to some this is an advantage . Our in
vestigations will be completely mathematical with as l i ttle resort to i rrelevant symbolic com
plexity as possible.

Sometimes, we shal l list a set of elements separated by spaces and sometimes by com
mas. If we wished to be supermeticulous, we would also include in l the uppercase letters
and the seldom used diacritical marks.

We can now specify which strings of these letters are val id words in our language by list
ing them all , as is done in a dictionary. It is a long l ist, but a finite l ist, and it makes a perfectly
good definition of the language. If we call this language ENGLISH-WORDS. we may write

ENGLISH-WORDS = I all the words in a standard dictionary I

Languages in the Abstract 9

In the preceding l ine, we have intentionally mixed mathematical notation (the equal sign
and the braces denoting a set) and a prose phrase. This results in perfectly understandable
communication; we take this l iberty throughout. All of our investigations wi l l be agglomer
ates of infonnal discussion and precise symbolism. Mathematical symbol i sm is of value
only when it is somehow better than seeing the same thought expressed in human language,
for example, when it is more understandable, or more concise in cases where space is a
problem, or when it points out similarities between items whose resemblance is otherwise
obscure, and so on. The bel ief that mathematical symbolism i s more rigorous and therefore
more accurate than English prose is quite ridiculous since every mathematical symbol was
defined in English in the first place and every mathematical formula can be translated into
Engl ish if need be. There are two problems with pure mathematical symbolism: It alienates
some who for want of familiarity could otherwise understand the concepts being expressed,
and it often gives one a false sense of precis ion -many, many false proofs have been pub
l ished in mathematics journals because their notation was so opaque that it confused the edi
tors. Since the goal in a textbook i s not to minimize the space required to explain concepts
but to maximize the chance of understanding, we shal l find l i ttle use for complex sym
bol ism.

Only a language with finitely many words can be defined by an al l- inclusive l i st called a
dictionary. If we tried to define a language of infinitely many words by an infinite l i st , we
would arrive at the problem of the impossibil ity of searching this list (even if it is arranged
in alphabetical order) to detennine whether a given word is in the language or not. But even
though there are tricks to overcome the searching problem (as we shal l soon see), we do not
al low the possibil ity of defining a language by an infinite dictionary. How could we be
handed an infinite dictionary? It would have to be described to us in some manner, but then
the description and not the dictionary would be the language definition.

Returning to the language of ENGLISH-WORDS, we note that th is is not what we usu
ally mean by "English." To know all the words in a finite language l ike English does not im
ply the abi l i ty to create a viable sentence.

Of course, the language ENGLISH-WORDS, as we have specified it, does not have any
grammar. If we wish to make a fonnal definition of the language of the sentences in English,
we must begin by saying that th is time our basic alphabet i s the entries in the dictionary. Let
us cal l this alphabet r, the capital gamma:

r = I the entries in a standard dictionary, plus a blank space, plus the
usual punctuation marks l

In order to specify which strings of elements from r produce val id words in the lan
guage ENGLISH-SENTENCES, we must rely on the grammatical rules of Engl ish. This is
because we could never produce a complete l i st of al l possible words in this language; that
would have to be a l i st of all val id Engl ish sentences. Theoretical ly, there are infinitely many
different words in the language ENGLISH-SENTENCES. For example,

I ate one apple.
I ate two apples.
1 ate three apples.

The trick of defining the language ENGLISH-SENTENCES by l i sting al l the rules of
Engli sh grammar al lows us to give a finite description of an infinite language.

If we go by the rules of grammar only, many strings of alphabet letters seem to be valid
words; for example , "I ate three Tuesdays." In a formal language we must allow this string. It
is grammatically correct; only its meaning reveals that it i s ridiculous. Meaning is something

10 CHAPTER 2 Languages

we do not refer to in fonnal languages. As we make clear in Part II of this book, we are pri
marily interested in syntax alone, not semantics or diction. We shall be l ike the bad teacher
who is interested only in the correct spelling, not the ideas in a homework composition.

In general , the abstract languages we treat will be defined in one of two ways. Either
they wil l be presented as an alphabet and the exhaustive l i st of all valid words, or else they
wil l be presented as an alphabet and a set of rules defining the acceptable words. The set of
rules defining English is a grammar in a very precise sense. We shall take a much more lib
eral view about what kinds of "sets of rules" define languages.

Earlier we mentioned that we could define a language by presenting the alphabet and
then specifying which strings are words. The word "specify" is trickier than we may at first
suppose. Consider this example of the language called MY-PET. The alphabet for this lan
guage is

{ a c d g o ti

There is only one word in this language, and for our own perverse reasons we wish to
specify it by this sentence:

If the Earth and the Moon ever coll ide, then

MY-PET = I cat I

but, if the Earth and the Moon never collide, then

MY-PET = I dog I

One or the other of these two events wi l l occur, but at this point in the history of the uni
verse, i t is impossible to be certain whether the word dog is or i s not in the language MY
PET.

This sentence is therefore not an adequate specification of the language MY-PET be
cause it is not useful . To be an acceptable specification of a language, a set of rules must en
able us to decide, in a finite amount of time, whether a given string of alphabet letters is or is
not a word in the language. Notice also that we never made it a requirement that al l the let
ters in the alphabet need to appear in the words selected for the language. English itself used
to have a letter called "eth" that has thankfully disappeared. We could add it back to the al
phabet of letters and leave the language ENGLISH-WORDS unchanged.

V INTRODUCTION TO DEFINING LANGUAGES

The set of language-defining rules can be of two kinds. They can ei ther tel l us how to test a
string of alphabet letters that we might be presented with, to see if it is a val id word, or they
can tel l us how to construct all the words in the language by some clear procedures. We in
vestigate this distinction further in the next chapter.

Let us consider some simple examples of languages. If we start with an alphabet having
only one letter, the letter x,

I = { x i
we can define a language by saying that any nonempty string of alphabet characters is a
word:

L 1 = { x xx .x.xx xxxx . . . }

We could write this in an alternate fonn:

L1 = I x' for n =I 2 3 . . . }

Introduction to Defining Languages 1 1

where we have identified letter juxtaposition with algebraic multipl ication . We shall see that
this is sometimes a messy business.

Because of the way we have defined it, this language does not include the null string.
We could have defined it so as to include A, but we did not.

In this language, as in any other, we can define the operation of concatenation, in
which two strings are written down s ide by side to form a new longer string. In this example,
when we concatenate the word xxx with the word xx, we obtain the word xxxxx. The words
in this l anguage are c learly analogous to the positive integers, and the operation of concate
nation is analogous to addition :

x" concatenated with :(" is the word x'' + m
It wil l often be convenient for us to designate the words in a given language by new sym
bols, that is, other than the ones in the alphabet. For example, we could say that the word xxx
is cal led a and that the word xx is h. Then to denote the word formed by concatenating a and
h, we write the letters side by side :

ah = xxxxx

It is not always true that when two words are concatenated they produce another word
in the language. For example, if the language is

L2 = Ix xxx xx.xxx xxxxxxx . . . }
= {.x"dct I
= { x2" + 1

for n = 0 2 3 . . . }

then a = xxx and h = xxxxx are both words in L2, but their concatenation ah = xxxxxxxx i s
not in L2• Notice that the alphabet for L2 i s the same as the alphabet for L1• Notice also the
liberty we took with the middle definition.

In these simple examples, when we concatenate a with h, we get the same word as when
we concatenate h with a. We can depict this by writing

ah = ha

But this relationship does not hold for all languages. In Engl ish when we concatenate
"house" and "boat," we get "houseboat," which is indeed a word but distinct from
"boathouse," which i s a different thing-not because they have different meanings, but be
cause they are different words. "Merry-go-round" and "carousel" mean the same thing, but
they are different words.

EXAMPLE

Consider another language. Let us begin with the alphabet:

I= {O 1 2 3 4 5 6 7 8 91

and define the set of words :

L3 = I any finite string of alphabet letters that does not start with the letter zero l
This language L3 then looks like the set of all positive integers written in base I 0:

L3 = I 1 2 3 4 5 6 7 8 9 10 11 12 . . . }

We say "looks like" instead of "is" because L3 is only a formal collection of strings of sym
bols. The integers have other mathematical properties. If we wanted to define the language
L3 so that it includes the string (word) 0, we could say :

12 CHAPTER 2 Languages

L_, = I any finite string of alphabet letters that, if it starts with a 0, has no
more letters after the first l •

The box , •, that ends the l ine above is an end marker. When we present an example of
a point in the text, we shal l introduce it with the heading:

EXAMPLE

and finish it with an end marker •· This will al low us to keep the general discussion separate
from the specific examples. We shall use the same end marker to denote the end of a defini
tion or a proof.

DEFINITION

PROOF

The old-fashioned end marker denoting that a proof is finished is Q.E.D. This box serves the
same purpose.

DEFINITION

We define the function length of a string to be the number of letters in the string . We write
this function using the word "length." For example, if a = x.u.r in the language L 1 , then

length(a) = 4

If c = 428 in the language L_P then

length(c) = 3

Or we could write directly that in L 1
length(x.ux) = 4

and in L_,

length(428) = 3

In any language that includes the empty string A, we have

length(A) = 0

For any word w in any language, if length(w) = 0, then w = A.

We can now present yet another definition of Ly

L_, = I any fin ite string of alphabet letters that, if it has
length more than I , does not start with a 0 I

•

Introduction to Defining Languages 13

This is not necessari ly a better definition of L3, but it does i l lustrate that there are often dif
ferent ways of specifying the same language.

There is some inherent ambiguity in the phrase "any finite string," since it is not clear
whether we intend to include the null string (A, the string of no letters) . To avoid this ambi
guity, we shall always be more careful . The language L3 does not include A, since we in
tended that that language should look l ike the integers, and there is no such thing as an inte
ger with no digits. On the other hand, we may wish to define a language l ike L1 but that does
contain A:

L4 = { A x .xx xxx xxxx . . . }
= { ,r' for n = O I 2 3 . . . I

Here we have said that x0 = A, not x0 = I as in algebra. In this way, .x'' is always the string of
n x's. This may seem like belaboring a trivial point, but the significance of being careful
about this distinction will emerge over and over again.

In L3 i t is very important not to confuse 0, which is a string of length I , with A. Re
member, even when A is a word in the language, it is not a letter in the alphabet.

DEFINITION

Let us introduce the function reverse. If a is a word in some language L, then reverse(a) is
the same string of letters spelled backward, called the reverse of a, even if this backward
string is not a word in L. •

EXAMPLE

But let us also note that in L3

which is not a word in L3•

DEFINITION

reverse(xxx) = xxx
reverse(xxxxx) = xxxxx

reverse(1 45) = 54 1

reverse(l 40) = 04 1

Let us define a new language called PALINDROME over the alphabet

I = l a h i

PALINDROME = I A, and all strings x such that reverse(x) = x }

I f we begin l isting the elements i n PALINDROME, we find

PALINDROME = I A a h aa hh aaa aha hah hhh aaaa ahha . . . }

•

•

The language PALINDROME has interesting properties that we shal l examine later.
Sometimes, when we concatenate two words in PALINDROME, we obtain another

word in PALINDROME such as when ahha is concatenated with ahhaahha . More of
ten, the concatenation is not i tself a word in PALINDROME, as when aa is concate
nated with aha. Discovering when th is does happen i s left as a problem at the end of th is
chapter.

14 CHAPTER 2 Languages

r.Qr KLEENE CLOSURE

DEFINITION

Given an alphabet l, we wish to define a language in which any string of letters from l i s a
word, even the null string. This language we shall call the closure of the alphabet. It is de
noted by writing a star (an asterisk) after the name of the alphabet as a superscript :

l*

This notation is sometimes known as the Kleene star after the logician who was one of the
founders of this subject. •

EXAMPLE

If l = { x } , then

EXAMPLE

If l = I 0 I I . then

l* = L4 = { A x xx xxx . . . I

l* = I A O 00 0 1 1 0 1 1 000 00 1 . . . I

EXAMPLE

If l = I a h c I . then

•

•

l * = I A a h c aa ah ac ha hh he ca ch cc aaa . . . I •

We can think of the Kleene star as an operation that makes an infinite language of
strings of letters out of an alphabet. When we say "infinite language," we mean infinitely
many words, each of.finite length.

Notice that when we wrote out the first several words in the language, we put them in
size order (words of shortest length first) and then l i sted all the words of the same length al
phabetically. We shall usual ly fol low this method of sequencing a language. This ordering i s
cal led lexicographic order. In a dictionary, the word aard\'ark comes before cat : in lexico
graphic ordering i t i s the other way. Whereas both orderings are useful for the problem of
searching for a given word, in the l i st for infinite sets lexicographic ordering has some dis
t inct advantages. In the language just above, there are infinite ly many words that start with
the letter a and they all come alphabetical ly before the letter h. When l i sted in the usual al
phabetical order, the first five words of this language are A- a- aa- aaa- aaaa and the
three-dot el l ipsis " . . . " would not inform us of the real nature of the language.

We shal l now general ize the use of the star operator to sets of words, not just sets of al
phabet letters.

DEFINITION

If S is a set of words, then by S* we mean the set of all finite strings formed by concatenat
ing words from S, where any word may be used as often as we like, and where the null string
is al so incl uded. •

Kleene Closure 15

Let us not make the mistake of confusing the two languages

ENGLISH-WORDS* and ENGLISH-SENTENCES

The first language contains the word butterbutterhutterhat, whereas the second does not. This is
because words in ENGLISH-WORDS* are the concatenate of arbitrari ly many words from
ENGLISH-WORDS, while words in ENGLISH-SENTENCES are restricted to juxtaposing
only words from ENGLISH-WORDS in an order that complies with the rules of grammar.

EXAMPLE

If S = { aa b } , then

S* = I A plus any word composed of factors of aa and b l
= I A plus all strings of a 's and h's in which the a 's occur in even clumps l
= I A h aa bb aah baa hhb aaaa aabh haah hhaa hhhh

aaaah aahaa aahhh baaaa haahh hhaah hhbaa hhhhh . . . }

The string aahaaah is not in S* since it has a clump of a 's of length 3 . The phrase "'clump of
a 's" has not been precisely defined, but we know what it means anyway. •

EXAMPLE

Let S = I a ah f . Then

S* = I A plus any word composed of factors of a and ab }
= { A plus all strings of a 's and h 's except those that start with h and

those that contain a double b I
= I A a aa ab aaa aah aha aaaa aaab aaba ahaa ahah aaaaa

aaaab aaaha aahaa aabab abaaa ahaab ahaha . . . I

By the phrase "double b," we mean the substring bb. For each word in S* every h must
have an a immediately to its left. The substring bb is impossible, as is starting with a h. Any
string without the substring bb that begins with an a can be factored into terms of (ah) and (a) .

The middle definition of this language is not an obvious consequence of the definition
of * , but it can be deduced in this case. •

To prove that a certain word is in the closure language S*, we must show how it can be
written as a concatenate of words from the base set S.

In the last example, to show that abaab is in S* , we can factor it as fol lows :

(ah)(a) (ah)
These three factors are all in the set S; therefore, their concatenation is in S* . Th is is the on ly
way to factor this string into factors of (a) and (ab) . When this happens, we say that the fac
toring is unique.

Sometimes, the factoring is not unique. For example, consider S = I xx xxx I . Then

S* = { A and all strings of more than one x I
= V' for n = 0 2 3 4 5 . . . I

= { A xx xxx xxxx xxxxx x.rxx.r.r . . . I

Notice that the word x is not in the language S* . The string .r.r.rx.r.r.r is in this c losure for
any of these three reasons. It is

(xx)(xx)(xxx) or (.u)(xxx)(xx) or (. r.r.r)(. u)(. r. r)
Also, x6 is either x2x2x2 or else x\ .. 1 .

16 CHAPTER 2 Languages

It is important to note here that the parentheses, () , are not letters in the alphabet. but
are used for the sole purpose of demarcating the ends of factors. So, we can write
.r.u.r.r = (.r.r)(.r.r.r) . In cases where parentheses are letters of the alphabet,

I = J x () l

length(x.r.u.r) = 5

but Iength((x.r)(.r.r.r)) = 9

Let us suppose that we wanted to prove mathematical ly that th is set S* contains a l l .\,,
for n ¥- 1 . Suppose that somebody did not bel ieve th is and needed conv incing. We could pro
ceed as fol lows.

First, we consider the possibi l ity that there were some powers of .r that we could not
produce by concatenating factors of (xx) and (xxx) .

Obviously, s ince we can produce x4, x5 , x6, the examples of strings that we cannot pro
duce must be large. Let us ask the question, "What is the smal lest power of .r (larger than I)
that we cannot form out of factors of xx and xxx?" Let us suppose that we start making a l i st
of how to construct the various powers of x. On th is l i st we write down how to form .r2 , .r-1 ,
.\A, x', and so on. Let us say that we work our way successfu l ly up to xn.i, but then we cannot
figure out how to form x374 • We become stuck, so a friend comes over to us and says. "Let
me see your l i st. How did you form the word x172? Why don 't you j ust concatenate another
factor of xx in front of this and then you wi l l have the word x174 that you wanted." Our friend
is right, and this story shows that whi le writ ing this l i st out, we can never real ly become
stuck. This d iscussion can eas i ly be general ized into a mathematical proof of the fact that S*
contains all powers of x greater than I .

We have just establ ished a mathematical fact by a method of proof that we have rarely
seen in other courses. I t i s a proof based on showing that something exists (the factoring) be
cause we can describe how to create i t (by adding .r.r to a prev ious case) . What we have de
scribed can be formalized into an algorithm for producing al l the powers of .r from the fac
tors .r.r and .r.r.r. The method is to begin with .r.r and x.r.r and, when we want to produce .\''. we
take the sequence of concatenations that we have already found wi l l produce .\,, - � , and we
concatenate .r.r onto that.

The method of prov ing that something exists by showing how to create i t is called proof
by constructive algorithm. This is the most important tool in our whole study. Most of the
theorems in this book wi l l be proven by the method of constructive algorithm. It i s , in gen
eral , a very satisfy ing and useful method of proof, that is, prov ided that anybody is interested
in the objects we are constructing. We may have a difficult time sel l i ng powers of .r broken
into factors of .r.r and .r.r.r.

Let us observe that if the alphabet has no letters , then its closure is the language wi th the
null string as its only word, because A i s always a word in a Kleene closure. Symbol ical ly,
we write

This i s not the same as

If I = 0 (the empty set),
then I* = ! A l

I f S = ! A l .
then S* = ! A l

which is a l so true but for a different reason, that i s , AA = A.
The Kleene c losure always produces an infini te language unless the underlying set was

one of the two examples above. Unless we ins ist on cal l ing Kleene c losure a very forgiving

Kleene Closure 1 7

rule of grammar (anything goes), we have introduced a new method for defining languages
that works only for infinite languages.

The Kleene closure of two sets can end up being the same language even if the two sets
that we started with were not.

EXAMPLE

Consider the two languages

S = l a h ab } and T = l a b bb l

Then both S* and T* are languages of all strings of a 's and h 's since any string of a 's and h's
can be factored into syllables of either (a) or (h) , both of which are in S and T. •

If for some reason we wish to modify the concept of closure to refer to only the con
catenation of some (not zero) strings from a set S, we use the notation + instead of * . For
example,

If I = I x } , then I+ = I x xx xxx . . . }

which is the language L1 that we discussed before.
If S is a set of strings not including A, then s+ is the language S* without the word A.

Likewise, if T is a set of letters, then y+ means the same as T* , except that it can never mean
A. If S is a language that does contain A, then s+ = S* .

This "plus operation" is sometimes called positive closure.
If S = { xx xxx } , then s+ is the same as S* except for the word A, which is not in s + .

This is not to say that s+ cannot, in general , contain the word A. I t can, but only on the con
dition that S contains the word A initially. In this case, A is in s + , since it is the concatena
tion of some (actually one) word from S (A i tself) . Anyone who does not think that the null
string is confusing has missed something. It is already a problem, and it gets worse later.

EXAMPLE

If S is the set of three words

then

s+ = { w l w2 w.1 w l w l w l w2
w3w 1 w3w2 w3w3 w 1 w1w 1

no matter what the words wl ' w2, and w3 are.

w1w3 w2w1 w2w2
W I W I W2 • • . }

"' \.1.' 2 .1

If w 1 = aa, w2 = hbb, w3 = A, then s+ = { aa bhh A aaaa aahhh . . . }

The words in the set S are l isted above i n the order corresponding to their w-sequenc ing,
not in the usual lex icographic or s ize-alphabetical order. •

What happens if we apply the closure operator twice? We start with a set of words S and
look at its closure S* . Now suppose we start with the set S* and try to form its closure,
which we denote as

(S*)* or S**

18 CHAPTER 2 Languages

If S is not the trivial empty set or the set consisting solely of A, then S* is infinite, so we are
taking the closure of an infinite set. This should present no problem s ince every string in the
c losure of a set is a combination of only fini te ly many words from the set. Even if the set S
has infini tely many words, we use only finitely many at a time. This is the same as wi th ordi
nary arithmetic expressions, which can be made up of only fini tely many numbers at a t ime
even though there are infinitely many numbers to choose from.

From now on we shall let the c losure operator apply to infini te sets as well as fini te sets.

THEOREM 1

For any set S of strings we have S* = S** .

CONVINCING REMARKS
First, let us i l lustrate what this theorem means . Say, for example, that S = I a h) . Then S*
is clearly all strings of the two letters a and h of any fini te length whatsoever. Now what
would it mean to take strings from S* and concatenate them? Let us say we concatenated
(aaha) and (haaa) and (aaha) . The end result (aahahaaaaaha) is no more than a concatena
tion of the letters a and h, just as wi th al l elements of S*.

aahahaaaaaha
= (aaha)(haaa) (aaha)
= [(a) (a)(h) (a)] [(h)(a)(a)(a)] [(a)(a)(h)(a)]
= (a)(a)(h) (a)(h)(a)(a)(a)(a)(a)(h) (a)

Let us consider one more il lustration. If S = I aa hhh } , then S* is the set of all strings
where the a 's occur in even clumps and the h's in groups of 3, 6, 9 Some words in S* are

aahhhaaaa hhh hhhaa

If we concatenate these three elements of S*, we get one big word in S**, which is again in S*.

aahhhaaaahhhbbbaa
= [(aa)(hhh)(aa)(aa) J [(bhh)] [(hhh)(aa)]

This theorem expresses a trivial but subtle point . I t i s analogous to saying that if people are
made up of molecules and molecules are made up of atoms, then people are made up of
atoms .

PROOF

Every word in S** is made up of factors from S*. Every factor from S* i s made up of factors
from S. Therefore, every word in S** is made up of factors from S. Therefore, every word in
S** i s a lso a word in S* . We can write this as

S** C S*

using the symbol "C" from set theory, which means "is contained in or equal to."
Now, in general , it is true that for any set A we know that A C A * , since in A* we can

choose as a word any one factor from A. So if we consider A to be our set S*, we have

S* c S**

Together, these two inclusions prove that

S* = S** •

Problems 19

1} PROBLEMS

1. Consider the language S*, where S = { a h) .
How many words does this language have of length 2? of length 3 ? of length n?

2. Consider the language S*, where S = (aa h) .
How many words does this language have of length 4? of length 5 ? of length 6? What
can be said in general?

3. Consider the language S* , where S = { ah ha) . Write out al l the words in S* that have
seven or fewer letters. Can any word in this language contain the substrings aaa or hhh?
What is the smallest word that is not in this language?

4. Consider the language S*, where S = { a ah ha l . Is the string (ahhha) a word in this
language? Write out all the words in this language with six or fewer letters. What is an
other way in which to describe the words in this language? Be careful , this is not simply
the language of all words without hhh.

5. Consider the language S*, where S = { aa aha baa) . Show that the words aahaa,
haaahaaa, and haaaaahabaaaa are all in this language. Can any word in this language
be interpreted as a string of elements from S in two different ways? Can any word in this
language have an odd total number of a 's?

6. Consider the language S*, where S = { xx xxx) . I n how many ways can x 19 be written
as the product of words in S? This means: How many different factorizations are there
of x1 9 into xx and xxx?

7. Consider the language PALINDROME over the alphabet { a h I .

(i) Prove that if x is in PALINDROME, then so is .\'' for any n.
(i i) Prove that if y1 i s in PALINDROME, then so is y.
(i i i) Prove that if z" is in PALINDROME for some n (greater than 0), then z itself is

also.
(iv) Prove that PALINDROME has as many words of length 4 as it does of length 3.
(v) Prove that PALINDROME has as many words of length 2n as it has of length

2n - I . How many words is that?

8. Show that if the concatenation of two words (neither A) in PALINDROME is also a
word in PALINDROME, then both words are powers of some other word; that is , if x

and y and xy are al l in PALINDROME, then there is a word z such that x == :" and y == z"'
for some integers n and m (maybe n or m = I) .

9. (i) Let S == { ah hh I and let T = { ah hh hhhh I . Show that S* == T* .
(i i) Let S == { ah hh I and let T == { ah hh hhh I . Show that S* � T* , but that

S* C T* .
(i i i) What principle does this i l lustrate?

10. How does the si tuation in Problem 9 change if we replace the operator * with the opera
tor + as defined in thi s chapter? Note the language s+ means the same as S* , but does
not al low the "concatenation of no words" of S.

1 1 . Prove that for al l sets S,

(i) (S +)* = (S*)*
(i i) (S ') ' == 5 +
(i i i) Is (S*) + == (S+)* for al l sets S?

20 CHAPTER 2 Languages

12. Let S = I a bb bah abaab f . Is abbabaabab in S*? Is abaabbabbaabb? Does any
word in S* have an odd total number of h's?

13. S uppose that for some language L we can always concatenate two words in L and get
another word in L if and only if the words are not the same. That is. for any words w 1
and w2 i n L where w 1 ¥ w2, the word w 1 w2 is in L but the word w 1 w 1 i s not in L . Prove
that this cannot happen.

14. Let us define

(S**)* = S***

Is th i s se t bigger than S*? Is i t bigger than S?

15. Let w be a string of letters and le t the language T be defined as adding w to the language
S. Suppose further that T* = S*.

(i) Is i t necessari l y true that w E S?
(i i) Is it necessari ly true that w E S*?

16. Give an example of a set S such that the language S* has more s ix- letter words than
seven-letter words. Give an example of an S* that has more six- letter words than eight
letter words. Does there exist an S* such that it has more six- letter words than twelve
letter words?

17. (i) Consider the language S*. where S = { aa ah ha bb f . Give another description
of this language .

(i i) Give an example of a set S such that S* only contains a l l possible strings of a 's and
h 's that have length divis ible by 3 .

(i i i) Let S b e a l l strings o f a 's and h 's wi th odd length . What i s S*?

18. (i) If S = I a b I and T* = S*. prove that T must contain S.
(i i) Find another pair of sets S and T such that if T* = S*. then S C T.

19. One student suggested the fol lowing algorithm to test a string of a's and h 's to see if i t is
a word in S*. where S = I aa ha aha abaah f . Step I , cross off the longest set of
characters from the front of the string that is a word in S. Step 2. repeat step I unt i l i t i s
no longer possible. If what remains is the string A. the original string was a word in S* .
If what remains is not A (th i s means some letters are left, but we cannot find a word in S
at the beginning), the original string was not a word in S* . Find a string that disproves
th is algorithm.

20. A language L 1 is smal ler than another language L
2

if L 1 C L2 and L 1 ¥ L2• Let T be any
language closed under concatenation; that is , if t 1 E T and t2 E T. then t 1 t2 is also an ele
ment of T. Show that if T contains S but T ¥ S*, then S* is smal ler than T. We can sum
marize th is by saying that S* i s the smallest closed language containing S.

CHAPTER 3

Recursive
Definitions

� A NEW METHOD FOR DEFINING LANGUAGES

One of the mathematical tools that we shal l find extremely useful in our study, but which is
largely unfami l iar in other branches of mathematics, i s a method of defining sets called re
cursive definition. A recursive definition i s characteristical ly a three-step process. First, we
specify some basic objects in the set. Second, we give rules for constructing more objects in
the set from the ones we already know. Third, we declare that no objects except those con
structed in th is way are al lowed in the set.

Let us take an example. Suppose that we are trying to define the set of pos itive even in
tegers for someone who knows about arithmetic, but has never heard of the even numbers.
One standard way of defining this set is

EVEN is the set of al l positive whole numbers divisible by 2.

Another way we might try i s th is :

EVEN is the set of al l 211 where n = I 2 3 4

The third method we present is sneaky, by recurs ive definit ion:

The set EVEN i s defined by these three rules:

Rule I 2 is in EVEN.

Rule 2 If x is in EVEN, then so is x + 2 .

Rule 3 The only elements in the set EVEN are those that can be produced from the
two ru les above.

The last rule above i s complete ly redundant. We state i t th is once only for pedagogical rea
sons, but it is taci t ly presumed in a l l recursive defini tions.

There is a reason that the third defin it ion is less popular than the others: I t i s much
harder to use in most practical appl ications.

For example , suppose that we wanted to prove that 14 i s in the set EVEN. To show this
using the first definition, we div ide 14 by 2 and find that there is no remainder. Therefore. i t
i s in EVEN. To prove that 14 i s in EVEN by the second definition, we have to somehow
come up with the number 7 and then. since 1 4 = (2) (7) . we know that it is in EVEN. To

2 1

22 CHAPTER 3 Recursive Definitions

prove that 14 is in EVEN using the recursive definition is a lengthier process. We could pro
ceed as below:

By Rule I , we know that 2 i s in EVEN.

Then by Rule 2, we know that 2 + 2 = 4 is also in EVEN.

Again by Rule 2, we know that s ince 4 has just been shown to be in EVEN, 4 + 2 = 6 i s
a lso in EVEN.

The fact that 6 i s in EVEN means that when we apply Rule 2, we deduce that 6 + 2 = 8
is in EVEN, too.

Now applying Rule 2 to 8, we derive that 8 + 2 = I 0 i s another member of EVEN.

Once more applying Rule 2, this t ime to I O, we infer that I O + 2 = 12 is in EVEN.

And, at last, by applying Rule 2, yet again , to th� number I 2, we conclude that
12 + 2 = 14 is, indeed, in EVEN.

Pretty horrible. This , however, is not the on ly recursive definition of the set EVEN. We
might use:

The set EVEN i s defined by these two rules:

Rule I 2 i s in EVEN.

Rule 2 l f .r and y are both in EVEN, then so is

x + y

I t should be understood that we can apply Rule 2 also to the case where .r and y stand for the
same number.

We can now prove that 1 4 is in EVEN in fewer steps :

By Rule I 2 is in EVEN.

B y Rule 2 .r = 2, y = 2 ---+ 4 is in EVEN.

By Rule 2 .r = 2. y = 4 ---+ 6 is in EVEN.

By Rule 2 .r = 4, y = 4 ---+ 8 is in EVEN.

By Rule 2 .r = 6, y = 8 ---+ 1 4 is in EVEN.

This is a better recursive defi ni tion of the set EVEN because it produces shorter proofs
that elements are in EVEN. The set EVEN, as we have seen, has some very fine definit ions
that are not recursive. In later chapters, we shal l be interested in certain sets that have no bet
ter defi ni tion than the recursive one.

Before leaving this example, let us note that al though the second recursive definit ion is
sti l l harder to use (in prov ing that given numbers are even) than the two nonrecurs ive defini
tions, i t does have some advantages . For instance, suppose we want to prove that the sum of
two numbers in EVEN is also a number in EVEN. This is a triv ia l concl usion from the sec
ond recursive defini tion, but to prove thi s from the first defini tion is decidedly harder.
Whether or not we want a recursive definition depends on two things: one, how easy the
other possible defini tions are to understand; and two, what types of theorems we may wish
to prove about the set.

EXAMPLE

The fol lowing is a recursive defini tion of the posit ive integers :

Rule I I is in INTEGERS.

Rule 2 If .r is in INTEGERS, then so is .r + I .

A New Method for Defining Languages 23

If we wanted the set INTEGERS to be defined to include both the positive and negative inte
gers, we might use the following recursive definition:

Rule 1 1 is in INTEGERS.

Rule 2 If both x and y are in INTEGERS, then so are x + y and x - y.

Since l - l = 0 and, for all positive x, 0 - x = -x, we see that the negative integers and
zero are all included in this definition. •

EXAMPLE

If we wanted a recursive definition for all the positive real numbers, we could try a definition
of the form:

Rule l x is in POSITIVE.

Rule 2 If x and y are in POSITIVE, then so are x + y and xy.

But the problem is that there is no smallest positive real number x on which to bui ld the rest
of the set. We could try :

Rule 1 If x is in INTEGERS, "." is a decimal point, and y is any finite string of digits,
even one that starts with some zeros, then x.y is in POSITIVE.

This definition for POSITIVE has two problems. One, it does not generate all real num
bers (e .g . , 'Tl' i s not included because of its infinite length) . Two, the definition is not re
cursive since we did not use known elements of POSITIVE to create new elements of
POSITIVE; we used an element of INTEGERS and a string of digits instead. We could
try :

Rule l 1 is in POSITIVE.

Rule 2 If x and y are in POSITIVE, then so are x + y, x*y , and xly.

This does define some set, but it is not the set of positive real numbers (see Problem 1 7 at
the end of this chapter). •

Let us consider the way polynomials are usually defined:

A polynomial is a finite sum of terms, each of which is of the form a real number
times a power of x (that may be x0 = I) .
Now let us consider a recursive definition that is designed for people who know alge

braic notation, but do not know what a polynomial is :

The set POLYNOMIAL is defined by these three rules:

Rule I Any number is in POLYNOMIAL.

Rule 2 The variable x is in POLYNOMIAL.

Rule 3 If p and q are in POLYNOMIAL, then so are p + q, p - q, (p), and pq.
The symbol pq, which looks l ike a concatenation of alphabet letters, in algebraic nota

tion refers to multiplication.
Some sequence of appl ications of these rules can show that 3x2 + 7x - 9 is in POLY

NOMIAL:

By Rule I 3 is in POLYNOMIAL.

By Rule 2 x is in POLYNOMIAL.

24 CHAPTER 3 Recursive Definitions

By Rule 3 (3)(.x) is in POLYNOMIAL; cal l it 3.r.

By Rule 3 (3.x)(x) is in POLYNOMIAL; call it 3x2.

By Rule I 7 is in POLYNOMIAL.

By Rule 3 (7)(x) is in POLYNOMIAL.

By Rule 3 3x2 + 7x is in POLYNOMIAL.

B y Rule 1 - 9 is in POLYNOMIAL.

By Rule 3 3x2 + 7x + (- 9) = 3x2 + 7x - 9 is in POLYNOMIAL.

In fact, there are several other sequences that could also produce this result .
There are some advantages to this definition as wel l as the evident disadvantages . On

the plus s ide, it i s immediately obvious that the sum and product of polynomials are both
themselves polynomials . This is a l i ttle more compl icated to see if we had to prov ide a proof
based on the c lassical definit ion.

Suppose for a moment that we were studying calcu lus and we had j ust proven that the
derivative of the sum of two functions is the sum of the derivatives and that the derivative of
the product f:!? is f'g + Jg ' . As soon as we prove that the derivative of a number is 0 and that
the derivative of x is I , we have automatica l ly shown that we can differentiate all polynomi
a ls . This becomes a theorem that can be proven directly from the recursive definit ion. It is
true that we do not then know that the derivative of _,,, is 11.r" - 1 • but we do know that it can
be calculated for every n .

In this way, we can prove that i t is possible to differentiate al l polynomials without giv
ing the best algorithm to do it . S ince the topic of this book i s computer theory, we are very
interested in proving that certain tasks are possible for a computer to do even if we do not
know the best algorithms by which to do them. I t i s for this reason that recursive defin i tions
are important to us.

Before proceeding to more serious matters. let us note that recursive definit ions are not
complete ly alien to us in the real world . What is the best defini tion of the set of people who
are descended from Henry VII I? ls i t not:

Rule I The chi ldren of Henry VI I I are a l l elements of DESCENDANTS.

Rule 2 If x is an element of DESCENDANTS, then so are .r's chi ldren .

Given a sold ier, pol iceman, and mai lman, it is sometimes not ev ident whether they are prop
erly termed members of the federal executive branch of government or some other type of
publ ic servant. This defin ition clears up the matter:

Rule I

Rule 2

The President is in EXECUTIVE-BRANCH-OF-GOVERN MENT.

If x i s in EXECUTIVE-BRANCH-OF-GOVERNMENT and y works for .r.
then y is in EXECUTIVE-BRANCH-OF-GOVERNMENT.

Also, in mathematics we often see the fol lowing definition of factorial :

Rule I O ! = I .
Rule 2 n ! = n · (n - I) ! .

The reason that these defini tions are called "recursive" i s that one of the ru les used to
define the set mentions the set itself. We define EVEN in terms of prev iously known ele
ments of EVEN, POLYNOMIAL in terms of prev iously known elements of POLYNO
M I AL. We define (n + I) ! in terms of the value of 11 ! . In computer languages. when we a l
low a procedure to call i tself, we refer to the program as recursive. These defini tions have the
same self-referential sense.

An Important Language: Arithmetic Expressions

EXAMPLE

Observe how natural the following defin itions are :

or

or

or

x is in L 1 • Rule I

Rule 2 If w is any word in L 1 , then .,\W is also in L 1 •

Rule I A is in L4•

L 1 = x+ = Ix xx xxx . . . }

Rule 2 If w is any word i n L4, then AW is also in L4•

Rule I

Rule 2

x is in L2•

L4 = x* = I A x xx xxx . . . }

If w is any word in L2, then xxw is also in L2•

L2 = l x"dd I = I x xxx xxxxx . . . }

Rule I I 2 3 4 5 6 7 8 9 are in INTEGERS.

Rule 2 I f w is any word in INTEGERS, then wO wl w2 w3 w4
w5 w6 w7 w8 w9 are also words in INTEGERS.

The definition of Kleene closure might have benefi ted from a recursive definit ion:

Rule I If S is a language, then al l the words of S are in S* .

Rule 2 A is in S* .

Rule 3 If x and y are in S*, then so is their concatenation xy.

1f AN IMPORTANT LANGUAGE: ARITHMETIC EXPRESSIONS

25

•

Suppose we ask ourselves what constitutes a valid arithmetic expression that can be typed on
one l ine, in a form digestible by computers. The alphabet for thi s language is

l = 10 2 3 4 5 6 7 8 9 + * I () l

Obviously, the fol lowing strings are not good:

(3 + 5) + 6) 2(/8 + 9) (3 + (4 -)8) 2) - (4

The first contains unbalanced parentheses; the second contains the forbidden substring (/ .
The th i rd contains the forbidden substring -) . The fourth has a close parenthesis before the
corresponding open parenthesis . Are there more rules? The subsequences // and */ are also
forbidden. Are there sti l l more? The most natural way of defining a valid arithmetic expres
sion, AE, i s by using a recursive defin i tion rather than a long l ist of forbidden substrings and
parentheses requirements . The defin ition can be written as:

Rule I Any number (posit ive, negative, or zero) is in AE.

Rule 2 If x is in AE, then so are

(i) (.r)
(i i) - x (provided x does not already start with a minus s ign)

26 CHAPTER 3 Recursive Definitions

Rule 3 If x and y are in AE, then so are :

(i) x + y (if the fi rst symbol i n y is not + or -)
(i i) x - y (i f the first symbol in y is not + or -)
(i i i) x*y
(iv) xly
(v) x* *y (our notation for exponentiation)

We have called this the "most natural" definition because, even though we may never
have art iculated th is point, i t truly i s the method we use for recognizing ari thmetic expres
sions in real l i fe. I f we are presented w ith

(2 + 4) * (7 * (9 - 3)/4)/4 * (2 + 8) - 1

and asked to determine whether it is a valid arithmetic expression, we do not real ly scan over
the string looking for forbidden substrings or count the parentheses. We imagine i t in our
mind broken down into its components. (2 + 4) that is OK, (9 - 3) that is OK, 7 * (9 - 3)/4
that i s OK, and so on. We may never have seen a defini tion of "arithmetic expressions" be
fore, but this is what we have always i ntuit ively meant by the phrase.

This definition g ives us the possibi l ity of writing 2 + 3 + 4, which is not ambiguous.
But i t a lso gives us 8/4/2, which is. I t could mean 8/(4/2) = 4 or (8/4)/2 = I . Also, 3 + 4 * 5
is ambiguous. So, we usual ly adopt conventions of operator hierarchy and left-to-right exe
cution. By apply ing Rule 2, we could always put in enough parentheses to avoid any confu
sion if we so desi red. We return to this point in Part II , but for now this defin i tion adequate ly
defines the language of al l val id strings of symbols for arithmetic expressions. Remember.
the ambiguity in the string 8/4/2 is a problem of meaning. There is no doubt that the string is
a word in AE, on ly doubt about what i t means .

This definition determines the set AE in a manner useful for prov ing many theorems
about arithmetic expressions.

THEOREM 2

An ari thmetic expression cannot contain the character $.

PROOF

This character is not part of any number, so i t cannot be introduced into an AE by Rule 1 . If
the character string x does not contain the character $, then nei ther do the strings (.r) and
- (.r) , so it cannot be introduced into an AE by Rule 2. If neither .r nor y contains the charac
ter $, then neither do any of the expressions defined by Rule 3 . Therefore, the character $
can never get into an AE. •

THEOREM 3

No AE can begin or end with the symbol /.

PROOF

No number begins or ends with th i s symbol , so i t cannot occur by Rule I . Any AE formed
by Rule 2 must begin and end with parentheses or begin wi th a minus sign, so the I cannot

An Important Language: Arithmetic Expressions 27

be introduced by Rule 2. If x does not already begin with a I and y does not end with a /,
then any AE formed by any c lause in Rule 3 wi l l not begi n or end with a /. Therefore, these
rules wi l l never introduce an expression beginning or ending w ith a /. •

These proofs are l ike the story of the three chefs making a stew. One can add only meat
to the pot. One can add only carrots to the pot. One can add only potatoes to the pot. Even
wi thout knowing exactly in what order the chefs v i si t the pot or how often, we sti l l can con
c lude that the pot cannot end up wi th an alarm clock in it . If no rule contributes a $, then one
never gets put in even though if x had a $, then x + y would also.

The symbol "/" has many names. In computer science, i t i s usual ly cal led a "slash";
other names are "oblique stroke," "solidus," and "virgule." I t also has another theorem.

THEOREM 4

No AE can contain the substring //.

PROOF

For variation, we shall prove thi s result by contradiction, even though a direct argument s im
i lar to those above could easi ly be given.

Let us suppose that there were some AEs that contained the substring //. Let a shortest
of these be a string cal led w. This means that w i s a val id AE that contains the substring //,
but there is no shorter word in AE that contains this substring. There may be more strings of
the same length as w that contain //, but it does not matter which of these we begin with and
choose to call w.

Now we know that w, l ike all words in AE, i s formed by some sequence of appl ications
of Rules I , 2, and 3. Our fi rst question is: Which was the last rule used in the production of
w? This is easy to answer. We shall show that i t must have been Rule 3(iv) . If it were Ru le
3(i i i) , for instance, then the // must e i ther be found in the x or y part . B ut .r and y are pre
sumed to be in AE, so this would mean that there is some shorter word in AE than w that
contains the substring //, which contradicts the assumption that w i s the shortest. S imi larly,
we can e l iminate all the other possib i l i ties. Therefore, the last rule used to produce w must
have been 3(iv) .

Now, since the // cannot have been contributed to w from the .r part alone or from the y
part alone (or else x or y are shorter words in AE wi th a double s lash), it must have been in
cluded by fi nding an x part that ended in a I or a y part that began with a / . But since both .r
and y are AEs, our previous theorem says that nei ther case can happen . Therefore, even Rule
3(iv) cannot i ntroduce the substring //.

Therefore, there i s no possibi l i ty left for the last rule from wh ich w can be constructed.
Therefore, w cannot be in the set AE. Therefore, there i s no shortest AE that contains the
substring //. Therefore, nothing in the set AE can have the substring //. •

This method of argument should sound fami l iar. It is s imi lar to the proof that
{ xx xxx l * contains all x'', for n � I .

The long-winded but careful proof of the last theorem is g iven to i l l ustrate that recursive
defin itions can be conveniently employed in rigorous mathematical proofs. Admittedly, th is
was a trivial example of the appl ication of this method. Most people would be just as con
vinced by the fol lowing "proof":

28 CHAPTER 3 Recursive Definitions

How could an arithmetic e.tpression contain the substring II ? What would it mean ?
Huh ? What are you , cra:y or something?

We should bear in mind that we are only on the threshold of investigating a very complex
and profound subject and that in th i s early chapter we wish to introduce a feel for the tech
niques and v iewpoints that wil l be rel ied on heavi ly later, under far less obvious c ircum
stances. We wi l l use our learner's permi t to spend a few hours driving around an empty park
ing lot before venturing onto the h ighway.

Another common use for recursive defini tions is to determine what expressions are valid
in symbol ic logic . We shall be interested in one particular branch of symbolic logic cal led
sentential calculus or propositional calculus . The version we shall defi ne here uses only
negation -. and impl ication - along with the phrase variables, al though conjunction and
disj unction could eas i ly be added to the system. The valid expressions in this l anguage are
tradit ional ly called WFFs for well-formed formulas.

As with AE, parentheses are letters in the alphabet:

a b c d . . . f

There are other symbols sometimes used for negation, such as r- , - , and - .
The rules for forming WFFs are :

Rule I Any single Lati n letter is a WFF,

a b c d .

Rule 2 If p is a WFF, then so are (p) and -, p.

Rule 3 If p and q are WFFs, then so is p - q.
Some sequences of appl ications of these ru les enable us to show that

p - ((p - p) - q)

is a WFF. Without too much difficulty, we can also show that

p - - p (p - p) p) - p(

are al l not WFFs.
As a final note in this section, we should be wary that we have sometimes used recursive

definit ions to define membership in a set, as in the phrase ".r i s in POLYNOMIAL" or ".r is
in EVEN," and sometimes to define a property. as in the phrase ".r i s a WFF" or ".r is even."
This should not present any problem.

rW PROBLEMS

1 . Write another recursive defini tion for the language L 1 of Chapter 2 .

2. Us ing the second recursive defini tion of the set EVEN, how many different ways can we
prove that 14 i s in EVEN?

3. Using the second recurs ive defini tion of EVEN, what is the smallest number of steps re
quired to prove that 100 is EVEN? Describe a good method for showing that 211 is in
EVEN.

4. Show that the fol lowing is another recursive definition of the set EVEN :

Rule I 2 and 4 are in EVEN.

Rule 2 I f .r is in EVEN, then so is .r + 4.

Problems 29

5. Show that there are infinite ly many different recursive definitions for the set EVEN.

6. Using any recursive defini tion of the set EVEN, show that al l the numbers in i t end in
the digits 0, 2, 4, 6, or 8.

7. The set POLYNOMIAL defined in this chapter contains only the polynomials in the one
variable x. Write a recursive defini tion for the set of al l polynomials in the two variables
x and y.

8. Define the set of val id algebraic expressions ALEX as fol lows:

Al l polynomials are in ALEX.Rule I

Rule 2 If f(x) and g(x) are in ALEX, then so are :

(i) (f(x))
(i i) - (f(x))
(i i i) /(x) + g(x)
(iv) /(x) - g(x)

(v) /(x)g(x)
(v i) /(x)/g(x)
(v i i) /(x}�!•l
(v i i i) /(g(.r))

(a) Show that (x + 2)3' i s in ALEX.
(b) Show that elementary calculus contains enough rules to prove the theorem that all

algebraic expressions can be differentiated .
(c) Is Rule 2 (v i i i) real ly necessary?

9. Using the fact that 3x2 + 7.r - 9 = (((((3)x) + 7)x) - 9), show how to produce this poly
nomial from the rules for POLYNOMIAL using multipl ication only twice. What i s the
smallest number of steps needed for producing x8 + AA? What is the smal lest number of
steps needed for producing 7x7 + 5x5 + 3x3 + x?

10. Show that if n is less than 3 1 , then �\'' can be shown to be in POLYNOMIAL in fewer
than eight steps.

1 1 . In this chapter, we mentioned several substrings of length 2 that cannot occur in arith
metic expressions, such as (/, +) , //, and */. What i s the complete l i st of substrings of
length 2 that cannot occur?

12. Are there any substrings of length 3 that cannot occur that do not contain forbidden sub
strings of length 2? (This means that /// i s already known to be i l legal because it con
tains the forbidden substring //.) What is the longest forbidden substring that does not
contain a shorter forbidden substring?

13. The rules given earl ier for the set AE al low for the pecul iar expressions

(((((9))))) and - (- (- (- (9))))

I t is not real ly harmful to al low these in AE, but is there some modified defin ition of AE
that e l iminates th i s problem?

14. (i) Write out the ful l recursive definition for the proposi tional calculus that contains the
symbols V and /\ as wel l as -, and �.

(i i) What are a l l the forbidden substrings of length 2 in th i s language?

15. (i) When asked to give a recursive defini t ion for the language PALINDROME over the
alphabet 2 = l a h f , a student wrote :

30 CHAPTER 3 Recursive Definitions

Rule I a and h are in PALINDROME.

Rule 2 If x is in PALINDROME, then so are axa and h.rh.

Unfortunately, al l the words in the language defined above have an odd length and
so it is not al l of PALINDROME. Fix this problem.

(i i) Give a recursive definit ion for the language EVENPALINDROME of al l pal in
dromes of even length .

16. (i) Give a recursive definition for the set ODD = { I 3 5 7 . . . l .
(i i) Give a recursive definition for the set of strings of digits 0, I . 2 . 3, . . . 9 that can

not start with the digit 0.

17. In th is chapter, we attempted to define the positive numbers by the fol lowing rules :

Rule I I is in L.

Rule 2 If x and y are in L, then so are x + y, x*y, and .r/y.

The language L defined in this way is a famous mathematical set. What is it? Prove i t .

18. Give two recursive defini tions for the set

POWERS-OF-TWO = { I 2 4 8 16 . . . }

Use one of them to prove that the product of two POWERS-OF-TWO 1s also a
POWER-OF-TWO.

19. Give recursive definitions for the fol lowing languages over the alphabet { a h f :
(i) The language EVENSTRING of a l l words of even length .

(i i) The language ODDSTRING of a l l words of odd length .
(i i i) The language AA of al l words contain ing the substring aa.

(iv) The language NOTAA of all words not containing the substring aa.

20. (i) Consider the fol lowing recursive defi nit ion of 3-PERMUTATION:

Rule I 1 23 is a 3-PERMUTATION.

Rule 2 I f xy: is a 3-PERM UTATION, then so are :yx and y:.r.

Show that there are s ix different 3-PERMUTATIONs.
(i i) Consider the fol lowing recursive definit ion of 4-PERMUTATION:

Rule I 1 234 is a 4-PERMUTATION.

Rule 2 If xy:w is a 4-PERMUTATION, then so are w:y.r and y:wx.
How many 4-PERMUTATIONs are there (by this definit ion)?

CHAPTER 4

Regular
Expressions

y DEFINING LANGUAGES BY ANOTHER NEW METHOD

We wish now to be very careful about the phrases we use to define languages. We defined L 1
i n Chapter 2 b y the symbols:

L1 = { x" for n = 1 2 3 . . . I

and we presumed that we al l understood exactly which values n could take . We might even
have defined the language L2 by the symbols :

L2 = { x " for n = 1 3 5 7 . . . I

and again we could presume that we al l agree on what words are in this language .
We might define a l anguage by the symbols :

L5 = { �\'' for n = 1 4 9 16 . . . I

but now the symbols are becoming more of an IQ test than a clear defini tion .
What words are in the l anguage

L6 = I x" for n = 3 4 8 22 · . . . I ?
Perhaps these are the ages of the si sters of Loui s XIV when he assumed the throne of
France. More preci sion and less guesswork are required, especially where computers are
concerned. In this chapter, we shal l develop some new language-defining symbol ism that
wi l l be m uch more precise than the e l l ipsis .

Let us reconsider the language L4 of Chapter 2:
L4 = I A x xx xxx xxxx . . . I

I n that chapter, we presented one method for i ndicating thi s set as the closure of a smal ler
set.

Let S = { .r l . Then L4 = S*.

As shorthand for this , we could have written

3 1

32 CHAPTER 4 Regular Expressions

We now introduce the use of the K leene star appl ied not to a set, but d irectly to the letter .r
and written as a superscript as if it were an exponent:

x*

The simple expression x* wil l be used to indicate some sequence of .r 's (maybe none at
al l) . This x is intentionally written in boldface type to dist inguish it from an alphabet charac
ter.

x* = A

= .\JI
or x or .r2

for some n = 0
or .rJ or .r4 . .
I 2 3 4 . . .

We can think of the star as an unknown power or undeterm ined power. That i s . x* stands for
a string of .r 's, but we do not spec ify how many. It stands for any string of .r's in the language
L4.

The star operator appl ied to a letter is analogous to the star operator appl ied to a set. It
represents an arbitrary concatenation of copies of that letter (maybe none at a l l) . This nota
tion can be used to help us define languages by writing

L4 = language(x*)

Since x* i s any string of .r 's , L4 i s then the set of a l l possible strings of .r 's of any length (in
c luding A).

We should not confuse x*, which is a language-defining symbol . with L4, which i s the
name we have given to a certain language. This is why we use the word "language" in the
equation. We shal l soon give a name to the world in which this symbol x* l ives. but not quite
yet. Suppose that we wished to describe the language L over the alphabet l = ! a h I .
where

L = ! a ah ahh ahhh ahhhh . . . I

We could summarize this language by the English phrase "al l words of the form one a fol
lowed by some number of h's (maybe no h 's at a l l) ."

Using our star notation and boldface letters, we may write

L = language(a b*)

or without the space

L = language(ab*)

The mean ing is c lear: This i s a l anguage in which the words are the concatenation of an in i
tial a w ith some or no h's (i .e . , b*) .

Whether we put a space inside ab* or not is only for the c larity of reading: it does not
change the set of strings this represents. No string can contain a blank unless a blank is a
character in the alphabet l. If we want blanks to be in the alphabet, we normal ly introduce
some special symbol to stand for them, as blanks themselves are inv i s ible to the naked eye .
The reason for putting a blank between a and b* in the product above is to emphas ize the
point that the star operator is appl ied to the b only. We have now used a boldface letter with
out a star as wel l as wi th a star.

We can apply the Kleene star to the whole string ah if we want, as fol lows:

(ab)* A or ah or ahah or ahahah

Parentheses are not letters in the alphabet of th is language, so they can be used to indi
cate factoring without acc idental ly changing the words. S ince the star represents some kind
of exponentiation, we use i t as powers are used in algebra, where by un iversal understanding
the expression .1y2 means .r(y2) , not (.ry)2.

Defining Languages by Another New Method 33

If we want to define the language L 1 this way, we may write

L 1 = language(xx*)

This means that we start each word of L1 by writing down an x and then we follow it with
some string of x's (which may be no more x's at al l) . Or we may use the 1 notat ion from
Chapter 2 and write

L1 = l anguage(x+)

meaning al l words o f the fo nn x t o some positive power (i .e . , not x0 = A) . The 1 notation i s
a convenience, but is not essential s ince w e can say the same thing with * 's alone.

EXAMPLE

The language L1 can be defined by any of the expressions below:

xx* x + xx*x* x*xx* x + x* x*x + x*x*x*xx*

Remember, x* can always be A. •

EXAMPLE

The language defined by the expression

ab*a

is the set of a l l strings of a 's and h's that have at least two letters, that begin and end with
a 's, and that have nothing but h's inside (if anything at al l) .

Language(ab*a) = l aa aha ahha ahhha ahhhha . . .)
It would be a subtle m istake to say only that th is l anguage i s the set of a l l words that begin
and end with an a and have only h 's in between, because this description may also apply to
the word a, depending on how i t i s interpreted. Our symbol ism e l iminates this ambiguity .

•

EXAMPLE

The language of the expression

a*b*

contains all the strings of a's and h's in which a l l the a's (if any) come before al l the h's (i f any) .

Language(a*b*) = l A a h aa ah hh aaa aah ahh hhh aaaa . . .)

Notice that ha and aha are not in this language. Notice also that there need not be the same
number of a's and h's . •

Here we should again be very careful to observe that

a*b* #- (ab)*

since the language defined by the expression on the r ight contains the word abah, whereas
the l anguage defined by the expression on the left does not. Th is cautions us against th ink ing
of the * as a normal algebraic exponent .

34 CHAPTER 4 Regular Expressions

The language defined by the expression a*b*a* contains the word haa since it starts
wi th zero a 's followed by one h fol lowed by two a 's .

EXAMPLE

The fol lowing express ions both define the language L2 = ! .r000 } :

x(xx)* or (xx)*x

but the expression

x*xx*

does not s ince it includes the word (xx) x (x) . •

We now introduce another use for the plus s ign. By the expression x + y where x and y
are strings of characters from an alphabet, we mean "either x or y." Thi s means that x + y of
fers a choice , much the same way that x* does. Care should be taken so as not to confuse
this with " as an exponent.

EXAMPLE

Consider the language T defined over the alphabet l = I a h c I :

T = I a c ah ch ahh chh ahhh chhh ahhhh chhhh . . . I

Al l the words in T begin with an a or a c and then are followed by some number of h's . Sym
bol ical ly, we may wri te this as

T = language((a + c)b*)
= language(either a or c then some h 's)

We should, of course, have said "some or no h 's ." We often drop the zero option because i t i s
t iresome. We le t the word "some" always mean "some or no," and when we mean "some
pos i t ive number of," we say that.

We say that the expression (a + c)b* defi nes a language in the fol lowing sense . For each
* or + , used as a superscript, we must se lect some n umber of factors for which it stands. For
each other + , we must decide whether to choose the right-side express ion or the left-side ex
pression. For every set of choices, we have generated a particu lar string. The set of al l strings
that can be produced by this method i s the language of the expression. In the example

(a + c)b*

we must choose e i ther a or c for the fi rst letter and then we choose how many h 's the b*
stands for. Each set of choices is a word. I f from (a + c) we choose c and we choose b* to
mean hhh, we have the word chhh. •

EXAMPLE

Now let us consider a fin i te language L that contains al l the strings of a 's and h's of length
three exactly :

L = ! aaa aah aha ahh haa hah hha hhh I

Formal Definition of Regular Expressions 35

The first letter of each word in L is either an a or a h. The second letter of each word in L is
either an a or a h. The third letter of each word in L is either an a or a h. So, we may write

L = language((a + b)(a + b)(a + b))

or for short,

L = language((a + b)3) •

If we want to define the set of all seven-letter strings of a 's and h's, we could write
(a + b)7 • In general , if we want to refer to the set of all possible strings of a 's and h 's of any
length whatsoever, we could write

(a + b)*

This is the set of all possible strings of letters from the alphabet !, = { a h I including the
null string. This is a very important expression and we shall use it often.

Again, this expression represents a language. If we choose that * stands for 5 , then

(a + b)*

gives

(a + b)5 = (a + b)(a + b)(a + b)(a + b)(a + b)

We now have to make five more choices: either a or b for the first letter, either a or h for the
second letter, and so on.

This is a very powerful notation. We can describe all words that begin with the letter a
simply as

a(a + b)*

that is, first an a, then anything (as many choices as we want of either letter a or h).
All words that begin with an a and end with a h can be defined by the expression

a(a + b)*b = a(arbitrary string)h

� FORMAL DEFINITION OF REGULAR EXPRESSIONS

After all the introduction we have endured of the slow evolution of these language-defining
expressions, it is time for us to identify them with their proper name and give them a math
ematical definition. As is no surprise to those who have read the title of this chapter, these
are called regular expressions. Similarly, the corresponding languages that they define are
referred to as regular languages. We shal l soon see that this language-defining tool is of
limited capacity in that there are many interesting languages that cannot be defined by regu
lar expressions, which is why this volume has more than 1 00 pages. A regular language is
one that can be defined by a regular expression even though it may also have many other fine
definitions. A regular expression, on the other hand, must take a very rigorous form as de
fined below recursively.

DEFINITION

The symbols that appear in regular expressions are the letters of the alphabet !,, the symbol
for the null string A, parentheses, the star operator, and the plus sign.

36 CHAPTER 4 Regular Expressions

The set of regular expressions is defined by the following rules:

Rule I Every letter of I can be made into a regular expression by writing it in bold
face; A itself is a regular expression.

Rule 2 If r 1 and r 2 are regular expressions, then so are :

(i) (r 1)
(i i) r 1 r2
(i i i) r 1 + r2
(iv) r 1 *

Rule 3 Nothing else is a regular expression. •

We could have included the plus sign as a superscript in r 1 + as part of the definition, but
since we know that r 1 + = r 1 r 1 * , this would add nothing valuable.

This is a language of language-definers. It is analogous to a book that l ists al l the books
in print. Every word in such a book is a book-definer. The same confusion occurs in everyday
speech. The string "French" is both a word (an adjective) and a language-defining name (a
noun). However difficult computer theory may seem, common English usage is much harder.

Because of Rule 1 , we may have trouble in distinguishing when we write an a whether
we mean a, the letter in I; a, the word in I*; { a } , the one-word language; or a, the regular
expression for that language. Context and typography will guide us.

As with the recursive definition of arithmetic expressions, we have included the use of
parentheses as an option, not a requirement. Let us emphasize again the implicit parentheses
in r 1 *. If r 1 = aa + b, then the expression r 1 * technically refers to the expression

r 1 * = aa + b*

which is the formal concatenation of the symbols for r 1 with the symbol * , but what we gen
erally mean when we write r 1 * is actually (r 1)* :

r 1 * = (r 1)* = (aa + b)*

which is different. Both are regular expressions and both can be generated from the rules,
but their languages are quite different. Care should always be taken to produce the expres
sion we actually want, but this much care is too much to ask of mortals, and when we write
r 1 * in the rest of the book, we real ly mean (r 1)* .

The definition we have given for regular expressions contains one subtle but important
omission : the language <J>. This language is not the same as the one represented by the regu
lar expression A, or by any other regular expression that comes from our definition. We al
ready have a symbol for the word with no letters and a symbol for the language with no
words. Do we really need to invent yet another symbol for the regular expression that defines
the language with no words? Would it simply be the regular expression with no characters,
analogous to the word lambda (A) in the language of regular expressions? To the purely log
ical Vulcan mind, that would be the only answer, but since we have already employed the
boldface lambda (A) to mean the regular expression defining the word lambda, we take the
liberty of using the boldface phi (<J>) to be the regular expression for the nul l language. We
have already wasted enough thought on the various degrees of nothingness to qual ify as me
dieval ecclesiastics; the desire for more precision would require psycho-active medication.
For any r, we have

r + <J> = r

and

<J>r = <!>

Formal Definition of Regular Expressions 37

but what is far less clear is exactly what cl>* should mean. We shall avoid this philosophical
crisis by never using this symboli sm and avoiding those who do.

EXAMPLE

Let us consider the language defined by the expression

(a + b)* a (a + b)*

At the beginning, we have (a + b)* , which stands for anything, that is, any string of a 's and
h's, then comes an a, then another anything. All told, the language is the set of all words
over the alphabet � = { a h) that have an a in them somewhere. The only words left out are
those that have only h's and the word A.

For example, the word abbaah can be considered to be derived from this expression by
three different sets of choices :

(A)a(hhaah) or (ahb)a(ab) or (ahha)a(h)

If the only words left out of the language defined by the expression above are the words
without a 's (A and strings of b's), then these omitted words are exactly the language defined
by the expression b* . If we combine these two, we should produce the language of all
strings. In other words, since

al l strings = (al l strings with an a) + (al l strings without an a)

it should make sense to write

(a + b)* = (a + b)*a(a + b)* + b*

Here, we have added two language-defining expressions to produce an expression that de
fines the union of the two languages defined by the individual expressions. We have done
this with languages as sets before, but now we are doing it with these emerging language
defining expressions.

We should note that this use of the plus sign is consistent with the principle that in these
expressions plus means choice. When we add sets to form a union, we are saying first
choose the left set or the right set and then find a word in that set. In the expression above,
first choose (a + b)*a(a + b)* or b* and then make further choices for the pluses and stars
and finally arrive at a word that is included in the total language defined by the expression.
In this way, we see that the use of plus for union is actual ly a natural equivalence of the use
of plus for choice.

Notice that this use of the plus sign is far from the normal meaning of addition in the al
gebraic sense, as we can see from

a* = a* + a*
a* = a* + a* + a*
a* = a* + aaa

For plus as union or plus as choice, these a l l make sense; for plus as algebra, they lead to
presumptions of subtractions that are misguided. •

38 CHAPTER 4 Regular Expressions

EXAMPLE

The language of all words that have at least two a 's can be described by the expression

(a + b)*a(a + b)*a(a + b)*

= (some beginning)(the first important a)(some middle)(the second
important a)(some end)

where the arbitrary parts can have as many a 's (or h's) as they want.

EXAMPLE

Another expression that denotes all the words with at least two a 's is

b*ab*a(a + b)*

•

We scan through some jungle of h's (or no h's) until we find the first a, then more h's (or no
h's), then the second a, then we finish up with anything. In this set are ahhhahh and aaaaa.

We can write

(a + b)*a(a + b)*a(a + b)* = b*ab*a(a + b)*

where by the equal sign we do not mean that these expressions are equal algebraically in the
same way as

x + x = 2i:

but that they are equal because they describe the same item, as with

1 6th President = Abraham Lincoln

We could write

language((a + b)*a(a + b)*a(a + b)*)
= language(b*ab*a(a + b)*)
= all words with at least two a's

To be careful about this point, we say that two expressions are equivalent if they describe
the same language.

The expressions below also describe the language of words with at least two a 's :

and

EXAMPLE

(a + b)*ab*ab*
i i

next-to- last a
last a

b*a(a + b)*ab*
i i

first a last a

If we wanted all the words with exactly two a 's, we could use the expression

b*ab*ab*

•

Formal Definition of Regular Expressions 39

which describes such words as aah, haha, and hhhahbbah. To make the word aah, we let the
first and second b* become A and the last becomes h. •

EXAMPLE

The language of all words that have at least one a and at least one h i s somewhat trickier. If
we write

(a + b)*a(a + b)*b(a + b)*
= (arbitrary) a(arbitrary) h(arbitrary)

we are then requiring that an a precede a h in the word. Such words as ha and hhaaaa are
not included in this set. Since, however, we know that either the a comes before the h or the
h comes before the a, we could define th is set by the expression

(a + b)*a(a + b)*b(a + b)* + (a + b)*b(a + b)*a(a + b)*

Here, we are sti l l using the plus sign in the general sense of disjunction (or). We are tak ing
the union of two sets, but i t is more correct to think of this + as offering alternatives in
forming words.

There is a simpler expression that defines the same language. If we are confident that
the only words that are omitted by the first term

(a + b)*a(a + b)*b(a + b)*

are the words of the form some h's followed by some a 's, then it would be sufficient to add
these spec ific exceptions into the set. These exceptions are all defined by the regular expres
sion

bb*aa*

The language of all words over the alphabet I = I a h l that contain both an a and a h
is therefore also defined by the expression

(a + b)*a(a + b)*b(a + b)* + bb*aa*

Notice that it is necessary to write bb*aa* because b*a* wil l admit words we do not want,
such as aaa.

We have shown that

(a + b)*a(a + b)*b(a + b)* + (a + b)*b(a + b)*a(a + b)* = (a + b)*a(a + b)*b(a + b)* + bb*aa*
•

EXAMPLE

The only words that do not contain both an a and a h in them somewhere are the words of all
a 's, al l h's, or A. When these are inc luded, we get everything. Therefore, the regular expression

(a + b)*a(a + b)*b(a + b)* + bb*aa* + a* + b*

defines all possible strings of a 's and h 's. The word A is included in both a* and b*.
We can then write

(a + b)* = (a + b)*a(a + b)*b(a + b)* + bb*aa* + a* + b*

which is not a very obvious equivalence at al l . •

40 CHAPTER 4 Regular Expressions

We must not misinterpret the fact that every regular expression defines some language
to mean that the associated language has a simple English description, such as in the preced
ing examples. It may very wel l be that the regular expression itself is the simplest descrip
tion of the particular language. For example,

(A + ba*)(ab*a + ba*)*b(a* + b*a)bab*

probably has no cute concise al ternate characterization. And even if it does reduce to some
thing simple, there is no way of knowing this . That is, there is no algorithm to discover hid
den meaning.

EXAMPLE

All temptation to treat these language-defining expressions as if they were algebraic polyno
mials should be dispel led by these equivalences :

(a + b)* = (a + b)* + (a + b)*
(a + b)* = (a + b)* + a*
(a + b)* = (a + b)*(a + b)*
(a + b)* = a(a + b)* + b(a + b)* + A
(a + b)* = (a + b)*ab(a + b)* + b*a*

The last of these equivalences requires some explanation . It means that al l the words
that do not contain the substring ah (which are accounted for in the first term) are all a 's, al l
b 's, A , or some h's followed by some a's . Al l four missing types are covered by b*a*. •

Usual ly, when we employ the star operator, we are defining an infinite language. We can
represent a finite language by using the plus sign (union sign) alone. If the language l over
the alphabet I = I a h } contains only the finite l i st of words

L = I ahba haaa hhhh I

then we can represent l by the symbolic expression

L = language(abba + baaa + bbbb)

Every word in L is some choice of options of this expression.
If l is a finite language that includes the null word A. then the expression that defines l

must also employ the symbol A.
For example, if

l = { A a aa bbh I

then the symbol ic expression for l must be

L = language(A + a + aa + bbb)

The symbol A is a very useful addition to our system of language-defining symbolic ex
pressions.

EXAMPLE

Let V be the language of all strings of a 's and b 's in which ei ther the c;trings are all h's or
else there is an a followed by some b 's . Let V also contain the word A :

V = I A a h a h h h ahh hhh ahhh hhhh . . . }

Formal Definition of Regular Expressions 41

We can define V by the expression

b* + ab*

where the word A is included in the term b*. Alternatively, we could define V by the expression

(A + a)b*

This would mean that in front of the string of some b 's, we have the option of either adding
an a or nothing. Since we could always write b* = Ab*, we have what appears to be some
sort of distributive law at work:

Ab* + ab* = (A + a)b*

We have factored out the b* just as in algebra. It is because of this analogy to algebra that
we have denoted our disjunction by the plus sign instead of the union sign U or the symbolic
logic sign V. Sometimes, we l ike it to look algebraic; sometimes, we do not. •

We have a hybrid system: The * is somewhat l ike an exponent and the + is somewhat
l ike addition. But the analogies to algebra should be approached very suspiciously, since
addition in algebra never means choice and algebraic multipl ication has properties dif
ferent from concatenation (even though we sometimes conventional ly refer to it as a
product) :

ah = ha
ah # ha

in algebra, they are the same numerical product
in formal languages, they are different words

Let us reconsider the language

T = { a c ah ch ahh chh . . .)

T can be defined as above by

(a + c)b*

but i t can also be defined by

ab* + cb*

This is another example of the distributive law.
However, the distributive l aw must be used with extreme caution. Sometimes, it is

difficult to determine whether if the law is appl icable. Expressions may be distributed but
operators cannot. Certainly, the star alone cannot always be distributed without changing
the meaning of the expression. For example, as we have noted earl ier, (ab)* ¥- a*b* . The
language assoc iated with (ab)* i s words with alternating a's and h's , whereas the lan
guage associated with a*b* i s only strings where all the a 's (if any) precede al l the h 's
(also if any) .

To make the identification between the regular expressions and their associated lan
guages more expl icit, we need to define the operation of multipl ication of sets of words, a
concept we have used informal ly already.

DEFINITION

If S and T are sets of strings of letters (whether they are finite or infinite sets) , we define the
product set of strings of letters to be .

ST = { al l combinations of a string from S concatenated with a string from T in that order l
•

42 CHAPTER 4 Regular Expressions

EXAMPLE

If

S = { a aa aaa } , T = { hh hhb }

then

ST = { ahh abbh aahh aabhh aaahb aaabhh l

Note that these words are not in proper lexicographic order.

EXAMPLE

If

S = { a hb bah l . T = { a ab }

then

ST = { aa aah hba hhah ha ha hahah }

EXAMPLE

If

P = { a hh hab } , Q = { A hhhh l

then

PQ = { a bb hah ahhhh hhhhhh habbbbb l

EXAMPLE

If L is any language, then

L A = A L = L

EXAMPLE

If

then

M = { A x xx } , N = { A y yy yyy yyyy . . . }

MN = I A y yy yyy yyyy . . .
x xy xyy xyyy xyyyy . .

xx ny xxyy nyyy xxyyyy . . . l

Using regular expressions, we can write these five examples as

(a + aa + aaa)(bb + bbb) = abb + abbb + aabb + aabbb + aaabb + aaabbb
(a + bb + bab)(a + ab) = aa + aab + bba + bbab + baba + babab

•

•

•

•

•

Languages Associated with Regular Expressions 43

(a + bb + bah) (A + bbbb) = a + bb + bah + ab4 + b6 + bab5
rA =Ar = r

(A + x + xx)(y*) = y* + xy* + xxy*

EXAMPLE

If FRENCH and GERMAN are their usual languages, then the product FRENCHGERMAN
is the language of all strings that start with a FRENCH word and finish with a GERMAN
word. Some words in this language are ennuiverboten and souffleGesundheit. •

It might not be clear why we cannot just leave the rules for associating a language with
a regular expression on the informal level, with the informal instruction "make choices for +
and * ." The reason is that the informal phrase "make choices" is much harder to explain pre
cisely than the formal mathematical presentation below.

1f LANGUAGES ASSOCIATED WITH REGULAR EXPRESSIONS

We are now ready to give the rules for associating a language with every regular expression.
As we might suspect, the method for doing this is given recursively.

DEFINITION

The following rules define the language associated with any regular expression :

Rule I The language associated with the regular expression that is just a single letter
is that one-letter word alone and the language associated with A is just I A } , a
one-word language.

Rule 2 If r 1 is a regular expression associated with the language L 1 and r2 is a regular
expression associated with the language L2, then:

(i) The regular expression (r 1) (r2) i s associated with the product L 1 L2 that is
the language L 1 times L2:

Ianguage(r 1 r2) = L 1L2

(i i) The regular expression r 1 + r2 is associated with the language formed by
the union of the sets L 1 and L2:

language(r 1 + r2) = L 1 + L2

(i i i) The language associated with the regular expression (r 1)* is L 1 * , the
Kleene closure of the set L1 as a set of words:

•

Once again , this collection of rules proves recursively that there is some language asso
ciated with every regular expression. As we build up a regular expression from the rules, we
simultaneously are building up the corresponding language.

The rules seem to show us how we can interpret the regular expression as a language,
but they do not really tell us how to understand the language. By this we mean that if we ap
ply the rules above to the regular expression

(a + b)*a(a + b)*b(a + b)* + bb*aa*

44 CHAPTER 4 Regular Expressions

we can develop a description of some language, but can we understand that this is the lan
guage of all strings that have both an a and a b in them? This is a question of meaning.

This correspondence between regular expressions and languages leaves open two
other questions. We have already seen examples where completely different regular ex
pressions end up describing the same language. Is there some way of tell ing when this
happens? By "way" we mean , of course, an algorithm. We shal l present an algorithmic
procedure in Chapter 1 1 to determine whether or not two regular expressions define the
same language.

Another fundamental question is this: We have seen that every regular expression is as
sociated with some language; is it also true that every language can be described by a regular
expression? In our next theorem, we show that every finite language can be defined by a reg
ular expression. The situation for languages with infinitely many words is different. We shal l
prove in Chapter 1 0 that there are some languages that cannot be defined by any regular ex
pression.

As to the first and perhaps most important question , the question of understand
ing regular expressions, we have not a clue. Before we can construct an algorithm for
obtaining understanding, we must have some good definition of what it means to
understand. We may be centuries away from being able to do that, if it can be done
at al l .

� FINITE LANGUAGES ARE REGULAR

THEOREM 5

If l is a finite language (a language with only finitely many words), then l can be defined by
a regular expression. In other words, all finite languages are regular.

PROOF

To make one regular expression that defines the language l, turn all the words in l into bold
face type and insert plus signs between them. Voi !a.

For example, the regular expression that defines the language

l = { baa abbba bababa }

is

baa + abbba + bababa

If

L = { aa ab ba bb }

the algorithm described above gives the regular expression

aa + ab + ba + bb

Another regular expression that defines this language is

(a + b)(a + b)

How Hard It Is to Understand a Regular Expression 45

so the regular expression need not be unique, but so what. We need only show that at least
one regular expression exists.

The reason this trick only works for finite languages is that an infinite language would
become a regular expression that is infinitely long, which is forbidden. •

EXAMPLE

Let

L = (A x xx xxx xx.xx xxxxx)

The regular expression we get from the theorem is

A + x + xx + xxx + xxxx + xxxxx

A more elegant regular expression for this language is

(A + x)5

Of course, the 5 is , strictly speaking, not a legal symbol for a regular expression although we
all understand it means

(A + x)(A + x)(A + x)(A + x)(A + x)

if HOW HARD IT IS TO UNDERSTAND
A REGULAR EXPRESSION

•

Let us examine some regular expressions and see if we are lucky enough to understand
something about the languages they represent.

EXAMPLE

Consider the expression

(a + b)*(aa + bb)(a + b)*

This is the set of strings of a's and h's that at some point contain a double letter. We can
think of it as

(arbitrary)(double letter)(arbitrary)

Let us now ask, "What strings do not contain a double letter?" Some examples are
A a b ab ha aha bah abab baba The expression (ab)* covers all of these
except those that begin with b or end in a. Adding these choices gives us the regular expression

(A + b)(ab)*(A + a)

Combining these two gives

(a + b)*(aa + bb)(a + b)* + (A + b)(ab)*(A + a)

Who among us is so boldfaced as to claim that seeing the expression above they could tel l
immediately that it defines all strings? •

46 CHAPTER 4 Regular Expressions

EXAMPLE

Consider the regular expression below:

E = (a + b)* a (a + b)* (a + A) (a + b)* a (a + b)*

= (arbitrary) a (arbitrary) (a or nothing) (arbitrary) a (arbitrary)

One obvious fact is that all the words in the language of E must have at least two a 's in
them. Let us break up the middle plus sign into its two cases: Either the middle factor con
tributes an a or else it contributes a A. Therefore,

E = (a + b)*a(a + b)*a(a + b)*a(a + b)*

+ (a + b)*a(a + b)*A(a + b)*a(a + b)*

This i s a more detailed use of the distributive law. The first term above c learly represents al l
words that have at least three a 's in them. Before we analyze the second term, let us make
the observation that

(a + b)*A(a + b)*

which occurs in the middle of the second term, i s only another way of saying "any string
whatsoever" and could be replaced with the more direct expression

(a + b)*

This would reduce the second term of the expression to

(a + b)*a(a + b)*a(a + b)*

which we have already seen i s a regular expression representing all words that have at least
two a 's in them.

Therefore, the language associated with E is the union of al l strings that have three or
more a 's with all strings that have two or more a 's . But since al l strings with three or more
a 's are themselves already strings with two or more a 's , this whole language is just the sec
ond set alone.

The language associated with E is no different from the language assoc iated with

(a + b)*a(a + b)*a(a + b)*

which we have examined before with three of its avatars . •

It is possible by repeated application of the rules for forming regular expressions to pro
duce an expression in which the star operator is appl ied to a subexpression that already has a
star in it .

Some examples are

(a + b*)* (aa + ab*)* ((a + bbba*) + ba*b)*

In the first of these expressions, the internal * adds nothing to the language

(a + b*)* = (a + b)*

since al l possible strings of a's and h's are described by both expressions.
Also, in accordance with Theorem 1 on p. 18,

(a*)* = a*

How Hard It Is to Understand a Regular Expression 47

However,

(aa + ab*)* ¥- (aa + ab)*

s ince the language for the expression on the left includes the word abbabb, whereas the lan
guage on the right does not. (The language defined by the regular expression on the right
cannot contain any word with a double b.)

If one had not just seen this explained, would i t be obvious?

EXAMPLE

Consider the regular expression

(a*b*)*

The language defined by this expression is all strings that can be made up of factors of the
form a*b*, but since both the single letter a and the single Jetter b are words of the form a*b*,
this language contains all strings of a 's and b 's. It cannot contain more than everything, so

(a*b*)* = (a + b)* •

The equation above casts a major doubt on the possibility of finding a set of algebraic
rules to reduce one regular expression to another equivalent one. Yet, it is sti l l unknown
whether this can be done.

EXAMPLE

Consider the language defined by the regular expression

b*(abb*)*(A + a)

This is the language of all words without a double a . The typical word here starts with some
b 's. Then come repeated factors of the form abb* (an a followed by at least one b). Then we
finish up with a final a or we leave the last b's as they are. This is another starred expression
with a star inside. •

If we are simply interested in being devilish and creating a mess, we can do so recur
sively. Let us start with the observation that all strings either have a double a or isolated a 's
as in the example above:

(a + b)* = (a + b)*aa(a + b)* + b*(abb*)*(A + a)

Now, let us use (a*b*)* instead of the first (a + b)* :

(a + b)* = (a*b*)*aa(a + b)* + b*(abb*)*(A + a)

Now, once we note that the entire right-hand side is equivalent to (a + b)* , we can use it (the
whole expression) to substitute for the subexpression (a + b)* on the right. This gives

(a + b)* = (a*b*)*aa[(a*b*)*aa(a + b)* + b*(abb*)*(A + a)] + b*(abb* }*(A + a)

There is sti l l a substring (a + b)* on the right-hand side and we can again recursively re
place it by the whole expression above. And so on, ad nauseam. The sole appl ication of cre
ating needlessly complicated expressions equivalent to much simpler ones is to make the in
structor 's job in grading homework exponential ly more difficult.

48 CHAPTER 4 Regular Expressions

� INTRODUCING EVEN-EVEN

One very interesting example, which we consider now in great detai l and carry with us
throughout the book, is

E = [aa + bb + (ab + ba)(aa + bb)*(ab + ha)] *

This regular expression represents the collection of a l l words that are made up of "sy l lables"
of three types:

type 1 = aa
type2 = bb
type3 = (ab + ba)(aa + bb)*(ab + ha)

E = [type 1 + type2 + type3] *

Suppose that we are scanning along a word in the language of E from left to right, read
ing the letters two at a time. First, we come to a double a (type 1) , then to a double h (type2) ,
then to another double a (type 1 again) . Then perhaps we come upon a pair of letters that are
not the same. Say, for instance, that the next two letters are ha. This must begin a substring
of type3 • It starts with an undoubled pair (either ah or ha), then it has a section of doubled
letters (many repetitions of either aa or hh), and then it final ly ends with another undoubled
pair (either ah or ba again). One property of this section of the word is that it has an even
number of a 's and an even number of h's, counting the two undoubles and al l the doubles.
After this section of type3 , we could proceed with more sections of type 1 or type2 unti l we
encountered another undoubled pair, starting another type3 section . We know that another
undoubled pair wi l l be coming up to balance off the initial one . The total effect is that every
word of the language of E contains an even number of a 's and an even number of h's .

If this were al l we wanted to conclude, we could have done so more quickly. Al l words
in the language of E are made up of these three types of substrings and, since each of these
three has an even number of a 's and an even number of h's, the whole word must, too. How
ever, a stronger statement is also true. All strings with an even number of a 's and an even
number of b 's belong to the language of E. The proof of this parallels our argument above.

Consider a word w with even a 's and even h's . If the first two letters are the same, we
have a type 1 or type2 syl lable. Scan over the doubled letter pairs until we come to an un
matched pair such as ab or ba. Continue scanning by skipping over the double a's and dou
ble h's that get in the way unti l we find the balancing unmatched pair (either ah or ha) to
even off the count of a 's and h 's . If the word ends before we find such a pair, the a 's and h 's
are not even . Once we have found the balancing unmatched pair, we have completed a syl la
ble of type3 . By "balancing," we do not mean it has to be the same unmatched pair: ah can
be balanced by either ah or ha. Consider them bookends or open and close parentheses;
whenever we see one, we must later find another. Therefore, E represents the language of al l
strings with even a 's and even h's .

Let us consider this as a computer algorithm. We are about to feed in a long string of a 's
and h's, and we want to determine whether this string has the property that the number of a 's

is even and the number of h 's is even. One method is to keep two binary flags, the a flag and
the b flag. Every time an a is read, the a flag is reversed (0 to 1 , or I to 0); every time a h is
read, the h flag is reversed. We start both flags at 0 and check to be sure they are both 0 at the
end. This method wi l l work.

But there is another method that also works which uses only one flag-the method that
corresponds to the discussion above . Let us have only one flag cal led the type_1 flag. We read
the letters in two at a time. If they are the same, then we do not touch the type3 flag. since we
have a factor of type 1 or type2• If, however, the two letters read do not match. we throw the
type3 flag. If the flag starts at 0, then whenever it is 1 , we are in the middle of a type

_
1 factor;

Problems 49

whenever it is 0, we are not. If it is 0 at the end, then the input string contains an even num
ber of a 's and an even number of b's .

For example, if the input is

(aa)(ab)(bb)(ba)(ab)(bb)(bb)(bb)(ab)(ab)(bb)(ba)(aa)

the flag is reversed six times and ends at 0.
We will refer to this language again later, so we give it the name EVEN-EVEN.

EVEN-EVEN = I A aa bb aaaa aabb abab abba baab baba

bbaa bbbb aaaaaa aaaabb aaabab . . . }

Notice that there do not have to be the same number of a 's and h's, just an even quantity
of each.

1f PROBLEMS

1. Let r 1 , r 2 , and r 3 be three regular expressions. Show that the language associated with
(r 1 + r2)r3 is the same as the language associated with r 1 r3 + r2r3• Show that r 1 (r2 + r3)
is equivalent to r 1 r2 + r 1 r3 • This will be the same as proving a "distributive law" for reg
ular expressions.

For Problems 2 through 1 1 , construct a regular expression defining each of the following
languages over the alphabet !, = I a b } :

2. All words in which a appears tripled, i f at all . This means that every clump of a 's con
tains 3 or 6 or 9 or 1 2 . . . a 's .

3. All words that contain at least one of the strings s 1 , s2, s3 , or s4•

4. All words that contain exactly two h's or exactly three b 's, not more.

5. (i) All strings that end in a double letter.
(i i) All strings that do not end in a double letter.

6. All strings that have exactly one double letter in them.

7. All strings in which the letter b is never tripled. This means that no word contains the
substring bbb.

8. All words in which a is tripled or b is tripled, but not both . This means each word con
tains the substring aaa or the substring bbb but not both.

9. (i) All words that do not have the substring ab.

(ii) All words that do not have both the substrings bba and abh.

10. All strings in which the total number of a's is divisible by 3 no matter how they are dis
tributed, such as aahaahhaba.

1 1 . (i) All strings in which any h's that occur are found in clumps of an odd number at a
time, such as ahaahbhah.

(i i) All strings that have an even number of a 's and an odd number of h's.
(i i i) All strings that have an odd number of a's and an odd number of h's.

12. (i) Let us reconsider the regular expression

(a + b)*a(a + b)*b(a + b)*

SO CHAPTER 4 Regular Expressions

Show that this is equivalent to

(a + b)*ab(a + b)*

in the sense that they define the same language.
(i i) Show that

(a + b)*ab(a + b)* + b*a* = (a + b)*

(i i i) Show that

(a + b)*ab[(a + b)*ab(a + b)* + b*a*] + b*a* = (a + b)*

(iv) Is (i i i) the last variation of this theme or are there more beasts left in this cave?

13. We have defined the product of two sets of strings in general . If we apply this to the case
where both factors are the same set, S = T, we obtain squares, S2 • Simi larly, we can de
fine S3, S4, • • • • Show that it makes some sense to write :
(i) S* = A + s + s 1 + s2 + S3 + S4 + . . .

(i i) s + = s + s 1 + s2 + s3 + s4 + . . .

14. If the only difference between L and L * is the word A, is the only difference between L 2
and L* the word A?

For Problems 1 5 through 1 7, show that the following pairs of regular expressions define the
same language over the alphabet I = { a b I :

15. (i) (ab)*a and a(ba)*
(i i) (a* + b)* and (a + b)*
(i i i) (a* + b*)* and (a + b)*

16. (i) A* and A
(i i) (a*b)*a* and a*(ba*)*
(i i i) (a*bbb)*a* and a*(bbba*)*

17. (i) ((a + bb)*aa)* and A + (a + bb)*aa
(i i) (aa)*(A + a) and a*
(i i i) a(aa)*(A + a)b + b and a*b
(iv) a(ba + a)*b and aa*b(aa*b)*
(v) A + a(a + b)* + (a + b)*aa(a + b)* and ((b*a)*ab*)*

18. Describe (in Engl ish phrases) the languages associated with the following regular ex-
pressions:

(i) (a + b)*a(A + bbbb)
(i i) (a(a + bb)*)*

(i i i) (a(aa)*b(bb)*)*
(iv) (b(bb)*)*(a(aa)*b(bb)*)*
(v) (b(bb)*)*(a(aa)*b(bb)*)*(a(aa)*)*

(vi) ((a + b)a)*

19. (D. N. Arden) Let R, S, and T be three languages and assume that A is not in S. Prove
the following statements:
(i) From the premise that R = SR + T, we can conclude that R = S*T.

(i i) From the premise that R = S*T, we can conclude that R = SR + T.

20. (i) Explain why we can take any pair of equivalent regular expressions and replace the
letter a in both with any regular expression R and the letter b with any regular ex-

Problems 5 1

pression S and the resulting regular expressions wil l have the same language. For
example, 1 6(i i) , which says

(a*h)*a* = a*(ha*)*

becomes the identity

(R*S)*R* = R*(SR*)*

which is true for all regular expressions R and S. In particular, R = a + bh,
S = ha* results in the complicated identity

((a + bh)*(ha*))*(a + hh)* = (a + hh)*((ha*)(a + hh)*)*

(i i) What identity would result from using

R = (ha*)* S = (A + b)

CHAPTER 5

Finite Automata

1} YET ANOTHER METHOD FOR DEFINING LANGUAGES

52

Several games that children play fit the following description. Pieces are set up on a playing
board. Dice are thrown (or a wheel i s spun), and a number is generated at random. Depend
ing on the number, the pieces on the board must be rearranged in a fashion completely speci
fied by the rules. The ch i ld has no options about changing the board. Everything is deter
mined by the dice. Usual ly, it is then some other chi ld's turn to throw the dice and make his
or her move, but this hardly matters, because no ski l l or choice is involved. We could el imi
nate the opponent and have the one child move first the white pieces and then the black.
Whether or not the white pieces win the game is dependent entirely on what sequence of
numbers is generated by the dice, not on who moves them.

Let us look at all possible positions of the pieces on the board and call them states. The
game changes from one state to another in a fashion determined by the input of a certain
number. For each possible number, there is one and only one resulting state . We should allow
for the possibil ity that after a number is entered, the game is sti l l in the same state as it was
before. (For example, if a player who is in "jai l " needs to rol l doubles in order to get out, any
other rol l leaves the board in the same state .) After a certain number of rol ls , the board arrives
at a state that means a victory for one of the players and the game is over. We cal l th is a final
state. There might be many possible final states that result in victory for this player. In com
puter theory, these are also called halting states, terminal states, or accepting states.

Beginning with the initial state (which we presume to be unique), some input sequences
of numbers lead to victory for the first child and some do not.

Let us put th is game back on the shelf and take another example. A child has a simple
computer (input device, processing unit, memory, output dev ice) and wishes to calculate the
sum of 3 plus 4. The child writes a program, which i s a sequence of instructions that are fed
into the machine one at a time. Each instruction i s executed as soon as it is read, and then the
next instruction is read. If al l goes well , the machine outputs the number 7 and terminates
execution. We can consider this process to be similar to the board-game. Here the board is
the computer and the different arrangements of pieces on the board correspond to the differ
ent arrangements of O's and l 's in the cel ls of memory. Two machines are in the same state if
their output pages look the same and their memories look the same cell by cel l .

The computer is also deterministic, by which we mean that, on reading one particular
input instruction, the machine converts i tself from the state it was in to some particular other
state (or remains in the same state if given a NO-OP), where the resultant state is complete ly

Yet Another Method for Defining Languages 53

detennined by the prior state and the input instruction. Nothing else. No choice is involved.
No knowledge is required of the state the machine was in six instructions ago. Some se
quences of input instructions may lead to success (printing the 7) and some may not. Success
is entirely detennined by the sequence of inputs. Either the program will work or it wil l not.

As in the case of the board-game, in this model we have one initial state and the possi
bil ity of several successful final states. Printing the 7 is what is important; what is left in
memory does not matter.

One small difference between these two situations is that in the child's game the number
of pieces of input is detennined by whether either player has yet reached a final state ,
whereas with the computer the number of pieces of input is a matter of choice made before
run time. Sti l l , the input string is the sole determinant as to whether the game child or the
computer child wins his or her victory.

In the first example, we can consider the set of all possible dice rol l s to be the letters of
an alphabet. We can then define a certain language as the set of strings of those letters that
lead to success, that is, lead to a final victory state. Similarly, in the second example we can
consider the set of all computer instructions as the letters of an alphabet. We can then define
a language to be the set of all words over this alphabet that lead to success. This is the lan
guage whose words are all programs that print a 7.

The most general model, of which both of these examples are instances, is called a fi
nite automaton-"finite" because the number of possible states and number of letters in the
alphabet are both finite, and "automaton" because the change of states is totally governed by
the input. The detennination of what state is next is automatic (involuntary and mechanical) ,
not willful, just as the motion of the hands of a clock is automatic, while the motion of the
hands of a human is presumably the result of desire and thought. We present the precise defi
nition below. Automaton comes to us from the Greek, so its correct plural is automata.

DEFINITION

A finite automaton is a collection of three things:

1. A finite set of states, one of which is designated as the initial state, cal led the start
state, and some (maybe none) of which are designated as final states.

2. An alphabet 2 of possible input letters .

3. A finite set of transitions that tel l for each state and for each letter of the input alphabet
which state to go to next. •

The definition above is incomplete in the sense that it describes what a finite automaton
is but not how it works. It works by being presented with an input string of letters that i t
reads letter by letter starting at the leftmost letter. Beginning at the start state, the letters de
tennine a sequence of states. The sequence ends when the last input letter has been read.

Instead of writing out the whole phrase "finite automaton," it is customary to refer to
one by its initials, FA. Computer theory is rife with acronyms, so we have many in this book.
The tenn FA is read by naming its letters, so we say "an FA" even though it stands for "a fi
nite automaton" and we say "two FAs" even though it stands for "two finite automata."

Some people prefer to call the object we have just defined a finite acceptor because its
sole job is to accept certain input strings and reject others. It does not do anything l ike print
output or play music. Even so, we shal l stick to the tenninology "finite automaton." When
we bui ld some in Chapter 8 that do do something, we give them special names, such as "fi
nite automata with output."

54 CHAPTER 5 Finite Automata

Let us begin by considering in detail one particular example.
Suppose that the input alphabet has only the two letters a and b. Throughout this chap

ter, we use only this alphabet (except for a couple of problems at the end). Let us also as
sume that there are only three states, x , y, and z . Let the following be the rules of transition:

Rule I From state x and input a, go to state y.
Rule 2 From state x and input b, go to state z.
Rule 3 From state y and input a, go to state x.

Rule 4 From state y and input b, go to state z.
Rule 5 From state z and any input, stay at state z.

Let us also designate state x as the starting state and state z as the only final state.
We now have a perfectly defined finite automaton, because it fulfills all three require

ments demanded above: states, alphabet, transitions.
Let us examine what happens to various input strings when presented to this FA. Let us

start with the string aaa. We begin, as always, in state x. The first letter of the string is an a,
and it tells us to go to state y (by Rule I) . The next input (instruction) is also an a, and this
tel ls us by Rule 3 to go back to state x. The third input is another a, and by Rule 1 again we
go to state y. There are no more input letters in the input string, so our trip has ended. We did
not finish up in the final state (state z) , so we have an unsuccessful tennination of our run .

The string aaa is not in the language of all strings that leave this FA in state z. The set of
all strings that do leave us in a final state is called the language defined by the finite au
tomaton. The input string aaa is not in the language defined by this FA. Using other tenni
nology, we may say that the string aaa is not accepted by this finite automaton because i t
does not lead to a final state. We use this expression often. We may also say, "aaa is rejected
by this FA." The set of all strings accepted is the language associated with the FA. We say,
"this FA accepts the language L," or "L is the language accepted by this FA." When we
wish to be anthropomorphic, we say that L is the language of the FA. If language L 1 is con
tained in language L2 and a certain FA accepts L2 (all the words in L2 are accepted and all the
inputs accepted are words in L2), then this FA also must accept all the words in language L 1
(because they are also words in L2) . However, we do not say, "L 1 is accepted by this FA" be
cause that would mean that all the words the FA accepts are in L 1 • This is solely a matter of
standard usage.

At the moment, the only job an FA does is define the language it accepts, which is a fine
reason for calling it an acceptor, or better sti l l a language-recognizer. This last tenn is good
because the FA merely recognizes whether the input string is in its language much the same
way we might recognize when we hear someone speak Russian without necessari ly under
standing what it means.

Let us examine a different input string for this same FA. Let the input be ahha. As al
ways, we start in state x. Rule 1 tells us that the first input letter, a , takes us to state y. Once
we are in state y, we read the second input letter, which is a b. Rule 4 now tells us to move to
state z. The third input letter is a h, and because we are in state ;;; , Rule 5 tells us to stay there .
The fourth input letter is an a, and again Rule 5 says stay put. Therefore, after we have fol
lowed the instruction of each input letter, we end up in state :. State ;;; is designated a final
state, so we have won this game. The input string ahha has taken us successfully to the final
state. The string ahba is therefore a word in the language associated with this FA. The word
ahha is accepted by this FA.

It is not hard for us to predict which strings wil l be accepted by th is FA. If an input
string is made up of only the letter a repeated some number of times, then the action of the
FA wi l l be to jump back and forth between state x and state y. No such word can ever be ac-

Yet Another Method for Defining Languages 55

cepted. To get into state z, i t is necessary for the string to have the letter h in it. As soon as a
h is encountered in the input string, the FA jumps immediately to state z no matter what state
it was in before. Once in state z, it is impossible to leave. When the input string runs out, the
FA will still be in state z, leading to acceptance of the string.

The FA above will accept all strings that have the letter h in them and no other strings.
Therefore, the language associated with (or accepted by) this FA is the one defined by the
regular expression

(a + b)*b(a + b)*

The list of transition rules can grow very long. It is much simpler to summarize them in
a table format. Each row of the table is the name of one of the states in the FA, and each col
umn of the table is a letter of the input alphabet. The entries inside the table are the new
states that the FA moves into-the transition states. The transition table for the FA we have
described is

Start x
y

Final z

a b

y
x
z

z
z
z

We have also indicated along the left side which states are start and final states. This
table has al l the information necessary to define an FA.

Instead of the lengthy description of the meaning of motion between states caused by
input letters, FAs could simply and equivalently have been defined as static transition tables.
Any table of the form

a b

x
y
z

in which the dots are fil led with the letters x, y, and z in any fashion, and which specifies the
start state and the final states, wi l l be an FA. Similarly, every three-state FA corresponds to
such a table.

Even though it is no more than a table of symbols, we consider an FA to be a machine,
that is, we understand that this FA has dynamic capabil ities. It moves. It processes input.
Something goes from state to state as the input is read in and executed. We may imagine that
the state we are in at any given time is lit up and the others are dark. An FA running on an
input string then looks like a pinball machine in operation.

We may make the definition of FAs even more mathematically abstract (wi th no
greater precision and decreased understanding) by replacing the transition table with a
total function whose input is a pair of state and alphabet letter and whose output is a s in
gle state . This function is cal led the transit ion function , usual ly denoted & (lowercase
Greek delta) (for reasons lost to computer h istorians) . The abstract definition of an FA
is then :

1 . A finite set of states Q = I % q 1 q2 • • • } of which % is the start state.

2. A subset of Q called the final states.

3. An alphabet I = { x1 x2 x3 • • • } .

56 CHAPTER S Finite Automata

4. A transition function 8 associating each pair of state and letter with a state:

8(q; ,X) = xk
We shall never refer to this transition function again in this volume.

From the table format, it is hard to see the moving parts. There is a pictorial representa
tion of an FA that gives us more of a feel for the motion. We begin by representing each state
by a small circle drawn on a sheet of paper. From each state, we draw arrows showing to
which other states the different letters of the input alphabet will lead us. We label these ar
rows with the corresponding alphabet letters .

If a certain letter makes a state go back to itself, we indicate this by an arrow that re
turns to the same circle-this arrow is called a loop. We can indicate the start state by label
ing it with the word "start" or by a minus sign, and the final states by labeling them with the
word "final" or plus signs. Notice that some states are neitht;r - nor + . The machine we
have already defined by the transition list and the transition table can be depicted by the
transition diagram

a

Sometimes, a start state is indicated by an arrow and a final state by drawing a box or an
other circle around its circle. The minus and plus signs, when employed, are drawn inside or
outside the state circles. This machine can also be depicted as

a a

start

or

Every input string can be interpreted as traversing a path beginning at the start state and
moving among the states (perhaps v isiting the same state many times) and finally settling in
some particular rest state. If it is a final state, then the path has ended in success. The letters
of the input string dictate the directions of travel . They are the directions and the fuel needed
for motion . When we are out of letters, we must stop.

Let us look at this machine again and at the paths generated by the input strings
aaaabba and bbaabbbb.

Yet Another Method for Defining Languages

a

a

h h

0

57

When we depict an FA as circles and arrows, we say that we have drawn a directed
graph. Graph theory is an exciting subject in its own right, but for our purposes there is no
real need to understand directed graphs in any deeper sense than as a collection of circles
and arrows. We borrow from graph theory the name directed edge, or simply edge, for the
arrow between states. An edge comes from one state and leads to another (or the same, if it
is a loop). Every state has as many outgoing edges as there are letters in the alphabet. It is
possible for a state to have no incoming edges or to have many.

There are machines for which it is not necessary to give the states specific names. For
example, the FA we have been dealing with so far can be represented simply as

a

Even though we do not have names for the states, we can still determine whether a par
ticular input string is accepted by this machine. We start at the minus s ign and proceed along
the indicated edges until we are out of input letters . If we are then at a plus sign, we accept
the word; if not, we reject it as not being part of the language of the machine.

Let us consider some more simple examples of FAs.

58 CHAPTER 5 Finite Automata

EXAMPLE

a . h
a

b

In the picture above, we have drawn one edge from the state on the right back into itself and
given this loop the two labels a and b, separated by a comma, meaning that this is the path
traveled if either letter is read. (We save ourselves from drawing a second loop edge.) We
could have used the same convention to eliminate the need for two edges running from the
minus state to the plus state. We could have replaced these with one edge with the label a, h,

but we did not. At first glance, it looks as if thi s machine accepts everything. The first letter
of the input takes us to the right-hand state and, once there, we are trapped forever. When the
input string runs out, there we are in the correct final state. This description, however, omits
the possibil ity that the input is the null string A. If the input string is the null string, we are
left in the left-hand state , and we never get to the final state . There is a smal l problem about
understanding how it is possible for A ever to be an input string to an FA, because a string,
by definition, is executed (run) by reading its letters one at a time. By convention, we shall
say that A starts in the start state and then ends right there on all FAs.

The language accepted by this machine is the set of al l strings except A. This has the
regular expression definitions

(a + b)(a + b)* = (a + b)+ •

EXAMPLE

One of the many FAs that accepts al l words is

a , b

GJ
Here, the sign ::!::: means that the same state is both a start and a final state. Because there is
only one state and no matter what happens we must stay there, the language for this machine is

(a + b)* •

Simi larly, there are FAs that accept no language. These are of two types: FAs that have
no final states, such as

a , b
a

b

and FAs in which the circles that represent the final states cannot be reached from the start
state . This may be either because the picture is in two separate components as w i th

FAs and Their Languages 59

a , b
a . b

a, b

b

(in this case, we say that the graph is disconnected) , or for a reason such as that shown be
low:

a. b

a. b a , b

We consider these examples again in Chapter 1 1 .

1f FAs AND THEIR LANGUAGES

It is possible to look at the world of FAs in two ways. We could start with the machine and
try to analyze it to see what language it accepts, or we could start with a desired language in
our mind and try to construct an FA that would act as a language-recognizer or language
definer. Needless to say, in real l ife we seldom discover an FA fall ing out of a cereal box or
etched onto a mummy's sarcophagus; it is usually our desire to construct an FA from scratch
for the precise purpose of acting as a language-recognizer for a specific language for which
we were looking for a practical algorithmic definition.

When a language is defined by a regular expression, i t is easy to produce some arbitrary
words that are in the language by making a set of choices for the meaning of the pluses and
stars, but it is harder to recognize whether a given string of letters is or is not in the language
defined by the expression. The situation with an FA is just the opposite. If we are given a
specific string, we can decide by an algorithmic procedure whether or not it is in the lan
guage defined by the machine-just run it and see if the path it determines ends in a final
state. On the other hand, given a language defined by an FA, it is not so easy to write down a
bunch of words that we know in advance the machine will accept.

Therefore, we must practice studying FA from two different angles: Given a language,
can we build a machine for it, and given a machine, can we deduce its language?

EXAMPLE

Let us build a machine that accepts the language of all words over the alphabet I a h } with
an even number of letters . We can start our considerations with a human algorithm for iden
tifying all these words. One method is to run our finger across the string from left to right
and count the number of letters as we go. When we reach the end of the string, we examine
the total and we know right away whether the string is in the language or not. Th is may be
the way a mathematician would approach the problem, but it is not how a computer scientist
would solve it. Because we are not interested in what the exact length of the string is, this
number represents extraneous information gathered at the cost of needlessly many calcula-

60 CHAPTER 5 Finite Automata

tions. A good programmer would employ instead what is called a Boolean flag; let us call it
E for even. If the number of letters read so far is indeed even, then E should have the value
TRUE. If the number of letters read is not even, then E should have the value FALSE. Ini
tially, we set E equal to TRUE, and every time we read a letter, we reverse the value of E un
til we have exhausted the input string. When the input letters have run out, we check the
value of E. If it is TRUE, then the input string is in the language; if false, it is not.

The program looks something l ike thi s :

set E = TRUE
while not out of data do

read an input letter
E becomes not(E)

if E = TRUE, accept the input string
else reject the string

Because the computer employs only one storage location in the processing of this program
and that location can contain only one of two different values, the finite automaton for this
language should require only two states :

State I E is TRUE; this is the start state and the accept or final state .

State 2 E is FALSE.

Every time an input letter is read, whether it is an a or a b, the state of the FA changes. This
machine is pictured below:

a, b

a, b

EXAMPLE

Suppose we want to build a finite automaton that accepts all the words in the language

a(a + b)*

•

that is, all the strings that begin with the Jetter a. We start at state x and, if the first letter read
is a b, we go to a dead-end state y. (A "dead-end state" is an informal way of describing a
state that no string can leave once it has entered.) If the first letter is an a, we go to the dead
end state z, where z is a final state. The machine looks like this :

a , b

FAs and Their Languages 61

The same language may be accepted by a four-state machine, as below:

a. b

a , b

a , b

Only the word a ends in the first + state. All other words starting with an a reach and finish
in the second + state where they are accepted.

This idea can be carried further to a five-state FA as below :

a, b

•

The examples above are FAs that have more than one final state . From them, we can
see that there is not a unique machine for a given language . We may then ask the ques
tion, "Is there always at least one FA that accepts each possible language? More pre
c isely, if L is some language, is there necessari ly a mach ine of this type that accepts
exactly the inputs in L, while forsaking all others?" We shal l see shortly that this question
is re lated to the question , "Can al l languages be represented by regular express ions?"
We shall prove, in Chapter 7, that every language that can be accepted by an FA can

be defined by a regular expression and, conversely, every language that can be defined
by a regular express ion can be accepted by some FA. However, we shall see that there
are languages that are neither definable by a regular expression nor accepted by an
FA. Remember, for a language to be the language accepted by an FA means not only that
all the words in the language run to final states, but also that no strings not in the
language do .

Let us consider some more examples of FAs.

62 CHAPTER 5 Finite Automata

EXAMPLE

Let us contemplate the possibi l i ty of bui lding an FA that accepts all words containing a triple
letter, either aaa or bbb, and only those words.

The machine must have a start state. From the start state, it must have a path of three
edges, with no loop, to accept the word aaa. Therefore, we begin our machine with

a a a

For s imi lar reasons, we can deduce that there must be a path for bbb, that has no loop,
and uses entirely different states . If the b-path shared any of the same states as the a
path, we could mix a 's and h's and mistakenly get to + anyway. We need only two
additional states because the paths could share the same final state without a problem, as
below :

I f we are moving anywhere along the a-path and we read a b before the third a, we jump to
the b-path in progress and vice versa. The whole FA then looks l ike this :

We can understand the language and functioning of this FA because we have seen how i t
was bui lt . If we had started with the final picture and tried to interpret i ts meaning, we would
be sai l ing uncharted waters. •

FAs and Their Languages 63

EXAMPLE

Consider the FA pictured below:

Before we begin to examine what language this machine accepts, let us trace the paths asso
ciated with some specific input strings. Let us input the string abaha. We begin at the start
state l . The first letter is an a, so it takes us to state 2. From there the next letter, h, takes us
to state 3. The next letter, a, then takes us back to state 2. The fourth letter is a h and that
takes us to state 3 again. The last letter is an a that returns us to state 2 where we end. State 2
is not a final state (no +), so this word is not accepted.

Let us trace the word hahhh. As always, we start in state I . The first letter, b, takes us to
state 3. An a then takes us to state 2. The third letter, h, takes us back to state 3 . Now another b
takes us to state 4. Once in state 4, we cannot get out no matter what the rest of the string is.
Once in state 4, we must stay in state 4, and because that is the final state, the string is accepted.

There are two ways to get to state 4 in this FA. One is from state 2, and the other is from
state 3 . The only way to get to state 2 is by reading the input letter a (while in either state I

or state 3) . So when we are in state 2, we know we have just read an a. If we read another a

immediately, we go straight to state 4. It is a similar situation with state 3 . To get to state 3 ,
we need to read a h. Once in state 3 , if we read another h immediately, we go to state 4; oth
erwise, we go to state 2.

Whenever we encounter the substring aa in an input string, the first a must take us to
state 4 or 2. Either way, the next a takes us to state 4. The situation with bb is analogous. If
we are in any of the four states I , 2, 3, or 4 and we read two a 's, we end up in state 4. If we
are in any state and read two h's, we end up in state 4. State 4, once entered, cannot be left.
To end in state 4, we must read a double letter.

In summary, the words accepted by this machine are exactly those strings that have a
double letter in them. This language, as we have seen, can also be defined by the regular ex
pression

(a + b)*(a a + b b)(a + b)*

The four states in this machine can be characterized by the purposes they serve :

State I Start here but do not get too comfortable; you are going to leave immediately.

State 2 We have just read an a that was not preceded by an a and we are look ing for a
second a as the next input.

State 3 We have just read a h that was not preceded by a h and we are looking for a
second h as the next input.

State 4 We have already discovered the existence of a double letter i n the input string
and we are going to wait out the rest of the input sequence and then announce
acceptance when it is al l over.

64 CHAPTER S Finite Automata

In this characterization, if we read a h while in state 2, we go to state 3, hoping for another h,
whereas if we read an a in state 3, we go to state 2, hoping for a baby a. •

EXAMPLE

Let us consider the FA pictured below:

a, b

a, b a, b

This machine will accept al l words with h as the third letter and reject all other words. States
I and 2 are only waiting states eating up the first two letters of input. Then comes the deci
s ion at state 3 . A word that has fewer than three letters cannot qual ify, and its path ends in
one of the first three states, none of which i s designated +. Once we get to state 3, only the
low road leads to acceptance.

Some regular expressions that define this language are

(aab + abb + bah + bbb)(a + b)*

and

(a + b)(a + b)(b)(a + b)* = (a + b)2b(a + b)*

Notice that this last fonnula is not, strictly speaking, a regular expression, because it
uses the symbol 2, which is not included in the kit. •

EXAMPLE

Let us consider a very specialized FA, one that accepts only the word haa:

a . I>

FAs and Their Languages 65

Starting at the start state, anything but the sequence baa will drop down into the collecting
bucket at the bottom, never to be seen again . Even the word baabh will fail. It will reach the
final state marked with a + , but then the next letter will suicide over the edge.

The language accepted by this FA is

L = (baa } •

EXAMPLE

The FA below accepts exactly the two strings baa and ab:

(I , h

Big machine, small language. •

EXAMPLE

Let us take a trickier example . Consider the FA shown below:

a

What is the language accepted by this machine? We start at state I , and if we are read
ing a word starting with an a, we go straight to the final state 3. We can stay at state 3 as
long as we continue to read only a 's . Therefore, a l l words of the form

aa*

66 CHAPTER 5 Finite Automata

are accepted by this machine. What if we began with some a 's that take us to state 3 but then
we read a b? This then transports us to state 2. To get back to the final state, we must pro
ceed to state 4 and then to state 3. These trips require two more b's to be read as input. No
tice that in states 2, 3, and 4 al l a 's that are read are ignored. Only b 's cause a change of
state .

Recapitulating what we know : If an input string begins with an a and then has some h 's,
it must have 3 h's to return us to state 3, or 6 h's to make the trip (state 2, state 4, state 3)
twice, or 9 b 's, or 1 2 h 's and so on. In other words, an input string starting with an a and
having a total number of h's divisible by 3 wi l l be accepted. If it starts with an a and has a
total number of h's not divisible by 3 , then the input is rejected because its path through the
machine ends at state 2 or 4.

What happens to an input string that begins with a h? It finds itself in state 2 and needs
two more b's to get to state 3 (these h's can be separated by any number of a 's) . Once in
state 3 , it needs no more h's, or three more h 's, or six more h 's, and so on.

Al l in al l , an input string, whether beginning with an a or a h, must have a total number
of b 's divisible by 3 to be accepted. It is also clear that any string meeting this requirement
wi l l reach the final state.

The language accepted by this machine can be defined by the regular expression

a*(a*ba*ba*ba*)*(a + a*ba*ba*ba*)

The only purpose for the last factor is to guarantee that A is not a possibi lity because it is not
accepted by the machine. If we did not mind A being included in the language, we could
have used this simpler FA:

(/ (/

(/

The regular expression

(a + ba*ba*b)+

also defines the original (non-A) language, whereas the regular expression

(a*ba*ba*ba*)*

defines the language of the second machine.

EXAMPLE

The fol lowing FA accepts only the word A:

a . h

~

•

FAs and Their Languages 67

Notice that the left state is both a start and a final state. All words other than A go to the
right state and stay there . •

EXAMPLE

Consider the following FA:

h a (!

h

No matter which state we are in, when we read an a, we go to the right-hand state, and
when we read a h, we go to the left-hand state. Any input string that ends in the + state must
end in the letter a, and any string ending in a must end in + . Therefore, the language ac
cepted by this machine is

(a + b)*a •

EXAMPLE

The language in the example above does not include A. If we add A, we get the language of
all words that do not end in h. This is accepted by the FA below:

a h
h

a

•

EXAMPLE

Consider the fol lowing FA:

a

The only letter that causes motion between the states is a; h 's leave the machine in the
same state . We start at - . If we read a first a, we go to + . A second a takes us back. A th ird
a takes us to + again. We end at + after the first, third, fifth, seventh , . . . a. The language
accepted by this machine is all words with an odd number of a 's, which could also be de
fined by the regular expression

b*ab*(ab*ab*)* •

68 CHAPTER 5 Finite Automata

EXAMPLE

Consider the following FA:

b a . b
a

a

b

This machine wil l accept the language of all words with a double a in them somewhere.
We stay in the start state until we read our first a. This moves us to the middle state. If the
very next letter is another a, we move to the + state, where we must stay and eventual ly be
accepted. If the next letter is a b, however, we go back to - to wait for the next a.

We can identify the purposes that these states serve in the machine as follows:

Start state The previous input letter (if there was one) was not an a.

Middle state We have just read an a that was not preceded by an a.

Final state We have already encountered a double a and we are going to sit here un
til the input is exhausted.

Clearly, if we are in the start state and we read an a, we go to the middle state, but if we
read a h, we stay in the start state. When in the middle state, an a sends us to nirvana, where
ultimate acceptance awaits us, whereas a h sends us back to start, hoping for the first a of a
double letter.

The l anguage accepted by this machine can also be defined by the regular expression

(a + b)*aa(a + b)* •

EXAMPLE

The following FA accepts all words that have different first and last letters . If the word be
gins with an a, to be accepted it must end with a h and vice versa.

a h

a

If we start with an a, we take the high road and jump back and forth between the two
top states ending on the right (at +) only if the last letter read is a h. If the first letter read is
a h, we go south. Here, we get to the + on the bottom only when we read a as the last letter.

EVEN-EVEN Revisited 69

This can be better understood by examining the path through the FA of the input string
aabhaahh, as shown below:

0
It wi l l be useful for us to consider this FA as having a primitive memory dev ice. For the

top two states, no matter how much bouncing we do between them, remember that the first
letter read from the input string was an a (otherwise, we would never have gotten up here to
begin with) . For the bottom two states, remember that the first input letter was a h.

Lower non + state The input started with a h and the last letter we have read from the
input string is also a h.

Lower + state The input started with a h and the last letter read so far is an a . •

1} EVEN-EVEN REVISITED

EXAMPLE

As the next example of an FA in this chapter, let us consider the picture below:

h

a a

h

To process a string of letters , we start at state I , which is in the upper left of the picture .
Every time we encounter a letter a in the input string, we take an a train. There are four
edges labeled a. All the edges marked a go either from one of the upper two states (states I
and 2) to one of the lower two states (states 3 and 4), or e lse from one of the lower two states

70 CHAPTER 5 Finite Automata

to one of the upper two states. If we are north and we read an a, we go south. If we are south
and we read an a, we go north. The letter a reverses our up/down status.

What happens to a word that gets accepted and ends up back in state 1 ? Without know
ing anything else about the string, we can say that it must have had an even number of a 's in
it. Every a that took us south was balanced by some a that took us back north. We crossed
the Mason -Dixon line an even number of times, one for each a. So, every word in the lan
guage of this FA has an even number of a's in it. Also, we can say that every input string
with an even number of a's will finish its path in the north (state 1 or 2).

There is more that we can say about the words that are accepted by this machine.
There are four edges labeled h. Every edge labeled h either takes us from one of the two
states on the left of the picture (states I and 3) to one of the two states on the right (states
2 and 4), or else takes us from one of the two states on the right to one of the two states
on the left. Every h we encounter in the input is an east/west reverser. If the word starts
out in state 1 , which is on the left, and ends up back in state 1 (on the left), it must have
crossed the Mississippi an even number of times. Therefore, all the words in the language
accepted by this FA have an even number of h 's as well as an even number of a 's . We can
also say that every input string with an even number of h's wi l l leave us in the west (state
1 or 3) .

These are the only two conditions on the language. All words with an even number of
a's and an even number of h's must return to state I . All words that return to state 1 are in
EVEN-EVEN. All words that end in state 2 have crossed the Mason- Dixon l ine an even
number of times but have crossed the Mississippi an odd number of times; therefore, they
have an even number of a 's and an odd number of b's. All the words that end in state 3 have
an even number of h 's but an odd number of a 's . All words that end in state 4 have an odd
number of a's and an odd number of h 's. So again, we see that all the EVEN-EVEN words
must end in state I and be accepted.

One regular expression for the language EVEN-EVEN was discussed in detai l in the
prev ious chapter. •

Notice how much easier it is to understand the FA than the regular expression . Both
methods of defining languages have advantages, depending on the desired application. But
in a theory course we rarely consider appl ications except in the fol lowing example.

EXAMPLE

We are programmers hired to write a word processor. As part of this major program, we
must bui ld a subroutine that scans any given input string of English letters and spaces and lo
cates the first occurrence of the substring cat whether it is a word standing alone or part of a
longer word such as abdicate.

We envision the need for four states:

State 1 We have not just read a c; this is the start state .

State 2 The last letter read was a c.

State 3 The last letter read was an a that came after a c.

State 4 We have just encountered the substring cat and control of this program must
transfer somewhere else.

If we are in state 1 and read anything but a c, we stay there . In state 1 if we read a c, we
go unconditionally to state 2.

Problems 7 1

I f we are in state 2 and we read an a, we go to state 3 . I f we read another c , we stay in
state 2 because this other c may be the beginning of the substring cat. If we read anything
else, we go back to state I .

If we are in state 3 and we read a t, then we go to state 4. If we read any other letter ex
cept c, we have to go back to state I and start all over again, but if we read a c, then we go to
state 2 because this could be the start of something interesting.

The machine looks l ike this :

a l l except c any letter

all except c and t

The input Boccaccio will go through the sequence of states 1 - l - 1 -2-2-3-2-2- l - 1 and the
input wi l l not be accepted.

The input desiccate wil l go through the states : l - 1 - l - 1 - 1 -2-3-4-4 and terminate (which
in this example is some form of acceptance) before reading the final e. •

1} PROBLEMS

1 . Write out the transition tables for the FAs on pp. 56, 58 (both), 63, 64, and 69 that were
defined by pictures.

2. Build an FA that accepts only the language of all words with h as the second letter.
Show both the picture and the transition table for this machine and find a regular expres
sion for the language.

3. Build an FA that accepts only the words baa, ah, and ahh and no other strings longer or
shorter.

4. (i) Build an FA with three states that accepts all strings.
(ii) Show that given any FA with three states and three + 's, it accepts all input strings.

(i i i) If an FA has three states and only one + , must it reject some inputs?

5. (i) Bui ld an FA that accepts only those words that have more than four letters .
(i i) Bui ld an FA that accepts only those words that have fewer than four letters.
(i i i) Build an FA that accepts only those words with exactly four letters.

6. Build an FA that accepts only those words that do not end with ha.

7. Build an FA that accepts only those words that begin or end with a double letter.

8. Build an FA that accepts only those words that have an even number of substrings ah.

9. (i) Recal l from Chapter 4 the language of all words over the alphabet l a h } that
have both the letter a and the letter h in them, but not necessari ly in that order.
Build an FA that accepts this language.

72 CHAPTER 5 Finite Automata

(i i) Bui ld an FA that accepts the language of all words with only a 's or only h's in
them. Give a regular expression for this language.

10. Consider all the possible FAs over the alphabet (a h I that have exactly two states.
An FA must have a designated start state, but there are four possible ways to place
the + 's :

type 1 type 2 type 3 type 4

Each FA needs four edges (two from each state), each of which can lead to either of the
states. There are 24 = 1 6 ways to arrange the labeled edges for each of the four types of
FAs. Therefore, in total there are 64 different FAs of two states. However, they do not
represent 64 nonequivalent FAs because they are not all associated with different lan
guages. All type l FAs do not accept any words at al l , whereas all FAs of type 4 accept
all strings of a 's and h's.

(i) Draw the remaining FAs of type 2 .
(i i) Draw the remaining FAs of type 3 .

(i i i) Recalculate the total number of two-state machines using the transition table defin
ition.

11. Show that there are exactly 5832 different finite automata with three states .r, y, : over
the alphabet (a h) , where x is always the start state .

12. Suppose a particular FA, called FIN, has the property that it had only one final state that
was not the start state. During the night, vandals come and switch the + sign with the -
sign and reverse the direction of al l the edges.

(i) Show that the picture that results might not actual ly be an FA at al l by giving an
example.

(i i) Suppose, however, that in a particular case what resulted was, in fact, a perfectly
good FA. Let us call it NIF. Give an example of one such machine.

(i i i) What is the relationship between the language accepted by FIN and the language
accepted by NIF as described in part (i i)? Why?

(iv) One of the vandals told me that if in FIN the plus state and the minus state were the
same state, then the language accepted by the machine could contain only pal in
dromic words. Defeat this vandal by example.

13. We define a removable state as a state such that if we erase the state itself and the edges
that come out of it, what results is a perfectly good-looking FA.

(i) Give an example of an FA that contains a removable state.
(i i) Show that if we erase a removable state the language defined by the reduced FA is

exactly the same as the language defined by the old FA.

14. (i) Bui ld an FA that accepts the language of all strings of a's and h's such that the
next-to-last letter is an a .

(i i) Bui ld an FA that accepts the language of al l strings of length 4 or more such that
the next-to-last letter is equal to the second letter of the input string.

Problems 73

15. Build a machine that accepts all strings that have an even length that is not divisible
by 6.

16. Build an FA such that when the labels a and b are swapped the new machine is different
from the old one but equivalent (the language defined by these machines is the same) .

17. Describe in English the languages accepted by the following FAs:

(i)

b a

a, b a, b

(i i)

a . h

(i i i)

a . h
" · h

a . h

(iv) Write regular expressions for the languages accepted by these three machines.

74 CHAPTER 5 Finite Automata

18. The following is an FA over the alphabet � = { a b c } . Prove that it accepts all strings
that have an odd number of occurrences of the substring abc.

a

b, ('

19. Consider the following FA:

a . b a . h a. h a. b a. b a. b a, h a . b

Problems 75

(i) Show that any input string with more than three letters is not accepted by this FA.
(i i) Show that the only words accepted are a, aab, and bah.

(i i i) Show that by changing the location of + signs alone, we can make th is FA accept
the language { bb aha bba } .

(iv) Show that any language in which the words have fewer than four letters can be
accepted by a machine that looks l ike this one with the + signs in d ifferent
places.

(v) Prove that if l is a finite language, then there is some FA that accepts l extending
the binary-tree part of this machine several more layers if necessary.

20. Let us consider the possibi l ity of an infinite automaton that starts with this infin ite bi
nary tree:

Let l be any infinite language of strings of a's and h's whatsoever. Show that by the ju
dicious placement of + 's , we can tum the picture above into an infin ite automaton to
accept the language l. Show that for any given finite string, we can determine from this
machine, in a finite time, whether it is a word in l. Discuss why this machine would not
be a satisfactory language-definer for l.

CHAPTER 6

Transition Graphs

� RELAXING THE RESTRICTION ON INPUTS

76

We saw in the last chapter that we could bui ld an FA that accepts only the word baa. The ex
ample we gave required five states primarily because an FA can read only one letter from the
input string at a time. Suppose we designed a more powerrul machine that could read either
one or two letters of the input string at a time and could change its state based on this input
information . We might design a machine l ike the one below:

Because when we say "build a machine," all we have to do is scribble on paper- we do
not have to solder, weld, and screw- we could easi ly change the rules of what constitutes a
machine and allow such pictures as the one above. The objects we deal with in this book are
only mathematical models . In general, practically anything can be a mathematical model so
long as i t is a wel l -defined set of rules for playing with some abstract constructs, but the ob
vious question remains: a mathematical model of what?

The FAs defined in the previous chapter started out on a dubious note when they were
analogized to being mathematical models of children 's games. However, we did later pro
duce some reasons for thinking that they were of use to computer science because they rep
resent, in a meaningful way, states in certain programmable algorithms. The mathematical
models that we shall introduce in this chapter will differ in a significant way. We cannot as
of yet explain the direct appl ication of these entities to the normal experience of a program-

Relaxing the Restriction on Inputs 77

ming student. That does not mean that their importance must be accepted on blind faith
merely patience. They will be of utmost practical value for us in the all-important next chap
ter. Beyond that service, the underlying special features that distinguish them from FAs wil l
introduce us to a theme that wil l recur often in our study of computer theory. As for the mo
ment, we are proposing to investigate a variation of FAs. There are sti l l states and edges that
consume input letters, but we have abandoned the requirement that the edges eat just one let
ter at a time. As we shal l see soon, this is accompanied by several other coordinated adjust
ments.

If we are interested in a machine that accepts only the word baa, why stop at assuming
that the machine can read just two letters at a time? A machine that accepts this word and
that can read up to three letters at a time from the input string could be built with even fewer
states:

�- baa + or even �

If we interpret the picture on the right as an FA-like machine, we see that not only does
baa alone get to the final state, but all other input strings end up actually nowhere. If we start
in the minus state and the first letter of the input is an a, we have no direction as to what to
do. The picture on the left at least tells us that when the input fails to be of the desired form,
we must go to the garbage collection state and read through the rest of the input string in the
ful l knowledge that we can never leave there.

The picture on the right g ives us another problem with the input baabb. The first three
letters take us to the accept state, but then something undetermined (presumably bad) hap
pens when we read any more of the input letters. According to the rules of FAs, one cannot
stop reading input letters unti l the input string completely runs out. The picture on the right
does not tel l us where to go for most of the situations we may have to face while reading in
puts. By convention, we shall assume that there is associated with the picture, but not drawn,
some trash-can state that we must go to when we fai l to be able to make any of the allowable
indicated legal edge crossings in the picture. Once in this state, we must abandon all hope of
ever leaving and getting to acceptance. Many of the FAs in the previous chapter had such in
escapable nonacceptance black holes that had to be drawn in detail . We now consider the
two pictures above to be equivalent for all practical purposes. They are only distinguishable
in trivial ways, such as by having a different number of states, but they accept the exact same
language.

Rather than an imaginary hell -state as we have described just now, it is more stan
dard to introduce a new term to describe what happens when an input is running on a ma
chine and gets into a state from which it cannot escape though it has not yet been ful l y
read.

78 CHAPTER 6 Transition Graphs

DEFINITION

When an input string that has not been completely read reaches a state (final or otherwise) that it
cannot leave because there is no outgoing edge that it may follow, we say that the input (or the
machine) crashes at that state. Execution then terminates and the input must be rejected. •

Let us make note of the fact that on an FA it is not possible for any input to crash be
cause there is always an outgoing a-edge and an outgoing b-edge from each state. As long as
there remain letters unread, progress is possible.

There are now two different ways that an input can be rejected: It could peaceful ly trace
a path ending a nonfinal state, or it could crash while being processed. These two different
ways of being unsuccessful are the experience of al l programmers.

If we hypothesize that a machine can read one or two letters at a time, then one can be
bui l t using only two states that can recognize a l l words that contain a double letter:

n . h a . h

a a . hh

If we are going to bend the rules to allow for a machine l ike the last one, we must real
ize that we have changed something more fundamental than just the way the edges are la
beled or the number of letters read at a time. This last machine makes us exercise some
choice in its running. We must decide how many letters to read from the input string each
time we go back for more. This decision is quite important.

Let us say, for example, that the input string is baa. It is easy to see how thi s string can
be accepted by this machine. We first read the letter b, which leaves us back at the start state
by taking the loop on the left. Then we decide to read both letters aa at once, which al lows
us to take the highway to the final state where we end. However, if after reading the single
character b, we then decided to read the single character a, we would loop back and be stuck
at the start state again. When the third letter is read, we would sti l l be at the starting post. We
could not then accept this string. There are two different paths that the input baa can take
through this machine. This is total ly different from the situation we had before, especially
because one path leads to acceptance and one to rejection .

Another bad thing that might have happened is that we could have started processing the
string baa by reading the first two letters at once. Because ba is not a double letter, we could
not move to the final state. In fact, when we read ba, no edge tel l s us where to go, because
ba is not the label of any edge leaving the start state . The processing of this string breaks
down at this point and the machine crashes. So, there is the inherent possibil ity of reading
variable amounts of letters from the input at each state. Therefore, the input string can follow
a variety of paths through the machine, differing not only in their edge-length but also in
their final disposition. Some paths may lead to acceptance the usual way and some to rejec
tion two ways: either by ending in a nonfinal state or by causing the whole machine to crash.
What shall we say? Is this input string part of the language of this machine or not? It cannot
be made to depend on the c leverness or whim of the machine operator and the number of let
ters he or she feels l ike inputting at each state- it must be an absolute yes or no, or else the
language is not well defined in the sense that we have been using.

