
Jinkun Liu

123

Intelligent Control Design
and MatLab Simulation

Jinkun Liu
Beihang University
Beijing
China

ISBN 978-981-10-5262-0 ISBN 978-981-10-5263-7 (eBook)
https://doi.org/10.1007/978-981-10-5263-7

Jointly published with Tsinghua University Press, Beijing

Library of Congress Control Number: 2017951417

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is:
152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Recent years have seen a rapid development of intelligent control techniques and
their successful applications. Numerous theoretical studies and actual industrial
implementations demonstrate that artificial intelligent control is a good candidate
for control system design in solving the control problems of complex nonlinear
systems in the presence of different kinds of uncertainties. Many control
approaches/methods, reporting inventions and control applications within the fields
of adaptive control, neural control, and fuzzy systems, have been published in
various books, journals, and conference proceedings. In spite of these remarkable
advances in neural control field, due to the complexity of nonlinear systems, the
present research on intelligent control is still focused on the development of fun-
damental methodologies.

The advantage of intelligent control is that neural network and fuzzy system can
model any (sufficiently smooth) continuous nonlinear function in a compact set and
the modeling error is becoming smaller. Thus, an adaptive intelligent controller is
most suitable in an environment where system dynamics are significantly changing,
highly nonlinear, and in principle not completely known.

This book is motivated by the need for systematic design approaches for
intelligent control system design using neural network and fuzzy-based techniques.
The main objectives of the book are to introduce the concrete design method and
MATLAB simulation of intelligent control strategies.

It is our goal to accomplish these objectives:

• Offer a catalog of implementable intelligent control design methods for engi-
neering applications;

• Provide advanced intelligent controller design methods and their stability
analysis methods;

• For each intelligent control algorithm, we offer its simulation example and
MATLAB program.

This book provides the reader with a thorough grounding in the intelligent
control system design. Typical intelligent controller design is verified using
MATLAB simulation. In this book, concrete case studies, which present the results
of intelligent controller implementations, are used to illustrate the successful
application of the theory.

The book is structured as follows. The book starts with a brief introduction of
intelligent control in Chap. 1, expert control algorithm and design remarks are given
in Chap. 2, fuzzy sets and membership function are introduced in Chap. 3, fuzzy
logic controller design is introduced in Chap. 4, fuzzy T-S modeling and control is
introduced in Chap. 5, adaptive fuzzy controller design and analysis are given in
Chap. 6, Neural network theory are introduced in Chap. 7, in this Chapter, several
typical neural networks such as BP neural network and RBF neural network are
introduced, the basic design method of adaptive RBF neural network control and
adaptive sliding mode RBF neural network control are introduced in Chaps. 8 and 9,
respectively. Discrete RBF neural network controller design and analysis are given
in Chap. 10. Intelligent optimization algorithms are recommended in Chap. 11, and
at last, iterative learning control algorithm and applications are given in Chap. 12.
For each chapter, several engineering application examples are given. The contents
of each chapter in this book are independent, so that readers can their own needs.

In this book, all the control algorithms and their programs are described separately
and classified by the chapter name, which can be run successfully in MATLAB
7.5.0.342 version or in other more advanced versions. In addition, all the programs
can be downloaded via http://shi.buaa.edu.cn/liujinkun. If you have questions about
algorithms and simulation programs, please E-mail:ljk@buaa.edu.cn.

Beijing, China Jinkun Liu

http://shi.buaa.edu.cn/liujinkun

Contents

1 Introduction to Intelligent Control . 1
1.1 Expert Control . 2
1.2 Fuzzy Logic Control. 2
1.3 Neural Network and Control. 2
1.4 Intelligent Search Algorithm . 4
References. 5

2 Expert PID Control. 7
2.1 Expert PID Control. 7
2.2 Simulation Example . 9
Reference . 13

3 Foundation of Fuzzy Mathematics . 15
3.1 Characteristic Function and Membership Function 15
3.2 Fuzzy Set Expression . 16
3.3 Calculation Method of Fuzzy Set . 17

3.3.1 Basic Calculation Method of Fuzzy Set. 17
3.3.2 Fuzzy Operator . 18
3.3.3 Typical Membership Function . 19
3.3.4 Design of Fuzzy System . 23

3.4 Fuzzy Matrix Calculation . 24
3.4.1 Fuzzy Matrix . 24
3.4.2 Fuzzy Matrix Calculation . 25
3.4.3 Compound of Fuzzy Matrix . 26

3.5 Fuzzy Inference . 28
3.6 Fuzzy Equation. 30
Reference . 31

4 Fuzzy Logic Control . 33
4.1 Design of Fuzzy Logic Controller . 33
4.2 An Example for a Fuzzy Logic Controller Design 34

4.3 Fuzzy Logic Control for Washing Machine 40
4.4 Fuzzy PI Control . 49

4.4.1 PI Tuning Controller with Fuzzy Logic. 49
4.4.2 Simulation Example . 50

References. 56

5 Fuzzy T-S Modeling and Control . 57
5.1 Fuzzy T-S Model . 57
5.2 Fuzzy T-S Modeling and Control Based on LMI 59

5.2.1 Controller Design of T-S Fuzzy Model
Based on LMI . 60

5.2.2 LMI Design and Analysis . 61
5.2.3 Transformation of LMI . 63
5.2.4 LMI Design Example . 64

5.3 Fuzzy T-S Modeling and Control Based on LMI
for Inverted Pendulum . 66
5.3.1 System Description . 66
5.3.2 Simulation Based on Two Fuzzy Rules Design 66
5.3.3 Simulation Based on Four Fuzzy Rules Design. 71

5.4 Simulation Example of YALMIP Toolbox 78
References. 79

6 Adaptive Fuzzy Control . 81
6.1 Adaptive Fuzzy Control . 81
6.2 Fuzzy Approximation . 81

6.2.1 Fuzzy System Design . 81
6.2.2 Fuzzy System Approximation . 82
6.2.3 Simulation Example . 83

6.3 Adaptive Fuzzy Controller Design . 89
6.3.1 Problem Description . 89
6.3.2 Fuzzy Approximation . 90
6.3.3 Adaptive Fuzzy Control Design and Analysis 91
6.3.4 Simulation Example . 92

6.4 Adaptive Fuzzy Control Based on Fuzzy System
Compensator. 99
6.4.1 System Description . 99
6.4.2 Adaptive Fuzzy Control Design and Analysis 101
6.4.3 Only Consider Friction . 103
6.4.4 Simulation Example . 103

References. 112

7 Neural Networks . 113
7.1 Introduction . 113
7.2 Single Neural Network . 114
7.3 BP Neural Network Design and Simulation 116

7.3.1 BP Network Structure . 116
7.3.2 Approximation of BP Neural Network 117
7.3.3 Simulation Example . 119

7.4 RBF Neural Network Design and Simulation 122
7.4.1 RBF Algorithm . 123
7.4.2 RBF Design Example with MATLAB Simulation. 123

7.5 RBF Neural Network Approximation Based on Gradient
Descent Method . 131
7.5.1 RBF Neural Network Approximation 131
7.5.2 Simulation Example . 132

7.6 Effects of Analysis on RBF Approximation 138
7.6.1 Effects of Gaussian Function Parameters

on RBF Approximation . 138
7.6.2 Effects of Hidden Nets Number on RBF

Approximation. 144
7.7 RBF Neural Network Training for System Modeling 149

7.7.1 RBF Neural Network Training 149
7.7.2 Simulation Example . 150

7.8 RBF Neural Network Approximation . 156
References. 157

8 Adaptive RBF Neural Network Control . 159
8.1 Neural Network Control . 159
8.2 Adaptive Control Based on Neural Approximation. 160

8.2.1 Problem Description . 160
8.2.2 Adaptive RBF Controller Design. 161
8.2.3 Simulation Examples . 165

8.3 Adaptive Control Based on Neural Approximation
with Unknown Parameter . 176
8.3.1 Problem Description . 176
8.3.2 Adaptive Controller Design . 177
8.3.3 Simulation Examples . 180

References. 187

9 Adaptive Sliding Mode RBF Neural Network Control 189
9.1 Typical Sliding Mode Controller Design 189
9.2 Sliding Mode Control Based on RBF for Second-Order

SISO Nonlinear System . 191
9.2.1 Problem Statement. 191
9.2.2 Sliding Mode Control Based on RBF

for Unknown f ð�Þ . 192
9.2.3 Simulation Example . 194

9.3 RBF Neural Robot Controller Design with Sliding
Mode Robust Term. 200

9.3.1 Problem Description . 200
9.3.2 RBF Approximation . 201
9.3.3 Control Law Design and Stability Analysis 201
9.3.4 Simulation Examples . 203

References. 213

10 Discrete RBF Neural Network Control . 215
10.1 Digital Adaptive RBF Control for a Continuous System 215

10.1.1 System Description . 215
10.1.2 RBF Neural Network Approximation 216
10.1.3 Adaptive Controller Design . 217
10.1.4 Simulation Example . 218

10.2 Adaptive RBF Control for a Class of Discrete-Time
Nonlinear System . 225
10.2.1 System Description . 225
10.2.2 Traditional Controller Design . 225
10.2.3 Adaptive Neural Network Controller Design 225
10.2.4 Stability Analysis . 227
10.2.5 Simulation Examples . 229

References. 233

11 Intelligent Search Algorithm Design . 235
11.1 GA and Design. 235

11.1.1 Principle of GA . 235
11.1.2 Steps of GA Design . 236
11.1.3 Simulation Example . 238

11.2 PSO Algorithm and Design . 243
11.2.1 Introduction . 243
11.2.2 PSO Parameter Setting . 244
11.2.3 Design Procedure of PSO . 244
11.2.4 Simulation Example . 245

11.3 DE Algorithm and Design . 251
11.3.1 Standard DE Algorithm . 251
11.3.2 Basic Flow of DE . 252
11.3.3 Parameter Setting of DE . 253
11.3.4 Simulation Example . 255

11.4 TSP Optimization Based on Hopfield Neural Network 258
11.4.1 Traveling Salesman Problem . 258
11.4.2 Hopfield Network Design for Solving

TSP Problem . 258
11.4.3 Simulation Example . 260

References. 266

12 Iterative Learning Control and Applications. 267
12.1 Basic Principle . 267
12.2 Basic Iterative Learning Control Algorithm 268
12.3 Key Techniques of Iterative Learning Control 269

12.3.1 Stability and Convergence . 269
12.3.2 Initial Value Problem . 269
12.3.3 Learning Speed Problem . 269
12.3.4 Robustness . 269

12.4 ILC Simulation for Manipulator Trajectory Tracking 270
12.4.1 Controller Design . 270
12.4.2 Simulation Example . 270

12.5 Iterative Learning Control for Time-Varying Linear System. . . . 278
12.5.1 System Description . 278
12.5.2 Design and Convergence Analysis 278
12.5.3 Simulation Example . 281

References. 290

Abstract

The advantage of intelligent control is that neural network and fuzzy system can
model any (sufficiently smooth) continuous nonlinear function in a compact set and
the modeling error is becoming smaller. Thus, an adaptive intelligent controller is
most suitable in an environment where system dynamics are significantly changing,
highly nonlinear, and in principle not completely known.

The book is structured as follows. The book starts with a brief introduction of
intelligent control in Chap. 1, expert control algorithm and design remarks are given
in Chap. 2, fuzzy sets and membership function are introduced in Chap. 3, fuzzy
logic controller design is introduced in Chap. 4, fuzzy T-S modeling and control is
introduced in Chap. 5, adaptive fuzzy controller design and analysis are given in
Chap. 6, neural network theory is introduced in Chap. 7, and in this chapter, several
typical neural networks such as BP neural network and RBF neural network are
introduced; the basic design method of adaptive RBF neural network control and
adaptive sliding mode RBF neural network control are introduced in Chaps. 8 and 9,
respectively. Discrete RBF neural network controller design and analysis are given
in Chap. 10. Intelligent optimization algorithms are recommended in Chap. 11, and
at last, iterative learning control algorithm and applications are given in Chap. 12.
For each chapter, several engineering application examples are given. The contents
of each chapter in this book are independent, so that readers can do research by their
own needs.

This book provides the reader with a thorough grounding in the intelligent
controller design. Typical intelligent controller design is emphasized using
MATLAB simulation.

Each chapter of the book is interrelated and mutually independent, and the
readers can choose to learn according to their own needs. This book is suitable for
the readers who engage in the field of production process automation, computer
application, electronic machinery, and electrical automation, especially can be used
for professional teaching book.

Chapter 1
Introduction to Intelligent Control

The term “intelligent control” may be loosely used to denote a control technique
that can be carried out using the “intelligence” of a human who is knowledgeable in
the particular domain of control. In this definition, constraints pertaining to limi-
tations of sensory and actuation capabilities and information processing speeds of
humans are not considered. It follows that if a human in the control loop can
properly control a plant, then that system would be a good candidate for intelligent
control. Information abstraction and knowledge-based decision making that
incorporates abstracted information are considered important in intelligent control.
Unlike conventional control, intelligent control techniques possess capabilities of
effectively dealing with incomplete information concerning the plant and its envi-
ronment, and unexpected or unfamiliar conditions. The term “adaptive control” is
used to denote a class of control techniques where the parameters of the controller
are changed (adapted) during control, utilizing observations on the plant (i.e., with
sensory feedback), to compensate for parameter changes, other disturbances, and
unknown factors of the plant. Combining these two terms, one may view “intelli-
gent adaptive control” as those techniques that rely on intelligent control for proper
operation of a plant, particularly in the presence of parameter changes and unknown
disturbances.

There are several artificial intelligent techniques that can be used as a basis for
the development of intelligent systems, namely expert control, fuzzy logic, neural
network, and intelligent search algorithms.

In this class, we will study some fundamental techniques and some application
examples of expert control, fuzzy logic, neural networks, and intelligent search
algorithms. The main focus here will be their use in intelligent control.

The artificial intelligent techniques should be integrated with modern control
theory to develop intelligent control systems.

In this class, we study intelligent control in four parts: expert control, fuzzy logic
and control, neural network and control, and genetic algorithm.

1.1 Expert Control

Expert control is control tactics to use expert knowledge and experience. Expert
control comes from expert system, it was proposed by K.J. Astrom in 1986 [1], and
its main idea is to design control tactics with expert knowledge and experience.

1.2 Fuzzy Logic Control

Fuzzy logic is useful in representing human knowledge in a specific domain of
application, and in reasoning with that knowledge to make useful inferences or
actions.

In particular, fuzzy logic may be employed to represent, as a set of “fuzzy rules,”
the knowledge of a human controlling a plant. This is the process of knowledge
representation. Then, a rule of inference in fuzzy logic may be used according to
this “fuzzy” knowledge base, to make control decisions for a given set of plant
observations. This task concerns “knowledge processing.” In this sense, fuzzy logic
in intelligent control serves to represent and process the control knowledge of a
human in a given plant.

There are two important ideas in fuzzy systems theory:

• The real world is too complicated for precise descriptions to be obtained;
therefore, approximation (or fuzziness) must be introduced in order to obtain a
reasonable model.

• As we move into the information era, human knowledge becomes increasingly
important. We need a theory to formulate human knowledge in a systematic
manner and put it into engineering systems, together with other information like
mathematical models and sensory measurements.

From the fuzzy universal approximation theorem [2], fuzzy system can
approximate any nonlinear function, which can be used to design adaptive fuzzy
controller. By adjusting a set of weighting parameters of a fuzzy system, it may be
used to approximate an arbitrary nonlinear function to a required degree of
accuracy.

1.3 Neural Network and Control

Artificial neural networks are massively connected networks that can be trained to
represent complex nonlinear functions at a high level of accuracy. They are anal-
ogous to the neuron structure in a human brain.

It is well known that biological systems can perform complex tasks without
recourse to explicit quantitative operations. In particular, biological organisms are

2 1 Introduction to Intelligent Control

capable of learning gradually over time. This learning capability reflects the ability
of biological neurons to learn through exposure to external stimuli and to gener-
alize. Such properties of nervous systems make them attractive as computation
models that can be designed to process complex data. For example, the learning
capability of biological organisms from examples suggests possibilities for machine
learning.

Neural networks, or more specifically, artificial neural networks, are mathe-
matical models inspired from our understanding of biological nervous systems.

They are attractive as computation devices that can accept a large number of
inputs and learn solely from training samples. As mathematical models for bio-
logical nervous systems, artificial neural networks are useful in establishing rela-
tionships between inputs and outputs of any kind of system. Roughly speaking, a
neural network is a collection of artificial neurons. An artificial neuron is a math-
ematical model of a biological neuron in its simplest form. From our understanding,
biological neurons are viewed as elementary units for information processing in any
nervous system. Without claiming its neurobiological validity, the mathematical
model of an artificial neuron is based on the following theses:

(1) Neurons are the elementary units in a nervous system at which information
processing occurs.

(2) Incoming information is in the form of signals that are passed between neurons
through connection links.

(3) Each connection link has a proper weight that multiplies the signal transmitted.
(4) Each neuron has an internal action, depending on a bias or firing threshold,

resulting in an activation function being applied to the weighted sum of the
input signals to produce an output signal.

Since the idea of the computational abilities of networks composed of simple
models of neurons was introduced in the 1940s, neural network techniques have
undergone great developments and have been successfully applied in many fields
such as learning, pattern recognition, signal processing, modeling, and system
control. Their major advantages of highly parallel structure, learning ability, non-
linear function approximation, fault tolerance, and efficient analog VLSI imple-
mentation for real-time applications greatly motivate the usage of neural networks
in nonlinear system identification and control.

In many real-world applications, there are many nonlinearities, unmodeled
dynamics, unmeasurable noise, and multiloop, which pose problems for engineers
to implement control strategies.

BP or RBF neural network can approximate any nonlinear function [3], which
can be used to design adaptive neural network controller. By adjusting a set of
weighting parameters of a neural network, it may be used to approximate an
arbitrary nonlinear function to a required degree of accuracy.

1.3 Neural Network and Control 3

1.4 Intelligent Search Algorithm

There are several intelligent search algorithms, classical intelligent search algo-
rithms include GA, PSO, and DE.

Genetic algorithms (GA) are commonly used to generate high-quality solutions
to optimization and search problems by relying on bio-inspired operators such as
mutation, crossover, and selection. The basic principle of GA was first laid down by
Holland in 1962 [4]. GA simulates those processes in natural populations that are
essential to evolution. Genetic algorithms belong to the area of evolutionary
computing. They represent an optimization approach where a search is made to
“evolve” a solution algorithm that will retain the “most fit” components, in a
procedure that is analogous to biological evolution through natural selection,
crossover, and mutation. It follows that GAs are applicable in intelligent control,
particularly when optimization is an objective.

Particle swarm optimization (PSO) is originally attributed to Kennedy, Eberhart
[5] and was first intended for simulating social behavior. Particle swarm opti-
mization (PSO) is an evolutionary computation technique. The basic idea of particle
swarm optimization (PSO) is to find the optimal solution through collaboration and
information sharing among individuals in a swarm. The advantages of PSO are
simplicity, ease of implementation, and no adjustment of many parameters. At
present, it has been widely used in function optimization, neural network training,
fuzzy system control, etc.

Differential evolution (DE) is originally due to Storn and Price [6]. In evolu-
tionary computation, DE is a method that optimizes a problem by iteratively trying
to improve a candidate solution with regard to a given measure of quality. DE is
used for multidimensional real-valued functions but does not use the gradient of the
problem being optimized, which means DE does not require for the optimization
problem to be differentiable as is required by classic optimization methods such as
gradient descent and quasi-newton methods. DE can therefore also be used on
optimization problems that are not even continuous, are noisy, change over time,
etc.

DE optimizes a problem by maintaining a population of candidate solutions and
creating new candidate solutions by combining existing ones according to its simple
formulae, and then keeping whichever candidate solution has the best score or
fitness on the optimization problem at hand. In this way, the optimization problem
is treated as a black box that merely provides a measure of quality given a candidate
solution and the gradient is therefore not needed. DE has been applied in parallel
computing, multiobjective optimization, constrained optimization, etc.

Summarizing, the biological analogies of fuzzy, neural, and intelligent search
algorithms can be described as follows: Fuzzy techniques attempt to approximate
human knowledge and the associated reasoning process; neural networks are a
simplified representation of the neuron structure of a human brain; and intelligent
search algorithms follow procedures that are crudely similar to the process of
evolution in biological species.

4 1 Introduction to Intelligent Control

Modern industrial plants and technological products are often required to per-
form complex tasks with high accuracy, under ill-defined conditions. Conventional
control techniques may not be quite effective in these systems, whereas intelligent
control has a tremendous potential. The emphasis of the class is on practical
applications of intelligent control, primarily using fuzzy logic, neural network, and
intelligent search algorithms techniques. The remainder of the class will give an
introduction to some fundamental techniques of fuzzy logic, neural networks, and
intelligent search algorithms.

References

1. K.J. Astrom, J.J. Anton, K.E. Arzen, Expert control. Automatica 22(3), 277–286 (1986)
2. L.X. Wang, Fuzzy systems are universal approximators, in Proceedings of IEEE Conference

on Fuzzy Systems (1992), pp. 1163–1170
3. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal

approximator. Neural Networks 2(5), 359–366 (1989)
4. F. Jin, W. Chen, The father of the genetic algorithms—Holland and his scientific work.

J. Dialect. Nat. (2007)
5. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International

Conference on Neural Networks (1995), pp. 1942–1948
6. R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization

over continuous spaces. J. Global Optim. 11, 341–359 (1997)

1.4 Intelligent Search Algorithm 5

Chapter 2
Expert PID Control

Expert control is a control tactics to use expert knowledge and experience. Expert
control was proposed firstly by Astrom in 1986 [1].

2.1 Expert PID Control

The expert PID control is to design PID parameters with characteristics of the plant
and experience of the control expert, no need of modeling information.

The experience of the expert is mainly based on the error response of the system.
Typical error response for a second transfer function is shown in Fig. 2.1; for the
area I, III, V, VII, …, where the absolute value of error tends to smaller, we can use
unloop control;for the area II, IV, VI, VIII, …, where the absolute value of error
tends to bigger, we can use strong control or general control.

At time k, we consider the ideal position signal as yd kð Þ, the output as y kð Þ, and
then the tracking error is e kð Þ ¼ yd kð Þ � y kð Þ at time k, and e k � 1ð Þ and e k � 2ð Þ
represent the error at time k � 1 and k � 2, respectively, then we have

De kð Þ ¼ e kð Þ � e k � 1ð Þ
De k � 1ð Þ ¼ e k � 1ð Þ � e k � 2ð Þ ð2:1Þ

According to Fig. 2.1, we can do the following analysis:

(1) When e kð Þj j[M1, we can use unloop controller to minimize error quickly.
(2) When e kð ÞDe kð Þ[0 or De kð Þ ¼ 0,we consider two conditions as follows:

If e kð Þj j �M2, we use strong PID controller as

u kð Þ ¼ u k � 1ð Þþ k1 kp e kð Þ � e k � 1ð Þ½ � þ kie kð Þþ kd e kð Þ � 2e k � 1ð Þþ e k � 2ð Þ½ �� �

ð2:2Þ

If e kð Þj j\M2, we use weak PID controller as

u kð Þ ¼ u k � 1ð Þþ kp e kð Þ � e k � 1ð Þ½ � þ kie kð Þþ kd e kð Þ � 2e k � 1ð Þþ e k � 2ð Þ½ �
ð2:3Þ

(3) When e kð ÞDe kð Þ\0, De kð ÞDe k � 1ð Þ[0, or e kð Þ ¼ 0 ,which indicates the
absolute value of error tends to smaller or constant value, we can hold the
control input.

(4) When e kð ÞDe kð Þ\0, De kð ÞDe k � 1ð Þ\0, which indicates the value of error is
in extremism state. We consider the two conditions as follows:
If the absolute value of error is big, e kð Þj j �M2, we can use strong controller as

u kð Þ ¼ u k � 1ð Þþ k1kpe kð Þ ð2:4Þ

If the absolute value of error is small, e kð Þj j\M2, we can adopt weak controller
as

u kð Þ ¼ u k � 1ð Þþ k2kpe kð Þ ð2:5Þ

(5) When eðkÞj j � e, which indicates the absolute value of error tends to very small,
we can use PI controller to decrease the static error,
where

u kð Þ—control input at time k;
u k � 1ð Þ—control input at time k � 1;
k1—gain coefficient, k1 [1;
k2—gain coefficient, 0\k2\1;
M1, M2—limit values, M1 [M2;
e—positive value.

Fig. 2.1 Typical error response for a second transfer function

8 2 Expert PID Control

2.2 Simulation Example

Consider a plant as

GpðsÞ ¼ 523500
s3 þ 87:35s2 þ 10470s

The sampling time is 1 ms, using MATLAB command “c2d”, the plant can be
discrete as

yðkÞ ¼ �den 2ð Þy k � 1ð Þ � den 3ð Þy k � 2ð Þ � den 4ð Þy k � 3ð Þ
þ num 2ð Þu k � 1ð Þþ num 3ð Þu k � 2ð Þþ num 4ð Þu k � 3ð Þ

where num() and den() can be gotten by the command tfdata.
The ideal position signal is yd kð Þ ¼ 1:0. In the simulation program, due to the

discretization, there is one delay in control input.
The simulation program of traditional PID controller is chap2_1.m, and the

simulation results are shown in Figs. 2.2 and 2.3. The simulation program of
expert PID controller is chap2_2.m, and the simulation results are shown in
Figs. 2.4 and 2.5.

(1) Program of traditional PID Controller: chap2_1.m.

%Expert PID Controller

clear all;

close all;

ts=0.001;

sys=tf(5.235e005,[1,87.35,1.047e004,0]); %Plant

dsys=c2d(sys,ts,'z');

[num,den]=tfdata(dsys,'v');

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

r,y

Fig. 2.2 Step response with
traditional PID control

2.2 Simulation Example 9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)
er

ro
r

Fig. 2.3 Error response with
traditional PID control

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

r,y

Fig. 2.4 Step response with
expert PID control

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

er
ro

r

Fig. 2.5 Error response with
expert PID control

10 2 Expert PID Control

u_1=0;u_2=0;u_3=0;u_4=0;

y_1=0;y_2=0;y_3=0;

ei=0;

kp=0.96;ki=0.03;kd=0.01;

error_1=0;

for k=1:1:500

time(k)=k*ts;

yd(k)=1.0;

y(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u_1+num(2)*u_2+num(3)

*u_3+num(4)*u_4;

error(k)=yd(k)-y(k); % Calculating P

derror(k)=error(k)-error_1; % Calculating D

ei=ei+error(k)*ts;

u(k)=kp*error(k)+kd*derror(k)/ts+ki*ei; %PID Controller

u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);

y_3=y_2;y_2=y_1;y_1=y(k);

error_1=error(k);

end

figure(1);

plot(time,yd,'b',time,y,'r','linewidth',2);

xlabel('time(s)');ylabel('r,y');

figure(2);

plot(time,yd-y,'r','linewidth',2);

xlabel('time(s)');ylabel('error');

(2) Program of expert PID control: chap2_2.m.

%Expert PID Controller

clear all;

close all;

ts=0.001;

sys=tf(5.235e005,[1,87.35,1.047e004,0]); %Plant

dsys=c2d(sys,ts,'z');

[num,den]=tfdata(dsys,'v');

u_1=0;u_2=0;u_3=0;u_4=0;

y_1=0;y_2=0;y_3=0;

ei=0;

error_1=0;derror_1=0;

2.2 Simulation Example 11

kp=0.6;ki=0.03;kd=0.01;

for k=1:1:500

time(k)=k*ts;

yd(k)=1.0; %Tracing Step Signal

%Linear model

y(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u_1+num(2)*u_2+num(3)

*u_3+num(4)*u_4;

error(k)=yd(k)-y(k); % Calculating P

derror(k)=error(k)-error_1; % Calculating D

ei=ei+error(k)*ts; % Calculating I

u(k)=kp*error(k)+kd*derror(k)/ts+ki*ei; %PID Controller

%Expert control rule

if abs(error(k))>0.8 %Rule1:Unclosed control rule

u(k)=0.45;

elseif abs(error(k))>0.40

u(k)=0.40;

elseif abs(error(k))>0.20

u(k)=0.12;

elseif abs(error(k))>0.01

u(k)=0.10;

end

if error(k)*derror(k)>0|(derror(k)==0) %Rule2

if abs(error(k))>=0.05

u(k)=u_1+2*kp*error(k);

else

u(k)=u_1+0.4*kp*error(k);

end

end

if (error(k)*derror(k)<0&derror(k)*derror_1>0)|(error(k)==0) %Rule3

u(k)=u(k);

end

if error(k)*derror(k)<0&derror(k)*derror_1<0 %Rule4

if abs(error(k))>=0.05

u(k)=u_1+2*kp*error(k);

else

u(k)=u_1+0.6*kp*error(k);

end

end

if abs(error(k))<=0.001 %Rule5:Integration separation PI control

u(k)=0.5*error(k)+0.010*ei;

end

12 2 Expert PID Control

u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);

y_3=y_2;y_2=y_1;y_1=y(k);

error_1=error(k);

derror_1=derror(k);

end

figure(1);

plot(time,yd,'r',time,y,'b:','linewidth',2);

xlabel('time(s)');ylabel('r,y');

legend('Ideal position','Practical position');

Reference

1. K.J. Astrom, J.J. Anton, K.E. Arzen, Expert control, Automatica 22(3), 277–286 (1986)

2.2 Simulation Example 13

Chapter 3
Foundation of Fuzzy Mathematics

Fuzzy theory was initiated by L.A. Zadeh in 1965 with his seminal paper “Fuzzy
Sets” [1]. In the early 1960s, he thought that classical control theory had put too
much emphasis on precision and therefore could not handle the complex systems.
As early as 1962, he wrote that to handle biological systems “we need a radically
different kind of mathematics, the mathematics of fuzzy or cloudy quantities which
are not describable in terms of probability distributions.” Later, he formalized the
ideas into the paper “fuzzy sets.”

Fuzzy sets are the mathematic foundation of fuzzy control.

3.1 Characteristic Function and Membership Function

(1) Characteristic function

lAðxÞ ¼ 1 x 2 A
0 x 62 A

�
ð3:1Þ

(2) Membership function

lAðxÞ ¼
1 x 2 A
0; 1ð Þ x 2 A
0 x 62 A

partly

8<
: ð3:2Þ

where A is a fuzzy set, which consists of 0, 1, and lAðxÞ, the range of lAðxÞ is
0; 1½ �.
Membership function is the foundation of fuzzy sets.

3.2 Fuzzy Set Expression

There are two kinds of expression as follows:

(1) Fuzzy set A consists of discrete element:

A ¼ l1=x1 þ l2=x2 þ � � � þ li=xi þ � � � ð3:3Þ

or

A ¼ ðx1; l1Þ; ðx2; l2Þ; . . .; ðxi;liÞ; . . .f g ð3:4Þ

(2) Fuzzy set A consists of continuous function (Membership Function) lAðxÞ :

A ¼
Z

lAðxÞ=x ð3:5Þ

Ex. 3.1 To fuzzy the age, we assume the scope of the age is X ¼ 0; 200½ �; Zadeh
gave “Young” fuzzy set Y as

YðxÞ ¼
1:0 0� x� 25

1þ x�25
5

� �2h i�1
25\x� 100

(

MF is shown in Fig. 3.1.

Program of MF for “Young”: chap3_1.m.

%Membership function for Young People

clear all;

close all;

for k=1:1:1001

x(k)=(k-1)*0.10;

if x(k)>=0&x(k)<=25

y(k)=1.0;

else

y(k)=1/(1+((x(k)-25)/5)^2);

end

end

plot(x,y,'k');

xlabel('X Years');ylabel('Degree of membership');

16 3 Foundation of Fuzzy Mathematics

3.3 Calculation Method of Fuzzy Set

3.3.1 Basic Calculation Method of Fuzzy Set

For fuzzy set A, B, and C, basic calculation methods are given as follows:

(1) Null set

A ¼ u , lAðuÞ ¼ 0 ð3:6Þ

(2) Full set

A ¼ E , lAðuÞ ¼ 1 ð3:7Þ

(3) Equal set

A ¼ B , lAðuÞ ¼ lBðuÞ ð3:8Þ

(4) Complement set
If �A is complement set of A, then

�A , l�AðuÞ ¼ 1� lAðuÞ ð3:9Þ

(5) Subset
If B is subset of A, then

B�A , lBðuÞ� lAðuÞ ð3:10Þ

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

X Years
D

eg
re

e
of

 m
em

be
rs

hi
p

Fig. 3.1 Membership
function of “Young”

3.3 Calculation Method of Fuzzy Set 17

(6) Fuzzy union set
If C is union set of A and B, then

C ¼ A[B

A[B ¼ lA[BðuÞ ¼ maxðlAðuÞ;lBðuÞÞ ¼ lAðuÞ _ lBðuÞ ð3:11Þ

(7) Intersection set
If C is intersection set of A and B, then

C ¼ A\B

A\B ¼ lA\BðuÞ ¼ minðlAðuÞ; lBðuÞÞ ¼ lAðuÞ ^ lBðuÞ ð3:12Þ

Ex. 3.2 A ¼ 0:9
u1

þ 0:2
u2

þ 0:8
u3

þ 0:5
u4
, B ¼ 0:3

u1
þ 0:1

u2
þ 0:4

u3
þ 0:6

u4
Then,

A[B ¼ 0:9
u1

þ 0:2
u2

þ 0:8
u3

þ 0:6
u4

; A\B ¼ 0:3
u1

þ 0:1
u2

þ 0:4
u3

þ 0:5
u4

Ex. 3.3 If lAðuÞ ¼ 0:4, then

l�AðuÞ ¼ 1� 0:4 ¼ 0:6

lAðuÞ _ l�AðuÞ ¼ 0:4 _ 0:6 ¼ 0:6 6¼ 1

lAðuÞ ^ l�AðuÞ ¼ 0:4 ^ 0:6 ¼ 0:4 6¼ 0

3.3.2 Fuzzy Operator

For fuzzy set A, B, and C, there are three kinds of conventional operators as
follows.

1. Fuzzy intersection operator
For C ¼ A\B, there are three intersection operators as follows:

(1) Basic intersection operator

lcðxÞ ¼ Min lAðxÞ; lBðxÞf g ð3:13Þ

(2) Algebra product operator

lcðxÞ ¼ lAðxÞ � lBðxÞ ð3:14Þ

18 3 Foundation of Fuzzy Mathematics

(3) Limitary product operator

lcðxÞ ¼ Max 0; lAðxÞþ lBðxÞ � 1f g ð3:15Þ

2. Fuzzy union operator
For C ¼ A[B, there are three fuzzy union operators as follows:

(1) Basic union operator

lcðxÞ ¼ Max lAðxÞ; lBðxÞf g ð3:16Þ

(2) Probability OR operator

lcðxÞ ¼ lAðxÞþ lBðxÞ � lAðxÞ � lBðxÞ ð3:17Þ

(3) Limitary sum operator

lcðxÞ ¼ Min 1; lAðxÞþ lBðxÞf g ð3:18Þ

3. Fuzzy balanceable operator
For C ¼ A � B, the balanceable operator is

lcðxÞ ¼ lAðxÞ � lBðxÞ½ �1�c� 1� ð1� lAðxÞÞ � ð1� lBðxÞÞ½ �c ð3:19Þ

where c is in 0 1½ �. When c ¼ 0, lcðxÞ ¼ lAðxÞ � lBðxÞ, that is, C ¼ A\B.
When c ¼ 1, lcðxÞ ¼ lAðxÞþ lBðxÞ � lAðxÞ � lBðxÞ, that is, C ¼ A[B.

3.3.3 Typical Membership Function

In fuzzy system, we often use six kinds of typical MF to fuzzify a variable, which
are given as follows:

(1) Gaussian MF

f ðx; r; cÞ ¼ e�
ðx�cÞ2
2r2 ð3:20Þ

where r is a positive constant.
The MATLAB function for Gaussian MF is gaussmf(x; ½r; c�Þ.

(2) Campanulate MF

f ðx; a; b; cÞ ¼ 1

1þ x�c
a

�� ��2b ð3:21Þ

3.3 Calculation Method of Fuzzy Set 19

(3) S-type MF

f ðx; a; cÞ ¼ 1
1þ e�aðx�cÞ ð3:22Þ

The MATLAB function for S-type MF is sigmf(x; ½a; c�Þ.
(4) Trapezoid MF

f ðx; a; b; c; dÞ ¼

0 x� a
x�a
b�a a� x� b
1 b� x� c
d�x
d�c c� x� d
0 x	 d

8>>>><
>>>>:

ð3:23Þ

The MATLAB function for trapezoid MF is trapmf(x; ½a; b; c; d�Þ.
(5) Triangle MF

f ðx; a; b; cÞ ¼
0 x� a
x�a
b�a a� x� b
c�x
c�b b� x� c
0 x	 c

8>><
>>: ð3:24Þ

The MATLAB function for triangle MF is trimf(x; ½a; b; c�Þ.
(6) Z-type MF

The MATLAB function for Z-type MF is zmf(x; ½a; b�Þ.

Ex. 3.4 Six kinds of MF simulations, x 2 0; 10½ �.
The simulation results for the above six types of MFs are shown in Figs. 3.2,

3.3, 3.4, 3.5, 3.6, and 3.7.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.2 Gaussian MF
(M = 1)

20 3 Foundation of Fuzzy Mathematics

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x
y

Fig. 3.3 Campanulate MF
(M = 2)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.4 S-type MF (M = 3)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.5 Trapezoid MF
(M = 4)

3.3 Calculation Method of Fuzzy Set 21

MF design program: chap3_2.m

%Membership function

clear all;

close all;

M=6;

if M==1 %Guassian membership function

x=0:0.1:10;

y=gaussmf(x,[2 5]);

plot(x,y,'k');

xlabel('x');ylabel('y');

elseif M==2 %General Bell membership function

x=0:0.1:10;

y=gbellmf(x,[2 4 6]);

plot(x,y,'k');

xlabel('x');ylabel('y');

elseif M==3 %S membership function

x=0:0.1:10;

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.6 Triangle MF
(M = 5)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.7 Z-type MF (M = 6)

22 3 Foundation of Fuzzy Mathematics

y=sigmf(x,[2 4]);

plot(x,y,'k');

xlabel('x');ylabel('y');

elseif M==4 %Trapezoid membership function

x=0:0.1:10;

y=trapmf(x,[1 5 7 8]);

plot(x,y,'k');

xlabel('x');ylabel('y');

elseif M==5 %Triangle membership function

x=0:0.1:10;

y=trimf(x,[3 6 8]);

plot(x,y,'k');

xlabel('x');ylabel('y');

elseif M==6 %Z membership function

x=0:0.1:10;

y=zmf(x,[3 7]);

plot(x,y,'k');

xlabel('x');ylabel('y');

end

3.3.4 Design of Fuzzy System

We can use several fuzzy sets to fuzzify a variable.

Ex. 3.5 To describe the error from negative big to positive big with seven fuzzy
sets.

To fuzzify the error e, we can define seven fuzzy sets as

e

¼ NB;NM;NS;ZO; PS; PM; PBf g

Use triangle MF, consider variable e varies in the range [−3, 3], we can describe
a fuzzy system by seven fuzzy sets. The simulation result is shown in Fig. 3.8.

Program of fuzzy system design: chap3_3.m

%Define N+1 triangle membership function

clear all;

close all;

N=6;

x=-3:0.01:3;

for i=1:N+1

f(i)=-3+6/N*(i-1);

3.3 Calculation Method of Fuzzy Set 23

end

u=trimf(x,[f(1),f(1),f(2)]);

figure(1);

plot(x,u);

for j=2:N

u=trimf(x,[f(j-1),f(j),f(j+1)]);

hold on;

plot(x,u);

end

u=trimf(x,[f(N),f(N+1),f(N+1)]);

hold on;

plot(x,u);

xlabel('x');

ylabel('Degree of membership');

3.4 Fuzzy Matrix Calculation

3.4.1 Fuzzy Matrix

As an example, Fuzzy matrix is defined to describe the level of different students.

Ex. 3.6 Consider three students and four lessons, X = {Zhang, Li, Wang},
Y = {English, Math, Physics, Chemistry}, the scores are given in Table 3.1.

To fuzzify the scores, we can define MF as lðuÞ ¼ u
100, where u is score, and

then, we can get fuzzy relation matrix R as shown in Table 3.2.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x
D

eg
re

e
of

 m
em

be
rs

hi
p

Fig. 3.8 Fuzzy system with
triangle MF

24 3 Foundation of Fuzzy Mathematics

From Table 3.2, we can get fuzzy matrix R as

R ¼
0:70 0:90 0:80 0:65
0:90 0:85 0:76 0:70
0:50 0:95 0:85 0:80

2
4

3
5

3.4.2 Fuzzy Matrix Calculation

For fuzzy matrix A and B, A ¼ ðaijÞ, B ¼ ðbijÞ, i; j ¼ 1; 2; � � � ; n, we can define
several fuzzy matrix calculation methods.

(1) Fuzzy equality calculation
For aij ¼ bij, A ¼ B

(2) Fuzzy subset calculation
For aij � bij, A�B

(3) Fuzzy set union calculation
For cij ¼ aij _ bij, C ¼ ðcijÞ, C ¼ A[B

(4) Fuzzy set interaction calculation
For cij ¼ aij ^ bij, C ¼ ðcijÞ, C ¼ A\B

(5) Fuzzy complementary set calculation
For cij ¼ 1� aij, C ¼ ðcijÞ is defined as complimentary set of A, C ¼ �A.

Ex. 3.7 A ¼ 0:7 0:1
0:3 0:9

� �
, B ¼ 0:4 0:9

0:2 0:1

� �

A[B ¼ 0:7 _ 0:4 0:1 _ 0:9
0:3 _ 0:2 0:9 _ 0:1

� �
¼ 0:7 0:9

0:3 0:9

� �

Table 3.2 Fuzzy matrix R Name Lesson

English Math Physics Chemistry

Zhang 0.70 0.90 0.80 0.65

Li 0.90 0.85 0.76 0.70

Wang 0.50 0.95 0.85 0.80

Table 3.1 Scores Name Lesson

English Math Physics Chemistry

Zhang 70 90 80 65

Wang 90 85 76 70

Li 50 95 85 80

3.4 Fuzzy Matrix Calculation 25

A\B ¼ 0:7 ^ 0:4 0:1 ^ 0:9
0:3 ^ 0:2 0:9 ^ 0:1

� �
¼ 0:4 0:1

0:2 0:1

� �

�A ¼ 1� 0:7 1� 0:1
1� 0:3 1� 0:9

� �
¼ 0:3 0:9

0:7 0:1

� �

3.4.3 Compound of Fuzzy Matrix

If A is defined as fuzzy relation in x� y, B is defined as fuzzy relation in y� z, then
C ¼ A � B is a compound of fuzzy matrix A and B, and A ¼ ðaikÞ, B ¼ ðbkjÞ,
C ¼ ðcijÞ, i,j,k = 1,2, …, n

cij ¼ _
k

aik ^ bkj
� 	

: ð3:25Þ

Ex. 3.8 A ¼ a11 a12
a21 a22

� �
, B ¼ b11 b12

b21 b22

� �
, then

C ¼ A � B ¼ c11 c12
c21 c22

� �

c11 ¼ ða11 ^ b11Þ _ ða12 ^ b21Þ

c12 ¼ ða11 ^ b12Þ _ ða12 ^ b22Þ

c21 ¼ ða21 ^ b11Þ _ ða22 ^ b21Þ

c22 ¼ ða21 ^ b12Þ _ ða22 ^ b22Þ

When A ¼ 0:8 0:7
0:5 0:3

� �
, B ¼ 0:2 0:4

0:6 0:9

� �
, we have

A � B ¼ 0:6 0:7
0:3 0:4

� �

B � A ¼ 0:4 0:3
0:6 0:6

� �

We can get the conclusion as

A � B 6¼ B � A

26 3 Foundation of Fuzzy Mathematics

Program of fuzzy matrix compound calculation: chap3_4.m

clear all;

close all;

A=[0.8,0.7;

0.5,0.3];

B=[0.2,0.4;

0.6,0.9];

%Compound of A and B

for i=1:2

for j=1:2

AB(i,j)=max(min(A(i,:),B(:,j)'))

end

end

%Compound of B and A

for i=1:2

for j=1:2

BA(i,j)=max(min(B(i,:),A(:,j)'))

end

end

Now, an example of application of fuzzy matrix compound is given as follows.
For a family, consider the similarity between grandson and grandparents or between
granddaughter and grandparents. The similarity relationship between children and
their parents and the similarity relationship between the parents and grandparents
are given in Tables 3.3 and 3.4, respectively.