The result of these considerations is that if we are going to change the definition of our
abstract machine to allow for more than one letter to be read at a time, we must also change

Relaxing the Restriction on Inputs 79

the definition of acceptance. We shall say that a string is accepted by a machine if there is
some way it could be processed so as to arrive at a final state. There may also be ways in
which this string does not get to a final state, but we ignore all failures.

We are about to create machines in which any edge in the picture can be labeled by any
string of alphabet letters, but first we must consider some additional consequences. We could
now encounter the following problem:

On this machine, we can accept the word baab in two different ways. First, we could take ba

from the start state to state l and then ab would take us to the final state. Or else we could
read the three letters baa and go to state 2 from which the final letter, b, would take us to the
final state.

Previously, when we were dealing only with FAs, we had a unique path through the ma
chine for every input string. Now some strings have no paths at all, while some have several .

We now have observed many of the difficulties inherent in expanding our definition of
"machine" to allow word-labeled edges (or, equivalently, to reading more than one letter of
input at a time). We shall leave the definition of the finite automaton alone and call these
new machines transition graphs because they are more easi ly understood when defined di
rectly as graphs than as tables later turned into pictures.

DEFINITION

A transition graph, abbreviated TG, is a collection of three things:

1 . A finite set of states, at least one of which is designated as the start state (-) and some
(maybe none) of which are designated as final states (+) .

2. An alphabet I of possible input letters from which input strings are fonned.

3. A finite set of transitions (edge labels) that show how to go from some states to some
others, based on reading specified substrings of input letters (possibly even the null
string A). •

When we give a pictorial representation of a transition graph, clause 3 in the definition
means that every edge is labeled by some string or strings of letters , not necessari ly only one
letter. We are also not requiring that there be any specific number of edges emanating from
any state. Some states may have no edge coming out of them at al l , and some may have
thousands (e.g. , edges labeled a, aa, aaa, aaaa, . . .) .

Transi tion graphs were invented by John Myhi l l in 1 957 for reasons revealed in the next
chapter.

A successful path through a transition graph is a series of edges fonning a path begin
ning at some start state (there may be several) and ending at a final state. If we concatenate

80 CHAPTER 6 Transition Graphs

in order the string of letters that label each edge in the path, we produce a word that is ac
cepted by this machine.

For example, consider the following TG:

The path from state l to state 2 to state 3 back to state l then to state 4 corresponds to the
string (abh)(A)(aa)(h). This is one way of factoring the word abbaab, which, we now see, is
accepted by this machine. Some other words accepted are abba, abbaaabba, and b.

When an edge is labeled with the string A, it means that we can take the ride it offers
free (without consuming any letters from the input string). Remember that we do not ha\'e to
follow that edge, but we can if we want to.

If we are presented with a particular string of a 's and h's to run on a given TG, we must
decide how to break the word into substrings that might correspond to the labels of edges in
a path . If we run the input string abbab on the machine above, we see that from state l ,
where we must start, we can proceed along the outgoing edge labeled abb or the one labeled
b. This word then moves along the edge from state l to state 2. The input letters abb are read
and consumed. What is left of the input string is ab, and we are now in state 2. From state 2,
we must move to state 3 along the A-edge. At state 3 , we cannot read aa, so we must read
only a and go to state 4. Here, we have a b left in the input string but no edge to follow, so
despite our best efforts we sti l l must crash and reject the input string abbah.

Because we have allowed some edges to be traversed for free, it is logical to al low for
the possibil ity of more than one start state. The reason we say that these two points are re
lated is that we could always introduce more start states if we wanted to, simply by connect
ing them to the original start state by edges labeled A. This point is i l lustrated by the follow
ing example. There is no real difference between the TG

and the TG

Looking at TGs 81

in the sense that all the strings accepted by the first are accepted by the second and vice
versa. There are differences between the two machines such as the total number of states
they have, but as language-acceptors they are equivalent.

It is extremely important for us to notice that every FA is also a TG. This means that any
picture that represents an FA can be interpreted as a picture of a TG. Of course, not every
TG satisfies the definition of an FA.

'1f LOOKING AT TGs

Let us consider some more examples of TGs.

0
The picture above represents a TG that accepts nothing, not even the nul l string A. To be
able to accept anything, it must have a final state .

The machine

accepts only the string A. Any other string cannot have a successful path to the final state
through labels of edges because there are no edges (and hence no labels) .

Any TG in which some start state i s also a final state wi l l always accept the stri ng A;
this is also true of FAs. There are some other TGs that accept the word A. For example,

abba

82 CHAPTER 6 Transition Graphs

This machine accepts only the words A, baa, and abba. Anything read while in the + state
will cause a crash, because the + state has no outgoing edges.

EXAMPLE

The following TGs also only accept A :

bb

�

•

EXAMPLE

Consider the following TG :

(I . h

We can read all the input letters one at a time and stay in the left-side state . When we
read a b in the - state , there are two possible edges we can follow. If the very last letter is a
b, we can use it to go to the + state. This b must be the very last letter, because once in the
right-side state, if we try to read another letter, we crash.

Notice that it is also possible to start with a word that does end with a b, but to follow an
unsuccessful path that does not lead to acceptance. We could either make the mistake of fol
lowing the nonloop b-edge too soon (on a nonfinal b), in which case we crash on the next
letter, or else we might make the mistake of looping back to - when we read the last b, in
which case we reject without crashing. But sti l l , all words that end in b can be accepted by
some path, and that is all that is required.

The language accepted by thi s TG is all words ending in b. One regular expression for
this language is (a + b)*b and an FA that accepts the same language is

a h

a
•

Looking at TGs 83

EXAMPLE

The following TG:

a . h

h

a

accepts the language of all words that begin and end with different letters. This follows as a
logical extension of the reasoning for the previous example. •

EXAMPLE

The following TG:

aa h

aa

accepts the language of all words in which the a 's occur only in even c lumps and that end in
three or more h's. There i s never an edge that reads a single a and it takes bhh at the end to
get to + . •

EXAMPLE

Consider the following TG:

aa, bb
ab, ba

a b, ba

aa. bb

In this TG, every edge is labeled with a pair of letters. This means that for the string to be ac
cepted, it must have an even number of letters that are read and processed in groups of two's.

84 CHAPTER 6 Transition Graphs

Let us call the left state the balanced state and the right state the unbalanced state. If the first pair
of letters that we read from the input string is a double (aa or bb), then the machine stays in the
balanced state. In the balanced state, the machine has read an even number of a's and an even
number of b's. However, when a pair of unmatched letters is read (either ab or ba), the machine
flips over to the unbalanced state, which signifies that it has read an odd number of a 's and an
odd number of b's. We do not return to the balanced state until another "corresponding" un
matched pair is read (not necessarily the same unmatched pair but any unequal pair). The dis
covery of two unequal pairs makes the total number of a 's and the total number of b 's read from
the input string even again. This TG is an example of a machine that accepts exactly the familiar
language EVEN-EVEN of all words with an even number of a 's and an even number of b's.

Of the three examples of definitions or descriptions of this language we have reviewed
(the regular expression, the FA, and the TG) , this last is the most understandable. •

There is a practical problem with TGs. There are occasionally so many possible ways of
grouping the letters of the input string that we must examine many possibilities before we
know whether a given string is accepted or rejected.

EXAMPLE

Consider this TG:

h

a

Is the word abbbabbbabba accepted by this machine? (Yes, in three ways.) •

When we allow A-edges, we may have an infinite number of ways of grouping the let
ters of an input string. For example, the input string ab may be factored as

(a) (b)
(a) (A) (b)

(a) (A) (A) (b)
(a) (A) (A) (A) (b)

Looking at TGs 85

Instead of presenting a defini te algorithm right now for determining whether a partic
ular string is accepted by a particular TG, we shall wait until Chapter 1 1 when the task
wi l l be easier. There are, of course, difficult algorithms for performing this task that are
wi thin our abi l ities to analyze at thi s moment. One such algorithm is outl ined in Problem
20 on page 9 1 .

The existence of A-edges also allows for a new and completely unsettling set of possi
bil ities- it allows infinite things to happen in seemingly finite situations.

Consider the following TG:

a

Obviously, the only word accepted by thi s machine is the s ingle word aa, but it can be
accepted by infinitely many different paths . It is even possible to conceive that th i s ma
chine accepts the word aa through paths of infinite length by looping infinitely many
times before moving to the next state . But by our understanding, "paths" of necessity
mean only "finite paths." A-loop-edges can make l ife difficult , and just as obviously their
uti l ity is ni l . If we take any TG with A-loops and tr im away these loops, the resultant pic
ture i s sti l l a TG and accepts the same set of input strings. Why did we ever allow
A-loops in the first place? One answer i s so that we leave our definition as s imple and
universal-sounding as possible ("any edges, anywhere, with any labels") and another is
that A-loops are not the only way of getting an infinite path out of a finite input string.
Behold the A-circui t :

a a

It is obvious how to eliminate this particular A-circuit, but with the machine

a, A

a a

b, A

if any A option is erased, the resultant language is changed.
Yet, another reason for not adding extra clauses to the definition of the TG to avoid this

problem is that A-edges, as we shall see in Chapter 7 , are never necessary at al l , in the sense
that any language that can be accepted by a TG with A-edges can be accepted by some dif
ferent TG without A-edges.

86 CHAPTER 6 Transition Graphs

{f GENERALIZED TRANSITION GRAPHS

The ultimate step liberating state-to-state transitions is to allow the input to progress from
one place to another by contributing a substring restricted to being a word in a predeter
mined language. For example,

We can travel from start to state 2 by reading any (of course finite) word from the (possibly
infinite) set of choices l1 and, similarly, between all other states.

For the moment, we will not be so arbitrary as to allow just any language to be used as
labels, not only those languages defined by regular expressions.

This gives us a new concept of a transition graph.

DEFINITION

A generalized transition graph (GTG) is a collection of three things:

1 . A finite set of states, of which at least one is a start state and some (maybe none) are fi
nal states.

2. An alphabet I of input letters.

3. Directed edges connecting some pairs of states, each labeled with a regular expres
sion.

•

EXAMPLE

a * a *

(b + A}

This machine accepts all strings without a double b. Notice that the word b takes a A-edge
from start to middle. •

In a very real sense, there is no difference between the Kleene star closure for regular
expressions and a loop in our previous transition graphs, or FAs for that matter. Compare

Nondeterminism 87

b a, b

a, b

and

(a + b)*

(a + b) b* a

In the first picture, we may loop in the middle state as many times as we want or go straight
to the third state. To not loop corresponds to taking the A choice from the b* in the second
example.

1} NONDETERMINISM

Generalized transition graphs force us to face a deep but subtle and disturbing fact that
sneaked past us quietly with TGs. Just as the * and the + in a regular expression represent a
potential multiplicity of choices, so does the possible multiplic ity of paths to be selected
from a TG. In the GTG, the choices are both static and dynamic. We often have a range of
choices of edges, each labeled with an infinite language of alternatives. The number of ways
of going from state 1 to state 4 might be infinite.

A blatant example of the inherent need for choice is offered in the fragment of the TG
shown below:

If we tried to forbid people from writing this directly, they could sti l l sneak it into their
TGs in other ways:

88 CHAPTER 6 Transition Graphs

b

Even if we restrict labels to strings of only one letter or A, we may indirectly permit
these two equivalent situations:

• • • equals

b

We have already seen that in a TG a particular string of input letters may trace through
the machine on different paths, depending on our choice of grouping. For instance, abb can
go from state 3 to 4 or 5 in the middle of the three preceding examples, depending on
whether we read the letters two and one or al l three at once. The ultimate path through the
machine is not determined by the input alone. Therefore, we say this machine is nondeter
ministic. Human choice becomes a factor in selecting the path; the machine does not make
all its own determinations.

y PROBLEMS

1. For each of the five FAs pictured in Problems 1 7 , I 9, and 20 in Chapter 5, build a transi
tion graph that accepts the same language but has fewer states.

2. For each of the next I 0 words, decide which of the six machines on the next page accept
the given word.

(i) A

(i i) a

(i i i) b

(iv) aa

(v) ab

(vi) aba
(vi i) abba

(vi i i) bab

(ix) baab

(x) abbb

Problems 89

TG,
h h

h (/

TG , TG ,
(/ h I> h

TG ,
flh, h(I (/(/ , hh (/ h . h(I

(/(/ , hh

3. Show that any language that can be accepted by a TG can be accepted by a TG with an
even number of states.

4. How many different TGs are there over the alphabet l a b } that have two states?

5. Prove that for every TG there is another TG that accepts the same language but has only
one + state.

6. Bui ld a TG that accepts the language L 1 of all words that begin and end with the same
double letter, either of the form aa . . . aa or bb . . . bb. Note: aaa and bbb are not
words in this language.

7. If OURSPONSOR is a language that is accepted by a TG called Henry, prove that there
is a TG that accepts the language of all strings of a's and b's that end in a word from
OURSPONSOR.

8. (i) Suppose that L is a finite language whose words are w 1 , w2, w3, • • • , w83 • Prove
that there is a TG that accepts exactly the language L.

90 CHAPTER 6 Transition Graphs

(i i) Of all TGs that accept exactly the language L, what is the one with the fewest num
ber of states?

9. Given a TG, called TG 1 , that accepts the language L 1 and a TG, called TG2, that accepts
the language L2, show how to build a new TG (called TG3) that accepts exactly the lan
guage L 1 + L2•

10. Given TG 1 and TG2 as described in Problem 9, show how to build TG4 that accepts ex
actly the language L 1L2•

11 . Given a TG for some arbitrary language L, what language would it accept if every +
state were to be connected back to every - state by A-edges? For example, by this
method,

ha ha

becomes

.\

Hint: Why is the answer not always L*?

12. (i) Let the language L be accepted by the transition graph T and let L not contain the
word A. Show how to build a new TG that accepts exactly all the words in L and the
word A.

(i i) Given TG 1 that accepts the language L" show how to build a TG that accepts the
language L*. (Hint: Use Problems 1 1 and 1 2(i) and sound authoritative.)

13. Using the results of Problems 8 , 9, 1 0, and 12 in an organized fashion, prove that if L is
any language that can be defined by a regular expression, then there is a TG that accepts
exactly the language L * .

14. Verify that there are indeed three and only three ways for the TG on p. 84 to accept the
word abbbabbbabba.

15. An FA with four states was sitting unguarded one night when vandals came and stole an
edge labeled a. What resulted was a TG that accepted exactly the language b* . In the
morning the FA was repaired, but the next night vandals stole an edge labeled h and
what resulted was a TG that accepted a*. The FA was again repaired, but this time the
vandals stole two edges, one labeled a and one labeled b, and the resultant TG accepted
the language a* + b* . What was the original FA?

Problems 91

16. Let the language l be accepted by the transition graph T and let l not contain the word
ba. We want to build a new TG that accepts exactly l and the word ba.

(i) One suggestion is to draw an edge from - to + and label it ba. Show that this does
not always work.

(i i) Another suggestion is to draw a new + state and draw an edge from any - state to
it labeled ba. Show that this does not always work.

(ii i) What does work?

17. Let l be any language. Let us define the transpose of l to be the language of exactly
those words that are the words in L spelled backward. If w El, then reverse(w) El. For
example, if

then

l = I a abb bbaab bbbaa I

transpose(l) = I a bba baabb aabbb I

(i) Prove that if there is an FA that accepts L, then there is a TG that accepts the trans
pose of l.

(i i) Prove that if there is a TG that accepts l, then there is a TG that accepts the trans
pose of l.
Note: I t is true, but much harder to prove, that if an FA accepts l, then some FA ac
cepts the transpose of l. However, after Chapter 7 this will be trivial to prove .

(i i i) Prove that transpose(l 1l2) = transpose(l2) ·transpose(l 1) .

18. Transition graph T accepts language L. Show that if L has a word of odd length, then T
has an edge with a label with an odd number of letters.

19. A student walks into a classroom and sees on the blackboard a diagram of a TG with
two states that accepts only the word A. The student reverses the direction of exactly
one edge, leaving all other edges and all labels and all + 's and - 's the same. But now
the new TG accepts the language a* . What was the original machine?

20. Let us now consider an algorithm for determining whether a specific TG that has no
A-edges accepts a given word:

Step l Number each edge in the TG in any order with the integers l , 2, 3, . . . , x,
where x is the number of edges in the TG.

Step 2 Observe that if the word has y letters and is accepted at all by this machine, i t
can be accepted by tracing a path of not more than y edges.

Step 3 List all strings of y or fewer integers, each of which :5 x. This is a finite l ist.

Step 4 Check each string on the list in step 3 by concatenating the labels of the edges
involved to see whether they make a path from a - to a + corresponding to the
given word.

Step 5 If there is a string in step 4 that works, the word is accepted. If none work, the
word is not in the language of the machine.

(i) Prove that this algorithm does the job.
(ii) Why is it necessary to assume that the TG has no A-edges.

CHAPTER 7

Kleene's Theorem

1f UNIFICATION

92

In the last three chapters, we introduced three separate ways of defining a language: genera
tion by regular expression, acceptance by finite automaton, and acceptance by transition
graph. In this chapter, we will present a theorem proved by Kleene in 1 956, which (in our
version) says that if a language can be defined by any one of these three ways, then it can
also be defined by the other two. One way of stating this is to say that all three of these
methods of defining languages are equivalent.

THEOREM 6

Any language that can be defined by

regular expression, or

finite automaton, or

transition graph

can be defined by all three methods.

This theorem is the most important and fundamental result in the theory of finite au
tomata. We are going to take extreme care with its proof. In the process, we shall introduce
four algorithms that have the practical value of enabling us actually to construct the corre
sponding machines and expressions. More than that, the importance of this chapter l ies in its
value as an i l lustration of thorough theoretical thinking in this field.

The logic of this proof is a bit involved. If we were trying to prove the mathematical
theorem that the set of all ZAPS (whatever they are) is the same as the set of all ZEPS, we
could break the proof into two parts. In Part l , we would show that all ZAPS are also ZEPS.
In Part 2, we would show that al l ZEPS are also ZAPS. Together, this would demonstrate the
equivalence of the two sets.

Here, we have a more ambitious theorem. We wish to show that the set of ZAPS, the set
of ZEPS, and the set of ZIPS are all the same. To do this, we need three parts. In Part I , we
shall show that all ZAPS are ZEPS. In Part 2, we shall show that all ZEPS are ZIPS. Final ly,
in Part 3 , we shall show that all ZIPS are ZAPS. Taken together, these three parts will estab
lish the equivalence of the three sets :

Turning TGs into Regular Expressions 93

[ZAPS c ZEPS c ZIPS c ZAPS] - [ZAPS = ZEPS = ZIPS]

PROOF

The three sections of our proof will be:

Part I Every language that can be defined by a finite automaton can also be defined by
a transition graph.

Part 2 Every language that can be defined by a transition graph can also be defined by
a regular expression.

Part 3 Every language that can be defined by a regular expression can also be defined
by a finite automaton.

When we have proven these three parts, we have finished our theorem.

Proof of Part 1

This is the easiest part. Every finite automaton is itself already a transition graph. Therefore,
any language that has been defined by a finite automaton has already been defined by a tran
sition graph. Done.

r-Qr TURNING TGs INTO REGULAR EXPRESSIONS

Proof of Part 2

The proof of this part wil l be by constructive algorithm. This means that we present a pro
cedure that starts out with a transition graph and ends up with a regular expression that de
fines the same language. To be acceptable as a method of proof, any algorithm must satisfy
two criteria. It must work for every conceivable TG, and it must guarantee to finish its job
in a finite time (a finite number of steps). For the purposes of theorem-proving alone, it
does not have to be a good algorithm (quick, least storage used, etc .) . I t just has to work in
every case.

Let us start by considering an abstract transition graph T. T may have many start states.
We first want to simplify T so that it has only one start state that has no incoming edges. We
do this by introducing a new state that we label with a minus sign and that we connect to all
the previous start states by edges labeled with A. Then we drop the minus signs from the
previous start states. Now all inputs must begin at the new unique start state. From there,
they can proceed free of charge to any of the old start states. If the word w used to be ac
cepted by starting at previous start state 3 and proceeding through the machine to a final
state, it can now be accepted by starting at the new unique start state and progressing to the
old start state 3 along the edge labeled A. This trip does not use up any of the input letters .
The word then picks up its old path and becomes accepted. This process is i l lustrated below
on a fragment of a TG that has three start states: I , 3, and 5 :

� ah

. . .

94 CHAPTER 7 Kleene's Theorem

This becomes

. . .

The ellipses i n the pictures above indicate other sections of the TG that are irrelevant
because they contain no start states.

Another simplification we can make in T is that it can be modified to have a unique un
exitable final state without changing the language it accepts . If T had no final states to begin
with, then it accepts no strings at all and has no language and we need produce no regular
expression other than the null, or empty, expression cf> (see p. 36). If T has several final
states, let us un-final them and instead introduce a new unique final state labeled with a plus
sign. We draw new edges from all the former final states to the new one, dropping the old
plus signs, and labeling each new edge with the null string A. When an input string runs out
of letters and it is in an old final state, it can now take a free A-edge ride to the new unique
final state. This process is depicted below:

. . .

becomes

. . .

h

The new final state has no outgoing edges.

Turning TGs into Regular Expressions 95

We shall require that the unique final state be a different state from the unique start state. If

an old state used to have ± , then both signs are removed from it to newly created states.

I t should be clear that the addition of these two new states does not affect the language

that T accepts. Any word accepted by the old T is also accepted by the new T, and any word
rejected by the old T is also rejected by the new T. Furthermore, the machine now has the
following shape:

where there are no other - or + states. If the TG was already in this shape, this step could

have been skipped but, even then, executing it could not have hurt either.

We are now going to build piece by piece the regular expression that defines the same

language as T. To do so, we will change T into a GTG.

Let us suppose that T has some state (called state x) inside it (not the - or + state) that

has more than one loop circling back to itself:

where r" r 2, and r 3 are all regular expressions or simple strings. In this case, we can replace
the three loops by one loop labeled with a regular expression:

r1 + r2 + r3 . . . (]. . .
The meaning here is that from state x we can read any one string from the input that fits the
regular expression r 1 + r 2 + r 3 and return to the same state.

Similarly, suppose two states are connected by more than one edge going in the same
direction:

r1 . . . a==B . . .
where the labels r1 and r2 are each regular expressions or simple strings. We can replace this
with a single edge that is labeled with a regular expression:

�

96 CHAPTER 7 Kleene's Theorem

We can now define the bypass and state elimination operation. In some cases, if we
have three states in a row connected by edges labeled with regular expressions (or simple

strings), we can eliminate the middleman and go directly from one outer state to the other by a

new edge labeled with a regular expression that is the concatenation of the two previous labels.

For example, if we have

2 3

we can replace this with

�

We say "replace" because we no longer need to keep the old edges from state 1 to state 2 and
state 2 to state 3 unless they are used in paths other than the ones from state l to state 3 . The

elimination of edges and states is our goal .

We can do this trick only as long as state 2 does not have a loop going back to itself. If

state 2 does have a loop, we must use this model:

becomes

�

We have had to introduce the * because once we are at state 2, we can loop the loop
edge as many times as we want, or no times at all, before proceeding to state 3. Any string
that fits the description r 1 rz*r3 corresponds to a path from state 1 to state 3 in either picture.

If state I is connected to state 2 and state 2 is connected to more than one other state
(say, to states 3, 4, and 5) , then when we eliminate the edge from state I to state 2, we have
to add edges that show how to go from state I to states 3, 4, and 5. We do this as in the fol
lowing pictures:

. . .

becomes

Turning TGs into Regular Expressions 97

We see that in this way we can eliminate the edge from state I to state 2, bypassing state
2 altogether.

In fact, every state that leads into state 2 can be made to bypass state 2. If state 9 leads
into state 2, we can eliminate the edge from state 9 to state 2 by adding edges from state 9 to

states 3, 4, and 5 directly. We can repeat this process until nothing leads into state 2. When

this happens, we can eliminate state 2 entirely, because it then cannot be in a path that ac

cepts a word. We drop the whole state, and the edges leading from it, from the picture for T.
What have we done to transition graph T? Without changing the set of words that it ac

cepts, we have eliminated one of its states.

We can repeat this process again and again until we have eliminated all the states from T

except for the unique start state and the unique final state. (We shall illustrate this presently.)

What we come down to is a picture that looks like this :

with each edge labeled by a regular expression. We can then combine this once more to pro
duce

� �
The resultant regular expression is then the regular expression that defines the same lan

guage T did originally.
For example, if we have

98 CHAPTER 7 Kleene's Theorem

we can bypass state 2 by introducing a path from state I to state 4 labeled aba*ba, a path
from state I to state 5 labeled aba*b, a path from state 3 to state 4 labeled bbba*ba, and a

path from state 3 to state 5 labeled bbba*b. We can then erase the edges from state I to state

2 and from state 3 to state 2. Without these edges, state 2 becomes unreachable. The edges

from state 2 to states 4 and 5 are then unless because they cannot be part of any path
from - to + . Dropping this state and these edges will not affect whether any word is ac

cepted by this TG.
The machine that results from this operation is

If there had previously been any edges from state I to state 5 , we leave these alone.

If we wish to eliminate a given state, say, state 2, we must first list all the edges going

into that state from other states (say, from states 7 and 9) and also make a list of all the states
that could be reached from state 2 by an edge (say, states 1 1 , 4, and 5) . If state 2 were to dis
appear, it would interrupt all the paths input strings could have taken that pass through it on

their way to +. We do not wish to destroy any possible paths input strings might take be

cause that could change the language by kill ing some input string 's only path to acceptance,

which would eliminate it from the language of the machine. It is too hard for us to check
whether all the accepted input strings have some alternate paths to acceptance that do not go
through state 2, so we make a careful point of replacing all destroyed routes with equivalent
detours.

It is our requirement to be sure that whatever change we make in the machine, all the
strings that could have previously been accepted can still be accepted by the modified ma
chine. In order to safely eliminate state 2 without disturbing any routes from - to + , we
must install bypass roads going from each incoming state to every outgoing state and be sure
that the labels of the bypass road correspond to the trips obliterated.

In this hypothetical example, we must replace routes from state 7 to states 1 1 , 4, and 5
and from state 9 to states I I , 4, and 5 . When we draw these new edges, we must label them
with the appropriate tolls that are the charges of going into state 2, around state 2, and from
state 2. If the machine segment we are analyzing started by looking like:

Turning TGs into Regular Expressions 99

it must become

Before we claim to have finished describing this algorithm, there are some special cases

that we must examine more carefully. In the picture

we might want to eliminate state 2. This is an illustration of the possibility that one of the
source states to the prospective bypassed state is also a destination state from that state.

This case is really not different from the general situation described above. We still need
to replace all the paths through the machine that previously went through state 2. The incom
ing states are 1 and 3 and the outgoing state is only I . Therefore, we must add edges con
necting state 3 to state I and state I to state I . The edge we shall add to connect state I to it
self is a loop that summarizes and replaces the trip from 1 to 2 to I . The machine then
becomes

Originally, it was possible to take a path from state 3 to state 2 to state I to state 2 and
back to state I again at the cost of r4r /r 3r 1 r2 *r 3• This path is still represented in the reduced
machine. It is reflected in the 3- 1 edge r 4r 2 *r 3 followed by the loop at state I , r 1 r2 *r 3• There

fore, no real problem arises even when the sets of incoming states and the set of outgoing
states have some overlap.

100 CHAPTER 7 Kleene's Theorem

Even the complicated

rg

is algorithmically reduced to this equivalent form:

The path 1 -2- 1 - 1 -2-3- 1 -2-2-2-3-2-3 in the original picture could be thought of as a looping
twice at I , followed by a trip to 3, followed by a trip to 1 , then back to 3 and a loop at 3. All
these edges traveled are still represented in the modified machine .

Whenever we remove an edge or a state, we must be sure that we have not destroyed
any paths through T that may previously have existed or create new paths that did not exist
before.

We now have a well-described method of producing regular expressions equivalent to given
transition graphs. All words accepted by T are paths through the picture of T. If we change the
picture but preserve all paths and their labels, we must keep the language unchanged.

This algorithm terminates in a finite number of steps, because T has only finitely many
states to being with, and one state is eliminated with each iteration of the bypass procedure.

The other important observation is that the method works on all transition graphs. Therefore,
this algorithm provides a satisfactory proof that there is a regular expression for each transi

tion graph.

Before detai ling the steps of this procedure, let us illustrate the algorithm on a particular

example.

EXAMPLE (Inside the proof)

The TG we shall consider is the one below, which accepts all words that begin and end with
double letters (having at least length 4). This is by no means the only TG that accepts this
language:

Turning TGs into Regular Expressions 101

As it stands, this machine has only one start state with no incoming edges, but it has two fi
nal states, so we must introduce a new unique final state following the method prescribed by
the algorithm:

The next modification we perform is to note that the edge from the start state to state 1

is a double edge-we can travel over it by an aa or a bb. We replace this by the regular ex
pression aa + bb. We also note that there is a double loop at state I . We can loop back to
state I on a single a or on a single b. The algorithm says we are supposed to replace this
double loop by a single loop labeled with the regular expression a + b. The picture of the
machine has now become

The algorithm does not actually tel l us which state of the TG we must bypass next. The
order of elimination is left up to our own discretion. The algorithm (when we formally state

102 CHAPTER 7 Kleene's Theorem

it) implies that it really does not matter. As long as we continue to eliminate states, we shall
be simplifying the machine down to a single regular expression representation.

Let us choose state 2 for elimination. The only path we are now concerned with is

.\

The algorithm says we can replace this with one edge from state 1 to state + that bears the
label that is the concatenation of the regular expressions on the two parts of the path. In this
case, aa is concatenated with A, which is only aa again. Once we have eliminated the edge
from state 1 , we can eliminate state 2 entirely. The machine now looks l ike this :

I t seems reasonable now for us to choose to eliminate state 3 next. But the algorithm does
not require us to be reasonable, and because this is an i l lustrative example and we have al
ready seen something l ike this path, we shall choose a different section of T to modify.

The technique described above does not require us to choose the order of eliminating
states in a logical, efficient, intell igent, or aesthetic manner. All these considerations are
completely inappropriate to the consideration of what is an algorithm. An algorithm must be
so clearly stated that it works successfully no matter how l ittle forethought, experience, clev
erness, or artistic sensibil ity the applier of the procedure possesses. The algorithm must be
able to be completely and successfully executed by a dimwit, a half-wit, or even a no-wit
such as a computer. To execute an algorithm, all we are allowed to presume on the part of
the executing agent is tireless di l igence and immaculate precision.

If we could presume that gifted insight on the part of the executor was routinely avail
able, the algorithm would be much simpler:

Step I Look at the machine, figure out its language, and write down an equivalent reg
ular expression.

Unfortunately, people are not as rel iably creative as they are rel iable drones, and the whole
purpose of an algorithm is so that we can get some jobs done on a daily basis without wait
ing for Da Vinci to be in the suitable mood. All the requisite cleverness must be incorporated
into the algorithm itself by the creator of the algorithm.

If we want the algorithm to be efficient, we must design one that wil l force the drone to
tum out efficient products. If we want the output to be aesthetic, we must bui ld that in, too.
Computer science courses that are concerned with how good an algorithm is are fundamen
tally different from this course. We are primarily concerned with whether an algorithm to ac
complish a certain task exists or not- we are never in search of the "best" one by any stan
dards of what it means to be best. That said, we shall , however, occasionally present more
than one algorithm for accomplishing a certain task, but the reason for this wil l always be
that each of the algorithms we develop can be generalized to other tasks in different ways.

Turning TGs into Regular Expressions 103

As such, they are each the seed of different classes of procedures and each deserves individ
ual attention.

Let us continue with the example of the TG we are in the process of reducing to a regu
lar expression. Let us stubbornly insist on bypassing state 1 before eliminating state 3 .

Only one edge comes into state 1 and that i s from state - . There is a loop a t state l with
the label (a + b) . State l has edges coming out of it that lead to state 3 and state + .

The algorithm explains that we can eliminate state 1 and replace these edges with an
edge from state - to state 3 labeled (aa + bb)(a + b)*(bb) and an edge from state - to
state + labeled (aa + bb)(a + b)*(aa).

After we eliminate state 1 , the machine looks l ike this :

It is obvious that we must now eliminate state 3 , because that is the only bypassable
state left. When we concatenate the regular expression from state - to state 3 with the regu
lar expression from state 3 to state +, we are left with the machine

(aa + bb) (a + b) *bb

Now by the last rule of the algorithm, this machine defines the same language as the
regular expression

(aa + bb)(a + b)*(aa) + (aa + bb)(a + b)*(bb)

It is entirely conceivable that if we eliminated the states in a different order, we could end up
with a different-looking regular expression. But by the logic of the elimination process, these
expressions would all have to represent the same language.

If we had to make up a regular expression for the language of all strings that begin and
end with double letters, we would probably have written

(aa + bb)(a + b)*(aa + bb)

which is equivalent to the regular expression that the algorithm produced because the alge
braic distributive law applies to regular expressions. •

Without going through lengthy descriptions, let us watch the algorithm work on one
more example. Let us start with the TG that accepts strings with an even number of a 's and
an even number of b's , the language EVEN-EVEN. (We keep harping on these strings not
because they are so terribly important, but because it is the hardest example we thoroughly
understand to date, and rather than introduce new hard examples, we keep it as an old con
quest.)

104 CHAPTER 7 Kleene's Theorem

aa . hh
a h . ha a11 . hh

a h . ha

becomes first

When we eliminate state 2, the path from 1 to 2 to 1 becomes a loop at state 1 :

aa + bb

A

(ab + ba) (aa + bb) * (ab + ba)

which becomes

(aa + bb) + (ab + ba) (aa + bb) * (ab + ba)

A

which becomes

[(aa + bb) + (ab + ba) (aa + bb) * (ab + ba)]*

which reduces to the regular expression

[(aa + bb) + (ab + ba)(aa + bb)*(ab + ba)] *

which is exactly the regular expression we used to define this language before. Anyone who
was wondering how we could have thought up that complicated regular expression we pre
sented in Chapter 4 can see now that it came from the obvious TG for this language by way
of our algorithm.

We still have one part of Kleene 's theorem yet to prove. We must show that for each
regular expression we can build a finite automaton that accepts the same language.

We have so far tacitly maintained that we can consider the state being bypassed without

regard to any extra compl ications in the rest of the TG. Is this really so? It is often hard to
tel l whether we have accounted for all the exceptional situations that might arise. Remem-

Turning TGs into Regular Expressions 105

ber, it is not a complete algorithm if it breaks down in any case no matter how remote or
freakish an occurrence. How can we tell when we have covered all possibilities? Who
knows? There is no algorithm to tell whether the algorithm we have proposed has omitted an
important case-but here is a surprise-this very statement about the limitations of analyz
ing algorithms by other algorithms will be proven later on in this book.

Let us consider a complicated, most general-looking case and see whether our simple
rules work on it without the introduction of any new difficulties. Consider the TG fragment
below:

rg

Our state targeted for bypass is state 2. Proceeding in an orderly fashion, we list all the states
connected to state 2 by incoming and outgoing edges . The incoming edges are from states 1
and 3, the outgoing are to states 3, 4, and 5. Because each previously possible path must still
exist, we need to introduce six new edges (including the loop at 3) :

From

1

3

3

3

To

3

4

5

3

4

5

Labeled

r 1 r2*r6
r 1 r2*r5
r 1 r2*r7
r3r2 *r6
r3r2*rs
r3r2 *r1

Because there is already a loop at state 3, we can add this regular expression to the existing
one and the resultant picture is this :

106 CHAPTER 7 Kleene's Theorem

State 2 has disappeared but all paths that used to travel through it remain possible and,
equally important, no new paths are possible in this new TG that were not possible for the
same cost of input letters in the original TG.

For example, the old trip through states 1 -2-4-4- 1 -2-3-3-2-5 can stil l be made. It now,
however, travels through the state sequence 1 -4-4- 1 -3-3-5 whose concatenation of regular
expressions is exactly the same as before.

ALGORITHM

Now that we already have a fairly good idea of what the state-elimination algorithm is all
about, we are ready to present a semiformal statement of the general rules defining the con
structive algorithm that proves that all TGs can be turned into regular expressions that define
the exact same language:

Step l Create a unique, unenterable minus state and a unique, unleaveable plus state.

Step 2 One by one, in any order, bypass and el iminate all the non - or + states in the
TG. A state is bypassed by connecting each incoming edge with each outgoing
edge. The label of each resultant edge is the concatenation of the label on the
incoming edge with the label on the loop edge if there is one and the label on
the outgoing edge.

Step 3 When two states are joined by more than one edge going in the same direction,
unify them by adding their labels.

Step 4 Finally, when all that is left is one edge from - to + , the label on that edge is a
regular expression that generates the same language as was recognized by the
original machine. •

We have waffled about calling this representation a "semiformal" description of the pro
cedure. The addition of phrases (or symbols) that say things like "for all states qx that enter
state qy by a single directed edge (qx, qy) labeled r(x, y) , and for all states q= such that (q.r, q,)
is a single directed edge labeled r(y, z), create the directed edge (q,, q,) and label it [r(x, y)
r(y, y)*r(y, z)] , where r(y, y) is the regular expression labeling the possible loop at state q, . .

while deleting the state qy and all i ts associated edges," and so on, would please some peopie
more, but would not help anyone go from a state of not understanding the algorithm to a
state of understanding it.

There i s one logical possibi l ity that we have not accounted for in the description of the
algorithm given above; that is, when we finish step 3, there may be no path left at all that
connects - to + . In this case, we say that the original machine accepted no words, which
means that i t accepted only the null language <!> whose regular expression has no symbols.
We shall consider the logical consequences of this possibil ity in a later chapter; at the mo
ment, all it means is that completing the algorithm guarantees producing a regular expres
sion for all machines that accept a language and no expression for those that do not.

EXAMPLE

Consider the TG

Turning TGs into Regular Expressions 107

b

a

Eliminating the states in the order l , 2, 3 gives this procession of TGs:

b

then

ab*a

a + bb*a

then

o ab*a + Cb + ab*a][a + bb*al*CA + bb*al)o 8

Eliminating the states in the order 3, 2, l gives this procession of TGs :

108 CHAPTER 7 Kleene's Theorem

then

then

b + aa*b

ha*

[a + ba*b][b + aa*bJ *[a + aa* J

ha*

0 ba* + [a + ba*b][b + aa*bJ*[a + aa*J o - �--» +

If we had not seen how they were derived, we might have no clue as to whether these two
regular expressions define the same language. •

1} CONVERTING REGULAR EXPRESSIONS INTO FAs

Proof of Part 3

The proof of this part wi l l be by recursive definition and constructive algorithm at the same
time. This is the hardest part of our whole theorem, so we shall go very slowly.

We know that every regular expression can be built up from the letters of the alphabet I
and A by repeated appl ication of certain rules: addition, concatenation, and closure. We shall
see that as we are building up a regular expression, we could at the same time be building up
an FA that accepts the same language.

We present our algorithm recursively.

Rule 1 There is an FA that accepts any particular letter of the alphabet. There is an FA
that accepts only the word A.

Proof of Rule 1

If x is in I, then the FA

all �

all � except x

all �

Converting Regular Expressions into FAs 109

accepts only the word x.
One FA that accepts only A is

all r.

all r.

•

It would be easier to design these machines as TGs, but it is important to keep them as
FAs.

Rule 2 If there is an FA called FA , that accepts the language defined by the regular ex
pression r 1 and there is an FA called FA2 that accepts the language defined by
the regular expression r2, then there is an FA that we shall call FA3 that accepts
the language defined by the regular expression (r 1 + r 2) .

Proof of Rule 2

We are going to prove Rule 2 by showing how to construct the new machine in the most rea
sonable way from the two old machines. We shall prove FA3 exists by showing how to con
struct it.

Before we state the general principles, let us demonstrate them in a specific example.
Suppose we have the machine FA , pictured below, which accepts the language of all words
over the alphabet I, = (a b } that have a double a somewhere in them

,, " · ,, a h
a

-x, x 2 x ,
a X2 X3 x ,

+x3 X3 X3

,,

and the famil iar machine FA2, which accepts all words that have both an even number of to
tal a's and an even number of total b 's (EVEN-EVEN)

b a h
±y, Y3 Y2

b Y2 Y4 Y 1
Y3 Y 1 Y4
Y4 Y2 Y_�

a a a a

b

b

We shall show how to design a machine that accepts both sets. That is, we shall build a ma
chine that accepts all words that either have an aa or are in EVEN-EVEN and rejects all
strings with neither characteristic .

The language the new machine accepts wil l be the union of these two languages. We
shall call the states in this new machine z " z2, z3, and so on, for as many as we need. We
shall define this machine by its transition table.

1 10 CHAPTER 7 Kleene's Theorem

Our guiding principle is this : The new machine wil l simultaneously keep track of where
the input would be if it were running on FA 1 alone and where the input would be if it were
running on FA2 alone.

First of all, we need a start state. This state must combine x" the start state for FA " and
y" the start state for FA2• We call it z 1 • If the string were running on FA 1 , i t would start in x 1
and if on FA2 in y 1 •

All z-states in the FA3 machine carry with them a double meaning-they keep track of
which x state the string would be in and which y state the string would be in. It is not as if
we are uncertain about which machine the input string is running on - it is running on both
FA 1 and FA2, and we are keeping track of both games simultaneously.

What new states can occur if the input letter a is read? If the string were being run on
the first machine, it would put the machine into state x2• If the string were running on the
second machine, it would put the machine into state y3' Therefore, on our new machine an a
puts us into state z2, which means either x2 or y3 , in the same way that z 1 means either x1 or
y 1 • Because y 1 is a final state for FA2, z 1 is also a final state in the sense that any word whose
path ends there on the z-machine would be accepted by FA2•

±z 1 = x1 or y1

Z z = X2 or Y3

On the machine FA3, we are following both the path the input would make on FA 1 and the in
put's path on FA2 at the same time. By keeping track of both paths, we know when the input
string ends, whether or not it has reached a final state on either machine.

Let us not consider this "x or y" disjunction as a matter of uncertainty. We know for a
fact that the same input is running on both machines; we might equivalently say "x and y. "
We may not know whether a certain person weighed I 00 or 200 lb to start with, but we are
certain that after gaining 20 lb, then losing 5 , and then gaining l , his total weight is now ex
actly either 1 1 6 or 2 1 6 lb. So, even if we do not know in which initial state the string started,
we can still be certain that given a known sequence of transformations, it is now definitely in
either one of two possible conditions.

If we are in state z1 and we read the letter b, then being in x1 on FA 1 and reading a b, we
return to x" whereas being in y 1 on FA2 and reading a b send us to y2 •

z3 = x1 or y2

The beginning of our transition table for FA3 is

a b

,
· 2 •3

Suppose that somehow we have gotten into state z2 and then we read an a. If we were in FA 1 ,
we would now go to state x3, which is a final state. If we were in FA2, we would now go back
to y" which is also a final state. We wil l call this condition z4, meaning either x3 or y 1 • Be
cause this string could now be accepted on one of these two machines, :4 is a final state for
FA3• As it turns out, in this example the word is accepted by both machines at once, but this
is not necessary. Acceptance by either machine FA 1 or FA2 is enough for acceptance by FA3•
Membership in either language is enough to guarantee membership in the union.

If we are in state z2 and we happen to read a b, then in FA 1 we are back to x" whereas in
FA2 we are in y4• Call this new condition z5 = state x1 or y4•

+ z4 = x3 or Y i
z5 = x1 or y4

Converting Regular Expressions into FAs

At this point, our transition table looks l ike this :

a b

1 1 1

What happens if we start from state z3 and read an a ? I f w e were i n FA 1 , we are now in
xi; if in FAi, we are now in y4. This i s a new state in the sense that we have not encountered
this combination of x and y before; call it state z6.

z6 = Xi or Y4

What if we are in z3 and we read a b? In FA 1 we stay in x1 , whereas in FAi we return to
y1 • This means that if we are in z3 and we read a b, we return to state z 1 • This is the first time
that we have not had to create a new state. If we never got any use out of the old states, the
machine would grow ad infinitum.

Our transition table now looks like this :

a b

±: z1 Z2 Z3

22 Z4 Z5

Z3 z6 Z 1

What if we are in z4 and we read an a? If we are tracing FA 1 , the input remains in Xv
whereas if we are tracing the input on FAi, it goes to h This is a new state; call it zr If we
are in z4 and we read a b, the FA 1 part stays at x3 , whereas the FAi part goes to Yi- This is also
a new state; call i t z8•

+ z1 = X3 or Y3
+zs = X3 or Yi

Both of these are final states because a string ending here on the z-machine wil l be accepted
by FA 1 , because x3 is a final state for FA 1 •

If we are in Zs and we read an a, we go to Xi or Yi· which we shall call z9•
If we are in Zs and we read a b, we go to x 1 or y3, which we shal l call z iw

Z9 = Xi or Yi
z 1o = x1 or Y3

If we are in z6 and we read an a, we go to x3 or Yi· which is our old zw
If we are in z6 and we read a b, we go to x1 or y3, which is z 1 0 again.
If we are in z7 and we read an a, we go to x3 or y" which is z4 again.
If we are in z7 and we read a b, we go to x3 or y 4, which is a new state, : 1 1 •

+z 1 1 = X3 or J4
If we are in z8 and we read an a, we go to x3 or y4 = z 1 , .
If we are in z8 and we read a b, we go to x3 or y 1 = z4•
If we are in z9 and we read an a, we go to x3 or y4 = z 1 1 •
If we are in z9 and we read a b, we go to x1 or y 1 = z 1 •
If we are in z 1 0 and we read an a, we go to Xi or y 1 , which is our last new state, : 1 2 •

+z1 i = Xi or Yi

If we are in z 1 0 and we read a b, we go to x1 or y4 = z5 •

1 12 CHAPTER 7 Kleene's Theorem

If we are in z 1 1 and we read an a, we go to x3 or y2 = z8•
If we are in z 1 1 and we read a b, we go to x3 or y3 = zr
If we are in z 12 and we read an a, we go to x3 or y3 = zr
If we are in z 1 2 and we read a b, we go to x1 or y2 = zy

Our machine is now complete. The full transition table is

a b

:tz , Z2 Z3
z2 Z4 Zs
Z3 z6 z ,

+z4 Z7 Zs
Zs Z9 Z IO
z6 Zs z ,o

+z1 Z4 z l l
+zs Z 1 1 Z4

Z9 Z 1 1 z ,
Z IO Z 1 2 Zs

+ z 1 1 Zs � -7
+ z , 2 Z7 Z3

Here is what FA3 may look l ike:

If a string traces through this machine and ends up at a final state, it means that it would also
end at a final state either on machine FA 1 or on machine FA2 • Also, any string accepted by ei
ther FA 1 or FA2 will be accepted by this FA3•

Converting Regular Expressions into FAs 113

ALGORITHM

The general description of the algorithm we employed earlier is as follows. Starting with two

machines, FA 1 with states xi ' Xi• x3 , • • • and FAi with states Yp Yi· y3, • • • , build a new

machine FA3 with states z l '
Zi• z3, • • • , where each z is of the form "xsomething or Ysomethin/'

The combination state x,tart or Ystart is the - state of the new FA. If either the x part or the y

part is a final state, then the corresponding z is a final state. To go from one z to another by

reading a letter from the input string, we see what happens to the x part and the y part and go
to the new z accordingly. We could write this as a formula:

znew after letter p = [xnew after letter p on FA 1 J or [ynew after letter p on FAiJ

Because there are only finitely many x's and y's, there can be only finitely many possi

ble z's. Not all of them will necessarily be used in FA3 if no input string beginning at - can
get to them. In this way, we can build a machine that can accept the sum of two regular ex

pressions if we already know machines to accept each of the component regular expressions
separately. •

EXAMPLE (Inside the proof of Theorem 6)

Let us go through this very quickly once more on the two machines:

b a
a, b a

b

b b

a

FA 1 accepts all words with a double a in them, and FAi accepts all words ending in b.The
machine that accepts the union of the two languages for these two machines begins:

- z1 = X1 or Y 1
In z 1 if we read an a, we go to Xi or y 1 = zi
In z 1 if we read a b, we go to x1 or Yi = z3, which is a final state since Yi is .

The partial picture of this machine is now

a

b

1 14 CHAPTER 7 Kleene's Theorem

In z2 if we read an a, we go to x3 or y1 = z4, which is a final state because x3 is .
In z2 if we read a b, we go to x 1 or y2 = zr

In z3 if we read an a, we go to x2 or y1 = z2•
In z3 if we read a b, we go to x1 or y2 = z3 "
In z4 if we read an a, we go to x3 or y1 = z4•
In z4 if we read a b, we go to x3 or y2 = z5, which is a final state.
In z5 if we read an a, we go to x3 or y 1 = z4•
In z5 if we read a b, we go to x3 or y2 = z5•

The whole machine looks l ike this :

h a

This machine accepts all words that have a double a or that end in b.
The seemingly logical possibility

z6 = x2 or y2

does not arise. This is because to be in x2 on FA 1 means the last letter read is an a. But to be
in y2 on FA2 means the last letter read is a b. These cannot both be true at the same time, so
no input string ever has the possibil ity of being in state z6. •

EXAMPLE (Inside the proof of Theorem 6)

Let FA 1 be the machine below that accepts all words that end in a:

b a
a

Converting Regular Expressions into FAs 115

and let FA2 be the machine below that accepts all words with an odd number of letters (odd

length):

a, b

�
a, b

Using the algorithm produces the machine below that accepts all words that either have
an odd number of letters or end in a:

a

b

b b a

a

b

The only state that is not a + state is the - state. To get back to the start state, a word must
have an even number of letters and end in b. •

EXAMPLE (Inside the proof of Theorem 6)

Let FA 1 be

b
a

which accepts all words ending in a, and let FA2 be

a

b

a

which accepts all words ending in b.

Using the algorithm, we produce

a

b

1 16 CHAPTER 7 Kleene's Theorem

which accepts all words ending in a or b, that is, all words except A. Notice that the state x,
or y2 cannot be reached because x2 means "we have just read an a" and y2 means "we have

just read a b." •

There is an alternate procedure for producing the union-machine form two-component
machines that has a more compact mathematical description, but whose disadvantages are
well i l lustrated by the example we have just considered. Let FA , have states x" x2, • • • and
FA2 have states y " y2, • • • • Then we can define FA3 initially as having all the possible states
X; or yj for all combinations of i and j. The number of states in FA3 would always be the prod
uct of the number of states in FA 1 and the number of states in FA2• For each state in FA3 we
could then, in any order, draw its a-edge and b-edge because they would go to already exist
ing states. What we have done before is create new z-states as the need arose, as in the Japan
ese "just in time" approach to automobile manufacturing. This may seem a l ittle haphazard,
and we never really know when or whether the need for a new combination of x and y would
arise. This alternate, more organized, approach has the advantage of knowing from the begin
ning just how many states and edges we will need to draw, always the pessimistic estimate of
the largest possible number. For the example above, we would start with four possible states:

For each of these four states we would draw two edges, producing

a

h

Converting Regular Expressions into FAs 1 17

This is a perfectly possible FA for the union language FA 1 + FA2• However, on inspection we
see that its lower right-hand state is completely useless because it can never be entered by
any string starting at - . It is not against the definition of an FA to have such a useless state,
nor is it a crime. It is simply an example of the tradeoff between constructing states in our
need-to-have policy versus the more universal-seeming all-at-once strategy.

By either algorithm, this concludes the proof of Rule 2.

We sti l l have two rules to go.

Rule 3 If there is an FA 1 that accepts the language defined by the regular expression r 1
and an FA2 that accepts the language defined by the regular expression r2, then
there is an FA3 that accepts the language defined by the concatenation r 1 r2 , the
product language.

Proof of Rule 3

Again, we shall verify this rule by a constructive algorithm. We shall prove that such an FA3
exists by showing how to construct it from FA 1 and FA2• As usual, first we do an i l lustration;
then we state the general principles, but our illustration here first is of what can go wrong,
not what to do right.

Let l1 be the language of all words with b as the second letter. One machine that accepts
l1 is FA 1 :

a , b

a , b b

Let l2 be the language of all words that have an odd number of a 's. One machine for l2
is FA2 :

b b a

a

Now consider the input string ababbaa. This is a word in the product language l 1l2, be
cause it is the concatenation of a word in l 1 (ab) with a word in l2 (abbaa). If we begin to
run this string on FA " we would reach the + state after the second letter. If we could now
somehow automatical ly jump over into FA2, we could begin running what is left of the input,
abbaa, starting in the - state. This remaining input is a word in L2, so it will finish its path in
the + state of FA2 • Basical ly, this is what we want to build-an FA3 that processes the first

118 CHAPTER 7 Kleene's Theorem

part of the input string as if it were FA 1 ; then when it reaches the FA , + state, it turns into
the - state on FA2• From there it continues processing the string until it reaches the + state
on FA2, and we can then accept the input.

Tentatively, let us say FA3 looks something like this :

a . b b

Unfortunately, this idea, though simple, does not work. We can see this by considering a
different input string from the same product language. The word ababbab is also in L 1L2, be
cause abab is in L 1 (it has b as its second letter) and bah is in l2 (it has an odd number of a 's) .

If we run the input string ababbab first on FA , , we get to the + state after two letters,
but we must not say that we are finished yet with the L 1 part of the input. If we stopped run
ning on FA 1 after ab, when we reached + in FA " the remaining input string abbab could not
reach + on FA2 because it has an even number of a 's .

Remember that FA 1 accepts all words with paths that end at a final state. They could
pass through that final state many times before ending there. This is the case with the input
abab. It reaches + after two letters. However, we must continue to run the string on FA , for
two more letters. We enter + three times. Then we can jump to FA2 (whatever that means)
and run the remaining string bah on FA2• The input hab will then start on FA2 in the - state
and finish in the + state .

Our problem is this : How do we know when to jump from FA 1 to FA2? With the input
abahhaa we should jump when we first reach the + in FA , . With the input ababbab (which
differs only in the last letter), we have to stay in FA 1 until we have looped back to the + state
some number of times before jumping to FA2• How can a finite automaton, which must make
a mandatory transition on each input letter without looking ahead to see what the rest of the
string wi l l be, know when to jump from FA 1 to FA2?

This is a subtle point, and it involves some new ideas.
We have to build a machine that has the characteristic of starting out l ike FA 1 and fol

lowing along it until it enters a final state at which time an option is reached. Either we
continue along FA 1 waiting to reach another +, or else we switch over to the start state of
FA2 and begin circulating there. This is tricky, because the r 1 part of the input string can
generate an arbitrari ly long word if it has a star in it, and we cannot be quite sure of when
to jump out of FA , and into FA2• And what happens (heavens forfend) if FA , has more than
one + ?

Now let us i l lustrate how to build such an FA3 for a specific example. The two machines
we shall use are

FA 1 = the machine that accepts only strings with a double a in them

and

FA2 = the machine that accepts all words that end in the letter b

Converting Regular Expressions into FAs 1 19

h a. h
a a h

h

a

h
a

We shall start with the state zl ' which is exactly like x 1 • It is a start state, and it means that
the input string is being run on FA 1 alone. Unlike the union machine the string is not being
run on FA2 yet. From z1 if we read a b, we must return to the same state x 1 , which is z 1 again .
From z 1 if we read an a, we must go to state x2 because we are interested in seeing that the
first section of the input string is a word accepted by FA 1 • Therefore, z2 is the same as x2•
From the state z2 if we read a b, we must go back to z 1 • Therefore, we have the relationships

z l = xi
Z2 = X2

The picture of FA3 starts out just l ike the picture of FA 1 :

h a

h

Now if we are in z2 and we read an a, we must go to a new state z3, which in some ways cor
responds to the state x3 in FA 1 • However, x3 has a dual identity. Either it means that we have
reached a final state for the first half of the input as a word in the language for FA 1 and it is
where we cross over and run the rest of the input string on FA2, or else it is merely another
state that the string must pass through to get eventually to its last state in FA 1 • Many strings,
some of which are accepted and some of which are rejected, pass through several + states on
their way through any given machine.

If we are now in z3 in its capacity as the final state of FA 1 for the first part of this input
string, we must begin running the rest of the input string as if it were input of FA2 beginning
at state y1 • Therefore, the full meaning of being in z3 is (x3, and we are still running on FA 1

z3 = or

yl ' and we have begun to run on FA2
Notice the similarity between this disjunctive (either/or) definition of z3 and the disjunc

tive definitions for the z-states produced by the algorithm given for the addition of two FAs.
There are also significant differences, as discussed next.

If we are in state z3 and we read an a, we have now three possible interpretations for the
state into which this puts us:

We are back in x3 continuing to run the string on FA 1

or

we have just finished on FA 1 and we are now in y1
beginning to run on FA2

or

we have looped from y 1 back to y1 while already running on
FA2

120 CHAPTER 7 Kleene's Theorem

X3 or Y 1
(because being in y 1 is the same whether we are
there for the first time or not)
Z3

Therefore, if we are in z3 and we read an a, we loop back to z3•
If we are in state z3 and we read a b, we go to state z4, which has the following meaning:

We are still in x3 continuing to run on FA 1

or

+ z4 = we have just finished running on FA 1 and are now in y 1 on FA2

or

we are now in y2 on FA2, having reached there via y 1

x3 or y 1 or y2

If an input string ends its path in this state z4, that means that it could have been broken
into two sections, the first going from x1 to x3 and the second from y1 to y2; therefore, it must
be accepted, so z4 is a final state.

So far, our machine looks l ike this :

b a a

a

b

If we are in z4 and we read an a, our choices are

remaining in x3 and continuing to run on FA 1
or

having just finished FA 1 and beginning at y 1

or

having moved from y2 back to y1 in FA2

= x3 or Y 1

However, this is exactly the definition of z3 again. So, in summary, if we are in :4 and
read an a, we go back to zy

If we are in z4 and read a b, our choices are

remaining in x3 and continuing to run on FA 1

or

having just finished FA 1 and beginning at y 1

or

having looped back from y2 to y2 running on FA2

= x3 or y 1 or y2
= Z4

Accordingly, if we are in z4 and read a b, we loop back to z4•
The whole machine then looks l ike this :

Converting Regular Expressions into FAs 121

h a

h a

Thus, we have produced a machine that accepts exactly those strings that have a front
section with a double a followed by a back section that ends in b. This we can see because
without a double a we never get to z3 and we end in z4 only if the whole word ends in h.

ALGORITHM

In general, we can describe the algorithm for forming the machine FA3 as follows. First, we
make a z-state for every nonfinal x-state in FA 1 reached before ever hitting a final state on
FA 1• For each final state in FA 1 , we establish a z-state that expresses the options that we are
continuing on FA 1 or are beginning on FA2•

Are in xsomething' which is a + state but sti l l
continuing on FA 1

or

have finished the FA 1 part of the input string and
have jumped to y 1 to commence tracing the remainder of
the input string on FA2

After we have reached a jump-to-FA2 state, any other state we reach has an x and a y possibil
ity l ike the z-states in the union machine, with the additional possibil ity that every time we hit
yet another final state on the FA 1 -machine, we may again exercise the option of jumping to y 1 •
This means that every time we pass through a final state while processing the FA 1 part of the
input string, we jettison an alter-ego jumping to y 1 that runs around on the FA2-machine.
These l ittle mice tracing paths on FA2 each start at y 1 but at different points in the input string,
at any future instant they may be at several different y-states on FA2• Every z-state therefore
can have the nature of one and only one x-state, but a whole set of possible y-states.

So, the ful l nature of a z-state is 1 are in xsomething continuing on FA I
or

are in a set of Ysomcthing continuing on FA2

There are clearly only finitely many possibil ities for such z-states, so FA3 is a finite ma
chine. The transition from one z-state to another for each letter of the alphabet is determined
uniquely by the transition rules in FA 1 and FA2• One set of y 's wil l move to another set of y's
along their a-edges or b-edges. So, FA3 is a well-defined finite automaton that clearly does
what we want; that is, it accepts only strings that first reach a final state on FA 1, jump to y 1 ,
and then reach a final state on FA2•

We st i l l have to decide which states in the new FA are final states. Clearly, to be in
FA 1FA2 means to end in a final state in FA2, so any z-state is a final state if i t contains a
y-machine final state as a possible position for the input. This completes the algorithm. •

122 CHAPTER 7 Kleene's Theorem

EXAMPLE (Inside the proof of Theorem 6)

Let us i l lustrate this algorithm to construct the machine for the product of the languages of
l 1 , all words that start with a b, and l2, all words that end with a b.

a, b a b

a

a, b

Initially, we must begin in x" which we shal l just call z 1 • If we read an a, we go to x2 ,

which we may as well call z2 . If we read a b, we go to x3, which being a final state means
that we have the option of jumping to y 1 , an option we do not necessari ly have to exercise at
this moment.

z3 = x3 or y 1

From z2, l ike x2 , both an a or a b take us back to z2•
In z3 if we are in the x3 condition and we read an a, we stay in x3 or we now choose (be

cause x3 is a final state) to jump to y 1 • If we were in z3 in the y 1 condition already and we
read an a, we would loop back to y1 on the FA2-machine. In any of these three eventualities,
if we are in z3 and we read an a, we end up at either x3 or y 1 ; in other words, from :3 we go
back to z3 •

If we are in z3 and we read a b, a different event takes place. If the :3 meant .r3 ' we either
stay there or use the occasion to jump to y 1 • If we were in z3 already in y 1 , then the b would
necessari ly take us to y2• Therefore, we need a new state :

z4 = x3 or y1 or y2

If the input string processing ends in this state, then it should be accepted because it may
have gotten to the final state on the FA2-machine. So, z4 is a final state for FA3•

What happens if we are in z4 and we read an a?

x 3 goes to x3, staying on FA 1

or

x3 goes to x3, then jumps to y 1 on FA2

or

or

y2 goes to y 1

So from z4 an a takes us to x3 or y 1 , which is z3.
What happens if we are in z4 and we read the input letter b?

x3 goes to x3' staying on FA 1

or

x3 goes to x3 , which jumps to y 1

or

Converting Regular Expressions into FAs

or

y2 loops back to y2

So from z4 a b will loop us back to z4•
The complete picture of the machine then looks l ike this :

b

a

b a

123

It is fairly ev ident that this is a decent machine for all words that both begin and end with
the letter b, which is what the product of the two languages would be . Notice that the
word b itself is not accepted. Even though it begins and ends with the letter b, they are
the same letter b and therefore it cannot be factored into b-beginning and b-ending
strings.

What if we were to multiply these languages in the opposite order: all words that end in
b times all words that begin with a b. The resultant language should be that of all words with
a double b in them. To build the machine, we multiply FAi times FA 1 :

z , = Y i

An a from z 1 will take u s back to z 1 • A b will take us to

z2 = y2 or x1 (because Yi is a final state for the first machine)

From Zi an a will take us to y 1 or xi, not x1 , because y 1 is not a final state on the first machine :

Z3 = Y i or Xi

From Zi a b will take us from y2 back to Yi· or Yi back to Yi and then jump to xi ' or xi to x3•
This is a new state :

z4 = Yi or x 1 or x3

From z3 an a wil l take us from y 1 to y l ' or x2 to Xi- So, z3 has an a- loop.
From z3 a b wil l take us from y 1 to Yi· or y 1 to Yi to x 1 , or Xi to Xi· This is a new state :

z5 = Yi or x1 or xi

From z4 an a wil l take us from y2 to y l ' or x 1 to x2, or x3 to x3 • This is also a new state :

z6 = y 1 or xi or x3

From z4 a b wil l take us from Yi to Yi· or Yi to Yi to x 1 , or x1 to x3 , or x3 to x,, which is :4 •
From z5 an a will take us from Yi to y 1 , x 1 to x2, Xi to Xi, which is just z3 again.
From z5 a b will take us from Yi to Yi· Yi to Yi to xi ' x 1 to x3 , Xi to Xi, which is a new state :

z7 = Yi or x1 or xi or x3

From z6 an a wil l loop us back to z6 for each of its three components.
From z6 a b will take us from Y i to Yi · Y i to Yi to xi , xi to xi, x3 to x3 = =r

124 CHAPTER 7 Kleene's Theorem

From z7 an a will take us from y1 to y l ' x1 to x2, x2 to x2, x3 to x3 = z6•
From z7 a b will take us from y2 to y2, y2 to y2 to x1 , x1 to x3, x2 to x2 , x3 to x3 = Zr

Therefore, the machine is finished.

a b a

b b a

b a
b

b

a
a b

The only final states are those that contain the possibility of x3" It is very clear that this ma
chine accepts all words with a double b in them, but it is obviously not the most efficient
machine to do so. •

While we were working the last example, we may have begun to loose faith in the finite
ness of the algorithm; new (and needless) states kept arising. Yet, every state of the z-ma
chine had the identity of a single y-state and a subset of x-states. There are finitely many pos
sibil ities for each of these and therefore finitely many possibil ities for them jointly. The
algorithm must always work and must always terminate.

EXAMPLE (Inside the proof of Theorem 6)

Let FA 1 be

b a

b

a . b

which accepts the language l 1 of all words that do not contain the substring aa.

Let FA2 be

a, b

a, b

which accepts the language l2 of all words with an odd number of letters.
Using the preceding algorithm, we produce the following machine to accept the product

language l 1l2 :

Converting Regular Expressions into FAs 125

All states except the - state are final states. The - state is left the instant an input letter
is read, and it can never be reentered. Therefore, the language this machine accepts is all
words but A. This actually is the product language L1L2, because if a word w has an odd
number of letters, we can factor it as (A)(w), where A is in L 1 and w is in L2• While if it has
an even (not 0) number of letters, we factor it as

w = (first letter)(the rest)

where (first letter) must be in L 1 (cannot contain aa) and (the rest) is in L2• Only the word A

cannot be factored into a part in L 1 and a part in L2 • •

We are now ready for our last rule.

Rule 4 If r is a regular expression and FA , is a finite automaton that accepts exactly
the language defined by r, then there is an FA called FA2 that will accept ex
actly the language defined by r*.

Proof of Rule 4

The language defined by r* must always contain the null word. To accept the null string A,

we must indicate that the start state is also a final state. This could be an important change in
the machine FA 1 , because strings that return to x1 might not have been accepted before. They
may not be in the language of the expression r. The building of our new machine must be
done carefully.

We shal l , as in the other cases, first i l lustrate the algorithm for manufacturing this ma
chine with a simple example. We cannot use most of the examples we have seen recently
because their closure is not different from themselves (except for the possibility of includ
ing the word A). This is just a curious accident of these examples and not usual for regular
expressions. The concatenation of several strings of words ending in b is itself a word end
ing in b. The concatenation of several strings containing aa is itself a string containing aa.
The concatenation of arbitrarily many EVEN-EVEN strings is itself an EVEN-EVEN
string.

Let us consider the regular expression

r = a* + aa*b

The language defined by r is all strings of only a 's and the strings of some (not 0) a 's ending
in a single b. The closure of this language is defined by (a* + aa*b)*, which includes all
words in which each b has an a on its left. Here, r* is clearly not equal to r, because such
words as aba and ababaaa are in r* but not in the language of r. The language of r* is all
strings without a double b that do not begin with b.

126 CHAPTER 7 Kleene's Theorem

The machine we use to accept r is FA 1 pictured below:

a

Notice that x4 is a reject state. Any string that enters it stays there and is eventually re
jected. A word that goes to x2 and stops there is a word of all a 's and it is accepted. To get to
x3 and stop there, we need exactly one b after the a 's . It is true that x1 is also a final state, but
the only word that ends there is A.

The machine we shall build, FA2, to accept the language defined by r* begins as fol
lows:

If we are in z 1 and read a b, we go to the reject state x4, which we cal l z2•

z2 = X4

If we are in z 1 and read an a, we go to z3 , which means a l ittle more than x2 alone.

x2 and we continue processing the middle of a longer factor
of type r that is not yet complete and that itself may be only
one of many substrings of type r that the input word is composed of

+ z3 = or
we have just accepted a section of the input string as being
in the proper form for r and now we should consider ourselves
to be back in x 1, starting fresh on the next section of the input string

+ z3 = x2 + x1

What we are trying to say here is that while we are scanning the input string, we may
have arrived at a break between one factor of type r and another factor of type r, in which
case the first ends correctly at a + and the second should begin at the - . However, a factor
of type r does not have to stop at the first + that it comes to. It may terminate at the fourth
+ , and the new type r factor may then pick up at the - . So, this jump is only an option, not
necessary.

As we saw with the product of two machines when we hit a + on the first machine, we
can continue on that machine or jump to the - on the second. Here when we hit a + , we can
also jump back to the - (on the same machine), or we can ignore the + status of the state
and continue processing, or (a new option) we can end completely.

This situation is l ike a bus with passengers. At each stop (final state), there is the possi
bility that some people get off, while others stay on the bus waiting for their correct later
stops. Those that get off may jump back to start and get on another bus immediately. We are
trying to trace where all these people could be at any given time. Where they are must be
some collection of bus stops (states) , and they are either finished, still inside the bus riding,
or back at start, ready to catch another bus.

Converting Regular Expressions into FAs 127

If we ever get to z2 , the total input is to be rejected, so we stay at z2 • We know this me
chanically (which means here that we know it without any intelligent insight, which is im
portant because we should never need anything that the algorithm does not automatically
provide) because x4 loops back to x4 by a and b and therefore z2 must do the same.

If we are in z3 and we read a b, we go different places depending on which clause in the
definition of z3 was meant in a particular case. If z3 meant x2, we now go to x3, but if z3 meant
that we are back in x" then we now go to x4• Therefore, we have a new state. However, even
when we are in x3 '

we could be there in two ways. We could be continuing to run a string on
FA 1 and proceed as normal , or else we could have just accepted a part of the string and we
are starting to process the next section from scratch at x1 • Therefore, z4 has a triple meaning:

+z4 = x1 or x3 or x4

Because x3 is an accept state, z4 can also accept a string that ends its path there.
Where do we go if we are in z3 and we read an a? If we were in x2, we stay there,

whereas if we were back in x1 , we would go to x2• Remember again that every + state is also
automatically a possible restart state jumping back to x 1 . Therefore, we return to Zr

If we are in z4 and we read a b, whether we are in x i '
x3, or x4, we definitely go to x4,

which is Zz-

lf we are in z4 and we read an a, we go (if we were in x1) to x2, or (if we were in x3) to
x4, or (if we were in x4) to x4• Therefore, we are in a new state:

+z5 = x1 or x2 or x4

which must be a final state because x2 is .
From z5 an a gets us to (x1 or x2 or x4), which is z5 itself, whereas a b gets us to (x 1 or x3

or x4) , which is z4 again.
This finishes the description of the whole machine. It is pictured below :

(/

(/

h

This is not actually a bad machine for the language defined by

(a* + aa*b)*

ALGORITHM (incomplete)

(/

The general rule for this algorithm is that each z-state corresponds to some collection of
x-states. We must remember each time we reach a final state it is possible that we have to
start over again at x 1 • There are only finitely many possible col lections of x-states, so the ma
chine produced by this algorithm has only finitely many states. The transitions from one col
lection of x-states to another based on reading certain input letters is determined completely
by the transition rules for FA 1 • •

128 CHAPTER 7 Kleene's Theorem

EXAMPLE

The machine below accepts all strings that end in a:

b a

b

a

If we mechanical ly follow the incomplete algorithm, we would have built a machine with
three states: x 1 , x2, and x 1 or x2• Because x2 is a + state, every time an input string path enters
x2, it could possibly be deemed to have just accepted an r segment and then jump to x 1 to
continue processing the next syllable from start again. So, there are really only two states
used in this FA* . The edges can be deduced to run as shown below:

b a a

b

To decide which are the final states, the rule tel ls us that since x2 is the only final state in the
original FA (therefore, the only final states in the FA*-machine are those including the possi
bil ity of x2), this is only the right-hand state . But now A is not accepted by this machine. Ac
tually, all the other words in r* are accepted by this machine. If we simply stick a + in the
start state, then all the states in the resultant machine are final and the machine would accept
every input string. But this is not the correct machine for the language r*, which does not
contain the word bbb, for example. •

The proper procedure is to always begin the FA *-machine with a special ::!:: start state
that exists in addition to all the states that are subsets of x's. This start state should have exit
ing a- and b-edges going to the same x's that the old start state did, but this new state has no
incoming edges at all . The old start state, say, it was x 1 , sti l l appears in the new machine but
not as a start state, just once as itself alone and many times in combination with other x's. If
the old start state was not a + state, landing in this state, or states with this alternative, wil l
not create acceptance for strings that were not prev iously accepted.

The Kleene closure of the machine shown above is more accurately this :

b

There is another possible way of resolving this difficulty. Because the FA produced by the
first draft of our algorithm was perfectly fine except for the possibil ity of omitting A, we

Converting Regular Expressions into FAs 129

might have corrected the problem by using a combination of Rules 1 and 2 as follows. From
Rule l we could take the FA that accepts only A and from Rule 2 we could have added the
A-FA to the FA* produced by the algorithm and thus patch up the problem by adding the
missing word. This new machine would have not just one additional state, but would have as
many as twice the number of states in FA* . That makes this suggestion a wasteful but math
ematically adequate resolution. Either way, the algorithm is now complete and correct.

ALGORITHM (for real)

Given an FA whose states are x1 , x2, • • • , an FA that accepts the Kleene closure of the lan
guage of the original machine can be built as follows:

Step 1 Create a state for every subset of x's. Cancel any subset that contains a final
x-state, but does not contain the start state.

Step 2 For all the remaining nonempty states, draw an a-edge and a h-edge to the col
lection of x-states reachable in the original FA from the component .r 's by
a- and b-edges, respectively.

Step 3 Call the null subset a ± state and connect it to whatever states the original start
state is connected to by a- and h-edges, even possibly the start state itself.

Step 4 Finally, put + signs in every state containing an x-component that is a final
state of the original FA. •

This algorithm will always produce an FA, and the FA it produces satisfies our requirements. •

EXAMPLE

Consider the regular expression

r = aa*bb*

This defines the language of all words where all the a's (of which there is at least one)
come before all the b 's (of which there is at least one) .

One FA that accepts th is language is

Now let us consider the language defined by r* :
r* = (aa*bb*)*

130 CHAPTER 7 Kleene's Theorem

This is a collection of a's, then b 's, then a 's , then b 's, and so on. Most words fit this pat
tern. In fact, the only strings not in this language are those that start with a b and those that
end with an a. All other strings are words defined by r*. Thus, r* is almost equivalent to

a(a + b)*b

For example, aababbb is in r* because (aab) is in r and (abbb) is in r. (Every string in
r* can be uniquely factored into its substrings of type r, but this is a side issue .) The string
abba is definitely not in r* because it ends in a.

Now let us build an FA for r*. Let us first see what goes wrong if we try to follow the
incomplete form of the algorithm. We begin with the start state :

Reading an a takes us to

Reading a b in state z 1 takes us to

Like its counterpart x3, z3 is a point of no return (abandon all hope, ye that enter).
From z2 if we read an a, we return to z2, just as with x2 • From z2 if we read a b, we pro

ceed to a new state cal led z4•

a

However, z4 is not just x4• Why? Because when we are processing the string ababb and
we get to z4, we may have just accepted the first factor (ab) as being of the form r and be
about to process the second factor starting again in the state x1 • On the other hand, if we are
processing the string abbab and we have only read the first two letters, even though we are
in z4, we have not completed reading the whole first factor of type r. Therefore,

+ z4 = x1 or x4

Because i t i s possible to end here and accept a string, this must be a final state, but we must
have the option of continuing to read another factor (substring) of type r, or to finish reading

Converting Regular Expressions into FAs 131

a factor we are in the middle of. If we are in z4 and we read an a, we go to x3 (if we were in
x4) or x2 (if we were in x1) . Therefore, we could say that we are going to a new state :

z5 = x2 or x3

However, the option of being in x3 is totally worthless. If we ever go there, we cannot accept
the string. Remember x3 is Davy Jones's locker. No string that gets there ever leaves or is
ever accepted. So, if we are interested in the paths by which strings can be accepted, we
need only consider that when in z4, if we read an a, it is because we were in the x1 part of z4,
not the x4 part. This a, then, takes us back to Zz- (This is a touch of extra insight not actually
provided by the algorithm. The algorithm requires us blindly to form a new state, zy We
shall build both machines, the smart one and the algorithm one .)

If we are in z2 and we read a b, we go to x4 (if we were in x4) or x3 (if we were in x1) .
Again, we need not consider the option of going to x3 (the suicide option), because a path
going there could accept no words. So, instead of inventing a new state,

z6 = x1 or x3 or x4

which the preceding algorithm tells us to construct, we can simply assume that from z4 a h
always takes us to x4• This is, of course, really the combination (x4 or x1) because we could
now continue the processing of the next letter as if it were in the state x1 having just accepted
a factor of type r. This is the case with the word abbab.

These options, x1 or x4, are already the definition of state z4, so we have finished our ma
chine.

a
h h

a

If we had mechanically followed the algorithm in the proof, we would have constructed

a

132 CHAPTER 7 Kleene's Theorem

For some applications, it may be important to construct the entire machine mechanically
as above because accepting an input string in z4 may somehow be different from accepting it
in z6 (the cost could be different, or the storage space, etc .) . For our simple purposes, there is
no difference between these two machines except that the first one requires cleverness,
which is never allowed in a proof by constructive algorithm.

In both of these diagrams, it is clear that in order to be accepted, the only conditions a
string must satisfy are that it begin with an a and end with a b. Therefore, because we under
stand the language r* and we understand these two machines, we know that they truly repre
sent the language r* as desired.

Before we feel completely satisfied with ourselves, we should realize that neither of
the machines we have bui l t accepts the word A, which must be in the closure of any lan
guage.

The incomplete algorithm succeeds only in cases of final and nonreenterable start states .
For all other machines the real algorithm is necessary.

What went wrong was at the very beginning, when we said that z 1 was the equivalent of
x1 • This is true only when x1 is also a final state, because otherwise z l ' which must be a final
state, cannot be its true twin. z1 can act like x1 in all other respects as a starting state for the
acceptance of a word on FA I ' but because z1 must be a final state, we cannot simply posit its
equivalence to x1 • What we need are two states that are l ike x 1 • One of them wil l be x1 and a
final state, whereas the other wil l be x1 and a nonfinal state. The reason we may need a state
l ike x1 that is not a final state is that in the running of an input string of FA 1 we may be re
quired to reenter the state x1 several times. If x1 is not a final state in FA I ' but we convert it
into z l ' which is a final state, then when an input string ends in x1 on FA 1 and is not accepted
on FA I ' we do not want mistakenly to say that it ends in z l ' which then causes it to be ac
cepted on FA2 • In the machine we have at present, this is no problem because the state x1 on
FA 1 can never be reentered (no edges go into x 1) . Therefore, we can say that the :1 we have is
sufficient to represent x 1 in all its uses. An accurate machine for the language defined by
(aa*bb*)* is

a

a

•

To il lustrate the possible need for two different states representing x i ' we have to start
with a machine that does not accept A, but that does allow the state x1 to be reentered in the
path for some input words.

EXAMPLE

One such FA is the one below, which accepts the language of all words with an odd number
of b's :

Converting Regular Expressions into FAs 133

a a
b

b

Let us practice our algorithm on this machine.
The first state we want is z I ' which must be l ike x1 except that it is also a final state. If

we are in z 1 and we read an a, we come back to x 1, but this time in its capacity as a non final
state. We have to give a different name to this state; let us call it z2•

z 1 = x 1 and a final state
z2 = x1 and a nonfinal state

If we are in z 1 and we read a h, we must go to a state like x2• Now because x2 is a final
state, we must also include the possibility that once we enter x2, we immediately proceed as
if we were back in x 1 • Therefore, the state z3 that we go to is simply x1 or x2 and a final state
because of x2•

At this point, the machine looks like this :

<1 ± r---a---c

h

If we are in z2 and we read an a, we stay in z2• If we are in z2 and we read a h, we go to
Zr If we are in z3 and we read an a, it will take us back to z3, because if we were in x i ' we
would stay in x" and if we were in x2 , we would stay in x2• If we are in z3 and we read a h,
then we also return to z3, because if we were in x1 , then we would go to x2, and if we were in
x2, we would go to x1 • The whole machine is shown on the next page:

134 CHAPTER 7 Kleene's Theorem

a . h

a

The only words not accepted by this machine are words of solid a 's . Al l other words are
clearly the concatenation of substrings with one h each and are therefore in the closure of the
language of FA , .

This i s another example of how the nul l string i s a royal pain i n the neck. One regular
expression defining the language of all words with an odd number of b 's is

r = a*b(a*ba*b)*a*

Therefore, the regular expression

r* = [a*b(a*ba*b)*a*] *

defines the language of all words that are not of the form aa* . Another regular expression for
this language is

A + (a + b)*b(a + b)*

Therefore,

A + (a + b)*b(a + b)* = [a*b(a*ba*b)*a*] *

It is hard to imagine an algebraic proof of this equation. The problem of determining when
two regular expressions define the same language will be discussed in Chapter 1 1 . •

We have now developed algorithms that, when taken together, finish the proof of Part 3
of Kleene 's theorem. (We have been in the middle of this project for so long it is possible to
lose our perspective .)

Because of Rules I , 2, 3, and 4, we know that all regular expressions have correspond
ing finite automata that give the same language. This is because while we are bui lding the
regular expression from the elementary building blocks by the recursive definition, we can
simultaneously be bui lding the corresponding FA from the four preceding algorithms. This is
a powerful example of the strength of recursive definitions.

As an example, suppose we want to find an FA to accept the language for the regular ex
pression (ab)*a(ab + a*)* . Because this is a regular expression, it can be built up by re
peated appl ications of the rules: any letter, sum, product, star.

The lengthy process of expression and machine-building can proceed as follows: a is
a letter in the alphabet, so there is an FA that accepts it called FA 1 • Now b is a letter in the
alphabet, so there is a machine that accepts it, FA2 • Then ab is the language of the prod
uct of the two machines FA , and FA2, so there is a machine to accept it, FAy Then (ab)*
is the language of the c losure of the machine FA3, so there is a machine to accept it; call
it FA4•

Now a* is the language of the closure of the machine FA 1 , so there is an FA to accept it

Nondeterministic Finite Automata 135

called FA5• Now ab + a* is the language of the sum of FA3 and FA5, so there is a machine to
accept it, FA6• Now (ab + a*)* is the language of the closure of FA6; therefore, there is a ma
chine to accept it, FA1 • Now a(ab + a*)* is the product of FA , and FA7, so there is a machine
to accept it, FA8• Now (ab)*a(ab + a*)* is the product of machines FA4 and FA8; call it FA9•
Done.

All regular expressions can be handled the same way. We have shown that every lan
guage accepted by an FA can be accepted by a TG, every language accepted by a TG can be
defined by a regular expression, and every language defined by a regular expression can be
accepted by an FA. This concludes the proof of all of Kleene 's theorem. •

The proof has been constructive, which means that we have not only shown that there
is a correspondence between regular expressions, FAs and TGs, but we have also shown ex
actly how to find examples of the things that correspond. Given any one, we can build the
other two using the techniques outl ined in the preceding proof.

Because TGs seem more understandable, we often work with them instead of struggling
with the rigors of FAs (especially having to specify what happens in every state to every
letter) .

The biggest surprise of this theorem may be that TGs are not any more powerful than
FAs in the sense that there are no extra languages that TGs can accept that FAs could not
handle already. This is too bad because we shall soon show that there are some languages
that FAs cannot accept, and we shall need a more powerful type of machine than a TG to
deal with them.

Even though with a TG we had the right to exercise some degree of judgment - we
made some decisions about sectioning the reading of the input string- we could do no bet
ter than a purely automatic robot l ike an FA. The human input factor was worth essentially
nothing.

1f NONDETERMINISTIC FINITE AUTOMATA

Now that we have shown how a possibly nondeterministic machine like a TG can be turned
(by a deterministic algorithmic procedure) into a deterministic machine, an FA, we may in
troduce a conceptual machine that occurs in practice more frequently than the TG, but that
shares with it the property of being nondeterministic.

DEFINITION

A nondeterministic finite automaton is a TG with a unique start state with the property
that each of its edge labels is a single alphabet letter. It is given the acronym NFA. Some
times, to distinguish them from NFAs, the regular deterministic finite automata are referred
to as DFAs. •

We defined NFAs as a type of TGs, but we might just as easily have started with the
concept of FA and expanded their scope by allowing arbitrarily many a- and b-edges coming
out of each state . The result would be the same, but then we would have to restate the notion
of acceptance of an input string for a nondeterministic machine as the existence of any one
possible path to + . We would also have to rehash the possibility of crashing and its incon
clusive consequences.

136 CHAPTER 7 Kleene's Theorem

EXAMPLE

These are all NFAs:

a , b

a, b

NFAs were invented by Michael Oser Rabin and Dana Scott in 1 959.

EXAMPLE

•

One possible use of the NFA is to eliminate all loop states in a given FA. Instead of the situation

we can invent a twin for state 7, called 7 ' , and instead of being in state 7 and looping back to
it, we can jump from 7 to 7 ' , and back and forth if we want.

Nondeterministic Finite Automata 137

The advantage of this NFA is that the fact of whether looping in state 7 occurs for a given in
put is recorded in whether the path the input follows goes through state 7 ' or not. In a com
puter program, state 7' may set a flag alerting one to the incidence of looping. •

EXAMPLE

If we are looking for a machine to define the language of all strings with a triple a followed
by a triple b, we could design the NFA:

a, b a, b a, b

There is one thing that we must notice about this machine; it wi l l also accept words in
which some bbb can occur before the first aaa (by looping at the - state) and then has an
other bbb later. If the language we were interested in was more precisely the set of all
strings in which the .first triple h is preceded by a triple a, we need the more complex ma
chine below :

Because an NFA is a type of TG and Kleene 's theorem (p. 92) shows us by constructive
algorithm how to convert TGs into FAs, it follows that all NFAs can be converted into FAs
that accept the same language. Clearly, all FAs can be considered NFAs that do not make use
of the option of extra freedom of edge production. So as language acceptors, NFA = FA.

THEOREM 7

For every NFA, there is some FA that accepts exactly the same language.

138 CHAPTER 7 Kleene's Theorem

PROOF 1 (the slick proof)

Using the algorithms in Part 2 of the proof of Kleene 's theorem, convert the NFA into a reg
ular expression by state bypass operations. Once we have a regular expression defining the
same language, use the four rules in Part 3 of the proof to construct an FA that accepts the
same language as the regular expression. •

This proof is short and sweet but needlessly overcumbersome in practice, so we present
another proof that is based on a specialized (yet famil iar-sounding) constructive algorithm
allowing us to go from NFA to FA without passing through an avatar of regular expression.

PROOF 2 OF THEOREM 7

The constructive algorithm we suggest is reminiscent of the algorithm of Part 3, Rule 4, of
Kleene 's theorem. This is the one that started with an FA and produced an FA* . It did so by
realizing that at any stage in the processing of the input string, the path might have taken
various branches and so might currently be in any of a collection of possible x-states. Non
determinism produces exactly the same degree of uncertainty. Thus, the states in the FA that
we are going to produce will also be collections of states from the original NFA. For every
collection of states from the old machine

xlhis or xlhal or . . . xlhe other

the new state that an a-edge (or a b-edge) wil l take us to is just the collection of possibilities
that can result from being in x1his and taking an a-edge, or being in x1har and taking an a-edge,
and so on. The start state of the new FA is the same old start state we had to begin with in
the NFA and its a-edge goes to the collection of x-states that can be reached by an a-edge
from start in the NFA. Because there may be no a-edges leaving the start state in the NFA
(or leaving any other particular state) , the col lection of x-states reached by an a-edge in this
case must be the null collection (<f.>). In the final FA, this state has of necessity an a , b loop
going back to itself. The <f.> state in the FA is not a final state because the final states (as al
ways before) are all the collections of x-states from the original machine that include an old
final state among them. •

EXAMPLE

When we convert the NFA on the left below, the algorithm produces the one on the right:

•

Nondeterministic Finite Automata

EXAMPLE

A simple NFA that accepts the language I bb bbb } is

The algorithm in Proof 2 converts this to the FA:

a, b

EXAMPLE

One NFA that accepts all inputs with a bb in them is

a, b

b

This converts to the FA:

a
b

a

EXAMPLE

One NFA that accepts all inputs with a triple letter is

139

b

•

a, b

b

a, t

b

•

140 CHAPTER 7 Kleene's Theorem

By the algorithm, it becomes

a

b

a, b

a
.._ ____ .., 1 or 2 or 3

+

b

a, b

Even though both machines have the same number of states, the "meaning" of the language
is easier to determine from the NFA. •

ii} NFAs AND KLEENE'S THEOREM

Our approach to Kleene 's theorem, Part 3, was to build FAs analogous to the building of reg
ular expressions, by union, multiplication, and closure. The proofs that FA , + FA2, FA 1FA2,
and FA 1 * were all equivalent to other FAs could have been done differently (not necessari ly
better) by employing NFAs in the process.

For example, Rule I states that there are FAs for languages { a } , I b } , and I A } . Below is
an alternate method of proving this .

PROOF 2, THEOREM 6, PART 3, RULE 1

Step l The three languages in question can all be accepted by the NFAs below :

0-0 0-0 8
Step 2 Because by Theorem 7 on p. 1 37, for every NFA there is an equivalent FA,

there must be FAs for these three languages as well . •

In general, we must be careful when using Theorem (X + 1) to prove Theorem (X)

a

NFAs and Kleene's Theorem 141

to be sure that we did not already use Theorem (X) first in the proof of Theorem (X + I) .
However, if we examine the proof of Theorem 7, we see that it was similar to, but did not
employ, Theorem 6 (p. 92).

PROOF 2, THEOREM 6, PART 3, RULE 2

Given FA 1 and FA2, we shal l construct an algorithm for producing a union machine
FA 1 + FA2 by two steps:

Step 1 Introduce a new and unique start state with two outgoing a-edges and two out
going b-edges but no incoming edges. Connect them to the states that the start
states of FA 1 and FA2 are already connected to. Do not el iminate the start states
of FA 1 and FA2, but erase their - signs, leaving al l their edges intact. The new
machine is an NFA that clearly accepts exactly language(FA 1) + lan
guage(FA).

Step 2 Using the algorithm of Theorem 7, convert the NFA into an FA.

EXAMPLE

We only need to i l lustrate step I because step 2 has already been conquered. Consider

b

a
a, b

b

,,
The NFA that is their a sum is

b

a, b

a

•

•

142 CHAPTER 7 Kleene's Theorem

Rules 3 and 4 of Part 3 of Kleene 's theorem can also be proven using Theorem 7, but
this we leave for the problems section.

� PROBLEMS

1. Using the bypass algorithm in the proof of Theorem 6, Part 2, convert each of the fol
lowing TGs into regular expressions :

(i) 11 . h

.I

(i i) ,, , / >

(i i i)

a , h 11 . h

(iv)

a h h

(v) a

Problems 143

(vi)

2. In Chapter 5 , Problem 10, we began the discussion of all possible FAs with two states.
Write a regular expression for each machine of type 2 and type 3 by using the conversion
algorithm described in the proof of Theorem 6, Part 2 . Even though there is no algorithm
for recognizing the languages, try to identify as many as possible in the attempt to dis
cover how many different languages can be accepted by a two-state FA.

For Problems 3 through 1 2, use the following machines:

b a a
a

a, b

a b

b

b a, b

a

3. Using the algorithm of Kleene 's theorem, Part 3, Rule 2, Proof I , construct FAs for the
following union languages:

(i) FA 1 + FA2
(ii) FA 1 + FA3

(i i i) FA2 + FA3

4. Using the algorithm of Kleene 's theorem, Part 3, Rule 2, Proof 2, construct NFAs for the
following languages:

(i) FA 1 + FA2
(ii) FA I + FA3

(i i i) FA2 + FA3

5. Using the algorithm of Theorem 6, Part 3, Rule 3, construct FAs for the following prod
uct languages:

(i) FA 1 FA2

144 CHAPTER 7 Kleene's Theorem

(i i) FA 1 FA3
(ii i) FA 1 FA 1
(iv) FA2 FA ,
(v) FA2 FA2

6. Using the algorithm of Part 3, Rule 4, construct FAs for the following languages:

(i) (FA 1)*
(i i) (FA2)*

7. We are now interested in proving Part 3 , Rule 3 , of Kleene 's theorem by NFAs. The ba
sic theory is that when we reach any + state in FA " we could continue to FA , by follow
ing its a-edge and b-edge, or we could pretend that we have jumped to FA, by fol lowing
the a-edge and b-edge coming out of the start state on FA2 • We do not change any states
or edges in either machine; we merely add some new (nondeterministic) edges
from + states in FA 1 to the destination states of FA2 's start state . Final ly, we erase
the + 's from FA , and the - sign from FA2 and we have the desired NFA.

Let us i l lustrate this by multiplying FA 1 and FA2 above.

b a b
a

b

a

Find NFAs for the fol lowing product languages:

(i) FA 1 FA 1
(ii) FA 1 FA3

(ii i) FA2 FA2

a a, b

b

8. Take the three NFAs in Problem 7 above and convert them into FAs by the algorithm of
Theorem 7.

9. We can use NFAs to prove Theorem 6, Part 3 , Rule 4, as wel l . The idea is to al low a
nondeterministic jump from any + state to the states reachable from the - state by a
and b-edges.

(i) Provide the details for this proof by constructive algorithm.
(ii) Draw the resultant NFA for (FA 1)* .

(i i i) Draw the resultant NFA for (FA2)* .
(iv) Draw the resultant NFA for (FA3)* .

10 . Convert the machines in Problem 9(ii) and (ii i) above to FAs by the algorithm in the
proof of Theorem 7 .

11 . Find FAs for the following languages:

(i) FA4 FA4
(i i) (FA4)*

12. (i) Is the machine for FA 1 FA , (Problem 5) the same as the machine for (FA 1)* (Prob
lem 6)? Are the languages the same?

(i i) Is the machine for FA4 FA4 the same as the machine for (FA4)* (Problem 1 1)? Are
the languages the same?

Problems 145

13. (i) For the examples derived earlier, which algorithmic method produces product ma
chines with fewer states, the direct (Problem 5) or the NFA (Problem 8)?

(i i) If some automaton, FA " has n states and some other automaton, FA2, has m states,
what are the maximum number of states possible in each of the machines corre
sponding to FA 1 + FA2, FA 1 FA2, (FA 1)* that are produced.
(a) By the subset method described in the proof of Kleene 's theorem.
(b) By bui lding NFAs and then converting them into FAs.

14. Convert each of the following NFAs into FAs using the constructive algorithm presented
in Proof 2 of Theorem 7 .

(i) a, b

b

(i i)

(i i i) a

a, b

a, b

(iv)

(v) a

146 CHAPTER 7 Kleene's Theorem

(vi) a, b

a b

(vii) a, b

a b b

(vi i i) a, b

a b b

(ix)

(x) a

For Problems 1 5 through 1 7 , let us now introduce a machine called "a nondeterministic fi
nite automaton with null string labels," abbreviated NFA-A. This machine follows the
same rules as an NFA except that we are allowed to have edges labeled A.

15. Show that it is possible to use a technique analogous to that used in Proof 2 of Theorem
7 to constructively convert an NFA-A into an FA by explicitly giving the steps of the
conversion process.

16. Convert the following NFA-A 's into FAs using the algorithm invented in Problem 1 5 :

(i)

Problems

(i i)

(i i i) , \

h

17. Using the result in Problem 1 5 , find a third proof of Part 3 of Kleene 's theorem:

(i) Rule 2
(i i) Rule 3
(iii) Rule 4

147

18. (i) Find two different machines FA , and FA2 such that the languages accepted by
FA , + FA2 and FA , FA2 are the same, yet the machines generated by the algorithm in
the proof of Theorem 6 are different.

(ii) Find two different machines FA , and FA2 such that the algorithm in the proof of
Theorem 6 creates the same machine for (FA 1)* and (FA2) . *

19. For the language accepted by the following machine, find a different FA with four
states. Find an NFA that accepts the same language and has only seven edges (where
edges with two labels are counted twice) .

a

b
a

a

b
b

148 CHAPTER 7 Kleene's Theorem

20. A one-person game can be converted into an NFA as follows. Let every possible board
situation be a state. If any move (there may be several types of moves, but we are not in
terested in distinguishing among them) can change some state x into some state y, then
draw an edge from x to y and label it m. Label the initial position - and the winning po
sitions + . "This game can be won in five moves" is the same as saying, "m5 is accepted
by this NFA." Once we have the NFA, we use the algorithm of Chapter 7 to convert it
into a regular expression. The language it represents tells us how many moves are in
each winning sequence.

Let us do this with the following example. The game of Flips is played with three
coins. Initially, they are all heads. A move consists of flipping two coins simultaneously
from whatever they were to the opposite side. For example, flipping the end coins
changes THH into HHT. We win when all three coins are tails. There are eight possible
states: HHH, HHT, . . . TIT. The only - is HHH; the only + is TIT. Draw this NFA,
labeling any edge that can flip between states with the letter m.

Convert this NFA into a regular expression. Is m3 or m5 in the language of this ma
chine? The shortest word in this language is the shortest solution of this puzzle. What is
it?

CHAPTER 8

r{f MOORE MACHINES

Finite Automata
with Output

In our discussion of finite automata in Chapter 5 , our motivation was i n part to begin to de
sign a mathematical model for a computer. We said that the input string represents the pro
gram and input data. Reading the letters from the string is analogous to executing instruc
tions in that i t changes the state of the machine; that is, i t changes the contents of memory,
changes the control section of the computer, and so on. Part of this "and so on," that was not
made explicit before, is the question of output. We mentioned that we could consider the
output as part of the total state of the machine. This could mean two different things : one,
that to enter a specific computer state means change to memory a certain way and print a
specific character; or two, that a state includes both the present condition of memory plus the
total output thus far. In other words, the state could reflect (in addition to the status of the
running program) (i) what we are now printing or (i i) what we have printed in total. One nat
ural question to ask is, "If we have these two different models , do these machines have equal
power or are there some tasks that one can do that the other cannot?"

The only explicit task a machine has done so far is to recognize a language. Computers,
as we know, often have the more useful function of perfonning calculations and conveying
results. In this chapter, we expand the notion of machine task.

If we assume that all the printing of output is to be done at the end of the program run,
at which time we have an instruction that dumps a buffer that has been assembled, then we
have a maximum on the number of characters that the program can print, namely, the size of
the buffer. However, theoretically we should be able to have outputs of any finite length. For
example, we might simply want to print out a copy of the input string, which could itself be
arbitrarily long.

These are questions that have to be faced if we are to claim that our mathematical models
of FAs and TGs represent actual physical machines. In this chapter, we shall investigate two
different models for FAs with output capabilities. These were created by G. H. Mealy (1 955)
and, independently, by E. F. Moore (1 956). The original purpose of the inventors was to design
a mathematical model for sequential circuits, which are only one component of the architecture
of a whole computer. It is an important component and, as we shall see, acts as a machine all
by itself. We shall present these two models, prove that they are equivalent, and give some ex
amples of how they arise in the "logic" section of a computer.

149

150 CHAPTER 8 Finite Automata with Output

DEFINITION

A Moore machine is a collection of five things :

1. A finite set of states %• q1 , q2, • • • , where % is designated as the start state.

2. An alphabet of letters for forming the input string

I = l a b c . . . }

3. An alphabet of possible output characters

r = Ix y z . . . I

4. A transition table that shows for each state and each input letter what state is reached
next.

5. An output table that shows what character from f is printed by each state as it is en-
tered. •

Notice that we did not assume that the input alphabet I is the same as the output alpha
bet f. When dealing with contemporary machines, both input and output are usually en
coded strings of O's and l 's . However, we may interpret the input bit strings as instructions
in a programming language followed by the data to be processed. We may also wish to
group the strings of output bits into codes for typewriter characters. We discuss whether it is
necessary to have more than two letters in an alphabet in Chapter 23.

To keep the output alphabet separate from the input alphabet, we give it a different
name, f instead of I, and for its letters we use symbols from the other end of the Latin al
phabet: Ix y z . . . } or numbers I 0 I . . . } instead of I a b c . . . } . Moreover, we
refer to the input symbols (as we always have) as letters, whereas we call the output sym
bols characters.

As we shall see from our circuitry examples, the knowledge of which state is the start
state is not always important in applications. If the machine is run several times, it may con
tinue from where it left off rather than restart. Because of this, we can define the Moore ma
chine in two ways: Either the first symbol printed is the character always specified in the
start state, or else it is the character specified in the next state, which is the first state chosen
by the input. We shall adopt the policy that a Moore machine always begins by printing the
character dictated by the mandatory start state. This difference is not significant. If the input
string has seven letters, then the output string will have eight characters because it includes
eight states in its path .

Because the word "outputted" is so ugly, we shall say "printed" instead, even though we
realize that the output device does not technically have to be a printer.

A Moore machine does not define a language of accepted words, because every pos
sible input string creates an output string and there is no such thing as a final state . The
processing is terminated when the last input letter is read and the last output character is
printed. Nevertheless, there are several subtle ways to turn Moore machines into lan
guage-definers.

Moore machines have pictorial representations very similar to their cousins, the FAs.
We start with little circles depicting the states and directed edges between them labeled with
input letters. The difference is that instead of having only the name of the state inside the lit
tle circle, we also specify the output character printed by that state. The two symbols inside
the circle are separated by a slash "/". On the left side is the name of the state and on the
right is the output from that state.

Moore Machines

EXAMPLE

Let us consider an example defined first by a table:

Input alphabet: I = { a b I
Output alphabet: f = { 0 I }

Names of states: %• q 1 , q2, q3 (% = start state)

Transition Table

Output

151

by the New State
Old State Old State After fo]>_ut a After ll!l!_ut b

- qo I q , q3

q , 0 q3 q ,

q2 0 % q3

q3 q3 q2

The pictorial representation of this Moore machine is

In Moore machines, so much information is written inside the state circles that there is
no room for the minus sign indicating the start state. We usually indicate the start state by an
outside arrow as shown above. As mentioned before, there is no need for any plus signs
either.

Let us trace the operation of this machine on the input string abab. We always start this
machine off in state q0, which automatically prints out the character 1 . We then read the first
letter of the input string, which is an a and which sends us to state q 1 • This state tel l s us to
print a 0. The next input letter is a b, and the loop shows that we return to state q 1 • Being in
q 1 again, we print another 0. Then we read an a, go to q3, and print a l . Next, we read a b, go
to q2, and print a 0. This is the end of the run. The output sequence has been l 00 1 0. •

EXAMPLE

Suppose we were interested in knowing exactly how many times the substring aab occurs in
a Jong input string. The following Moore machine will "count" this for us:

152 CHAPTER 8 Finite Automata with Output

Every state of this machine prints out the character 0 except for state q3, which prints a
1 . To get to state q3, we must have come from state q2 and have just read a b. To get to state
q2, we must have just read at least two a 's in a row, having started in any state. After finding
the substring aab and tallying a 1 for it, we begin to look for the next aab. If we read a b, we
start the search in %; if we read an a, we start in q1 • The number of substrings aab in the in
put string will be exactly the number of 1 's in the output string.

Input a a a b a b b a a b b

State % qi q2 q2 q3 q i % % qi q2 qJ %

Output 0 0 0 0 I 0 0 0 0 0 I 0

•

The example above is part of a whole class of useful Moore machines. Given a language
l and an FA that accepts it, if we add the printing instruction 0 to any nonfinal state and I to
each final state, the I 's in any output sequence mark the end position of all substrings of the
input string starting from the first letter that are words in l. In this way, a Moore machine
can be said to define the language of all input strings whose output ends in a 1 . The machine
above with % = - , q3 = + accepts all words that end in aab.

if MEALY MACHINES

Our next subject is another variation of the FA called the Mealy machine. A Mealy machine
is l ike a Moore machine except that now we do our printing while we are traveling along the
edges, not in the states themselves. If we are in state q4 and we are proceeding to q7, we do
not simply print what q7 tel ls us. What we print depends on the edge we take. If there are
two different edges from q4 to q7, one an a-edge and one a b-edge, it is possible that they
will have different printing instructions for us. We take no printing instructions from the
state itself.

DEFINITION

A Mealy machine is a col lection of four things:

1 . A finite set of states %• q1 , q2, • • • , where % is designated as the start state.

2. An alphabet of letters I = { a b . . . } for forming input strings.

3. An alphabet of output characters f = { x y z . . . } .

4. A pictorial representation with states represented by small circles and directed edges in
dicating transitions between states. Each edge is labeled with a compound symbol of the
form ilo, where i is an input letter and o is an output character. Every state must have
exactly one outgoing edge for each possible input letter. The edge we travel is deter
mined by the input letter i. While traveling on the edge, we must print the output char
acter o. •

We have for the sake of variation defined a Mealy machine by its pictorial representa
tion. One reason for this is that the table definition is not as simple as that for a Moore ma
chine (see the Problem section, later) .

Mealy Machines 153

EXAMPLE

The following picture represents a Mealy machine:

a l l

Notice that when we arrive in state q3 we may have just printed a 1 or a 0. If we came
from state % by the b-road, we printed a 0. If we got there from q 1 by the a-road, we printed
a I . If we got there from q2, it depends on whether we took the a-road and printed a 0 or the
b-road and printed a I . If we were in q3 already and looped back on the input a, we then
printed a I . Every time we enter q 1 , we have just printed a O; this time it is possible to tell
this information from the destination state alone.

Let us trace the running of this machine on the input sequence aaabb. We start in state

%· In distinction to the Moore machine, here we do not have to print the same character each
time we start up, even before getting a look at the input. The first input letter is an a, which
takes us to q 1 and prints a 0. The second letter is an a, which takes us to q3 and prints a I .
The third letter is an a, which loops us back to q3 and prints a 1 . The fourth letter is a b,
which takes us back to % and prints a 1 . The fifth letter is a b, which takes us to q3 and prints
a 0. The output string for this input is 0 1 1 10. •

Notice that in a Mealy machine the output string has the same number of characters as
the input string has letters. As with the Moore machine, the Mealy machine does not define a
language by accepting and rejecting input strings, so it has no final states. However, we wil l
see shortly that there is a sense in which it can recognize a language.

If there are two edges going in the same direction between the same pair of states, we
can draw only one arrow and represent the choice of label by the usual comma.

a x

~
I> .v

EXAMPLE

� �

One simple example of a useful Mealy machine is one that prints out the 1 's complement of
an input bit string. This means that we want to produce a bit string that has a 1 wherever the
input string has a 0 and a 0 wherever the input has a 1 . For example, the input I 01 should be
come the output 0 1 0. One machine that does this is shown on the next page.

154 CHAPTER 8 Finite Automata with Output

Oi l . 1 10

---<{?
If the input is 00 1 0 1 0, the output is 1 1 0 1 0 1 . This is a case where the input alphabet and out
put alphabet are both I 0 l } . •

EXAMPLE

We now consider a Mealy machine called the increment machine that assumes that its input
is a binary number and prints out the binary number that is one larger. We assume that the
input bit string is a binary number fed in backward, that is, units digit first (then 2 's digit, 4 's
digit, . . .) . The output string wil l be the binary representation of the number one greater
and wil l also be generated right to left.

The machine will have three states: start, owe-carry, no-carry. The owe-carry state repre
sents the overflow when two bits equal to I are added- we print a 0 and we carry a I .

From the start state, we read the first bit. If we read in a 0, we print a 1 and we do not
owe a carry bit. If we read a I , we print a 0 and we do owe a carry bit. If at any point in the
process we are in no-carry (which means that we do not owe a carry) , we print the next bit
just as we read it and remain in no-carry. However, if at some point in the process we are in
owe-carry, the situation is different. If we read a 0, we print a I and go to the no-carry state.
If we are in owe-carry and we read a 1 , we print a 0 and we loop back to owe-carry. The
complete picture for this machine is

010. 1 1 1

1 /0

Let us watch this machine in action on the binary representation for the number l l ,
I O I I . The string is fed into the machine as 1 1 0 1 (backwards). The first I causes a 0 to be
printed and sends us to owe-carry. The next I causes a 0 to be printed and loops back to
owe-carry. The next input letter is a 0 and causes a I to be printed on our way to no-carry.
The next bit, 1 , is printed out, as it is fed in, on the no-carry loop. The total output string is
00 1 1 , which when reversed is 1 1 00, and is, as desired, the binary representation for the num
ber 1 2.

As simple as this machine is , it can be simplified even further (see Problem 7).
This machine has the typical Mealy machine property that the output string is exactly as

long as the input string. This means that if we ran this incrementation machine on the input
1 1 1 1 , we would get 0000. We must interpret the owe-carry state as an overflow situation if a
string ever ends there. •

Mealy Machines 155

There is a connection between Mealy machines and sequential circuits (which we touch
on at the end of this chapter) that makes them a very valuable component of computer the
ory. The two examples we have just presented are also valuable to computing. Once we have
an incrementer, we can build a machine that can perform the addition of binary numbers,
and then we can use the l 's complementing machine to build a subtracting machine based on
the following principle:

If a and b are strings of bits, then the subtraction a - b can be peiformed by
(1) adding the I 's complement of b to a, ignoring any overflow digit, and
(2) incrementing the results by 1 .

For example,

14 - 5 (decimal) = 1 1 1 0 - 0 10 1 (binary)
= 1 1 10 + l 's complement of 0 1 0 1 + 1 (binary)
= 1 1 10 + 1 0 1 0 + 1 (binary)
= [1] 1 00 1 binary = 9 (decimal) (dropping the [l])

1 8 - 7 = 1 00 1 0 - 00 1 1 1 = 1 00 10 + 1 1 000 + l
= [1]0 1 0 1 1 = 0 10 1 1 = 1 1 (decimal)

The same trick works in decimal notation if we use 9 's complements, that is, replace
each digit d in the second number by the digit (9 - d). For example,
46 - 17 - 46 + 82 + l = [1] 29 - 29.

EXAMPLE

Even though a Mealy machine does not accept or reject an input string, it can recognize a
language by making its output string answer some questions about the input. We have dis
cussed before the language of all words that have a double letter in them. The Mealy ma
chine below will take a string of a 's and b's and print out a string of O 's and l 's such that if
the nth output character is a l , i t means that the nth input letter is the second in a pair of dou
ble letters. For example, ababbaab becomes 0000 10 10 with l 's in the position of the second
of each pair of repeated letters.

, , ., . ha 1 •e a l l just
rmd a

ll'l' h a ue just hl l
rmd h

a ! O

This i s similar to the Moore machine that recognized the number of occurrences of the

156 CHAPTER 8 Finite Automata with Output

substring aab. This machine recognizes the occurrences of aa or bb. Notice that the triple
letter word aaa produces the output 0 1 1 since the second and third letters are both the back
end of a pair of double a 's . •

� MOORE = MEALY

So far, our definition of the equivalence of two machines has been that they accept the same
language. In this sense, we cannot compare a Mealy machine and a Moore machine. How
ever, we may say that two output automata are equivalent if they always give the same out
put string when presented with the same input string. In this way, two Mealy machines may
be equivalent and two Moore machines may be equivalent, but a Moore machine can never
be directly equivalent to a Mealy machine because the length of the output string from a
Moore machine is one longer than that from a Mealy machine given the same input. The
problem is that a Moore machine always begins with one automatic start symbol .

To get around this difficulty, we define a Mealy machine to be equivalent to a Moore
machine whenever they always result in the same output if the automatic start symbol for the
Moore machine is deleted from the front of the output.

DEFINITION

Given the Mealy machine Me and the Moore machine Mo, which prints the automatic start
state character x, we will say that these two machines are equivalent if for every input string
the output string from Mo is exactly x concatenated with the output from Me. •

Rather than debate the merits of the two types of machines, we prove that for every Moore
machine there is an equivalent Mealy machine and for every Mealy machine there is an equiva
lent Moore machine. We can then say that the two types of machines are functionally equivalent.

THEOREM 8

If Mo is a Moore machine, then there is a Mealy machine Me that is equivalent to it .

PROOF

The proof will be by constructive algorithm.
Consider any particular state in Mo-call it q4• It gives instructions to print a certain

character-call it t. Let us consider all the edges that enter this state. Each of them is labeled
with an input letter. Let us change this . Let us relabel all the edges coming into q4• If they
were previously labeled a or b or c . . . , let them now be labeled alt or bit or cit . . . and
let us erase the t from inside the state q4• This means that we shall be printing a t on the in
coming edges before they enter q4•

becomes

Moore = Mealy 157

We leave the outgoing edges from q 4 alone. They will be relabeled to print the character as
sociated with the state to which they lead.

If we repeat this procedure for every state %• q. , . . . , we tum Mo into a Mealy ma
chine Me. As we move from state to state, the things that get printed are exactly what Mo
would have printed itself.

The symbol that used to be printed automatically when the machine started in state Qo is
no longer the first output character, but this does not stop the rest of the output string from
being the same.

•
Therefore, every Mo is equivalent to some Me.

EXAMPLE

Below, a Moore machine is converted into a Mealy machine by the algorithm of the proof
above:

becomes

•

THEOREM 9

For every Mealy machine Me, there is a Moore machine Mo that is equivalent to it .

PROOF

Again, the proof will be by constructive algorithm.
We cannot just do the reverse of the previous procedure. If we were to try to push the

printing instruction from the edge as it is in Me to the inside of the state as it should be for a
Moore machine, we might end up with a conftict. Two edges might come into the same state
but have different printing instructions, as in this example:

1>10

158 CHAPTER 8 Finite Automata with Output

What we need then are twin copies of the same state. The edge a/O wil l go into q! (q4
copy I , a state that prints a 0) and the edge b/l will go into q� (q4 copy 2, a state that prints a
I). The edge labeled b/0 will also go into q!. Inside these states, we include the printing in
structions q1JO and q�/ l . The arrows coming out of each of these copies of what used to be q4
must be the same as the edges coming out of q4 originally. We get two sets of the output
edges each equal to the original outgoing edges, but the one set of original incoming edges is
divided between the two copies. The example above becomes

h

The instruction to print a 0 or a I is now found inside the state, not along the edge.
Leaving the outgoing edges the way they were is only temporary as they themselves

wil l soon be changed.
State by state we repeat this procedure. If al l the edges coming into the object state have

the same printing instruction, then we can simply move that printing instruction into the
state. This does not affect the edges coming out of the state:

/l h/ l �I h
comes q5/ l

W l h

If there are multiple possibil ities for printing as we enter a given state , then we need a
copy of the state for each character we might have been instructed to print. (We may need as
many copies as there are characters in f.) Al l the edges that entered a certain state that used
to be labeled

something It

now lead into the copy of that state that instructs us to print the character t. Each of the
copies of the original state retains a complete set of the original outgoing edges. The labels
on the incoming edges lose their printing instructions. The letters on the outgoing edges re
tain them a while longer, if they have not lost them already. This algorithm slowly turns a
Mealy i nto a Moore state by state.

One interesting consequence of this algorithm is that an edge that was a loop in Me may
become two edges in Mo-one edge that is not a loop and one that is. For example,

a

becomes

Moore = Mealy 159

What happens in the preceding example is that the edge labeled a/0 has to enter a ver
sion of q3 that prints a 0. We call this qVO. The loop labeled h/ 1 at q3 has to enter a version
of q3 that prints a 1 . We call this qi/L When we enter q3 from the edge a/O, we enter qVO,
but we must also be able to loop with b 's while staying in a q3- like state. Therefore, an
edge labeled b must connect q�/0 to qi/L Because we must be allowed to repeat as many
b's as we want, there must be a b-loop at the state qi/I . Each b-loop we go around prints
another 1 when it reenters q; . As w ith all such clones of an original state , they must both
be connected to q6 by a/0.

If there is ever a state that has no edges entering it, we can assign it any printing instruc
tion we want, even if this state is the start state.

Let us repeat this process for each state of Me, %• q 1 , • • • • This will produce Mo. If we
have to make copies of the start state in Me, we can let any one of them be the start state in
Mo because they all give the identical directions for proceeding to other states. Having a
choice of start states means that the conversion of Me into Mo is not unique. We should ex
pect this because any Me is equivalent to more than one Mo. It is equivalent to the Mo with
automatic start symbol 0, or to the Mo with automatic start symbol 1 ,

When we start up the machine initially, we print some unpredictable character, specified
by the start state, that does not correspond to any output from Me, because Me never prints
before reading an input letter. But we allowed for this discrepancy in the definition of equiv
alence, so there is no problem. •

Together, Theorems 8 and 9 (pp. 1 56 and 1 57) allow us to say

Me = Mo

When we went from Mo to Me, we kept the same number of states and same number of
edges. When we go from Me to Mo, these can both increase drastically.

EXAMPLE

Let us start with the following Mealy machine :

h! l

We can begin the conversion process anywhere because the algorithm does not spec ify
the order of replacing states; so let us first consider the state %· Two edges come into thi s
state, one labeled a/O and one labeled h/ 1 . Therefore, we need two copies of th i s state :
one that prints a 0 (called q6) and one that wi l l print a I (cal led q1�) . Both these states
must be connected to q2 through an edge labeled a/ 1 and to q3 through an edge labeled
h/0. There is no loop at %· so these two c lones of % are not connected to each other. The
machine becomes

160 CHAPTER 8 Finite Automata with Output

h

hll

We must select the start state for the new machine, so let us arbitrarily select q�. Notice
that we now have two edges that cross. This sometimes happens, but aside from making a
messier picture, there is no real problem in understanding which edge goes where. Notice
that the edge from q 1 to %· which used to be labeled a/0, is now only labeled a because the
instruction to print the 0 is found in the state q'r/O. The same is true for the edge from q3 to
qg, which also loses its printing instruction.

State q 1 has only two edges coming into it: one from q2 labeled a/ I and a loop labeled
b/ I . So whenever we enter q 1 , we are always printing a I . We have no trouble here transfer
ring the print instructions from the edges into the state. The machine now looks like this:

h

h

What we have now is a partially converted machine or hybrid. We could run an input
string on this machine, and it would give us the same output as the original Me. The rules are
that if an edge says print, then print; if a state says print, then print. If not, do not .

Let us continue the conversion. State q3 is easy to handle. Two edges come into it, both
labeled h/0, so we change the state to q/O and simplify the edge labels to h alone :

Transducers as Models of Sequential Circuits 161

h

The only job left is to convert state qr It has some 0-printing edges entering it and some
I -printing edges (actually two of each, counting the loop). Therefore, we must split it into
two copies, q� and qi. Let the first print a 0 and the second print a l . The two copies wi l l be
connected by a b-edge going from qi to q� (to print a 0). There wil l also be a b-loop at q�.
The final machine is

h

•

'1f TRANSDUCERS AS MODELS OF SEQUENTIAL CIRCUITS

The student of computer science may already have met these machines in courses on com
puter logic or architecture . They are commonly used to describe the action of sequential cir
cuits that involve flip-flops and other feedback electronic devices for which the output of the
circuit is not only a function of the specific instantaneous inputs, but also a function of the
previous state of the system. The total amount of history of the input string that can be "re
membered" in a finite automaton is bounded by a function of the number of states the

162 CHAPTER 8 Finite Automata with Output

automaton has. Automata with input and output are sometimes called transducers because
of their connection to electronics.

EXAMPLE

Let us consider an example of a simple sequential circuit. The box labeled NAND means
"not and." Its output wire carries the complement of the Boolean AND of its input wires.
The output of the box labeled DELAY is the same as its previous input. It delays transmis
sion of the signal along the wire by one step (clock pulse). The DELAY is sometimes called
a D flip-flop. The AND and OR are as usual . Current in a wire is denoted by the value 1 , no
current by 0.

input A H output NANO i----- DELAY OR

OR

We identify four states based on whether or not there is current at points A and B in the
circuit:

% is A = 0,

q 1 is A = 0,

q2 is A = I ,
q3 i s A = 1 ,

B = O

B = l

B = O

B = l

The operation of this circuit is such that after an input of 0 or l , the state changes ac-
cording to the following rules:

New B = old A

New A = (input) NANO (old A OR old B)

Output = (input) OR (old B)

At a sequence of discrete pulses of a time clock a string of input is received, the state
changes, and output is generated.

Suppose we are in state % and we receive the input 0:

New B = old A = 0

New A = (input) NANO (old A OR old B)

= (0) NANO (0 OR 0)
= O NAND O
= l

Output = 0 OR 0 = 0

The new state is q2 (because new A = l , new B = 0).
If we are in state % and we receive the input l ,

New B = old A = 0

New A = l NAND (0 OR 0) = I

Output = l OR 0 = I

Transducers as Models of Sequential Circuits

The new state is q2 (because the new A = l and the new B = 0).
If we are in q1 and we receive the input 0:

The new state is q2•

New B = old A = 0
New A = 0 NAND (0 OR l) = l
Output = 0 OR l = l

If we are in q 1 and we receive the input l ,

The new state is %·

New B = old A = 0
New A = l NAND (0 OR 1) = 0
Output = l OR I = l

If we are in state q2 and we receive the input 0,

The new state is q3•

New B = old A = l
New A = 0 NAND (1 OR 0) = I
Output = 0 OR O= 0

If we are in q2 and we receive the input 1 ,

The new state is q 1

New B = old A = l
New A = I NAND (l OR 0) = 0
Output = 1 OR 0 = I

If we are in q3 and we receive the input 0,

The new state is q3

New B = old A = l
New A = 0 NAND (I OR 1) = 1
Output = 0 OR I = I

If we are in q3 and we receive the input I ,

The new state is q 1 •

Old State

New B = old A = I
New A = 1 NAND (I OR I) = 0
Output = l OR I = l

After Input 0
New State Ou!t!_ut

After Input 1
New State Ou!t!_ut

163

The action of this sequential feedback circuit is equivalent to the following Mealy ma
chine:

164 CHAPTER 8 Finite Automata with Output

{f

If we input two O's no matter which state we started from, we will get to state q3• From
there, the input string 0 1 1 0 1 1 will cause the output sequence 1 1 1 0 1 1 . •

Comparison Table for Automata

FA TG NFA NFA-A MOORE MEALY
Start states One One or more One One One One

Final states Some or Some or Some or Some or None None
none none none none

Edge labels Letters Words from Letters Letters from Letters ilo

from I I* from I I and A from I i from I
0 from r

Number of One for each Arbitrary Arbitrary Arbitrary One for One for
edges from letter in I each letter each
each state in l letter in I

Deterministic Yes No No No Yes Yes

Output No No No No Yes Yes

Page defined 53 79 1 35 1 46 1 50 1 52

PROBLEMS

1. Each of the following is a Moore machine with alphabet I = { a b } and output alpha-
bet f = { O I } . Given the transition and output tables, draw the machines.

(i) a h Output (iv) a h Output

% qi q2 % q3 q2 0

q i q i q i 0 qi q i % 0

q2 q i % q2 q2 q3 I

(i i) h Output q3 % qi 0 a
% % q2 0 (v) a h Output

qi q i % % q i q2 0

q2 q2 q i q i q2 q_1 0

(i i i) h Output q2 q3 q4 I a
q, q4 q4 0

% % qi q4 % % 0
qi % q2 0

q2 q2 q2 I

q3 q i q i 0

Problems 165

2. (i) Based on the table representation for Moore machines, how many different Mo 's
are there with four states?

(ii) How many different Moore machines are there with n states?

3. For each of the following Moore machines, construct the transition and output tables:

(i) a " · h

~
(i i) a . h

~
a . h

(ii i) a . h

(iv)

(v)

h

4. On each of the Moore machines in Problems l and 3 , run the input sequence aabab.
What are their respective outputs?

5. Suppose we define a Less machine to be a Moore machine that does not automatical ly
print the character of the start state. The first character i t prints is the character of the

166 CHAPTER 8 Finite Automata with Output

second state it enters. From then on, for every state it enters it prints a character, even
when it reenters the start state. In this way, the input string gets to have some say in
what the first character printed is going to be. Show that these Less machines are equiv
alent to Mealy machines in the direct sense, that is, for every Less machine there is a
Mealy machine that has the same output for every input string.

6. Mealy machines can also be defined by transition tables. The rows and the columns are
both labeled with the names of the states. The entry in the table is the label of the edge
(or edges) going from the row state to the column state (if there is no such edge, this en
try is blank) .

Construct the transition table for each of the four Mealy machines shown below:

(i) alO
hl l hlO

a l l

(i i) lllO

hl l

(i i i) lllO lllO

hlO

hl l

(iv) lllO a l l

alO

7. The example of the increment machine on p. 1 54 used three states to perform its job.
Show that two states are al l that are needed.

Problems 167

8. Convert the Moore machines in Problem 3 into Mealy machines.

9. Convert the Mealy machines in Problem 6 into Moore machines.

10. Draw a Mealy machine equivalent to the following sequential circuit:

input A output

11 . Construct a Mealy machine that produces an output string of solid I 's no matter what
the input string is.

12. (i) Design a machine to perform a parity check on the input string; that is, the output
string ends in 1 if the total number of 1 -bits in the input string is odd and 0 if the
total number of 1 -bits in the input string is even (the front part of the output string
is ignored).

(i i) In your answer to (i) , did you choose a Mealy or Moore machine and why was that
the right choice?

13. Given a bit string of length n, the shift-left-cyclic operation places the first bit at the end,
leaving the rest of the bits unchanged. For example, SLC (1 00 1 1 0) = 00 1 1 0 I .

(i) Build a Mealy machine with input and output alphabet (0 I $ } such that for any
bit string x when we input the n + 1 bits x$, we get as output the n + 1 bit string $
SLC(x).

(i i) Explain why this cannot be done without a $.

For Problems 14 through 1 6, let (Me)2 mean that given a Mealy machine, an input string is
processed and then the output string is immediately fed into the machine (as input) and re
processed. Only this second resultant output is considered the final output of (Me)2• If the fi
nal output string is the same as the original input string, we say that (Me)2 has an identity
property. Symbolically, we write (Me)2 = identity.

14. Let Me1 be the identity Mealy machine that looks like this:

010, 1/ 1

--43
Let Me2 be the l 's complement Mealy machine pictured below:

0/ 1 , 1/0

--43
Prove that both (Me 1)2 and (Me2)

2 have the identity property that the result of processing
any bit string is the original string again .

168 CHAPTER 8 Finite Automata with Output

15. Show that the following machine also has this identity property:

0/0, 111

16. Find yet another Mealy machine with this identity property.

For Problems 1 7 and 1 8 , similarly, given two Mealy machines, let (Me 1)(Me2) mean that an
input string is processed on Me1 and then the output string is immediately fed into Me2 (as
input) and reprocessed. Only this second resultant output is considered the final output of
(Me 1)(Me2) . If the final output string is the same as the original input string, we say that
(Me 1)(Me2) has the identity property, symbolical ly written (Me 1)(Me2) = identity.

Given two specific machines such that (Me 1)(Me2) reproduces the original bit string, we
aim to prove (in the following two problems) that (Me2)(Me 1) must necessari ly also have this
property.

17. Show that the 2n possible n-bit strings when fed into Me 1 give 2n different outputs.

18. Take the equality (Me 1)(Me2) = identity. Multiply both sides by Me1 to get
(Me)(Me2)(Me 1) = identity (Me 1) = Me 1 • This means that (Me2)(Me 1) takes all outputs
from Me1 and leaves them unchanged. Show that this observation completes the proof.

19. You are given these two Mealy machines:

010, 111 Oi l , 110

Mz

Notice that they are indeed different and show that each is the inverse machine of the other,
that means that
(Me1)(Me2) = identity = (Me2)(Me1)

20. Prove that there is no Mealy machine that reverses an input string, that is,
Me(s) = transpose(s) .

CHAPTER 9

1} CLOSURE PROPERTIES

Regular
Languages

A language that can be defined by a regular expression is called a regular language. In the
next chapter, we address the important question, "Are all languages regular?" The answer is
no. But before beginning to worry about how to prove this fact, we shall discuss in this chap
ter some of the properties of the class of all languages that are regular.

The information we already have about regular languages is summarized in the follow
ing theorem.

THEOREM 10

If L 1 and L2 are regular languages, then L 1 + L2, L 1L2, and Lj are also regular languages.

Remark

L 1 + L2 means the language of all words in either L 1 or L2• L 1L2 means the language of all
words formed by concatenating a word from L1 with a word from L2" Lj means strings that
are the concatenation of arbitrarily many factors from L 1 • The result stated in this theorem is
often expressed by saying: The set of regular languages is closed under union, concatena
tion, and Kleene closure .

PROOF 1 (by regular expressions)

If L1 and L2 are regular languages, there are regular expressions r1 and r2 that define these
languages. Then (r 1 + r2) is a regular expression that defines the language L1 + L2• The lan
guage L 1L2 can be defined by the regular expression r 1 r2• The language Lj can be defined by
the regular expression (r 1)* . Therefore, all three of these sets of words are definable by regu
lar expressions and so are themselves regu lar languages. •

The proof of Theorem 10 above uses the fact that L 1 and L2 must be definable by regular
expressions if they are regular languages. Regular languages can also be defined in terms of
machines, and as it so happens, machines can also be used to prove this theorem.

169

170 CHAPTER 9 Regular Languages

PROOF 2 (by machines)

Because L 1 and L2 are regular languages, there must be TGs that accept them. Let TG 1 ac
cept L 1 and T�2 accept L2• Let us further assume that TG1 and TG2 each have a unique start
state and a unique separate final state. If this is not the case originally, we can modify the
TGs so that it becomes true as in Theorem 6, Part 2 of the proof (p. 93).

The TG described below accepts the language L1 + L2:

I \
I \
I TG1 l
\ I

8
\ \ I I T<12 I

I I
\ I

d
Starting at the - of TG1 , our only option is to follow a path on TG1 • Starting at the - of

TG2, we can only follow a path on TG2• Starting at the new � state, we must choose to go to one
machine or the other; once there, we stay there. This machine proves that L 1 + L2 is regular.

The TG described below accepts the language L 1L2 :

where I is the former + of TG 1 and 2 is the former - of TG 2 •
The TG described below accepts the language L j:

. \ .\

Here, we begin at the - of TG 1 and trace a path to the + of TG 1 • At this point, we could
stop and accept the string or jump back, at no cost, to the - of TG 1 and run another segment
of the input string back down to + . We can repeat this process as often as we want. The edge
that goes directly from - to + allows us to accept the word A, but otherwise it has no effect
on the language accepted.

There is a small problem here if the START state has internal edges leading back to it .
In such a case, we must add a duplicate start state. All the TGs in this proof could be re

placed with FA-A 's that could then be converted into FAs by the algorithm of Theorem 7. •

Closure Properties

EXAMPLE

Let the alphabet be !, = I a b I and

and

L 1 = all words of two or more letters that begin and end with the same letter

L2 = all words that contain the substring aba

For these languages, we will use the following TGs and regular expressions :

II. h

II. n II. h

a ha

a . h

r , rz
a(a + b)*a + b(a + b)*b (a + b)*aba(a + b)*

The language L 1 + L2 is regular because it can be defined by the regular expression

[a(a + b)*a + b(a + b)*b] + [(a + b)*aba(a + b)*]

171

(for the purpose of clarity, we have employed brackets instead of nested parentheses) and is
accepted by the TG:

The language L 1L2 is regular because it can be defined by the regular expression

172 CHAPTER 9 Regular Languages

[a(a + b)*a + b(a + b)*b] [(a + b)*aba(a + b)*]

and is accepted by the TG

a . h

a. h

.\

a. h

a, h

The language l i is regular because it can be defined by the regular expression

[a(a + b)*a + b(a + b)*b] *

and is accepted by the TG

� COMPLEMENTS AND INTERSECTIONS

DEFINITION

•

If l is a language over the alphabet I, we define its complement, l ' , to be the language of
a l l strings of letters from I that are not words in L. •

Many authors use the bar notation L to denote the complement of the language l, but as
with most writing for computers, we wil l use the form more easily typed.

Complements and Intersections 173

EXAMPLE

If L is the language over the alphabet � = { a b I of all words that have a double a in them,
then L' is the language of all words that do not have a double a. •

It is important to specify the alphabet �. or else the complement of L might contain cat,
dog.frog, . . . , because these are definitely not strings in L.

Notice that the complement of the language L ' i s the language L. We could write this as

(L ') ' = L

This is a theorem from set theory that is not restricted only to languages.

THEOREM 11

I f L i s a regular language, then L ' i s also a regular language. I n other words, the set o f regu
lar languages is closed under complementation.

PROOF

If L is a regular language, we know from Kleene 's theorem that there is some FA that ac
cepts the language L. Some of the states of this FA are final states and, most likely, some are
not. Let us reverse the final status of each state; that is, if it was a final state, make it a nonfi
nal state, and if it was a nonfinal state, make it a final state. If an input string formerly ended
in a nonfinal state, it now ends in a final state and vice versa. This new machine we have
built accepts all input strings that were not accepted by the original FA (all the words in L ')
and rejects all the input strings that the FA used t o accept (the words i n L). Therefore, this
machine accepts exactly the language L ' . So, by Kleene 's theorem, L' is regular. •

Notice that even the final status of the - state gets reversed: - � ::!::: •

EXAMPLE

An FA that accepts only the strings aba and abb is shown below:

a . h

An FA that accepts all strings other than aba and abb is shown on the next page.

174 CHAPTER 9 Regular Languages

THEOREM 12

a . h

•

If L1 and L2 are regular languages, then L 1 n L2 is also a regular language. In other words,
the set of regular languages is closed under intersection.

PROOF

By DeMorgan 's law for sets of any kind (regular languages or not) :

L 1 n L2 = (L ; + L;) '

This is i l lustrated by the Venn diagrams below:

U- i + C2) =

This means that the language L1 n L2 consists of all words that are not in either L; or L� . Be
cause L1 and L2 are regular, then so are L; and L; . Since L; and L� are regular, so is
L; + L; . And because L; + L; is regular, then so is (L ; + L;) ' , which means L 1 n L2 is regular. •

This is a case of "the proof is quicker than the eye." When we start with two languages
L 1 and L2, which are known to be regular because they are defined by FAs, finding the FA for
L 1 n L2 is not as easy as the proof makes it seem. If L 1 and L2 are defined by regular expres
sions, finding L 1 n L2 can be even harder. However, all the algorithms that we need for these
constructions have already been developed.

EXAMPLE

Let us work out one example in complete detail . We begin with two languages over
� = { a b) .

L 1 = all strings with a double a
L2 = all strings with an even number of a 's

Complements and Intersections 175

These languages are not the same, because aaa is in L1 but not in L2 and aba is in L2 but not in L , .
They are both regular languages because they are defined by the following regular ex

pressions (among others):

r 1 = (a + b)*aa(a + b)*

r 2 = b*(ab*ab*)*

The regular expression r 2 i s somewhat new to us . A word in the language L2 can have
some b's in the front, but then whenever there is an a, it is balanced (after some b's) by an
other a. This gives us factors of the form (ab*ab*) . The word can have as many factors of
this form as it wants. It can end in an a or a b.

Because these two languages are regular, Kleene 's theorem says that they can also be
defined by FAs. The two smallest of these are

h a a . h

FA 1

h

h a h

FA2

a

In the first machine, we stay in the start state until we read our first a; then we move to
the middle state. This is our opportunity to find a double a. If we read another a from the in
put string while in the middle state, we move to the final state where we remain. If we miss
our chance and read a b, we go back to - . If we never get past the middle state, the word has
no double a and is rejected. We have seen this before.

The second machine switches from the left state to the right state or from the right
state to the left state every time i t reads an a. It ignores all b 's . If the string begins on the
left and ends on the left, i t must have made an even number of left/right switches. There
fore, the strings this machine accepts are exactly those in L2 • We have also seen this be
fore.

Now the first step in building the machine (and regular expression) for L 1 n L2 is to find
the machines that accept the complementary languages L; and L� . Although it is not neces
sary for the successful execution of the algorithm, the English description of these languages
is

L; = all strings that do not contain the substring aa

L� = all strings having an odd number of a 's

In the proof of the theorem where the complement of a regular language is regular, we
gave the algorithm for bui lding the machines that accept these languages. All that we have to
do is reverse what is a final state and what is not a final state. The machines for these lan
guages are then

176 CHAPTER 9 Regular Languages

b

b

a. b

b

a

Even if we are going to want both the regular expression and the FA for the intersection
language, we do not need to find the regular expressions that go with these two component
machines. However, it is good exercise and the algorithm for doing this was presented as
part of the proof of Kleene's theorem. Recall that we go through stages of transition graphs
with edges labeled by regular expressions. FA ; becomes

a + b

a

State 3 is part of no path from - to + , so it can be dropped. To bypass state 2, we need
to join the incoming a-edge with both outgoing edges (b-edge to 1 and A-edge to +) . When
we add the two loops, we get b + ab and the sum of the two edges from 1 to + i s a + A, so
the machine looks l ike this:

b + ab

A

The last step is to bypass state I . To do this , we concatenate the incoming A-label with the
loop label starred (b + ab)* concatenated with the outgoing (a + A)-label to produce one
edge from - to + with the regular expression for l ; .

r ; = (b + ab)*(a + A)

Let us now do the same thing for the language L; . FA; becomes

b b
a

.\ .\

a

Complements and Intersections 177

Let us start the simplification of this picture by eliminating state 2. There is one incom
ing edge, a loop, and two outgoing edges, so we need to replace them with only two edges:
The path 1 -2-2- 1 becomes a loop at I and the path 1 -2-2- + becomes an edge from 1 to + .
After bypassing state 2 and adding the two loop labels, we have

b+ab•a

We can now eliminate state 1 and we have

� �
which gives us the regular expression

r� = (b + ab*a)*ab*

This is one of several regular expressions that define the language of all words with an
odd number of a's. Another is

b*ab*(ab*ab*)*

which we get by adding the factor b*a in front of the regular expression for L 1 • This works
because words with an odd number of a 's can be interpreted as b*a in front of words with an
even number of a 's . The fact that these two different regular expressions define the same lan
guage is not obvious. The question, "How can we tel l when two regular expressions are
equal?", wil l be answered in Chapter 1 1 .

We now have regular expressions for L ; and L� , so we can write the regular expression
for L ; + L� . This wil l be

r ; + r� = (b + ab)*(A + a) + (b + ab*a)*ab*

We must now go in the other direction and make this regular expression into an FA so that
we can take its complement to get the FA that defines L1 n L2•

To build the FA that corresponds to a complicated regular expression i s no picnic, as we
remember from the proof of Kleene 's theorem, but it can be done. However not by anybody
as reasonable as ourselves. Clever people l ike us can always fi nd a better way.

An alternative approach is to make the machine for L; + L� directly from the machines
for L; and L� without resorting to regular expressions.

Let us label the states in the two machines for FA ; and FA� as shown:

b a a . b b a b

a

b a

where the start states are x1 and y 1 and the fi nal states are x i ' x2, and y2• The s ix possible
combination states are

z 1 = x 1 or y 1 start, final (words ending here are accepted in FA ;)
z2 = x1 or y2 final (words ending here are accepted on FA ; and FA�)

178 CHAPTER 9 Regular Languages

z3 = x2 or y1 final (words ending here are accepted on FA ;)
z4 = x2 or y2 final (words ending here are accepted on FA ; and FA�)
z5 = x3 or y 1 not final on either machine
z6 = x3 or Y2 final (words ending here are accepted on FA�)

The transition table for this machine i s

a b
+ · - " 1 Z4 z , + Zz Z3 22
+ z, 26 2 , + Z4 Z5 Zz

Z5 26 Z5 + 26 Z5 z6

And so the union machine can be pictured l ike this:

h

h

This is an FA that accepts the language L ; + L� . If we reverse the status of each state
from final to nonfinal and vice versa, we produce an FA for the language L 1 n L2• This is it :

h

Complements and Intersections 179

Bypassing z2 and z6 gives

Then bypassing z3 gives

b + ab*a

a+bb*a ab*a

b+abb*ab

So, the whole machine reduces to the regular expression

(b + abb*ab)*a(a + bb*aab*a)(b + ab*a)*

Even though we know this expression must be our answer because we know how it was de
rived, let us try to analyze it anyway to see whether we can understand what this language
means in some more intuitive sense.

As it stands, there are four factors (the second is just an a and the first and fourth are
starred). Every time we use one of the options from the two end factors, we incorporate an
even number of a 's into the word (either none or two) . The second factor gives us an odd
number of a 's (exactly one). The third factor gives us the option of taking either one or three
a 's. In total, the number of a's must be even. So, all the words in this language are in L2"

The second factor gives us an a, and then we must immediately concatenate this with
one of the choices from the third factor. If we choose the a, then we have formed a double a.
If we choose the other expression, bb*aab*a, then we have formed a double a in a different
way. By either choice, the words in this language all have a double a and are therefore in L 1 •

This means that all the words in the language of this regular expression are contained in
the language L 1 n L2• But are all the words in L 1 n L2 included in the language of this ex
pression?

The answer to this is yes. Let us look at any word that is in L 1 n L2" It has an even num
ber of a 's and a double a somewhere in it. There are two possibil ities to consider separately :

1. Before the first double a, there are an even number of a 's .

2. Before the first double a, there are an odd number of a's.

Words of type 1 come from the expression below:

(even number of a 's but not doubled)(first aa)(even number of a 's may be doubled)
= (b + abb*ab)*(aa)(b + ab*a)*
= type 1

Notice that the third factor defines the language L 1 and is a shorter expression than the r 1 we
used above.

Words of type 2 come from the expression

180 CHAPTER 9 Regular Languages

(odd number of not doubled a 's)(first aa)(odd number of a 's may be doubled)

Notice that the first factor must end in b, because none of its a 's are part of a double a.

[(b + abb*ab)*abb*]aa[b*a(b + ab*a)*]
= (b + abb*ab)*(a)(bb*aab*a)(b + ab*a)*
= type 2

Adding type 1 and type 2 together (and factoring out like terms using the distributive
law), we obtain the same expression we got from the algorithm. We now have two proofs
that this is indeed a regular expression for the language L I n lz.

This completes the calculation that was started on p. 1 74. •

The proofs of the last three theorems are a tour de force of technique. The first was
proved by regular expressions and TGs, the second by FAs, and the third by a Venn diagram.

We must confess now that the proof of the theorem that the intersection of two regular
languages is again a regular language was an evil pedagogical trick. The theorem is not re
ally as difficult as we made it seem. We chose the hard way to do things because it was a
good example of mathematical thinking: Reduce the problem to elements that have already
been solved.

This procedure is reminiscent of a famous story about a theoretical mathematician. Pro
fessor X is surprised one day to find his desk on fire. He grabs the extinguisher and douses
the flames. The next day, he looks up from his book to see that his wastepaper basket is on
fire. Quickly, he takes the basket and empties it onto his desk, which begins to bum. Having
thus reduced the problem to one he has already solved, he goes back to his reading. (The stu
dents who find this funny are probably the ones who have been setting the fires in his office.)

The following is a more direct proof that the intersection of two regular languages is
regular.

GOOD PROOF OF THEOREM 12

Let us recall the method we introduced to produce the union-machine FA3 that accepts any
string accepted by either FA 1 or FA2•

To prove this, we showed how to build a machine with states z 1 , z2, • • • of the form
x h. if the input is running on FA 1 or y rh· if the input is running on FA2• If either the somer mg some mg
x-state or the y-state was a final state, we made the z-state a final state.

Let us now build the exact same machine FA3, but let us change the designation of final
states. Let the z-state be a final state only if both the corresponding x-state and the corre
sponding y-state are final states. Now FA3 accepts only strings that reach final states simulta
neously on both machines.

The words in the language for FA3 are words in both the languages for FA 1 and FA2• This
is therefore a machine for the intersection language. •

Not only is the proof shorter but also the construction of the machine has fewer steps.

EXAMPLE

In the proof of Kleene 's theorem, we took the sum of the machine that accepts words with a
double a,

Complements and Intersections 181

a b
-

xi Xi Xi
Xi X3 XI

+ x3 X3 X3

and the machine that accepts all words in EVEN-EVEN,

a b

::':: y l Y3 Yi
Yi Y4 Y i
Y3 Y i Y4

Y4 Yi Y3

The resultant union-machine was

a b Old States

::':: z t Zi Z3 x1 or y 1
Zi Z4 Zs Xi or Y3

Z3 z6 Z 1 x 1 or Yi
+ z4 Z7 Zs x3 or y 1

Zs Z9 Z IO X i or Y4

;:6 Zs Z IO Xi or y4
+z7 Z4 Z 1 1 X3 or Y3
+ ;:s Z 1 1 Z4 X3 or Yi

Z9 Z 1 1 z , Xi or Yi
Z IO Z 1 i Z5 x1 or y3

+z , , Zs Z7 x3 or y4
+z 1 2 Z7 Z3 xi or y 1

The intersection machine is identical to this except that it has only one final state. In or
der for the z-state to be a final state, both the x- and y-states must be final states. If FA 1 and
FA2 have only one final state, then FA3 can have only one final state (if it can be reached at
al l) . The only final state in our FA3 is z4, which is x3 or y 1 •

This complicated machine i s pictured below:

a

b b b

182 CHAPTER 9 Regular Languages

The dashed lines are perfectly good edges, but they have to cross other edges. With a lit
tle imagination, we can see how this machine accepts all EVEN-EVEN with a double a. All
north- south changes are caused by h's, all east- west by a 's . To get into the inner four states
takes a double a. •

EXAMPLE

Let us rework the example in the first proof once again , this time by the quick method.
This is like the citizens of the fabled city of Chelm who on learning that they did not have
to carry all their logs down from the top of the mountain were so overjoyed that they car
ried them all back up again so that they could use the c lever work-saving method of
roll ing them down.

L 1 = all strings with a double a

h a a . h

a

h

L2 = all strings with an even number of a's

h II

II

The machine that simulates the same input running on both machines at once is

a

-z , Z4

Zz Z3
Z3 z6
Z4 Z5

+z5 z6
zb Z5

b

z ,
Zz
z ,
Zz
Z5
7 �6

Old States

x1 or y 1
x 1 or y2
x2 or y 1
x2 or y2
x3 or y 1
X3 or Y2

To be accepted by FA 1 , an input string must have its path end in x3 • To be accepted by
FA2, an input string must have its path end in y 1 • To be accepted by both machines at once,
an input string on the z-machine, starting its processing in z I ' must end its path in state z5 and
only z5•

Complements and Intersections 183

h

EXAMPLE

Let us work through one last example of intersection. Our two languages wil l be

L 1 = al l words that begin with an a

L2 = all words that end with an a

r 1 = a(a + b)*

r2 = (a + b)*a

The intersection language will be

L 1 n L2 = all words that begin and end with the letter a

The language is obviously regular because it can be defined by the regular express ion

a(a + b)*a + a

•

Note that the first term requires that the first and last a's be different, which is why we need
the second choice "+ a."

In this example, we were lucky enough to "understand" the languages, so we could
concoct a regular expression that we "understand" represents the intersection. In general,
this does not happen, so we follow the algorithm presented in the proof, which we can ex
ecute even without the benefit of understanding. (Although the normal quota of ins ights
per human is one per year, the daily adul t requirement of interpreting regular expressions
is even lower.)

For this, we must begin with FAs that define these languages:

184 CHAPTER 9 Regular Languages

b

a, b

a

As it turns out, even though the two regular expressions are very similar, the machines
are very different. There is a three-state version of FA2, but no two-state version of FA 1 •

We now build the transition table of the machine that runs its input strings on FA 1 and
FA2 simultaneously:

State Read a Read b

- ;: I xi or Y i Xz or Y2 x3 or Y i

22 x2 or y2 x2 or y2 .r2 or Y i

-3 X3 or Y 1 x3 or y2 x3 or Y i

Z4 X2 or Y 1 x2 or y2 .r2 or Y i

Z5 x, or y2 X3 or Y2
x3 or Y i

The machine looks l ike this :
a

h h

(/

(/

(/ (/

h h

If we are bui lding the machine for

L1 + L2 = all words in either L 1 or L2 or in both

we would put + 's at any state representing acceptance by L 1 or L2, that is, any state with an
x2 or a y2:

Problems

22 +
24 +
25 +

Because we are instead constructing the machine for

L I n L2 = all words in both L I and L2

we put a + only in the state that represents acceptance by both machines at once:

22 + = x2 or y2

185

Strings ending here are accepted if being run on FA 1 (by ending in x2) and if being run
on FA2 (by ending in y2). •

Do not be fooled by this sl ight confusion:

22 = x2 or y2 = accepted by FA 1 and FA2

The poor plus sign is peri lously overworked.

2 + 2

(a + b)*

1 + 1 = 2

I + I = 1 0

l + l = O

l + l = I

(sometimes read "2 and 2 are 4")

(a QI h repeated as often as we choose)

(a string of at least one a)
(all words in L 1 QI L2)

(z2 is a final state, the machine accepts input strings if they end here)

Arithmetic

Binary

Modulo 2
Boolean

If humans were not smarter than machines, they could never cope with the mess they
make of their own notation .

1} PROBLEMS

For each of the following pairs of regular languages, find a regular expression and an FA that
each define l 1 n L2:

L, Li
1. (a + b)*a b(a + b)*

2. (a + b)*a (a + b)*aa(a + b)*

3. (a + b)*a (a + b)*b

4. (a + b)b(a + b)* b(a + b)*

5. (a + b)b(a + b)* (a + b)*aa(a + b)*

6. (a + b)b(a + b)* (a + b)*b

7. (b + ab)*(a + A) (a + b)*aa(a + b)*

8. (b + ab)*(a + A) (b + ab*a)*ab*

9. (b + ab)*(a + A) (a + ba)*a

10. (ab*)* b(a + b)*

186 CHAPTER 9 Regular Languages

1 1. (ab*)*

12. (ab*)*

13. All strings of even length

= (aa + ab + ba + bb)*

14. Even-length strings

15. Even-length strings

16. Odd-length strings

17. Even-length strings

18. (i) Even-length strings
(i i) Even-length strings

19. (i) Even-length strings
(i i) Even-length strings

a(a + b)*

(a + b)*aa(a + b)*

b(a + b)*

(a + b)*aa(a + b)*

(b + ab)*(a + A)

a(a + b)*

EVEN-EVEN

Strings with an even number of a's
Strings with an odd number of a's

Strings with an odd number of a 's and an odd number of h's
Strings with an odd number of a 's and an even number of h's

20. We have seen that because the regular languages are closed under union and complement, they
must be closed under intersection. Find a collection of languages that is c losed under union and in
tersection but not under complement.

CHAPTER 10

Nonregular
Languages

ff THE PUMPING LEMMA

By using FAs and regular expressions, we have been able to define many languages. Al
though these languages have had many different structures, they took only a few basic
forms: languages with required substrings, languages that forbid some substrings, languages
that begin or end with certain strings, languages with certain even/odd properties, and so on.
We will now tum our attention to some new forms, such as the language PALINDROME of
Chapter 3 or the language PRIME of all words aP, where p is a prime number. In this chap
ter, we shall see that neither of these is a regular language. We can describe them in Engl ish,
but they cannot be defined by an FA. More powerful machines are needed to define them,
machines that we build in later chapters .

DEFINITION

A language that cannot be defined by a regular expression is cal led a nonregular language .
•

By Kleene 's theorem, a nonregular language can also not be accepted by any FA or TG.
All languages are either regular or nonregular; none are both.

Let us first consider a simple case. Let us define the language L.

l = I A ab aabh aaabbb aaaabhhh aaaaahhhhb . . . f

We could also define this language by the formula

2 3 4 5 . . . f

or for short

187

188 CHAPTER 10 Nonregular Languages

When the range of the abstract exponent n is unspecified, we mean to imply that it is 0, I , 2 ,
3,

We shall now show that this language is nonregular. Let us note , though, that it is a sub
set of many regular languages, such as a*b* , which, however, also includes such strings as
aab and bb that { anbn J does not.

Let us be very careful to note that { anb" I is not a regular expression. It involves the
symbols I } and n that are not in the alphabet of regular expressions. This is a language
defining expression that is not regular. Just because this is not a regular expression does not
mean that none exists; this we shall now prove.

Suppose on the contrary that this language were regular. Then there would have to exist
some FA that accepts it. Let us picture one of these FAs (there might be several) in our mind.
This FA might have many states. Let us say that it has 95 states, just for the sake of argu
ment. Yet, we know it accepts the word a96b96• The first 96 letters of this input string are all
a 's and they trace a path through this machine. The path cannot visit a new state with each
input letter read because there are only 95 states. Therefore, at some point the path returns to
a state that it has already visited. The first time it was in that state it left by the a-road. The
second time it is in that state it leaves by the a-road again. Even if it only returns once, we
say that the path contains a circuit in it. (A circuit is a loop that can be made of several
edges.) First, the path wanders up to the circuit and then it starts to loop around the circuit,
maybe many times. It cannot leave the circuit unti l a b is read from the input. Then the path
can take a different tum. In this hypothetical example, the path could make 30 loops around
a three-state circuit before the first b is read.

After the first b is read, the path goes off and does some other stuff following b-edges
and eventually winds up at a final state where the word a96b96 is accepted.

Let us, for the sake of argument again , say that the c ircuit that the a-edge path loops
around has seven states in it. The path enters the circuit, loops around it madly, and then
goes off on the b-l ine to a final state. What would happen to the input string a96+ 7 b96?
Just as in the case of the input string a96b96, this string would produce a path through the
machine that would walk up to the same c ircuit (reading only a 's) and begin to loop
around it in exactly the same way. However, the path for a96+ 7 b96 loops around this c ir
cuit one more time than the path for a96b96- precisely one extra time. Both paths, at ex
actly the same state in the circuit, begin to branch off on the b-road. Once on the b-road,
they both go the same 96 b-steps and arrive at the same final state . But this would mean
that the input string a 1 03b96 is accepted by this machine. However, that string i s not in the
language L = { anbn } .

This is a contradiction. We assumed that we were talking about an FA that accepts ex
actly the words in L and then we were able to prove that the same machine accepts some
word that is not in L. This contradiction means that the machine that accepts exactly the
words in L does not exist. In other words, L is nonregular.

Let us review what happened. We chose a word in L that was so large (had so many let
ters) that its path through the FA had to contain a circuit. Once we found that some path with
a circuit could reach a final state, we asked ourselves what happens to a path that is just l ike
the first one, but that loops around the circuit one extra time and then proceeds identical ly
through the machine. The new path also leads to the same final state, but it is generated by a
different input string-an input string not in the language L.

Perhaps the following picture can be of some help in understanding the idea behind this
discussion. Let the path for a9b9 be

The Pumping Lemma 189

We have not indicated all the edges in this FA, only those used in the path of the word
a9b9• State 6 is the only state for which we see both an a-exit edge and a b-exit edge.

In the path this input string takes to acceptance, we find two circuits: the a-circuit 3-4-

5-6 and the b-circuit 9- 1 0. Let us concentrate on the a-circuit. What would be the path
through this FA of the input string a 1 3b9? The path for a

1 3b9 would begin with the same nine
steps as the path for a9b9 ending after nine steps in state 6. The input string a9b9 now gives us
a b to read, which makes us go to state 7. However, the path for a 1 3b9 stil l has four more a
steps to take, which is one more time around the circuit, and then it follows the nine h-!>teps .

The path for a 1 3b9 is shown below:

Let us return to our first consideration.
With the assumptions we made above (that there were 95 states and that the circuit was

7 states long), we could also say that a' 1 °h96, a' 1 7h96, a 1 24b96, • • • are also accepted by th is
machine.

They can all be written in this form:

a96(a 7)"'h96

where m is any integer 0, l , 2, 3 , If m is 0, the path through this machine is the path
for the word a96h96• If m is l , the path looks the same, but it loops the circuit one more time.
If m = 2, the path loops the circuit two more times. In general , a96(a7)"'h96 loops the circuit

190 CHAPTER 10 Nonregular Languages

exactly m more times. After doing this looping, it gets off the circuit at exactly the same
place a96b96 does and proceeds along exactly the same route to the final state. All these
words, though not in L, must be accepted.

Suppose that we had considered a different machine to accept the language L, perhaps a
machine that has 732 states. When we input the word a733b733 , the path that the a 's take must
contain a circuit. We choose the word a733b733 to be efficient. The word a9999b9999 also must
loop around a circuit in its a-part of the path. Suppose the circuit that the a-part follows has
1 0 1 states. Then a733+ 1 0 1b733 would also have to be accepted by this machine, because its
path is the same in every detail except that it loops the circuit one more time. This second
machine must also accept some strings that are not in L:

aB34b733 a935b733 a I036b733 . . .

= a733(a ' ° 'rb733 for m = I 2 3 . .

For each different machine we suggest to define L, there is a different counterexample
proving that i t accepts more than just the language L.

There are machines that include L in the language they accept, but for each of them
there are infinitely many extra words they must also accept.

All in all, we can definitely conclude that there is no FA that accepts all the strings in L
and only the strings in L. Therefore, L is nonregular.

The reason why we cannot find an FA that accepts L is not because we are stupid, but
because none can exist.

The principle we have been using to discuss the language L above can be general ized so
that it applies to consideration of other languages. It is a tool that enables us to prove that
certain other languages are also nonregular. We shall now present the generalization of this
idea, called the pumping lemma for regular languages, which was discovered by Yehoshua
Bar-Hillel, Micha A. Perles, and Eliahu Shamir in 1 96 1 .

The name of this theorem i s interesting. I t i s called "pumping" because w e pump more
stuff into the middle of the word, swell ing it up without changing the front and the back part
of the string. It is called a "lemma" because, although it is a theorem, its main importance is
as a tool in proving other results of more direct interest; namely, it will help us prove that
certain specific languages are nonregular.

THEOREM 13

Let L be any regular language that has infinitely many words. Then there exist some three
strings x, y, and z (where y is not the null string) such that all the strings of the form

,i;y"z for n = l 2 3 . . .

are words in L.

PROOF

If L is a regular language, then there is an FA that accepts exactly the words in L. Let us fo
cus on one such machine. Like all FAs, this machine has only finitely many states. But L has
infinitely many words in it. This means that there are arbitrarily long words in L. (If there
were some maximum on the length of all the words in L, then L could have only finitely
many words in total.)

Let w be some word in l that has more letters in it than there are states in the machine

The Pumping Lemma 191

we are considering. When this word generates a path through the machine, the path cannot
visit a new state for each letter because there are more letters than states. Therefore, it must
at some point revisit a state that it has been to before. Let us break the word w up into three
parts:

Part I Call part x all the letters of w starting at the beginning that lead up to the first
state that is revisited. Notice that x may be the null string if the path for w revis
its the start state as its first revisit.

Part 2 Starting at the letter after the substring x, let y denote the substring of w that
travels around the c ircuit coming back to the same state the c ircuit began with.
Because there must be a c ircuit, y cannot be the null string. y contains the letters
of w for exactly one loop around this circuit.

Part 3 Let z be the rest of w starting with the letter after the substring y and going to
the end of the string w. This z could be null . The path for z could also possibly
loop around the y-circuit or any other. What z does is arbitrary.

Clearly, from the definition of these three substrings

w = xyz

and w is accepted by this machine.
What is the path through this machine of the i nput string

xyyz?

It follows the path for w in the first part x and leads up to the beginning of the place where w
looped around a circuit. Then l ike w, it inputs the string y, which causes the machine to loop
back to this same state again. Then, again l ike w, it inputs a string y, which causes the ma
chine to loop back to this same state yet another time. Then, just like w, it proceeds along the
path dictated by the input string z and so ends on the same final state that w did. This means
that xyyz is accepted by this machine, and therefore it must be in the language l.

If we traced the paths for xyyz, xyyyz, and xyyyyyyyyyyyyz, they would all be the same.
Proceed up to the circuit. Loop around the c ircuit some number of times. Then proceed to
the final state. All these must be accepted by the machine and therefore are all in the lan
guage l. In fact, L must contain all strings of the form:

xynz for n = I 2 3 . . .

as the theorem claims.
Perhaps these pictures can be helpful in understanding the argument above:

Notice that in this theorem it does not matter whether there is another c ircuit traced in the z
part or not. All we need to do is find one circuit, and then we keep pumping it for all it is worth.

192 CHAPTER 10 Nonregular Languages

Notice also that we did not assume that the x-, y-, or z-parts were repetitions of the same letter,
as was the case in our discussion of { d'bn } . They could have been any arbitrary strings. •

EXAMPLE

Let us i l lustrate the action of the pumping lemma on a concrete example of a regular lan
guage. The machine below accepts an infinite language and has only six states:

a

h

Any word with six or more letters must correspond to a path that includes a circuit.
Some words with fewer than six letters correspond to paths with circuits, such as baaa. The
word we wil l consider in detail is

w = bbbababa

which has more than six letters and therefore includes a circuit. The path that this word gen
erates through the FA can be decomposed into three stages.

The first part, the x-part, goes from the - state up to the first circuit. This is only one
edge and corresponds to the letter b alone. The second stage is the circuit around states 2, 3,
and 5 . This corresponds to edges labeled b, b , and a. We therefore say that the substring hha
is the y-part of the word w. After going around the circuit, the path proceeds to states 3, 6, 3,
and 6. This corresponds to the substring baba of w, which constitutes the z-part:

w = b bba baba
x y z

Now let us ask what would happen to the input string xyyz.

x y y z = b bba bba baba

This is what happens !

Path for xyz Path for xyyz

The Pumping Lemma 193

The same thing happens with xyyyz, xyyyyz, and in general for xynz . This is all that the
pumping lemma says. •

EXAMPLE

Suppose for a moment that we did not already have a discussion of the language

L = { a"b" for n = 0 2 3 . . . }

Let us see how we could apply the pumping lemma directly to this case.
The pumping lemma says that there must be strings x, y, and z such that all words of the

form x�z are in L. Is this possible? A typical word of L looks l ike

aaa . . . aaaabbbb . . . bbb

How do we break this into three pieces conformable to the roles x, y, and z? If the middle sec
tion y is going to be made entirely of a 's, then when we pump it to xyyz, the word will have
more a's than h's, which is not allowed in L. S imilarly, if the middle part, y, is composed of only
b's, then the word ..lyyz will have more b 's than a's. The solution is that the y-part must have
some positive number of a 's and some positive number of h's. This would mean that y contains
the substring ab. Then xyyz would have two copies of the substring ab. But every word in L con
tains the substring ab exactly once. Therefore, xyyz cannot be a word in L. This proves that the
pumping lemma cannot apply to L and therefore L is not regular. •

EXAMPLE

Once we have shown that the language { a"bn I is nonregular, we can show that the language
EQUAL, of all words with the same total number of a's and b's, is also nonregular. (Note
that the numbers of a 's and h's do not have to be even, they just have to be the same.)

EQUAL = {A ab ha aabb abab ahba baab baba bbaa aaabbb . . . I

The language { anbn I is the intersection of all words defined by the regular expression a*b*
and the language EQUAL:

{ anbn I = a*b* n EQUAL

Now if EQUAL were a regular language, then { a"h" I would be the intersection of two regu
lar languages and by Theorem 1 2 on p. 1 74 it would have to be regular itself. Because
{ a"h" I is not regular, EQUAL cannot be. •

For the example { a"b" I . and in most common instances, we do not need the full force of
the pumping lemma as stated. It is often just as decisive to say that w can be decomposed
into xyz , where xyyz is also in the language . The fact that xynz is in the language for all n > 2
is also interesting and wil l be quite useful when we discuss whether certain languages are fi
nite or infinite, but often n = 2 i s adequate to show that a given language is nonregular.

EXAMPLE

Consider the language a"ba" = { h aha aahaa . . . 1 . If this language were regular, then
there would exist three strings x, y, and z such that xyz and xyyz were both words in th is lan
guage. We can show that this is impossible:

194 CHAPTER 10 Nonregular Languages

Observation 1 : If the y string contained the b, then xyyz would contain two h 's, which
no word in this l anguage can have.

Observation 2: If the y string is all a 's , then the b in the middle of the word xyz is in
the x-side or z-side. In either case, xyyz has increased the number of a 's either in front of
the b or after the b, but not both.

Conclusion 1 : Therefore, xyyz does not have its b in the middle and is not in the form
an ban .

Conclusion 2 : This language cannot be pumped and is therefore not regular. •

EXAMPLE

Consider the language anbnabn+
1

for n = 1 , 2, 3 The first two words of this infinite
language are ababb and aabbabbb. We are going to show that this language too is not regu
lar by showing that if xyz is in this language for any three strings x, y, and z , then xyyz is not
in this language:

Observation 1 : For every word in this language, if we know the total number of a 's , we
can calculate the exact number of b 's (twice the total number of a 's - I) . And con
versely, if we know the total number of b 's, we can uniquely calculate the number of a 's
(add I and divide by 2). So, no two different words have the same number of a 's or b 's.

Observation 2: All words in this language have exactly two substrings equal to ab and
one equal to ba.

Observation 3: If xyz and xyyz are both in this language, then y cannot contain either
the substring ab or the substring ba because then xyyz would have too many.

Conclusion 1 : Because y cannot be A, it must be a solid clump of a 's or a solid clump
of b 's; any mixture contains the substrings forbidden to it in observation 3 .

Conclusion 2 : If y i s solid a 's, then xyz and xyyz are different words with the same total
h's, v iolating observation 1 . If y is solid h's, then xyz and xyyz are different words with
the same number of a's violating observation 1 .

Conclusion 3 . It is impossible for both xyz and xyyz to be in this language for any
strings x, y, and z. Therefore, the language is unpumpable and not regu lar. •

The proof that we gave of the pumping lemma actually proved more than was explicitly
stated in the lemma. By the method of proof that we used, we showed additionally that the
string x and the string y together do not have any more letters than the machine in question
has states. This is because as we proceed through x and y, we visit our first repeated state at
the end of y; before that, all the states were entered only once each.

The same argument that proved Theorem 1 3 (see p. 1 90) proves the stronger theorem
below.

THEOREM 14

Let L be an infinite language accepted by a finite automaton with N states. Then for all
words w in L that have more than N letters, there are strings x, y, and z, where y is not null
and length(x) + length(y) does not exceed N such that

w = xyz

and all strings of the form

The Pumping Lemma 195

xy
"
z (for n = 1 2 3 . . .)

are in l. •

We put the end-of-proof symbol • right after the statement of the theorem to indicate
that we have already provided a proof of this result.

The purpose of stressing the question of length is illustrated by our next example.

EXAMPLE

We shall show that the language PALINDROME is nonregular. We cannot use the first ver
sion of the pumping lemma to do this because the strings

x = a, y = h, z = a

satisfy the lemma and do not contradict the language. All words of the form

are in PALINDROME.
However, let us consider one of the FAs that might accept this language. Let us say that

the machine we have in mind has 77 states. Now the palindrome

w = asobaso

must be accepted by this machine because it is a palindrome. Because it has more letters
than the machine has states, we can break w into the three parts: x, y, and z. But because the
length of x and y must be in total 77 or less, they must both be made of solid a 's, because the
first 77 letters of w are all a 's . That means when we form the word xyyz , we are adding more
a 's to the front of w. But we are not adding more a 's to the back of w because all the rear a 's
are in the z-part, which stays fixed at 80 a's. This means that the string xyyz is not a pal in
drome because it will be of the form

amore than 80 ha80

But the second version of the pumping lemma says that PALINDROME has to include this
string. Therefore, the second version does not apply to the language PALINDROME, which
means that PALINDROME is nonregular.

Obviously, this demonstration did not really rely on the number of states in the hypo
thetical machine being 77. Some people think that this argument would be more mathemati
cally sound if we called the number of states m. This is sil ly. •

EXAMPLE

Let us consider the language

PRIME = { aP where p is a prime l
= { aa aaa aaaaa aaaaaaa . . . }

Is PRIME a regular language? If it is, then there is some FA that accepts exactly these
words. Let us keep one such automaton in mind. Let us suppose, for the sake of argument,
that it has 345 states. Let us choose a prime number bigger than 345 -for example, 347 .
Then a

347 can be broken into parts x, y, and z such that xy
"
z is in PRIME for any value of n.

The parts x, y, and z are al l just strings of a's. Let us take the value of n = 348. By the pump
ing lemma, the word xy

348
z must be in PRIME. Now

196 CHAPTER 10 Nonregular Languages

xy348z = xyzy347

We can write this because the factors x, y, and z are all solid clumps of a 's , and it does not
matter in what order we concatenate them. All that matters is how many a's we end up with.

Let us write

xyzy347 = a347y347

This is because x, y, and z came originally from breaking up a347 into three parts. We also
know that y is some (nonempty) string of a's. Let us say that y = am for some integer m that
we do not know.

a341y341 = a347(am)341

= a347+ 347m

= a347(m+ l)

These operations are all standard algebraic manipulations.
What we have arrived at is that there is an element in PRIME that is of the fonn a to the

power 347(m + 1) . Now because m � 0, we know that 347(m + I) is not a prime number.
But this is a contradiction, because all the strings in PRIME are of the fonn ar, where the
exponent is a prime number. This contradiction arose from the assumption that PRIME was
a regular language. Therefore, PRIME is nonregular. •

1f THE MYHILL-NERODE THEOREM

The pumping lemma is negative in its application. It is used exclusively to show that certain
languages are not regular because they cannot meet its requirements. We shall now introduce
another method for saying that a given language might be nonregular but has a constructive
aspect to it.

If we consider a particular FA, then each state, whether a final state or not, can be
thought of as creating a society of a certain class of strings. Here, we are talking about
strings, not only accepted words. Two strings can be said to both belong to the society of
state x4 if they both trace a path from start to x4 even if the paths are very different. S imilarly,
every state defines a society. Because every one of the infinitely many possible input strings
ends up at one of the finitely many states, some of these societies have infinite membership.

If string x and string y are in the same society, then for all other strings z, either both x.:
and yz are accepted by the machine or both are rejected. This simply depends on whether the
string z traces a path from the mutual state of x and y to a final state.

Now let us consider this from the aspect of a regular language without reference to any
one of the many FAs that recognize it.

THEOREM 15

Given a language l, we shall say that any two strings x and y are in the same class if for all
possible strings z either both xz and yz are in l or both are not.

1. The language L divides the set of all possible strings into separate (mutually exclusive)
classes.

2. If L is regular, the number of classes L creates is finite.

3. If the number of classes L creates is finite, then L is regular.

The Myhil l-Nerode Theorem 197

PROOF

What needs to be proven in Part l is that the description we gave of dividing into classes is
not self-contradicting. An example of a bad way of dividing into classes is this: Say any two
students at college are in the same c lass if they have taken a course together. A and B may
have taken history together, B and C may have taken geography together, but A and C never
took a class together. Then A, B, and C are not all in the same class. This cannot happen ac
cording to our definition of classes. If both AZ and BZ are always in L or not and if both BZ
and CZ are always in L or not, then A, B, and C must all be in the same class. If S is in a
class with X and S is also in a class with Y, then by the reasoning above X and Y must be in
the same class. Therefore, S cannot be in two different classes. No string is in two different
classes and by definition every string is in some class. Therefore, every string is in exactly
one class.

To prove Part 2, we know that because L is regular, there is some FA that accepts L, and
its finitely many states create a finite division of all strings into finitely many societies as de
scribed above. We still use the word society instead of classes since these societies are not
actually identical to what we have defined as classes in the theorem. The problem is that two
different states might define societies that are actually the same class. In the example below:

b

both states l and 2 have the property that any word in them when followed by string z will
be accepted if z contains an a and rejected otherwise. These two societies are in the same
class. It is true that the societies defined by the states in this machine are either separate
classes in the sense of this theorem or can be grouped to form classes. In either case, the
number of classes is not more than the number of societies and that is finite.

It should come as no surprise to us that the number of c lasses was not exactly the num
ber of societies because the number of classes language L creates is dependent on L alone,
whereas the number of societies depends on which FA we choose to recognize L.

We are going to prove Part 3 by what appears to be a constructive algorithm, but in fact
it is not. This is because we will tum the set of finitely many classes that L creates into an
FA, with each state representing one class. However, to be truly constructive, we have to
know how to go from "L creates finitely many classes" to "these are the classes ." This we
have no idea how to do. What we will do is go from "these are the classes" to "here is the
FA."

Let the finitely many classes be C 1 , C2, • • • , where C 1 is the class containing A. We
will tum this collection of classes into an FA by showing how to draw the edges between
them and how to assign start and final states.

The start state must be C 1 because A begins and ends in the start state. Now we make
another observation: If a class contains one word of L, then all the strings in the class are
words in L. To prove this, let w be in c lass C7 and a word in L, and let s be any other string in

198 CHAPTER 10 Nonregular Languages

the class. Then letting z = A, we know that both wA and sA are either in l or not. Because
wA is in l, then so is sA = s. Therefore, some of the classes are completely contained in l
and some have no l words. Label all those that are subsets of l with + 's. We should also
note that all words in l are in the final states.

If x and y are two strings in class C4, say, then by definition for all strings z, both xz and
yz are in l or not. Also, both xa and ya must be in the same class because for all strings z,
both xaz and yaz must be in l or not because az can be considered a tail added to x and y in
class C4. If we take every string in C4 and add an a on the right, the resultant strings would
therefore all be in the same class. Draw an a-edge from C4 to this class. Similarly, draw all
the a-edges and all the b-edges.

There is no guarantee that the picture which results is connected or has only enterable
states, but it is an FA. Also, any string that can trace a path from the start to a final state must
be in l and every string in l must end in a final state. Therefore, if a language creates a finite
set of classes by the definition of the theorem, it is a regular language. •

Myhill we have met before; Anil Nerode published this theorem in 1 958 .
First, we shall illustrate Part 3 with some examples. There are not many languages l for

which we know what classes they create, but there are some.

EXAMPLE

Let us consider the language of all words that end in a. At first, it may seem that there is
only one class here because for all x and y, both xz and yz end in a or not, depending on z
alone. But this overlooks the fact that if z is A, then xz and yz are in the same class, depend
ing on whether x and y end in a themselves. There are therefore two classes :

The FA is

as we have seen before.

EXAMPLE

C 1 = all strings that end in a, a final state

c2 = all strings that do not, the start state

b
a a

b

Let l be the language of all strings that contain a double a. There are three classes :

C 1 = strings without aa that end in a

C2 = strings without aa that end in b or A
C3 = strings with aa, the final state

•

States I and 2 are different because adding an a to any string in C1 puts it in l, but it will not do
the same for a string in C2• Also, C3 is different because adding z = A to the strings in c, will
put them in l, while it will not for strings in C 1 or C 2• As we have seen before, the machine

·
is

The Myhil l- Nerode Theorem 199

b
a a, b

a

b
•

EXAMPLE

Working the algorithms of Theorem 1 5 (see p. 96) on the language EVEN-EVEN creates
four obvious states:

C1 = EVEN-EVEN

c2 = even a 's, odd h 's

C3 = odd a 's, even h 's

C4 = odd a's, odd h's

Clearly, if x and y are in any one class, then both xz and yz are in L or not, depending on how
many a 's and h 's z alone has. The FA is exactly the same as we have had before. •

For the purpose of this chapter, it was actually Part 2 that we were the most interested
in, because it offers us a technique, different from the pumping lemma, for proving that cer
tain languages are nonregular. If we can show that a given language L creates infinitely many
classes, then we know L is nonregu lar.

EXAMPLE

To show that the language anbn is nonregular, we need only observe that the strings a, aa,
aaa, aaaa, . . . are all in different classes because for each m , only am is turned into a word
in L by z = bm. •

EXAMPLE

To show that anba" is nonregular, we note that the strings ab, aah, aaab, . . . are all in dif
ferent classes because for each of them, one value of z = a"' wil l produce a word in L and
leave the others out of L. •

EXAMPLE

EQUAL is nonregular because, for each of the strings a, aa, aaa, aaaa,
of z = h"' wil l put it alone in EQUAL.

EXAMPLE

, some value
•

PALINDROME is nonregular because ah, aab, aaab, . . . are all in different classes. For
each of these, one value of z = a"' wil l create a PALINDROME when added to it but to no
other. •

200 CHAPTER 10 Nonregular Languages

EXAMPLE

Let us define the language DOUBLEWORD to be the collection of all words that are of the
fonn SS, where S is any string of a 's and b's. DOUBLEWORD starts out with these words: A
aa bb aabb abab baba bbbb aaaaaa Let us use Theorem 1 5 to prove that the
language DOUBLEWORD is nonregular. It is not so obvious when two strings are in different
classes since strings can tum into doublewords in various ways. For example, x = bb and
y = bbbb can each be turned into words in DOUBLEWORD using z = x = bb. However, the
following infinite set of strings is easy to show as belonging to different classes: ah aah
aaab aaaab For any two strings x and y we choose from the set above, we let z = x
and find that xz is in DOUBLEWORD but not yz. Therefore, DOUBLEWORD creates infinitely
many classes (at least one for each string above and maybe more) and is therefore nonregular. •

1} QUOTIENT LANGUAGES

Now that we have proven there are such things as nonregular languages, we have more re
spect for the theorem stating that the product of any two regular languages is always regular.
We are also ready to approach the question of whether there is a corresponding division the
orem; that is, can we prove that the quotient of two regular languages is regular?

There is a problem here regarding what it means to say that the language Q is the quo
tient of the two regular languages P and R. If we write

Q = RIP

whenever it is true that

PQ = R

then, in some cases, the symbol RIP does not detennine a unique language. For example, if
P, Q, and R are all the language a*, then it is true that

PQ = R

so therefore we may write

a* = a*/a*

On the other hand, if P and R are both the language a* , while Q is the language of the one
word { A I . then PQ = R is still true, which means we also have to write

{ A } = a*/a*

Similarly, we can show that

{ A a aaaa aaaaaaaa) = a*/a*

There are infinitely many choices for the meaning of RIQ even in this simple case of the one
letter alphabet.

What happens if we do not use the division symbol itself as an operation to produce a
unique language, but instead attempt to get around the ambiguity by proving that all these lan
guages that could be interpreted as R/Q are regular? We could then make the following claim.

PSEUDOTHEOREM

If for three languages P, Q, and R we have

Quotient Languages 201

PQ = R

and P and R are regular, then Q must also be regular.
The reason that we have cal led this a pseudotheorem is that it is not true.

DISPROOF

Let us assume, for a moment, that this claim is true. Now let P be the language defined by
the regular expression a* and let Q be the product of I anbn I and b* where we let n start from
0, which will allow the word A in the language. Now let R be the language defined by a*b*.
In this case, it is true that

PQ = a*[{ anbn } b*]
= [a*b* = R

Because both P and R are regular, if the preceding claim is true, then Q must be regular. Now
all we have to do to disprove the claim is show that this Q is not regular. This is not hard to do.

The language Q is the set of all strings of the form a'b" where x :5 y. If Q were regular,
it could be accepted by a certain FA with some fixed number of states; let us call it N. The
word cl'� is accepted by this machine in a path that contains a loop of solid a 's . Cycling
around this loop one extra time will create a path through the machine that leads to accep
tance and corresponds to a word with more than N a 's and only N b's. This word should not
be in Q; therefore, no FA that can be imagined can accept exactly the language Q. So, Q is
not regular, and the claim in the pseudotheorem is false.

Quod Erat Demol ition

We do not need to abandon all hope of finding a result simi lar to a division theorem if
we concentrate on the P factor and not the Q factor in the product. Let us imagine that we
have a regular language R and some of its words end in a string that is a word in the lan
guage Q. If we focus our attention only on these words of R (the ones that end in a Q-word)
and we define the language P to be the set of front-halves of these words, we can indeed
prove that P is regular. Let us call these front-halves the prefixes that can be attached to some
words in Q to obtain some words in R.

Let us state this cautiously.

DEFINITION

If R and Q are languages, then the language "the prefixes of Q in R," denoted by the symbol ism

Pref(Q in R)

is the set of all strings of letters that can be concatenated to the front of some word in Q to
produce some word in R.

We may write this as

EXAMPLE

Pref(Q in R) = the set of al l strings p such that there exist words
q in Q and w in R such that pq = w

If Q is the language

{ aa ahaaabb bbaaaaa bbbbbbbbhh l

•

202 CHAPTER 10 Nonregular Languages

and R is the language

{ b bbbb bbbaaa bbbaaaaa l

then the language of the prefixes of Q in R is

Pref(Q in R) = { b bbba bbbaaa I

because the first word in Q can be made into a word in R in two ways and the third word in
Q can be made into a word in R in one way, whereas the other words in Q cannot be made .
into words in R by the addition of any possible prefixes. •

We should note that A is only a word in the prefix language if Q and R have some words
in common. It is also possible that no word of Q can be made into a word of R by the addi
tion of a prefix. In this case, we say that the prefix language is empty, Pref(Q in R) = Q>.

EXAMPLE

If Q = ah*a and R = (ha)*, then the only word in Q that can be made into a word in R is
aba because no word in R has a double letter and all other words in Q have. Also, aba can be
made into a word in R by prefixing it with any word of the form (ha)*h. Therefore,

Pref[ah*a in (ha)*] = (ha)*h •

We can now prove a version of a division theorem that is at the same time less and more
ambitious than we originally intended. It is disappointing in the sense that this prefix lan
guage does not actually give us a factorization of the language R into P times Q. In general,

Pref(Q in R)Q =f'. R

because many words of R may not be formed from words in Q by the addition of prefixes,
and many words in Q may have nothing whatsoever to do with being parts of words in R. On
the other hand, what we can show is that the prefix language is regular whenever R is regular
even if Q is not regular.

THEOREM 16

If R is a regular language and Q is any language whatsoever, then the language

P = Pref(Q in R)

is regular.

PROOF

Because R is a regular language, let us fix in our minds some FA that accepts R. This ma
chine has one start state and possibly several final states. Now let s be any state in this ma
chine (possibly the start or final state) . Let us now process all the words from the language Q
on this machine beginning in state s as if it actually were the start state. Either some word
(or words) from the language Q wil l lead to a final state when traced through the FA or else
no words from Q will end up in a final state. If any word in Q can begin in s and trace to a fi
nal state, paint the state s blue.

Let us make the same determination for all the states in the FA. If they end up blue, then
some word from Q can start there and proceed to a final state. If they are not blue, then no

Problems 203

word from Q can start there and go to a final state. What results is an FA with one start state
and some or no blue states.

Let us now build a new machine from the one with which we started. Let this new ma
chine have exactly the same states and edges as the original FA that accepts R. Let this
new FA have the same state labeled start as in the original FA, but let the final states be all
the blue states of the old FA and only those, no matter what their final status was in the
original machine. We shall now show that the new FA accepts exactly the language
P = Pref(Q in R).

To prove this, we have to observe two things: (1) Every word in P is accepted by this
machine. (2) Every word accepted by this machine is in the language P.

If w is any word accepted by this machine, then when we trace its processing, beginning
at the start state, the path of w will end in a final state, which on the original FA corresponds
to a state painted blue. This state is blue because some word from Q (call it q) can start there
and run to what was the final state on the original FA. This means that if the string wq was
run on the original FA, it would be accepted, which in tum means that wq is in R and w is in
P. So, we have shown that every word accepted by the machine is in P.

We now have to show that every word in P is, in fact, accepted by this machine. Let p be
any word in P. Then by the definition there is a word q in Q and a word w in R, such that
pq = w. This means that the string pq when run on the original FA leads from start to a final
state. Let us trace this path and note where the processing of the p-part ends and the process
ing of the q-part begins. This will be at a state from which q runs to a final state, and it is
therefore blue. This means that on the original machine the p-part traces from start to blue.
Therefore, on the new FA the p-part traces from start to a final state. Thus, p is accepted by
the new FA.

The language of this new machine is P, the whole P, and nothing but the P. Therefore, P
is regular. •

We should take particular note of the fact that although this proof looks l ike a proof by
constructive algorithm, it is not that at all . We glibly tossed in the phrase "process all the
words from the language Q on this machine starting in state s" This is not easy to do
if Q is an infinite language. This is indeed a weakness in practical terms, but it is not a flaw
that invalidates the proof. It is still very much true that for each state s, either there is some
word in Q that runs from there to a final state or else there is not. Therefore, every state of

the machine is either definitely blue or definitely not blue. The trouble is that we have not
provided a constructive method for deciding which. What we have proven is that there exists
an FA that accepts the language Pref(Q in R) without having shown how to build one. This
method of proof is called a nonconstructive existence proof, and as such, it is just like the
proof of Part 3 of the My hill -Nerode theorem.

:{f PROBLEMS

1. Use the pumping lemma to show that each of these languages is nonregular:

(i) { anbn+ 1 } = { abb aabbb aaahbbb . . . }
(i i) { anbnan I = { aha aabbaa aaabbbaaa aaaabbhbaaaa . . . }
(i i i) { a"b2" I = { ahb aabbbb aaabhbbbb . . . }
(iv) { a"ba" I = { aha aabaa aaabaaa . . . }
(v) { a"bnam where n = 0, 1 , 2, . . . and m = 0, 1 , 2, . . . } = { A a aa ab aaa

aha . . . }

2. Prove that the five languages in Problem I are nonregular using the Myhil l - Nerode
theorem.

204 CHAPTER 10 Nonregular Languages

3. Use the pumping lemma to prove that the language DOUBLEWORD from p. 200 is
nonregular.

4. Define the language TRAILING-COUNT as any string s followed by a number of a 's
equal to length(s).

TRAILING-COUNT = { aa ba aaaa abaa baaa bbaa aaaaaa aabaaa
abaaaa . . . }

Prove that this language is nonregular by the

(i) Pumping lemma.
(i i) Myhill -Nerode theorem.

5. Define the languages

EVENPALINDROME = { al l words in PALINDROME that have even length I
= { aa bb aaaa abba baab bbbb . . .)

ODDPALINDROME = { al l words in PALINDROME that have odd length)

(i) Show that each is nonregular by the pumping lemma.
(ii) Show that each is nonregular by the Myhill - Nerode theorem.

6. Define the language SQUARE as follows:

SQUARE = { an where n is a square)
= { a aaaa aaaaaaaaa . . . I

This language could also be written as { an2) .

(i) Use the pumping lemma to prove that SQUARE is nonregular.
(ii) Use the Myhil l -Nerode theorem to prove that SQUARE is nonregular.

7. Define the language DOUBLESQUARE as follows:

DOUBLESQUARE = { a%n where n is a square)
= { ab aaaabbbb aaaaaaaaabbbbbbbbb . . . l

Prove that DOUBLESQUARE is nonregular by the

(i) Pumping lemma.
(i i) Myhi l l-Nerode theorem.

8. Define the language DOUBLEPRIME as follows:

DOUBLEPRIME = { aPbP where p is any prime)
= { aabb aaabbb aaaaabbbbb . . . }

Prove that DOUBLEPRIME is nonregular by the

(i) Pumping lemma.
(ii) Myhil l-Nerode theorem.

9. Define the language DOUBLEFACTORIAL as follows:

DOUBLEFACTORIAL = { an'bn' I
= { ab aabb aaaaaabbbbbb . . . I

Prove that DOUBLEFACTORIAL is nonregular by the

(i) Pumping lemma.
(ii) Myhill - Nerode theorem.

Problems 205

10. Just for this problem, let the alphabet be I = { a b c } . Let us consider the language

anbncn = { abc aabbcc aaabbbccc . . . }

Prove that this language is nonregular by the

(i) Pumping lemma.
(ii) Myhill-Nerode theorem.

1 1. Let us revisit the language DOUBLEWORD from p. 200. Use the Myhill -Nerode theo
rem to show that this language is nonregular by showing that all the strings in a* are in
different classes.

12. Let us consider the language of algebraic expression, ALEX, defined by the recursive
definition on p. 29. We never attempted to give a regular expression for this language
because it is nonregular. Prove this using the Myhill- Nerode theorem and the sequence

(x ((x (((x . . .

13. Define the language MOREA as follows:

MOREA = (all strings of a's and h's in which the total number of a's is greater than the
total number of h 's I

= { a aa aab aba baa aaab aaba . . . }

(i) Use the fact that

MOREA' n MOREB ' n (a + b)* = EQUAL

to prove that MOREA is nonregular (where MOREB has its obvious meaning).
(ii) Explain why the pumping lemma cannot be used to prove that MOREA is nonregu

lar.
(ii i) Show that MOREA can be shown to be nonregular by the Myhill -Nerode theorem

by using the sequence

aab aaab aaaab aaaaab . . .

14. Let L1 , L2, L3, • • • be an infinite sequence of regular languages.

(i) Let L be the infinite union of all these languages taken together. Is L necessarily
regular?

(i i) ls the infinite intersection of all these languages necessarily regular?

15. (i) Give an example of a regular language R and a nonregular language N such that
R + N is regular.

(i i) Give an example of a regular language R and a nonregular language N such that
R + N is nonregular.

16. Consider the following language:

PRIME' = { a" where n is not a prime l
= { A a aaaa aaaaaa aaaaaaaa . . . }

(i) Prove that PRIME' is nonregular.
(i i) Prove, however, that PRIME' does satisfy the pumping lemma.
(i i i) How can this be?

17. (i) Show that if we add a finite set of words to a regular language, the result is a regu
lar language.

206 CHAPTER IO Nonregular Languages

(i i) Show that if we subtract a finite set of words from a regular language, the result is a
regular language.

(i i i) Show that if we add a finite set of words to a nonregular language, the result is a
nonregular language.

(iv) Show that if we subtract a finite set of words from a nonregular language, the result
is a nonregular language.

18. The proof of Theorem 1 6 used FAs to show that the language P!Q is regular. Show that
the language PIQ is regular using the Myhil l -Nerode theorem instead.

19. Let us define the language PARENTHESES to be the set of all algebraic expressions
from which everything but the parentheses have been deleted. For example, the expres
sion (3 + (4*7) + (8 + 9)) + (2 + 1) becomes the word (()())() .

PARENTHESES = I A () (()) ()() ((())) (())() ()(()) 000 . . . }
(i) Show that this language is nonregular using the Myhi l l - Nerode theorem.

(i i) Show that the pumping lemma cannot be successful in proving that this language is
nonregular.

(i i i) If we convert the character "(" into the letter a and the character ")" into the letter
b, show that PARENTHESES becomes a subset of the language EQUAL in which
each word has the property that when read from left to right, there are never more
b's than a 's .

20. Consider what happens when an FA is built for an infinite language over the one-letter
alphabet !, = I a } . When the input is a string of a 's that is longer than the number of
states, the path it traces must take the form of some initial sequence of edges fol lowed
by a circuit. Because all the words in the language accepted by the machine are strings
of a 's, all the long words accepted by this FA follow the same path up to the circuit and
then around and around as in the picture below:

Some of the states leading up to the circuit may be final states and some of the
states in the circuit may be final states. This means that by placing + signs judiciously
along a long path to the circuit, we can make the machine accept any finite set of words
S 1 • While going around the circuit the first time, the FA can accept another finite set of
words S2• If the length of the circuit is n, all words of the form a" times a word in S2 will
also be accepted on the second go-round of the circuit.

(i) Prove that if L is any regular language over the alphabet !, = I a } , then there are two
finite sets of words S1 and S2 and an integer n such that

L = S1 + S2(a")*
(i i) Consider the language L defined as

L = I a" where n is any integer with an even number of digits in base I 0 I
= I A a 10 a 1 1 a 1 2 • • • }

Prove that L is nonregular.

CHAPTER 1 1

Decidability

y EQUIVALENCE

In this part of the book, we have laid the foundations for the theory of finite automata. The pic
tures and tables that we have called "machines" can actually be built out of electronic compo
nents and operate exactly as we have described. Certain parts of a computer and certain aspects
of a computer obey the rules we have made up for FAs. We have not yet arrived, though, at a
mathematical model for a whole computer. That we shall present in Part Il l . But before we
leave this topic, we have some unfinished business to clear up. Along the way, we asked some
very basic questions that we deferred considering. We now face three of these issues:

1. How can we tel l whether two regular expressions define the same language?

2. How can we tel l whether two FAs accept the same language?

3. How can we tell whether the language defined by an FA has finitely many or infinitely
many words in it, or any words at all, for that matter?

In mathematical logic, we say that a problem is effectively solvable if there is an algo
rithm that provides the answer in a finite number of steps, no matter what the particular in
puts are. The maximum number of steps the algorithm wi l l take must be predictable before
we begin to execute the procedure. For example, if the problem was, "What is the solution to
a quadratic equation?", then the quadratic formula provides an algorithm for calculating the
answer in a predetermined number of arithmetic operations : four multipl ications, two sub
tractions, one square root, and one division. The number of steps in the algorithm is never
greater than this no matter what the particular coefficients of the polynomial are. Other sug
gestions for solving a quadratic equation (such as "keep guessing until you find a number
that satisfies the equation") that do not guarantee to work in a fixed number of steps are not
considered effective solutions, nor are methods that do not work in all cases (such as "try
x = 2, it couldn 't hurt") .

DEFINITION

An effective solution to a problem that has a yes or no answer is called a decision proce
dure. A problem that has a decision procedure is cal led decidable. •

The first thing we want to decide is whether two regular expressions determine the exact

207

208 CHAPTER 1 1 Decidability

same language. We might, very simply, use the two expressions to generate many words
from each language until we find one that obviously is not in the language of the other. To be
even more organized, we may generate the words in size order, smallest first. In practice, this
method works fairly wel l , but there is no mathematical guarantee that we find such an obvi
ous benchmark word at any time in the next six years. Suppose we begin with the two ex
pressions

a(a + b)* and (b + A)(baa + ha*)*

It is obvious that all the words in the language represented by the first expression begin with
the letter a and all the words in the language represented by the second expression begin
with the letter b. These expressions have no word in common; this fact is very clear. How
ever, consider these two expressions:

(aa + ab + ha + bb)* and ((ba + ab)*(aa + bb)*)*

Both define the language of all strings over I = I a b } with an even number of letters. If
we did not recognize this, how could we decide the question of whether they are equivalent?
We could generate many examples of words from the languages each represents, but we
would not find a difference. Could we then conclude that they are equivalent? It is logically
possible that the smallest example of a word that is in one language but not in the other has
96 letters . Maybe the smallest example has 2 mil l ion letters. Generating words and praying
for inspiration is not an effective procedure, and it does not decide the problem.

The following two expressions are even less clear:

((b*a)*ab*)* and A + a(a + b)* + (a + b)*aa(a + b)*

They both define the language of all words that either start with an a or else have a double a

in them somewhere or else are null . The suggestion that we should "interpret what the regu
lar expressions mean and see whether or not they are the same" is, of course, hopeless.

Before we answer the first major question of this chapter, let us note that it is virtually
the same as the second question. If we had a decision procedure to determine whether two
regular expressions were equivalent, we could use it to determine whether two FAs were
equivalent. First, we would convert the FAs into regular expressions and then decide about
the regular expressions. The process of converting FAs into regular expressions is an effec
tive procedure that we developed in the proof of Kleene 's theorem in Chapter 7. The number
of steps required can be predicted in advance based on the size of the machine to be con
verted. S ince the conversion process el iminates at least one state with each step, a machine
with 1 5 states wil l take at most 1 6 steps to convert into a regular expression (counting the
step that creates a unique - and a unique +) .

Similarly, if we had an effective procedure to determine whether two FAs were equiva
lent, we could use it to decide the problem for regular expressions by converting them into
FAs.

Fortunately, we have already developed all the algorithms necessary to decide the
"equivalency problem" for FAs and thereby regular expressions. We need only recognize
how to apply them.

Given two languages L1 and L2 defined by either regular expressions or FAs, we have
developed (in Chapter 9) the procedures necessary to produce finite automata for the lan
guages L 1 ' , L2 ' , L1 n Lz ' , and L2 n L 1 ' . Therefore, we can produce an FA that accepts the
language

(L 1 n Lz ') + (L2 n L1 ')

This machine accepts the language o f a l l words that are in L 1 but not L2, or else in L2 but not
L 1 • If L1 and L2 are the same language, this machine cannot accept any words. If this ma-

Equivalence 209

chine accepts even one word, then L1 is not equal to L2, even if the one word is the null
word. If L 1 is equal to L2, then the machine for the preceding language accepts nothing at all.

To make this discussion into an effective decision procedure, we must show that we can
tell by some algorithm when an FA accepts no words at all . This is not a very hard task, and
there are several good ways to do it. We make a big fuss about this because it is so simple
that it might seem unimportant, which is wrong. It is a basic question in its own right-not
just as part of the decidability of the equivalence of regular languages.

The following subsections outline how to determine whether an FA accepts any words.

Method 1

Convert the FA into a regular expression. Every regular expression defines some words. We
can prove this by an algorithm. First, delete all stars. Then for each + we throw away the
right half of the sum and the + sign itself. When we have no more * 's or + 's, we remove the
parentheses and we have a concatenation of a 's, b 's, and A 's . These taken together form a
word. For example,

(a + A)(ab* + ba*)*(A + b*)*

becomes (after we remove * 's)

(a + A)(ab + ba)(A + b)

which becomes (after we throw away right halves)

(a)(ab)(A)

which becomes (after we eliminate parentheses)

a ab A

which is the word

aab

This word must be in the language of the regular expression because the operations of
choosing * to be power 1 and + to be the left half are both legal choices for forming words.
If every regular expression defines at least one word, it seems at first glance that this means
that every FA must accept at least one word. How then could we ever show that two lan
guages are equal? If we first build an FA for the language

(L 1 n L2 ') + (L2 n L1 ')

and then convert this machine into a regular expression, is it not true that, by the argument above
we must find some word in the language of the regular expression, and therefore L 1 � L2 no
matter what they are? No. The hole in this reasoning is that the process of converting this FA
into a regular expression breaks down. We come down to the last step where we usually have
several edges running from - to + that we add together to form the regular expression

However, when we get to this last step, we suddenly realize that there are no paths from
- to + at all.

210 CHAPTER 1 1 Decidability

This could happen theoretically in three different ways: The machine has no final states,
such as this one:

a h a

h

or the final state is disconnected from the start state, as with this one :

a. h a. h

a (]
or the final state is unreachable from the start state, as with this one:

a , h

a . h

We shall see later in this chapter which of these si.tuations does arise if the languages are
actual ly equal .

Method 2

Examine the FA to see whether or not there is any path from - to + . If there is any path, then
the machine must accept some words-for one, the word that is the concatenation of the la
bels of the edges in the path from - to + just discovered. In a large FA with thousands of
states and millions of directed edges, it may be impossible to decide whether there is a path
from - to + without the guidance of an effective procedure. One such procedure is this:

Step I Paint the start state blue.

Step 2 From every blue state, follow each edge that leads out of it and paint the desti
nation state blue, then delete this edge from the machine.

Step 3 Repeat step 2 until no new state is painted blue, then stop.

Step 4 When the procedure has stopped, if any of the final states are painted blue, then
the machine accepts some words and, if not, it does not.

Let us look at this procedure at work on the machine:

a

after step I :
a

h
fl

II

Equivalence 211

after step 2:
(/

after step 2 again :

(/ h

8 h

"

after step 2 again :

8 8
(/

No new states were painted blue this time, so the procedure stops and we examine the +
state. The + state is not blue, so the machine accepts no words.

While we were examining the second method, we might have noticed that step 2 cannot
be repeated more times than there are total states in the machine. If the machine has N states,
after N iterations of step 2 either they are all colored blue or we have already stopped. We
can summarize this as a theorem.

THEOREM 17

Let F be an FA with N states. Then if F accepts any words at al l , it accepts some word with
N or fewer letters.

PROOF

The shortest path from - to + (if there is any) cannot contain a circuit because if we go
from - to state 7 and then around a circuit back to state 7 and then to + , it would have been
shorter to go from - to state 7 to + directly. If there is a path from - to + without a circuit,
then it can visit each state at most one time. The path can then have at most N edges and the
word that generates it can have at most N letters. •

The proof actually shows that the shortest word must have at most N - I letters, be
cause if the start state is a final state, then the word A is accepted and with N - I letters we
can visit the other N - I states. The FA below has four states, but it accepts no word with
fewer than three letters, so we see that the bound N - I is the best possible :

a. h

II . h a. h

212 CHAPTER 1 1 Decidability

This gives us a third method for determining whether an FA accepts any words.

Method 3

Test all words with fewer than N letters by running them on the FA. If the FA accepts none
of them, then it accepts no words at all. There are a predictable number of words to test, and
each word takes a finite predictable time to run, so this is an effective decision procedure.

These methods are all effective; the question of which is more efficient is a whole other
issue, one that we do not (often) raise in this book. As soon as we know that there is at least
one way to accomplish a certain task, we lose interest because our ultimate concern is the
question, "What can be done and what cannot?" The only motivation we have for investigat
ing alternative methods is that maybe they can be generalized to apply to new problems that
our first approach could not be extended to cover.

EXAMPLE

Let us illustrate the effective decision procedure described above that determines whether
two regular expressions are equivalent. We shall laboriously execute the entire process on a
very simple example. Let the two regular expressions be

and r2 = A + aa*

Luckily, in this case we can understand that these two define the same language. Let us see
how the decision procedure proves this. Some machines for FA 1 , FA 1 ' , FA2, and FA2 ' are
shown below:

n n. h

FA , �
(/ , h

n "· h

F \ ' r() I> rO .' [�
C l . h

If we did not know how to produce these, algorithms in previous chapters would show us
how. We have labeled the states with the letters p, q, r, and s for clarity. Instead of using the
logical formula

(L 1 n L/) + (L2 n L1 ')

we build our machine based on the equivalent set theory formula

(L I ' + L2) ' + (L/ + L I) '

Equivalence 213

The machine for the first half of this formula is (FA 1 ' + FA2) '

u

q 1 or r1

The machine for the second half is (FA2 ' + FA 1) '

u

It was not an oversight that we failed to mark any of the states in these two machines
with a + . Neither machine has any final states. For (FA 1 ' + FA2) ' to have a final state, the
machine (FA 1 ' + FA2) must have a nonfinal state. The start state for this machine is q 1 or r 1 .
From there, if w e read an a , we go to q 1 or r3, and if we read instead a h, we go to q2 or r2 • If
we ever get to q2 or r2, we must stay there. From q 1 or r3 an input b takes us to q2 or r2 and
an input a leaves us at q 1 or r3 • All in all, from - we cannot get to any other combination of
states, such as the potential q2 or r1 or q1 or r2 • Now because q2 is a + and r1 and r1 are both
+ , all three states (q 1 or r 1 , q 1 or r3, and q2 or r2) are + , which means that the complement
has no final states .

The exact same thing is true for the machine for the second half of the formula. Clearly,
if we added these two machines together, we would get a machine with nine states and no fi
nal state. Because it has no final state, i t accepts no words and the two languages l1 and l2 are
equivalent. This ends the decision procedure. There are no words in one language that are not
in the other, so the two regular expressions define the same language and are equivalent. •

This example is a paradigm for the general situation. The machine for (L 1 ' + L2) ' ac
cepts only those words in L 1 but not L2• If the languages are in fact equal, this machine will
have no reachable final states. The same will be true for the machine for (L2 ' + L 1) ' . It w i l l
never be necessary to combine these two machines , because i f either accepts a word, then
L I ¥- l2.

When we l isted three ways that a machine could accept no words, the first way was that
there be no final states and the second and third ways were that the final states not be reach
able from the start state. We counted these situations separately. When we form a machine
by adding two machines together, we do not usually bother describing the states that are not

214 CHAPTER 1 1 Decidability

reachable from the start state. The algorithm that we described in Chapter 7 never gets to
consider combinations of states of the component machines that are never referred to. How
ever, if we used a different algorithm, based on writing down the whole table of possible
combinations and then drawing edges between the resultant states as indicated, we would, in
this example, produce a picture with a final state but it would be unreachable from the start
state. In the preceding example, the full machine for (FA 1 ' + FA2) ' is this :

u

a, b

The only final state (q 1 or r2) cannot be reached from anywhere-in particular, not from
the start state (q 1 or 1). So, the machine accepts no words.

We can summarize what we have learned so far in the following theorem.

THEOREM 18

There is an effective procedure to decide whether:

1. A given FA accepts any words.

2. Two FAs are equivalent.

3. Two regular expressions are equivalent. •

·lf FINITENESS

Let us now answer our last question of decidability. How can we tell whether an FA, or regu
lar expression, defines a finite language or an infinite language?

With regular expressions th is i s easy. The closure of any nonempty set, whether finite or
infinite, is itself infinite . Even the closure of one letter is infinite. Therefore, if when building
the regular expression from the recursive definition, we have ever had to use the closure op
erator, the resulting language is infinite. This can be determined by scanning the expression
itself to see whether it contains the symbol * . If the regular expression does contain a *, then
the language is infinite. The one exception to this rule is A*, which is just A. This one ex
ception can, however, be very tricky. Of the two regular expressions

(A + aA*)(A* + A)* and (A + aA)*(A * + A)*

Finiteness 215

only the second defines an infinite language.
If the regular expression does not contain a * , then the language is necessarily finite.

This is because the other rules of building regular expressions (any letter, sum, and product)
cannot produce an infinite set from finite ones. Therefore, as we could prove recursively, the
result must be finite.

If we want to decide this question for an FA, we could first convert it to a regular ex
pression. On the other hand, there are ways to determine whether an FA accepts an infinite
language without having to perform the conversion.

THEOREM 19

Let F be an FA with N states . Then:

1 . If F accepts an input string w such that

N :s length(w) < 2N

then F accepts an infinite language.

2. If F accepts infinitely many words, then F accepts some word w such that

N :s length(w) < 2N

PROOF

1. The first version of the pumping lemma assumed the language was infinite, but for
the second version this was not required, because a word is long enough to be
pumped if it has more letters than the FA has states . If there is some word w with N
or more letters , then by the second version of the pumping lemma, we can break it
into three parts :

w = xyz

The infinitely many different words xynz for n = 1 , 2, 3, . . . are all accepted by F.
2. Now we are supposing that F does accept infinitely many words. Then it must accept

a word so large that its path must contain a c ircuit, maybe several c ircuits. Each cir
cuit can contain at most N states because F has only N states in total . Let us change
the path of this long word by keeping the first circuit we come to and bypassing all
the others . To bypass a circuit means to come up to it, go no more than part way
around it, and leave at the first occurrence of the state from which the path prev i
ously exited.

This one-circuit path corresponds to some word accepted by F. The word can have
at most 2N letters, because at most N states are on the one circuit and at most N states
are encountered off that circuit. If the length of this word is more than N, then we have
found a word whose length is in the range that the theorem specifies. If, on the other
hand, the length of this word is less than N, we can increase it by looping around the
one circuit until the length is greater than N. The first time the length of the word (and
path) becomes greater than N, it is stil l less than 2N, because we have increased the
word only by the length of the circuit, which is less than N. Eventually, we come to an
accepted word with a length in the proper range. •

216 CHAPTER 1 1 Decidability

EXAMPLE

Consider this example:

The first circuit is 2-3-4. It stays. The second circuit is 5-6-7-8. It is bypassed to become
5-6-7-9.

The path that used to be

1 -2-3-4-2-3-5-6-7-8-5-6-7-8-5-6-7-9 +

becomes

1 -2-3-4-2-3-5-6-7-9+

This path contains 1 1 states. The total machine has N states where N is at least I 0. If 1 1
is not in the range of N to 2N then continue to add three states by looping around 2-3-4 until
the total path length is between N and 2N. •

This theorem provides us with an effective procedure for determining whether F accepts
a finite language or an infinite language. We simply test the finitely many strings with
lengths between N and 2N by running them on the machine and seeing whether any reach a
final state. If none does, the language is finite. Otherwise, it is infinite.

THEOREM 20

There is an effective procedure to decide whether a given FA accepts a finite or an infinite
language.

PROOF

If the machine has N states and the alphabet has m letters, then in total there are

mN + mN + I + mN + 2 + . . . + m2N- I

different input strings in the range

N :5 length of string < 2N

We can test them al l by running them on the machine. If any are accepted, the language is
infinite. If none are accepted, the language is finite. •

It may often be more efficient to convert the FA to a regular expression, but so what?
In the case where the machine has three states and the alphabet has two letters, the num

ber of strings we have to test is

Problems 217

23 + 24 + 25
= 8 + 16 + 32 = 56

which is not too bad. However, an FA with three states can be converted into a regular ex
pression in very few steps.

r-Qr PROBLEMS

For Problems l through 5, show by the method described in this chapter that the following
pairs of FAs are equivalent:

1.

2.

a

(/

h �
� h

(/

h

4. FA 1

a

FA 2

a h a . h

h

(/

(/, h

a

FA2 (/ , h

218 CHAPTER 1 1 Decidability

5. FA 1

a

h

Why is this problem wrong? How can it be fixed?

��
� a

6. Using the method of intersecting each machine with the complement of the other, show
that

h

and

h

do not accept the same language.

7. Using the method of intersecting each machine with the complement of the other, show
that

a II

and

do not accept the same language.

8. List the 56 strings that will suffice to test whether a three-state FA over � = { a h } has
a finite language.

Problems

By using blue paint, determine which of the following FAs accept any words:

9. n. /1

a. h

10. II . />

I I . />

1 1.

12.

219

220 CHAPTER 11 Decidability

Which of the following FAs accepts a finite language and which an infinite one?

13. (i) h

(i i)

(i i i) (/

(iv)

Cl

(/ , h

"· h

h

{/

Problems 221

14. Without converting it into a regular expression or an FA, give an algorithm that decides
whether a TG accepts any words.

15. Without converting it into a regular expression or an FA, give an algorithm that decides
whether the language of an NFA is empty, finite, or infinite .

16. Do the same as Problem 15 for NFA-A's. Be careful . The machine

a

has an infinite language, whereas the machine

A

g
has a one-word language.

17. Consider the following simplified algorithm to decide whether an FA with exactly N
states has an empty language:

Step 1 Take the edges coming out of each final state and tum them into loops going
back to the state they started from.

Step 2 Relabel all edges with the letter x. (We now have an NFA.)

Step 3 The original FA has a nonempty language if and only if this new NFA accepts
the word X".

Illustrate this algorithm and prove it always works.
Is this an effective procedure?

18. By moving the start state, construct a decision procedure to detennine whether a given
FA accepts at least one word that starts with an a.

19. (i) Construct a decision procedure to determine whether a given FA accepts at least
one word that contains the letter b.

(ii) Construct a decis ion procedure to determine whether a given FA accepts some
words of even length.

20. Given two regular expressions r 1 and r 2, construct a decision procedure to determine
whether the language of r 1 is contained in the language of r 2•

PART II

Pushdown
Automata

Theory

CHAPTER 12

Context-Free
Grammars

1} SYNTAX AS A METHOD FOR DEFINING LANGUAGES

224

Because of the nature of early computer input devices, such as keypunches, paper tape, mag
netic tape, and typewriters, it was necessary to develop a way of writing complicated alge
braic expressions in one line of standard typewriter symbols . Some few new symbols could
be invented if necessary, but the whole expression had to be encoded in a way that did not
require a multilevel display or depend on the perception of spatial arrangement. Formulas
had to be converted into linear strings of characters.

Several of the adjustments that had to be made were already in use in the scientific liter
ature for various other reasons . For example, the use of the slash as a divide sign was already
accepted by the mathematical publ ic. Most publishers had special symbols for the popular
fractions such as ! and ! . but eight-elevenths was customari ly written as 8/ 1 1 .

Sti l l , before the days of the computer no one would ever have dreamed of writing a
complicated compound fraction such as

1
- + 9
2
8

4 +
5

+ -
2 1 1

3 +
2

in the parentheses-laden one-line notation

((1 /2) + 9)/(4 + (8/2 1) + (5/(3 + (1 /2))))

The most important reason for not using the one-line version unless necessary is that in the
two-dimensional version we can easily see that the number we are looking at is a little more
than 9 divided by a l ittle more than 5 , so it obviously has a value between I and 2. Looking
at the parentheses notation, we see that it is not even obvious which of the slash marks sepa
rates the numerator from the denominator of the major division.

How can a computer scan over this one-line string of typewriter characters and figure
out what is going on? That is, how can a computer convert this string into its personal lan
guage of LOAD this, STORE that, and so on?

Syntax as a Method for Defining Languages 225

The conversion from a "high-level" language into a machine-executable language is done
by a program called the compiler. This is a superprogram. Its input data are other programs. It
processes them and prints out an equivalent program written in machine or assembler language.
To do this, it must figure out in what order to perform the complicated set of arithmetic opera
tions that it finds written out in the one-line formula. It must do this in a mechanical, algorithmic
way. It cannot just look at the expression and understand it. Rules must be given by which this
string can be processed-rules, perhaps, like those the machines of Part I could follow.

Along with evaluating those input strings that do have a meaning, we want our machine
to be able to reject strings of symbols that make no sense as arithmetic expressions, such as
"((9) + " . This input string should not take us to a final state in the machine. However, we
cannot know that this is a bad input string until we have reached the last letter. If the + were
changed to a), the formula would be valid. An FA that translated expressions into instruc
tions simultaneously as it scanned left to right like a Mealy machine would already be turn
ing out code before it realized that the whole expression is nonsense.

Before we try to build a compiling machine, let us return to the discussion of what is and
what is not a valid arithmetic expression as defined in Chapter 3 by recursive definition (p. 25).

Rule 1 Any number is in the set AE.

Rule 2 If x and y are in AE, then so are

(x) - (x) (x + y) (x - y) (X * y) (x/y)

This time we have included parentheses around every component factor. This avoids the am
biguity of expressions like 3 + 4 * 5 and 8/4/2 by making them i l legal . We shal l present a
more forgiving definition of this language later.

First, we must design a machine that can figure out how a given input string was built up
from these basic rules. Then we should be able to translate this sequence of rules into an as
sembler language program, because all these rules are pure assembler language instructions
(with the exception of exponentiation, which presents a totally different problem, but be
cause this is not a course in compiler design, we ignore this embarrassing fact).

For example, if we present the input string

((3 + 4) * (6 + 7))

and the machine discovers that the way this can be produced from the rules is by the sequence

3 is in AE
4 is in AE
(3 + 4) is in AE
6 is in AE
7 is in AE
(6 + 7) is in AE
((3 + 4) * (6 + 7)) is in AE

we can therefore algorithmically convert this into

LOAD 3 in register 1
LOAD 4 in register 2
ADD the contents of register 2 into register 1
LOAD 6 in register 3
LOAD 7 in register 4
ADD the contents of register 3 into register 4
MULTIPLY register I by register 4

or some such sequence of instructions depending on the architecture of the particu lar ma
chine (not all computers have so many arithmetic registers or al low multipl ication.

226 CHAPTER 12 Context-Free Grammars

The hard part of the problem is to figure out by mechanical means how the input string
can be produced from the rules. The second part- given the sequence of rules that create
the expression, to convert it into a computer program to evaluate the expression -is easy.

The designers of the first high-level languages realized that the problem of interpreting
algebra is analogous to the problem humans face hundreds of times every day when they de
cipher the grammatical structure of sentences that they hear or read in English. Here, we
have again the ever-present parallelism: Recognizing the structure of a computer language
instruction is analogous to recognizing the structure of a sentence in a human language.

Elementary school used to be called grammar school because one of the most important
subjects taught was English grammar. A grammar is the set of rules by which the valid sen
tences in a language are constructed. The rules by which sentences are made are an example of
an organically evolved recursive definition. Our ability to understand what a sentence means is
based on our ability to understand how it could be fonned from the rules of grammar. Detennin
ing how a sentence can be formed from the rules of grammar is called parsing the sentence.

When we hear or read a sentence in our native language, we do not go through a con
scious act of parsing. Exactly why this is the case is a question for other sciences. Perhaps it
is because we learned to speak as infants by a trial-and-error method that was not as math
ematical and rigorous as the way in which we learn foreign languages later in l ife. When we
were born, we spoke no language in which the grammar of our native tongue could be de
scribed to us. However, when we learn a second language, the rules of grammar for that lan
guage can be explained to us in English. How we can possibly learn our first language is a
problem discussed by l inguists, psychologists, philosophers, and worried parents. Whether
the way we teach computers to speak is the same as the way humans learn is an interesting
question, but beyond our present mandate.

Even though human languages have rules of grammar that can be stated explicitly, it is
still true that many inval id sentences, those that are not, strictly speaking, grammatical, can be
understood. Perhaps this is because there are tacit alternative rules of grammar that, although
not taught in school, nevertheless are rules people l ive by. But this will not concern us either.
No computer yet can forgive the mess, "Let x equal two times the radius times that funny look
ing Greek letter with the squiggly top that sounds like a pastry, you know what I mean?" The
rules of computer language grammar are prescriptive-no ungrammatical strings are accepted.

Because the English word "grammar" can mean the study of grammar as well as the set
of rules themselves, we sometimes refer to the set of rules as fonning a generative gram
mar. This emphasizes the point that from them and a dictionary (the alphabet) we can gener
ate all the sentences (words) in the language.

Let us look at the rule in English grammar that allows us to fonn a sentence by juxta
posing a noun and a verb (assuming that the verb is in the correct person and number) . We
might produce

Birds sing.

However, using the same rule might also produce

Wednesday sings. or Coal mines sing.

If these are not meant to be poetical or metaphoric, they are just bad sentences. They violate
a different kind of rule of grammar, one that takes into account the meaning of words as well
as their person, number, gender, and case.

Rules that involve the meaning of words we call semantics and rules that do not involve
the meaning of words we call syntax. In Engl ish, the meaning of words can be re levant, but
in arithmetic the meaning of numbers is rarely cataclysmic. In the high-level computer lan
guages, one number is as good as another. If

Syntax as a Method for Defining Languages 227

X = B + 9

is a valid formulation, then so are

X = B + 8 X = B + 473 X = B + 9999

So long as the constants do not become so large that they are out of range, we do not try to
div ide by 0, take the square root of a negative number, and we do not mix fixed-point num
bers with floating-point numbers in bad ways, one number is as good as another. It could be
argued that such rules as "thou shalt not divide by zero" as well as the other restrictions
mentioned are actual ly semantic laws, but this is another interesting point that we shall not
discuss. In general , the rules of computer language grammar are all syntactic and not seman
tic, which makes the task of interpretation much easier.

There is another way in which the parsing of arithmetic expressions is easier than the
parsing of English sentences. To parse the English sentence, "Birds sing.", it is necessary to
look up in the dictionary whether "birds" is a noun or a verb. To parse the arithmetic expres
sion "(3 + 5)*6", it is not necessary to know any other characteristics of the numbers 3 , 5 ,
and 6. We shall see more differences between simple languages and hard languages as we
progress.

Let us go back to the analogy between computer languages and English. Some of the
rules of English grammar are these :

1. A sentence can be a subject followed by a oredicate.

2. A subject can be a noun-phrase.

3. A noun-phrase can be an adjective followed by a noun-phrase.

4. A noun-phrase can be an article followed by a noun-phrase.

5. A noun-ohrase can be a noun.

6. A predicate can be a verb followed by a noun-phrase.

7. A noun can be

apple bear cat dog

8. A verb can be

eats follows gets hugs

9. An adjective can be

itchy jumpy

10. An article can be

a an the

Let us, for the moment, restrict the possibil ity of forming sentences to the laws stated
above. Within this small model of English, there are hundreds of sentences we can form -
for example,

The itchy hear hugs the jumpy dog.

The method by which this sentence can be generated is outlined here :

sentence � subject predicate

� noun-phrase predicate

� noun-phrase verh noun-phrase

Rule I

Rule 2
Rule 6

228 CHAPTER 12 Context-Free Grammars

=> article noun-ohrase verb noun-phrase

=> article adjective noun-ohrase verb noun-phrase

=> article adjective noun verb noun-phrase

=> article adjective noun verb article noun-phrase

=> article adjective noun verb article adjective noun-phrase

=> article adjective noun verb article adjective noun

=> the adjective noun verb article adjective noun

=> the itchy noun verb article adjective noun

=> the itchy bear verb article adjective noun

=> the itchy bear hugs article adjective noun

=> the itchy bear hugs the adjective noun

=> the itchy bear hugs the jumpy noun

=> the itchy bear hugs the jumpy dog

Rule 4

Rule 3

Rule 5

Rule 4

Rule 3

Rule 5

Rule 1 0

Rule 9

Rule 7

Rule 8

Rule 1 0

Rule 9

Rule 7

A law of grammar is in reality a suggestion for possible substitutions. The arrow (:=>)
indicates that a substitution was made according to the preceding rules of grammar. What
happened above is that we started out with the initial symbol sentence. We then applied the
rules for producing sentences l isted in the generative grammar. In most cases, we had some
choice in selecting which rule we wanted to apply. There is a qualitative distinction between
the word "noun" and the word "bear." To show this, we have underlined the words that stand
for parts of speech and are not to be considered themselves as words for the finished sen
tences. Of course, in the complete set of rules for English the words "verb," "adjective," and
so on, are all perfectly good words and would be included in our final set of rules as usable
words. They are all nouns. But in this model the term verb is a transitory place holder. It
means, "stick a verb here." It must eventually be replaced to form a finished sentence.

Once we have put in the word "bear," we are stuck with it. No rule of grammar says that
a bear can be replaced by anything else. The words that cannot be replaced by anything are
called terminals. Words that must be replaced by other things we call nonterminals. We
will give a more general definition of this shortly. The job of sentence production is not com
plete until all the nonterminals have been replaced with terminals .

Midway through the production procedure, we developed the sentence into as many
nonterminals as it was going to become.

article adjective noun verb article adjective noun

From this point on, the procedure was only one of selecting which terminals were to be in
serted in place of the nonterminals . This middle stage in which all the terminals are identi
fied by their nonterminal names is the "grammatical parse" of the sentence. We can tel l what
noun each adjective modifies because we know how it got into the sentence in the first place.
We know which noun-phrase produced it. "Itchy" modifies "bear" because they were both
introduced by application of Rule 3 .

We have allowed a noun-phrase to be an adjective followed by a noun-phrase. This
could lead to

noun-ohrase :=> adjective noun-phrase
:=> adjective adjective noun-phrase
:=> adjective adjective adjective noun-phrase
:=> adjective adjective adjective noun
:=> itchy adjective adjective noun
:=> itchy itchy adjective noun

Syntax as a Method for Defining Languages

=> itchy itchy itchy noun
=> itchy itchy itchy bear

229

If we so desired, we could produce 50 itchy 's. Using the Kleene closure operator, we
could write something l ike

noun-phrase => adjective* noun

But now, we are getting ahead of ourselves.
The rules we have given for this simplified version of English allow for many dumb sen

tences, such as

Itchy the apple eats a jumpy jumpy jumpy bear.

Because we are not considering the limitations of semantics, diction, or good sense, we must
consider this string of terminals as a legitimate sentence. This is what we mean by the phrase
"formal language," which we used in Part I. It is a funny phrase because it sounds as if we
mean the stuffy language used in aristocratic or diplomatic circles. In our case, it means only
that any string of symbols satisfying the rules of grammar (syntax alone) is as good as any
other. The word "formal" here means "strictly formed by the rules," not "highly proper." The
Queen of England is unlikely to have made the remark above about itchy the apple.

We can follow the same model for defining arithmetic expressions. We can write the
whole system of rules of formation as the l ist of possible substitutions shown below :

Start -+ (AE)
AE --+ (AE + AE)
AE --+ (AE - AE)
AE -� (AE * AE)
AE --+ AE I AE)
AE --+ (AE ** AE)
AE --+ (AE)
AE --+ - (AE)
AE --+ ANY-NUMBER

Here, we have used the word "Start" to begin the process, as we used the symbol "sen
tence" in the sample of English. Aside from Start, the only other nonterminal is AE. The ter
minals are the phrase "ANY-NUMBER" and the symbols

+ * I ** ()

Either we could be satisfied that we know what is meant by the words "any number," or
else we could define this phrase by a set of rules, thus converting it from a terminal into a
nonterminal .

Rule I ANY-NUMBER --+ FIRST-DIGIT

Rule 2 FIRST-DIGIT -+ FIRST-DIGIT OTHER-DIGIT

Rule 3 FIRST-DIGIT -+ 1 2 3 4 5 6 7 8 9

Rule 4 OTHER-DIGIT --+ O 2 3 4 5 6 7 8 9

Rules 3 and 4 offer choices of terminals . We put spaces between them to indicate
"choose one," but we soon shall introduce another disjunctive symbol .

We can produce the number I 066 as follows:

ANY-NUMBER => FIRST-DIGIT

=> FIRST-DIGIT OTHER-DIGIT

Rule I

Rule 2

230 CHAPTER 12 Context-Free Grammars

� FIRST-DIGIT OTHER-DIGIT OTHER-DIGIT Rule 2

� FIRST-DIGIT OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT Rule 2

� 1 066 Rule 3 and 4

Here, we have made all our substitutions of terminals for nonterminals in one fell
swoop, but without any possible confusion. One thing we should note about the definition of
AE is that some of the grammatical rules involve both terminals and nonterminals together.
In English, the rules were either of the form

One Nonterminal -+ string of Nonterminals

or

One Nonterminal -+ choice of terminals

In our present study, we shall see that the form of the rules in the grammar has great sig
nificance.

The sequence of applications of the rules that produces the finished string of termi
nals from the starting symbol is called a derivation or a generation of the word. The
grammatical rules are often referred to as productions. They all indicate possible substi
tutions . The derivation may or may not be unique, which means that by applying produc
tions to the start symbol in two different ways, we may sti l l produce the same finished
product.

We are now ready to define the general concept of which all these examples have been
special cases. We call this new structure a context-free grammar, or CFG. The full meaning
of the term "context-free" will be made clear later. The concept of CFGs was invented by the
linguist Noam Chomsky in 1 956. Chomsky gave several mathematical models for languages,
and we shal l see more of his work later.

1f SYMBOLISM FOR GENERATIVE GRAMMARS

DEFINITION

A context-free grammar, CFG, is a collection of three things:

1 . An alphabet I of letters called terminals from which we are going to make strings that
wi l l be the words of a language.

2. A set of symbols called nonterminals, one of which is the symbol S, standing for "start
here."

3. A finite set of productions of the form

One Nonterminal -+ finite string of terminals and/or Nonterminals

where the strings of terminals and nonterminals can consist of only terminals or of only
nonterminals, or of any mixture of terminals and nonterminals or even the empty string.
We require that at least one production has the nonterminal S as its left side. •

So as not to confuse terminals and nonterminals, we always insist that nonterminals be
designated by capital letters, whereas terminals are usually designated by lowercase letters
and special symbols. In our example for Engl ish, we underlined the nonterminals, but this
treatment is more standard.

Symbolism for Generative Grammars 231

DEFINITION

The language generated by a CFG is the set of all strings of terminals that can be produced
from the start symbol S using the productions as substitutions. A language generated by a
CFG is called a context-free language, abbreviated CFL. •

There is no great uniformity of opinion among experts about the terminology to be used
here. The language generated by a CFG is sometimes cal led the language defined by the CFG,
the language derived from the CFG, or the language produced by the CFG. This is similar to
the problem with regular expressions. We should say "the language defined by the regular ex
pression," although the phrase "the language of the regular expression" has a clear meaning.

EXAMPLE

Let the only terminal be a and the productions be

PROD 1 S --+ aS
PROD 2 S --+ A

If we apply production I six times and then apply production 2, we generate the following:

S => aS
=> aaS
=> aaaS
=> aaaaS
=> aaaaaS
=> aaaaaaS
=> aaaaaaA

= aaaaaa

This is a derivation of a6
in this CFG. The string a" comes from n applications of pro

duction I followed by one application of production 2. If we apply production 2 without pro
duction 1 , we find that the null string is itself in the language of this CFG. Because the only
terminal is a, it is clear that no words outside of a* can possibly be generated. The language
generated by this CFG is exactly a*. •

In the examples above, we used two different arrow symbols. The symbol "--+" we
employ exclusively in the statement of the productions. It means "can be replaced by," as in
S --+ aS. The other arrow symbol "=>" we employ between the unfinished stages in the gen
eration of our word. It means "can develop into," as in aaS => aaaS. These "unfinished
stages" are strings of terminals and nonterminals that we shall call working strings.

Notice that in this last example we have both S --+ aS as a production in the abstract and
S => aS as the first step in a particular derivation .

EXAMPLE

Let the only terminal be a and the productions be

PROD 1 s --+ SS
PROD 2 S --+ a
PROD 3 S --+ A

232 CHAPTER 12 Context-Free Grammars

In this language, we can have the following derivation:

s � ss

� sss

� sas

� sass

� AaSS

� AaaS

� AaaA

= aa

The language generated by this set of productions is also just the language a* , but in
this case the string aa can be obtained in many (actually infinitely many) ways. In the first
example, there was a unique way to produce every word in the language. This also i l lustrates
that the same language can have more than one CFG generating it. Notice above that there
are two ways to go from SS to SSS-either of the first two S's can be doubled. •

In the previous example, the only tenninal is a and the only nontenninal is S. What then
is A? It is not a nontenninal, because there is no production of the fonn

A - something

Yet, it is not a tenninal, because it vanishes from the finished string AaaA = aa. As always,
A is a very special symbol and has its own status. In the definition of a CFG, we said a non
tenninal could be replaced by any string of tenninals and/or nontenninals, even the empty
string. To replace a nontenninal by A i s to delete it without leaving any tangible remains.
For the nonterminal N, the production

N - A

means that whenever we want, N can simply be deleted from any place in a working string.

EXAMPLE

Let the terminals be a and b, the only nonterminal be S, and the productions be

PROD 1 s - as

PROD 2 s - bs

PROD 3 S - a

PROD 4 S - b

We can produce the word baab as follows:

s � bs (by PROD 2)

� baS (by PROD l)
� baas (by PROD l)
� baab (by PROD 4)

The language generated by this CFG is the set of al l possible strings of the letters a and b ex
cept for the null string, which we cannot generate.

We can generate any word by the following algorithm:

At the beginning, the working string is the start symbol S. Select a word to be generated.
Read the letters of the desired word from left to right one at a time. If an a is read that is not

Symbolism for Generative Grammars 233

the last letter of the word, apply PROD l to the working string. If a h is read that is not the
last letter of the word, apply PROD 2 to the working string. If the last letter is read and it is an
a, apply PROD 3 to the working string. If the last Jetter is read and it is a h, apply PROD 4 to
the working string.

At every stage in the derivation before the last, the working string has the form

(string of terminals) S

At every stage in the derivation, to apply a production means to replace the final nonter
minal S. Productions 3 and 4 can be used only once and only one of them can be used. For
example, to generate hahh, we apply in order productions 2, 1 , 2, 4, as below:

S => hS => haS => hahS => hahh

EXAMPLE

Let the terminals be a and h, the nonterminals be S, X, and Y, and the productions be

s - x
s - r
x - A
r - ar
Y - hY
r - a
Y - h

•

All the words in this language are either of type X, if the first production in their derivation is

s - x

or of type Y, if the first production in their derivation is

s - r

The only possible continuation for words of type X is the production

x - A

Therefore, A is the only word of type X.
The productions whose left s ide is Y form a collection identical to the productions in the

previous example except that the start symbol S has been replaced by the symbol Y. We can
carry on from Y the same way we carried on from S before. This does not change the lan
guage generated, which contains only strings of terminals. Therefore, the words of type Y
are exactly the same as the words in the previous example. That means that any string of a 's
and h 's except the nul l string can be produced from Y as these strings were produced before
from S.

Putting together the type X and the type Y words, we see that the total language gener
ated by this CFO is al l strings of a 's and h 's, nul l or otherwise. The language generated is
(a + b)* . •

EXAMPLE

Let the terminals be a and h, the only nonterminal be S, and the productions be

234 CHAPTER 12 Context-Free Grammars

s - as
s - bs
s - a
s - b
s - A

The word ab can be generated by the derivation

S => aS
=> abS
=> abA

= ab

or by the derivation

S => aS
=> ab

The language of this CFG is also (a + b)* , but the sequence of productions that is used to
generate a specific word is not unique.

If we deleted the third and fourth productions, the language generated would be the
same. •

EXAMPLE

Let the tenninals be a and b, the nontenninals be S and X, and the productions be

s - XaaX
x - ax
x - bx
x - A

We already know from the previous example that the last three productions wil l al low us
to generate any word we want from the nontenninal X. If the nontenninal X appears in any
working string, we can apply productions to tum it into any string we want. Therefore, the
words generated from S have the fonn

anything aa anything

or

(a + b)*aa(a + b)*

which is the language of all words with a double a in them somewhere.
For example, to generate baabaab, we can proceed as follows :

S => XaaX => bXaaX => baXaaX => baaXaaX => baabXaaX
=> baabAaaX => baabaaX => baabaabX => baabaabA = baabaab

There are other sequences that also derive the word baabaab. •

EXAMPLE

Let the tenninals be a and b, the nontenninals be S, X, and Y, and the productions be

Symbolism for Generative Grammars

s - xr
x - ax
x - hx
x - a
Y - Ya
r - Yb
Y - a

What can be derived from X? Let us look at the X productions alone :

x -ax
x - hx
x - a

235

Beginning with the nonterminal X and starting a derivation using the first two productions, we
always keep a nonterminal X on the right end. To get rid of the X for good, we must eventu
ally replace it with an a by the third production. We can see that any string of terminals that
comes from X must end in an a and any words ending in an a can be derived from X in a
unique fashion. For example, to derive the word hahha from X, we must proceed as follows:

X => bX => haX => bahX => hahhX => hahha

Simi larly, the words that can be derived from Y are exactly those that begin with an a.
To derive ahhah, for example, we can proceed:

Y => Yb => Yah => Yhah => Yhhah => ahhah

When an X-part is concatenated with a Y-part, a double a is formed.
We can conclude that starting from S, we can derive only words with a double a in

them, and all these words can be derived.
For example, to derive habaahh, fix we know that the X-part must end at the first a of

the double a and that the Y-part must begin with the second a of the double a:

S => XY => bXY => haXY => babXY => baba Y
=> ha ha Yb => ha ha Yhh => babaahh

Therefore, this grammar generates the same language as the last, although it has more non
terminals and more productions. •

EXAMPLE

Let the terminals be a and h and the three nonterminals be S, BALANCED, and UNBAL
ANCED. We treat these nonterminals as if they were each a single symbol and nothing more
confusing. Let the productions be

s - ss
S - BALANCED S
S - S BALANCED
s - A
S - UNBALANCED S UNBALANCED

BALANCED - aa
BALANCED - hh

UNBALANCED - ab
UNBALANCED - ha

236 CHAPTER 12 Context-Free Grammars

We shall show that the language generated from these productions is the set of all words
with an even number of a's and an even number of b's. This is our old friend, the language
EVEN-EVEN.

To prove this, we must show two things: that all the words in EVEN-EVEN can be gen
erated from these productions and that every word generated from these productions is, in
fact, in the language EVEN-EVEN.

First, we show that every word in EVEN-EVEN can be generated by these productions.
From our earl ier discussion of the language EVEN-EVEN, we know that every word in this
language can be written as a collection of substrings of

type aa or type bb or type(ab + ba)(aa + bb)*(ab + ha)

All three types can be generated from the nonterminal S from the preceding produc
tions. The various substrings can be put together by repeated application of the production

S --+ SS

This production is very useful . If we apply it four times, we can turn one S into five S's.
Each of these S's can be a syl lable of any of the three types. For example, the EVEN-EVEN
word aababbab can be produced as follows:

S ==:> BALANCED S
=:> aaS
==:> aa UNBALANCED S UNBALANCED
==:> aa ha S UNBALANCED
=:> aa ba S ab
==:> aa ha BALANCED S ab
=:> aa ba hb S ab
=:> aa ba bh A ah

= aahabbab

To see that all the words that are generated by these productions are in the language EVEN
EVEN, we need only to observe that the unbalanced pairs are only added into the working
string by one production and then they enter two at a time.

Therefore, the language generated by this CFG is exactly EVEN-EVEN. •

So far, we have demonstrated several regular languages that could also be defined by
CFGs. If all the languages that CFGs could generate were regular, this topic would have
been included in Part I ; therefore, the alert reader wi l l expect that CFGs can also generate at
least some nonregular languages too. The following examples show that this is, in fact, the
case.

EXAMPLE

Let us consider the CFG

S --+ aSb
S --+ A

We shall now show that the language generated by these productions is the canonical
nonregular language { anb" I . There is apparently only one nonterminal S and two terminals a
and h (heretofore we have announced the terminals and nonterminals before stating the pro
duction set, yet this is one of those fastidiousnesses one quickly outgrows) . As long as we

Symbolism for Generative Grammars 237

continue to apply the first production, the working string produced wil l always have one and
only one nonterminal in it and that wi l l be a central S. Whenever we choose to employ the
second production, the S drops out and what is left is a string of terminals that must then be
a word generated by the grammar. The fact that the S always stays dead-center follows from
the fact that production I always replaces the S with a string in which the S is again dead
center. So, if it used to be in the middle, it remains in the middle, and because it starts in the
middle, it stays there, because the middle of the middle section is the middle of the string.
On the right side of the S, we have nothing but a 's, and on the left side of the S, we have
nothing but h's. Therefore, after s ix appl ications of the first production, we must have the
working string a6Sh6. If we apply the second production now, the word a6h6 would be pro
duced.

S => aSh => aaShb
=> aaaShhh => aaaaShhhh
=> aaaaaSbhhhh => aaaaaaShhhhhh
=> aaaaaahhhhhh

Clearly, if we use production I m times fol lowed by production 2, the resultant word
would be amhm, and (what always must be made separately clear) every word of the form
a"'bm can be produced this way. Because a sequence of production l 's fol lowed by a single
production 2 is the only word-producing option for this grammar, we can conclude that the
language it generates is exactly l a"h" I . •

EXAMPLE

If we vary the rules of production sl ightly, we may arrive at this CFG:

s - asa
s - hSh
s - A

There are a great many similarities between this grammar and the previous one. Re
peated applications of the first two rules wil l produce working strings with exactly one non
terminal, that is, S. Furthermore, th is S begins in the middle of the working string and both
rules of production replace it with strings in which it remains in the middle, and the middle
of the middle is the middle of the working string, so S is always the unique and central non
terminal in all working strings.

Let us now note that the right side of each production is a palindrome (it reads the same
backward and forward even if it does contain both terminals and a nonterminal) . Let us also
note that if a palindrome is inserted into the dead-center of another palindrome, the resultant
string wil l again be a pal indrome. Once we finally employ production rule 3 and delete the S,
the final word wil l again be a palindrome. Therefore, all the words produced by this gram
mar wil l be in the language PALINDROME. However, it is not true that all the words in the
language PALINDROME can be generated by this grammar. We must observe that pal in
dromes come in two flavors: those with a unique central letter and those with even length
that have no central letter. The language generated by this grammar is that of all pal indromes
with even length and no center letter cal led EVENPALINDROME (cf. p. 204). To prove that
any word in EVENPALINDROME can be produced from this grammar, all we need to do is
to take any evenpal indrome and show that it itself gives us a complete set of directions of
how it is to be produced. These are the directions: Scan the first half of the word left to right.
When we encounter an a, it is the instruction to apply production 1 ; when we encounter a h,

238 CHAPTER 12 Context-Free Grammars

it is the instruction to apply production 2; when we have finished the first half of the word,
apply production 3 . For example, i f we start with the even palindrome abbaabba, the first
half is abba and the rules of production to be applied are, in sequence, productions I , 2, 2, l ,
3, as below:

EXAMPLE

s � asa
� abSba
� abbSbba
� abbaSabba
� abbaabba

•

The difference between EVENPALINDROME and ODDPALINDROME (whose definition
is obvious) is that when we are finally ready to get rid of the S in the EVENPALINDROME
working string, we must replace it with a A. If we were forced to replace it with an a or b in
stead, we would create a central letter and the result would be a grammar for ODDPALIN
DROME as follows :

s � asa
S � bSb
s � a
s � b

If we allow the option of turning the central S into either A or a letter, we would have a
grammar for the entire language PALINDROME:

s � asa
S � bSb
s � a
s � b
s � A •

The languages I a"b" I and PALINDROME are amazingly simi lar in grammatical struc
ture, while the first is nearly a regular expression and the other is far from it.

EXAMPLE

One language that we demonstrated was nonregular, which had an appearance simi lar to
{ a"b" I , was { a"ba" I . This language too can be generated by a CFG

s � asa
s � b

but the cousin language { a"ba"b" + 1 I cannot be generated by any CFO for reasons that we
shall discuss a bit later. •

Let us consider one more example of a nonregular language that can be generated by a
CFO.

Symbolism for Generative Grammars

EXAMPLE

Let the terminals be a and b, the nonterminals be S, A, and 8, and the productions be

S --+ a8
S --+ bA
A --+ a
A --+ aS
A --+ bAA
8 --+ b
8 --+ hS
8 --+ a88

239

The language that this CFG generates is the language EQUAL of all strings that have an
equal number of a's and h's in them. This language begins

EQUAL = { ab ha aabb abab abba baah baba bbaa aaabbh . . . }

(Notice that previously we included A in this language, but for now it has been
dropped.)

Before we begin to prove that this CFG does generate exactly the language EQUAL, we
should explain the rationale behind this set of productions. The basic idea is that if a word in
EQUAL starts with an a, the remainder of the word is a string with the property that it has,
in total , exactly one more b than a's . If the remainder has seven a 's, then it must have eight
h 's, because otherwise a(remainder) will not be in EQUAL. For this purpose, we introduce
the nonterminal symbol 8 and we intend to write rules that wi l l allow us to generate from 8
all strings with the property that they have exactly one more h than a 's . Analogously, if a
word in EQUAL starts with a h, it must be of the form hA , where from A we can generate
any string that has in total one more a than b's .

To begin to find a method of generating all the strings that should be derivable from A,
we note that if the A-string begins with the letter a, then the rest wil l be a word in EQUAL
that is either derivable from S or is A. Otherwise, despite the fact that it has one more a than
h 's, it might still stubbornly insist on starting with a b. In this case, however, what remains is
a string with the property that it now has two more a 's than b's. We could be tempted to in
troduce a new symbol, say, A2, as the nonterminal that would stand for these strings, but that
would lead us down a path requiring more and more (eventually infinitely many) nontermi
nals. Instead, we make the useful observation that any string that contains two more a's than
h 's can be factored into the product of two type-A strings, each with exactly one more a than
h 's. To prove th is, we scan the 2-a-heavy string from left to right until we find a factor that is
of type A. We must eventually have the number of a's surpass the number of h's because oth
erwise it could not be 2-a-heavy. All the first instant the number of a 's passes the number of
h 's in the scan (necessari ly by exactly one extra), we have found an A-factor. Now what is
left of the string is again a string that is only I -a-heavy and is, therefore, itself a factor of
type A. This is the reasoning beh ind the production A --+ hM.

The three productions for 8 are just symmetric to the A productions.
Now there is a l i ttle bit of a problem here because to produce EQUAL, we defined S to

be hA, assuming that A does generate the I -a-heavy strings, and later we defined A to be aS,
assuming that S does generate only words in EQUAL. Is this reasoning not circular and
therefore unsound? The answer is that once we know that S, A, and 8 do their intended jobs
on short strings, we wil l be certain that they wi l l continue to do their job on longer and
longer strings. Let us discuss this in detai l .

240 CHAPTER 12 Context-Free Grammars

From the rules of production we can derive a from A and b from B and therefore both ab
and ha come from S. Now using these bui lding blocks, we can generate from A ---+ aS both
aab and aha, and from A ---+ bAA we get baa. Therefore, all three-letter strings with two a 's
and one b can be derived from A . Similarly, all three-letter strings with two h's and one a can
be derived from B.

Now we consider the four-letter strings. A and B generate only odd-length strings so all
the relevant four-letter strings are the words in EQUAL. Once we know that all three-letter
I -a-heavy strings can be derived from A, we can safely conclude that all EQUAL words of
four letters starting with a b can be derived from S ---+ bA . Similarly, once we know that all
three-letter strings derivable from B are the 1 -b-heavy strings, we conclude that S ---+ aB
gives all the four-letter words in EQUAL starting with an a and only those. So once we
know that A and B are correct for three-letter words, we know that S is correct for four-letter
words.

Now we bounce back to s ix-letter words. Starting with the knowledge that S produces
all the two- and four-letter words in EQUAL, and that A and B generate all I -a-heavy and
1 -b-heavy words of length one and three, we have no trouble concluding that the correct and
only the correct six-letter words are derived from A and B by the production rules. We could
conclude that S generates all the six-letter words in EQUAL and only those, and so on.

The reasoning behind the productions is not circular but inductive. The S 's in S ---+ bA
and A ---+ aS are not the same S because the second one is two letters shorter. We could also
see a parallel between this reasoning and recursive definitions: "If x has the property, then so
does xx, and so on."

Therefore, all the words derivable from S are the words in EQUAL and all the words in
EQUAL are generated by S. •

It is common for the same nonterminal to be the left side of more than one production.
We now introduce the symbol " I ", a vertical line, to mean disjunction (or) . Using it, we can
combine all the productions that have the same left side. For example,

can be written simply as

The CFG

can be written more compactly as

S --+ aS
S --+ A

S --+ aS I A

S --+ X
S --+ y
X --+ A
Y --+ aY
Y--+ bY
Y--+ a
Y --+ b

S --+ X I Y
X --+ A
Y --+ aY j bY j a j b

The notation we are using for CFGs is practically universal with the following minor
changes:

Trees

Some authors use the symbol

. . - instead of

Some authors call nonterminals variables.

Some authors use an epsilon, E, or lambda, X., instead of A to denote the null string.

Some authors indicate nonterminals by writing them in angle brackets:

(S) - (X) I (Y)
(X) - A
(Y) - a(Y) I h(Y) I a I b

241

We shall be careful to use capital letters for nonterminals and lowercase letters for ter
minals. Even if we did not do this, it would not be hard to determine when a symbol is a ter
minal. All symbols that do not appear as the left parts of productions are terminals with the
exception of A.

Aside from these minor variations, we call th is format-arrows, vertical bars, termi
nals, and nonterminal s-for presenting a CFG the BNF, which stands for Backus normal
form or Backus-Naur form. It was invented by John W. Backus for describing the high
level language ALGOL. Peter Naur was the editor of the report in which it appeared, and
that is why BNF has two possible meanings.

A FORTRAN identifier (variable or storage location name) can, by definition , be up to
six alphanumeric characters long but must start with a letter. We can generate the language
of all FORTRAN identifiers by a CFG:

IDENTIFIER - LETTER XXXXX
x - LETTER I DIGIT I A

LETTER - AI B I C I . . . I Z
DIGIT - O l I 1 2 1 . . . 1 9

Not just the language of identifiers but the language of all proper FORTRAN instruc
tions can be defined by a CFG. This is also true of all the statements in the languages C,
PASCAL, BASIC, PL/I, and so on. This is not an accident. As we shal l see later, if we are
given a word generated by a specified CFG, we can determine how the word was produced.
This, in turn, enables us to understand the intended instruction of the word just as identifying
the parts of speech helps us to understand the structure of an English sentence. A computer
must determine the grammatical structure of a computer language statement before it can ex
ecute the instruction. Let us revisit our early school days.

·i} TREES

In English grammar courses, we were taught how to diagram a sentence. Th is meant that we
were to draw a parse tree, which is a picture with the base l ine divided into subject and
predicate . All words or phrases modifying these were drawn as appendages on connect ing
l ines. For example,

The quick hrown foxjumps over the lazy dog.

becomes

242 CHAPTER 12 Context-Free Grammars

fox

9. �

iumps

dog

g 0) "' !2.

If the fox is dappled gray, then the parse tree would be

fox iumps

g � 9.
"' � dappled � dog

g "' �

because dappled modifies gray and therefore is drawn as a branch off the gray l ine.
The sentence "I shot the man with the gun." can be diagrammed in two ways:

shot man

gun

or

shat man

gun

In the first diagram, "with the gun" explains how I shot. In the second diagram, "with
the gun" explains whom I shot.

These diagrams tum a string of ambiguous symbols into an interpretable idea by identi
fying who does what to whom.

A famous case of ambiguity is the sentence 'Time fl ies like an arrow." We humans have
no difficulty identifying this as a poetic lament, technically a simile, meaning "Time passes
all too quickly, just as a speeding arrow darts inexorably across the endless skies" -or some
such euphuism.

This is diagrammed by the following parse tree:

t ime t i les

arrow

Notice how the picture grows l ike a tree when "an" branches from "arrow." A graph the
ory tree, unlike an arboreal tree, can grow sideways or upside down.

Trees 243

A nonnative speaker of English with no poetry in her soul (a computer, e .g.) who has
just yesterday read the sentence "Horse fl ies l ike a banana" might think the sentence should
be diagrammed as

fl ies l i ke arrow

\�
where she thinks "time fl ies" may have even shorter l ives than drosophilae.

Looking in our dictionary, we see that "time" is also a verb, and if so in this case, the
sentence could be in the imperative mood with the understood subject "you," in the same
way that "you" is the understood subject of the sentence "Close the door." A race track tout
may ask a jockey to do a favor and "Time horses l ike a trainer" for him. The computer might
think this sentence should be diagrammed as

(you) t ime f l ies

arrow

Someone is being asked to take a stopwatch and "time" some racing "flies" just as "an arrow"
might do the same job, although one is unlikely to meet a straight arrow at the race track.

The idea of diagramming a sentence to show how it should be parsed carries over to
CFGs. We start with the symbol S. Every time we use a production to replace a nonterminal
by a string, we draw downward l ines from the nonterminal to each character in the string.

Let us i l lustrate this on the CFG

s - AA
A -AAA [hA [Ah [a

We begin with S and apply the production S - AA :

.·\ .. \

To the left-hand A , let us apply the production A - hA . To the right-hand A, let us apply
A - AAA :

h A A A A

The h that we have on the bottom l ine is a terminal, so it does not descend further. In the ter
m inology of trees, it is cal led a terminal node. Let the four A 's, left to right, undergo the
product ions A - hA , A - a, A - a, A - Ah, respectively. We now have

244 CHAPTER 12 Context-Free Grammars

/s'-.....
A A

I I I I"'
h A A A A

I \ I I I \
h A a a A h

Let us finish off the generation of a word with the productions A - a and A - a:

/.'i'-...., A A

I I I I"'
h A A A A

I \ I I I \
h A II II .. 1 h

I I
a "

Reading from left to right, we see that the word we have produced is hhaaaah.
As was the case with diagramming a sentence, we understand more about the finished

word if we see the whole tree. The third and fourth letters are both a 's, but they are produced
by completely different branches of the tree.

These tree diagrams are cal led syntax trees, parse trees, generation trees, production
trees, or derivation trees. The variety of terminology comes from the multiplicity of appli
cations to l inguistics, compiler design, and mathematical logic .

The only rule for formation of such a tree is that every nonterminal sprouts branches
leading to every character in the right side of the production that replaces it. If the nontermi
nal N can be replaced by the string ahcde,

N - ahcde

then in the tree we draw

N

// I \"
(/ h (" d , .

There is no need to put arrow heads on the edges because the direction of production is al
ways downward .

EXAMPLE

One CFG for a subsystem of propositional calculus is

s - (S) I S ::> S l -S l p l q

The only nonterminal is S. The terminals are p q - ::> () , where "::>" is today 's symbol

for impl ication.

l:ukasiewicz Notation

In this grammar, consider the diagram

s

/ I �
s)

/I� s :) s

/ I / I "'
s s

/ I / I "'
s s :) s

I I / "'
p p

---- s

/ "'

This is a derivation tree for the 1 3-letter word:

,......,. s

I
q

(- - p :::J (p :::J - - q))

245

•

We often say that to know the derivation tree for a given word in a given grammar is to
understand the "meaning" of that word.

The concept of "meaning" is one that we shal l not deal with in this book. We never pre
sumed that the languages generated by our CFGs have any significance beyond being formal
strings of symbols. However, in some languages the grammatical derivation of a string of
symbols is important to us for reasons of computation. We shall soon see that knowing the
tree helps us determine how to evaluate and compute.

·w LUKASIEWICZ NOTATION

Let us concentrate for a moment on an example of a CFG for a simplified version of arith
metic expressions :

s � s + S I S * S i number

Let us presume that we know precisely what is meant by "number."
We are all fami liar with the ambiguity inherent in the expression

Does it mean (3 + 4) * 5, which is 35 , or does it mean 3 + (4 * 5) , which is 23?
In the language defined by this particular CFG, we do not have the option of putting in

parentheses for clarification. Parentheses are not generated by any of the productions and are
therefore not letters in the derived language. There is no question that 3 + 4 * 5 is a word in
the language of this CFG. The only question is what does this word intend in tenns of calcu
lation?

246 CHAPTER 12 Context-Free Grammars

It is true that if we insisted on parentheses by using the grammar

S - (S + S) I (S * S) I number

we could not produce the string 3 + 4 * 5 at all. We could only produce

S => (S + S) => (S + (S * S)) => . . . => (3 + (4 * 5))

or

S => (S * S) => ((S + S) * S) => . . . => ((3 + 4) * 5)

neither of which is an ambiguous expression.
In the practical world, we do not need to use all these cluttering parentheses because we

have adopted the convention of "hierarchy of operators," which says that * is to be executed
before + . This, unfortunately, is not reflected in either grammar. Later, we present a gram
mar that generates unambiguous arithmetic expressions that will mean exactly what we want
them to mean without the need for burdensome parentheses. For now, we can only distin
guish between these two possible meanings for the expression 3 + 4 * 5 by looking at the
two possible derivation trees that might have produced it :

s I
3

s
/I " + s / I " s

I
4

s

I
5

or

s

I
3

s

/I " s * s
/I " I + s

I 5

4

We can evaluate an expression in parse-tree form from the tree picture itself by starting
at the bottom and working our way up to the top, replacing each nonterminal as we come to
i t by the result of the calculation that i t produces.

or

This can be done as follows:

s

/I"' => s

I
3

+ s

/I"'
s

I
4

s

I
5

s

/ l""-
s • s

/1""- I s + s 5

I I
3 4

s s

/I"' => /I"' => 3 + s 3 + 20 23

/I"'
4 5

� 3 5

3 + 4

l'.:ukasiewicz Notation 247

These examples show how the derivation tree can explain what the expression intends in
much the same way that the parse trees in English grammar explain the intention of sen
tences.

In the special case of this particular grammar (not for CFGs in general) , we can draw
meaningful trees of terminals alone using the start symbol S only once. This will enable us
to introduce a new notation for arithmetic expressions -one that has direct applications to
computer science.

The method for drawing the new trees is based on the fact that + and * are binary oper
ations that combine expressions already in the proper form. The expression 3 + (4 * 5) is a
sum. A sum of what? A sum of a number and a product. What product? The product of two
numbers. S imilarly, (3 + 4) * 5 is a product of a sum and a number, where the sum is a sum
of numbers. Notice the similarity to the original recursive definition of arithmetic expres
sions. These two situations are depicted in the following trees:

s s

I
+

/ """ / """
3 • + 5

/ """ / """
4 5 3 4

These are l ike derivation trees for the CFG

S - S + S I S * S I number

except that we have eliminated most of the S's. We have connected the branches directly to
the operators instead.

The symbols * and + are no longer terminals, because they must be replaced by num
bers. These are actually standard derivation trees taken from a new CFG in which S, * , and
+ are nonterminals and number is the only terminal . The productions are

S - * I + I number
+ - + + I + * I + number I * + I * * I * number I number + I number * I number number
* - + + I + * I + number I * + I * * I * number I number + I number * I number number

As usual, number has been underlined because it is only one symbol in this case, our only
terminal .

From these trees, we can construct a new notation for arithmetic expressions. To do this,
we walk around the tree and write down the symbols, once each, as we encounter them. We
begin our trip on the left side of the start symbol S heading south. As we walk around the
tree, we always keep our left hand on the tree.

248 CHAPTER 12 Context-Free Grammars

The first symbol we encounter on the first tree is + . This we write down as the first
symbol of the expression in the new notation. Continuing to walk around the tree, keeping it
on our left, we first meet 3, then + again. We write down the 3, but this time we do not write
down + because we have already included it in the string we are producing. Walking some
more, we meet * · which we write down. Then we meet 4, then * again, then 5 . So, we write
down 4, then 5. There are no symbols we have not met, so our trip is done. The string we
have produced is

The second derivation tree when converted into the new notation becomes

l s tI I I I \
/ . \

/ / / /___ """',\
/ + f "- 5 I

// �\ ' ./I '\ �

I ' ' \
1 3 / '\ 4 1
' � / ' � ./

This tree-walking method produces a string of the symbols + , *, and number, which
summarizes the picture of the tree and thus contains the information necessary to interpret
the expression. This is information that is lacking in our usual representation of arithmetic
expressions, unless parentheses are inserted. We shall show that these strings are unambigu
ous in that each determines a unique calculation without the need for establishing the hierar
chical convention of times before plus. These representations are said to be in operator pre
fix notation because the operator is written in front of the operands it combines.

Since S - S + S has changed from

/ I "
s + s

I I
3 4

to

the left-hand tracing changes 3 + 4 into + 3 4.
To evaluate a string of characters in this new notation, we proceed as follows. We read

the string from left to right. When we find the first substring of the form

operator-operand-operand (call this o-o-o for short)

we replace these three symbols with the one result of the indicated arithmetic calculation.
We then rescan the string from the left . We continue this process until there is only one num
ber left, which is the value of the entire original expression.

In the case of the expression + 3 * 4 5, the first substring we encounter of the form
operator-operand-operand is * 4 5, so we replace this with the result of the indicated multi
plication, that is, the number 20. The string is now + 3 20. This itself is in the form 0-0-0,
and we evaluate it by performing the addition. When we replace this with the number 23, we
see that the process of evaluation is complete.

l'.:ukasiewicz Notation 249

In the case of the expression * + 3 4 5, the first o-o-o substring is + 3 4. This we re
place with the number 7 . The string is then * 7 5, which itself is in the o-o-o form. When we
replace this with 35 , the evaluation process is complete.

Let us see how this process works on a harder example. Let us start with the arithmetic
expression

((1 + 2) * (3 + 4) + 5) * 6

This is shown in normal notation, which is called operator infix notation because the
operators are placed in between the operands. With infix notation, we often need to use
parentheses to avoid ambiguity, as is the case with the expression above. To convert this to
operator prefix notation, we begin by drawing its derivation tree:

Reading around this tree gives the equivalent prefix notation expression

* + * + 1 2 + 3 4 5 6

Notice that the operands are in the same order in prefix notation as they were in infix nota
tion; only the operators are scrambled and all parentheses are deleted.

To evaluate this string, we see that the first substring of the form operator-operand
operand is + 1 2, which we replaced with the number 3. The evaluation continues as fol
lows:

String

* + * 3 + 3 4 5 6

u
* + 2 1 5 6

u
* 26 6

u
1 56

First o-o-o Substring

+ 3 4

* 3 7

+ 2 1 5

* 26 6

which is the correct value for the expression with which we started.
Because the derivation tree is unambiguous, the prefix notation is also unambiguous and

does not rely on the tacit understanding of operator hierarchy or on the use of parentheses.

250 CHAPTER 12 Context-Free Grammars

This clever parenthesis-free notational scheme was invented by the Pol ish logician Jan
U,ukasiewicz (1 878 - 1 956) and is often called Polish notation. There is a similar operator
postfix notation, which is also called Polish notation, in which the operation symbols
(+ , *· . . .) come after the operands. This can be derived by tracing around the tree from
the other side, keeping our right hand on the tree and then reversing the resultant string. Both
these methods of notation are useful for computer science . Compilers often convert infix to
prefix and then to assembler code. •

y AMBIGUITY

EXAMPLE

Let us consider the language generated by the following CFG:

PROD I S - AB
PROD 2 A - a
PROD 3 B - h

There are two different sequences of appl ications of the productions that generate the word
ah. One is PROD I , PROD 2, PROD 3. The other is PROD I , PROD 3, PROD 2 .

S => AB => aB => ah or S => AB => Ah => ah

However, when we draw the corresponding syntax trees, we see that the two derivations are
essentially the same:

s
/ ""' A R

I I
a h

s
/ ""A R

I I
a h

This example, then, presents no substantive difficulty because there is no ambiguity of
interpretation. When all the possible derivation trees are the same for a given word, then the
word is unambiguous. •

DEFINITION

A CFG is called ambiguous if for at least one word in the language that it generates there
are two possible derivations of the word that correspond to different syntax trees. If a CFG is
not ambiguous, it is called unambiguous. •

EXAMPLE

Let us reconsider the language PALINDROME, which we saw earlier can be generated by
the CFG below:

S - aSa I hSh I a I b I A

At every stage in the generation of a word by this grammar, the working string contains only

Ambiguity 251

the one nonterminal S smack dab in the middle. The word grows l ike a tree from the center
out. For example,

. . . baSab � babSbab � babbSbbab � babbaSabbab . . .

When we finally replace S by a center letter (or A if the word has no center letter), we have
completed the production of a palindrome. The word aabaa has only one possible genera
tion:

s � asa
� aaSaa
� aabaa

s

/ I \
a S a

/ I\
a S a

I
h

If any other production were applied at any stage in the derivation, a different word would be
produced. Every word in PALINDROME has a unique sequence of productions leading to it.
As we read the first half left to right, an a means use S - aSa, a b means use S - bSb, and
the middle letter determines the final production.

We see then that this CFG is unambiguous. •

EXAMPLE

The language of all nonnul l strings of a 's can be defined by a CFG as follows:

s - as i Sa i a

In this case, the word a3 can be generated by four different trees:

s s s s

/ I / I ' ""' ' ""'
a s a s s a s a

/ I ' "" / I ' ""'(/ s s a a s s a

I I I I
(/ a a (/

This CFG is therefore ambiguous.
However, the same language can also be defined by the CFG

s - aS i a

for which the word a3 has only one production:

252 CHAPTER 12 Context-Free Grammars

This CFG is not ambiguous.

/ I
a S

/ I
a s

I
a

•

From this last example, we see that we must be careful to say that it is the CFG that is
ambiguous, not that the language i t generates is itself ambiguous.

� THE TOTAL LANGUAGE TREE

So far in this chapter, we have seen that derivation trees carry with them an additional
amount of information that helps resolve ambiguity in cases where interpretation is impor
tant. Trees can be useful in the study of formal grammars in other ways.

For example, it is possible to depict the generation of all the words in the language of a
CFG simultaneously in one big (possibly infinite) tree.