The relationship in Table 3.3 can be expressed by fuzzy matrix as

R ¼ 0:2 0:8
0:6 0:1

 �

Table 3.3 Similarity
relationship between children
and their parents

MF Father Mother

Son 0.2 0.8

Daughter 0.6 0.1

Table 3.4 Similarity
relationship between the
parents and grandparents

MF Grandfather Grandmother

Father 0.5 0.7

Mother 0.1 0

3.4 Fuzzy Matrix Calculation 27

The relationship in Table 3.4 can be expressed by fuzzy matrix as

S ¼ 0:5 0:7
0:1 0

 �

For this case, the operation of fuzzy relation synthesis between R and S is

R � S ¼ 0:2 0:8

0:6 0:1

 �
� 0:5 0:7

0:1 0

 �

¼ 0:2 ^ 0:5ð Þ _ 0:8 ^ 0:1ð Þ 0:2 ^ 0:7ð Þ _ 0:8 ^ 0ð Þ
0:6 ^ 0:5ð Þ _ 0:1 ^ 0:1ð Þ 0:6 ^ 0:7ð Þ _ 0:1 ^ 0ð Þ

 �
¼ 0:2 0:2

0:5 0:6

 �

The results indicate that the similarity degree between grandson and grandfather
is 0.2, the similarity degree between grandson and grandmother is 0.2. The simi-
larity between granddaughter and grandfather is 0.5, and the similarity between
granddaughter and grandmother is 0.5.

3.5 Fuzzy Inference

Consider fuzzy inference for the fuzzy rule “If A AND B then C,” which means
(A ^ B ! C), A 2 U, B 2 U, C 2 U.

According to Mamdani fuzzy inference method, we can get fuzzy relation matrix
R as

R ¼ A� Bð ÞT1�C ð3:26Þ

where T1 is the column vector transformation.
For new A,B,C, using fuzzy matrix R, we can get C1 by A1 and B1:

C1 ¼ A1 � B1ð ÞT2�R ð3:27Þ

where T2 is the row vector transformation.

Ex. 3.9 X ¼ a1; a2; a3f g, Y ¼ b1; b2; b3f g, Z ¼ c1; c2; c3f g,
A ¼ 0:5

a1
þ 1

a2
þ 0:1

a3
, B ¼ 0:1

b1
þ 1

b2
þ 0:6

a3
, C ¼ 0:4

c1
þ 1

c2
. The fuzzy relation of “If A

AND B then C” is R.

A� B ¼
0:5

1

0:1

2
64

3
75 � 0:1 1 0:6½ � ¼

0:1 0:5 0:5
0:1 1:0 0:6
0:1 0:1 0:1

2
4

3
5

28 3 Foundation of Fuzzy Mathematics

A� Bð ÞT1¼ 0:1 0:5 0:5 0:1 1:0 0:6 0:1 0:1 0:1½ �T

R ¼ A� Bð ÞT1�C ¼ 0:1 0:5 0:5 0:1 1:0 0:6 0:1 0:1 0:1½ �T� 0:4 1½ �

¼ 0:1 0:4 0:4 0:1 0:4 0:4 0:1 0:1 0:1

0:1 0:5 0:5 0:1 1 0:6 0:1 0:1 0:1

� �T

A1 � B1 ¼
1

0:5

0:1

2
64

3
75 � 0:1 0:5 1½ � ¼

0:1 0:5 1
0:1 0:5 0:5
0:1 0:1 0:1

2
4

3
5

A� Bð ÞT2¼ 0:1 0:5 1 0:1 0:5 0:5 0:1 0:1 0:1½ �

C1 ¼ 0:1 0:5 1 0:1 0:5 0:5 0:1 0:1 0:1½ � � 0:1 0:4 0:4 0:1 0:4 0:4 0:1 0:1 0:1

0:1 0:5 0:5 0:1 1 0:6 0:1 0:1 0:1

� �T
¼ 0:4 0:5½ �

C1 ¼ 0:4
c1

þ 0:5
c2

Fuzzy inference program: chap3_5.m

clear all;

close all;

A=[0.5;1;0.1];

B=[0.1,1,0.6];

C=[0.4,1];

%Compound of A and B

for i=1:3

for j=1:3

AB(i,j)=min(A(i),B(j));

end

end

%Transfer to Column

T1=[];

for i=1:3

T1=[T1;AB(i,:)'];

end

%Get fuzzy R

for i=1:9

for j=1:2

3.5 Fuzzy Inference 29

R(i,j)=min(T1(i),C(j));

end

end

%%

A1=[1,0.5,0.1];

B1=[0.1,0.5,1];

for i=1:3

for j=1:3

AB1(i,j)=min(A1(i),B1(j));

end

end

%Transfer to Row

T2=[];

for i=1:3

T2=[T2,AB1(i,:)];

end

%Get output C1

for i=1:9

for j=1:2

D(i,j)=min(T2(i),R(i,j));

C1(j)=max(D(:,j));

end

end

3.6 Fuzzy Equation

The fuzzy relation equation is an equation of the form A � R ¼ B, where A and B are
fuzzy sets, R is a fuzzy relation, and A � R stands for the composition of A with R.

Ex. 3.10 Solve xi i ¼ 1; 2; 3ð Þ for fuzzy equation 0:6 0:2 0:4ð Þ �
x1
x2
x3

0
@

1
A ¼ 0:4.

From the equation, we have

0:6 ^ x1ð Þ _ 0:2 ^ x2ð Þ _ 0:4 ^ x3ð Þ ¼ 0:4

Since 0:2 ^ x2ð Þ\0:4, we have x2 ¼ 0; 1½ �; then, we get

0:6 ^ x1ð Þ _ 0:4 ^ x3ð Þ ¼ 0:4

30 3 Foundation of Fuzzy Mathematics

We can consider two conditions as follows:

➀ 0:6 ^ x1 ¼ 0:4; 0:4 ^ x3 � 0:4; then

x1 ¼ 0:4; x3 ¼ 0; 1½ �

➁ 0:6 ^ x1 � 0:4; 0:4 ^ x3 ¼ 0:4; then

x1 ¼ 0; 0:4½ �; x3 ¼ 0:4; 1½ �

Reference

1. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

3.6 Fuzzy Equation 31

Chapter 4
Fuzzy Logic Control

The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by
Zadeh [1]. Fuzzy logic has been applied to many fields, from control theory to
artificial intelligence.

By contrast, in Boolean logic, the truth values of variables may only be the
integer values 0 or 1. Fuzzy logic employed to handle the concept of partial truth,
where the truth value may range between completely true and completely false.
Furthermore, when fuzzy linguistic variables are used, the degrees may be managed
by specific (membership) functions [2].

4.1 Design of Fuzzy Logic Controller

(1) Fuzzify a variable

To fuzzify the input variable e
� , we often use three kinds of fuzzy sets as follows:

• e
� = {NB, NS, ZO, PS, PB}

• e
� = {NB, NM, NS, ZO, PS, PM, PB}

• e
� = {NB, NM, NS, NZ, PZ, PS, PM, PB}

For example, a fuzzy system with eight fuzzy sets using triangle MF is shown in
Fig. 4.1.

(2) Rule base—RB

Rule base consists of several fuzzy rules. For example, in fuzzy logic control, we
can design RB with two fuzzy rules as follows:

R1 : IF E is NBE EC isNB then U is PB

R2 : IF E is NB and EC is NS then U is PM

where E represents error, EC represents error change, U represents control input.

(3) Fuzzy inference and Defuzzy

From the rule base, we can get fuzzy relation matrix R. If we have new premise
information A and B, we can get a new result:

C ¼ A� Bð Þ � R ð4:1Þ

The conclusion matrix C is fuzzy vector, and it must be defuzzified to exact
value for practical use.

4.2 An Example for a Fuzzy Logic Controller Design

Consider the height-level control of water tank as shown in Fig. 4.2, and we can
design two kinds of fuzzy rules as:

“if level is higher than O, then drain”;

“if level is lower than O, then effuse”;

where O represents ideal level.
We can design a fuzzy controller as in the following steps.

(1) Define error

In Fig. 4.2, for the height-level control of water tank, the error is defined as

e ¼ Dh ¼ h0 � h

where h0 is ideal height and h is practical height.

Fig. 4.1 Eight triangle fuzzy sets

34 4 Fuzzy Logic Control

(2) Fuzzify input and output

We can use five fuzzy sets to fuzzify error e, that is, negative big (NB), negative
small (NS), zero (O), positive small (PS), positive big (PB), and we define the error
as seven levels: −3, −2, −1, 0, +1, +2, +3, which is shown in Table 4.1.

To fuzzify control input, we define five fuzzy sets to describe u, that is, negative
big (NB), negative small (NS), zero (O), positive small (PS), positive big (PB). The
range of control input is divided into nine levels: −4, −3, −2, −1, 0, +1, +2, +3, +4,
which is shown in Table 4.2.

(3) Fuzzy logic rule design

According to the experience, we can design the fuzzy logic rules as follows:

(1) If e = NB then u = NB
(2) If e = NS then u = NS

h

Fig. 4.2 Fuzzy control for
height level of water tank

Table 4.1 Water level of e MF degree Range level

−3 −2 −1 0 1 2 3

Fuzzy
set

PB 0 0 0 0 0 0.5 1

PS 0 0 0 0 1 0.5 0

O 0 0 0.5 1 0.5 0 0

NS 0 0.5 1 0 0 0 0

NB 1 0.5 0 0 0 0 0

4.2 An Example for a Fuzzy Logic Controller Design 35

(3) If e = 0 then u = 0
(4) If e = PS then u = PS
(5) If e = PB then u = PB

Fuzzy rules are given in Table 4.3.

(4) Fuzzy inference

From Table 4.3, we can get fuzzy relation matrix as:

R ¼ NBe� NBuð Þ [NSe� NSuð Þ [Oe� Ouð Þ [PSe� PSuð Þ [PBe� PBð Þ
ð4:2Þ

The inference can be described as:

NBe� NBu ¼

1
0:5
0
0
0
0
0

2
666666664

3
777777775
� 1 0:5 0 0 0 0 0 0 0½ �

¼

1:0 0:5 0 0 0 0 0 0 0
0:5 0:5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
666666664

3
777777775

Table 4.2 Control input u

MF degree Range level

−4 −3 −2 −1 0 1 2 3 4

Fuzzy set PB 0 0 0 0 0 0 0 0.5 1

PS 0 0 0 0 0 0.5 1 0.5 0

O 0 0 0 0.5 1 0.5 0 0 0

NS 0 0.5 1 0.5 0 0 0 0 0

NB 1 0.5 0 0 0 0 0 0 0

Table 4.3 Fuzzy rule

(IF) e NBe NSe Oe PSe PBe

(THEN) u NBu NSu Ou PSu PBu

36 4 Fuzzy Logic Control

NSe� NSu ¼

0
0:5
1
0
0
0
0

2
666666664

3
777777775
� 0 0:5 1 0:5 0 0 0 0 0½ �

¼

0 0 0 0 0 0 0 0 0
0 0:5 0:5 0:5 0 0 0 0 0
0 0:5 1:0 0:5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
666666664

3
777777775

Oe� Ou ¼

0
0
0:5
1:0
0:5
0
0

2
666666664

3
777777775
� 0 0 0 0:5 1 0:5 0 0 0½ �

¼

0 0 0 0 0 0 0 0 0
0 0 0 0:5 0:5 0:5 0 0 0
0 0 0 0:5 1:0 0:5 0 0 0
0 0 0 0:5 0:5 0:5 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
666666664

3
777777775

PSe� PSu ¼

0
0
0
0
1:0
0:5
0

2
666666664

3
777777775
� 0 0 0 0 0 0:5 1:0 0:5 0½ �

¼

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0:5 1:0 0:5 0
0 0 0 0 0 0:5 0:5 0:5 0
0 0 0 0 0 0 0 0 0

2
666666664

3
777777775

4.2 An Example for a Fuzzy Logic Controller Design 37

PBe� PBu ¼

0
0
0
0
0
0:5
1:0

2
666666664

3
777777775
� 0 0 0 0 0 0 0 0:5 1:0½ �

¼

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0:5 0:5
0 0 0 0 0 0 0 0:5 1:0

2
666666664

3
777777775

From above fuzzy matrix, we can get:

R ¼

1:0 0:5 0 0 0 0 0 0 0
0:5 0:5 0:5 0:5 0 0 0 0 0
0 0:5 1:0 0:5 1:0 0:5 0 0 0
0 0 0 0:5 0:5 0:5 0 0 0
0 0 0 0:5 0:5 0:5 1:0 0:5 0
0 0 0 0 0 0:5 0:5 0:5 0:5
0 0 0 0 0 0 0 0:5 1:0

2
666666664

3
777777775

(5) Fuzzy decision making

u ¼ e � R ð4:3Þ

When e is NB, e ¼ 1: 0 0:5 0 0 0 0 0½ �, the control input is

u ¼ e � R ¼ 1 0:5 0 0 0 0 0½ � �

1:0 0:5 0 0 0 0 0 0 0

0:5 0:5 0:5 0:5 0 0 0 0 0

0 0:5 1:0 0:5 0:5 0:5 0 0 0

0 0 0 0:5 1:0 0:5 0 0 0

0 0 0 0:5 0:5 0:5 1:0 0:5 0

0 0 0 0 0 0:5 0:5 0:5 0:5

0 0 0 0 0 0 0 0:5 1:0

2
666666666664

3
777777777775
¼ 1 0:5 0:5 0:5 0 0 0 0 0½ �

38 4 Fuzzy Logic Control

(6) Defuzzy

From above, we have

u ¼ 1
�4

þ 0:5
�3

þ 0:5
�2

þ 0:5
�1

þ 0
0
þ 0

þ 1
þ 0

þ 2
þ 0

þ 3
þ 0

þ 4

Since u is fuzzy, it must be defuzzified to be used in engineering. According to
the defuzzification method “MF degree maximum,” we can get u ¼ �4. The fuzzy
response is given in Table 4.4.

Program for water-level control: chap4_1.m

%Fuzzy Control for water tank

clear all;

close all;

a=newfis('fuzz_tank');

a=addvar(a,'input','e',[-3,3]); %Parameter e

a=addmf(a,'input',1,'NB','zmf',[-3,-1]);

a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);

a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);

a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);

a=addmf(a,'input',1,'PB','smf',[1,3]);

a=addvar(a,'output','u',[-4,4]); %Parameter u

a=addmf(a,'output',1,'NB','zmf',[-4,-1]);

a=addmf(a,'output',1,'NS','trimf',[-4,-2,1]);

a=addmf(a,'output',1,'Z','trimf',[-2,0,2]);

a=addmf(a,'output',1,'PS','trimf',[-1,2,4]);

a=addmf(a,'output',1,'PB','smf',[1,4]);

rulelist=[1 1 1 1; %Edit rule base

2 2 1 1;

3 3 1 1;

4 4 1 1;

5 5 1 1];

a=addrule(a,rulelist);

Table 4.4 Fuzzy response E −3 −2 −1 0 1 2 3

U −3 −2 −1 0 1 2 3

4.2 An Example for a Fuzzy Logic Controller Design 39

a1=setfis(a,'DefuzzMethod','mom'); %Defuzzy

writefis(a1,'tank'); %Save to fuzzy file ”tank.fis”

a2=readfis('tank');

figure(1);

plotfis(a2);

figure(2);

plotmf(a,'input',1);

figure(3);

plotmf(a,'output',1);

flag=0;

if flag==1

showrule(a) %Show fuzzy rule base

ruleview('tank'); %Dynamic Simulation

end

disp('———');

disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');

disp('———');

for i=1:1:7

e(i)=i-4;

Ulist(i)=evalfis([e(i)],a2);

end

Ulist=round(Ulist)

e=-3; % Error

u=evalfis([e],a2) %Using fuzzy inference

4.3 Fuzzy Logic Control for Washing Machine

For the washing machine, how to set washing time is an important question. Fuzzy
logic control is an important method for the washing time setting of the washing
machine, which can be described as several steps as follows:

(1) Fuzzy controller structure

Consider washing time control of the washing machine, and we can design a
fuzzy controller with two inputs and one output. According to our experience, we
choose mud and axunge as the inputs and choose washing time as the output.

40 4 Fuzzy Logic Control

(2) Define fuzzy sets

According to our experience, we can define three fuzzy sets for mud and axunge,
respectively, and define five fuzzy sets for washing time.

(3) Define MF

Consider MF design of mud, we can define three fuzzy sets: SD (mud small),
MD (mud middle), and LD (mud much), the range of mud is in [0, 100], and the
MF is designed as follows:

lmud ¼
lSDðxÞ ¼ ð50� xÞ=50 0� x� 50

lMDðxÞ ¼ x=50
ð100� xÞ=50

�
0� x� 50
50\x� 100

lLDðxÞ ¼ ðx� 50Þ=50 50\x� 100

8>><
>>: ð4:4Þ

Using triangle MF, the simulation results are shown in Fig. 4.3.

Program of MF of mud: chap4_2.m.m

%Define N+1 triangle membership function

clear all;

close all;

N=2;

x=0:0.1:100;

for i=1:N+1

f(i)=100/N*(i-1);

end

u=trimf(x,[f(1),f(1),f(2)]);

figure(1);

plot(x,u);

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

x
D

eg
re

e
of

 m
em

be
rs

hi
p

Fig. 4.3 MF of mud

4.3 Fuzzy Logic Control for Washing Machine 41

for j=2:N

u=trimf(x,[f(j-1),f(j),f(j+1)]);

hold on;

plot(x,u);

end

u=trimf(x,[f(N),f(N+1),f(N+1)]);

hold on;

plot(x,u);

xlabel('x');

ylabel('Degree of membership');

Consider axunge, we can define three fuzzy sets: NG (no axunge), MG (middle
axunge), and LG (much axunge), the range value of axunge is set as [0, 100], and
the MF is designed as follows:

laxunge ¼
lNGðyÞ ¼ ð50� yÞ=50 0� y� 50

lMGðyÞ ¼
y=50

ð100� yÞ=50

(
0� y� 50
50\y� 100

lLGðyÞ ¼ ðy� 50Þ=50 50� y� 100

8>>><
>>>:

ð4:5Þ

MF of axunge is shown in Fig. 4.4, and the program is also chap4_2.m.
For washing time, five fuzzy sets are used: VS (very small), S (small), M

(middle), L (ling), and VL (very long), and the value is in the range of [0, 60]. MF
of washing time is:

ltime ¼

lVSðzÞ ¼ ð10� zÞ=10 0� z� 10

lSðzÞ ¼ z=10
ð25� zÞ=15

�
0� z� 10
10\x� 25

lMðzÞ ¼
ðz� 10Þ=15
ð40� zÞ=15

(
10� z� 25
25\z� 40

lLðzÞ ¼
ðz� 25Þ=15
ð60� zÞ=20

(
25� z� 40
40\z� 60

lVLðzÞ ¼ ðz� 40Þ=20 40� z� 60

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:6Þ

The MF of washing time is shown in Fig. 4.5.

Program of MF of washing time: chap4_3.m

%Define N+1 triangle membership function

clear all;

close all;

z=0:0.1:60;

42 4 Fuzzy Logic Control

u=trimf(z,[0,0,10]);

figure(1);

plot(z,u);

u=trimf(z,[0,10,25]);

hold on;

plot(z,u);

u=trimf(z,[10,25,40]);

hold on;

plot(z,u);

u=trimf(z,[25,40,60]);

hold on;

plot(z,u);

u=trimf(z,[40,60,60]);

hold on;

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

y
D

eg
re

e
of

 m
em

be
rs

hi
p

Fig. 4.4 MF of axunge

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

z

D
eg

re
e

of
 m

em
be

rs
hi

p

Fig. 4.5 MF of washing time

4.3 Fuzzy Logic Control for Washing Machine 43

plot(z,u);

xlabel('z');

ylabel('Degree of membership');

(4) Design fuzzy rule

According to experience, we can design fuzzy rules.
The input is mud and axunge, and the output is washing time. If we design three

membership functions for each input, then we can design 9 rules.
The format of the rule is “IF Mud is A AND Axunge is B THEN Washing time

is C”.

(5) Design fuzzy rule table

According to our experience, we can set a fuzzy rule table, which is shown in
Table 4.5.

For example, *th fuzzy rule is described as “IF mud is small and axunge is small
THEN washing time is very short”.

(6) Fuzzy inference

① Rule activation

If x0ðmudÞ ¼ 60, y0ðaxungeÞ ¼ 70, then

lSDð60Þ ¼ 0; lMDð60Þ ¼
4
5
; lLDð60Þ ¼

1
5

lNGð70Þ ¼ 0; lMGð70Þ ¼
3
5
; lLGð70Þ ¼

2
5

Then, four fuzzy rules are activated, and the results are shown in Table 4.6.

② Fuzzy rules inspiration

From Table 4.6, four fuzzy rules are inspired:

Rule 1 IF x is MD and y is MG THEN z is M
Rule 2 IF x is MD and y is LG THEN z is L
Rule 3 IF x is LD and y is MG THEN z is L

Table 4.5 Fuzzy rule of the
washing machine

Washing time, z Mud, x

SD MD LD

Axunge, y NG VS* M L

MG S M L

LG M L VL

44 4 Fuzzy Logic Control

Rule 4 IF x is LD and y is LG THEN z is VL

③ Premise inference of each fuzzy rule
(1) Since “AND” is used in the inference, then fuzzy intersection operator can be

used and CF for premise of each fuzzy rule can be calculated as follows:

CF of Rule 1 premise: min(4/5, 3/5) = 3/5
CF of Rule 2 premise: min(4/5, 2/5) = 2/5
CF of Rule 3 premise: min(1/5, 3/5) = 1/5
CF of Rule 4 premise: min(1/5, 2/5) = 1/5

The premise CF of each fuzzy rule is shown in Table 4.7.

④ Inference of each fuzzy rule

Using fuzzy product operator, the inference of each fuzzy rule is shown in
Table 4.8.

⑤ Total output of the system

For different fuzzy rules, fuzzy union operator can be used to calculate the total
output as follows:

laggðzÞ ¼max min
3
5
; lMðzÞ

� �
; min

1
5
; lLðzÞ

� �
; min

2
5
; lLðzÞ

� �
; min

1
5
; lVLðzÞ

� �� �

¼max min
3
5
; lMðzÞ

� �
;min

2
5
; lLðzÞ

� �
;min

1
5
; lVLðzÞ

� �� �

⑥ Defuzzy the total output

lMðzÞ ¼
z� 10
15

¼ 3
5
; lMðzÞ ¼

40� z
15

¼ 3
5

Table 4.6 Fuzzy rule
activation

Washing time, z Mud, x

SD MD (4/5) LD (1/5)

Axunge, y NG 0 0 0

MG (3/5) 0 lMðzÞ lLðzÞ
LG (2/5) 0 lLðzÞ lVLðzÞ

Table 4.7 CF of premise of
each fuzzy rule

Washing time, z Mud, x

SD MD (4/5) LD (1/5)

Axunge, y NG 0 0 0

MG (3/5) 0 3/5 1/5

LG (2/5) 0 2/5 1/5

4.3 Fuzzy Logic Control for Washing Machine 45

z1 ¼ 19; z2 ¼ 31

Use the maximum average to defuzzy the output, and we can get precise output
as shown in Figs. 4.6 and 4.7.

z� ¼ z1 þ z2
2

¼ 19þ 31
2

¼ 25

Table 4.8 Inference of each
fuzzy rule

Washing time, z Mud x

SD MD (4/5) LD (1/5)

Axunge,
y

NG 0 0 0

MG
(3/5)

0 min 3
5 ;lMðzÞ
� �

min 1
5 ;lLðzÞ
� �

LG (2/5) 0 min 2
5 ;lLðzÞ
� �

min 1
5 ;lVLðzÞ
� �

0 100

µ

5
4

MD

µ

5
3

MG

µ

M0.10.1

100 40100 0

5
3

0.1

x y z

(a) First fuzzy rule

µ µ µ

0 100

5
4

MD

5
2

LG L0.10.1

100 60200 0

5
2

0.1

50x zy

(b) Second fuzzy rule
µ µ µ

0 100

5
1

LD

5
2

LG VL0.10.1

100 60400 0

5
1

0.1

5060 y zx

(c) Third fuzzy rule

Fig. 4.6 Fuzzy inference of each fuzzy rule

46 4 Fuzzy Logic Control

(7) Simulation example

Choose x = 60, y = 70, use the above six steps (from step 1 to step 6), and we
can get the output as 24.9. The inference process is shown in Fig. 4.8.

Using the order “ruleview”, we can watch the dynamic simulation environment.

µ

0 60
5
1

VL0.1

4010
z

5
2
5
3

LM

19 31

Fig. 4.7 Output and defuzzification of fuzzy inference

Fig. 4.8 Dynamic simulation

4.3 Fuzzy Logic Control for Washing Machine 47

Simulation program of washing time: chap4_4.m

%Fuzzy Control for washer

clear all;

close all;

a=newfis('fuzz_wash');

a=addvar(a,'input','x',[0,100]); %Fuzzy Stain

a=addmf(a,'input',1,'SD','trimf',[0,0,50]);

a=addmf(a,'input',1,'MD','trimf',[0,50,100]);

a=addmf(a,'input',1,'LD','trimf',[50,100,100]);

a=addvar(a,'input','y',[0,100]); %Fuzzy Axunge

a=addmf(a,'input',2,'NG','trimf',[0,0,50]);

a=addmf(a,'input',2,'MG','trimf',[0,50,100]);

a=addmf(a,'input',2,'LG','trimf',[50,100,100]);

a=addvar(a,'output','z',[0,60]); %Fuzzy Time

a=addmf(a,'output',1,'VS','trimf',[0,0,10]);

a=addmf(a,'output',1,'S','trimf',[0,10,25]);

a=addmf(a,'output',1,'M','trimf',[10,25,40]);

a=addmf(a,'output',1,'L','trimf',[25,40,60]);

a=addmf(a,'output',1,'VL','trimf',[40,60,60]);

rulelist=[1 1 1 1 1; %Edit rule base

1 2 3 1 1;

1 3 4 1 1;

2 1 2 1 1;

2 2 3 1 1;

2 3 4 1 1;

3 1 3 1 1;

3 2 4 1 1;

3 3 5 1 1];

a=addrule(a,rulelist);

showrule(a) %Show fuzzy rule base

a1=setfis(a,'DefuzzMethod','mom'); %Defuzzy

writefis(a1,'wash'); %Save to fuzzy file ”wash.fis”

a2=readfis('wash');

figure(1);

plotfis(a2);

figure(2);

48 4 Fuzzy Logic Control

plotmf(a,'input',1);

figure(3);

plotmf(a,'input',2);

figure(4);

plotmf(a,'output',1);

ruleview('wash'); %Dynamic Simulation

x=60;

y=70;

z=evalfis([x,y],a2) %Using fuzzy inference

4.4 Fuzzy PI Control

4.4.1 PI Tuning Controller with Fuzzy Logic

Discrete PI algorithm is

u kð Þ ¼ kpe kð Þþ kiT
Xk
j¼0

e jð Þ ð4:7Þ

where T is sampling time and e kð Þ is error at time k, kp [0, ki [0.
The term e kð Þ is

e kð Þ ¼ yd kð Þ � y kð Þ ð4:8Þ

where yd kð Þ is the desired value.
In PI controller (4.7), how to tuning kp and ki is an important question. To design

fuzzy rule, we consider the range of e and ec as 0; 1½ � and define fuzzy set of e and
ec as N,O,Pf g, which represents negative, zero, and positive.

(1) Fuzzy rules of kp tuning

The principle of kp tuning is: When e kð Þ is positive, i.e., e is P, we should increase
kp and then Dkp should be positive; when e kð Þ is negative, overshoot appears (e is
N), we should decrease kp and then Dkp should be negative.

When the error is near to zero, i.e., e is Z, we can get three conditions: If ec is N,
the overshoot value tends to bigger, Dkp should be negative;if ec is Z, to decrease
static error, Dkp should be positive; if ec is P, the error will tend to be bigger, we
should increase kp, and Dkp should be positive, which is given in Table 4.9.

4.3 Fuzzy Logic Control for Washing Machine 49

(2) Fuzzy rules of ki tuning

Using the integrate separation tactics to tune ki, when the error is very small, we
choose big Dki, otherwise we choose very small Dki, which is given in Table 4.10.

We can tune kp, ki online as follows:

kp ¼ kp0 þDkp; ki ¼ ki0 þDki ð4:9Þ

4.4.2 Simulation Example

Consider the following plant

GpðsÞ ¼ 133
s2 þ 25s

Choose sampling time as T ¼ 0:001, and we can get the discrete plant as:

y kð Þ ¼ �den 2ð Þy k � 1ð Þ � den 3ð Þy k � 2ð Þþ num 2ð Þu k � 1ð Þþ num 3ð Þu k � 2ð Þ

The ideal signal is yd kð Þ ¼ 1:0. Firstly, we run the fuzzy PI tuning program
chap4_5.m and we can get the inference system file “fuzzpid.fis”. Then, we run the
fuzzy control program chap4_6.m. In the program chap4_5.m, according to
Tables 4.9 and 4.10, we can get MF of e, ec, kp, ki.

We set the range of e, ec, kp, and ki according to the ideal signal, the initial error,
and our experience.

For the fuzzy system “a”, if we use the order “plotmf”, we can get the MF of e,
ec, kp, and ki, which are given from Figs. 4.9, 4.10, 4.11, and 4.12.

Using the command “showrule(a)”, we can get 9 fuzzy rules as:

1. If (e is N) and (ec is N) then (kp is N)(ki is Z) (1)
2. If (e is N) and (ec is Z) then (kp is N)(ki is Z) (1)
3. If (e is N) and (ec is P) then (kp is N)(ki is Z) (1)
4. If (e is Z) and (ec is N) then (kp is N)(ki is P) (1)
5. If (e is Z) and (ec is Z) then (kp is P)(ki is P) (1)
6. If (e is Z) and (ec is P) then (kp is P)(ki is P) (1)
7. If (e is P) and (ec is N) then (kp is P)(ki is Z) (1)

Table 4.9 Fuzzy rules of kp
tuning

ec
e

N Z P

N N N N

Z N P P

P P P P

50 4 Fuzzy Logic Control

8. If (e is P) and (ec is Z) then (kp is P)(ki is Z) (1)
9. If (e is P) and (ec is P) then (kp is P)(ki is Z) (1)

In addition, if we run “fuzzy fuzzpid.fis”, we can edit the MF and the rule of the
fuzzy system,as shown in Fig. 4.13. If we run “ruleview fuzzpid.fis”, we can get the
dynamic simulation, as shown in Fig. 4.14.

Table 4.10 Fuzzy rules of ki
tuning

ec
e

N Z P

N Z Z Z

Z P P P

P Z Z Z

Fig. 4.9 Membership
function of error

Fig. 4.10 Membership
function of error change

4.4 Fuzzy PI Control 51

Using the program chap4_6.m, we can realize the tuning of PI controller by
using the fuzzy system “fuzzpid.fis”.

Choose the initial value of kp and ki as zeros, use the fuzzy tuning PI controller,
we can get the results, as shown in Figs. 4.15 and 4.16.

Simulation programs:

(1) Fuzzy logic tuning for PI tuning: chap4_5.m

%Fuzzy Tuning PI Control

clear all;

close all;

a=newfis('fuzzpid');

a=addvar(a,'input','e',[-1,1]); %Parameter e

a=addmf(a,'input',1,'N','zmf',[-1,-1/3]);

a=addmf(a,'input',1,'Z','trimf',[-2/3,0,2/3]);

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

kp

D
eg

re
e

of
 m

em
be

rs
hi

p

N Z PFig. 4.11 Membership
function of kp

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

1

ki

D
eg

re
e

of
 m

em
be

rs
hi

p

N Z PFig. 4.12 Membership
function of ki

52 4 Fuzzy Logic Control

Fig. 4.13 Fuzzy system structure

Fig. 4.14 Dynamic simulation environment

4.4 Fuzzy PI Control 53

a=addmf(a,'input',1,'P','smf',[1/3,1]);

a=addvar(a,'input','ec',[-1,1]); %Parameter ec

a=addmf(a,'input',2,'N','zmf',[-1,-1/3]);

a=addmf(a,'input',2,'Z','trimf',[-2/3,0,2/3]);

a=addmf(a,'input',2,'P','smf',[1/3,1]);

a=addvar(a,'output','kp',1/3*[-10,10]); %Parameter kp

a=addmf(a,'output',1,'N','zmf',1/3*[-10,-3]);

a=addmf(a,'output',1,'Z','trimf',1/3*[-5,0,5]);

a=addmf(a,'output',1,'P','smf',1/3*[3,10]);

a=addvar(a,'output','ki',1/30*[-3,3]); %Parameter ki

a=addmf(a,'output',2,'N','zmf',1/30*[-3,-1]);

a=addmf(a,'output',2,'Z','trimf',1/30*[-2,0,2]);

a=addmf(a,'output',2,'P','smf',1/30*[1,3]);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)
yd

,y

Ideal position
Practical position

Fig. 4.15 Response with
fuzzy PI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.45
2.5

2.55
2.6

2.65

time (s)

kp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

time (s)

ki

Fig. 4.16 Fuzzy tuning of kp
and kd

54 4 Fuzzy Logic Control

rulelist=[1 1 1 2 1 1;

1 2 1 2 1 1;

1 3 1 2 1 1;

2 1 1 3 1 1;

2 2 3 3 1 1;

2 3 3 3 1 1;

3 1 3 2 1 1;

3 2 3 2 1 1;

3 3 3 2 1 1];

a=addrule(a,rulelist);

a=setfis(a,'DefuzzMethod','centroid');

writefis(a,'fuzzpid');

a=readfis('fuzzpid');

figure(1);

plotmf(a,'input',1);

figure(2);

plotmf(a,'input',2);

figure(3);

plotmf(a,'output',1);

figure(4);

plotmf(a,'output',2);

figure(5);

plotfis(a);

fuzzy fuzzpid;

showrule(a)

ruleview fuzzpid;

(2) Fuzzy PI control: chap4_6.m

%Fuzzy PI Control

close all;

clear all;

warning off;

a=readfis('fuzzpid'); %Load fuzzpid.fis

ts=0.001;

sys=tf(133,[1,25,0]);

dsys=c2d(sys,ts,'z');

[num,den]=tfdata(dsys,'v');

u_1=0;u_2=0;

y_1=0;y_2=0;

e_1=0;ec_1=0;ei=0;

4.4 Fuzzy PI Control 55

kp0=0;ki0=0;

for k=1:1:1000

time(k)=k*ts;

yd(k)=1;

%Using fuzzy inference to tunning PI

k_pid=evalfis([e_1,ec_1],a);

kp(k)=kp0+k_pid(1);

ki(k)=ki0+k_pid(2);

u(k)=kp(k)*e_1+ki(k)*ei;

y(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2;

e(k)=yd(k)-y(k);

%%%%%%%%%%%%%%Return of parameters%%%%%%%%%%%%%%%

u_2=u_1;u_1=u(k);

y_2=y_1;y_1=y(k);

ei=ei+e(k)*ts; % Calculating I

ec(k)=e(k)-e_1;

e_1=e(k);

ec_1=ec(k);

end

figure(1);

plot(time,yd,'r',time,y,'b:','linewidth',2);

xlabel('time(s)');ylabel('r,y');

legend('Ideal position','Practical position');

figure(2);

subplot(211);

plot(time,kp,'r','linewidth',2);

xlabel('time(s)');ylabel(‘kp');

subplot(212);

plot(time,ki,'r','linewidth',2);

xlabel(‘time(s)');ylabel(‘ki');

figure(3);

plot(time,u,'r','linewidth',2);

xlabel(‘time(s)');ylabel(‘Control input');

References

1. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
2. L.A. Zadeh, Fuzzy Sets, Fuzzy Logic, Fuzzy Systems (World Scientific Press, 1996)

56 4 Fuzzy Logic Control

Chapter 5
Fuzzy T-S Modeling and Control

5.1 Fuzzy T-S Model

The traditional fuzzy model, which belongs to the Mamdani fuzzy model, whose
output is fuzzy. The other fuzzy model is Takagi–Sugeno (T-S) fuzzy model, whose
output is constant or linear function as follows

y ¼ a

y ¼ axþ b
ð5:1Þ

The difference between T-S fuzzy model and Mamdani fuzzy model is: (1) the
output variable of T-S fuzzy model is constant or linear function; (2) the output of
T-S fuzzy model is accurate.

T-S type fuzzy inference system is very suitable for the piecewise linear control
system, such as missile control system, aircraft control system.

To design a T-S fuzzy model, for example, we can set the inputs as X 2 0; 5½ � ,
Y 2 0; 10½ � and define two fuzzy sets “small” and “large.” The output Z can be
described as a linear function of the input x; yð Þ as follows:

If X is small and Y is small then Z ¼ �xþ y�3

If X is small and Y is big then Z ¼ xþ yþ 1

If X is big and Y is small then Z ¼ �2yþ 2

If X is big and Y is big then Z ¼ 2xþ y� 6

The input membership function and the input/output of the fuzzy inference
system are shown in Figs. 5.1 and 5.2.

In the simulation program chap5_1.m, by using the command “Showrule
(TS2),” fuzzy logic rules can be displayed as the following four fuzzy rules.

(1) If (X is small) and (Y is small) then (Z is first area) (1);
(2) If (X is small) and (Y is big) then (Z is second area) (1);
(3) If (X is big) and (Y is small) then (Z is third area) (1);
(4) If (X is big) and (Y is big) then (Z is fourth area) (1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2
0.4
0.6
0.8

1

x
M

F
D

eg
re

e
of

in

pu
t 1

little big

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1

x

M
F

D
eg

re
e

of
in

pu
t 2

little big

Fig. 5.1 Membership function of T-S fuzzy model inference system

0
1

2
3

4
5

0

5

10

0

5

10

XY

Z

Fig. 5.2 Input and output of T-S type fuzzy inference system

58 5 Fuzzy T-S Modeling and Control

Simulation program: chap5_1.m

%T-S type fuzzy model

clear all;

close all;

ts2=newfis('ts2','sugeno');

ts2=addvar(ts2,'input','X',[0 5]);

ts2=addmf(ts2,'input',1,'little','gaussmf',[1.8 0]);

ts2=addmf(ts2,'input',1,'big','gaussmf',[1.8 5]);

ts2=addvar(ts2,'input','Y',[0 10]);

ts2=addmf(ts2,'input',2,'little','gaussmf',[4.4 0]);

ts2=addmf(ts2,'input',2,'big','gaussmf',[4.4 10]);

ts2=addvar(ts2,'output','Z',[-3 15]);

ts2=addmf(ts2,'output',1,'first area','linear',[-1 1 -3]);

ts2=addmf(ts2,'output',1,'second area','linear',[1 1 1]);

ts2=addmf(ts2,'output',1,'third area','linear',[0 -2 2]);

ts2=addmf(ts2,'output',1,'fourth area','linear',[2 1 -6]);

rulelist=[1 1 1 1 1;

1 2 2 1 1;

2 1 3 1 1;

2 2 4 1 1];

ts2=addrule(ts2,rulelist);

showrule(ts2);

figure(1);

subplot 211;

plotmf(ts2,'input',1);

xlabel('x'),ylabel('MF Degree of input 1');

subplot 212;

plotmf(ts2,'input',2);

xlabel('x'),ylabel('MF Degree of input 2');

figure(2);

gensurf(ts2);

xlabel('x'),ylabel('y'),zlabel('z');

5.2 Fuzzy T-S Modeling and Control Based on LMI

Linear matrix inequality (LMI) is a powerful tool in the field of control domain.
Many control theory and synthesis problems can be reduced to the corresponding
LMI problem.

It is one of the hot spots in the research of control theory to study the nonlinear
system modeling using T-S fuzzy system. It has been proved that the T-S fuzzy
model with linear back part can make full use of the local information of the system

5.1 Fuzzy T-S Model 59

and the experience of expert control in the form of fuzzy rules and can approximate
any actual plant with arbitrary precision.

The stability condition of T-S fuzzy system can be expressed in the form of
linear matrix inequality (LMI). The research on robust stability and adaptive control
of T-S fuzzy model is the focus of control theory.

5.2.1 Controller Design of T-S Fuzzy Model Based on LMI

For a continuous nonlinear system with m control inputs and n output states, T-S
type fuzzy model can be described as the following fuzzy rules:

Fuzzy rule i : If x1 tð Þ isMi
1 and x2 tð Þ isMi

2 and � � � xn tð Þ isMi
n ð5:2Þ

Then _xðtÞ ¼ AixðtÞþBiuðtÞ; i ¼ 1; 2; � � � ; r
where xj is state, Mi

j is membership function, x tð Þ is state vector, x tð Þ ¼
x1 tð Þ � � � xn tð Þ½ �T2 Rn, u tð Þ is control input vector, u tð Þ ¼ u1 tð Þ � � �½
um tð Þ�T 2 Rm, Ai 2 Rn�n, Bi 2 Rn�m.

According to the defuzzification of fuzzy system, the total output of the fuzzy
model is

_x tð Þ ¼
Pr
i¼1

wi Aix tð ÞþBiu tð Þ½ �
Pr
i¼1

wi

ð5:3Þ

where wi is the membership function for fuzzy rule i, wi ¼
Qn
k¼1

Mi
k xk tð Þð Þ, Take 4

rules as an example, consider the rule premise as x1, then we have k ¼ 1,
i ¼ 1; 2; 3; 4, w1 ¼ M1

1 x1ð Þ, w2 ¼ M2
1 x1ð Þ, w3 ¼ M3

1 x1ð Þ, w4 ¼ M4
1 x1ð Þ.

For each T-S fuzzy rule, the state feedback method can be used to design r kinds
of fuzzy control rules as follows

Fuzzy rule i:

If x1 tð Þ isMi
1 and x2 tð Þ isMi

2 and � � � xn tð Þ isMi
n ð5:4Þ

Then u tð Þ ¼ Kix tð Þ; i ¼ 1; 2; � � � ; r
Parallel distributed compensation (PDC) method is proposed by Sugeno, etc. [1],

which is a kind of fuzzy controller design method based on the model, and the proof
and analysis are given by [2]. PDC can be applied to solve the control problems for
nonlinear system based on T-S fuzzy modeling [3].

60 5 Fuzzy T-S Modeling and Control

Consider the system (5.2) and fuzzy rules (5.4), T-S fuzzy controller can be
designed by using PDC method [4] as

u tð Þ ¼

Pr
j¼1

wjKjx tð Þ
Pr
j¼1

wj

ð5:5Þ

5.2.2 LMI Design and Analysis

Theorem 5.1 [5]: There is a positive definite matrix Q. When the following con-
ditions are satisfied, the T-S fuzzy system (5.2) is asymptotically stable.

QAT
i þAiQþVT

i B
T
i þBiV i\0; i ¼ 1; 2; � � � ; r

QAT
i þAiQþQAT

j þAjQþVT
j B

T
i þBiV j þVT

i B
T
j þBjV i\0; i\ j � r

Q ¼ P�1 [0

ð5:6Þ

where Vi ¼ KiQ, that is K i ¼ ViQ�1 ¼ ViP, Vj ¼ KjQ, that is
Kj ¼ V jQ�1 ¼ V jP.

According to (5.6), Ki in controller (5.5) can be obtained by using the LMI.
Theorem 5.1 is given in Ref. [5]. Reference to [5], the concrete proof of theorem 5.1
is given below.