DEFINITION

For a given CFO, we define a tree with the start symbol S as its root and whose nodes are
working strings of terminals and nonterminals . The descendants of each node are all the pos
sible results of applying every appl icable production to the working string, one at a time. A
string of all terminals is a terminal node in the tree.
The resultant tree is called the total language tree of the CFG. •

EXAMPLE

For the CFO

s - aa j hX j aXX
x - ah j h

the total language tree is

���
aa hX a XX

// // �
hah hh aahX ahX a Xa h a Xh

// I I I \ ""�
aahah a a hh ahah a h h aahah ahah a a h h a h h

This total language has only seven different words. Four of i ts words (ahh, aahh, abah,
aahah) have two different possible derivations because they appear as terminal nodes in this
total language tree in two different places. However, the words are not generated by two dif
ferent derivation trees and the grammar is unambiguous. For example,

The Total Language Tree

EXAMPLE

Consider the CFG

s

/I "'
a X X

I \ \
a

s - aSb l bS l a

253

h

•

We have the terminal letters a and b and three possible choices of substitutions for S at any
stage. The total tree of this language begins

Here, we have circled the terminal nodes because they are the words in the language generated by
this CFG. We say "begins" because since the language is infinite, the total language tree is too.

We have already generated all the words in this language with one, two, or three letters :

L = { a ba aab bba . . . }

These trees may get arbitrarily wide as well as infinitely long.

EXAMPLE

s - sAS l b
A - ba l b

•

Every string with some S's and some A 's has many possible productions that apply to it, two
for each S and two for each A :

s

/ ""' ----77A�
SASAS hAS ShaS ShS SASAS SA h

----?71�
SA.'IA S A S hASAS ShaSA S .%SAS SA SA SA S • • •

254 CHAPTER 12 Context-Free Grammars

There are more words in this language, but we have not reached them yet. The word bbb will
come up shortly. •

The essence of recursive definition comes into play in an obvious way when some non
terminal has a production with a right-side string containing its own name, as in this case:

X ---+ (blah)X(blah)

The total tree for such a language then must be infinite because it contains the branch

X � (blah)X(blah)
� (blah)(blah)X(blah)(blah)
� (blah)3X(blah)3

This has a deep significance that wil l be important to us shortly.
Surprisingly, even when the whole language tree is infinite, the language may have only

finitely many words.

EXAMPLE

Consider this CFG:

The total language tree begins

S --+ X l b
X --+ aX

s

/ ""'
x h

I
aX

I
a a X

I
a a a X

Clearly, the only word in this language is the single letter b . X is a bad mistake; it leads
to no words, because once a working string has got X, it can never be cured of it. •

1} PROBLEMS

l . Consider the CFG

S --+ aS i hh

Prove that this generates the language defined by the regular expression

a*bb

2. Consider the CFG

Problems

S -+ XYX
X -+ ax i bX I A
Y -+ bbb

255

Prove that this generates the language of all strings with a triple b in them, which is the

language defined by

3. (i) Consider the CFG

(a + b)*bbb(a + b)*

S -+ aX
X -+ aX i hX \ A

What is the language this CFG generates?

(i i) Consider the CFG

S -+ XaXaX
X -+ aX \ bX \ A

What is the language this CFG generates?

4. Consider the CFG

S -+ SS I XaXaX I A
X -+ bX \ A

(i) Prove that X can generate any b*.
(i i) Prove that XaXaX can generate any b*ab*ab*.

(i i i) Prove that S can generate (b*ab*ab*)* .
(iv) Prove that the language of this CFG is the set of all words in (a + b)* with an even

number of a's with the following exception: We consider the word A to have an
even number of a 's, as do all words with no a 's, but of the words with no a's only
A can be generated.

(v) Show how the difficulty in part (iv) can be alleviated by adding the production

5. Consider the CFO

s - xs

S -+ XbaaX l aX
X -+ Xa l Xb l A

What is the language thi s generates? Find a word in this language that can be generated
in two substantial ly different ways.

6. (i) Consider the CFG for "some English" given in th is chapter. Show how these pro
ductions can generate the sentence

Itchy the hear hugs jumpy the dog.

(i i) Change the productions so that an article cannot come between an adjective and its
noun.

(i i i) Show how in the CFG for "some English" we can generate the sentence

The the the cat follows cat.

(iv) Change the productions again so that the same noun cannot have more than one ar
ticle.

256 CHAPTER 12 Context-Free Grammars

7. Find a CFG for each of the languages defined by the following regular expressions :
(i) ab*

(i i) a*b*
(i i i) (baa + abb)*

8. Find CFGs for the following languages over the alphabet � = { a b } :

(i) All words in which the letter b is never tripled.
(i i) All words that have exactly two or three b's .

(i i i) Al l words that do not have the substring ab.
(iv) All words that do not have the substring baa.
(v) Al l words that have different first and last letters :

9. Consider the CFG

I ab ba aab abb baa bba . . . }

S --+ M
A --+ MA

A --+ bA I Ab I a

Prove that the language generated by these productions is the set of al l words with an
even number of a 's, but not no a 's. Contrast this grammar with the CFG in Problem 4.

10. Describe the language generated by the following CFG:

S --+ SS
S --+ XXX
X --+ aX I Xa l b

11 . Write a CFG to generate the language MOREA of all strings that have more a's than b 's
(not necessari ly only one more, as with the nonterminal A for the language EQUAL, but
any number more a's than b 's).

MOREA = {a aa aah aha baa aaaa aaah . . . l
12. Let l be any language. We have already defined the transpose of l to be the language of

all the words in l spelled backward (see Chapter 6, Problem 1 7) . Show that if l is a
context-free language, then the transpose of l is context-free also.

13. In Chapter I 0, Problem 4, we showed that the l anguage

TRAILING-COUNT = { sa1cngih(.-) for all s in (a + b)* }

is nonregu lar. Show however that it is context-free and generated by

S --+ aSa I bSa I A

14. (i) In response to "Time fl ies l ike an arrow," the tout said, "My watch must be broken."
How many possible interpretations of this reply are there?

(i i) Chomsky found three different interpretations for "I had a book stolen." Explain
them. Are their parsing trees different?

15. Below is a set of words and a set of CFGs. For each word, determine whether the word
is in the language of each CFG and, if it i s , draw a syntax tree to prove it.

Words CFGs

(i) ah CFG I . S -+ aSh i ah

Problems 257

(i i) aaaa CFG 2. S -+ aS l bS I a
(i i i) aabb
(iv) abaa CFG 3. S -+ aS i aSb l X
(v) abba X -+ aXa l a
(vi) baaa
(vii) abab CFG 4. S -+ aAS l a
(viii) bbaa A -+ SbA I SS I ba
(ix) baab

CFG S. S -+ aB l bA
A -+ a l aS l bM
8 ---+ b l bS l aBB

16. Show that the following CFGs are ambiguous by finding a word with two distinct syntax

trees:

(i) s - saSaS I b
(i i) s - aSb l Sb l Sa l a

(i i i) s - aaS i aaaS l a
(iv) s - aS j aSb j X

x - xa l a
(v) s - AA

A - AAA I a I bA I Ab

17. Show that the following CFGs that use A are ambiguous:

(i) s - xax
x - aX l bX I A

(i i) s - aSX I A
X - aX l a

(i i i) s - as l bS l aaS I A
(iv) Find unambiguous CFGs that generate these three languages.
(v) For each of these three languages, find an unambiguous grammar that generates ex

actly the same language except for the word A. Do this by not employing the sym
bol A in the CFGs at all .

18. Begin to draw the total language trees for the following CFGs unti l we can be sure we
have found all the words in these languages with one, two, three, or four letters. Which
of these CFGs are ambiguous?

(i) s - aS l bS l a
(i i) s - aSaS l b

(i i i) s - aSa j bSb j a
(iv) s - aSb l bX

X - hX j h
(v) s - bA l aB

A - hAA i aS l a
B - aBB i hS l h

19. Convert the following infix expressions into Pol ish notation:

(i) I * 2 * 3
(i i) I * 2 + 3

(i i i) I * (2 + 3)

(iv) I * (2 + 3) * 4
(v) ((I + 2) * 3) + 4

258 CHAPTER 12 Context-Free Grammars

(vi) 1 + (2 * (3 + 4))
(vi i) 1 + (2 * 3) + 4

20. Invent a fonn of prefix notation for the system of propositional calculus used in this
chapter that enables us to write all wel l-fonned fonnulas without the need for parenthe
ses (and without ambiguity).

CHAPTER 13

� REGULAR GRAMMARS

Grammatical
Format

Some of the examples of languages we have generated by CFGs have been regular lan
guages; that is, they are definable by regular expressions. However, we have also seen some
nonregular languages that can be generated by CFGs (PALINDROME and EQUAL).

What then is the relationship between regular languages and context-free grammars?
Several poss ibil ities come to mind:

1 . All possible languages can be generated by CFGs.

2. All regular languages can be generated by CFGs, and so can some nonregular languages
but not all possible languages.

3. Some regular languages can be generated by CFGs and some regular languages cannot
be generated by CFGs. Some nonregular languages can be generated by CFGs and
maybe some nonregular languages cannot.

Of these three possibilities, number 2 is correct. In this chapter, we shal l indeed show
that all regular languages can be generated by CFGs. We leave the construction of a lan
guage that cannot be generated by any CFG for Chapter 1 6.

Before we proceed to prove this, it wil l be useful for us to introduce the notion of a
semi word.

DEFINITION

For a given CFG, a semiword is a string of terminals (maybe none) concatenated with ex
actly one nonterminal (on the right) . In general, a semiword has the shape

(terminal)(terminal) . . . (terminal)(Nonterminal) •

THEOREM 21

Given any FA, there is a CFG that generates exactly the language accepted by the FA. In
other words, all regular languages are context-free languages.

259

260 CHAPTER 13 Grammatical Format

PROOF

The proof wil l be by constructive algorithm. We shall show how to start with the FA and cre
ate one such CFG.

Step 1 The nonterminals in the CFG will be al l the names of the states in the FA with
the start state renamed S.

Step 2 For every edge

create the production

a

or

x - ar

Do the same for h-edges.

or x - ax

Step 3 For every final state X, create the production

x - A

Claim

This CFG generates exactly the language accepted by the original FA. To prove this claim,
we must show that (i) every word accepted by the FA can be generated from the CFG and
(i i) every word generated by the CFG is accepted by the FA.

Proof of (i)

Let w be some word, say, abhaa, accepted by the FA; then letter by letter, we can grow the
path through the FA by a sequence of semipaths, the string read from the input so far fol
lowed by the name of the state to which the string takes us. The sequence of semipaths looks
something l ike this:

First start in S.

Then read an a and go to X.

Then read a b and go to Y.

Finally read an a and go to F.

F is a final state, so accept the word .

Semipaths

s

ax

abY

abbaaF

This corresponds exactly to a derivation in the CFG of the word w through semi words:

Production

S ---> aX

X ---> b Y

F ---> A

Derivation

s ==> ax

==> abY

==> abbaaF

==> abbaa

Regular Grammars 261

In summary, a word w accepted by the FA generates a sequence of step-by-step semi
paths, each one edge longer than the previous, that corresponds to a derivation of w through
semiwords identical to the semipaths. Since the word w is accepted by the FA, its semipath
ends in a final state. In the derivation, this is the same as replacing the last nonterminal of the
last semiword with A and completing the generation of w.

EXAMPLE (in the middle of the proof)

Consider the FA

h a

h

The CFG the algorithm tel ls us to create is

s - aM
s - hs

M - aF
M - hS
F - aF
F - bF
F - A

" · h

a

The word babbaaba is accepted by this FA through this sequence of semipaths:

s
bS
baM
habS
bahhS
babbaM
babhaaF
hahhaabF
hahhaahaF
bahbaaba

h

"

/J

corresponding to the CFG derivation applying, in order, the productions S - hS, S - aM,
M - hS, S - hS, S - aM, M - aF, F - hF, F - aF, F - A. •

Proof of (ii)

We now show that any word generated from the CFG created by the algorithm is accepted
when run on the FA.

262 CHAPTER 13 Grammatical Format

Because all the rules of production are of the form

Nonterminal � terminal Nonterminal

there wil l always be one nonterminal in any working string in any derivation in this CFG,
and that nonterminal will be on the extreme right end. Therefore, al l derivations in thi s CFG
are through working strings that are semiwords exclusively. Each derivation starts with an S
and the sequence of semiwords corresponds to a growing sequence of semipaths through the
FA. We can only end the generation of a word when we tum the final nonterminal into A,
but this means that the state the semipath is in is a final state and the word generated is an in
put string accepted by the FA. •

EXAMPLE

The language of all words with an even number of a's (with at least some a's) can be ac
cepted by this FA:

h h h (l

a

Cal l ing the states S, M, and F as before, we have the following corresponding set of pro
ductions:

s � hS i aM
M � hM j aF
F � hF j aM j A

We have already seen two CFGs for this language, but this CFG is substantial ly dif-
ferent. •

Theorem 2 1 , on p. 259, was discovered (or perhaps invented) by Noam Chomsky and
George A. Mi l ler in 1 958 . They also proved the result below, which seems to be the flip side
of the coin.

THEOREM 22

If all the productions in a given CFG fit one of the two forms:

Nonterminal � semiword

or

Nonterminal � word

(where the word may be A), then the language generated by this CFG is regular.

Regular Grammars 263

PROOF

We shal l prove that the language generated by such a CFG is regular by showing that

there is a TG that accepts the same language. We shall build this TG by constructive algo

rithm.
Let us consider a general CFG in this form:

N1 -+ w1N2
N1 -+ w,fi3
Nz -+ w3N4

where the N's are the nonterminals, the w's are strings of terminals, and the parts w,N: are
the semiwords used in productions. One of these N's must be S. Let N, = S.

.

Draw a smal l circle for each N and one extra circle labeled + . The circle for S we
label - .

0
0

For every production rule of the form

Nx -+ w/I:

draw a directed edge from state Nx to Nz and label it with the word w.v.

If Nx = N=, the path is a loop. For every production rule of the form

N -+ w p q

draw a directed edge from NP to + and label it with the word w , even if w = A.q q

We have now constructed a transition graph. Any path in this TG from - to + corresponds
to a word in the language of the TG (by concatenating labels) and simultaneously corre
sponds to a sequence of productions in the CFG generating the same word. Conversely,
every production of a word in this CFG:

S � wN � wwN � wwwN � · · · � wwwww

corresponds to a path in this TG from - to + .
Therefore, the language of this TG is exactly the same as that of the CFG. Therefore,

the language of the CFG is regular. •

264 CHAPTER 13 Grammatical Format

We should note that the fact that the productions in some CFGs are all in the required
format does not guarantee that the grammar generates any words. If the grammar is totally
discombobulated, the TG that we form from it will be crazy too and may accept no words.
However, if the grammar generates a language of some words, then the TG produced earl ier
for it wi l l accept that same language.

DEFINITION

A CFG is called a regular grammar if each of its productions is of one of the two forms

Nonterminal ---+ semi word

or

Nonterminal ---+ word •

The two previous proofs imply that all regular languages can be generated by regular
grammars and all regular grammars generate regular languages.

We must be very careful not to be carried away by the symmetry of these theorems. De
spite both theorems, it is still possible that a CFG that is not in the form of a regular gram
mar can generate a regular language. In fact, we have already seen many examples of this
very phenomenon.

EXAMPLE

Consider the CFG

S ---+ aaS I hhS I A

This is a regular grammar and so we may apply the algorithm to it . There is only one nonter
minal, S, so there wil l be only two states in the TG: - and the mandated + . The only pro
duction of the form N ---+ w is S ---+ A, so there is only one edge into + and that is labeled A. p q , The productions S ---+ aaS and S ---+ bbS are of the form N 1 ---+ wN 2, where the N s are both S.
Because these are supposed to be made into paths from N 1 to N 2, they become loops from S
back to S. These two productions wil l become two loops at - , one labeled aa and one la
beled bb. The whole TG is shown below:

a a

bb

By Kleene 's theorem (see Chapter 7) , any language accepted by a TG is regular; there
fore, the language generated by this CFG (which is the same) is regular. It corresponds to the
regular expression (aa + bb)*. •

EXAMPLE

Consider the regular CFG

S ---+ aaS I hhS I abX I haX I A
X ---+ aaX I hhX \ ahS I haS

Killing A-Productions 265

The algorithm tel ls us that there will be three states: - , X, + . Because there is only one
production of the form

there is only one edge into + . The TG is

N - w p q

which we immediately see accepts our old friend, the language EVEN-EVEN. (Do not be
fooled by the A edge to the + state. It is the same as relabeling the - state ± .) •

EXAMPLE

Consider the regular CFG

s - aA l bB
A - as l a
B - bS l b

The corresponding TG constructed by the algorithm in Theorem 22 (p. 262) is

The language of this CFG is exactly the same as that of the CFG two examples ago, ex
cept that it does not include the word A. This language can be defined by the regular expres
sion (aa + bb)+ . •

y KILLING A-PRODUCTIONS

We have not yet committed ourselves to a definite stand on the social acceptabil ity of
A-productions, that is, productions of the form

N - A

266 CHAPTER 13 Grammatical Format

where N is any nonterminal. We have employed them, but we do not pay them equal wages.
These A-productions wil l make our l ives very difficult in the discussions to come, so we
must ask ourselves, Do we need them at all?

Any context-free language in which A is a word must have some A-productions in its
grammar since otherwise we could never derive the word A from S. This statement is obvi
ous, but it should be given some justification. Mathematically, this is easy : We observe that
A-productions are the only productions that shorten the working string. If we begin with the
string S and apply only non-A-productions, we never develop a word of length 0.

However, there are some grammars that generate languages that do not include the word
A, but that contain some A-productions anyway. One such CFG is

S -+ aX
X -+ A

Its language is the single word a. There are other CFGs that generate this same language that
do not include any A-productions.

The following theorem, which is the work of Bar-Hil lel , Perles, and Shamir, shows that
A-productions are not necessary in a grammar for a context-free language that does not con
tain the word A. It proves an even stronger result.

THEOREM 23

If L is a context-free language generated by a CFG that includes A-productions, then there is
a different context-free grammar that has no A-productions that generates either the whole
language L (if L does not include the word A) or else generates the language of all the words
in L that are not A.

PROOF

We prove this by providing a constructive algorithm that wil l convert a CFG that contains
A-productions into a CFG that does not contain A-productions that still generates the same
language with the possible exception of the word A.

Consider the purpose of the production

N -+ A

If we apply this production to some working string, say, abAbNaB, we get abAbaB. In other
words, the net result is to delete N from the working string. If N was just destined to be
deleted, why did we let it get in there in the first place? Just because N will come out does
not mean we could have avoided putting it in originally.

Consider the following CFG for EVENPALINDROME (the language of all palindromes
with an even number of letters) :

S -+ aSa I bSb I A

In this grammar, we have the following possible derivation:

S ==> aSa
==> aaSaa
==> aabSbaa
==> aahbaa

Killing A-Productions 267

We obviously need the nonterminal S in the production process even though we delete it
from the derivation when it has served its purpose.

The following rule seems to take care of using and deleting the nonterminals involved in

A-productions.

Proposed Replacement Rule

If, in a certain CFG, there is a production of the form

N - A

among the set of productions, where N is any nonterminal (even S), then we can modify the
grammar by deleting this production and adding the following l ist of productions in its
place.

For all productions of the form

X - (blah 1) N (blah 2)

where X is any nonterminal (even S or N) and where (blah 1) and (blah 2) are anything at all
(even involving N), add the production

X - (blah 1)(blah 2)

Notice that we do not delete the production X - (blah 1)N(blah 2), only the production
N - A.

For all productions that involve more than one N on the right side, add new productions
that have the same other characters but that have all possible subsets of N's deleted.

For example, the production

makes us add

X - aNbNa

X - abNa (deleting only the first N)
X - aNba (deleting only the second N)
X - aha (deleting both N's)

Also, the possible production

makes us add

X - NN

X - N (deleting one N)
x - A (deleting both N's)

Instead of using a production with an N and then dropping the N later to form the word
w, we simply use the correct form of the production with the appropriate N already dropped
when generating w. There is then no need to remove N later and so no need for the A-pro
duction. This modification of the CFG will produce a new CFG that generates exactly the
same words as the first grammar with the possible exception of the word A. This is the end
of the proposed replacement rule.

Let us see what happens when we apply th is replacement rule to the following CFO for
EVENPALINDROME:

s - asa I bSb I A

We remove the production S - A and replace it with S - aa and S - bb, which are the first
two productions with the right-side S deleted.

268 CHAPTER 13 Grammatical Format

The CFG is now

s - asa I hSh I aa I hh

which also generates EVENPALINDROME, except for the word A, which can no longer be
derived.

For example, the following derivation is generated in the old CFG:

Derivation

S = aSa
= aaSaa
= aahShaa
= aahhaa

Production Used

S -> aSa
S -> aSa
S -> hSh
S -> A

In the new CFG, we can combine the last two steps into one:

Derivation

S = aSa
= aaSaa
= aahhaa

Production Used

S -> aSa
S -> aSa
S -> hh

We do not eliminate the entire possibil ity of using S to form words.
We can now use this proposed replacement rule to describe an algorithm for el iminating

al l A-productions from a given grammar.
If a particular CFG has several nonterminals with A-productions, then we replace these

A-productions one by one following the steps of the proposed replacement rule. As we saw,
we wil l get more productions (new right sides by deleting some N's) but shorter derivations
(by combining the steps that formerly employed A-productions) . We end up with a CFG that
generates the exact same language as the original CFG (with the possible exception of the
word A) but that has no A-productions.

A l ittle discussion is in order here to establish not only that the new CFG actually does
generate all the non-A words the old CFG does but that it also generates no new words that
the old CFG did not.

We must observe that the new rules of production added do not lead to the generation of
any new words that were not capable of being generated from the old CFG. This is because
the new production has the same affect as the application of two old rules and instead of us
ing X - (new N-deleted string) we could employ these two steps X - (old string with N)
and then N _,, A.

Before we claim that th is constructive algorithm provides the whole proof, we must ask
whether or not it is finite. It seems that if we start with some nonterminals N 1 , N�, NJ' which
have A-productions and we eliminate these A-productions one by one unti l there are none
left, nothing can go wrong. Can it?

What can go wrong is that the proposed replacement rule may create new A-productions
that cannot themselves be removed without again creating more . For example, in this grammar

we have the A-production

S - a I Xh I aYa
x - r I A
r - h I x

X - A

Killing A-Productions 269

so by the replacement rule we can eliminate this production and put in its place the addi
tional productions

s - b (from S - Xb)

and

r - A (from r - x)

But now we have created a new A-production that was not there before. So, we stil l
have the same number of A-productions we started with. If we now use the proposed re
placement rule to get rid of Y - A, we get

s - aa (from s - aYa)

and

x - A (from x - Y)

But we have now recreated the production x - A. So, we are back with our old A-produc
tion. In this particular case, the proposed replacement rule wi l l never eliminate all A-produc
tions even in hundreds of applications.

Therefore, unfortunately, we do not yet have a proof of this theorem. However, we can
take some consolation in having created a wonderful i l lustration of the need for careful
proofs. Never again wil l we think that the phrase "and so we see that the algorithm is finite"
is a si l ly waste of words.

Despite the apparent calamity, all is not lost. We can perform an ancient mathematical
trick and patch up the proof. The trick is to el iminate all the A-productions simultaneously.

DEFINITION (inside the proof of Theorem 23)

In a given CFG, we call a nonterminal N nullable if

There i s a production N - A, or

There is a derivation that starts at N and leads to A:

N = · · · = A •

As we have seen, all nullable nonterminals are dangerous. We now state the careful for
mulation of the algorithm.

Modified Replacement Rule
1. Delete all A-productions.

2. Add the following productions: For every production

X - old string

add new productions of the form X - · · · , where the right side will account for any
modification of the old string that can be formed by deleting all possible subsets of nul
lable nonterminals, except that we do not allow X - A to be formed even if all the char
acters in this old string are nullable.

For example, in the CFG

s - a I Xb I aYa
x - Y I A
Y- b I x

270 CHAPTER 13 Grammatical Format

we find that X and Y are nullable. So when we delete X -+ A, we have to check all produc
tions that include X or Y to see what new productions to add:

The new CFG is

Old Productions
with Nullables

X -+ Y

X -+ A

Y -+ X

S -+Xh

S -+ aYa

Productions Newly
Formed by the Rule

Nothing
Nothing

Nothing

S -+ h

S -+ aa

S -+ a I Xb I aYa I b I aa
X -+ Y
Y-+ b I X

It has no A-productions but generates the same language.

This modified replacement rule works the way we thought the first replacement rule
would work, that is, by looking ahead at which nonterminals in the working string wi l l be
eliminated by A-productions and offering alternate substitutions in which the nullables have
already been eliminated.

Before we conclude this proof, we should ask ourselves whether the modified replace
ment rule is really workable, that is, is it an effective procedure in the sense of our use of
that term in Chapter 1 1 ? To apply the modified replacement rule, we must be able to identify
all the nullable nonterminals at once. How can we do this if the grammar is complicated?
For example, in the CFG

S -+ Xay I YY I ax I ZYX
X -+ Za I bZ I ZZ I Yb
Y -+ Ya I XY I A
Z -+ aX I YYY

al l the nonterminals are nullable, as we can see from

S � ZYX � YYYYX � YYYYZZ � YYYYYYYZ � YYYYYYYYYY
� · · · � AAAAAAAAAA = A

The solution to this problem is blue paint (the same shade used in Chapter 1 1) . Let us
start by painting all the nonterminals with A-productions blue. We paint every occurrence of
them, throughout the entire CFG, blue. Now for step 2, we paint blue all nonterminals that
produce solid blue strings. For example, if

S -+ ZYX

and Z, Y, and X are all blue, then we paint S blue. Paint all other occurrences of S throughout
the CFG blue too. As with the FAs, we repeat step 2 until nothing new is painted. At this
point all nullable nonterminals will be blue.

This is an effective decision procedure to determine all nullables, and therefore the
modified replacement rule is also effective.

This then successfully concludes the proof of this theorem. •

Killing A-Productions 271

EXAMPLE

Let us consider the following CFG for the language defined by (a + b)*a:

S --+ Xa
X --+ aX I bX I A

The only nullable nonterminal here is X, and the productions that have right sides in
cluding X are:

The ful l new CFG is

Productions
with Nullables

s - xa

x - ax

x - bx

New Productions
Formed by the Rule

s - a

x - a

x - h

S --+ Xa I a
X ---+ aX I bX I a I b

To produce the word baa, we formerly used the derivation :

Derivation

S ==> Xa

==> bXa

==> baXa

==> baa

Production Used

s - xa

x - hx

x - ax

x - A

Now we combine the last two steps, and the new derivation in the new CFG is

s � xa
� bXa
� baa

S --+ Xa
X --+ bX
X --+ a

Because A was not a word generated by the old CFG, the new CFG generates exactly
the same language. •

EXAMPLE

Consider this inefficient CFG for the language defined by (a + b)*bb(a + b)*

S --+ XY
X --+ Zb
Y - bW
Z --+ AB
w - z
A --+ aA I bA I A
B --+ Ba I Bb I A

272 CHAPTER 13 Grammatical Format

From X we can derive any word ending in h; from Y we can derive any word starting
with b. Therefore, from S we can derive any word with a double b.

Obviously, A and B are nullable. Based on that, Z -AB makes Z also nullable. After
that, we see that W is also nul lable. X, Y, and S remain nonnul lable. Alternately, of course,
we could have arrived at this by azure artistry.

The modified replacement algorithm tel ls us to generate new productions to replace the
A-productions as fol lows:

Additional New Productions
Old Derived from Old

X -> Zh X -> h

Y -> hW Y -> h

Z -> AB Z -> A and Z -> 8

W -> Z Nothing new

A -> aA A -> a

A -> hA A -> h

8 -> 8a 8 -> a

B -> Bh B -> h

Remember, we do not el iminate all of the old productions, only the old A-productions.
The fully modified new CFG is

s -xr
x - zh I h
r - hw I h
z - AB I A I B
w - z
A - aA I hA I a I h
B - Ba I Bh I a I h

Because A was not a word generated by the old CFG, the new CFG generates exactly

the same language. •

r:� KILLING UNIT PRODUCTIONS

We now eliminate another needless oddity that plagues some CFGs.

DEFINITION

A production of the fonn

Nontenninal - one Nontenninal

is called a unit production. •

Bar-Hillel , Perles, and Shamir tel l us how to get rid of these too.

THEOREM 24

If there is a CFG for the language l that has no A-productions, then there is also a CFG for
l with no A-productions and no unit productions .

Killing Unit Productions 273

PROOF

This wil l be another proof by constructive algorithm.
First, we ask ourselves what is the purpose of a production of the form

A ---+ B

where A and B are nonterminals.
We can use it only to change some working string of the form

(blah)A(blah)

into the working string

(blah)B(blah)

Why would we want to do that? We do it because later we want to apply a production to the
nonterminal B that is different from any that we could produce from A . For example,

B ---+ (string)

so

(blah)A(blah) � (blah)B(blah) � (blah)(string)(blah)

which is a change we could not make without using A ---+ B, because we had no production
A ---+ (string) .

It seems simple then to say that instead of unit productions all we need is A ---+ (string) .
We now formulate a replacement rule for eliminating unit productions.

Proposed Elimination Rule

If A ---+ B is a unit production and all the productions starting with B are

B ---+ s I I S2 I . . .

where s" s2, • • • are strings, then we can drop the production A ---+ B and instead include
these new productions:

A ---+ s I I S2 I . . .

Again, we ask ourselves, will repeated applications of this proposed elimination rule result
in a grammar that does not include unit productions but defines exactly the same language?

The answer is that we sti l l have to be careful . A problem analogous to the one that arose
before can strike again.

The set of new productions we create may give us new unit productions. For example, if
we start with the grammar

S ---+ A I hb
A ---+ B l b
B ---+ S I a

and we try to eliminate the unit production A ---+ B, we get instead

A ---+ S l a

to go along with the old productions we are retaining. The CFG is now

S ---+ A I hh
A ---+ b l a l S
8 ---+ S I a

274 CHAPTER 13 Grammatical Format

We sti l l have three unit productions:

s - A, A - S,

If we now try to eliminate the unit production B - S, we create the new unit production
B - A. If we then use the proposed elimination rule on B - A, we wil l get back B - S.

As was the case with A-productions, we must get rid of all unit productions in one fell
swoop to avoid infinite circularity.

Modified Elimination Rule

For every pair of nonterminals A and B, if the CFG has a unit production A - B or if there is
a chain of unit productions leading from A to B, such as

A � x, � x2 � • • • -==> B

where X 1 , X2 are some nonterminals, we then introduce new productions according to the
fol lowing rule: If the non unit productions from B are

B - s , I s2 I s, I .

where s 1 , s2 , and s3 are strings, create the productions

A - s , I s2 I s, I .

We do the same for all such pairs of A 's and B 's simultaneously. We can then eliminate
all unit productions.

This is what we meant to do originally. If in the derivation for some word w the nonter
minal A is in the working string and it gets replaced by a unit production A - B, or by a se
quence of unit productions leading to B, and further if B is replaced by the production
B - s4, we can accomplish the same thing and derive the same word w by employing the
production A - s4 directly in the first place.

This modified elimination rule avoids circularity by removing all unit productions at
once. If the grammar contains no A-productions, it is not a hard task to find all sequences of
unit productions A - S 1 - S2 - • • • - B, because there are only finitely many unit produc
tions and they chain up in only obvious ways. In a grammar with A-productions and nul lable
nonterminals X and Y, the production S - ZYX is essentially a unit production. There are no
A-productions al lowed by the hypothesis of the theorem so no such difficulty is possible.

The modified method described in the proof is an effective procedure and it proves the
theorem. •

EXAMPLE

Let us reconsider the troubling example mentioned in the proof above:

s - A I hh
A - B I h
s - s I a

Let us separate the units from the nonunits:

Unit Productions
S --+ A
A --+ B
B --+ S

Decent Folks
S --+ hh
A --+ h
8 --+ a

Chomsky Normal Form 275

We list all unit productions and sequences of unit productions, one nonterminal at a
time, tracing each nonterminal through each sequence it heads. Then we create the new pro
ductions that allow the first nonterminal to be replaced by any of the strings that could re
place the last nonterminal in the sequence.

s - A
s - A - B
A - B
A - B - S
B - S
B - S - A

The new CFG for this language is

gives
gives
gives
gives
gives
gives

s - bb I b I a
A - b I a I bb
B - a I bb I b

which had no unit productions.

s - h
s - a
A - a
A - bb
B - bb
B - b

Parenthetically, we may remark that this particular CFG generates a finite language
since there are no nonterminals in any string produced from S. •

rQr CHOMSKY NORMAL FORM

In our next result, we will separate the terminals from the nonterminals in CFG productions.

THEOREM 25

If L is a language generated by some CFG, then there is another CFG that generates all the
non-A words of L, all of whose productions are of one of two basic forms:

PROOF

Nonterminal - string of only Nonterminals
Nonterminal - one terminal

The proof wil l be by constructive algorithm. Let us suppose that in the given CFG the non
terminals are S, X1 , X2, • • . •

Let us also assume that the terminals are a and b.
We now add two new nonterminals A and B and the productions

A - a
B - b

Now for every previous production involving terminals, we replace each a with the non
terminal A and each b with the nonterminal B. For example,

X3 -X4aX 1SbbX7a

becomes

X3 - X4AX1SBBX�

which is a string of solid nonterminals .

276 CHAPTER 13 Grammatical Format

Even if we start with a string of solid terminals

x6 ---+ aaba

we convert it into a string of solid nonterminals

X6 ---+ AABA

All our old productions are now of the form

Nonterminal ---+ string of Nonterminals

and the two new productions are of the form

Nonterminal ---+ one terminal

Any derivation that formerly started with S and proceeded down to the word

aaabba

will now follow the same sequence of productions to derive the string

AAABBA

from the start symbol S. From here we apply A ---+ a and B ---+ b a number of times to gener
ate the word aaabba. This convinces us that any word that could be generated by the original
CFG can also be generated by the new CFG.

We must also note that any word generated by the new CFG could also be generated by
the old CFG. Any derivation in the new CFG is a sequence of applications of those produc
tions that are modified old productions and the two totally new productions from A and B.
Because these two new productions are the replacement of one nonterminal by one terminal,
nothing they introduce into the working string is itself replaceable. They do not interact with
the other productions.

If the letters A and B were already nonterminals in the CFG to start with, then any two
other unused symbols would serve as well. Therefore, this new CFG proves the theorem. •

EXAMPLE

Let us start with the CFG

S ---+ X1 J X2aX2 J aSb J b
X1 ---+ XJ(2 J b
x2 - aX2 I aax,

After the conversion, we have

s - x,
s - xµ2
S ---+ASB
S ---+ B

A ---+ a
B ---+ b

X, ---+ XiX2
X1 ---+ B
X2 ---+ AX2
X2 ---+ AAX1

We have not employed the disjunction slash J , but instead have written out all the pro
ductions separately so that we may observe eight of the form

Nonterminal ---+ string of Nonterminals

Chomsky Normal Form 277

and two of the form

Nonterminal - one terminal •

In all cases where the algorithm of the theorem is applied, the new CFG has the same
number of terminals as the old CFG and more nonterminals (one new one for each terminal) .

As with all our proofs by constructive algorithm, we have not said that this new CFG is
the best example of a CFG that fits the desired format. We say only that it is one of those that
satisfy the requirements.

One problem is that we rrtay create unit productions where none existed before. For ex
ample, if we follow the algorithm to the letter of the law,

will become

x - a

X - A
A - a

To avoid this problem, we should add a clause to our algorithm saying that any produc
tions that we find that are already in one of the desired forms should be left alone: "If it ain 't
broke, don 't fix it." Then we do not run the risk of creating unit productions (or A-produc
tions for that matter).

EXAMPLE

One student thought that it was a waste of effort to introduce a new nonterminal to stand for
a if the CFG already contained a production of the form nonterminal - a. Why not simply
replace all a 's in long mixed strings by this nonterminal? For instance, why cannot

become

s - Na
N - a I b

s - NN
N - a I b

The answer is that bb is not generated by the first grammar, but it is by the second. The cor
rect modified form is

s - NA
N - a I b
A - a •

EXAMPLE

The CFG

s - xr
x - xx
r - rr
x - a
Y - b

278 CHAPTER 13 Grammatical Format

(which generates aa*bb* and which is already in the desired fonnat) would, if we mind
lessly attacked it with our algorithm, become

s - xr
x - xx
r - rr
X - A
Y - B
A - a
B - h

which is also in the desired format but has unit productions. When we get rid of the
unit productions using the algorithm of Theorem 24 (p. 272), we return to the original
CFG.

To the true theoretician, this meaningless waste of energy costs nothing. The goal was to
prove the existence of an equivalent grammar in the specified fonnat. The virtue here is to
find the shortest, most understandable, and most elegant proof, not an algorithm with dozens
of messy clauses and exceptions. The problem of finding the best such grammar is also a
question theoreticians are interested in, but it is not the question presented in Theorem 25
(p. 275) . •

The purpose of Theorem 25 was to prepare the way for the following fonnat and theo
rem developed by Chomsky.

DEFINITION

If a CFG has only productions of the fonn

Nontenninal - string of exactly two Nontenninals

or of the form

Nontenninal - one terminal

it is said to be in Chomsky Normal Form, or CNF. •

THEOREM 26

For any context-free language l, the non-A words of l can be generated by a grammar in
which all productions are in CNF.

Let us be careful to realize that any context-free language that does not contain A as a
word has a CFG in CNF that generates exactly it. However, if a CFL contains A, then when
its CFG is converted by the algorithms above into CNF, the word A drops out of the lan
guage, while all other words stay the same.

PROOF

The proof wil l be by constructive algorithm.
From Theorems 23 and 24 we know that there is a CFG for l (or for all l except A) that

has no A-productions and no unit productions.

Chomsky Normal Form 279

Let us suppose further that we start with a CFG for l that we have made to fit the form

specified in Theorem 25. Let us suppose its productions are

s - X1XJ<�8 X1 -X3X4X1tf4
s - x�s x , - a
s - b X3 - X4X9

The productions of the form

Nonterminal - one terminal

we leave alone. We must now make the productions with right sides having many nontermi
nals into productions with right sides that have only two nonterminals.

For each production of the form

Nonterminal - string of Nonterminals

we propose the following expansion that involves the introduction of the new nonterminals
R 1 , R2, • • • • The production

should be replaced by

where

and where

R3 - X�s

We use these new nonterminals nowhere else in the grammar; they are used solely to
split this one production into small pieces. If we need to expand more productions, we intro
duce new R 's with different subscripts .

Let us think of this as

s -X1 (rest 1) (where rest 1) = XJ<3X8)
(rest 1) - X2(rest2) (where rest2) = X3X8)
(rest2) - X3X8

This trick works just as well if we start with an odd number of nonterminals on the
right-hand side of the production :

should be replaced by

X8 -X2R4 (where R4 = X1X1X�9)
R4 - X1R5 (where R5 = X1X3X9)
R5 - X1R6 (where R6 = X�9)
R6 - x3x9

In this way, we can convert productions with long strings of nonterminals into se
quences of productions with exactly two nonterminals on the right side. As with the prev ious
theorem, we are not finished until we have convinced ourselves that th is convers ion has not
altered the language the CFG generates. Any word formerly generated is sti l l generatable by
v irtually the same steps, if we understand that some productions have been expanded into
several productions that must be executed in sequence.

280 CHAPTER 13 Grammatical Format

For example, in a derivation where we previously employed the production

Xg -XiX1X1X3X9

we must now employ the sequence of productions :

in exactly this order.

x8 - x2R4
R4 - X1Rs
Rs - X1R6
R6 - x3x9

We must also show that with all these additional new nonterminals and productions we
have not allowed any additional words to be generated. Let us observe that because the non
terminal R5 occurs in only the two productions

R4 -X1Rs

and

Rs -X1R6

any sequence of productions that generates a working string using R5 must have used

R4 - X1Rs

to get R5 into the working string, and

to remove it from the final string.
This combination has the net effect of a production l ike

R4 - X1X1R6

Again, R4 could have been introduced into the working string only by one specific produc
tion. Also, R6 can be removed only by one specific production. In fact, the net effect of these
R 's must be the same as the replacement of X8 by XiX"iX1X3X9. Because we use different R 's
in the expansion of each production, the new nonterminals (R 's) cannot interact to give us
new words. Each is on the right side of only one production and on the left side of only one
production. The net effect must be l ike that of the original production.

The new grammar generates the same language as the old grammar and is in the desired

form. •

EXAMPLE

Let us convert

s - aSa I bSb I a I b I aa I hh

(which generates the language PALINDROME except for A) into CNF. This language is
called NONNULLPALINDROME.

First, we separate the terminals from the nonterminal as in Theorem 25 (p. 275) :

s -ASA
s - BSB
s - AA

Chomsky Normal Form

S ---+ 88
S ---+ a
S ---+ b
A ---+ a
8 ---+ b

281

Notice that we are careful not to introduce the needless unit productions S ---+ A and
S ---+ 8 .

Now we introduce the R 's :

S ---+ AR 1
R 1 ---+ SA
S ---+ 8R2
R2 ---+ S8

S ---+AA
S ---+ 88
S ---+ a
S ---+ b
A ---+ a
8 ---+ b

This is in CNF, but it is quite a mess. Had we not seen how it was constructed, we
would have some difficulty recognizing this grammar as a CFG for NONNULLPALIN
DROME.

If we include with this list of productions the additional production S ---+ A, we have a
CFG for the entire language PALINDROME.

In languages without the word A, this procedure works smoothly. However, A is a word
in PALINDROME, and adding the production S ---+ A will incorporate this word without in
troducing any other (unwanted) words. •

EXAMPLE

Let us convert the CFG

S ---+ bA I a8
A --+ bAA I as I a
8 --+ a88 I bS I b

into CNF. Because we already use the symbols A and 8 in this grammar, let us call the new
nonterminals we need to incorporate to achieve the form of Theorem 25 X (for a) and Y
(for b).

The grammar becomes

S --+ YA 8 --+ X88
S ---+X8 B --+ YS
A ---+ YAA B --+ b
A --+ XS X --+ a
A --+ a Y --+ b

Notice that we have left well enough alone in two instances:

A --+ a and 8 --+ b

We need to simpl ify only two productions:

A --+ YAA becomes

282 CHAPTER 13 Grammatical Format

and

B - XBB becomes

The CFG has now become

s - rA J XB
A - rR 1 I XS I a
B - xR2 J rs J b
X - a
y - b
RI - AA
R2 - BB

which is in CNF. This is one of the more obscure grammars for the language EQUAL. •

EXAMPLE

Consider the CFG

S - aaaaS J aaaa

which generates the language a4n for n = 1 , 2, 3, . . . = (a4 a8 a 1 2
• • • } • We convert

this to CNF as follows: first into the form of Theorem 25

which in tum becomes

� LEFTMOST DERIVATIONS

s -AAAAs
s - AAAA
A - a

S - AR 1
R 1 - AR2
Rz - AR3
R3 - AS
S - AR4
R4 - AR5
R5 - AA
A - a •

As the last topic in this chapter, we show that we can not only standardize the form of the
grammar, but also the form of the derivations.

DEFINITION

The leftmost nonterminal in a working string is the first nonterminal that we encounter
when we scan the string from left to right. •

Leftmost Derivations 283

EXAMPLE

In the string abNbaXYa, the leftmost nonterminal is N. •

DEFINITION

If a word w is generated by a CFG by a certain derivation and at each step in the derivation,
a rule of production is applied to the leftmost nonterminal in the working string; then this
derivation is called a leftmost derivation. •

EXAMPLE

Consider the CFG

The following is a leftmost derivation:

s - asx I b
x - xb I a

s � asx
� aaSXX
� aabXX
� aabXbX
� aababX
� aababa

At every stage in the derivation, the nonterminal replaced is the leftmost one . •

EXAMPLE

Consider the CFG

s - xY
x - xx I a

r - YY I b

We can generate the word aaabb through several different production sequences, each
of which follows one of these two possible derivation trees:

Derivation I Derivation 1 1 s /s� / �
x y x y

/ ""' / ""' / ""' / ""' x x y y x x y y

/ \ / \ x x x x

I I I I
a a a h h a a a h h

284 CHAPTER 13 Grammatical Format

Each of these trees becomes a leftmost derivation when we specify in what order the steps
are to be taken. If we draw a dotted l ine similar to the one that traces the l'..ukesiewicz nota
tion for us, we see that it indicates the order of productions in the leftmost derivation. We
number the nonterminals in the order in which we first meet them on the dotted line. This is
the order in which they must be replaced in a leftmost derivation.

Derivation I

I
,/ l s �' 0- �' ,

, ' ' 2 I ' '-
1 ' X I 7)' , //-�', 1;/-�\ I . I I . I 3 X I 4 X \ 8)' 9)'

I I / \' I I . I
I / !' '\ \ I I : I
I I I I I I I
I 5 x I 6 x : I I I I
I I I ' i I ' I I I I
I I I I 1 I I I I
I I I f f I h I I I 1 a ; 1 a 1 \ a) 1) 1 h ; , _ , ...,. - - , _

Derivation I

1 . s = X'Y

2 . = XxY

3 . = aX'Y

4. = aXxY

5 . = aaXY

6. = aaaY

7. = aaaYr

8. = aaabY

9. = aaabb

Derivation I I

Derivation II

I . s = X'Y

2 . = XxY

3 . = XxXY

4. = aXxY

5. = aaXY

6. = aaaY

7. = aaaYr

8. = aaahY

9. = aaabb

In each of these derivations, we have drawn a dot over the head of the leftmost nontermi
nal. It is the one that must be replaced in the next step if we are to have a leftmost derivation. •

The method i l lustrated above can be applied to any derivation in any CFG. It therefore
provides a proof by constructive algorithm for the following theorem.

THEOREM 27

Any word that can be generated by a given CFG by some derivation also has a leftmost de
rivation.

EXAMPLE

Consider the CFG

s - s -:J s I -s I (S) I P I q

Problems

To generate the symbolic logic formula

(p :::J (-p :::J q))

we use the following tree:

s

/I""-
(s)

/I"'
s :J s I /I"'

p (s)

/I"'
s :J s

/ "" I
s q Ip

285

Remember that the terminal symbols are () :::J -p q. Because the only nonterminal is S, we
must always replace the leftmost S:

1f PROBLEMS

s � <�
� (S :::J S)
� (p :::J �
� (p :::J (�)
� (p :::J (S � S))
� (p :::J (-s :::J �))
� (p :::J (-p :::J S))
� (p :::J (-p :::J q))

l . Find CFGs that generate these regular languages over the alphabet I = I a h I :

(i) The language defined by (aaa + b)* .
(i i) The language defined by (a + b)*(bbb + aaa)(a + b)* .

(i i i) All strings without the substring aaa.

(iv) All strings that end in b and have an even number of h's in total .
(v) The set of all strings of odd length.

(v i) All strings with exactly one a or exactly one b.
(vii) All strings with an odd number of a 's or an even number of h 's .

•

2. For the seven languages of Problem I , find CFGs for them that are in regular grammar
format.

For the following CFGs, find regular expressions that define the same language and de
scribe the language.

286 CHAPTER 13 Grammatical Format

3. (i) s - ax I bS I a I b
x - ax I a

(i i) s - hs I ax I h
x - hx I as I a

4. (i) s - aaS I abS I baS I bbS I A
(i i) s - aB I bA I A

A - as
B - bS

s. (i) s - aB I bA
A - aB I a
B - bA I b

(i i) s - as I bX I a
x - ax I bY I a
r - ar I a

6. (i) s - as I bX I a
x - ax I bY I bZ I a

r - aY I a
z - az I bW
w - aw I a

(i i) s - hs I ax
x - bs I aY
r - ar I bY I a I b

7. (i) Starting with the alphabet

� = { a b () + * }

find a CFG that generates al l regular expressions.
(i i) Is this language regular?

8. Despite the fact that a CFG is not in regular form, it sti l l might generate a regular lan
guage. If so, this means that there is another CFG that defines the same language and is
in regular form. For each of the examples below, find a regular form version of the CFG:

(i) s - xrz
x - ax I bX I A
r - ar I bY I A
z - az I A

(i i) s - xxx
x - ax I a
r - hr I h

(i i i) s - xr
x - ax I Xa I a
r - aY I Ya I a

9. Show how to convert a TG into a regular grammar without first converting it to an FA.

10. Let us, for the purposes of this problem only, allow a production of the form

N1 - rN2

where N1 and N2 are nonterminals and r is a regular expression. The meaning of this for
mula is that in any working string we may substitute for N1 any string wN2, where w is a

Problems 287

word in the language defined by r. This can be considered a short hand way of writing
an infinite family of productions, one for each word in the language of r.

Let a grammar be called bad if all its productions are of the two forms

N1 - rN2
N3 - A

Bad grammars generate languages the same way CFGs do.
Prove that even a bad grammar cannot generate a nonregular language, by showing

how to construct one regular expression that defines the same language as the whole bad
grammar.

1 1 . Each of the following CFGs has a production using the symbol A and yet A is not a
word in its language. Using the algorithm in this chapter, show that there are other CFGs
for these languages that do not use A-productions:

(i) s - ax I bX
x - a I b I A

(ii) s - ax I hS I a I b
x - aX ! a l A

(i i i) s - as I hX
x - ax I A

(iv) s - xax I hX
x - xax I XbX I A

12. (i) Show that if a CFG does not have A-productions, then there is another CFG that
does have A-productions and generates the same language.

(i i) Show that if a CFG does not have unit productions, then there is another CFG that
does have unit productions and generates the same language.

13. Each of the following CFGs has unit productions . Using the algorithm presented
in this chapter, find CFGs for these same languages that do not have unit produc
tions .

(i) s - ax I Yb
x - s
Y - bY I h

(i i) S - AA
A - B I BB
B - ahB I h I bh

(i i i) s - AB
A - B
B - aB I Bb I A

14. Convert the following CFGs to CNF:

(i) s - ss I a
(i i) s - asa I SSa I a

(i i i) s - axx
x - aS l hS l a

(iv) E - E + E
E - E * E
E - (E)
E - 7
The terminals here are + * () 7 .

(v) s - ABABAB

288 CHAPTER 13 Grammatical Format

A - a I A
B - b I A
Note that A is a word in this language, but when converted into CNF, the grammar
will no longer generate it.

(vi) S - SaS I SaSbS I SbSaS I A
(vii) s -As I SB

A - Bs I sA
s - ss

15. Convert the following CFGs with unit productions into CNF:

(i) s -x
x - r
r - z
z - aa

(ii) s - ss I A
A - ss I AS I a

16. If L is a CFL that contains the word A and we Chomsky-ize its CFG into CNF and then
add on the sole extra production S - A, do we now generate all of L and only L?

17. (i) Find the leftmost derivation for the word abba in the grammar

s - AA
A - aB
B - bB I A

(ii) Find the leftmost derivation for the word abbabaabbbabbab in the CFG

s - sss I aXb
x - ba I bba I abb

18. Given a CFG in CNF and restricting all derivations of words to being leftmost deriva
tions, is it stil l possible that some word w has two nonidentical derivation trees? In other
words, is it stil l possible that the grammar is ambiguous?

19. Prove that any word that can be generated by a CFG has a rightmost derivation.

20. Show that if L is any contex-free language that does not contain the word A, then there
is a context-free grammar that generates L and has the property that the right-hand side
of every production is a string that starts with a terminal . In other words, all productions
are of the form

Nonterminal - terminal(arbitrary)

CHAPTER 14

1f A NEW FORMAT FOR FAs

Pushdown
Automata

In Chapter 1 3 , we saw that the class of languages generated by CFGs is properly larger than
the class of languages defined by regular expressions. This means that all regular languages
can be generated by CFGs, and so can some nonregular languages (e.g. , { anbn I and PALIN
DROME).

After introducing the regular languages defined by regular expressions, we found a class
of abstract machines (FAs) with the following dual property : For each regular language,
there is at least one machine that runs successfully only on the input strings from that lan
guage and for each machine in the class, the set of words it accepts is a regular language.
This correspondence was crucial to our deeper understanding of this collection of languages.
The pumping lemma, complements, intersection, decidability, and so on were all learned
from the machine aspect, not from the regular expression. We are now considering a differ
ent c lass of languages but we want to answer the same questions, so we would again l ike to
find a machine formulation. We are looking for a mathematical model of some class of ma
chines that correspond analogously to CFLs; that is, there should be at least one machine
that accepts each CFL and the language accepted by each machine is context-free. We want
CFL-recognizers or CFL-acceptors just as FAs are regular language-recognizers and -accep
tors. We are hopeful that an analysis of the machines will help us understand the class of
context-free languages in a deeper, more profound sense, just as an analysis of FAs led to
theorems about regular languages. In this chapter, we develop such a new type of machine.
In the next chapter, we prove that these new machines do indeed correspond to CFLs in the
way we desire. In subsequent chapters, we shall learn that the grammars have as much to
teach us about the machines as the machines do about the grammars.

To build these new machines, we start with our old FAs and throw in some new gadgets
that wil l augment them and make them more powerful. Such an approach does not necessar
ily always work-a completely different design may be required-but this time it wi l l (i t is
a stacked deck).

What we shall do first is develop a slightly different pictorial representation for FAs, one
that wil l be easy to augment with the new gizmos.

We have, so far, not given a name to the part of the FA where the input string l ives while
it is being run. Let us call thi s the INPUT TAPE. The INPUT TAPE must be long enough

289

290 CHAPTER 14 Pushdown Automata

for any possible input, and because any word in a* is a possible input, the TAPE must be in
finitely long (such a tape is very expensive) . The TAPE has a first location for the first letter
of the input, then a second location, and so on. Therefore, we say that the TAPE is infinite in
one direction only. Some people use the si l ly term "half-infinite" for this condition (which is
l ike being half sober).

We draw the TAPE as shown here :

The locations into which we put the input letters are called cells. We name the cells with
lowercase Roman numerals :

ce l l i cell ii cell i i i

Below we show an example of an input TAPE already loaded with the input string aaba.
The character Ll is used to indicate a blank in a TAPE cel l .

a a b a

The vast majority (all but four) of the cells on the input TAPE are empty; that is , they
are loaded with blanks, LlLlLl

As we process this TAPE on the machine, we read one letter at a time and eliminate
each as it is used. When we reach the first blank cel l , we stop. We always presume that once
the first blank is encountered, the rest of the TAPE is also blank. We read from left to right
and never go back to a cell that was read before.

As part of our new pictorial representations for FAs, let us introduce the symbols

~
to streamline the design of the machine. The arrows (directed edges) into or out of these
states can be drawn at any angle. The START state is l ike a - state connected to another
state in a TG by a A-edge. We begin the process there, but we read no input letter. We just
proceed immediately to the next state. A start state has no arrows coming into it.

An ACCEPT state is a shorthand notation for a dead-end final state-once entered, it
cannot be left, such as

~ "" '"""

A REJECT state is a dead-end state that is not final :

A New Format for FAs 291

Because we have used the adjective "final" to apply only to accepting states in FAs, we call
the new ACCEPT and REJECT states "halt states." Previously, we could pass through a final
state if we were not finished reading the input data; halt states cannot be traversed.

We are changing our diagrams of FAs so that every function a state performs is done by
a separate box in the picture. The most important job performed by a state in an FA is to read
an input letter and branch to other states depending on what letter has been read. To do this
job from now on, we introduce the READ states. These are depicted as diamond-shaped
boxes as shown below:

(fol low th is path if what is
read is an a)

a
(fo l low th is path if what is

read is a b)

(fo l low th is path if a t. was read, i .e . , if the
i nput str ing was empty or tota l ly read)

Here again, the directions of the edges in the picture above show only one of the many
possibilities. When the character Li is read from the TAPE, it means that we are out of input
letters. We are then finished processing the input string. The Li-edge wil l lead to ACCEPT if
the state we have stopped in is a final state and to REJECT if the processing stops in a state
that is not a final state. In our old pictures for FAs, we never explained how we knew we
were out of input letters. In these new pictures, we can recognize this fact by reading a blank
from the TAPE.

These suggestions have not altered the power of our machines. We have merely intro
duced a new pictorial representation that wil l not alter their language-accepting abil ities.

The FA that used to be drawn like

h a a

h

(the FA that accepts all words ending in the letter a) becomes, in the new symbolism, the
machine below:

START

REJ ECT ACCEPT

292 CHAPTER 14 Pushdown Automata

Notice that the edge from START needs no label because START reads no letter. All the
other edges do require labels. We have drawn the edges as straight-l ine segments, not curves
and loops as before. We have also used the electronic diagram notation for wires flowing
into each other. For example,

means

Our machine is stil l an FA. The edges labeled A are not to be confused with A-labeled
edges. The A-edges lead only from READ boxes to halt states. We have just moved the +
and - s igns out of the circles that used to indicate properties of states and into adjoining
ovals . The "states" are now only READ boxes and have no final/nonfinal status.

In the FA above, if we run out of input letters in the left READ state, we will find a .:l on
the INPUT TAPE and so take the .:l-edge to REJECT. Reading a .:l in a READ state that cor
responds to an FA final state, l ike the READ on the right, sends us to ACCEPT.

Let us give another example of the new pictorial notation.

EXAMPLE

I> a a. I>

I>

becomes

START ACCEPT

REJECT REJECT

•

Adding a Pushdown Stack 293

These pictures look more l ike the "flowcharts" we are familiar with than the old pictures
for FAs did. The READ states are diamond-shaped because they are conditional branch in
structions. The general study of the flowchart as a mathematical structure is part of computer
theory, but beyond our intended scope.

r-Qr ADDING A PUSHDOWN STACK

The reason we bothered to construct new pictures for FAs (which had perfectly good pic
tures already) is that it is now easier to make an addition to our machine called the PUSH
DOWN STACK, or PUSHDOWN STORE. This is a concept we may have already met in a
course on data structures.

A PUSHDOWN STACK is a place where input letters (or other information) can be
stored until we want to refer to them again. It holds the letters it has been fed in a long col
umn (as many letters as we want). The operation PUSH adds a new letter to the top of the
column. The new letter is placed on top of the STACK, and all the other letters are pushed
back (or down) accordingly. Before the machine begins to process an input string, the
STACK is presumed to be empty, which means that every storage location in it initially
contains a blank. If the STACK is then fed the letters a, h, c, d by the sequence of instruc
tions

PUSH a
PUSH h
PUSH c
PUSH d

then the top letter in the STACK is d, the second is c, the third is h, and the fourth is a. If we
now execute the instruction

PUSH b

the letter h will be added to the STACK on the top. The d will be pushed down to position 2,
the c to position 3 , the other b to position 4, and the bottom a to position 5.

One pictorial representation of a STACK with these letters in it is shown below. Beneath
the bottom a, we presume that the rest of the STACK, which, l ike the INPUT TAPE, has in
finitely many storage locations, holds only blanks.

STACK

b

d

c

b

a

d

294 CHAPTER 14 Pushdown Automata

The instruction to take a letter out of the STACK is called POP. This causes the letter on
the top of the STACK to be brought out of the STACK (popped). The rest of the letters are
moved up one location each. A PUSHDOWN STACK is called a LIFO file, which stands
for "the last in is the first out," like a narrow crowded elevator. It is not like the normal stor
age area of a computer, which allows random access (we can retrieve stuff from anywhere
regardless of the order in which it was fed). A PUSHDOWN STACK lets us read only the
top letter. If we want to read the third letter in the STACK, we must go POP, POP, POP, but
then we have additionally popped out the first two letters and they are no longer in the
STACK. We also have no simple instruction for determining the bottom letter in the STACK,
for telling how many b 's are in the STACK, and so forth. The only STACK operations al
lowed to us are PUSH and POP.

Popping an empty STACK, like reading an empty TAPE, gives us the blank character ii.
We can add a PUSHDOWN STACK and the operations PUSH and POP to our new

drawings of FAs by including as many as we want of the states

h

and

! ---i)"�I PUSH h I----)"

The edges coming out of a POP state are labeled in the same way as the edges from a

READ state, one (for the moment) for each character that might appear in the STACK in

cluding the blank. Note that branching can occur at POP states but not at PUSH states. We

can leave PUSH states only by the one indicated route, although we can enter a PUSH state

from any direction.
When FAs have been souped up with a STACK and POP and PUSH states, we call them

pushdown automata, abbreviated PDAs. These PDAs were introduced by Anthony G. Get

tinger in 1 96 1 and Marcel P. Schiltzenberger in 1 963 and were further studied by Robert J .

Evey, also in 1 963 .
The notion of a PUSHDOWN STACK as a data structure had been around for a

while, but these mathematicians independently realized that when this memory structure

is incorporated into an FA, its language-recognizing capabil ities are increased consider-

ably.
The precise definition will follow soon, after a few examples.

Adding a Pushdown Stack 295

EXAMPLE

Consider the following PDA:

PUSH a

A
a . b

A

REJECT REJ ECT ACCEPT REJECT

Before we begin to analyze this machine in general, let us see it in operation on the in
put string aaabbb. We begin by assuming that this string has been put on the TAPE. We al
ways start the operation of the PDA with the STACK empty as shown:

TAPE a a a b b b

STACK

n
We must begin at START. From there we proceed directly into the upper left READ, a

state that reads the first letter of input. This is an a, so we cross it off the TAPE (it has been
read) and we proceed along the a-edge from the READ state. This edge brings us to the
PUSH a-state that tel ls us to push an a onto the STACK. Now the TAPE and STACK look
like this :

TAPE a a b b b

STACK

a

296 CHAPTER 14 Pushdown Automata

The edge from the PUSH a-box takes us back to the line feeding into the same READ box,
so we return to this state. We now read another a and proceed as before along the a-edge to push
it into the STACK. Again, we are returned to the READ box. Again, we read an a (our third)
and, again, this a is pushed onto the STACK. The TAPE and STACK now look like this:

TAPE b b b

STACK

a

a

a

After the third PUSH a, we are routed back to the same READ state again. This time,
however, we read the letter b. This means that we take the b-edge out of this state down to
the lower left POP. Reading the b leaves the TAPE like this:

The state POP takes the top element off the STACK. It is an a. It must be an a or a .:1 be
cause the only letters pushed onto the STACK in the whole program are a 's . If it were a .:1 or
the impossible choice, b, we would have to go to the REJECT state. However, this time,
when we pop the STACK, we get the letter a out, leaving the STACK like this :

STACK

a

a

Following the a-road from POP takes us to the other READ. The next letter on the
TAPE to be read is a b. This leaves the TAPE l ike this :

The b-road from the second READ state now takes us back to the edge feeding into the POP
state. So, we pop the STACK again and get another a. The STACK is now down to only one a:

STACK

f=Ei

Adding a Pushdown Stack 297

The a-line from POP takes us again to this same READ. There is only one letter left on
the input TAPE, a b. We read it and leave the TAPE empty, that is, all blanks. However, the
machine does not yet know that the TAPE is empty. It wil l discover this only when it next
tries to read the TAPE and finds a A:

The b that we just read loops us back into the POP state. We then take the last a from
the STACK, leaving it also empty-al l blanks:

STACK

Fl
The a takes us from POP to the right-side READ again. This time the only thing we can

read from the TAPE is a blank, A. The A-edge takes us to the other POP on the right side.
This POP now asks us to take a letter from the STACK, but the STACK is empty. Therefore,
we say that we pop a A.

This means that we must follow the A-edge, which leads straight to the halt state
ACCEPT. Therefore, the word aaabbb is accepted by this machine.

More than this can be observed. The language of words accepted by this machine is exactly

2 . . . 1

Let us see why.
The first part of the machine,

START

is a circuit of states that reads from the TAPE some number of a's in a row and pushes them
into the STACK. This is the only place in the machine where anything is pushed into the
STACK. Once we leave this circuit, we cannot return, and the STACK contains everything it
will ever contain.

After we have loaded the STACK with all the a's from the front end of the input string,
we read yet another letter from the input TAPE. If this character is a A, it means that the in
put word was of the form an, where n might have been 0 (i .e . , some word in a*) .

If this is the input, we take the ii-line all the way to the right-side POP state. This tests the
STACK to see whether or not it has anything in it. If it has, we go to REJECT. If the STACK is
empty at this point, the input string must have been the null word, A, which we accept.

Let us now consider the other logical possibil ity, that after loading the front a's from the
input (whether there are many or none) onto the STACK, we read a h. This must be the tirst
b in the input string. It takes us to a new section of the machine into another small circuit .

298 CHAPTER 14 Pushdown Automata

R EJ ECT

b b

R EJ ECT

On reading this first h, we immediately pop the STACK. The STACK can contain
some a 's or only d 's . If the input string started with a h, we would be popping the
STACK without ever hav ing pushed anything onto it. We would then pop a d and go to
REJECT. If we pop a h, something impossible has happened. So, we go to REJECT and
cal l the repairperson. If we pop an a, we go to the lower right READ state that asks us to
read a new letter.

As long as we keep popping a 's from the STACK to match the h 's we are reading from
the TAPE, we circle between these two states happily: POP a, READ h, POP a, READ h. If
we pop a Ll from the STACK, it means that we ran out of STACK a 's before the TAPE ran
out of input h 's . This d-edge brings us to REJECT. Because we entered this two-state circuit
by reading a h from the TAPE before popping any a 's , if the input is a word of the form a"h",
then the h's wil l run out first.

If while looping around this c ircuit, we hit an a on the TAPE, the READ state sends us
to REJECT because this means the input is of the form

(some a 's) (some b 's) (another a) . . .

We cannot accept any word in which we come to an a after having read the first h. To
get to ACCEPT, the second READ state must read a blank and send us to the second POP
state. Reading this blank means that the word ends after its clump of b 's. Al l the words ac
cepted by this machine must therefore be of the form a*b* but, as we shal l now see, only
some of these words successfully reach the halt state ACCEPT.

Eventually, the TAPE will run out of letters and the READ state wi l l tum up a blank. An
input word of the form a"h" puts n a 's into the STACK. The first h read then takes us to the
second circuit . After n trips around this circuit, we have popped the last a from the STACK
and have read the other (n - I) h's and a blank from the TAPE. We then exit this section to
go to the last test.

We have exhausted the TAPE's supply of b's , so we should check to see

that the STACK is empty. We want to be sure we pop a d; otherwise, we reject the word be
cause there must have been more a 's in the front than h's in the back. For us to get to

Adding a Pushdown Stack 299

ACCEPT, both TAPE and STACK must empty together. Therefore, the set of words this
PDA accepts is exactly the language

2 3 . . . } •
In the example above, we said that an a was read and then it was pushed onto the

STACK. In reality (such as it is) , the a that was read was consumed by traversing the a-edge.
What was pushed was an unrelated a. PUSH states create matter out of thin air; they are not
limited to what is read from the TAPE.

We have already shown that the language accepted by the PDA above could not be ac
cepted by any FA, so pushdown automata are more powerful than finite automata. We can
say more powerful because all regular languages can be accepted by some PDA because they
can be accepted by some FA and an FA (in the new notation) is exactly like a PDA that never
uses its STACK. Propriety dictates that we not present the formal proof of this fact until after
we give the formal definition of the terms involved. We soon present the definition of PDAs
(p. 307).

Let us take a moment to consider what makes these machines more powerful than FAs.
The reason is that even though they too have only finitely many states to roam among, they
do have an unlimited capacity for memory. It is a memory with restricted access but memory
nonetheless. They can know where they have been and how often. The reason no FA could
accept the language { anbn I was that for large enough n, the an part had to run around in a cir
cuit and the machine could not keep track of how many times it had looped around. It could
therefore not distinguish between a%n and some ambn. However, the PDA has a primitive
memory unit. It can keep track of how many a 's are read at the beginning.

Is this mathematical model then as powerful as a whole computer? Not quite, but that
goal will be reached eventually.

There are two points we must discuss. The first is that we need not restrict ourselves to
using the same alphabet for input strings as we use for the STACK. In the example above,
we could have read an a from the TAPE and then pushed an X into the STACK and let the
X's count the number of a 's. In this case, when we test the STACK with a POP state, we
branch on X or �. The machine would then look like this:

START ACCEPT

PUSH X

REJECT

We have drawn this version of the PDA with some minor variations of display but no
substantive change in function.

300 CHAPTER 14 Pushdown Automata

The READ states must provide branches for a, b, or A. The POP states must provide
branches for X or A. We eliminated two REJECT states, by having all rejecting edges go into
the same state.

When we do define PDAs, we shall require the specification of the TAPE alphabet l
and the STACK alphabet f, which may be different. Although in Chapter 8 we used r to de
note an output alphabet, we should not make the mistake of thinking that the STACK is an
output device. It is an internal component of the PDA. We sometimes remember to call the
things in r characters to distinguish them from input letters .

The second point that we should discuss is the possibility of nondeterminism. Because
our goal is to produce a machine that recognizes all context-free languages just as an FA rec
ognizes all regular languages, the addition of a simple STACK may not be enough. Consid
eration of the language PALINDROME wil l soon convince us that the new machines (PDAs)
wil l have to be nondeterministic as well if they are to correspond to CFGs.

This is not l ike biology where we are discovering what is or is not part of a kangaroo;
we are inventing these machines and we can put into them whatever characteristics we need.
In our new notation, nondeterminism can be expressed by allowing more than one edge with
the same label to leave either branching state, READ or POP.

A deterministic PDA is one (like the pictures we drew earlier) for which every input
string has a unique path through the machine. A nondeterministic PDA is one for which at
certain times we may have to choose among possible paths through the machine. We say that
an input string is accepted by such a machine if some set of choices leads us to an ACCEPT
state. If for all possible paths that a certain input string can follow it always ends at a
REJECT state, then the string must be rejected. This is analogous to the definition of accep
tance for nondeterministic TGs. As with TGs, nondeterminism here will also allow the possi
bil ity of too few as wel l as too many edges leading from a branch state. We shall have com
plete freedom not to put a b-edge leading out of a particular READ state . If a h is, by
chance, read from the INPUT TAPE by that state, processing cannot continue. As with TGs,
we say the machine crashes and the input is rejected. Having no h-edge leading out of a
branch state (READ or POP) is the same as having exactly one b-edge that leads straight to
REJECT.

We shall see that the PDAs that are equivalent to CFGs are the nondeterministic ones.
For FAs, we found that nondeterminism (which gave us TGs and NFAs) did not increase the
power of the machine to accept new languages. For PDAs, this is different. The following
Venn diagram shows the relative power of these three types of machines :

Languages accepted by
nondeterministic PDA

Languages accepted by
deterministic PDA

Adding a Pushdown Stack

EXAMPLE

Let us introduce the language PALINDROMEX of all words of the fonn

s X reverse(s)

where s is any string in (a + b)* . The words in this language are

(X aXa bXb aaXaa abXba baXab bbXbb aaaXaaa aabXbaa . . . }

301

All these words are palindromes in that they read the same forward and backward. They
all contain exactly one X, and this X marks the middle of the word. We can build a detennin
istic PDA that accepts the language PALINDROMEX. Surprisingly, it has the same basic
structure as the PDA we had for the language (an bn } .

In the first part of the machine, the STACK is loaded with the letters from the input
string just as the initial a 's from anbn were pushed onto the STACK. Conveniently for us, the
letters go into the STACK first letter on the bottom, second letter on top of it, and so on until
the last letter pushed in ends up on top. When we read the X, we know we have reached the
middle of the input. We can then begin to compare the front half of the word (which is re
versed in the STACK) with the back half (still on the TAPE) to see that they match.

We begin by storing the front half of the input string in the STACK with this part of the
machine :

START

If we READ an a, we PUSH an a. If we READ a b, we PUSH a b, and on and on until
we encounter the X on the TAPE.

After we take the first half of the word and stick it into the STACK, we have reversed
the order of the letters and it looks exactly l ike the second half of the word. For example, if
we begin with the input string

abbXbba

then at the moment we are just about to read the X, we have

TAPE x b b a

STACK

b

b

a

Is it not amazing how palindromes seem perfect for PUSHDOWN STACKs?

302 CHAPTER 14 Pushdown Automata

When we read the X, we do not put it into the STACK. It is used up in the process of
transferring us to phase two. This is where we compare what is left on the TAPE with what
is in the STACK. In order to reach ACCEPT, these two should be the same letter for Jetter,
down to the blanks.

x ACCEPT

If we read an a, we had better pop an a (pop anything else and we REJECT), if we read a
b, we had better pop a b (anything else and we REJECT), and if we read a blank, we had bet
ter pop a blank; when we do, we accept. If we ever read a second X, we also go to REJECT.

The machine we have drawn is deterministic. The input alphabet here is I = l a h
X l . so each READ state has four edges coming out of it.

The STACK alphabet has two letters f = l a h I , so each POP has three edges coming
out of it. At each READ and each POP, there is only one direction the input can take . Each
string on the TAPE generates a unique path through this PDA.

We can draw a less complicated picture for this PDA without the REJECT states if we
do not mind having an input string crash when it has no path to follow.

The whole PDA (without REJECTs) is pictured below:

START

PUSH a

PUSH b ._., __ ___.

•

EXAMPLE

Let us now consider what kind of PDA could accept the language ODDPALINDROME.
This is the language of all strings of a's and b 's that are palindromes and have an odd num
ber of letters. The words in this language are just l ike the words in PALINDROMEX except
that the middle letter X has been changed into an a or a b.

ODDPALINDROME = l a b aaa aba bab bbh . . . j

Adding a Pushdown Stack 303

The problem here is that the middle letter does not stand out, so it is harder to recognize
where the first half ends and the second half begins. In fact, it is not only harder; it is impos
sible. A PDA, just l ike an FA, reads the input string sequentially from left to right and has no
idea at any stage how many letters remain to be read. In PALINDROMEX, we knew that X
marked the spot; now we have lost our treasure map. If we accidentally push into the
STACK even one letter too many, the STACK will be larger than what is left on the TAPE
and the front and back will not match. The algorithm we used to accept PALINDROMEX
cannot be used without modification to accept ODDPALINDROME. We are not completely
lost, though. The algorithm can be altered to fit our needs by introducing one nondeterminis
tic jump. That we choose this approach does not mean that there is not a completely different
method that might work deterministically, but the introduction of nondeterminism here
seems quite naturally suited to our purpose.

Consider

START

PUSH a

PUSH h .,_ __ _.

ACCEPT

This machine is the same as the previous machine except that we have changed the X
into the choice: a or h.

The machine is now nondeterministic because the left READ state has two choices for
exit edges labeled a and two choices for b.

If we branch at the right time (exactly at the middle letter) along the former X-edge, we
can accept all words in ODDPALINDROME. If we do not choose the right edge at the right
time, the input string will be rejected even if it is in ODDPALINDROME. Let us recall ,
however, that for a word to be accepted by a nondeterministic machine (NFA, TG, or PDA),
al l that is necessary is that some choice of edges does lead to ACCEPT.

For every word in ODDPALINDROME, if we make the right choices, the path does
lead to acceptance .

The word aha can be accepted by this machine if it follows the dotted path:

(START)
I

,-
- - - - - - - - - - - - -

-
- - -

,
I I I

_ _ .L.-, I 0 1

I PUSH :r:::��-----�" - - -<2>
I j. I I

0-0--�

304 CHAPTER 14 Pushdown Automata

It will be rejected if it tries to push two, three, or no letters into the STACK before tak
ing the right-hand branch to the second READ state.

We present a better method of tracking the action of a word on a PDA in the next ex-
ample. •

Let us now consider a slightly different language.

EXAMPLE

Recall the language

EVENPALINDROME = { s reverse(s), where s is in (a + b)*)
= { A aa hh aaaa ahha baah hbbb aaaaaa . . .)

This is the language of all pal indromes with an even number of letters .
One machine to accept this language is pictured below:

PUSH a

PUSH h �----'

ACCEPT

We have labeled the READ states I and 2 and the POP states I , 2, and 3 so that we can
identify them in discussion. These numbers do not indicate that we are to READ or POP
more than one letter. They are only labels. Soda-POP, grand-POP, and POP-com would do as
well . The names will help us trace the path of an input string through the machine.

This machine is nondeterministic. At READ 1 when we read an a from the TAPE, we
have the option of following an a-edge to PUSH a or an a-edge to POP1 • If we read a h in
READ1 , we also have two alternatives: to go to PUSH h or to go to POP2• If we read a Ll in
READ 1 , we have only one choice : to go to POPy

Let us take notice of what we have done here. In the PDA for PALINDROMEX, the
X-edge took us into a second circuit , one that had the following form: read from
TAPE -+ compare with STACK -+ read from TAPE -+ compare with STACK In
this machine, we begin the process of "read from TAPE -+ compare with STACK" in
READ 1 • The first letter of the second half of the word is read in READ" then we immedi
ately go to the POP that compares the character read with what is on top of the STACK. Af
ter this, we cycle READ2 -+ POP -+ READ2 -+ POP -+ . . . unti l both run out of letters
simultaneously.

Adding a Pushdown Stack 305

It wil l be easier to understand this machine once we see it in action. Let us run the string
babbab. Initially, we have

TAPE b a b b a b

STACK

We can trace the path by which this input can be accepted by the successive rows in the
table below:

STATE STACK TAPE

START fl . . . babbabt:. · · ·

READ 1 fl . . . -abbabt:. · · ·

PUSH b bt:. . . . -abbabt:. · · ·

READ, bt:. . . . -d bbabt:. · · ·

PUSH a abt:. . . . - dbbabt:. · · ·

READ1 ab/Ji. . . . - d- babt:. · · ·

PUSH b babt:. · · · -d-babt:. · · ·

READ1 babt:. · · · -- --abt:. . . .

If we are going to accept this input string, this is where we must make the jump out of
the left circuit into the right circuit. The trace continues:

POP2 abt:. . . . - d--abt:. · · ·

READ2 ab/Ji. . . . d-Jbt:. . . .

POP1 M · · · $d$$JM · · ·

READ2 bt:. . . . $d-$d$fl . . .

POP2 fl . . . $d-$d$fl . . .

READ2 fl . . . $ d -IJJIJ4 . . .

(We have just read the first of the infinitely many blanks on the TAPE.)

POP3 fl . . . !Jd-$d-� . . .
(Popping a blank from an (Reading a blank from an empty

empty stack still leaves tape sti ll leaves blanks.)
blanks.)

ACCEPT fl . . . ------4 . . .

306 CHAPTER 14 Pushdown Automata

Notice that to facilitate the drawing of this table, we have rotated the STACK so that it
reads left to right instead of top to bottom.

Because this is a nondeterministic machine, there are other paths this input could have
taken. However, none of them leads to acceptance.

Below we trace an unsuccessful path:

STATE STACK TAPE
START � babbab
READ 1
(We had no choice but to d dabbab

go here .)

PUSH b b dabbab
(We could have chosen to go (We know there are infinitely (Notice that the TAPE remains

to POP2 instead.) many blanks underneath unchanged except by READ
this b.) statements.)

READ1
(We had no choice but to go b dJ bbab

here from PUSH b.)

POPI
(Here, we exercised bad d

judgment and made a poor (When we pop the b, what is dJbbab
choice; PUSH a would have left is all d 's.)
been better.)

CRASH
(This means that when we

were in POP1 and found a b
on top of the STACK, we
tried to take the b-edge out
of POP1 • However, there is
no b-edge out of POP 1 .)

Another unsuccessful approach to accepting the input babbab is to loop around the cir
cuit READ1 -+ PUSH six times until the whole string has been pushed onto the STACK. Af
ter this, a d will be read from the TAPE and we have to go to POP3• This POP wil l ask if the
STACK is empty. It will not be, so the path will CRASH right here.

The word A is accepted by this machine through the sequence

START -+ READ1 -+ POP3 -+ ACCEPT •

As above, we shall not put all the el l ipses (. . .) into the tables representing traces. We
understand that the TAPE has infinitely many blanks on it without having to write

We shall see later why it is necessary to define PDAs as nondeterministic machines.
In constructing our new machines, we had to make several architectural decisions.

Should we include a memory device?-yes. Should it be a stack, queue, or random ac
cess?-a stack. One stack or more? -one. Deterministic? -no. Finitely many states?
yes. Can we write on the INPUT TAPE?-no. Can we reread the input? - no. Remember
that we are not trying to discover the structure of a naturally occurring creature; we are con-

Defining the PDA 307

cocters trying to invent a CFL-recognizing machine. The test of whether our decisions are
correct wil l come in the next chapter.

it DEFINING THE PDA

We can now give the ful l definition of PDAs.

DEFINITION

A pushdown automaton, PDA, is a collection of eight things:

1. An alphabet I, of input letters.

2. An input TAPE (infinite in one direction) . Initially, the string of input letters is placed on
the TAPE starting in cell i. The rest of the TAPE is blank.

3. An alphabet f of STACK characters.

4. A pushdown STACK (infinite in one direction) . Initially, the STACK is empty (contains
all blanks) .

5. One START state that has only out-edges, no in-edges:

6. Halt states of two kinds: some ACCEPT and some REJECT. They have in-edges and no
out-edges :

7. Finitely many nonbranching PUSH states that introduce characters onto the top of the
STACK. They are of the form

where x is any letter in r.
8. Finitely many branching states of two kinds:

(i) States that read the next unused letter from the TAPE

which may have out-edges labeled within letters from I and the blank character A,
with no restrictions on duplication of labels and no insistance that there be a label
for each letter of I,, or A.

308 CHAPTER 14 Pushdown Automata

(i i) States that read the top character of the STACK

which may have out-edges labeled with the letters of r and the blank character �.
again with no restrictions.

We further require that the states be connected so as to become a connected directed
graph.

To run a string of input letters on a PDA means to begin from the START state and fol
low the unlabeled edges and those labeled edges that apply (making choices of edges when
necessary) to produce a path through the graph. This path will end either at a halt state or
will crash in a branching state when there is no edge corresponding to the letter/character
read/popped. When letters are read from the TAPE or characters are popped from the
STACK, they are used up and vanish.

An input string with a path that ends in ACCEPT is said to be accepted. An input string
that can follow a selection of paths is said to be accepted if at least one of these paths leads
to ACCEPT. The set of all input strings accepted by a PDA is called the language accepted
by the PDA, or the language recognized by the PDA. •

We should make a careful note of the fact that we have allowed more than one exit edge
from the START state. Because the edges are unlabeled, this branching has to be nondeter
ministic. We could have restricted the START state to only one exit edge. This edge could
immediately lead into a PUSH state in which we would add some arbitrary symbol to the
STACK, say, a Weasel. The PUSH Weasel would then lead into a POP state having several

edges coming out of it all labeled Weasel. POP goes the Weasel, and we make our nondeter
ministic branching. Instead of this charade, we allow the START state itself to have several
out-edges .

Even though these are nondeterministic like TGs, unlike TGs we do not allow edges to
be labeled with words, only with single characters. Nor do we allow A-edges. Edges labeled
with � are completely different.

We have not specified, as some authors do, that the STACK has to be empty at the
time of accepting a word. Some go so far as to define acceptance by the STACK condi
tion, as opposed to halt states . We shall address this point with a theorem later in this
chapter.

EXAMPLE

Consider the language generated by the CFO

S ---+ S + S I S * S l 4

The terminals are + , * , and 4 and the only nonterminal is S.
The following PDA accepts this language:

Defining the PDA 309

ACCEPT
START

PUSH 1 S .,___...,..._._ _____ �

This is a funny-looking PDA with one POP, four READs, and seven PUSHs.
Instead of proving that this machine accepts exactly the language generated by this

CFG, we only trace the acceptance of the string

4 + 4 * 4

This machine offers plenty of opportunity for making nondeterministic choices, almost
all of them disastrous. The path we i l lustrate is one to acceptance .

STATE STACK TAPE

START .:l 4 + 4 * 4

PUSH 1 S s 4 + 4 * 4

POP .:l 4 + 4 * 4

PUSH2 S s 4 + 4 * 4

PUSH3 + +S 4 + 4 * 4

PUSH4 S S + S 4 + 4 * 4

POP +S 4 + 4 * 4

READ 1 +s + 4 * 4

POP s + 4 * 4

READ2 s 4 * 4

POP .:l 4 * 4

PUSH5 S s 4 * 4

310 CHAPTER 14 Pushdown Automata

STATE

PUSH6 *
PUSH7 S
POP
READ1
POP
READ3
POP
READ1
POP
READ4
ACCEPT

STACK TAPE

*S 4 * 4
S * S 4 * 4
* S 4 * 4
* S * 4
s * 4
s 4
d 4
d d
d d
d d
d d

Note that this time we have erased the TAPE letters read instead of striking them. •

THEOREM 28

For every regular language L, there is some PDA that accepts it .

PROOF

We have actual ly discussed this matter already, but we could not formally prove anything
until we had settled on the definition of a PDA.

Because L is regular, it is accepted by some FA. The constructive algorithm for convert-
ing an FA into an equivalent PDA was presented at the beginning of this chapter. •

One important difference between a PDA and an FA is the length of the path formed by
a given input. If a string of seven letters is fed into an FA, it follows a path exactly seven
edges long. In a PDA, the path could be longer or shorter. The PDA below accepts the regu
lar language of all words beginning with an a. But no matter how long the input string, the
path is only one or two edges long.

START ACCEPT

Because we can continue to process the blanks on the TAPE even after all input letters
have been read, we can have arbitrari ly long or even infinite paths caused by very short input
words . For example, the fol lowing PDA accepts only the word b, but it must follow a seven
edge path to acceptance:

Defining the PDA 311

START

ACCEPT

The following machine accepts all words that start with an a in a path of two edges and
loops forever on any input starting with a b. (We can consider this an infinite path if we so
desire .)

START

ACCEPT

ACCEPT

We shall be more curious about the consequences of infinite paths later.
The following result wil l be helpful to us in the next chapter.

THEOREM 29

Given any PDA, there is another PDA that accepts exactly the same language with the addi
tional property that whenever a path leads to ACCEPT, the STACK and the TAPE contain
only blanks.

PROOF

We present a constructive algorithm that wil l convert any PDA into a PDA with the property
mentioned.

Whenever we have the machine part

~
we replace it with the following diagram:

312 CHAPTER 14 Pushdown Automata

ACCEPT

a ny non-.l

any non - .l

Technically speaking, we should have labeled the top loop "any letter in I" and the bot
tom loop "any character in r."

The new PDA formed accepts exactly the same language and finishes all successful runs
with empty TAPE and empty STACK. •

rQr PROBLEMS

In Problems I and 2, convert the following FAs into equivalent PDAs.

1. a

h h

a
2. a

a

Problems 313

For Problems 3 and 4, consider the deterministic PDA:

START

ACC EPT PUSH a

REJ ECT a REJ ECT

RE.JECT

REJ ECT

a . Ii h

ACC E PT REJ ECT

3. Using a trace table l ike those in this chapter, show what happens to the INPUT
TAPE and STACK as each of the following words proceeds through the machine:

(i) abb
(i i) ahah

(i i i) aahb
(iv) aahhhh

4. (i) What is the language accepted by this PDA?
(ii) Find a CFG that generates this language.

(i i i) Is this language regular?

314 CHAPTER 14 Pushdown Automata

5. Consider the following PDA:

START

ACCEPT

Trace the following words on this PDA:

(i) aaabbb
(i i) aaabab

(i i i) aaabaa
(iv) aaaabb

PUSH a

ACCEPT

6. (i) Prove that the language accepted by the machine in Problem 5 is

L = (a"S, where S starts with h and Iength(S) = n I

(i i) Find a CFG that defines the language in part (i) .
(i i i) Prove that the language of the machine in Problem 5 is not regular.

Problems 315

Consider the following PDA:

7. (i) This PDA is deterministic so it should be no problem to trace the inputs aahahh
and abbbaaab on it. Show that they lead to ACCEPT.

(i i) Explain how this machine accepts the language { anb"'a"'bn, where n and m are inde
pendent integers, 2, l } .

8. (i) Show that the language a"if'a"'b" is context-free.
(i i) Show that this language is nonregular.

For Problems 9 through 1 1 , consider the following nondeterministic PDA:

START

a . h

---1 PUSH x

ACCEPT

In this machine, REJECT occurs when a string crashes. Notice here that the
STACK alphabet is f = I x) .

9. (i) Show that the string ab can be accepted by this machine by taking the branch from
READ 1 to POP, at the correct time.

(i i) Show that the string bbba can also be accepted by giving the trace that shows when
to take the branch.

316 CHAPTER 14 Pushdown Automata

10. Show that thi s PDA accepts the language of all words with an even number of letters
(excluding A). Remember, it is also necessary to show that all words with odd length
can never lead to ACCEPT.

1 1 . Here we have a nondeterministic PDA for a language that could have been accepted by
an FA. Find such an FA. Find a CFG that generates this language.

For Problems 1 2 and 1 3 , consider the following nondeterministic PDA:

START

a

'----1 PUSH x

ACCEPT

Here, the STACK alphabet is again

r = { x }

12. (i) Show that the word aa can be accepted by this PDA by demonstrating a trace of its
path to ACCEPT.

(i i) Show that the word hahaaa can be accepted by this PDA by demonstrating a trace
of its path indicating exactly where we must take the branch from READ 1 to
READ�.

(i i i) Show that the string hahaaah cannot be accepted.
(iv) Show that the string hahaaaa cannot be accepted.

13. Show that the language of this machine is

TRAILINGCOUNT = { sa1eng•h(.' 1 }
= I any string s followed by as many a's as s has letters }

We know that this language is not regular from Chapter 1 0, Problem 4, that there is a
CFG that generates it from Chapter 1 2 , Problem 1 3 .

14. Build a deterministic PDA to accept the language { a"h" + 1 } • (As always, when unspeci
fied, the condition on n is assumed to be n = I , 2, 3 , )

15. Let the input alphabet be l. = { a h c } and L be the language of all words in which
all the a 's come before the h's and there are the same number of a 's as h's and arbitrari ly

Problems 317

many e 's that can be in front, behind, or among the a 's and b's. Some words in L are
abc, caabcb, ccacaabcccbccbc.

(i) Write out all the words in this language with six or fewer letters .
(i i) Show that the language L is not regular.
(i i i) Find a PDA (deterministic) that accepts L.
(iv) Find a CFG that generates L.

16. Find a PDA (nondeterministic) that accepts all PALINDROME where the alphabet is
I = (a b } by combining the EVENPALINDROME part with the ODDPALINDROME
PDA. This is not the same machine for PALINDROME as produced in the next chapter
so do not cheat.

17. We have seen that an FA with N states can be converted into an equivalent PDA with N
READ states (and no POP states). Show that for any FA with N states there is some
PDA with only one READ state (and several POP states), but that uses N different
STACK symbols and accepts the same language.

18. Let L be some regular language in which all the words happen to have an even length.
Let us define the new language Twist(L) to be the set of all the words of L twisted,
where by twisted we mean the first and second letters have been interchanged, the third
and fourth letters have been interchanged, and so on. For example, if

L = I ba abba babb . }
Twist(L) = I ab baab abbb . . . }

Build a PDA that accepts Twist(L)

19. Given any language L that does not include A, let us define its cousin language I L I as
follows: For any string of a 's and b's, if the word formed by concatenating the second,
fourth, sixth, . . . letters of this string is a word in L, then the whole string is a word in
I L I . For instance, if bbb is a word in L, then ababbbb and bbababa are both words in I L I .
(i) Show that if there is some PDA that accepts L, then there is some PDA that accepts I L I .

(i i) If L is regular, is I L I necessarily regular too?

20. Let L be the language of all words that have the same number of a 's and b's and that, as
we read them from left to right, never have more b's than a's . For example,

abaaabbabb

is good but

abaabbba

is no good because at a certain point we had four b's but only three a's.
In Chapter 1 0, Problem 1 9, we proved that this language is nonregular when we

called it PARENTHESES.
All the words in L with six letters are

aaabbb
abaabb

aababb
ababab

aabbab

(i) Write out all the words in L with eight letters (there are 1 4) .
(i i) Find a PDA that accepts L .

(i i i) Prove that L is not regular.
(iv) Find a CFG that defines L.

CHAPTER 15

CFG -
- PDA

1} BUILDING A PDA FOR EVERY CFG

318

We are now ready to prove that the set of all languages accepted by PDAs is the same as the
set of all languages generated by CFGs.

We prove this in two steps.

THEOREM 30

Given a CFG that generates the language L, there is a PDA that accepts exactly L.

THEOREM 31

Given a PDA that accepts the language L, there exists a CFG that generates exactly L.

These two important theorems were both discovered independently by Schtitzenberger,
Chomsky, and Evey.

PROOF OF THEOREM 30

The proof will be by constructive algorithm. From Theorem 26 in Chapter 1 3 (p. 278), we
can assume that the CFG is in CNF. (The problem of A will be handled later.)

Before we describe the algorithm that associates a PDA with a given CFG in its most
general form, we shall i l lustrate it on one particular example. Let us consider the following
CFG in CNF:

s - sB
s - AB
A - cc
B - b
c - a

We now propose the following nondeterministic PDA:

Building a PDA for Every CFG 319

START

In this machine, the STACK alphabet is

f = I S A B C l

whereas the TAPE alphabet is only

� = l a b l
We begin by pushing the symbol S onto the top of the STACK. We then enter the busiest

state of this PDA, the central POP. In this state, we read the top character of the STACK.
The STACK wil l always contain nonterminals exclusively. Two things are possible when

we pop the top of the STACK. Either we replace the removed nonterminal with two other non
terminals, thereby simulating a production (these are the edges pointing downward), or else we
do not replace the nonterminal at all but instead we go to a READ state, which insists we read a
specific terminal from the TAPE or else it crashes (these edges point upward). To get to AC
CEPT, we must have encountered READ states that wanted to read exactly those letters that
were originally on the INPUT TAPE in their exact order. We now show that to do this means we
have simulated a leftmost derivation of the input string in this CFG.

Let us consider a specific example. The word aab can be generated by leftmost deriva
tion in this grammar as follows:

Working-String Generation

S = AB
= CCB

Production Used

S -+ AB
A -+ CC

Step I
Step 2

320 CHAPTER IS CFG = PDA

� aCB
� aaB
� aab

C -+ a
C -+ a
B -+ b

Step 3

Step 4
Step 5

In CNF, all working strings in leftmost derivations have the form

(string of terminals) (string of Nonterminals)

To run this word on this PDA, we must follow the same sequence of productions, keeping
the STACK contents at all times the same as the string of nonterminals in the working string
of the derivation.

We begin at START with

STACK TAPE

aab

Immediately, we push the symbol S onto the STACK:

STACK TAPE

s aab

We then head into the central POP. The first production we must simulate is S - AB. We pop
the S and then we PUSH B, PUSH A, arriving at this :

STACK TAPE

AB aab

Note that the contents of the STACK are the same as the string of nonterminals in the work
ing string of the derivation after step I .

We again feed back into the central POP. The production we must now simulate is an
A - CC. This is done by popping the A and following the path PUSH C, PUSH C.

The situation is now

STACK TAPE

CCB aab

Notice that here again, the contents of the STACK are the same as the string of nonter
minals in the working string of the derivation after step 2.

Again, we feed back into the central POP. This time we must simulate the production
C - a. We do this by popping the C and then reading the a from the TAPE. This leaves

STACK TAPE

CB Jab

We do not keep any terminals in the STACK, only the nonterminal part of the working
string. Again, the STACK contains the string of nonterminals in step 3 of the derivation.
However, the terminal that would have appeared in front of these in the working string has
been cancelled from the front of the TAPE. Instead of keeping the terminals in the STACK,
we erase them from the INPUT TAPE to ensure a perfect match.

The next production we must simulate i s another c - a. Again, we POP C and READ
a. This leaves

Building a PDA for Every CFG 321

STACK TAPE

B

Here again, we can see that the contents of the STACK are the string of nonterminal s in
the working string in step 4 of the derivation. The whole working string is aaB; the terminal
part aa corresponds to what has been struck from the TAPE.

This time when we enter the central POP, we simulate the last production in the deriva
tion, B -+ b. We pop the B and read the b. This leaves

STACK TAPE

This /1 represents the fact that there are no nonterminals left in the working string after
step 5. This, of course, means that the generation of the word is complete .

We now reenter the POP, and we must make sure that both STACK and TAPE are
empty:

POP 11 -+ READ3 -+ ACCEPT

The general principle is clear. To accept a word, we must fol low its leftmost derivation
from the CFG. If, in some CFG, the word is

ababbbaab

and at some point in i ts leftmost Chomsky derivation, we have the working string

ababbZWV

then at this point in the corresponding PDA-processing the status of the STACK and TAPE
should be

STACK TAPE

zwv J$J$$baab

the used-up part of the TAPE being the string of terminals and the contents of the STACK
being the string of nonterminals of the working string. This process continues unti l we have
derived the entire word. We then have

STACK TAPE

At this point, we POP 11, go to READ3, and ACCEPT.
There is noticeable nondeterminism in this machine at the POP state. This parallels, re

flects, and simulates the nondeterminism present in the process of generating a word. In a
leftmost derivation, if we are to replace the nonterminal N, we have one possibi l ity for each
production that has N as the left side . Similarly, in this PDA we have one path leaving POP
for each of these possible productions. Just as the one set of productions must generate any
word in the language, the one machine must have a path to accept any legal word once it sits
on the INPUT TAPE. The point is that the choices of which l ines to take out of the central
POP tell us how to generate the word through leftmost derivation, because each branch rep
resents a production.

322 CHAPTER 15 CFG = PDA

It should also be clear that any input string that reaches ACCEPT has gotten there by
having each of its letters read by simulating Chomsky productions of the form

Nonterminal .- terminal

This means that we have necessari ly formed a complete leftmost derivation of this word
through CFG productions with no nonterminals left over in the STACK. Therefore, every
word accepted by this PDA is in the language of the CFG.

One more example may be helpful . Consider the randomly chosen CFG (in CNF) be
low:

s .- AB
A - BB

We propose the following PDA:

B - AB
A - a

B .- a
B .- b

ACCEPT

We shal l trace simultaneously how the word baaah can be generated by this CFG and
how it can be accepted by this PDA.

LEFTMOST DERIVATION STATE STACK TAPE

START Li ha a ab

s PUSH S s ha a ah

POP Li ha a ah

PUSH B B ha a ah

= AB PUSH A AB ha a ah

POP B ha a ah

PUSH B BB baa ab

= BBB PUSH B BBB baa ah

POP BB baa ah

Building a CFG for Every PDA

LEFTMOST DERIVATION STATE STACK TAPE

=> bBB READ3 BB $aaab

POP B $aaab

PUSH B BB $aaab

=> bABB PUSH A ABB $aaab

POP BB $aaab

=> baBB READ , BB $/aab

POP B $daab

=> baaB READ2 B $ddab

POP d $ddab

PUSH B B $ddab

=> baaAB PUSH A AB $ddab

POP B $ddab

=> baaaB READ1 B $dddb

POP d $dddb

=> baaab READ3 d ddd

POP d ddd

READ4 d ddd

ACCEPT d ddd

At every stage, we have the following equivalence:

Working string
= (letters cancelled from TAPE) (string of Nonterminals from STACK)

At the beginning, this means

At the end, this means

Working string = S
Letters cancelled = none
String of Nonterminals in STACK = S

Working string = the whole word
Letters cancelled = all
STACK = Ll

Now that we understand this example, we can give the rules for the general case.

ALGORITHM

If we are given a CFG in CNF as follows:

X1 - X.)<3
x, - X3X4

323

324 CHAPTER 15 CFG = PDA

where the start symbol S == X1 and the other nonterminals are X2, X3, • • • , we build the fol
lowing machine.

Begin with

START

For each production of the form

X; == xjxk

we include this circuit from the POP back to itself:

----i PUSH �

For all productions of the form

we include this c ircuit:

b

x,

When the stack is finally empty, which means we have converted our last nonterminal to
a terminal and the terminals have matched the INPUT TAPE, we follow this path :

ACCEPT

From the reasons and examples given above, we know that all words generated by the

Building a PDA for Every CFG 325

CFG will be accepted by thi s machine and all words accepted will have leftmost derivations
in the CFG.

This does not quite finish the proof. We began by assuming that the CFG was in CNF,
but there are some context-free languages that cannot be put into CNF. They are the lan
guages that include the word A. In this case, we can convert all productions into one of the
two forms acceptable to CNF, while the word A must still be included.

To include this word, we need to add another circuit to the PDA, a simple loop at
the POP:

This kills the nonterminal S without replacing it with anything and the next time we enter the
POP, we get a blank and proceed to accept the word. •

EXAMPLE

The language PALINDROME (including A) can be generated by the following CFG in CNF
(plus one A-production) :

S -+ AR 1
R 1 -+ SA
S -+ BR2
R2 -+ SB
S -+ AA
S -+ BB

S -+ a
S -+ b
A -+ a
B -+ b
S -+ A

The PDA that the algorithm in the proof of Theorem 30 instructs us to build is

326 CHAPTER 15 CFG = PDA

Let us examine how the input string abaaba is accepted by this PDA.

LEFTMOST DERIVATION STATE TAPE

START abaaba

PUSH S abaaba

POP abaaba

PUSH R1 abaaba

S => AR 1 PUSH A abaaba

POP abaaba

=> aR1 READ3 '1baaba

POP '1baaba

PUSH A '1baaba

=> aSA PUSH S '1baaba

POP '1baaba

PUSH R2 '1baaba

=> aBRiA PUSH B '1baaba

POP '1baaba

=> abRiA READ2 '1/baaba

POP '1/baaba

PUSH B '1/baaba

=> abSBA PUSH S '1/baaba

POP dllbaaba

PUSH A '1/baaba

=> abAABA PUSH A dllbaaba

POP '1/baaba

=> abaABA READ3 dllbllaba

POP dllb'1aba

=> abaaBA READ3 '1/b'1'1ba

POP '1/b'1'1ba

=> abaabA READ2 dllb'1'1/ba

POP '1/b'1'1lba

=> abaaba READ3 '1/b'1i/Jlb'1d

POP dllblli/Jlbi/Jd

READ4 dllb'1dllb'1d

ACCEPT di lb'1" lb'1 d

STACK

d

s
d

R I

AR I

R I

R I

d

A

SA

A

RiA

BRiA

RiA

RiA

A

BA

SBA

BA

ABA

AABA

ABA

ABA

BA

BA

A

A

d

d

d

d

d

Building a CFG for Every PDA 327

Notice how different this is from the PDAs we developed in Chapter 1 4 for the languages
EVENPALINDROME and ODDPALINDROME. •

� BUILDING A CFG FOR EVERY PDA

Now we have to prove the other half of the equivalence theorem, that every language ac
cepted by a PDA is context-free.

PROOF OF THEOREM 31

This is a long proof by constructive algorithm. In fact, i t is unquestionably the most tortur
ous proof in this book; parental consent is required. We shall i l lustrate each step with a par
ticular example. It is important, though, to realize that the algorithm we describe operates
successfully on all PDAs and we are not merely proving this theorem for one example alone.

The requirements for a proof are that it convinces and explains. The following argu
ments should do both if we are sufficiently perseverant.

Before we can convert a PDA into a CFG, we have to convert it into a standard form,
which we call conversion form. To achieve this conversion form, it is necessary for us to in
troduce a new "marker state" called a HERE state. We can put the word HERE into a box
shaped l ike a READ state in the middle of any edge and we say that we are passing through
that state any time we travel on the edge that it marks. Like the READ and POP states, the
HERE states can be numbered with subscripts.

One use of a HERE state is so that

can become

a

Notice that a HERE state does not read the TAPE nor pop the STACK. It just al lows us
to describe being on the edge as being in a state. A HERE state is a legal fiction -a state
with no status, but we do permit branching to occur at such points. Because the edges lead
ing out of HERE states have no labels, this branching is necessarily nondeterministic.

DEFINITION (inside the proof of Theorem 31)

A PDA is in conversion form if it meets al l the fol lowing conditions:

1. There is only one ACCEPT state.

2. There are no REJECT states.

3. Every READ or HERE is followed immediately by a POP; that is , every edge leading
out of any READ or HERE state goes directly into a POP state.

328 CHAPTER 15 CFG = PDA

4. No two POPs exist in a row on the same path without a READ or HERE between them
whether or not there are any intervening PUSH states. (POPs must be separated by
READs or HEREs.)

5 . A l l branching, deterministic, or nondeterministic, occurs a t READ or HERE states,
none at POP states, and every edge has only one label (no multiple labels) .

6. Even before we get to START, a "bottom of STACK" symbol, $, is placed on the
STACK. If this symbol is ever popped in the processing, it must be replaced immedi
ately. The STACK is never popped beneath this symbol. Right before entering ACCEPT,
this symbol is popped out and left out.

7. The PDA must begin with the sequence

START

8. The entire input string must be read before the machine can accept the word. •

It is now our job to show that all the PDAs as we defined them before can be made over
into conversion form without affecting the languages they accept.

Condition 1 is easy to accommodate. If we have a PDA with several ACCEPT states, let
us simply erase all but one of them and have all the edges that formerly went into the others
feed into the one remaining.

Condition 2 is also easy. Because we are dealing with nondeterministic machines, if we
are at a state with no edge labeled with the character we have just read or popped, we simply
crash. For an input string to be accepted, there must be a safe path to ACCEPT; the absence
of such a path is tantamount to REJECT. Therefore, we can erase all REJECT states and the
edges leading to them without affecting the language accepted by the PDA.

Now let us consider condition 3. A READ in a certain PDA might not have a POP im
mediately following it ; we might find something l ike this:

What we do is insert a POP and immediately put back on the STACK whatever might have
been removed by this additional POP.

We need to have a PUSH for every letter of f every time we do this:

Building a CFG for Every PDA 329

This looks l ike a silly waste of states, but it does mean that we can satisfy condition 3
without changing the language accepted.

We may need to insert some HERE states to satisfy condition 4:

(/

becomes

To satisfy condition 5, we must convert all branching at POP states into branching at READ
or HERE states. This is done as fol lows:

a

becomes

a

a

If the POP1 state in the original picture was going to pop a b and branch to READ2, then
in the following modified version, i ts path through the machine must be the one that at
READ1 takes the a-edge to POP2, not the a-edge to POPy If an a was going to be popped by
POP1 , the path to POP3 has to be taken to avoid crashing. Al l paths through these two seg
ments of PD As are the same, but in the second picture the deterministic branching at POP 1
has been replaced by nondeterministic branching at READ1 •

330 CHAPTER 15 CFG = PDA

We must also modify the funny extra POP x-PUSH x situations that we introduced for
condition 3 . Instead of using

which entailed branching at the POP state, we must use the equivalent:

Instead of a deterministic branch at a POP state, we have made a nondeterministic
branch at a READ or HERE state.

Condition 6 is another easy one. We simply presume that the STACK initially looks like

STACK

EE
When we change a PDA into conversion form, we must also remember that instead of pop
ping a IJ. from an empty STACK, we shall find the symbol $. If we wanted (for some reason)
to POP several IJ. 's off of an empty STACK, we shall have to be satisfied with several POP
$-PUSH $ combinations. They work just as well.

If we ever have a PDA that wants to accept an input string without emptying the
whole STACK (including $), we could just insert some states that empty the STACK
harmlessly right before the ACCEPT, exactly as we did in the proof of Theorem 29 (p.
3 1 1) .

Condition 7 makes no new demands i f the STACK already satisfies condition 6 . Condi
tion 8 can be satisfied by the algorithm of Theorem 29 from Chapter 14.

Now let us take a whole PDA and change i t into conversion form. The PDA we use is
one that accepts the language

{ a2nb" l = { aab aaaabb aaaaaabbb . . . }

Building a CFG for Every PDA 331

The PDA is

START

PUSH a ACCEPT

Every a from the beginning of the INPUT TAPE is pushed onto the STACK. Then for
every b that follows, two a 's are popped. Acceptance comes if both TAPE and STACK empty at
the same time. The words accepted must therefore be of the form a2nlf' for n = I , 2, 3,

Here, we have already deleted the REJECT state and useless READ and POP alternative
edges. To make this PDA satisfy all the conditions for conversion form, we must remake
it into

$
PUSH $..--< START

To begin with, we must start with the sequence demanded by condition 7. This makes us
insert a new POP state called POP4• Now in the original machine, we began a c ircuit
READ1 -PUSH a-READ 1 - PUSH a Because of condition 3 , every READ must be
followed by a POP so the pair READ1 - PUSH a must become READ 1 -POP5 -PUSH
a-PUSH a. The first PUSH is to return the a that was popped out . The second PUSH adds
the a to the STACK. The first time through this loop, the top of the STACK does not contain
an a yet and what is popped is the $, which must immediately be returned to the STACK.

332 CHAPTER 15 CFG = PDA

This is the purpose of the nondeterministic branch POP6-PUSH $-PUSH a. This branch
also adds an a to the STACK. This branch will be taken the first time out of READ1 , but if
ever again , it wil l cause a CRASH and lead to the acceptance of no new words.

The next violation of conversion form in the original picture was that POP 1 was imme
diately followed by POP2 without a READ in between. This is fixed by inserting a HERE.
(There is only one HERE state in this whole machine, so there is no reason to number it .)

The last change is that instead of POP3 finding a blank, it should find the stack-end sym
bol $.

The new form of this PDA obviously accepts exactly the same language as before, (a2nb" I .
Now that we have put this PDA into conversion form, we can explain why we ever

wanted to impose these eight conditions on a poor helpless machine. Any PDA in conversion
form can be considered as a collection of primitive parts, or path segments, each of the fol
lowing form:

FROM TO READ POP PUSH

START READ One or no Exactly Any string
or READ or HERE input one STACK onto the
or HERE or ACCEPT letters character STACK

The states START, READ, HERE, and ACCEPT are called the joints of the machine. Be
tween two consecutive joints on a path, exactly one character is popped and any arbitrary
number can be pushed. Because no edge has a multiple label , between any two joints the
machine can read no letters at all from the INPUT TAPE or else exactly one specified letter.
This was the purpose of imposing all the conversion conditions.

The PDA above can be drawn as a set of joints with "arcs" (path segments) between
them much l ike a TG:

START

ACCEPT

Once a PDA is in conversion form, we can describe the entire machine as a list of all the
primitive joint-to-joint path segments (the "arcs" mentioned above). Such a list is called a sum
mary table. A summary table for a PDA satisfies the same purpose as a transition table for an
FA. It explains the total action on the inputs without recourse to pictorial representation. This
may seem like a step backward, because the pictures make more sense than the tables-which
is why we do not commonly use tables for FAs. However, for the purpose of completing the
proof of Theorem 3 1 (which is what we are still in the midst of doing), the summary table will
be very useful .

Building a CFG for Every PDA 333

The PDA we have just converted corresponds to the following summary table:

FROM TO READ POP PUSH ROW

Where Where What What What Number

START READI A $ $ I

READ I READI a $ a$ 2

READI READ1 a a aa 3

READI HERE b a - 4
HERE READ2 A a - 5

READ2 HERE b a - 6

READ2 ACCEPT d $ - 7

In the last column we have assigned a number to each row for our future purposes. Each
path segment corresponds to one row of the table.

Notice that in Row2 we summarized

PUSH $ PUSH a

as

because it means add the $ first, then the a.
In our definition of conversion form, we made sure that all branching occurs at the joints

READ and HERE. This means that no branching can occur in the middle of any row of the
summary table.

Every word that can be accepted by the PDA corresponds to some path from START to
ACCEPT. We can view these paths as made up not of the components "edges" but of the
components "rows of summary table." A path is then broken into a sequence of these path
segments .

For example, in the PDA above the word aaaabb can be accepted by the machine
through the path

START-POP4-PUSH $-READ1 -POP6-PUSH $-PUSH a-READ1 -POP5-PUSH
a-PUSH a-READ, -POP5 -PUSH a-PUSH a-READ, - POP5-PUSH a-PUSH

a-READ1 -POP1 - HERE-POP2-READ2-POP1 - HERE-POP2-READ2-POP_1-ACCEPT

This is a nondeterministic machine, and there are other paths that this input could take,
but they al l crash somewhere; only this path leads to acceptance. Instead of th is long l ist of
states, we could describe the path of this word through the machine as a sequence of rows
from the summary table. The path above can be described as

Row 1 -Row 2 -Row 3 -Row 3 -Row 3 -Row 4 -Row 5 -Row 6 -Row 5-Row 7

Let us repeat that acceptance by a PDA is determined by the existence of a path from
START to ACCEPT. In FAs, paths correspond in a natural fashion to strings of letters. In a
PDA paths correspond in a natural way to strings of rows from the summary table.

The approach that we have taken for PDAs is to define them original ly by a pictorial
representation and imagine a correspondence between input strings and paths through the
machine-graph. To abstract the grammar (CFG) of the language that the PDA accepts, we
have had to begin by changing our PDAs first into conversion form and then into summary

334 CHAPTER 15 CFG = PDA

tables. This is to make an algebraic nonpictorial representation of our PDAs that we can
then convert into a grammar. Most authors define PDAs originally as summary tables of
some kind and the pictorial representations as directed graphs are rarely given. The proof
of Theorem 3 1 in such a treatment is much shorter, because the proof can begin at the
point we have just reached. Something is lost, though, in not seeing a PDA as a picture.
This is best i l lustrated by comparing the preceding summary table with the first pictorial
representation of the PDA. It is much easier to understand the looping and the language
from the picture.

As definitions, both the pictures and the tables describe the same type of language
accepting device. The question of which is superior cannot be answered without knowing the
specific application. Our application is education and the most understandable formulation is
the best.

Notice that the HERE state reads nothing from the TAPE, so we have put A in the
"READ What" column. We could put a dash or a <!> there just as well . A blank (a) would be
wrong, because it means something else; to say that we read a a means the TAPE must be
empty. A A on the other hand means, by convention, that we do not read the TAPE.

The order in which we put the rows in the summary table does not matter as long as
every path segment of the PDA between two consecutive joints is represented as some row.

The summary table carries in it all the information that is found in the pictorial represen
tation of the PDA. Every path through the PDA is a sequence of rows of the summary table.
However, not every sequence of rows from the summary table represents a viable path. Right
now it is very important for us to determine which sequences of rows do correspond to possi
ble paths through the PDA, because the paths are directly related to the language accepted.

Some sequences of rows are impossible; for example, we cannot immediately follow
Row 4 with Row 6 because Row 4 leaves us in HERE, while Row 6 begins in READ2. We must
always be careful that the end joints connect up logically.

This requirement is necessary but not sufficient to guarantee that a sequence of rows can
be a path. Row 1 leaves us in READ 1 and Row 3 starts in READ 1 , yet Row 1 - Row 3 cannot be
the beginning of a path. This is because Row 1 pushes a $, whereas Row3, which pops an a,
obviously presumes that the top of the STACK is an a . We must have some information
about the STACK before we can string together rows.

Even if we arranged the rows so that the pushes and pops match up, we stil l might get
into trouble. A path formed by a sequence of rows with four Row3 's and six Row5 's is im
possible. This is true for a subtle reason. Six Row5 's will pop six a 's from the STACK; how
ever, because Row2 can only be used once to obtain one a in the STACK and four Row3 's
can contribute only four more a 's to the STACK, we are short one a.

The question of which sequences of rows make up a path is very tricky. To represent a
path, a sequence of rows must be joint-consistent (the rows meet up end to end) and
STACK-consistent (when a row pops a character, it should be there, at the top of the
STACK).

Let us now define the row language of a particular PDA represented by a summary
table. It is the language whose alphabet letters are the names of the rows in the summary
table:

I = I Row 1 Row2 • • • Row7 }

and has as legal words all those sequences of alphabet letters that correspond to paths from
START to ACCEPT that might possibly be followed by some input strings, that is, all se
quences from START to ACCEPT that are joint-consistent and STACK-consistent.

Clearly, all valid words in this language begin with Row 1 and end with Row7, but as we
saw above, there are more requirements than just those.

Building a CFG for Every PDA 335

Consider, for example,

Row5Row5Row3Row6

This is a string of length 4, but this string is not a word in the row language for three rea
sons: (1) It does not represent a path that begins with START or ends with ACCEPT; (2) it is
not joint-consistent; (3) i t is not STACK-consistent.

Not only are we going to look for rules to tell us which strings of rows are words,
but we shall produce a CFG for the row language. From this CFG, we can produce
another CFG, a grammar for the language of strings of a 's and h 's accepted by the origi
nal PDA.

Let us pause here to out line the global strategy of this proof:

1. We start with any PDA drawn as defined in Chapter 14 .

2. We redraw the PDA to meet the requirements of conversion form.

3. From the machine in conversion form, we build a summary table and number the rows.

4. Every word accepted by the PDA corresponds to at least one path from START to
ACCEPT and, as we shal l soon see, every STACK-consistent path from START to
ACCEPT corresponds to some word. Therefore, we define the row language to be the
set of all sequences of rows that correspond to paths.

5. We determine a CFG that generates all the words in the row language.

6. We convert this CFG for the row language into a CFG that generates all the words in the
original language of a's and h's that are accepted by the PDA, thus proving Theorem 3 1 .

We are now up to step 5 .
We had to build half this house before we could take our first look at the blueprints.
One thing we have to do is to keep track of the contents of the STACK. Since we are go

ing to want to produce a CFG that generates the row language, we need to introduce nonter
minals that contain the information we need to ensure joint- and STACK-consistency. We
have to know about the beginning and end positions of the path segments to which certain
row strings correspond and about the contents of the STACK. It is not necessary to maintain
any information about what characters are read from the TAPE. If what is on the TAPE is
what the rows want to read, then the input string will be accepted. Once we know what the
rows are, we can find an input word that gives them what they want to read. We shall see the
implications of this observation later, but every joint- and STACK-consistent path actually is
the path through the PDA taken by some input string.

The nonterminals in the row language grammar have the following form:

Net(X, Y, Z)

where the X and Y can be any joint; START, READ, HERE, or ACCEPT, and Z is any char
acter from the stack alphabet f. This whole expression is one nonterminal even though it is
at least I O printer's symbols long. These odd nonterminals stand for the following:

There is some path going from joint X to joint Y, perhaps passing through some
other joints (READ or HERE states), which has the net effect on the STACK of
removing the symbol Z. where by "net effect" we mean that although there might
be extra things put onto the STACK during the path , they are eventually removed
and the STACK is never popped below the initial Z that is on the top of the STACK
to begin with , and that is popped out somewhere along the way.

We have never seen a nonterminal be such a complicated-looking item as Net(X, Y, Z),

336 CHAPTER 15 CFG = PDA

but we have had nonterminals before with meanings that could be expressed in a sentence
(as in the CFG for EQUAL).

This complicated description of the "net effect" on the STACK means, for instance, that
the sequence of the STACK operations:

PUSH a PUSH b

has the net effect of popping one Z because it represents these stack states:

The net STACK effect is the same as the simple POP Z, and no character was presumed
to be in the STACK below the top Z. The symbol "?" here represents the unknown and unex
amined part of the STACK. The picture

z

by itself is also an acceptable sequence for a STACK operation governed by a nonterminal
Net(X, Y, Z).

However,

is not, because it presupposes knowledge about what is in the STACK under the top Z. If
there were a b under the Z initially, this sequence would fail (crash). We never presume
knowledge of what is available in the STACK in the statement Net(X, Y, Z) beyond knowing
that Z is on top.

For a given PDA, some sets of all the possible sentences Net(X, Y, Z) are true and some
are false. Our job, given a PDA, is to determine which Net statements are true and how they
fit together. To do this, we must first examine every row of the table to see which ones have
the net effect of popping exactly one letter. There are other paths that are composed of sev
eral rows that can also be described by a single Net statement, but we shall discover these by
a separate procedure later.

Let us recall the summary table that we have developed for the PDA for the language
{ a2nbn } . Row 4 of this table says essentially

Net(READ1 , HERE, a)

which means, "We can go from READ1 to HERE at the total cost of popping an a from the
top of the stack."

In other words, Row 4 is a single Net row. However, let us suppose that we have a row in
the summary table for some arbitrary PDA that looks l ike this:

Building a CFG for Every PDA 337

FROM TO READ POP PUSH ROW

READ9 READ3 b b abh I I

As it stands, Row 1 1 is not a Net-style sentence because the trip from READ9 to READ3
does not subtract one letter from the STACK; the net effect is rather that it adds two. How
ever, there is a particular way that Row1 1 can interact with some other Net-style sentences.
For instance, if we knew that the following three nonterminals could be realized as path seg
ments for this machine

Net(READ3, READ7, a) Net(READ7, READ1 , b) Net(READ I '
READ8, b)

then, using Row 1 1 , we could conclude that the nonterminal

Net(READ9, READs, b)

could also be realized as a path segment. This is because we can go first from READ9 to READ3
using Row 1 1 , which eats the b at the top of the STACK but leaves the letters abb in its place,
with the net effect of adding ab. The first a takes us from READ3 to READ7 by the path implied
by Net(READ3, READ7, a). The next b takes us from READ7 along some path to READI '

as
guaranteed by Net(READ7, READ1 , b). Then the last b takes us from READ1 to READs by
some path guaranteed by the last Net. The total cost of the trip has been the top b. Thanks to the
abb we added, during this whole trip we have never popped the STACK beneath the top b.

Let us write this as

Net(READ9, READs• b)
---+ Row 1 1Net(READ3, READ7, a)Net(READ7, READ! '

b)Net(READI '
READ8, b)

In other words, the sentence that says that we can go from READ9 to READ8 at the cost of
b can be replaced by the concatenation of the sentences Row 1 1 , Net . . . Net . . . Net

This will be a production in our row language. We begin with the nonterminal Net(READ9,
READ8, b), and we produce a string that has one terminal, Row 1 1 , and some nonterminals, Net
. . . Net . . . Net Notice that Row 1 1 takes us from READ9 to READ3, the first Net
from READ3 to READ7, the second from READ7 to READ1 , and the last from READ1 to
READs• giving us the trip promised on the left side of the production at the appropriate cost.

This hypothetical Row 1 1 that we are presuming exists for some PDA could also be used in
other productions-for example,

Net(READ9, READ1 0, b)
---+ Row 1 1 Net(READ3, READ2, a)Net(READ2, READ2, b)Net(READ2, READ 10, h)

assuming, of course, that these additional Net's are available, by which we mean real izable
by actual paths.

The general formulation for creating productions from rows of the summary table is as
follows:

If the summary table includes the row

FROM TO READ POP PUSH ROW

READX READY u w m 1 m2, • • • , m,, i

then for any sequence of joint states, S 1 , S2, • • • , S
n
, we include the row language CFG

production

338 CHAPTER 15 CFG = PDA

Net(READx, Sn, w) - Row;Net(READ.v, S 1 , m 1) • • • Net(Sn- i • Sn , mn)

This is a great number of productions and a large dose of generality all at once. Let us

illustrate the point on an outrageous, ludicrous example.

Suppose that someone offered us a ride from Philadelphia to L.A. if we would trade him

our old socks for his sunglasses and false teeth. We would say "terrific" because we could

then go from Philadelphia to Denver for the price of the old socks. How? First, we get a ride

to L.A. by trading the socks to him for the sunglasses and false teeth. Then, we find someone

who will drive us from L.A. to Chicago for a pair of sunglasses and another nice guy who

will drive us from Chicago to Denver for a pair of false teeth.

FROM TO READ POP PUSH ROW
Phil . L.A. anything socks sunglasses, false teeth 77

Net(Phil . , Denver, socks) - Row77Net(L.A., Chi . , shades)Net(Chi. , Denver, teeth)

The fact that we have written this production does not mean that it can ever be part
of the derivation of an actual word in the row language. The idea might look good on paper,
but where do we find the clown who will drive us from Chicago to Denver for the used

choppers?
So too with the other productions formed by this general rule.

We can replace Net(this and that) with Net(such and such), but can we ever boil it all
down to a string of rows? We have seen in working with CFGs in general that replacing one
nonterminal with a string of others does not always lead to a word in the language.

In the example of the PDA for which we built the summary table, Row3 says that we can
go from READ1 back to READ1 and replace an a with aa. This allows the formation of
many productions of the form

Net(READ" X, a) - Row3Net(READ " Y, a)Net(Y, X, a)

where X and Y could be READ1 , READ2, or READ3 -or even HERE. Also, X could be
ACCEPT, as in this possibility:

Net(READ1 , ACCEPT, a) - Row3Net(READ1 , READ2, a)Net(READ2, ACCEPT, a)

There are three rules for creating productions in what we shall prove is a CFG for the
row language of a PDA presented to us in a summary table .

Rule l We have the nonterminal S, which starts the whole show, and the production

S - Net(START. ACCEPT, $)

which means that we can consider any total path through the machine as a trip
from START to ACCEPT at the cost of popping one symbol, $, and never re
ferring to the STACK below $.

This rule is the same for all PDAs.

Rule 2 For every row of the summary table that has no PUSH entry, such as

Building a CFG for Every PDA 339

FROM

x

TO READ POP PUSH ROW

y anything z

we include the production

Net(X, Y, Z) --+ Row;

This means that Net(X, Y, Z) , which stands for the hypothetical trip from X
to Y at the net cost Z, is really possible by using Row; alone. It is actualizable
in this PDA.

Let us remember that because this is the row language we are generating,
this production is in the form

Nonterminal --+ terminal

In general, we have no guarantee that there are any such rows that push
nothing, but if no row decreases the size of the STACK, it can never become
empty and the machine will never accept any words.

For completeness we restate the expansion rule above.

Rule 3 For each row in the summary table that has some PUSH, we introduce a whole
family of productions . For every row that pushes n characters onto the STACK,
such as

FROM

x

TO READ POP PUSH ROW

y anything z ni l ' • . . , n111 i

for all sets of n READ, HERE, or ACCEPT states S 1 , • • • , we create the pro-
ductions

Net(X, S
n
, Z) --+ Row;Net(Y, S 1 , m 1) • • • Net(S

n
� I '

S,, , m,,)

Remember the fact that we are creating productions does not mean that they
are all useful in the generation of words . We merely want to guarantee that we
get all the useful productions, and the useless ones wi l l not hurt us.

No other productions are necessary.

We shal l prove in a moment that these are all the productions in the CFG defining the
row language. That is, the language of all sequences of rows representing every word ac
cepted by the machine can be generated by these productions from the start symbol S.

Many productions come from these rules. As we have observed, not all of them are used
in the derivation of words because some of these Net variables can never be realized as ac
tual paths, just as we could include the nonterminal Net(NY, L.A., 5¢) in the optimistic hope
that some airl ine wil l run a great sale. Only those nonterminals that can be replaced eventu
ally by strings of solid terminals wil l ever be used in producing words in the row language.

This is l ike the case with this CFG:

s - x I r
X --+ aXX
Y --+ ah

The production X --+ aXX is totally useless in producing words.

340 CHAPTER 15 CFG = PDA

We shall now prove that this CFG with all the Net's is exactly the CFG for the row lan
guage. To do that, we need to show two things: First, every string generated by the CFG is a
string of rows representing an actual path through the PDA from START to ACCEPT and,

second, all the paths corresponding to accepted input strings are equivalent to row words

generated by this CFG.

Before we consider this problem in the abstract, let us return to the concrete illustration

of the summary table for the PDA that accepts

I a2nbn I

We shall make a complete list of all the productions that can be formed from the rows of
the summary table using the three preceding rules.

Rule 1 , always, gives us only the production

PROD 1 S - Net(START, ACCEPT, $)

Rule 2 applies to rows 4, 5 , 6, and 7, creating the productions

PROD 2 Net(READ 1 , HERE, a) - Row 4
PROD 3 Net(HERE, READ2, a) - Row 5

PROD 4 Net(READ2, HERE, a) - Row 6

PROD 5 Net(READ2, ACCEPT, $) - Row7

Finally, Rule 3 applies to rows 1 , 2, and 3 . When applied to Row 1 , it generates

Net(START, X, $) - Row 1 Net(READ 1 , X, $)

where X can take on the different values READ1 , READ2, HERE, or ACCEPT. This gives us
these four new productions:

PROD 6 Net(START, READ 1 , $) - Row 1 Net(READ 1 , READ1 , $)

PROD 7 Net(START, READ2, $) - Row 1 Net(READ 1 , READ2, $)

PROD 8 Net(START, HERE, $) - Row 1 Net(READ " HERE, $)

PROD 9 Net(START, ACCEPT, $) - Row 1 Net(READ" ACCEPT, $)

When applied to Row2, Rule 3 generates

Net(READ1 , X, $) - Row2Net(READ1 , Y, a)Net(Y, X, $)

where X can be any joint state but START, and Y can be any joint state but START or
ACCEPT (because we cannot return to START or leave ACCEPT).

The new productions derived from Row2 are of the form above with all possible values
for X and Y:

PROD 10 Net(READ1 , READ1 , $)

- Row2Net(READ" READ" a)Net(READ1 , READ1 , $)

PROD 1 1 Net(READ1 , READ1 , $)

- Row2Net(READ" READ2, a)Net(READ2, READ 1 , $)
PROD 1 2 Net(READ1 , READ1 , $)

- Row2Net(READ" HERE, a)Net(HERE, READ 1 , $)
PROD 1 3 Net(READ1 , READ2, $)

- Row2Net(READ" READ1 , a)Net(READ 1 , READ2, $)
PROD 1 4 Net(READ" READ2, $)

- Row2Net(READ " READ2, a)Net(READ2, READ2, $)
PROD 1 5 Net(READ 1 , READ2, $)

- Row2Net(READ 1 , HERE, a)Net(HERE, READ2, $)
PROD 1 6 Net(READ" HERE, $)

- Row2Net(READ 1 , READ 1 , a)Net(READ 1 , HERE, $)

Building a CFG for Every PDA

PROD 1 7 Net(READ" HERE, $)
---+ Row2Net(READ1 , READ2, a)Net(READ2, HERE, $)

PRoD 1 8 Net(READ" HERE, $)
---+ Row2Net(READ1 , HERE, a)Net(HERE, HERE, $)

PRoD 1 9 Net(READ" ACCEPT, $)
--+ Row2Net(READ1 , READ1 , a)Net(READ " ACCEPT, $)

PROD 20 Net(READ" ACCEPT, $)

---+ Row2Net(READ" READ2, a)Net(READ2, ACCEPT, $)

PROD 2 1 Net(READ1 , ACCEPT, $)

---+ Row2Net(READ" HERE, a)Net(HERE, ACCEPT, $)

When Rule 3 is applied to Row 3 , it generates productions of the form

Net(READ " X, a) -+ Row3Net(READ" Y, a)Net(Y, X, a)

341

where X can be READ 1 , READ2, HERE, or ACCEPT and Y can only be READ , , READ2, or

HERE.

This gives 1 2 new productions:

PRoD 22 Net(READ1 , READ 1 , a)

--+ Row3Net(READ 1 , READ1 , a)Net(READ 1 , READ1 , a)

PROD 23 Net(READ1 , READ1 , a)

---+ Row3Net(READ" READ2, a)Net(READ2, READ 1 , a)

PROD 24 Net(READ" READ 1 , a)
--+ Row3Net(READ1 , HERE, a)Net(HERE, READ 1 , a)

PROD 25 Net(READ" READ2, a)

--+ Row3Net(READ 1 , READ 1 , a)Net(READ 1 , READ2, a)
PROD 26 Net(READ1 , READ2, a)

---+ Row3Net(READ1 , READ2, a)Net(READ2, READ2, a)

PROD 27 Net(READ1 , READ2, a)

---+ Row3Net(READ" HERE, a)Net(HERE, READ2, a)
PROD 28 Net(READ" HERE, a)

---+ Row3Net(READ1 , READ1 , a)Net(READ 1 , HERE, a)
PROD 29 Net(READ" HERE, a)

---+ Row 3Net(READ 1 , READ2, a)Net(READ2, HERE, a)
PROD 30 Net(READ 1 , HERE, a)

--+ Row3Net(READ1 , HERE, a)Net(HERE, HERE, a)

PROD 3 1 Net(READ 1 , ACCEPT, a)
--+ Row3Net(READ 1 , READ1 , a)Net(READ 1 , ACCEPT, a)

PROD 32 Net(READI ' ACCEPT, a)
---+ Row3Net(READ 1 , READ2, a)Net(READ2, ACCEPT, a)

PROD 33 Net(READ 1 , ACCEPT, a)

---+ Row3Net(READ " HERE, a)Net(HERE, ACCEPT, a)

This is the largest CFG we have ever tried to handle. We have

7 terminals: Row 1 , Row2, • • • , Row7
29 nonterminals: S, 16 of the form Net(, , $)

1 2 of the form Net(, , a)
33 productions: PROD l , . . . • PROD 33

We know that not all these will occur in an actual derivation starting at S. For example,

Net(READ2, ACCEPT, a) cannot happen, because to go from READ2 to ACCEPT, we must
pop a $, not an a.

342 CHAPTER 15 CFG = PDA

To see which productions can lead toward words, let us begin to draw the leftmost total

language tree of the row language. By "leftmost" we mean that from every working-string

node we make one branch for each production that applies to the leftmost nonterminal.

Branching only on the leftmost nonterminal avoids considerable duplication without losing

any words of the language, because all words that can be derived have leftmost derivations

(Theorem 27 on p. 284).
In this case, the tree starts simply as

s

!
Net(START, ACCEPT, $)

!
Row 1Net(READ1 , ACCEPT, $)

(I)

(l , 9)

This is because the only production that has S as its left-hand side is PROD I . The only pro

duction that applies after that is PROD 9. The numbers in parentheses at the right show which

sequence of productions was used to arrive at each node in the tree. The leftmost (and only)

nonterminal now is Net(READ1 , ACCEPT, $). There are exactly three productions that can

apply here: PROD 19, PROD 20, and PROD 2 1 . So, the tree now branches as follows:

Row1 Net(READ" ACCEPT, $)1 1 = �Ow ,Row,Net(READ, . READ, . a)Net(READ, . ACCEPT, $)
Row 1Row2Net(READ1 , READ2, a)Net(READ2, ACCEPT, $)
Row 1Row2Net(READ 1 , HERE, a)Net(HERE, ACCEPT, $)

(I , 9)

____ , ____
(I , 9, 1 9) (1 , 9, 20) (l , 9, 2 1)

(1 , 9, 1 9)
(I , 9, 20)
(1 , 9, 2 1)

Let us consider the branch (I , 9, 1 9) . Here, the leftmost nonterminal is Net(READ 1 ,
READ1 , a). The productions that apply to this nonterminal are PROD 22, PRoD 23, and PROD
24. Application of PRoD 23 gives us an expression that includes Net(READ2, READ! ' a), but
there is no production for which this Net is the left-hand side. (This corresponds to the fact
that there are no paths from READ2 to READ1 in this PDA.) Therefore, PROD 23 can never

be used in the formation of a word in this row language.
This is also true of PROD 24, which creates the expression Net(HERE, READ1 , a). No

matter how many times we apply PROD 22, we still have a factor of Net(READ1 , READ1 , a).
There is no way to remove this nonterminal from a working string. Therefore, any branch in
corporating this nonterminal can never lead to a string of only terminals. The situation is

similar to this CFG:

s - b I x
x - ax

We can never get rid of the X. So, we get no words from starting with S - X. Therefore, we

might as well drop this nonterminal from consideration.
We could produce just as many words in the row language if we dropped PROD 22, PROD

23, and PROD 24. Therefore, we might as well eliminate PROD 19 , because this created the
situation that led to these productions, and it can give us no possible lines, only hopeless

ones. We now see that we might as well drop the whole branch (1 , 9, 19) .
Now let us examine the branch (1 , 9, 20). The leftmost nonterminal here is Net(READ"

READ2, a). The productions that apply to this nonterminal are PROD 25, PROD 26, and
PRoD 27.

Of these, PROD 25 generates a string that involves Net(READI '
READ 1 , a), which we

saw before led to the death of the branch (I , 9, 19) . So, PROD 25 is also poison.

Building a CFG for Every PDA 343

We have no reason at the moment not to apply PROD 26 or PROD 27. The tree, therefore,
continues: �(l , 9, 20)

Row 1 Row2Row3Net(READ1 , READ2, a)Net(READ2, READ2, a)Net(READ2, ACCEPT, $) (I , 9, 20, 26)
Row 1 Row2Row3Net(READ" HERE, a)Net(HERE, READ2, a)Net(READ2, ACCEPT, $) (I , 9, 20, 27)

(1 , 9, 20)

� ------
(1 , 9, 20, 26) (1 , 9, 20, 27)

Let us continue the process along one branch of the tree: (l , 9, 20, 27)

!
Row 1Row2Row3Row 4Net(HERE, READ2, a)Net(READ2, ACCEPT, $) (1 , 9, 20, 27, 2)

!
Row1Row2Row3Row4Row5Net(HERE, ACCEPT, $) (l , 9, 20, 27, 2, 3)

!
Row1Row2Row3Row4Row5Row7 (1 , 9, 20, 27 , 2, 3, 5)

This is the shortest word in the entire row language. The total language tree is infinite.
In this particular case, the proof that this is the CFG for the row language is easy, and it

reflects the ideas in the general proof that the CFG formed by the three rules we stated is the
desired CFG.

For one thing, it is c lear that every derivation from these rules is a sequence of rows of
the summary table that is joint- and STACK-consistent and therefore represents a real path
through the PDA.

Now we have to explain why every path through the PDA is derivable from the set of
productions that these rules create.

Every word accepted by the PDA is accepted through some path. Every particular path
is associated with a specific sequence of STACK fluctuations (l ike a stock value going up
and down). Every fluctuation is a Net nonterminal . It is either directly the equivalent of a
Row terminal (if it represents a simple segment in the path), or it can be broken down into a
sequence of smaller STACK fluctuations. There are rules of production that parallel this de
composition which break the Net nonterminal into a sequence of the other corresponding
Net nonterminals . These smaller fluctuations, in tum, can continue to be resolved until we
hit only nondecomposable Row terminals, and this sequence of terminals is the path . There
fore, every path through the PDA can be generated from our grammar.

Let us recapitulate the algorithm:

1. Starting with any PDA as defined in the previous section, we can convert it into conver
sion form without changing its language.

2. From conversion form, we can build a summary table that has all the information about
the PDA broken into rows, each of which describes a simple path between joint states
(READ, HERE, START, and ACCEPT) . The rows are of the form

FROM TO READ POP PUSH ROW

3. There is a set of rules describing how to create a CFG for the language whose words are
all the row sequences corresponding to all the paths through the PDA that can be taken
by input strings on their way to acceptance.

The rules create productions of three forms:

Rule I S --+ Net(START, ACCEPT, $)

344 CHAPTER 15 CFG = PDA

Rule 2 Net(X, Y, Q) --+ Row;
Rule 3 Net(A, B, C) -+ Row;Net(A , X, Y) . . . Net(Q, B, W)

What we need now to complete the proof of Theorem 31 is to create the CFG that gen
erates the language accepted by the PDA-not just its row language which is the path lan
guage, but the language of strings of a's and b 's .

We can finish this off in one simple step. In the summary table, every row had an entry
that we have ignored until now, that is, the READ column.

Every row reads a, b, A, or � from the INPUT TAPE. There is no ambiguity because an
edge from a READ state cannot have two labels. So, every row sequence corresponds to a
sequence of letters read from the INPUT TAPE. We can convert the row language into the
language of the PDA by adding to the CFG for the row language the set of productions cre
ated by a new rule, Rule 4.

Rule 4 For every row

FROM TO READ POP PUSH ROW

A B c D EFGH

create the production

Row1 -+ C

For example, in the summary table for the PDA that accepts that language { a2nbn } , we
have seven rows. Therefore, we create the following seven new productions :

PROD 34 Row 1 -+ A
PROD 35 Row2 --+ a
PRoD 36 Row3 -+ a
PRoD 37 Row4 -+ b
PRoD 38 Row5 -+ A
PROD 39 Row6 -+ b
PROD 40 Row7 --+ d

The symbols, Row 1 , Row 2, • • • that used to be terminals in the row language are now
nonterminals. From every row sequence we can produce a word. For example,

Row 1Row2Row3Row4Row5Row7
becomes

AaabA�

Treating � l ike a A (to be painfully technical , by the production � --+ A), we have the word

aab

Clearly, this word can be accepted by this PDA by following the path

Row 1 -Row 2 -Row 3 -Row 4 -Row 5-Row 7
The derivations of the words from the productions of this CFG not only tel l us which

words are accepted by this PDA, but also indicate a path by which the words may be ac
cepted, which may be useful information.

Remember that because this is a nondeterministic machine, there may be several paths
that accept the same word. But for every legitimate word there wil l be at least one complete
path to ACCEPT.

The language generated by this CFG is exactly the language accepted by the PDA origi
nal ly. Therefore, we may say that for any PDA there is a CFG that generates the same lan
guage the machine accepts. •

Building a CFG for Every PDA 345

EXAMPLE

We shall now illustrate the complete process of equivalence, as given by the two theorems in
this chapter, on one simple example. We shall start with a CFG and convert it into a PDA
(using the algorithm of Theorem 30), and we then convert this very PDA back into a CFG

(using the algorithm of Theorem 3 1) .

The language of this i l lustration is the collection of all strings of an even number of a's :

EVENA = (aa)+ = a2n = (aa aaaa aaaaaa . . . }

One obvious grammar for this language is

s � ss I aa

The leftmost total language tree begins:

s

/ � aa
SS

/�/s� aaS�
ssss aaSS aaSS aaaa

/ � / � / �sssss aaSSS aaSSS aaaaS aaSSS aaaaS

aaaaaa

Before we can use the algorithm of Theorem 30 to build a PDA that accepts this language,
we must put it into CNF. We therefore first employ the algorithm of Theorem 26, (p. 278).

s � ss I AA
A � a

The PDA we produce by the algorithm of Theorem 30 is

ACCEPT

346 CHAPTER 15 CFG = PDA

We shall now use the algorithm of Theorem 3 1 to tum this machine back into a CFG.
First, we must put this PDA into conversion form:

S T A R T

PUSH S 1----...._ _ __..__ _ __._---.-----+<

ACCEPT

Notice that the branching that used to take place at the grand central POP must now take
place at the grand central HERE. Notice also that because we insist there be a POP after every
READ, we must have three POPs following READ 1 • Who among us is so brazen as to claim to
be able to glance at this machine and identify the language it accepts?

The next step is to put this PDA into a summary table:

FROM TO READ POP PUSH ROW

START HERE A $ S$ I

HERE HERE A s SS 2

HERE HERE A s AA 3

HERE READ1 A A - 4

READ I HERE a s s 5

READI HERE a $ $ 6

Building a CFG for Every PDA 347

FROM TO READ POP PUSH ROW

READ1 HERE a A A 7

HERE READ2 A $ $ 8

READ2 ACCEPT � $ - 9

We are now ready to write out all the productions in the row language. We always begin
with the production from Rule I :

S ---+ Net(START, ACCEPT, $)

There are two rows with no PUSH parts, and they give us by Rule 2

Net(HERE, READ" A) --+ Row4
Net(READ2, ACCEPT, $) ---+ Row9

From Row" we get 1 2 productions of the form

Net(START, X, $) ---+ Row 1Net(HERE, Y, S)Net(f, X, $)

where X = HERE, READ" READ2, or ACCEPT and Y = HERE, READ1 , or READz
From Row2, we get eight productions of the form

Net(HERE, X, S) --+ Row2Net(HERE, Y, S)Net(f, X, S)

where X = HERE, READ" READ2, or ACCEPT and Y = HERE or READ 1 •
From Row 3, we get eight productions o f the form

Net(HERE, X, S) --+ Row3Net(HERE, Y, A)Net(f, X, A)

where X = HERE, READ1 , READ2, or ACCEPT and Y = HERE or READ1 •
From Row 5 , we get the four productions

Net(READ1 , X, S) --+ Row 5Net(HERE, X, S)

where X = HERE, READ1 , READ2, or ACCEPT.
From Row 6, we get the four productions

Net(READ" X, $) ---+ Row6Net(HERE, X, $)

where X = HERE, READ" READ2, or ACCEPT.
From Row7, we get the four productions

Net(READ1 , X, A) --+ Row7Net(HERE, X, A)

where X = HERE, READ1 , READ2, or ACCEPT.
From Row8, we get the one production

Net(HERE, ACCEPT, $) ---+ Row 8Net(READ2, ACCEPT, $)

All together, this makes a grammar of 44 productions for the row language.
To obtain the grammar for the actual language of the PDA, we must also include the fol

lowing productions:

Row 1 --+ A
Row2 --+ A
Row3 --+ A
Row4 --+ A
Row5 --+ a

348 CHAPTER 15 CFG = PDA

Row6 - a
Row7 - a
Row8 - A
Row9 - A

This is not exactly the two-production grammar for EVENA we started with. We seem to
have made a profit. •

Before finishing our discussion of Theorem 3 1 , we should say a word about condition 8
in the definition of conversion form. On the surface, it seems that we never made use of this
property of the PDA in our construction of the CFG. We did not. However, it is an important
factor in showing that the CFG generates the language accepted by the machine. According
to our definition of PDA, it is possible for a machine to accept an input string without read
ing the whole string. Because the final strings come from the row language, and represent
paths to ACCEPT, only that part of the input string corresponding to a path to ACCEPT
could be generated by the grammar. If a particular input is only accepted by paths that do not
read all its letters, then the grammar resulting from the conversion algorithm would not gen
erate this word.

{f PROBLEMS

For each of the CFGs below in Problems 1 through 8, construct a PDA that accepts the same
language they generate, using the algorithm of Theorem 30).

l . (i) S --+ aSbb I abb
(ii) S -+ SS I a I b

2. S -+ XaaX
x - ax I bX I A

3. S -+ aS I aSbS I a

4. S -+ XY
X -+ aX I bX I a
Y -+ Ya I Yb I a

5. S -+ Xa I Yb
x - sb I b
Y -+ Sa I a

6. (i) S -+ Saa I aSa I aaS
(ii) How many words of length 1 2 are there in this language?

7. (i) S -+ (S)(S) I a
Parentheses are terminals here.

(ii) How many words are there in this language with exactly four a 's?

8. (i) s - xaY I YbX
X -+ YY I aY I b
Y -+ b I bb

(i i) Draw the total language tree.

9. Explain briefly why it is not actually necessary to convert a CFG into CNF to use the al
gorithm of Theorem 30 to build a PDA that accepts the same language.

Problems

10. Let us consider the set of all regular expressions to be a language over the alphabet

I = { a b () + * A l

Let us call this language REGEX.

(i) Prove that REGEX is nonregular if you don't do this already on p. 286.

(ii) Prove that REGEX is context-free by producing a grammar for it.
(iii) Draw a PDA that accepts REGEX.
(iv) Draw a deterministic PDA that accepts REGEX.

349

11 . (i) Draw a PDA in conversion form that has twice as many READ states as POP states.
(ii) Draw a PDA in conversion form that has twice as many POP states as READ states.

12. (i) In a summary table for a PDA, can there be more rows with PUSH than rows with
no PUSH?

(ii) In a summary table for a PDA, can there be more rows that PUSH more than one
letter than there are rows that PUSH no letter?

(iii) On a path through a PDA generated by a word in the language of the PDA, can there
be more rows that PUSH more than one letter than rows that PUSH no letters?

13. Consider this PDA:

START

h

REJECT

(i) What is the language of words it accepts?
(i i) Put it into conversion form.
(ii i) Build a summary table for this PDA.

PUSH a PUSH a

ACCEPT

14. (i) Write out the CFG for the row language of the PDA in Problem 1 3 .
(ii) Write out the CFG for the language accepted by this machine.

15. Starting with the CFG for { anbn }

s � asb I ab

(i) Put this CFG into CNF.
(ii) Take this CNF and make a PDA that accepts this language.

16. (i) Take the PDA of Problem 1 5 and put it into conversion form. (Feel free to eliminate
useless paths and states.)

(ii) Build a summary table for this PDA.

350 CHAPTER 15 CFG = PDA

17. (i) From the summary table produced in Problem 1 5 , write out the productions of the
CFG that generate the row language of the PDA.

(ii) Convert this to the CFG that generates the actual language of the PDA (not the row
language).

18. Prove that every context-free language over the alphabet I = { a b l can be accepted
by a PDA with three READ states.

19. Prove that for any PDA there is another PDA that accepts exactly the same language but
has only one POP state.

20. Show that if the algorithm of Theorem 3 1 produces a deterministic PDA, then the lan
guage has only one word in it.

CHAPTER 16

Non-Context-Free
Languages

')\} SELF-EMBEDDEDNESS

We are now going to answer the most important question about context-free languages: Are
all languages context-free? As any student who realizes that we are only in Part II of a three
part book knows, the answer is no.

To prove this, we have to make a very careful study of the mechanics of word produc
tion from grammars. Let us consider a CFG that is in Chomsky Nonna! Fonn. All its pro
ductions are of the two fonns

THEOREM 32

Nontenninal - Nontenninal Nontenninal
Nontenninal - tenninal

Let G be a CFG in Chomsky Normal Form. Let us call the productions of the fonn

Nontenninal - Nonterminal Nonterminal

live and the productions of the fonn

Nonterminal - terminal

dead.

If we are restricted to using the live productions at most once each, we can generate
only finitely many words.

PROOF

The question we shall consider is : How many nonterminals are there in the working strings
at different stages in the production of a word?

Suppose we start (in some abstract CFG in CNF that we need not specify) with

S � AB
351

352 CHAPTER 16 Non-Context-Free Languages

The right side, the working string, has exactly two nontenninals. If we apply the live pro
duction

A -+ XY

we get

=> XYB

which has three nontenninals. Now applying the dead production

X -+ b

we get

=> bYB

with two nontenninals. But now applying the l ive production

Y -+ SX

we get

=> bSXB

with three nontenninals again.
Every time we apply a l ive production, we increase the number of nontenninals by one.

Every time we apply a dead production, we decrease the number of nontenninals by one.
Because the net result of a derivation is to start with one nontenninal S and end up with none
(a word of solid tenninals), the net effect is to lose a nontenninal. Therefore, in all cases, to
arrive at a string of only tenninals, we must apply one more dead production than l ive pro
duction. This is true no matter in what order the productions are applied.

and

For example (again these derivations are in some arbitrary, uninteresting CFGs in CNF),

S => b

0 l ive
l dead

or

S => XY
=> aY
=> aa

l live
2 dead

Let us suppose that the grammar G has exactly

p l ive productions

q dead productions

S => AB
=> XYB
=> bXB
=> bSXB

or => baXB
=> baaB
=> baab

3 l ive
4 dead

Because any derivation that does not reuse a l ive production can have at most p live produc
tions , it must have at most (p + 1) dead productions. Each letter in the final word comes
from the appl ication of some dead production. Therefore, all words generated from G with
out repeating any live productions have at most (p + l) letters in them.

Therefore, we have shown that the words of the type described in this theorem cannot
be more than (p + 1) letters long. Therefore, there can be at most finitely many of them. •

Notice that this proof applies to any derivation, not just leftmost derivations.
When we start with a CFG in CNF, in al/ leftmost derivations, each intermediate step is

a working string of the form

Self-Embeddedness 353

� (string of solid terminals) (string of solid Nonterminals)

This is a special property of leftmost Chomsky working strings as we saw on p. 284. Let
us consider some arbitrary, unspecified CFG in CNF.

Suppose that we employ some live production, say,

z - xr

twice in the derivation of some word w in this language. That means that at one point in the
derivation, just before the duplicated production was used the first time, the leftmost Chom
sky working string had the form

� (s 1)Z(s2)

where s 1 is a string of terminals and s2 is a string of nonterminals. At this point, the leftmost
nonterminal is Z. We now replace this Z with XY according to the production and continue
the derivation. Because we are going to apply this production again at some later point, the
leftmost Chomsky working string will sometimes have the form

� (s 1)(s3)Z(s4)

where s 1 is the same string of terminals unchanged from before (once the terminals have
been derived in the front, they stay put; nothing can dislodge them), s3 is a newly formed
string of terminals, and s4 is the string of nonterminals remaining (it is a suffix of s2) . We are
now about to apply the production Z - XY for the second time.

Where did this second Z come from? Either the second Z is a tree descendant of the
first Z, or else it comes from something in the old s2• By the phrase "tree descendant, " we
mean that in the derivation tree there is an ever-downward path from one Z to the other.

Let us look at an example of each possibility.

Case 1

In the arbitrary grammar

s - Az

z - BB

B - ZA

A - a

B - h

as we proceed with the derivation of some word, we find

S � AZ
� az
� aBB
� abB
� abZA

354 CHAPTER 16 Non-Context-Free Languages

As we see from the derivation tree, the second Z was derived (descended) from the first.
We can see this from the diagram because there is a downward path from the first Z to the
second.

On the other hand, we could have something like in Case 2.

Case 2

In the arbitrary grammar

s - AA
A - BC
c - BB
A - a
B - b

as we proceed with the derivation of some word, we find

S => AA
=> BCA
=> bCA
=> bBBA

Two times the leftmost nonterminal is B, but the second B is not descended from the
first B in the tree. There is no downward tree path from the first B to the second B.

Because a grammar in CNF replaces every nonterminal with one or two symbols, the
derivation tree of each word has the property that every mode has one or two descendants.
Such a tree is called a binary tree and should be very familiar to students of computer science.

When we consider the derivation tree, we no longer distinguish leftmost derivations
from any other sequence of nonterminal replacements.

We shall now show that in an infinite language we can always find an example of
Case 1 .

THEOREM 33

If G is a CFG in CNF that has p live productions and q dead productions, and if w is a word
generated by G that has more than 2P letters in it, then somewhere in every derivation tree for
w there is an example of some nonterminal (call it Z) being used twice where the second Z is
descended from the first Z.

PROOF

Why did we include the arithmetical condition that

length(w) > 2P ?

Self-Embeddedness 355

This condition ensures that the production tree for w has more than p rows (genera
tions) . This is because at each row in the derivation tree the number of symbols in the work
ing string can at most double the last row.

For example, in some abstract CFG in CNF we may have a derivation tree that looks
like this :

A B C D / '-. / " / '-. / '-.
X B A Y C C D A

(In this figure, the nonterminals are chosen completely arbitrarily.) If the bottom row has
more than 2P letters, the tree must have more than p + I rows.

Let us consider any terminal that was one of the letters formed on the bottom row of the
derivation tree by a dead production, say,

x - b

The letter b is not necessarily the rightmost letter in w, but it is a letter formed after more
than p generations of the tree. This means that it has more than p direct ancestors up the tree.

From the letter b, we trace our way back up through the tree to the top, which is the start
symbol S. In this backward trace, we encounter one nonterminal after another in the inverse
order in which they occurred in the derivation. Each of these nonterminals represents a pro
duction. If there are more than p rows to retrace, then there have been more than p produc
tions in the ancestor path from b to S.

But there are only p different live productions possible in the grammar G, so if more than p
have been used in this ancestor path, then some live productions have been used more than once.

The nonterminal on the left side of this repeated live production has the property that it
occurs twice (or more) on the descent line from S to b. This then is a nonterminal that proves
our theorem.

Before stamping the end-of-proof box, let us draw an i l lustration, a totally arbitrary tree
for a word w in a grammar we have not even written out:

356 CHAPTER 16 Non-Context-Free Languages

The word w is babaababa. Let us trace the ancestor path of the circled tenninal a from
the bottom row up:

a came from Y by the production Y - a
Y came from X by the production X - BY
X came from S by the production S - XY
S came from B by the production B - SX
B came from X by the production X - BY
X came from S by the production S - XY

If the ancestor chain is long enough, one production must be used twice. In this exam
ple, both X - BY and S - XY are used twice. The two X's that have boxes drawn around
them satisfy the conditions of the theorem. One of them is descended from the other in the
derivation tree of w. •

DEFINITION

In a given derivation of a word in a given CFG, a nontenninal is said to be self-embedded if
it ever occurs as a tree descendant of itself. •

Theorem 33 (p. 354) says that in any CFG all sufficiently long words have leftmost de
rivations that include a self-embedded nontenninal .

EXAMPLE

Consider the CFG for NONNULLPALINDROME in CNF:

s - AX
x - sA
s - BY
r - sB
s - a

s - h
s - M
s - BB
A - a
B - b

There are six live productions, so according to Theorem 33, it would require a word of
more than 26 = 64 letters to guarantee that each derivation has a self-embedded nontenninal
in it.

If we are only looking for one example of a self-embedded nonterminal, we can find
such a tree much more easily than that. Consider this derivation tree for the word aabaa:

S • · • • · • · • • • • • • • • - - - - Level 1

/ """
A X . . - - - - Level 2

I / ""'
a S A . - - - - Level 3

/ ""' I
A x a . . - - - - Level 4

I / """
a S A . - - - - Level 5

I I b a • • • • • . • • • • • . • • • • • . • - - - - Level 6

Self-Embeddedness 357

This tree has six levels, so it cannot quite guarantee a self-embedded nonterminal , but it
has one anyway. Let us begin with the b on level 6 and trace its path back up to the top:

"The b came from S which came from X, which came
from S, which came from X, which came from S."

In this way, we find that the production X � SA was used twice in this tree segment:

s A
•

The tree above proceeds from S down to the first X. Then from the second X the tree
proceeds to the final word. But once we have reached the second X, instead of proceeding
with the generation of the word as we have it here, we could instead have repeated the same
sequence of productions that the first X initiated, thereby arriving at a third X. The second
can cause the third exactly as the first caused the second. From this third X, we could pro
ceed to a final string of all terminals in a manner exactly as the second X did.

Let us review this logic more slowly. The first X can start a subtree that produces the sec
ond X, and the second X can start a subtree that produces all terminals, but it does not have to.
Instead, the second X can begin a subtree exactly like the first X. This wil l then produce a
third X. From this third X, we can produce a string of all terminals as the second X used to.

Origi nal tree with
X-subtree ind icated

s /
A x I / �
a s A

/ """ I
A /x"
I

a s A

I I
b a

Modified tree with the whole X-subtree
hanging from where the second X was

s

/ """
A x
I / """

a s A

/ I
A /x�
I

a s A

/ """ I
A x a

I / """
a s A

I I b a

358 CHAPTER 16 Non-Context-Free Languages

This modified tree must be a completely acceptable derivation tree in the original lan
guage because each node is stil l replaced by one or two nodes according to the rules of pro
duction found in the first tree.

The modified tree still has a last X and we can play our trick again. Instead of letting this
X proceed to a subword as in the first tree, we can replace it by yet another copy of the origi
nal X-subtree.

Aga i n A n d yet aga i n

s
s / """ / """ A x

I / """ A x
I / """ a s A

/ """ I a s A

/ """ I A x a

I / """ A x a I / """ a s A

/ I a s A

/ """ I
A x a

I / � A x a

I / """ a s A

/ """ I a s A

/ I
A x a

I / """ A /x�
Ia s A

I I a s A

/ """ I
b a

A x a

I / """
a s A

I I
b a

All these trees must be derivation trees of some words in the language in which the orig
inal tree started because they reflect only those productions already present in the original
tree, just in a different arrangement. We can play this trick as many times as we want, but
what words will we then produce?

The original tree produced the word aabaa, but it is more important to note that from S
we could produce the working string aX, and from this X we could produce the working
string aXa. Then from the second X we eventually produced the subword ba.

Let us introduce some new notation to facilitate our discussion.

DEFINITION

Let us introduce the notation � to stand for the phrase "can eventually produce." It i s used
in the fol lowing context: Suppose in a certain CFG the working string S 1 can produce the

Self-Embeddedness 359

working string S2, which in turn can produce the working string S3
produce the working string S

"
:

. , which in turn can

Then we can write

s b sI n

Using this notation, we can write that in this CFG the following are true:

s b ax, x b aXa, x b ba

It will be interesting for us to reiterate the middle step since if X b aXa, then

x b aaXaa and X b aaaXaaa and so on

In general,

•

We can then produce words in this CFG starting with S => aX and finishing with X => ba
with these extra iterations in the middle:

S b aX b aaXa b aabaa
S b aX b aaaXaa b aaabaaa
S b aX b aaaaXaaa b aaaabaaaa
S b aX b aa"Xa" b aa"baa"

Given any derivation tree in any CFG with a self-embedded nonterminal, we can use the iter
ative trick above to produce an infinite family of other words in the language. •

EXAMPLE

For the arbitrary CFG,

One possible derivation tree is

S - AB
A - BC
c - AB
A - a
B - b

In this case, we find the self-embedded nonterminal A in the dashed triangle. Not only is A
self-embedded, but it has already been used twice the same way (two identical dashed triangles).

360 CHAPTER 16 Non-Context-Free Languages

Again, we have the option of repeating the sequence of productions in the triangle as
many times as we want:

Each iteration will produce new and longer words, all of which must belong to the origi
nal language.

This is why in the last theorem it was important that the repeated nontenninals be along
the same l ine of descent. •

1} THE PUMPING LEMMA FOR CFLs

This entire situation is analogous to the multiply reiterative pumping lemma of Chapter I 0,

so it should be no surprise that this technique was discovered by the same people: Bar-Hillel,
Perles, and Shamir. The following theorem, called "the pumping lemma for context-free lan
guages," states the consequences of reiterating a sequence of productions from a self-embed
ded nontenninal.

THEOREM 34

If G is any CFG in CNF with p l ive productions and w is any word generated by G with
length greater than 2r, then we can break up w into five substrings:

w = uvxyz

such that x is not A and v and y are not both A and such that all the words

u�:��z

J = uvnxynz for n = I 2 3 . . .
uvvvxyyyz

uvvvvxyyyyz

can also be generated by G.

PROOF

From our previous theorem, we know that if the length of w is greater than 2P, then there are
always self-embedded nontenninals in any derivation tree for w.

Let us now fix in our minds one specific derivation of w in G. Let us call one self
embedded nontenninal P, whose first production is P ---+ QR.

Let us suppose that the tree for w looks like this :

The Pumping Lemma for CFLs 361

I I I I I I I I
w

The triangle indicated encloses the whole part of the tree generated from the first P
down to where the second P is produced.

Let us divide w into these five parts:

u = the substring of all the letters of w generated to the left of the triangle above
(this may be A)

v = the substring of all the letters of w descended from the first P but to the left
of the letters generated by the second P (this may be A)

x = the substring of w descended from the lower P (this may not be A because
this nontenninal must turn into some tenninals)

y = the substring of w of all letters generated by the first P but to the right of the
letters descending from the second P (this may be A, but as we shall see,
not if v = A)

z = the substring of all the letters of w generated to the right of the triangle
(this may be A)

Pictorially,

\
u

I '-�v....---''
z

For example, the following is a complete tree in an unspecified grammar:

a a Q R h h

/ I
\ ,,-J '---v-J \ a h I '-v-1 \ •

u (' x y z
I

362 CHAPTER 16 Non-Context-Free Languages

It is possible that either u or z or both might be A, as in the following example where S
is itself the self-embedded nonterminal and all the letters of w are generated inside the tri
angle:

U = A

s A

I I
b a

v = A x = ba

a

y = a z = A

However, either v is not A, y is not A, or both are not A. This is because in the picture

p

even though the lower P can come from the upper Q or from the upper R, there must sti l l be
some other letters in w that come from the other branch, the branch that does not produce
this P.

This is important, because if it were ever possible that

v = y = A

then

uv"xynz

would not be an interesting collection of words.
Now let us ask ourselves, what happens to the end word if we change the derivation tree

by reiterating the productions inside the triangle? In particular, what is the word generated
by this doubled tree?

As we see can from the picture, we shall be generating the word

The Pumping Lemma for CFLs 363

uvvxyyz

Remember that u, v, x, y, and z are all strings of a's and h's, and this is another word
generated by the same grammar. The u-part comes from S to the left of the whole triangle .
The first v is what comes from inside the first triangle to the left of the second P. The second
v comes from the stuff in the second triangle to the left of the third P. The x-part comes from
the third P. The first y-part comes from the stuff in the second triangle to the right of the
third P. The second y comes from the stuff in the first triangle to the right of the second P.
The z, as before, comes from S from the stuff to the right of the first triangle.

If we tripled the triangle, we would get

u v v v

which is a derivation tree for the word

x

uvvvxyyyz

y y y z

which must therefore also be in the language generated by G.
In general , if we repeat the triangle n times, we get a derivation tree for the word

which must therefore also be in the language generated by G.

We can also use our � symbol to provide an algebraic proof of this theorem.

* * * S ==> uPz ==> uvPyz ==> uvxyz = w

•

This new symbol is the nexus of two of our old concepts : the derivation ==> and the clo
sure *, meaning as many repetitions as we want. The idea of "eventually producing" was in
herent in our concept of nullable. Using our new symbolism, we can write

N is nullable if N � A
We can also give an algebraic definition of self-embedded nonterminals .

DEFINITION (Second)

In a particular CFG, a nonterminal N is called self-embedded in the derivation of a word w
if there are strings of terminals v and y not both nul l , such that

* N ==> vNy •

364 CHAPTER 16 Non-Context-Free Languages

PROOF 2

If P is a self-embedded nontenninal in the derivation of w, then

s b uPz

for some u and z, both substrings of w. Also,

* P ==> vPy

for some v and y, both substrings of w, and finally,

P b x

another substring of w.

But we may also write

s b uPz
* ==> uvPyz
* ==> uvvPyyz
* ==> uvvvPyyyz
* ==> uv11Py11z (for any n)

b uv11xy11z

So, this last set of strings are all words derivable in the original CFO. •

Some people are more comfortable with the algebraic argument and some are more
comfortable reasoning from diagrams. Both techniques can be mathematically rigorous and
infonnative. There is no need for a blood feud between the two camps.

EXAMPLE

We shall analyze a specific case in detail and then consider the situation in its ful l generality.
Let us consider the following CFO in CNF:

s - PQ
Q - Qs I b
P - a

The word abab can be derived from these productions by the following derivation tree :

The Pumping Lemma for CFLs 365

Here, we see three instances of self-embedded nonterminals . The top S has another S as
a descendant. The Q on the second level has two Q's as descendants, one on the third level
and one of the fourth level. Notice, however, that the two P 's are not descended one from the
other, so neither is self-embedded. For the purposes of our example, we shall focus on the
self-embedded Q's of the second and third levels, although it would be just as good to look
at the self-embedded S's. The first Q is replaced by the production Q � QS, whereas the sec
ond is replaced by the production Q � b. Even though the two Q's are not replaced by the
same productions, they are self-embedded and we can apply the technique of this theorem.

If we draw this derivation:

S => PQ
=> aQ
=> aQS
=> abS
=> abPQ
=> abaQ
=> ahab

we can see that the word w can be broken into the five parts uvxyz as follows:

We have located a self-embedded nonterminal Q and we have drawn a triangle enclos
ing the descent from Q to Q. The u-part is the part generated by the tree to the left of the
triangle. This is only the letter a. The v-part is the substring of w generated inside the trian
gle to the left of the repeated nonterminal . Here, however, the repeated nonterminal Q is the
leftmost character on the bottom of the triangle. Therefore, v = A. The x-part is the sub
string of w descended directly from the second occurrence of the repeated nonterminal (the
second Q). Here, that is c learly the single letter h. The y-part is the rest of w generated in
side the triangle, that is, whatever comes from the triangle to the right of the repeated non
terminal . In this example, this refers to the substring ab. The z-part is all that is left of w,
that is, the substring of w that is generated to the right of the triangle. In this case, that is
nothing, z = A.

u = a, v = A, x = b, y = ab, z = A

The following diagram shows what would happen if we repeated the triangle from the
second Q just as it descends from the first Q:

366 CHAPTER 16 Non-Context-Free Languages

If we now fill in the picture by adding the tenninals that descend from the P, Q, and S's,
as we did in the original tree, we complete the new derivation tree as follows:

u x y y

Here, we can see that the repetition of the triangle does not affect the u-part. There was
one u-part and there still is only one u-part. If there were a z-part, that too would be left
alone, because these are defined outside the triangle. There is no v-part in this example, but
we can see that the y-part (its right-side counterpart) has become doubled. Each of the two
triangles generates exactly the same y-part. In the middle of all this, the x-part has been left
alone. There is still only one bottom repeated nontenninal from which the x-part descends.
The word with this derivation tree can be written as uvvxyyz:

uvvxyyz = aAAbababA
= ababab

If we had tripled the triangle instead of only doubling it, we would obtain

/ \I' <i
I I

11 h II h (! /i (/ /i

This word we can easily recognize as

uvvvxyyyz = aAAAbabababA

In general, after n iterations of the triangle, we obtain a derivation of the word

We draw one last generalized picture :

•

The Pumping Lemma for CFLs 367

Pumped twice, it becomes

s

/\

\.._,-..1\._,,...j\-..-J \........,-J'-.--l�\....,..J
u v u v x y y y z

As before, the reason this is called the pumping lemma and not the pumping theorem is
that it is to be used for some presumedly greater purpose. In particular, it is used to prove
that certain languages are not context-free or, as we shall say, they are non-context-free.

EXAMPLE

Let us consider the language

I anbnan for n = I 2 3 . . . }
I aba aabbaa aaabbbaaa . . . }

Let us think about how this language could be accepted by a PDA. As we read the first a's,
we must accurately store the information about exactly how many a's there were, because
a100b99a99 must be rejected but a99b99a99 must be accepted. We can put this count into the
STACK. One obvious way is to put the a 's themselves directly into the STACK, but there may
be other ways of doing this. Next, we read the b's and we have to ask the STACK whether or
not the number of b 's is the same as the number of a's. The problem is that asking the STACK
this question makes the STACK forget the answer afterward, because we pop stuff out and can
not put it back. There is no temporary storage possible for the information that we have popped
out. The method we used to recognize the language l �bn) was to store the a's in the STACK
and then destroy them one for one with the b's. After we have checked that we have the correct
number of b 's, the STACK is empty. No record remains of how many a 's there were originally.
Therefore, we can no longer check whether the last clump of a's in anbnan is the correct size. In
answering the question for the b's, the information was lost. This STACK is like a student who
forgets the entire course after the final exam.

368 CHAPTER 16 Non-Context-Free Languages

All we have said so far is, "We don 't see how this language can be context-free because
we cannot think of a PDA to accept it." This is , of course, no proof. Maybe someone smarter
can figure out the right PDA.

Suppose we try this scheme. For every a we read from the initial cluster, we push two
a 's into the STACK. Then when we read b 's, we match them against the first half of the a's
in the STACK. When we get to the last clump of a 's, we have exactly enough left in the
STACK to match them also. The proposed PDA is this:

The problem with this idea is that we have no way of checking to be sure that the b 's
use up exactly half of the a 's in the STACK. Unfortunately, the word a 1 °b8a 1 2 is also ac
cepted by this PDA. The first 1 0 a 's are read and 20 are put into the STACK. Next, 8 of these
are matched against b's. Finally, the 1 2 final a 's match the a 's remaining in the STACK and
the word is accepted even though we do not want it in our language.

The truth is that nobody is ever going to build a PDA that accepts this language. This
can be proven using the pumping lemma. In other words, we can prove that the language
{ anbnan I is non-context-free.

To do this, Jet us assume that this language could be generated by some CFG in CNF.
No matter how many live productions this grammar has, some word in this language is big
ger than 2r. Let us assume that the word

w = azoob2ooa200

is big enough (if it is not, we have got a bag full of much bigger ones).
Now we show that any method of breaking w into five parts

w = uvxyz

will mean that

cannot be in { anbnan } .
There are many ways of demonstrating this, but let us take the quickest method.

Observation

All words in { anbnan I have exactly one occurrence of the substring ab no matter what n is .
Now if either the v-part or the y-part has the substring ab in it, then

uv
2
xy

2
z

will have more than one substring of ab, and so it cannot be in { a"b"an l . Therefore, neither 1 ·
nor y contains ab.

Observation
All words in { a"bnan } have exactly one occurrence of the substring ba no matter what n is .
Now if either the v-part or the y-part has the substring ba in it, then

The Pumping Lemma for CFLs 369

uv2xy2z

has more than one such substring, which no word in I anbnan } does. Therefore, neither v nor
y contains ba.

Conclusion

The only possibility left is that v and y must be all a's, all b 's, or A. Otherwise, they would
contain either ab or ba. But if v and y are blocks of one letter, then

uv2xy2z

has increased one or two clumps of solid letters (more a 's if v is a 's, etc .) . However, there
are three clumps of solid letters in the words in I anbnan } , and not all three of those cl umps
have been increased equally. This would destroy the form of the word.

For example, if

then

u v x y z

uv2xy2z = (a2oob1o)(b40)2(b90as2) (a3)2(0
1 1 s)

= a2oob24oa203

* anbnan for any n

The h's and the second clump of a 's were increased, but not the first a 's so the expo
nents are no longer the same.

We must emphasize that there is no possible decomposition of this w into uvxyz. It is not
good enough to show that one partition into five parts does not work. It should be understood
that we have shown that any attempted partition into uvxyz must fai l to have uvv.\yyz in the
language.

Therefore, the pumping lemma cannot successfully be applied to the language I a11h11a11 }
at all . But the pumping lemma does apply to all context-free languages.

Therefore, { anbnan } is not a context-free language. •

EXAMPLE

Let us take, just for the duration of this example, a language over the alphabet l = I a b c 1 .
Consider the language

{ anbncn for n = 1 2 3 . . . I
= { abc aabbcc aaabbbccc . . I

We shall now prove that this language is non-context-free .
Suppose it were context-free and suppose that the word

w = 02oob2ooc200

is large enough so that the pumping lemma applies to it. (That means larger than 21', where p
is the number of live productions.) We shall now show that no matter what choices are made
for the five parts u, v, x, y, z,

cannot be in the language.
Again, we begin with an observation.

370 CHAPTER 16 Non-Context-Free Languages

Observation

All words in a11b11c11 have:

Only one substring ab

Only one substring be

No substring ac

No substring ba

No substring ca

No substring cb

no matter what n is .

Conclusion

If 1 • or y is not a solid block of one letter (or A), then

uv2xy2z

would have more of some of the two-letter substrings ab, ac, ba, be, ca, cb than it is sup
posed to have. On the other hand, if v and y are solid blocks of one letter (or A), then one or
two of the letters a, b, c would be increased in the word uvvxyy:, whereas the other letter (or
letters) would not increase in quantity. But all the words in a"b"c'' have equal numbers of a 's,
b's, and e's . Therefore, the pumping lemma cannot apply to the language \ a"b"c" I . which
means that this language is non-context-free. •

Theorem 34 and Theorem 1 3 (initially discussed on pp. 360 and 1 90, respectively) have
certain things in common. They are both called a "pumping lemma," and they were both
proven by Bar-Hil lel , Perles, and Shamir. What else?

THEOREM 13

It w is a word in a regular language L and w is long enough, then w can be decomposed into
three parts: w = xyz, such that all the words xy"z must also be in L.

THEOREM 34

If w is a word in a context-free language L and w is long enough, then w can be decomposed
into five parts : w = uvxyz, such that all the words uv"xy"x must also be in L.

The proof of Theorem 13 is that the path for w must be so long that it contains a se
quence of edges that we can repeat indefinitely. The proof of Theorem 34 is that the deriva
tion for w must be so long that it contains a sequence of productions that we can repeat in
definitely.

We use Theorem 1 3 to show that I a"h" I is not regular because it cannot contain both xy:
and xyy:. We use Theorem 34 to show that I a"b"a" } is not context-free because it cannot
contain both uvxy: and uvvxyyz .

One major difference is that the pumping lemma for regular languages acts on the ma

chines, whereas the pumping lemma for context-free languages acts on the algebraic repre
sentation, the grammar.

There is one more similarity between the pumping lemma for context-free languages

The Pumping Lemma for CFLs 371

and the pumping lemma for regular languages. Just as Theorem 1 3 required Theorem 1 4 to
finish the story, so Theorem 34 requires Theorem 35 to achieve its full power.

Let us look in detail at the proof of the pumping lemma. We start with a word w of more
than zr letters. The path from some bottom letter back up to S contains more nonterminals
than there are live productions. Therefore, some nonterminal is repeated along the path. Here
is the new point: If we look for the first repeated nonterminal backing up from the letter, the
second occurrence will be within p steps up from the terminal row (the bottom). Just because
we said that length(w) > 2P does not mean it is only a little bigger. Perhaps length(w) = I OP.
Even so, the upper of the first self-embedded nonterminal pair scanning from the bottom en
countered is within p steps of the bottom row in the derivation tree.

What significance does this have? It means that the total output of the upper of the two
self-embedded nonterminals produces a string not longer than zr letters in total. The string it
produces is vxy. Therefore, we can say that

length(vxy) < zr

This observation turns out to be very useful , so we call it a theorem: the pumping
lemma with length.

THEOREM 35

Let L be a CFL in CNF with p l ive productions.
Then any word w in L with length > 2P can be broken into five parts:

such that

and such that all the words

are in the language L.

w = uvxyz

length(vxy) :::;; zr

length(x) > 0

length(v) + length(y) > 0

uvvxyyz }
uvvvxyyyz

uvvvvxyyyyz

The discussion above has already proven this result.

•

We now demonstrate one appl ication of a language that cannot be shown to be non
context-free by Theorem 34, but can be by Theorem 35.

EXAMPLE

Let us consider the language

L = (anbmanbm)

where n and m are integers I , 2, 3, . . . and n does not necessari ly equal m.

L = I ahah aahaah abbabh aahhaabb aaahaaab . . . }

372 CHAPTER 16 Non-Context-Free Languages

If we tried to prove that this language was non-context-free using Theorem 34 (p. 360)
we could have

u = A

v = first a 's = cf

x = middle b 's = b'

y = second a 's = a"

z = last b's = b'
uvn xyn z = A(a8Yb'(a"Yb'

all of which are in l. Therefore, we have no contradiction and the pumping lemma does ap
ply to l.

Now let us try the pumping lemma with length approach. If L did have a CFG that gen
erates it, let that CFG in CNF have p live productions. Let us look at the word

a2Pb2P a2Pb2P

This word has length long enough for us to apply Theorem 35 to it. But from Theorem 35,
we know that

Iength(vxy) < 2P

so v and y cannot be solid blocks of one letter separated by a clump of the other letter, be
cause the separator letter clump is longer than the length of the whole substring vxy.

By the usual argument (counting substrings of "ab" and "ba "), we see that v and y must
be one solid letter. But because of the length condition, all the letters must come from the
same clump. Any of the four clumps will do.

However, this now means that uvvxyyz is not of the form

but must also be in l. Therefore, L is non-context-free.

EXAMPLE

Let us consider the language

DOUBLEWORD = { ss where s is any string of a 's and b's }
= { A aa bb aaaa abab baba bbbb . . . }

•

In Chapter 10, p. 200, we showed that DOUBLEWORD is nonregular. Well even more is
true. DOUBLEWORD is not even context-free. We shall prove this by contradiction.

If DOUBLEWORD were generated by a grammar with p l ive productions, then any
word with length greater than 2P can be pumped, that is , decomposed into five strings uvxy:
such that uvvxyyz is also in DOUBLEWORD and Iength(vxy) < 2P.

Let n be some integer greater than 2P and let our word to be pumped be

which i s c learly in DOUBLEWORD and more than long enough. Now because length(vxy)
is less than 2P, it is also less than n. If the vxy section is contained entirely in one solid letter
clump, then replacing it with vvxyy wil l increase only one clump and not the others , thus
breaking the pattern and the pumped word would not be in DOUBLEWORD. Therefore, we
can conclude that the vxy substring spans two clumps of letters. Notice that it cannot be long

Problems 373

enough to span three clumps. This means the vxy contains a substring ab or a substring ba.
When we form uvvxyyz, it may then no longer be in the form a*b*a*b* , but it might still be
in DOUBLEWORD. However, further analysis will show that it cannot be.

It is possible that the substring ab or ba is not completely inside any of the parts v, x, or
y but lies between them. In this case, uvvxyyz leaves the pattern a*b*a*b* but increases
two consecutive clumps in size. Any way of doing this would break the pattern of ss of
DOUBLEWORD. This would also be true if the ab or ba were contained within the x-part.
So, the ab or ba must live in the v- or y-part.

Let us consider what would happen if the ab were in the v-part. Then v is of the form
a+b+ . So, vxy would lie between some an and bn. Because the v-part contains the substring
ab, the .xy-part would lie entirely within the bn. (Notice that it cannot stretch to the next an
since its total length is less than n.) Therefore, x and y are both strings of b's that can be ab
sorbed by the b* section on their right. Also, v starts with some a 's that can be absorbed by
the a* section on its left. Thus, uvvxyyz is of the form

a* a+b+a+b+ b* b*anbn

u vv xyy z

If S begins and ends with different letters, then SS has an even number of a clumps and
an even number of b clumps. If S begins and ends with the same letter, then SS will have an
odd number of clumps of that letter but an even number of clumps of the other letter. In
any case, SS cannot have an odd number of clumps of both letters, and this string is not in
DOUBLEWORD.

The same argument holds if the ab or ba substring is in the y-part. Therefore, w cannot
be pumped and therefore DOUBLEWORD is non-context-free. •

1f PROBLEMS

1 . Study this CFG for EVENPALINDROME:

S -+ aSa
S -+ bSb
S -+ A

List all the derivation trees in this language that do not have two equal nonterminals
on the same line of descent, that is, that do not have a self-embedded nonterminal.

2. Consider the CNF for NONNULLEVENPALINDROME given below:

S -+ AX
X -+ SA
S -+ BY
Y -+ SB
S -+ M
S -+ BB
A -+ a
B -+ b

(i) Show that this CFG defines the language it claims to define.
(ii) Find all the derivation trees in this grammar that do not have a self-embedded non

terminal.
(i i i) Compare this result with Problem l .

3. The grammar defined in Problem 2 has six l ive productions. This means that the second

374 CHAPTER 16 Non-Context-Free Languages

theorem of this section implies that all words of more than 26 = 64 letters must have a
self-embedded nonterminal. Find a better result. What is the smallest number of letters
that guarantees that a word in this grammar has a self-embedded nonterminal in each of
its derivations. Why does the theorem give the wrong number?

4. Consider the grammar given below for the language defined by a*ba* :

s - AbA
A - Aa I A

(i) Convert this grammar to one without A-productions.
(ii) Chomsky-ize this grammar.

(ii i) Find all words that have derivation trees that have no self-embedded nonterminals.

5. Consider the grammar for I anbn I :

s - asb I ab

(i) Chomsky-ize this grammar.
(i i) Find all derivation trees that do not have self-embedded nonterminals.

6. Instead of the concept of live productions i n CNF, let us define a live nonterminal to be
one appearing at the left side of a live production. A dead nonterminal N is one with
only productions of the single form

N - terminal

If m is the number of live nonterminals in a CFG in CNF, prove that any word w of
length more than 2m will have self-embedded nonterminals.

7. Illustrate the theorem in Problem 6 on the CFG in Problem 2.

8. Apply the theorem of Problem 6 to the following CFG for NONNULLPALINDROME:

s - AX s - a
x - sA s - b
s - BY A - a
r - sB B - b
s - AA
s - BB

9. Prove that the language

is non-context-free.

{ anbnanbn for n = l 2 3 4 . . . }
= (abab aabbaabb . . . }

10. Prove that the language

is non-context-free.

I anbnanbnan for n = 1 2 3 4 . . . }
= { ababa aabbaabbaa . . . }

1 1 . Let L be the language of all words of any of the following forms:

I an anbn anbnan anbnanbn anb"anbnan . for n = I 2 3 . . . }
= (a aa ab aaa aha aaaa aabb aaaaa ababa aaaaaa aaabbb

aabbaa . . . }

(i) How many words does this language have with 105 letters?
(i i) Prove that this language is non-context-free.

Problems

12. Is the language
(anb3nan for n = 1 2 3 . . }
= I abbba aabbbbbbaa . . }

context-free? If so, find a CFG for it. If not, prove so.

13. Consider the language

I anbncm for n , m = 1
= (abc abcc aabbc

2 3 . . . , n not necessari ly = m I
abccc aabbcc . . . I

Is it context-free? Prove that your answer is correct.

14. Show that the language

is non-context-free.

{ anbncndn for n = 1 2 3 . . . }
= I abed aabbccdd . . . }

375

15. Why does the pumping lemma argument not show that the language PALINDROME is
not context-free? Show how v and y can be found such that uv

"
xy

"
z are all also in

PALINDROME no matter what the word w is .

16. Let VERYEQUAL be the language of all words over l = { a b c } that have the same
number of a's, h 's, and e 's .

VERYEQUAL = I abc acb bac bca cab cba aabbcc aabcbc . . .)

Notice that the order of these letters does not matter. Prove that VERYEQUAL is non
context-free.

17. The language EVENPALINDROME can be defined as all words of the form

s reverse(s)

where s is any string of letters from (a + b)* . Let us define the language UPDOWNUP
as

L = I all words of the form s(reverse(s)) s where s is in (a + b)* }
= I aaa bbb aaaaaa abbaab baabba bbbbbb . . . aaabbaaaaaab . . .)

Prove that L is non-context-free.

18. Using an argument similar to the one on p. 1 95 , show that the language

PRIME = { aP where p is a prime)

is non-context-free.

19. Using an argument similar to the one for Chapter 1 0, Problem 6(i), prove that

SQUARE = { a" where n = 1 2 . . . I
is non-context-free.

20. Problems 1 8 and 1 9 are instances of one larger principle. Prove:

Theorem
If L is a language over the one-letter alphabet l = { a } and L can be shown to be non
regular using the pumping lemma for regular languages, then L can be shown to be non
context-free using the pumping lemma for CFLs.

CHAPTER 17

Context-Free
Languages

� CLOSURE PROPERTIES

376

In Part I, we showed that the union, the product, the Kleene closure, the complement, and
the intersection of regular languages are all regular. We are now at the same point in our dis
cussion of context-free languages. In this section, we prove that the union, the product, and
the Kleene closure of context-free languages are context-free. What we shall not do is show
that the complement and intersection of context-free languages are context-free. Rather, we
show in the next section that this is not true in general .

THEOREM 36

If L1 and L2 are context-free languages, then their union, L 1 + L2, is also a context-free lan
guage. In other words, the context-free languages are closed under union.

PROOF 1 (by grammars)

This will be a proof by constructive algorithm, which means that we shall show how to cre
ate the grammar for L1 + L2 out of the grammars for L1 and Li-

Because L1 and L2 are context-free languages, there must be some CFGs that generate
them.

Let the CFO for L1 have the start symbol S and the nontenninals A, B, C, Let us
change this notation a little by renaming the start symbol S 1 and the nontenninals A 1 • B , , C 1 ,
. . . . All we do i s add the subscript 1 onto each character. For example, i f the grammar
were originally

it would become

S � aS I SS I AS I A

A � AA I b

Closure Properties

s 1 -+ aS1 I s 1s 1 I A 1s 1 I A
A l -A IA I I b

where the new nonterminals are S 1 and A 1 •

377

Notice that we leave the terminals alone. Clearly, the language generated by this CFG from
S 1 is the same as before, because the added 1 's do not affect the strings of terminals derived.

Let us do something comparable to a CFG that generates L2 • We add a subscript 2 to
each nonterminal symbol. For example,

becomes

S -+ AS I SB I A
A -+ aA I a
B -+ bB I b

s2 - A2s2 I Si82 I A
A2 -+ aA2 I a
B2 -+ hB2 I h

Again, we should note that this change in the names of the nonterminals has no effect
on the language generated.

Now we build a new CFG with productions and nonterminals that are those of the
rewritten CFG for L 1 and the rewritten CFG for L2, plus the new start symbol S and the addi
tional production

s - s1 I s2

Because we have been careful to see that there is no overlap in the use of nonterminals, once
we begin S --+ S 1 , we cannot then apply any productions from the grammar for L2• All words
with derivations that start S --+ S 1 belong to L 1 , and all words with derivations that begin
s - s2 belong to L2.

All words from both languages can obviously be generated from S. Because we have cre
ated a CFG that generates the language L1 + L2, we conclude it is a context-free language .

EXAMPLE

Let L 1 be PALINDROME. One CFG for L 1 is

S -+ aSa I bSb I a I b I A

Let L2 be l anbn) . One CFG for L2 is

S -+ aSb I A

Theorem 36 recommends the following CFG for L 1 + L2 :

s - s1 I s2
S 1 -+ aS1a I hS 1h I a I b I A
S2 -+ aS2b I A

•

•

No guarantee was made in this proof that the grammar proposed for L 1 + L2 was the
simplest or most intel ligent CFG for the union language, as we can see from the following.

378 CHAPTER 17 Context-Free Languages

EXAMPLE

One CFG for the language EVENPALINDROME is

S -+ aSa I bSb I A

One CFG for the language ODDPALINDROME is

S -+ aSa I bSb I a I b

Using the algorithm of the preceding proof, we produce the following CFG for PALINDROME:

PALINDROME = EVENPALINDROME + ODDPALINDROME

s - s, I s2
S 1 -+ aS 1a I bS 1b I A
S2 -+ aS2a I bS2b I a I b

We have seen more economical grammars for this language before. •

No stipulation was made in this theorem that the set of tenninals for the two languages
had to be the same.

EXAMPLE

Let L 1 be PALINDROME over the alphabet I, = l a b } , whereas let L2 be { c"d" I over the
alphabet I2 = I c d } . Then one CFG that generates L 1 + L2 is

s - s, I s2
S 1 -+ aS1a I bS 1b I a I b I A
S2 -+ cS2d I A

This is a language over the alphabet (a b c d } . •

In the proof of Theorem 36, we made use of the fact that context-free languages are
generated by context-free grammars. However, we could also have proven this result using
the alternative fact that context-free languages are those accepted by PDAs.

PROOF 2 (by machines)

Because L 1 and L2 are context-free languages, we know (from the previous chapter) that
there is a PDA 1 that accepts L 1 and a PDA2 that accepts L2•

We can construct a PDA3 that accepts the language of L 1 + L2 by amalgamating the
START states of these two machines. This means that we draw only one START state and
from it come all the edges that used to come from either prior START state.

l n PDA 1

R
becomes

Closure Properties 379

Once an input string starts on a path on this combined machine, it follows the path ei
ther entirely within PDA 1 or entirely within PDA2 because there are no cross-over edges.

Any input reaching an ACCEPT state has been accepted by one machine or the other
and so is in L1 or Lz- Also, any word in L1 + L2 can find its old path to acceptance on the sub
part of PDA3 that resembles PDA 1 or PDA2• •

Notice how the nondeterminism of the START state is important in the proof above. We
could also do this amalgamation of machines using a single-edge START state by weasel ing
our way out, as we saw in Chapter 1 4.

EXAMPLE

Consider these two machines :

START

START

a

PUSH b �----' a

ACCEPT ACCEPT

PDA 1 accepts the language of all words that contain a double a. PDA2 accepts all words
that begin with an a. The machine for l 1 + l2 is

PDA3

START

a

ACCEPT

380 CHAPTER 17 Context-Free Languages

Notice that we have drawn PDA3 with only one ACCEPT state by combining the
ACCEPT states from PDA1 and PDA2•

This was not mentioned in the algorithm in the proof, but it only simplifies the picture
without changing the substance of the machine. •

THEOREM 37

If L1 and L2 are context-free languages, then so is L 1l2• In other words, the context-free lan
guages are closed under product.

PROOF 1 (by grammars)

Let CFG 1 and CFG2 be context-free grammars that generate l1 and L2, respectively. Let us
begin with the same trick we used last time: putting a l after every nonterminal in CFG 1 (in
cluding S) and a 2 after every nonterminal in CFG2•

Now we form a new CFG using all the old productions in CFG 1 and CFG2 and adding
the new START symbol S and the production

Any word generated by this CFG has a front part derived from S 1 and a rear derived
from S2• The two sets of productions cannot cross over and interact with each other because
the two sets of nonterminals are completely disjoint. It is therefore in the language l 1L2•

The fact that any word in l1L2 can be derived in this grammar should be no surprise .
•

(We have taken a l i ttle l iberty with mathematical etiquette in our use of the phrase
" . . should be no surprise." It is more accepted practice to use the c liches "obviously

. . ," or "clearly . . . ," or "trivially " But it is only a matter of style. A proof
only needs to explain enough to be convincing. Other virtues a proof might have are that
it be interesting, lead to new results, or be constructive. The proof above is at least the
latter.)

EXAMPLE

Let l 1 be PALINDROME and CFG 1 be

S --+ aSa I bSb I a I b I A

S --+ aSb I A

The algorithm in the proof recommends the CFG

Closure Properties

s .- s1s2
S1 .- aS1a I bS1 b I a I b I A
s2 -- aS2b I A

(?) PROOF 2 (by machines)

381

•

For the previous theorem we gave two proofs: one grammatical and one mechanical . There
is an obvious way to proceed to give a machine proof for this theorem too. The front end of
the word should be processed by one PDA and the rear end of the word processed on the
second PDA. Let us see how this idea works out.

If we have PDA 1 that accepts L 1 and PDA2 that accepts L2, we can try to build the ma
chine PDA3 that accepts L 1L2 as follows.

Draw a black dot. Now take all the edges of PDA 1 that feed into any ACCEPT state and
redirect them into the dot. Also take all the edges that come from the START state of PDA2
and draw them coming out of the dot. Erase the old PDA 1 ACCEPT and the old PDA2
START states.

becomes

\I
- ·

I \
This kind of picture is not legal in a pushdown automaton drawing because we did not

l ist "a black dot" as one of the pieces in our definition of PDA. The black dot is not neces
sary. We wish to connect every state that leads to ACCEPT-PDA 1 to every state in PDA2 that
comes from START-PDA2• We can do th is by edges drawn directly pointing from one ma
chine to another. Alternately, the edges from PDA 1 can lead into a new artificial state : PUSH
OVER, which is followed immediately by POP OVER whose nondeterministic edges, all la
beled OVER, continue to PDA2• Let us cal l this the black dot.

For an input string to be accepted by the new PDA, its path must first reach the black
dot and then proceed from the dot to the ACCEPT states of PDA2• There is no path from the
START (of PDA 1) to ACCEPT (of PDA2) without going through the dot. The front substring
with a path that leads up to the dot would be accepted by PDA 1 , and the remaining substring
with a path that leads from the dot to ACCEPT would be accepted by PDA2• Therefore, all
words accepted by this new machine are in the language L 1L2•

It is also obvious that any word in L 1L2 is accepted by this new machine.

382 CHAPTER 17 Context-Free Languages

Not so fast.
We did not put an end-of-proof mark, •. after the last sentence because the proof actually is

not valid. It certainly sounds valid. But it has a subtle flaw, which we shall illustrate.
When an input string is being run on PDA 1 and it reaches ACCEPT, we may not have

finished reading the entire INPUT TAPE. The two PDAs that were given in the preceding ex
ample (which we have redrawn below) i l lustrate this point perfectly. In the first, we reach the
ACCEPT state right after reading a double a from the INPUT TAPE. The word baabbb will
reach ACCEPT on this machine while it stil l has three b 's unread.

The second machine presumes that it is reading the first letter of the L2 part of the string
and checks to be sure that the very first letter i t reads is an a.

If we follow the algorithm as stated earlier, we produce the following. From

PDA2

START

ACCEPT

we get

START

b

a

PUSH a

ACCEPT

The resultant machine will reject the input string (baabbb)(aa) even though it is in the
language L L2 because the black dot is reached after the third letter and the next letter it
reads is a b,

1
not the desired a, and the machine will crash. Only words containing aaa are ac

cepted by this machine.
For this technique to work, we must insist that PDA 1 , which accepts L 1 , have the prop

erty that it reads the whole input string before accepting. In other words, when the ACCEPT
state is encountered, there must be no unread input left. What happens if we try to modify
PDA 1 to meet this requirement? Suppose we use PDA 1 version 2 as on the next page, which
employs a technique from the proof of Theorem 29 (p. 3 1 1) :

Closure Properties 383

START

b

PUSH a �---_.

ACCEPT

This machine does have the property that when we get to ACCEPT, there is nothing left
on the TAPE. This is guaranteed by the READ loop right before ACCEPT. However, when
we process the input (baabbh)(aa), we shall read all eight letters before reaching ACCEPT
and there will be nothing left to process on PDA2 because we have insisted that the TAPE be
exhausted by the first machine. Perhaps it is better to leave the number of letters read before
the first ACCEPT up to the machine to decide nondeterministically.

If we try to construct PDA3 as shown below using the modified PDA 1 , with a nondeter
ministic feed into the black dot, we have another problem.

START

b

PUSH a

This conglomerate will accept the input (haabbb)(hha) by reading the first two h's of
the second factor in the PDA 1 part and then branching through the black dot to read the last
letter on the second machine. However, this input string actually is in the language L 1L2, be
cause it is also of the form (babhhbb)(a).

So this PDA3 version works in this particular instance, but does it work in all cases? Are

384 CHAPTER 17 Context-Free Languages

we convinced that even though we have incorporated some nondeterminism, there are no un
desirable strings accepted?

As it stands, the preceding discussion is no proof. Luckily, this problem does not af
fect the first proof, which remains valid. This explains why we put the "?" in front of the
word "proof' earlier. No matter how rigorous a proof appears, or how loaded with mathe
matical symbolism, it is always possible for systematic oversights to creep in undetected.
The reason we have proofs at all is to try to stop this . But we never really know. We can
never be sure that human error has not made us blind to substantial faults . The best we
can do, even in purely symbolic abstract mathematics, is to try to be very, very clear and
complete in our arguments, to try to understand what is going on, and to try many exam
ples.

THEOREM 38

If L is a context-free language, then L * is one too. In other words, the context-free languages
are closed under the Kleene star.

PROOF

Let us start with a CFG for the language L. As always, the start symbol for this language is
the symbol S. Let us as before change this symbol (but no other nonterminals) to S 1 through
out the grammar. Let us then add to the list of productions the new production

s - s,s I A

Now we can, by repeated use of this production, start with S and derive

s => s,s => s,s ,s => s,s ,s ,s => s,s ,s ,s ,s => s ,s ,s ,s ,s ,
s b s nI

Following each of these S 1 's independently through the productions of the original
CFG, we can form any word in L* made up of n concatenated words from L. To conv ince
ourselves that the productions applied to the various separate word factors do not inter
fere in undesired ways, we need only think of the derivation tree . Each of these S 1 's is the
root of a distinct branch . The productions along one branch of the tree do not affect those
on another. Similarly, any word in L * can be generated by starting with enough copies of
s , . •

EXAMPLE

If the CFG is

S - aSa I hSb I a I b I A

(which generates PALINDROME), then one possible CFG for PALINDROME* is

s - xs I A
X - aXa I bXb I a I h I A

Notice that we have used the symbol X instead of the nonterminal S 1 , which was indicated in
the algorithm in the proof. Of course, this makes no difference. •

Intersection and Complement 385

r{f INTERSECTION AND COMPLEMENT

Here is a pretty wishy-washy result.

THEOREM 39

The intersection of two context-free languages may or may not be context-free.

PROOF

We shall break this proof into two parts: may and may not.

May

All regular languages are context-free (Theorem 2 1 , p. 259). The intersection of two regular lan
guages is regular (Theorem 1 2, p. 1 74). Therefore, if L1 and L2 are regular and context-free, then

is both regular and context-free.

May Not

Let

L 1 n L2

L 1 = { anbnam, where n, m = I 2 3 . . . , but n is not necessari ly the same as m l
= (aha ahaa aahha . . .)

To prove that this language is coiuext-free, we present a CFG that generates it:

S -+ XA
X -+ aXh J ah
A -+ aA J a

We could alternately have concluded that this language is context-free by observing that it is
the product of the CFL (a"bn l and the regular language aa* . Let

L2 = (a"hmam, where n, m = I 2 3 . . . , but n is not necessari ly the same as m l
= (aha aaha ahhaa . . . j

Be careful to notice that these two languages are different.
To prove that this language is context-free, we present a CFG that generates it:

S -+ AX
X -+ hXa I ha
A -+ aA I a

Alternately, we could observe that L2 is the product of the regular language aa* and the CFL
(hnan) .

Both languages are context-free, but their intersection is the language

L3 = L1 n L2 = (anhnan for n = I 2 3 . . . I

because any word in both languages has as many starting a 's as middle h 's (to be in L 1) and
as many middle h's as final a 's (to be in L2) .

But on p . 367, we proved that this language is non-context-free. Therefore, the intersec-
tion of two context-free languages can be non-context-free. •

386 CHAPTER 17 Context-Free Languages

EXAMPLE (May)

If l 1 and l2 are two CFLs and if l 1 is contained in l2, then the intersection is L again,
which is still context-free, for example,

1

l 1 = { an for n = I 2 3 . . . }
l2 = PALINDROME

l1 is contained in l2; therefore,

which is context-free.
Notice that in this example we do not have the intersection of two regular languages

since PALINDROME is nonregular. •

EXAMPLE (May)

Let
l 1 = PALINDROME
l2 = language of a+b+a+ = language of aa*bb*aa*

In this case,

l 1 n L2

is the language of all words with as many final a's as initial a 's with only h's in between.

l1 n l2 = { anbman n, m = l 2 3 . . . , where n is not necessarily equal to m }
= { aha ahha aahaa aahhaa . . . }

This language is sti l l context-free because it can be generated by the grammar

S --+ aSa I B
B --+ hB I h

or accepted by this PDA:

START

First, all the front a's are put into the STACK. Then the h's are consumed and ignored.
Then we alternately READ and POP a 's until both the INPUT TAPE and STACK run out si
multaneously.

Again note that these languages are not both regular (one is, one is not). •

Intersection and Complement 387

We mention that these two examples are not purely regular languages because the proof
of the theorem as given might have conveyed the wrongful impression that the intersection
of CFLs is a CFL only when the CFLs are regular.

EXAMPLE (May Not)

Let l 1 be the language

EQUAL = all words with the same number of a's and h 's

We know this language is context-free because we have seen a grammar that generates it
(p. 239) :

Let l2 be the language

s � bA I aB
A � bAA I aS I a
B � aBB I hS I h

L2 = 1 a"b"'a" n , m = I 2 3 . . . , n = m or n -::/= m f

The language L2 was shown to be context-free in the previous example. Now

l3 = L , n l2 = I a"h2"a" for n = I 2 3 . . . f
= I ahha aahhhhaa . . . f

To be in l 1 = EQUAL, the b-total must equal the a-total, so there are 2n h 's in the mid
dle if there are n a 's in the front and the back .

We use the pumping lemma of Chapter 1 6 to prove that this language is non-context-free .
As always, we observe that the sections of the word that get repeated cannot contain the

substrings ab or ha, because all words in L3 have exactly one of each substring. Th is means
that the two repeated sections (the v-part and y-part) are each a clump of one sol id letter. I f
we write some word w of L3 as

w = uvxyz

then we can say of v and y that they are either all a 's or all h's or one is A. However, if one is
sol id a's, that means that to remain a word of the form a"ff"a", the other must also be sol id a 's
because the front and back a 's must remain equal . But then we would be increasing both cl umps
of a's without increasing the h's, and the word would then not be in EQUAL. If neither 1 · nor y
have a 's, then they increase the h's without the a 's and again the word fails to be in EQUAL.

Therefore, the pumping lemma cannot apply to Ly so L3 is non-contex t-free. •

The question of when the intersection of two CFLs is a CFL is apparently very interest
ing. If an algorithm were known to answer this question, i t would be printed right here. In
stead, we shall move on to the question of complements.

The story of complements is similarly indecisive.

THEOREM 40

The complement of a context-free language may or may not be context-free.

PROOF

The proof occurs in two parts.

388 CHAPTER 17 Context-Free Languages

May

If L is regular, then L ' is also regular and both are context-free.

May Not

This is one of our few proofs by indirect argument.
Suppose the complement of every context-free language were context-free. Then if we

started with two such languages, L 1 and L2, we would know that L 1 ' and L2 ' are also context
free. Furthermore,

L I ' + L2 '

would have to be context-free by Theorem 36 (p. 376).
Not only that, but

(L i ' + L2 ') '

would also have to be context-free, as the complement of a context-free language. But,

(L 1
, + L2

') ' = L 1 n L1

and so then the intersection of L 1 and L2 must be context-free. But L 1 and L2 are any arbitrary
CFLs, and therefore all intersections of context-free languages would have to be context
free. But by the previous theorem, we know that this is not the case.

Therefore, not all context-free languages have context-free complements. •

EXAMPLE (May)

All regular languages have been covered in the proof above. There are also some nonregular
but context-free languages that have context-free complements. One example is the language
of palindromes with an X in the center, PALINDROMEX. This is a language over the alpha
bet I = I a h x I :

= { wX reverse(w), where w is any string in (a + b)* l
= { X aXa hXh aaXaa ahXba baXab bbXbb . . . }

This language can be accepted (as we have seen in Chapter 1 4 p. 30 I) by a deterministic
PDA such as the one below:

PUSH a

PUSH h

ACCEPT

Intersection and Complement 389

Because this is a deterministic machine, every input string determines a unique path
from START to a halt state, either ACCEPT or REJECT. We have drawn in all possible
branching edges so that no input crashes . The strings not accepted all go to REJECT. In
every loop, there is a READ statement that requires a fresh letter of input so that no input
string can loop forever. (This is an important observation, although there are other ways to
guarantee no infinite looping.)

To construct a machine that accepts exactly those input strings that this machine rejects,
all we need to do is reverse the status of the halt states from ACCEPT to REJECT and vice
versa. This is the same trick we pulled on FAs to find machines for the complement lan
guage.

In this case, the language L ' of all input strings over the alphabet � = l a b X I that
are not in L is simply the language accepted by

START

PUSH a

PUSH b

REJ ECT

•

We may wonder why this trick cannot be used to prove that the complement of any
context-free language is context-free, because they all can be defined by PDAs. The answer
is nondeterminism.

If we have a nondeterministic PDA, then the technique of reversing the status of the halt
states fails. In a nondeterministic PDA, a word may have two possible paths, the first of
which leads to ACCEPT and the second of which leads to REJECT. We accept this word be
cause there is at least one way it can be accepted. Now if we reverse the status of each halt
state, we sti ll have two paths for this word: The first now leads to REJECT and the second
now leads to ACCEPT. Again, we have to accept this word since at least one path leads to
ACCEPT. The same word cannot be in both a language and its complement, so the halt
status-reversed PDA does not define the complement language.

We still owe an example of a context-free language with a complement that is non
context-free.

EXAMPLE (May Not)

Whenever we are asked for an example of a non-context-free language, I a"h"a" I springs to
mind. We seem to use it for everything. Surprisingly enough, its complement is context-free,
as we shall now show, by taking the union of seven CFLs.

390 CHAPTER 17 Context-Free Languages

This example takes several steps. First, let us define the language M as follows:pq
Mpq

= I al'bqa', where p, q, r = 1 2 3 . . . , but p > q while r is arbitrary }
= I aaba aaaba aabaa aaabaa aaabba . . . }

We know this language is context-free because it is accepted by the following CFG:

S -+ AXA
X -+ aXb I ab
A -+ aA I a

The X-part is always of the form a"b", and when we attach the A-parts, we get a string
defined by the expression

(aa*)(a"b")(aa*) = aPbqar, where p > q

(Note: We are mixing regular expressions with things that are not regular expressions, but
the meaning is clear anyway.)

This language can be shown to be context-free in two other ways. We could observe that
M pq

is the product of the three languages a+ , { a" b" } , and a+ :

M = (a+) (a"b") (a+)pq
Because the product of two context-free languages is context-free, so is the product of

three context-free languages.
We could also build a PDA to accept it. The machine would have three READ state

ments. The first would read the initial clump of a 's and push them into the STACK. The sec
ond would read h's and correspondingly pop a 's. When the second READ hits the first a of
the third clump, it knows the h 's are over, so it pops another a to be sure the initial clump of
a 's (in the STACK) was larger than the clump of b's. Even when the input passes this test,
the machine is not ready to accept. We must be sure that there is nothing else on the INPUT
TAPE but unread a 's . If there is a b hiding behind these a 's, the input must be rejected. We
therefore move into the third READ state that loops as long as a's are read, crashes if a b is
read, and accepts as soon as a blank is encountered.

Let us also define another language:

M = { aPbqa'", where p, q, r = 1 2 3 . . . , but q > p while r is arbitrary I
qp

= { abba abbaa abbba abbaaa aabbba . . . }

This language too is context-free because it can be generated by

which we can interpret as

Together, this gives

S -+ XBA
X -+ aXb I ab
B -+ bB I b
A -+ aA I a

x b a11b11
B b b+
A b a+

(a"b") (bb*) (aa*) = aPbqar, where q > p

Let us also define the language

Intersection and Complement

M = { aPbqar where p q r = 1 2 3 . . . , but p > r while q is arbitrary lpr ' ' '
= { aaba aaaba aabba aaabaa . . . }

This language is also context-free, because it can be generated by the CFG

s - AX
x - axa I aBa
B - bB I b
A - aA I a

First, we observe

and

Therefore, the X-part is of the form

So, the words generated are of the form

(aa*)(anbb*a") = aPbqa', where p > r
Let us also define the language

M,.
P

= { aPbqa'", where p, q, r = 1 2 3

= { a baa abaaa aabaaa abbaaa . }

One CFG for this language is

which gives

s - xA
x - axa I aBa
B - bB I b
A - aA I a

A b a+
B b b+
x b a"b+an
S b (anbb*an)(aa*)

but r > p while q is arbitrary l

= aPbqa', where r > p

391

We can see that this language too is the product of context-free languages when we
show that { anb+a11) is context-free.

Let us also define the language

M
qr

= { aPbqar, where p, q, r = 1 2 3 . . . , but q > r while p is arbitrary I
= { abba aabha abbba abbbaa . . . f

One CFG for this language is

which gives

S - ABX
x - hxa / ha
B - hB I b
A - aA / a

(aa*)(bb*)(bna") = aPbqa'", where q > r
M

q
,. = (a+)(b+)(bnan)

392 CHAPTER 17 Context-Free Languages

Let us also define

M,q == (aPbqa', where p, q, r == I 2 3 . . . , but r > q while p is arbitrary }
== { abaa aabaa abaaa abbaaa . . . }

One CFG that generates this language is

which gives

S ---+ AXA

X ---+ bXa I ba

A ---+ aA I a

(aa*)(bnan)(aa*) = aPbqa'", where r > q
M,q = (a+)(bnan)(a+)

We need to define one last language.

M = { the complement of the language defined by aa*bb*aa* }
== { al l words not of the form aPbqar for p, q, r == 1 2 3 . . . }
= { a b aa ab ha bb aaa aab abb baa bah . . . }

M is the complement of a regular language and therefore is regular by Theorem 1 1 (p. 1 73) ;
al l regular languages are context-free by Theorem 21 (p . 259).

Let us finally assemble the language L, the union of these seven languages:

L = Mpq + Mqr + MP,. + M,.P + Mq,. + M,.q + M

L is context-free because it is the union of context-free languages (Theorem 36, p. 376).
What is the complement of L? All words that are not of the form

are in M, which is in L, so they are not in L ' . This means that L ' contains only words of the
form

But what are the possible values of p, q, and r? If p > q, then the word is in Mpq' so it is
in L and not L' . Also, if q > p, then the word is in Mqp' so it is in L and not L' . Therefore,
p == q for all words in L ' .

If q > r, then the word is i n Mqr and hence in L and not L ' . I f r > q, the word is in M,.q
and so in L and not L ' . Therefore, q = r for al l words in L ' .

Because p = q and q = r, we know that p == r. Therefore, the words

a"bna"

are the only possible words in L ' . All words of this form are in L ' because none of them are
any of the M's. Therefore,

L' = { anbna" for n == I 2 3 . . . }

But we know that this language is non-context-free from Chapter 1 6. Therefore, we
have constructed a CFL, L, that has a non-context-free complement. •

We might observe that we did not need MP,. and M,.P in the formation of L. The union of
the other five alone completely defines L. We included them only for the purpose of sym
metry.

Mixing Context-Free and Regular Languages 393

The fact that the complement of a CFL can be non-context-free is the reason that PDAs
cannot be defined as deterministic if they are to correspond to all CFLs. Roughly speaking,
we can operate on any deterministic machine and reverse its ACCEPT and REJECT condi
tions to convert it into a machine that accepts the complement of the language that was origi
nally accepted. This halt-state reversal was i l lustrated in the Example (May) section of the
preceding proof. Therefore, no deterministic pushdown automaton (DPDA) could accept
the language (anb"a") ' because its complement, anbnan, would then be accepted by some
other (derived) PDA, but this complement is non-context-free. Yet, because (a"h"a") ' can be
generated by a CFO, we want it to be accepted by some PDA. This is why we were forced
initially to define PDAs as nondeterministic machines.

The reason that we used the phrase "roughly speaking" in the prev ious paragraph is that
the operation of converting even a deterministic PDA into a machine that accepts the com
plementary language is not as simple as merely reversing the symbols ACCEPT and
REJECT in the picture of the machine. For one thing, all crash possibil ities must first be
eliminated and turned into edges leading peacefully to REJECT. But even then reversing halt
states might not create a machine in which all strings not previously accepted become ac
cepted. This is because there is the possibility that some input strings when fed into the orig
inal PDA were neither accepted nor rejected but looped forever. Reversing ACCEPT and
REJECT will then leave a machine on which these inputs still loop forever. To prove the the
orem rigorously that the complement of a language accepted by a DPDA can also be ac
cepted by a DPDA, we would have to show how to eliminate the loop-forever possibil ities
and tum them into trips to REJECT. We could do this but it would be long .

MIXING CONTEXT-FREE AND REGULAR LANGUAGES

The union of a context-free language and a regular language must be context-free because
the regular language is itself context-free and Theorem 36 (p. 376) appl ies. As to whether or
not the union is also regular, the answer is that it sometimes is and sometimes is not . If one
language contains the other, then the union is the larger of the two languages whether it be
the regular or the nonregular context-free language.

EXAMPLE

PALINDROME is nonregular context-free and (a + b)* is regular and contains it . The union
is regular. On the other hand, PALINDROME contains the regular language a* and so the
union of these two is nonregular context-free. •

We can provide a more interesting pair of examples where one language is not con
tained in the other.

EXAMPLE

The union of the nonregular context-free language l a"h" I and the regular language b*a* is non
regular as seen by the Myhill -Nerode theorem because each string a"h belongs in a different
class (for each there is a unique element of b* that completes a word in the union language) .

The complement of a* is regular and does not contain a l l of PALINDROME (because aaa

is in PALINDROME, e.g.) , nor does PALINDROME contain all of it (because ha is in the

394 CHAPTER 17 Context-Free Languages

complement of a* . e.g.) . However, because PALINDROME does contain all of a*. the union
of the complement of a* and PALINDROME is all strings, which is a regular language. •

On the other hand, we have no guarantee that the intersection of a context-free language
and a regular language is even context-free, although it might even tum out to be regular.
Certainly, if one is contained in the other, then the intersection will be the smaller language
and have its property. But because we do not automatically know that the intersection of two
context-free languages is context-free, the following theorem provides us with some nonob
vious information.

THEOREM 41

The intersection of a context-free language and a regular language is always context-free.

PROOF

We will prove this theorem by constructive algorithm. We start with a PDA for the context
free language, called the PDAY, and an FA for the regular language, called the FAX, with
states xi '

x2'
x3 , • • • and then we show how to construct a PDA for the intersection lan

guage, called INT. This construction will closely parallel the constructions given in the proof
of Kleene 's theorem that were later revealed to actually provide the basis of the intersection
machine for two FAs (see p. 1 74).

Before we begin, let us assume that PDAY reads the entire input string before accepting
the word. If it does not, then we use the algorithm of Theorem 29 (p. 3 1 1) to make it do so.

What we will do is label each of the states in PDA Y with the name of the particular
x-state in FAX that the input string would be in if it were being processed on FAX at the
same time. The START state of PDAY we label with the START state of FAX, (x1) . If from
the START state on PDA Y we go to a PUSH state, then, because we have not yet read any
input letters, the FAX simulation leaves us sti l l in x1 • If we now go into a POP state in PDAY,
we would sti l l not have read any input letters and the string would remain in x 1 on FAX.
Now if we do enter a READ state in PDAY, we stil l are in the FAX state we were formerly
in, but as we leave the READ state by a- or b-edges, it wil l correspond to entering (possibly)
new states in the FAX simulation . Remember that PDAY is a (possibly) nondeterministic
machine and so there may be several a-edges leaving the READ state, but we label each of
the states it takes us to with the x-state from FAX that an a-edge takes us to.

We could find another complication . In FAX, an a-edge takes us to x3, whereas a b-edge
takes us to x8, but in PDAY both the a-edge and b-edge take us to the same PDAY state . This
PDAY state must then be cloned; that is , two copies of it must be produced with identical
sets of exiting edges but not entering edges. One of the clones will be the one the a-edge en
ters, and it wil l get the label x3, whereas the other will be entered by the b-edge and get the
label xx- We continue to label the PDAY states with the corresponding FAX states. However,
as we rev isit a PDA state that is already labeled, it may have to be recloned again if it does
not have the appropriate corresponding FAX state label . For example, if a POP state was al
ready labeled with x2 because of one way in which it was entered, it may happen to also be
entered from a READ labeled x9 by a b-edge and, unfortunately, a b-edge from x9 on FAX
takes us to x9 again so we cannot happily enter this particular POP state. The answer is then
that the POP state we enter must be labeled x9 and be a clone of the POP-x2 state.

To show that this algorithm is actual ly finite and does not create infinitely many new

Mixing Context-Free and Regular Languages 395

states, what we can do simply is name all the states in PDAY as y 1 , y2, y3 , and simulta

neously create all possible combinations of Yihis and xthat and connect them by the rules of

both PDAY and FAX appropriately. That is, if we are in y11 and xq, and it is a READ state in

PDAY (or else we do not change our x-status), and we read a h, then because PDAY says "if
in y11 and reading a h, go to y,." and FAX says "if in xq and reading a h, go to x, ." we go to the
new states Y,. and x_,. This then, in a finite number of steps, almost completes the construction
of our proposed intersection machine INT.

The construction is not yet complete because we did not explain that something special
must happen to the ACCEPT states in order to be sure that the only words INT accepts are
those accepted by both PDAY and FAX. If the processing of an input string terminates in an
ACCEPT state that is labeled with an x,,, that is not a final state in FAX, then the input would
not be accepted on both machines. We must change all ACCEPT states that are labeled with
nonfinal x-states into REJECTs. Now if a string is run on INT and reaches an ACCEPT state,
we know it will be accepted by both component machines and is truly in the intersection lan
guage. •

EXAMPLE

Let C be the language EQUAL of words with the same total number of a 's and h's . Let the
PDA to accept this language be

START

a

ACCEPT

This is a new machine to us, so we should take a moment to dissect it . At every point in
the processing of an input string, the STACK will contain whichever letter has been read
more, a or h, and wil l contain as many of that letter as the number of extra times it has been
read. If we have read from the TAPE six more h's than a 's, then we shall find six h 's in the

396 C HAPTER 17 Context-Free Languages

STACK. If the STACK is empty at any time, it means an equal number of a 's and b 's have
been read.

The process begins in START and then goes to READ1 • Whatever we read in READ1 is our
first excess letter and is pushed onto the STACK. The rest of the input string is read in READ2•

If during the processing we read an a, we go and consult the STACK. If the STACK
contains excess b's, then one of them will be cancelled against the a we just read,
POP1 -READ2• If the STACK is empty, then the a just read is pushed onto the STACK as a
new excess letter itself. If the STACK is found to contain a 's already, then we must replace
the one we popped out for testing as well as add the new one just read to the amount of total
excess a 's in the STACK. In all, two a 's must be pushed onto the STACK.

When we are finally out of input letters in READ2, we go to POP3 to be sure there are
no excess letters being stored in the STACK. Then we accept.

This machine reads the entire INPUT TAPE before accepting and never loops forever.
Let us intersect this with the FA below that accepts all words ending in the letter a :

a h a

h

Now let us manufacture the joint intersection machine . We cannot move out of x1 until
after the first READ in the PDA.

START a nd x1

At this point in the PDA, we branch to separate PUSH states, each of which takes us to
READ2• However, depending on what is read in READ1 , we will either want to be in READ2
and xi '

or READ2 and x2, so these must be two different states:

START, x 1

From READ2 and x2 if we read an a, we shall have to be in POP1 and x2, whereas if we

read a b, we shall be in POP2 and x1 • In this particular machine, there is no need for POP 1
and x because POP can only be entered by reading an a and x1 can only be entered by read-1 I •
ing a b. For analogous reasons, we do not need a state called POP2 and x2 either.

Mixing Context-Free and Regular Languages 397

We shall theoretically need both POP3 and x1 and POP3 and x2 because we have to keep

track of the last input letter. But even if POP3 and x1 should happen to pop a .:i, it cannot ac

cept the input because x1 is not a final state and so the word ending there is rejected by the

FA. Therefore, we do not even bother drawing POP3 and x 1 • If a blank is read in READ2, x, ,

the machine peacefully crashes.
The whole machine looks l ike this :

h PUSH a

START, x 1

PUSH a �-r-.,j--�

a PUSH h

•

EXAMPLE

Let us reconsider the language DOUBLEWORD, which was shown in the previous chapter
to be non-context-free. We can provide another proof of this fact by employing our last theo
rem . Let us assume for a moment that DOUBLEWORD were a CFL. Then when we inter
sect it with any regular language, we must get a context-free language.

Let us intersect DOUBLEWORD with the regular language defined by

aa*bb*aa*bb*

A word in the intersection must have both forms; this means it must be

ww where w = a"h"' for some n and m = I 2 3 . . .

This observation may be obvious, but we shall prove it anyway. If w contained the sub
string ha, then ww would have two of them, but all words in aa*bb*aa*bb* have exactly one
such substring. Therefore, the substring ha must be the crack in between the two w's in the
form ww. This means w begins with a and ends with h. Because it has no ha, it must be a11h"1 •

The intersection language is therefore

/ a11h"'a11hm l

398 CHAPTER 17 Context-Free Languages

But we showed in the last chapter that this language was non-context-free. Therefore,
DOUBLEWORD cannot be context-free either. •

{f PROBLEMS

1 . Find CFGs for these languages:

(i) All words that start with an a or are of the form anbn.
(i i) All words that have an equal number of a 's and b's or are of the form anb".

(ii i) All words in EVEN-EVEN*.
(iv) All words of the form

anbnambm, where n, m = I 2 3 . . . , but m need not = n
= { abab aabbab abaabb aaaabbbbab aaabbbaaabbb . . .)

2. Find CFGs for these languages :

(i) All words of the form

a'/Ya=, where x, y, z = I 2 3 . . . and x + z = y
= { abba aabbba abbbaa aabbbbaa . . .)

Hint: Concatenate a word of the form anbn with a word of the form bmam.
(i i) All words of the form

a'/Ya=, where x, y, z = I 2 3 . . . and y = 2x + 2z
= I abbbba abbbbbbaa aabbbbbba . . .)

(ii i) All words of the form

a'/Ya=, where x, y, z = I 2 3 . . . and y = 2x + 2z
= I abbba abbbbaa aabbbbba . . .)

(iv) All words of the form

a'IYa=bM', where x, y, z, w = I 2 3

and y > x and z > w and
x + z = y + w

Hint: Think of these words as

(aPlf')(bqaq)(a,.b')

(v) What happens if we throw away the restrictions y > x and z > w?

3. (i) Find a CFG for the language of all words of the form

a"b" or b"a", where n = 1 2 3

(i i) Is the Kleene c losure of the language in part (i) the language of all words with an
equal number of a's and b's that we have called EQUAL?

(i i i) Using the algorithm from Theorem 38 (p. 384), find the CFG that generates the
closure of the language in part (i) .

(iv) Compare this to the CFG for the language EQUAL given before (p. 239).

(v) Write out all the words in

(language of part (i))*

that have eight or fewer letters .

Problems 399

4. Use the results of Theorems 36, 37, and 38 and a l i ttle ingenuity and the recursive defin
ition of regular languages to provide a new proof that all regular languages are context
free.

5. (i) Find a CFG for the language

L1 = a(bb)*

(i i) Find a CFG for the language L 1 * .
(i i i) Find a CFG for the language L2 = (bb)*a.
(iv) Find a CFG for L2 * .
(v) Find a CFG for

(vi) Find a CFG for L3* .
(vi i) Find a CFG for

L3 = bba*bb + bb

L * + L * + L *I 2 3

(vi i i) Compare the CFG in part (v i i) to

s � as I hbS I A

Show that they generate the same language.

6. A substitution is the action of taking a language L and two strings of terminals called sa
and sh and changing every word of L by substituting the string sa for each a and the
string sh for each h in the word. This turns l into a completely new language. Let us say,
for example, that L was the language defined by the regular expression

a*(bab* + aa)*

and say that

Then L would become the language defined by the regular expression

(bb)*(abba* + bbbb)*

(i) Prove that after any substitution any regular language is sti ll regular.
(i i) Prove that after any substitution a CFL is sti l l context-free.

7. Find PDAs that accept

(i) (anhm, where n, m = I
(i i) (a'hYa', where x, y, z = I

(i i i) L 1 , l2 where

2 3 . . . and n * m l
2 3 . . . and x + z = y I

L1 = all words with a double a

L2 = all words that end in a

8. (i) Some may think that the machine argument that tried to prove Theorem 37 (p. 38 1)

could be made into a real proof by using the algorithms of Theorem 29 (p. 3 1 I) to
convert the first machine into one that empties its STACK and TAPE before accept
ing. If while emptying the TAPE, a nondeterministic leap is made to the START
state of the second machine, it appears that we can accept exactly the language
L 1L2• Demonstrate the folly of this belief.

400 CHAPTER 17 Context-Free Languages

(ii) Show that Theorem 37 can have a machine proof if the machines are those devel
oped in Theorem 30 (p. 3 1 8) .

(iii) Provide a machine proof for Theorem 38 (p. 384) .

9. Which of the following are context-free?

(i) (a)(a + b)* n ODDPALINDROME
(ii) EQUAL n { anbnan l

(iii) (anif l n PALINDROME'

(iv) EVEN-EVEN' n PALINDROME
(v) { anif l ' n PALINDROME

(vi) PALINDROME n { anbn+mam, where n, m = I 2 3 . . . , n = m or n * m l
(vii) PALINDROME' n EQUAL

10. For the example on p. 389,

(i) Build a PDA for Mqp as defined earlier.
(ii) Show that (anb+an) is a CFL.

(ii i) Build a PDA for Mq, as defined earlier.
(iv) Build a PDA for Mrq as defined earlier.
(v) Build a PDA for M as defined earlier.

1 1. (i) Show that

L 1 = (aPbqa'bP, where p, q, r are arbitrary whole numbers I

is context-free.
(ii) Show that

is context-free.
(iii) Show that

is context-free.
(iv) Show that

is non-context-free.

12. Recall the language VERYEQUAL over the alphabet I = I a b c I :

VERYEQUAL = (all strings of a 's, b 's, and e's that have the
same total number of a's as b's as e's I

Prove that VERYEQUAL is non-context-free by using a theorem in this chapter. (Com
pare with Chapter 20, Problem 1 9.)

13. (i) Prove that the complement of the language L

L = { an�. where n * m l

is context-free, but that neither L nor L ' is regular.
(i i) Show that

and

Problems

L2 = { anbm, where m 2: n }

are both context-free and not regular.
(i i i) Show that their intersection is context-free and nonregular.
(iv) Show that their union is regular.

14. (i) Prove that the language

is context-free.
(i i) Prove that the language

L2 = { anbnam, where either n = m or n -:/= m I

is context-free.
(i i i) Is their intersection context-free?

401

15. In this chapter, we proved that the complement of { a"b"a" } i s context-free. Prove this
again by exhibiting one CFG that generates it.

16. Let L be a CFL. Let R be a regular language contained in L. Let L - R represent the lan
guage of all words of L that are not words of R. Prove that L - R is a CFL.

17. The algorithm given in the proof of Theorem 41 (p. 394) looks mighty inviting. We are
tempted to use the same technique to build the intersection machine of two PDAs. How
ever, we know that the intersection of two CFLs is not always a CFL. Explain why the
algorithm fails when it attempts to intersect two PDAs.

18. (i) Take a PDA for PALINDROMEX and intersect it with an FA for a*Xa* . (Th is
means actually build the intersection machine .)

(i i) Analyze the resultant machine and show that the language it accepts is { a"Xa" } .

19. (i) Intersect a PDA for { a"b" I with an FA for a(a + b)* . What language is accepted by
the resul tant machine?

(i i) Intersect a PDA for { a"b" I with an FA for b(a + b)*. What language is accepted by
the resultant machine?

(i i i) Intersect a PDA for { a"b" I with an FA for (a + b)*aa(a + b)* .
(iv) Intersect a PDA for { a"b" } with an FA for EVEN-EVEN.

20. Intersect a PDA for PALINDROME with an FA that accepts the language of all words
of odd length . Show, by examining the machine, that it accepts exactly the language
ODDPALINDROME.

CHAPTER 18

Decidability

i EMPTINESS AND USELESSNESS

402

In Part 11, we have been laying the foundation of the theory of formal languages. Among the
many avenues of investigation we have left open are some questions that seem very natural
to ask, such as the following:

1. How can we tel l whether or not two different CFGs define the same language?

2. Given a particular CFG, how can we tel l whether or not it is ambiguous?

3. Given a CFG that is ambiguous, how can we tel l whether or not there is a different CFG
that generates the same language but is not ambiguous?

4. How can we tel l whether or not the complement of a given context-free language is also
context-free?

5. How can we tel l whether or not the intersection of two context-free languages is also
context-free?

6. Given two context-free grammars, how can we tel l whether or not they have a word in
common?

7. Given a CFG, how can we tel l whether or not there are any words that it does not gener
ate? (Is its language (a + b)* or not?)

These are very fine questions, yet, alas, they are all unanswerable. There are no algo
rithms to resolve any of these questions. This is not because computer theorists have been
too lazy to find them. No algorithms have been found because no such algorithms exist
anywhere-ever.

We are using the word "exist" in a special philosophical sense. Things that have not yet
been discovered but that can some day be discovered we stil l call existent, as in the sentence,
"The planet Jupiter existed long before it was discovered by man." On the other hand, cer
tain concepts lead to mathematical contradictions, so they cannot ever be encountered, as in,
"The planet on which 2 + 2 = 5," 'The smallest planet on which 2 + 2 = 5," or "The tallest
married bachelor." In Part I I I , we shall show how to prove that some computer algorithms
are just l ike married bachelors in that their very existence would lead to unacceptable contra
dictions. Suppose we have a question that requires a decision procedure . If we prove that no
algorithm can exist to answer it, we say that the question is undecidable . Questions I

through 7 are undecidable.

Emptiness and Uselessness 403

This is not a totally new concept to us; we have seen it before, but not with this termi
nology. In geometry, we have learned how to bisect an angle given a straightedge and com
pass. We cannot do this with a straightedge alone. No algorithm exists to bisect an angle us
ing just a straightedge. We have also been told (although the actual proof is quite advanced)
that even with a straightedge and compass we cannot trisect an angle. Not only is it true that
no one has ever found a method for trisecting an angle, nobody ever wi l l . And that is a theo
rem that has been proven.

We shall not present the proof that questions 1 through 7 are undecidable, but toward
the end of the book we will prove something very similar.

What Exists

I . What is known

2. What wi l l be known

3 . What might have been
known but nobody wi l l
ever care enough to
figure it out

What Does Not Exist

I . Married bachelors

2. Algorithms for questions I through
7 above

3 . A good 5¢ cigar

There are, however, some other fundamental questions about CFGs that we can answer:

1. Given a CFG, can we tel l whether or not it generates any words at all? This is the ques
tion of emptiness.

2. Given a CFG, can we tel l whether or not the language it generates is finite or infinite?
This is the question of finiteness.

3. Given a CFG and a particular string of letters w, can we tel l whether or not w can be
generated by the CFG? This is the question of membership.

Now we have a completely different story. The answer to each of these three easier
questions is "yes." Not only do algorithms to make these three decisions exist, but they are
right here on these very pages .

THEOREM 42

Given any CFO, there is an algorithm to determine whether or not it can generate any words
at all .

PROOF

The proof will be by constructive example. We show there exists such an algorithm by pre
senting one.

In Theorem 23 of Chapter 1 3 , we showed that every CFG that does not generate A can
be written without A-productions .

In that proof, we showed how to decide which nonterminals are nul lable. The word A i s
a word generated by the CFG if and only if S is nullable. We already know how to decide
whether the start symbol S is nullable:

404 CHAPTER 18 Decidability

S � A?
Therefore, the problem of determining whether A is a word in the language of any CFG

has already been solved.
Let us assume now that A is not a word generated by the CFG. In that case, we can con

vert the CFG to CNF, preserving the entire language.
If there is a production of the form

s - t

where t is a terminal, then t is a word in the language.
If there are no such productions, we then propose the following algorithm:

Step l For each nonterminal N that has some productions of the form

N - t

where t i s a terminal or string of terminals, we choose one of these productions
and throw out all other productions for which N i s on the left side. We then re
place N by t in all the productions in which N is on the right side, thus eliminat
ing the nonterminal N altogether. We may have changed the grammar so that it
no longer accepts the same language. It may no longer be in CNF. That is fine
with us. Every word that can be generated from the new grammar could have
been generated by the old CFG. If the old CFG generated any words, then the
new one does also.

Step 2 Repeat step I until either it eliminates S or it eliminates no new nonterminals.
If S has been eliminated, then the CFG produces some words; if not, then it
does not. (This we need to prove.)

The algorithm is clearly finite, because i t cannot run step l more times than there are
nonterminals in the original CNF version. The string of nonterminals that will eventually re
place S is a word that could have been derived from S if we retraced in reverse the exact se
quence of steps that lead from the terminals to S.

If step 2 makes us stop while we still have not replaced S, then we can show that no
words are generated by this CFG. If there were any words in the language, we could retrace
the tree from any word and follow the path back to S.

For example, if we have the derivation tree

then we can trace backward as follows (the relevant productions can be read from the tree) :

B - b

must be a production, so replace all B 's with b's.

Y - BB

Emptiness and Uselessness

is a production, so replace Y with bb.

A - a

is a production, so replace A with a.

x - AY

is a production, so replace X with abb.

s - xr

is a production, so replace S with abbbb.
Even if the grammar included some other production, such as,

B - d (where d is some other terminal)

405

we could still retrace the derivation from abbbb to S, but we could just as well end up replac
ing S by adddd-if we chose to begin the backup by replacing all B 's by d instead of h.

The important fact is that some sequence of backward replacements will reach back to S
if there is any word in the language.

The proposed algorithm is therefore a decision procedure. •

EXAMPLE

Consider this CFG:

s - xr

X - AX

X - AA

A - a

Y - BY

Y - BB

B - h

Step I Replace all A 's by a and all B 's by b. This gives

s - xr

x - ax

x - aa

Y - bY

r - hh

Step I Replace all X's by aa and all Y's by hb

s - aahb

Step I Replace all S's by aahb.

Step 2 Terminate step I and discover that S has been el iminated. Therefore, the CFG

produces at least one word. •

406 CHAPTER 18 Decidability

EXAMPLE

Consider this CFG:

S -+ XY
X -+ AX
A -+ a
Y -+ BY
Y -+ BB
B -+ b

Step I Replace all A 's by a and all B 's by b. This gives

S -+ XY
X -+ aX
Y -+ bY
Y -+ bb

Step 1 Replace al l Y's by bb. This gives

S -+ Xbb
X -+ aX

Step 2 Terminate step
words.

and discover that S is sti l l there. This CFG generates no
•

As a final word on this topic, we should note that this algorithm does not depend on the
CFGs being in CNF, as we shall see in the problems at the end of this chapter.

We have not yet gotten all the mileage out of the algorithm in the previous theorem. We
can use it again to prove the following.

THEOREM 43

There is an algorithm to decide whether or not a given nonterminal X in a given CFG is ever
used in the generation of words.

PROOF

The first thing we want to decide is whether from X we can possibly derive a string of all ter
minals. Then we need also to decide whether, starting from S, we can derive a working string
involving X that wil l lead to a word.

To see whether we can produce a string of all terminals from the nonterminal X, we can
make use of the previous theorem and a clever trick.

Trick

Just for a moment, reverse S and X in all the production rules in the grammar. Now use the
algorithm of the previous theorem to see whether this grammar produces any words from its
start symbol . If it does, then X in the nontampered original grammar can produce a string of
all terminals.

Let us call a nonterminal that cannot ever produce a string of terminals unproductive.

Emptiness and Uselessness 407

The algorithm that wil l answer whether X is ever used in the production of words from S
will require blue paint.

Step I Find all unproductive nonterminals .

Step 2 Purify the grammar by eliminating all productions involving the unproductive
nonterminals.

Step 3 Paint all X's blue.

Step 4 If any nonterminal is the left side of a production with anything blue on the
right, paint it blue, and paint all occurrences of it throughout the grammar blue,
too.

Step 5 The key to this approach is that all the remaining productions are guaranteed to
terminate . This means that any blue on the right gives us blue on the left (not
just all blue on the right. Repeat step 4 until nothing new is painted blue.

Step 6 If S is blue, X is a useful member of the CFG, because there are words with der
ivations that involve X-productions. If not, X is not useful .

Obviously, this algorithm is finite, because the only repeated part is step 4 and that can
be repeated only as many times as there are nonterminals in the grammar.

It is also clear that if X is used in the production of some word, then S will be painted
blue, because if we have

s � · · · � (blah)X(blah) � · · · � word

then the nonterminal that put X into the derivation in the first place wil l be blue, and the non
terminal that put that one in wi l l be blue, and the nonterminal from which that came wil l be
blue . . . up to S.

Now let us say that S is blue . Let us say that it caught the blue through th is sequence: X
made A blue, A made B blue, and B made C blue . . . up to S. The production in which X
made A blue looked l ike this :

A � (blah)X (blah)

Now the two (blah) 's might not be strings of terminals, but it must be true that any non
terminals in the (blah)'s can be turned into strings of terminals because they survived step 2.

So, we know that there i s a derivation from A to a string made up of X with terminals

A b (string of terminals)X (string of terminals)

We also know that there i s a production of the form

B � (blah)A (blah)

that can l ikewise be turned into

B b (string of terminals)A (string of terminals)
b (string of terminals)X (string of terminals)

We now back all the way up to S and real ize that there is a derivation

S b (string of terminals)X (string of terminals)
b (word)

Therefore, this algorithm is exactly the decision procedure we need to decide whether X
is actually ever used in the production of a word in this CFG. •

408 CHAPTER 18 Decidability

A nonterminal that cannot be used in a production of a word is called useless. Theorem
43 says that uselessness is decidable.

EXAMPLE

Consider the CFG

s - ABa I bAZ I b
A - Xb I bZa
B - bAA
x - aZa I aaa
z - ZAbA

We quickly see that X terminates (goes to all terminals, whether or not it can be reached
from S). Z is useless (because it appears in all of its own productions). A is blue. B is blue. S is
blue. So, X must be involved in the production of words. To see one such word, we can write

A - Xb
B - bAA

Now because A is useful, it must produce some string of terminals. In fact,

A b aaab

So,

Now

B b bAaaab
=> bXbaaab

S => ABa
b aaabBa
b aaabbXbaaaba

We know that X is productive, so this is a working string in the derivation of an actual word
in the language of this grammar. •

1} FINITENESS

The last two theorems have been part of a project, des igned by Bar-Hil lel , Perles, and
Shamir, to settle a more important question.

THEOREM 44

There is an algorithm to decide whether a given CFG generates an infinite language or a fi
nite language.

PROOF

The proof will be by constructive algorithm. We shall show that there exists such a procedure
by presenting one. If any word in the language is Jong enough to apply the pumping lemma
(Theorem 34, p. 360) to, we can produce an infinite sequence of new words in the language.

Finiteness 409

If the language is infinite, then there must be some words long enough so that the pump
ing lemma applies to them. Therefore, the language of a CFG is infinite if and only if the
pumping lemma can be applied.

The essence of the pumping lemma was to find a self-embedded nonterminal X. We
shall show in a moment how to tel l whether a particular nonterminal is self-embedded, but
first we should also note that the pumping lemma will work only if the nonterminal that we
pump is involved in the derivation of any words in the language. Without the algorithm of
Theorem 43, we could be bui lding larger and larger trees, none of which are truly derivation
trees. For example, in the CFG

s - ax I b
x - xxh

the nonterminal X is certainly self-embedded, but the language is finite nonetheless.
So, the algorithm is as follows:

Step I Use the algorithm of Theorem 43 to determine which nonterminals are useless .
Eliminate all productions involving them.

Step 2 Use the following algorithm to test each of the remaining nonterminals, in tum,
to see whether they are self-embedded. When a self-embedded one is discov
ered, stop.
To test X:

(i) Change all X's on the left side of productions into the Russian letter /K,
but leave all X's on the right side of productions alone.

(i i) Paint all X's blue.
(i i i) If Y is any nonterminal that is the left side of any production with some

blue on the right side, then paint al l Y's blue.
(iv) Repeat step 2(iii) until nothing new is painted blue.
(v) If IK is blue, then X is self-embedded; if not, it is not.

Step 3 If any nonterminal left in the grammar after step I is self-embedded, the lan
guage generated is infinite. If not, then the language is finite .

The explanation of why this procedure is finite and works is identical to the explanation
in the proof of Theorem 43 . •

EXAMPLE

Consider the grammar

s - ABa I hAZ I h
A - Xh I hZA
B - hAA
x - aza I hA I aaa
z - ZAhA

This is the grammar of the previous example with the additional production x - hA . As be
fore, Z is useless, while all other nonterminals are used in the production of words. We now
test to see whether X is self-embedded.

First, we trim away Z:

s - ABa I h
A - Xh
B - hAA
x - M I aaa

410 CHAPTER 18 Decidability

Now we introduce /K:

Now the paint:

s - ABa I b
A - Xb
B - bAA

IK- bA I aaa

X is blue
A - Xb, so A is blue

JK- bA, so IK is blue
B - A , so B is blue
S - ABa, so S is blue

Conclusion: IK is blue, so the language generated by this CFG is infinite.

t MEMBERSHIP-THE CYK ALGORITHM

We now tum our attention to the last decision problem we can handle for CFGs.

THEOREM 45

•

Given a CFG and a string x in the same alphabet, we can decide whether or not x can be gen
erated by the CFG.

PROOF

Our proof will be by constructive algorithm. Given a CFG in CNF and a particular string of
letters, we will present an algorithm that decides whether or not the string is derivable from
this grammar. This algorithm is called the CYK algorithm because it was invented by John
Cocke and subsequently also published by Tadao Kasami (1 965) and Daniel H. Younger
(1 967).

First, let us make a list of all the nonterminals in the grammar S, N1, N2, N3,
And let the string we are examining for membership in the language be denoted by

X = x1 X2 x3 • • • Xn

In general, it may be that the letters are not all different, but what we are interested in
here is the position of every possible substring of x. We shall be answering the question of
which substrings of x are producible (by extended derivation) from which nonterminals. For
example, if we already know that the substring x3 • • . x7 can be derived from the nontermi
nal N8, the substring x8 • • • x 1 1 can be derived from the nonterminal N2, and we happen to
have the CNF production N4 - NgN2, then we can conclude that the total substring
x3 . . • x 1 1 can be derived from the nonterminal N4• Symbolically, from

* Ng � X3 . . . X7 and and

we can conclude that

Membership-The CYK Algorithm 411

We wish to determine, in an organized fashion, a comprehensive l ist of which substrings
of x are derivable from which nonterminals. If we had such a rel iable l ist, we would know
whether the nonterminal S produces the complete string x, which is what we want to know.

We start off our l ist with all the substrings of length l (the single letters) of x and for
each we determine which nonterminals can produce them. This is easily done because all
such derivations come immediately from the CNF productions nonterminal ---+ terminal :

Substring All Producing Nonterminals

Nlhis' Nlhal · · •
Nsuch' N,o ·

N something '

Now we look at all substrings of length 2, such as x6x7• This can only be produced from
a nonterminal N if the first half can be produced by some nonterminal N and the second p q
half by some nonterminal N,, and there is a rule of production in the grammar that saysNP ---+ N �,.· We can systematically check all the rules of production and our list above to de
termine whether the length-2 substrings can be produced:

Substring All Producing Nonterminals

N .
N .

N . .

It may be the case that some of these substrings cannot be derived from any nontermi
nal , but it also may be the case that some can be derived in several ways.

We now move on to substrings of length 3-for example, x5x6xr This substring can also
be derived from a production of the form N---+ NN, where the first N produces the first half of
the substring and the second N produces the second half of the substring, but now we have
two different ways of breaking the substring into its two halves. The first half could be x5x6
and the second half could be x7, or the first half could be x5 and the second half could be
x6xr All nonterminals producing any of these four halves are already on our list, so a simple
check of all the productions in the CFG will determine all the ways (if any) of producing this
(and any other length-3) substring. Our list then grows:

Substring All Producing Nonterminals

N .
N .

N . .

Our l ist keeps growing. Next, we examine all substrings of length 4. They can be broken
into halves in three different ways: the first three letters and the last letter, the first two letters
and the last two letters, the first letter and the last three letters. For all these possibi lities, we
check the l ist to see what nonterminals produce these halves and whether the two nontermi
nals can be merged into one by a rule of production: N - NN.

412 CHAPTER 18 Decidability

Substring All Producing Nonterminals

N . . .
N . .

We continue this same process with substrings of length 5 (made into halves in four
ways each), length 6, and so on. The whole process terminates when we have all of x as the
length of the substring:

Substring All Producing Nonterminals

N . . .

We now examine the set of producing nonterminals, and if S is among them, then x
can be produced, and if S is not among them, then x simply cannot be produced by this
CFG.

This algorithm is finite and decisive.

EXAMPLE

Let us consider the CFG

S -+XY
X -+ XA l a l b
Y-+AY I a
A -+ a

and let us ask whether the string x = babaa is a word in this language.
We begin our l ist with all the ways of producing the one-letter substrings of x:

Substring

x, = b

X2 = Q

x3 = b
X4 = Q

All Producing Nonterminals

x

X,Y, A

x

X,Y, A

X,Y, A

•

Now we look at the two-letter substrings. The substring x1x2 = ba can only come from
any production whose right side is XX, XY, or XA . Two of these are the right side of a pro
duction, and so x1x2 can be produced by S or X. The substring Xr3 can only come from any
production whose right side is XX, YX, or AX. None of these is the right side of a produc
tion, and so this substring cannot be produced. The substring x3x4 can only come from pro
ductions whose right side is XX, XY, or XA, and so this substring can be produced by S or
X. The substring x4x5 can only come from productions whose right side is XX, XY, XA , YX,
YY, YA , AX, AY, or AA. Therefore, this substring can come from S, X, or Y. Our list now in
cludes the following:

Membership-The CYK Algorithm

Substring All Producing Nonterminals

S, X

XiXJ

X3X4 S, x

X4X5 S, X, Y

413

Now let us consider the substrings of length 3 . The first is x1xiXJ. If we break this into the
first half x1 and the second half xz-t3, we can see from the list that the second half cannot be
produced at all . So, the correct way to break this is into x1x2 and x3 • As we see from the table,
the first half can be produced from S or X and the second half can be produced only from X.
This means that in order to form this substring, we would need a production whose right side is
SX or XX. There are no such productions and so this substring cannot be generated.

Let us consider generating the substring xz-t�4• We know it is unprofitable to consider the
first half to be xz-t3 so we break it into x2 and x�4• The l ist says that we can produce this combi
nation from any production whose right side is XS, XX, YS, YX, AS, or AX. Unfortunately, none
of these are right sides of any productions, so this substring cannot be produced either.

The last three-letter substring to consider is x��5• It can be factored into x3 times x4x5, or
x�4 times x5• The first of these give XS, XX, or XY; the second gives SX, SY, SA, XX, XY, or XA.
Only XY and XA are on the right sides of a production and their left nonterminals are X and S.

Our list now includes the following:

Substring

x1xz-r3

XzX3X4

All Producing Nonterminals

X3X4X5 S, x

This may look fairly bleak, but it is conceivable that the string x sti ll may be formed by
multiplying x1x2 with the bottom row, so let us persevere.

The first four-letter substring is x1xz-t3x4• From the list above, it is clear that the only
hope of producing this substring is from the factoring x1x2 times x�4• The list te lls us that
this can come from a production whose right side is SS, SX, XS, or XX. None of these are the
right sides of productions, so this substring is unproducible.

The other four-letter substring i s XzX3x4x5 • The only hope here is to factor this as x2 times
x3x4x5 because XzX3 and XzX3x4 are both unproducible . This factorization gives us the possibi l
ities XS, YS, AS, XX, YX, or AX. None of these are the right side of a production.

The list now includes the following:

Substring

x 1xz-t?4

XzX3X4X5

All Producing Nonterminals

We finally come to the string x i tself. We can see that i t does not pay to factor it into a I
times a 4, so the only other factorization possible is a 2 times a 3 . Remember, because the
grammar is in CNF, all factorizations must contain exactly two factors . Our last resort is
therefore x1x2 times x�4x5 • Each factor can be produced only by S or X, but no productions
have the right side SS, XS, SX, or XX. Therefore, this word is unproducible from this
grammar:

414 CHAPTER 18 Decidability

Substring All Producing Nonterminals

•

We should note that for the grammar above, and for any other grammar without unit or
A-productions, it is also possible to decide whether a proposed string is in the language gen
erated by that grammar by drawing enough levels of the total language tree. If we draw the
total language tree for the grammar above far enough to produce all five-letter words, we can
then search the tree to see that babaa is not among them. This too could be developed into
an effective decision procedure.

EXAMPLE

Let us consider the following CFG in CNF:

s - AA

A - AA

A - a

Clearly, all the words in this grammar are of the form a* , but are all the words in a* in
the language of this grammar? We can see immediately that A and a are not, but aa is . Let
us use the CYK algorithm to test to see whether x = aaa is .

The l ist starts off easily enough: .

Substring

x1 = a

X2 = a
x = a 3

All Producing Nonterminals

A

A
A

We can see now that both substrings of length 2 are the same, aa, and are factorable into
exactly AA. This is the right side of two productions whose left sides are S and A. Therefore,
the list continues :

Substring All Producing Nonterminals

S, A

S, A

There is only one length-3 substring, x itself, and it can be factored into x1 times x:!"i:Y
or x1x2 times xr The first case gives the nonterminal possibilities AS or AA , and the second
gives the possibil ities SA or AA. Of these, only AA is the right side of a production (of two
productions, actually) . The left sides are S and A. Therefore, the list concludes with the
following:

Substring All Producing Nonterminals

S , A

Parsing Simple Arithmetic 415

From this l ist, we see that the word x can indeed be derived from the start symbol S and
so it is in the language. It should also be clear that similarly any string of more than three a's
can also be produced by this CFG from the nonterminals S and A . •

� PARSING SIMPLE ARITHMETIC

The CYK algorithm of the previous section answered the question of whether a word was
derivable from a certain grammar not how it was derived. This is also decidable, as we see in
this section.

The grammars we presented earl ier for AE (arithmetic expressions) were ambiguous.
This is not acceptable for programming because we want the computer to know and execute
exactly what we intend.

Two possible solutions were mentioned earlier:

1. Require the programmer to insert parentheses to avoid ambiguity. For example, instead
of the ambiguous 3 + 4 * 5, insist on

(3 + 4) * 5 or 3 + (4 * 5)

2. Find a new grammar for the same language that is unambiguous because the interpreta
tion of "operator hierarchy" (i .e . , * before +) is built into the system.

Programmers find the first solution too cumbersome and unnatural . Fortunately, there
are grammars (CFGs) that satisfy the second requirement.

We present one such grammar for the operations + and * alone, cal led PLUS-TIMES.
The rules of production are

S -+ E

E -+ T + E I T

T-+ F * T I F

F -+ (E) I i

Loosely speaking, E stands for an expression, T for a term in a sum, F for a factor in a
product, and i for any identifier by which we mean any number or storage location name
(variable) . The terminals clearly are

+ * () i
because these symbols occur on the right side of productions, but never on the left side.

To generate the word i + i * i by leftmost derivation, we must proceed as fol lows:

s � E
� T + E
� F + E
� i + E
� i + T
� i + F * T
� i + i * T
� i + i * F
� i + i * i

416 CHAPTER 18 Decidability

The syntax tree for this is

s
I

� I� T + f.'
I I r /T "'-.,

F ! T I I F
I

It is c lear from this tree that the word represents the addition of an identifier with the
product of two identifiers. In other words, the multiplication wil l be perfonned before the
addition, just as we intended it to be in accordance with conventional operator hierarchy.
Once the computer can discover a derivation for the fonnula, it can generate a machine
language program to accomplish the same task.

DEFINITION

Given a word generated by a particular grammar, the task of finding its derivation is called
parsing. •

Until now we have been interested only in whether a string of symbols was a word in a cer
tain language. We were worried only about the possibility of generation by grammar or accep
tance by machine. Now we find that we want to know more. We want to know not just whether
a string can be generated by a CFG but also how. We contend that if we know the (or one of the)
derivation tree(s) of a given word in a particular language, then we know something about the
meaning of the word. This section is different from the other sections in this book because here
we are seeking to understand what a word says by determining how it can be generated.

There are many different approaches to the problem of CFG parsing. We shall consider
three of them. The first two are general algorithms based on our study of derivation trees for
CFGs. The third is specific to arithmetic expressions and makes use of the correspondence
between CFGs and PDAs.

The first algorithm is called top-down parsing. We begin with a CFG and a target
word. Starting with the symbol S, we try to find some sequence of productions that gener
ates the target word. We do this by checking all possibilities for leftmost derivations. To or
ganize this search, we build a tree of all possibi lities, which is l ike the total language tree of
Chapter 1 2. We grow each branch until it becomes clear that the branch can no longer pre
sent a viable possibil ity; that is, we discontinue growing a branch of the whole language tree
as soon as it becomes clear that the target word wil l never appear on that branch, even gener
ations later. This could happen, for example, if the branch includes in its working string a
tenninal that does not appear anywhere in the target word or does not appear in the target
word in a corresponding position. It is time to see an i l lustration.

Let us consider the target word

in the language generated by the grammar PLUS-TIMES.
We begin with the start symbol S. At this point, there is only one production we can pos

sibly apply, S --+ E. From E, there are two possible productions:

Parsing Simple Arithmetic 417

E --+ T + E, E --+ T

In each case, the leftmost nonterminal is T and there are two productions possible for replac
ing this T.

The top-down leftmost parsing tree begins as shown below:

s
I / E '-.......

T + E T / I I "
F * T + E F + E F * T F

In each of the bottom four cases, the leftmost nonterminal is F, which is the left side of
two possible productions:

s
I

T + E -----
E

---- � L' F * T + H r + r.
/ ""' / """

---- T
F ! T --- F / ""' / \

<E> • T + r: i • T + r: (H) + 1-; i + r: (r:> • T , • T u:>
\,___y----l \ I � \.._y--1 � � y y

(1) (2) (3) (4) (5) (6) (7) (8)

Of these, we can drop branch numbers I , 3 , 5 , and 7 from further consideration be
cause they have introduced the terminal character " (" , which is not the first (or any) letter
of our word. Once a terminal character appears in a working string, it never leaves. Pro
ductions change the nonterminals into other things, but the terminals stay forever. All four
of those branches can produce only words with parentheses in them, not i + i * i . Branch 8
has ended its development naturally in a string of al l terminals but it is not our target
word, so we can discontinue the investigation of this branch, too. Our pruned tree looks
like this: s

I
---- r: ------T + r; T

�_ IF * T + E F + H
,/""' I

i * T + E i + E
'---.,-./ '--.,-.J

(2) (4) (6)

Because both branches 7 and 8 vanished, we dropped the l ine that produced them:

T ==> F

All three branches have actual ly derived the first two terminal letters of the words that
they can produce. Each of the three branches left starts with two terminals that can never
change. Branch 4 says the word starts with "i + ", which is correct, but branches 2 and 6 can
now produce only words that start "i *", which is not in agreement with our desired target
word. The second letter of all words derived on branches 2 and 6 is *; the second letter of the
target word is + . We must ki l l these branches before they multiply.

418 CHAPTER 18 Decidability

Deleting branch 6 prunes the tree up to the derivation E � T, which has proved fruitless
as none of its offshoots can produce our target word. Deleting branch 2 tel ls us that we can
eliminate the left branch out of T + E. With all the pruning we have now done, we can con
clude that any branch leading to i + i * i must begin

S � E � T + E � F + E � i + E

Let us continue this tree two more generations. We have drawn all derivation possibil i
ties. Now it is time to examine the branches for pruning.

s
IE
IT + E IF + E
Ii + E

--- ----i + T + E i + T
/ "" / "

i + F • T + E i + F + E i + F * T i + F
�\ I �

(9) (10) (1 1) (1 2)

At this point, we are now going to pull a new rule out of our hat. Because no production
in any CFG can decrease the length of the working string of terminals and nonterminals on
which it operates (each production replaces one symbol by one or more), once the length of
a working string has passed 5, i t can never produce a final word of only 5 length. We can
therefore delete branch 9 on this basis alone. No words that it generates can have as few as
five letters.

Another observation we can make is that even though branch 1 0 is not too long and it
begins with a correct string of terminals, it can still be eliminated because it has produced
another + in the working string. This is a terminal that all descendants on the branch wil l
have to include. However, there is no second + in the word we are trying to derive. There
fore, we can eliminate branch l 0, too.

This leaves us with only branches 1 1 and 1 2 that continue to grow.

s
IE
I

T + E
I

F + E
I i + E
I

i + T
� ----

i + F * T i + F

/ " / "-..._
i + (E) • T i + i • T

"----v----J �
(1 3) (14)

i + (/o.')
\....._v--f

(1 5)

i + i

�
(1 6)

Now branches 1 3 and 1 5 have introduced the forbidden terminal " (", while branch 1 6
has terminated its growth at the wrong word. Only branch 1 4 deserves to l ive. A t this point,
we draw the top half of the tree horizontally:

Parsing Simple Arithmetic

S => E => T + E => F + E => i + E => i + T => i + F * T => i + i * T---
i + i * F

i + i * i
(the winner)

419

In this way, we have discovered that the word i + i * i can be generated by this CFG and
we have found the unique leftmost derivation that generates it .

To recapitulate the algorithm: From every l ive node we branch for all productions ap
plicable to the leftmost nonterminal . We kil l a branch for having the wrong initial string of
terminals, having a bad terminal anywhere in the string, simply growing too long, or turning
into the wrong string of terminals.

With the method of tree search known as backtracking, it is not necessary to grow all
the l ive branches at once. Instead, we can pursue one branch downward until either we reach
the desired word, or else we terminate it because of a bad character or excessive length. At
this point, we back up to a previous node to travel down the next road until we find the target
word or another dead end, and so on. Backtracking algorithms are more properly the subject
of a different course. As usual, we are more interested in showing what can be done, not in
determining which method is best.

We have only given a beginner's list of reasons for terminating the development of a
node in the tree. A more complete set of rules follows:

1. Bad Substring: If a substring of solid terminals (one or more) has been introduced into a
working string in a branch of the total-language tree, all words derived from it must also
include that substring unaltered. Therefore, any substring that does not appear in the tar
get word is cause for eliminating the branch.

2. Good Substrings but Too Many: The working string has more occurrences of the par
ticular substring than the target word does. In a sense, Rule I is a special case of
this .

3. Good Substrings but Wrong Order: If the working string is YabXYbaXX but the target
word is bbbbaab, then both substrings of terminals developed so far, ah and ba, are
valid substrings of the target word, but they do not occur in the same order in the
working string as in the word. So, the working string cannot develop into the target
word.

4. Improper Outer-terminal Substring: Substrings of terminals developed at the beginning
or end of the working string will always stay at the ends at which they first appear. They
must be in perfect agreement with the target word or the branch must be eliminated.

5. Excess Projected Length: If the working string is aXbbYYXa and all the productions
with a left side of X have right sides of six characters, then the shortest length of the ul
timate words derived from this working string must have a length of at least
I + 6 + I + I + I + I + 6 + 1 = 1 8 . If the target word has fewer than 1 8 letters, kill
this branch. (We are assuming that all A-productions have been eliminated.)

6. Wrong Target Word: If we have only terminals left but the string is not the target word,
forget it.

There may be even more rules depending on the exact nature of the grammar. These rules
apply to more than just PLUS-TIMES, as we can see from the following example.

420 CHAPTER 18 Decidability

EXAMPLE

Let us recall the CFG for the language EQUAL:

s - aB I bA
A - a I as I bAA
B - b I bS I aBB

The word bbabaa is in EQUAL. Let us determine a leftmost derivation for this word by
top-down parsing.

From the start symbol S, the derivation tree can take one of two tracks:

/s"'-
a B hA

(1) (2)

All words derived from branch 1 must begin with the letter a, but our target word does
not. Therefore, by Rule 4, only branch 2 need be considered. The leftmost nonterminal is
now A. There are three branches possible at this point:

s
I

hA / I �
ba

(3)
ba S

(4)
bbAA

(5)

Branch 3 is a completed word but not our target word. Branch 4 will generate only
words with an initial string of terminals ba, which is not the case with bbabaa. Only branch
5 remains a possibility. The leftmost nonterminal in the working string of branch 5 is the
first A. Three productions apply to it :

s
I

bA
I

bbAA � , ---..___
bbaA

(6)

bbaSA

(7)

bbbAAA

(8)

Branches 6 and 7 seem perfectly possible. Branch 8, however, has generated the termi
nal substring bbb, which all its descendants must bear. This substring does not appear in our
target word, so we can eliminate this branch from further consideration.

In branch 6, the leftmost nonterminal is A; in branch 7, i t is S.

s
I

bA
I

bbAA

� ---
bbaA bbaSA

---- I ---- I ----
bbaa bbaaS bba bAA bbaa BA bbabAA
(9) (10) (1 1) (1 2) (1 3)

Branch 9 is a string of all terminals, but not the target word. Branch I 0 has the in itial

Parsing Simple Arithmetic 421

substring bhaa; the target word does not. This detail also kills branch 1 2 . Branch 1 1 and
branch 1 3 are identical. If we wanted all the leftmost derivations of this target word, we
would keep both branches growing. Because we need only one derivation, we may just as
well keep branch 1 3 and drop branch 1 1 (or vice versa); whatever words can be produced on
one branch can be produced on the other.

S = hA = bhAA = bbaSA = bbahAA

---- \ ----
bbabaA hha haSA hhahhAAA

(1 4) (1 5) (1 6)

Only the working string in branch 1 4 is not longer than the target word. Branches 1 5
and 1 6 can never generate a six-letter word.

S => bA => bbAA => bbaSA => bbabAA => bbabaA

---- \ ----
bbabaa

(1 7)

bbabaaS

(1 8)

bhababAA

(1 9)

Branches 1 8 and 1 9 are too long, so it is a good thing that branch 1 7 is our word . This com
pletes the derivation. •

The next parsing algorithm we shall i l lustrate is the bottom-up parser. This time we do
not ask what were the first few productions used in deriving the word, but what were the last
few. We work backward from the end to the front, the way sneaky people do when they try
to solve a maze.