Proof Choose Lyapunov function as

VðtÞ ¼ 1
2
xTPx

where P is positive and symmetric Matrix.
then

_VðtÞ ¼ 1
2

_xTPxþ xTP_x
� � ¼ 1

2
_xTPxþ 1

2
xTP_x

¼ 1
2

Pr
i¼1

wi AixþBiu½ �
Pr
i¼1

wi

8>><
>>:

9>>=
>>;

T

Pxþ 1
2
xTP

Pr
i¼1

wi AixþBiu½ �
Pr
i¼1

wi

8>><
>>:

9>>=
>>;

5.2 Fuzzy T-S Modeling and Control Based on LMI 61

Submitting controller (5.5) into above, we have

_VðtÞ ¼ 1
2

Pr
i¼1

wi AixþBi

Pr
j¼1

wjKjxPr
j¼1

wj

2
64

3
75

Pr
i¼1

wi

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

T

Pxþ 1
2
xTP

Pr
i¼1

wi AixþBi

Pr
j¼1

wjKjxPr
j¼1

wj

2
64

3
75

Pr
i¼1

wi

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 1
2

Pr
i¼1

wi
Pr
j¼1

wjAixþBi
Pr
j¼1

wjKjx

" #

Pr
i¼1

wi
Pr
j¼1

wj

8>>>><
>>>>:

9>>>>=
>>>>;

T

Pxþ 1
2
xTP

Pr
i¼1

wi
Pr
j¼1

wjAixþBi
Pr
j¼1

wjKjx

" #

Pr
i¼1

wi
Pr
j¼1

wj

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 1
2

Pr
i¼1

wi
Pr
j¼1

wj AixþBiK jx
� �

Pr
i¼1

Pr
j¼1

wiwj

2
6664

3
7775
T

Pxþ 1
2
xTP

Pr
i¼1

wi
Pr
j¼1

wj AixþBiKjx
� �

Pr
i¼1

Pr
j¼1

wiwj

2
6664

3
7775

¼ 1
2

Pr
i¼1

Pr
j¼1

wiwjxT Ai þBiKj
� �T

Pr
i¼1

Pr
j¼1

wiwj

Pxþ 1
2
xTP

Pr
i¼1

Pr
j¼1

wiwj Ai þBiKj
� �

x

Pr
i¼1

Pr
j¼1

wiwj

¼ 1
2
xT

Pr
i¼1

Pr
j¼1

wiwj AiþBiKj
� �T

Pr
i¼1

Pr
j¼1

wiwj

Pxþ 1
2
xTP

Pr
i¼1

Pr
j¼1

wiwj Ai þBiKj
� �

Pr
i¼1

Pr
j¼1

wiwj

x

¼ 1
2
xT

Pr
i¼1

Pr
j¼1

wiwj AiþBiKj
� �TPþP Ai þBiKj

� �h i
Pr
i¼1

Pr
j¼1

wiwj

8>>><
>>>:

9>>>=
>>>;
x

Therefore, when the following inequality is satisfied as

Ai þBiKj
� �T PþP Ai þBiKj

� �
\0

We have _VðtÞ\ ¼ 0, where i ¼ 1; 2; � � � ; r , j ¼ 1; 2; � � � ; r.
Consider i ¼ j and i 6¼ j, respectively, we have

62 5 Fuzzy T-S Modeling and Control

_VðtÞ ¼ 1
2
xT

Pr
i¼1

Pr
j¼1

wiwj Ai þBiKj
� �TPþP Ai þBiKj

� �h i
Pr
i¼1

Pr
j¼1

wiwj

8>>><
>>>:

9>>>=
>>>;
x

¼ 1
2
xT

1Pr
i¼1

Pr
j¼1

wiwj

Xr

i¼1

wiwi Ai þBiKið ÞTPþP Ai þBiK ið Þ
h i

x

þ 1
2
xT

1Pr
i¼1

Pr
j¼1

wiwj

Xr

i\j

wiwj GT
ijPþPGij

h i
x

where Gij ¼ Ai þBiKj
� �þ Aj þBjKi

� �
.

If the following inequality is satisfied

Ai þBiKið ÞTPþP Ai\BiKið Þ\0
GT

ijPþPGij0

�
i ¼ j ¼ 1; 2; . . .; r

i\j� r
ð5:7Þ

Then we have _VðtÞ� 0.
From (5.7), if _V � 0, we have x � 0, according to LaSalle invariance principle,

when t ! 1, x ! 0.

5.2.3 Transformation of LMI

Firstly, consider Ai þBiKið ÞTPþP Ai þBiKið Þ\0, i ¼ j ¼ 1; 2; . . .; r, define
Q ¼ P�1, then Q is also positive and symmetric matrix, let V i ¼ KiQ, then

AT
i PþKT

i B
T
i PþPAi þPBiKi\0

Multiplied P�1 by both sides of above inequality, we have

P�1AT
i þP�1KT

i B
T
i þAiP�1 þBiKiP�1\0

That is

QAT
i þVT

i B
T
i þAiQþBiV i\0

5.2 Fuzzy T-S Modeling and Control Based on LMI 63

That is

QAT
i þAiQþVT

i B
T
i þBiV i\0 ð5:8Þ

Consider GT
ijPþPGij\0, Gij ¼ Ai þBiKj

� �þ Aj þBjKi
� �

, i\j� r. Let Q ¼
P�1 and define V i ¼ KiQ, V j ¼ KjQ, then

Ai þBiKj
� �þ Aj þBjKi

� �� �TPþP Ai þBiKj
� �þ Aj þBjKi

� �� �
\0

Multiplied P�1 by both sides of above inequality, consider Q ¼ QT, we have

QT Ai þBiKj
� �þ Aj þBjKi

� �� �T þ Ai þBiKj
� �þ Aj þBjK i

� �� �
Q\0

That is

AiQþBiKjQþAjQþBjKiQ
� �T þAiQþBiKjQþAjQþBjKiQ\0

then

AiQþBiV j þAjQþBjV i
� �T þAiQþBiV j þAjQþBjV i\0

That is

QAT
i þAiQþQAT

j þAjQþVT
j B

T
i þBiV j þVT

i B
T
j þBjV i\0 ð5:9Þ

5.2.4 LMI Design Example

First example: consider two fuzzy rules, r ¼ 2, i ¼ 1; 2, then we can get two LMI
as follows

QAT
1 þA1QþVT

1B
T
1 þB1V1\0

QAT
2 þA2QþVT

2B
T
2 þB2V2\0

ð5:10Þ

For i\j� r, we have i ¼ 1, j ¼ 2, two fuzzy rule are interacted, from (5.9),
then we have an LMI as

QAT
1 þA1QþQAT

2 þA2QþVT
2B

T
1 þB1V2 þVT

1B
T
2 þB2V1\0 ð5:11Þ

64 5 Fuzzy T-S Modeling and Control

For the first example, Matlab program can be written as

L1 ¼ Q � A10 þA1 � QþV10 � B10 þB1 � V1;
L2 ¼ Q � A20 þA2 � QþV20 � B20 þB2 � V2;
L3 ¼ Q � A10 þA1 � QþQ � A20 þA2 � QþV20 � B10 þB1 � V2þV10 � B20 þB2 � V1;
F ¼ set L1\0ð Þþ set L2\0ð Þþ set L3\0ð Þþ set Q[0ð Þ;

Second example: consider four fuzzy rules, r ¼ 4, the we have four LMI as
follows

QAT
1 þA1QþVT

1B
T
1 þB1V1\0

QAT
2 þA2QþVT

2B
T
2 þB2V2\0

QAT
3 þA3QþVT

3B
T
3 þB3V3\0

QAT
4 þA4QþVT

4B
T
4 þB4V4\0

ð5:12Þ

For the second example, Matlab program can be written as

L1 ¼ Q � A10 þA1 � QþV10 � B10 þB1 � V1;
L2 ¼ Q � A20 þA2 � QþV20 � B20 þB2 � V2;
L3 ¼ Q � A30 þA3 � QþV30 � B30 þB3 � V3;
L4 ¼ Q � A40 þA4 � QþV40 � B40 þB4 � V4;

For i\j� r, fromQAT
i þAiQþQAT

j þAjQþVT
j B

T
i þBiV j þVT

i B
T
j þBjV i\0,

we can design six LMI as follows:

i ¼ 1; j ¼ 2; i ¼ 1; j ¼ 3; i ¼ 1; j ¼ 4; i ¼ 2; j ¼ 3; i ¼ 2; j ¼ 4; i ¼ 3; j ¼ 4:

In the design of LMI, the interaction between membership function i and
membership function j should be considered.

Consider i ¼ 3; j ¼ 4, the interaction between the third rule and the fourth rule
are considered, we can get a LMI as

QAT
3 þA3QþQAT

4 þA4QþVT
4B

T
3 þB3V4 þVT

3B
T
4 þB4V3\0 ð5:13Þ

The Matlab program is

L ¼ Q � A30 þA3 � QþQ � A40 þA4 � QþV40 � B30 þB3 � V4þV30

� B40 þB4 � V3;

5.2 Fuzzy T-S Modeling and Control Based on LMI 65

5.3 Fuzzy T-S Modeling and Control Based on LMI
for Inverted Pendulum

5.3.1 System Description

The single inverted pendulum system is a complex nonlinear and uncertain system.
The control problem of the inverted pendulum system is a typical problem; the aim
is to keep the cart in a predetermined position by applying a control input, and at the
same time, the pendulum is kept in the range of a predefined vertical deviation
angle.

The single inverted pendulum model is

_x1 ¼ x2

_x2 ¼ g sin x1 � amlx22 sin 2x1ð Þ=2� au cos x1
4l=3� aml cos2 x1

ð5:14Þ

where x1 is angle of pendulum, x2 is angle speed of pendulum, 2l is Length of
pendulum, u is control input, a ¼ 1

Mþm, M and m are mass of car and pendulum.

5.3.2 Simulation Based on Two Fuzzy Rules Design

When x1 ! 0, sin x1 ! x1, cos x1 ! 1; when x1 ! 	 p
2, sin x1 ! 	1 ! 2

p x1, from
(5.14), we have two T-S type fuzzy rules

Rule 1 IF x1 tð Þ is about 0, THEN _xðtÞ ¼ A1xðtÞþB1uðtÞ;
Rule 2 IF x1 tð Þ is about 	 p

2 x1j j\ p
2

� �
, then _xðtÞ ¼ A2xðtÞþB2uðtÞ.

where A1 ¼
0 1
g

4l=3�aml 0

� �
, B1 ¼

0
� a

4l=3�aml

� �
, A2 ¼

0 1
2g

pð4l=3�amlb2Þ 0

� �
,

B2 ¼
0

� ab
4l=3�amlb2

� �
, b ¼ cos 88oð Þ.

According to theorem 5.1, using (5.10) and (5.11), LMI of the inverted pen-
dulum can be expressed as

QAT
1 þA1QþVT

1B
T
1 þB1V1\0;

QAT
2 þA2QþVT

2B
T
2 þB2V2\0;

QAT
1 þA1QþQAT

2 þA2QþVT
2B

T
1 þB1V2 þVT

1B
T
2 þB2V1\0

Q ¼ P�1 [0 ð5:15Þ

where K1 ¼ V1P, K2 ¼ V2P, i ¼ 1; 2.

66 5 Fuzzy T-S Modeling and Control

From above LMI, the programs are designed as follows:

L1=Q*A1'+A1*Q+V1'*B1'+B1*V1;
L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;
L3=Q*A1'+A1*Q+Q*A2'+A2*Q+V2'*B1'+B1*V2+V1'*B2'+B2*V1;

Then we can set LMI as follows and get Ki by (5.15)

F=set(L1<0)+set(L2<0)+set(L3<0)+set(Q>0);

In the simulation, we choose g ¼ 9:8m/s2, m¼ 2:0 kg, M¼ 8:0 kg, 2l ¼ 1:0m.
According to the experience of inverted pendulum, two fuzzy rules can be
designed:

Rule 1 : If x1ðtÞ is about 0 then u ¼ K1xðtÞ
Rule 2 : If x1ðtÞ is about 	 p

2 x1ðtÞj j\ p
2

� �
then u ¼ K2xðtÞ

According to (5.5), the T-S based fuzzy controller is designed by using PDC
method:

u ¼ w1ðx1ÞK1xðtÞþw2ðx1ÞK2xðtÞ ð5:16Þ

where w1 þw2 ¼ 1.
According to two fuzzy rules of the inverted pendulum, the membership func-

tion should be designed according to Fig. 5.3. Triangular membership function is
used to fuzzify x1 tð Þ. The initial states are chosen as p

3 0
� �

.
Using LMI toolbox, YALMIP toolbox, we can get Q;V1;V2 from the program

chap5_2LMI.m, we can get K1 ¼ 2400:8 692:3½ �, K2 ¼ 5171:6 1515:3½ �. The
main program is chap5_2sim.mdl; simulation results are shown in Figs. 5.4, 5.5,
and 5.6.

Fig. 5.3 Schematic diagram
of fuzzy membership function

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 67

Matlab Programs:

(1) Controller gain based on LMI: chap5_2LMI.m;

clearall;

closeall;

g=9.8;m=2.0;M=8.0;l=0.5;

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x1
M

em
be

rs
hi

p
fu

nc
tio

n

Fig. 5.4 Fuzzy membership
function in simulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time (s)

po
si

tio
n

an
d

sp
ee

d
re

sp
on

seFig. 5.5 Angle and angle
speed response

0 1 2 3 4 5
0

200

400

600

800

1000

time (s)

co
nt

ro
l i

np
ut

Fig. 5.6 Control input

68 5 Fuzzy T-S Modeling and Control

a=l/(m+M);beta=cos(88*pi/180);

a1=4*l/3-a*m*l;

A1=[0 1;g/a1 0];

B1=[0 ;-a/a1];

a2=4*l/3-a*m*l*beta^2;

A2=[0 1;2*g/(pi*a2) 0];

B2=[0;-a*beta/a2];

Q=sdpvar(2,2);

V1=sdpvar(1,2);

V2=sdpvar(1,2);

L1=Q*A1'+A1*Q+V1'*B1'+B1*V1;

L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;

L3=Q*A1'+A1*Q+Q*A2'+A2*Q+V2'*B1'+B1*V2+V1'*B2'+B2*V1;

F=set(L1<0)+set(L2<0)+set(L3<0)+set(Q>0);

solvesdp(F); %To get Q, V1, V2

Q=double(Q);

V1=double(V1);

V2=double(V2);

P=inv(Q);

K1=V1*P

K2=V2*P

saveK_fileK1K2;

(2) Membership function design: chap5_2mf.m;

clearall;

closeall;

L1=-pi/2;L2=pi/2;

L=L2-L1;

h=pi/2;

N=L/h;

T=0.01;

x=L1:T:L2;

fori=1:N+1

e(i)=L1+L/N*(i-1);

end

u=trimf(x,[e(1),e(2),e(3)]); %The middle MF

plot(x,u,'r','linewidth',2);

for j=1:N

if j==1

u=trimf(x,[e(1),e(1),e(2)]); %The first MF

elseif j==N

u=trimf(x,[e(N),e(N+1),e(N+1)]); %The last MF

end

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 69

holdon;

plot(x,u,'b','linewidth',2);

end

xlabel('x');ylabel('Membership function');

legend('First Rule','Second rule');

(3) Simulink main program: chap5_2sim.mdl;

(4) Fuzzy controller program: chap5_2ctrl.m;

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 1;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

70 5 Fuzzy T-S Modeling and Control

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0];

function sys=mdlOutputs(t,x,u)

x=[u(1);u(2)];

loadK_file;

ut1=K1*x;

ut2=K2*x;

L1=-pi/2;L2=pi/2;

L=L2-L1;

N=2;

fori=1:N+1

e(i)=L1+L/N*(i-1);

end

h1=trimf(x(1),[e(1),e(2),e(3)]); %The middle

if x(1)<=0

h2=trimf(x(1),[e(1),e(1),e(2)]); %The first

else

h2=trimf(x(1),[e(2),e(3),e(3)]); %The last

end

%h1+h2

ut=(h1*ut1+h2*ut2)/(h1+h2);

sys(1)=ut;

(5) Plot program: chap5_2plot.m.

closeall;

figure(1);

plot(t,x(:,1),'r',t,x(:,2),'b');

xlabel('time(s)');ylabel('angle and angle speed response');

figure(2);

plot(t,ut(:,1),'r');

xlabel('time(s)');ylabel('control input');

5.3.3 Simulation Based on Four Fuzzy Rules Design

In order to control the pendulum in a wide range of initial angle, the number of
fuzzy rules should be increased on the basis of the above two rules.

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 71

From (5.14), we know if x1 ! 	 p
2 x1j j[p

2

� �
, then sin x1 ! 	1 ! 2

p x1, let
b ¼ cos 88oð Þ, then cos x1ð Þ ¼ cos 180o � 88oð Þ ¼ � cos 88oð Þ ¼ �b; if x1 ! p,
then sin x1 ! 0, cos x1 ! �1, and _x2 ¼ au

4l=3�aml.

From above, we can get another two T-S type fuzzy rules:

Rule 3: IF x1 tð Þ is about 	 p
2 x1j j[p

2

� �
, THEN _xðtÞ ¼ A3xðtÞþB3uðtÞ;

Rule 4: IF x1 tð Þ is about 	p, then _xðtÞ ¼ A4xðtÞþB4uðtÞ

where A3 ¼
0 1
2g

pð4l=3�amlb2Þ 0

� �
, B3 ¼

0
ab

4l=3�amlb2

� �
, A4 ¼ 0 1

0 0

� �
,

B4 ¼
0
a

4l=3�aml

� �
.

Then we can design two fuzzy control rules as follows

Rule 3: If x1ðtÞ is about 	 p
2 x1j j[p

2

� �
then u ¼ K3xðtÞ

Rule 4: If x1ðtÞ is about 	 p then u ¼ K4xðtÞ
According to theorem 5.1, using (5.12), LMI of the inverted pendulum for above

fuzzy rules can be expressed as

QAT
1 þA1QþVT

1B
T
1 þB1V1\0;

QAT
2 þA2QþVT

2B
T
2 þB2V2\0;

QAT
3 þA3QþVT

3B
T
3 þB3V3\0;

QAT
4 þA4QþVT

4B
T
4 þB4V4\0;

Q ¼ P�1 [0

ð5:17Þ

where K1 ¼ V1P, K2 ¼ V2P, K3 ¼ V3P, K4 ¼ V4P, i ¼ 1; 2; 3; 4.
From above two LMI, the programs are given as follows:

L1=Q*A1'+A1*Q+V1'*B1'+B1*V1;
L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;
L3=Q*A3'+A3*Q+V3'*B3'+B3*V3;
L4=Q*A4'+A4*Q+V4'*B4'+B4*V4;

Schematic diagram of membership function with four fuzzy rules are shown in
Fig. 5.7, we can see that Rule 1 intersect Rule 2, and Rule 3 intersect Rule 4,
therefore, only two LMI can be constructed from (5.9), the corresponding LMI is as
follows.

QAT
1 þA1QþQAT

2 þA2QþVT
2B

T
1 þB1V2 þVT

1B
T
2 þB2V1\0

QAT
3 þA3QþQAT

4 þA4QþVT
4B

T
3 þB3V4 þVT

3B
T
4 þB4V3\0

ð5:18Þ

72 5 Fuzzy T-S Modeling and Control

From above two LMI, the programs are given as follows:

L5 ¼ Q � A10 þA1 � QþQ � A20 þA2 � QþV20 � B10 þB1 � V2þV10 � B20 þB2 � V1;
L6 ¼ Q � A30 þA3 � QþQ � A40 þA4 � QþV40 � B30 þB3 � V4þV30 � B40 þB4 � V3;

From above three LMI, the programs are designed as follows:

F=set(L1<0)+set(L2<0)+set(L3<0)+set(L4<0)+set(L5<0)+set
(L6<0)+set(Q>0);

According to (5.5), T-S based fuzzy controller is designed by using PDC
method:

u ¼ w1ðx1ÞK1xðtÞþw2ðx1ÞK2xðtÞþw3ðx1ÞK3xðtÞþw4ðx1ÞK4xðtÞ ð5:19Þ

According to the rules of two T-S fuzzy model of the inverted pendulum, the
membership function is designed in Fig. 5.3. The triangular membership function is
used to fuzzify x1 tð Þ, and the initial states are p 0½ �.

Using LMI toolbox, YALMIP toolbox, to get Ki, the program is chap5_3LMI.m,
we have Q, V1, V2, V3, V4, then we can get K1 ¼ 3301:3 969:9½ �, K2 ¼
6366:3 1879:7½ �, K3 ¼ �6189:6 �1883:7½ �, K4 ¼ �3105:2 �969:9½ �.
Running Simulink main program chap5_3sim.mdl, the simulation results are shown
in Figs. 5.8, 5.9, and 5.10.

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

M
em

be
rs

hi
p

fu
nc

tio
n

Rule4
Rule3Rule2

Rule1

Rule4
Rule3 Rule2

0

1

0-180 -90 90 180
x1
[deg.]

Fig. 5.7 Schematic diagram of membership function

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 73

Fig. 5.8
Membership function

Matlab Programs:

(1) Controller gain based on LMI: chap5_3LMI.m;

clear all;

close all;

g=9.8;m=2.0;M=8.0;l=0.5;

a=l/(m+M);beta=cos(88*pi/180);

a1=4*l/3-a*m*l;

A1=[0 1;g/a1 0];

B1=[0 ;-a/a1];

a2=4*l/3-a*m*l*beta^2;

A2=[0 1;2*g/(pi*a2) 0];

B2=[0;-a*beta/a2];

A3=[0 1;2*g/(pi*a2) 0];

B3=[0;a*beta/a2];

A4=[0 1;0 0];

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-8

-6

-4

-2

0

2

4

time (s)

an
gl

e
an

d
an

gl
e

sp
ee

d
re

sp
on

seFig. 5.9 Angle and angle
speed response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10000

-8000

-6000

-4000

-2000

0

2000

time (s)

co
nt

ro
l i

np
ut

Fig. 5.10 Control input

74 5 Fuzzy T-S Modeling and Control

B4=[0;a/a1];

Q=sdpvar(2,2);

V1=sdpvar(1,2);

V2=sdpvar(1,2);

V3=sdpvar(1,2);

V4=sdpvar(1,2);

L1=Q*A1'+A1*Q+V1'*B1'+B1*V1;

L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;

L3=Q*A3'+A3*Q+V3'*B3'+B3*V3;

L4=Q*A4'+A4*Q+V4'*B4'+B4*V4;

L5=Q*A1'+A1*Q+Q*A2'+A2*Q+V2'*B1'+B1*V2+V1'*B2'+B2*V1; %from R1 and R2

L6=Q*A3'+A3*Q+Q*A4'+A4*Q+V4'*B3'+B3*V4+V3'*B4'+B4*V3; %from R3 and R4

F=set(L1<0)+set(L2<0)+set(L3<0)+set(L4<0)+set(L5<0)+set(L6<0)+set

(Q>0);

solvesdp(F); %To get Q, V1, V2, V3, V4

Q=double(Q);

V1=double(V1);

V2=double(V2);

V3=double(V3);

V4=double(V4);

P=inv(Q);

K1=V1*P

K2=V2*P

K3=V3*P

K4=V4*P

saveK_fileK1K2K3K4;

(2) Membership function design: chap5_3mf.m;

clear all;

close all;

L1=-pi;L2=pi;

L=L2-L1;

h=pi/2;

N=L/h;

T=0.01;

x=L1:T:L2;

fori=1:N+1

e(i)=L1+L/N*(i-1);

end

figure(2);

% h1

h1=trimf(x,[e(2),e(3),e(4)]); %Rule 1:x1 is to zero

plot(x,h1,'r','linewidth',2);

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 75

% h2, Rule 2: x1 is about +-pi/2,but smaller

%if x<=0

h2=trimf(x,[e(2),e(2),e(3)]);

holdon

plot(x,h2,'b','linewidth',2);

%else

h2=trimf(x,[e(3),e(4),e(4)]);

holdon

plot(x,h2,'b','linewidth',2);

%end

% h3, Rule 3: x1 is about +-pi/2,but bigger

%if x<0

h3=trimf(x,[e(1),e(2),e(2)]);

holdon;

plot(x,h3,'g','linewidth',2);

%else

h3=trimf(x,[e(4),e(4),e(5)]);

holdon;

plot(x,h3,'g','linewidth',2);

%end

% h4, Rule 4: x1 is about +-pi

%if x<0

h4=trimf(x,[e(1),e(1),e(2)]);

holdon;

plot(x,h4,'k','linewidth',2);

% else

h4=trimf(x,[e(4),e(5),e(5)]);

holdon;

plot(x,h4,'k','linewidth',2);

%end

(3) Simulink Program: chap5_3sim.mdl;

76 5 Fuzzy T-S Modeling and Control

(4) S function for controller design: chap5_3ctrl.m;

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 1;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0];

function sys=mdlOutputs(t,x,u)

x=[u(1);u(2)];

loadK_file;

ut1=K1*x;

ut2=K2*x;

ut3=K3*x;

ut4=K4*x;

L1=-pi;L2=pi;

L=L2-L1;

h=pi/2;

N=L/h;

fori=1:N+1

e(i)=L1+L/N*(i-1);

end

% h1

h1=trimf(x(1),[e(2),e(3),e(4)]); %Rule 1:x1 is to zero

% h2, Rule 2: x1 is about +-pi/2,but smaller

if x(1)<=0

h2=trimf(x(1),[e(2),e(2),e(3)]);

5.3 Fuzzy T-S Modeling and Control Based on LMI for Inverted Pendulum 77

else

h2=trimf(x(1),[e(3),e(4),e(4)]);

end

% h3, Rule 3: x1 is about +-pi/2,but bigger

if x(1)<0

h3=trimf(x(1),[e(1),e(2),e(2)]);

else

h3=trimf(x(1),[e(4),e(4),e(5)]);

end

% h4, Rule 4: x1 is about +-pi

if x(1)<0

h4=trimf(x(1),[e(1),e(1),e(2)]);

else

h4=trimf(x(1),[e(4),e(5),e(5)]);

end

h1+h2+h3+h4;

ut=(h1*ut1+h2*ut2+h3*ut3+h4*ut4)/(h1+h2+h3+h4);

sys(1)=ut;

(5) Plot program: chap5_3plot.m.

closeall;

figure(1);

plot(t,x(:,1),'r',t,x(:,2),'b');

xlabel('time(s)');ylabel('angle and angle speed response');

figure(2);

plot(t,ut(:,1),'r');

xlabel('time(s)');ylabel('control input');

5.4 Simulation Example of YALMIP Toolbox

YALMIP is an independent Matlab toolbox, it has a strong ability to optimize the
solution, and the toolbox has the following features:

(1) YALMIP is a toolbox based on symbolic computing toolbox;
(2) YALMIP is a modeling language for defining and solving advanced opti-

mization problems;
(3) YALMIP toolbox is used to solve linear programming, integer programming,

nonlinear programming, mixed programming, and other standard optimization
problems and LMI problems.

78 5 Fuzzy T-S Modeling and Control

YALMIP toolbox can be used to solve the LMI problem. LMI constraints can be
described by the command “set,” without specific description of the location and
content of the inequality, the results can be used to view by “double.”

YALMIP toolbox can be downloaded from the network for free; the toolbox
name is “yalmip.rar”.

For example, consider a LMI as

ATPþFTBTPþPAþPBF\0 ð5:20Þ

set A ¼
�2:548 9:1 0

1 �1 0
0 �14:2 0

2
4

3
5, B ¼

1 0 0
0 1 0
0 0 1

2
4

3
5,

P ¼
1000000 0 0

0 1000000 0
0 0 1000000

2
4

3
5, solve the LMI by YALMIP toolbox, we

can get F ¼
�492:4768 �5:05 0

�5:05 �494:0248 6:6
0 6:6 �495:0248

2
4

3
5.

Program: chap5_4.m

clear all;

close all;

%First example

A = [-2.548 9.1 0;1 -1 1;0 -15.2 0];

B = [1 0 0;0 1 0;0 0 1];

F = sdpvar(3,3);

P = 1,000,000*eye(3);

FAI = (A' + F'*B')*P + P*(A + B*F);

%LMI description

L = set(FAI < 0);

solvesdp(L);

F = double(F)

References

1. M. Sugeno, G.T. Kang, Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets Syst.
18, 329–346 (1986)

2. K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst.
45(2), 135–156 (1992)

5.4 Simulation Example of YALMIP Toolbox 79

3. H.O. Wang, K. Tanaka, M.F. Griffin, Parallel distributed compensation of nonlinear systems by
Takagi-Sugeno fuzzy model, International Joint Conference of the Fourth IEEE International
Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium,
1995. pp. 531–538

4. S. Farinwata, D. Filev, R. Langari, Fuzzy Control: Synthesis and Analysis (Wiley, 2000)
5. H.O. Wang, K. Tanaka, M. Griffin, An analytical framework of fuzzy modeling and control of

nonlinear systems: stability and design issues. Am. Control Conf. 3, 2272–2276 (1995)

80 5 Fuzzy T-S Modeling and Control

Chapter 6
Adaptive Fuzzy Control

6.1 Adaptive Fuzzy Control

Since the idea of fuzzy system universal approximation theorem was introduced [1],
adaptive fuzzy control techniques have undergone great developments and have
been successfully applied in many fields such as learning, pattern recognition,
signal processing, modeling, and system control. The major advantages of adaptive
fuzzy control greatly motivate the usage in nonlinear system identification and
control [2].

There are several reasons that have motivated vast research interests in the
application of adaptive fuzzy control for control purposes, as alternatives to tradi-
tional control methods, among which the main points are:

(1) Better performance is usually achieved since adaptive fuzzy controller can
adjust itself to the changing environment.

(2) Modeling is not needed, and the adaptive law can help to learn the dynamics of
the plant during operation.

6.2 Fuzzy Approximation

6.2.1 Fuzzy System Design

Step 1. Define Ni fuzzy sets A1
i , A

2
i ,…, ANi

i in ai; bi½ �, and design membership
functions lA1

i
, …, lANi

i
.

Step 2. Design M ¼ N1 � N2 fuzzy rules in the following form:

Ri1i2
u : if x1 is Ai1

1 and x2 is Ai2
2 ,then y is Bi1i2

where i1 ¼ 1; 2; . . .; N1; i2 ¼ 1; 2; . . .; N2.

The center of fuzzy set Bi1i2 is designed as

�yi1i2 ¼ g ei11 ; ei22
� � ð6:1Þ

Step 3. Design fuzzy system f xð Þ from the above N1 � N2 fuzzy rules by using
product inference engine, singleton fuzzifier, and center average defuzzifier:

f ðxÞ ¼
PN1

i1¼1

PN2
i2¼1 �y

i1i2ðlAi1
1
ðx1ÞlAi2

2
ðx2ÞÞPN1

i1¼1

PN2
i2¼1 ðlAi1

1
ðx1ÞlAi2

2
ðx2ÞÞ

ð6:2Þ

Figure 6.1 shows an example of fuzzy sets with N1 ¼ 4, N2 ¼ 5, a1 ¼ a2 ¼ 0,
and b1 ¼ b2 ¼ 1.

6.2.2 Fuzzy System Approximation

Fuzzy system approximation is based on universal approximation theorem as
follows.

Theorem 6.1 Universal approximation theorem [1, 2]
Let f xð Þ be the fuzzy system (6.2); if g xð Þ is continuously differentiable on

U ¼ a1; b1½ � � a1 b2½ �, then we can get the approximation accuracy as

1A 1A 1A 1A

2A

2A

2A

2A

2A

1 2 3 4

1

2

3

4

5

1 2 3 4
1

2

3

4

5

1e 1e 1e 1e
2e

2e

2e

2e

2e

1x

2xFig. 6.1 Example of fuzzy
sets

82 6 Adaptive Fuzzy Control

g� fk k1 � @g
@x1

����
����
1
h1 þ @g

@x2

����
����
1
h2 ð6:3Þ

where

hi ¼ max
1� j�Ni�1

ejþ 1
i � e ji

��� ��� i ¼ 1; 2ð Þ ð6:4Þ

where �k k1 is defined as d xð Þk k1¼ sup
x2U

d xð Þj j.
From (6.4), we can get a conclusion: If the number of fuzzy sets of xi is Ni ,and

the length of its range is Li, then the approximation accuracy of fuzzy system is
hi ¼ Li

Ni�1 ,that is Ni � Li
hi
þ 1.

From the theorem, we can get the following conclusions:

(1) In the universal approximation (6.3), for e[0, if we design h1 and h2 as small

enough, we can get @g
@x1

��� ���
1
h1 þ @g

@x2

��� ���
1
h2\e, and sup

x2U
g xð Þ � f xð Þj j ¼

g� fk k1\e can be ensured.
(2) Since Ni � Li

hi
þ 1, the more fuzzy sets designed are, the smaller value of hi is.

That is, to get more approximation accuracy of fuzzy system, we must design
more fuzzy sets.

(3) To design a fuzzy system with a specified accuracy, we must get @g
x1

��� ���
1

and

@g
x2

��� ���
1
, and we must also get the value of g xð Þ at x ¼ ðei11 ; ei22 Þ,

i1 ¼ 1; 2; � � � ; N1; i2 ¼ 1; 2; � � � ; N2ð Þ.

6.2.3 Simulation Example

6.2.3.1 One Dimension Function Approximation

Consider one dimension function as

g xð Þ ¼ sin x ð6:5Þ

where x 2 �3; þ 3½ �.
Define triangle membership function in L1 L2½ � as shown in Fig. 6.2. The

fuzzy system is designed as

f xð Þ ¼
PN

j¼1 sin e jð Þ lAj xð ÞPN
j¼1 lAj xð Þ ð6:6Þ

If we choose N ¼ 30, then MF design and function approximation are shown in
Figs. 6.3 and 6.4. If we choose N = 50, then the function approximation error is

6.2 Fuzzy Approximation 83

shown in Fig. 6.5. We can see that the more fuzzy sets are designed, the smaller the
approximation error is gotten.

Matlab program: chap6_1.m

%Fuzzy approximation

clear all;

close all;

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1Fig. 6.2 Membership
function

0 20 40 60 80 100
0

20

40

60

80

100Fig. 6.3 Function
approximation

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1Fig. 6.4 Function
approximation error (N = 30)

84 6 Adaptive Fuzzy Control

L1=-3;L2=3;

L=L2-L1;

h=0.2;

N=L/h+1;

T=0.01;

x=L1:T:L2;

for i=1:N

e(i)=L1+L/(N-1)*(i-1);

end

c=0;d=0;

for j=1:N

if j==1

u=trimf(x,[e(1),e(1),e(2)]); %The first MF

elseif j==N

u=trimf(x,[e(N-1),e(N),e(N)]); %The last MF

else

u=trimf(x,[e(j-1),e(j),e(j+1)]);

end

hold on;

plot(x,u);

c=c+sin(e(j))*u;

d=d+u;

end

xlabel('x');ylabel('Membership function');

for k=1:L/T+1

f(k)=c(k)/d(k);

end

0 20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

0.4Fig. 6.5 Function
approximation error (N = 50)

6.2 Fuzzy Approximation 85

y=sin(x);

figure(2);

plot(x,f,'b',x,y,'r');

xlabel('x');ylabel('fx approximation');

figure(3);

plot(x,f-y,'r');

xlabel('x');ylabel('approximation error');

6.2.3.2 Two Dimension Function Approximation

Consider two dimension function as

g xð Þ ¼ 0:52þ 0:1 x21 þ 0:28 x22 � 0:06 x1x2 ð6:7Þ

Define triangle membership function in U ¼ �1 1½ � � �1 1½ � as shown in
Figs. 6.6 and 6.7; the fuzzy system is designed as

f xð Þ ¼
PN1

i1¼1

PN2
i2¼1 g ei1 ; ei2ð Þ lAi1 x1ð Þ lAi2 x2ð ÞPN1

i1¼1

PN2
i2¼1 lAi1 x1ð Þ lAi2 x2ð Þ ð6:8Þ

Choose N1=N2=11, the results are given in Figs. 6.8 and 6.9.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1Fig. 6.6 Membership
function of x1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1Fig. 6.7 Membership
function of x2

86 6 Adaptive Fuzzy Control

Program name: chap6_2.m

%Fuzzy approximation

clear all;

close all;

T=0.1;

x1=-1:T:1;

x2=-1:T:1;

L=2;

h=0.1;

N=L/h+1;

for i=1:1:N %N MF

for j=1:1:N

e1(i)=-1+L/(N-1)*(i-1);

e2(j)=-1+L/(N-1)*(j-1);

gx(i,j)=0.52+0.1*e1(i)^3+0.28*e2(j)^3-0.06*e1(i)*e2(j);

end

end

Fig. 6.8 Function
approximation

Fig. 6.9 Function
approximation error

6.2 Fuzzy Approximation 87

df=zeros(L/T+1,L/T+1);

cf=zeros(L/T+1,L/T+1);

for m=1:1:N %u1 change from 1 to N

if m==1

u1=trimf(x1,[-1,-1,-1+L/(N-1)]); %First u1

elseif m==N

u1=trimf(x1,[1-L/(N-1),1,1]); %Last u1

else

u1=trimf(x1,[e1(m-1),e1(m),e1(m+1)]);

end

figure(1);

hold on;

plot(x1,u1);

xlabel('x1');ylabel('Membership function');

for n=1:1:N %u2 change from 1 to N

if n==1

u2=trimf(x2,[-1,-1,-1+L/(N-1)]); %First u2

elseif n==N

u2=trimf(x2,[1-L/(N-1),1,1]); %Last u2

else

u2=trimf(x2,[e2(n-1),e2(n),e2(n+1)]);

end

figure(2);

hold on;

plot(x2,u2);

xlabel('x2');ylabel('Membership function');

for i=1:1:L/T+1

for j=1:1:L/T+1

d=df(i,j)+u1(i)*u2(j);

df(i,j)=d;

c=cf(i,j)+gx(m,n)*u1(i)*u2(j);

cf(i,j)=c;

end

end

end

end

%%%

for i=1:1:L/T+1

for j=1:1:L/T+1

f(i,j)=cf(i,j)/df(i,j);

y(i,j)=0.52+0.1*x1(i)^3+0.28*x2(j)^3-0.06*x1(i)*x2(j);

end

end

88 6 Adaptive Fuzzy Control

figure(3);

subplot(211);

surf(x1,x2,f);

title('f(x)');

subplot(212);

surf(x1,x2,y);

title('g(x)');

figure(4);

surf(x1,x2,f-y);

title('Approximation error');

6.3 Adaptive Fuzzy Controller Design

6.3.1 Problem Description

Consider a dynamic system as

€h ¼ f h; _h
� �

þ u ð6:9Þ

where h is angle and u is control input.
We can rewrite (6.9) as

_x1 ¼ x2
_x2 ¼ f xð Þþ u

ð6:10Þ

where x1 ¼ h, f xð Þ ¼ f x1; x2ð Þ ¼ f h; _h
� �

is unknown.

Assuming ideal angle is xd, then we get

e ¼ x1 � xd; _e ¼ x2 � _xd

Define error function as

s ¼ ceþ _e; c[0 ð6:11Þ

then

_s ¼ c _eþ€e ¼ c _eþ _x2 � €xd ¼ c_eþ f xð Þþ u� €xd

From (6.11), we have if s ! 0 ,then e ! 0 and _e ! 0.

6.2 Fuzzy Approximation 89

6.3.2 Fuzzy Approximation

Using the universal approximation theorem of fuzzy system, we design fuzzy
system f̂ x hjð Þ to approximate f xð Þ.

Consider the input x1 and x2, we design five MF, then we get n ¼ 2, i ¼ 1; 2,
p1 ¼ p2 ¼ 5, and we can get p1 � p2 ¼ 25 fuzzy rules.

We use two steps to construct fuzzy system f̂ x hjð Þ as follows:

Step 1: For the variable xi i ¼ 1; 2ð Þ, define pi fuzzy sets Ali
i li ¼ 1; 2; 3; 4; 5ð Þ;

Step 2: Use
Qn
i¼1

pi ¼ p1 � p2 ¼ 25 fuzzy rules to construct fuzzy system f̂ x hjð Þ. The
jth fuzzy rule is expressed as

R jð Þ: if x1 isAl1
1 and x2 isA

l2
1 then f̂ isB

l1l2 ð6:12Þ

where li ¼ 1; 2; 3; 4; 5 , i ¼ 1; 2 , j ¼ 1; 2; � � � ; 25, Bl1l2 is the fuzzy sets of f̂ .
Then, the first and the twenty-fifth fuzzy rule can be expressed as

R 1ð Þ: if x1 isA1
1 and x2 isA

1
2 then f̂ isE

1

R 25ð Þ: if x1 isA5
1 and x2 isA

5
1 then f̂ isE

25

The fuzzy inference is designed as follows:

(1) Using product inference engine for the premise of fuzzy rule, we can getQ2
i¼1

lAli
i
xið Þ.

(2) Use singleton fuzzifier to get �yl1l2f , where �yl1l2f ¼ f x1; x2ð Þ is the point x1; x2½ � at
which lBl1 l2 �yl1l2f

� �
achieves its maximum value, and we assume that

lBl1 l2 �yl1l2f

� � ¼ 1:0.
(3) Using product inference engine for the premise and conclusion of fuzzy rule,

then we get �yl1l2f

Q2
i¼1

lAli
i
xið Þ

� 	
, and using the union operator for different fuzzy

rules, then we can get the output of fuzzy system as
P5

l1¼1

P5
l2¼1 �y

l1l2
f �Q2

i¼1
lAli

i
xið Þ

� 	
.

(4) Using the center average defuzzifier, we can get output of the fuzzy system.

f̂ xjhð Þ ¼
P5

l1¼1

P5
l2¼1 �y

l1l2
f

Q2
i¼1

lAli
i
xið Þ

� 	
P5

l1¼1

P5
l2¼1

Q2
i¼1

lAli
i
xið Þ

� 	 ð6:13Þ

where lAj
i
xið Þ is MF of xi.

90 6 Adaptive Fuzzy Control

Let �yl1l2f to be freedom parameter, h ¼ �y1f � � � �y25f

 �T

is a parameter vector,
introduce the fuzzy basis vector n xð Þ, then (6.13) becomes

f̂ xjhð Þ ¼ ĥTn xð Þ ð6:14Þ

where n xð Þ is fuzzy basis vector with
Qn
i¼1

pi ¼ p1 � p2 ¼ 25 elements, its l1l2 th

element is

nl1l2 xð Þ ¼
Q2
i¼1

lAli
i
xið Þ

P5
l1¼1

P5
l2¼1

Q2
i¼1

lAli
i
xið Þ

� 	 ð6:15Þ

6.3.3 Adaptive Fuzzy Control Design and Analysis

We set the optimum parameter as

h� ¼ arg min
h2X

sup
x2R2

f̂ xjhð Þ � f xð Þ�� ��" #
ð6:16Þ

Then,

f xð Þ ¼ h�Tn xð Þþ e

where e is the approximation error.

f xð Þ � f̂ xð Þ ¼ h�Tn xð Þþ e� ĥn xð Þ ¼ �~hTn xð Þþ e

Define Lyapunov function as

V ¼ 1
2
s2 þ 1

2c
~hT~h ð6:17Þ

where c[0, ~h ¼ ĥ� h�.

Then, _~h ¼ _̂
h, and

_V ¼ s_sþ 1
c
~hT

_̂
h ¼ s c _eþ f xð Þþ u� €xdð Þþ 1

c
~hT

_̂
h

6.3 Adaptive Fuzzy Controller Design 91

Design control law as

u ¼ �c _e� f̂ xð Þþ€xd � gsgn sð Þ ð6:18Þ

Then,

_V ¼ s f xð Þ � f̂ xð Þ � gsgn sð Þ� �þ 1
c
~hT

_̂
h

¼ s �~hTn xð Þþ e� gsgn sð Þ� �þ 1
c
~hT

_̂
h

¼ es� g sj j þ ~hT
1
c
_̂
h� sn xð Þ

� 	

Choosing g[ej jmax þ g0, g0 [0, then adaptive law is

_̂
h ¼ csn xð Þ ð6:19Þ

Then, _V ¼ es� g sj j � � g0 sj j � 0.
From above analysis, we can see that fuzzy system approximation error can be

overcome by the robust term g sgn sð Þ.
From _V � � g0 sj j � 0, we have

Z t

0

_Vdt � � g0

Z t

0
sj jdt; i:e:V tð Þ � V 0ð Þ � � g0

Z t

0
sj jdt

Then V is limited, s and ~h are all limited, from _s expression, _s is limited, theR1
0 sj jdt is limited. From Barbalat Lemma [3], when t ! 1, we have s ! 0, then
e ! 0, _e ! 0.

Since V is limited as t ! 1, thus ĥ is limited. Since when _V 	 0, we cannot get
~h 	 0, ĥ will not converge to h�.

6.3.4 Simulation Example

Consider the plant as

_x1 ¼ x2
_x2 ¼ f xð Þþ u

where f xð Þ ¼ 10x1x2.