Let us again consider as our example the word i + i * i generated by the CFG PLUS
TIMES.

If we are trying to reconstruct a leftmost derivation, we might think that the last terminal
to be derived was the last letter of the word. However, this is not always the case. For exam
ple, in the grammar

S ---+ Ahh
A ---+ a

the word ahb is formed in two steps, but the final two h's were introduced in the first step of

the derivation, not the last. So instead of trying to reconstruct specifically a leftmost deriva
tion, we have to search for any derivation of our target word. This makes the tree much
larger. We begin at the bottom of the derivation tree, that is, with the target word itself, and
step by step work our way back up the tree seeking to find when the working string was the
one single S.

Let us reconsider the CFG PLUS-TIMES :

S ---+ E
E ---+ T + E I T
T---+ F * T I F
F ---+ (E) I i

To perform a bottom-up search, we shall be reiterating the following step: Find all substrings
of the present working string of terminals and nonterminals that are right halves of produc
tions and substitute back to the nonterminal that could have produced them.

Three substrings of i + i * i are right halves of productions, namely, the three i's, any
one of which could have been produced by an F. The tree of possibi l i ties begins as follows:

422 CHAPTER 18 Decidability

Even though we are going from the bottom of the derivation tree to the top S, we wi l l
stil l draw the tree of possibilities, as all our trees, from the top of the page downward.

We can save ourselves some work in this particular example by realizing that all the i's
come from the production F - i and the working string we should be trying to derive is
F + F * F. Strictly speaking, this insight should not be allowed because it requires an idea
that we did not include in the algorithm to begin with. But because it saves us a considerable
amount of work, we succumb to the temptation and write in one step:

Not all the F's had to come from T - F. Some could have come from T - F * T, so we
cannot use the same trick again.

The first two branches contain substrings that could be the right halves of E - T and
T- F. The third branch has the additional possibility of T- F * T.

The tree continues:

'-y--' '-y--' '-y--' '-y--' '-y--' '-y--' '-y--' '-y--' '-y--' '-y--'
(1) (2) (3) (4) (5) (6) (7) (8) (9) (1 0)

We never have to worry about the length of the intermediate strings in bottom-up pars
ing because they can never exceed the length of the target word. At each stage, they stay the
same length or get shorter. Also, no bad terminals are ever introduced because no new termi
nals are ever introduced at all , only nonterminals. These are efficiencies that partially com
pensate for the inefficiency of not restricting ourselves to leftmost derivations.

There is the possibil ity that a nonterminal is bad in certain contexts. For example,
branch 1 now has an E as its leftmost character. The only production that will ever absorb
that E is s - E. This would give us the nonterminal S, but S is not in the right half of any
production . It is true that we want to end up with the S; that is the whole goal of the tree .
However, we shall want the entire working string to be that single S, not a longer working
string with S as its first letter. The rest of the expression in branch 1 , " + F * F " , is not just
going to disappear. So, branch 1 gets the ax. The E 's in branch 5 and branch 9 are none too
promising either, as we shall see in a moment.

When we go backward, we no longer have the guarantee that the "inverse" grammar is
unambiguous even though the CFO itself might be. In fact, this backward tracing is probably
not unique, because we are not restricting ourselves to finding a leftmost derivation. We
should also find the trails of rightmost derivations and what-not. This is reflected in the oc
currence of repeated expressions in the branches. In our example, branch 2 is now the same

Parsing Simple Arithmetic 423

as branch 4, branch 3 is the same as branch 7, and branch 6 is the same as branch 8. Because
we are interested here in finding any one derivation, not all derivations, we can safely kill
branches 2, 3, and 6 and stil l find a derivation - if one exists.

The tree grows ferociously, l ike a bush, very wide but not very tall . It would grow too
unwieldy unless we made the following observation.

Observation
No intennediate working string of tenninals and nontenninals can have the substring "£ *".
This is because the only production that introduces the * is

T � F * T

so the symbol to the immediate left of an * is original ly F. From this F, we can only get the
tenninals ")" or i next to the star. Therefore, in a top-down derivation we could never create
the substring "£ *" in this CFG, so in bottom-up this can never occur in an intennediate
working string leading back to S. Similarly, "£ + " and "* E" are also forbidden in the sense
that they cannot occur in any derivation. The idea of forbidden substrings is one that we
played with in Chapter 3. We can now see the importance of the techniques we introduced
there for showing certain substrings never occur [and everybody thought Theorems 2, 3, and
4 (see pp. 26-27) were completely frivolous] . With the aid of this observation, we can elimi
nate branches 5 and 9.

The tree now grows as follows (pruning away anything with a forbidden substring) :

F + T * F F + F * T

/ / I "
T + T * F T + F * T F + T * T F i T�

I / I
T + T * T T + T * T T + T T + T * T T + T F + E

(1 1) (1 2) (1 3) (1 4) (1 5) (1 6)

Branches 1 1 , 1 2, and 1 3 are repeated in 14 and 15 , so we drop the fonner. Branch 14 has
nowhere to go, because none of the T's can become E's without creating forbidden substrings.
So, branch 14 must be dropped. From branches 1 5 and 1 6, the only next destination is T + E, so
we can drop branch 1 5 because 16 gets us there just as well by itself. The tree ends as follows:

i + i * i ¢= F + F * F ¢= F + F * T ¢= F + T ¢= F + E ¢= T + E ¢::= £ ¢= S

which is the same as

S � E � T + E � F + E � F + T� F + F * T � F + F * F � i + i * i

(The symbol ¢= used above should be self-explanatory.)
Our last algorithm for "understanding" words in order to evaluate expressions is one based

on the prefix notation mentioned in Chapter 1 2, cal led l(.ukasiewicz notation. This appl ies to
not only arithmetic expressions, but also many other programming language instructions.

We shall assume that we are now using postfix notation, where the two operands imme
diately precede the operator:

A + B
(A + B) * C

A * (B + C * D)

becomes

becomes

becomes

AB +

AB + C *

ABCD * + *

424 CHAPTER 18 Decidability

An algorithm for converting standard infix notation into postfix notation was given in
Chapter 1 2. Once an expression is in postfix, we can evaluate it without finding its derivation
from a CFG, although we originally made use of its parsing tree to convert the infix into
postfix in the first place. We are assuming here that our expressions involve only numerical
values for the identifiers (i 's) and only the operations + and * , as in the language PLUS
TIMES.

We can evaluate these postfix expressions by a new machine similar to a PDA. Such a
machine requires three new states:

l. I ADD I : This state pops the top two entries off the STACK, adds them, and pushes the
result onto the top of the STACK.

2. I MPY I: This state pops the top two entries off the STACK, multiplies them, and pushes
the result onto the top of the STACK.

3. /PRINT/ The print state always follows a POP or READ. This prints the last character
just popped or read.

The machine to evaluate postfix expressions can now be built as below, where the ex
pression to be evaluated has been put on the INPUT TAPE in the usual fashion -one char
acter per cell starting in the first cell .

START

ADD

PUSH i

M PY

Let us trace the action of this machine on the input string:

7 5 + 2 4 + * 6 +

which is postfix for

(7 + 5) * (2 + 4) + 6 = 78

STATE STACK TAPE

START ,l 7 5 + 2 4 + * 6 +
READ � 5 + 2 4 + * 6 +
PUSH i 7 5 + 2 4 + * 6 +

READ 7 + 2 4 + * 6 +
PUSH i 5 7 + 2 4 + * 6 +
READ 5 7 2 4 + * 6 +

Parsing Simple Arithmetic 425

STATE STACK TAPE

ADD 1 2 2 4 + * 6 +
READ 1 2 4 + * 6 +
PUSH i 2 1 2 4 + * 6 +

READ 2 1 2 + * 6 +
PUSH i 4 2 1 2 + * 6 +
READ 4 2 1 2 * 6 +

ADD 6 1 2 * 6 +
READ 6 1 2 6 +
MPY 72 6 +

READ 72 +
PUSH i 6 72 +
READ 6 72 d

ADD 78 d
READ 78 d

We notice that just as we finished reading the entire input string, the STACK has only one el
ement in it. We conclude processing by popping 78, printing 78, and accepting the input string.

What we have been using here is a PDA with arithmetic and output capabilities. Just as we
expanded FAs to Mealy and Moore machines, we can expand PDAs to what are called push
down transducers. These are very important but belong to the study of the theory of compilers.

The task of converting infix arithmetic expressions (normal ones) into postfix can also
be accomplished by a pushdown transducer as an alternative to depending on a dotted l ine
circumnavigating a parsing tree. This time all we require is a PDA with an additional PRINT
instruction. The input string will be read off of the TAPE character by character. If the char
acter is a number (or, in our example, the letters a, b, c), it is immediately printed out, be
cause the operands in postfix occur in the same order as in the infix equivalent. The opera
tors, however, + and * in our example, must wait to be printed until after the second operand
they govern has been printed. The place where the operators wait is, of course, the STACK.
If we read a + b, we print a, push +, print b, pop +, print + . The output states we need are

PRINT

and

a, b, c
PRINT

426 CHAPTER 18 Decidability

POP-PRINT prints whatever it has just popped, and READ-PRINT prints the character just
read. READ-PUSH pushes whatever character " + " or "*" or " (" labels the edge leading
into it. These are all the machine parts we need.

One more comment should be made about when an operator is ready to be popped. The
second operand is recognized by encountering (l) a right parenthesis, (2) another operator
having equal or lower precedence, or (3) the end of the input string.

When a right parenthesis is encountered, it means that the infix expression is complete
back up to the last left parenthesis.

For example, consider the expression

a * (b + c) + b + c

The pushdown transducer will do the following:

1. Read a, print a.

2. Read * • push * ·

3. Read (, push (.

4. Read b, print b.

5. Read + , push + .

6. Read c, print c.

7. Read), pop + , print + .

8. Pop (.

9. Read + , we cannot push + on top of * because of operator precedence, so pop * • print
* · push + .

10. Read b, print b.

11. Read + , we cannot push + on top of + , so print + .

12. Read c , print c.

13. Read A., pop +, print + .

The resulting output sequence is

abc + * b + c +

which indeed is the correct postfix equivalent of the input. Notice that operator precedence i s

"built into" this machine. Generalizations of this machine can handle any arithmetic expres-
sions including - , /, and ** ·

The diagram of the pushdown transducer to convert infix to postfix is given on the next
page.

The table following it traces the processing of the input string

(a + b) * (b + c * a)

Notice that the printing takes place on the right end of the output sequence.
One trivial observation is that this machine will never print any parentheses. No paren

theses are needed to understand postfix or prefix notation. Another is that every operator and
operand in the original expression wil l be printed out. The major observation is that if the
output of this transducer is then fed into the prev ious transducer, the original infix arithmetic
expression wil l be evaluated correctly. In this way, we can give a PDA an expression in nor
mal arithmetic notation, and the PDA will evaluate it.

Parsing Simple Arithmetic 427

START

a, b, c PRINT

PUSH (

PRINT

•
. + PRINT

PUSH (

PUSH +

PRI NT

PUSH (

PUSH +

PUSH *

ACCEPT

STATE STACK TAPE OUTPUT

START d (a + h) * (h + c * a)

READ d a + h) * (h + c * a)

PUSH ((a + h) * (h + c * a)

READ (+ h) * (h + c * a)

PRINT (+ h) * (b + c * a) a

READ (h) * (h + c * a) a

428 CHAPTER 18 Decidability

STATE

POP

PUSH (

PUSH +

READ

PRINT

READ

POP

PRINT

POP

READ

POP

PUSH *

READ

PUSH (

READ

PRINT

READ

POP

PUSH (

PUSH +
READ

PRINT

READ

POP

PUSH +

PUSH *

READ

PRINT

READ

POP

PRINT

POP

PRINT

POP

STACK

A

(

+ (

+ (

+ (

+ (

(

(
A

A

A

*

*

(*

(*

(*

(*

*

(*

+ (*

+ (*

+ (*

+ (*

(*

+ (*

* + (*

* + (*

* + (*

* + (*

+ (*

+ (*

(*

(*

*

TAPE OUTPUT

b) * (b + e * a) a

b) * (b + c * a) a

b) * (b + c * a) a

) * (b + c * a) a

) * (b + e * a) ab

* (b + c * a) ab

* (b + c * a) ah

* (h + e * a) ab +

* (h + c * a) ah +

(b + c * a) ah +

(b + c * a) ah +

(b + c * a) ah +

b + e * a) ah +

b + c * a) ah +

+ c * a) ah +

+ e * a) ah + b

e * a) ah + b

c * a) ah + h

e * a) ah + h

c * a) ah + h
* a) ah + h

* a) ah + he

a) ab + he

a) ah + be

a) ah + he

a) ah + be

) ab + be

) ab + bea

A ab + hca

11 ah + hea

A ah + hca *

A ab + hca *

A ah + bca * +

11 ab + hca * +

Problems 429

STATE STACK TAPE OUTPUT

READ * A ah + hca * +

POP A A ah + bca * +

PRINT A A ab + bca * + *

POP A A ah + bca * + *

ACCEPT A A ab + hca * + *
-

1r PROBLEMS

1. Decide whether or not the following grammars generate any words using the algorithm
of Theorem 42 (p. 403) :

(i) s - asa I bSb
(i i) s - xr

x - sr
r - sx
x - a
r - h

(i i i) s - AB
A - BC
C - DA
B - CD
D - a
A - h

(iv) s - xs
x - rx
Y- YY
r - xx
x - a

(v) s - AB
A - BSB
B - AAS
A - cc
B - cc
c - ss
A - a I h
c - h I bb

2. Modify the proof of Theorem 42 so that it can be appl ied to any CFG, not just those
in CNF.

3. For each of the following grammars, decide whether the language they generate is finite
or infinite using the algorithm in Theorem 44 (p. 408) :

(i) s -xs I h (v) s - xr
x - rz x - AA I YY I h
z - xr A - Be
r - ah

(i i) s -xs I h
x - rz
z - xr
x - ab

(i i i) s - xr I hh
x - rx
r - xr I ss

(iv) s - xr I bh
x - rr
r - xr I ss

B -AC
C - BA
r - a

(vi) s - xr
x - AA I xr I h
A - BC
B -AC
c - BA
r - a

(vii> s - ss I h
x - ss I sx I a

(viii) s - xx
x - ss I a

4. Modify Theorem 44 so that the decision procedure works on all CFGs, not just those
in CNF.

430 CHAPTER 18 Decidability

5. Prove that all CFGs with only the one nonterminal S and one or more l ive productions
and one or more dead productions generate an infinite language.

For the following grammars and target strings, decide whether or not the word is gener
ated by the grammar using the CYK algorithm:

6. S --+ SS
S --+ a
S --+ hh

7. S --+ XS
X --+ XX
X --+ a
S --+ b

8. S --+ XY
X --+ SY
Y --+ SS
X --+ a I bb
Y --+ aa

x = abba

x = haab

x = abhaa

9. S --+ AB x = bbaab
A --+ BB I a
B --+ AB I b

10. S --+ AB I CD I a I b x = bababab
A --+ a
B --+ SA
C --+ DS
D --+ b

1 1. Modify the CYK algorithm so that it applies to any CFG, not just those in CNF.

12. The CYK algorithm can be described as bottom-up because i t starts with the word and
works up to the nonterminals . There is another method for deciding membership that is
top-down in nature. Create a table with one column for each nonterminal that appears in
the grammar and n rows, where n is the length of the subject word. The entries for cel l
(i, j) are those words of length i that can be derived from the nonterminal, Ni' at the head
of the column. The first row is fil led based on the dead productions N --+ t. Subsequent
rows are fi lled based on the productions N --+ N 1N 2 • In the second row, cell (2, :) is fil led
with all the words of length 2 that are the product of a letter from cell (l , .r) and a letter
from cell (I , y) for each rule N --+ N N . In the third row, cell (3, :) is fil led with the• z x y
words that are products of a word from row 2 and a word from row I in either order as
long as the grammar includes a rule that generates that product. In the fourth row, the
words can be made in three ways; the product of a letter and a 3-letter word, the product
of two 2-letter words, the product of a 3-letter word and a single letter. When the table is
complete, check cell (n, S) to see if w is among the words derived from S.

For each of the following grammar-word pairs, construct such a table to determine
whether the word can be generated by that grammar:

(i) S --+ XY (i i) S --+ AX I BY I a I h
X --+ XA I a I b X --+ SA
Y --+ AY J a Y --+ SB
A --+ a A --+ a

B --+ h
w = hahaa w = ahaha

(i i i) S --+ XY
X --+ SY I a I hh
Y --+ SS I aa

w = ahhaa

Problems 431

13. Using top-down parsing, find the leftmost derivation in the grammar PLUS-TIMES for

the following expressions:

(i) i + i + i
(i i) i * i + i * i
(i i i) i * (i + i) * i
(iv) ((i) * (i + i)) + i
(v) (((i)) + ((i)))

14. Using bottom-up parsing, find any derivation in the grammar PLUS-TIMES for the fol-

lowing expressions:

(i) i * (i)
(i i) ((i) + ((i)))
(iii) (i * i + i)
(iv) i * (i + i)
(v) (i * i) * i

15. The following is a version of an unambiguous grammar for arithmetic expressions em-
ploying - and I as well as + and *:

S --+ E
E --+ T I E + T I E - T l - T
T --+ F I T * F I T/F
F --+ (£) I i

Find a leftmost derivation in this grammar for the following expressions using the pars
ing algorithms specified:

(i) ((i + i) - i * i) I i - i
(Do this by inspection; that means guesswork. Do we divide by zero here?)

(ii) i I i + i (Top-down)
(iii) i * i I i - i (Top-down)
(iv) i I i I i (Top-down)

Note that this is not ambiguous in this particular grammar. Do we evaluate right to
left or left to right?

(v) i - i - i (Bottom-up)

16. Using the second pushdown transducer, convert the following arithmetic expressions to
postfix notation and then evaluate them on the first pushdown transducer:

(i) 2 * (7 + 2)
(i i) 3 * 4 + 7

(i i i) (3 + 5) + 7 * 3
(iv) (3 * 4 + 5) * (2 + 3 * 4) Hint: The answer is 238.

17. Design a pushdown transducer to convert infix to prefix .

18. Design a pushdown transducer to evaluate prefix.

19. Create an algorithm to convert prefix to postfix .

20. The transducers we designed in this chapter to evaluate postfix notation and to convert
infix to postfix have a funny quirk : They can accept some bad input strings and process
them as if they were proper.

(i) For each machine, find an example of an accepted bad input.
(ii) Correct these machines so that they accept only proper inputs.

PART III

Turing Theory

CHAPTER 19

Turing Machines

i THE TURING MACHINE

434

At this point it will help us to recapitulate the major themes of the previous two parts and
outline all the material we have yet to present in the rest of the book in one large table:

Language Language Example
Defined Corresponding Nondeterminism Closed What Can of

by Acceptor = Determinism? Under Be Decided Application

Regular Finite Yes Union, Equivalence, Text editors,
expression automaton, product, emptiness , sequential

transition Kleene star, fi niteness, circuits
graph intersection, membership

complement

Context- Pushdown No Union, Emptiness Programming
free automaton product, finiteness language
grammar Kleene star membership statements,

compilers

Type O Turing Yes Union, Not much Computers
grammar machine, product,

Post machine, intersection,
2PDA, nPDA Kleene star

We see from the lower right entry in the table that we are about to fulfil l the promise
made in the introduction. We shall soon provide a mathematical model for the entire family
of modem-day computers. This model will enable us not only to study some theoretical limi
tations on the tasks that computers can perform; it will also be a model that we can use to
show that certain operations can be done by computer. This new model will tum out to be
surprisingly l ike the models we have been studying so far.

Another interesting observation we can make about the bottom row of the table is that
we take a very pessimistic view of our abi l ity to decide the important questions about this
mathematical model (which as we see is called a Turing machine).

We shall prove that we cannot even decide whether a given word is accepted by a given
Turing machine. This situation is unthinkable for FAs or PDAs, but now it is one of the

unanticipated facts of life-a fact with grave repercussions.

The Turing Machine 435

There is a definite progression in the rows of this table. All regular languages are con
text-free languages, and we shall see that all context-free languages are Turing machine lan
guages. Historical ly, the order of invention of these ideas is as follows:

1 . Regular languages and FAs were developed by Kleene, Mealy, Moore, Rabin, and Scott
in the 1 950s.

2. CFGs and PDAs were developed later, by Chomsky, Gettinger, Schtitzenberger, and
Evey, mostly in the 1 960s.

3. Turing machines and their theory were developed by Alan Mathison Turing and Emil
Post in the 1 930s and 1 940s.

I t is less surprising that these dates are out of order than that Turing's work predated the
invention of the computer itself. Turing was not analyzing a specimen that sat on the table in
front of him; he was engaged in inventing the beast. It was directly from the ideas in his
work on mathematical models that the first computers (as we know them) were built. This is
another demonstration that there is nothing more practical than a good abstract theory.

Because Turing machines wil l be our ultimate model for computers, they wil l necessar
ily have output capabil i ties. Output is very important, so important that a program with no
output statements might seem totally useless because it would never convey to humans the
result of its calculations. We may have heard it said that the one statement every program
must have is an output statement. This is not exactly true . Consider the following program
(written in no particular language) :

1 . READ X

2. If X = 1 THEN END

3. IF X = 2 THEN DIVIDE X BY 0

4. IF X > 2 THEN GOTO STATEMENT 4

Let us assume that the input is a positive integer. If the program terminates natural ly,
then we know X was 1 . If it terminates by creating overflow or was interrupted by some er
ror message warning of il legal calculation (crashes), then we know that X was 2. If we find
that our program was terminated because it exceeded our allotted time on the computer, then
we know X was greater than 2. We shall see in a moment that the same trichotomy applies to
Turing machines .

DEFINITION

A Turing machine, denoted TM, is a col lection of six things:

1 . An alphabet I of input letters, which for clarity 's sake does not contain the blank sym
bol ii.

2. A TAPE divided into a sequence of numbered cells , each containing one character or a
blank. The input word is presented to the machine one letter per cel l beginning in the
leftmost cel l , called cell i. The rest of the TAPE is initial ly fi l led with blanks, d 's .

cell i cell i i ce l l i i i cell i v cell v

0
TAPE HEAD

436 CHAPTER 19 Turing Machines

3. A TAPE HEAD that can in one step read the contents of a cell on the TAPE, replace it with
some other character, and reposition i tself to the next cell to the right or to the left of the
one it has just read. At the start of the processing, the TAPE HEAD always begins by read
ing the input in cell i. The TAPE HEAD can never move left from cell i. If it is given or
ders to do so, the machine crashes. The location of the TAPE HEAD is indicated by 0.

4. An alphabet r of characters that can be printed on the TAPE by the TAPE HEAD. This can
include l. Even though we allow the TAPE HEAD to print a Li, we call this erasing and
do not include the blank as a letter in the alphabet r.

5. A finite set of states including exactly one START state from which we begin execution
(and which we may reenter during execution) and some (maybe none) HALT states that
cause execution to terminate when we enter them. The other states have no function,
only names:

or 2 3

6. A program, which is a set of rules that tel l us, on the basis of the state we are in and the
letter the TAPE HEAD has just read, how to change states, what to print on the TAPE, and
where to move the TAPE HEAD. We depict the program as a collection of directed edges
connecting the states. Each edge is labeled with a triplet of information:

(letter, letter, direction)

The first letter (either Li or from l or f) is the character the TAPE HEAD reads from the
cell to which it is pointing. The second letter (also Li or from f) is what the TAPE HEAD
prints in the cell before it leaves. The third component, the direction, tel ls the TAPE
HEAD whether to move one cell to the right, R, or one cell to the left, L.

No stipulation is made as to whether every state has an edge leading from it for every
possible letter on the TAPE. If we are in a state and read a letter that offers no choice of path
to another state, we crash; that means we terminate execution unsuccessfully. To terminate
execution of a certain input successfully, we must be led to a HALT state. The word on the
input TAPE is then said to be accepted by the TM.

A crash also occurs when we are in the first cell on the TAPE and try to move the TAPE
HEAD left.

By definition, all Turing machines are deterministic. This means that there i s no state q
that has two or more edges leaving it labeled with the same first letter.

For example ,

is not allowed. •

EXAMPLE

The following is the TAPE from a TM about to run on the input aha:

The Turing Machine

i i m iv v vi

l a l b l a I A l A I A I .
0

TAPE HEAD

437

The program for this TM is given as a directed graph with labeled edges as shown
below:

(a,a ,R)

START 1

(h,h.R)

(h ,h .R)

(a .a ,R)

(h.h,R)

HALT 4

Notice that the loop at state 3 has two labels. The edges from state I to state 2 could
have been drawn as one edge with two labels.

We start, as always, with the TAPE HEAD reading cell i and the program in the START
state, which is here labeled state l . We depict this as

qba

The number on top is the number of the state we are in. Below that is the current meaningful
contents of the string on the TAPE up to the beginning of the infinite run of blanks. It is possi
ble that there may be a A inside this string. We underline the character in the cell that is
about to be read.

At this point in our example, the TAPE HEAD reads the letter a and we follow the edge
(a, a, R) to state 2. The instructions of this edge to the TAPE HEAD are "read an a, print an a,
move right."

The TAPE now looks like this :

i ii m iv
I a I b I a I A I .

0
We can record the execution process by writing

2 -->
gba all.a

At this point, we are in state 2. Because we are reading the b in cell i i , we must take the
ride to state 3 on the edge labeled (b, b, R). The TAPE HEAD replaces the b with a b and
moves right one cell . The idea of replacing a letter with itself may seem silly, but it unifies
the structure of TMs.

We are now up to

2 3 --> -->
gba all.a abg

438 CHAPTER 19 Turing Machines

The TAPE now looks l ike this :

i ii i i i iv

l a I b l a l a l .
0

We are in state 3 reading an a, so we loop. That means we stay in state 3, but we move
the TAPE HEAD to cell iv :

3 3 ---+
abg_ aba�

This is one of those times when we must indicate a A as part of the meaningful contents
of the TAPE.

We are now in state 3 reading a A, so we move to state 4:

3 4 ---+
aba� aball�

The input string aba has been accepted by this TM. This particular machine did not
change any of the letters on the TAPE, so at the end of the run the TAPE stil l reads abaA
This is not a requirement for the acceptance of a string, just a phenomenon that happened
this time.

In summary, the whole execution can be depicted by the following execution chain,
also called a process chain or trace of execution, or simply a trace:

---+ 2 ---+
3

---+
3 ---+ HALT

g_ba all.a abg_ aba�

This is a new use for the arrow. It is neither a production nor a derivation.
Let us consider which input strings are accepted by this TM. Any first letter, a or b, will

lead us to state 2. From state 2 to state 3 , we require that we read the letter b. Once in state 3 ,
we stay there as the TAPE HEAD moves right and right again, moving perhaps many cell s un
til it encounters a A. Then we get to the HALT state and accept the word. Any word that
reaches state 3 will eventually be accepted. If the second letter is an a, then we crash at state
2. This is because there is no edge coming from state 2 with directions for what happens
when the TAPE HEAD reads an a.

The language of words accepted by this machine is : All words over the alphabet { a b I
in which the second letter is a b.

This is a regular language because it can also be defined by the regular expression

(a + b)b(a + b)*

This TM is also reminiscent of FAs, making only one pass over the input string, moving
its TAPE HEAD always to the right, and never changing a letter it has read. TMs can do more
tricks, as we shall soon see. •

EXAMPLE

Consider the following TM:

The Turing Machine

(a,A,R)
START 1

(A,A,Rl

(a,a,R)
(B,B,R)

(a,a,L)

439

(B,B,Ll (B,B,R)

(6, 6,R)

(a,a,L)
HALT

We have only drawn the program part of the TM, because initial appearance of the TAPE
depends on the input word. This is a more complicated example of a TM. We analyze it by
first explaining what it does and then recognizing how it does it.

The language this TM accepts is { anhn) .
B y examining the program, we can see that the TAPE HEAD may print any of the letters

a, A, or B or a d, and it may read any of the letters a, b, A, or B or a blank. Technically, the in
put alphabet is � = { a b) and the output alphabet is r = { a A B) , because d is the sym
bol for a blank or empty cell and is not a legal character in an alphabet. Let us describe the
algorithm, informally in English, before looking at the directed graph that is the program.

Let us assume that we start with a word of the language { anbn) on the TAPE. We begin by
taking the a in the first cell and changing it to the character A. (If the first cell does not contain
an a, the program should crash. We can arrange this by having only one edge leading from
START and labeling it to read an a.) The conversion from a to A means that this a has been
counted. We now want to find the b in the word that pairs off with this a. So, we keep moving
the TAPE HEAD to the right, without changing anything it passes over, until it reaches the first
b. When we reach this b, we change it into the character B, which again means that it too has
been counted. Now we move the TAPE HEAD back down to the left unti l it reaches the first un
counted a. The first time we make our descent down the TAPE, this will be the a in cell i i .

How do we know when we get to the first uncounted a? We cannot tel l the TAPE HEAD
to "find cell i i ." This instruction is not in its repertoire. We can, however, tel l the TAPE HEAD
to keep moving to the left until it gets to the character A. When it hits the A, we bounce one
cell to the right and there we are. In doing this, the TAPE HEAD passed through cell ii on its
way down the TAPE. However, when we were first there, we did not recognize it as our desti
nation. Only when we bounce off of our marker, the first A encountered, do we real ize where
we are. Half the trick in programming TMs is to know where the TAPE HEAD is by bouncing
off of landmarks.

When we have located this leftmost uncounted a, we convert i t into an A and begin
marching up the TAPE looking for the corresponding b. This means that we skip over some
a's and over the symbol B, which we previously wrote, leaving them unchanged, until we get
to the first uncounted b. Once we have located it, we have found our second pair of a and b.
We count this second b by converting it into a B, and we march back down the TAPE looking
for our next uncounted a. This wil l be in cell i i i . Again, we cannot tel l the TAPE HEAD to
"find cell i i i ." We must program it to find the intended cel l . The same instructions as given
last time work again . Back down to the first A we meet and then up one cel l . As we march
down, we walk through a B and some a 's until we first reach the character A. This wil l be the
second A, the one in cell i i . We bounce off this to the right, into cell i i i , and find an a. This
we convert to A and move up the TAPE to find its corresponding h.

440 CHAPTER 19 Turing Machines

This time marching up the TAPE, we again skip over a 's and B 's until we find the first h.
We convert this to B and march back down, looking for the first unconverted a. We repeat the
pairing process over and over.

What happens when we have paired off all the a's and h's? After we have converted our
last h into a B and we move left, looking for the next a, we find that after marching left back
through the last of the B's, we encounter an A. We recognize that this means we are out of
l ittle a 's in the initial field of a 's at the beginning of the word.

We are about ready to accept the word, but we want to make sure that there are no more
h's that have not been paired off with a's, or any extraneous a 's at the end. Therefore, we
move back up through the field of B's to be sure that they are followed by a blank; otherwise,
the word initially may have been aaahhhh or aaahhha.

When we know that we have only A 's and B's on the TAPE, in equal number, we can ac
cept the input string.

The following is a picture of the contents of the TAPE at each step in the processing of
the string aaahhh. Remember, in a trace the TAPE HEAD is indicated by the underlining of the
letter it is about to read:

g_aahhh
Ag_ahhh
Aag_hhh
Aaa/2.hh
Aag_Bhh
Ag_aBhh
AaaBhh
Ag_aBhh
AAg_Bhh
AAa!1hh
AAaBb.h
AAa!1Bh
AAaBBh
AAaBBh
AAaBBh
AAA!1Bh
AAAB!1h
AAABBb.
AAAB!1B
AAA!1BB
AAA BBB
AAA!1BB
AAAB!1B
AAABB!1

AAABBBA,
HALT

Based on this algorithm, we can define a set of states that have the following meanings :

State 1 This is the START state, but it is also the state we are in whenever we are
about to read the lowest unpaired a. In a PDA we can never return to the
START state, but in a TM we can. The edges leaving from here must convert
this a to the character A and move the TAPE HEAD right and enter state 2 .

State 2 This is the state we are in when we have just converted an a to an A and we are
looking for the matching h. We begin moving up the TAPE. If we read another a, we

The Turing Machine 441

leave it alone and continue to march up the TAPE, moving the TAPE HEAD always to
the right. If we read a B, we also leave it alone and continue to move the TAPE
HEAD right. We cannot read an A while in this state. In this algorithm, all the A 's re
main to the left of the TAPE HEAD once they are printed. If we read A while we are
searching for the b, we are in trouble because we have not paired off our a. So, we
crash. The first b we read, if we are lucky enough to find one, is the end of the
search in this state. We convert it to B, move the TAPE HEAD left, and enter state 3.

State 3 This is the state we are in when we have just converted a b to B. We should now
march left down the TAPE, looking for the field of unpaired a's. If we read a B, we
leave it alone and keep moving left. If and when we read an a, we have done our
job. We must then go to state 4, which will try to find the leftmost unpaired a. If
we encounter the character b while moving to the left, something has gone very
wrong and we should crash. If, however, we encounter the character A before we
hit an a, we know that we have used up the pool of unpaired a 's at the beginning
of the input string and we may be ready to terminate execution. Therefore, we
leave the A alone and reverse directions to the right and move into state 5 .

State 4 We get here when state 3 has located the rightmost end of the field of unpaired
a's. The TAPE and TAPE HEAD situation looks l ike this :

0
In this state, we must move left through a block of solid a 's (we crash if we
encounter a b, B, or A) until we find an A. When we do, we bounce off it to the
right, which lands us at the leftmost uncounted a. This means that we should
next be in state I again.

State 5 When we get here, it must be because state 3 found that there were no un
paired a 's left and it bounced us off the rightmost A. We are now reading the
leftmost B as in the picture below:

. . . I A I A I A I A I A I B I B I B I B I B I . 0
It is now our job to be sure that there are no more a 's or b 's left in this word.
We want to scan through solid B's until we hit the first blank. Because the pro
gram never printed any blanks, this will indicate the end of the input string. If
there are no more surprises before the A, we then accept the word by going to
the state HALT. Otherwise, we crash. For example, aahha would become
AABBa and then crash because, while searching for the A, we find an a.

This explains the TM program that we began with. It corresponds to the depiction above
state for state and edge for edge.

Let us trace the processing of the input string aabb by looking at its execution chain:

2 2 3 4
g_abb --+ Ag_bb --+ Aaflb --+ Ag_Bb --+ ,1.aBh ----+ Ag_Bb

2 2 3 3 5 5
----+ AA!J.b ----+ AAB!J. --+ AA!J.B ----+ Ad.BB --+ AA!J.B ----+ AAB!J.

5
--+ AABBt! --+ HALT

442 CHAPTER 19 Turing Machines

It is c lear that any string of the form a"b" wil l reach the HALT state. To show that any string
that reaches the HALT state must be of the form a%n, we trace backward. To reach HALT,
we must get to state 5 and read a Ll. To be in state 5 , we must have come from state 3 from
which we read an A and some number of B 's while moving to the right. So at the point we
are in state 3 ready to terminate, the TAPE and TAPE HEAD situation is as shown below:

? I A I B I B I B l . . . I B I Ll l . . .

0

To be in state 3 means we have begun at START and circled around the loop some num
ber of times:

START 1

Every time we go from START to state 3, we have converted an a to an A and a b to a B. No
other edge in the program of this TM changes the contents of any cell on the TAPE. However
many B 's there are, there are just as many A 's. Examination of the movement of the TAPE
HEAD shows that all the A 's stretch in one connected sequence of cells starting at cell i. To
go from state 3 to HALT shows that the whole TAPE has been converted to A 's, then B 's fol
lowed by blanks. If we put together all of this , to get to HALT, the input word must be a"b"
for some n > 0. •

EXAMPLE

Consider the following TM:

(a,j.,R)

1 START

(b . .l,R)

(..\,..\,R)

(a,a.R)

(b.b.R)

(b, b,R)

(a,a,R)

(..\,..\,R)

8 HALT

(..\, .l,R)

(..\,..\,L)

(a, .l,L)

(b,..\,L)

(b,b.L)

(a,a.L)

(b, b,L)

(a,a,L)

The Turing Machine 443

This looks l ike another monster, yet it accepts the famil iar language PALINDROME
and does so by a very simple deterministic algorithm.

We read the first letter of the input string and erase it, but we remember whether it was an a
or a b. We go to the last letter and check to be sure it is the same as what used to be the first let
ter. If not, we crash, but if so, we erase it too. We then return to the front of what is left of the in
put string and repeat the process. If we do not crash while there are any letters left, then when
we get to the condition where the whole TAPE is blank, we accept the input string. This means
that we reach the HALT state. Notice that the input string itself is no longer on the TAPE.

The process, briefly, works l ike this :

abbabba
bbabba
bbabb
babb
bah
ab
a
A

We mentioned above that when we erase the first letter, we remember what it was as
we march up to the last letter. Turing machines have no auxi l iary memory dev ice, l ike a
PUSHDOWN STACK, where we could store this information, but there are ways around
this . One possible method is to use some of the blank space farther down the TAPE for mak
ing notes. In this case, we use a different trick. The memory of what letter was erased is
stored in the path through the program the input takes. If the first letter is an a, we are off
on the state 2- state 3 - state 4 loop. If the first letter is a b, we are off on the state 5 -state
6 - state 7 loop.

All of th is is clear from the descriptions of the meanings of the states below:

State I When we are in this state, we read the first letter of what is left of the input
string. This could be because we are just starting and reading cell i or because
we have been returned here from state 4 or 7. If we read an a, we change it to a
A (erase it), move the TAPE HEAD to the right, and progress to state 2. If we
read a b, we erase it and move the TAPE HEAD to the right and progress to state
5. If we read a A where we expect the string to begin, it is because we have
erased everything, or perhaps we started with the input word A. In either case,
we accept the word and we shal l see that it is in EVENPALINDROME:

(a ,:J.,R)

1 START
(:i., :J.,R)

8 HALT

(b.:i.,R)

State 2 We get here because we have just erased an a from the front of the remaining
input string and we want to get to the last letter of the remaining input string to

444 CHAPTER 19 Turing Machines

see whether it too is an a. So, we move to the right through all the a 's and h 's
left in the input until we get to the end of the string at the first A. When that
happens, we back up one cell (to the left) and move into state 3 :

(h .h ,H)

(::..::.. L)

(a�a .R)

2 3

State 3 We get here only from state 2, which means that the letter we erased at the
start of the string was an a and state 2 has requested us now to read the last let
ter of the string. We found the end of the string by moving to the right until we
hit the first A. Then we bounced one cell back to the left. If this cell is also
blank, then there are only blanks left on the TAPE. The letters have al l been
successfully erased and we can accept the word. Everything erased was in the
fonn of an ODDPALINDROME, but it had a middle letter of a that was the
last non-A on the TAPE. So, we go to HALT. If there is something left of the in
put string, but the last letter is a h, the input string was not a palindrome.
Therefore, we crash by having no labeled edge to go on. If the last letter is an
a, then we erase it, completing the pair, and begin moving the TAPE HEAD left,
down to the beginning of the string again to pair off another set of letters :

(::..::..R)

8 HALT

Notice that when we read the A and move to HALT, we stil l need to include in
the edge's label instructions to write something and move the TAPE HEAD
somewhere. The label (A, a, R) would work just as well, or (A, B, R). How
ever, (A, a, L) might be a disaster. We might have started with a one-letter
word, say, a. State l erases this a. Then state 2 reads the A in cell ii and returns
us to cell i where we read the blank. If we try to move left from cell i , we crash
on the very verge of accepting the input string.

State 4 Like state 2, this is a travel state searching for the beginning of what is left of
the input string. We keep heading left fearlessly because we know that cell i
contains a A, so we shall not fall off the edge of the earth and crash by going
left from cell i . There may be a whole section of A's so the first A is not neces
sarily in cell i . When we hit the first A, we back up one position to the right,
setting ourselves up in state l ready to read the first letter of what is left of the
string:

(h .h .f,)

(a;::Q I \ \ II\ r'\, �
State 5 We get to state 5 only from state l when the letter it has just erased was a h. In

The Turing Machine 445

other words, state 5 corresponds exactly to state 2 but for strings whose re
mainder begins with a b. It too searches for the end of the string:

(a.a,R)

(b,b,R)

State 6 We get here when we have erased a b in state 1 and found the end of the string
in state 5. We examine the letter at hand. If it i s an a, then the string began with
b and ended with a, so we crash since it is not in PALINDROME. If it is a h,
we erase it and hunt for the beginning again. If it is a �. we know that the
string was an ODDPALINDROME with middle letter b. This is the twin of
state 3 .

State 7 This state is exactly the same as state 4. We try to find the beginning of the
string.

Putting together all these states, we get the picture we started with. Let us trace the run
ning of this TM on the input string ababa:

2 2 2 2

qhaha --+ t:.12.aha --+ /'::,.hqha --+ Mal2.a --+ Mahq
2 3 4 4 4

--+ Mahal::! --+ t:.hahq --+ t:.haM --+ Mg_M --+ MaM
4 I 5 5 5

--+ f;:,,_haM --+ MaM --+ t:.t:.qM --+ t:.t:.aM --+ M.ahf::!
6 7 7 2

--+ t:.t:.aM --+ /'::,./::,.qi::,./::,. --+ t:.f;:,,_at:.t:. --+ t:.t:.qt:.t:. --+ t:.t:.t:.f;:,,_t:.
3 8

--+ t:.t:.f;:,,_t:.t:. --+ HALT •

Our first example was no more than a converted FA, and the language it accepted was
regular. The second example accepted a language that was context-free and nonregular and
the TM given employed separate alphabets for writing and reading. The third machine ac
cepted a language that was also context-free but that could be accepted only by a nondeter
ministic PDA, whereas the TM that accepts it is deterministic.

We have seen that we can use the TAPE for more than a PUSHDOWN STACK. In the
last two examples, we ran up and down the TAPE to make observations and changes in the
string at both ends and in the middle. We shall see later that the TAPE can be used for even
more tasks: It can be used as work space for calculation and output.

We shall eventual ly show that TMs are more powerful than PDAs because a TAPE can
do more than a STACK. However, this intuitive notion is not sufficient proof because PDAs
have the extra power of nondeterminism whereas TMs are l imited to being deterministic.
What we are ready to demonstrate i s that TMs are more powerful than FAs .

THEOREM 46

Every regular language has a TM that accepts exactly it .

446 CHAPTER 19 Turing Machines

PROOF

Consider any regular language L. Take an FA that accepts L. Change the edge labels a and b
to (a, a, R) and (b, b, R), respectively. Change the - state to the word START. Erase the plus
sign out of each final state and instead add to each of these an edge labeled (A, A, R) leading
to a HALT state. Voila, a TM.

We read the input string moving from state to state in the TM exactly as we would on
the FA. When we come to the end of the input string, if we are not in a TM state correspond
ing to a final state in the FA, we crash when the TAPE HEAD reads the A in the next cell . If
the TM state corresponds to an FA final state, we take the edge labeled (A, A, R) to HALT.
The acceptable strings are the same for the TM and the FA. •

EXAMPLE

Let us build a TM to accept the language EVEN-EVEN-the collection of all strings with
an even number of a's and an even number of h's.

By the above algorithm, the machine is

(b,b,R)

(il,il,R)

(b,b,R)
HALT (a,a,R) (a,a,R) (a,a,R) (a,a,R)

(b,b,R)

EXAMPLE •

Now we shall consider a valid but problematic machine to accept the language of all strings
that have a double a in them somewhere :

(il,il,R)
(b, b,R)

(a,a,R)

(b,b.R)

HALT 3

The problem is that we have labeled the loop at the START state with the extra option
(A, A, R). This is stil l a perfectly valid TM because it fits all the clauses in the definition.
Any string without a double a that ends in the letter a wil l get to state 2, where the TAPE
HEAD wi l l read a A and crash. What happens to strings without a double a that end in b?
When the last letter of the input string .has been read, we are in state l . We read the first A

The Turing Machine 447

and return to state 1 , moving the TAPE HEAD farther up the TAPE full of A 's. In fact, we loop
forever in state 1 on the edge labeled (A, A, R).

All the strings in (a + b)* can be div ided into three sets :

1. Those with a double a. They are accepted by the TM.

2. Those without aa that end in a. They crash.

3. Those without aa that end in b. They loop forever. •

Unlike on an FA, on a TM an input string cannot just run out of gas in some middle
state. Because the input string is just the first part of an infinite TAPE, there are always infi
nitely many A 's to read after the meaningful input has been exhausted.

These three possibil ities exist for every TM, although for the examples we met previ
ously the third set is empty. This last example is our first TM that can loop forever.

We have seen that certain PDAs also loop forever on some inputs. In Part II , this was a
mild curiosity; in Part I I I , it will be a major headache.

DEFINITION

Every Turing machine T over the alphabet I divides the set of input strings into three
classes:

l. ACCEPT(T) is the set of all strings leading to a HALT state. This is also called the lan
guage accepted by T.

2. REJECT(T) is the set of all strings that crash during execution by moving left from
cell i or by being in a state that has no exit edge that wants to read the character the
TAPE HEAD is reading.

3. LOOP(T) is the set of all other strings, that is, strings that loop forever wh i le running
oo r •

We shal l consider this issue in more detail later. For now, we should simply bear in
mind the resemblance of this definition to the output-less computer program at the beginning
of this chapter.

While we have not yet shown that TMs can recognize al l context-free languages, let us
give some justification for introducing this new mathematical model of a machine by show
ing that there are some non-context-free languages that TMs can accept .

EXAMPLE

Let us consider the non-context-free language I d'b"a" } . This language can be accepted by
the following interesting procedure :

Step 1 We presume that we are reading the first letter of what remains on the input.
Initial ly, this means we are reading the first letter of the input string, but as the
algorithm progresses, we may find ourselves back in this step reading the first
letter of a smaller remainder. If no letters are found (a blank is read), we go to
HALT. If what we read is an a, we change it to a * or some other marker, even
A, and move the TAPE HEAD right. If we read anything else , we crash. This is
all done in state I .

448 CHAPTER 19 Turing Machines

-

--+

Step 2 In state 2, we skip over the rest of the a 's in the initial clump of a 's , looking for
the first b. This will put us in state 3. Here, we search for the last b in the clump
of b's: We read b 's continually until we encounter the first a (which takes us to
state 4) and then bounce off that a to the left. If after the b 's we find a Ll in
stead of an a, we crash. Now that we have located the last b in the clump, we
do something clever: We change it into an a, and we move on to state 5 . The
reason it took so many TM states to do this simple job is that if we allowed,
say, state 2 to skip over h 's as well as a 's, it would merrily skip its way to the
end of the input. We need a separate TM state to keep track of where we are in
the data.

Step 3 The first thing we want to do here is find the end of the clump of a's (this is
the second c lump of a 's in the input) . We do this in state 5 by reading right un
til we get to a Ll. If we read a b after this second clump of a 's, we crash . If we
get to the Ll, we know that the input is, in fact, of the form a*b*a* . When we
have located the end of this clump, we tum the last two a 's into Ll 's. Because
we changed the last b into an a, this is tantamount to killing off a b and an a.
If we had turned that b into a Ll, it would have meant Ll 's in the middle of the
input string and we would have had trouble tel l ing where the real ends of the
string were. Instead, we turned a b into an a and then erased two a 's off the
right end.

Step 4 We are now in state 8 and we want to return to state l and do this whole thing
again. Nothing could be easier. We skip over a's and h 's , moving the TAPE
HEAD left until we encounter the rightmost of the * 's that fill the front end of
the TAPE. Then we move one cell to the right and begin again in state I .

The TM looks like this:

(a .a .R)

(a . * .R)

(J..J..R) START
1

HALT

(* , * , R)

(a .a ./,)

(h.h.l.)

(h.h.R)

Let us trace the action of this machine on the input string aaabbbaaa:

START 2 2 2

qaabbbaaa - *qabbbaaa - *aqbbhaaa - *aab_bbaaa
3 3 4 5

*aabbb_aaa - *aabbbqaa - *aabhb.aaa - *aabbaqaa
5 5 6 7

*aahhaaaq --+ *aahhaaaa� --+ *aahbaaaq --+ *aahbaaq

(a .a ,R)

3
- *aabb_baaa

5
--+ *aabhaaqa

8
--+ *aahbaq

The Subprogram Insert 449

8 8 8 8 8

---> *aahhqa ---> *aahf2.aa ---> *aaf2.baa ---> *aqhhaa ---> *qahhaa
8 I 2 2 3

---> �aahhaa ---> *qahhaa ---> **qhhaa ---> **af2.haa ---> **ahfl_aa
3 4 5 5 5

---> **ahhqa ---> **ahf2.aa ---> **ahaqa ---> * *ahaag_ ---> **ahaaaf}_
6 7 8 8 8

---> **ahaaq ---> **ahaq ---> **ahq ---> **afl_a ---> * *g_ha

8 2 3 4

---> *�aha ---> **g_ha ---> ***f2.a ---> ***hq ---> ***fl_a
5 5 6 7 8

---> ***ag_ ---> ***aaf}_ ---> ***ag_ ---> ***g_ ---> ***
HALT

---> ***!}_ ---> ***lit!

After designing the machine and following the trace, we should be aware of several things:

1. The only words accepted are of the form a11b11a11 (here, n = 0, I , 2 , 3, . . .)

2. When the machine halts, the TAPE wi l l hold as many * 's as there were h's in the input.

3. If the input was amhmam, the TAPE HEAD will be in cell (m + 2) when the machine halts .
•

� THE SUBPROGRAM INSERT

Sometimes in the running of a Turing machine, we may wish to insert a character into the
string on the TAPE exactly at the spot where the TAPE HEAD is pointing. This means that the
newly inserted character wi l l occupy this cel l and every character on the TAPE to the right of
it wi l l be shifted one cell farther up the TAPE. The data on the TAPE to the left of the insertion
point wil l be left alone. We allow for the possibility that the insertion point is cell i. After
this insertion takes place, we shal l want the TAPE HEAD to point to the cel l to the right of the
inserted character.

The part of the TM program that can affect such an insertion need not depend on what
ever else the TM is doing. It is an independent subprogram, and once it is written, we can in
corporate it into any other TM program by indicating that we are cal l ing upon the insertion
subprogram and specifying what character we wish to insert . We can insert an a by drawing
the picture

or a h or # by the pictures

-I INSERT a �

-I INSERT h � -I INSERT # �
For example, we want I INSERT b I to act l ike this :

0
---> I INSERT h �

450 CHAPTER 19 Turing Machines

0
Now let us write a piece of TM program to insert a b into a TAPE on which the existing char
acters are all a 's, b's, and X's followed, of course, by infinitely many blanks. The first thing
we shall have the program do is insert a Q as a marker in the cel l into which we are going to
put the b. The reason we do not just write a b into this cell immediately is that the TAPE
HEAD must move along up the TAPE and then return to the proper cell to the right of the in
sertion cell ; it must be able to locate this spot.

Let us call the state in which our subprogram starts state l . In this state, we read a
character (either a, b, or X) and then we write a Q and move the TAPE HEAD to the right. In
this next cel l , we have to write exactly what i t was that was displaced in the previous cell .
This requires some memory. The memory we use w i l l be i n the form of keeping separate
states that remember the displaced character. Let state 2 remember that what was just dis
placed was an a. Let state 3 remember that what was just displaced was a b. Let state 4 re
member that what was just displaced was an X. In our example, the character set for the
TAPE contained only three possibil ities. This is a simplification that makes the diagram we
shall produce more easily understood. But it wi l l be c lear that any finite character set can
be shifted to the right by the same trick of creating a separate state for every character just
erased.

If we are in state 2 and we now read a b, we remember that we must replace the a
that was displaced, so we write an a, but now we realize that we have just displaced a b,
which we owe to the TAPE in the next cel l . This means that we belong in state 3 , which
serves as just such a memory device. Therefore, we draw an edge from state 2 to state 3
and label i t (b, a, R). If we are in state 2 and we read an X, we go to state 4 on an edge la
beled (X, a, R). In both cases, we have paid our debt of one a to the TAPE and created a
new debt we wi l l pay with the next instruction. If we are in state 2 and we read an a, we
wi l l return to state 2 on a loop labeled (a, a, R) . We have paid the debt of one a but now
owe another.

The situation for state 3 is similar. Whatever we read, we write the b that we owe and go
to the state that remembers what character was sacrificed for the b. We have an edge to state
2 labeled (a, b, R), an edge to state 4 labeled (X, b, R), and a loop back to state 3 labeled
(b, b, R). Also from state 4 we have an edge to state 2 labeled (a, X, R), an edge to state 3 la
beled (b, X, R), and a loop labeled (X, X, R).

Eventually from state 2, 3, or 4, we wil l run out of characters and meet a Ll. When this
happens, we go to a new state, state 5 , from which we begin the rewinding process of return
ing the TAPE HEAD to the desired location. On our way to state 5 , we must write the last
character owed to the TAPE. This means that the edge from 2 to 5 is labeled (Ll, a, R). The
edge from 3 to 5 is labeled (Ll, b, R). And the edge from 4 to 5 is labeled (Ll, X, R).

In state 5 , we assume that we are reading another Ll because the character string has
ended. This Ll we leave alone and move the TAPE HEAD down to the left and go to state 6.
State 6 moves the TAPE HEAD over to the left in search of the Q, looping and not changing
what i t reads. When i t does reach the inevitable Q (which we know exists because we put it
there ourselves), we move to state 7 , replacing the Q with the b that was the character we
wished to insert in the first place, and move the TAPE HEAD to the right. It is clear that to in
sert any other character, all we would have to do is to change one component of the label on
the edge from state 6 to state 7.

From state 7, we return to the rest of the TM program. The subroutine INSERT b looks
l ike this :

The Subprogram Insert

I n

Out

451

(a,a,L)
(b,b,L)
(X,X,L)

The usefulness of the subprogram INSERT can be seen immediately from the fact that when
we begin processing an input string, we run the risk of moving the TAPE HEAD off the TAPE
by inadvertently instructing it to move left when it is , in fact, in cell i, thereby causing an
unanticipated crash. To prevent th is, we can always begin al l TM processing by inserting a
brick wal l , #, into cel l i as the first step of the program. When mov ing the TAPE HEAD left
down the TAPE, we can always be careful to bounce off of the brick wal l if it is encountered.
The entire input string is then bounded by # on the left and a on the right .

EXAMPLE

Let us consider a TM to accept the language EQUAL, of all strings with the same number of
a 's and h 's . EQUAL is context-free but nonregular, and so the algorithm of Theorem 46
(p. 445) cannot be employed.

The algorithm we do propose (al though it is by no means the best) is to run an alternat
ing series of search and destroy missions. We wi l l start by inserting a # into cel l i. Then from
cel l ii on up we seek an a. When we find our first, we change it into an X and return the TAPE
HEAD to cell i i . Then we search up the TAPE for a h. When we find the first, we change it into
an X and return the TAPE HEAD to cell i i . We then go back and search for an a again, and so
forth. The process wi l l stop when we look for an a but do not find any by the time we reach
a. We then scan down the TAPE to be sure that al l the cel ls contain X's and there are no un
matched h 's left. When we encounter # on this pass, we can accept the input.

The machine we bui lt is on the next page.

452 CHAPTER 19 Turing Machines

(X.X,L)

(#,#,R)

CX.X.Rl CX.X.Ll
(a,a,R) (a,a,L)

Let us follow the operation on baab starting in state 6. Start ing in state 6 means that we
have already inserted a # to the left of the input on the TAPE.

6 6 7 7 8
#b.aab --> #bg_ab --> #b.Xab --> tl.bXab --> #b.Xab

9 6 6 6 7
--> ti.XX ab --> #K,.Xab --> #XK,.ab --> #XXg_b --> #XK,.Xb

7 7 8 8 8
--> #K,.XXb --> ti.XXXb --> #K.XXb --> #XK.Xb --> #XXK.b

8 9 9 9 9
--> #XXXb. --> #XXK.X --> #XK.XX --> #K.XXX --> t1.XXXX

6 6 6 6 6
--> #K.XXX --> #XX.XX --> #XXK.X --> #XXXK. --> #XXXX�

J O J O JO J O J O
--> #XXXK.il --> #XXK.X --> #XX.XX --> #K,XXX --> t1.XXXX --> HALT

Notice that even after we have turned all a 's and b's into X's, we sti l l have many steps
left to check that there are no more non-X characters left. •

1} THE SUBPROGRAM DELETE

For our last example, we shall build a TM subprogram that deletes; that is, it erases the con
tents of the cell the TAPE HEAD is initially pointing to, moving the contents of each of the
nonempty cells to its right down one cell to the left to close up the gap and leav ing the TAPE
HEAD positioned one cell past where it was at the start. For example,

0 I DELETE I

0
Just as with INSERT, the exact program of DELETE depends on the alphabet of letters

found on the TAPE.
Let us suppose the characters on the TAPE are from the alphabet (a b c I . The sub

program to DELETE that is analogous to INSERT is

The Subprogram Delete

(c,6.,R)
(b,t,.,R)
(a,t,.,R)

(c,c,R)
(b,b,R)
(a,a,R)

453

What we have done here is (I) erased the target cel l , (2) moved to the right end of the
non-A data, and (3) worked our way back down the TAPE, running the inverse of INSERT.
We could just as easily have done the job on one pass up the TAPE, but then the TAPE HEAD
would have been left at the end of the data and we would have lost our place; there would be
no memory of where the deleted character used to be. The way we have written it, the TAPE
HEAD is left in the cell immediately after the deletion cel l .

Notice that although INSERT required us to specify what character is to be inserted,
DELETE makes no such demand- it kills whatever it finds.

EXAMPLE

We can use the subprogram DELETE to accept the language EQUAL by the following (also
wasteful) algorithm. First, INSERT # into cell i . As before, find the first a and delete it and
return the TAPE HEAD to cell i . Now find the first b and delete it. Repeat this process unti l the
hunt for the a is unsuccessful , that is, the TAPE HEAD does not catch an a here. It finds a A
first. Now move one cell to the left, and if what is read is the #, the string is accepted; other
wise, what wil l be found are excess h 's. If the input had excess a 's, the program would crash
in the hunt for the matching b. •

454 CHAPTER 19 Turing Machines

1t PROBLEMS

For Problems 1 and 2 , consider the following TM:

(a,a,L)

(b,b,L)

1 START

(b,b,L)

{# ,# ,R)
(d,:;.,R)

H ALT

(b,#,L)

(a,a,R)

(b,b,R)

1. Trace the execution chains of the following input strings on this machine:

(i) aaa
(i i) aba
(i i i) baaba
(iv) ahabb

2. The language accepted by this TM is all words with an odd number of letters that have a
as the middle letter. Show that this is true by explaining the algorithm the machine uses
and the meaning of each state. Pay attention to the two necessary parts that must always
be demonstrated:

(i) Anything that has an a in the middle wil l get to HALT.
(i i) Anything that gets to HALT has an a in the middle.

3. (i) Build a TM that accepts the language of all words that contain the substring bbb.
(ii) Build a TM that accepts the language of all words that do not contain the substring bbb.

4. Build a TM that accepts the language ODDPALINDROME.

S. Build a TM that accepts all strings with more a 's than b 's, the language MOREA.

6. (i) Build a TM that accepts the language { anb" +
1
l .

(i i) Build a TM that accepts the language { a"b2" l .

7. (i) Show that the TM given i n this chapter for the language PALINDROME has more
states than it needs by coalescing states 4 and 7 .

(i i) Show that the TM given in this chapter for the language { a"h" I can be drawn with
one fewer state .

Problems 455

Problems 8 through I 0 refer to the following TM. We assume that the input string is put on
the TAPE with the symbol # inserted in front of it in cell i. For example, the input ha wil l be
run with the TAPE initially in the form #ball In this chapter, we saw how to do this
using TM states. Here, consider it already done. The TM is then

(a.A ,R)

(#,#,R) (b, 8,R) START

(A,A ,R)

(8, 8,R)

(b,b,l)

(a,a,l)

(a,a,l)

(b,b,l)

(A ,A,l) (!.l., !.l.,R)

HALT

(a,a,R)

(b,b,R)

(b, Y,l)

(a,X,l)

(a,a,R)

(b,b,R)

(!.l., !.l.,l)

(X,X,l)

(Y. Y.l)

(8, 8,R)

(•, *,l)

(A,A,l)

8. Trace the execution chains of the following input strings on this machine:

(i) aa
(i i) aaa

(i i i) aaaa
(iv) aabaab
(v) abab

9. The language this TM accepts is DOUBLEWORD, the set of all words of the form ss,
where s is a nonnul l string in (a + b)* (see p. 200) .

(i) Explain the meaning of each state and prove that all words in DOUBLEWORD are
accepted by this TM.

(ii) Show that all words not in DOUBLEWORD are rejected by this machine.

10. (i) Show that states 1 1 and 12 can be combined without changing the language .
(i i) What other changes can be made?

456 CHAPTER 19 Turing Machines

11. An alternate TM to accept EVEN-EVEN can be based on the algorithm:

1. Move up the string, changing a 's to A 's.

2. Move down the string, changing b 's to B 's.

We can modify this algorithm in the following way : To avoid the problem of crashing on
the way down the TAPE, change the letter in the first cell to X if it is an a and to Y if i t is
a b. This way, while charging down the TAPE, we can recognize when we are in cel l i .

Draw this TM.

12. Fol low the up-down method for a TM that recognizes EVEN-EVEN as explained in
Problem 1 1 but use INSERT, not the X, Y trick, to build the TM.

13. Build a TM that accepts the language EVEN-EVEN based on the subroutine DELETE
given in this chapter.

14. In the subroutine INSERT given in this chapter, is it necessary to separate states 6 and 7 ,
or can they somehow be combined?

15. On the TM given in this chapter for the language I a"b"a" I , trace the following words:

{ i) aabbaa
(i i) aabbaaa

(i i i) aabaa
(iv) aabbaabb
(v) Characterize the nature of the different input strings that crash in each of the eight

states.

16. Build a TM to accept the language I a"b"a" l based on the following algorithm:

(i) Check that the input is in the form a*b*a* .
(i i) Use DELETE in an intell igent way.

17. Trace the subroutine DELETE in the following situations:

(i) l a b I a b a

0
(i i) l a b I a I a a

0
(i i i) l a b I a h a

0
18. Draw a TM that does the same job as DELETE, but leaves the TAPE HEAD pointing to

the first blank cell . One way to do this is by reading a letter, putting it into the cel l be
hind it , and moving two cells up the TAPE.

19. (i) Draw a TM that loops forever on all words ending in a and crashes on all others.
(i i) Draw a TM that loops forever on the input string bab, leaving the TAPE different

each time through the loop.

20. Draw a TM that accepts the language PALINDROME' , the complement of PALIN
DROME. This is , although we did not prove so, a non-context-free language.

CHAPTER 20

Post Machines

1} THE POST MACHINE

We have used the word "algorithm" many times in this book. We have tried to explain what an
algorithm is by saying that it is a procedure with instructions so carefully detailed that no further
information is necessary. The person/machine executing the algorithm should know how to han
dle any situation that may possibly arise. Without the need for applying any extra intelligence, i t
should be possible to complete the project. Not only that, but before even beginning we should
be able, just by looking at the algorithm and the data, to predict an upper limit on the number of
steps the entire process will take. This is the guarantee that the procedure is finite.

All this sounds fine, but it sti l l does not really specify what an algorithm is. Th is is an
unsatisfactory definition, because we have no precise idea of what a "procedure" is. Essen
tially, we have merely hidden one unknown word behind another. Intuitively, we know that
arithmetic operations are perfectly acceptable steps in an algorithm, but what else is? In sev
eral algorithms, we have allowed ourselves the operation of painting things blue without
specifying what shade or how many coats . An algori thm, it seems, can be made of almost
anything.

The question of determining the appropriate components for mathematical algorithms
was of great interest earl ier in this century. People were discovering that surprisingly few ba
sic operations were sufficient to perform many sophisticated tasks, just as shifting and
adding are basic operations that can be used to replace hard-wired multipl ication in a com
puter. The hope was to find a small set of basic operations and a machine that could perform
them all , a kind of "universal algorithm machine," because i t could then run any algorithm.
The mathematical model itself would provide a precise definition of the concept of algo
rithm. We could use it to discuss in a meaningful way the possibi l i ty of finding algorithms
for all mathematical problems. There may even be some way to make it program itself to
find its own algorithms so that we need never work on mathematics again.

In 1 936, the same fruitful year Turing introduced the Turing machine, Emil Leon Post
(1 897 - 1 954) created the Post machine, which he hoped would prove to be the "universal al
gorithm machine" sought after. One condition that must be satisfied by such a "universal al
gorithm machine" (we retain the quotation marks around this phrase for now because we
cannot understand it in a deeper sense until later) is that any language which can be pre
cisely defined by humans (using English, pictures, or hand signals) should be accepted (or
recognized) by some version of this machine. This would make it more powerful than an FA
or a PDA. There are nonregular languages and non-context-free languages, but there should

457

458 CHAPTER 20 Post Machines

not be any non-Turing or non-Post languages. In this part of the book, we shall see to what
extent Post and Turing succeeded in achieving their goals.

DEFINITION

A Post machine, denoted PM, is a collection of five things :

1. The alphabet I of input letters plus the special symbol #. We generally use I = { a b }

2. A linear storage location (a place where a string of symbols is kept) called the STORE,
or QUEUE, which initially contains the input string. This location can be read, by
which we mean the leftmost character can be removed for inspection. The STORE can
also be added to, which means a new character can be concatenated onto the right of
whatever is there already. We allow for the possibil ity that characters not in I can be
used in the STORE, characters from an alphabet r called the store alphabet.

3. READ states, for example,

a #

which remove the leftmost character from the STORE and branch accordingly. The only
branching in the machine takes place at the READ states. There may be a branch for
every character in I or f. Note the A branch that means that an empty STORE was
read. PMs are deterministic, so no two edges from the READ have the same label .

4. ADD states:

which concatenate a character onto the right end of the string in the STORE. This is dif
ferent from PDA PUSH states, which concatenate characters onto the left. Post ma
chines have no PUSH states. No branching can take place at an ADD state. It is possible
to have an ADD state for every letter in l and f.

5. A START state (unenterable) and some halt states called ACCEPT and REJECT:

The Post Machine 459

If we are in a READ state and there is no labeled edge for the character we have
read, then we crash, which is equivalent to taking a labeled edge into a REJECT state .
We can draw our PMs with or without REJECT states. •

The STORE is a first-in first-out (FIFO) stack in contradistinction to a PUSHDOWN or
last-in first-out (LIFO) STACK. The contents of an originally empty STORE after the opera
tions

---:llll"'ll ADD a I Jo I ADD b ---ill>"41 ADD b)I

is the string

abh

If we then read the STORE, we take the a branch and the STORE will be reduced to hh.
A Post machine does not have a separate INPUT TAPE unit. In processing a string, we

assume that the string was initially loaded into the STORE and we begin executing the pro
gram from the START state on . If we wind up in an ACCEPT state, we accept the input
string. If not, not. At the moment we accept the input string, the STORE could contain any
thing. I t does not have to be empty, nor need it contain the original input string.

As usual , we shall say that the language defined (or accepted) by a Post machine is the
set of strings that it accepts. A Post machine is yet another language-recognizer or-acceptor.
As we have defined them, Post machines are deterministic, that is, for every input string
there is only one path through the machine; we have no alternatives at any stage. We could
also define a nondeterministic Post machine, NPM. This would allow for more than one
edge with the same label to come from a READ state. It is a theorem that, in their strength as
language-acceptors, NPM = PM. This we shall discuss in Chapter 22.

Let us study an example of a PM.

EXAMPLE

Consider the PM below:

START

ACCEPT ADD a ADD h

As required by our definition, this machine is deterministic. We have not drawn the
edges that lead to REJECT states, but instead we al low the path to crash in the READ state if
there is no place for it to go.

Let us trace the processing of the input aaahhh on this PM:

460 CHAPTER 20 Post Machines

STATE

START

ADD #

READ1

READ2

ADD a

READ2

ADD a

READ2

READ3

ADD b

READ3

ADD b

READ3

ADD #

READ1

READ2

ADD a

READ2

READ3

ADD b

READ3

ADD #

READ1

READ2

READ3

ADD #

READ1

ACCEPT

STORE

aaabbb

aaabbb# (Note this point.)

aabbb#

abbb#

abbb#a

bbb#a

bbb#aa

bb#aa

b#aa

b#aab

#aab

#aabb

aabb

aabb# (Note this point.)

abb#

bb#

bb#a

b#a

#a

#ab

ab

ab# (Note this point.)

b#

A
(Note this point .)

A

The trace makes c lear to us what happens . The # is used as an end-of-input string signal
(or flag). In READ1 , we check to see whether we are out of input; that is, are we reading the
end-of-input signal #? If so, we accept the string. If we read a b, the string crashes. So, noth
ing starting with a b is accepted. If the string starts with an a, this letter is consumed by
READ 1 ; that is , the trip from READ1 to READ2 costs one a that is not replaced. The loop at
READ2 puts the rest of the a's from the front c luster of a's behind the #. The first b read is
consumed in the trip from READ2 to READ3. At READ3, the rest of the first c luster of b 's is
stripped off the front and appended onto the back, behind the a's that are behind the #.

The Post Machine 461

After the b's have been transported, we expect to read the character #. If we read an a,
we crash. To survive the trip back from READ3 to ADD #, the input string must have been
originally of the form a*b*.

In each pass through the large circuit READ1-READ2-READ3-READ1 , the string loses
an a and a b. Note the markers we have indicated along the side. To be accepted, both a 's
and b's must run out at the same time, since if there were more a's than h 's, the input string
would crash at READ2 by reading a # instead of b, and if the input string had more h 's than
a 's, it would crash in state READ1 by reading a b.

Therefore, the language accepted by this PM is I a"h" I (in this case, including A). •

Post machines look considerably l ike PDAs, and, in fact, PDAs can accept the language
! a"h" I as the preceding PM (p. 459) does. However, we have seen that I a"h"a" I is non-con
text-free and cannot be accepted by a PDA. So, to show that PMs have some extra power be
yond PDAs, we demonstrate one that accepts this language.

EXAMPLE

Consider the PM below:

START

ADD �

ACCEPT ADD a ADD I> ADD a

This machine is very much l ike the PM in the previous example. We start with a string
in the STORE. We add a # to the back of it . We accept it in state READ , if the string was ini
tial ly empty. If it starts with a h, we crash . If it starts with an a, we use up this letter getting
to READ2• Here, we put the entire ini tial c lump of a 's (al l the way up to the first h) behind
the #. We read the first h and use it getting to READ3• Here, we put the rest of the clump of
h's behind the a's behind the #. We had then better read another a to get to READ4 . In
READ4, a bunch of a's (minus the one it costs to get there) are placed in the store on the
right, behind the b 's that are behind the a 's that are behind the #. After we exhaust these a's ,
we had better find a # or we crash . After reading the # off the front of the STORE, we re
place it at the back of the STORE in the state ADD #. To make this return to ADD #, the in
put string must originally have been of the form a*b*a* . Every time through this loop we
use up one a from the first clump, one h from the h clump, and one a from the last cl ump.

The only way we ever get to ACCEPT is to finish some number of loops and find the
STORE empty, because after ADD # we want to read # in state READ 1 • This means that
the three clumps are all depleted at the same time, which means that they must have had the
same number of letters in them initially. This means that the only words accepted by th is PM

are those of the form I a" h" a" } . •

We should not think that we have proven that PMs accept a lar[?er class of languages

462 CHAPTER 20 Post Machines

than PDAs. We have only demonstrated that PMs accept some context-free languages and
some non-context-free languages. In Chapter 22, we shall show that PMs do, in fact, accept
all CFLs. We shall then have to face the question, "Do they accept all none-CFLs?" This
wil l be answered in Chapter 24.

Before we relate PMs to PDAs, we shall compare them to TMs, as Post himself did with
the following three theorems.

1} SIMULATING A PM ON A TM

THEOREM 47

Any language that can be accepted by a PM can be accepted by some TM.

PROOF

As with many theorems before, we prove this one by constructive algorithm. In this case, we
show how to convert any PM into a TM, so that if we have a PM to accept some language,
we can see how to build a TM that wil l process all input strings exactly the same way as the
PM, leading to HALT only when the PM would lead to ACCEPT.

We know that PMs are made up of certain components, and we shall show how to con
vert each of these components into corresponding TM components that function the same
way. We could call this process simulating a PM on a TM.

The easiest conversion is for the START state, because we do not change it at all. TMs
also begin all execution at the START state.

The second easiest conversion is for the ACCEPT state. We shall rename it HALT be
cause that is what the accepting state is called for TMs.

The next easiest conversion is for the REJECT states. TMs have no reject states; they
just crash if no path can be found for the letter read by the TAPE HEAD. So, we simply delete
the REJECT states. (We often do this for PMs too.)

Now before we proceed any further, we should address the question of converting the
PM's STORE into the TM's TAPE. The STORE contains a string of letters with the possibil
ity of some occurrences of the symbol #.

Most often, there will be only one occurrence of the symbol # somewhere in the middle
of the string, but even though this is usual in practice, it is not demanded by the definition.

We now describe how we can use the TM TAPE to keep track of the STORE. Suppose
the contents of the STORE look l ike

X1XzX3X4X5
where the x's are from the PM input alphabet I or the symbol # and none of them is Li. We
want the corresponding contents of the TM TAPE to be

. . . a

with the TAPE HEAD pointing to one of the x's. Notice that we keep some Li 's on the left of
the STORE information, not just on the right, although there wil l only be finitely many Li 's
on the left, because the TAPE ends in that direction.

Simulating a PM on a TM 463

We have drawn the TM TAPE picture broken because we do not know exactly where the
x's wil l end up on the TAPE. The reason for this is that the PM eats up data from the left of
the STORE and adds on data to the right. If at some point the STORE contains ahh and we
execute the instructions

READ-ADD a-READ-ADD a-ADD b-READ

the TM TAPE will change like this:

h h A I .
0

� I A I I I I � _ u A h h a A
0

� IA I A I A l h l a l a I A I
0

� l.__A__,__A __ h __ h __ A__ _

0
REAQ. I A A I I I � _ u u A h a A

0

The non-A information wanders up to the right, while A 's accumulate on the left.
Immediately after the START state on the TM, we shall employ the subprogram

INSERT (from Chapter 1 9) to insert a A in cel l i and to move the whole non-A in itial input
string one cell to the right up the TAPE.

We do this so that the first PM operation simulated is l ike all the others in that the non-A
information on the TM TAPE has at least one A on each side of it, enabl ing us to locate the
rightmost and leftmost ends of the input string by bouncing off A's.

There are two operations by which the PM changes the contents of the STORE: ADD and
READ. Let us now consider how a TM can duplicate the corresponding actions on its TAPE.

If the PM at some point executes the state

the TM must change its TAPE from something l ike

0
to

0
To do this, the TAPE HEAD must move to the right end of the non-A characters, locate the

first A, and change it to y. This can be done as follows:

464 CHAPTER 20 Post Machines

(a,a,R)
(b,b,R)
(#,#,R)

---· rO .. V cii.y,L)
We have illustrated this in the case where I = { a b } , but if I had more letters, it would
only mean more labels on the loop. Notice also that we have left the TAPE HEAD again point
ing to some non-A character. This is important. We do not want the TAPE HEAD wandering
off into the infinitely many blanks on the right.

There is only one other PM state we have to simulate; that is the READ state . The
READ states does two things. It removes the first character from the STORE, and it
branches in accordance with what it has removed. The other states we have simulated did not
involve branching.

For a TM to remove the leftmost non-Li character, the TAPE HEAD must move leftward
until the first blank it encounters. It should then back up one cell to the right and read the
non-A character in that cel l . This it must tum into a A and move itself right, never leaving
the string of non-A 's. This process wil l require two states in the TM:

(a ,a ,L)
(b,b,L) (#,#,L)

(.l,..l,R)

Notice that we leave the second state along different edges, depending on which character is
being erased. This is equivalent to the PM instruction

We should also note that because we were careful to insert a Li in cell i in front of the in
put string, we do not have to worry about moving the TAPE HEAD left from cell i and crash
ing while searching for the A on the left s ide.

If while processing a given input the STORE ever becomes empty, then the TM TAPE
will become all A's. It is possible that the PM may wish to READ an empty STORE and
branch accordingly. If this alternative is l isted in the PM, it should also be in the TM.

becomes

Simulating a PM on a TM 465

If the TAPE is all A 's, the TAPE HEAD reads the cell it is pointing to, which contains a A, and
moves to the right, "thinking" that it is now in the non-A section of the TAPE. It then reads this
cell and finds another A, which it leaves as a A, and moves right again. The program branches
along the appropriate edge. Just because the STORE is empty does not mean that the program is
over. We might yet ADD something and continue. The TM simulation can do the same.

Thus, we can convert every PM state to a TM state or sequence of states that have
the same function. The TM so constructed wil l HALT on all words that the PM sends to
ACCEPT. It wil l crash on all words that the PM sends to REJECT (or on which the PM
crashes), and it wi l l loop forever on those same inputs on which the PM loops forever. •

EXAMPLE

Recall that our first PM of this chapter was

START

ACCEPT

ADD a

ADD b

466 CHAPTER 20 Post Machines

This PM accepts the language { anbn) .
This time, we have drawn the machine vertically to facilitate its conversion into a TM.

Following the algorithm in the proof, we produce the next machine, where, for the sake of
simplicity, we have omitted the Li-inserting preprocessor and assume that the input string is
placed on the TM TAPE starting in cell ii with a Li in cell i:

Notice that

START

(a .a .R) (.l,.l,R)

(h .h .R)
(11.11.R)

(a.a./.)
(h .h .L)
(II .II .{,)

(a .a .I.)
(h .h .L)
(II .II .I.)

(a .a . /.)
(h.h . /.)
(II .II .I.)

(11 . .:i.R)
4 HALT

(.l.a . /.)

(a.a.R)
(h .h .R)
(11 .11 .R)

(.l .h ./.)

(h .:i .R)

(a.a . R)
(h . h.R)
(11 .11 .R)

(11 . .:i .R)

TM State Corresponds to

START

I

2 and 3

4

PM State

START

ADD #

READ 1

ACCEPT

Simulating a PM on a TM 467

5 and 6 READ 2

7 ADD a

8 and 9 READ 3

1 0 ADD b

We really should not have put the end-of-proof box on our discussion of Theorem 47 (see
p. 465) as we did, because the proof is not over until we fully understand exactly how the sepa
rately simulated components fit together to form a coherent TM. In the preceding example, we
see that edges between the independently simulated states always have TM labels determined
from the PM. We can now claim to understand the algorithm of Theorem 47. We are not fin
ished with this example until we have traced the execution of the TM on at least one input.

Let us trace the processing of the input string aabb:

START
Aaabb --> Ag_abb --> Aag_bb --> Aaall.b

I I 2 2
--> Aaabll. --> AaabM --> Aaabfl.# --> Aaall.b#

2 2 2 3
--> Aag_bb# --> Ag_abb# --> Aaabb# --> Ag_abb#

5 5 6 7
--> AAg_bb# --> AAabb# --> AAqbb# --> AAA!l.b#

7 7 7 5
--> AAM!l.# --> AAMbJi. --> AAAbb#A --> AAMbJi.a

5 5 5 6
--> AAMQ#a --> AAA!l.b#a --> AAAbb#a --> AA/:::,.Qb#a

8 8 9 1 0
--> AAAAQ#a --> AAAAb#a --> AAAAfl.#a --> AAAAA'/ta

1 0 1 0 8 8
--> AAAAMg_ --> AAAAA#aA --> AAAAA#qb --> AAAAA'/tab

8 9 I I
--> AAAAA#ab --> AAAAA'/tab --> AAAAAAg_b --> AAAAAAall.

I 2 2 2
--> AAAAAAaM --> AAAAAAafl.# --> AAAAAAqb# --> AAAAA/:!ab#

3 5 5 6
--> AAAAAAg_b# --> AAAAAAAQ# --> AAAAAAAb# --> AAAAAAA!l.#

8 8 9 I
--> AAAAAAAA! --> AAAAAAAA# --> AAAAAAAA! --> AAAAAAAAAA

2 3
--> AAAAAAAAA# --> AAAAAAAAA'/t --> AAAAAAAAAA/:! HALT

Here, we have decided that the initial � 's from cell i up to the data are significant and
have included them in the trace.

We can see from this execution chain that this is a TM that accepts { a"h" l . We already
know that there are other (smaller) TMs that do the same job. The algorithm never guaran-
teed to find the best TM that accepts the same language, only to prove the ex istence of one
such TM by constructive algorithm. •

We should note that the alphabet that appears on the TM TAPE produced by this algo-
rithm is the same as the STORE alphabet of the PM.

In the TM we just constructed we have encountered a situation that plagues many
TMs-piles of tedious multiple-edge labels that all say about the same thing:

468 CHAPTER 20 Post Machines

(a ,a,L)
(b, b,L)
(.l,.l,L)
(# ,# ,L)
(•. • ,L)

co
This is proper TM format for the instruction, "If we read an a, a b, a A, a #, or a * , leave

it unchanged and move the TAPE HEAD left." Let us now introduce a shortened form of this
sentence: (a, b, Li, #, * ; = , L)

DEFINITION

If a, b, c, d, e are TM TAPE characters, then (a, b, c, d, e; = , L) stands for the instructions

(a, a, L) (b, b, L) . . . (e, e, L)

Similarly, we wil l employ (a, b, c, d, e; = , R) for the set of labels

(a, a, R) (b, b, R) . . . (e, e, R)

� SIMULATING A TM ON A PM

•

Before we proceed, it wil l be useful for us to demonstrate that although a PM is provided
with only two STORE instructions that seem to correspond to PDA STACK instructions, the
PM READ and ADD are definitely more flexible.

THEOREM 48

There are subprograms that can enable a PM to add a character to the front (left end) of the
string in the STORE and to read the character off of the back (right end) of the string.

PROOF

To add a character to the front of the STORE (which corresponds to a PDA PUSH instruc
tion), we need to know the alphabet of characters already in the STORE and then employ a
new character different from all of them. Let f be the character set in the STORE and $ be a
character not in r.

Let us say that we wish to add the letter b to the front end of the store. What we will do is
first ADD $ to the back of the STORE. Then we ADD b to the back of the STORE. And now we
enter a loop in which we READ whatever is at the front of the STORE and, unless it is a $, we
immediately ADD the very same character to the back of the STORE. This executes a shift-left
cyclically operation. When we do eventually (or immediately) READ the $, we are done, for the
next character is the b we meant to concatenate on the front of the STORE, and this b is fol
lowed by the entire string that used to be in the STORE before the operation began.

The PM subprogram that does this is

ADD $ ADD b

------- Done

Done

Simulating a TM on a PM 469

As an example, suppose the STORE originally contained pqr. Then the subprogram would
produce this sequence of STORE changes:

pqr -pqr$ -pqr$b - qr$b - qr$bp - r$bp - r$bpq - $bpq - $bpqr - bpqr

We wil l call this subprogram ADD FRONT b.
In order to write a subprogram that reads the back character from the STORE and

branches according to whatever it reads, we wil l first write a program that takes the last char
acter and puts it in the front of the STORE, leaving the rest of the string unaltered. We can
then use the regular PM READ instruction to do the branching. So, what we wil l write is a
program called SHIFT-RIGHT CYCLICALLY.

To do this, the basic strategy is to stick a marker (the $ will do again as long as it is not in
the STORE character set f) onto the back of the STORE string. We then read two characters
from the left of the store and, by being in an appropriate memory state, we ADD the first charac
ter to the back of the STORE, provided that the second character is not the $. We still have the
second character that we have not yet added to the STORE, and we will not do so unless what
we READ next (the third character) is not the $ either. We keep this third character in mind (in
memory by virtue of a specialized state) until we have read the fourth and found it is not the $
yet. Eventually, we do encounter the $ and we know that the character we are holding in mem
ory (the character before the $) was originally the last character in the STORE, and we add it on
to the front of the STORE by the ADD FRONT subprogram we have just produced above:

$

Go to
R EAD2

This then is the subprogram for SHIFT-RIGHT CYCLICALLY:

ADD a

Go to
R EAD3

Go to
R EAD4

Go to
R EAD2

ADD b

Go to
R EAD3

$ (If we come out here, the X STORE was empty.)

Go to
READ4

ADD
FRONT b

Done

Go to
R EAD2

ADD c

Go to
READ3

Done

$

Go to
R EAD4

ADD
FRONT

Done

We have not drawn in the full spaghetti of edges but used the direction go to READ such ' We
have used the old trick of the subprogram INSERT, of remembering what character has been

470 CHAPTER 20 Post Machines

read by being in a different READ state for each possibility. Thus, READ2 remembers that
the character we owe to the STORE is an a and it wil l be added to the back unless the next
character i s a $, in which case it will be added to the front. When we ascertain that the next
character is a c, we ADD a and then go to READ4 to determine which end of the STORE to
add the c.

As we mentioned already, the ful l subprogram of reading the right end character of the
STORE, which we call READ BACK, is

~ • S H I FT-R IGHT CYCUCALU

•

All told, we can read or add to either end of the STORE.
We are now in position to simulate a full TM on a PM.
We have shown that any language that can be accepted by a PM can also be accepted by

some TM; however, that is only half the story.

THEOREM 49

Any language that can be accepted by a TM can be accepted by some PM.

PROOF

This proof wil l again be by constructive algorithm. We start by assuming that we have an ap
propriate TM for a certain language and from the TM we shall build a PM that operates on
input strings in exactly the same way, step by step. Again, we shal l be doing a s imulation.

Before continuing with this proof, we should note that we intend to use a STORE alpha
bet that is larger than usual. Normally, we expect the STORE to contain the letters of the al
phabet from the input-string language plus the symbol #. Here, we are going to put any char
acter from the TM TAPE alphabet (which can be much larger, with many special symbols)
into the STORE. In particular, the character Ll may have to be placed in the STORE as wel l
as A, B , C, If there are any who have philosophical qualms about adding Ll to the
store as a character, let them not think of it as a blank but as the first letter of Dionysius. The
simulation wil l work just as wel l . The language ultimately accepted by the PM will have ini
t ial ly only the letters of the input string on the TM, but other characters may be employed in
the processing, just as with TMs.

We already have some feel for the correspondence between these two machines from
Theorem 47 (p. 462). Stil l , one great problem stands out. In TMs we can read and change a
character in the middle of the string, whereas with PMs we can only read and add onto the
ends of the string. How can PMs simulate the action of TMs? A clever trick is needed here
that makes use of the extra symbol # that PMs have, which we shal l assume is not in either
of the TM's alphabets, f or l. (If the TM did use this symbol in its TAPE alphabet f. then

Simulating a TM on a PM 471

change it to boldface or italics or blue paint without changing the operation of the TM and
freeing # as a symbol special to the PM.)

We shall make a correspondence between # and the position of the TAPE HEAD. The
character string to the left of the TAPE HEAD on the TM TAPE will be placed to the right of
the symbol # on the PM STORE and the character string to the right of (or at) the TAPE
HEAD wil l be placed to the left of #.

By these confusing words, we mean to describe the correspondence of

I I i i i iv v VI vi i v i i i

TAPE: x1 Xz X3 X4 Xs x6 X1 xs .:l

0
in the TM with

in the PM.
Why do we do this? Because when the TAPE HEAD is reading cell iv as it is in the TM

above, it reads the character X4. Therefore, we must be set to read X4 in the PM, which
means it had better be the leftmost character in the STORE.

Here comes the beauty of this method of representation.
Suppose that while the TAPE HEAD is reading cell iv, as above, we execute the instruc

tion (X4, Y, R). This leaves us the TM situation :

i i i i i IV v vi vii v i i i ix

y

0
To maintain the correspondence, we must be able to convert the STORE in the PM to

STORE: X5 x6 X7 x8 # xi Xz x, y
This conversion can be accomplished by the PM instructions (states) :

--• ... 0>--X-4--'l)IHI ADD y)I

The X4 is stripped off the front and a Y is stuck on the back, a very easy PM operation. No
tice that both TM and PM are now set to read X5•

Let us pause for a moment to see exactly how this conversion works. On the next page
on the left is a TM that converts the input word "cat" into the word "dog" and crashes on all
other inputs. This TM uses only right TAPE HEAD moves, so we can convert it easi ly to the
PM on the left using the correspondence shown above:

472 CHAPTER 20 Post Machines

TM

START

(c,d.R)

(a .o.R)

(l.J<.R)

(J..J..R)

HALT

TAPE

�

�

PM STORE

START c a t

cat II

at II

at II d

t ll d

t ll do

do

II dog

dog

ACCEPT

Simulating a TM on a PM 473

Notice how the correspondence between TAPE and STORE is preserved with every instruc
tion. Let us return to the simulation.

Suppose instead that we had to simulate a left move; that is, we started with the original
TAPE as earlier, with TAPE HEAD reading cell iv, and we were asked to execute the instruction
(X4, Y, L) . This would leave the TAPE as

i i i i i IV v vi

TAPE: x, x2 X3 y Xs I x6 1
0

This TAPE status corresponds to the STORE contents

X3 y x5 x6 x7 Xg # XI X2
This is almost equivalent to the sequence

vi i v i i i ix

X1 XS �

ADD FRONT Y S H I FT-R IGHT CYCLICALLY

1 .

We say "almost" because we have the problem of what to do when the TM is instructed
to move left when the TAPE HEAD is at cell i. Consider the TAPE situation below:

i i l l l

I x, x2 X3 � , .
0

Here, (X1 , Y, L) causes a crash. Let us see what this instruction means when performed by
the PM simulation.

In our PM version, we would start with the STORE contents

We would then execute the sequence READ-ADD FRONT Y-SHIFT-RIGHT CYCLI
CALLY. The contents of the STORE changes as shown below:

Because we have agreed in our simulation to keep the character that is in the TM cell
being read by the TAPE HEAD to the left of the # in the PM store, the final STORE contents
make no sense. It does somewhat "represent" a crash in that it shows that the TAPE HEAD is
not reading anything, but it does not crash the PM. The PM could conceivably sti l l continue
processing the input and eventually reach ACCEPT. To be sure the PM stops processing, we
must include in every PM simulation of a leftward TM move a test to see whether the first
symbol in the STORE has become #.

474 CHAPTER 20 Post Machines

R EJ ECT

ADD FRONT a

ADD FRONT c

After we read a non-# character, we stick it back onto the front of the STORE.
Now we have a completely accurate treatment for (X, Y, l), but we realize that we have

not fully covered the (X, Y, R) case yet. Another difficulty, similar to the problem we have
just treated, arises when we want to move the TAPE HEAD right beyond the non-a 's on the
TAPE. If the TAPE status is l ike this:

x, X2 X3 � 1 . 0
and the TM wants to execute the move

(X3, Y, R)

we end up with

. . . � x, X2 y �

0
In the PM simulation of this, the STORE begins by containing

X3 # X1 X2

and after READ-ADD it contains

X1 X2 Y

which is again a meaningless formulation in our correspondence because the STORE starts
with a #. When a move right causes the # to be the first character of the STORE, we should
insert a a in front of # in the STORE to achieve

a # X1 X2 Y

which does correspond to the TM's TAPE status.
We can do this as before with a test after READ-ADD to see whether the STORE starts

with a #. If it does, instead of crashing, we replace the # and ADD FRONT a.

Simulating a TM on a PM 475

The simulation is almost complete. All branching and TAPE modification that the TM re
quires can be performed by the PM we have designed. In any case, where the TM accepts the
input string by branching to HALT, let the PM accept the string by branching to ACCEPT.

To start the PM, we must make it initially resemble the TM. The TM begins its process
ing by having the input string already on its TAPE:

I I i i i IV v

I x , I Xz X3 X4 Xs d

0
while a PM running on the same input according to the rules of PMs must start with the
STORE containing exactly the same input string:

X1 X2 X3 X4 X5

However, the STORE contents corresponding to the TM status would be

X1 X2 X3 X4 X5 #

To begin correspondence, we have to add a # to the right. Therefore, our ini tial sequence
in the PM must always be

(START)t----!lil"�I ADD #

In converting a TM into a PM we have the quandry of what to do about a TM START state
that is reentered. In the PM the in-edges will go into this ADD # instead. Now the correspon
dence is complete; all words accepted by the TM will be accepted by the PM. All input
strings that crash on one will crash on the other, and all input strings that loop forever on the
TM will do the same on the PM. •

This is a very inefficient conversion algorithm, so we shall i l lustrate it on a very small
TM.

EXAMPLE

Consider this TM:

(a,a ,R) (a,a,R)

START (.l,.l,R) HALT

(b,a,L)

This machine accepts all words starting with an a and, in so doing, it turns the input into a
string of solid a 's . When converted into a PM by the algorithm above, the resultant ma
chine is

476 CHAPTER 20 Post Machines

START

ADD a

ADD A

AF a

AF b

AF A

a ADD A

Here, we have used the abbreviations AF for ADD FRONT and SRC for SHIFT-RIGHT
CYCLICALLY. To understand the equivalence, let us explain the meaning of the READ
states:

READ 1 acts like the reenterable TM START state.

READ2 is a TAPE-HEAD-reading-� checker, as are READ5 and READ6•

Problems 477

READ3 corresponds to TM state I .

READ4 is a crash-while-moving-left checker. •

Taken together, Theorems 47 and 49 tel l us that PMs and TMs have the same power. We
may write

PM = TM

i1} PROBLEMS

Problems I through 4 refer to the following PM:

START

ACCEPT

a

ADD b

1. Trace the paths of the following input strings on this PM. At every step, name the cur-
rent state and the contents of the STORE.

(i) abab
(i i) baabba

(i i i) aaabbb
(iv) aabbbb
(v) bbabaaa

2. (i) Show that if an input has exactly one more a than b, it will crash on this PM in
state READ 1 •

(i i) Show that if an input string has exactly one more b than a , i t wi l l crash on this PM
in state READ3.

(iii) Show that if an input string has more than one more a than b or more than one
more b than a, then it will loop forever on this PM.

3. Show that the language accepted by this PM is EQUAL, all words with the same num
ber of o 's and h 's.

4. Draw a PM that accepts the language UNEQUAL, the complement of EQUAL.

5. Draw a PM that accepts the language l a"b3" } . (Hint: Use the subroutine SHIFT-RIGHT
CYCLICALLY.)

478 CHAPTER 20 Post Machines

6. Draw a PM that accepts the language EVENPALINDROME.

7. (i) Draw a PM that accepts the language ODDPALINDROME.
(ii) Draw a PM that accepts the language PALINDROME.

8. Draw a PM that accepts the language EVENPALINDROME' (the complement of
EVENPALINDROME).

9. (i) Explain why, even though a PM is deterministic, the complement of a language ac
cepted by a PM might not be accepted by any PM.

(ii) Find an example of a PM that does not accept the complementary language by re
versing ACCEPT and REJECT states.

(i i i) Find a PM that accepts exactly the same language if its ACCEPT and REJECT
states are reversed.

10. Prove that all regular languages can be accepted by some PM. (This is not hard. S imply
follow the line of argument in the proof of Theorem 28, p. 3 1 0.)

11 . (i) Convert the following TM into a PM using the algorithm of Theorem 49 (p . 470)
(make use of the subroutine SHIFT-RIGHT CYCLICALLY) :

C) (a,a,R) START _ ·

(b,b,R)(a,a,R). 8 ,,,, L) {�1--(b_,a_.R_>___,,..�c -H-A-LT--)
Run the following input strings on both the TM and PM:

(ii) a
(i i i) ab
(iv) abb
(v) What is the language accepted by the two machines?

(vi) Build a smal ler PM that accepts the same language.

12. (i) Build a PM that takes in any string of a 's and h's and leaves in its STORE the com
plement string that has the a's and h's switched.

(i i) Build a PM that takes in any string of a 's and h's and exchanges the first and last
letters and then accepts.

13. (i) Bui ld a PM that accepts the language MIDDLEA of all words that have an a as the
middle letter. (These words obviously must have odd length.)

(i i) Prove that this language is nonregular.
(i i i) Prove that this language is context-free.

14. Convert the PM built in Problem 1 3 into a TM by the algorithm in this chapter.

15. Build a PM that accepts the language MOREA (all words with more a 's than h 's) by us
ing the following algorithm:

Step I On one pass through the data, look for a pair of consecutive letters that are un
equal and cancel them both.

Step 2 Repeat the operation above until there are no letters to cancel .
Step 3 If there is an a left, accept the word.

Run this machine on the fol lowing input strings :

Problems

(i) aabb
(ii) aaabb

(iii) ababa
(iv) ababab

479

16. Build a PM that takes any input from the language defined by (a + b)* and deletes all
substrings of the fonn aaa, leaving all else in the word intact.

17. Build a PM that sorts the letters of a string. That is, if aba is fed in, the machine leaves
aab in its STORE and accepts. Also, bbbaba becomes aabbbb.

18. Build a PM that starts with any string s from (a + b)* and leaves

sblength(s)

This is the language TRAILING-COUNT we have seen before (p. 204).

19. (i) Outline a TM that takes any input string of a's and b's and runs to HALT, leaving on
its TAPE the same string reversed.

(i i) Outline a PM that does the same thing.

20. Let l be a language accepted by the PM P. Let the reverse of l be the language of all
the words in l spelled backward. Prove that there is some PM, G, that accepts transpose
(l) .

CHAPTER 21

Minsky's Theorem

� THE TWO-STACK PDA

480

We shall soon see that Turing machines are fascinating and worthy of extensive study, but
they do not seem at first glance l ike a natural development from the machines that we had
been studying before. There was a natural extension from FAs to PDAs that made it easy to
prove that all regular languages could also be accepted by PDAs. There is no such natural
connection between PDAs and TMs; that is , a TM is not a souped-up PDA with extra
gizmos.

We found that the addition of a PUSHDOWN STACK made a considerable improve
ment in the power of an FA. What would happen if we added two PUSHDOWN STACKs, or
three, or seventy?

DEFINITION

A two-pushdown stack machine, a 2PDA, is l ike a PDA except that it has two PUSH
DOWN STACKs, STACK1 and STACK2• When we wish to push a character x into a
STACK, we have to specify which stack, either PUSH 1 x or PUSH2 x. When we pop a
STACK for the purpose of branching, we must specify which STACK, either POP1 or POP2•
The function of the START, READ, ACCEPT, and REJECT states remains the same. The in
put string is placed on the same read-only INPUT TAPE. One important difference is that we
shall insist that a 2PDA be deterministic, that is , branching wil l only occur at the READ and
POP states and there wil l be at most one edge from any state for any given character. •

Because we have made 2PDAs deterministic, we cannot be certain whether they are
even as powerful as PDAs; that is , we cannot be certain that they can accept every CFL be
cause the deterministic PDAs cannot.

We shall soon see that 2PDAs are actually stronger than PDAs. They can accept all
CFLs and some languages that are non-context-free.

EXAMPLE

Consider the 2PDA on the next page:

The Two-Stack PDA 481

START

a

PUSH2 b

ACCEPT

There are many REJECT states that we have not drawn in. As far as we are concerned, it
is fine for the machine to crash when it reads or pops a character for which there i s no path.
This does not make the machine nondeterministic .

We have numbered the READ states but not the POPs because they already have nu
meric labels designating which STACK is to be popped and extra numbers would be confus
ing.

The first thing that happens to an input string is that the initial c lump of a 's is stripped
away and put into STACK 1 in a circuit involving READ 1 • Then a h takes us into a circuit in
volving READ2, where we pop an a from STACK 1 for every h we read from the INPUT
TAPE. Every time we pass through this circuit, we push a h into STACK2• When we are
done, we check to make sure that STACK 1 is now empty. If we pass this test, we know that

there were as many h's in the h-clump as a 's in the a-clump. We now enter a circuit involv
ing READ3 that reads through another clump of a 's from the input and matches them against
the number of h's we have put into STACK2 in the previous circuit. If both the INPUT TAPE
and STACK2 become empty at the same time, then there were as many a 's at the end of the
TAPE as h's in STACK2• This would mean that the whole initial input string was of the form
anh"a".

We can check this by processing aahhaa as follows:

TAPE STATE STACK1 STACK2

aabbaa START fl fl
abbaa READI fl fl
abbaa PUSH 1 a a fl
bbaa READ I a fl
bbaa PUSH 1 a aa fl

482 CHAPTER 21 Minsky's Theorem

TAPE STATE

baa READ 1

baa POPI

baa PUSH2 b

aa READ2

aa POP I

aa PUSH2 b

a READ2

a POP I

a POP2

A READ3

A POP2

A READ3

A POP2

A ACCEPT

STACK1 STACK2

aa A

a A

a b

a b

A b

A bb

A bb

A bb

A b

A b

A A

A A

A A

A A

•

So, we see that a 2PDA can accept one language that a PDA cannot. Are there lan
guages that a 2PDA cannot accept? Is a 3PDA stronger? Is a nondeterministic 2PDA
stronger? Which is stronger, a 2PDA or a PM? The subject could, at this point, become very
confusing. However, many of these questions are settled by a theorem of Marvin Minsky
(1 96 1) .

1} JUST ANOTHER TM

THEOREM 50

2PDA = TM

In other words, any language accepted by a 2PDA can be accepted by some TM and any lan
guage accepted by a TM can be accepted by some 2PDA.

PROOF

In the first part of this proof, we shal l show that if the language l can be accepted by some
2PDA, then we can construct a TM that wi l l also accept it. There may be several 2PDAs that
accept l, so we fix our attention on one of them, call it P.

This demonstration wi l l , of course, be by constructive algorithm. We shal l show how to
construct a TM that paral lels the actions of the 2PDA. (We have also used the words "corre
sponds," "simulates," "dupl icates," and "emulates" and the phrase or "processes exactly the
same way." These words are not technical ly different.)

The 2PDA has three locations where it stores information: the INPUT TAPE, STACK1 ,

Just Another TM 483

and STACKr The TM we build has only one information storage location, the TAPE. There
fore, we must put on the TAPE the information found in all three 2PDA locations . There is
other information that is carried in the knowledge of what state we are in , but that will corre
spond easily between the 2PDA and the TM.

Suppose at some stage in the process the 2PDA has this status:

TAPE
STACK1
STACK2

X1 X2 X3 X4
YI y2 Y3 Y4 Y5
Z1 Z2

where the X's, Y's, and Z's are letters from the input and stack alphabets of the 2PDA. Our
definition of 2PDAs was sketchy and did not mention whether each STACK had its own al
phabet or whether there was some other rule. Because a STACK does not have to use all of
the characters in its STACK alphabet, there is no real difference, so let us assume that the X's
are from l and the Y' s and Z's from f.

In our setup, we encode these three strings on the TM TAPE as follows:

Step I Assume the characters # and $ are not used by the 2PDA (if they are, find other
special symbols).

Step 2 In the first section of the TM TAPE, we store the input string. Initially, we insert a
ii into cell i, moving the data unchanged up the TAPE and later, as the letters of
input are read by the 2PDA, we change them one by one into ii 's on the TM
TAPE. The status of the TM TAPE corresponding to the current status of the 2PDA
TAPE as described above after two input letters are read is

0
In what we have pictured above, two letters from the input string, those that were in cell

i i and cell i i i , have been read by the 2PDA and thus converted into ii 's on the TM. Because
the number of letters in the input string cannot be increased (a 2PDA can read its TAPE but
not write on it), we can put a permanent marker "#" on the TM TAPE at the end of the input
string before we begin running. Throughout our processing, the marker wi l l stay exactly
where it is. This # wil l be the home base for the TAPE HEAD. After simulating any action of
the 2PDA, the TM TAPE HEAD will return to the # before beginning i ts next operation.

In our model, the TM instructions that simulate the operation of the 2PDA state :

b

State Y

484 CHAPTER 21 Minsky's Theorem

must accomplish the following chores:

1. Move the TAPE HEAD to the left to find the rightmost of the front a 's .

2. Bounce back to the right to find the next input letter to be read; in other words, scan
right for the first non-a.

3. If this character is #, the input has been exhausted and we go to state Z otherwise.

4. Change this letter into a a and back up one space to the left (so that we do not acciden
tally step on the # without knowing it).

5. Branch according to what was read; if it was an a , take an edge to the simulation of
state X, if a b, take an edge to state Y.

6. Before continuing the processing, return to the TAPE HEAD to # by moving right until it
is encountered.

In TM notation, this looks l ike this :

(a .h .# ; = ./.)

State X s imu lation
(a .h .:i ; =.R)

State) ' s imulation

Notice that we are making use of the multiple instruction notation defined in Chapter 20
on p. 468 .

(p, q, r, s; = , R) stands for (p, p, R), (q, q, R), (r, r, R), (s, s, R)

In state 1 , we are looking for the a 's at the beginning of the TAPE. We get to state 2
when we have found one and bounced off to the right, either onto the first letter of the re
mainder of the string or else back onto #. If the string was empty when we got to read it, we
follow the edge from state 2 to state 5 . The edge from state 5 bounces us off the a that is to
the left of # and leaves the TAPE HEAD reading the # as we want.

The reason we make such a fuss about knowing where we leave the TAPE HEAD is not
because it matters in the simulation of any part icular step, but because i t helps us g lue to
gether the simulated steps. This is somewhat l ike building a house and returning the ham
mer to the tool shed after driv ing in each nai l . It is not effic ient, but we never lose the
hammer.

Just Another TM 485

Step 3 The contents of the two PUSHDOWN STACKS wil l appear to the right of the #
on the TM TAPE. We place the contents of STACK 1 on the TAPE, then the $
marker, and then the contents of STACKr The TAPE would then look l ike this :

0
To simulate a POP1 instruction, we move the TAPE HEAD from the # one cell to the right,

branch on what we read, and return the TAPE HEAD to the same cell it just read, and along
each branch we run the TM subprogram DELETE. If we deleted first, we would not remem
ber what the character used to be. After simulating the POP1 , we return the TAPE HEAD safely
to point to the # again . The PM state:

becomes

(any, =,L)

(any,=,L)

(any, =,L)

Here, we have used the label (any, = , l) to mean "whatever is read, write the same thing,"
and move the TAPE HEAD to the left. We should also note that popping an empty STACK1 is
the same as reading the $ right after the #.

To simulate a PUSH 1 X, we move the TAPE HEAD one cell to the right and run the TM
subprogram INSERT X. We then return the TAPE HEAD to point to # by moving two cells to
the left :

_,,_r'\ (#, #, R) I I (any,=,L) Q (any,=,L) �---;i)l�: I NSERT X:)lo . •)I

To simulate a POP2, we advance the TAPE HEAD up the TAPE to the cell one past the $.
This we read and branch and return to and delete, as with POP1 • Again, we return the TAPE
HEAD to the #-cell .

486 CHAPTER 21 Minsky's Theorem

becomes

(a,a,L)

(b,b,Ll

(c,c,L)

(any non-#,=,Ll

($, $,Rl

(any non-#,=,Ll

(any, =,Ll

(any non-#, =,L)

(any,=,L)
DELETE 1---�

(any non-#, =,L)

(any, =,Ll

The label (any non-$, = , R) means that we move the TAPE HEAD right without changing
the contents of the TAPE, and we stay in the same state until we read the $. The label (any
non-#, = , L) has an analogous meaning. It takes half the subprogram to return the TAPE
HEAD.

To simulate a PUSH2 X, we advance the TAPE HEAD one cell past the $ and run the TM
subprogram INSERT X. We then return the TAPE HEAD to its usual position.

becomes

(any non-$, =, Rl (any non-#, = ,L l

($,$,R) (any,=, Ll
...---- I N S ERT X

When the 2PDA branches to an ACCEPT state, we enter the TM HALT state and accept the
input string.

The individual parts fit together perfectly because each component finds the TAPE HEAD
pointing to # and leaves it in the same place.

End of steps.

So far, we have proven only half of Minsky 's theorem. We have shown that TMs can do
everything 2PDAs can do. We stil l have to show that any language accepted by a TM can be
accepted by some 2PDA.

To make the proof of this section easier, we shall prove that any language accepted by a

Just Another TM 487

PM can be accepted by some 2PDA. By Theorem 49 (p. 470), this implies that 2PDAs can
do anything TMs can do and so it is enough to prove our result.

These two machines are already considerably closer to each other than TMs and
2PDAs, because both 2PDAs and PMs operate on the ends of storage locations with in
structions inside states. I n TMs, the instructions are on the edges; a TAPE is much more
complex to access, because we can read and write in its middle. We shal l show how
STACK 1 (on the 2PDA) can act in as versatile a manner as the STORE (on the PM) with
the help of her brother STACK2 •

The PM starts with the input string already in the STORE, so we must transfer the input
string from the TAPE of the 2PDA into STACK 1 • We do this as follows:

START

We took the letters from the TAPE and put them first in STACK2• But because of the na
ture of a PUSHDOWN STACK, the string was reversed. If the input was initial ly aahh, what
can be read from STACK2 is hbaa. When it is transferred again to STACK 1 , the input string
is reversed once more to become aahh as it was on the TAPE so that POP1 now has an a as
the first letter. The TAPE is now empty, and so we never refer to it again.

The two states with which a PM operates on its STORE are READ and ADD. The
READ is a branch instruction and completely corresponds to the 2PDA instruction POP1 by
eliminating the leftmost character and branching accordingly.

The ADD instruction is not so directly correspondent to any 2PDA instruction, because
PUSH1 introduces a new character on the left of the string in STACK 1 , whereas ADD intro
duces a new character on the right of the string in the PM 's STORE.

We can, however, simulate the action of ADD X with the following set of 2PDA instruc
tions:

Here, we first empty STACK 1 into STACK2 (in STACK2 the contents appear backward),
then we insert the character X in STACK 1 , and then we read back the string from STACK2
into STACK1 (it is back in correct order now) . The net result is that we have an additional X
on the right of the string in STACK 1 , which means at the bottom of the stack.

488 CHAPTER 21 Minsky's Theorem

STACK 1 STACK2

STACK2 is used only to initialize STACK 1 and to simulate the ADD instruction and for
no other purpose.

The only other states a PM has are REJECT and ACCEPT, and those stay completely
the same in the 2PDA. Therefore, we have finished describing this conversion process. We
can completely simulate a PM on a 2PDA. Because we can simulate a TM on a PM, we can
conclude that we can simulate a TM on a 2PDA.

This completes the proof of Minsky 's theorem. •

To i l lustrate the action of the algorithms in the proof, we shall now present the manda
tory examples of a 2PDA converted into a TM and a PM converted into a 2PDA. In both
cases, the conversion does not change the language accepted by the machine.

EXAMPLE

No higher purpose would be served by constructing a 3000-state TM corresponding to a
complicated 2PDA, so we choose a very simple 2PDA and claim that it is pedagogical ly suf
ficient.

One of the simplest 2PDAs is shown below:

START

a

ACCEPT

This machine accepts all words beginning with a and crashes on al l words beginning
with b because POP2 cannot produce an a.

Many simple TMs can accept this language, but to know this, we must understand the
language. If we automatically follow the algorithm described in the proof of Theorem 50. we
then produce a TM that must accept the same language as this 2PDA whether we know how
to characterize the language by some simple English sentence or not. That is the whole point
of "proof by constructive algorithm."

The TM we must build is shown below:

Just Another TM 489

(a,b;=,Rl (a,b,#;=,L)

START

HALT

(any,=,L)

(a, b,!J.;=,Rl

(any non-#, =,L)

DELETE

(any non-$, =,R) (#, #,R)

....,__--i I NSERT b
(any, =,L) __ _ ___.

The pleasure of running strings on this machine is reserved for Problem 1 6. •

EXAMPLE

Consider the following PM:

START

a A b

ADD a ACCEPT ADD b

490 CHAPTER 21 Minsky's Theorem

In the problem section of the last chapter, this was seen to accept the language EQUAL,
of all strings with the same total number of a's and b's (cf. p. 477) .

When we convert this into a 2PDA by the algorithm described in the proof of Minsky 's
theorem, we obtain the following:

START

PUSH 1 a

PUSH 1 b

Tracing words through this machine is left to the Problems section. •

If a pushdown automaton with two STACKs is already as powerful as a TM, it stands to
reason that a PDA with three STACKs will be even more powerful than a TM and a PDA with
four STACKs even more powerful yet, and so on. This chain of reasoning is certainly true for
ocean liners, but it runs aground for PDAs. None of these is any more powerful than a TM.

Just Another TM 491

THEOREM 51

Any language accepted by a PDA with n STACKs (where n is 2 or more), called an n PDA,

can also be accepted by some TM. In power we have

nPDA = TM if n 2: 2

PROOF

We shall sketch very quickly how the action of a 3PDA can be simulated by a TM as an il
lustration of the general idea.

Suppose that we have a 3PDA that is running on a certain input string. In the middle of
the process, we have some information on the INPUT TAPE and in the STACKs. Suppose
the status is

TAPE
STACK ,
STACK2
STACK3

w1 w2 w3 w4
X 1 X2

Y 1 Y2 Y3 Y4 Y5
z I Zz Z3

We want to represent all of this on the TAPE of the TM as

Instead of inventing new characters , we let the kth STACK be marked by the starting symbol
#k. The operation of the conversion is so obvious that anyone who requires a further explana
tion will not understand it when it is presented.

So, a TM can accept anything that an nPDA can. Obviously, an nPDA can accept any
thing a 2PDA can , which is anything a TM can.

Therefore, in power

nPDA = TM for n 2: 2 •

Once we reach the level of a TM, it is hard to go farther. There is good reason to believe
that it is impossible to go farther, but that is a discussion for Chapter 25.

Symbolical ly, we can represent the power comparison of our various mathematical
models of machines as follows :

FA = TG = NFA < DPDA < PDA < 2PDA = nPDA = PM = TM

(Note that, as of this point, we have not yet proven that 2PDA is definitely stronger than
PDA because a PDA is nondeterministic, but we shall do so soon.)

The underlying structure of this book i s now finally revealed:

PART I

PART I I

PART I I I

FA

PDA

TM

0 PDA

I PDA

2 PDA

The machines in our highest class are al l deterministic. Perhaps a nondeterministic nPDA

492 CHAPTER 21 Minsky's Theorem

(NnPDA) , a nondeterministic Post machine (NPM), or a nondeterministic Turing machine
(NTM) would be even stronger. In the next chapter, we shall see that this is not the case. All
these nondeterministic machines are only equivalent in power to the TM, not stronger. We
have gone about as far as we can go.

rt PROBLEMS

Consider the following 2PDA:

START

l. Trace the execution of these input strings on this machine.

(i) aabb
(ii) babab

2. Prove that the language accepted by this 2PDA is the language EQUAL.

3. Draw a 3PDA that accepts the language { anb"anbn } .

4. Draw a PM that accepts the language { anb"a"b" } .

5. Draw a 2PDA that accepts the language { a11b11a11b11 } .

6. Let us use the alphabet I = l a b c d) . Build a 3PDA that accepts the language
I a11b11c11d11 } .

7. Outline a 2PDA that accepts the language defined in the previous problem.

Let us define the language VERYEQUAL over the alphabet I = I a b c I as all strings
that have as many total a 's as total b 's as total e 's (see p. 375) :

VERYEQUAL = { abc acb bac bca cab cha aabbcc aabcbc . . . }

8. Draw a TM that accepts VERYEQUAL.

9. Draw a PM that accepts VERYEQUAL.

10. (i) Draw a 3PDA that accepts VERYEQUAL.
(i i) Draw a 2PDA that accepts VERYEQUAL.

11. Draw a 2PDA that accepts the language EVEN-EVEN and keeps at most two letters in
its STACKs.

Problems 493

12. Draw a 2PDA that accepts M IDDLEA (see p. 478) .

13. Outline a 2PDA that accepts PALINDROME.

14. Draw a 2PDA that accepts TRAILING-COUNT. (p. 204)

15. Draw a 2PDA that accepts MOREA. (p. 205)

16. On the TM that was formed from the 2PDA in the example on p. 489, trace the execu
tion of the following input strings:

(i) abb
(ii) baa

17. On the 2PDA that was formed from the PM in the example on p. 490, trace the execu
tion of the following input strings:

(i) abba
(ii) babab

18. (i) Draw a 3PDA to accept the language I anb2ncn I over the alphabet L = I a h c } .
(i i) Draw a 2PDA to accept this language.

(i i i) Draw a deterministic PDA that accepts that language.

19. If L is a language accepted by a 2PDA, prove that TRANSPOSE(L) (p. 9 1) is also a lan
guage accepted by 2PDA.

20. (i) Without referring to the material in any other chapter, show that any language that
can be accepted by a 3PDA can be accepted by a 2PDA.

(ii) Generalize.

CHAPTER 22

Variations
on the TM

i THE MOVE-IN-STATE MACHINE

494

Turing machines can be drawn using different pictorial representations. Let us consider the
diagram below, which looks like a cross between a Mealy and a Moore machine:

HALT

a /a,b / b

a /x

START
l!R

a / a, b / b
b /y

a / a, b / b

x /a,y / b

This is a new way of writing the program part of a TM; we still use the same old TAPE
and TAPE HEAD. In this picture the edges are labeled as in a Mealy machine with input-slash
output instructions. An edge labeled plq says, "If the TAPE HEAD is reading a p, change it to a
q and follow this arrow to the next state." The edge itself does not indicate in which direction
the TAPE HEAD is to be moved. The instructions for moving the TAPE HEAD are found once
we enter the next state. Inside the circles denoting states, we have labels that are name-slash
move indicators. For example, 4/L says, "You have entered state 4; please move the TAPE
HEAD one cell to the left." When we commence running the machine in the START state, we
do not execute its move instruction. If we reenter the start state, then we follow its move in
struction .

The Move-in-State Machine 495

Let us call machines drawn in this fashion move-in-state machines. After analyzing the
preceding machine, we shall prove that move-in-state machines have the same power as TMs
as we originally defined them.

The action of the preceding move-in-state machine drawn is to start with any word on
its TAPE, leave a space, and make an exact copy of the word on the TAPE. If we start with the
word w, we end up with the string wLiw:

baab becomes baabLibaab
a
Li . . .

becomes
becomes

a Lia
Li . . .

The algorithm is as follows: We start in state I . If we read an a, we take the high road:
state 2-state 3 -state 4-state I . If we read a b, we take the low road: state 5-state 6--state
4-state 1 . Suppose that we read an a. This is changed into an x as we travel along the edge
labeled alx to state 2, where the TAPE HEAD is moved right. In state 2, we now skip over al l
the a's and b 's remaining in w, each time returning to state 2 and moving the TAPE HEAD
right. When we reach the first Li after the end of w, we take the edge labeled Li/Li to state 3.
This edge leaves the Li undisturbed. The TAPE HEAD is moved by state 3 to the right again . In
state 3, we read through all the letters we have already copied into the second version of w
until we read the first Li. We then take the Li/a edge to state 4. Along the edge, we change the
Li into an a (this is the letter we read in state 1) . State 4 moves the TAPE HEAD left, reading
through all the a's and b's of the second copy of w, then through the Li, and then through the
a 's and b 's of the part of the original w that has not already been copied.

Finally, we reach the x with which we marked the letter a that we were copying. This
we change back to an a on the edge labeled x/a, y/b going to state 1 . State 1 tel ls us to move
the TAPE HEAD to the right, so we are ready to copy the next letter of w. If this letter is an a,
we take the high road again. If it is a b, we change it to a y and take the route state 5 - state 6
to find the blank that we must change to a b in the second copy. Then in state 4, we move the
TAPE HEAD back down to the y and change it back to a b and return to state 1 . When we have
finished copying all of w, state 1 reads a Li and we halt.

The following is the trace of the operation of this machine on the input string baa:

5 5 5 6 4 4 - - - - - -
12.aa yqa yaq yaa� yaa!J.� yaa�h yaq/lh

4 4 I 2 2 3 - - - - - -
yqa!J.b)'_aa!J.h hqa/lh hxg_IJ.h hxa�h hxa!J.11.

3 4 4 4 4 I - - - - - -
hxa!J.b� bxa!J.fla hxaf!ba hxq/J.ha h,x.a!J.ha hag_IJ.ha

2 3 3 3 4 4 - - - - - -
haxf!ba bax!J.12.a bax!J.bq bax!J.baf! bax!J.bqa bax!J.11.aa

4 4 I - - - -
baxt!baa ba,x.!J.baa baat!baa HALT

It is not obvious that move-in-state machines have the same power as TMs. Why is that?
Because move-in-state machines are limited to always making the same TAPE HEAD move
every time we enter a particular state, whereas with TMs we can enter a certain state, hav ing
moved the TAPE HEAD left or right. For example, the TM situations:

(h. X. /.)

� �

496 CHAPTER 22 Variations on the TM

and

cannot simply be converted into move-in-state TMs by adding TAPE HEAD moving instruc
tions into state 9. However, we can get around this difficulty in a way analogous to the
method we used for converting Mealy into Moore machines. The next two theorems prove

Move-in-state = TM

THEOREM 52

For every move-in-state machine M, there is a TM, T, which accepts the same language.
That is, if M crashes on the input w, T crashes on the input w. If M loops on the input w, T
loops on the input w. If M accepts the input w, then T does too. We require even more. After
halting the two machines, leave exactly the same scattered symbols on the TAPE.

PROOF

The proof will be by constructive algorithm.
This conversion algorithm is simple. One by one, in any order, let us take every edge in

M and change its labels. If the edge leads to a state that tel ls the TAPE HEAD to move right,
change its labels from X!Y to (X, Y, R). If the edge leads to a state that tel ls the TAPE HEAD to
move left, change its labels from XIY to (X, Y, L). To make this description complete, we
should say that any edge going into the HALT state should be given the TAPE HEAD move in
struction, R.

When all edge labels have been changed, erase the move instructions from inside the
states. For example,

becomes

a !H � hl.!>. . .!>.lh
___ _,)o O'""'· o(-----

{.!>., h. I.)

(h . .!>..f.) (a . H.L) ,-:\ ---.... ���l""'· E-----
The resulting diagram is a TM in normal form that operates exactly as the move-in-state

machine did. The trace of a given input on the move-in-state machine is the same as the trace
of the same input on the converted TM. •

EXAMPLE

The move-in-state machine above that copies input words will be converted by the algorithm
given in this proof into the following TM:

The Move-in-State Machine

(t.,t.,R)
HALT

THEOREM 53

(a, b;=,Rl

(a,X,Rl

START
1

(b, Y,RJ

(a, b;=,RJ

(l>,l>,RJ

(Y, b,R)
(X,a,R)

(l>,l>,RJ

497

(a,b;=,Rl

(a, b,l>;=,L)

(a,b;=,Rl

For every TM T, there is a move-in-state machine M that operates in exactly the same way
on all inputs-crashing, looping, or accepting. Furthermore, the move-in-state machine will
always leave the same remnants on the TAPE that the TM does.

PROOF

The proof will be by constructive algorithm.
We cannot simply "do the reverse" of the algorithm in the last proof. If we try to move

the TAPE HEAD instructions from the edges into the states themselves, we sometimes succeed
and sometimes fail, depending on whether all the edges entering a given state have the same
TAPE HEAD direction or not. This is a case of deja vu. We faced the same difficulty when
converting Mealy machines into Moore machines-and the solution is the same. If edges
with different TAPE HEAD movement directions feed into the same state , we must make two
copies of that state, one labeled move R and one labeled move L, each with a complete set of
the same exit edges the original state had. The incoming edges wi l l then be directed into
whichever state contains the appropriate move instruction.

For example,

becomes

498 CHAPTER 22 Variations on the TM

al A

hi.).

.l!X

Some states become twins; some remain single. State by state we make this conversion
until the TM is changed into a move-in-state machine that acts on inputs identically to the
way the old TM used to.

If the START state has to split, only one of its clones can still be called START-it
does not matter which, because the edges coming out of both are the same.

If a state that gets split loops back to itself, we must be careful to which of its clones the
loops go. It all depends on what was printed on the loop edge. A loop labeled with an R will
become a loop on the R twin and an edge from the l twin. The symmetric thing happens to a
TM edge with an l move instruction.

This process wil l always convert a TM into an equivalent move-in-state machine, equiv-
alent both in the sense of language-acceptor and in the sense of TAPE-manipulator. •

EXAMPLE

Let us consider the following purely random TM:

(a .h.l)

(.l . .l ,L) (l>.a .R)

C STA1 RT Qi------';,-� (.l . .l,R) ;, c HALT)
-- ____ ;:- (I>. 1>.R) � __ __ 3 __ _

(a ,X.R)

When the algorithm of the preceding theorem is appl ied to the states of this TM in or
der, we obtain the following conversion:

.ll.).

START llL

alb

hla

HALT
3

Notice that HALT 3 is the same as writing HALT 3/R, but if the edge entering HALT
moved left, we would need a different state because input might then crash while going into
the HALT state. •

The Stay-Option Machine 499

We have been careful to note that when we combine the last two theorems into one
statement

TM = move-in-state machine

we are not merely talking about their power as language-recognizers, but as transducers as
wel l . Not only do the same words run to HALT on the corresponding machines, but also they
leave identical outputs on the input TAPE. The importance of this point will be made clear
later.

y THE STAY-OPTION MACHINE

Another variation on the definition of the TM that is sometimes encountered is the "stay
option" machine. This is a machine exactly like a TM except that along any edge we have
the option of not moving the TAPE HEAD at all - the stay option. Instead of writing l or R as
directions to the TAPE HEAD, we can also write S for "stay put."

On the surface, this seems like a ridiculous thing to do, because it causes us to read next
the character that we have just this instant printed. However, the correct use of the stay op
tion is to let us change states without disturbing the TAPE or TAPE HEAD, as in the example
below:

We stay in state 3 skipping over h's until we reach an a or a A. If we reach an a, we
jump to state 7 and there decide what to do. If we reach a A, we go to state 4, where more
processing will continue. In either case, we are reading the first of the new characters.

The question arises, "Does this stay option give us any extra real power, or is it merely a
method of alternate notation?" Naturally, we shall once again prove that the stay option adds
nothing to the power of the already omnipotent TM.

EXAMPLE

We have had some awkward moments in programming TMs, especially when we wanted to
leave the TAPE HEAD pointing to a special symbol such as a * in cell i or a # in between
words. We used to have to write something like

(a .b ; = . /.)

State 7 backs down the TAPE looking for the * . State 8 finds it, but the TAPE HEAD bounces
off to the right. We then have to proceed to state 9 to leave the TAPE HEAD pointing to the * .

500 CHAPTER 22 Variations on the TM

With the stay option this becomes easier:

(a .h ; = . /,)

rO (* . * .S) (;'\ --+4--v-------0
DEFINITION

Let us call a TM with a stay option a stay-option machine.

•

•

We now show that the stay option, although it may be useful in shortening programs,
adds no new power to the TM.

THEOREM 54

stay-option machine = TM

In other words, for any stay-option machine there is some TM that acts the same way on all
inputs, looping, crashing, or accepting while leaving the same data on the TAPE; and vice
versa.

PROOF

Because a TM is only a stay-option machine in which we have not bothered to use the stay op
tion, it is clear that for any TM there is a stay-option machine that does the same thing-the
TM itself. What remains for us to show is that if the stay option is ever used, we can replace it
with other TM programming and so convert a stay-option machine into an equivalent TM.

To do this , we simply follow this replacement rule. Change any edge

into

introducing a new state 3 ' . It is patently obv ious that this does not change the processing of
any input string at any stage.

When all stay-option edges have been eliminated (even loops) , what remains is the de-
sired regular TM. •

Now that we have shown that the stay-option is harmless, we shall feel free to use it in
the future when it is convenient.

EXAMPLE

Here, we shall build a simple machine to do some subtraction. It will start with a string of
the form #(0 + l)* on its TAPE. This is a # in cell i followed by some binary number. The job

The Stay-Option Machine 501

of this stay-option machine is to subtract 1 from this number and leave the answer on the
TAPE. This is a binary decrementer.

The basic algorithm is to change all the rightmost O 's to I 's and the rightmost 1 to 0.
The only problem with this is that if the input is zero, that is, of the form #0*, then the algo
rithm gives the wrong answer because we have no representation for negative numbers.

The machine below illustrates one way of handling this situation :

(#,0, l ; =,R) 0 (START)
(0, 1 , L) { l ,.:i,R)

{ 1 ,0,S) c!l-
(.:i,.:i.L) ;i.

1 (#,#,R) ;o 2 (O,.:i; =,R) ;o (HALT) ----
What happens with this machine is

START :/t 10 1 00 1 000
Becomes state I # 1 0 1 00 1 000�
Becomes state 1 # 1 0 1 0011 1 1
Becomes state 2 # 1 0 1 00Q l I 1

If we are in state 2 and we are reading a 0, we must have arrived there by the edge
(I , 0, S), so in these cases we proceed directly to (0, 0, R) HALT.

If, on the other hand, we arrive in state 2 from the edge (#, #, R), it means we started
with zero, #0*, on the TAPE:

START :/tOOOO
Becomes state I #0000�
Becomes state 1 =It 1 1 1 1
Becomes state 2 #11 1 1
Becomes state 2 #AAAA�

In state 2, we erase all these mistaken 1 's . If the input was zero, this machine leaves an
error message in the form of the single character #.

In this machine, there is only one stay-option edge. Employing the algorithm from the
preceding theorem, we leave the state I - state 2 edge (#, #, R) alone, but change the state
I -state 2 edge (I , 0, S) as follows :

(#,0, 1 ; =, R)
(0, 1 , L) (U, R)

START (.:i,.:i,L) (0,.:i; =.R) HALT

•

There are some other minor variations of TMs that we could investigate. One is to allow
the TAPE HEAD to move more than one cell at a time such as

(X, Y, 3R) = (read X, write Y, move 3 cells to the right)

This is equivalent to

502 CHAPTER 22 Variations on the TM

(X. Y.R)

Some other instructions of this ilk are

(X, Y, 2l)

(any; = ,R) (any; =,R)

or (X, Y, 33R)

I t is c lear that these variations do not change the power of a TM as acceptor or trans
ducer; that is, the same input strings are accepted and the stuff they leave on the TAPE is the
same. This is, in fact, so obvious that we shall not waste a theorem on it.

1} THE k· TRACK TM

In addition to variations involving the move instructions, it is also possible to have variations
on the TAPE structure. The first of these we shall consider is the possibility of having more
than one TAPE.

The picture below shows the possibility of having four TAPES stacked one on top of the
other and one TAPE HEAD reading them all at once:

TAPE I

TAPE 2

TAPE 3

TAPE 4

a

A

b

h

b

A

A

h

b a a

A A A

A a A

a h b

0
In this i l lustration, the TAPE HEAD is reading cell iii of TAPE l , cel l iii of TAPE 2, cell iii

of TAPE 3 , and cell i i i of TAPE 4 at once. The TAPE HEAD can write something new in each of
these cells and then move to the left to read the four cell ii 's or to the right to read the four
cell iv 's.

DEFINITION

A k-track TM, or kTM, has k normal TM TAPES and one TAPE HEAD that reads correspond
ing cells on all TAPES simultaneously and can write on all TAPES at once. There is also an al
phabet of input letters I and an alphabet of TAPE characters r. The input strings are taken
from I, while the TAPE HEAD can write any character from r.