92 6 Adaptive Fuzzy Control

We consider that ideal position signal is xd tð Þ ¼ sin t, and choose five MF to
fuzzy xi as follows:

lNM xið Þ ¼ exp � xi þ p=3ð Þ= p=12ð Þð Þ2
h i

;

lNS xið Þ ¼ exp � xi þ p=6ð Þ= p=12ð Þð Þ2
h i

;

lZ xið Þ ¼ exp � xi= p=12ð Þð Þ2
h i

;

lPS xið Þ ¼ exp � xi � p=6ð Þ= p=12ð Þð Þ2
h i

;

lPM xið Þ ¼ exp � xi � p=3ð Þ= p=12ð Þð Þ2
h i

:

Then, we can get 25 fuzzy rules to construct fuzzy system f̂ . The MF is given as
Fig. 6.10.

We use FS2, FS1 and FS to express the n xð Þ in the program. The initial states of
the plant are 0:15; 0½ �, we use the control law (6.18) and adaptive law(6.19), the
initial value of ĥ is set as 0.10, and choose c ¼ 15, c ¼ 5000, g ¼ 0:50. The
simulation results are shown in Figs. 6.11 and 6.12.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

M
em

be
rs

hi
p

fu
nc

tio
n

de
gr

ee

Fig. 6.10 MF of xi

6.3 Adaptive Fuzzy Controller Design 93

Simulation programs:

(1) Membership function design: chap6_3mf.m

clear all;

close all;

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

time(s)

po
si

tio
n

tra
ck

in
g

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

time(s)

sp
ee

d
tra

ck
in

g

Fig. 6.11 Position and speed tracking

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30

40

50

time(s)

f a
pp

ro
xi

m
at

io
n

Fig. 6.12 f xð Þ and f̂ xð Þ

94 6 Adaptive Fuzzy Control

L1=-pi/3;

L2=pi/3;

L=L2-L1;

T=L*1/1000;

x=L1:T:L2;

figure(1);

for i=1:1:5

gs=-[(x+pi/3-(i-1)*pi/6)/(pi/12)].^2;

u=exp(gs);

hold on;

plot(x,u);

end

xlabel('x');ylabel('Membership function degree');

(2) Simulink main program: chap6_3sim.md

(3) S function of control law: chap6_3ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

6.3 Adaptive Fuzzy Controller Design 95

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 25;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[0.1*ones(25,1)];

str=[];

ts=[0 0];

function sys=mdlDerivatives(t,x,u)

xd=sin(t);

dxd=cos(t);

x1=u(2);

x2=u(3);

e=x1-xd;

de=x2-dxd;

c=15;

s=c*e+de;

xi=[x1;x2];

FS1=0;

for l1=1:1:5

gs1=-[(x1+pi/3-(l1-1)*pi/6)/(pi/12)]^2;

u1(l1)=exp(gs1);

end

for l2=1:1:5

gs2=-[(x2+pi/3-(l2-1)*pi/6)/(pi/12)]^2;

u2(l2)=exp(gs2);

end

for l1=1:1:5

for l2=1:1:5

FS2(5*(l1-1)+l2)=u1(l1)*u2(l2);

FS1=FS1+u1(l1)*u2(l2);

end

end

FS=FS2/(FS1+0.001);

96 6 Adaptive Fuzzy Control

for i=1:1:25

thta(i,1)=x(i);

end

gama=5000;

S=gama*s*FS;

for i=1:1:25

sys(i)=S(i);

end

function sys=mdlOutputs(t,x,u)

xd=sin(t);

dxd=cos(t);

ddxd=-sin(t);

x1=u(2);

x2=u(3);

e=x1-xd;

de=x2-dxd;

c=15;

s=c*e+de;

xi=[x1;x2];

FS1=0;

for l1=1:1:5

gs1=-[(x1+pi/3-(l1-1)*pi/6)/(pi/12)]^2;

u1(l1)=exp(gs1);

end

for l2=1:1:5

gs2=-[(x2+pi/3-(l2-1)*pi/6)/(pi/12)]^2;

u2(l2)=exp(gs2);

end

for l1=1:1:5

for l2=1:1:5

FS2(5*(l1-1)+l2)=u1(l1)*u2(l2);

FS1=FS1+u1(l1)*u2(l2);

end

end

FS=FS2/(FS1+0.001);

for i=1:1:25

thta(i,1)=x(i);

end

fxp=thta'*FS';

xite=0.50;

ut=-c*de+ddxd-fxp-xite*sign(s);

6.3 Adaptive Fuzzy Controller Design 97

sys(1)=ut;

sys(2)=fxp;

(4) S function of plant: chap6_3plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0.15;0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

ut=u(1);

f=3*(x(1)+x(2));

sys(1)=x(2);

sys(2)=f+ut;

function sys=mdlOutputs(t,x,u)

f=3*(x(1)+x(2));

sys(1)=x(1);

sys(2)=x(2);

sys(3)=f;

98 6 Adaptive Fuzzy Control

(5) Plot program: chap6_3plot.m

close all;

figure(1);

subplot(211);

plot(t,x(:,1),'r',t,x(:,2),'b');

xlabel('time(s)');ylabel('position tracking');

subplot(212);

plot(t,cos(t),'r',t,x(:,3),'b');

xlabel('time(s)');ylabel('speed tracking');

figure(2);

plot(t,f(:,1),'r',t,f(:,3),'b');

xlabel('time(s)');ylabel('f approximation');

6.4 Adaptive Fuzzy Control Based on Fuzzy System
Compensator

6.4.1 System Description

A typical manipulator is described as shown in Fig. 6.13.
The dynamic equation with n-joint manipulator can be described as

D qð Þ€qþC q; _qð Þ _qþG qð ÞþF _qð Þþ sd ¼ s ð6:20Þ

Fig. 6.13 A 8-joint
manipulator

6.3 Adaptive Fuzzy Controller Design 99

where q 2 Rn is the generalized coordinates; D qð Þ 2 Rn�n is the symmetric,
bounded, positive definite inertia matrix; C q; _qð Þ _q 2 Rn presents the centripetal and
Coriolis torques; G qð Þ 2 Rn , F _qð Þ 2 Rn, sd 2 Rn, and s 2 Rn represent the grav-
itational torques, friction, disturbance, and applied joint torques, respectively.

The dynamic equation with n-joint manipulator is characterized by the following
structural properties.

Property 1: D qð Þ is the symmetric, bounded, positive definite inertia matrix; for
known positive constant m1 and m2, there exists m1I�D qð Þ�m2I;

Property 2: Using a proper definition of matrix C q; _qð Þ, both D qð Þ and C q; _qð Þ are
not independent and satisfy

xT _D� 2C
� �

x ¼ 0 ð6:21Þ

that is, xT _D� 2C
� �

x ¼ 0 is a skew-symmetric matrix.
This property is simply a statement that the so-called fictitious forces, defined by

C q; _qð Þ _q, do not work on the system. This property is utilized in stability analysis.

Property 3: C q; _qð Þ is limited, that is, for known cb qð Þ, there exists C q; _qð Þk k
� cb qð Þ _qk k;

Property 4: For the unknown disturbance sd, sdk k� sM , sM is a positive constant.

A typical rigid two-joint manipulator is shown in Fig. 6.14.
Just like the Eq. (6.20), we consider that the dynamic equation with n-joint

manipulator can be described as

DðqÞ€qþCðq; _qÞ _qþGðqÞþFðq; _q; €qÞ ¼ s ð6:22Þ

where Fðq; _q; €qÞ consists of friction force Fr, disturbance sd, and uncertainties.

Fig. 6.14 A Two-joint
manipulator

100 6 Adaptive Fuzzy Control

6.4.2 Adaptive Fuzzy Control Design and Analysis

Assume DðqÞ, Cðq; _qÞ and GðqÞ are known, and define sliding mode function as

s ¼ _~qþK~q ð6:23Þ

where K is a positive definite matrix, ~q tð Þ is the tracking error, ~q tð Þ ¼ q tð Þ � qd tð Þ,
and qd tð Þ is the ideal angle.

Define

_qr tð Þ ¼ _qd tð Þ � K~q tð Þ ð6:24Þ

Considering Fðq; _q; €qÞ as unknown nonlinear function, we design the fuzzy
system F̂ðq; _q; €q Hj Þ to approximate Fðq; _q; €qÞ.

The fuzzy system F̂ðq; _q; €q Hj Þ can be described as

F̂ q; _q; €q Hjð Þ ¼
F̂1 q; _q; €q H1jð Þ
F̂2 q; _q; €q Hj 2

� �
..
.

F̂n q; _q; €q Hj n

� �

2
6664

3
7775 ¼

HT
1n q; _q; €qð Þ

HT
2n q; _q; €qð Þ

..

.

HT
nn q; _q; €qð Þ

2
6664

3
7775 ð6:25Þ

where n q; _q; €qð Þ is fuzzy basis function vector.
Define Lyapunov function as

V tð Þ ¼ 1
2

sTDsþ
Xn
i¼1

~H
T
i Ci

~Hi

 !
ð6:26Þ

where ~Hi ¼ H�
i �Hi , H�

i is ideal weight value, Ci [0.
Since s ¼ _~qþK~q ¼ _q� _qd þK~q ¼ _q� _qr ,then

s ¼ _~qþK~q ¼ _q� _qd þK~q ¼ _q� _qr

D_s ¼ D€q� D€qr ¼ s� C _q� G� F� D€qr

and then,

_V tð Þ ¼ sTDs_þ 1
2
sT _Dsþ

Xn
i¼1

~H
T
i Ci

_~Hi

¼ �sT �sþC _qþGþFþD€qr � Csð Þþ
Xn
i¼1

~H
T
i Ci

_~Hi

¼ �sT D€qr þC _qr þGþF� sð Þþ
Xn
i¼1

~H
T
i Ci

_~Hi

ð6:27Þ

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 101

To overcome the approximation error, adaptive fuzzy control law with robust
term is designed as

s ¼ D qð Þ€qr þC q; _qð Þ _qr þG qð Þþ F̂ q; _q; €q Hjð Þ � KDs�W sgn sð Þ ð6:28Þ

where KD ¼ diag Kið Þ, Ki [0,
W ¼ diag wM1 ; � � � ;wMn½ �;wMi � xij j; i ¼ 1; 2; � � � ; n.

The fuzzy approximation error is

x ¼ F q; _q; €qð Þ � F̂ q; _q; €q H�jð Þ ð6:29Þ

Define the adaptive law as

_Hi ¼ �C�1
i sin q; _q; �qð Þ; i ¼ 1; 2; � � � ; n ð6:30Þ

Substituting control law (6.28) and adaptive law (6.30) into (6.27), we can get

_V tð Þ� � sTKDs

From above analysis, we can see that fuzzy system approximation error can be
overcome by the robust term Wsgn sð Þ.

From _V tð Þ� � sTKDs, we have

Z t

0

_Vdt� � kmin KDð Þ
Z t

0
sk kdt; i:e:V tð Þ � V 0ð Þ� � kmin KDð Þ

Z t

0
sk kdt

Then V is limited, s and ~Hi are all limited, from _s expression, _s is limited, theR1
0 sk kdt is limited. From Barbalat Lemma [3], when t ! 1, we have s ! 0, then
e ! 0, _e ! 0.

Since V is limited as t ! 1, thus Hi is limited. Since when _V 	 0, we cannot
get ~Hi 	 0, H will not converge to H�.

Considering fuzzy system F̂ðq; _q; €q Hj Þ, if we select k fuzzy labels on each input
variable of the FLS for n-link robot manipulator, the fuzzy compensator needs k3n

fuzzy rules [4].
For example, considering two-joint manipulator, we use F̂ðq; _q; €q Hj Þ to

approximate Fðq; _q; €qÞ, then we have n ¼ 2 ,and there are three input variables for
each joint; if we design 5 MF for each input variable, the fuzzy rules will be
53�2 ¼ 56 ¼ 15625, which will cost much more calculation time.

To solve this problem, therefore, we need to consider the methods to reduce the
number of fuzzy rules; one way is to consider the properties of robot dynamics and
uncertainties.

102 6 Adaptive Fuzzy Control

6.4.3 Only Consider Friction

If we only consider friction force, then we can get Fðq; _q; €qÞ ¼ Fð _qÞ. For this
condition, we can consider to design one input fuzzy system F̂ _q hjð Þ to approximate
Fðq; _q; €qÞ.

Then from (6.28), the adaptive robust fuzzy control law becomes

s ¼ D qð Þ€qr þC q; _qð Þ _qr þG qð Þþ F̂ _q hjð Þ � KDs�Wsgn sð Þ ð6:31Þ

And the adaptive law (6.30) becomes

_hi ¼ �C�1
i sin _qð Þ; i ¼ 1; 2; � � � ; n ð6:32Þ

The fuzzy system is designed as

F̂ _q hjð Þ ¼
F̂1 _q1ð Þ
F̂2 _q2ð Þ

..

.

F̂n _qnð Þ

2
6664

3
7775 ¼

hT1n
1 _q1ð Þ

hT2n
2 _q2ð Þ
..
.

hTnn
n _qnð Þ

2
6664

3
7775

6.4.4 Simulation Example

Consider a two-joint rigid manipulator dynamic Eq. (6.20) as

D11 q2ð Þ D12 q2ð Þ
D21 q2ð Þ D22 q2ð Þ

 !
€q1

€q2

 !
þ �C12 q2ð Þ _q2 �C12 q2ð Þ _q1 þ _q2ð Þ

C12 q2ð Þ _q1 0

� 	 g1 q1 þ q2ð Þg
g2 q1 þ q2ð Þg

 !

þFðq; _q; €qÞ ¼
s1

s2

 !

where

D11 q2ð Þ ¼ m1 þm2ð Þr21 þm2r
2
2 þ 2m2r1r2 cos q2ð Þ

D12 q2ð Þ ¼ D21 q2ð Þ ¼ m2r
2
2 þm2r1r2 cos q2ð Þ

D22 q2ð Þ ¼ m2r
2
2

C12 q2ð Þ ¼ m2r1r2 sin q2ð Þ

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 103

Let y ¼ ½q1; q2�T, s ¼ s1; s2½ �T, q ¼ q1 _q1 q2 _q2½ �T, choose r1 ¼ 1:0 , r2 ¼ 0:8 ,
m1 ¼ 1:0 , m2 ¼ 1:5.

Consider ideal trajectory as yd1 ¼ 0:3 sin t and yd2 ¼ 0:3 sin t. Define member
function as

lAl
i
ðxiÞ ¼ exp � xi � �xli

p=24

� 	2
 !

where i ¼ 1; 2; 3; 4; 5, �xli is chosen as �p=6 , �p=12 ,0, p=12 ,and p=6, respec-
tively, and Ai is designed as NB, NS, ZO, PS, PB.

Choose parameters of the control law as k1 ¼ 10, k2 ¼ 10, KD ¼ 20I,
C1 ¼ C2 ¼ 0:0001, the initial states of the plant are chosen as q1 0ð Þ ¼ q2 0ð Þ ¼
_q1 0ð Þ ¼ _q2 0ð Þ ¼ 0 ,the friction model is F _qð Þ ¼ 10 _q1 þ 3sgn _q1ð Þ

10 _q2 þ 3sgn _q2ð Þ
�

, and the dis-

turbance is sd ¼ 0:05 sin 20tð Þ
0:1 sin 20tð Þ

�

.

Using the robust adaptive control law (6.31) with the adaptive law (6.32), in the
fuzzy system, the inputs are chosen as _q1 _q2½ �. Choose Hi 0ð Þ ¼ 0:10, and let
W ¼ diag 1:5; 1:5½ �; the simulation results are shown in Figs. 6.15, 6.16, 6.17, and
6.18.

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

time(s)

A
ng

le
 tr

ac
ki

ng
 o

f f
irs

t l
in

k

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

time(s)

A
ng

le
 tr

ac
ki

ng
 o

f s
ec

on
d

lin
k

Fig. 6.15 Angle tracking

104 6 Adaptive Fuzzy Control

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

time(s)

A
ng

le
 s

pe
ed

 tr
ac

ki
ng

 o
f f

irs
t l

in
k

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

time(s)A
ng

le
 s

pe
ed

 tr
ac

ki
ng

 o
f s

ec
on

d
lin

k

Fig. 6.16 Angle speed tracking

0 2 4 6 8 10
-50

0

50

time(s)

F
an

d
Fc

0 2 4 6 8 10
-20

0

20

40

time(s)

F
an

d
Fc

Fig. 6.17 Friction force and
compensation

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 105

Simulation programs:

(1) Simulink main program: chap6_4sim.mdl

(2) S function of Control law: chap6_4ctrl.m

function [sys,x0,str,ts] = MIMO_ctrl(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

0 2 4 6 8 10
-50

0

50

100

time(s)

C
on

tro
l i

np
ut

 o
f L

in
k1

0 2 4 6 8 10
-20

0

20

40

time(s)

C
on

tro
l i

np
ut

 o
f L

in
k2

Fig. 6.18 Control input

106 6 Adaptive Fuzzy Control

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global nmn1 nmn2 Fai

nmn1=10;nmn2=10;

Fai=[nmn1 0;0 nmn2];

sizes = simsizes;

sizes.NumContStates = 10;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 8;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [0.1*ones(10,1)];

str = [];

ts = [];

function sys=mdlDerivatives(t,x,u)

global nmn1 nmn2 Fai

qd1=u(1);

qd2=u(2);

dqd1=0.3*cos(t);

dqd2=0.3*cos(t);

dqd=[dqd1 dqd2]';

ddqd1=-0.3*sin(t);

ddqd2=-0.3*sin(t);

ddqd=[ddqd1 ddqd2]';

q1=u(3);dq1=u(4);

q2=u(5);dq2=u(6);

%%%

fsd1=0;

for l1=1:1:5

gs1=-[(dq1+pi/6-(l1-1)*pi/12)/(pi/24)]^2;

u1(l1)=exp(gs1);

end

fsd2=0;

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 107

for l2=1:1:5

gs2=-[(dq2+pi/6-(l2-1)*pi/12)/(pi/24)]^2;

u2(l2)=exp(gs2);

end

for l1=1:1:5

fsu1(l1)=u1(l1);

fsd1=fsd1+u1(l1);

end

for l2=1:1:5

fsu2(l2)=u2(l2);

fsd2=fsd2+u2(l2);

end

fs1=fsu1/(fsd1+0.001);

fs2=fsu2/(fsd2+0.001);

%%%

e1=q1-qd1;

e2=q2-qd2;

e=[e1 e2]';

de1=dq1-dqd1;

de2=dq2-dqd2;

de=[de1 de2]';

s=de+Fai*e;

Gama1=0.0001;Gama2=0.0001;

S1=-1/Gama1*s(1)*fs1;

S2=-1/Gama2*s(2)*fs2;

for i=1:1:5

sys(i)=S1(i);

end

for j=6:1:10

sys(j)=S2(j-5);

end

function sys=mdlOutputs(t,x,u)

global nmn1 nmn2 Fai

q1=u(3);dq1=u(4);

q2=u(5);dq2=u(6);

r1=1;r2=0.8;

m1=1;m2=1.5;

D11=(m1+m2)*r1^2+m2*r2^2+2*m2*r1*r2*cos(q2);

D22=m2*r2^2;

D21=m2*r2^2+m2*r1*r2*cos(q2);

D12=D21;

108 6 Adaptive Fuzzy Control

D=[D11 D12;D21 D22];

C12=m2*r1*sin(q2);

C=[-C12*dq2 -C12*(dq1+dq2);C12*q1 0];

g1=(m1+m2)*r1*cos(q2)+m2*r2*cos(q1+q2);

g2=m2*r2*cos(q1+q2);

G=[g1;g2];

qd1=u(1);

qd2=u(2);

dqd1=0.3*cos(t);

dqd2=0.3*cos(t);

dqd=[dqd1 dqd2]';

ddqd1=-0.3*sin(t);

ddqd2=-0.3*sin(t);

ddqd=[ddqd1 ddqd2]';

e1=q1-qd1;

e2=q2-qd2;

e=[e1 e2]';

de1=dq1-dqd1;

de2=dq2-dqd2;

de=[de1 de2]';

s=de+Fai*e;

dqr=dqd-Fai*e;

ddqr=ddqd-Fai*de;

for i=1:1:5

thta1(i,1)=x(i);

end

for i=1:1:5

thta2(i,1)=x(i+5);

end

fsd1=0;

for l1=1:1:5

gs1=-[(dq1+pi/6-(l1-1)*pi/12)/(pi/24)]^2;

u1(l1)=exp(gs1);

end

fsd2=0;

for l2=1:1:5

gs2=-[(dq2+pi/6-(l2-1)*pi/12)/(pi/24)]^2;

u2(l2)=exp(gs2);

end

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 109

for l1=1:1:5

fsu1(l1)=u1(l1);

fsd1=fsd1+u1(l1);

end

for l2=1:1:5

fsu2(l2)=u2(l2);

fsd2=fsd2+u2(l2);

end

fs1=fsu1/(fsd1+0.001);

fs2=fsu2/(fsd2+0.001);

Fp(1)=thta1'*fs1';

Fp(2)=thta2'*fs2';

KD=20*eye(2);

W=[1.5 0;0 1.5];

tol=D*ddqr+C*dqr+G+1*Fp'-KD*s-W*sign(s); %(4.134)

sys(1)=tol(1);

sys(2)=tol(2);

sys(3)=Fp(1);

sys(4)=Fp(2);

(3) S function of Plant: chap6_4plant.m

function [sys,x0,str,ts]=MIMO_plant(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

110 6 Adaptive Fuzzy Control

sizes.NumOutputs = 6;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0 0 0 0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

r1=1;r2=0.8;

m1=1;m2=1.5;

D11=(m1+m2)*r1^2+m2*r2^2+2*m2*r1*r2*cos(x(3));

D22=m2*r2^2;

D21=m2*r2^2+m2*r1*r2*cos(x(3));

D12=D21;

D=[D11 D12;D21 D22];

C12=m2*r1*sin(x(3));

C=[-C12*x(4) -C12*(x(2)+x(4));C12*x(1) 0];

g1=(m1+m2)*r1*cos(x(3))+m2*r2*cos(x(1)+x(3));

g2=m2*r2*cos(x(1)+x(3));

G=[g1;g2];

Fr=[10*x(2)+3*sign(x(2));10*x(4)+3*sign(x(4))];

told=[0.05*sin(20*t);0.1*sin(20*t)];

tol=[u(1) u(2)]';

S=inv(D)*(tol-C*[x(2);x(4)]-G-Fr);

sys(1)=x(2);

sys(2)=S(1);

sys(3)=x(4);

sys(4)=S(2);

function sys=mdlOutputs(t,x,u)

Fr=[10*x(2)+3*sign(x(2));10*x(4)+3*sign(x(4))];

sys(1)=x(1);

sys(2)=x(2);

sys(3)=x(3);

sys(4)=x(4);

sys(5)=Fr(1);

sys(6)=Fr(2);

6.4 Adaptive Fuzzy Control Based on Fuzzy System Compensator 111

(4) Plot program: chap6_4plot.m

close all;

figure(1);

subplot(211);

plot(t,yd1(:,1),'r',t,y(:,1),'b');

xlabel('time(s)');ylabel('Angle tracking of first link');

subplot(212);

plot(t,yd2(:,1),'r',t,y(:,3),'b');

xlabel('time(s)');ylabel('Angle tracking of second link');

figure(2);

subplot(211);

plot(t,yd1(:,2),'r',t,y(:,2),'b');

xlabel('time(s)');ylabel('Angle speed tracking of first link');

subplot(212);

plot(t,yd2(:,2),'r',t,y(:,4),'b');

xlabel('time(s)');ylabel('Angle speed tracking of second link');

figure(3);

subplot(211);

plot(t,y(:,5),'r',t,u(:,3),'b');

xlabel('time(s)');ylabel('F and Fc');

subplot(212);

plot(t,y(:,6),'r',t,u(:,4),'b');

xlabel('time(s)');ylabel('F and Fc');

figure(4);

subplot(211);

plot(t,u(:,1),'r');

xlabel('time(s)');ylabel('Control input of Link1');

subplot(212);

plot(t,u(:,2),'r');

xlabel('time(s)');ylabel('Control input of Link2');

References

1. L.X.Wang, A Course in Fuzzy Systems and Control, (Prentice-Hall International, Inc., 1996)
2. L.X. Wang, Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2),

146–155 (1993)
3. P.A. Ioannou, J. Sun, Robust Adaptive Control, (PTR Prentice-Hall, 1996), pp. 75–76
4. B.K. Yoo, W.C. Ham, Adaptive control of robot manipulator using fuzzy compensator. IEEE

Trans. Fuzzy Syst. 8(2), 186–199 (2000)

112 6 Adaptive Fuzzy Control

Chapter 7
Neural Networks

7.1 Introduction

Neural networks are networks of nerve cells (neurons) in the brain. The human
brain has billions of individual neurons and trillions of interconnections. Neurons
are continuously processing and transmitting information to one another.

In 1909, Cajal found that the brain consists of a large number of highly con-
nected neurons which apparently can send very simple excitatory and inhibitory
messages to each other and can update their excitations on the basis of these simple
messages [1]. A neuron has three major regions: the cell body, the axon (send out
messages), and the dendrites (receive messages). The cell body provides the support
functions, the structure of the cell. The axon is a branching fiber which carries
signals away from the neurons. The dendrites consist of more branching fibers
which receive signals from other nerve cells.

The historical reviews of neural networks are as follows:

(1) In 1943, McCulloch and Pitts proposed first mathematical model of the neurons
and showed how neuron-like networks could be computed.

(2) The first set of ideas of learning in neural networks was contained in Hebb’s
book entitled The Organization of Behaviour in 1949.

(3) In 1951, Edmonds and Minsky built their learning machine using Hebb’s idea.
(4) The real beginning of a meaningful neuron-like network learning can be traced

to the work of Rosenblatt in 1962. Rosenblatt invented a class of simple
neuron-like learning networks which is called perceptron neural network.

(5) In a breakthrough paper published in 1982, Hopfield introduced a neural net-
work architecture which is called Hopfield network. This NN can be used to
solve optimization problems such as the traveling salesman problem.

(6) An important NN which has been widely used in NN is the back-error prop-
agation or backpropagation (BP). BP NN was first presented in 1974 by
Werbos and then was independently reinvented in 1986 by Rumelhart et al. [2].

Their book, Parallel Distributed Processing, introduced a broad perspective of
the neural network approaches.

(7) RBF neural networks were addressed in 1988 [3], which have recently drawn
much attention due to their good generalization ability and a simple network
structure that avoids unnecessary and lengthy calculation as compared to the
multilayer feed-forward network (MFN). Past research of universal approxi-
mation theorems on RBF have shown that any nonlinear function over a
compact set with arbitrary accuracy can be approximated by RBF neural net-
work [4]. There have been significant research efforts on RBF neural control for
nonlinear systems.

RBF neural network has three layers: the input layer, the hidden layer, and the
output layer. Neurons at the hidden layer are activated by a radial basis function.
The hidden layer consists of an array of computing units called hidden nodes. Each
hidden node contains a center c vector that is a parameter vector of the same
dimension as the input vector x, the Euclidean distance between the center and the
network input vector x is defined by xðtÞ � cjðtÞ

�� ��.

7.2 Single Neural Network

From Fig. 7.1, the algorithm of single neural network can be described as

Neti ¼
X
j

wijxj þ si � hi ð7:1Þ

ui ¼ f Netið Þ ð7:2Þ

yi ¼ g uið Þ ¼ h Netið Þ ð7:3Þ

where gðuiÞ ¼ ui, yi ¼ f ðNetiÞ.

iθ

is

iy

1x
1w

2w
2x

nx
nw

iuFig. 7.1 Single NN model

114 7 Neural Networks

Nonlinearity characteristic function f ðNetiÞ can be divided as three kinds as
follows:

(1) Threshold value

f Netið Þ ¼ 1 Neti [0
0 Neti � 0

�
ð7:4Þ

The threshold function is shown in Fig. 7.2.

(2) Linear function

f Netið Þ ¼
0 Neti �Neti0
kNeti Neti0\Neti\Neti1
fmax Neti �Neti1

8<
: ð7:5Þ

Choose Neti0 ¼ 30, Neti1 ¼ 70, fmax ¼ 5:0, the linearity function is shown in
Fig. 7.3.

(3) Nonlinear function

Sigmoid function and Gaussian function are often used in neural network.
Sigmoid type is expressed as

f Netið Þ ¼ 1

1þ e�
Neti
T

ð7:6Þ

Choose T ¼ 1:0, the sigmoid function is shown in Fig. 7.4.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neti

f(N
et

i)

Fig. 7.2 Threshold function

7.2 Single Neural Network 115

7.3 BP Neural Network Design and Simulation

The backpropagation (BP) neural network is a multilayered neural network. Thus,
the BP algorithm employs three or more layers of processing unit (neurons).

7.3.1 BP Network Structure

Figure 7.5 shows a structure of a typical three-layered network for the BP algo-
rithm. The leftmost layer of units is the input layer to which the input data is
supplied. The layer after it is the hidden layer where the processing units are

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Neti

f(N
et

i)

Fig. 7.3 Linearity function

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neti

f(N
et

i)

Fig. 7.4 Sigmoid function

116 7 Neural Networks

interconnected to the layers before and after it. The rightmost layer is the output
layer. The layers shown in Fig. 7.5 are fully interconnected, which means that each
processing unit is connected to every unit in the previous layer and in the suc-
ceeding layer. However, units are not connected to other units in the same layer.

7.3.2 Approximation of BP Neural Network

BP neural network scheme for approximation is shown in Fig. 7.6.
BP neural network structure for approximation is shown in Fig. 7.7.
Classical BP neural network algorithm is described as follows:

(1) Feed-forward calculation

Input of hidden layer is

xj ¼
X
i

wijxi ð7:7Þ

ix i
jx

j jx
k kx

...

... ...
...

ijw
jkw

input hidden output

Fig. 7.5 BP NN structure

plant

BP

+

−

()y k

()ny k

()u kFig. 7.6 BP approximation
scheme

7.3 BP Neural Network Design and Simulation 117

Output of hidden layer is

x0j ¼ f ðxjÞ ¼ 1
1þ e�xj

ð7:8Þ

then

@x0j
@xj

¼ x0jð1� x0jÞ

Output of output layer is

yoðkÞ ¼
X
j

wjox
0
j ð7:9Þ

Then, the approximation error is

eðkÞ ¼ yðkÞ � ynðkÞ

Error index function is designed as

E ¼ 1
2
eðkÞ2 ð7:10Þ

(2) Learning algorithm of BP

According to the steepest descent (gradient) method, the learning of weight
value wjo is

Dwjo ¼ �g
@E
@wjo

¼ g � eðkÞ � @yo
@wjo

¼ g � eðkÞ � x0j

)(ku

)(ky

ijw

'
jxjx

ix

Fig. 7.7 BP neural network
structure for approximation

118 7 Neural Networks

The weight value at time kþ 1 is

wjoðkþ 1Þ ¼ wjoðkÞþDwjo

The learning of weight value wij is

Dwij ¼ �g
@E
@wij

¼ g � eðkÞ � @yo
@wij

where the chain rule is used, @yo
@wij

¼ @yo
@x0j

� @x
0
j

@xj
� @xj
@wij

¼ wjo � @x
0
j

@xj
� xi ¼ wjo � x0jð1� x0jÞ � xi.

The weight value at time kþ 1 is

wijðkþ 1Þ ¼ wijðkÞþDwij

Considering the effect of previous weight value change, the algorithm of weight
value is

wjoðkþ 1Þ ¼ wjoðkÞþDwjo þ a wjoðkÞ � wjoðk � 1Þ� � ð7:11Þ

wijðtþ 1Þ ¼ wijðtÞþDwij þ aðwijðtÞ � wijðt � 1ÞÞ ð7:12Þ

where g is learning rate, a is momentum factor, g 2 ½0; 1�, a 2 ½0; 1�.
By using BP neural network approximation, Jacobian value can be calculated as

follows:

@yðkÞ
@uðkÞ �

@yoðkÞ
@uðkÞ ¼ @yoðkÞ

@x0j
� @x0j
@xj

� @xj
@xð1Þ ¼

X
j

wjox
0
j 1� x0j
� �

w1j ð7:13Þ

7.3.3 Simulation Example

The plant is as follows

y kð Þ ¼ u kð Þ3 þ y k � 1ð Þ
1þ y k � 1ð Þ2

Input signal is chosen as u kð Þ ¼ 0:5 sin 6ptð Þ, let RBF neural network input
vector as x ¼ uðkÞ yðkÞ½ �, NN structure is chosen as 2-6-1, the initial value of W jo,
W ij is chosen as random value in �1 þ 1½ �, g ¼ 0:50, a ¼ 0:05.

The program is chap7_1.m, and the results are shown from Figs. 7.8, 7.9, and
7.10.

7.3 BP Neural Network Design and Simulation 119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

times

y
an

d
yo

Fig. 7.8 BP approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

times

er
ro

r

Fig. 7.9 BP approximation
error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

times

dy
u

Fig. 7.10 Jacobian value
identification

120 7 Neural Networks

Simulation program: chap7_1.m

%BP approximation

clear all;

close all;

xite=0.50;

alfa=0.05;

wjo=rands(6,1);

wjo_1=wjo;wjo_2=wjo_1;

wij=rands(2,6);

wij_1=wij;wij_2=wij;

dwij=0*wij;

x=[0,0]';

u_1=0;

y_1=0;

I=[0,0,0,0,0,0]';

Iout=[0,0,0,0,0,0]';

FI=[0,0,0,0,0,0]';

ts=0.001;

for k=1:1:1000

time(k)=k*ts;

u(k)=0.50*sin(3*2*pi*k*ts);

y(k)=u_1^3+y_1/(1+y_1^2);

x(1)=u(k);

x(2)=y(k);

for j=1:1:6

I(j)=x'*wij(:,j);

Iout(j)=1/(1+exp(-I(j)));

end

yo(k)=wjo'*Iout; % Output of NNI networks

e(k)=y(k)-yo(k); % Error calculation

wjo=wjo_1+(xite*e(k))*Iout+alfa*(wjo_1-wjo_2);

7.3 BP Neural Network Design and Simulation 121

for j=1:1:6

FI(j)=exp(-I(j))/(1+exp(-I(j)))^2;

end

for i=1:1:2

for j=1:1:6

dwij(i,j)=e(k)*xite*FI(j)*wjo(j)*x(i);

end

End

wij=wij_1+dwij+alfa*(wij_1-wij_2);

%%%%%%%%%%%%%%Jacobian%%%%%%%%%%%%%%%%

yu=0;

for j=1:1:6

yu=yu+wjo(j)*wij(1,j)*FI(j);

end

dyu(k)=yu;

wij_2=wij_1;wij_1=wij;

wjo_2=wjo_1;wjo_1=wjo;

u_1=u(k);

y_1=y(k);

end

figure(1);

plot(time,y,'r',time,yo,'b');

xlabel('times');ylabel('y and yo');

figure(2);

plot(time,y-yo,'r');

xlabel('times');ylabel('error');

figure(3);

plot(time,dyu);

xlabel('times');ylabel('dyu');

7.4 RBF Neural Network Design and Simulation

The radial basis function (RBF) neural network is a multilayered neural network.
Like BP neural network structure, RBF algorithm also employs three layers of
processing unit (neurons).

The difference between BP and RBF is that RBF have only output layer, and
activation function is Gaussian function instead of S function in hidden layer, which
will simplify the algorithm and decrease computational burden.

122 7 Neural Networks

7.4.1 RBF Algorithm

The structure of a typical three-layer RBF neural network is shown as Fig. 7.11.
In RBF neural network, x ¼ ½xi�T is input vector. Assuming there are mth neural

nets, and radial basis function vector in hidden layer of RBF is h ¼ ½hj�T, hj is
Gaussian function value for neural net j in hidden layer, and

hj ¼ exp � x� cj
�� ��2

2b2j

 !
ð7:14Þ

where c ¼ ½cij� ¼
c11 � � � c1m
..
. � � � ..

.

cn1 � � � cnm

2
64

3
75 represents the coordinate value of center point

of the Gaussian function of neural net j for the ith input, i ¼ 1; 2; . . .; n,
j ¼ 1; 2; . . .;m. For the vector b ¼ b1; . . .; bm½ �T, bj represents the width value of
Gaussian function for neural net j.

The weight value of RBF is

w ¼ w1; . . .;wm½ �T ð7:15Þ

The output of RBF neural network is

y tð Þ ¼ wTh ¼ w1h1 þw2h2 þ � � � þwmhm ð7:16Þ

7.4.2 RBF Design Example with MATLAB Simulation

7.4.2.1 For Structure 1-5-1 RBF Neural Network

Consider a structure 1-5-1 RBF neural network, we have one input as x ¼ x1,
and b ¼ b1 b2 b3 b4 b5½ �T, c ¼ c11 c12 c13 c14 c15½ �, h ¼
h1 h2 h3 h4 h5½ �T, w ¼ w1 w2 w3 w4 w5½ �, and yðtÞ ¼ wTh ¼
w1h1 þw2h2 þw3h3 þw4h4 þw5h5.

Choose the input as sin t, the output of RBF is shown in Fig. 7.12, the output of
hidden neural net is shown in Fig. 7.13.

The Simulink program of this example is chap7_2sim.mdl, and MATLAB
programs of the example are given in the Appendix.

7.4 RBF Neural Network Design and Simulation 123

i j

... ...

1x

2x

nx

1h

2h

mh

mw

my

1w

2w ∑

Fig. 7.11 RBF neural
network structure

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

time(s)

y

Fig. 7.12 Output of RBF

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

hj

Fig. 7.13 Output of hidden
neural net

124 7 Neural Networks

Simulation programs:

(1) Simulink main program: chap7_2sim.mdl

(2) S function of RBF: chap7_2rbf.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 7;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [];

function sys=mdlOutputs(t,x,u)

x=u(1); %Input Layer

7.4 RBF Neural Network Design and Simulation 125

%i=1

%j=1,2,3,4,5

%k=1

c=[-0.5 -0.25 0 0.25 0.5]; %cij

b=[0.2 0.2 0.2 0.2 0.2]'; %bj

W=ones(5,1); %Wj

h=zeros(5,1); %hj

for j=1:1:5

h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j))); %Hidden Layer

end

y=W'*h; %Output Layer

sys(1)=y;

sys(2)=x;

sys(3)=h(1);

sys(4)=h(2);

sys(5)=h(3);

sys(6)=h(4);

sys(7)=h(5);

(3) Plot program: chap7_2plot.m

close all;

% y=y(:,1);

% x=y(:,2);

% h1=y(:,3);

% h2=y(:,4);

% h3=y(:,5);

% h4=y(:,6);

% h5=y(:,7);

figure(1);

plot(t,y(:,1),'k','linewidth',2);

xlabel('time(s)');ylabel('y');

figure(2);

plot(y(:,2),y(:,3),'k','linewidth',2);

xlabel('x');ylabel('hj');

hold on;

plot(y(:,2),y(:,4),'k','linewidth',2);

hold on;

plot(y(:,2),y(:,5),'k','linewidth',2);

hold on;

126 7 Neural Networks

plot(y(:,2),y(:,6),'k','linewidth',2);

hold on;

plot(y(:,2),y(:,7),'k','linewidth',2);

7.4.2.2 For Structure 2-5-1 RBF Neural Network

Consider a structure 2-5-1 RBF neural network, we have x ¼ x1; x2½ �T,
b ¼ b1 b2 b3 b4 b5½ �T, c ¼ c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

� 	
, h ¼

h1 h2 h3 h4 h5½ �T, w ¼ w1 w2 w3 w4 w5½ �T, and yðtÞ ¼ wTh ¼
w1h1 þw2h2 þw3h3 þw4h4 þw5h5.

Two inputs are chosen as sin t, the output of RBF is shown in Fig. 7.14, and the
output of hidden neural net is shown in Figs. 7.15 and 7.16.

Simulation programs:

(1) Simulink main program: chap7_3sim.mdl

(2) S function of RBF: chap7_3rbf.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

7.4 RBF Neural Network Design and Simulation 127

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

hj

Fig. 7.15 Output of hidden
neural net for first input

0 5 10 15 20 25 30
0

0.5

1

1.5

time(s)

y

Fig. 7.14 Output of RBF

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x2

hj

Fig. 7.16 Output of hidden
neural net for second input

128 7 Neural Networks

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 8;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [];

function sys=mdlOutputs(t,x,u)

x1=u(1); %Input Layer

x2=u(2);

x=[x1 x2]';

%i=2

%j=1,2,3,4,5

%k=1

c=[-0.5 -0.25 0 0.25 0.5;

-0.5 -0.25 0 0.25 0.5]; %cij

b=[0.2 0.2 0.2 0.2 0.2]'; %bj

W=ones(5,1); %Wj

h=zeros(5,1); %hj

for j=1:1:5

h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j))); %Hidden Layer

end

yout=W'*h; %Output Layer

sys(1)=yout;

sys(2)=x1;

sys(3)=x2;

sys(4)=h(1);

sys(5)=h(2);

sys(6)=h(3);

sys(7)=h(4);

sys(8)=h(5);

7.4 RBF Neural Network Design and Simulation 129

(3) Plot program: chap7_3plot.m

close all;

% y=y(:,1);

% x1=y(:,2);

% x2=y(:,3);

% h1=y(:,4);

% h2=y(:,5);

% h3=y(:,6);

% h4=y(:,7);

% h5=y(:,8);

figure(1);

plot(t,y(:,1),'k','linewidth',2);

xlabel('time(s)');ylabel('y');

figure(2);

plot(y(:,2),y(:,4),'k','linewidth',2);

xlabel('x1');ylabel('hj');

hold on;

plot(y(:,2),y(:,5),'k','linewidth',2);

hold on;

plot(y(:,2),y(:,6),'k','linewidth',2);

hold on;

plot(y(:,2),y(:,7),'k','linewidth',2);

hold on;

plot(y(:,2),y(:,8),'k','linewidth',2);

figure(3);

plot(y(:,3),y(:,4),'k','linewidth',2);

xlabel('x2');ylabel('hj');

hold on;

plot(y(:,3),y(:,5),'k','linewidth',2);

hold on;

plot(y(:,3),y(:,6),'k','linewidth',2);

hold on;

plot(y(:,3),y(:,7),'k','linewidth',2);

hold on;

plot(y(:,3),y(:,8),'k','linewidth',2);

130 7 Neural Networks

7.5 RBF Neural Network Approximation Based
on Gradient Descent Method

7.5.1 RBF Neural Network Approximation

We use RBF neural network to approximate a plant, the structure is shown in
Fig. 7.17.

In RBF neural network, x ¼ x1 x2 . . . xn½ �T is the input vector, and hj is
Gaussian function for neural net j, then

hj ¼ exp � x� cj
�� ��2

2b2j

 !
; j ¼ 1; 2; . . .;m ð7:17Þ

where cj ¼ cj1; . . .; cjn

 �

is the center vector of neural net j.
The width vector of Gaussian function is

b ¼ b1; . . .; bm½ �T

where bj [0 represents the width value of Gaussian function for neural net j.
The weight value is

w ¼ w1; . . .;wm½ �T ð7:18Þ

The output of RBF is

ym tð Þ ¼ w1h1 þw2h2 þ � � � þwmhm ð7:19Þ

The performance index function of RBF is

EðtÞ ¼ 1
2

yðtÞ � ymðtÞð Þ2 ð7:20Þ

plant

RBF

+

−

()y k()u k

()my k

Fig. 7.17 RBF neural
network approximation

7.5 RBF Neural Network Approximation Based on Gradient … 131

According to gradient descent method, the parameters can be updated as follows:

DwjðtÞ ¼ �g
@E
@wj

¼ g yðtÞ � ymðtÞð Þhj

wjðtÞ ¼ wjðt � 1ÞþDwjðtÞþ a wjðt � 1Þ � wjðt � 2Þ� � ð7:21Þ

Dbj ¼ �g
@E
@bj

¼ g yðtÞ � ymðtÞð Þwjhj
x� cj
�� ��2

b3j
ð7:22Þ

bjðtÞ ¼ bjðt � 1ÞþDbj þ a bjðt � 1Þ � bjðt � 2Þ� � ð7:23Þ

Dcji ¼ �g
@E
@cji

¼ g yðtÞ � ymðtÞð Þwj
xj � cji
b2j

ð7:24Þ

cjiðtÞ ¼ cjiðt � 1ÞþDcji þ a cjiðt � 1Þ � cjiðt � 2Þ� � ð7:25Þ

where g 2 ð0; 1Þ is the learning rate, a 2 ð0; 1Þ is momentum factor.
In RBF neural network approximation, the parameters of ci and bi must be

chosen according to the scope of the input value. If the parameters ci and bi are
chosen inappropriately, Gaussian function will not be effectively mapped, and RBF
network will be invalid. The gradient descent method is an effective method to
adjust ci and bi in RBF neural network approximation.

If the initial cj and b are set in the effective range of inputs of RBF, we can only
update weight value with fixed cj and b.

7.5.2 Simulation Example

First example: only update w

Using RBF neural network to approximate the following discrete plant

G sð Þ ¼ 133
s2 þ 25s

Consider a structure 2-5-1 RBF neural network, we choose inputs as
x 1ð Þ ¼ u tð Þ, x 2ð Þ ¼ y tð Þ, and set a ¼ 0:05, g ¼ 0:5. The initial weight value is
chosen as random value between 0 and 1.

Choose the input as uðtÞ ¼ sin t, consider the range of the first input xð1Þ is ½0; 1�,
the range of the second input xð2Þ is about ½0; 10�, we choose the initial parameters of

Gaussian function as cj ¼ �1 �0:5 0 0:5 1
�10 �5 0 5 10

� 	T
; bj ¼ 1:5; j ¼ 1; 2; 3; 4; 5:

132 7 Neural Networks

In the simulation, we only update w with fixed cj and b in RBF neural network
approximation, the results are shown in Fig. 7.18.

Simulation programs:

(1) Simulink main program: chap7_4sim.mdl

(2) S function of RBF: chap7_4rbf.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

time(s)

y
an

d
ym

ideal signal
signal approximation

Fig. 7.18 RBF neural network approximation

7.5 RBF Neural Network Approximation Based on Gradient … 133

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 1;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[];

str=[];

ts=[];

function sys=mdlOutputs(t,x,u)

persistent w w_1 w_2 b ci

alfa=0.05;

xite=0.5;

if t==0

b=1.5;

ci=[-1 -0.5 0 0.5 1;

-10 -5 0 5 10];

w=rands(5,1);

w_1=w;w_2=w_1;

end

ut=u(1);

yout=u(2);

xi=[ut yout]';

for j=1:1:5

h(j)=exp(-norm(xi-ci(:,j))^2/(2*b^2));

end

ymout=w'*h';

d_w=0*w;

for j=1:1:5 %Only weight value update

d_w(j)=xite*(yout-ymout)*h(j);

end

134 7 Neural Networks

w=w_1+d_w+alfa*(w_1-w_2);

w_2=w_1;w_1=w;

sys(1)=ymout;

(3) Plot program: chap7_4plot.m

close all;

close all;

figure(1);

plot(t,y(:,1),'r',t,y(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('y and ym');

legend('ideal signal','signal approximation');

Second example: update w, cj, b by gradient descent method

Using RBF neural network to approximate the following discrete plant

y kð Þ ¼ u kð Þ3 þ y k � 1ð Þ
1þ y k � 1ð Þ2

Consider a structure 2-5-1 RBF neural network, and we choose x 1ð Þ ¼ u kð Þ,
x 2ð Þ ¼ y kð Þ, and a ¼ 0:05, g ¼ 0:15. The initial weight value is chosen as random
value between 0 and 1. Choose the input as u kð Þ ¼ sin t, t ¼ k � T , T ¼ 0:001, we

set the initial parameters of Gaussian function as cj ¼ �1 �0:5 0 0:5 1
�1 �0:5 0 0:5 1

� 	T
;

bj ¼ 3:0; j ¼ 1; 2; 3; 4; 5:
In the simulation, M ¼ 1 indicates only updating w with fixed cj and b and

M ¼ 2 indicates updating w, cj, b, the results are shown from Figs. 7.19 and 7.20.
From the simulation test, we can see that better results can be gotten than only

adjusting w by the gradient descent method, especially the initial parameters of
Gaussian function cj and b are chosen not suitably.

Simulation program: chap7_5.m

%RBF approximation

clear all;

close all;

alfa=0.05;

xite=0.15;

x=[0,1]';

7.5 RBF Neural Network Approximation Based on Gradient … 135

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

y
an

d
ym

ideal signal
signal approximation

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

time(s)

er
ro

r

Fig. 7.19 RBF neural network approximation by only updating w (M = 1)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

y
an

d
ym

ideal signal
signal approximation

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

time(s)

er
ro

r

Fig. 7.20 RBF neural network approximation by updating w, b, c (M = 2)

136 7 Neural Networks

b=3*ones(5,1);

c=[-1 -0.5 0 0.5 1;

-1 -0.5 0 0.5 1];

w=rands(5,1);

w_1=w;w_2=w_1;

c_1=c;c_2=c_1;

b_1=b;b_2=b_1;

d_w=0*w;

d_b=0*b;

y_1=0;

ts=0.001;

for k=1:1:10000

time(k)=k*ts;

u(k)=sin(k*ts);

y(k)=u(k)^3+y_1/(1+y_1^2);

x(1)=u(k);

x(2)=y_1;

for j=1:1:5

h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));

end

ym(k)=w'*h';

em(k)=y(k)-ym(k);

M=1;

if M==1 %Only weight value update

d_w(j)=xite*em(k)*h(j);

elseif M==2 %Update w,b,c

for j=1:1:5

d_w(j)=xite*em(k)*h(j);

d_b(j)=xite*em(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;

for i=1:1:2

d_c(i,j)=xite*em(k)*w(j)*h(j)*(x(i)-c(i,j))*(b(j)^-2);

end

end

b=b_1+d_b+alfa*(b_1-b_2);

c=c_1+d_c+alfa*(c_1-c_2);

end

w=w_1+d_w+alfa*(w_1-w_2);

y_1=y(k);

7.5 RBF Neural Network Approximation Based on Gradient … 137

w_2=w_1;

w_1=w;

c_2=c_1;

c_1=c;

b_2=b_1;

b_1=b;

end

figure(1);

subplot(211);

plot(time,y,'r',time,ym,'k:','linewidth',2);

xlabel('time(s)');ylabel('y and ym');

legend('ideal signal','signal approximation');

subplot(212);

plot(time,y-ym,'k','linewidth',2);

xlabel('time(s)');ylabel('error');

7.6 Effects of Analysis on RBF Approximation

We consider approximation of the following discrete plant y kð Þ ¼ u kð Þ3 þ y k�1ð Þ
1þ y k�1ð Þ2

7.6.1 Effects of Gaussian Function Parameters on RBF
Approximation

In the simulation, we choose a = 0.05, η = 0.3. The initial weight value is chosen
as zeros.

From Gaussian function expression, we know that the effect of Gaussian func-
tion is related to the design of center vector cj, width value bj, and the number of
hidden nets. The principle of cj and bj design should be as follows:

(1) Width value bj represents the width of Gaussian function. The bigger value bj
is, the wider Gaussian function is. The width of Gaussian function represents
the covering scope for the network input. The wider the Gaussian function is,
the greater the covering scope of the network for the input is, otherwise worse
covering scope is. Width value bj should be designed moderate.

(2) Center vector cj represents the center coordination of Gaussian function for
neural net j. The nearer cj is to the input value, the better sensitivity of Gaussian
function is to the input value, otherwise the worse sensitivity is. Center vector cj
should be designed moderate.

138 7 Neural Networks

(3) The center vector cj should be designed within the effective mapping of
Gaussian membership function. For example, the scope of RBF input value is
½�3; þ 3�, and then, the center vector cj should be set in ½�3; þ 3�.
In simulation, we should design the center vector cj and the width value bj

according to the scope of practical network input value, in other words, the input
value must be within the effective mapping of Gaussian membership function. Five
Gaussian membership functions are shown in Fig. 7.21.

Simulation program:

Five Gaussian membership function design: chap7_6.m

%RBF function

clear all;

close all;

c=[-3 -1.5 0 1.5 3];

M=1;

if M==1

b=0.50*ones(5,1);

elseif M==2

b=1.50*ones(5,1);

end

h=[0,0,0,0,0]';

ts=0.001;

for k=1:1:2000

time(k)=k*ts;

Fig. 7.21 Five Gaussian
membership function

7.6 Effects of Analysis on RBF Approximation 139

%RBF function

x(1)=3*sin(2*pi*k*ts);

for j=1:1:5

h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));

end

x1(k)=x(1);

%First Redial Basis Function

h1(k)=h(1);

%Second Redial Basis Function

h2(k)=h(2);

%Third Redial Basis Function

h3(k)=h(3);

%Fourth Redial Basis Function

h4(k)=h(4);

%Fifth Redial Basis Function

h5(k)=h(5);

end

figure(1);

plot(x1,h1,'b');

figure(2);

plot(x1,h2,'g');

figure(3);

plot(x1,h3,'r');

figure(4);

plot(x1,h4,'c');

figure(5);

plot(x1,h5,'m');

figure(6);

plot(x1,h1,'b');

hold on;plot(x1,h2,'g');

hold on;plot(x1,h3,'r');

hold on;plot(x1,h4,'c');

hold on;plot(x1,h5,'m');

xlabel('Input value of Redial Basis Function');ylabel

('Membership function degree');

In the simulation, we choose the input of RBF as 0:5 sin 2ptð Þ, and set the
structure as 2-5-1. By changing cj and bj values, the effects of cj and bj on RBF
approximation are given.

Now, we analyze the effect of different cj and bj on RBF approximation as
follows:

140 7 Neural Networks

(1) RBF approximation with moderate bj and cj (Mb = 1, Mc = 1);
(2) RBF approximation with improper bj and moderate cj (Mb = 2, Mc = 1);
(3) RBF approximation with moderate bj and improper cj (Mb = 1, Mc = 2);
(4) RBF approximation with improper bj and cj (Mb = 2, Mc = 2).

The results are shown from Figs. 7.22, 7.23, 7.24, and 7.25. From the results, we
can see if we design improper cj and bj, the RBF approximation performance will
not be ensured.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time(s)

y
an

d
ym

Ideal value
Approximation value

Fig. 7.22 RBF approximation with moderate bj and cj (Mb = 1, Mc = 1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time(s)

y
an

d
ym

Ideal value
Approximation value

Fig. 7.23 RBF approximation with improper bj and moderate cj (Mb = 2, Mc = 1)

7.6 Effects of Analysis on RBF Approximation 141

Simulation program: chap7_7.m

%RBF approximation test

clear all;

close all;

alfa=0.05;

xite=0.5;

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-12

-10

-8

-6

-4

-2

0

2

4

6

8
x 10 82

time(s)

y
an

d
ym

Ideal value
Approximation value

Fig. 7.24 RBF approximation with moderate bj and improper cj (Mb = 1, Mc = 2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time(s)

y
an

d
ym

Ideal value
Approximation value

Fig. 7.25 RBF approximation with improper bj and cj (Mb = 2, Mc = 2)

142 7 Neural Networks

x=[0,0]';

%The parameters design of Guassian Function

%The input of RBF (u(k),y

(k)) must be in the effect range of Guassian function overlay

%The value of b represents the widenth of Guassian function overlay

Mb=1;

if Mb==1 %The width of Guassian function is moderate

b=1.5*ones(5,1);

elseif Mb==2 %The width of Guassian function is too narrow, most overlap

of the function is near to zero

b=0.0005*ones(5,1);

end

%The value of c represents the center position of Guassian function overlay

%the NN structure is 2-5-1: i=2; j=1,2,3,4,5; k=1

Mc=1;

if Mc==1 %The center position of Guassian function is moderate

c=[-1.5 -0.5 0 0.5 1.5;

-1.5 -0.5 0 0.5 1.5]; %cij

elseif Mc==2 %The center position of Guassian function is improper

c=0.1*[-1.5 -0.5 0 0.5 1.5;

-1.5 -0.5 0 0.5 1.5]; %cij

end

w=rands(5,1);

w_1=w;w_2=w_1;

y_1=0;

ts=0.001;

for k=1:1:2000

time(k)=k*ts;

u(k)=0.50*sin(1*2*pi*k*ts);

y(k)=u(k)^3+y_1/(1+y_1^2);

x(1)=u(k);

x(2)=y(k);

for j=1:1:5

h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));

end

ym(k)=w'*h';

em(k)=y(k)-ym(k);

d_w=xite*em(k)*h';

w=w_1+ d_w+alfa*(w_1-w_2);

7.6 Effects of Analysis on RBF Approximation 143

y_1=y(k);

w_2=w_1;w_1=w;

end

figure(1);

plot(time,y,'r',time,ym,'b:','linewidth',2);

xlabel('time(s)');ylabel('y and ym');

legend('Ideal value','Approximation value');

7.6.2 Effects of Hidden Nets Number on RBF
Approximation

From Gaussian function expression, besides the moderate center vector cj and width
value bj, the approximation error is also related to the number of hidden nets.

In the simulation, we choose a ¼ 0:05, g ¼ 0:3. The initial weight value is chosen
as zeros, and the parameter of Gaussian function is chosen as bj ¼ 1:5. The inputs of
RBF are uðkÞ ¼ sin t and yðkÞ, set the structure as 2-m-1, where m represents the
number of hidden nets. We analyze the effect of different number of hidden nets on
RBF approximation asm ¼ 1,m ¼ 3, andm ¼ 7. According to the practical scope of
the two inputs u kð Þ and y kð Þ, for different m, the parameter cj is chosen cj ¼ 0,

cj ¼ 1
3 �1 0 1½ �T, and cj ¼ 1

9

�3 �2 �1 0 1 2 3

�3 �2 �1 0 1 2 3

" #T
, respectively.

The results are shown from Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31. From the
results, we can see that the more number the hidden nets is chosen, the smaller the
approximation error can be received.

It should be noted that the more number the hidden nets is chosen, to prevent
from divergence, the smaller value of g should be designed.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Input value of Redial Basis Function

M
em

be
rs

hi
p

fu
nc

tio
n

de
gr

ee

Fig. 7.26 One Gaussian
function with only one hidden
net ðm ¼ 1Þ

144 7 Neural Networks

Simulation program: chap7_8.m

%RBF approximation test

clear all;

close all;

alfa=0.05;

xite=0.3;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

time(s)

y
an

d
ym

Ideal value
Approximation value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.01

0

0.01

0.02

time(s)

A
pp

ro
xi

m
at

io
n

er
ro

r

Fig. 7.27 Approximation with only one hidden net ðm ¼ 1Þ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Input value of Redial Basis Function

M
em

be
rs

hi
p

fu
nc

tio
n

de
gr

ee

Fig. 7.28 Three Gaussian
functions with three hidden
nets ðm ¼ 3Þ

7.6 Effects of Analysis on RBF Approximation 145

x=[0,0]';

%The parameters design of Guassian Function

%The input of RBF (u(k),y(k))must be in the effect range of Guassian func-

tion overlay

%The value of b represents the widenth of Guassian function overlay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

time(s)

y
an

d
ym

Ideal value
Approximation value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5
x 10

-3

time(s)

A
pp

ro
xi

m
at

io
n

er
ro

r

Fig. 7.29 Approximation with three hidden nets ðm ¼ 3Þ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Input value of Redial Basis Function

M
em

be
rs

hi
p

fu
nc

tio
n

de
gr

ee

Fig. 7.30 Seven Gaussian
functions with seven hidden
nets ðm ¼ 7Þ

146 7 Neural Networks

bj=1.5; %The width of Guassian function

%The value of c represents the center position of Guassian function overlay

%the NN structure is 2-m-1: i=2; j=1,2,…,m; k=1

M=3; %Different hidden nets number

if M==1 %only one hidden net

m=1;

c=0;

elseif M==2

m=3;

c=1/3*[-1 0 1;

-1 0 1];

elseif M==3

m=7;

c=1/9*[-3 -2 -1 0 1 2 3;

-3 -2 -1 0 1 2 3];

end

w=zeros(m,1);

w_1=w;w_2=w_1;

y_1=0;

ts=0.001;

for k=1:1:5000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

time(s)

y
an

d
ym

Ideal value
Approximation value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4
x 10

-3

time(s)

A
pp

ro
xi

m
at

io
n

er
ro

r

Fig. 7.31 Approximation with seven hidden nets ðm ¼ 7Þ

7.6 Effects of Analysis on RBF Approximation 147

time(k)=k*ts;

u(k)=sin(k*ts);

y(k)=u(k)^3+y_1/(1+y_1^2);

x(1)=u(k);

x(2)=y(k);

for j=1:1:m

h(j)=exp(-norm(x-c(:,j))^2/(2*bj^2));

end

ym(k)=w'*h';

em(k)=y(k)-ym(k);

d_w=xite*em(k)*h';

w=w_1+ d_w+alfa*(w_1-w_2);

y_1=y(k);

w_2=w_1;w_1=w;

x1(k)=x(1);

for j=1:1:m

H(j,k)=h(j);

end

if k==5000

figure(1);

for j=1:1:m

plot(x1,H(j,:),'linewidth',2);

hold on;

end

xlabel('Input value of Redial Basis Function');ylabel

('Membership function degree');

end

end

figure(2);

subplot(211);

plot(time,y,'r',time,ym,'b:','linewidth',2);

xlabel('time(s)');ylabel('y and ym');

legend('Ideal value','Approximation value');

subplot(212);

plot(time,y-ym,'r','linewidth',2);

xlabel('time(s)');ylabel('Approximation error');

148 7 Neural Networks

7.7 RBF Neural Network Training for System Modeling

7.7.1 RBF Neural Network Training

We can use RBF neural network to train a data vector with multiinput and multi-
output or to model a system off-line.

In RBF neural network, x ¼ x1 x2 � � � xn½ �T is the input vector, and hj is
Gaussian function for neural net j, then

hj ¼ exp � x� cj
�� ��2

2b2j

 !
; j ¼ 1; 2; . . .;m ð7:22Þ

where cj ¼ cj1; . . .; cjn

 �

is the center vector of neural net j.
The width vector of Gaussian function is

b ¼ b1; . . .; bm½ �T

where bj [0 represents the width value of Gaussian function for neural net j.
The weight value is

w ¼ w1; . . .;wm½ �T ð7:23Þ

The output of RBF is

yl ¼ w1h1 þw2h2 þ � � � þwmhm ð7:24Þ

Denote ydl as the ideal output, l ¼ 1; 2; . . .;N.
The error of the lth output is

el ¼ ydl � yl

The performance index function of the training is

EðtÞ ¼
XN
l¼1

e2l ð7:25Þ

According to gradient descent method, the weight value can be updated as
follows:

wjðtÞ ¼ wjðt � 1ÞþDwjðtÞþ a wjðt � 1Þ � wjðt � 2Þ� � ð7:26Þ

where g 2 ð0; 1Þ is the learning rate, a 2 ð0; 1Þ is momentum factor.

7.7 RBF Neural Network Training for System Modeling 149

7.7.2 Simulation Example

First example: MIMO data sample training.
Consider three-input and two-output data as a training sample, which is shown in

Table 7.1.
RBF network structure is chosen as 3-5-1. Gaussian function parameter values

cij and bj must be chosen according to the scope of practical input value. According
to the practical scope of x1 and x2, the parameters of ci and bi are designed as
�1 �0:5 0 0:5 1
�1 �0:5 0 0:5 1
�1 �0:5 0 0:5 1

2
4

3
5 and 10, the initial weight value is chosen as random

value in the interval of �1 þ 1½ �; g ¼ 0:10 and a ¼ 0:05 are chosen.
Firstly, we run chap7_9a.m, set the error index as E ¼ 10�20, error index change

is shown as Fig. 7.32, the trained weight values are saved as wfile.dat.
Then, we run chap7_9b.m, use wfile.dat, the test results with two samples are

shown in Table 7.2. From the results, we can see that good modeling performance
can be received.

The programs of this example are chap7_9a.m and chap7_9b.m, which are given
in the Appendix.

Table 7.1 One training sample

Input Output

1 0 0 1 0

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

E
rro

r i
nd

ex
 c

ha
ng

e

Fig. 7.32 Error index change

Table 7.2 Test samples and
results

Input Output

0.970 0.001 0.001 1.0004 −0.0007

1.000 0.000 0.000 1.000 0.0000

150 7 Neural Networks

Simulation program:

(1) MIMO data sample training: chap7_9a.m

%RBF Training for MIMO

clear all;

close all;

xite=0.10;

alfa=0.05;

W=rands(5,2);

W_1=W;

W_2=W_1;

h=[0,0,0,0,0]';

c=2*[-0.5 -0.25 0 0.25 0.5;

-0.5 -0.25 0 0.25 0.5;

-0.5 -0.25 0 0.25 0.5]; %cij

b=10; %bj

xs=[1,0,0];%Ideal Input

ys=[1,0]; %Ideal Output

OUT=2;

NS=1;

k=0;

E=1.0;

while E>=1e-020

%for k=1:1:1000

k=k+1;

times(k)=k;

for s=1:1:NS %MIMO Samples

x=xs(s,:);

for j=1:1:5

h(j)=exp(-norm(x'-c(:,j))^2/(2*b^2)); %Hidden Layer

end

yl=W'*h; %Output Layer

el=0;

y=ys(s,:);

for l=1:1:OUT

el=el+0.5*(y(l)-yl(l))^2; %Output error

end

es(s)=el;

7.7 RBF Neural Network Training for System Modeling 151

E=0;

if s==NS

for s=1:1:NS

E=E+es(s);

end

end

error=y-yl';

dW=xite*h*error;

W=W_1+dW+alfa*(W_1-W_2);

W_2=W_1;W_1=W;

end %End of for

Ek(k)=E;

end %End of while

figure(1);

plot(times,Ek,'r','linewidth',2);

xlabel('k');ylabel('Error index change');

save wfile b c W;

(2) MIMO data sample test: chap7_9b.m

%Test RBF

clear all;

load wfile b c W;

%N Samples

x=[0.970,0.001,0.001;

1.000,0.000,0.000];

NS=2;

h=zeros(5,1); %hj

for i=1:1:NS

for j=1:1:5

h(j)=exp(-norm(x(i,:)'-c(:,j))^2/(2*b^2)); %Hidden Layer

end

yl(i,:)=W'*h; %Output Layer

end

yl

152 7 Neural Networks

Second example: system modeling

Consider a nonlinear discrete-time system as

y kð Þ ¼ 0:5y k � 1ð Þ 1� y k � 1ð Þð Þ
1þ exp �0:25y k � 1ð Þð Þ þ u k � 1ð Þ

To model the system above, we choose RBF neural network. The network
structure is chosen as 2-5-1; according to the practical scope of two inputs u(k) and

y(k), the parameters of ci and bi are designed as
�3 �2 �1 0 1 2 3
�3 �2 �1 0 1 2 3

� 	
and 1.5, each element of the initial weight vector is chosen as 0.10, and g ¼ 0:50
and a ¼ 0:05 are chosen.

Firstly, we run chap7_10a.m, the input is chosen as x ¼ uðkÞ yðkÞ½ �,
u kð Þ ¼ sin t, and t ¼ k � ts, where ts ¼ 0:001 represents sampling time. The
number of samples are chosen as NS ¼ 3000. After 500-step training off-line, we
get the error index change as Fig. 7.33. The trained weight values and Gaussian
function parameters are saved as wfile.dat.

Then, we run chap7_10b.m, use wfile.dat, and the test results with input sin t are
shown in Fig. 7.34. From the results, we can see that good modeling performance
can be received.

Simulation program:

(1) System training: chap7_10a.m

%RBF Training for a Plant

clear all;

close all;

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k

E
rro

r i
nd

ex
 c

ha
ng

e

Fig. 7.33 Error index change

7.7 RBF Neural Network Training for System Modeling 153

ts=0.001;

xite=0.50;

alfa=0.05;

u_1=0;y_1=0;

fx_1=0;

W=0.1*ones(1,7);

W_1=W;

W_2=W_1;

h=zeros(7,1);

c1=[-3 -2 -1 0 1 2 3];

c2=[-3 -2 -1 0 1 2 3];

c=[c1;c2];

b=1.5; %bj

NS=3000;

for s=1:1:NS %Samples

u(s)=sin(s*ts);

fx(s)=0.5*y_1*(1-y_1)/(1+exp(-0.25*y_1));

y(s)=fx_1+u_1;

u_1=u(s);

y_1=y(s);

fx_1=fx(s);

end

k=0;

for k=1:1:500

k=k+1;

times(k)=k;

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

times
y

an
d

yp

Fig. 7.34 Modeling test

154 7 Neural Networks

for s=1:1:NS %Samples

x=[u(s),y(s)];

for j=1:1:7

h(j)=exp(-norm(x'-c(:,j))^2/(2*b^2)); %Hidden Layer

end

yl(s)=W*h; %Output Layer

el=0.5*(y(s)-yl(s))^2; %Output error

es(s)=el;

E=0;

if s==NS

for s=1:1:NS

E=E+es(s);

end

end

error=y(s)-yl(s);

dW=xite*h'*error;

W=W_1+dW+alfa*(W_1-W_2);

W_2=W_1;W_1=W;

end %End of for

Ek(k)=E;

end %End of while

figure(1);

plot(times,Ek,'r','linewidth',2);

xlabel('k');ylabel('Error index change');

save wfile b c W NS;

(2) System test: chap7_10b.m

%Online RBF Etimation for Plant

clear all;

load wfile b c W NS;

ts=0.001;

u_1=0;y_1=0;

fx_1=0;

h=zeros(7,1);

for k=1:1:NS

times(k)=k;

u(k)=sin(k*ts);

7.7 RBF Neural Network Training for System Modeling 155

fx(k)=0.5*y_1*(1-y_1)/(1+exp(-0.25*y_1));

y(k)=fx_1+u_1;

x=[u(k),y(k)];

for j=1:1:7

h(j)=exp(-norm(x'-c(:,j))^2/(2*b^2)); %Hidden Layer

end

yp(k)=W*h; %Output Layer

u_1=u(k);y_1=y(k);

fx_1=fx(k);

end

figure(1);

plot(times,y,'r',times,yp,'b-.','linewidth',2);

xlabel('times');ylabel('y and yp');

7.8 RBF Neural Network Approximation

Since any nonlinear function over a compact set with arbitrary accuracy can be
approximated by RBF neural network [4, 5], RBF neural network can be used to
approximate uncertainties in the control systems. Many books about neural network
control have been published [6–12].

For example, to approximate the function f xð Þ, the algorithm of RBF is
expressed as

hj ¼ g x� cij
�� ��2=b2j� �

f ¼ W	ThðxÞþ e
ð7:27Þ

where x is the input vector, i denotes input neural net number in the input layer,
j denotes hidden neural net number in the hidden layer, h ¼ h1; h2; . . .; hn½ �T
denotes the output of hidden layer, W	 is the ideal weight vector, and e is
approximation error, e� eN.

In the control system, if we use RBF to approximate f, we often choose the
system states as the input of RBF neural network. For example, we can choose the
tracking error and its derivative value as the input vector, i.e., x ¼ e _e½ �T, and
then, the output of RBF is

f̂ ðxÞ ¼ ŴThðxÞ ð7:28Þ

where Ŵ is the estimated weight vector, which can be tuned by the adaptive
algorithm in the Lyapunov stability analysis.

156 7 Neural Networks

In Chaps. 8, 9, and 10, we use RBF approximation to design adaptive RBF
controllers.

References

1. D. Graupe, Principles of Artificial Neural Networks (World Scientific Publishing, Singapore,
2013), p. 8

2. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error
propagation. Parallel Distrib. Process. 1, 318–362 (1986)

3. D.S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks.
Complex Syst. 2, 321–355 (1988)

4. J. Park, L.W. Sandberg, Universal approximation using radial-basis-function networks.
Neural Comput. 3(2), 246–257 (1991)

5. J.K. Liu, RBF Neural Network Control for Mechanical Systems_Design, Analysis and Matlab
Simulation (Tsinghua & Springer Press, 2013)

6. S.S. Ge, T.H. Lee, C.J. Harris, Adaptive Neural Network Control of Robotic Manipulators
(World Scientific, London, 1998)

7. S.S. Ge, C.C. Hang, T.H. Lee, T. Zhang, Stable Adaptive Neural Network Control, Boston
(Kluwer, MA, 2001)

8. F.L. Lewis, S. Jagannathan, A. Yȩildirek, Neural Network Control of Robot Manipulators
and Nonlinear Systems (Taylor & Francis, London, 1999)

9. F.L. Lewis, J. Campos, R. Selmic, Neuro-fuzzy Control of Industrial Systems with Actuator
Nonlinearities. Frontiers in Applied Mathematics (2002)

10. H.A. Talebi, R.V. Patel, K. Khorasani, Control of Flexible-link Manipulators using Neural
Networks, London (Springer, New York, 2000)

11. Y.H. Kim, F.L. Lewis, High-Level feedback control with neural networks, Singapore (World
Scientific, River Edge, NJ, 1998)

12. S.G. Fabri, V. Kadirkamanathan, Functional Adaptive Control: An Intelligent Systems
Approach (Springer, New York, 2001)

7.8 RBF Neural Network Approximation 157

Chapter 8
Adaptive RBF Neural Network Control

8.1 Neural Network Control

Since the idea of the computational abilities of networks composed of simple
models of neurons was introduced in the 1940s [1], neural network techniques have
undergone great developments and have been successfully applied in many fields
such as learning, pattern recognition, signal processing, modeling, and system
control. Their major advantages of highly parallel structure, learning ability, non-
linear function approximation, fault tolerance, and efficient analog VLSI imple-
mentation for real-time applications, greatly motivate the usage of neural networks
in nonlinear system identification and control [2].

In many real-world applications, there are many nonlinearities, unmodeled
dynamics, unmeasurable noise, and multiloop, etc., which pose problems for
engineers to implement control strategies.

During the past several decades, development of new control strategies has been
largely based on modern and classical control theories. Modern control theories
such as adaptive and optimal control techniques and classical control theory have
been based mainly on linearization of systems. In the application of such tech-
niques, development of mathematical models is a prior necessity.

There are several reasons that have motivated vast research interests in the
application of neural networks for control purposes, as alternatives to traditional
control methods, among which the main points are as follows:

• Neural networks can be trained to learn any function. Thus, this self-learning
ability of the neural networks eliminates the use of complex and difficult
mathematical analysis which is dominant in many traditional adaptive and
optimal control methods.

• The inclusions of activation function in the hidden neurons of multilayered
neural networks offer nonlinear mapping ability for solving highly nonlinear
control problems where to this end traditional control approaches have no
practical solution yet.

• The requirement of vast a priori information regarding the plant to be controlled
such as mathematical modeling is a prior necessity in traditional adaptive and
optimal control techniques before they can be implemented. Due to the
self-learning capability of neural networks such vast information is not required
for neural controllers. Thus, neural controllers seem to be able to be applied
under a wider range of uncertainty.

• The massive parallelism of neural networks offers very fast multiprocessing
technique when implemented using neural chips or parallel hardware.

• Damage to some parts of the neural network hardware may not affect the overall
performance badly due to its massive parallel processing architecture.

8.2 Adaptive Control Based on Neural Approximation

Note that using the gradient descent method to design the neural network weights
adjustment law, neural network parameters are selected by experience, only local
optimization can be guaranteed, closed-loop system stability can not be guaranteed,
and closed-loop system control is easy to diverge. To solve this problem, there has
been online adaptive neural network control method, the adaptive law is designed
based on the Lyapunov stability theory, and the closed-loop system stability can be
achieved.

8.2.1 Problem Description

Consider a second-order nonlinear system

€x ¼ f x; _xð Þþ g x; _xð Þu ð8:1Þ

Where f is unknown nonlinear function, g is known nonlinear function, u 2 Rn, and
y 2 Rn is input and output.

Eq. (8.1) can also be written as

_x1 ¼ x2
_x2 ¼ f x1; x2ð Þþ g x1; x2ð Þu
y ¼ x1

ð8:2Þ

We assume the ideal position signal is yd, let

e ¼ yd � y ¼ yd � x1;E ¼ e _eð ÞT

160 8 Adaptive RBF Neural Network Control

Design the control law as

u� ¼ 1
gðxÞ �f ðxÞþ€yd þKTE

� � ð8:3Þ

Substitute (8.3) into (8.1), we can get the closed control system as

€eþ kpeþ kd _e ¼ 0 ð8:4Þ

We design K ¼ kp; kd
� �T

so that all the roots of the polynomial s2 þ kdsþ kp ¼ 0
are in the left part of the complex plane. Then, we have t ! 1, eðtÞ ! 0, and
_eðtÞ ! 0.

From (8.3), we know if the function f ðxÞ is unknown, the control law will not be
realized.

8.2.2 Adaptive RBF Controller Design

8.2.2.1 RBF Neural Network Design

In this section, we use RBF to design f̂ xð Þ to approximate f xð Þ. The algorithm of
RBF is described as

hj ¼ g x� cij
�� ��2=b2j

� �

f ¼ WThðxÞþ e

where x is the input vector, i denotes input neural nets number in the input layer,
j denotes hidden neural nets number in the hidden layer, h ¼ h1; h2; � � � ; hn½ �T
denotes the output of hidden layer, W is weight value, e is approximation error,
jej � eN.

We use RBF to approximate f, the input vector is chosen as x ¼ e _e½ �T, the
output of RBF is

f̂ xð Þ ¼ Ŵ
T
h xð Þ ð8:5Þ

8.2.2.2 Control Law and Adaptive Law Design

The fuzzy system approximation algorithm was applied to design indirect adaptive
fuzzy controller [3]. Now, we used RBF to replace fuzzy system to design RBF
adaptive controller.

8.2 Adaptive Control Based on Neural Approximation 161

If we use RBF neural network to represent the unknown nonlinear function f, the
control law becomes

u ¼ 1
gðxÞ �f̂ ðxÞþ€yd þKTE

� � ð8:6Þ

f̂ ðxÞ ¼ Ŵ
T
hðxÞ ð8:7Þ

where hðxÞ is Gaussian function, Ŵ is the estimated parameter for W.
Figure 8.1 shows the closed-loop neural-based adaptive control scheme.
We choose the adaptive law as

_̂W ¼ �cETPbhðxÞ ð8:8Þ

8.2.2.3 Stability Analysis

Submitting the control law (8.6) into (8.1), the closed-loop system is expressed as

€e ¼ �KTEþ f̂ ðxÞ � f ðxÞ� � ð8:9Þ

Let

K ¼ 0 1
�kp �kd

	

;B ¼ 0

1

	

ð8:10Þ

RBF NN

Controller Plant

Adaptive
Mechanism

()f̂ x

u dy
dy

y

Fig. 8.1 Block diagram of the control scheme

162 8 Adaptive RBF Neural Network Control

Now, (8.9) can be rewritten as

_E ¼ KEþB f̂ ðxÞ � f ðxÞ� � ð8:11Þ

The optimal weight values is

W� ¼ arg min
W2X

sup f̂ ðxÞ � f ðxÞ�� ��� � ð8:12Þ

Define the modeling error as

x ¼ f̂ xjW�ð Þ � f ðxÞ ð8:13Þ

where xj j �xmax.
Then, Eq. (8.11) becomes

_E ¼ KEþB f̂ xjð Þ � f̂ xjW�ð Þ� �þx
�
 ð8:14Þ

Submit (8.7) into (8.14), we can get closed equation as

_E ¼ KEþB Ŵ �W�� �T
hðxÞþx

h i
ð8:15Þ

Choose a Lyapunov function as

V ¼ 1
2
ETPEþ 1

2c
Ŵ �W�� �T

Ŵ �W�� � ð8:16Þ

where c is positive constant. Ŵ �W� denotes the parameter estimation error, and
the matrix P is symmetric and positive definite and satisfies the following Lyapunov
equation

KTPþPK ¼ �Q ð8:17Þ

With Q� 0, K is given by (8.10).

Choosing V1 ¼ 1
2E

TPE, V2 ¼ 1
2c Ŵ �W�� �T

Ŵ �W�� �
, let M ¼ B Ŵ �W�� �Th

hðxÞþx�, Eq. (8.15) becomes

_E ¼ KEþM

8.2 Adaptive Control Based on Neural Approximation 163

Then,

_V1 ¼ 1
2
_E
T
PEþ 1

2
ETP_E ¼ 1

2
ETKT þMT
� �

PEþ 1
2
ETP KEþMð Þ

¼ 1
2
ET KTPþPK

� �
Eþ 1

2
MTPEþ 1

2
ETPM

¼ � 1
2
ETQEþ 1

2
MTPEþETPM
� � ¼ � 1

2
ETQEþETPM

Submitting M into above, noting that ETPB Ŵ �W�� �T
h xð Þ ¼ Ŵ �W�� �T

ETPBh xð Þ� �
, we get

_V1 ¼ � 1
2
ETQEþETPB Ŵ �W�� �T

hðxÞþETPBx

¼ � 1
2
ETQEþ Ŵ �W�� �T

ETPBhðxÞþETPBx

_V2 ¼ 1
c

Ŵ �W�� �T _̂W

Then, the derivative V becomes

_V ¼ _V1 þ _V2 ¼ � 1
2
ETQEþETPBxþ 1

c
Ŵ �W�� �T _̂Wþ cETPBhðxÞ

h i

Submitting the adaptive law (8.8) into above, we have

_V ¼ � 1
2
ETQEþETPBx

Since � 1
2E

TQE� 0, if we can make the approximation error x very small by using

RBF, we can get _V � 0. Then we can get that E and ~W are all limited. The
convergence is

Ek k� 2kmax PBð Þxmax

kmin Qð Þ

where k �ð Þ is characteristic value, kmax and kmin are the maximum and minimum
value of matrix.

164 8 Adaptive RBF Neural Network Control

8.2.3 Simulation Examples

8.2.3.1 First Simulation Example: Linear System

Consider a linear plant as follows:

_x1 ¼ x2
_x2 ¼ f ðxÞþ gðxÞu

where x1 and x2 are position and speed, respectively, u is control input,
f ðxÞ ¼ �25x2, gðxÞ ¼ 133.

We use ideal position signal as yd tð Þ ¼ sin t and choose the initial states of the
plant as p=60; 0½ �. RBF network structure is chosen as 2-5-1. The choice of
Gaussian function parameters value cij and bj must be chosen according to the
scope of practical input value, which have important role in the neural network
control. If the parameters value is chosen inappropriately, Gaussian function will
not be effectively mapped, and RBF network will be invalid.

According to the practical scope of x1 and x2, the parameters of ci and bj are
designed as �1 �0:5 0 0:5 1½ � and 1.0, and the initial weight value is
chosen as zero. Adopting control law (8.6) and adaptive law (8.8), choose

Q ¼ 500 0
0 500

	

, kd ¼ 50, kp ¼ 30, c ¼ 1000.

The results are shown as Figs. 8.2 and 8.3.

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

yd
,y

ideal position
position tracking

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

dy
d,

dy

ideal speed
speed tracking

Fig. 8.2 Position and speed tracking

8.2 Adaptive Control Based on Neural Approximation 165

Simulation programs:

1. Simulink main program: chap8_1sim.mdl

2. S function of Control law: chap8_1ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

0 1 2 3 4 5 6 7 8 9 10
-70

-60

-50

-40

-30

-20

-10

0

10

20

30

time(s)

fx

Practical fx
fx estimation

Fig. 8.3 f ðxÞ and f̂ ðxÞ

166 8 Adaptive RBF Neural Network Control

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global c b

sizes = simsizes;

sizes.NumContStates = 5;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [0*ones(5,1)];

c= [-1 -0.5 0 0.5 1;

-1 -0.5 0 0.5 1];

b=1.0;

str = [];

ts = [];

function sys=mdlDerivatives(t,x,u)

global c b

gama=1000;

yd=sin(t);

dyd=cos(t);

ddyd=-sin(t);

x1=u(2);x2=u(3);

e=yd-x1;

de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e,de]';

Fai=[0 1;-kp -kd];

A=Fai';

8.2 Adaptive Control Based on Neural Approximation 167

Q=[500 0;0 500];

P=lyap(A,Q);

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

W=[x(1) x(2) x(3) x(4) x(5)]';

B=[0;1];

S=-gama*E'*P*B*h;

for i=1:1:5

sys(i)=S(i);

end

function sys=mdlOutputs(t,x,u)

global c b

yd=sin(t);

dyd=cos(t);

ddyd=-sin(t);

x1=u(2);x2=u(3);

e=yd-x1;

de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e de]';

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

fxp=W'*h;

gx=133;

ut=1/gx*(-fxp+ddyd+K'*E);

sys(1)=ut;

sys(2)=fxp;

168 8 Adaptive RBF Neural Network Control

3. S function of Plant: chap8_1plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[pi/60 0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

fx=-25*x(2);

sys(1)=x(2);

sys(2)=fx+133*u;

function sys=mdlOutputs(t,x,u)

fx=-25*x(2);

sys(1)=x(1);

sys(2)=x(2);

sys(3)=fx;

4. Plot program: chap8_1plot.m

close all;

figure(1);

subplot(211);

plot(t,sin(t),'r',t,y(:,1),'k:','linewidth',2);

8.2 Adaptive Control Based on Neural Approximation 169

xlabel('time(s)');ylabel('yd,y');

legend('ideal position','position tracking');

subplot(212);

plot(t,cos(t),'r',t,y(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('dyd,dy');

legend('ideal speed','speed tracking');

figure(2);

plot(t,ut(:,1),'r','linewidth',2);

xlabel('time(s)');ylabel('Control input');

figure(3);

plot(t,fx(:,1),'r',t,fx(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('fx');

legend('Practical fx','fx estimation');

8.2.3.2 Second Simulation Example: Nonlinear System

Consider a single inverted pendulum system as Fig. 8.4.
The dynamic equation is described as

_x1 ¼ x2
_x2 ¼ f ðxÞþ gðxÞu

where f ðxÞ ¼ g sin x1�mlx22 cos x1 sin x1= mc þmð Þ
l 4=3�m cos2 x1= mc þmð Þð Þ , gðxÞ ¼ cos x1= mc þmð Þ

l 4=3�m cos2 x1= mc þmð Þð Þ, x1, and x2 are

angle and angle speed value, respectively, g = 9.8 m/s2, mc = 1 kg is mass of cart,
m = 0.1 kg is mass of the pendulum, l = 0.5 m is the half length of the pendulum,
u is control input.

Consider ideal angle signal as ydðtÞ ¼ 0:1 sin t, the initial states are chosen as
p=60; 0½ �. RBF network structure is chosen as 2-5-1.

V

θ
L

m

u

x

H
O

cm

Fig. 8.4 Single inverted
pendulum system

170 8 Adaptive RBF Neural Network Control

According to the practical scope of x1 and x2, the parameters of ci and bj are
designed as �2 �1 0 1 2½ � and 0.20, and the initial weight value is chosen as
zero. Adopting control law (8.6) and adaptive law (8.8), choose Q ¼ 500 0

0 500

	

,

kd ¼ 50, kp ¼ 30, c ¼ 1200. The results are shown as Figs. 8.5 and 8.6.

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

time(s)

yd
,y

ideal angle
Angle tracking

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

time(s)

dy
d,

dy

ideal angle speed
Angle speed tracking

Fig. 8.5 Angle tracking and angle speed tracking

0 5 10 15 20 25 30
-2

-1

0

1

2

3

4

5

time(s)

fx

Practical fx
fx estimation

Fig. 8.6 f ðxÞ and f̂ ðxÞ

8.2 Adaptive Control Based on Neural Approximation 171

Simulation programs:

1. Simulink main program: chap8_2sim.mdl

2. S function of Control law: chap8_2ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global c b

sizes = simsizes;

sizes.NumContStates = 5;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [0*ones(5,1)];

c= [-2 -1 0 1 2;

-2 -1 0 1 2];

172 8 Adaptive RBF Neural Network Control

b=0.20;

str = [];

ts = [];

function sys=mdlDerivatives(t,x,u)

global c b

gama=1200;

yd=0.1*sin(t);

dyd=0.1*cos(t);

ddyd=-0.1*sin(t);

x1=u(2);x2=u(3);

e=yd-x1;de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e de]';

Fai=[0 1;-kp -kd];

A=Fai';

Q=[500 0;0 500];

P=lyap(A,Q);

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

W=[x(1) x(2) x(3) x(4) x(5)]';

B=[0;1];

S=-gama*E'*P*B*h;

for i=1:1:5

sys(i)=S(i);

end

function sys=mdlOutputs(t,x,u)

global c b

yd=0.1*sin(t);

dyd=0.1*cos(t);

ddyd=-0.1*sin(t);

x1=u(2);x2=u(3);

e=yd-x1;de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e de]';

8.2 Adaptive Control Based on Neural Approximation 173

Fai=[0 1;-kp -kd];

A=Fai';

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[e;de];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

fxp=W'*h;

%%%%%%%%%%

g=9.8;mc=1.0;m=0.1;l=0.5;

S=l*(4/3-m*(cos(x(1)))^2/(mc+m));

gx=cos(x(1))/(mc+m);

gx=gx/S;

%%%%%%%%%%%%%%

ut=1/gx*(-fxp+ddyd+K'*E);

sys(1)=ut;

sys(2)=fxp;

3. S function of Plant: chap8_2plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

174 8 Adaptive RBF Neural Network Control

sys=simsizes(sizes);

x0=[pi/60 0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

g=9.8;mc=1.0;m=0.1;l=0.5;

S=l*(4/3-m*(cos(x(1)))^2/(mc+m));

fx=g*sin(x(1))-m*l*x(2)^2*cos(x(1))*sin(x(1))/(mc+m);

fx=fx/S;

gx=cos(x(1))/(mc+m);

gx=gx/S;

sys(1)=x(2);

sys(2)=fx+gx*u;

function sys=mdlOutputs(t,x,u)

g=9.8;mc=1.0;m=0.1;l=0.5;

S=l*(4/3-m*(cos(x(1)))^2/(mc+m));

fx=g*sin(x(1))-m*l*x(2)^2*cos(x(1))*sin(x(1))/(mc+m);

fx=fx/S;

gx=cos(x(1))/(mc+m);

gx=gx/S;

sys(1)=x(1);

sys(2)=x(2);

sys(3)=fx;

4. Plot program: chap8_2plot.m
close all;

figure(1);

subplot(211);

plot(t,0.1*sin(t),'r',t,y(:,1),'k:','linewidth',2);

xlabel('time(s)');ylabel('yd,y');

legend('ideal angle','Angle tracking');

subplot(212);

plot(t,0.1*cos(t),'r',t,y(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('dyd,dy');

legend('ideal angle speed','Angle speed tracking');

figure(2);

plot(t,ut(:,1),'r','linewidth',2);

xlabel('time(s)');ylabel('Control input');

8.2 Adaptive Control Based on Neural Approximation 175

figure(3);

plot(t,fx(:,1),'r',t,fx(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('fx');

legend('Practical fx','fx estimation');

8.3 Adaptive Control Based on Neural Approximation
with Unknown Parameter

8.3.1 Problem Description

Consider a second-order nonlinear system

€x ¼ f x; _xð Þþmu ð8:18Þ

where f is unknown nonlinear function, m is unknown, the lower bound of m is
known, m�m, and m[0.

Eq. (8.18) can also be written as

_x1 ¼ x2
_x2 ¼ f xð Þþmu

y ¼ x1

ð8:19Þ

We assume the ideal position signal is yd, let

e ¼ yd � y ¼ yd � x1;E ¼ e _e½ �T
Design the control law as

u� ¼ 1
m

�f xð Þþ€yd þKTE
� � ð8:20Þ

Substitute (8.20) into (8.18), we can get the closed control system as

€eþ kpeþ kd _e ¼ 0 ð8:21Þ

We design K ¼ kp kd½ �T so that all the roots of the polynomial s2 þ kdsþ kp ¼ 0
are in the left part of the complex plane. Then, we have t ! 1, eðtÞ ! 0, and
_eðtÞ ! 0.

From (8.20), we know if the function f ðxÞ and parameter m are unknown, the
control law will not be realized.

176 8 Adaptive RBF Neural Network Control

8.3.2 Adaptive Controller Design

8.3.2.1 RBF Neural Network Design

In this section, just like Sect. 8.1, reference to the indirect adaptive fuzzy controller
tactics given in [3], we use RBF to replace fuzzy system to design RBF indirect
adaptive controller.

The algorithm of RBF to approximate f ðxÞ is described as

hj ¼ g x� cik k2=b2j
� �

f ¼ WTh xð Þþ e

where x is the input vector, i denotes input neural nets number in the input layer,
j denotes hidden neural nets number in the hidden layer, h ¼ h1; h2; � � � ; hn½ �T
denotes the output of hidden layer, W is weight value, e is approximation error,
jej � eN.

We use RBF to approximate f, the input vector is chosen as x ¼ e _e½ �T, and the
output of RBF is

f̂ ðxÞ ¼ Ŵ
T
hðxÞ ð8:22Þ

8.3.2.2 Control Law and Adaptive Law Design

If we use RBF neural network to represent the unknown nonlinear function f, the
control law becomes

u ¼ 1
m̂

�f̂ ðxÞþ€yd þKTE
� � ð8:23Þ

f̂ xð Þ ¼ Ŵ
T
h xð Þ ð8:24Þ

where hðxÞ is Gaussian function, and Ŵ is the estimated parameter for W.

8.3.2.3 Stability Analysis

Submitting the control law (8.23) into (8.18), the closed-loop system is expressed as

€e ¼ �KTEþ f̂ xð Þ � f ðxÞ� �þ m� m̂ð Þu ð8:25Þ

8.3 Adaptive Control Based on Neural Approximation with Unknown Parameter 177

Let

K ¼ 0 1
�kp �kd

	

;B ¼ 0

1

	

ð8:26Þ

Now, (8.25) can be rewritten as

_E ¼ KEþB f̂ ðxÞ � f ðxÞ� �þ m� m̂ð Þu� � ð8:27Þ

The optimal weight values is

W� ¼ arg min
W2X

sup f̂ ðxÞ � f ðxÞ�� ��� � ð8:28Þ

Define the modeling error as

x ¼ f̂ xjW�ð Þ � f ðxÞ ð8:29Þ

Then, Eq. (8.27) becomes

_E ¼ KEþB f̂ xjð Þ � f̂ xjW�ð Þ� �þxþ m� m̂ð Þu�
 ð8:30Þ

Submit Eq. (8.24) into (8.13), we can get closed equation as

_E ¼ KEþB Ŵ �W�� �T
hðxÞþxþ m� m̂ð Þu

h i
ð8:31Þ

Choose a Lyapunov function as

V ¼ 1
2
ETPEþ 1

2c
Ŵ �W�� �T

Ŵ �W�� �þ 1
2
g~m2 ð8:32Þ

where c is positive constant. Ŵ �W� denotes the parameter estimation error, and
the matrix P is symmetric and positive definite and satisfies the following Lyapunov
equation

KTPþPK ¼ �Q ð8:33Þ

With Q� 0, K is given by (8.26), g[0, ~m ¼ m� m̂.

Choosing V1 ¼ 1
2E

TPE, V2 ¼ 1
2c Ŵ �W�� �T

Ŵ �W�� �
, V3 ¼ 1

2 g~m
2, let

M ¼ B Ŵ �W�� �T
hðxÞþxþ ~mu

h i
, Eq. (8.31) becomes

_E ¼ KEþM

178 8 Adaptive RBF Neural Network Control

Then,

_V1 ¼ 1
2
_E
T
PEþ 1

2
ETP_E ¼ 1

2
ETKT þMT
� �

PEþ 1
2
ETP KEþMð Þ

¼ 1
2
ET KTPþPK

� �
Eþ 1

2
MTPEþ 1

2
ETPM

¼ � 1
2
ETQEþ 1

2
MTPEþETPM
� � ¼ � 1

2
ETQEþETPM

Submitting M into above, noting that ETPB Ŵ �W�� �T
h xð Þ ¼ Ŵ �W�� �T

ETPBh xð Þ� �
, we get

_V1 ¼ � 1
2
ETQEþETPB Ŵ �W�� �T

hðxÞþETPBxþETPB~mu

¼ � 1
2
ETQEþ Ŵ �W�� �T

ETPBhðxÞþETPBxþETPB~mu

_V2 ¼ 1
c

Ŵ �W�� �T _̂W

_V3 ¼ �g~m _̂m

Then, the derivative V becomes

_V ¼ _V1 þ _V2 þ _V3

¼ � 1
2
ETQEþETPBxþ 1

c
Ŵ �W�� �T _̂Wþ cETPBhðxÞ

h i
þ ~m ETPBu� g _̂m

� �

We choose the adaptive law as

_̂W ¼ �cETPbh xð Þ ð8:34Þ

To guarantee ~m ETPBu� g _̂m
� �� 0, at the same time to avoid singularity in

(8.23) and guarantee m̂�m, we used the adaptive law tactics proposed in [4] as

_̂m ¼
1
gE

TPBu; if ETPBu[0
1
gE

TPBu; if ETPBu� 0 and m̂[m
1
g if ETPBu� 0 and m̂�m

8><
>: ð8:35Þ

where m̂ð0Þ�m.
Reference to [4], the adaptive law (8.35) can also be analyzed as

1. if ETPBu[0, we get ~m ETPBu� g _̂m
� � ¼ 0 and _̂m[0, thus m̂[m;

8.3 Adaptive Control Based on Neural Approximation with Unknown Parameter 179

2. if ETPBu� 0 and m̂[m, we get ~m ETPBu� g _̂m
� � ¼ 0;

3. if ETPBu� 0 and m̂�m, we have ~m ¼ m� m̂�m� m[0, thus
~m ETPBu� g _̂m
� � ¼ ~mETPBu� ~m� 0 and if m̂ increases gradually, then

m̂[m will be guaranteed with _̂m[0.

Submitting the adaptive law (8.34) and (8.35) into above, we have

_V ¼ � 1
2
ETQEþETPBx

Since � 1
2E

TQE� 0, if we can make the approximation error x very small by

using RBF, we can get _V � 0. Then we can get E, ~W and ~m are all limited.
The convergence is

Ek k� 2kmax PBð Þxmax

kmin Qð Þ

where k �ð Þ is characteristic value, kmax and kmin are the maximum and minimum
value of matrix.

8.3.3 Simulation Examples

Consider a simple plant as

_x1 ¼ x2
_x2 ¼ f ðxÞþmu

where x1 and x2 are position and speed, respectively, u is control input,
f xð Þ ¼ �25x2 � 10x1, m ¼ 133.

We use ideal position signal as yd tð Þ ¼ sin t and choose the initial states of the
plant as 0:50; 0½ �.

We use RBF to approximate f ðxÞ and design adaptive algorithm to estimate
parameter m. The structure is used as 2-5-1, and the input vector of RBF is
z ¼ x1 x2½ �T. For each Gaussian function, the parameters of ci and bj are designed
as �1 �0:5 0 0:5 1½ � and 2.0. The initial weight value is chosen as zero.

In simulation, we use control law (8.23) and adaptive law (8.34) and (8.35), the

parameters are chosen as Q ¼ 500 0
0 500

	

, kp ¼ 30, kd ¼ 50, c ¼ 1200,

g ¼ 0:0001, m ¼ 100, m̂ð0Þ¼ 120. The results are shown from Figs. 8.7, 8.8,
and 8.9.

180 8 Adaptive RBF Neural Network Control

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

time(s)

yd
,y

ideal position
position tracking

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

time(s)

dy
d,

dy

ideal speed
speed tracking

Fig. 8.7 Position and speed tracking

0 2 4 6 8 10 12 14 16 18 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time(s)

C
on

tro
l i

np
ut

Fig. 8.8 Control input

8.3 Adaptive Control Based on Neural Approximation with Unknown Parameter 181

Simulation programs:

1. Simulink main program: chap8_3sim.mdl

2. S function of Control law: chap8_3ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

0 2 4 6 8 10 12 14 16 18 20
-40

-20

0

20

40

time(s)

fx

True fx
fx estimation

0 2 4 6 8 10 12 14 16 18 20
110

120

130

140

time(s)

m

True m
m estimation

Fig. 8.9 Estimation of f ðxÞ and m

182 8 Adaptive RBF Neural Network Control

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global node c b

node=5;

sizes = simsizes;

sizes.NumContStates = node+1;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 5;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = [zeros(1,5),120];

c= [-1 -0.5 0 0.5 1;

-1 -0.5 0 0.5 1];

b=2;

str = [];

ts = [];

function sys=mdlDerivatives(t,x,u)

global node c b

yd=sin(t);

dyd=cos(t);

ddyd=-sin(t);

x1=u(2);x2=u(3);

e=yd-x1;de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e de]';

Fai=[0 1;-kp -kd];

A=Fai';

Q=[500 0;0 500];

P=lyap(A,Q);

8.3 Adaptive Control Based on Neural Approximation with Unknown Parameter 183

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

fxp=W'*h;

mp=x(node+1);

ut=1/mp*(-fxp+ddyd+K'*E);

B=[0;1];

gama=1200;

S=-gama*E'*P*B*h;

for i=1:1:node

sys(i)=S(i);

end

eta=0.0001;

ml=100;

if (E'*P*B*ut>0)

dm=(1/eta)*E'*P*B*ut;

end

if (E'*P*B*ut<=0)

if (mp>ml)

dm=(1/eta)*E'*P*B*ut;

else

dm=1/eta;

end

end

sys(node+1)=dm;

function sys=mdlOutputs(t,x,u)

global node c b

yd=sin(t);

dyd=cos(t);

ddyd=-sin(t);

x1=u(2);x2=u(3);

e=yd-x1;de=dyd-x2;

kp=30;kd=50;

K=[kp kd]';

E=[e de]';

184 8 Adaptive RBF Neural Network Control

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:node

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

fxp=W'*h;

mp=x(node+1);

ut=1/mp*(-fxp+ddyd+K'*E);

sys(1)=ut;

sys(2)=fxp;

sys(3)=mp;

3. S function of Plant: chap8_3plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 3;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0.5 0];

str=[];

8.3 Adaptive Control Based on Neural Approximation with Unknown Parameter 185

ts=[];

function sys=mdlDerivatives(t,x,u)

ut=u(1);

fx=-25*x(2)-10*x(1);

m=133;

sys(1)=x(2);

sys(2)=fx+m*ut;

function sys=mdlOutputs(t,x,u)

fx=-25*x(2)-10*x(1);

m=133;

sys(1)=x(1);

sys(2)=x(2);

sys(3)=fx;

sys(4)=m;

4. Plot program: chap8_3plot.m

close all;

figure(1);

subplot(211);

plot(t,sin(t),'r',t,y(:,1),'k:','linewidth',2);

xlabel('time(s)');ylabel(‘yd,y');

legend('ideal position','position tracking');

subplot(212);

plot(t,cos(t),'r',t,y(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('dyd,dy');

legend('ideal speed','speed tracking');

figure(2);

plot(t,ut(:,1),'r','linewidth',2);

xlabel('time(s)');ylabel('Control input');

figure(3);

subplot(211);

plot(t,p(:,1),'r',t,p(:,4),'k:','linewidth',2);

xlabel('time(s)');ylabel('fx');

legend('True fx','fx estimation');

subplot(212);

plot(t,p(:,2),'r',t,p(:,5),'k:','linewidth',2);

xlabel('time(s)');ylabel('m');

legend('True m','m estimation');

186 8 Adaptive RBF Neural Network Control

References

1. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5, 115–133 (1943)

2. K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop, Neural networks for control system-a
survey. Automatica 28(6), 1083–1112 (1992)

3. L.X. Wang, A Course in Fuzzy Systems and Control (Prentice-Hall, New York, 1997)
4. A.C. Huang, Y.C. Chen, Adaptive sliding control for single-link flexible joint robot with

mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004)

References 187

Chapter 9
Adaptive Sliding Mode RBF Neural
Network Control

Sliding mode control is an effective approach for the robust control of a class of
nonlinear systems with uncertainties defined in compact sets. The direction of the
control action at any moment is determined by a switching condition to force the
system to evolve on the sliding surface so that the closed-loop system behaves like
a lower order linear system. For the method to be applicable, a so-called matching
condition should be satisfied, which requires that the uncertainties be in the range
space of the control input to ensure an invariance property of the system behavior
during the sliding mode.

Sliding mode control is frequently used for the control of nonlinear systems
incorporated with neural network. Stability, reaching condition, and chattering
phenomena are known important difficulties. For mathematically known models,
such a control is used directly to track the reference signals. However, for uncertain
systems with disturbance, to eliminate chattering phenomena, there is the need to
design neural network compensator and then the sliding mode control law is used to
generate the control input.

9.1 Typical Sliding Mode Controller Design

Sliding mode control (SMC) was first proposed and elaborated in the early 1950s in
the Soviet Union by Emelyanov and several co-researchers such as Utkins and Itkis.
During the last decades, significant interest on SMC has been generated in the
control research community.

For linear system

_x ¼ Axþ bu; x 2 Rn; u 2 R ð9:1Þ

A sliding variable can be designed as

sðxÞ ¼ cTx ¼
Xn
i¼1

cixi ¼
Xn�1

i¼1

cixi þ xn ð9:2Þ

where x is state vector, c ¼ c1 � � � cn�1 1½ �T.
In sliding mode control, parameters c1; c2; � � � ; cn�1 should be selected so that

the polynomial pn�1 þ cn�1pn�2 þ � � � c2pþ c1 is Hurwitz, where p is Laplace
operator.

For example, n ¼ 2; sðxÞ ¼ c1x1 þ x2, to guarantee the polynomial pþ c1
Hurwitz, the eigenvalue of pþ c1 ¼ 0 should has negative real part, i.e., c1 [0;
e.g., if we set c1 ¼ 10, then sðxÞ ¼ 10x1 þ x2.

For another example, n ¼ 3; sðxÞ ¼ c1x1 þ c2x2 þ x3, to guarantee the polyno-
mial p2 þ c2pþ c1 Hurwitz, the eigenvalue of p2 þ c2pþ c1 ¼ 0 should has nega-
tive real part. For example, we can design k[0 in ðpþ kÞ2 ¼ 0, and then, we can
get p2 þ 2kpþ k2 ¼ 0. Therefore, we have c2 ¼ 2k; c1 ¼ k2; e.g., if we set k ¼ 5,
we can get c1 ¼ 25; c2 ¼ 10 and then sðxÞ ¼ 25x1 þ 10x2 þ x3.

Now, we consider a second-order system and there are two steps in the SMC
design. The first step is to design a sliding surface so that the plant restricted to the
sliding surface has a desired system response. The second step is to construct a
controller to drive the plant’s state trajectory to the sliding surface. These con-
structions are built on the generalized Lyapunov stability theory.

For example, consider a plant as

J€hðtÞ ¼ uðtÞþ dðtÞ ð9:3Þ

where J is inertia moment, hðtÞ is angle signal, uðtÞ is control input, dt is distur-
bance, and dðtÞj j �D.

Firstly, we design the sliding mode function as

sðtÞ ¼ ceðtÞþ _eðtÞ ð9:4Þ

where c must satisfy Hurwitz condition, c[0.
The tracking error and its derivative value is

eðtÞ ¼ hðtÞ � hdðtÞ; _eðtÞ ¼ _hðtÞ � _hdðtÞ

where hdðtÞ is ideal position signal.
Design Lyapunov function as

V ¼ 1
2
s2

190 9 Adaptive Sliding Mode RBF Neural Network Control

Therefore, we have

_sðtÞ ¼ c _eðtÞþ€eðtÞ ¼ c_eðtÞþ €hðtÞ � €hdðtÞ ¼ c _eðtÞþ 1
J
ðuþ dðtÞÞ � €hdðtÞ ð9:5Þ

and

s_s ¼ s c_eþ 1
J
ðuþ dðtÞÞ � €hd

� �
Secondly, to guarantee s_s\0, we design the sliding mode controller as

uðtÞ ¼ J �c_eþ €hd � g sgn ðsÞ
� �

� D sgn ðsÞ ð9:6Þ

Then, we get

s_s ¼ s c_eþ 1
J

uþ dðtÞð Þ � €hd

� �
and

_V ¼ s_s ¼ �g sj j � D
J

sj j � 0

The closed system is asymptotically stable, s ! 0 as t ! 1, then e ! 0 and
_e ! 0 as t ! 1, and the convergence precision is related to g.

From this example, we can see that the sliding mode control have good
robustness performance. However, if we use bigger D value to overcome big dis-
turbance dt, control input chattering phenomenon can be created, which can dec-
orate the control performance.

In addition, in the control law (9.6), modeling information J must be known,
which is difficult in practical engineering. In this chapter, we use RBF neural
network to approximate unknown part of the plant.

9.2 Sliding Mode Control Based on RBF
for Second-Order SISO Nonlinear System

9.2.1 Problem Statement

Consider a second-order nonlinear system as follows:

_x1 ¼ x2
_x2 ¼ f ðxÞþ buþ dðtÞ ð9:7Þ

9.1 Typical Sliding Mode Controller Design 191

where f ð�Þ is unknown nonlinear function, b[0, u and h are the control input and
output, respectively, dðtÞ is outer disturbance, and dðtÞj j �D.

Let the desired output be xd and denote

e ¼ x1 � xd

Design sliding mode function as

s ¼ _eþ ce ð9:8Þ

where c[0, then

_s ¼ €eþ c_e ¼ €x1 � €xd þ c _e ¼ f þ buþ dðtÞ � €xd þ c_e ð9:9Þ

If f and b are known, we can design control law as

u ¼ 1
b

�f þ€xd � c _e� g sgn ðsÞð Þ ð9:10Þ

Using (9.10), (9.9) becomes

_s ¼ �g sgn ðsÞþ dðtÞ

If we choose g�D, then we have

s_s ¼ �g sj j � s � dðtÞ� 0

Design Lyapunov function V ¼ 1
2 s

2, then we have _V � 0.
The closed system is asymptotically stable, s ! 0 as t ! 1, then e ! 0 and

_e ! 0 as t ! 1, and the convergence precision is related to g.
If f ð�Þ is unknown, we should estimate f ð�Þ by some algorithms. In the fol-

lowing, we will simply use RBF neural network to approximate the unknown
function f ð�Þ.

9.2.2 Sliding Mode Control Based on RBF for Unknown f ð�Þ

In this control system, we use RBF network to approximate f. The algorithm of
RBF network is

hj ¼ exp
x� cik k2
2b2j

 !
f ¼ W�Th ðxÞþ e

192 9 Adaptive Sliding Mode RBF Neural Network Control

where x is input of the network, i is input number of the network, j is the number of

hidden layer nodes in the network, h ¼ hj
� �T is the output of Gaussian function,W�

is the ideal neural network weights, e is approximation error of the neural network,
and e� eN, f is the output value of the network.

The network input is selected as x ¼ x1 x2½ �T, and the output of RBF is

f
_ðxÞ ¼ cWTh ðxÞ ð9:11Þ

where h ðxÞ is the Gaussian function of RBF neural network.
Then, the control input (9.10) can be written as

u ¼ 1
b

�f̂ þ€xd � c _e� g sgn ðsÞ� 	 ð9:12Þ

Submitting (9.12) to (9.9), we have

_s ¼ f þ buþ dðtÞ � €xd þ c _e ¼ f þ �f̂ þ€xd � c_e� g sgn ðsÞ� 	� €xd þ dðtÞþ c_e

¼ f � f̂ � g sgn ðsÞþ dðtÞ ¼ ~f � g sgn ðsÞþ dðtÞ
ð9:13Þ

where
~f ¼ f � f̂ ¼ W�Th ðxÞþ e�cWTh ðxÞ ¼ fWTh ðxÞþ e ð9:14Þ

and fW ¼ W� �cW .
Define the Lyapunov function as

L ¼ 1
2
s2 þ 1

2
cfWTfW

where c[0.
Derivative L, and from (9.12) and (9.13), we have

_L ¼ s_sþ cfWTfW� ¼ s ~f þ dðtÞ � g sgn ðsÞ� 	� cfWTcW�
¼ s fWTh ðxÞþ eþ dðtÞ � g sgn ðsÞ
� �

� cfWTcW�
¼fWT sh ðxÞ � ccW�� �

þ s eþ dðtÞ � g sgn ðsÞð Þ

Let adaptive law as

cW� ¼ 1
c
sh ðxÞ ð9:15Þ

9.2 Sliding Mode Control Based on RBF … 193

Then

_L ¼ s eþ dðtÞ � g sgn ðsÞð Þ ¼ s eþ dðtÞð Þ � g sj j

Due to the approximation error e that is limited and sufficiently small, we can
design g� eN þDþ g0; g0 [0; then, we can obtain approximately
_L� � g0 sj j � 0.

From above analysis, we can see that RBF approximation error can be overcome
by the robust term g sgn ðsÞ.

From _L� � g0 sj j � 0, we haveZ t

0

_L dt� � g0

Z t

0
sj jdt; i:e: LðtÞ � Lð0Þ� � g0

Z t

0
sj jdt

Then, V is limited, s and fW are all limited, from _s expression, _s is limited, and
the
R1
0 sk kdt is limited. From Barbalat Lemmma [1], when t ! 1, we have s ! 0,

then e ! 0; _e ! 0.

Since V is limited as t ! 1, cW is limited. Since when _V � 0, we cannot getfW � 0, cW cannot converge to W�.

9.2.3 Simulation Example

Consider the following single rank inverted pendulum

_x1 ¼ x2
_x2 ¼ f ðxÞþ 100uþ dðtÞ

where x1 and x2 are, respectively, angle and angle speed, u is the control input,
f ðxÞ ¼ x1 þ x2; dðtÞ ¼ cos t.

Choose desired trajectory as xd ¼ sin t, and the initial state of the plant is
0:20 0½ �. We adapt control law (9.12) and adaptive law (9.15), and choose c ¼
10; g ¼ 10 and adaptive parameter c ¼ 0:01.

sat ðsÞ ¼
1 s[D
ks sj j �D
�1 s\� D

8<: ; k ¼ 1=D ð9:16Þ

In the controller, to eliminate chattering, we use saturation function to replace
sign function, and choose D ¼ 0:05.

194 9 Adaptive Sliding Mode RBF Neural Network Control

The structure of RBF is chosen as 2-5-1, ci and bi are designed as
�1:0 �0:5 0 0:5 1:0½ � and bj ¼ 5:0, and the initial value of each element of
RBF weight value is set as 0.10.

The curves of position tracking and uncertainty approximation are shown in
Figs. 9.1, 9.2 and 9.3.

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

time(s)

P
os

iti
on

 tr
ac

ki
ng ideal signal

practical signal

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

time(s)

S
pe

ed
 tr

ac
ki

ng

ideal signal
practical signal

Fig. 9.1 Position and speed tracking

0 5 10 15 20 25 30
-0.15

-0.1

-0.05

0

0.05

0.1

time(s)

C
on

tro
l i

np
ut

Fig. 9.2 Control input

9.2 Sliding Mode Control Based on RBF … 195

Simulation programs:

1. Simulink main program: chap9_1sim.mdl

2. S function of Control law: chap9_1ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

0 5 10 15 20 25 30
-4

-2

0

2

4

6

8

10

12

14

16

time(s)

fx
 a

nd
 e

st
ia

m
te

d
fx

fx
estiamted fx

Fig. 9.3 f ðxÞ and f̂ ðxÞ

196 9 Adaptive Sliding Mode RBF Neural Network Control

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global cij bj c

sizes = simsizes;

sizes.NumContStates = 5;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 3;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = 0.1*ones(1,5);

str = [];

ts = [];

cij=0.5*[-2 -1 0 1 2;

-2 -1 0 1 2];

bj=5;

c=10;

function sys=mdlDerivatives(t,x,u)

global cij bj c

xd=sin(t);dxd=cos(t);

x1=u(1);x2=u(2);

e=x1-xd;

de=x2-dxd;

s=c*e+de;

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-cij(:,j))^2/(2*bj^2));

end

gama=0.01;

W=[x(1) x(2) x(3) x(4) x(5)]';

for i=1:1:5

sys(i)=1/gama*s*h(i);

end

function sys=mdlOutputs(t,x,u)

global cij bj c

xd=sin(t);dxd=cos(t);ddxd=-sin(t);

x1=u(1);x2=u(2);

9.2 Sliding Mode Control Based on RBF … 197

e=x1-xd;

de=x2-dxd;

s=c*e+de;

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-cij(:,j))^2/(2*bj^2));

end

fn=W'*h;

xite=10;

b=100;

delta=0.05;

kk=1/delta;

if abs(s)>delta

sats=sign(s);

else

sats=kk*s;

end

ut=1/b*(-fn+ddxd-c*de-xite*sats);

sys(1)=ut;

sys(2)=fn;

3. S function of Plant: chap9_1plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

198 9 Adaptive Sliding Mode RBF Neural Network Control

sizes.NumOutputs = 3;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0.20 0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

fx=x(1)+x(2);

b=100;

ut=u(1);

dt=cos(t);

sys(1)=x(2);

sys(2)=fx+b*ut+dt;

function sys=mdlOutputs(t,x,u)

fx=x(1)+x(2);

sys(1)=x(1);

sys(2)=x(2);

sys(3)=fx;

4. Plot program: chap9_1plot.m

close all;

figure(1);

subplot(211);

plot(t,sin(t),'k',t,y(:,1),'r:','linewidth',2);

xlabel('time(s)');ylabel('Position tracking');

legend('ideal signal','practical signal');

subplot(212);

plot(t,cos(t),'k',t,y(:,2),'r:','linewidth',2);

xlabel('time(s)');ylabel('Speed tracking');

legend('ideal signal','practical signal');

figure(2);

plot(t,ut(:,1),'k','linewidth',2);

xlabel('time(s)');ylabel('Control input');

figure(3);

plot(t,fx(:,1),'k',t,fx(:,2),'r:','linewidth',2);

xlabel('time(s)');ylabel('fx and estiamted fx');

legend('fx','estiamted fx');

9.2 Sliding Mode Control Based on RBF … 199

9.3 RBF Neural Robot Controller Design with Sliding
Mode Robust Term

9.3.1 Problem Description

Consider dynamic equation of n-link manipulator as

M ðqÞ€qþCðq; _qÞ _qþG ðqÞþF ð _qÞþ sd ¼ s ð9:17Þ

where MðqÞ is an n	 n inertia matrix, C ðq; _qÞ is an n	 n matrix containing the
centrifugal and Coriolis terms, GðqÞ is an n	 1 vector containing gravitational
forces and torques, q is generalized joint coordinates, s is joint torques, and sd
denotes disturbances.

The tracking error vector is designed as e ðtÞ ¼ qdðtÞ � q ðtÞ, and define the
sliding mode function as

r ¼ _eþKe ð9:18Þ

where K ¼ KT ¼ k1 k2 � � � kn½ �T [0 is an appropriately chosen coefficient
vector such that sn�1 þ kn�1sn�2 þ � � � þ k1 is Hruwitz (i.e., e ! 0 exponentially as
r ! 0).

The sliding mode tracking error r can be viewed as the real-valued utility
function of the plant performance. When r is small, system performance is good.
For the system (9.16), all modeling information was expressed as f ðxÞ by using the
sliding mode tracking error r [2].

The item (9.18) gives

_q ¼ �rþ _qd þKe ð9:19Þ

and

M _r ¼ M €qd � €qþK _eð Þ ¼ M €qd þK _eð Þ �M€q

¼ M €qd þK _eð ÞþC _qþGþFþ sd � s

¼ M €qd þK _eð Þ � CrþC _qd þKeð ÞþGþFþ sd � s

¼ �Cr� sþ f þ sd

ð9:20Þ

where f xð Þ ¼ M€qr þC _qr þGþF, _qr ¼ _qd þKe.
From f ðxÞ expression, we can see that the term f ðxÞ includes all the modeling

information.
The goal is to design a stable robust controller without any modeling informa-

tion. In this section, we use RBF to approximate f ðxÞ.

200 9 Adaptive Sliding Mode RBF Neural Network Control

9.3.2 RBF Approximation

RBF algorithm is described as

hj ¼ exp
x� cik k2
b2j

; j ¼ 1; 2; � � � ;m

f ðxÞ ¼ WThþ e

ð9:21Þ

where x is input of RBF, W is optimum weight value, h ¼ h1 h2 � � � hm½ �T, and e is
a very small value.

The output of RBF is used to approximate f ðxÞ:

f̂ ðxÞ ¼ cWTh ð9:22Þ

where fW ¼ W �cW ; Wk kF �Wmax.
From (9.21) and (9.22), we have

f � f̂ ¼ WThþ e�cWTh ¼fWThþ e

From f (x) expression, the input of RBF should be chosen as
x ¼ eT _eT qTd _qTd €qTd

� �
.

9.3.3 Control Law Design and Stability Analysis

For the system (9.17), refer to [2], the control law is designed as

s ¼ f̂ ðxÞþKvr� v ð9:23Þ

With robust term v ¼ � eN þ bdð Þ sgn ðrÞ, where f̂ ðxÞ is estimation of f (x) and
v is robustness term.

The corresponding RBF adaptive law is designed as

cW� ¼ ChrT ð9:24Þ

where C ¼ CT [0.

9.3 RBF Neural Robot Controller Design … 201

Inserting (9.23) to (9.20) yields

M _r ¼ �Cr� f̂ ðxÞþKvr� v
� �

þ f þ sd

¼ � Kv þCð ÞrþfWThþ eþ sdð Þþ v

¼ � Kv þCð Þrþ 11

ð9:25Þ

where 11 ¼ fWTuþ eþ sdð Þþ v.
Define Lyapunov function as

L ¼ 1
2
rTMrþ 1

2
tr fWTC�1fW� �

Thus

_L ¼ rTM _rþ 1
2
rT _Mrþ tr fWTC�1fW�� �

Inserting (9.24) into above yields

_L ¼ �rTKvrþ 1
2
rT _M � 2C
� 	

rþ trfWT C�1fW� þ hrT
� �

þ rT eþ sd þ vð Þ

Since

1. According to the skew-symmetric characteristics of manipulator dynamic
equation, rTð _M � 2CÞ r ¼ 0;

2. rTfWTh ¼ tr fWThrT
� �

;

3. fW� ¼ �cW� ¼ �ChrT.

Then

_L ¼ �rTKvrþ rT eþ sd þ vð Þ

Consider

rT eþ sd þ vð Þ ¼ rT eþ sdð Þþ rT � eN þ bdð Þ sgn ðrÞð Þ
¼ rT eþ sdð Þ � rk k eN þ bdð Þ� 0

There results finally

_L� � rTKvr� 0

202 9 Adaptive Sliding Mode RBF Neural Network Control

From above analysis, we can see that RBF approximation error can be overcome
by the robust term.

From _L� � rTKvr� 0, we haveZ t

0

_L dt� � kmin Kvð Þ
Z t

0
rk k dt; i:e: LðtÞ � Lð0Þ� � kmin Kvð Þ

Z t

0
rk kdt

where kmin Kvð Þ is the minimum eigenvalue of Kv.

Then, L is limited, r and fW are all limited, from _r expression, _r is limited, and
the
R1
0 rk kdt is limited. From Barbalat Lemmma [1], when t ! 1, we have r ! 0,

then e ! 0; _e ! 0, and the convergence precision is related to Kv.

Since L� 0; _L� 0, L is limited as t ! 1; thus, cW is limited. Since when
_L � 0, we cannot get fW � 0; cW cannot converge to W.

9.3.4 Simulation Examples

Consider a plant as

MðqÞ €qþVðq; _qÞ _qþGðqÞþFð _qÞþ sd ¼ s

where MðqÞ ¼ p1 þ p2 þ 2p3 cos q2 p2 þ p3 cos q2
p2 þ p3 cos q2 p2

 �
, Vðq; _qÞ ¼

�p3 _q2 sin q2 �p3ð _q1 þ _q2Þ sin q2
p3 _q1 sin q2 0

 �
, GðqÞ ¼ p4g cos q1 þ p5g cos ðq1 þ q2Þ

p5g cos ðq1 þ q2Þ

 �

,

Fð _qÞ ¼ 0:02 sgn ð _qÞ, sd ¼ 0:2 sin ðtÞ 0:2 sin ðtÞ½ �T, p ¼ p1; p2; p3; p4; p5½ � ¼
2:9; 0:76; 0:87; 3:04; 0:87½ �.
For RBF neural network, the structure is 2-7-1, the input is chosen as

z ¼ e _e½ �, the parameters of Gaussian function ci and bj are chosen as
�1:5 �1:0 �0:5 0 0:5 1:0 1:5½ � and 10, the number of hidden nets are
chosen as 7, and the initial weight value is chosen as zero. The desired trajectory is
q1d ¼ 0:1sin t; q2d ¼ 0:1 sin t. The initial value of the plant is 0:09 0 �0:09 0½ �.

Use control law (9.23) and adaptive law (9.24), Kv ¼ diag 10; 10f g;
C ¼ diag 15; 15f g; K ¼ diag 5; 5f g. The simulation results are shown from
Figs. 9.4, 9.5, 9.6, and 9.7.

9.3 RBF Neural Robot Controller Design … 203

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

time(s)

A
ng

le
 tr

ac
ki

ng
 fo

r l
in

k
1

ideal angle for link 1
angle tracking for link 1

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

time(s)

A
ng

le
 tr

ac
ki

ng
 fo

r l
in

k
2

ideal angle for link 2
angle tracking for link 2

Fig. 9.4 Angle tracking

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

time(s)

S
pe

ed
 tr

ac
ki

ng
 fo

r l
in

k
1

ideal angle speed for link 1
angle speed tracking for link 1

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

time(s)

A
ng

le
 s

pe
ed

 tr
ac

ki
ng

 fo
r l

in
k

2

ideal angle speed for link 2
angle speed tracking for link 2

Fig. 9.5 Angle speed tracking

204 9 Adaptive Sliding Mode RBF Neural Network Control

0 5 10 15 20 25 30 35 40
-50

0

50

100

time(s)

co
nt

ro
l i

np
ut

 o
f l

in
k

1

0 5 10 15 20 25 30 35 40
-10

0

10

20

time(s)

co
nt

ro
l i

np
ut

 o
f l

in
k

2

Fig. 9.6 Control input of links 1 and 2

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

time(s)

f a
nd

 fn

ideal fx
estimation of fx

Fig. 9.7 f ðxÞk k and f̂ ðxÞ�� ��

9.3 RBF Neural Robot Controller Design … 205

Simulation programs:

1. Simulink main program: chap9_2sim.mdl

2. S function of ideal input: chap9_2input.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 6;

sizes.NumInputs = 0;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

206 9 Adaptive Sliding Mode RBF Neural Network Control

ts = [0 0];

function sys=mdlOutputs(t,x,u)

qd1=0.1*sin(t);

d_qd1=0.1*cos(t);

dd_qd1=-0.1*sin(t);

qd2=0.1*sin(t);

d_qd2=0.1*cos(t);

dd_qd2=-0.1*sin(t);

sys(1)=qd1;

sys(2)=d_qd1;

sys(3)=dd_qd1;

sys(4)=qd2;

sys(5)=d_qd2;

sys(6)=dd_qd2;

3. S function of control law: chap9_2ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global node c b Fai

node=7;

c=[-1.5 -1 -0.5 0 0.5 1 1.5;

-1.5 -1 -0.5 0 0.5 1 1.5];

b=10;

Fai=5*eye(2);

sizes = simsizes;

sizes.NumContStates = 2*node;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 11;

9.3 RBF Neural Robot Controller Design … 207

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes(sizes);

x0 = zeros(1,2*node);

str = [];

ts = [];

function sys=mdlDerivatives(t,x,u)

global node c b Fai

qd1=u(1);

d_qd1=u(2);

dd_qd1=u(3);

qd2=u(4);

d_qd2=u(5);

dd_qd2=u(6);

q1=u(7);

d_q1=u(8);

q2=u(9);

d_q2=u(10);

q=[q1;q2];

e1=qd1-q1;

e2=qd2-q2;

de1=d_qd1-d_q1;

de2=d_qd2-d_q2;

e=[e1;e2];

de=[de1;de2];

r=de+Fai*e;

qd=[qd1;qd2];

dqd=[d_qd1;d_qd2];

dqr=dqd+Fai*e;

ddqd=[dd_qd1;dd_qd2];

ddqr=ddqd+Fai*de;

z1=[e(1);de(1)];

z2=[e(2);de(2)];

for j=1:1:node

h1(j)=exp(-norm(z1-c(:,j))^2/(b*b));

h2(j)=exp(-norm(z2-c(:,j))^2/(b*b));

end

F=15*eye(node);

for i=1:1:node

sys(i)=15*h1(i)*r(1);

sys(i+node)=15*h2(i)*r(2);

208 9 Adaptive Sliding Mode RBF Neural Network Control

end

function sys=mdlOutputs(t,x,u)

global node c b Fai

qd1=u(1);

d_qd1=u(2);

dd_qd1=u(3);

qd2=u(4);

d_qd2=u(5);

dd_qd2=u(6);

q1=u(7);

d_q1=u(8);

q2=u(9);

d_q2=u(10);

q=[q1;q2];

e1=qd1-q1;

e2=qd2-q2;

de1=d_qd1-d_q1;

de2=d_qd2-d_q2;

e=[e1;e2];

de=[de1;de2];

r=de+Fai*e;

qd=[qd1;qd2];

dqd=[d_qd1;d_qd2];

dqr=dqd+Fai*e;

ddqd=[dd_qd1;dd_qd2];

ddqr=ddqd+Fai*de;

W_f1=[x(1:node)]';

W_f2=[x(node+1:node*2)]';

z1=[e(1);de(1)];

z2=[e(2);de(2)];

for j=1:1:node

h1(j)=exp(-norm(z1-c(:,j))^2/(b*b));

h2(j)=exp(-norm(z2-c(:,j))^2/(b*b));

end

fn=[W_f1*h1';

W_f2*h2'];

Kv=20*eye(2);

epN=0.20;bd=0.1;

v=-(epN+bd)*sign(r);

9.3 RBF Neural Robot Controller Design … 209

tol=fn+Kv*r-v;

fn_norm=norm(fn);

sys(1)=tol(1);

sys(2)=tol(2);

sys(3)=fn_norm;

4. S function of plant: chap9_2plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global p g

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 5;

sizes.NumInputs =3;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0.09 0 -0.09 0];

str=[];

ts=[];

p=[2.9 0.76 0.87 3.04 0.87];

g=9.8;

function sys=mdlDerivatives(t,x,u)

global p g

D=[p(1)+p(2)+2*p(3)*cos(x(3)) p(2)+p(3)*cos(x(3));

p(2)+p(3)*cos(x(3)) p(2)];

C=[-p(3)*x(4)*sin(x(3)) -p(3)*(x(2)+x(4))*sin(x(3));

p(3)*x(2)*sin(x(3)) 0];

210 9 Adaptive Sliding Mode RBF Neural Network Control

G=[p(4)*g*cos(x(1))+p(5)*g*cos(x(1)+x(3));

p(5)*g*cos(x(1)+x(3))];

dq=[x(2);x(4)];

F=0.2*sign(dq);

told=[0.1*sin(t);0.1*sin(t)];

tol=u(1:2);

S=inv(D)*(tol-C*dq-G-F-told);

sys(1)=x(2);

sys(2)=S(1);

sys(3)=x(4);

sys(4)=S(2);

function sys=mdlOutputs(t,x,u)

global p g

D=[p(1)+p(2)+2*p(3)*cos(x(3)) p(2)+p(3)*cos(x(3));

p(2)+p(3)*cos(x(3)) p(2)];

C=[-p(3)*x(4)*sin(x(3)) -p(3)*(x(2)+x(4))*sin(x(3));

p(3)*x(2)*sin(x(3)) 0];

G=[p(4)*g*cos(x(1))+p(5)*g*cos(x(1)+x(3));

p(5)*g*cos(x(1)+x(3))];

dq=[x(2);x(4)];

F=0.2*sign(dq);

told=[0.1*sin(t);0.1*sin(t)];

qd1=sin(t);

d_qd1=cos(t);

dd_qd1=-sin(t);

qd2=sin(t);

d_qd2=cos(t);

dd_qd2=-sin(t);

qd1=0.1*sin(t);

d_qd1=0.1*cos(t);

dd_qd1=-0.1*sin(t);

qd2=0.1*sin(t);

d_qd2=0.1*cos(t);

dd_qd2=-0.1*sin(t);

q1=x(1);

d_q1=dq(1);

q2=x(3);

d_q2=dq(2);

q=[q1;q2];

e1=qd1-q1;

e2=qd2-q2;

9.3 RBF Neural Robot Controller Design … 211

de1=d_qd1-d_q1;

de2=d_qd2-d_q2;

e=[e1;e2];

de=[de1;de2];

Fai=5*eye(2);

dqd=[d_qd1;d_qd2];

dqr=dqd+Fai*e;

ddqd=[dd_qd1;dd_qd2];

ddqr=ddqd+Fai*de;

f=D*ddqr+C*dqr+G+F;

f_norm=norm(f);

sys(1)=x(1);

sys(2)=x(2);

sys(3)=x(3);

sys(4)=x(4);

sys(5)=f_norm;

5. Plot program: chap9_2plot.m

close all;

figure(1);

subplot(211);

plot(t,qd(:,1),'r',t,q(:,1),'k:','linewidth',2);

xlabel('time(s)');ylabel('Angle tracking for link 1');

legend('ideal angle for link 1','angle tracking for link 1');

subplot(212);

plot(t,qd(:,4),'r',t,q(:,3),'k:','linewidth',2);

xlabel('time(s)');ylabel('Angle tracking for link 2');

legend('ideal angle for link 2','angle tracking for link 2');

figure(2);

subplot(211);

plot(t,qd(:,2),'r',t,q(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('Speed tracking for link 1');

legend('ideal angle speed for link 1','angle speed tracking for link 1');

subplot(212);

plot(t,qd(:,5),'r',t,q(:,4),'k:','linewidth',2);

xlabel('time(s)');ylabel('Angle speed tracking for link 2');

legend('ideal angle speed for link 2','angle speed tracking for link 2');

figure(3);

subplot(211);

plot(t,tol1(:,1),'k','linewidth',2);

xlabel('time(s)');ylabel('control input of link 1');

subplot(212);

212 9 Adaptive Sliding Mode RBF Neural Network Control

plot(t,tol2(:,1),'k','linewidth',2);

xlabel('time(s)');ylabel('control input of link 2');

figure(4);

plot(t,f(:,1),'r',t,f(:,2),'k:','linewidth',2);

xlabel('time(s)');ylabel('f and fn');

legend('ideal fx','estimation of fx');

References

1. P.A. Ioannou, J. Sun, Robust Adaptive Control. (PTR Prentice-Hall, 1996), pp. 75–76
2. F.L. Lewis, K. Liu, A. Yesildirek, Neural net robot controller with guaranteed tracking

performance. IEEE Trans. Neural Netw. 6(3), 703–715 (1995)

9.3 RBF Neural Robot Controller Design … 213

Chapter 10
Discrete RBF Neural Network Control

The discrete-time implementation of controllers is important. There are two
methods for designing the digital controller. One method, called emulation, is to
design a controller based on the continuous-time system, then discrete the con-
troller. The other method is to design the discrete controller directly based on the
discrete system. In this section, we consider the second approach to design the
NN-based nonlinear controller.