There is a program of instructions for the TAPE HEAD consisting of a START state,
HALT states, other states, and edges between states labeled (p, t)

q, u M r, v

�
where p, q, r, s, t, u, v, w, . . . are all in r and M is R or L, meaning that if what is read
from TAPE 1 is p, from TAPE 2 is q, from TAPE 3 is r, from TAPE 4 is s, and so on, then what

The k· Track TM 503

will be written on TAPE l is t, on TAPE 2 is u, on TAPE 3 is v, on TAPE 4 is w , and so on. The
TAPE HEAD will be moved in the direction indicated by M.

To operate a kTM, we start with an input string from I* on TAPE I starting in cell i, and
if we reach HALT, we say that the string is in the language of the kTM. We also say that the
content of all the TAPES is the output produced by this input string. •

This is a very useful modification of a TM. In many applications, it allows a natural cor
respondence between the machine algorithm and traditional hand calculation, as we can see
from the examples below. Notice that we use the words track and TAPE interchangeably for a
kTM.

EXAMPLE

When a human adds a pair of numbers in base I O, the algorithm followed is usual ly to line
them up in two rows right-adjusted, find the right-hand column, and perform the addition
column by column moving left, remembering whether there are carries and stopping when
the last column has been added.

The following 3TM performs this algorithm exactly as we were taught in third grade except
that it uses a column of $'s to mark the left edge. Track 1 and track 2 contain the numbers to be
added and track 3 is all blanks. The total will be found on track 3 when we reach HALT.

(any non -' =)
any non - � . = N
any =

START

(0 00. 0-'· l(0 0 l . l -' · 2
c · l l. I -' · 3

(0. 0 1) (0. 0 1) (0. 0 1) o. 0 l . 1 2. 2 -'· 0 -'· l -'· 2
c l

'J (l l 1) (I . l 'J o. 0 I 2. 2 -'· I 2 -'· 3

1.)
(2 2 1) 8. 8

-'· 0 (2 2 'J 9. 9
-'· l

(0. 0) (1 .
I) (I . I) (2. 2) 9. 9 /. 8 . 8 /. 9. 9 /. 7 . 7 I. • • • -'· 0 -' · 0 -'· I -'· 0

The loop from no-carry back to itself takes care of all combinations : (u u)
v v l

d u + v

504 CHAPTER 22 Variations on the TM

where u + v is less than I O.

The edges from no-carry to owe-carry are labeled

where u + v ;o:. 10.

(u u)
v v l
Ii u + v - l O

The loop from owe-carry back to itself is

where u + v ;o:. 9.

(u u)
v v L
Ii u + v - 9

The edge from owe-carry to no-carry is

(: u u + v +

v

u

where u + v ::;;; 8 .
We trace this input on this 3TM:

START START START
$ 4 2 9 $ 4 2 9 $ 4 2 9
$ 9 3 3 - $ 9 3 3 - $ 9 3 3 -

i A A A $ � il A $ A � A

No-carry Owe-carry No-carry
$ 4 2 9 $ 4 2 9 $ 4 2 9

- $ 9 3 3 - $ 9 3 3 - $ 9 3 3 -

$ A A � $ A � 2 $ � 6 2

START START
$ 4 2 9 $ 4 2 9 A
$ 9 3 3 - $ 9 3 3 A
$ A A � $ A A A �

Owe-carry HALT
$ 4 2 9 A 4 2 9
$ 9 3 3 - A 9 3 3
i 3 6 2 J 6 2

The correct total, 1 362, is found on TAPE 3 only. The data left on the other TAPES is not
part of the answer. We could have been erasing TAPE I and TAPE 2 along the way, but this
way is c loser to what humans do.

We could have started with both input numbers on TAPE I and let the machine transfer
the second number to TAPE 2 and put the $'s in the cell i 's. These chores are not difficult. •

Considering TMs as transducers has not seemed very important to us before. In a PDA,
we never considered the possibility that what was left in the STACK when the input was ac
cepted had any deep significance. Usually, it was nothing. In our early TM examples, the
TAPE often ended up containing random garbage. But, as the example above shows, the im
portance of the machine might not be simply that the input was accepted, but what output
was generated in the process. This is a theme that will become increasingly important to us
as we approach the back cover.

We should now have a theorem that says that kTMs have no greater power than TMs do
as either acceptors or transducers. This is true, but before we prove it, we must discuss what
it means. As we have defined it, a kTM starts with a single line of input just as a TM does.
However, the output from a kTM is presumed to be the entire status of all k TAPES. How can
a TM possibly hope to have output of this form? We shall adapt a convention of correspon
dence that employs the interlacing cells on one TAPE to simulate the multipl icity of kTM
tracks.

The k-Track TM 505

We say that the 3TM TAPE status

a d g

h e h

c f i

corresponds to the one-TAPE TM status

a h c d h

This is an i l lustration for three tracks, but the principle of correspondence we are using
applies equally well to k-tracks.

We can now prove our equality theorem.

THEOREM 55

Part I Given any TM and any k, there is a kTM that acts on all inputs exactly as the
TM does (that means either loops, crashes, or leaves a corresponding output).

Part 2 Given any kTM for any k, there is a TM that acts on all inputs exactly as the
kTM does (that means loops, crashes, or leaves a corresponding output).

In other words, as an acceptor or transducer,

TM = kTM

PROOF

Proof of Part 1
One might think that Part I of this proof is trivial . All we have to do is leave TAPE 2,

TAPE 3 , . . . , TAPE k always blank and change every TM edge label from (X, Y, Z) in the
original TM into

The end result on TAPE I will be exactly the same as on the original TM. This would be fine
except that under our definition of correspondence

a h (' d
d d d d
d d d d

does not correspond to the TM TAPE status

506 CHAPTER 22 Variations on the TM

I a I b c I d

but rather to the TM TAPE status

I a I A A b A A I c A A d A A

To have a kTM properly correspond to a TM once we have adopted our definition of
correspondence, we must convert the answer TAPE on the kTM from

a b c d . . .
A A A A . .
A A A A . .

into this form

The subroutine to do this begins as follows:

c START

l
(7 :) .l , .l

This notation should be transparent. The arrow from "any" to " = " means that into the
location of the " = " we shall put whatever symbol occupied the location of the "any."

We now arrive at

a A A d

A b A A

A A c A

We need to write a variation of the DELETE subroutine that wil l delete a character from one
row without changing the other two rows.

To do this, we start with the subprogram DELETE exactly as we already constructed it
in Chapter 19 and we make k (in this case, 3) offshoots of it. In the first, we replace every
edge label as follows:

The k-Track TM 507

{X, Y, Z)

becomes (X, y)any, = Z
any, =

This then will be the subroutine that deletes a character from the first row, leaving the other
two rows the same; call it DELETE-FROM-ROW- I . If on the TAPE

I 4 7 1 0 1 3 . .

2 5 8 1 1

3 6 9 1 2

we run DELETE-FROM-ROW- I while the TAPE HEAD i s pointing to column 3 , the result is

I 4 1 0 1 3 . . .

2 5 8 1 1

3 6 9 1 2

We build DELETE-FROM-ROW-2 and DELETE-FROM-ROW-3 similarly.
Now we rewind the TAPE HEAD to column I and do as follows:

Thus, we convert the TAPE

a A A d A . . .
A b A A A .

A A c A A .

into

I : I d I A .

A A .

A A .

508 CHAPTER 22 Variations on the TM

To get out of this endless loop, all we need is an end-of-data marker and a test to tell us

when we have finished converting the answer on track 1 into the k-track form of the answer. We

already know how to insert these things, so we call this the conclusion of the proof of Part 1 .

Proof of Part 2

We shall now show that the work of a kTM can be performed by a simple TM. Surprisingly,

this is not so hard to prove.
Let us assume that the kTM we have in mind has k = 3 and uses the TAPE alphabet

r = I a b $ } . (Remember, � appears on the TAPE but is not an alphabet letter.) There are

only 4 X 4 X 4 = 64 different possibilities for columns of TAPE cells. They are

mm m (�) · · · m · · · (:J
The TM we shall use to simulate the 3TM wil l have a TAPE alphabet of 64 + 3 charac-

ters:

We are calling symbols such as

a single TAPE character, meaning that it can fit into one cell of the TM and can be used in the

labels of the edges in the program. For example,

will be a legal simple instruction on our simple TM.
These letters are admittedly very strange, but so are some others soon to appear.

We are now ready to simulate the 3TM in three steps :

Step 1 The input string X1XiX"3 • • • will be fed to the 3TM on TAPE 1 looking l ike

this :

x1 x2 X3 . . .

� � � . .

� � � . .

Because our TM is to operate on the same input string, it will begin l ike this:

The k-Track TM 509

0
To begin the simulation, we must convert the whole string to triple-decker
characters corresponding to the 3TM. We could use something l ike these in
structions:

We must have some way of tel l ing when the string of X's is done. Let us say
that if the X's are a simple input word, they contain no A 's and therefore we are
done when we reach the first blank. The program should be

START

We shall now want to rewind the TAPE HEAD to cel l i so we should, as usual ,
have marked cell i when we left it so that we could back up without crashing.
(This is left as a problem below.) If the 3TM ever needs to read cells beyond
the initial ones used for the input string, the simulating TM will have to re
member to treat the new A 's encountered as though they were

Step 2 Copy the 3TM program exactly for use by the s imulating TM. Every 3TM in
struction (,, . x) �
becomes

which is a simple TM instruction.

510 CHAPTER 22 Variations on the TM

Step 3 If the 3TM crashes on a given input, so wil l the TM. If the 3TM loops forever
on a given input, so wil l the s imple TM. If the 3TM reaches a HALT state, we
need to decode the answer on the TM. This is because the 3TM final result

Expander

d g j m �
e h k � � . .
f i I � � . .

wil l sit on the TM as:

d g I . J 'm
e h k � � . . .
f i I �

but the TM TAPE status corresponding to the 3TM answer is actually

We must therefore convert the TM TAPE from triple-decker characters to simple
single-letter strings.

This requires a state with 64 loops l ike the one below:

I nsert ti I nsert ti Back TAPE HEAD up 2 cel ls

(ti,a,R) (ti,b,R)

Once the answer has been converted into a simple string, we can halt. To know
when to halt is not always easy because we may not always recognize when the
3TM has no more non-Ll data. Reading 1 0:

does not necessari ly mean that we have transcribed all the useful information
from the 3TM. However, we can tel l when the simple TM is finished expand
ing triples. When the expander state reads a single Ll, it knows that it has hit
that part of the original TM TAPE not needed in the simulation of the 3TM. So,
we add the branch

Expander Q (J..J..R)
� (__ H_A_L T _ _,)

This completes the conversion of the 3TM to a TM. The algorithm for k other than 3 is en
tirely analogous. •

The Two-Way Infinite TAPE Model 511

We shall save the task of providing concrete illustrations of the algorithms in this theo
rem for the Problems section.

1} THE TWO-WAY INFINITE TAPE MODEL

The next variation of a TM we shal l consider is actually Turing's own original model. He did
not use the concept of a "half-infinite" TAPE. His TAPE was infinite in both directions, which
we call doubly infinite, or two-way infinite. (The TAPES as we defined originally are some
times called one-way infinite TAPES.)

The input string is placed on the TAPE in consecutive cells somewhere and the rest of the
TAPE is filled with blanks. There are infinitely many blanks to the left of the input string as
well as to the right of it. This seems to give us two advantages :

1 . We do not have to worry about crashing by moving left from cell i , because we can al
ways move left into some ready cell .

2 . We have two work areas not just one in which to do calculation, because we can use the
cells to the left of the input as well as those farther out to the right.

By convention, the TAPE HEAD starts off pointing to the leftmost cell containing non
blank data.

The input string abba would be depicted as

h I a

0
We shall number the cells once an input string has been placed on the TAPE by call ing

the cell the TAPE HEAD points to cel l i. The cells to the right are numbered as usual with in
creasing lowercase Roman numerals . The cells to the left are numbered with zero and nega
tive lowercase Roman numerals . (Let us not quibble about whether the ancient Romans
knew of zero and negative numbers.)

- v - iv - i i i - 1 1 - i 0 i i i i i IV v vi
A A A A A A I a b h I a A A 1 .

0

THEOREM 56

TMs with two-way TAPES are exactly as powerful as TMs with one-way TAPES as both lan
guage-acceptors and -transducers.

PROOF

The proof will be by constructive algorithm.
First, we must show that every one-way TM can be simulated by a two-way TM. We

cannot get away with saying, "Run the same program on the two-way TM and it wil l give
the same answer" because in the original TM if the TAPE HEAD is moved left from cell i , the

512 CHAPTER 22 Variations on the TM

input crashes, whereas on the two-way TM it will not crash. To be sure that the two-way TM
does crash every time its TAPE HEAD enters cell 0, we must proceed in a special way.

Let @ be a symbol not used in the alphabet r for the one-way TM. Insert @ in cell
0 on the two-way TM and return the TAPE HEAD to cell i :

c START) (any,=,L) Jo o�-(.l_._©_·_.R_>_,J�
From here, let the two-way TM follow the exact same program as the one-way TM.

Now if, by accident, while simulating the one-way TM, the two-way TM ever moves
left from cell i , it will not crash immediately as the one-way TM would, but when it tries to
carry out the next instruction, it will read the @ in cell 0 and find that there is no edge for
that character anywhere in the program of the one-way machine. This will cause a crash, and

the input word will be rejected.

One further refinement is enough to finish the proof. (This is one of the subtlest of sub

tleties in anything we have yet seen.) The one-way TM may end on the instruction

------J HALT 0 (x.y.L) c)
where this left move could conceivably cause a crash, preventing successful termination at

HALT without actually reading the contents on cell 0, merely moving in. To be sure that the
one-way TM also crashes in its simulation, it must read the last cell it moves to. We must

change the one-way TM program to

(x,y.L) (non © , =,R)
HALT

R EJ ECT

We have yet to prove that anything a two-way TM can do can also be done by a one
way TM. And we will not. What we shall prove is that anything that can be done by a two
way TM can be done by some 3TM. Then by the previous theorem there is a one-way TM,

which can do anything this 3TM can do.
Let us start with some particular two-way TM. Let us wrap the doubly infinite TAPE

around to make the figure below:

cell i cell i i cell i i i cel l iv cell v

cell 0 cell - i cell - ii cell - ii i cel l - iv

Furthermore, let us require every cell in the middle row to contain one of the following

five symbols : A, j , ! , j i , ! ! ·
The single arrows will tell us which of the two cells in the column we are actually read

ing. The double arrows, for the tricky case of going around the bend, will appear only in the
first column. The middle track will always contain one double arrow, at most one single ar
row and A 's for all the rest.

The Two-Way Infinite TAPE Model 513

If we are in a positively numbered cell and we wish to simulate on the 3TM the two
way TM instruction

we can simply write this as

(� : i R) any, = (any. =)
j ' I S any, =

where S is the stay option for the TAPE HEAD. The second step is necessary to move the ar
row on track 2 to the correct column. We do not actually need S. We could always move one
more left and then back.

For example,

0 II iii iv

A I a h h I a A

0

�
causes

II i i i iv I a A I h I a I
0

Analogously,

a h h a A

i i i A A A

A A A A A

0

causes

a A h a A . . .

i i A i A A . . .

A � A A � . . .

0

514 CHAPTER 22 Variations on the TM

If we were in a negatively numbered cell on the two-way TM and asked to move R, we
would need to move left in the 3TM.

could become

� �t:\ �
(any. =)

..I , I S any, =

This is because in the two-way TM moving right from cell - iii takes us to cell - 1 1 ,

which in the 3TM is to the left of cell - iii .
In the two-way TM, the TAPE status

- iii - ii - i 0

A b I a I a b A

0
and the instruction

� �
causes

- iii - ii

A I A a I
0

Analogously, in the 3TM the TAPE status

A

t t
b

0

and the instructions

will cause the result

ii iii

A A

A A

a a

- i - ii

(any =)
I . ..I /.

h . A

- i 0

a b A

iv v

A A

t A

b A

0 - iv

ii

ii

A

. . .

. . .

. . .

The Two· Way Infinite TAPE Model 515

I I I l l iv v

d d d d d

! ! d ! d a

b a a A a

0 0 - iii - iv

The tricky part comes when we want to move right from cell 0. That we are in cell 0 can
be recognized by the double down arrows on the middle TAPE.

can also be

�J:\ �

This means that we are now reading cell i, having left an A in cell 0.
There is one case yet to mention. When we move from cell - i to the right to cell 0, we

do not want to lose the double arrows there. So instead of just

we also need

The full 3TM equivalent to the two-way TM instruction

is therefore

f:_ (X. Y. R) _ f:\ �

(any, =) (any, =) t., !, S H, = S any, = , any, = (any, =) H, ii, S
X, Y

516 CHAPTER 22 Variations on the TM

By analogous reasoning, the equivalent of the left move

is therefore

� �

) (any. = �
S I I , = S , any. =

(.\' . y � I I , I I S any. =
where 3 ' is used when moving left from a negative cel l , 3 " for moving left from a positive
cell, the second label on 3 " to 8 for moving left from cell i i into cell i , and the bottom edge
for moving left from cell i into cell 0.

We can now change the program of the two-way TM instruction by instruction (edge by
edge) until i t becomes the analogous program for the 3TM.

Any input that loops/crashes on the two-way TM wil l loop/crash on the 3TM. If an in
put halts , the output found on the two-way TM corresponds to the output found on the 3TM
as we have defined correspondence. This means it is the same string, wrapped around. With
a l ittle more effort, we could show that any string found on track I and track 3 of a 3TM can
be put together on a regular half-infinite TAPE TM.

Because we went into this theorem to prove that the output would be the same for the
one-way and two-way TMs, but we did not make it explicit where on the one-way TM TAPE
the output has to be, we can leave the matter right where it is and call this theorem proven. •

EXAMPLE

The following two-way TM takes an input string and leaves as output the a-b complement of
the string; that is, if abaaa is the input, we want the output to be babbb.

The algorithm we follow is this:

I. In cell 0, place a * .

2. Find the last nonblank letter on the right and erase it. If it is a * , halt; i f it is an a, go to
step 3 ; if it is a b, go to step 4.

3. Find the first blank on the left, change it to a b, and go to step 2.

4. Find the first blank on the left, change it to an a, and go to step 2.

The action of th is algorithm on abaaa is

abaaa � *abaaa ---+ *abaa
� bbb*ab � bbb*a

� b*ahaa � b*aba
� abbb*a � abbb*

� bb*aba ---+ bb*ab
� babbb* � babbb

If we follow this method, the output is always going to be left in the negatively num
bered cel ls . However, on a two-way TAPE this does not have to be shifted over to start in cel l
i s ince there is no way to distinguish cell i . The output is

b a I b b b

0

The Two-Way Infinite TAPE Model 517

which can be considered as centered on the TAPE (infinitely many ii 's to the right, infinitely
many .:i's to the left).

The program for this algorithm is

(a .1>.* : =.R)

(any.=.L)
START HALT

Let us trace the working of this two-way TM on the input ab:

START 2 2 2 3

� I � o I i I i i a l i I i i -+ a l i I i i -+ o r I ii I i i i o I i I i i -+ -+ -+
� a b * g_ b * a 12. * a b � * a 12.

5 5 5 5 2 -+ a l i I i i 0 1 i - i 1 0 1 i -+ - i i 0 1 i -+ - i 1 o r -+ -+
* g Ii � a � * a a � a a * a.

2 3 4 4 4 -+ - i l o l i I i i - i 1 0 1 i - i i 0 1 i -+ - i i 0 -+ - iT l o -+ -+ a * a � a * g a � Ii g_ * � a *
2 2 2 3 HALT -+ - ii 1 - i 1 0 -+ -bii 1 -ai I � -+ -�i l -ai I � I � -+ - ii 1 - i 1 0 -+ - ii 1 - i b g_ * b a � b a

When converted to a 3TM, this program begins as follows:

(""y =) . - .l R
any. =

START

518 CHAPTER 22 Variations on the TM

The task of completing this picture is left for obsessive compulsives. •

There are other variations possible for TMs. We recapitulate the old ones and list some
new ones below:

Variation 1

Variation 2

Variation 3

Variation 4

Variation 5

Variation 6

Variation 7

Variation 8

Variation 9

Move-in-state machines

Stay-option machines

Multiple-track machines

Two-way infinite TAPE machines

One TAPE, but multiple TAPE HEADS

Many TAPES with independently moving TAPE HEADS

Two-dimensional TAPE (a whole plane of cells, like infinitely many tracks)

Two-dimensional TAPE with many independent TAPE HEADS

Make any of the above nondeterministic

At this point, we are ready to address the most important variation: nondeterminism.

{}r THE NONDETERMINISTIC TM

DEFINITION

A nondeterministic TM, or NTM, is defined like a TM, but al lows more than one edge
leaving any state with the same first entry (the character to be read) in the label ; that is, in
state Q if we read a Y, we may have several choices of paths to pursue:

An input string is accepted by an NTM if there is some path through the program that
leads to HALT, even if there are some choices of paths that loop or crash. •

We do not consider an NTM as a transducer because a given input may leave many pos
sible outputs. There is even the possibi l ity of infinitely many different outputs for one partic
ular input as below:

(�.l>.R)

(START) (o .>.R) > c!] (UR) > (HALT)

The Nondeterministic TM 519

This NTM accepts only the input word a, but it may leave on its TAPE any of the infi
nitely many choices in the language defined by the regular expression b* , depending on how
many times it chooses to loop in state I before proceeding to HALT.

For a nondeterministic TM, T, we do not bother to separate the two types of nonaccep
tance states, reject(T) and loop(T) . A word can possibly take many paths through T. If some
loop, some crash, and some accept, we say that the word is accepted. What should we do
about a word that has some paths that loop and some that crash but none that accept? Rather
than distinguish crash from loop, we lump them together as not in the language Accept(T).

Two NTMs are considered equivalent as language-acceptors if

no matter what happens to the other input strings.

THEOREM 57

NTM = TM

PROOF

First, we show that any language accepted by an NTM can be accepted by a (deterministic)
TM. The proof will be by constructive algorithm. We shall start with any NTM and construct
a deterministic 3TM that accepts the same language. Because we know that 3TM = TM, this
will complete the proof. •

Let us start by numbering each edge in the entire NTM machine by adding a number la
bel next to each edge instruction . These extra labels do not influence the running of the ma
chine, they simply make description of paths through the machine easier. For example, the
NTM below:

(a, il,R)

(which does nothing interesting in particular) can be edge-instruction-numbered to look like:

520 CHAPTER 22 Variations on the TM

START

5(a.�.R)

There is no special order for numbering the edge instructions. The only requirement is
that each instruction receive a different number.

In an NTM, every string of numbers determines at most one path through the machine
(which also may or may not crash). The string of numbers

l - 5 - 6 - I 0- 10- 1 1

represents the path

START-state I -state I - state 3 - state 3 - state 3 - HALT

This path may or may not correspond to a possible processing of an input stri ng-but it is a
path through the graph of the program nonetheless.

Some possible sequences of numbers are obviously not paths -for example,

9-9-9-2- 1 1
2-5-6

1 -4-7 -4- 1 1

The first does not begin at START, the second does not end in HALT, and the third asks edge
7 to come after edge 4, but these do not connect.

To have a path traceable by an input string, we have to be careful about the TAPE con
tents as well as the edge sequence. To do this , we propose a three-track TM on which the
first track has material we shal l discuss later, the second track has a finite sequence of num
bers (one per cel l) in the range of I to I I , and the bottom track has the input sequence to be
simulated-for example,

1 1 4 6 6 li li

a h a li li li . .

In trying to run an NTM, we shal l sometimes be able to proceed in a deterministic
way (only one possibi l ity at a state) , but sometimes we may be at a state from which
there are several choices. At this point, we would l ike to te lephone our mother and ask
her adv ice about which path to take . Mother might say to take edge 1 1 at this juncture
and she might be right; branch 1 1 does move the processing along a path that w i l l lead to
HALT. On the other hand, she might be way off base . Branch 1 1 ? Why, branch 1 1 is not

The Nondeterministic TM 521

even a choice at our current crossroads . (Some days mothers give better advice than other

days.)

One thing is true. If a particular input can be accepted by a particular NTM, then there is
some finite sequence of numbers (each less than the total number of instructions, 1 1 in the
NTM above) that label a path through the machine for that word. If mother gives us all pos
sible sequences of advice, one at a time, eventually one sequence of numbers will constitute

the guidance that will help us follow a path to HALT. If the input string cannot be accepted,

nothing mother can tell us will help. For simplicity, we presume that we ask mother's advice

even at deterministic states.

So, our 3TM will work as follows:

On this track we run the input using mother's advice.

On this track we generate mother's advice.

On this track we keep a copy of the original input string.

If we are lucky and the string of numbers on track 2 is good advice, then track l will
lead us to HALT.

If the numbers on track 2 are not perfect for nondeterministic branching, then track l

will lead us to a crash. Track l cannot loop forever, because it has to ask mother's advice at

every state and mother's advice is always a finite string of numbers.

If mother's advice does not lead to HALT, it will cause a crash or simply run out and we

shall be left with no guidance. If we are to crash or be without mother's advice, what we do

instead of crashing is start all over again with a new sequence of numbers for track 2. We do
the following:

1. Erase track l .
2. Generate the next sequence of mother's advice.

3. Recopy the input from where it is stored on track 3 to track l .
4. Begin again to process track 1 , making the branching shown on track 2.

What does this mean: Generate the next sequence of mother's advice? If the NTM we
are going to simulate has 1 1 edge labels, then mother's advice is a word in the regular lan
guage defined by

(I + 2 + 3 + . . . + 1 1)*

We have a natural ordering for these words (the words are written with hyphens between the
letters) :

One-letter words

Two-letter words

I 2 3 . . .

1 - 1 1 -2 . .

9 1 0 1 1

1 - 1 1 2- 1 2-2 2-3 . . . 1 1 - 1 1

Three-letter words 1 - 1 - 1 1 - 1 -2 1 - 1 -3 . . . 1 1 - 1 1 - 1 0 1 1 - 1 1 - 1 1

Four-letter words 1 - 1 - 1 - 1 . . .

If a given input can be accepted by the NTM, then at least one of these words is good advice.
Our 3TM works as follows:

1. Start with d 's on track 1 and track 2 and the input string in storage on track 3 .

2. Generate the next sequence of mother's advice and put i t on track 2. (When we start up,

the "next sequence" is just the number 1 in cell i .)

522 CHAPTER 22 Variations on the TM

3. Copy track 3 onto track l .

4. Run track l , always referring to mother's advice at each state.

5. If we get to HALT, then halt.

6. If mother's advice is imperfect and we almost crash, then erase track l and go to step 2.

Mother's advice could be imperfect in the following ways:

i. The edge she advises us to take is unavailable at the state we are in.

ii. The edge she advises i s available, but its label requires that a different letter be read by
the TAPE HEAD than the letter our TAPE HEAD is now reading from track 1 .

iii. Mother is fresh out of advice; for example, her advice on this round was a sequence of
five numbers, but after five edges we are not yet in HALT.

Let us give a few more details of how this system works in practice. We are at a certain
state reading the three tracks. Let us say they read

The bottom track does not matter when it comes to the operation of a run, only when it
comes t ime to start over with new advice.

We are in some state reading a and 6. If mother's advice is good, there is an edge from
the state we are in that branches on the input a. But let us not be misled; mother's advice is
not necessarily to take edge 6 at this juncture.

To find the current piece of mother's advice, we need to move the TAPE HEAD to the first
unused number in the middle track. That is the correct piece of mother's advice. After 30
edges, we are ready to read the thirty-first piece of mother's advice. The TAPE HEAD will
probably be off reading some different column of data for track l , but when we need
mother's advice, we have to look for it.

Our problem is that we have only one TAPE HEAD but we want to keep track of where
we are on two different TAPE tracks, and it would only be coincidence if the two active cells
were in the same column. What is worse is that we wish to alternate reading what is on track
l and what is on track 2. After each TAPE HEAD move on track l , we want to go back to track
2 to get our directions, and then we want to return to track l to carry them out. Essentially,
what we must do is mark our spot on track l so we know how to return to it. We do this by
one of our favorite uses of artistic expression -blue paint. Let us assume that we have two
copies of the alphabet of TAPE characters for track l : one in black ink and one in blue. When
we have to leave track l to dig up our new instructions from track 2, we turn the character to
which the TAPE HEAD was pointing into its blue version. When we wish to return to where
we were on track l , we run the TAPE HEAD up from cell i unti l we reach the blue letter. There
we turn it back into black and resume execution of mother's instruction.

Similarly, when we drop back to track 2 to get mother's next instruction, we have to be
able to find out where we were in executing her advice so far. If we erase her advice as we
read it, it wil l be impossible to generate the lexicographically next string of mother's advice
if we fail to accept the input through this set of instructions. We need to keep mother's ad
v ice intact but mark just how far along we are. The answer is blue paint, of course . The piece

The Nondeterministic TM 523

of mother's advice we are trying to follow will be painted blue as we leave. If following that
piece of advice does not cause a crash or lead to HALT, then we shall return for more ad
vice. We rewind the TAPE HEAD to cell i and scan track 2 until we get to the blue instruction
number. This one we tum back to black and read the next one, turning it blue.

If we are out of mother's advice, which we notice when the next cell on track 2 contains
a .!l, it is time to erase track I , increment track 2, copy track 3 to track I , rewind the TAPE
HEAD to cell i, and read mother's first instruction.

How can we actually implement these ideas in practice? The first thing we must do is to
insert end markers in cell i on all tracks. That is easy using the subprogram INSERT $. The
second thing we have to do is copy track 3 (which always keeps a pristine version of the in
put to be simulated) onto track 1 . This we do basically with the simple 3TM program seg
ment

(ll =) ? /= R any, = ,

We know that on our first iteration mother's advice starts out simply as the number I , but
exactly how we can increment it when the time comes is another question. We have already
seen incrementation done in binary in this chapter (p. 500), and incrementation in base 1 1 (or
however many edge instructions the NTM has) is quite similar. We wind the TAPE HEAD up
the TAPE to the first .!l and bounce off to the left. If it is not yet an 1 1 , increase it by 1 . If it is
an 1 1 , set it equal to I and move the TAPE HEAD left to increase the next digit. If this is not an
1 1 , we are done. If it is, set it equal to I and repeat. If we get to $ having found only 1 1 's,
then we know that the string of l 's we have created is too short (like going from 999 to 1000,
only easier) . So, we run up the TAPE and add another I to the end of the non-.!l string.

Suppose someone asks us how we know to use base 1 1 and not some other number?
Then we know that he has lost the point of what we are doing. We are initially presented
with an NTM, and given it specifically, we are going to make a particular 3TM that will run
on all inputs, not the same as the NTM does, but with the same result-acceptance only
when the NTM accepts. We are allowed to examine the NTM before building our 3TM (it
would be quite advisable to do so). This is when we discover how many edge instructions
the NTM has and, therefore, when we learn how to design the mother's advice-incrementing
subprogram.

Now suppose we have retrieved a piece of mother's advice and it says to take edge in
struction 6. How do we actually do this on our 3TM? Some of the states in our 3TM must
have the meaning "in the simulation of the input we are in state x on the NTM and we must
now go seek mother's advice," and some of the states have the meaning, "in the simulation
of the input on the NTM we are in state x and mother has just advised us to take edge y." We
leave a state of the second type and find mother's advice and then we arrive at a state of the
second type. While there, we make a detour to have the TAPE HEAD find and read the next
letter of the simulation on track 1 . Now we are all set. We are in a state that knows where we
are on the NTM, which edge we wish to follow, and what character is being read by the TAPE
HEAD. Then if possible, we execute that instruction; that is, we change the TAPE cell con
tents , move the TAPE HEAD, and go to a 3TM state that represents the next NTM state the in
struction would have us enter. All this 3TM programming we can build from looking at the
NTM alone, without reference to any particular input string. There are only a finite number
of total possibil ities for being in NTM state x and trying to follow instruction y, and they are
connected by 3TM edges in an obvious way.

524 CHAPTER 22 Variations on the TM

Most l ikely, we cannot follow mother's capricious advice (even though she has told us a
thousand times) in any particular situation. Her randomly chosen edge instruction has a low
probabil ity of starting from the state we are in, and less considering we might not be reading
the proper character from track 1 . Even then, the instruction we are asked to follow might
move the TAPE HEAD inadvertently into cell i (which contains the cushion $, but it does mean
the NTM would have crashed) . In any of these events, mother's advice turns out to have
been infelicitous. And we must wipe the slate clean and start again with the next advice.

However, we must always remember that if there actually is a path for this particular in
put from START to HALT on the NTM, then there is some sequence of edge instructions
comprising that path, and sooner or later that very path will be mother's advice. So every
word accepted by the NTM is accepted by the 3TM. If a given input has no path to accep
tance on the NTM, then the 3TM will run forever, testing one sequence of mother's advice af
ter another ad infinitum. Nothing ever crashes on the 3TM; it just optimistically loops forever.

We have shown a TM can do what an NTM can do. Obviously, an NTM can do any-
thing that a TM can do, simply by not using the option of nondeterminism. •

The next theorem may come as a surprise, not that the result is so amazing but that it is
strange that we have not proven this already.

THEOREM 58

Every CFL can be accepted by some TM.

PROOF

We know that every CFL can be accepted by some PDA (Theorem 30, p. 3 1 8) and that every
PDA PUSH can be written as a sequence of the PM instructions ADD and SHIFT-RIGHT
CYCLICALLY (p. 469). What we were not able to conclude before is that a PM could do
everything a PDA could do because PDAs could be nondeterministic, whereas PMs could
not. If we convert a nondeterministic PDA into PM form we get a nondeterministic PM.

If we further apply the conversion algorithm of Theorem 47 (p. 462) to this nondeter
ministic PM, we convert the nondeterministic PM into a nondeterministic TM.

Using our last theorem, we know that every NTM has an equivalent TM.
Putting all of this together, we conclude that any language accepted by a PDA can be

accepted by some TM. •

.W THE READ-ONLY TM

So far, we have considered only variations of the basic mathematical model of the TM that
do not affect the power of the machine to recognize languages. We shall now consider a vari
ation that does substantially hamper the capacity of the TM: the restriction that the TAPE
HEAD can write nothing new on the TAPE.

DEFINITION

A read-only TM is a TM with the property that for every edge label in the program the
READ and WRITE fields are the same. This means that if the TAPE HEAD reads an x, it must
write an x, no matter what x is. All edge labels, therefore, are of the form (x, x, y). where y is
either L or R. Because the TAPE HEAD cannot change the contents of the TAPE, the input al-

The Read-Only TM 525

phabet equals the output alphabet. The TAPE HEAD can move back and forward over the in
put string as much as it wants, but the contents of the TAPE remain unchanged. •

As a transducer, a read-only TM is very easy to describe: output = input. The interesting
question is, "What types of languages can a read-only TM recognize as an acceptor?"

It is conceivable that some advantage can be gained by reading some of the blank cells
to the right of the input string on the TAPE before the machine decides to halt, loop, or crash,
but because nothing can be written in these cells, they cannot be used to store information.
Also, after the first Ii all the rest are known to be blank and nothing about the particular in
put string on the TAPE can be learned from them. For these reasons, it is customary to re
quire a read-only TM to accept or reject a string by the time it has read its first Ii, if not
sooner.

A read-only TM is sometimes called a two-way FA, because it acts like an FA in the sense
that the transitions from state to state take place by reading without writing. The modifier "two
way" is intended to explain how letters can be reread once they have already been scanned. Our
original model of the FA did not involve a TAPE or TAPE HEAD, and the letters were deemed to
have been consumed by the machine once ingested. However, we could have begun our discus
sion of mathematical models of computing with the TM (which was historically first) and then
defined the FA as a read-only one-way TM. One justification for call ing a read-only TM an FA
is that, unlike our other variations of the Turing model, the read-only machine does not have the
same power as a TM but only the power of a standard FA, as we shall now prove.

An FA and a PDA can read each letter of their input string on ly once, but the PDA has a
note pad on which it can record some facts about what it has read. We have seen that this ex
tra abi l ity substantially increases its capacity to recognize languages. Although a read-only
TM does not have a note pad, if a question does arise at some point in the processing where
the machine must make a branching decision in the program based on some previously avail
able but forgotten information, the TAPE HEAD can move back down the TAPE to the left to
recheck what it had once read. The difficulty is that once it has done th is, how is i t ever go
ing to return to the exact spot on the TAPE where the question first arose? The read-only TAPE
HEAD is unable to leave a marker. When it scans back up the TAPE to where the branch point
was encountered, it may well be going through a different sequence of states than it tra
versed in its first trip up the TAPE. We have seen situations in which the choice of the series
of states itself carried the required information. However, it is possible that, even with the in
formation in hand, the TAPE HEAD can still not relocate the TAPE cell from which it started
backtracking. The additional freedom of motion of the TAPE HEAD might not actually in
crease the power of the machine as much as we may wish.

All of this very informal speculation suffers from excessive anthropomorphism and the
following pathetic fallacy. As we have noted before, a programmer's inabi l ity to figure out
how to do something is not a proof that it cannot be done. It is not the machine that is unable
to return to the correct spot, but the human who constructed the program who might not be
able to figure out how to relocate the position or to employ special powers to make the relo
cation unnecessary. Perhaps a more clever program can employ the back-and-forth abi l ity of
read-only TMs to recognize all CFLs or some other more interesting set of languages. What
we need here is a mathematical proof.

Because we intend to show that a read-only TM can accept only regular languages, per
haps a good way to do this is to show how to convert the whole machine into one regular ex
pression as we did in the proof of Kleene 's theorem in Chapter 7 , by developing an elaborate
constructive algorithm. In order to tum FAs into expressions, we introduced the notion of a
generalized transition graph, which is an FA in which the edges are labeled with regular ex
pressions instead of single alphabet letters. With a l ittle effort we shall show that this strat
egy can be made to work in our present case as wel l .

526 CHAPTER 22 Variations on the TM

To accomplish the conversion of the TM into a regular expression, we shall now define a
transition edge in a read-only TM to be an edge whose label has the form (r, D), where r is
a regular expression and D a TAPE HEAD direction: L, R, or S. The meaning of the edge

is that if the machine is ever in state 7 and the cell being read on the TAPE, possibly when
joined to the next few cells to the right of it, form any string belonging to the language de
fined by the regular expression ab*aa, then the TAPE HEAD may move to the right across all
of those cells and the program will progress to state 3.

This is necessari ly a nondeterministic option because a string of a's could leave the pro
gram below in two different states, depending on how many were read to get to state 3 :

We must be careful to define what we mean by reading a string of letters to the left. Sup
pose, moving leftward, we read the letter r followed by the letter a followed by the letter t. It
is logical to say that the string read is rat, but it is also logical, and more useful, to note that
the string traversed was tar, which sits on the TAPE in that very order when read by our usual
convention of left to right. We shall adopt this second view. For example, starting with this
situation

if we traverse the edge below going from state 7 to state 3,

� �

we will end up with the TAPE HEAD as indicated:

We can now define a transition Turing machine (TTM) to be a nondeterministic read
only TM, which allows transition edges.

Let us clear up one possible point of confusion. It makes no sense in the definition of
transition edge to allow the regular expression to be the empty expression (/), because this
would mean that the TAPE HEAD would move without passing over any letters in the cells,
which is obviously impossible.

Let us recall the main operation in the analogous part of the proof of Kleene 's theorem
(p. 96): the process of bypassing a state in the transition graph by hooking up all the edges
that lead into the state with all the edges that lead out of the state in all possible ways so as
to make that state unnecessary to the operation of the machine. By reiterating this procedure,
we were able to eliminate, one by one, all the states except for the start state and one final
state. From the label of the edge between these two, we could then read off the regular ex-

The Read-Only TM 527

pression equivalent to the language accepted by the machine. Our question is whether, by

employing the model of the TTMs, we are able to imitate the steps in the proof of Kleene's

theorem and produce a regular expression equivalent to the language accepted by any given

read-only TM.

If we wish to connect an incoming right-moving edge with an outgoing right-moving

edge, the situation is completely analogous to the case of Kleene 's theorem.

is equivalent to

in exactly the same sense that we were able to make this substitution for TGs. Any word

from the language of r 1 r2 could take us from state 7 to state 3 to state 1 1 if we parsed it cor

rectly. This then represents a nondeterministic option. If there is a different way of parsing

the expression that causes the input to crash, so be it. Acceptance by nondeterministic ma

chines means that there is some way to reach HALT, not that all paths do.

We can even handle the case of a right-moving loop at the middle state without any

worry.

Clearly,

is equivalent to

The amalgamation of left-moving edges is similar but with a slight twist. The path

below:

is equivalent to

The reason for the reversal in the concatenation is that the read field in the edge label indi
cates the combined string as it appears from left to right on the TAPE. In going from state 7 to

state 3, we might traverse a section of the TAPE containing the letters ward (first the d, then
the r, then the a, then the w), and then, while going from state 3 to state 1 1 , we might traverse
the letters back (first the k . . .) . Altogether, we have then traversed the string backward.

The case of a left-moving loop at the middle state can be handled exactly as the loop in

the right-moving case; that is, it introduces a starred regular expression in the concatenation.
The real problem comes in figuring out what the net effect might be of combining two

edges that move the TAPE HEAD in opposite directions. Let us consider what can we do with

\

528 CHAPTER 22 Variations on the TM

First, the TAPE HEAD moves up the TAPE to the right, scanning over a string from the lan
guage of r 1 ; then it moves leftward down the TAPE, covering a string from the language of rz
Considering the freedom possible between these two regular expressions, we have no way of
tel ling whether the TAPE HEAD ends up to the right or left of where it started. It is even possi
ble that after all this travel it is back where it started, reading the same cell in state 1 1 that it
was reading in state 7.

If we are to replace this sequence of two edges with one edge running from state 7 to
state 1 1 , that one edge must have three labels allowing for the three possibilities of motion of
the TAPE HEAD. The new edge must have the form

(. . . , R)
(. . . , £)

� �

Note that we must allow for the possibility of the stay option discussed earlier in this
chapter. The question now is what regular expressions are we going to fill in where the
dots are?

Let us first consider the situation where the TAPE HEAD ends up to the right of where it
started. The string that appears to have been the one traversed is not all the letters that were
covered going up the TAPE to the right and then partially back down to the left, but only
those letters that were not read twice. For example, if the TAPE situation is

and the two edges executed are

then by state 3 the situation is

and by state l l i t is

0

(pqrst, HJ): 0,_ __ (s-tu_, L-)---;;;i:11o;@

0

0
which is equivalent to the execution of the single instruction

The Read-Only TM 529

This situation is a l ittle more subtle than we might have imagined. We would like to
have been able to invoke Theorem 1 6 (p. 202), the division theorem for regular languages, to
say that if we follow a word from r 1 going up to the right, and then come back down to the
left over a word in r 2, the result is the same as covering a word from the language
Pref(r2 in r 1), which, as we recall, is the language of prefixes that, when added to some
words in r 2 , make them into some words in r 1 • However, as we can see from the preceding
example, after the TAPE HEAD has moved over the string pqrst, it is pointing to the cell after
the last of these letters. If the TAPE HEAD moves to the right over a word from r 1 , the next
letter it reads is no longer part of the word from r 1 but a new arbitrary letter unanticipated by
the language r 1 • I n the preceding example, this is the letter u.

It is also true that when the TAPE HEAD moves down the TAPE to the left, covering a
word from the language of r 2, the cell it ends up pointing to contains a letter (the letter r in
the preceding example) that is neither part of the r2 string nor part of the short-form agglom
erated instruction (pq, R) . An end letter (u) is added and a middle letter (r) is wasted. There
fore, if we want to write

equals

it is inaccurate to claim that

r3 = Pref(r2 in r 1)

without some substantial modification.
The total string of cells read by the TAPE HEAD is not just the word from r 1 but one cell

more than that. If this cell contains a blank, then the processing is over. The only other possi
bility is that this cell contains an a or b, if we assume that is the total alphabet to be found on
the TAPE, in which case the total string of letters involved is a word in the language defined
by the regular expression

r 1 (a + b)

It is also clear that the string of letters read only once (the pq in the earl ier example) is not
the prefix of the word from r 2 but one letter more than that. In fact, it is the prefix left over
when a string from the language defined by the regular expression

(a + b)r2

has been removed. The accurate definition of r 3 is then

r3 = Pref((a + b)r2 in r 1 (a + b))

By Theorem 1 6, we know that this prefix language is regular and must therefore be definable
by some regular expression that we can call r3.

This accounts for the situations in which the TAPE HEAD ends up to the right of where it
started, but it is also possible that after reading up the TAPE over a word in r 1 and then down
over a word in r 2, it ends up to the left of where it started. As an example of this, let us con
sider the following situation. Start with

530 CHAPTER 22 Variations on the TM

(In this diagram, as in all diagrams in this section, all the letters must be either a 's or b's be
cause the only thing ever found on the TAPE in a read-only TM is the untouched initial in
put.)

If we execute the two instructions

� (pqrst, R) � (nopqrstu, L)
r,':;\ 0----....,)1�0)I \!.!I

the net result is to leave the situation

which is equivalent to having executed the one instruction

� �
As before, we wish to replace the two instructions

with one instruction of the form

(r3 , L)

where r 3 is a regular expression defining the appropriate language. It is almost true that r 3 is
the language of prefixes that, when added to the front of words in r 1 , give us words in r2•
However, as before, we must add an extra letter onto the end of the string in r 1 to account for
the fact that r2 will include the cell immediately to the right of the r 1 string. But this alone is
not enough of an adjustment.

We can see from the example above that the letter p is read going up the TAPE to the
right and read going down the TAPE to the left, and yet it is still the first letter in the resultant
r 3 move. The string nop is , in fact, the prefix of the string qrstu in the word nopqrstu. Instead
of subtracting exactly the words in r 1 from the string in r2, what we need to do is subtract all
but the first letter of the r 1 word, so that this letter will still be there for r 3 to read.

If we wish to define r3 as the prefix of something in the language of r2(a + b), that
something is the language formed by taking each word in r 1 and chopping off its first letter
and adding a new last letter. Let us call this language Chop(r 1)(a + b) . The correct definition
of r3 is then

r3 = Pref(Chop(r 1)(a + b) in r2)

We may be tempted to ask the question whether Chop(r 1) is a regular language. It so hap
pens that it is, as anyone who does the exercises at the end of this chapter wil l discover. But
we can apply Theorem 16 without knowing this fact. The language Pref(Q in R) was shown
to be regular whenever R is regular, no matter what flavor Q comes in. Q is certainly some
language, and that is all we need to know.

Therefore, we have shown that there is some regular expression r3 that we can use in the
edge label to make

the equivalent of

Problems 531

whenever the TAPE HEAD ends up to the left of the cell from which it started. Let us note
clearly here that we have presented a proof of the existence of such a regular expression
without providing a constructive algorithm for producing it from r 1 and r 2•

The last case we have to consider is the one where the TAPE HEAD ends up in state 1 1
back at the same cell from which it started. It reads some word from r 1 going up the TAPE to
the right on its way to state 3 and then reads some word from Chop(r 1 (a + b)) on its way to
state 1 1 . The net result is that what was read was A. This is described by the edge

('.;'\�£,;\ �

which need only be included as an option when Chop(r 1 (a + b)) and r2 have a word in com
mon. Therefore, the full description of the results of

when summarized as one edge from state 7 to state I I is

(Pref[(a + blr2 i n r1 (a + b)J. R)
(Pref[Chop(r 1 (a + b)) in r2] , L)

0 (A, S))I ®

the last option existing only if there is a word in common between Chop(r 1 (a + b)) and r2.
This completely handles the situation in which we wish to replace a right-moving edge

followed by a left-moving edge by one single edge, albeit with multiple labels. The on ly de
tail is showing how to replace a left-moving edge followed by a right-moving edge by one
single edge-we do this with mirrors. Abracadabra, we are done (cf. p. 534).

We have therefore proven the following.

THEOREM 59

A read-only TM, also known as a two-way FA, accepts exclusively regular languages. •

This result was proven by Rabin and independently by J. C. Shepherdson. Because the
proof depends heavily on the nonconstructive step of finding the regular expressions for the pre
fix languages, we are spared the trouble of i l lustrating the technique with a concrete example.

y PROBLEMS

1. Convert these TMs to move-in-state machines :

532 CHAPTER 22 Variations on the TM

(i)

START 1

(11 .11 .R) (:,.,11; = .R)

HALT
(a.b; =. /,)

(a .b ; =./.)

(i i) START

HALT

(a,b; =.R)

(:,.,II; =./.)

(a .II ,/.)
(h.11 ./,)

2. (i) Draw a move-in-state machine for the language ODDPALINDROME.
(i i) Draw a move-in-state machine for the language { a11b11 } .

(i i i) Draw a move-in-state machine for the language EQUAL.
(iv) Draw a move-in-state machine for the language: all words of odd length with a as

the middle letter, MIDDLEA.

3. Discuss briefly how to prove that multiple-cell-move instructions, such as (x, y, 5R) and
(x, y, 1 7 L) mentioned on p. 502, do not increase the power of a TM.

4. In the description of the algorithm for the 3TM that does decimal addition "the way hu
mans do," we skimmed too quickly over the conversion of data section. The input is pre
sumed to be placed on track I as two numbers separated by delimiters -for example,

$ 8 9 $ 2 6 $ A

$ A

$ A

The question of putting the second number onto the second track is a problem that we
ignored in the discussion in the chapter. Write a 3TM subprogram to do it.

5. In the proof of Theorem 55 (p. 506), where kTM = TM, we used two different methods
for storing the k-tracks on the one TM tape. One was interlacing the tracks, and the
other was using a vector alphabet. There is a third more simplistic method: Store the

Problems 533

working section of each of the k-tracks sequentially separated by markers. Show that
this model can simulate a kTM for some arbitrary k. What other markers will be

needed?

6. (i) Outline a 5TM that does decimal addition for three numbers simultaneously, the
numbers being on tracks 2, 3, and 4. The sum should be left on track 5, and track I
is reserved for carries.

(ii) Outline a 4TM that does the same task without the need for carries.

7. Outline a 5TM that multiplies two binary numbers initially on tracks I and 2. The prod

uct should be placed on track 3, using tracks 4 and 5 as a working area.

8. Design a 2TM that accepts DOUBLEWORD in the following two steps:

(i) Draw a 2TM that finds the middle letter of an input string of even length. Track I

consists of just the input string. The program should place two markers on track 2, y
below the first letter in the string and z below the last letter. Next, the program

should bring the two markers toward each other one cell at a time. Let the program

crash on odd-length strings. Finally, erase the y marker.

(ii) Using the above 2TM as a preprocessor, complete the machine to recognize DOU

BLEWORD. Reinsert the y marker at the front of the string, and, moving the mark

ers to the right one cell at a time, compare the letters.

9. (i) Outline two procedures for a 3TM, to INSERT or DELETE a character from track 2

only, leaving the other tracks unchanged.

(ii) Draw a 3TM that accepts the language EQUAL' by splitting the a's and h's of the

input on track I onto tracks 2 and 3 separately and then comparing them.

10. Design a pattern that matches 2TM. The input is a long string on track I and a short

string on track 2. The program halts only if the string on track 2 is a substring of the

string on track I .
11. On a 2TM track I contains a string of the form (a + b)+ which is to be interpreted as a

unary representation of numbers as strings of a 's, separated by single h's.

(i) Using a 2TM, find the largest of the numbers on track 1 and copy it to track 2.

(ii) Using a 3TM, sort the list in descending order.

12. Outline a 2TM that takes as input on track l a" and leaves on track 2 the binary repre
sentation of n .

13. (i) Outline a 6TM that determines whether its binary input on track l is a perfect
square by generating squares and comparing them to the input number. The pro
gram terminates when the square is found or the length of the track I square is
greater than the length of the input number.

(ii) Outline a 7TM that accepts the language

SQUARE = { a" I n is a square I = { a aaaa aaaaaaaaa . . . }

(See p. 204.)

14. Draw a kTM that accepts MOREA (p. 205) .

15 . Outline an argument that shows how a two-way TM could be simulated on a TM using
the trick of interlacing cells on the TAPE. That is, the TAPE starts with a $ in cell i, and
then cell ii represents cell 0 on the two-way TM, cell iii on the TM represents cell i on
the two-way TM, cell iv on the TM represents cell - i on the two-way TM, cell v repre-

534 CHAPTER 22 Variations on the TM

sents cell i i , and so on. Show how to simulate the two-way TM instructions on this
arrangement for a TM.

16. On a certain two-way TM, the input is the single letter a surrounded by all .:l 's. Unfortu
nately, the TAPE HEAD is somewhere else on the TAPE and we do not know where. Our
job is to arrange for the TAPE HEAD to find the a.

(i) Show that if the two-way TM is nondeterministic, the problem is easy.
(i i) Show that if the two-way TM has two tracks, the problem can be solved.

(i i i) Outline a solution for the one-track deterministic two-way TM.

17. (i) Outline a proof that a nondeterministic PM has the same power as a regular PM.
(ii) Outline a proof that a nondeterministic 2PDA has the same power as a regular

2PDA.

18. (i) If we had introduced the proof that kTMs were the same as TMs earlier, would it
have made the proof that PM = TM, or that 2PDA = TM, any easier?

(i i) If we had introduced the proof that NTM = TM earlier, would it have made the
proof that PM = TM, or that 2PDA = TM, any easier?

19. Prove that if r is a regular language, Chop(r), defined as the language of all non-A
words in r with their first letter removed, is also regular.

20. Complete the proof of Theorem 59 (p. 53 1) .

(i) Show the details of how to replace a left-moving edge followed by a right-moving
edge with a single edge.

(i i) Explain what can be done about loops .

CHAPTER 23

TM Languages

i RECURSIVELY ENUMERABLE LANGUAGES

We have an independent name and an independent description for the languages accepted by
FAs: The languages are called regular, and they can be defined by regular expressions. We
have an independent name and an independent description for the languages accepted by
PDAs: The languages are called context-free, and they can be generated by context-free
grammars. We are now ready to discuss the characteristics of the languages accepted by
TMs. They will be given an independent name and an independent description. The name
now; the description later.

DEFINITION

A language L over the alphabet I is called recursively enumerable if there is a TM T that
accepts every word in L and either rejects (crashes) or loops forever for every word in the
language L ' , the complement of L.

EXAMPLE

accept(T) = L

reject(T) + loop(T) = L'

The TM drawn on p. 446 divided a l l inputs into three classes:

accept(T) = all words with aa

reject(T) = strings all without aa ending in a

loop(T) = strings all without aa ending in b, or A

Therefore, the language (a + b)*aa(a + b)* is recursively enumerable.

•

•

A more stringent requirement for a TM to recognize a language is given by the fol
lowing.

535

536 CHAPTER 23 TM Languages

DEFINITION

A language l over the alphabet I is called recursive if there is a TM T that accepts every
word in l and rejects every word in l ' ; that is,

EXAMPLE

accept(D = l
reject(D = l '
loop(D = <l> •

The following TM accepts the language of all words over l a b I that start with a and
crashes on (rejects) all words that do not.

(START) (a,a,R)
:o c HALT)

Therefore, this language is recursive. •

This term "recursively enumerable" is often abbreviated "r.e. ," which is why we never
gave an abbreviation for the term "regular expression." The term "recursive" is not usually
abbreviated. It is obvious that every recursive language is also recursively enumerable, be
cause the TM for the recursive language can be used to satisfy both definitions. However, we
shal l soon see that there are some languages that are r.e. but not recursive. This means that
every TM that accepts these languages must have some words on which it loops forever.

We should also note that we could have defined r.e. and recursive in terms of PMs or
2PDAs as well as in terms of TMs, because the languages that they accept are the same. It is
a point that we did not dwell on previously, but because our conversion algorithms make the
operations of the machines identical section by section, any word that loops on one wil l also
loop on the corresponding others. If a TM, T, is converted by our methods into a PM, P, and
a 2PDA, A, then not only does

accept(D = accept(P) = accept(A)

but also

loop(D = loop(P) = loop(A)

and

reject(D = reject(P) = reject(A)

Therefore, languages that are recursive on TMs are recursive on PMs and 2PDAs as
well . Also, languages that are r.e. on TMs are r.e. on PMs and 2PDAs, too.

Turing used the term "recursive" because he believed, for reasons we discuss later, that
any set defined by a recursive definition could be accepted by a TM. We shall also see that he
believed that any calculation that could be defined recursively by algorithm could be per
formed by TMs. That was the basis for his bel ief that TMs are a universal algorithm device.
The term "enumerable" comes from the association between accepting a language and listing
or generating the language by machine. To enumerate a set (say, the squares) is to generate
the elements in that set one at a time (1 , 4, 9, 1 6, . . .). We take up this concept again later.

There is a profound difference between the meanings of recursive and recursively enu
merable . If a language is regular and we have an FA that accepts it, then if we are presented

Recursively Enumerable Languages 537

a string w and we want to know whether w is in this language, we can simply run it on the
machine. Because every state transition eats up a letter from w, in exactly length(w) steps we
have our answer. This we have called an effective decision procedure. However, if a lan
guage is r.e. and we have a TM that accepts it, then if we are presented a string w and we
would like to know whether w is in the language, we have a harder time. If we run w on the
machine, it may lead to a HALT right away. On the other hand, we may have to wait. We
may have to extend the execution chain seven billion steps . Even then, if w has not been ac
cepted or rejected, it still eventually might be. Worse yet, w might be in the loop set for this
machine, and we shall never get an answer. A recursive language has the advantage that we
shall at least someday get the answer, even though we may not know how long it will take.

We have seen some examples of TMs that do their jobs in very efficient ways. There are
some TMs, on the other hand, that take much longer to do simple tasks. We have seen a TM
with a few states that can accept the language PALINDROME. It compares the first and last
letter on the INPUT TAPE, and, if they match, it erases them both. It repeats this process unti l
the TAPE is empty and then accepts the word.

Now let us outline a worse machine for the same language:

1. Replace all a's on the TAPE with the substring bab.

2. Translate the non-a data up the TAPE so that it starts in what was fonnerly the cell of the
last letter.

3. Repeat step 2 one time for every letter in the input string.

4. Replace all b's on the TAPE with the substring aabaa.

5. Run the usual algorithm to detennine whether or not what is left on the TAPE is in
PALINDROME.

The TM that follows this algorithm also accepts the language PALINDROME. It has
more states than the first machine, but it is not fantastically large. However, it takes many,
many steps for this TM to detennine whether aba is or is not a palindrome. While we are
waiting for the answer, we may lose patience and mistakenly think that the machine is going
to loop forever. If we knew that the language was recursive and the TM had no loop set, then
we would have the faith to wait for the answer.

Not all TMs that accept a recursive language have no loop set. A language is recursive if
at least one TM accepts it and rejects its complement. Some other TMs that accept the same
language might loop on some inputs.

Let us make some observations about the connection between recursive languages and
r.e. languages.

THEOREM 60

If the language L is recursive, then its complement L' is also recursive. In other words, the
recursive languages are closed under complementation.

PROOF

It is easier to prove this theorem using PMs than TMs. Let us take a language L that is recur
sive. There is then some PM, call it P, for which all the words in L lead to ACCEPT and all
the words in L' crash or lead to REJECT. No word in I* loops forever on this machine.

Let us draw in all the REJECT states so that no word crashes but, instead, is rejected by

538 CHAPTER 23 TM Languages

landing in a REJECT. To do this for each READ, we must specify an edge for each possible
character read. If any new edges are needed, we draw

(All unspecified

characters)
REJ ECT

Now if we reverse the REJECT and ACCEPT states, we have a new machine that takes
all the words of L' to ACCEPT and all the words of L to REJECT and sti l l never loops.

Therefore, L ' is shown to be recursive on this new PM. We used the same trick to show
that the complement of a regular language is regular (Theorem 1 1), but it did not work for
CFLs because PDAs are nondeterministic (Theorem 40, p. 387). •

We cannot use the same argument to show that the complement of a recursively enumer
able set is recursively enumerable, since some input string might make the PM loop forever.
Interchanging the status of the ACCEPT and REJECT states of a PM keeps the same set of
input strings looping forever, so they will be undecided.

Observation

The reason it is easier to prove this theorem for a PM than for a TM is that not all TM rejec
tions are caused by being in a state and having no exit edge labeled for the TAPE character
being read. Some crashes are caused by moving the TAPE HEAD left while in cell i. Crashes
of this sort can be converted into the more standard type of crash by inserting a marker in
cel l i that would then stand for crashing by going left of cel l i ; this would be a special
marker to the left of any other end-of-TAPE marker that the program would want to insert. If
that marker is ever read, we would be transferred to a TM state with no outgoing edges
whatsoever. In this state, we would crash in the usual TM way, by being unable to exit from
a non-HALT state . This method of unifying TM crashes will be useful for us later.

Just because the TM we know for a particular language has a loop set does not mean
that there is not one that does not. Nor does it mean that we actually have to find the one that
does not loop in order to establish that the language is recursive.

THEOREM 61

I f L is r.e. and L ' is also r.e . , then L is recursive.

PROOF

From the hypotheses, we know that there is some TM, say, T1 , that accepts L and some TM,
say, T,, that accepts L ' . From these two machines we want, by constructive algorithm, to
build � TM, call it T,. that accepts L and rejects L' because then T� would be the machine. .
that proves L is recursive.

The first thing we want to do is change T2 so that it rejects L' and only L ' . It is not
enough to tum the HALT state into a reject state; we must also be sure that it never crashes
on any of the words it used to crash on. The words it formerly looped on are fine because
they are not in L' and they can sti l l loop forever. The new machine we want, call it T/ , has
the following characteristics:

Recursively Enumerable Languages

L' =accept(T2) = reject(T2 ')

loop(T2) C loop(Tz ')

reject(T2) C loop(T2 ')

539

To do this we must eliminate all the crashes. The crash that occurs from moving the
TAPE HEAD left from cell i can be made into a typical TM crash, that is, being in a non
HALT state but being unable to exit. This can be accomplished by the trick mentioned in the
preceding observation. But this is not enough for our purposes here because we must elimi
nate all the crashes in total and change them to loop-forevers. This we do by going state by
state and finding every character that has no existing exit edge and drawing a new one going
to a new state called NOWHERESVILLE on an edge labeled (it, = , R). For example, if a
state had no b exit edge, we would draw one to NOWHERESVILLE labeled (b, b, R). Once
we get to NOWHERESVILLE, of course, we are stuck there, because it has only one exit
edge that is a loop labeled (any, = , R). So once in NOWHERES VILLE, we spend an eter
nity slowly inching our way up the TAPE. The machine now has the same accept set, but the
reject set has been merged into the loop set.

Now we want to make the accept set a reject set. This is easy. We accept an input by ar
riving at a HALT state. If we erase the edges that lead into the HALT states, then when the
program is in the states that would naturally have fed into the HALTs, given what the TAPE

HEAD is reading, a crash would occur instead, and the input will be rejected. This then is our
T2 ' . It accepts nothing, rejects exactly L' 1 and loops often .

We also want to modify T1 in a similar way so that i t s accept set remains the same, that
is, L, but its reject set is merged into its loop set so that it too never crashes. This we accom
plish by adding its own NOWHERES VILLE. Call this modified TM T1 ' .

What we now have can be summarized as

accept(T1 ') = L = loop(Tz ')

loop(T1 ') = L' = reject(T2 ')

Very simply, what we would like T3 to do i s to run the input string simultaneously on T1 '
and T2 ' . If the input string is in the language L, sooner or later it will be accepted by T1 ' ; if it
is in the language L', it will, sooner or later, be rejected by Tz ' . And while we are waiting for
one of these two events to occur, the nondeciding machine will not interrupt us by crashing.
Now, because we cannot actually run the same input string on the two TMs simultaneously
(they might want to change the TAPE into incompatible things), the next best thing we can do
is simulate running the input on the two machines alternately. That is, we take the first edge
on T1 ', then the first edge on T2 ' , then the second edge on T1 ' , then the second edge on Tz ' ,
then the third edge on T1 ' , and so on, until either T1 ' takes u s to HALT o r T2 ' crashes. A ma
chine like this is actually possible to build, and we will do it now.

Let us for convenience call the states in T1 ' START = xi ' x2, x3, • • • and the states in
Tz ' START = Yp y2, y3, • • • • The TAPE in T3 will always look like this :

where the meaning of this is as follows. Cell i always contains a #. Between this # and the one
and only * is the TAPE status at the moment of the simulation of T1 ' , with the exception that in
front of the cell that the T1 ' TAPE HEAD will next be reading is the name of the state that T1 ' has
just arrived in. Then comes the symbol * that separates the simulation of T1 ' and the simulation
of T2' . Then the rest of the TAPE is exactly what the current status of the TAPE on T2' would be at
this moment, with the exception that in front of the cell that the T2 ' TAPE HEAD will next be

540 CHAPTER 23 TM Languages

reading is the name of the state that T2 ' has just entered. We assume that the # and the * as well
as the names of the states are all unused by T1 ' and T2 ' as TAPE characters. This is a safe as
sumption because in our simulation they are both painted a very rare shade of blue.

When we start with a simple input of T3, we have to use a subprogram to set up the sim
ulation. It inserts # in cell i and x1 in cell ii, runs to the end of the input and inserts * and y"
and then runs up and down the TAPE, copying the input string into the blank cells after the J i .
And then the TAPE HEAD i s returned to point to x1 •

For example, the input abb goes from

to

I # I x, I a I b I b I * I Y 1 I a I b I b I � I � ·

(The subprogram to do this is generously provided by the reader.)
Before we proceed with the simulation, we should say a word about what happens when

T1 ' wants to read more cells of the TAPE than the few we have allotted it between the # and * .
Whenever T1 ' moves its TAPE HEAD right, we immediately ask whether or not it is reading a * . If
it is, we leave it alone, back up one cell, insert a d, and (because INSERT leaves the TAPE HEAD
to the right of the insertion) read the * , leave it alone, and back up again to read the Ll.

I NSERT t.
(* , * ,L) (* , * ,L)

(? , ? ,Rl

In this way, we can insert as many blanks as the simulation of T1 ' needs. These blanks
can be changed into other things, or other things can be made into blanks. So, blanks can oc
cur in the middle of the data and at the end of the data in the simulation of either TM. The T2 '
simulation will never try to move left and read the * because that would correspond to a crash
on T2' of moving left from cell i, but that is not how T2' crashes, as we have guaranteed.

If the T1 ' simulation ever enters HALT, then T3 halts and accepts the input. If the T2 '
simulation ever crashes , then T3 crashes and the input is rejected.

We stil l have to make explicit how T3 can "make a move on the T1 ' side and then make a
move on the T2 ' side alternately." To understand this, let us first see what happens immedi
ately after the setup subprogram is done. The TAPE HEAD is reading x1 , which in turn is sitting
in front of an a. T3 is in a state called SIMULATE-T1 ' . This is the first important T3 state.

For every state xk in T1 ' , this state has an outgoing edge labeled (xk, = , R) going to a differ
ent T3 destination subprogram called SIM-xk. The first thing we do in this subprogram is back
up one cell and run subprogram DELETE, thereby removing the symbol xk from the TAPE. Then
we read the letter that is in the next cell on the TAPE. This is the letter that the T1 ' TAPE HEAD
would be reading if the input were running on T1 ' alone. The program for T1 ' tells us what to
change this letter to and then where to move the TAPE HEAD and then which T1 ' state to go to
next. The simulation has all this information built into it. It changes the T3 TAPE and simulates
moving the T1 ' TAPE HEAD by inserting the name of the next T1 ' state to be executed on the run
ning of T1 ' to the left of the appropriate TAPE cell . For example, if the T3 TAPE status is

Recursively Enumerable Languages 541

· · · I b la h I b I a I a 1 .
and state x5 on T1 ' has the (unique) outgoing b-edge

then the simulation would change the T3 TAPE into

The state SIM-x5 treats each edge coming out of x5 individually. Here, it correctly corre
sponds to being in state x3 about to read an a.

After doing this , SlM-xk then returns to the main T3 program to the state FIND-Y. In this
state, the T3 TAPE HEAD is pushed right until it hits any y symbol. When it does, it enters an
other important state called SIMULATE-T2 ' . This state reads the yk and branches to the ap
propriate subprogram SlM-yk, where it does its T2 ' act. Once that has been completed, it re
turns to the main T3 program to a state called FIND-X. This runs the TAPE HEAD left down
the TAPE until it finds the (one and only) xk. From here it goes into the state SIMULATE-T1 '
and the process repeats itself.

The outline of the whole T3 is

START

F I N D-Y .,_ _______ _.

S I M -y 1

S I M-Y2

S I M -Y3

F I N D-X ..--------"'""

542 CHAPTER 23 TM Languages

The halting or crashing of T3 takes place entirely within the simulations and we are cer
tain that, for every input, one or the other will take place. The language that will be accepted
will be L and all of L' will be rejected. •

Again, the machines produced by the algorithm in this proof are very large (many, many
states), and it is hard to illustrate this method in any but the simplest examples.

EXAMPLE

Consider the language L = b(a + b)* . L can be accepted by the following TM, T1 :

START
xi

accept(T1) = L

loop(T1) = L'

reject(T) = 4>

(a,b,R)
(b,b,R)
(t.,b,R)

The machine T1 proves that L is r.e . , but not that L is recursive. The TM below, T2,

START
Y !

accepts the language L ' and loops on L.

(a,a,R)
(b,a,R)
(t.,a,R)

The first machine is already in T1 ' format and the only adjustment necessary in the sec
ond to make it into T2 ' is to eliminate the HALT state and its incoming edges. We can com
bine them per the algorithm in the proof to produce T3, which accepts L and rejects L ' .
thereby proving that L i s recursive :

Recursively Enumerable Languages

(any non-x,=,L)

START

I N SERT /J. HALT

(*,*,LJ (*,*,L) (b,b,R)

(any,=,L) (any,b,R)
----� DE LETE ----- I NSERT x2

(any,=,L) (any,a,R)
-----------,� DELETE t-----� I N S ERT Y2

543

•

The first question that comes to most minds now is , "So what? Is the result of Theorem
6 1 so wonderful that it was worth a multipage proof?" The answer to this is not so much to
defend Theorem 6 1 itself, but to examine the proof.

We have taken two different TMs (they could have been completely unrelated) and com
bined them into one TM that processes an input as though it were running simultaneously on
both machines . This is such an important possibil ity that it deserves its own theorem.

THEOREM 62

If T1 and T2 are TMs, then there exists a TM, T3, such that

accept(T3) = accept(T1) + accept(T2)

544 CHAPTER 23 TM Languages

In other words, the union of two recursively enumerable languages is recursively enu
merable; the set of recursively enumerable languages is closed under union.

PROOF

The algorithm in the proof of Theorem 6 1 is all that is required. First, we must alter T1 and
T2 so that they both loop instead of crash on those words that they do not accept.

Now nothing stops the two machines from running in alternation, accepting any words
and only those words accepted by either. The algorithm for producing T3 can be followed
just as given in the proof of Theorem 6 1 .

On the new machine

accept(T3) = accept(T1) + accept(T2)

loop(T3) = all else

reject(T3) = <!> •

We have proven that the class of recursively enumerable languages is closed under
union by amalgamating two TMs. We are now interested in the question of the intersection
of two recursively enumerable languages. For regular languages, we found that the answer to
the question of closure under intersection was yes but for context-free languages the answer
was no. We could deduce that the closure of two regular languages is regular based on the
facts that the union and complement of regular languages are also regular. Then by DeMor
gan 's Law, the intersection, which is the complement of the union of the complements, must
also be regular. Because the complement of a context-free language is not necessarily con
text-free, this proof strategy does not carry over and, indeed, we saw that the intersection of
context-free languages need not be context-free. With recursively enumerable languages, we
have a third situation. They are closed under union and intersection but (we shall see) not
under complement.

THEOREM 63

The intersection of two recursively enumerable languages is also recursively enumerable.

PROOF

Let one of the languages be accepted by TM 1 and the other be accepted by ™r We shall
now construct a third TM by the following set of modifications:

Step l Build a TM preprocessor that takes a two-track TAPE and copies the input from
track l onto track 2 and returns the TAPE HEAD to cell column i and begins pro
cessing at the START state of TM1 •

Step 2 Convert TM 1 into a machine that uses a two-track TAPE doing all of its process
ing exactly as before but referring only to the top track. Also change the HALT
state of TM 1 into a state that rewinds the TAPE HEAD to cell column i and then
branches to the START state of ™r

Step 3 Convert TM2 into a machine that uses a two-track TAPE, doing all of its pro
cessing exactly as before but referring only to the bottom track. Leave the
HALT state untouched.

The Encoding of Turing Machines 545

We can now build a new TM that first runs the input string on TM1 and then, if and only
if the string is accepted, it runs the same input on TMr The HALT state of this combined
machine is analogous to the HALT state of TM2, but it is reached only when the input has
halted on both TMs. This machine then accepts those words, and only those words, that are
accepted by both initial machines. It is, therefore, a TM acceptor of the intersection lan
guage. •

<l} THE ENCODING OF TURING MACHINES

It is now time to ask our usual questions about the class of r.e. languages. We have answered
the question about the union and intersection of r.e. languages, but that sti l l leaves open
product, Kleene closure, complement, the existence of non-r.e. languages, and the decidabil
i ty of emptiness, finiteness and membership. We shall attack these in a slightly different or
der than we did for the other language classes we analyzed.

TMs do seem to have immense power as language-acceptors or language-recognizers,
yet there are some languages that are not accepted by any TM, as we shall now prove by
"constructing" one.

Before we can describe such a language, we need to develop the idea of encoding
TMs.

Just as with FAs and PDAs, we do not have to rely on pictorial representations for
TMs. We can make a TM into a summary table and run words on the table as we did with
PDAs in Chapter 1 5 . The algorithm to do this is not difficult. First, we number the states
l , 2, 3, . . . and so on. By convention, we always number the START state I and the
HALT state 2. Then we convert every instruction in the TM into a row of the table as
shown below:

From To Read Write Move

I 3 a a l

3 I � b R

8 2 b a R

where the column labeled "Move" indicates in which direction the TAPE HEAD is to move.

EXAMPLE

The TM shown below:

(b,b,R)

C 1 (}... (a,b,R)

START _
(a,b.L) ' c!l (A,b,L)

can be summarized by the following table:

� (__ H_�_LT __)

546 CHAPTER 23 TM Languages

From

1

I

3

3

To

1

3

3

2

Read Write Move

b b R

a b R

a b l

� b l

Because we know that state 1 is START and state 2 is HALT, we have all the informa-
tion in the table necessary to operate the TM. •

We now introduce a coding whereby we can tum any row of the TM into a string of a 's
and b's.

Consider the general row

From To Read Write Move

where X1 and X2 are numbers, X3 and X4 are characters from { a b #) or �. and X5 is a di
rection (either l or R).

We start by encoding the information X 1 and X2 as

a' lba•ib

which means a string of a 's of length X1 concatenated to a b concatenated to a string of a 's
X2 long concatenated to a b. This is a word in the language defined by a+ba+b.

Next, X3 and X4 are encoded by this table:

X3, X4 Code

a aa

b ab

� ha

bb

Next, we encode X5 as follows:

Xs Code

L a

R b

Finally, we assemble the pieces by concatenating them into one string. For example, the row

From

6

becomes

To

2

Read Write Move

b a L

The Encoding of Turing Machines

a a a a a a b a a b a b a a a = a a a a a a b a a

:����to-r _)) j
state 2
separator----------------

b a b a a a

read b --------------------
write a--------------------�
move left-----------------------

547

Every string of a 's and b 's that is a row is of the form definable by the regular expression

a+ba+b(a + b)5
= (at least one a)b(at least one a)b(five letters)

It is also true that every word defined by this regular expression can be interpreted as a
row of a TM summary table with one exception: We cannot leave a HALT state. This means
that aaba+b(a + b)5 defines a forbidden sublanguage.

Not only can we make any row of the table into a string, but we can also make the whole
summary table into one long string by concatenating the strings that represent the rows.

EXAMPLE

The preceding summary table can be made into a string of a's and h's as follows:

From To Read Write Move Code for Each Row

I I b b R ababababb

I 3 a b R abaaabaaabb

3 3 a b L aaabaaabaaaba

3 2 � b L aaabaabbaaba

One one-word code for the whole machine is

ababababbabaaabaaabbaaabaaabaaabaaaabaabbaaba

This is not the only one-word code for this machine because the order of the rows in the
table is not rigid. We can standardize the code word by insisting that the row codes be amal
gamated in their lexicographic order. •

It is also important to observe that we can look at such a long string and decode the TM
from it, provided that the string is in the proper form, that is , as long as the string is a word
in the code word language (CWL).

(For the moment, we shall not worry about the forbidden HALT-leaving strings. We
consider them later.)

CWL = the language defined by (a+ba+b(a + b)5)*

ALGORITHM

The way we decode a string in CWL is as follows:

548 CHAPTER 23 TM Languages

Step l Count the initial clump of a 's and fill in that number in the first entry of the first
empty row of the table.

Step 2 Forget the next letter; it must be a b.

Step 3 Count the next clump of a 's and fill in that number in the second column of this
row.

Step 4 Skip the next letter; it is a b.

Step 5 Read the next two letters. If they are aa, write an a in the Read box of the table.
If they are ab, write a b in the table. If they are ba, write a a in the table. If they
are bb, write a # in the table.

Step 6 Repeat step 5 for the table Write entry.

Step 7 If the next letter is an a, write an L in the fifth column of the table; otherwise,
write an R. This fills in the Move box and completes the row.

Step 8 Starting with a new line of the table, go back to step l , operating on what re
mains of the string. If the string has been exhausted, stop. The summary table is
complete. •

EXAMPLE

Consider the string

abaaabaaaabaaabaaabaaaabaaabaabababa

The first clump of a's is one a. Write l in the first line of the table. Drop the b. The next
part of the string is a clump of three a's. Write 3 in row l , column 2. Drop the b. Now aa
stands for a. Write a in column 3. Again, aa stands for a. Write a in column 4. Then b stands
for R. Write this in column 5, ending row 1 . Starting again, we have a clump of three a 's so
start row 2 by writing a 3 in column l . Drop the b. Three more a 's , write a 3. Drop the b.
Now aa stands for a; write it. Again, aa stands for a; write it. Then b stands for R. Finish
row 2 with this R. What is left is three a's, drop the b, two a 's, drop the b, then ab, and ab,
and a, meaning b, and b, and L. This becomes row 3 of the table. We have now exhausted the
CWL word and have therefore finished a table.

The table and machine are

From To Read Write Move

I 3 a a R

3 3 a a R

3 2 b b L

(a.a.R)

(a.a.R)

•

The result of this encoding process is that every TM corresponds to a word in CWL.
However, not all words in CWL correspond to a TM. There is a little problem here because

A Non-Recursively Enumerable Language 549

when we decode a CWL string, we might get an improper TM such as one that is nondeter
ministic or repetitive (two rows the same) or violates the HALT state, but this should not
dull our enthusiasm for the code words. These problems will take care of themselves, as we
shall see.

� A NON-RECURSIVELY ENUMERABLE LANGUAGE

The code word for a TM contains all the information of the TM, yet it can be considered as
merely a name-or worse yet, input. Because the code for every TM is a string of a's and
b's, we might ask what happens if this string is run as input on the very TM it stands for. We
shall feed each TM its own code word as input data. Sometimes it will crash, sometimes
loop, sometimes accept.

Let us define the language ALAN as follows.

DEFINITION

ALAN = I all the words in CWL that are not accepted by the TMs they
represent or that do not represent any TM } •

EXAMPLE

Consider the TM

The table for this machine is simply

From To

2

The code word for this TM is

Read Write Move

b b R

abaabababb

But if we try to run this word on the TM as input, it wil l crash in state I because there is
no edge for the letter a leaving state I .

Therefore, the word

abaabababb

is in the language ALAN. •

550 CHAPTER 23 TM Languages

EXAMPLE

The words

aababaaaaa and aaabaabaaaaa

are in CWL but do not represent any TM, the first because it has an edge leaving HALT and
the second because it has no START state. Both words are in ALAN. •

EXAMPLE

In one earlier example, we found the TM corresponding to the CWL word

abaaabaaaabaaabaaabaaaabaaabaabababa

When this word is run on the TM it represents, it is accepted. This word is not in
ALAN. •

EXAMPLE

If a TM accepts all inputs, then its code word is not in ALAN. If a TM rejects all inputs, then
its code word is in ALAN. Any TM that accepts the language of all strings with a double a
will have a code word with a double a and so will accept its own code word. The code words
for these TMs are not in ALAN. The TM we built in Chapter 1 9 to accept the language
PALINDROME has a code word that is not a palindrome. Therefore, it does not accept its
code word and its code word is in ALAN. •

We shall now prove that the language ALAN is not recursively enumerable. We prove
this by contradiction. Let us begin with the supposition that ALAN is r.e. In that case, there
would be some TM that would accept all the words in ALAN. Let us call one such TM T.
Let us denote the code word for T as code(D. Now we ask the question:

Is code(D a word in the language ALAN or not?

There are clearly only two possibil ities: yes or no. Let us work them out with the precision
of Euclidean geometry.

CASE 1 : code(T) is in ALAN

CLAIM
I . T accepts ALAN.
2. ALAN contains no code

word that is accepted by the
machine it represents.

3. code(T) is in ALAN.
4. T accepts the word code(T).
5 . code(T) is not in ALAN.
6. Contradiction.
7 . code(T) is not in ALAN.

REASON
I . Definition of T.
2. Definition of ALAN.

3 . Hypothesis.
4. From I and 3 .

5 . From 2 and 4.
6 . From 3 and 5.
7 . The hypothesis (3) must be

wrong because it led to a
contradiction.

A Non-Recursively Enumerable Language

Again, let us use complete logical rigor.

CASE 2: code(T) is not in ALAN

CLAIM REASON

I . T accepts ALAN.
2. If a word is not accepted

by the machine it
represents, it is in ALAN.

3. code(T) is not in ALAN.
4. code(T) is not accepted by r.
5 . code(T) is in ALAN.
6. Contradiction.
7. code(T) is in ALAN.

I . Definition of T.
2. Definition of ALAN.

3. Hypothesis.
4. From I and 3.

5 . From 2 and 4.
6. From 3 and 5 .
7 . The hypothesis (3) must be

wrong because it led to a
contradiction.

551

Both cases are impossible; therefore, the assumption that ALAN is accepted by some TM is
untenable. ALAN is not recursively enumerable.

THEOREM 64

Not all languages are recursively enumerable. •

This argument usually makes people 's heads spin. It is very much like the old "l iar para
dox," which dates back to the Megarians (attributed sometimes to Eubulides and sometimes
to the Cretan Epimenides) and runs like this. A man says, "Right now, I am tel ling a lie." If it
is a lie, then he is tel ling the truth by confessing. If it is the truth, he must be lying because
he claims he is. Again, both alternatives lead to contradictions.

If someone comes up to us and says, "Right now, I am tel ling a lie," we can walk away
and pretend we did not hear anything. If someone says to us, "If God can do anything, he
can make a stone so heavy that He cannot lift it," we can bum him as a blaspheming heretic.
If someone asks us, "In a certain city the barber shaves all those who do not shave them
selves and only those. Who shaves the barber?", we can answer, "The barber is a woman."
However, here we have used this same old riddle not to annoy Uncle Charl ie, but to provide
a mathematically rigorous proof that there are languages that TMs cannot recognize .

The liar paradox and other logical paradoxes are very important in computer theory, as
we can see by the example of the language ALAN. In fact, the whole development of the
computer came from the same kind of intellectual concern as was awakened by considera
tion of these paradoxes.

The study of logic began with the Greeks (in particular, Aristotle and Zeno of Elea) but
then lay dormant for millennia. The possibility of making logic a branch of mathematics be
gan in l 666 with a book by Gottfried Wilhelm von Leibniz, who was also the coinventor of
calculus and an early computer man (see Chapter I) . His ideas were continued by George
Boole in the nineteenth century.

About a hundred years ago, Georg Cantor invented set theory and immediately a con
nection was found between set theory and logic . This allowed the paradoxes from logic, pre
viously a branch of philosophy, to creep into mathematics. That mathematics could contain
paradoxes had formerly been an unthinkable situation. When logic was philosophical and
rhetorical , the paradoxes were tolerated as indications of depth and subtlety. In mathematics,
paradoxes are an anathema. After the invention of set theory, there was a flood of paradoxes

552 CHAPTER 23 TM Languages

from Cesare Burali-Forti, Cantor himself, Bertrand Russell, Jules Richard, Julius Konig, and
many other mathematical logicians. This made it necessary to be much more precise about
which sentences do and which sentences do not describe meaningful mathematical opera
tions. This led to Hilbert's question of the decidabil ity of mathematics and then to the devel
opment of the theory of algorithms and to the work of GOdel , Turing, Post, Church (whom
we shall meet shortly), Kleene, and von Neumann, which in tum led to the computers we all
know (and love) . In the meantime, mathematical logic, from Gottlob Frege, Russell , and Al
fred North Whitehead on, has been strongly directed toward questions of decidability.

The fact that the language ALAN is not recursively enumerable is not its only unusual
feature. The language ALAN is defined in terms of TMs. It cannot be described to people
who do not know what TMs are. It is quite possible that all the languages that can be thought
of by people who do not know what TMs are are recursively enumerable. (This sounds like
its own small paradox.) This is an important point because, since computers are (approxi
mate) TMs, and since our original goal was to build a universal algorithm machine, we want
TMs to accept practically everything. Theorem 64 is definitely bad news. If we are hoping
for an even more powerful machine to be defined in Part IV of this book that will accept all
possible languages, we shall be disappointed for reasons soon to be discussed.

1} THE UNIVERSAL TURING MACHINE

The idea of encoding a TM program into a string of a 's and b's to be fed into itself is poten
tially more profitable than we have yet appreciated. When a TM program is made into an in
put string, it may be fed into other TMs for other purposes. What we shall now design is a
TM that can accept as input two strings separated by a marker, where the first string is the
encoding of some TM program and the second string is data that our machine will operate
on as if it were the TM described by the first input string. In other words, our new TM will
simulate the running of the encoded TM on the data string. This is not a simulation in the
sense of the proof of Theorem 6 1 (p. 538), where we designed a special TM to act as if it
were two particular TMs operating simultaneously. There we built a very different T3 for
each pair of starting machines T1 and T2• What we shall construct here is one and only one,
good for all time, TM that can imitate the action of any TM described to it on any arbitrary
data string we choose. The states and edges of our TM will not vary, but it wil l , by referring
to the half of the input that is the encoded TM program, mimic those operations on the other
half of the input, the intended data string fed into the encoded machine.

We might ask, "What is the advantage of such a thing?" If we want to see how TM T1
acts on a particular input string, why not just feed T1 the input in person? Why bother to feed
an encryption of T1 and the data into a second TM to run a simulation? There are many rea
sons for designing such a machine, and they will become evident shortly, but a computer sci
ence major should be ashamed of asking such a question when the answer is obvious. What
we are bui lding is a programmable TM. Instead of building a different computer for each
possible program, we are building a computer that accepts a set of instructions (a program)
and input data and acts on the data according to the instructions.

Let us recapitulate the impetus for the invention of the computer. Hilbert asked for an
algorithm that would generate a solution for any mathematical problem posed to it. The solu
tion could be either a simple numerical answer, a mathematical proof, or an algorithm for re
solving special classes of questions. In order to begin working on such an ambitious project,
logicians began to design small instruction sets in which all mathematical problems could be
stated, and from which all mathematical solutions could be composed. Godel constructed a
mathematical statement that, if it were provable, would be false, but if it were not provable,

The Universal Turing Machine 553

would be true. This meant that Hilbert's abstract goal could not be reached in total , because
the truth or provability of GOdel ' s statement would always remain unanswered. But it was
possible that the trouble caused by GOdel's statement could be contained, and that the bulk
of Hilbert 's ambition could somehow stil l be fulfilled.

That was until the work of Turing. He introduced the universal algorithm machine that
could execute any mathematical algorithm that could theoretically ever be designed. He used
it to show that it had irreparable severe limitations; that is, there were mathematical prob
lems that simply could not be solved by any algorithm. This universal algorithm machine is
the TM we have been describing (and will build) in this section, and the limitations just
mentioned will be elucidated soon in terms of the TM language questions that arise naturally
in their analogy to regular and context-free languages.

Even though Turing's universal machine was limited in theory, still it could execute all
known algorithms and all algorithms discoverable in the future. Although not enough to sat
isfy Hilbert's dream, this is stil l quite a feat. By fortunate accident, Turing's model of a pro
grammable machine was so simple that soon after his theoretical paper was published, peo
ple began to build real physical models of what was originally intended as an abstract
mathematical construct to settle (or scuttle) a project in pure mathematics. Electrical engi
neers had already been working on producing more and more sophisticated calculating de
vices, performing sequences of arithmetic operations, boosted by the speedy revolution in
electronic technology that was simultaneously being developed with no apparent connection
to the crisis in mathematical logic .

Instead of having to build a different electronic device for each algorithm, Turing's
mathematical work showed how one universal machine would suffice to simulate all algo
rithms with a very restricted working set of instructions and memory capabilities. The math
ematical project was not completed until von Neumann (a star mathematician, logician, and
engineer) showed how to actualize a programmable computer in which the instructions, be
cause they are fed in as data, could not only operate on the separate data field, but also could
modify their own program as it was running. This allowed the writing of programs that could
change their conditional branching instructions, evolve by writing new instructions for them
selves, and potentially learn from their experience on one data set to change what they do to
another. This then was the final step in the theoretical foundation of what is a computer. In
this text, we emphasize Turing's contribution but pay little to von Neumann 's extension of it.
That is only because we have to draw the line somewhere.

DEFINITION

A universal TM, a UTM, is a TM that can be fed as input a string composed of two parts:
The first is the encoded program of any TM T followed by a marker, the second part is a
string that will be called data. The operation of the UTM is that, no matter what machine T
is, and no matter what the data string is, the UTM will operate on the data as if it were T. If
T would have crashed on this input, it will crash; if T would loop forever, it wi l l loop for
ever; and if T would accept the input, the UTM does so too. Not only that but the UTM will
leave on its TAPE the encoded T, the marker, and the contents of what T would leave on its
TAPE when it accepts this very input string. •

We have been careful to imply that there does not exist only one unique UTM but per
haps many, depending on the choice of encoding algorithm for the machine T and the algo
rithm chosen for simulation. In the previous section, we encoded TMs into strings of a 's and
b 's. It will be easier for us to describe the working of a UTM employing a different encoding

554 CHAPTER 23 TM Languages

algorithm, one that is slightly less universal as it makes restrictions on the number of states
the TM to be simulated can have and on the size of that TM's TAPE character set. Let us as
sume, for the time being, that the TM to be encoded has at most I million states
q, = START, q2 = HALT, q3, q4, • • • • Let us also assume that there are at most I million
different characters that the TM T can ever employ on its TAPE (including its input alphabet) :
C l ' c2, • • • •

We can now reduce every row of the tabular description of the TM T to a series of sylla
bles of the form qxcl,Mq...,. where M is either l or R. In order to be sure that no confusion
arises, let us assume that none of the characters c is the same as any of the characters q and
that neither of them is the same as l or R. Let us also assume that this character set does not
contain our particular set of markers # and $.

This is truly a limitation because UTMs are supposed to be able to handle the simula
tion of any T, not just one with under a million states and under a million characters. How
ever, these assumptions wil l have the advantage of simplifying the description of the UTM
because the name of each state and each character is one symbol long, as opposed to the en
coding given in the previous section where there could be arbitrarily many states and charac
ters and their corresponding designations could increase in length enormously (unbound
edly). After we are finished designing our limited model, we wil l describe how it could be
modified to run on the unrestricted encoding in the previous section.

With this encoding scheme, every TM can be fully encoded into a word formed from the
concatenation of finitely many syllables of the type described above. Every substring of two
consecutive q's necessarily denotes the break between two edge instructions in the TM T.
Every substring of two consecutive e 's necessarily denotes a read and write section of an
edge instruction and is necessari ly followed by an l or R. To distinguish this encoding strat
egy from the one presented before, we call this encryption TM coding, TMC, and we desig
nate the TMC code word for the machine T as TMC T.

THEOREM 65

UTMs exist.

PROOF

Initially, the UTM TAPE will contain the following: the cell i marker #, the TMC code for
some TM T, the separator $, and the data field d1 , d2, d3, • • • made up of a finite string of
characters from the alphabet { c 1 c2 • • • } •

I # I TMC T

0
$ data .M . . .

This is the correct form of the input string into the UTM. We are not responsible for what may
happen to an input string that is not in this precise form. The first state of the UTM is, of course,
START. From there we go to a state searching for the first character of the data string.

The Universal Turing Machine 555

START

(any non-$,=,R)

($, $,RJ

We are now in a UTM state reading the first character of the data string. Instead, we in
sert the state we know the simulated machine T to be in at this moment, that is, its START
state q 1 •

T is in q 1

This marks the fact that T is in the state to the left of the UTM TAPE HEAD and its own
TAPE HEAD is reading a cell whose contents are those the UTM TAPE HEAD is now reading.
Except for the qx, which we shall continue to employ as a T TAPE HEAD indicator throughout
the simulation, the data field of the UTM TAPE will always be kept exactly the same as the
whole TM T TAPE.

We are now ready to do our main iteration. Based on the state we know we are in on the
simulation and the character we know we are reading in the simulation, we head for the ap
propriate one of the million squared possible combination states q1 & cY.

T is in q 1
(C j .C j ,L)

q i & Cj

(c2 ,c2,L)
q i & c2

(c3 ,c3,Ll
q i & C3

We shall now proceed as if we are farther along into our simulation and we have
reached the situation of being in state q on T and reading character c on the T TAPE. On the x y
UTM we are in state qx & cy. Once we know that we are in such a situation, we wind the
UTM TAPE HEAD left until we cross the $, entering the TMC code for T, and we search there
for the substring qx cy because this represents being in state qx on TM T and reading the char
acter cy. At most, one such substring exists because T is deterministic. The following UTM
code will accomplish this :

556 CHAPTER 23 TM Languages

(any non-cy=,L)

(q"'q"'L)

(any non-qx and non-cy =,Ll

When we get to this state, we have found the correct TM T edge to take to simu
late the running of the T machine. We have marked its state by turning it blue. So we
need a blue set of q 's as characters too. We mark it so that we can run up the T TAPE
simulation to the right of the $, do the writing, and sti l l later return to this instruc
tion. What would happen if we ran down the whole UTM TAPE to cell i and read the #
without finding the substring we were looking for? The answer is that T would have no
CY-edge coming out of state qx and we would have to simulate a crash. We have our
choice of ways for doing this so we leave the selection of this option up to the UTM pur
chaser.

We must now simulate the operation of being in qx reading a l\. on TM T. We must find
what character T wants to convert the cY into. Then we must go to a state that remembers
what that character is (there are a million of them, one for each possible character), run the
TAPE HEAD up the UTM TAPE until it crosses the $ barrier, enters the T TAPE simulation,
finds the unique q-symbol on this side of the $, and change the next cell from c,. to this new
character.

·

We are not yet done with the simulation. We must now run back down the UTM TAPE
looking for the blue-q to the left of the $ and find out how T wants its TAPE HEAD moved and
what T-state it wants to enter next. Here, the UTM program is as follows. Un-blue the
q-state, skip the read field of the TMC T-edge, skip the write field, and branch on the TAPE
HEAD move field, and then branch again on the new state until we reach the appropriate one
of the 2 million states,"L & q=" or "R & q,."

(q2.Q2.Rl (q2.q2.Rl
HALT HALT

(q 1 .Q 1,Rl (q 1 .Q 1.Rl
L & q 1 R & q 1

(q3'q3'Rl (q3'q3'R)
L & q3 R & q3

When we are in this M- and q- state, we race back up the UTM TAPE, past the $ marker,
and up to where we read qx again. This time we DELETE it and INSERT the new q= either
two cells before or one cell after the cell we are in, depending on whether the simulation of
T wanted the T TAPE HEAD moved left or right.

Not All r.e. Languages Are Recursive 557

(any non-$, =,R) (any non-q, =,R)

(any, =,Rl ($, $,Rl (any q, =,Sl
L & q,

I NSERT q,
(any, =,L)

After inserting q • • we branch on the character cw that we encounter in the cell after it to an
appropriate qz &

-
cw state. Then we move left down the TAPE, searching for the substring q,cw

and the whole process reiterates.
The only way the UTM terminates execution is when the TMC T instruction is to move

to state q, = q2, which is the T HALT state. The UTM cannot quite halt yet itself because it
still has a q-marker on the data side of the $. This marker is the only q-symbol on this half of
the TAPE. We run the TAPE HEAD up, search, and destroy. Then we go to the UTM HALT.

This UTM has a large TAPE alphabet. A million e's, a million black q's, a mill ion blue
q's, an l, an R, a #, and a $. It also has more than a tril lion states. But it does exactly what
we want it to do. Without knowing what T is and what the data are (only knowing that the
state names of T have been changed to q 's, the character names on the T TAPE have been
changed to e's, and that there are at most a million of each), it correctly simulates the opera
tion of the machine T on this data.

We promised an explanation about what we should do to build a real UTM that accepted all
CWL words of TMs with an unbounded number of states and an unbounded number of charac
ters. In this case, instead of simply having a state q & c, we need to mark the whole q and c field
on the right side of the $ by making it blue and then crossing the $, moving left, and searching
for an identical substring corresponding to the encoding of the same state and data. To mark an
arbitrarily large substring of TAPE cells and then search a specified range (between # and $) for
the identical substring is not hard TM programming, and we could have proven this theorem
that way. But the approach we took is slicker and more intuitive than a mess of non-mnemonic
a's and b's. But once we have understood our machine, it is clear that UTMs do exist, not just
that there are rumors of them having been sighted circling the skies in remote places. •

By the way, aren 't there a great many similarities between a UTM and a computer? We
could have made the analogy even closer. We could have numbered (i .e. , addressed) the cells in
memory and the cells in the program section by inserting fixed-length bit codes in front of
them. We could have set aside some register space, especially including an instruction counter
instead of blue paint to remember where we are in the program. Then we could have used an
address bus and a data bus to tum the TM's linear memory into random access memory. But all
these are relatively minor variations. The basic work of simulating a varying set of instructions
on arbitrary data by employing a fixed procedure was all worked out in the UTM by Turing.

{f NOT ALL r.e. LANGUAGES ARE RECURSIVE

Now that we have designed the UTM, we may use it to settle some questions about recur
sively enumerable languages, which is what Turing did initially.

We have already defined the language ALAN as all CWL words that are not accepted by
the TMs they might represent. Let us now consider the other side of the coin.

558 CHAPTER 23 TM Languages

DEFINITION

Let MATHISON be the language of all CWL words that do represent TMs and are accepted
by the very machines they represent. (Mathison was Turing's middle name, so do not seek
any further mathematical interpretation.) •

THEOREM 66

MATHISON is recursively enumerable.

PROOF

The TM that accepts MATHISON is very much like our UTM, but it has an initializing sub
program. We start with an input string and then convert the TAPE to

original input string $ second copy of original input string 66 . . .

0
We now run the UTM program exactly as written above. If it ends in a HALT, then we

know that the original input was accepted when run on the TM it represents.
It is conceivable that some arbitrary input string that did not really represent a TM could

somehow trick a UTM into accepting itself. In fact, it is easy to see how this might happen. The
input might be the encoding of a nondeterministic TM and the UTM found a path to HALT
without realizing the input was bogus. Alternately, the input might have some semblance of a
TM code word but include a garbage subsequence that luckily did not get in the way of the
UTM search for states and edges on its way to HALT. In order to avoid these cases, we need a
prescreening subprogram to check the input string to be sure that it is in the correct form of a de
terministic TM. Because CWL is a regular language, we know there is a TM that accepts it
(Theorem 46, p. 445) and then all that need be checked further is the existence of moves out of
the HALT state and the possibility of nondeterministic branching-all of which is elementary
TM programming and, hence, so trivial for us that we need not bother making a further issue cm
it.

Once we know that the input is, in fact, a code word for a TM, the procedure above will
halt when and only when the input is a word in MATHISON. •

THEOREM 67

The complement of a recursively enumerable language might not be recursively enumerable .

PROOF

Because CWL is a regular language, its complement CWL' is also regular. Because CWL' is
regular, it is also recursively enumerable. The union of CWL' and MATHISON is therefore
the union of two r.e. languages and so is r.e. itself. Cal l this language L.
L = CWL' + MATHISON. l is r.e . , but its complement is ALAN that is not r.e . :

Decidability

THEOREM 68

Non-CW-stri ngs =CWL'

CWL

ALAN MATHISON

There are recursively enumerable languages that are not recursive.

PROOF

559

•

The language L just defined is not recursive because that would mean ALAN = L' would be
r.e . , which by p. 55 l it is not.

1} DECIDABILITY

We have answered some of the usual questions about languages for the class of r.e. lan
guages, and some others will be answered in the next chapter. What we face now is the ques
tion of membership for a language defined by a TM.

Suppose we are given an input string w and a TM T. Can we tel l whether or not T halts
on w? This is called the halting problem for TMs. If the answer were "yes," this question
probably would not have a name, merely a theorem number. We shall indeed prove that there
is no such decision procedure in our idiosyncratic sense of that term.

To the suggestion, "Why don 't we just run w on T and see what happens?", the answer
is that this proposal might work, T might halt or crash while we are watching, or it might
keep on running for a long time. It may run so long that we begin to suspect that w is in
loop(D, but suspecting so does not make it so. T might run for seven years and then decide
to accept w.

Because we have been claiming that TMs can execute any mathematical algorithm,
what we would expect to find as a halting problem decision procedure is a special TM.
Into this special machine we place w and T (encoded, of course) and out comes the an
swer of whether T accepts w. The UTM is not our solution because all that wi l l do is sim
ulate T; we need something better. The hope of converting T i tself into a machine that
never loops is doomed because if we could always do that for any TM, all recursively
enumerable languages would be recursive, which we know they are not. So, what then is
the answer?

THEOREM 69

There is no TM that can accept any string w and any coded TM T and always decide
correctly whether T halts on w. In other words, the halting problem cannot be decided by
a TM.

560 CHAPTER 23 TM Languages

PROOF

Suppose for a moment that there was a TM that answers the halting problem. Let us call this
machine HP. If we feed HP the CWL code for any TM T and then a # followed by any input
string w, HP will, in finite time, halt itself and print out "yes" somewhere on its TAPE if T
halts on w and "no" if it does not.

Let us modify HP as follows. Let us make it loop forever if it were about to print "yes"
and halt. We could do this by taking whatever section of the program was about to print the
final s and make it loop instead. For those pairs of inputs for which it was going to print
"no," we make no modification.

Now we stick a subprogram, acting as a preprocessor, onto the front of the HP program.
This preprocessor takes the left-of-# part of the input string and decides whether it is a word
in CWL. If the input is not, the preprocessor crashes . If it is, then the preprocessor deletes
the w part of the original input and puts two copies of the same string onto the TAPE, sepa
rated by a #, and feeds into the main HP program. This means that the HP is going to ana
lyze whether the code word that gets past the preprocessor is an encoded TM that accepts its
own code word as an input. If the answer is "yes", then the modified machine loops forever.
If the answer is "no," then it prints "no" and halts. In other words, regardless of what slan
ders are printed on the TAPE, this modified HP halts only on those inputs that are code words
of TMs which do not accept their own code word as input. Therefore, this modified HP ac
cepts exactly the language ALAN. But ALAN is not r.e . This contradiction disproves the as
sumption that there exists a TM to decide the halting problem. •

As if this situation were not bad enough, even more is true.

THEOREM 70

There is no TM that can decide, for every TM T, fed into it in encoded form, whether or not
T accepts the word A.

PROOF

Suppose, for a moment, there was such a machine called LAMBDA. That is, for all TMs T,
when we feed the code for T into LAMBDA, it prints out "yes" if A is accepted by T and
"no" if A is not. We shall now prove that such a machine cannot exist by demonstrating how,
by employing it, we could answer the halting problem by building a successful machine HP.

We can build HP in this fashion. HP, remember, is fed an encoded TM program for T and
a word w and is asked to decide whether T halts on w. The first thing that HP will do is create
a new TM, in encoded form, out of T and w. Basically, what it will do is modify T by attach
ing a subprogram preprocessor that writes w on an empty TAPE. This new TM
(preprocessor + D will be called T*. HP does not write the word w anywhere, nor does it run
the machine T. What it does is take the letters of w = w1 w2 w3 • • • and automatically con
struct a set of new TM states, connected in a line with edges labeled (Li, w" R), (Li, w2, R),
(Li, w3, R), This then is the preprocessor subprogram. HP now encodes the preproces
sor and concatenates it with the code it was given for T to obtain the code word for T*.

With T* constructed like this, it is clear that the only word T* can possibly accept is A,
because all other inputs would crash in the preprocessor stage. Not only that, but T* can only
accept A if after w is put on the TAPE and the machine runs like T, then T accepts w. In fact,
T* accepts A if and only if T accepts w.

Now this clever old HP has, by modifying the code of T into the code for T*, reduced
the question it was supposed to answer into a question the machine LAMBDA can answer.
So, the next section of the HP program is to act like LAMBDA on the code for T* . This wi l l

Problems 561

print out "yes" or "no," whichever is the truth about A for T*, which will also �e the answer
for w and T. Therefore, if LAMBDA exists, then HP exists. But HP does not exist. •

So, not only can we not determine whether T accepts a given arbitrary word w, we can

not even tel l whether when started on an empty TAPE (i.e. , the input A), it will halt. This is

sometimes called the blank tape problem, and it too is unsolvable by TM.

Given how little success we are having deciding things about TMs by TM, the next re-

sult should be no surprise.

THEOREM 71

There is no TM that, when fed the code word for an arbitrary TM, can always decide
whether the encoded TM accepts any words. In other words, the emptiness question for r.e.
languages cannot be decided by TM.

PROOF

We shall prove this by a method analogous to that used in the last proof. We shal l assume
that there is such a TM, call it NOTEMPTY, that can decide whether the language for
any TM, T* , fed into it can accept any words and prints out "yes" or "no" accordingly,
and from this TM NOTEMPTY, we shall be able to construct a working model of
LAMBDA. Because LAMBDA cannot exist, we can conclude that NOTEMPTY cannot
exist either.

We can build LAMBDA in the following way. Let us say that LAMBDA is fed the
encoded TM T and asked whether it halts on a blank TAPE. What LAMBDA does is attach
to T a preprocessor subprogram that erases any input that happens to be on the TAPE. This
preprocessor is essentially the loop (any non-A, A, R). It is important that it only erase
the input (the non-A part of the TAPE) and not loop forever. It now leaves the TAPE HEAD
in cell i . Now when it has finished attaching this preprocessor to T, it determines the new
code word for the joint machine called T* and feeds this into NOTEMPTY. If the lan
guage of T* is not empty, this means that T* accepts some words. In the operation of T* ,
these words would first be erased and then T run on the blank TAPE that remains. In other
words, if T* accepts anything, then T accepts A. And if T accepts A, then T* accepts
everything. So, the LAMBDA machine can be built from the NOTEMPTY machine, if
the latter existed. •

The construction in the proof of the last machine actually said that LAMBDA exists if
there is a TM that can determine whether the language accepted by a given TM is infinite,
because the language of T* is empty or infinite depending on whether T accepts A. Because
LAMBDA does not exist, the machine to decide finiteness also cannot exist. Thus, we have
actually proven thi s result.

THEOREM 72

There does not exist a TM that can decide, for any encoded TM T fed into it, whether or not
the language of T is finite or infinite. •

We have been careful in the last three theorems to say that membership, A, and empti
ness are all not decidable by a TM. We did not have the nerve yet to claim that these ques
tions could not be decided by any means. That time, however, is approaching.

562 CHAPTER 23 TM Languages

<{f PROBLEMS

1 . Show that each of the following languages is recursive by finding a TM that accepts
them and crashes on all strings in their complement:

(i) EVEN-EVEN
(ii) EQUAL

(ii i) ODDPALINDROME
(iv) TRAILINGCOUNT
(v) MOREA

Consider the following TMs for Problems 2 through 4:

(a,a,R)

c __ s_TA_R_T _9 (b,a,L) • c __ H_A_L_T _)

c START) ... _ca_.a_.R_>__,.�or-<a_.a_.R_)---i•..i(HALT)
2. What are accept(T1) , loop(T1) , and reject(T1)? Be careful about the word b.

3. What are accept(T2), loop(T2), and reject(T2)?

4. Draw the TM that accepts the language

accept(T1) + accept(T2)

5. Trace the execution of these input strings on the machine of Problem 4:

(i) A
(i i) b

(i i i) aab
(iv) ab

6. Prove that all regular languages are recursive.

7. Prove that all CFLs are recursive.

8. Prove that if L, M, and N are three r.e . languages such that no two have a word in com
mon yet their union is all possible strings, then they are all recursive.

9. Let L be a language and L ' its complement. Prove that one of the following cases must
be true:

(i) Both L and L ' are recursive.
(ii) Neither L nor L ' is r.e.

(ii i) One is r.e . but not recursive while the other is not r.e .

10. (i) Prove that the union of two recursive languages is recursive.
(ii) Prove that the intersection of recursive languages is recursive.

11. Suppose that L is r.e. but not recursive and that T accepts L. Prove that loop(T) is infinite.

12. Using nondeterministic TMs, show that the product and Kleene closure of r.e . languages
are r.e .

13. Convert the following TMs first into summary tables and then into their code words in
CWL. What are the six languages accepted by these TMs?

Problems

(i) (h .h .R) (.l . .l.R)O � ST�RT) (a . h . L) � C _H_�_L T _ _,)

(ii)

(iii)

(iv)

(v)

(vi)

START
l

START
l

START
l

(a,b,L)

START
l

(.l,.l,R)

HALT
2

(a . .l.R)

(h.#.L)

(h.h. R)

(a,a,R)
(b,b.R)

(a,a,R)
(b.b,R)

(b,a,L)

(b,a.R)

(b,i!.,R)
(a,.l,R)

(.l,a,L)

(a .a .R)

(.l.a .R)

HALT
2

(tl,tl,R)

(.l,.l,R)

(a,tl,R)
(b,tl,R)

HALT
2

HALT
2

563

564 CHAPTER 23 TM Languages

Run each of the six encoded words on their respective machines to see which are in the lan
guage ALAN.

14. Can the code word for any TM be a palindrome? Prove your answer.

15. Decode the following words from CWL into their corresponding TMs and run them
on their corresponding TMs to see which are in ALAN and which are in MATHI
SON:

(i) abaabbbbab
(ii) abaabaabba

(ii i) abaabaabbb
(iv) abaaabaaabbaaabaababbbb
(v) abaaabaaabaaaabaababbab

(vi) ababababab

16. Outline a TM that accepts only CWL words that actually are encoded TMs.

17. In Chapter 1 1 (just before Theorem 1 7) , the blue paint method was presented to deter
mine whether an FA accepts any words at all. Using the TM depicted below, show that
this method fails to decide whether a TM accepts any words:

(START
) (any,b ,R� 0 (any,= ,L� 0 (a ,a ,R))I (HALT)

18. Given a TM, T1 , and any string w, there is clearly a TM, T2, that first screens its input to
see whether it is the particular string w; if it is not the input is accepted, if it is w, then T1
is run on the input w. Pictorially,

I nput

Show that there is no decision procedure to determine whether any given TM (say T2)
accepts all strings or not.

19. Show that there is no TM that can decide, given code(T1) and code(T), whether
accept(T1) = accept(T2) . Hint: Choose a T2 such that this problem reduces to the
ACCEPTALL machine of the previous problem.

20. (Oddly enough, this problem has nothing to do with computer theory, yet it has every
thing to do with the contents of this chapter.)

In the English language, we can observe that some adjectives apply to themselves.
For example, the word "short" is a fairly short word. We might say, "short" is short.
Also, the adjective "polysyllabic" is indeed polysyllabic. Some other possible adjectives
of this type are "unfrequent," "melodious," "arcane," "unhyphenated," "English," "non
palindromic," and "harmless." Let us call all these adjectives that describe themselves
homothetic. Let us call all other adjectives (those that do not describe themselves) het
erothetic. For example, the words "gymnastic," "myopic," and "recursive" are all het
erothetic adjectives. The word "heterothetic" is an adjective and therefore like all adjec
tives it is either homothetic or heterothetic . Which is it?

CHAPTER 24

The Chomsky
Hierarchy

1} PHRASE-STRUCTURE GRAMMARS

We have not yet developed al l the information presented in the table at the beginning
of Chapter 1 9 . For one thing, we have not di scovered the language structures that
define recursively enumerable sets independent of the concept of TMs. This we shal l do
now.

Why are context-free languages called "context-free"? The answer is that if there is a
production N -+ t, where N is a nonterminal and t is a terminal, then the replacement of t
for N can be made in any situation in any working string. This gave us the uncomfortable
problem of the itchy itchy itchy bear in Chapter 1 2 . It could give us even worse prob
lems.

As an example, we could say that in English the word "base" can mean cowardly,
whereas "ball" can mean a dance. If we employ the CFG model, we could introduce the pro
ductions

Base -+ cowardly
Ball -+ dance

and we could modify some working string as follows:

Basebal l ==> cowardly dance

What is wrong here is that although base can sometimes mean cowardly, it does not al
ways have that option. In general, we have many synonyms for any English word; each is a
possibi l ity for substitution:

Base -+ foundation I alkali I headquarters I safety station I cowardly I mean

However, it is not true in English that base can be replaced by any one of these words in
each of the sentences in which it occurs. What matters is the context of the phrase in which
the word appears . English is therefore not an example of a CFL. This is true even though, as
we saw in Chapter 1 2, the model for context-free languages was original ly abstracted from
human language grammars . Sti l l , in English we need more information before proceeding
with a substitution. This information can be in the form of the knowledge of the adjoining
words.

565

566 CHAPTER 24 The Chomsky Hierarchy

Base l ine -... starting point
Base metal -... nonprecious metal
Way off base -... very mistaken I far from home

Here, we are making use of some of the context in which the word sits to know which
substitutions are allowed, where by context we mean the immediately adjoining words in the
sentence. The term context could mean other things, such as the general topic of the para
graph in which the phrase sits; however, for us context means some number of the surround
ing words.

Instead of replacing one character by a string of characters as in CFGs, we are now con
sidering replacing one whole string of characters (terminals and nonterminals) by another.
This is a new kind of production and it gives us a new kind of grammar. We carry over all
the terminology from CFGs such as "working string" and "the language generated." The
only change is in the form of the productions. We are developing a new mathematical model
that more accurately describes the possible substitutions occurring in English and other hu
man languages. There is also a useful connection to computer theory, as we shall see.

DEFINITION

A phrase-structure grammar is a collection of three things:

1. A finite alphabet 2 of letters called terminals.

2. A finite set of symbols called nonterminals that includes the start symbol S.

3. A finite list of productions of the form

String 1 -... string 2

where string I can be any string of terminals and nonterminals that contains at least one
nonterminal and where string 2 is any string of terminals and nonterminals whatsoever.

A derivation in a phrase-structure grammar is a series of working strings beginning
with the start symbol S, which, by making substitutions according to the productions, arrives
at a string of all terminals, at which point generation must stop.

The language generated by a phrase-structure grammar is the set of al l strings of termi-
nals that can be derived starting at S. •

EXAMPLE

The following is a phrase-structure grammar over l = { a b I with nonterminals X and S:

PROD l s -... xs I A
PROD 2 X -... aX I a
PROD 3 aaaX -... ba

This is an odd set of rules. The first production says that we can start with S and derive
any number of symbols of type X-for example,

S ==> XS
==> XXS
==> XXXS
==> XXXXS
==> XXXX

Phrase-Structure Grammars

The second production shows us that each X can be any string of a 's (with at least one a):

x � ax
� aaX
� aaaX
� aaaaX
� aaaaa

567

The third production says that any time we find three a 's and an X, we can replace these
four symbols with the two-terminal string ha.

The following is a summary of one possible derivation in this grammar:

s b xxxxxx
b aaaaaXXXXX
� aahaXXXX

� aahaaaXXX
� aahbaXX

� aahhaaaX
� aahhba

*
(after X � aaaaa)
(by PROD 3)

*
(after X � aa)
(PROD 3)

*(after X :::::::> aa)
(after PROD 3) •

This is certainly a horse of a different color. The algorithms that we used for CFGs must
now be thrown out the window. Chomsky Normal Form is out. Sometimes, applying a pro
duction that is not a A-production still makes a working string get shorter. Terminals that
used to be in a working string can disappear. Leftmost derivations do not always exist. The
CYK algorithm does not apply. It is no longer possible just to read the list of nonterminals
off of the left sides of productions. We cannot tel l the terminals from the nonterminals with
out a scorecard.

All CFGs are phrase-structure grammars in which we restrict ourselves as to what we
put on the left side of productions. So, all CFLs can be generated by phrase-structure gram
mars. Can any other languages be generated by them?

THEOREM 73

At least one language that cannot be generated by a CFG can be generated by a phrase-struc
ture grammar.

PROOF

To prove this assertion by constructive methods, we need only demonstrate one actual lan
guage with this property. A nonconstructive proof might be to show that the assumption

Phrase-structure grammar = CFG

leads to some devious contradiction but, as usual , we shall employ the preferred constructive
approach here. (Theorem 64 on p. 55 1 was proved by devious contradiction and see what be
came of that.)

Consider the following phrase-structure grammar over the alphabet 2 = I a h I :

PROD
PROD 2

S -+ aSBA
S -+ ahA

568 CHAPTER 24 The Chomsky Hierarchy

PROD 3 AB - BA
PROD 4 bB - bb
PROD 5 bA - ba
PROD 6 aA - aa

We shall show that the language generated by this grammar is { anbnan } , which we have
shown in Chapter 1 6 is non-context-free.

First, let us see one example of a derivation in this grammar:

S � aSBA PROD
� aaSBABA PROD l
� aaaSBABABA PROD l
� aaaabABABABA PROD 2
� aaaabBAABABA PROD 3
� aaaabBABAABA PROD 3
� aaaabBBAAABA PROD 3
� aaaabBBAABAA PROD 3
� aaaabBBABAAA PROD 3
� aaaabBBBAAAA PROD 3
� aaaabbBBAAAA PROD 4
� aaaabbbBAAAA PROD 4
� aaaabbbbAAAA PROD 4
� aaaabbbbaAAA PROD 5
� aaaabbbbaaAA PROD 6
� aaaabbbbaaaA PROD 6
� aaaabbbbaaaa PROD 6
= a4b4a4

To generate the word <f"b"'am for some fi xed number m (we have used n to mean any
power in the defining symbol for this language), we could proceed as follows.

First, we use PROD l exactly (m - l) times. This gives us the working string

aa . . . a s

m - l

BABA . . . BA

(m - l) B 's alternating
with

(m - l) A 's

Next, we apply PROD 2 once. This gives us the working string

aa a

m

b ABAB . . . BA

m A 's
m - l B 's

Now we apply PROD 3 enough times to move the B's in front of the A 's. Note that we
should not let our mathematical background fool us into thinking that AB - BA means that the
A 's and B 's commute. No. We cannot replace BA with AB-only the other way around. The
A 's can move to the right through the B 's. The B's can move to the left through the A 's. We can
only separate them into the arrangement B 's, then A 's. We then obtain the working string

aa . a b BB . . . B AA . A

m m - l m

Phrase-Structure Grammars 569

Now using PRODS 4, 5, and 6, we can move left through the working string, converting
B 's to b's and then A 's to a 's.

We will finally obtain

aa . a bb b aa

m m m

We have not yet proven that { anbnan I is the language generated by the original grammar,
only that all such words can be derived. To finish the proof, we must show that no word not
in { anbna• I can be generated. We must show that every word that is generated is of the form
a%"an for some n.

Let us consider some unknown derivation in this phrase-structure grammar. We begin
with the start symbol S and we must immediately apply either PROD 1 or PROD 2. If we start
with PROD 2, the only word we can generate is aba, which is of the approved form.

If we begin with PROD 1 , we get the working string

a SBA

which is of the form

s
some a 's equal A 's and B 's

The only productions we can apply are PRODS 1 , 2, and 3 , because we do not yet have any
substrings of the form bB, bA , or aA . PRODS 1 and 3 leave the form just as above, whereas
once we use PROD 2, we immediately obtain a working string of the form

abA
a 's equal A 's and B 's

If we never apply PROD 2, we never remove the character S from the working string and
therefore we never obtain a word. PROD 2 can be applied only one time, because there is
never more than one S in the working string.

Therefore, in every derivation before we have applied PROD 2, we have applied some
(maybe none) PROD 1 's and PROD 3 's. Let the number of PROD 1 's we have applied be m. We
shall now demonstrate that the final word generated must be

Right after PROD 2 is applied, the working string looks like this :

abA
exactly m a's exactly m A 's

and m B 's
in some order

The only productions we can apply now are PRODS 3 , 4, 5, and 6. Let us look at the
working string this way:

b Nonterminals
(m + I) A 's

m B's

Any time we apply PRoD 3, we are just scrambling the right half of the string, the se
quence of nonterminals . When we apply PROD 4, 5 , or 6, we are converting a nonterminal
into a terminal , but it must be the nonterminal on the border between the left-side terminal

570 CHAPTER 24 The Chomsky Hierarchy

string and the right-side nontenninal string. We always keep the shape

tenninals Nonterminals

(just as with leftmost Chomsky derivations), until we have all terminals. The A 's eventually
become a's and the B 's eventually become b's . However, none of the rules for PRODS 4, 5 , or
6 can create the substring ah. We can create bb, ha, or aa, but never ah. From this point on,
the pool of A 's and B 's will be converted into a 's and b 's without the substring ah. That
means it must eventually assume the form b*a* .

must become

Nonterminals
(m + l) A 's

m B 's

which is what we wanted to prove. •

As with CFGs, it is possible to define and construct a total language tree for a phrase
structure grammar. To every node, we apply as many productions as we can along different
branches. Some branches lead to words; some may not. The total language tree for a phrase
structure language may have very short words way out on very long branches (which is not
the case with CFLs). This is because productions can sometimes shorten the working string,
as in the example

s - ax
x - ax

aaaaaaX - h

The derivation for the word ab is

EXAMPLE

S ==> aX
==> aaX
==> aaaX
==> aaaaX
==> aaaaaX
==> aaaaaaX
==> aaaaaaaX
==> ah

The total language tree for the phrase-structure grammar for I a"h"a" l on p. 567 begins

s
/ "'-a SB A a h A

/ � "'-aaSBABA aahABA aha
/ � ---- �-:----__ aaaSBABABA aaahABA BA aaSBBAA aahBAA aahaBA

I
(dead end)

Phrase-Structure Grammars 571

Notice one interesting thing that can happen in a phrase-structure grammar. A working
string may contain nonterminals and yet no production can be applied to it. Such a working
string is not a word in the language of the grammar; it is a dead end. •

The phrase-structure languages (those languages generated by phrase-structure gram
mars) are a larger class of languages than the CFLs. This is fine with us, because CFGs are
inadequate to describe all the languages accepted by TMs.

We found that the languages accepted by FAs are also those definable by regular expres
sions and that the languages accepted by PDAs are also those definable by CFGs. What we need
now is some method of defining the languages accepted by TMs that does not make reference to
the machines themselves (simply calling them recursively enumerable contributes nothing to
our understanding). Perhaps phrase-structure languages are what we need. (Good guess.) Also,
because we already know that some languages cannot be accepted by TMs, perhaps we can find
a method of defining all possible languages, not just the r.e. languages. Although we have
placed very minimal restrictions on the shape of their productions, phrase-structure grammars
do not have to be totally unstructured, as we see from the following result.

THEOREM 74

If we have a phrase-structure grammar that generates the language L, then there is another
grammar that also generates L which has the same alphabet of terminals and in which each
production is of the form

string of nonterminals � string of terminals and nonterminals

(where the left side cannot be A, but the right side can).

PROOF

This proof will be by constructive algorithm using the same trick as in the proof of Theorem 25.

Step 1 For each terminal a, b, . . . introduce a new nonterminal (one not used be
fore): A , B, . . . and change every string of terminals and nonterminals into a
string of nonterminals above by using the new symbols. For example.

aSbXb � bbXYX

becomes

ASBXB � BBXYX

Step 2 Add the new productions

A � a
B � b

These replacements and additions obviously generate the same language and fit the de
sired description . In fact, the new grammar fits a stronger requirement. Every production is
either

string of nonterminals � string of nonterminals

or

one nonterminal � one terminal

(where the right side can be A, but not the left side) . •

572 CHAPTER 24 The Chomsky Hierarchy

EXAMPLE

The phrase-structure grammar over the alphabet { a b } , which generates { anb"a" } , which
we saw above,

s - aSBA
s - abA

AB - BA
bB - bb
bA - ba
aA - aa

turns into the following, when the algorithm of Theorem 74 is applied to it:

s - xsBA
s -xrA

AB - BA
YB - YY
YA - YX

. XA - XX
x - a
r - b

Notice that we had to choose new symbols, X and Y, because A and B were already be
ing employed as nonterminals .

•

DEFINITION

A phrase-structure grammar is called type 0 if each production is of the form

nonempty string of nonterminals - any string of terminals and nonterminals •

The second grammar above is type 0. Actually, what we have shown by Theorem 74 is
that all phrase-structure grammars are equivalent to type 0 grammars in the sense that they
generate the same languages.

Some authors define type 0 grammars by exactly the same definition as we gave for
phrase-structure grammars. Now that we have proven Theorem 74, we may join the others
and use the two terms interchangeably, forgetting our original definition of type 0 as distinct
from phrase-structure. As usual , the literature on this subject contains even more terms for
the same grammars, such as unrestricted grammars and semi-Thue grammars.

Beware of the s loppy definition that says type 0 includes all productions of the form

any string - any string

because that would allow one string of terminals (on the left) to be replaced by some
other string (on the right) . This goes against the philosophy of what a terminal is, and we
do not allow it. Nor do we allow frightening productions of the form A - something ,
which could cause letters to pop into words indiscriminately (see Gen , 1 : 3 for
"A - l ight") .

Names such as nonterminal-rewriting grammars and context-sensitive-with-erasing

Phrase-Structure Grammars 573

grammars also tum out to generate the same languages as type 0. These names reflect other
nuances of formal language theory into which we do not delve.

One last remark about the name type 0. It is not pronounced l ike the universal blood
donor but rather as "type zero." The 0 is a number, and there are other numbered types.

Type O is one of the four classes of grammars that Chomsky, in 1 959, cataloged in a hi
erarchy of grammars according to the structure of their productions.

The Chomsky Hierarchy of Grammars
Name of
Languages Production Restrictions

Type Generated X --+ Y Acceptor

Phrase-structure
X = any string with nonterminals

0 = recursively TM
enumerable

Y = any string

Context-
X = any string with nonterminals TMs with bounded (not infinite)

I sensitive
Y = any string as long as or TAPE, called linear-bounded

longer than X automata LBAs*

2 Context-free
X = one nonterminal

PDA
Y = any string

X = one nonterminal

3 Regular
Y = t N or Y = t, where

FA
t i s terminal and
N is nonterminal

*The size of the tape is a l inear function of the length of the input, cf. problem 20.

We have not yet proven all the claims on this table, nor shal l we. We have completely
covered the cases of type 2 and type 3 grammars . Type 1 grammars are cal led context
sensitive because they use some information about the context of a nonterminal before al
lowing a substitution. However, they require that no production shorten the length of the
working string, which enables us to use the top-down parsing techniques discussed in
Chapter 1 8 . Because they are very special ized, we treat them on ly briefly (cf. p. 588) . In
this chapter, we prove the theorem that type 0 grammars generate all recursive ly enumer
able languages.

Two interesting languages are not on this chart. The set of all languages that can be ac
cepted by deterministic PDAs, cal led simply the deterministic context-free languages. We
have seen that they are closed under complementation, which makes more questions decid
able. They are generated by what are cal led LR(k) grammars, which are grammars generat
ing words that can be parsed by being read from left to right, taking k symbols at a time.
This is a topic of special interest to compiler designers. This book is only an introduction
and does not begin to exhaust the range of what a computer scientist needs to know about
theory to be a competent practitioner.

The other interesting class of languages that is missing is the collection of recursive lan
guages . No algorithm can, by looking only at the structure of the grammar, tel l whether the
language it generates is recursive -not counting the symbols, not describing the production
strings, nothing.

These six c lasses of languages form a nested set as shown in th is Venn
diagram:

574 CHAPTER 24 The Chomsky Hierarchy

Recursively enumerable
languages

Context-free
languages

Determin istic
context-free
languages

We have discussed most of the examples that show no two of these categories are re
ally the same. This is important-just because a condition looks more restrictive does not
mean it actually is in the sense that different languages fulfill it. Remember that FA = NFA.

I anbn l is deterministic context-free but not regular.

The complement of I anbnan l is a CFL, but it cannot be accepted by a DPDA.

I a"bnan } is context-sensitive but not context-free. (The grammar we just examined
above that generates this language meets the conditions for context sensitivity.)

l stands for a language that is recursive but not context-sensitive. We shall present one
of these on p. 590.

MATHISON is recursively enumerable but not recursive.

ALAN comes from outerspace.

Counting "outerspace," we actually have seven classes of languages. The language of all
computer program instructions is context-free; however, the language of all computer pro
grams themselves is r.e. English is probably context-sensitive except for poetry, which (as
e.e. cummings proved in 1 923) is from outerspace.

V TYPE O = TM

We shall now prove that r.e. = type 0. This was first demonstrated by Chomsky in 1 959. The
proof will be given in two parts, Theorem 75 and Theorem 76.

Type O = TM 575

THEOREM 75

If L is generated by a type 0 grammar G, then there is a TM that accepts L.

PROOF

The proof will be by constructive algorithm. We shall describe how to build such a TM. This
TM will be nondeterministic, and we shall have to appeal to Theorem 57 (p. 5 1 9) to demon
strate that there is therefore also some deterministic TM that accepts L.

The TAPE alphabet will be all the terminals and nonterminals of G and the symbol $
(which we presume is not used in G). When we begin processing, the TAPE contains a string
of terminals. It will be accepted if it is generated by G but will not be accepted otherwise.

Step l We insert a $ in cell i, moving the input to the right, and insert another $ in the
cell after the input string and an S after that. We leave the TAPE HEAD pointing
to the second $:

i ii Ill i i i 111 iv v vi
becomes l $ l a l b l b l $ 1 s l � I . . .0

Step 2 We now enter a great central state that will serve the same purpose as the cen
tral POP in the PDA simulation of a CFG in Chapter 1 5 . The field of the TAPE
beginning with the second $ is where we will keep track of the working string.
The basic strategy is to simulate the derivation of the input word in the working
string field.

We shall construct a branch from this central state that simulates the appli
cation of each production to a working string as follows. Consider any produc
tion

X 1XzX3 • • • - Y1Y2Y3 • • •

where the x's are any left side of a production in the grammar G and the y's are
the corresponding right side. Move the TAPE HEAD nondeterministically up and
down the working string unti l it stops at some cell containing x1 • We now scan
the TAPE to be sure that the immediate next subsequence is x1xz-r3 • • • • When
we are confident that we have found this string, we rol l the TAPE HEAD back to
point to x1 (which we have conveniently marked) and proceed with a sequence
of deletes:

- I DELETE I - I DELETE I - I DELETE I - . . .

just enough to delete the exact string of x's. Then we insert the specified string
of y's by this sequence:

- I INSERT yl 1 - 1 INSERT y2 I - . . .

just as many as y's on the right side. This accurately converts the working

516 CHAPTER 24 The Chomsky Hierarchy

string into another working string that is derivable from it in the grammar G by
application of this production.