Discrete-time adaptive control design is much more complicated than the
continuous-time adaptive control design since the discrete-time Lyapunov deriva-
tives tend to have pure and coupling quadratic terms in the states and/or NN
weights. There have been many papers to be published about adaptive neural
control for discrete-time nonlinear systems [1–4].

10.1 Digital Adaptive RBF Control for a Continuous
System

10.1.1 System Description

Consider a simple dynamic system as

€h ¼ f h; _h
� �

þ u ð10:1Þ

where h is angle, u is control input.

Eq. (10.1) can be written as

_x1 ¼ x2
_x2 ¼ f xð Þþ u

ð10:2Þ

where f xð Þ is unknown function.
Let the desired output be xd and denote

e ¼ x1 � xd; _e ¼ x2 � _xd

Define sliding mode function as

s ¼ keþ _e; k[0 ð10:3Þ

then

_s ¼ k _eþ€e ¼ k _eþ _x2 � €xd ¼ k _eþ f xð Þþ u� €xd

From (10.3), we can see that if s ! 0, then e ! 0 and _e ! 0.

10.1.2 RBF Neural Network Approximation

RBF networks are often used to approximate any unknown function [5]. The
algorithm of RBF networks is:

hj ¼ exp
x� cik k2
2b2j

 !
ð10:4Þ

f ¼ W�Th xð Þþ e ð10:5Þ

where x is the input signal of the network, i is the input number of the network, j is
the number of hidden layer nodes in the network, h ¼ h1; h2; . . .; hn½ �T is the output
of Gaussian function, W� is the ideal neural network weight value, e is the
approximation error of neural network, and jej � eN.

If we use RBF network to approximate f xð Þ, the network input is selected as
x ¼ x1 x2½ �T, and output of RBF neural network is

f
_

xð Þ ¼ ŴTh xð Þ ð10:6Þ

216 10 Discrete RBF Neural Network Control

10.1.3 Adaptive Controller Design

Define Lyapunov function as

V ¼ 1
2
s2 þ 1

2c
~WT ~W ð10:7Þ

where c[0; ~W ¼ Ŵ �W�.
Since f xð Þ � f̂ xð Þ ¼ W�Th xð Þþ e� ŴTh xð Þ ¼ � ~WTh xð Þþ e, then

_V ¼ s_sþ 1
c
~WT _̂W ¼ s k_eþ f xð Þþ u� €xdð Þþ 1

c
~WT _̂W

Design sliding mode controller as

u ¼ �k _e� f̂ xð Þþ€xd � gsgn sð Þ ð10:8Þ

then

_V ¼ s f xð Þ � f̂ xð Þ � gsgn sð Þ� �þ 1
c
~WT _̂W

¼ s � ~WTh xð Þþ e� gsgn sð Þ� �þ 1
c
~WT _̂W

¼ es� g sj j þ ~WT 1
c
_̂W � sh xð Þ

� �

Design adaptive law as

_̂W ¼ csh xð Þ ð10:9Þ

If we choose g[ej jmax, then _V ¼ es� g sj j � 0.
From above analysis, we can see that RBF approximation error can be overcome

by the robust term gsgn sð Þ.
When _V � 0, we have s � 0; according to LaSalle invariance principle, the

closed system is asymptotically stable, s ! 0 as t ! 1, and the convergence
precision is related to g.

Since V � 0; _V � 0; V is limited as t ! 1, thus Ŵ is limited. Since when
_V � 0, we cannot get ~W � 0; Ŵ, we cannot converge to W�.

10.1 Digital Adaptive RBF Control for a Continuous System 217

10.1.4 Simulation Example

Consider a plant as

_x1 ¼ x2
_x2 ¼ f xð Þþ u

where f xð Þ ¼ 10x1x2.
The desired trajectory is chosen as xd ¼ sin t. The initial state of the plant is set

as 0:5 0½ �. We adapt control law as (10.8) and adaptive law as (10.9), choose
k ¼ 200; g ¼ 0:20, and c ¼ 100.

The structure of RBF is chosen as 2-5-1. Consider the range of x1 and x2, we
choose ci ¼ �1 �0:5 0 0:5 1½ �; bj ¼ 3:0, and the initial value of each
element of RBF weight matrix is set as zero.

The continuous system simulation is chap11_1sim.mdl. If we discrete the con-
trol law (10.8) and adaptive law (10.9), and denote the sampling time as ts = 0.001,
simulation results are shown from Figs. 10.1 and 10.2.

The shortcoming of the digital adaptive RBF control simulation for a continuous
system is that the stability cannot be guaranteed [6]. To overcome this problem,
controller design and stability analysis for discrete system directly is needed.

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

P
os

iti
on

 tr
ac

ki
ng

ideal position

position tracking

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time(s)

S
pe

ed
 tr

ac
ki

ng

ideal speed

speed tracking

Fig. 10.1 Position and speed tracking

218 10 Discrete RBF Neural Network Control

Matlab Programs:

1. Continuous simulation programs

(1) Main Simulink program: chap10_1sim.mdl

(2) S function program of controller: chap10_1ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15

20

25

time(s)

f a
nd

 fn

Practical uncertainties

Estimation uncertainties

Fig. 10.2 f xð Þ and f̂ xð Þ

10.1 Digital Adaptive RBF Control for a Continuous System 219

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

global b c namna

sizes = simsizes;

sizes.NumContStates = 5;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = rands(1,5);

str = [];

ts = [0 0];

c=[-1 -0.5 0 0.5 1;

-1 -0.5 0 0.5 1];

b=1.2;

namna=10;

function sys=mdlDerivatives(t,x,u)

global b c namna

xd=sin(t);

dxd=cos(t);

x1=u(2);

x2=u(3);

e=x1-xd;

de=x2-dxd;

s=namna*e+de;

W=[x(1) x(2) x(3) x(4) x(5)]';

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

220 10 Discrete RBF Neural Network Control

gama=100;

for i=1:1:5

sys(i)=gama*s*h(i);

end

function sys=mdlOutputs(t,x,u)

global b c namna

xd=sin(t);

dxd=cos(t);

ddxd=-sin(t);

x1=u(2);

x2=u(3);

e=x1-xd;

de=x2-dxd;

s=namna*e+de;

W=[x(1) x(2) x(3) x(4) x(5)];

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*b^2));

end

fn=W*h;

xite=0.20;

%fn=10*x1+x2; %Precise f

ut=-namna*de+ddxd-fn-xite*sign(s);

sys(1)=ut;

sys(2)=fn;

(3) S function program of plant: chap10_1plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2, 4, 9 }

sys = [];

otherwise

10.1 Digital Adaptive RBF Control for a Continuous System 221

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 3;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[0.15;0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u)

ut=u(1);

f=10*x(1)*x(2);

sys(1)=x(2);

sys(2)=f+ut;

function sys=mdlOutputs(t,x,u)

f=10*x(1)*x(2);

sys(1)=x(1);

sys(2)=x(2);

sys(3)=f;

(4) Plot program: chap10_1plot.m

close all;

figure(1);

subplot(211);

plot(t,x(:,1),'r',t,x(:,2),'b','linewidth',2);

xlabel('time(s)');ylabel('position tracking');

subplot(212);

plot(t,cos(t),'r',t,x(:,3),'b','linewidth',2);

xlabel('time(s)');ylabel('speed tracking');

figure(2);

plot(t,f(:,1),'r',t,f(:,3),'b','linewidth',2);

xlabel('time(s)');ylabel('f approximation');

222 10 Discrete RBF Neural Network Control

2. Digital simulation program

(1) Main program: chap10_2.m

%Discrete RBF control

clear all;

close all;

ts=0.001; %Sampling time

node=5; %Number of neural nets in hidden layer

gama=100;

c=[-1 -0.5 0 0.5 1;

-1 -0.5 0 0.5 1];

bj=1.2;

h=zeros(node,1);

x1_1=0;x2_1=0;u_1=0;

xk=[0.10 0];

w_1=rands(node,1);

namna=10;

xite=0.20;

for k=1:1:10000

time(k)=k*ts;

xd(k)=sin(k*ts);

dxd(k)=cos(k*ts);

ddxd(k)=-sin(k*ts);

tSpan=[0 ts];

para=u_1; %D/A

[t,xx]=ode45('chap10_2plant',tSpan,xk,[],para); %Plant

xk=xx(length(xx),:); %A/D

x1(k)=xk(1);

x2(k)=xk(2);

e(k)=x1(k)-xd(k);

de(k)=x2(k)-dxd(k);

s(k)=namna*e(k)+de(k);

xi=[x1(k);x2(k)];

for i=1:1:node

w(i,1)=w_1(i,1)+ts*(gama*s(k)*h(i)); %Adaptive law

10.1 Digital Adaptive RBF Control for a Continuous System 223

end

h=zeros(5,1);

for j=1:1:5

h(j)=exp(-norm(xi-c(:,j))^2/(2*bj*bj));

end

fn(k)=w'*h;

u(k)=-namna*de(k)-fn(k)+ddxd(k)-xite*sign(s(k));

f(k)=10*x1(k)*x2(k);

x1_1=x1(k);

x2_1=x2(k);

w_1=w;

u_1=u(k);

end

figure(1);

subplot(211);

plot(time,xd,'r',time,x1,'k:','linewidth',2);

xlabel('time(s)');ylabel('Position tracking');

legend('ideal position','position tracking');

subplot(212);

plot(time,dxd,'r',time,x2,'k:','linewidth',2);

xlabel('time(s)');ylabel('Speed tracking');

legend('ideal speed','speed tracking');

figure(2);

plot(time,u,'r','linewidth',2);

xlabel('time(s)'),ylabel('Control input of single link');

figure(3);

plot(time,f,'r',time,fn,'k:','linewidth',2);

xlabel('time(s)'),ylabel('f and fn');

legend('Practical uncertainties','Estimation uncertainties');

(2) Program of plant: chap10_2plant.m

function dx=Plant(t,x,flag,para)

dx=zeros(2,1);

u=para;

f=10*x(1)*x(2);

dx(1)=x(2);

dx(2)=f+u;

224 10 Discrete RBF Neural Network Control

10.2 Adaptive RBF Control for a Class of Discrete-Time
Nonlinear System

10.2.1 System Description

Consider a nonlinear discrete system as follows:

y kþ 1ð Þ ¼ f x kð Þð Þþ u kð Þ ð10:10Þ

where x kð Þ ¼ y kð Þ y k � 1ð Þ � � � y k � nþ 1ð Þ½ �T is the state vector, u kð Þ is the
control input, and y kð Þ is the plant output. The nonlinear smooth function f : Rn !
R is assumed unknown.

10.2.2 Traditional Controller Design

The tracking error e kð Þ is defined as e kð Þ ¼ y kð Þ � yd kð Þ. If f x kð Þð Þ is known, a
feedback linearization-type control law can be designed as

u kð Þ ¼ yd kþ 1ð Þ � f x kð Þð Þ � c1e kð Þ ð10:11Þ

Submitting (10.11) into (10.10), we can get an asymptotical convergence error
dynamic system as

e kþ 1ð Þþ c1e kð Þ ¼ 0 ð10:12Þ

where c1j j\1.

10.2.3 Adaptive Neural Network Controller Design

If f x kð Þð Þ is unknown, and RBF neural network can be used to approximate
f x kð Þð Þ. The network output is given as

f̂ x kð Þð Þ ¼ ŵ kð ÞTh x kð Þð Þ ð10:13Þ

where ŵ kð Þ denotes the network output weight vector, and h x kð Þð Þ denotes the
vector of Gaussian basis functions.

10.2 Adaptive RBF Control for a Class of Discrete-Time Nonlinear System 225

Given any arbitrary nonzero approximation error bound ef , there exist some
optimal weight vector w� such that

f xð Þ ¼ f̂ x;w�ð Þ � Df xð Þ ð10:14Þ

where Df xð Þ denotes the optimal network approximation error, and Df xð Þ�� ��\ef .
Then we can get the general network approximation error as

~f x kð Þð Þ ¼ f x kð Þð Þ � f̂ x kð Þð Þ
¼ f̂ x;w�ð Þ � Df x kð Þð Þ � ŵ kð ÞTh x kð Þð Þ
¼ �~w kð ÞTh x kð Þð Þ � Df x kð Þð Þ

ð10:15Þ

where ~w kð Þ ¼ ŵ kð Þ � w�.
The control law with RBF approximation can be designed in [7] as follows

u kð Þ ¼ yd kþ 1ð Þ � f̂ x kð Þð Þ � c1e kð Þ ð10:16Þ

Figure 10.3 shows the closed-loop neural-based adaptive control scheme.
Substituting (10.16) into (10.10) yields

e kþ 1ð Þ ¼ ~f x kð Þð Þ � c1e kð Þ

Thus

e kð Þþ c1e k � 1ð Þ ¼ ~f x k � 1ð Þð Þ ð10:17Þ

RBF NN

Controller Plant

Adaptive
Mechanism

()f̂ k

()u k
()dy k()y k()d 1y k +

Fig. 10.3 Block diagram of the control scheme

226 10 Discrete RBF Neural Network Control

The term (10.17) can also be expressed as

e kð Þ ¼ C�1 z�1� �
~f x k � 1ð Þð Þ ð10:18Þ

Refer to [7], we can where C z�1ð Þ ¼ 1þ c1z�1; z�1 denotes the discrete-time delay
operator.

Define a new augmented error as

e1 kð Þ ¼ b e kð Þ � C�1 z�1� �
v kð Þ� � ð10:19Þ

where b[0.
Substituting (10.18) into (10.19) yields

e1 kð Þ ¼ bC�1 z�1� �
~f x k � 1ð Þð Þ � v kð Þ� �

¼ b
1

1þ c1z�1
~f x k � 1ð Þð Þ � v kð Þ� �

Which leads to the relation as

e1 k � 1ð Þ ¼ b ~f x k � 1ð Þð Þ � v kð Þ� �� e1 kð Þ
c1

ð10:20Þ

Refer to [7] the adaptive law as can be designed as

Dŵ kð Þ ¼
b
cc21

h x k � 1ð Þð Þe1 kð Þ if e1 kð Þj j [ef /G

0 if e1 kð Þj j � ef /G
\!endarray[

(
ð10:21Þ

where Dŵ kð Þ ¼ ŵ kð Þ � ŵ k � 1ð Þ; c, and G are strictly positive constants.

10.2.4 Stability Analysis

For the closed system, the discrete-time Lyapunov function can be designed as

V kð Þ ¼ e21 kð Þþ c~wT kð Þ~w kð Þ ð10:22Þ

The first difference is

DV kð Þ ¼ V kð Þ � V k � 1ð Þ
¼ e21 kð Þ � e21 k � 1ð Þþ c ~wT kð Þþ ~wT k � 1ð Þ� �

~w kð Þ � ~w k � 1ð Þð Þ

10.2 Adaptive RBF Control for a Class of Discrete-Time Nonlinear System 227

The stability proof is given with the following three steps. Firstly, using (10.20)
for e1 k � 1ð Þ, it follows that

DV kð Þ ¼ e21 kð Þ � e21 kð Þþ b2 ~f x k � 1ð Þð Þ � v kð Þ� �2�2b ~f x k � 1ð Þð Þ � v kð Þ� �
e1 kð Þ

c21

¼ �V1 þ
2b ~f x k � 1ð Þð Þ � v kð Þ� �

e1 kð Þ
c21

þ c DŵT kð Þþ 2~wT k � 1ð Þ� �
Dŵ kð Þ

where V1 ¼ e21 kð Þ 1�c21ð Þ
c21

þ b2 ~f x k�1ð Þð Þ�v kð Þð Þ2
c21

� 0

Secondly, substituting for ~f x k � 1ð Þð Þ via (10.15) yields:

DV kð Þ ¼ �V1 þ
2b �~w k � 1ð ÞTh x k � 1ð Þð Þ � Df x k � 1ð Þð Þ � v kð Þ
� �

e1 kð Þ
c21

þ cDŵT kð ÞDŵ kð Þþ 2c~wT k � 1ð ÞDŵ kð Þ

¼ �V1 þ 2~wT k � 1ð Þ cDŵ kð Þ � b

c21
h x k � 1ð Þð Þe1 kð Þ

� �

� 2b
c21

Df x k � 1ð Þð Þþ v kð Þ� �
e1 kð Þþ cDŵT kð ÞDŵ kð Þ

Thirdly, substituting the adaptive law (10.21) into above, DV kð Þ is

DV kð Þ ¼

� V1 � 2b
c21

Df x k � 1ð Þð Þþ v kð Þ� �
e1 kð Þþ

bffiffiffi
c

p
c21

� �2

hT x k � 1ð Þð Þh x k � 1ð Þð Þe21 kð Þ; if e1 kð Þj j[ef =G

� V1 � 2b
c21

~wT k � 1ð Þh x k � 1ð Þð Þ� ��
 þ

v kð ÞþDf x k � 1ð Þð Þe1 kð Þ�; if e1 kð Þj j � ef =G

8>>>>>>>>>><
>>>>>>>>>>:

ð10:23Þ

The auxiliary signal v kð Þ must also be designed so that e1 kð Þ ! 0 could deduce
e kð Þ ! 0. The auxiliary term is designed as [7]

v kð Þ ¼ v1 kð Þþ v2 kð Þ ð10:24Þ

with v1 kð Þ ¼ b
2cc21

hT x k � 1ð Þð Þh x k � 1ð Þð Þe1ðkÞ and v2 kð Þ ¼ Ge1 kð Þ.

228 10 Discrete RBF Neural Network Control

If e1 kð Þj j[ef =G, substituting for v kð Þ in (10.19)–(10.17), it follows that

DV kð Þ ¼ �V1 � 2b
c21

Df x k � 1ð Þð ÞþGe1 kð Þ� �
e1 kð Þ

� � 2b
c21

Df x k � 1ð Þð ÞþGe1 kð Þ� �
e1 kð Þ

Since Df xð Þ�� ��\ef and e1 kð Þj j[ef =G, then e1 kð Þj j[Df x k�1ð Þð Þj j
G and

e21 kð Þ[� Df x k�1ð Þð Þe1 kð Þ
G , thus Df x k � 1ð Þð ÞþGe1 kð Þ� �

e1 kð Þ[0, then DV kð Þ\0.
If e1 kð Þj j � ef =G, tracking performance can be satisfied, and DV kð Þ can be taken

on any value.
In the simulation, we give three remarks as follows:

Remark 1 From (10.19), we have e1 kð Þ ¼ b e kð Þ � 1
1þ c1z�1 v kð Þ

� �
, then

e1 kð Þ 1þ c1z�1ð Þ ¼ b e kð Þ 1þ c1z�1ð Þ � v kð Þð Þ, therefore

e1 kð Þ ¼ �c1e1 k � 1ð Þþ b e kð Þþ c1e k � 1ð Þ � v kð Þð Þ ð10:25Þ
Remark 2 From Lyapunov analysis, if k ! 1; e1 kð Þ ! 0, from (10.24) we have
v kð Þ ! 0, then from (10.25), e kð Þþ c1e k � 1ð Þ ! 0, consider c1j j\1, and we get
e kð Þ ! 0.

Remark 3 Consider v kð Þ is a virtual variable, for (10.24); let v
0
1 kð Þ ¼ b

2cc21

hT x k � 1ð Þð Þh x k � 1ð Þð Þ, then we get v kð Þ ¼ v
0
1 kð ÞþG

� �
e1 kð Þ, substituting v kð Þ

into (10.25), we have e1 kð Þ ¼ �c1e1 k � 1ð Þþ b e kð Þþ c1e k � 1ð Þ � v
0
1 kð ÞþG

� �	�
e1 kð ÞÞ, then

e1 kð Þ ¼ �c1e1 k � 1ð Þþ b e kð Þþ c1e k � 1ð Þð Þ
1þ b v0

1 kð ÞþG
� � ð10:26Þ

10.2.5 Simulation Examples

Consider a nonlinear discrete-time system as

y kð Þ ¼ 0:5y k � 1ð Þ 1� y k � 1ð Þð Þ
1þ exp �0:25y k � 1ð Þð Þ þ u k � 1ð Þ

where f x k � 1ð Þð Þ ¼ 0:5y k�1ð Þ 1�y k�1ð Þð Þ
1þ exp �0:25y k�1ð Þð Þ.

10.2 Adaptive RBF Control for a Class of Discrete-Time Nonlinear System 229

Firstly, we assume f x k � 1ð Þð Þ is known, use the control law (10.11), and set
c1 ¼ �0:01; the results are shown in Figs. 10.4 and 10.5. Then we use RBF to
approximate f x k � 1ð Þð Þ. For RBF neural network, the structure is 1-9-1, and from
f x k � 1ð Þð Þ expression, only one input y k � 1ð Þ is chosen; the parameters of
Gaussian function ci and bj as chosen as �2 �1:5 �1:0 �0:5 0 0:5 1:0 1:5 2½ �
and 15(i¼1; j¼1;2; . . .;9), the initial weight value is chosen as random value in the
range 0;1ð Þ. The initial value of the plant is set as zero. The reference signal is
yd kð Þ¼ sin t. Using the control law (10.16) with adaptive law (10.21), e1 kð Þ is
calculated by (10.26), and the parameters are chosen as c1¼�0:01; b¼0:001; c¼
0:001; c¼ 0:001;G¼50000; ef ¼0:003. The results are shown in Figs. 10.6, 10.7,
and 10.8. The program of this example is chap10_3.m, which is given in the
Appendix.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time(s)

yd
,y

Ideal position signal
Position tracking

Fig. 10.4 Position tracking

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time(s)

C
on

tr
ol

 in
pu

t

Fig. 10.5 Control input

230 10 Discrete RBF Neural Network Control

Simulation program with unknown f(x(k-1)): chap10_3.m

%Discrete RBF controller

clear all;

close all;

ts=0.001;

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

time(s)

yd
,y

Ideal position signal
Position tracking

Fig. 10.6 Position tracking

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time(s)

C
on

tr
ol

 in
pu

t

Fig. 10.7 Control input

10.2 Adaptive RBF Control for a Class of Discrete-Time Nonlinear System 231

c1=-0.01;

beta=0.001;

epcf=0.003;

gama=0.001;

G=50000;

b=15;

c=[-2 -1.5 -1 -0.5 0 0.5 1 1.5 2];

w=rands(9,1);

w_1=w;

u_1=0;

y_1=0;

e1_1=0;

e_1=0;

fx_1=0;

for k=1:1:10000

time(k)=k*ts;

yd(k)=sin(k*ts);

yd1(k)=sin((k+1)*ts);

%Nonlinear plant

fx(k)=0.5*y_1*(1-y_1)/(1+exp(-0.25*y_1));

y(k)=fx_1+u_1;

e(k)=y(k)-yd(k);

x(1)=y_1;

for j=1:1:9

0 1 2 3 4 5 6 7 8 9 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

time(s)

fx
 a

nd
 fx

 e
st

im
at

io
n

Ideal fx
fx estimation

Fig. 10.8 f x k � 1ð Þð Þ and its estimation

232 10 Discrete RBF Neural Network Control

h(j)=exp(-norm(x-c(:,j))^2/(2*b^2));

end

v1_bar(k)=beta/(2*gama*c1^2)*h*h';

e1(k)=(-c1*e1_1+beta*(e(k)+c1*e_1))/(1+beta*(v1_bar(k)+G));

if abs(e1(k))>epcf/G

w=w_1+beta/(gama*c1^2)*h'*e1(k);

elseif abs(e1(k))<=epcf/G

w=w_1;

end

fnn(k)=w'*h';

u(k)=yd1(k)-fnn(k)-c1*e(k);

%u(k)=yd1(k)-fx(k)-c1*e(k); %With precise fx

fx_1=fx(k);

y_1=y(k);

w_1=w;

u_1=u(k);

e1_1=e1(k);

e_1=e(k);

end

figure(1);

plot(time,yd,'r',time,y,'k:','linewidth',2);

xlabel('time(s)');ylabel('yd,y');

legend('Ideal position signal','Position tracking');

figure(2);

plot(time,u,'r','linewidth',2);

xlabel('time(s)');ylabel('Control input');

figure(3);

plot(time,fx,'r',time,fnn,'k:','linewidth',2);

xlabel('time(s)');ylabel('fx and fx estimation');

legend('Ideal fx','fx estimation');

References

1. S. Jagannathan, F.L. Lewis. Discrete-time neural net controller with guaranteed performance.
in Proceedings American Control Conference, (1994) pp. 3334–3339

2. S.S. Ge, C. Yang, S. Dai, Z. Jiao, T.H. Lee, Robust adaptive control of a class of nonlinear
strict-feedback discrete-time systems with exact output tracking. Automatica 45(11), 2537–
2545 (2009)

3. C. Yang, S.S. Ge, T.H. Lee, Output feedback adaptive control of a class of nonlinear
discrete-time systems with unknown control directions. Automatica 45(1), 270–276 (2009)

10.2 Adaptive RBF Control for a Class of Discrete-Time Nonlinear System 233

4. C. Yang, S.S. Ge, C. Xiang, T. Chai, T.H. Lee, Output feedback NN control for two classes of
discrete-time systems with unknown control directions in a unified approach. IEEE Trans.
Neural Networks 19(11), 1873–1886 (2008)

5. J. Park, I.W. Sandberg, Universal approximation using radial-basis-function networks. Neural
Comput. 3(2), 246–257 (1991)

6. J.K. Liu, RBF Neural Network Control for Mechanical Systems_Design, Analysis and Matlab
Simulation. (Tsinghua and Springer Press, 2013)

7. S.G. Fabri, V. Kadirkamanathan. Functional Adaptive Control: An Intelligent Systems
Approach (Springer, New York, 2001)

234 10 Discrete RBF Neural Network Control

Chapter 11
Intelligent Search Algorithm Design

With the development of the optimization theory, some new intelligent algorithms
have been rapidly developed and widely used, and these algorithms have become
new methods to solve the traditional system identification problems, such as genetic
algorithm, ant colony algorithm, particle swarm optimization algorithm, differential
evolution algorithm. These optimization algorithms simulate natural phenomena
and processes.

11.1 GA and Design

11.1.1 Principle of GA

The basic principle of GA(genetic algorithms) were first laid down by Holland in
1962. GA simulate those processes in natural populations that are essential to
evolution.

Some common definitions of the technical terms used are described below:

• Chromosome is a vector of parameters which represents the solution of an
application task, for example, the dimensions of the beams in a bridge design.
These parameters, known as genes, are joined together to form a string of values
called chromosomes.

• Gene is a solution which will combine to form a chromosome.
• Selection is the process of choosing parents or offspring chromosome for the

next generation.
• Individuals are the solution vectors of chromosome.
• Population is the collection of individuals.
• Population size is the number of chromosome in a population.
• Fitness function is the function which evaluates how each solution is suitable for

a given task.

• Phenotype defines the expression type of solution values in the task world, for
example, “red,” “blue,” “80 kg”.

• Genotype are the binary (bit) expression type of solution values used in the GA
search space, for example, “011”, “000111011”.

Some advantages of GA are the following:

(1) Fast convergence to near global optimum;
(2) Superior global searching capability in a space that has a complex searching

surface;
(3) Applicability to a searching space where one cannot use gradient information of

the space.

A GA determines the next set of searching points using the fitness values of the
current searching points, which are widely distributed throughout the searching
space. It uses the mutation operator to escape from a local minimum. A key dis-
advantage of GA is that their convergence speed near the global optimum can be
quite slow.

11.1.2 Steps of GA Design

GA use a direct analogy of natural behavior (see Fig. 11.1). They work with a
population of individuals, each reprinting a possible solution to a given problem.
Each individual is assigned a fitness score according to how good its solution to the
problem is. The highly fit individuals are given opportunities to reproduce, by
crossbreeding with other individuals in the population. This produces new indi-
viduals as offspring, who share some features taken from each parent. The least fit
members of the population are less likely to get selected for reproduction and will
eventually die out.

The standard GA algorithm mainly includes the following four operators:

(1) GA Selection

Selection is an operation that will choose parent solutions. New solution vectors
in the next generation are calculated from them. Since it is expected that better
parent generator generates better offspring, parent solution vectors that have higher
fitness values will have a higher probability to be selected. There are several
selection methods. The roulette wheel selection is a typical selection method.

(2) GA Reproduction

During the reproductive phase of a GA, individuals are selected from the pop-
ulation and recombined, producing offspring which, in turn, will comprise the next
generation. Parents are selected randomly from the population using a scheme that
favors the more fit individuals. Having selected two parents, their chromosomes are
recombined using the mechanism of crossover and mutation.

236 11 Intelligent Search Algorithm Design

(3) Crossover takes two individuals and cuts their chromosome strings at some
randomly chosen positions, to produce two “head” segments and two “tail”
segments. The tail segments are then swapped over to produce two new
full-length chromosomes (see Fig. 11.2). Each of the two offspring will inherit
some genes from each parent. This is known as a single-point crossover.
Crossover is not usually applied to all pairs of individuals that are chosen for
mating. A random choose is made, where the likelihood of crossover being
applied is typically between 0.6 and 1.0.

(4) Mutation is applied to each child individually, after crossover. It randomly alters
each gene with a small probability (typically 0.001). Figure 11.3 shows the fifth
gene of the chromosome being mutated. The traditional view is that crossover is
the more important of the two techniques for rapidly exploring a search space.

Start

Initialization

Generation=0

Time-step=0

Population

Termination?

Evaluation fitness

Generation>G

Get the best
solution

End

Mutation

Crossover

Reproduction

No

No

Yes

Encoding

Decoding

Fig. 11.1 Flowchart of GA

11.1 GA and Design 237

Mutation provides a small amount of random search and helps ensures that no
point in the search space has zero probability of being examined.

11.1.3 Simulation Example

Using GA to get maximum value of Rosenbrock function,

f2ðx1; x2Þ ¼ 100ðx21 � x2Þ2 þð1� x1Þ2
�2:048� xi � 2:048 ði ¼ 1; 2Þ

(
ð11:1Þ

From the program function_plot.m, it can be seen that the function has two
local maximum values, namely f ð2:048;�2:048Þ ¼ 3897:7342 and f ð�2:048;
�2:048Þ ¼ 3905:9262, and the latter is the global maximum, which can be seen in
Fig. 11.4. Therefore, it is necessary to avoid falling into the local optimal solution
when the maximum of the optimization algorithm is used.

Firstly, we use 10-bit binary genes to code xi, �2:048 is coded as
0000000000ð0Þ, and 2:048 is coded as 1111111111ð1023Þ; then, string x1; x2 can
be coded to 20-bit binary cluster. For example, we can use x :
0000110111 1101110001 to express a gene,the former 10-bit expresses x1, the
second half expresses x2.

Secondly, we decode 20-bit binary string to two 10-bit binary strings and change
them to decimal system value y1 and y2.

The relation of xi and yi can be written as

xi ¼ 4:096� yi
1023

� 2:048 ði ¼ 1; 2Þ ð11:2Þ

Fig. 11.2 Single-point
crossover

Fig. 11.3 Single mutation

238 11 Intelligent Search Algorithm Design

For example, x : 0000110111 1101110001 can be decoded as

y1 ¼ 55; y2 ¼ 881

By using (11.2), we can get practical value as

x1 ¼ �1:828; x2 ¼ 1:476

Thirdly, calculate evaluation fitness function

FðxÞ ¼ f ðx1; x2Þ

Then, we can get the objective function as

JðxÞ ¼ 1
FðxÞ ð11:3Þ

Fourthly, design operators, including proportion selection operator,single-point
crossover operator,and basic bit mutation operator, and choose parameters of GA as
follows:population Size ¼ 80, generation G ¼ 100, crossover probability Pc ¼ 0:60,
mutation probability Pm ¼ 0:10.

Adopting the above steps, after 100-step iterations, we get the best individual as

BestS ¼ ½0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0�

Using (11.2), we can get x1 ¼ �2:0480; x2 ¼ �2:0480, and then we can get the
maximum value of Rosenbrock function, that is, 3905:9. The simulation results are
given in Figs. 11.5 and 11.6.

-2.5
-2 -1.5

-1 -0.5
0 0.5

1 1.5
2 2.5

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 11.4 f ðx1; x2Þ plot

11.1 GA and Design 239

Simulation program of f ðx1; x2Þ: function_plot.m
clear all;

close all;

x_min=-2.048;

x_max=2.048;

L=x_max-x_min;

N=101;

for i=1:1:N

for j=1:1:N

x1(i)=x_min+L/(N-1)*(i-1); %set 100 points in x1 axis

x2(j)=x_min+L/(N-1)*(j-1); %set 100 points in x2 axis

fx(i,j)=100*(x1(i)^2-x2(j))^2+(1-x1(i))^2;

end

end

figure(1);

surf(x1,x2,fx);

title('f(x)');

0 20 40 60 80 100
2.5

2.6

2.7

2.8

2.9

3

3.1
x 10

-4

Times
B

es
t J

Fig. 11.5 Objective
function J

0 20 40 60 80 100
3200

3400

3600

3800

4000

times

B
es

t F

Fig. 11.6 Fitness function F

240 11 Intelligent Search Algorithm Design

display('Maximum value of fx=');

disp(max(max(fx)));

Program: chap11_1.m

%Generic Algorithm for function f(x1,x2) optimum

clear all;

close all;

%Parameters

Size=80;

G=100;

CodeL=10;

umax=2.048;

umin=-2.048;

E=round(rand(Size,2*CodeL)); %Initial Code

%Main Program

for k=1:1:G

time(k)=k;

for s=1:1:Size

m=E(s,:);

y1=0;y2=0;

%Uncoding

m1=m(1:1:CodeL);

for i=1:1:CodeL

y1=y1+m1(i)*2^(i-1);

end

x1=(umax-umin)*y1/1023+umin;

m2=m(CodeL+1:1:2*CodeL);

for i=1:1:CodeL

y2=y2+m2(i)*2^(i-1);

end

x2=(umax-umin)*y2/1023+umin;

F(s)=100*(x1^2-x2)^2+(1-x1)^2;

end

Ji=1./F;

%******Step 1 : Evaluate BestJ******

BestJ(k)=min(Ji);

fi=F; %Fitness Function

[Oderfi,Indexfi]=sort(fi); %Arranging fi small to bigger

11.1 GA and Design 241

Bestfi=Oderfi(Size); %Let Bestfi=max(fi)

BestS=E(Indexfi(Size),:); %Let BestS=E

(m), m is the Indexfi belong to max(fi)

bfi(k)=Bestfi;

%******Step 2 : Select and Reproduct Operation******

fi_sum=sum(fi);

fi_Size=(Oderfi/fi_sum)*Size;

fi_S=floor(fi_Size); %Selecting Bigger fi value

kk=1;

for i=1:1:Size

for j=1:1:fi_S(i) %Select and Reproduce

TempE(kk,:)=E(Indexfi(i),:);

kk=kk+1; %kk is used to reproduce

end

end

%************ Step 3 : Crossover Operation ************

pc=0.60;

n=ceil(20*rand);

for i=1:2:(Size-1)

temp=rand;

if pc>temp %Crossover Condition

for j=n:1:20

TempE(i,j)=E(i+1,j);

TempE(i+1,j)=E(i,j);

end

end

end

TempE(Size,:)=BestS;

E=TempE;

%************ Step 4: Mutation Operation **************

%pm=0.001;

%pm=0.001-[1:1:Size]*(0.001)/Size; %Bigger fi, smaller Pm

%pm=0.0; %No mutation

pm=0.1; %Big mutation

for i=1:1:Size

for j=1:1:2*CodeL

temp=rand;

if pm>temp %Mutation Condition

if TempE(i,j)==0

TempE(i,j)=1;

else

242 11 Intelligent Search Algorithm Design

TempE(i,j)=0;

end

end

end

end

%Guarantee TempPop(30,:) is the code belong to the best individual(max(fi))

TempE(Size,:)=BestS;

E=TempE;

end

Max_Value=Bestfi

BestS

x1

x2

figure(1);

plot(time,BestJ);

xlabel('Times');ylabel('Best J');

figure(2);

plot(time,bfi);

xlabel('times');ylabel('Best F');

11.2 PSO Algorithm and Design

11.2.1 Introduction

Kennedy and Eberhart first proposed particle swarm optimization (PSO) algorithm
in 1995, which is an optimization algorithm simulating the social behavior of bird
flock and their means of information communication [1]. In PSO algorithm, a great
number of particles move around in a multidimensional problem space, each
individual is characterized by the position vector and represents a potential solution
to the optimization problem.

Unlike other swarm intelligence algorithms in which the evolutionary operators
are used to manipulate the individuals, each individual in PSO in the problem space
has been provided with a velocity which is dynamically adjusted according to the
flying experiences of its own and those of its companions. Therefore, every indi-
vidual is gravitated toward a stochastically weighted average of the previous best
point of its own and that of its neighborhood companions.

Initially, a swarm of particles are randomly generated. Each particle has a
position vector and a velocity vector. The basic concept of PSO lies in accelerating
each particle toward its pbest which is the fittest solution achieved so far by itself,

11.1 GA and Design 243

and the gbest which is the best solution obtained so far by the whole swarm with a
random weighted acceleration. At every step, a particle’s personal best position
pbest and the gbest in the swarm are updated if an improvement in any of better
fitness values is captured.

11.2.2 PSO Parameter Setting

There are two important steps in the application of PSO algorithm to solve the
optimization problem as follows.

(1) Coding and fitness function:One advantage of PSO is the use of real coding, for
example, for the problem of f xð Þ ¼ x21 þ x22 þ x23 maximization, the particle can
be directly decoded as x1; x2; x3ð Þ, and fitness function is f xð Þ.

(2) The parameters need to be adjusted in PSO are as follows:

(a) Number of particles: Generally, the number of particles can be taken to 100
or 200.

(b) Maximum speed Vmax : Vmax determines the maximum moving distance of
a particle in a loop, usually less than the width of the particle. Larger Vmax

can guarantee the global search ability of particle swarm, and smaller Vmax

can strengthen local search ability of particle swarm.
(c) Learning factors c1 and c2 : c1 is the local learning factor, c2 is the global

learning factor. In PSO design, generally we take a larger c2.
(d) Weight value: A large weight value is good for global optimization, and a

small weight value is good for local optimization. When the maximum
velocity Vmax is very small, the weight value should be close to 1.0.
In PSO, linear decreasing weight value in the iterative process is always
used to obtain global optimal solution. Generally, the weight value can be
set from 0.90 to 0.10.

(e) Stop conditions: Maximum number of cycles or minimum error are often used
to judge the stop conditions.

11.2.3 Design Procedure of PSO

The standard PSO algorithm mainly includes the following six steps:

(1) Initialization: The parameters should be set as follows: the range of each
parameter, the learning factors c1 and c2, the maximum evolution times G, and
the particles population Size. Each particle represents a candidate solution in
space solution, the position and the velocity of ith 1� i� Sizeð Þ particle in the
whole solution space can be expressed as Xi and Vi.

244 11 Intelligent Search Algorithm Design

(2) Individual evaluation (fitness evaluation): The initial position of each particle is
taken as the individual extreme value, and the initial fitness value f Xið Þ of each
particle in the population is calculated. For the i th particle, from the initial to
the current iteration, the individual extreme is Pi, the current optimal solution of
entire population is BestS. The initial position matrix and velocity matrix are
randomly generated.

(3) Update the particle velocity and position, produce new species, check the
speed, and position scope. To avoid the algorithm into a local optimal solution,
we can use a local adaptive mutation operator as follows:

Vkgþ 1
i ¼ w tð Þ � Vkg

i þ c1r1 pkgi � Xkg
i

� �
þ c2r2 BestSkgi � Xkg

i

� �
ð11:4Þ

Xkgþ 1
i ¼ Xkg

i þVkgþ 1
i ð11:5Þ

where kg ¼ 1; 2; . . .;G; i ¼ 1; 2; . . .; Size, r1 and r2 are random number from 0 to
1, c1 is the local learning factors, and c2 is the global learning factor; generally, take
a larger c2, c2 [c1 [0.

(4) Compare the current fitness f Xið Þ value of the particle and its own historical
optimal value pi, if f Xið Þ is better than pi, then pi can be set as f Xið Þ, and the
particle position can be updated.

(5) Compare the current fitness f Xið Þ value of the particle and the optimal BestS
value of the population, if f Xið Þ is better than BestS, then set BestS as f Xið Þ,
and update the global optimal value.

(6) If the termination conditions are satisfied, end the search, otherwise, go to step
(3). The termination conditions can be chosen as maximum evolution times, or
the given precision.

PSO algorithm’s flowchart is shown in Fig. 11.7.

11.2.4 Simulation Example

Using PSO to get maximum value of Rosenbrock function,

f ðx1; x2Þ ¼ 100ðx21 � x2Þ2 þð1� x1Þ2
�2:048� xi � 2:048 ði ¼ 1; 2Þ

(
ð11:6Þ

Just like Sect. 11.1.3, the function has two local maximum value, namely
f ð2:048;�2:048Þ ¼ 3897:7342 and f ð�2:048;�2:048Þ ¼ 3905:9262, and the lat-
ter is the global maximum.

In global PSO algorithm, the ith particle’s neighborhood gradually increases
with the increase of iterations. For the first iteration, the number of the ith particle’s

11.2 PSO Algorithm and Design 245

neighborhood is set as 0 and then increases linearly as the number of iterations and
finally extended to the entire neighborhood particle swarm. Global PSO algorithm
can converge quickly, but it is easy to fall into local optimum. The local PSO
algorithm converges slowly, but it can avoid local optimum.

In global PSO, the velocity of each particle is updated according to the optimal
value of the particle pi and the global optimal value pg. In order to avoid being
trapped into local minima, local PSO algorithm can be used to update the velocity
of each particle according to the optimal history value pi of the particle and the
optimal value plocal of the particle in the neighborhood.

In this section, we use a simplest circular neighborhood method to implement the
local PSO algorithm, as shown in Fig. 11.8.

As an example, eight particles are chosen to illustrate local PSO algorithm, as
shown in Fig. 11.8. In each update of velocity and position, particle no. 1 tracks the
best individuals of particle no. 1, no. 2, and no. 8, and the particle no. 2 tracks the
best individuals of the particle no. 1, no. 2, and no. 3. In the simulation, the optimal
individual in the neighborhood of a particle is solved by program chap11_2lbest.m.

In local PSO, the speed and position of the particle are updated as follows

Output gbest

Initial PSO

Update particles s
velocity and position

Evaluate fitness, update
pbest and gbest

Termination
criteria met?

No

Yes

Fig. 11.7 Flowchart of PSO

246 11 Intelligent Search Algorithm Design

Vkgþ 1
i ¼ w tð Þ � Vkg

i þ c1r1 pkgi � Xkg
i

� �
þ c2r2 pkgilocal � Xkg

i

� �
ð11:7Þ

Xkgþ 1
i ¼ Xkg

i þVkgþ 1
i ð11:8Þ

where pkgilocal is locally optimized particle.
At the same time, the range of velocity and position of the particles should be

examined. To prevent the algorithm from falling into the local optimal solution,
local adaptive mutation operator is always used.

Real coding is used in PSO design, two real variables are used to represent two
decision variables x1 and x2, respectively, which are discretized into real value from
−2.048 to −2.048. The fitness of individual is taken as the corresponding objective
function value, that is, FðxÞ ¼ f ðx1; x2Þ.

In the simulation, the number of particles is taken as Size ¼ 50, the iterations
maximum number is G ¼ 100, maximum velocity of particle is Vmax ¼ 1:0, and the
velocity range is set as �1; 1½ �. The learning factors are chosen as c1 ¼ 1:3 and
c2 ¼ 1:7. Using the linear decreasing method, weight value is designed to decrease
from 0.90 to 0.10.

In the program, M ¼ 1 and M ¼ 2 indicate local PSO and global PSO,
respectively. According to (11.7) and (11.8), the velocity and position of the par-
ticles are updated to produce new species. After 100 iterations, the best sample is
BestS ¼ �2:048 �2:048½ �, that is, x1 ¼ �2:048; x2¼� 2:048, and then we can
get maximum value, that is, 3905:9.

The change of fitness function F is shown in Fig. 11.9. From the simulation, to
find the global optimal solution, the speed and position of particles are updated by
tracking the particle swarm and local extremum along with the iterative process,
the local search ability is enhanced by using local PSO algorithm, and local
optimal solution is avoided. The simulation results have shown that the correct rate
is above 95%.

Fig. 11.8 Annular
neighborhood method

11.2 PSO Algorithm and Design 247

PSO programs are listed as follows:

(1) Main program: chap11_2.m

clear all;

close all;

%(1)Initialize PSO

min=-2.048;max=2.048;

Vmax=1;Vmin=-1;

c1=1.3;c2=1.7;

wmin=0.10;wmax=0.90;

G=100;

Size=50;

for i=1:G

w(i)=wmax-((wmax-wmin)/G)*i;

end

for i=1:Size

for j=1:2

x(i,j)=min+(max-min)*rand(1);

v(i,j)=Vmin +(Vmax-Vmin)*rand(1);

end

end

0 10 20 30 40 50 60 70 80 90 100
3200

3300

3400

3500

3600

3700

3800

3900

4000

generations

F
itn

es
s

fu
nc

tio
n

Fig. 11.9 Optimization process of fitness function F

248 11 Intelligent Search Algorithm Design

%(2) Calculte fitness

for i=1:Size

p(i)=chap11_2func(x(i,:));

y(i,:)=x(i,:);

if i==1

plocal(i,:)=chap11_2lbest(x(Size,:),x(i,:),x(i+1,:));

elseif i==Size

plocal(i,:)=chap11_2lbest(x(i-1,:),x(i,:),x(1,:));

else

plocal(i,:)=chap11_2lbest(x(i-1,:),x(i,:),x(i+1,:));

end

end

BestS=x(1,:);

for i=2:Size

if chap11_2func(x(i,:))>chap11_2func(BestS)

BestS=x(i,:);

end

end

%(3) Main loop

for kg=1:G

for i=1:Size

M=1;

if M==1

v(i,:)=w(kg)*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(plocal(i,:)-x

(i,:));%Local optimization

elseif M==2

v(i,:)=w(kg)*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(BestS-x

(i,:)); %Global optimization

end

for j=1:2 %Judge the limit of velocity

if v(i,j)<Vmin

v(i,j)=Vmin;

elseif x(i,j)>Vmax

v(i,j)=Vmax;

end

end

x(i,:)=x(i,:)+v(i,:)*1; %Update position

for j=1:2 %Check the limit

if x(i,j)<min

x(i,j)=min;

elseif x(i,j)>max

11.2 PSO Algorithm and Design 249

x(i,j)=max;

end

end

%Adaptive mutation

if rand>0.60

k=ceil(2*rand);

x(i,k)=min+(max-min)*rand(1);

end

%(4)Judge and update

if i==1

plocal(i,:)=chap11_2lbest(x(Size,:),x(i,:),x(i+1,:));

elseif i==Size

plocal(i,:)=chap11_2lbest(x(i-1,:),x(i,:),x(1,:));

else

plocal(i,:)=chap11_2lbest(x(i-1,:),x(i,:),x(i+1,:));

end

if chap11_2func(x(i,:))>p(i) %Judge and update

p(i)=chap11_2func(x(i,:));

y(i,:)=x(i,:);

end

if p(i)>chap11_2func(BestS)

BestS=y(i,:);

end

end

Best_value(kg)=chap11_2func(BestS);

end

figure(1);

kg=1:G;

plot(kg,Best_value,'r','linewidth',2);

xlabel('generations');ylabel('Fitness function');

display('Best Sample=');disp(BestS);

display('Biggest value=');disp(Best_value(G));

(2) Program for local best evaluation: chap11_2lbest.m

function f =evaluate_localbest(x1,x2,x3)

K0=[x1;x2;x3];

K1=[chap11_2func(x1),chap11_2func(x2),chap11_2func(x3)];

[maxvalue index]=max(K1);

plocalbest=K0(index,:);

f=plocalbest;

250 11 Intelligent Search Algorithm Design

(3) Object function program: chap11_2func.m

function f = func(x)

f=100*(x(1)^2-x(2))^2+(1-x(1))^2;

11.3 DE Algorithm and Design

In evolutionary computation, differential evolution (DE) is a method that optimizes
a problem by iteratively trying to improve a candidate solution with regard to a
given measure of quality. Such methods are commonly known as metaheuristics as
they make few or no assumptions about the problem being optimized and can
search very large spaces of candidate solutions.

DE is used for multidimensional real-valued functions but does not use the
gradient of the problem being optimized, which means DE is not required for the
optimization problem to be differentiable. DE can therefore also be used on opti-
mization problems that are not even continuous, are noisy, change over time, etc. [2].

DE optimizes a problem by maintaining a population of candidate solutions and
creating new candidate solutions by combining existing ones according to its simple
formulae, and then keeping whichever candidate solution has the best score or
fitness on the optimization problem at hand. In this way, the optimization problem
is treated as a black box that merely provides a measure of quality given a candidate
solution and the gradient is therefore not needed.

DE is originally due to Storn and Price [2]. Many books have been published on
theoretical and practical aspects of using DE in parallel computing, multiobjective
optimization, constrained optimization, and some books also contain surveys of
application areas.

11.3.1 Standard DE Algorithm

DE algorithm is an optimization algorithm based on swarm intelligence theory and
is guided by swarm intelligence which is generated by the cooperation and com-
petition among individuals. DE preserves the global searching strategy based on
population. By using real encoding, simple mutation differential, and one-on-one
competition strategies, the complexity of DE can be reduced. DE algorithm has
strong global convergence ability and robustness. The main advantages of the DE
algorithm can be summarized as the following three points: few parameters, not
easy to fall into local optimum, and faster convergence rate.

DE algorithm can do mutation, crossover, and selection operations based on
parent individual difference; the basic idea is to generate a random initial population
from the beginning, and then any two individuals are weighted and a third

11.2 PSO Algorithm and Design 251

individual is added according to certain rules to produce new individual.
Comparing a predetermined individual with the contemporary new individual in a
population, if the new individual’s fitness is better than the predetermined indi-
vidual fitness value, then in the next generation the new individual will replace the
predetermined individual, otherwise we must preserve the predetermined individ-
ual. Through iterations, we can keep good individuals, eliminate inferior individ-
uals, and guide the search process approach to the optimal solution.

Compared with the traditional optimization method, DE algorithm has the fol-
lowing main characteristics:

(1) DE algorithm starts from a group instead of one point, which is the main reason
that DE can find global optimal solution with a higher probability.

(2) The evolution rule of DE algorithm is based on the adaptive information, which
can greatly extend its application range without aid of other auxiliary infor-
mation, such as function differentiability or continuity.

(3) DE algorithm has inherent parallelism, which makes it very suitable for mas-
sively parallel distributed processing and reduces the time cost overhead.

(4) DE algorithm uses the probability transition rule and does not need determin-
istic rules.

11.3.2 Basic Flow of DE

DE algorithm is an evolutionary algorithm based on real coding, which is similar to
other evolutionary algorithms on the whole structure. It is composed of three basic
operations: mutation, crossover, and selection. Standard DE algorithm mainly
includes the following four steps:

(1) Initial population generation

In the dimensional n space, M individuals are randomly generated as

xij 0ð Þ ¼ randij 0; 1ð Þ xUij � xLij
� �

þ xLij ð11:9Þ

where xUij and x
L
ij are the upper and lower bounds of the jth chromosome, randij 0; 1ð Þ

is a real value in the range 0; 1½ �.
(2) Mutation operator

Three individuals xp1, xp2, and xp3 are randomly selected from the population, let
i 6¼ p1 6¼ p2 6¼ p3, and then basic mutation operator is

hij tþ 1ð Þ ¼ xp1j tð ÞþF xp2j tð Þ � xp3j tð Þ
� � ð11:10Þ

252 11 Intelligent Search Algorithm Design

If there is no local optimization problem, the mutation operator can be written as

hij tþ 1ð Þ ¼ xbj tð ÞþF xp2j tð Þ � xp3j tð Þ
� � ð11:11Þ

where xp2j tð Þ � xp3j tð Þ is the difference vector, the difference operation is the key of
DE algorithm, and F is a scaling factor. p1; p2; p3 are random integer, which
indicates the number of individuals in a population, and xbj tð Þ indicates the best
individual in the current generation. Since (11.11) draws on the best individual
information in the current population, the convergence speed can be accelerated.

(3) Cross operator

Cross operator is to increase the diversity of the group, and the operator is as
follows:

vij tþ 1ð Þ ¼ hij tþ 1ð Þ; rand lij �CR

xij tð Þ; rand lij [CR

(
ð11:12Þ

where rand lij is a random value, CR is the crossover probability, CR 2 0; 1½ �.
(4) Selection operator

In order to determine whether xi tð Þ become a member of the next generation,
vector vij tþ 1ð Þ and vector xij tð Þ are used to compare the evaluation functions:

xi tþ 1ð Þ ¼ vi tþ 1ð Þ; f vi1 tþ 1ð Þ; � � � ; vin tþ 1ð Þð Þ\f xi1 tð Þ; � � � ; xin tð Þð Þ
xij tð Þ; f vi1 tþ 1ð Þ; � � � ; vin tþ 1ð Þð Þ� f xi1 tð Þ; � � � ; xin tð Þð Þ

(
ð11:13Þ

where j ¼ 1; 2; � � � ; n.
Repeat the steps (2) to step (4) until the maximum evolutionary iteration G is

reached. The basic flow of DE is shown in Fig. 11.10.

11.3.3 Parameter Setting of DE

In order to improve the convergence speed of DE algorithm, we need to set rea-
sonable parameters. For different optimization problems, parameter settings are
often different.

The main parameters of DE algorithm are given as follows.

(1) Mutation factor F

The mutation factor F is an important parameter for the diversity and conver-
gence of the population; generally, F is set in [0, 2]. When the mutation factor is
small, the difference degree of the population will decrease, and the evolutionary
process may not jump out of the local extremum. When the mutation factor F is

11.3 DE Algorithm and Design 253

large, it is easy to jump out of the local extremum, but the convergence rate will
slow down. Generally, we can set F = 0.3–0.6.

(2) Crossover factor CR

Crossover factor CR can affect the balance between global and local search
ability. The smaller the crossover factor CR is, the less diversity of the population
is, and the more easily DE algorithm will be deceived. The larger the crossover
factor CR is, the larger convergence rate is, but too large CR may lead to slow
convergence. Generally, we can set CR as the range 0:6; 0:9½ �.
(3) Group size

The group Size contains individual number between 5 D and 10 D(D is generally
the space dimension), and D must be not less than 4, otherwise the mutation
operation cannot be effective. The larger value Size is chosen, the greater the
probability of obtaining the optimal solution, but the computing time is longer,
usually Size can be designed from 20 to 50.

(4) Maximum iterations G

Maximum iteration G is generally used as the termination condition of evolu-
tionary process. The greater the number of iterations, the more accurate the optimal
solution, but the time will be longer.

Start DE

Initialization

Evaluate fitness

Mutation

Crossover

Selection

Termination Get the best
solution

Yes

No

Fig. 11.10 Flowchart of DE

254 11 Intelligent Search Algorithm Design

The above four parameters have great influence on the performance of DE
algorithm and efficiency of the solution.

11.3.4 Simulation Example

Solve the maximum value of Rosenbrock function by DE

f ðx1; x2Þ ¼ 100ðx21 � x2Þ2 þð1� x1Þ2
�2:048� xi � 2:048 ði ¼ 1; 2Þ

(
ð11:14Þ

Just like Sect. 11.1.3, the function has two local maximum value, namely
f ð2:048;�2:048Þ ¼ 3897:7342 and f ð�2:048;�2:048Þ ¼ 3905:9262, and the lat-
ter is the global maximum.

Real coding is used to find the maximum value of the function CodeL = 2, two
real variables are used to represent two decision variables x1 and x2, respectively. x1
and x2 are discretized into Size real numbers from the discrete point −2.048 to
−2.048. The fitness of individual is taken as the corresponding objective function
value, that is, FðxÞ ¼ f ðx1; x2Þ.

In the simulation, the number of particles is taken as Size ¼ 30, the iterations’
maximum number is G ¼ 50, DE algorithm is designed according to (11.9)–
(11.13), F = 1.2, CR=1.9, after a total of 30 iterations, the best sample is
BestS ¼ �2:048 �2:048½ �, that is, x1 ¼ �2:048, x2¼� 2:048, and at this point,
Rosenbrock function has a maximum value, the maximum value is 3905:9.

The change process of fitness function FðxÞ is shown in Fig. 11.11. By appro-
priately increasing F value, the local optimal solution can be avoided. The results
show that the correct rate is close to 100%.

DE programs are listed as follows:

(1) Main program: chap11_3.m

%To Get maximum value of function f(x1,x2) by Differential Evolution

clear all;

close all;

Size=30;

CodeL=2;

MinX(1)=-2.048;

MaxX(1)=2.048;

MinX(2)=-2.048;

MaxX(2)=2.048;

11.3 DE Algorithm and Design 255

G=50;

F=1.2; %[0,2]

cr=0.9; %[0.6,0.9]

% Initialization

for i=1:1:CodeL

P(:,i)=MinX(i)+(MaxX(i)-MinX(i))*rand(Size,1);

end

BestS=P(1,:); % Best individual

for i=2:Size

if(chap11_3obj(P(i,1),P(i,2))>chap11_3obj(BestS(1),BestS(2)))

BestS=P(i,:);

end

end

fi=chap11_3obj(BestS(1),BestS(2));

for kg=1:1:G

time(kg)=kg;

%mutation

for i=1:Size

r1 = 1;r2=1;r3=1;

while(r1 == r2|| r1 == r3 || r2 == r3 || r1 == i || r2 ==i || r3 == i)

r1 = ceil(Size * rand(1));

r2 = ceil(Size * rand(1));

r3 = ceil(Size * rand(1));

0 5 10 15 20 25 30
3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

Times

B
es

t f

Fig. 11.11 Optimization process of fitness function FðxÞ

256 11 Intelligent Search Algorithm Design

end

h(i,:) = P(r1,:)+F*(P(r2,:)-P(r3,:));

for j=1:CodeL %Check limit

if h(i,j)<MinX(j)

h(i,j)=MinX(j);

elseif h(i,j)>MaxX(j)

h(i,j)=MaxX(j);

end

end

%crossover

for j = 1:1:CodeL

tempr = rand(1);

if(tempr<cr)

v(i,j) = h(i,j);

else

v(i,j) = P(i,j);

end

end

%selection

if(chap11_3obj(v(i,1),v(i,2))>chap11_3obj(P(i,1),P(i,2)))

P(i,:)=v(i,:);

end

%Judge and update

if(chap11_3obj(P(i,1),P(i,2))>fi)

fi=chap11_3obj(P(i,1),P(i,2));

BestS=P(i,:);

end

end

Best_f(kg)=chap11_3obj(BestS(1),BestS(2));

end

BestS % Best individual

Best_f(kg) %Biggest value

figure(1);

plot(time,Best_f(time),'k','linewidth',2);

xlabel('Times');ylabel('Best f');

(2) Object function program: chap11_3obj.m

function J=evaluate_objective(x1,x2)

J=100*(x1^2- x2)^2+(1- x1)^2;

end

11.3 DE Algorithm and Design 257

11.4 TSP Optimization Based on Hopfield Neural
Network

11.4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given a list of
cities and the distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?” It is an
NP-hard problem in combinatorial optimization, important in operations research
and theoretical computer science.

TSP is a special case of the traveling purchaser problem and the vehicle routing
problem.

In the theory of computational complexity, the decision version of the TSP
(where, given a length L, the task is to decide whether the graph has any tour
shorter than L) belongs to the class of NP-complete problems. Thus, it is possible
that the worst-case running time for any algorithm for the TSP increases super-
polynomially (but no more than exponentially) with the number of cities.

The problem was first formulated in 1930 and is one of the most intensively
studied problems in optimization. It is used as a benchmark for many optimization
methods. Even though the problem is computationally difficult, a large number of
heuristics and exact algorithms are known, so that some instances with tens of
thousands of cities can be solved completely and even problems with millions of
cities can be approximated within a small fraction of 1%.

The TSP has several applications even in its purest formulation, such as plan-
ning, logistics, and the manufacture of microchips. Slightly modified, it appears as a
subproblem in many areas, such as DNA sequencing. In these applications, the
concept city represents, for example, customers, soldering points, or DNA frag-
ments, and the concept distance represents traveling times or cost, or a similarity
measure between DNA fragments. The TSP also appears in astronomy, as
astronomers observing many sources will want to minimize the time spent moving
the telescope between the sources. In many applications, additional constraints such
as limited resources or time windows may be imposed.

11.4.2 Hopfield Network Design for Solving TSP Problem

The TSP problem is to find the shortest path in a set of cities Ac;Bc;Cc. . .f g. In
order to map the TSP problem into a dynamic process of a neural network, Hopfield
uses N � N matrix to express the visit of N cities.

For example, there are four cities Ac;Bc;Cc;Dcf g, the route is
Dc ! Ac ! Cc ! Bc ! Dc, and then Hopfield network output can be expressed

258 11 Intelligent Search Algorithm Design

by the effective solution with the following two-dimensional matrix (see
Table 11.1).

Table 11.1 consists of a matrix 4� 4; in the matrix, each column has only one
element whose value is 1; the remaining elements are 0, otherwise the path is an
invalid path. Vxi indicates output of the neuron x; ið Þ;Uxi, which is the corre-
sponding input. If the city x is accessed at location i, we set Vxi ¼ 1, otherwise we
set Vxi ¼ 0.

For the TSP problem, Hopfield defines the energy function as follows [3]

E ¼ A
2

XN
x¼1

XN
i¼1

XN
j¼1

VxiVxj þ B
2

XN
i¼1

XN
x¼1

XN
y¼x

VxiVyj

þ C
2

XN
x¼1

XN
i¼1

Vxi � N

 !2

þ D
2

XN
x¼1

XN
y¼1

XN
i¼1

dxyVxi Vy;iþ 1 þVy;i�1
� � ð11:15Þ

where A;B;C;D, are weight value, dxy is the distance between city x and city y.
In (11.15), the first three items of E are the constraints, and the last one is the

optimization item. The first term expresses that E is minimum when each row of V
matrix is no more than 1 (i.e., each city only once), the second guarantees that E is
minimum when each column of V matrix is no more than 1 (i.e., visit only one city
at a time), and the third term expresses that E is minimum when the number of
V is N.

Hopfield introduces the concept of energy function to the neural network and
creates a new method to solve the optimization problem. However, this method has
some problems such as local minima and instability, and to solve this problem, in
paper [4], the authors proposed an improved energy function of TSP as follows

E ¼ A
2

XN
x¼1

XN
i¼1

Vxi � 1

 !2

þ A
2

XN
i¼1

XN
x¼1

Vxi � 1

 !2

þ D
2

XN
x¼1

XN
y¼1

XN
i¼1

VxidxyVy;iþ 1

ð11:16Þ

Table 11.1 Visit routes for
four cities

City Visit order

1 2 3 4

Ac 0 1 0 0

Bc 0 0 0 1

Cc 0 0 1 0

Dc 1 0 0 0

11.4 TSP Optimization Based on Hopfield Neural Network 259

From (11.16), the dynamic equation of Hopfield network is as follows:

dUxi

dt
¼ � @E

@Vxi
x; i ¼ 1; 2; . . .;N � 1ð Þ

¼ �A
XN
i¼1

Vxi � 1

 !
� A

XN
y¼1

Vyi � 1

 !
� D

XN
y¼1

dxyVy;iþ 1

ð11:17Þ

To solve the problem, Hopfield network algorithm is described as follows:

1. Initialization: set t ¼ 0, A ¼ B;
2. Calculate the distance dxy x; y ¼ 1; 2; . . .;Nð Þ between any two cities;
3. Initialize neural network input Uxi tð Þ;
4. Use dynamic Eq. (11.17) to calculate dUxi

dt ;

5. Calculate Uxi tþ 1ð Þ based on first-order Euler method;

Uxi tþ 1ð Þ ¼ Uxi tð Þþ dUxi

dt
DT ð11:18Þ

6. In order to ensure the convergence to the correct solution, that is, for every row
and every column in the matrix V, only one element is 1, and the remaining are
0, use adapt Sigmoid function to calculate Vxi tð Þ

Vxi tð Þ ¼ 1
1þ e�lUxi tð Þ ð11:19Þ

where l[0.
7. Calculate energy function E according to (11.16);
8. Check the legitimacy of the path, if the number of iterations are arrived, then

terminate the iterative algorithm, or else return to step (4).
9. Give the number of iterations, the optimal path, the optimal energy function, the

length of the path, and plot the curve of the energy function with time.

11.4.3 Simulation Example

In (11.16), we choose A ¼ 1:5;D ¼ 1:0 and we set sampling time as DT ¼ 0:01; the
initial value of network input Uxi tð Þ is chosen as random values in the range
�1; þ 1½ �. In (11.19), we choose larger l value as l ¼ 50, so that the Sigmoid
function can be relatively steep, and thus in the steady states, Vxi tð Þ can tend to 1 or 0.

Taking the path optimization of eight cities as an example, the path coordinates
are stored in the program city8.txt. If the optimization path is effective, after 2000

260 11 Intelligent Search Algorithm Design

iterations, the optimal energy function is Final_E = 1.4468, the initial distance is
Initial_Length = 4.1419, and the shortest distance is Final_Length = 2.8937.

As the initial value of input Uxi tð Þ is random, which may lead to invalid path
matrix V , that is, for matrix V , some row or some column does not meet “only one
element is 1, the remains are 0,” the optimization program should be re-run. The
simulation results have shown that in the 20 times simulation experiments, about 16
times can converge to the optimal solution.

The simulation results are shown in Figs. 11.12 and 11.13. Figure 11.12 shows
the comparison between the initial path and the optimized path, and Fig. 11.13
shows energy function E change with time. The simulation results show that the
energy function E tends to decrease monotonically, and the minimum point of E is
the optimal solution.

The key commands used in the simulation are explained as follows:

(1) Sumsqr(X) can be used to Summarize the squares of all elements in matrix X;
(2) Sum(X) or Sum(X,1) can be used to get the sum of each row in X matrix, and

Sum (X; 2) is the sum of each column in X matrix;

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X axis

Y
 a

xi
s

Original Route

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSP solution

X axis

Y
 a

xi
s

Fig. 11.12 Initial path and optimized path for eight cities

11.4 TSP Optimization Based on Hopfield Neural Network 261

(3) Repmat can be used for matrix replication, for example, X ¼ 1 2
3 4

� �
, then

repmat X; 1; 1ð Þ ¼ X;

repmat X; 1; 2ð Þ ¼ 1 2 1 2
3 4 3 4

� �
; repmat X; 2; 1ð Þ ¼

1 2
3 4
1 2
3 4;

2
664

3
775;

(4) dist x; yð Þ can be used to Calculate the distance between two points, for

example, x ¼ 1 1½ �,y ¼ 2 2½ �0 , then

dist x; yð Þ ¼
ffi
2� 1ð Þ2 þ 2� 1ð Þ2

q
¼ ffiffiffi

2
p

.

Simulation programs

(1) Main program: chap11_4.m

% TSP Solving by Hopfield Neural Network

function TSP_hopfield()

clear all;

close all;

%Step 1: Initialization

A=1.5;

D=1;

Mu=50;

Step=0.01;

%Step 2: %Calculate initial route length

N=8;

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140
Energy Function Change

k

E

Fig. 11.13 Energy function changes with iterations

262 11 Intelligent Search Algorithm Design

cityfile = fopen('city8.txt','rt');

cities = fscanf(cityfile, '%f %f',[2,inf])

fclose(cityfile);

Initial_Length=Initial_RouteLength(cities);

DistanceCity=dist(cities',cities);

%Step 3: Initialization NN

U=rands(N,N);

V=1./(1+exp(-Mu*U)); % S function

for k=1:1:2000

times(k)=k;

%Step 4: Calculate du/dt

dU=DeltaU(V,DistanceCity,A,D);

%Step 5: Calculate u(t)

U=U+dU*Step;

%Step 6: Calculate output of NN

V=1./(1+exp(-Mu*U)); % S function

%Step 7: Calculate energy function

E=Energy(V,DistanceCity,A,D);

Ep(k)=E;

%Step 8: Check validity of the route

[V1,CheckR]=RouteCheck(V);

End

%Step 9: Results

if(CheckR==0)

Final_E=Energy(V1,DistanceCity,A,D);

Final_Length=Final_RouteLength(V1,cities); %Give final length

disp('Iteration times');k

disp(' the optimization route is');V1

disp('Final optimization engergy function:');Final_E

disp('Initial length');Initial_Length

disp('Final optimization length');Final_Length

PlotR(V1,cities);

else

disp('the optimization route is');V1

disp('the route is invalid');

end

figure(2);

plot(times,Ep,'r');

title('Energy Function Change');

xlabel('k');ylabel('E');

11.4 TSP Optimization Based on Hopfield Neural Network 263

% Calculate energy function

function E=Energy(V,d,A,D)

[n,n]=size(V);

t1=sumsqr(sum(V,2)-1);

t2=sumsqr(sum(V,1)-1);

PermitV=V(:,2:n);

PermitV=[PermitV,V(:,1)];

temp=d*PermitV;

t3=sum(sum(V.*temp));

E=0.5*(A*t1+A*t2+D*t3);

%%%%%%% Calculate du/dt

function du=DeltaU(V,d,A,D)

[n,n]=size(V);

t1=repmat(sum(V,2)-1,1,n);

t2=repmat(sum(V,1)-1,n,1);

PermitV=V(:,2:n);

PermitV=[PermitV, V(:,1)];

t3=d*PermitV;

du=-1*(A*t1+A*t2+D*t3);

%Check the validity of route

function [V1,CheckR]=RouteCheck(V)

[rows,cols]=size(V);

V1=zeros(rows,cols);

[XC,Order]=max(V);

for j=1:cols

V1(Order(j),j)=1;

end

C=sum(V1);

R=sum(V1');

CheckR=sumsqr(C-R);

% Calculate Initial Route Length

function L0=Initial_RouteLength(cities)

[r,c]=size(cities);

L0=0;

for i=2:c

L0=L0+dist(cities(:,i-1)',cities(:,i));

end

% Calculate Final Route Length

function L=Final_RouteLength(V,cities)

[xxx,order]=max(V);

New=cities(:,order);

New=[New New(:,1)];

[rows,cs]=size(New);

264 11 Intelligent Search Algorithm Design

L=0;

for i=2:cs

L=L+dist(New(:,i-1)',New(:,i));

end

% Give Path optimization plot

function PlotR(V,cities)

figure;

cities=[cities cities(:,1)];

[xxx,order]=max(V);

New=cities(:,order);

New=[New New(:,1)];

subplot(1,2,1);

plot(cities(1,1), cities(2,1),'r*'); %First city

hold on;

plot(cities(1,2), cities(2,2),'+'); %Second city

hold on;

plot(cities(1,:), cities(2,:),'o-'), xlabel('X axis'), ylabel

('Y axis'), title('Original Route');

axis([0,1,0,1]);

subplot(1,2,2);

plot(New(1,1), New(2,1),'r*'); %First city

hold on;

plot(New(1,2), New(2,2),'+'); %Second city

hold on;

plot(New(1,:),New(2,:),'o-');

title('TSP solution');

xlabel('X axis');ylabel('Y axis');

axis([0,1,0,1]);

axis on

(2) Program for coordinates of eight cities: city8.txt

0.1 0.1

0.9 0.5

0.9 0.1

0.45 0.9

0.9 0.8

0.7 0.9

0.1 0.45

0.45 0.1

11.4 TSP Optimization Based on Hopfield Neural Network 265

References

1. J. Kennedy, R. Eberhart, Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4,
1942–1948 (1995)

2. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

3. J.J. Hopfield, D.W. Tank, Neural computation of decision in optimization problems. Biol.
Cybernrtics 52, 141–152 (1985)

4. S.Y. Sun, J.L. Zheng, A modified algorithm and theoretical analysis for hopfield neural solving
TSP. Acta Electronica Sinca 23(1), 73–78 (1995). (in Chinese)

266 11 Intelligent Search Algorithm Design

Chapter 12
Iterative Learning Control
and Applications

There is a kind of trajectory tracking problem in practical control. The control task
is to find the control law, which makes the output of the controlled object to achieve
the zero error of trajectory tracking along the desired trajectory. This tracking
problem is a challenging control problem.

When dealing with the repetitive tasks in the actual practical engineering, we
often adjust the decision according to the difference between the dynamic behavior
and the expected behavior. Through repeated operations, the object behavior and
the expected behavior can meet the requirements.

The idea of iterative learning control (ILC) was first proposed by Uchiyama, a
Japanese scholar in 1978, Arimoto, etc. [1] made a pioneering study in 1984.

Iterative learning control method has strong engineering background, and these
backgrounds include the following: industrial robot such as welding, spraying,
assembly, handling, and other repetitive tasks, disk drive system used in mechanical
manufacturing, and coordinate measuring machine [2–4].

Iterative learning control is a typical intelligent control method, which simulates
the function of human brain learning and self-regulation. After more than thirty
years of development, iterative learning control has become a branch of intelligent
control with strict mathematical description. At present, iterative learning control
has made great progress in learning algorithm, convergence, robustness, learning
speed, and engineering applications.

12.1 Basic Principle

Consider a dynamic model as

_xðtÞ ¼ f ðxðtÞ; uðtÞ; tÞ; yðtÞ ¼ gðxðtÞ; uðtÞ; tÞ ð12:1Þ

where x 2 Rn; y 2 Rm; u 2 Rr are system state, output and input variables,
respectively, f ð�Þ and gð�Þ are unknown vector functions.

For the expected control udðtÞ, if the initial states xkð0Þ and expected output ydðtÞ
are given, for the given period of time t 2 0; T½ �, according to the learning algorithm
by repeated operation, we can realize ukðtÞ ! udðtÞ and ykðtÞ ! ydðtÞ, in the k
times running, (12.1) can be represented as

_xkðtÞ ¼ f ðxkðtÞ; ukðtÞ; tÞ; ykðtÞ ¼ gðxkðtÞ; ukðtÞ; tÞ ð12:2Þ

The tracking error is

ekðtÞ ¼ ydðtÞ � ykðtÞ ð12:3Þ

The iterative learning control can be divided into open-loop learning control and
closed-loop learning control.

For the open-loop learning control, the kþ 1 times control is equal to the cor-
rection of the k times control combine with the k times output error.

ukþ 1ðtÞ ¼ LðukðtÞ; ekðtÞÞ ð12:4Þ

The closed-loop learning strategy is to take the error in kþ 1 times as the
correction of learning

ukþ 1ðtÞ ¼ LðukðtÞ; ekþ 1ðtÞÞ ð12:5Þ

where L is linear or nonlinear operator.

12.2 Basic Iterative Learning Control Algorithm

The D-type iterative learning control law for linear time-varying continuous sys-
tems is given by Arimoto et al. [1]

ukþ 1ðtÞ ¼ ukðtÞþC _ekðtÞ ð12:6Þ

where C is constant gain matrix.
PID-type iterative learning control law is expressed as

ukþ 1ðtÞ ¼ ukðtÞþC _ekðtÞþUekðtÞþW
Z t

0

ekðsÞds ð12:7Þ

where C;U, and W are learning gain matrices.
In iterative learning control law, if ekðtÞ is used, the control law is called as

open-loop LTC, if ekþ 1ðtÞ is used, the control law is called as closed-loop LTC, and

268 12 Iterative Learning Control and Applications

if ekðtÞ and ekþ 1ðtÞ are used at the same time, the control law is called as open-loop
and closed-loop LTC.

In addition, there also have other LTC algorithm, such as higher order iterative
learning control algorithm, optimal iterative learning control algorithm, forgetting
factor iterative learning control algorithm and feedback feed-forward iterative
learning control algorithm, etc.

12.3 Key Techniques of Iterative Learning Control

12.3.1 Stability and Convergence

For learning control system, only stability is not enough, only convergence can
guarantee that the practical value converges to ideal value.

12.3.2 Initial Value Problem

Most of the iterative learning control algorithms require that the initial states’ value
of the system is equal to the initial states’ value of the desired trajectory, i.e.,

xkð0Þ ¼ xdð0Þ; k ¼ 0; 1; 2; . . . ð12:8Þ

12.3.3 Learning Speed Problem

In iterative learning algorithm, the convergence condition is given by k ! 1,
which is obviously of no practical significance. Therefore, how to make the iterative
learning process converge faster to the expected value is another important problem
in the research of iterative learning control.

12.3.4 Robustness

In addition to the initial offset, a practical iterative learning control system has more
or less disturbances such as state disturbance, measurement noise, and input dis-
turbance. Robustness problems should be discussed for iterative learning control
systems with various disturbances.

12.2 Basic Iterative Learning Control Algorithm 269

12.4 ILC Simulation for Manipulator Trajectory
Tracking

12.4.1 Controller Design

Consider dynamic equation of N link manipulator as

D qð Þ�qþC q; _qð Þ _qþG qð Þ ¼ s� sd ð12:9Þ

where q 2 Rn is joint angular vector, D qð Þ 2 Rn�n is inertia matrix, C q; _qð Þ 2 Rn

represents centrifugal force and Coriolis force, G qð Þ 2 Rn is gravity term, s 2 Rn is
control input vector, and sd 2 Rn is disturbance.

The desired trajectory to be tracked by the system is set as yd tð Þ; t 2 0; T½ �. The
system output at i times at time t is yi tð Þ, and let ei tð Þ ¼ yd tð Þ � yi tð Þ.

Based on feedback, three kinds of iterative learning control laws are as follows:

(1) D-type closed-loop ILC

ukþ 1 tð Þ ¼ uk tð ÞþKd _qd tð Þ � _qkþ 1 tð Þ� � ð12:10Þ

(2) PD-type closed-loop ILC

ukþ 1 tð Þ ¼ uk tð ÞþKp qd tð Þ � qkþ 1 tð Þ� �þKd _qd tð Þ � _qkþ 1 tð Þ� � ð12:11Þ

(3) Exponential variable gain D-type closed-loop ILC

ukþ 1 tð Þ ¼ uk tð ÞþKd _qd tð Þ � _qkþ 1 tð Þ� � ð12:12Þ

The convergence analysis of above controller is given in paper [1].

12.4.2 Simulation Example

Consider the plant as (12.9), we assume

270 12 Iterative Learning Control and Applications

D ¼ dij
� �

2�2;

d11 ¼ d1l
2
c1 þ d2 l21 þ l2c2 þ 2l1lc2 cos q2

� �þ I1 þ I2

d12 ¼ d21 ¼ d2 l2c2 þ l1lc2 cos q2
� �þ l2

d22 ¼ d2l
2
c2 þ I2

C ¼ cij
� �

2�2

c11 ¼ h _q2; c12 ¼ h _q1 þ h _q2; c21 ¼ �h _q1; c22 ¼ 0; h ¼ �m2l1lc2 sin q2
G ¼ G1 G2½ �T
G1 ¼ d1lc1 þ d2l1ð Þg cos q1 þ d2lc2g cos q1 þ q2ð Þ;G2 ¼ d2lc2g cos q1 þ q2ð Þ
sd ¼ 0:3 sin t 0:1 1� e�tð Þ½ �T:

The physical parameters are set as d1 ¼ d2 ¼ 1 ; l1 ¼ l2 ¼ 0:5; lc1 ¼ lc2 ¼ 0:25;
I1 ¼ I2 ¼ 0:1; g ¼ 9:81.

Three kinds of closed-loop iterative learning control laws are used; set M = 1 as
D-type ILC, set M = 2 as PD-type ILC, and set M = 3 as exponential variable gain
D-type ILC.

The ideal position signal of the two joints is set as sinð3tÞ and cosð3tÞ,
respectively. To ensure qd 0ð Þ ¼ q 0ð Þ, choose x 0ð Þ ¼ 0 3 1 0½ �T. Choosing
M ¼ 2, Kp ¼ 100 0

0 100

� �
;Kd ¼ 500 0

0 500

� �
the simulation results are shown in

Figs. 12.1, 12.2, and 12.3.

0 0.5 1 1.5 2 2.5 3
-2

0

2

time(s)

q1
d,

q1
 (r

ad
)

0 0.5 1 1.5 2 2.5 3
-2

0

2

time(s)

q2
d,

q2
 (r

ad
)

Fig. 12.1 Tracking process during the twentieth times

12.4 ILC Simulation for Manipulator Trajectory Tracking 271

0 0.5 1 1.5 2 2.5 3
-2

-1

0

1

time(s)Po
si

tio
n

tra
ck

in
g

of
 L

in
k

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

time(s)

Po
si

tio
n

tra
ck

in
g

of
 L

in
k

2

Fig. 12.2 Angle tracking process for the twentieth times

Fig. 12.3 Convergence of error norm process during the twentieth times

272 12 Iterative Learning Control and Applications

Simulation programs:

(1) Main program: chap12_1main.m

%Adaptive switching Learning Control for 2DOF robot manipulators

clear all;

close all;

t=[0:0.01:3]';

k(1:301)=0; %Total initial points

k=k';

T1(1:301)=0;

T1=T1';

T2=T1;

T=[T1 T2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M=20;

for i=0:1:M % Start Learning Control

i

pause(0.01);

sim('chap12_1sim',[0,3]);

q1=q(:,1);

dq1=q(:,2);

q2=q(:,3);

dq2=q(:,4);

q1d=qd(:,1);

dq1d=qd(:,2);

q2d=qd(:,3);

dq2d=qd(:,4);

e1=q1d-q1;

e2=q2d-q2;

de1=dq1d-dq1;

de2=dq2d-dq2;

figure(1);

subplot(211);

hold on;

plot(t,q1,'b',t,q1d,'r');

xlabel('time(s)');ylabel('q1d,q1 (rad)');

subplot(212);

hold on;

plot(t,q2,'b',t,q2d,'r');

xlabel('time(s)');ylabel('q2d,q2 (rad)');

12.4 ILC Simulation for Manipulator Trajectory Tracking 273

j=i+1;

times(j)=i;

e1i(j)=max(abs(e1));

e2i(j)=max(abs(e2));

de1i(j)=max(abs(de1));

de2i(j)=max(abs(de2));

end %End of i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2);

subplot(211);

plot(t,q1d,'r',t,q1,'b');

xlabel('time(s)');ylabel('Position tracking of Link 1');

subplot(212);

plot(t,q2d,'r',t,q2,'b');

xlabel('time(s)');ylabel('Position tracking of Link 2');

figure(3);

plot(times,e1i,'*-r',times,e2i,'o-b');

title

('Change of maximum absolute value of error1 and error2 with times i');

xlabel('times');ylabel('error 1 and error 2');

(2) Simulink program: chap12_1sim.mdl

(3) Ideal signal program: chap12_1input.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

274 12 Iterative Learning Control and Applications

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 0;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0];

function sys=mdlOutputs(t,x,u)

q1d=sin(3*t);

dq1d=3*cos(3*t);

q2d=cos(3*t);

dq2d=-3*sin(3*t);

sys(1)=q1d;

sys(2)=dq1d;

sys(3)=q2d;

sys(4)=dq2d;

(4) S function for plant: chap12_1plant.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

12.4 ILC Simulation for Manipulator Trajectory Tracking 275

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [0;3;1;0]; %Must be equal to x(0) of ideal input

str = [];

ts = [0 0];

function sys=mdlDerivatives(t,x,u)

Tol=[u(1) u(2)]';

g=9.81;

d1=10;d2=5;

l1=1;l2=0.5;

lc1=0.5;lc2=0.25;

I1=0.83;I2=0.3;

D11=d1*lc1^2+d2*(l1^2+lc2^2+2*l1*lc2*cos(x(3)))+I1+I2;

D12=d2*(lc2^2+l1*lc2*cos(x(3)))+I2;

D21=D12;

D22=d2*lc2^2+I2;

D=[D11 D12;D21 D22];

h=-d2*l1*lc2*sin(x(3));

C11=h*x(4);

C12=h*x(4)+h*x(2);

C21=-h*x(2);

C22=0;

C=[C11 C12;C21 C22];

g1=(d1*lc1+d2*l1)*g*cos(x(1))+d2*lc2*g*cos(x(1)+x(3));

g2=d2*lc2*g*cos(x(1)+x(3));

G=[g1;g2];

a=1.0;

d1=a*0.3*sin(t);

d2=a*0.1*(1-exp(-t));

Td=[d1;d2];

S=-inv(D)*C*[x(2);x(4)]-inv(D)*G+inv(D)*(Tol-Td);

sys(1)=x(2);

sys(2)=S(1);

sys(3)=x(4);

sys(4)=S(2);

function sys=mdlOutputs(t,x,u)

sys(1)=x(1); %Angle1:q1

276 12 Iterative Learning Control and Applications

sys(2)=x(2); %Angle1 speed:dq1

sys(3)=x(3); %Angle2:q2

sys(4)=x(4); %Angle2 speed:dq2

(5) S function of controller: chap12_1ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 8;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0];

function sys=mdlOutputs(t,x,u)

q1d=u(1);dq1d=u(2);

q2d=u(3);dq2d=u(4);

q1=u(5);dq1=u(6);

q2=u(7);dq2=u(8);

e1=q1d-q1;

e2=q2d-q2;

e=[e1 e2]';

de1=dq1d-dq1;

de2=dq2d-dq2;

de=[de1 de2]';

Kp=[100 0;0 100];

Kd=[500 0;0 500];

12.4 ILC Simulation for Manipulator Trajectory Tracking 277

M=2;

if M==1

Tol=Kd*de; %D Type

elseif M==2

Tol=Kp*e+Kd*de; %PD Type

elseif M==3

Tol=Kd*exp(0.8*t)*de; %Exponential Gain D Type

end

sys(1)=Tol(1);

sys(2)=Tol(2);

12.5 Iterative Learning Control for Time-Varying Linear
System

12.5.1 System Description

Consider a time-varying linear system as

_x tð Þ ¼ A tð Þx tð ÞþB tð Þu tð Þ
y tð Þ ¼ C tð Þx tð Þ ð12:13Þ

The open-loop PID-type LTC law is

ukþ 1 tð Þ ¼ uk tð Þþ C
d
dt

þLþW
Z

dt
� 	

ek tð Þ ð12:14Þ

where C;L;W are gain matrices.

12.5.2 Design and Convergence Analysis

Theorem 12.1 For the control system (12.13) and (12.14), if the following con-
ditions are satisfied [1, 5]:

(1) I � C tð ÞB tð ÞC tð Þk k� �q\1;
(2) For each iteration, xk 0ð Þ ¼ x0 k ¼ 1; 2; 3; . . .ð Þ; y0 0ð Þ ¼ yd 0ð Þ.
Refer to [5], the concrete analysis is given below.

Then, k ! 1; yk tð Þ ! yd tð Þ; 8t 2 0; T½ �.
Proof From (12.13) and above condition (2), we have ykþ 1 0ð Þ ¼ Cxkþ 1 0ð Þ ¼
Cxk 0