We add a loop like this for each production in the grammar G:

SCAN FOR LEFT DELETE
S I DE OF PROD 1 SAM E

I NSERT R I G HT
S IDE OF PROD 1

GR EAT
CENTRAL

STATE SCAN FOR LEFT
S I D E OF PROD 2

I NSERT R IGHT DELETE
S I DE OF PROD 2 SAM E

Step 3 If we were lucky enough to apply just the right productions, at just the right
points in the working string, and in just the right sequence to arrive at a string
of all terminals, we nondeterministically branch to a subprogram that compares
the working string to the input string. If they match exactly, then the TM halts.
If the input was in fact derivable, then some choice of path through this NTM
will lead to HALT. If not, then either we will come to a working string from
which there are no applicable productions and crash, or else we loop forever,
producing longer and longer working strings, none of which will ever be equal
to the input.

This NTM accepts any word in the language generated by G and only
these words. •

THEOREM 76

If a language is r.e . , it can be generated by a type 0 grammar.

PROOF

The proof will be by constructive algorithm. We must show how to create a type 0 grammar
that generates exactly the same words as are accepted by a given TM. From now on, we fix
in our minds a particular TM.

Our general goal is to construct a set of productions that "simulate" the working of this
TM. But here we run into a problem: Unlike the simulations of TMs by PMs or 2PDAs, a
grammar does not start with an input and run it to halt. A grammar must start with S and end
up with the word. To overcome this discrepancy, our grammar must first generate all possi
ble strings of o's and b's (not as final words but as working strings with nonterminals in
them) and then test them by simulating the action of the TM upon them.

As we know, a TM can badly mutilate an input string on its way to the HALT state, so
our grammar must preserve a second copy of the input as a backup. We keep the backup
copy intact while we act on the other as if it were running on the input TAPE of our TM. If
this TM ever gets to a HALT state, we erase what is left of the mutilated copy and are left

Type O = TM 577

with the pristine copy as the word generated by the grammar. If the second copy does not
run successfully on the TM (it crashes or loops forever), then we never get to the stage of
erasing the working copy. Because the working copy contains nonterminals, th is means that
we never produce a string of all terminals. This will prevent us from ever successfully gener
ating a word not in the language accepted by the TM. A derivation that never ends corre
sponds to an input that loops forever. A derivation that gets stuck at a working string with
nonterminals still in it corresponds to an input that crashes. A derivation that produces a real
word corresponds to an input that runs successfully to HALT.

That is a rough description of the method we shall follow. The hard part is th is: Where
can we put the two different copies of the string so that the productions can act on only one
copy, never on the other? In a derivation in a grammar, there is only one working string gen
erated at any time. Even in phrase-structure grammars, any production can be applied to any
part of the working string at any time. How do we keep the two copies separate? How do we
keep the first copy intact (immune from distortion by production) while we work on the sec
ond copy?

The surprising answer to this question is that we keep the copies separate by interlacing
them. We store them in alternate locations on the working string.

We also use parentheses as nonterminals to keep straight which letters are in which
copy. All letters following a "(" are in the first (intact) copy. All symbols before a ")" are in
the second (TM TAPE simulation) copy. We say "symbol" here because we may find any
character from the TM TAPE sitting to the left of a ")".

When we are finally ready to derive the final word because the second TAPE-simulating
copy has been accepted by the TM, we must erase not only the remnants of the second copy,
but also the parentheses and any other nonterminals used as TM-simulation tools .

First, let us outl ine the procedure in even more detai l , then formalize it , and then finally
illustrate it.

Step 1 In our approach, a string such as abba will be represented initially by the work
ing string

(aa)(hb)(bb)(aa)

We need to be able to generate all such working strings. The following produc
tions will suffice:

S -+ (aa)S I (hh)S I A

Later we shall see that we actually need something slightly different because of
other requirements of the processing.

Remember that "(" and ")" are nonterminal characters in our type 0 gram
mar that must be erased at the final step.

Remember too that the first letter in each parenthesized pair wil l stay im
mutable while we simulate the TM processing on the second letter of each pair
as if the string of second letters were the contents of the TM TAPE during the
course of the simulation:

First copy of input stri ng to remain intact
i i i i (aa) (hh) (hh) (aa)
+ + + + Second copy to be worked on as if it sits on TM TAPE

Step 2 Because a TM can use more TAPE cells than just those that the input letters ini
tially take up, we need to add some blank cel ls to the working string. We must

578 CHAPTER 24 The Chomsky Hierarchy

give the TM enough TAPE to do its processing job. We do know that a TM has a
TAPE with infinitely many cells available, but in the processing of any particular
word it accepts, it employs only finitely many of those cells -a finite block of
cells starting at cell i. If it tried to read infinitely many cells in one running, it
would never finish and reach HALT. If the TM needs four extra cells of its TAPE
to accept the word abba, we add four units of (.6.6) to the end of the working
string:

Simu lating input string Useless characters we wi l l erase later i t t l i t t l {aa) (bb) (bb) (aa) (M) (M) (t;A) (M) t t t t t t t t
I nput and blank cel ls s imu lat ing TM TAPE

Notice that we have made the symbol .6 a nonterminal in the grammar we
are constructing.

Step 3 To simulate the action of a TM, we need to include in the working string an in
dication of which state we are in and where the TAPE HEAD is reading. As with
many of the TM simulations we have done before, we can handle both prob
lems with the same device.

We shall do this as follows. Let the names of the states in the TM be %
(the start state), q 1 , q2, • • • • We insert a q in front of the parentheses of the
symbol now being read by the TAPE HEAD. To do this, we have to make all the

q's nonterminals in our grammar.
Initially, the working string looks l ike this:

%(aa)(bb)(bb)(aa)(.6.6)(AA)(AA)(AA)

It may sometime later look like this :

(aA)(bA)(bX)q6(aA)(Ab)(AM)(AA)(AA)

This will mean that the TAPE contents being simulated are AAXAbMAA and
the TAPE HEAD is reading the fourth cell, while the TM program is in state
q6.

To summarize, at every stage, the working string must:

1 . Remember the original input.

2. Represent the TAPE status, including TAPE HEAD position.

3. Reflect the state the TM is in.

Step 4 We also need to include as nonterminals in the grammar all the symbols that
the TM might wish to write on its TAPE, the alphabet f. The use of these sym
bols was illustrated above.

Step 5 Now in the process of simulating the operation of the TM, the working string
could look like this:

(aa)q3(bB)(bA)(aA)(AA)(AA)(AA)(AM)

The original string we are interested in is abba, and it is sti ll intact in the
positions just after "(''s .

The current status of the simulated TM TAPE can be read from the charac
ters in front of the close parentheses. It is

Type O = TM
579

i ii m iv v vi vii vi i i

0
The TM is in state q3, and the TAPE HEAD is reading cell ii as we can tell

from the positioning of the q3 in the working string.
To continue the simulation, we need to be able to change the working

string to reflect the specific instructions in the particular TM; that is , we need to
be able to simulate all possible changes in TAPE status that the specific TM pro
gram might produce.

Let us take an example of one possible TM instruction and see what pro
ductions we must include in our grammar to simulate its operation. If the TM
is ,

f:'\ (li.A.L)�
�

then our productions are from state q4 while reading a h, print an A , go to state
q7, and move the TAPE HEAD left.

We need a production that causes our representation of the prior status of
the TM to change into a working string that represents the outcome status of
the TM. We need a production like

(Symbol 1Symbol2)qiSymbol3h) - q/Symbol 1Symbol2)(Symbol3A)

where Symbol 1 and Symbol3 are any letters in the input string (a or h) or the
A 's in the extra (AA) factors, and Symbol2 is what is in the TAPE in the cell to
the left of the h being read. Symbol2 will be read next by the simulated TAPE
HEAD:

TM state TM TAPE TM state TM TAPE

(Symbo l 1 Symbol2J t (Symbo l3 b)
t t

Part of i nput str i ng to be left i n tact

-
i

q7 (Symbol 1 Symbol2HSymbol3 Al
t t

Part of i nput str ing to be left i ntact

This is not just one production , but a whole family of possibi l i ties covering
all considerations of what Symbol 1 , Symbol2, and Symbol.i are :

(aa)qiah) - q7(aa)(aA)
(aa)qihb) - qlaa)(hA)
(aa)qiAh)- qlaa)(AA)
(ah)qiah) - q7(ah)(aA)
(ah)q4(hb) .- q7(ah)(hA)

Notice that the way this simulation is set up there is no corresponding
grammatical production for moving left from cell i because there would be no
(Symbol 1 Symbo12) in front of q1 for such a move.

580 CHAPTER 24 The Chomsky Hierarchy

The simulation of a TM instruction that moves the TAPE HEAD to the right
can be handled the same way:

"If in a state q8 reading a B, write an X, move the TAPE HEAD right, and go to
state q2" translates into the following family of productions:

q8(Symbol 1B) - (Symbol 1X)q2

where Symbol 1 is part of the immutable first copy of the input string, or one of
the extra A's on the right end. Happily, the move-right simulations do not in
volve as many unknown symbols of the working string.

B ? becomes x ?

0 0
We need to include productions in our grammar for all possible values for

Symbol 1 •
Let us be clear here that we do not include in our grammar productions for

all possible TM instructions, only for those instructions that do label the edges
in the specific TM we are trying to simulate.

Step 6 Finally, let us suppose that after generating the doubled form of the word and sim
ulating the operation of the TM on its TAPE, we eventually are led into a HALT
state. This means that the input we started with is accepted by this TM. We then
want to let the type 0 grammar finish the derivation of that word- in our example,
the word abba-by letting it mop up all the garbage left in the working string. The
garbage is of several kinds: There are A's, the characters in f, the q-symbol for the
HALT state itself, and, let us not forget, the extra a 's and b's that are lying around
on what we think are TAPE-simulating locations, but which just as easily could be
mistaken for parts of the final word, and then, of course, the parentheses.

We also want to be very careful not to trigger this mop-up operation unless
we have actually reached a HALT state.

We cannot simply add the productions

Unwanted symbols - A

because this would allow us to accept any input string at any time. Remember
in a grammar (phrase-structure or other) we are at all times free to execute any
production that can apply. To force the sequencing of productions, we must
have some productions that introduce symbols that certain other productions
need before they can be appl ied. What we need is something like

If there is a HALT state in the working string, then unwanted symbols - A.

We can actually accomplish this conditional wipe-out in type 0 grammars
in the following way: Suppose q 1 1 is a HALT state. We first add productions
that allow us to put a copy of q 1 1 in front of each set of parentheses. This re
quires all possible productions of these two forms:

(Symbol 1Symbol2)q 1 1 - q1 1 (Symbol 1 Symbol2)q 1 1

Type O = TM 581

where Symbol 1 and Symbol2 are any possible parenthesized pair. This allows

q1 1 to propagate to the left. We do this for HALT states and only HALT states.

We also need

q 1 1 (Symbol 1 Symbol2) - q 1 1 (Symbol 1 Symbol2)q 1 1

allowing q 1 1 to propagate to the right.
This will let us spread the q 1 1 to the front of each factor as soon as it makes

its appearance in the working string. It is l ike a cold: Every factor catches it. In
this example, we start with q 1 1 in front of only one parenthesized pair and let it
spread until it sits in front of every parenthesized pair:

(aA)(bB)q 1 1 (bB)(aX)(AX)(M1)
� (aA)q 1 1 (bB)q 1 1 (bB)(aX)(M}(M1)
� q1 1 (aAJq 1 1 (bB)q 1 1 (bB)(aX)(M}(M1)
� q 1 1 (aA)q1 1 (bB)q 1 1 (bB)q 1 1 (aX)(AX)(M1)
� qi 1 (aA)q 1 1 (bB)q 1 1 (bB)q 1 1 (aX)q 1 1 (.iX)(.::lM)
� q1 1 (aA)q 1 1 (bB)q 1 1 (bB)q 1 1 (aX)q 1 1 <M>q1 1 <M1>

The q's that are not HALT states cannot be spread because we do not in
clude such productions in our grammar to spread them.

Now we can include the garbage-removal productions

q 1 1 (a Symbol 1) - a

q 1 1 (b Symbol 1) - b

q 1 1 (4 Symbol 1) - A

for any choice of Symbol 1 . This will rid us of all the TAPE simulation charac
ters, the extra .:1 's, and the parentheses, leaving only the first copy of the origi
nal input string we were testing. Only the immutable copy remains; the scaf
folding is completely removed. •

ALGORITHM

Here are the formal rules describing the grammar we have in mind. In general, the produc
tions for the desired type 0 grammar are the following, where we presume that S, X, Y are
not letters in I or f:

PRoo I S-+ qJ<

PRoo 2 X -+ (aa)X

PRoo 3 X -+ (bb)X

PRoo 4 X -+ Y

PRoo 5 Y -+ (.:1.:1)Y

PRoo 6 Y -+ A

PRoo 7 For all TM edges of the fonn

� �
create the productions

q,.(at) - (au)q"'
q.,(bt) - (bu)qw
q1,(4t) - (4u)qw

582 CHAPTER 24 The Chomsky Hierarchy

PROD 8 For all TM edges of the form

create the productions

� -f:\
�

(Symbol , Symbol2)q,,(Symboll) - qw(Symbol 1 Symbol2)(Symbol3u)

where Symbol , and Symbol3 can each be a, b, or d and Symbol2 can be any character
appearing on the TM TAPE, that is, any character in f.

PROD 9 If q_.. is a HALT state in the TM, create these productions:

qx(Symbol 1 Symbol2) - q/Symbol 1 Symbol2)qx
(Symbol 1 Symbol2)q ... - q_.(Symbol 1 Symbol2)q,.

q/a Symbol2) - a
q/b Symbol2) - b
q/A Symbol2) - A

where Symbol , = a, b, or A and Symbol2 is any character in f.
These are all the productions we need or want in the grammar. •

Notice that PRODS l through 7 are the same for all TMs. Production sets 7, 8, and 9 de
pend on the particular TM being simulated.

Now come the remarks that convince us that this is the right grammar (or at least one of
them). Because we must start with S, we begin with PROD 1 . We can then apply any se
quence of PROD 2 's and PROD 3 's so that, for any string such as baa, we can produce

S b Qo(bb)(aa)(aa)X

We can do this for any string whether it can be accepted by the TM or not. We have not
yet formed a word, just a working string. If baa can be accepted by the TM, there is a certain
amount of additional space it needs on the TAPE to do so, say, two more cells . We can create
this work space by using PRODS 4, 5 , and 6 as follows:

==> Qo(bb)(aa)(aa)Y
==> Qo(bb)(aa)(aa)(AA)Y
==> Qo(bb)(aa)(aa)(AA)(AA)Y
==> q 0(bb)(aa)(aa)(AA)(AA)

Other than the minor variation of leaving the Y lying around until the end and eventually
erasing it, this is exactly how all derivations from this grammar must begin. The other pro
ductions cannot be applied yet because their left sides include nonterminals that have not yet
been incorporated into the working string.

Now suppose that q4 is the only HALT state in the TM. In order ever to remove the
parentheses from the working string, we must eventually reach exactly this situation:

b Q4(b?)q4(a?)q4(a?)qiA?)q4(A?)

where the five ? 's show some contents of the first five cell s of the TM TAPE at the time it

Type O = TM
583

accepts the string baa. Notice that no rule of production can ever let us change the first

entry inside a parenthesized pair. This is our intact copy of the input to our simulated

TM.
We could only arrive at a working string of this form if, while simulating the processing

of the TM, we entered the HALT state q4 at some stage:

� (b?)(a?)qia?)(l1 ?)(11 ?)

When this happened, we then applied PROD 9 to spread the q4 's .
Once we have q4 in front of every open parenthesis, we use PROD 9 again to reduce the

whole working string to a string of all terminals:

� baa

All strings such as ba or abba . . . can be set up in the form

%(aa)(bb)(bb)(aa) . . . (1111)(1111) . . . (1111)

but only those that can then be TM-processed to get to the HALT state can ever be reduced
to a string of all terminals by PROD 9.

Notice that we can use PROD 9 to put a HALT state qx behind the last parenthesis at the
end of the working string. However, if we do, it will never be removed by PROD 9 rules, and
so it is self-destructive to do so.

In short, all words accepted by the TM can be generated by this grammar and all words
generated by this grammar can be accepted by the TM. •

EXAMPLE

Let us consider a simple TM that accepts al l words ending in a: (a,a,R) (b.b,R)
c START •• 9 (>.b,Ll • 8.,._<a_.a_.R_)�)'�c Q2 HALT)

Note that the label on the edge from % to q1 could just as well have been (11, 11, l), but
this works too.

Any word accepted by this TM uses exactly one more cell of TAPE than the space the in
put is written on . Therefore, we can begin with the productions

PROD l

PRoD 2
PROD 3
PROD 4

S -+ qcf<
X -+ (aa)X
X -+ (bb)X
X -+ (1111)

This is a minor variation, omitting the need for the nonterminal Y and PRODS 4, 5 , and 6.
Now there are four labeled edges in the TM; three move the TAPE HEAD right, one left.

These cause the formation of the following productions. From

584 CHAPTER 24 The Chomsky Hierarchy

we get

From

we get

From

we get

From

we get

(a,a,R)

<:!]
PROD 7(i)
PROD 7(i i)
PROD 7(ii i)

%(aa) ---+ (aa)%
%(ha) -+ (ha)%
%(Aa) -+ (Aa)%

(h.h.R)

0J
PROD 7(iv)
PROD 7(v)
PROD 7(vi)

%(ab) -+ (ab)%
%(hb) -+ (bb)%
%(Ab) -+ (Ab)%

� (a,a,R) c) \J-----i)I� q2 HALT

PROD 7(vi i)
PROD 7(vi i i)
PROD 7(ix)

q 1 (aa) ---+ (aa)q2
q 1 (ba) -+ (ba)q2
q 1 (L�a) -+ (Aa)q2

� �

PROD 8 (uv)%(wA) -+ q1 (uv)(wb)

where u, v, and w can each be a, b, or A. (Because there are really 27 of these, let us pretend
we have written them all out .)

Because q2 is the HALT state, we have

PROD 9(i)
PROD 9(i i)
PROD 9(ii i)
PROD 9(iv)
PROD 9(v)

qiCuv) -+ qiCuv)q2
(uv)q2 ---+ qiCuv)q2
qiCau) -+ a
q2(bu) -+ b
q2(Au) -+ A

where u, v = a, b, A
where u, v = a, b, A
where u = a, b, A
where u = a, b, A
where u = a, b, A

These are all the productions of the type 0 grammar suggested by the algorithm in the
proof of Theorem 76 (p. 575).

Let us examine the total derivation of the word baa:

Type O = TM 585

TM Simulation
State TAPE Derivation Production No.

S = qJ<

= %(bb)X 3

= %(bb)(aa)X 2

= %(bb)(aa)(aa)X 2

% lbl a l a l Al · = %(bb)(aa)(aa)(AA) 4

0
% l b l� a l AI · 0 = (bb)%(aa)(aa)(AA) 7v

% I b l a l a l A l · · = (bb)(aa)%(aa)(AA) 7i

LJ
% I b l a l a l Al · · · = (bb)(aa)(aa)%(AA) 7i

0
q, I b l a l a l b l · = (bb)(aa)q 1 (aa)(Ab) 8 u = a,

0 1• = a, w = A

q2 I b l a l a l b l = (bb)(aa)(aa)q2(Ab) 7vi i

LJ
= HALT

= (bb)(aa)q2(aa)qiCAh> 9i i , u = a, v = a
= (bb)qiCaa)qiCaa)qiAb) 9i i , u = a, v = a
= q2(bb)q2(aa)q2(aa)q2(Ah) 9ii , u = b, v = b
= bq2(aa)q2(aa)qiCAb) 9iv
= baq2(aa)qiCAb) 9i i i
= baaq2(Ab) 9i i i
= baa 9v

Notice that the first several steps are a setting-up operation and the last several steps are
cleanup.

In the setting-up stages, we could have set up any string of a's and h 's. ln this respect,
grammars are nondeterministic . We can apply these productions in several ways. If we set up
a word that the TM would not accept, then we could never complete its derivation because
cleanup can occur only once the HALT state symbol has been inserted into the working
string, as this can only be when the TM being simulated has reached HALT. Once we have
actually begun the TM simulation , the productions are determined, reflecting the fact that
TMs are deterministic .

Once we have reached the cleanup stage, we again develop choices. We could follow
something like the sequence shown. Although there are other successful ways of propagating
the q2 (first to the left, then to the right, then to the left again . . .) , they all lead to the same
completely saturated working string with a q2 in front of everything. If they do not, the
cleanup stage wi l l not work and an al l-terminal string wil l not be produced. •

Now that we have the tool of type 0 grammars, we can approach some other results
about recursively enumerable languages that were too difficult to handle in Chapter 23 when
we could only use TMs for the proofs, or can we?

586 CHAPTER 24 The Chomsky Hierarchy

{f THE PRODUCT AND KLEENE CLOSURE
OF r.e. LANGUAGES

THEOREM 77

If L 1 and L2 are recursively enumerable languages, then so is L1L2• The recursively enumer
able languages are closed under product.

PROOF

The proof will be by the same constructive algorithm we used to prove Theorem 37 (p. 380).
Let L1 and L2 be generated by type 0 grammars. Add the subscript 1 to all the nontermi

nals in the grammar for L1 (even the start symbol, which becomes S1) . Add the subscript 2 to
all the nonterminals in the grammar for L2•

Form a new type 0 grammar that has all the productions from the grammars for L1 and
L2 plus the new start symbol S and the new production

s - s1s2

This grammar generates all the words in L 1L2 and only the words in L1L2• The grammar
is type 0, so the language L1L2 is r.e. No? No.

Surprisingly, this proof is bogus. Consider the type 0 grammar

s - a
aS - b

The language L generated by this grammar is the single word a, but the grammar for the lan
guage LL that we have described in this alleged proof is

which allows the derivation

s - s1s2
s l - a s2 - a

as l - h as2 - h

while, c learly, LL contains only the word aa.
What goes wrong here is that in the proof for CFGs the possible substitutions repre

sented by the productions of the two languages could not interact because the right s ide of
each production was a single nonterminal indexed by its grammar of origin. However, in this
situation substrings could occur in the working string spanning the break between that which
comes from S 1 and that which comes from Sr These substrings might conceivably be the left
side of some production lying entirely with one of these languages, but a production that
could not arise within S1 or S2 alone.

In order to prevent this, we use the following trick. We index even the terminals in each
grammar with the subscript of its grammar. In this way, we tum the terminals into nontermi
nals for the purpose of keeping the left sides of the rules of production distinct. What we
suggest is that a production in L1 like

ahXSbS - hXX

becomes

The Product and Kleene Closure of r.e. Languages

a 1 b1X1S 1 b 1S 1 -+ b1X 1X 1

We also have to add the productions

587

so that we can finally reach a string of a 's and b 's as a final word in the product language.
We do not have to worry that a derivation wil l de-subscript the a 's and b's prematurely

and recreate the problem that we had before, because no substring of the working string,
spanning the break in languages, can be the left side of any production in S2 because all such
left sides have every factor subscripted with a 2.

This then completes the proof of the theorem by constructive algorithm. •

THEOREM 78

If L is recursively enumerable, then L * is also. The r.e. languages are closed under Keene star.

PROOF

If we try to prove this theorem by a constructive algorithm similar to that for Theorem 38

(p . 384) for CFGs, we would start with

S -+ SS I A

and allow each S to produce an arbitrari ly long sequence of S 's, each turning into a word of
L. However, we may encounter the same problem that we saw in the last theorem. Some of
the S 's would produce strings of terminals that can conceivably attach themselves onto part
of the derivation from the next S and make an otherwise unreachable production possible.
The idea that we could index each copy of the productions from S with a separate index runs
into a separate problem. Because the number of words from L that we wish to concatenate to
form a word in L * is potentially unbounded, the number of copies of S we need to make ini
t ial ly is also unbounded. This means that, because each S is to become a different nontermi
nal, the total number of nonterminals in the grammar is potential ly unbounded. Th is violates
the definition of a grammar-even a type 0 grammar.

In order to keep the nonterminals in neighboring syllables from interacting, all we need
is two copies of the grammar for L, one indexed with l 's (even the a 's and b's) and one in
dexed with 2 's. We must then be sure that from the initial S we derive only alternating types
of S 's. The following productions wi l l do the trick:

S -+ SIS2S I S I I A

From this S we can produce only the strings A, S 1 , S 1S2, S 1S2S 1 , S 1S2S 1S2, • • . . Again, we
can have no cross-pol lination of the derivations from neighboring S 's . This and the index ing
of the entire grammar for L and the productions de-subscripting the terminals constitute the
complete grammar for L * . •

EXAMPLE

If L is the language generated by the type 0 grammar

S -+ a aS -+ b

then L * is generated by the grammar

588 CHAPTER 24 The Chomsky Hierarchy

s - s,s2s I s , I A
s, - a,

a ,s , - h,
s2 - a2

a2s2 - b2
a , - a b, - b a2 - a h2 - b

1f CONTEXT-SENSITIVE GRAMMARS

DEFINITION

•

A generative grammar in which the left side of each production is not longer than the right
side is called a context-sensitive grammar, denoted CSG, or type l by the table on p. 573 .•

Context-sensitive languages are actually what we presume to be the model for al l human
languages, but because we do not have a mathematical definition for the class of "human
languages," we cannot expect to have a mathematical proof of this fact. One thing that we do
know about context-sensitive languages is that they are recursive.

THEOREM 79

For every context-sensitive grammar G, there is some special TM that accepts all the words
generated by G and crashes for all other inputs.

PROOF

Let us assume the input string we are going to test is w, and we shall describe how T works on w.
All the rules of production in a type 1 grammar do not shorten the working string. They

may lengthen it or leave it the same length. So, the derivation for w is a sequence of working
strings, each as long as or longer than the one before it.

In the shortest derivation for w, there is no looping, by which we mean that each work
ing string is different. It may be possible in the grammar G to replace XY with ZW and then
ZW with XY to get the same working string a second time, but it cannot be necessary to do
so, and it cannot be part of the shortest derivation.

A derivation is a path in the total language tree of G, which is just l ike the total lan
guage trees for CFGs. We start at S and derive a second row by applying all the productions
applicable to produce new nodes of the tree. We can then reiterate the procedure and apply
all productions possible to each existing node in a given row to produce the next row of the
tree. Every time we produce a new node, we check to be sure that it is different from all the
other previously derived nodes.

Our particular TM will not generate the entire language derivable from G. I t will termi
nate any branch of the tree whose end node exceeds w in length. This wil l then be a finite
tree because there are only finitely many strings of characters from G of length w or less.
Therefore, in a finite number of steps, i t will either find a derivation for 11', determine that
there is none, or crash.

Can a TM do all this? Of course. We start with w and insert markers around it. Then we
write S. Next we put a row marker to indicate that we are starting a new row of the tree. Sub
sequently we enter a state that scans all the nodes on the previous row to see which have sub
strings that are left sides of some rule of production in G. This TM is a specialized mach ine
and has all the information about the productions in G programmed into it, so this scanning

Context-Sensitive Grammars 589

procedure is part of the TM program. The machine then copies the old node and makes the
substitution (using the appropriate sequence of DELETES and INSERTS) and then checks to
see if the new node it just made is worth keeping. This means that the string is not a dupli
cate of another node and not longer than w. Then we check to see whether the new node is w .

If it is, we go to HALT. If i t i s not, we put a node marker on the TAPE and return to the next
node of the previous row not yet fully exploited (having left an indication of where we al
ready have been) . Once we have explored all the nodes on the previous row, we have finished
creating the new row of the tree, and we place a row marker on the TAPE and reiterate.

This TM wil l terminate if it does generate w, or if it finds that while operating on a cer
tain row, it was able to contribute no new nodes to the next row. This is recognized by seeing
whether i t prints two consecutive row markers. If i t does this, it crashes. By the discussion
above, it must eventually do one of these two things. Therefore, this TM proves the language
of G is recursive. •

Why does this construction work for all type 1 grammars and yet not carry over to show
that all type 0 grammars are also recursive? The answer is that because type 0 grammars can
have productions that decrease the length of the working string, we cannot use the simple
length analysis to be sure that w does not lie somewhere farther down any particular branch
of the tree. No branches can be terminated and the tree may grow indefinitely.

Knowing that a language is recursive translates into being able to decide membership for it.

THEOREM 80

Given G, a context-sensitive grammar, and w, an input string, it is decidable by a TM
whether G generates w.

PROOF

We have not been very specific about how one inputs a grammar into a TM, but we can imagine
some string of delimiters separating the productions, possibly al lowing the production arrow to
be a TAPE character as well. What the TM we have in mind does is create the CWL code word
for the TM based on G described in the previous theorem. Then it feeds both the coded TM and
w into the universal TM. Because w either halts or crashes on the coded TM, this procedure will ,
indeed, lead to a decision about w's membership in the language generated by G. •

THEOREM 81

There is at least one language L that is recursive but not context-sensitive.

PROOF

This we shall prove by constructing one.
In the previous theorem, we indicated that there was some method for encoding an entire

context-sensitive grammar into a single string of symbols. Listing the productions in any or
der with their arrows and some special symbol as a separator is fine, because then a TM can
decide whether, given an input string, it is the code word for some CSG. It would have to see
that between any two separators there was one and only one arrow and that the string on the
right of the arrow was not shorter than the string on the left. It would also have to ensure that
the left side of each production has some nonterminals. All these are elementary TM tasks.

Let us define the language L (we ran out of Turing 's names) as follows :

590 CHAPTER 24 The Chomsky Hierarchy

L = I all the code words for context-sensitive grammars that cannot be
generated by the very grammars they encode)

Observation

L is recursive. We can feed any string over the code word alphabet first into the TM that
checks to be sure it represents a CSG and then into the membership testing machine both as
grammar and input. This wil l definitely decide whether the input is a code word for a gram
mar that accepts it; only it returns the exact opposite answer to the one we want for L. We
can either modify the machine to reverse HALT and crash (as we have done before) or use
this TM the way i t i s now to show that the complement of L is recursive, and conclude that L
is recursive that way.

Observation

L is not a context-sensitive language. If it were, then all its words would be generated by
some CSG G. Let us consider the code word for G. If this code word is in L, then (as with
words in L) it cannot be generated by the grammar it represents. But that would mean that
some word in L cannot be generated by G, which is a contradiction. On the other hand, if the
code word for G is not in L, that means the code word for G cannot be generated by the
grammar it represents, and as such, by the definition of l, must be in L. Another contradic
tion. The solution is that there is no such grammar G.

Taking the two observations together proves L is our counter-example.

1} PROBLEMS

For problems l , 2, and 3 consider the grammar

PROD I s - ABS I A
PROD 2 AB - BA
PROD 3 BA - AB
PROD 4 A - a
PROD 5 B - b

1. Derive the following words from this grammar:

(i) abba
(i i) babaabbbaa

2. Prove that every word generated by this grammar has an equal number of a 's and b's.

•

3. Prove that all words with an equal number of a 's and b's can be generated by this gram
mar.

4. (i) Find a grammar that generates all words with more a 's than b's, MOREA p. 205 .
(i i) Find a grammar that generates al l the words not in EQUAL.

(i i i) Is EQUAL recursive?

For Problems 5 through 7, consider the following grammar over the alphabet I = I a h c I :

PROD
PROD 2
PROD 3
PROD 4
PROD 5

s - ABCS I A
AB - BA
BC - CB
AC - CA
BA - AB

Problems

5. Derive the following words:

(i) ahahcc
(i i) chaahccha

PROD 6
PROD 7
PROD 8

PROD 9
PROD 1 0

CB - BC
CA - AC
A - a
B - h
c - c

591

6. Prove that all words generated by this grammar have equal numbers of a 's, h 's , and e's.

7. Prove that al l words with an equal number of a's, h's, and e's can be generated by this
grammar, the language VERYEQUAL, p. 375 .

Problems 8 through l 0 consider the following type 0 grammar over the alphabet
� = { a h) :

PROD I s - uvx
PROD 2 uv- aur
PROD 3 uv- huz
PROD 4 rx - vax
PROD 5 zx - vhx
PROD 6 Ya - ar
PROD 7 Yh - hY
PROD 8 Za - aZ
PROD 9 Zh - hZ
PROD 1 0 uv- A
PROD I 1 X - A
PROD 1 2 av - va
PROD 1 3 hV - Vh

8. Derive the following words from this grammar:

(i) A
(i i) aa

(i i i) hh
(iv) ahah

9. Show that if w is any string of a 's and h's, then the word

WW

can be generated by th is grammar.

10. Suppose that in a certain generation from S we arrive at the work ing string

wUVwX

where w is some string of a 's and h's.

(i) Show that if we now apply PROD 1 0, we will end up with the word ww.
(ii) Show that if instead we apply PROD 1 1 , first we cannot derive any other words .

(i i i) Show that if instead we apply PROD 2 , we must derive the working string

waUVwaX

(iv) Show that if instead we apply PROD 3 , we must derive the working string

whUVwhX

592 CHAPTER 24 The Chomsky Hierarchy

(v) Use the fact that UVX is of the form wUVwX with w = A to prove that all words
generated by this grammar are in the language DOUBLEWORD (p. 200).

11 . Consider the following type 0 grammar over the alphabet I = {a I . Note: There is no b.

PROD l s -+ a
PROD 2 s -+ CD
PROD 3 c -+ ACB
PROD 4 c -+ AB
PROD 5 AB -+ aBA
PROD 6 Aa -+ aA
PROD 7 Ba -+ aB
PROD 8 AD -+ Da
PROD 9 BD -+ Ea
PROD 1 0 B E -+ Ea
PROD 1 1 E -+ a

(i) Draw the total language tree of this language to find all words of five or fewer let
ters generated by this grammar.

(i i) Generate the word a9 = aaaaaaaaa.
(ii i) Show that for any n = l , 2, . . . , we can derive the working string

A"B"D

(iv) From A"B"D. show that we can derive the working string

a"
2
B"A"D

(v) Show that the working string in part (iv) generates the word

(vi) Show that the language of this grammar is

SQUARE = { a"
2

where n = l 2 3 . . . I
= { a aaaa a9 a

1 6 • • • I

12. What language is generated by the grammar

13.

Prove any claim.

PROD l S --+ aXYba
PROD 2 XY --+ XYbZ I A
PROD 3 Zb --+ bZ
PROD 4 Za --+ aa

Analyze the following type 0 grammar:

PROD l s -+ A
PROD 2 A -+ aABC
PROD 3 A -+ abC
PROD 4 CB -+ BC
PROD 5 bB -+ bb
PROD 6 bC -+ b

(i) What are the four smallest words produced by this grammar?
(i i) What is the language of this grammar?

Problems 593

14. Show that the class of context-sensitive language is closed under union.

15. Show that the class of context-sensitive languages i s closed under product .

16. Show that the class of context-sensitive languages is closed under intersection.

17. Show that the class of context-sensitive languages is closed under Kleene closure.

18. Show that if L is a CSL, then so is transpose(L).

19. A context-sensitive language is said to be in Kuroda nonnal fonn (after S . Y. Kuroda) if
every production is of one of the following four fonns:

A - a
A - B
A - BC

AB - CD

(i) Show that for every CSL there is a CSG in Kuroda nonnal fonn that generates it.
(ii) Can this KNF be useful as a tool in parsing, that is , in deciding membership?

20. In the proof that every type I grammar can be accepted by some TM, we simulated
the productions of the grammar by a series of DELETEs followed by a series of
INSERTs.

(i) Show that if the grammar bei ng simulated were context-sensitive, the working
string simulation field would never be larger than the input itself.

(i i) Show that this means that the total length of the section of the TM TAPE being used
in the simulation reaches a maximum of 2n + 2 cel ls, where n is the length of the
input string. This is a simple l inear function of the size of the input. This is what is
meant by the tenninology "linear bounded automaton."

CHAPTER 25

Computers

{f DEFINING THE COMPUTER

594

The finite automata, as defined in Chapter 5, are only language-acceptors. When we gave them
output capabilities, as with Mealy and Moore machines in Chapter 8, we called them trans
ducers. The pushdown automata of Chapter 14 similarly do not produce output and are only
language-acceptors. However, we recognized their potential as transducers for doing parsing
in Chapter 1 8 , by considering what is put into, left in, or popped from the STACK as output.

TMs present a completely different situation. They always have a natural output. When
the processing of any given TM terminates, whatever is left on i ts TAPE can be considered to
be the intended, meaningful output. Sometimes, the TAPE is only a scratch pad where the
machine has performed some calculations needed to determine whether the input string
should be accepted. In this case, what is left on the TAPE is meaningless. For example, one
TM that accepts the language EVENPALINDROME works by cancel ling a letter each from
the front and the back of the input string until there is nothing left. When the machine

reaches HALT, the TAPE is empty.
However, we may use TMs for a different purpose. We may start by loading the TAPE

with some data that we want to process . Then we run the machine until it reaches the HALT
state. At that time, the contents of the TAPE wil l have been converted into the desired output,
which we can interpret as the result of a calculation, the answer to a question, a manipulated
file-whatever.

So far, we have been considering only TMs that receive input from the language defined by
(a + b)*. To be a useful calculator for mathematics, we must encode sets of numbers as words
in this language. We begin with the encoding of the natural numbers as strings of a's alone:

The code for 0 = A

The code for I = a

The code for 2 = aa

The code for 3 = aaa

This is cal led unary encoding because it uses one digit (as opposed to binary, which
uses two digits, or decimal with ten).

Every word in (a + b)* can then be interpreted as a sequence of numbers (strings of a's)
separated internally by b's. For example, the decoding of (abaa) i s I , 2 and

Defining the Computer 595

bbabbaa = (no a 's)b(no a 's)b(one a)b(no a's)b(two a's)

represents 0, 0, I , 0, 2.
Notice that we are assuming that there is a group of a 's at the beginning of the string

and at the end even though these may be groups of no a 's . For example,

abaabb = (one a)b(two a 's)b(no a 's)b(no a 's)

which represents I , 2, 0, 0.
When we interpret strings of a 's and b's in this way, a TM that starts with an input string

of a's and b's on its TAPE and leaves an output string of a 's and b's on its TAPE can be con

sidered to take in a sequence of specific input numbers and, after performing certain calcula

tions, leaves as a final result another sequence of numbers -output numbers.
We are considering here only TMs that leave a 's and b 's on their TAPES; no special sym

bols or extraneous spaces are al lowed among the letters, unless they too are given special
output meanings.

We have already seen TMs that fit this description that had no idea they were actually
performing data processing, because the interpretation of strings of letters as strings of num
bers never occurred to them. "Calculation" is one of those words that we never real ly had a
good definition for. Perhaps we are at last in a position to correct th is.

EXAMPLE

Consider the following TM called ADDER:

(a,a.R) (a.a,R)

c START 9 (b.•,R} > c!l ,,,>,L) > 8 (a.:i.R)
� (__ H_A_L T _ _,,)

In START, we skip over some initial clump of a's, leaving them unchanged. When we read
a b, we change it to an a and move to state I . In state I , a second b would make us crash. We
skip over a second clump of a's until we run out of input string and find a ii. At this point, we go
to state 2, but we move the TAPE HEAD left. We have now backed up into the a's. There must be
at least one a here because we changed a b into an a to get to state I . Therefore, when we first
arrive at state 2, we erase an a and move the TAPE HEAD right to HALT and terminate execution.

For an input string to be accepted (lead to HALT), it has to be of the form a*ba* . If we
start with the input string a"ba"', we end up with a11 +n• on the TAPE.

When we decode strings as sequences of numbers as above, we identify a" ha"' with the
two numbers n and m. The output of the TM is decoded as (n + m).

Under this interpretation, ADDER takes two numbers as input and leaves their sum on
the TAPE as output.

This is our most primitive example of a TM intentional ly working as a calculator. •

If we used an input string not in the form a*ba*, the machine would crash. This is anal
ogous to our computer programs crashing if the input data are not in the correct format.

Our choice of unary notation is not essential; we could build an "adding machine" for
any other base as wel l .

EXAMPLE

Let us build a TM that adds two numbers presented in binary notation and leaves the answer
on the TAPE in binary notation.

596 CHAPTER 25 Computers

We shall construct this TM out of two parts. First, we consider the TM T1 shown below:

(0,0,R)

(1 . 1 .R) (1 ,0,L) . cJ (.>..>,/.) ' cJ. <0. 1 .L) (START) ($,$,R) � c) HALT

This TM presumes that the input is of the form

$(0 + 1)*

I t finds the last bit of the binary number and reverses it; that is , 0 becomes l , l becomes
0. If the last bit was a 1 , it backs up to the left and changes the whole clump of 1 's to O 's ,
and the first 0 to the left of these l 's turns into a l . Al l in al l , this TM adds l to the binary
number after the $. If the input was of the form $1 * , the machine finds no 0 and crashes .

In general, T1 increments by l .
Now let us consider the TM T2" This machine wil l accept a nonzero number in

binary and subtract l from it. The input is presumed to be of the form $(0 + 1)*$ but not
$0*$.

The subtraction wil l be done in a three-step process:

Step l Reverse the O 's and l 's between the $'s. This is called taking the l 's comple
ment.

Step 2 Use T1 to add l to the number now between the $'s. Notice that if the original
number was not 0, the l 's complement is not a forbidden input to T1 (i .e . , not
all l 's) .

Step 3 Reverse the O 's and l 's again.

The total result is that what was x will become x - l .
The mathematical justification for this is that the l 's complement of x (if it is n bits

long) is the binary representation of the number

Because when x is added to it, it becomes n solid l 's = 2" - 1 .

x becomes (2" - 1) - x (Step 1)

Which becomes (2" - 1) - x + 1 = (2" - 1) - (x - 1) , the l 's
complement of x - l (Step 2)

Which becomes (2" - 1) - [(2" - 1) - (x - 1)) = (x - 1) (Step 3)

For example,

$ 1 0 1 0$ = binary for 1 0

Becomes $0 1 0 1 $ = binary for 5
Becomes $0 1 1 0$ = binary for 6
Becomes $ 100 1 $ = binary for 9

Defining the Computer

T2 is next shown.

START ($,$,R)

(0, 1 ,R)

(1 ,0,R)

We generally say T2 decrements by 1 .

(1 ,0,L)

(0,0,L)

(1 , 1 ,L)

(0 , 1 ,R)

(1 ,0,R)

597

The binary adder we shall now bui ld works as follows: The input strings wi l l be of the
form

$(0 + 1)*$(0 + l)*

which we call

$ x-part $ y-part

We shall interpret the x-part and y-part as numbers in binary that are to be added. Fur
thermore, we make the assumption that the total x + y has no more bits than y itself. This is
analogous to the addition of numbers in the arithmetic registers of a computer where we pre
sume that there will be no overflow.

If y is the larger number and starts wi th the bit 0, the condition is guaranteed. If not, we
can INSERT 0 in front of y.

The algorithm to calculate x + y in binary wil l be this :

Step 1 Check the x-part to see whether it is 0. If yes, halt. If no, proceed .

Step 2 Subtract I from the x-part using T2 above.

Step 3 Add 1 to the y-part using T1 above.

Step 4 Go to step I .

The final result wi l l be

$ 0 *$ (x + y in binary)

Let us roughly i l lustrate the algorithm using analogous decimal numbers:

The ful l TM is

Becomes
Becomes
Becomes
Becomes

$4$7
$3$8
$2$9

$ 1 $ 1 0
0 1 1

598 CHAPTER 25 Computers

START

(0,0 ,R)

(0,0 ,l)

(1 , 1.f,)

(0. 1 ,R)

(1 ,0,R)

(1 .0.L)

(0,0,l)

(1 ,0 ,R)

(0,0.R)

(0,0, l)

(0 ,0,L)

(1 , 1 ,L)

HALT

Return TAPE H EAD
to ce l l 1

Step 2

Step 3

} "''"'" "� "''°
to cel l 1

Let us run this machine on the input $ 1 0$0 1 1 0 in an attempt to add 2 and 6 in binary.

START I 2 3 3
$_ 1 0$0 1 1 0 - $10$0 1 1 0 (x # 0) - $_ 1 0$0 1 1 0 - $10$0 1 1 0 - $0Q$0 1 1 0

3 4 4 5 6 6
- $0 1 $0 1 1 0 - $01$0 1 1 0 - $Q0$0 1 10 - $_ 1 0$0 1 1 0 - $10$0 1 1 0 - $0Q$0 1 1 0

6 7 7 7 7
- $0 1 .$.0 1 1 0 (x <- x - 1) - $0 1 $Q l I O - $0 1 $01 I O - $0 1 $0 1 10 - $0 1 $0 1 I Q

7 8 9 9 9 9
- $0 1 $0 1 1 0,A - $0 1 $0 1 I Q - $0 1 $0 1 ll - $0 1 $011 1 - $0 1 $Ql 1 1 - $0 1 .$.0 1 1 1

I O I O I O 1 1

(y <- y + 1) - $01$0 1 1 1 - $Q 1 $0 1 l 1 - .$.0 1 $0 1 1 1 - $Q 1 $0 1 1 I - $01$0 1 1 1

Computable Functions 599

2 2 3 3 3

(x ¥- 0) -+ $Q 1 $0 l l I -+ 10 1 $0 1 1 1 -+ $Q l $0 l l l -+ $ 1 1$0 1 1 l -+ $ 1 010 1 1 1

4 5 5 6 6 6
-+ $ 1 Q$0 l l l -+ $1 1 $0 1 1 1 -+ 1 1 1 $0 1 1 1 -+ $1 1 $0 1 1 1 -+ $01$0 1 1 1 -+ $0010 1 1 1

7 7 7 7 7

(x - x - 1) -+ 00Q I 1 1 -+ $00$011 1 -+ $00$0 1 1 1 -+ $00$0 1 1 1 -+ $00$0 1 1 I A

8 8 8 8 9
-+ $00$0 1 1 1 -+ $00$0 1 l0 -+ $00$0100 -+ 00QOOO -+ $001 I OOO (y - y + l)

I O I O I O I I I
-+ $0Q$ 1 000 -+ $Q0$ 1 000 -+ 100$ I OOO -+ $Q0$ 1 000 -+ $0Q$ 1 000 -+ $001 1 000

HALT
(x = 0) -+ $00$1000

The correct binary total is 1 000, which is on the TAPE when the TM halts. •

DEFINITION

If a TM has the property that for every word it accepts, at the time it halts , it leaves one solid
string of a's and b's on its TAPE starting in cell i , we call it a computer. The input string we
call the input (or string of input numbers), and we identify it as a sequence of nonnegative
integers. The string left on the TAPE we call the output and identify it also as a sequence of
nonnegative integers . •

In the definition above, we use the semiambiguous word "identify" because we do not
wish to restrict ourselves to unary encoding or binary encoding or any other particular sys
tem.

� COMPUTABLE FUNCTIONS

Now we finally know what a computer is . Those expensive boxes of electronics sold as com
puters are only approximations to the real McCoy. For one thing, they almost never come
with an infinite memory l ike a true TM. At this stage in our consideration, we are deal ing
only with zero and the positive integers. Negative numbers and numbers with decimal points
can be encoded into nonnegative integers for TMs as they are for electronic digital comput
ers. We do not worry about this generality here. Let us define the new symbol "...:... " to use in
stead of the regular minus sign.

DEFINITION

If m and n are nonnegative integers, then their simple subtraction is defined as { m - n
m -'- n =

0

if m -;::,: n

if m ,,;;;;; n

Essential ly what -'- does is perform regular subtraction and then rounds al l negative answers
back up to O. •

Simple subtraction is often called proper subtraction or even monos.

600 CHAPTER 25 Computers

EXAMPLE

Consider the TM below called MINUS:

START

(6,6,L)
(a,a,L)

(b,6.Ll

(A,a,R)

HALT

(6.6.Rl

(a,6,R)

(a,a,R)

(a,a,R)

(6,6,L)

(a,a,L) (b,b,R)

This machine works as follows. To get from START to state 3, the input on the TAPE
must have been of the form a+ba*, or else the machine would crash . This can be interpreted
as starting with two numbers , the first of which is not 0.

Along the way to state 3 , we have changed the first a into A -the usual expedient to
guarantee that we do not accidentally move left from cell i while backing up.

Notice that the TAPE HEAD is reading the last nonblank character when we enter state 3. If
what is being read in state 3 is a b, it signifies that our task (which we have not yet explained) is
done. We erase the b and move to state 4. This state leaves all a's and A. 's as it finds them and
seeks the A in cell i. When this is found, it is changed back into an a and the process halts.

If the character read in state 3 is an a, a different path is fol lowed. The a is erased while
moving to state 5 . Here, we move left, seeking the center b. When we find it, we reach state
6 and continue left in search of the last a of the initial group of a 's . We find this , erase it, and
move to state 7. State 7 moves right, seeking the center b. We cross this going to state 8
where we seek the last a of the second group of a 's. When this is located, we return to state
3. The circuit

state 3 - state 5 - state 6- state 7 - state 8 - state 3

cancels the last a of the second group against the last a of the first group.

Computable Functions 601

For example, what starts as Aaaaabag_ becomes Aaaatibg_ti, which then becomes
Aaatiti!ltiti. Now from state 3, we follow the path state 3-state 4-HALT, leaving aaa on the
TAPE alone. This is the correct result of the subtraction 5 -'-- 2.

The only possible deviation from this routine is to find that the a that is to be cancelled
from the first group is the A in cell i . This could happen if the two groups of a's are initially
the same size, or if the second group is larger:

g_ahaa - Aahag_ - Ag_ha A - AAbg_ - AiihA - At!AhA - A . . .

or

g_ahaaa - Aabaag_ - Ag_haa A - A iihag_ - AAhaA - iit!AhaA - A . . .

If this happens, states 9 and I O erase everything on the TAPE and leave the answer zero (an

all-blank TAPE). It is not recorded whether this zero is the exact answer or a rounded-up answer.
If we start with amba" on the TAPE, we wil l be left with a"'-" unless m � n, in which case

we wil l be left with only blanks.
This machine then performs the operation of simple subtraction as defined by the sym-

bol "-'-- ". •

Notice that although this TM starts with a string in (a + b)* and ends with a string in
(a + b)* , it does use some other symbols in i ts processing (in this case, A) .

DEFINITION

If a TM takes a sequence of numbers as input and leaves only one number as output, we say
that the computer has acted l ike a mathematical function. Any operation that is defined on
all sequences of K numbers (for some number K :;;;,, I) and that can be performed by a TM is
called Turing-computable or just computable. •

The TMs in the last two examples, ADDER and MINUS, prov ide a proof of the follow
ing theorem.

THEOREM 82

Addition and simple subtraction are computable. •

In both of these examples, K = 2 (addition and subtraction are both defined on a se
quence of two numbers) . Both of these are functions (they leave a one-number answer) .

THEOREM 83

The function MAX (x, y), which is equal to the larger of the two nonnegative integers .r and
y, is computable.

PROOF

We shall prove this by describing a TM that does the job of MAX.
Let us use the old trick of bui lding on previous results, in this case the machine MINUS.

602 CHAPTER 25 Computers

MINUS does make the decision as to which of the two numbers m or n is larger. If m i s
larger, m -=- n leaves an a in cell i . If n is larger than (or equal to) m, cell i wi l l contain a .1.
However, after the program is completed, it i s too late to leave m or n on the TAPE, because
all that remains is m -=- n.

Instead of erasing the a 's from the two groups as we do in MINUS, let us make this
modification. In the first section, let us tum the a 's that we want to erase into x's and let us
tum the a 's of the second section that we want to erase into y's. For example, what starts as
aaaaabaa and on MINUS ends as aaa now should end as Aaaxxbyy.

Notice that we have left the middle b instead of erasing it, and we leave the contents of
cell i A if it should have been a or, as we shall see, leave it a (if it should have been .1).

The TM program that performs this algorithm is only a slight modification of MINUS.

(a,a,R)

START
(a,A,Rl

9

(a,a,R)

(a,a,Rl

(y,y,L)

(a,a,L) (b,b,R)

(a,x,R)
(x,x,R)

If we arrive at state 4, the first input group of a 's is larger. The TAPE looks l ike this :

Aa . . . aaxx . . . xxb'jy . . . yy

with the TAPE HEAD reading the y to the right of the b. To finish the job of MAX, we must go
right to the first .1, then sweep down leftward, erasing all the y 's and the b as we go and
changing x's into a's, and finally stopping after changing A into a :

(y,�Ll
(b.�L)
(x,a,L)
(a,a,L) (y,y,R)

(HALT)i...E..,___CA_.a_,R_l--t&t....E"---(�-�_L_l �8'4E----

If we arrive at state 9, the second group is larger than or equal to the first. Then TAPE
now looks l ike this :

axx . . . xxbaa . . . aayy . . . yy

with the TAPE HEAD reading cell i i . Here, what we have to do is leave a number of a 's equal

Computable Functions 603

to the former constitution of the second group of a 's (the current a 's and y's together) . Now
since there are as many symbols before the h as y's, all we really need to do is erase the h
and the y 's, change the x's to a 's, and shift the other a 's one cell to the left (into the hole left
by b). For example, a.x.xxbaayyyy becomes aaaal1aal1111111 and then aaaaaa.

This TM program does all this :

(x,a,R)
(b,a,R)
(a,a,R)
(y, 6,R) (6,6,L)

8 .f!J .s (A,a,R) (6, 6,L) (a, 6,R) � c) HALT

What we actually did was change the h into an a instead of 11 . That gives us one too
many a 's, so in state 1 1 we back up and erase one.

This machine is one of many TMs that does the job of MAX. •

EXAMPLE

Let us trace the execution of the input aaahaa on this TM:

START 2 2 2
g_aabaa --> Ag_abaa --> Aag_haa --> AaaQ.aa --> Aaahg_a --> Aaahaq --> Aaahaa�

3 5 5 6 7 8 8
--> Aaabag_ --> Aaabgy --> AaaQ.ay --> Aag_hay --> AaxQ.ay --> Aaxbgy --> A ax ha)!.

3 5 6 6 7 7 8
--> Aaxhgy --> Aaxll.yy --> Aa;r.hyy --> Ag_xhyy --> Ax;r.hyy --> Axxllyy --> A.uhl'._V

3 4 4 4 1 0 1 0 1 0
--> Axxll.yy --> AxxhJ.Y --> Axxhy)!. --> Axxhyy� --> Axxhy)!. --> AxxhJ_A --> A.r.rMA

1 0 1 0 1 0 HALT
--> Ax,,rAAA --> A,,raAAA --> d.aaAAA --> aqaAAA

This is the correct answer because

MAX(3 , 2) = 3 •

EXAMPLE

To give equal time to the state 9-state I I -HALT branch , we trace the execution of the input
aabaaa:

START 2 2 2 2
g_abaaa --> Ag_baaa --> Aall.aaa --> Aahg_aa --> Aahag_a --> Aahaaq --> Aahaaa�

3 5 5 5 6 7 8
--> Aabaag_ --> Aahagy --> Aahg_ay --> Aall.aay --> Ag_haay --> Axflaay --> A.rhqay

8 8 3 5 5 6 6
--> Axhagy --> Axhaay_ --> Axhagy --> Axhgyy --> Axll.ayy --> A;r.hayy --> Axhayy

9 9 9 9 9 9 1 1
--> a;r.hayy --> aaflayy --> aaaQ.YY --> aaaa)!_y --> aaaaAy_ --> aaaaAA� --> aaaaA�

1 1 1 1 HALT
--> aaa� --> aaag_ --> aag_A •

604 CHAPTER 25 Computers

THEOREM 84

The IDENTITY function

IDENTITY(n) = n

and the SUCCESSOR function

SUCCESSOR(n) = n + l

are computable.

for all n ;a. 0

for all n ;a. 0

Note: These functions are defined on only one number (K = l) , so we expect input only
of the form a* .

PROOF

The only trick in the IDENTITY function is to crash on all input strings in bad format, that
is, not of the form a* :

(a,a,Rl

START HALT

(.1,.1,Rl

Similarly, SUCCESSOR is no problem:

(a, a, RJ

START HALT

(.1, a, RJ •

DEFINITION

The ith of n selector function is the function that starts with a sequence of n nonnegative
numbers and erases most of them, leaving only the ith one (whether that one is the largest or
not) . It is written

SELECT/i/n(, , ,)

where there is space for exactly n numbers inside the parentheses. For example.

THEOREM 85

SELECT/2/4(8, 7, l , 5) = 7
SELECT/4/9(2, 0, 4, l , 5 , 9, 2, 2, 3) = l •

The ith of n selector function is computable for every value of i and n (where we assume i is
less than or equal to n).

Computable Functions 605

PROOF

We shall build a TM that shows that the "third of five" selector function is computable. The
other SELECT/i/n functions can be constructed similarly.

The TM that operates as

SELECT/3/5(r. s, t, u, v)

begins with input of the form

a'ba'bdba"ba"

It marks the first cell with a * ; erases the first clump of a 's and the first h, the next a's, and
the next b; saves the next a 's; and erases the next h, the next a 's, the next h, and the last a 's,
all the time moving the TAPE HEAD to the right.

C h . .Ni

aaababaabaaaaba

becomes

We now choose to shift the remaining a 's down to the left to begin in cel l i , which we
marked with a * . We can use the TM subroutine DELETE Li. We keep deleting the Li in cell i
until the contents of cell i becomes an a. Then we stop. •

THEOREM 86

Multipl ication is computable.

PROOF

The proof will be by constructive algorithm. This machine, called MPY, takes strings of the
form amban and leaves on the TAPE am". To make things easier on ourselves, we shall build a
machine that rejects the input if n or m is zero; however, if we wanted to, we could build the
machine differently to allow multiplication by zero (see the Problems section).

The algori thm this machine will fol low is to insert a h in the first cell and place the sym
bol # after the entire input string. Then to the right of the #, it wil l write one copy of the
string an for each a in the string a"', one by one erasing the a 's in the first string. For exam
ple, the multipl ication of 3 times 2 proceeds in these stages:

haaahaa#
hLiaahaa#aa
hLiLiahaa#aaaa
bLiLiLihaa#aaaaaa

606 CHAPTER 25 Computers

The machine will then erase everything between and including the second b and the #. The
TAPE now looks l ike this :

For this machine, we shall spell out a simplified version of DELETE to shift the string
of a 's leftward to begin in cell i i . We do this because we want to make a complete trace of
the runnings of the full TM.

MPY begins like this :

(a,a,R)

(a,a,R)
START I NSERT b

(b,b,R)
(a,a,R)

(6, #,L) (a,a,R)

So far, we have checked the form of the input (so we can crash on improper inputs) and
placed the initial b and the # where we want them.

Now we go back and find the first a in a"' and convert it into a A:

(a .a,/,) (a.a . [,)

(h.h,L) (h.h.R) (a,J..R)

Now we find the beginning of the second factor a":

(a ,a .R)

�
Now one by one, we tum these a 's in the second factor into A 's and copy them on the

other side of the #:

(a,A,Rl
9

(#,#,L)
(a,a,R)

bAaaabaa#
bAaaabAa#a
bAaaabAA#aa

(#, #,Ll
(a,a,L)

(#, #,Ll

Computable Functions 607

In state 9, we convert the first a into an A. In state I O, we move the TAPE HEAD to the
right going through a 's and the # and perhaps other a's until we find the d. To get to state 1 1 ,
we change the first d to an a and start the trip back down the TAPE leftward. In state 1 1 , we
skip over a's and the # and more a 's until we find the last copied A . In state 1 2, we look to
the right of this A . If there is a #, then there are no more a's to copy and we go to state 1 3 . If
there is another a, it must be copied so we change it to A and go back to state 1 0.

In state 1 3 , we must change the A 's back to a's so we can repeat the process. Then we
look for the next a in the first factor:

(A,a,L) (a,a,L)

(a,a,L) (6,6,R) (a,A,R)

(A,A,R}

After changing the A 's back to a 's, we move left, through the middle b, into whatever is
left of the first factor a m . If the cel l to the immediate left of b is blank, then the multipl ication
is finished and we move to state 1 5 . If the cell to the left of b has an a in it, we go to state 1 6.
Here, we move leftward through the a 's until we find the first d, then right one cell to the
next a to be erased. Changing this a to a d, we repeat the process of copying the second fac
tor into the d 's after the # and a 's by returning to state 8 .

When we get to state 15 , we have the simple job left of erasing the now useless second
factor:

(a,b;A,R) (a,a,R) (a,a,L)

(A,a,R)
HALT

Going to state 1 8, we change the # into an a so we must later erase the end a. Using states
1 8 and 1 9, we find the end a and erase it. In state 20, we go back down the TAPE to the left to see
if there are more d 's in front of the answer. If so, we make one an a and go back to state 1 8 . If
not, we encounter the b in cell i, delete it, and halt. This completes the machine MPY. •

EXAMPLE

Let us write out the ful l trace of MPY on the input baabaa:

START

g_ahaa �
INSERT h

!la a ha a hg_ahaa
2

hag_haa
2

haa!laa

608 CHAPTER 25 Computers

3 4 4 5
-+ baabga -+ baa bag -+ baabaal! -+ baa bag#

5 5 6 6
-+ baaba.a# -+ baa/2.aa# -+ bag baa# -+ bgabaa#

6 7 8 8
-+ /l.aabaa# -+ bgabaa# -+ Ma baa# -+ Ma/2.aa#

9 I O I O 1 0
-+ Mabga# -+ MabAg# -+ MabAat!. -+ MabAa#/!

I I 1 1 I I 1 2
-+ bAabAat!.a -+ MabAg#a -+ Mabd.a#a -+ bAabAa#a

I O I O I O 1 1
-+ MabAAt!.a -+ MabAA#g -+ MabAA#a/! -+ MabAA#aa

I I I I 1 2 1 3
-+ MabAAt!.aa -+ MabAfl#aa -+ MabAAt!.aa -+ MabAfl#aa

1 3 1 3 1 4 1 6
-+ bAaM.a#aa -+ bb.a/2.aa#aa -+ bAgbaa#aa -+ b/!abaa#aa

1 7 8 9 I O
-+ bAgbaa#aa -+ bAA/2.aa#aa -+ MAbaa#aa -+ bAAbAg#aa

I O I O I O I O
-+ MAbAatt.aa -+ MAbAa#ga -+ MAbAa#ag -+ MAbAa#aaA

I I I I I I I I
-+ MAbAa#aga -+ MAbAa#gaa -+ MAbAat!.aaa -+ MAbAg#aaa

I I 1 2 I O 1 0
-+ bAM_a#aaa -+ MAbAg#aaa -+ hAAbAAt!.aaa -+ hAAbAA#(laa

I O I O 1 0 I I
-+ bAAbAA#aga -+ MAbAA#aag -+ bAAbAA#aaa/! -+ bAAbAA#aaga

1 1 1 1 1 1 1 1
-+ bAAbAA#agaa -+ bAAbAA#aaaa -+ bAAbAAt!.aaaa -+ hAAbAtl#aaaa

1 2 1 3 1 3 1 3
-+ bAAbAAt!.aaaa -+ hAAbAA#aaaa -+ bAAM.a#aaaa -+ bAA/2.aa#aaaa

1 4 1 5 1 5 1 5
-+ bA/!baa#aaaa -+ bAA/2.aa#aaaa -+ bAAAaa#aaaa -+ MAAAa.#aaaa

1 5 1 8 1 8 1 8
-+ bAAAAAt!.aaaa -+ hAAAAAaa.aaa -+ bAAAAAaagaa -+ bAAAAAaaaaa

1 8 1 8 1 9 20
-+ bAAAAAaaaag -+ bAAAAAaaaaa/! -+ MAAtib.aaaag -+ MAAAAaaag

20 20 20 20
-+ MAAAAaaga -+ MAAAAagaa -+ MAAAAgaaa -+ MAAA/!aaaa

1 8 1 8 1 8 1 8
-+ bAAAAagaaa -+ bAAAAaagaa -+ bAAAAaaaga -+ bAAAb.aaaaa

1 8 1 9 20 20
-+ bAAAAaaaaaf! -+ bAAAAaaaag_ -+ bAAA.Aaaag -+ bAAAAaaaa

20 20 20 1 8
-+ bAAAAagaa -+ MAAAgaaa -+ bAAA.Aaaaa - bAAAag_aaa

1 8 1 8 1 8 1 8
-+ bAAb.aaaaa -+ bAAAaaaga -+ bAAtiaaaag_ -+ bAAAaaaaa/!

1 9 20 20 20
-+ bAAAaaaag -+ bAAAaaag -+ bAAAaaga -+ bAAAagaa

20 20 1 8 1 8
-+ bAAAgaaa -+ bAA/!aaaa -+ bAAag_aaa -+ bAAaag_aa

1 8 1 8 1 8 1 9
-+ bAAaaaaa -+ bAAaaaaa -+ bAAaaaaal! - bAAaaaag_

20 20 20 20
-+ bAb.aaag -+ bAAaaaa -+ bAAaaaa -+ bAAaaaa

Computable Functions 609

20 1 8 1 8 1 8

- bl::.A.aaaa - h/::.aqaaa ---> h!::.aaqaa ---> h!::.aaaqa

1 8 1 8 1 9 20
---> bl::.aaaaq ----+ h!::.aaaaaA. ---> h!::.aaaaq ---> h!::.aaaq

20 20 20 20
---> h!::.aaqa ---> h/::.aqaa ---> h/::.qaaa ---> h;daaaa

1 8 1 8 1 8 1 8
---> baqaaa ---> haaqaa ---> haaaqa ----+ haaaaq

1 8 1 9 20 20
---> haaaaaA. ----+ haaaaq ---> haaaq ---> haaqa

20 20 20 DELETE HALT
---> haqaa ---> bqaaa ---> fl.aaaa ----+ aqaaa ---> aqaa

•

This is how one TM calculates that 2 times 2 is 4. No claim was ever made that this is a
good way to calculate that 2 X 2 = 4, only that the existence of MPY proves that multipl ica
tion can be calculated, that is, is computable.

We are dealing here with the realm of possibil i ty (what is and what is not possible) , not
optimality (how best to do it); that is why this subject is called computer theory, not "a prac
tical guide to computation."

Remember that electricity flows at (nearly) the speed of l ight, so there is hope that an
electrical TM could calculate 6 X 7 before next Apri l .

TMs are not only powerful language-recognizers, but they are also powerful calcula-
tors .

EXAMPLE

A TM can be built to calculate square roots, or at least to find the integer part of the square
root. The machine SQRT accepts an input of the form ban and tests all integers one at a time
from I on up until i t finds one whose square is bigger than n.

Very loosely, we draw this diagram (in the diagram, we have abbreviated SUCCESSOR
"Sue," which is commonly used in this field:

START

MPY bigger
test ._ test -'-- I HALT

Therefore, we can build SQRT out of the prev ious TMs we have made. •

610 CHAPTER 25 Computers

y CHURCH'S THESIS

What functions cannot be computed by a TM? The answer is surprising: "It is believed that
there are no functions that can be defined by humans, whose calculation can be described by
any well-defined mathematical algorithm that people can be taught to perform, that cannot
be computed by TMs. The TM is believed to be the ultimate calculating mechanism."

This statement is called Church's thesis because Alonzo Church (1 936 again) gave
many sophisticated reasons for believing it. Church's original statement was a little different
because his thesis was presented sl ightly before Turing invented his machines. Church actu
ally said that any machine that can do a certain list of operations will be able to perform all
conceivable algorithms. He tied together what logicians had called recursive functions (after
the work of GOdel) and computable functions (after the goal of Hilbert). TMs can do all that
Church asked, so they are one possible model of the universal algorithm machines Church
described.

Unfortunately, Church 's thesis cannot be a theorem in mathematics because ideas such
as "can ever be defined by humans" and "algorithm that people can be taught to perform"
are not part of any branch of known mathematics. There are no axioms that deal with "peo
ple." If there were no axioms that dealt with triangles, we could not prove any theorems
about triangles. There is no known definition for "algorithm" either, as used in the most gen
eral sense by practicing mathematicians, except that, if we believe Church 's thesis, we can
define algorithms as what TMs can do. This is the way we have (up to today) resolved the
old problem of, "Of what steps are all algorithms composed? What instructions are legal to
put in an algorithm and what are not?"

Not all mathematicians are satisfied with this. Mathematic ians like to include in their
proofs such nebulous phrases as "case two can be done similarly," "by symmetry we also
know," or "the case of n = I is obvious." Many mathematicians cannot figure out what other
mathematicians have written, so it is often hopeless to try to teach a TM to do so. However,
our best definition today of an algorithm is that it is a TM.

Turing had the same idea in mind when he introduced his machines. He argued as fol
lows.

If we look at what steps a human goes through in performing a calculation, what do we
see? (Imagine a woman doing long division, e.g.) She writes some marks on a paper. Then
by looking at the marks she has written, she can make new marks or, perhaps, change the old
marks . If the human is performing an algorithm, the rules for putting down the new marks
are finite . The new marks are entirely determined by what the old marks were and where
they were on the page. The rules must be obeyed automatically (without outside knowledge
or original thinking of any kind) . A TM can be programmed to scan the old marks and write
new ones following exactly the same rules. The TAPE HEAD can scan back and forth over the
whole page, row by row, and recognize the old marks and replace them with new ones. The
TM can draw the same conclusions a human would as long as the human was forced to fol
low the rigid rules of an algorithm instead of using imagination.

Someday, someone might find a task that humans agree is an algorithm but that cannot
be executed by a TM, but this has not yet happened. Nor is it l ikely to. People seem very
happy with the Turing-Post-Church idea of what components are legal parts of algorithms.

There are faulty "algorithms" that do not work in every case that they are supposed to
handle. Such an algorithm leads the human up to a certain point and then has no instruction
on how to take the next step. This would foil a TM, but it would also foil many humans.
Most mathematics textbooks adopt the policy of allowing questions in the Problems section
that cannot be completely solved by the algorithms in the chapter. Some "original thinking"
is required. No algorithm for providing proofs for all the theorems in the Problems section is

Church's Thesis 611

ever given. In fact, no algorithm for providing proofs for al l theorems in general is known.
Better or worse than that, i t can be proved that no such algorithm exists.

We have made this type of claim at several places throughout this book; now we can
make it specific. We can say (assuming as everyone does that Church 's thesis is correct) that
anything that can be done by algorithm can be done by TM. Yet we have shown in the previ
ous chapter that there are some languages that are not recursively enumerable . This means
that the problem of deciding whether a given word is in one such particular language cannot
be solved by any algorithm.

When we proved that the language PALINDROME is not accepted by any FA, that did
not mean that there is no algorithm in the whole wide world to determine whether or not a
given string is a palindrome. There are such algorithms. However, when we proved that
ALAN is not r.e . , we proved that there is no possible decision procedure (algorithm) to de
termine whether or not a given string is in the language ALAN.

Let us recall from Chapter I the project proposed by David Hilbert. When he saw prob
lems arising in set theory, he asked that the following statements be proven:

1. Mathematics is consistent. Roughly, this means that we cannot prove both a statement
and its opposite, nor can we prove something horrible l ike 1 = 2.

2. Mathematics is complete. Roughly, this means that every true mathematical assertion
can be proven. Because we might not know what "true" means, we can state this as :
Every mathematical assertion can either be proven or disproven.

3. Mathematics is decidable. This, as we know, means that for every type of mathematical
problem there is an algorithm that, in theory at least, can be mechanically followed to
give a solution. We say "in theory" because following the algorithm might take more
than a million years and sti l l be finite.

Many thought that this was a good program for mathematical research, and most be
lieved that all three points were true and could be proved so. One exception was the math
ematician G. H. Hardy, who hoped that point 3 could never be proven, because if there were
a mechanical set of rules for the solution of all mathematical problems, mathematics would
come to an end as a subject for human research.

Hardy did not have to worry. In 1 930 Kurt GOdel shocked the world by proving that
points 1 and 2 are not both true (much less provable). Most people today hope that this
means that point 2 is false, because otherwise point 1 has to be. Then in 1 936, Church,
Kleene, Post, and Turing showed that point 3 is false. After GOdel 's theorem, all that was left
of point 3 was, "Is there an algorithm to decide whether a mathematical statement has a
proof or a disproof, or whether it is one of the unsolvables." In other words, can one invent
an algorithm that can determine whether some other algorithm (possibly undiscovered) does
exist that could solve the given problem? Here, we are not looking for the answer but merely
good advice as to whether there even is an answer. Even this cannot be done. Turing's proof
of the undecidabil ity of the halting problem meant, in light of Church 's thesis, that there is
no possible algorithm to decide whether a proposed algorithm really works (terminates).
Church showed that the first-order predicate calculus (an elementary part of mathematics) is
undecidable. All hope for Hilbert 's program was gone.

We have seen Post's and Turing's conception of what an algorithm is. Church 's model
of computation, called the lambda calculus, is also elegant but less directly related to com
puter theory on an elementary level , so we have not included it here. The same is true of the
work of Godel and Kleene on µ-recursive functions . Two other interesting models of com
putation can be used to define "computabil i ty by algorithm." A. A. Markov (1 95 1) defined a
system today called Markov algorithms, or MA, which are similar to type 0 grammars, and
J. C. Shepherdson and H. E. Sturgis (1 963) proposed a register machine, or RM, which is

612 CHAPTER 25 Computers

similar to a TM. Just as we might have suspected from Church's thesis, these methods turned
out to have exactly the same power as TMs. Of the mathematical logicians mentioned, only
Turing and von Neumann carried their theoretical ideas over to the practical construction of
electronic machinery and precipitated the invention of the computer.

1} TMs AS LANGUAGE GENERATORS

So far, we have seen TMs in two of their roles as transducer and as acceptor:

X1, X2. X3 . . .

i nputs

Y1. Y2, Y3
TRANSDUCER �----�

outputs

Xv X2, X3 . . . I -----""3;t;M- ACCEPTOR
i nputs ____

YES :
NO

As a transducer, it is a computer, and as an acceptor, it is a decision procedure. There is
another purpose a TM can serve. It can be a generator :

DEFINITION

A TM is said to generate the language

L = { w1 w2 w3 • • • }

if it starts with a blank TAPE and after some calculation prints a # followed by some word
from l. Then there is some more calculation and the machine prints another # followed by
another word from l. Again, there is more calculation and another # and another word from
L appears on the TAPE. And so on. Each word from L must eventually appear on the TAPE in
side of #'s. The order in which they occur does not matter and any word may be repeated in
definitely. •

This definition of generating a language i s also called enumerating it . With our next
two theorems, we shall show that any language that can be generated by a TM can be ac
cepted by some TM and that any language that can be accepted by a TM can be generated by
some TM. This finally explains why the languages accepted by TMs were called recursively
enumerable.

THEOREM 87

If the infinite language L can be generated by the TM T.� · then there is another TM, Ta, that
accepts l.

PROOF

The proof will be by constructive algorithm. We shall show how to convert TR into Ta.
To be a language-acceptor, Ta must begin with an input string on its TAPE and end up in

HALT when and only when the input string is in L.
The first thing that T0 does is put a $ in front of the input string and a $ after it. In this

TMs As Language Generators 613

way, it can always recognize where the input string is no matter what else is put on the !APE.
Now T begins to act l ike T in the sense that Ta imitates the program of T11 and begms to

genera:e all the words in L o� the TAPE to the right of the second $. The only modification is

that every time T finishes printing a word of L and ends with a #, Ta leaves i ts copy of the

program of T fc:i. a moment to do something else. Ta instead compares the most recently

generated wo;d of L against the input string inside the $'s . If they are the same, Tu halts and

accepts the input string as legitimately being in L. If they are not the same, the result is in

conclusive. The word may yet show up on the TAPE. Ta therefore returns to its simulation

of T11 •
If the input is in L, i t wil l eventually be accepted. If it is not, Ta wil l never tenninate exe-

cution. It wil l wait forever for this word to appear on the TAPE.
accept (Ta) = L

loop (T) = L '

reject (Ta) = <I>
Although the description above of this machine is fairly sketchy, we have already seen

TM programs that do the various tasks required: inserting $, comparing strings to see if they
are equal, and jumping in and out of the simulation of another TM. This then completes the
proof. •

THEOREM 88

If the language L can be accepted by the TM Ta, then there is another TM, T , that generatesg
it .

PROOF

The proof wi l l be by constructive algorithm. What we would l ike to do is to start with a sub
routine that generates all strings of a's and h's one by one in size and alphabetical order:

A a b aa ab ba bb aaa aab . . .

We have seen how to do this by TM before in the form of the binary incrementor appropri
atley modified. After each new string is generated, we run a simulation of it on the machine Ta.
If Ta halts, we print out the word on the TAPE inside #'s. If Ta does not halt, we skip it and go
on to the next possibil ity from the string generator, because this string is not in the language.

Unfortunately, if the Ta simulation does not halt or crash, we are stuck waiting forever
and we cannot go on to test the next possible input string. What we must do is not invest an
indefinite amount of time investigating the acceptabil ity of every word on Tu. Now, of
course, we cannot simply abandon a calculation that has been running a long time and say,
"well , it 's probably hopeless" since we know by the very fact that the halting problem is un
decidable, that some input strings which look l ike they are going to run forever are, surpris
ingly, eventually accepted. So, we cannot wait for every string to be decided, nor can we
abandon any string that is running too long. What can we do?

The answer is that we run some number of steps of the simulation of the T" on a given
input and then, assuming that no conclusive answer has been reached, we abruptly abandon
this calculation and simulate the running of the next string on T0 with the intention of return
ing to the simulation of the previous string at some later time and carrying it further. If we
do this is an organized fashion, it wil l all work out.

614 CHAPTER 25 Computers

Let us number the possible input strings st(I), st(2), st(3) , in the usual lexicographic or
der. Let us, for the moment, assume that our simulation machine T has four tracks. On the
second track it generates, in order, all the integers (in a who-cares-:hich representation). Let
us assume that at some point in the operation of T11, track 2 has the number N on it .

Now on track 3 we generate, one by one, all possible input strings from st(I) up to
st(N). Each time we generate another input string, we copy the string from track 3 to track 4
and simulate the running of Ta on it. But we only run the simulation for exactly N steps (this
means N edges of the Ta program), that is, unless Ta crashes or halts before then. If N steps
have not been enough to draw a Ta-membership conclusion on the input suggested by track
3, tough luck. We waste no more effort on this input string at this i teration. We erase track 4
and we go back down to track 3 and generate the next input string to be tested. If, however,
the input string has been accepted within the N steps of the Ta simulation we are prepared to
expend, then we print the input string on track I between appropriate #'s. We sti l l erase track
4 and go back to track 3 for the next input string to be tested, but we have successfully found
and printed a word in the language l.

When we go back down to track 3 to get the next string, we have to be sure that we have
not already tried all the strings up to st(N). In order to be sure of this , we must keep a
counter on track 2 tel l ing us how many strings we have indeed produced. If we have not
gone up to N yet, then we do produce the next string and repeat the process. If, however, we
find that we have already gone up to our l imit st(N), then what we must do is erase this track
and increment track 2. Track 2 now has the contents N + I on it. We begin again to generate
strings on track 3. We start once more with st(I) and test them to see if they are words ac
cepted by Ta. We generate all the strings on track 3 from st(I) to st(N + I) and one by one
simulate on track 4 the running of them on Ta-for exactly N + I steps, th is time. Again, if
they are neither accepted nor rejected, they are abandoned temporarily. If they are accepted,
they are printed on track l , even if they have been printed on track 1 already. The simulation
of Ta on a particular input string begins at the very beginning START state of T11, even
though we have once before already simulated the first N steps of the processing. Maybe N
steps were not enough, but N + I steps wi l l do the trick. If no decision is made in N + I
steps, then we erase track 4 and get the next input test case from track 3, unless we have al
ready generated up to st(N + I) , in which case we erase track 3 and increment track 2 to
N + 2.

Clearly, the only strings that appear on track I are the words that have been discovered
to already be in l by having been accepted by Ta. It is also true that every word in l will
eventually appear on track l . This is because every word in L is accepted by Ta in some finite
number of steps, say, M steps. Eventually, track 2 wil l reach M; this does not yet mean that
the word wil l appear on this round of the iteration. Suppose that the word itself is string
st(K) and K is bigger than M. Then when track 2 has reached M, track 4 wi l l test all the
strings from st(l) to st(M) for acceptance by Ta but st(K) wil l not yet be tested. Once, how
ever, track 2 reaches K, track 3 wil l generate st(K) and track 4 wil l real ize that it is accepted
by T0 within K steps and it wi l l be printed on track l . So, track I wil l eventually contain each
of the words in L and only the words in l.

We can write this TM program in pseudocode as follows:

1 . Initial ize track 2 to 0 and clear all other tracks.

2. Increment N on track 2 (i .e . , N +- N + l) , J +- l , clear tracks 3 and 4.

3. Do while J :5 N generate st(J) on track 3, copy to track 4, simulate a maximum of N
steps of Ta on track 4, print st(J) on track I if appropriate , c lear track 4, J +- J + I .

4. Goto 2 .

TMs As Language Generators 615

There are some issues that need to be addressed. The first is that once a word is accepted by
N being large enough to generate it on track 3 and accept it on track 4, it will then also be gener
ated on every subsequent iteration of step 3 in the algorithm. It will be generated as a test string,
accepted by Ta, and printed on track I over and over. This is true but it is not a damning complaint
because the definition of a language-generator allowed for repeated appearances of words in l on
the TAPE. But this is excessive. Without running the risk of looping forever, we could add a step to
our procedure that checks to see whether st(J) is actually a new word before printing it on track I .

Another quibble that needs to be thought through is that, although it is true that we have
shown a multitrack TM can be simulated on a one-track TM, the simulation al lowed the in
formation from the other tracks to appear on the one-track TM TAPE. That happened because
this issue arose when we were sti l l considering TMs solely as language-acceptors, and all
that was important was whether we got to HALT or not on a given input. All that is different
now. If we are to simulate a four-track TM on a one-track TM, how are we going to avoid
putting garbage on the TAPE that gets confused with the mission of L-language-word-genera
tion? The answer is that we can simulate the different tracks on the TM separated by dividers
other than the word demarkers used by T_0 to indicate words generated in L. We could let
track I be the first field with its numerous #'s and L words. Then we could put a special sym
bol on the TAPE to indicate the beginning of track 2-let us say a "'I'". We could use another
'I' to separate the track 2 simulating field from the track 3 simulating field, and another to
mark off track 4. These fields, even if bounded between 'i''s, are arbitrari ly expandable and
contractible using the subroutines INSERT and DELETE. The TM TAPE is thus

word # word # . . . #

. . . field I . . .

'11 track 2 number '11 track 3 test string '11 track 4 T simulation"

I . . . field 2 . . . I . . . field 3 . . . I . . . field 4 . . .

S lowly but surely, the TAPE wil l include every particular word of L between #'s in field I and
only the words of l between the #'s. As field I grows, it wil l never erase that which it has
calculated. The other fields wil l change and recede into obl ivion. •

One thing we have to be careful about here is to realize that even if we have cleared up the
repetition problem, the words that appear on the T0 TAPE are not necessari ly going to be the
words in L in their usual lexicographic order. This means that the word hhh may appear first and
the word ah, also in the language L, may only appear many, many cel ls later. The reason for this
is that the Ta path to accept the word ah may be much longer (in steps) than the path to accept
hhh, and so our T.� simulating machine will discover that hhh is an acceptable word first.

One might suggest, at th is point in the discuss ion, that th is problem may be easily
cleared up by a simple expediency analogous to that which avoided dupl ications from ap
pearing in field I ; namely, right before we go to wri te a word on track I , why not just sort
the words already there and insert the new word into its proper position? Th is is a fine sug
gestion but it does not solve the problem . Remember that T_. is an infinitely running machine.
As we have defined it, it wil l even run forever to generate a finite language L. Step 4 in the
algorithm always reverts back to step 2. This means that the occasion on which ah will be
recognized as being a word in l and then be inserted on track I in front of hhh will be an un
predictable occurrence in the indefinite future .

Now one might suggest that th is is all true of the inferior machine we have designed for
Tg in the proof above, but a much smarter model language-generator for L might exist that
does tum out the words of L in size order. The answer to this is that that is quite true, but
only for some languages L, and not others as the next theorem indicates.

616 CHAPTER 25 Computers

THEOREM 89

The words in a language L can be generated by a TM in size order if and only if L is recursive.

PROOF

First, we shal l show that if the language L is recursive, then it can be generated by some T
in size order. This is easy. We take the machine we designed earlier to generate all strings i�
size order, but instead of running each of them only a limited amount in order to avoid enter
ing an infinite loop, we start with a Ta for L that never loops at al l . Such exist for all L's that
are recursive. Now we can test the strings in size order, simulate them finitely on T and a•
print them out on track I if and only if they reach HALT.

We shall now prove that if L i s a language that can be generated by some T in size or
der, then L must be recursive. Out of the assumed order-generating T , we shali make a T
that accepts L and rejects all of L' . This is also easy. Into Ta we input the string to be tested:
and call it w. We then simulate the running of T11 until its output of words of L has progressed
to the extent the words being generated are larger than w. This wil l only take a finite amount
of time. When we know the whole language L out as far as w, we simply check to see
whether w is among the words generated thus far by T . If it is, we accept it; if not, we reject g
it. This is a complete decision procedure. •

Because not all languages are recursive, we know that, oddly enough, there are TMs that
can generate certain languages L but never in size order. Actually, and subtly, this is not quite
true. What we do know is that we cannot depend on these language-generating TMs to pro
duce L in size order, but they just might do it anyway. It might just be the case that the asso
ciated Ta happens always to accept shorter words by shorter paths. We would, however,
never know that this was going to happen reliably. We could never be sure that no word out
of order is ever going to appear on the TAPE. If we could be sure , then by the proof above, L
would have to be recursive. This emphasizes the distinction between what is knowable and
decidable and what may just happen adventitiously.

Another example of this distinction is the suggestion that instead of working so hard in
the construction of T.� to avoid looping forever on inputs in loop(T), we could simply let this
decision be made by nondeterminism. The nondeterministic TM to generate L simply (fortu
itously) skips over al l the troublesome words in loop(T) and simulates the acceptance of the
good ones. If there is a nondeterministic TM to generate L, then we can tum it into a deter
ministic one, no? In l ight of the previous theorem, we know there must be something (or
some things) wrong with this proposal . What they are, we leave for the Problems section.

As we can see, we have just begun to appreciate TMs; many interesting and important
facts have not been covered (or even discovered). This is also true of PDAs and FAs.

For a branch of knowledge so new, this subject has already reached some profound
depth. Results in computer theory cannot avoid being of practical importance, but at the
same time we have seen how clever and elegant they may be. This is a subject with twenty
first century impact that yet retains its old world charm.

i"' PROBLEMS

l . Trace these inputs on ADDER and explain what happens:

(i) aaha
(i i) aah

(i i i) haaa
(iv) h

Problems 617

2. (i) Build a TM that takes an input of three numbers in unary encoding separated by b's
and leaves their sum on the TAPE.

(i i) Build a TM that takes in any number of numbers in unary encoding separated by b's
and leaves their sum on the TAPE.

3. Describe how to build a binary adder that takes three numbers in at once in the form

$(0 + 1)*$(0 + 1)*$(0 + 1)*

and leaves their binary total on the TAPE.

4. Outline a TM that acts as a binary-to-unary converter, that is, it starts with a number in
binary on the TAPE

$(0 + 1)*$

and leaves the equivalent number encoded in unary notation.

5. Trace these inputs on MINUS and explain what happens :

(i) aaahaa
(i i) abaaa
(i i i) baa
(iv) aaah

6. Modify the TM MINUS so that it rejects all inputs not in the form

ba*ba*

7. MINUS does proper subtraction on unary encoded numbers. Build a TM that does
proper subtraction in binary encoded inputs.

8. Run the following input strings on the machine MAX built in the proof of Theorem 83
(p. 60 1) :

(i) aaaha
(i i) baaa (Interpret this .)

(i i i) aabaa
(iv) In the TM MAX above, where does the TAPE HEAD end up if the second number i s

larger than the first?
(v) Where does it end if they are equal?

(vi) Where does it finish if the first is larger?

9. MAX is a unary machine; that is, it presumes its input numbers are fed into it in unary
encoding. Build a machine (TM) that does the job of MAX on binary encoded input.

10. Build a TM that takes in three numbers in unary encoding and leaves only the largest of
them on the TAPE.

1 1. Trace the following strings on IDENTITY and SUCCESSOR:

(i) aa
(i i) aaaha

12. Build machines that perform the same function as IDENTITY and SUCCESSOR but on
binary encoded input.

13. Trace the input string

hhaaahahaaba

618 CHAPTER 25 Computers

on SELECT/3/5, stopping where the program given in the proof of Theorem 85 ends,
that is, without the use of DELETE a.

14. In the text, we showed that there was a different TM for SELECT/i/n for each different
set of i and n. However, it is possible to design a TM that takes in a string fonn

(a*b)*

and interprets the initial clump of a 's as the unary encoding of the number i. It then con
siders the word remaining as the encoding of the string of numbers from which we must
select the ith.

(i) Design such a TM.
(i i) Run this machine on the input

aabaaabaabaaba

15. On the TM MPY, from the proof of Theorem 86 (p. 605) , trace the following inputs :

(i) babaa
(i i) baaaba

16. Modify MPY so that it allows us to multiply by 0.

17. Sketch roughly a TM that performs multiplication on binary inputs.

18. Prove that division is computable by building a TM that accepts the input string bamba"
and leaves the string baqbar on the TAPE, where q is the quotient of m divided by n and r
is the remainder.

19. Show that a TM can decide whether or not the number n is prime. This means that a TM
exists called PRIME that, when given the input a", will run and halt, leaving a I in cell i
if n is a prime and a 0 in cell i if n is not prime.

20. What is wrong with the nondeterministic approach to building an ordered language gen
erator as described on p. 6 1 6.

BIBLIOGRAPHY

The formal mathematical model of finite automata was introduced in
McCulloch, W. S., and W. Pitts, "A Logical Calculus of the Ideas Imminent in Nervous Activi ty," 5

Bulletin of Mathematical Biophysics, 1 1 5 - 33 (1 943) .

Regular expressions were invented and proven equivalent to FAs in
Kleene, S. C. , "Representation of Events in Nerve Nets and Finite Automata," in Shannon, C. E. , and

McCarthy, J . (eds .) , Automata Studies, Princeton Univ. Press, Princeton, NJ (1 956), pp. 3 -42.

Transition graphs come from
Myhi l l , J . , "Finite Automata and the Representation of Events," Wright Air Development Center Tech

nical Report 57-642, Wright Patterson Air Force Base, OH (1 957) , pp. 1 1 2 - 37.

Nondeterminism was introduced and the fact that NFA = DFA was first proven in
Rabin, M. 0., and D. Scott, "Finite Automata and Their Decision Problems," 3 IBM Journal of Re

search and Development, 1 1 4 - 25 (1 959).

Mealy machines come from
Mealy, G. H . , "A Method for Synthesizing Sequential Circuits," 34 Bell System Technical Journal,

1 045 - 79 (1 955) .

Moore machines come from
Moore, E. F., "Gedanken Experiments on Sequential Machines," in Shannon, C. E. , and McCarthy, J .

(eds.) , A11tomata Studies, Princeton Univ. Press, Princeton, NJ (1 956), pp. 1 29-53 .

Both pumping lemmas come from
Bar-Hi l le l , Y. , M. Perles, and E. Shamir, "On Formal Properties of Simple Phrase Structure Gram

mars," in Y. Bar-Hi l lel (ed.) , Language and Information , Addison-Wesley, Reading, MA (1 964) ,
pp. 1 1 6- 50.

The Myhill - Nerode theorem, while similar to Myhill above, is in
Nerode, A., "Linear Automaton Transformations," 9 Proceedings of the American Mathematical Soci

ety. 54 1 - 44 (1 958) .

The fact that 2DFA = I DFA comes from
Shepherdson, J . C .. ''The Reduction of Two-way Automata to One-way Automata," 3 IBM Journal of

Research and Del'e/opment, 1 98 - 200 (1 959) .

Context-free grammars and the whole Chomsky hierarchy were first formalized in
Chomsky, N. , "On Certain Formal Properties of Grammars," 2 Information and Control, 1 37 - 67

(1 959) .

PDAs and their connection to CFGs were discovered in
Oettinger, A. G., "Automatic Syntactic Analysis and the Pushdown Store," in Proceedings of the Symposia

in Applied Mathematics, Vol . 1 2, American Mathematical Society, Providence, RI (1 96 1), pp. 1 04 - 29.
Chomsky, N., "Context-free Grammars and Pushdown Storage," 65 MIT Research Laboratory Elec

tronics Quarterly Progress Report. 1 87 - 94 (1 962) .
Schutzenberger, M. P. , "Fin ite Counting Automata," 5 Information and Control, 91 - I 07 (1 962) and

"On Context-free Languages and Pushdown Automata," 6 Information and Control, 246 -64 (1 967).

619

620 Bibliography

Evey, J . , "The Theory and Application of Pushdown Store Machines: Mathematical Linguistic;s and
Machine Translation," Harvard Computation Laboratory Report NSF- I 0, Cambridge, MA (1 963).

TMs were first defined and used to describe the halting problem in
Turing, A. M. , "On Computable Numbers with an Application to the Entscheidungs-Problem," 2 Pro

ceedings of the London Mathematical Society, 230- 265 (1 936). See also a correction in the same
journal , 43, 544 -46.

What we call Post machines were introduced as the "Post normal system" as a set of rewriting
rules in

Post, E., "Finite Combinatory Processes: Formulation I ," I Journal of Symbolic logic, 1 03 - 5 (1 936).

2PDA = TM comes from
Minsky, M. L., "Recursive Unsolvabil ity of Post 's Problem of 'Tag' and Other Topics in Theory of

Turing Machines," 74 Annals of Mathematics. 437 - 5 5 (1 96 1) .

Church's thesis and theory of computation are contained in
Church, A. "An Unsolvable Problem in Elementary Number Theory," 58 American Journal of Math

ematics, 345 -63 (1 936).

The equivalence of linear-bounded automata and CSLs is in
Kuroda, S. Y. "Classes of languages and l inear-bounded automata," 7 Information and Control.

207 - 3 3 (1 964) .

THEOREM INDEX

Chapter Theorem Brief Description Page

2 S* = S** 1 8

3 2 $ not part of any AE 26
3 I cannot begin or end an AE 26
4 No // in AE 27

4 5 Fin i te language is regular 44

7 6 K leene: FA = TG = regular expression 92
7 FA = NFA 1 37

8 8 Moore - Mealy 1 56
9 Mealy - Moore 1 57

9 1 0 Regular c losed under + · * 1 69
1 1 (Regular) ' = regular 1 73
1 2 Regular n regular = regular 1 74

1 0 1 3 Pumping lemma 1 90
1 4 Pumping lemma wi th length 1 94
1 5 Myhi l l - Nerode : regular = fi nite number of classes 1 96
1 6 Prefix language i s regular 202

1 1 1 7 FA accepts a short word or none 2 1 1
1 8 Does FA accept words? 2 1 4

I s FA 1 = FA2?
Are regular expressions equivalent?

1 9 FA that accepts a long word has infini te language 2 1 5
20 Fin i teness of an FA language is decidable 2 1 6

1 3 2 1 Regular - CFL 259
22 Conditions for regular CFG 262
23 No A-productions needed 266
24 No unit productions needed 272
25 A lmost CNF 275
26 Chomsky: CNF 278
27 Leftmost derivation ex ists 284

1 4 28 FA - PDA 3 10
29 Empty TAPE and STACK 3 1 1

621

622 Theorem Index

Chapter Theorem Brief Description Page

1 5 30 CFG - PDA 3 1 8
3 1 PDA - CFG 3 1 8

1 6 32 No self-embedded-finite 35 1
33 Infinite - self-embedded 354
34 Pumping lemma for CFL 360
35 Pumping lemma with length 37 1

1 7 36 CFL + CFL = CFL 376
37 (CFL)(CFL) = CFL 380
38 (CFL)* = CFL 384
39 CFL n CFL = CFL, only sometimes 385
40 (CFL) ' = CFL, only sometimes 387
4 1 CFL n regular = CFL 394

1 8 42 Does CFG generate words? 403
43 Is a particular nonterminal used? 406
44 Finiteness of CFL is decidable 408
45 Membership is decidable for CFL 4 1 0

1 9 46 FA - TM 445

20 47 PM - TM 462
48 ADD FRONT and READ BACK on PM 468
49 TM - PM 470

2 1 50 2PDA = TM 482
5 1 nPDA = TM 49 1

22 52 Move-in-state machine - TM 496
53 TM - move-in-state machine 497
54 Stay-option machine = TM 500
55 kTM = TM 505
56 Two-way-tape machine = TM 5 1 1
57 NTM = TM 5 1 9
58 PDA - TM CFL accepted by TM 524
59 Read-only TM = FA 53 1

23 60 (Recursive) ' = recursive 537
6 1 l and L ' are r.e. - L is recursive 538
62 r.e. + r.e . = r.e. 543
63 r.e. n r.e . = r.e. 544
64 There exists non-r.e. languages 55 1
65 UTMs exist 554
66 MATHISON is r.e . 557
67 (r.e .) ' only sometimes r.e. 558
68 There are r.e . languages that are not recursive 558
69 Halting problem undecidable 559
70 ls A accepted? Undecidable 560
7 1 Is no word accepted? Undecidable 560
72 Finiteness is undecidable 56 1

24 73 Phrase-structure grammars =I= CFG 567

Theorem Index 623

Chapter Theorem Brief Description Page

74 Phrase-structure ----+ type 0 57 1
75 Type 0 grammar ----+ r.e. 575
76 r.e . ----+ type 0 grammar 576
77 (r.e .)(r.e .) = r.e . 586
78 (r.e .)* = r.e . 587
79 CSG is recursive 588
80 Membership of CSL is decidable 589
8 1 There exists a recursive language that is not CSL 589

25 82 ADD and SUBTRACT are computable 60 1
83 MAX(x,y) is computable 60 1
84 IDENTITY and SUCCESSOR are computable 604
85 SELECT/i/n is computable 604
86 MULTIPLY is computable 605
87 TM generator ----+ TM acceptor 6 1 2
88 TM acceptor ----+ TM generator 6 1 3
89 Generate in size order ----+ recursive 6 1 6

INDEX

A
a"h", 259 (PDA), 349, 347, 377, 380, 439 (TM), 454,

459 (PM), 466 (TM), 532
a"ha", 238 (CFG)
a"h"a", 203, 367 (not CF), 385 , 389, 447 (TM) , 456,

46 1 (PM), 48 1 (2PDA), 568 (G)
a"h"c", 205 (non reg) , 369 (not CF)
a"h"'a"'h", 3 1 5 (PDA)
a"h"'a"h"', 37 1 (non CF)
a"h"a"h", 374 (non CF)
AE, 25
Accept state, 52

Post machine, 458
pushdown automata, 290 -292
and recursively enumerable languages, 537
Turing machine, 447

Addit ion, Turing machine, 595 - 599
ADD state, Post mach ine, 458 - 460, 463, 468, 472
ALAN, 549 - 552

definition of, 549
examples of, 549 - 55 I
as non-recursively enumerable language, 550-

552
paradoxical nature of, 55 1 -552

ALEX, 29, 295
ALGOL, 24 1
Algorithms

historical view, 4 -5
a s method of proof, cri teria for, 93
number of steps in, 207
proof by constructive algorithm, 1 6
universal algorithm machine, 5

Alphabet
closure of, 1 4
as language symbol , 8
for Turing machine, 435, 436

Ambiguity, context-free grammar (CFG), 250-
25 1

Aristotle, 55 1
Arithmetic expressions, 25 -28

context-free grammar (CFG) for, 245 - 250

defini tion of, 25 - 26
parsing, 4 1 5 -429
recognizing in real l ife, 26
and recursive definition, 25 -26

Automata, comparison table for, 1 64

B
Backtracking, tree search, 4 1 9
Backus, John W. , 24 1
Backus - Naur form, 24 1
Bar-Hi l le l , Yehoshua, 1 90, 272, 360, 408
BASIC, 24 1
B inary tree, 354
B lah, 254, 273, 407
B lank tape problem, Turing machine, 560 - 56 1
Boole, George, 55 1
Boolean flag, 60
Bottom-up parser, 42 1 -424
Burali -Fort i , Cesare, 552
Bypass and state el imination operation, 96 - 1 00

c
Cantor, Georg, 3, 55 1
Chanah, x, 453
Characters, as output symbols, 1 50
Chelm, 1 82
Choice, and plus sign, 37
Chomsky, Noam, 230, 262, 435

theory of, 6
Chomsky hierarchy of grammars

chart of, 573
context-free grammar (CFG), 230 -254
context-sensitive grammar, 573, 588 -590
phrase-structure grammars, 565 - 574
Type 0 grammar, 574-585

Chomsky normal form, 278 -282, 35 I -355
context-free grammar dead production, 35 1 , 352
context-free grammar l ive production, 35 1 - 354
definition of, 278
examples of, 280-282

625

626 Index

Chomsky nonnal fonn (Continued)

proof, 278 -280
theorem, 278

Church, Alonzo, v, 4-5 , 552, 6 1 0
Church's thesis, 6 1 0 -6 1 2
Circuits

lambda circuit, 85
meaning of, 1 88
See also Sequential c ircuit

C language, 24 1
Closure

of alphabet, 1 4
context-free language (CFL), 376-384
and infinite language, 2 14 -2 1 5
and infinite sets, 1 8
K leene closure, 1 4 - 1 8
positive c losure, 1 7
of smaller set, 3 1

Clumps, 372 - 373
Cocke, John, 4 1 0
Code word language (CWL), 547 - 549
Compilers

conversion process, 250
operation of, 225

Complements
context-free language (CFL), 387 - 392
definition of, 1 72
and recursively enumerable languages, 537-538, 558
regular language, 1 72 - 1 80

Computabi l i ty
computers, 60 1 -604
meaning of. 6

Computation theory, use of term, 6
Computer languages

analogy to English language, 225
compilers, 225
and context-free grammar (CFG), 24 1 , 434
h istorical v iew, 6

Computers
computabi l i ty, 60 1 -604
deterministic nature of, 52-53
identity function, 604
i-th of n selector function, 604 -605
as mathematical function, 60 I
multipl ication, 605 -609
nondeterministic nature of, 88
square root, 609
subtraction, 599 - 60 I
Turing machines as, 599

Computer theory
historical view, 3 -6, 552 - 553
meaning of, 2

Concatenation
operation of, I I
of words. 1 1 , 1 4 - 1 9. 32, 1 69

Constructive proof, nature of, 1 35
Context, in Engl ish language, 565 - 566
Context-free grammar (CFG), 230- 254

ambiguity, 250 - 25 1
appl ications for, 434
for arithmetic expressions, 245 - 250
Chomsky normal fonn, 278 - 282, 35 1 - 356
and computer languages, 24 1
CYK algorithm, 4 1 0 -4 1 5
elements of, 230
and EVEN-EVEN, 236
generation of infinite language, 408 - 4 1 0
irregular language generation. 236- 24 1
lambda productions, 265 -272
language accepted by finite automation, 259- 263
language accepted by pushdown automata,

327 - 348
language defined by, 23 1
language generated for pushdown automata,

3 1 8 - 327
language produced by, 23 1
leftmost derivation, 283 - 285
nontenninals in, 230- 243
notation, 245 - 250
as regular grammar, 264- 265
regular language generation, 23 1 - 236
relationship to regular languages, 259- 264
self-embedded nontenninal, 356- 360
semiwords, 259- 263
terminals in, 230- 243
total language tree, 252 -254
unambiguous, 250, 25 1 - 252
unit production, 272 - 275
word generation, 403 -408

Context-free language (CFL)
closure, 376- 384
complement, 387 -392
definition of, 535
deterministic context-free language. 573
generation of, 23 1
intersection, 385 - 387
pumping lemma for, 369 -375
union with regu lar language, 393 - 397

Context-sensitive grammar, 573. 588- 590
acceptance and nonacceptance by Turing machine,

588 - 589
recursion, 589 -590

Context-sensitive languages, 588
Conversion form

pushdown automata, 327 - 334
requirements for, 327

Crashing
of pushdown automata, 300
and recursively enumerable languages. 538. 539.

542

Index

at specific state, 78
and Turing machine, 436

CYK algorithm, 4 1 0 -4 1 5

D
David, 1 3 1
Dead-end state, 60
Decidabil i ty

decidable problem, nature of, 207
equivalence of two languages, 207 -2 1 4
and finiteness, 2 1 4-2 1 7
Turing machine, 558 -56 1

Decision procedure, meaning of, 207
DELETE

k-track Turing machine, 506-507
and recursively enumerable languages, 540
Turing machine, 452 -453, 485
universal Turing machine, 556

DeMorgan's law, 1 74
Derivation

in phrase-structure grammars, 566
of word, 230

Derivation trees, 244, 358
example of, 245

DESCENDANTS, 24
Deterministic context-free language, 573
Deterministic nature

of computers , 52-53
of Turing machine, 437

Deterministic pushdown automata, 300, 302, 393
DIAC, x, 8
Directed edge, 57
Directed graph, 57
Distributive law, 4 1 , 46
DOUBLEA, Turing machine for, 446, 535
DOUBLEWORD

E

definition of, 200
intersection with regular language, 397 -398
as nonregular language, 200, 372 -373

Edge of graph
nature of, 57
outcoming/ingoing, 57 -58
transition graph, 79- 85

Effectively solvable problems, nature of, 207
Ell ipsis (. . .), uses of, 3 1
Emptiness, 403
Empty string, in language, 1 2
Encoding

code word language (CWL), 547 - 549
decoding string, 547 -548
Turing machine, 545 -549
unary encoding, 594 -595
universal Turing machine, 554, 555

English language, 7 , 8- 1 0
analogy to computer languages, 227 - 230
context of word in, 565 - 566
grammar, 227
sentence generation, 226, 227 - 229

Epimenides, 55 1
EQUAL

context-free grammar (CFG) generation, 239-
240

for nonregular language, 1 93 , 1 99
Equ ivalence

of language-defining methods, 92
of Moore and Mealy machines, 1 56- 1 6 1
of two expressions, 38
of two languages, 207 - 2 1 4

Eubul ides, 55 1
Euc l id, theorems of, 4
EVEN

meaning of, 2 1
recursive definition of, 22

EVENA, 345
EVEN-EVEN

in context-free grammar (CFG), 236
and finite automation, 69 - 7 1
nature of. 47 -49
and Turing machine, 446

Execution chain, Turing machine, 438, 44 1 -442
Expressions

F

arithmetic expressions, 25 - 28
regular express ions, 35-49

Faces, 5 1 2
Factoring, unique. 1 5
Final state

and finite automaton, 53, 56, 59, 6 1 , 68
and Mealy machines, 1 53
and Moore machines, 1 50
and transit ion graph, 8 1

FIND, and recurs ively enumerable languages,
54 1

Finite acceptor, 53
Finite automaton

abstract definition of, 55 -56
acceptance of context-free language. 259 -263
acceptance of infinite language, 2 1 5 -2 1 7
acceptance of language, 58, 60 -64
acceptance/nonacceptance of language. 58 - 59
conversion to regular expressions, 209- 2 1 1
conversion of regular expressions to, 1 08 - 1 35
elements of, 53
language accepted by, 54 -55
language associated with, 54
language defined by, 54
language of, 54

627

628 Index

Finite automaton (Continued)
as language-recognizer, 54, 59
as machine, 55 - 59
nonacceptance of al l language, 58, 64-69
nondeterministic finite automata, 1 35 - 1 40
rejection by, 54
as transit ion graph, 8 1

Finite language, as regu lar language, 44-45
Fini teness, 403

and decidabi l i ty, 2 1 4 - 2 1 7
proof, 2 1 5 - 2 1 6
theorem, 2 1 5 , 2 1 6

Fire, 1 80
Flip-flops, 1 6 1
Formal language, 9 - 1 0

meaning of, 229
Formulas, well-formed, 28
FORTRAN, and context-free grammar (CFG), 24 1
Frege, Gottlob, 552

G
Generalized transition graph, 86-87

elements of, 86
example of, 86- 87

Generation trees, 244
Generative grammar, 226, 230-24 1
Godel, Kurt, 4, 553, 6 1 0, 6 1 1
Grammar, 1 0, 226 - 229

context-free grammar (CFG), 230- 254
context-sensitive grammar, 588 - 590
definition of, 226
diagramming sentences, 24 1 - 244
generative grammar, 226, 230-24 1
LR(k) grammar, 573
phrase-structure grammars, 565 -574
productions, 230
rules of Engl ish grammar, 227
semi-Thue grammar, 572
sentence formation, 226, 227 -229
trees, 244- 245
unrestricted grammars, 572

Graphs

H

directed graph, 57
disconnected, 59
edge, 57-58
transition graph, 79 - 88

Halting problem, Turing machine, 559, 576-577
Hal t state, 52, 29 1

and recursively enumerable languages, 539, 540,
542

Turing machine, 438, 440, 44 1 , 442, 443 , 444, 446,
580-585

universal Turing machine, 556

Hardy, G.H. , 6 1 1
Henry VII I , 24
HERE state, pushdown automata, 327, 329, 333, 334,

336, 340 - 342, 347
Hi lbert, David, 3 -4, 552, 552- 553, 6 1 1

Identity function, computers, 604
Increment machine, 1 54 - 1 55

operation of, 1 54 - 1 55
Infinite language

and closure operation, 2 1 4- 2 1 5
context-free grammar (CFG) generation, 408 -

4 1 0
finite automaton acceptance of, 2 1 5 - 2 1 7
and Kleene closure, 1 4, 1 6- 1 7
meaning of, 1 4

Input, and computers, 599
Input symbols, letters as, 1 50
Insert

and recursively enumerable languages, 540
Turning machine, 449-452, 485
universal Turing machine, 556

INTEGERS, recursive definition of, 23
Intersection machine, 1 8 1 - 1 83
Intersections

context-free language (CFL), 385 - 387, 394
of recursively enumerable languages, 544- 545
regular language, 1 76 - 1 79

i-th of n selector function, 604- 605

J
Joint-consistent rows, summary table, 334
Joints of machine, 332
Just in time approach, 1 1 6

K
Kasami, Tadao, 4 1 0
Kleene, Stephen, 5 , 92, 435, 552
Kleene closure, 1 4 - 1 8 , 1 28

and infinite language, 1 4, 1 6 - 1 7
and recursive definition, 25
and recursively enumerable languages, 586-

587
of two sets, 1 7

Kleene star, 1 4
applied to set, 32 -33
example of use, 32

Kleene ' s theorem
algorithms related to, 1 06 - 1 08 , 1 1 2 - 1 1 3 , 1 2 1 ,

1 27 , 1 29
conversion of regu lar expressions to

finite automaton, 1 08 - 1 35
examples of appl ication, 1 00- 1 06, 1 1 3 - 1 1 7 ,

1 2 1 - 1 25 , 1 28 - 1 35

Index

and nondeterministic finite automata, 1 40 - 1 42
and nonregular languages, 1 87
proof, 92- 1 00, 1 08 - 1 1 2, 1 1 7 - 1 2 1 , 1 25 - 1 27
turning transition graphs into regular expressions,

93 - 1 08
Konig, Julius, 552
k-track Turing machine, 502 - 5 1 1

actions of, 502 -503
definition of, 502
trace, 504

L
Lambda (A.)

in infinite language, 2 1 4 - 2 1 5
lambda circuit, 85
lambda-labeled edge of graph, 80 -85
lambda loops, 85
in regular expressions, 36, 37, 40-43, 2 1 4

Lambda calculus, 6 1 1
Lambda (A.) productions, 265 - 272

in context-free language, 266- 272
meaning of, 265 -266
modified replacement rule, 269 - 270
proposed replacement rule, 267 - 269

Language
and Chomsky, 6
classes of, 573 - 574
concatenation in, 1 1
context-free language (CFL) , 376- 397
formal language, 9- I 0
grammar, 1 0, 226- 229
infinite language, 14, 1 6 - 1 7
Kleene closure, 1 4 - 1 8
language-defining rules, 1 0 - 1 3
lexicographic order, 14
non-recursively enumerable language, 549 - 552
nonregular languages, 1 87 - 230
recursively enumerable languages, 535 - 545
and regular expressions, 43 -44
regular languages, 35 , 1 69 - 1 85
semantics, 226
strings in, 1 0 - 1 8
symbols in, 8 - 9
syntax, 226

theory of formal languages, 6, 7 - 8
Language-defining rules, 1 0 - 1 3 , 3 7 , 40

finite automaton, 53 - 1 40
regular expressions, 35-49
transition graph, 79 - 87
types of, 1 0

Language generation
definition of, 6 1 2
as enumeration of language, 6 1 2
and recursion, 6 1 6
by Turing machine, 6 1 2 - 6 1 6

Language of the machine, meaning of, 3
Language-recognizer, finite automaton as, 54, 59
Leftmost derivation, 283 - 285

definition of, 283
examples of, 283 - 285

629

generation for pushdown automata, 3 1 9 - 324, 326
Leftmost nonterminal , definition of, 282
Leibniz, Gottfried Wilhelm von, 55 1
Length of string, 1 2
Letters, as input symbols, 1 50
Lexicographic order, in language, 1 4, 1 7
LIFO file, pushdown stack, 294
Linear algebra, historical view, 4
LOAD, instruction, 225
Loop

circuit as, 1 88
meaning of, 56

LOOP, Turing machine, 447
LR(k) grammar, 573
£ukasiewicz, Jan, 250

M
Machine

finite automaton as, 55 - 59
nature of, 55

Machine-executable language, and compi ler,
225

Mara, 590
Marjorie, 52 1
Marker state, 327
Markov, Andrei Andreevich, 5
Markov algorithms, 6 1 1
Mathematical model

to describe language, 6
nature of, 2

Mathematical problems
decidable problem, 207
effectively solvable problem, 207

Mathematical symbolism
value of, 9

MATHISON, 557 - 558
as recursively enumerable language, 557 - 558

McCul loch, Warren, 5
Mealy, G.H. , 1 49, 435
Mealy machine

elements of, 1 52
equivalence to Moore machine, 1 56- 1 6 1
increment machine, 1 54 - 1 55
pictorial representation of, 1 53
and sequential c ircuits, 1 55, 1 63

Megarians, 55 1
Membership, 403

CYK algorithm, 4 1 0-4 1 5
Mi l ler, George A . , 262
Minsky, Marvin, 482

630 Index

Minsky's theorem, 482 -490
applications, 488 -490
proof, 482 -488
theorem, 482

Monus, subtraction, 599
Moore, E.F., 1 49, 435
Moore machine

elements of, 1 50
equivalence to Mealy machine, 1 56- 1 6 1
operation of, 1 5 1 - 1 52
pictorial representation of, 1 5 1

Move-in-state machine, 494-499
actions of, 495
trace, 495
compared to Turing machine, 496-499

Multiplication, computers, 605 -609
Myhil l , John, 79, 1 98
Myhi l l - Nerode theorem, 1 96-200

N
Naur, Peter, 24 1
Nerode, Anil , 1 98
Neumann, John von, 5, 552, 553
Neural net, 5
No-carry state, Mealy machine, 1 54
Non-context-free languages, 367 -370

example of, 369
proof of, 369-373

Nondetenninistic finite automata, 1 35 - 1 40
definition of, 1 35
examples of, 1 36 - 1 40
and Kleene 's theorem, 1 40- 1 42
and uncertainty, 1 38

Nondetenninistic machine, 88
Nondetenninistic pushdown automata, 300, 303 - 304,

306, 389
Nondetenninistic Turing machine, 5 1 8 -524

definition of, 5 1 8 - 5 1 9
compared to Turing machine, 5 1 9-524

Non-recursively enumerable language, 549-
552

ALAN, 549 -552
definition of, 549
examples of, 549 - 55 1
paradoxical nature of, 55 1 -552

Nonregular languages
definition of, 1 87
and Kleene 's theorem, 1 87
Myhi l l- Nerode theorem, 1 96-200
operation of, 1 88 - 1 90
pumping lemma, 1 90 - 1 96
quotient languages, 200-203

Nontenninals
in context-free grammar (CFG), 230-243
leftmost, 282

nature of, 230
nullable, 269-272
self-embedded, 356- 360
in summary table, 335 - 336
uselessness of, 408
as variables, 24 1

nPDA, 49 1 -492
Nullable nontenninal, 269-272
Null set, symbol for, 8
Null string, 8, 1 7

l imitations of, 1 7, 1 34

0
Oettinger, Anthony G. , 294, 435
Operator infix notation, 249
Operator prefix notation, 248
Output

and computers, 599
and Turning machine, 435, 504

Output symbols, characters as, 1 50
Owe-carry state, Mealy machine, 1 54

p
PALINDROME

acceptance by Turing machine, 537
concatenation in, 1 3
context-free grammar (CFG) generation, 237 -

238, 250-25 1 , 266, 267 - 268, 280- 28 1 , 325,
327

as nonregular language, 1 95, 1 99
and pushdown stack, 30 1 - 303

Parentheses ()
lack of in arithmetic expressions, 245 -250
uses of, 1 6, 25, 32, 579

Parse trees, 244, 4 1 7 -4 1 8
Parsing

arithmetic expressions, 227
bottom-up parser, 42 1 -424
definition of, 4 1 6
English sentences, 227
parse tree, 24 1 - 244
simple arithmetic, 4 1 5 -429
tenninating tree development, 4 1 9
top-down parsing, 4 1 6-4 1 9

Pat, 479, 500
Path segments, 332, 333
Perles, Micha A. , 1 90, 272, 360, 408
Phi (<f>), 36-37
Phrase-structure grammars, 565 -574

compared to context-free grammar, 567 - 57 1
derivation in, 566
examples of, 566- 567, 572
language generated by, 566
as Type 0 grammar, 572 - 573

Index

Phrase-structure language, 57 1
Pitts, Walter, 5
PL/I, 24 1
Plus (+)

meaning choice, 37
as positive closure, 1 7
uses of, 33, 34, 37, 4 1

PLUS-TIMES, 4 1 5, 4 1 9, 42 1 , 424
Polynomials, 23 - 24

definition of, 23 -24
POP instruction

pushdown stack, 294-295, 297, 328 -333 ,
337- 339, 343 -344, 346- 347

simulation of, 485
Positive closure, 1 7
Post, Emil Leon, 5 , 435, 457, 552
Postfix notation, 250, 423 -424
Post machine

elements of, 458 -459
QUEUE, 458
simulating on Turing machine, 462 -468
simulating Turing machine on, 468 -477
STORE, 458 -465, 467 -47 1 , 473
store alphabet, 458
trace, 460

PRIME, as nonregular language, 1 95 - 1 96
Productions, grammar, 230
Production trees, 244
Product set, 4 1 -43

definition of, 4 1
Program, o f Turing machine, 436
Proof by constructive algori thm, 1 6
Pseudotheorem, quotient languages, 20 1
Pumping lemma, 1 90- 1 96

for context-free language (CFL) , 369- 375
negativity of, 1 96
proof, 1 90- 1 9 1
for regular language versus context-free language,

370-37 1
and self-embedded nonterminal , 409
theorems, 1 90, 1 94- 1 95

Pushdown automata
acceptance of context-free language, 327 - 348
acceptance of input string, path for, 305
adding pushdown stack, 293 -307
in conversion form, 327 - 334
compared to finite automata, 3 1 0
conversion to PDA with additional property,

3 1 1 - 3 1 2
crashing of, 300
deterministic PDA, 300, 302, 393
language accepted by, 308
language generated by context-free grammar,

3 1 8 - 327
language recognized by, 308

leftmost derivation, 3 1 9 - 324, 326
nonde1erministic PDA, 300, 303 -304, 306,

389
and push-down transducers, 425 -427
running string of letters, 308
summary table, 332-339

631

See also Two-pushdown stack machine (2PDA)
Pushdown stack, 293 -307

empty stack, 294
invention of, 294
LIFO file, 294
POP instruction, 294-295, 297, 328 - 333,

337- 339, 343 - 344, 346 - 347
power of, 299 - 300

Push-down transducers, 425 -427
actions of, 426
diagram of, 427

Q
QUEUE, Post machine, 458
Quotient languages, 200- 203

R

definition, 20 1
disproof, 20 1
pseudotheorem, 20 1

Rabin, Michael Oser, 1 36, 435
Read-only Turing machine, 524-53 1

acceptance of regular languages, 525 -526,
53 1

actions of, 526-53 1
definition of, 524- 525
transition Turing machine, 526
as two-way finite automaton, 525

READ state
Post machine, 458 -46 1 , 463 -467, 470
pushdown automata, 292, 293, 295, 296, 297, 298,

300, 30 1 , 302, 304 -306, 309-3 1 2
lwo-pushdown stack machine (2PDA), 48 1 ,

487
Recursion

context-sensitive grammar, 589-590
and language generation, 6 1 6

Recursive definition, 2 1 - 25
and arithmetic expressions, 25 -26
to define property, 28
to define set members, 28
of EVEN, 22
of INTEGERS, 23
and Kleene c losure, 25
and membership in set, 28
and symbol ic logic expressions, 28
as three-step process, 2 1
and total language tree, 254

632 Index

Recursively enumerable languages, 535 - 545
abbreviation for, 536
closure, 586-587
and complement, 537 - 538, 558
and crash, 538, 539, 542
definition of, 535 - 536
intersection of, 544 - 545
languages that are not recursive, 557 - 558
product of, 586- 587
recursion, criteria for, 536 - 537, 538 - 542
Turing machine recognition of, 535 - 537
and Type 0 grammar, 576-585
union of, 543 -544, 559

Recursive program, 24
REGEX, 286, 349
Register machine (RM), 6 1 1 -6 1 2
Regular expressions, 35 -49

applications for, 434
conversion from finite automaton, 209
conversion to finite automaton, 1 08 - 1 35
definition of, 35 - 37, 535
and EVEN-EVEN language, 47 -49
examples of, 37 -43 , 45 -47
language associated with, 43 -44
rules for set of, 35 - 36
from transition graphs, 93 - 1 08

Regular grammar, context-free grammar (CFG) as,
264 - 265

Regular language, 1 69 - 1 85
complements, 1 72 - 1 80
as finite languages, 44 -45
intersections, 1 76 - 1 79
nature of, 35
and pumping lemma, 1 90
relationship to context-free language, 259 - 264
union with context-free language, 393 - 397

Reject state, 1 26- 1 27
Post machine, 458, 459, 462, 465 , 488
pushdown automata, 290- 292, 296- 298, 300, 302,

328, 33 1
and recursively enumerable languages, 537, 538
Turing machine, 447
two-pushdown stack machine (2PDA), 48 1

Reverse, meaning of, 1 3
Richard, Jules, 552
Russell , Bertrand, 552
Russian letter, 409

s
Sandy, v i i , 589
Schiitzenberger, Marcel P. , v, 294, 435
Scott, Dana, 1 36, 435
Self-embedded nonterminals, 356 - 360

algebraic definition, 364
algebraic examples, 364- 370

definition of, 356
and pumping lemma, 409

Semantics, meaning of, 226
Semi-Thue grammar, 572
Semiwords, 259- 263

definition, 259
Sentences

diagramming of, 24 1 - 244
generation in Engl ish, 226, 227 - 229

Sequential circuit
and Mealy machine, 1 55, 1 63
and regular expression, 434
transducer as model of, 1 6 1 - 1 64

Sets
Kleene star applied to, 32-33
membership and recursive definition, 28
product set , 41 -43
recursive definition, 2 1 - 25

Set theory, historical view, 3, 4, 55 1 - 552
Shamir, El iahu, 1 90, 272, 360, 408
Shepherdson, J .C. , 6 1 1
SHIFf-RIGHT CYCLICALLY, Post machine.

469 -470, 473, 476
SIMULATE, and recursively enumerable

languages, 540 - 54 1
Simulation

of Post machine on Turing machine, 462-468
of Turing machine on Post machine, 468 -477
Turing machine and two-pushdown stack machine

(2PDA), 482 -490
Slash (/), in computer science, 27
Square root, computers. 609
STACK, two-pushdown stack machine (2PDA) .

48 1 -483, 485, 487 -488, 490-49 1
STACK-consistent rows, summary table, 334-

335
Start state

dupl icates, 1 70
and finite automaton, 53 . 56, 59. 62, 63. 68
Mealy machines, 1 52 , 1 54
Moore machine, 1 50, 1 52
pushdown automata, 290. 292, 295 , 305 - 306.

308 - 309
Turing machine, 440, 442

States
bypass and state el imination operation. 96-

1 00
crashing at, 78
and transitions, 53 , 54
of Turing machine, 436. 440-44 1 . 443 -445
See also specific types of states

Stay-option machine, 499- 502
STORE, Post machine. 458 -465. 467 -47 1 .

473
Store alphabet, Post machine. 458

Index

Strings
in language, 1 0 - 1 8
length of, 1 2 - 1 3
working strings, 23 1 , 232

Sturgis, H.E., 6 1 1
Subtraction, computers, 599 -60 I
Successful path, through transition graph, 80
Summary table, 332 - 339

creating productions from rows, 337- 344
Symbolic logic, and recursive definition. 28
Syntax, meaning of, 226
Syntax trees, 244

T
TAPE

Turing machine, 435 , 437 - 445
universal Turing machine , 554 - 556

TAPE alphabet
Turing machine, 435 -443
universal Turing machine, 557

TAPE HEAD
Turing machine, 436, 437 -44 1 , 443
universal Turing machine, 555 - 556

Target word, 4 1 6
Terminals

in context-free grammar (CFG), 230-243
leftmost terminal, 282 - 285

Terminal states, 52
Texas, 576
Text editors, and regular expression, 434
Theory of automata, 6
Theory of formal languages, 6, 7 - 8
Theory o f Turing machines, 6
Top-down parsing, 4 1 6-4 1 9
Total language tree, 252 -254

definition of, 252
and recursive definition, 254

Trace
k-track Turing machine, 504
move-in-state machine, 495
Post machine, 460
Turing machine, 438, 449

TRAILING-COUNT, 256, 294, 3 1 6, 479, 493
Transducers

push-down transducers, 425 -427
as sequential circuit model , 1 6 1 - 1 64

Transitional diagram, and finite automaton,
56

Transition function, 55-56
Transition graph

edges of, 79- 85
finite automaton as, 8 1
generalized transition graph, 86 - 87
invention of, 79
language accepted by, 8 1 - 85

l imitations of, 84 - 85
successful path through, 80
turn ing into regular expressions, 93 - I 08

Transi t ions
and states, 53
between states, 53, 54

Transit ion table
for finite automaton, 55, 1 1 0

Transit ion Turing machine, 526
Transpose, 9 1 , 4 79, 493, 593
Tree descendant, 353
Trees. 244- 245

backtracking, tree search, 4 1 9
operator infix notat ion, 249
operator prefix notation, 248
parse trees, 24 1 -244, 4 1 7 -4 1 8
rules for formation of, 244 -245
sentence diagramming, 24 1 - 244
terminal node, 243 - 244
terminating development of, 4 1 9
terminology related to, 244
total language tree, 252 - 254

Turing. Alan, 5 , 435, 552, 553
Turing-computable, 60 1
Turing machine, 5

633

acceptance of non-context-free language, 447 -449
acceptance of recursively enumerable languages,

535 - 537
acceptance of regular language , 445 -447
ADDER, 595 - 599
blank tape problem, 560-56 1
Church 's thesis, 6 1 0-6 1 2
classes of input strings, 44 7
as computers, 599
and context-sensit ive grammar, 588-589
a s deterministic machine, 436
encoding of, 545 - 549
execution chain, 438 , 44 1 -442
compared to finite automaton, 438
halting problem, 559, 576- 577
historical view, 5, 552-553
k-track Turing machine, 502 - 5 1 1
lack of memory device, 443
as language generator, 6 1 2 -6 1 6
move-in-state machine, 494 -499
nondeterm in ist ic Turing machine, 5 1 8 - 524
and nPDA, 49 1 -492
parallel ing actions of two-pushdown stack machine

(2PDA), 482-490
compared to pushdown automata, 445
read-only Turing machine, 524-53 1
s imulating on Post machine, 468 -477
simulating Post machine on, 462 -468
stay-option machine, 499 - 502
subprogram DELETE, 452 -453

634 Index

Turing machine (Continued)
subprogram INSERT, 449 -452
trace, 438, 449
two-way infinite tape model, 5 1 1 - S 1 8
universal Turing machine, SS2 - SS7

Two-pushdown stack machine (2PDA)
language accepted by, 482 -49 1
Minsky 's theorem, 482 -490
power of, 480
Turing machine paralleling actions of, 482 -490

Two-way infinite tape model , S 1 1 - 5 1 8
advantages of, S I I
compared to Turing machine, 5 1 1 -S 1 7

Type 0 grammar, 574 - 585

u

acceptance by Turing machine, S7S- S76
application for, 434
names for, 572 - S73
phrase-structure grammar as, S72 - S73
and recursively enumerable languages, S76- S85

Unambiguous, context-free grammar (CFG), 2SO,
2S I - 2S2

Unary encoding, 594 - S9S
Uncle Charl ie, 5S I
Union, of recursively enumerable languages,

S43 - S44, S59
Unique, factoring, 1 5
Unit production, 272 - 27S

definit ion of, 272
modified el imination rule, 274 - 275
proposed el imination rule, 273 -274

Universal algorithm machine, 4S7, SS3
Universal Turing machine, 552 - 557

definition of, SS3 - SS4
encoding of, S54, 555
l imitations of, 554
rationale for, S52 - SS3

Unrestricted grammar, 572

v
Variables, nonterminals as, 24 1
YERYEQUAL, 375, 400, 492, 5 9 1

w
Waiting states, 64
Wel l -formed formulas, rules for, 28
Whitehead, Alfred North, SS2
Wombat, 577
Words

concatenation of, 1 1 , 1 4 - 1 9, 32, 1 69
generation in context-free grammar (CFG) ,

403 -408
lexicographic order, 1 4, 1 7

Working strings, 23 1 , 232, 252
World War II , and computers , S

y
Younger, Daniel H . , 4 1 0

z
Zeno of Elea, SS I

	Contents
	PART I - AUTOMATA THEORY
	Chapter 1 - Background
	Chapter 2 - Languages
	Chapter 3 - Recursive Definitions
	Chapter 4 - Regular Expressions
	Chapter 5 - Finite Automata
	Chapter 6 - Transition Graphs
	Chapter 7 - Kleene's Theorem
	Chapter 8 - Finite Automata with Output
	Chapter 9 - Regular Languages
	Chapter 10 - Nonregular Languages
	Chapter 11 - Decidability

	PART II - PUSHDOWN AUTOMATA THEORY
	Chapter 12 - Context-Free Grammars
	Chapter 13 - Grammatical Format
	Chapter 14 - Pushdown Automata
	Chapter 15 - CFG=PDA
	Chapter 16 - Non-Context-Free Languages
	Chapter 17 - Context-Free Languages
	Chapter 18 - Decidability

	PART III - TURING THEORY
	Chapter 19 - Turing Machines
	Chapter 20 - Post Machines
	Chapter 21 - Minsky's Theorem
	Chapter 22 - Variations on the TM
	Chapter 23 - TM Languages
	Chapter 24 - The Chomsky Hierarchy
	Chapter 25 - Computers

	Bibliography
	Theorem Index
	Index

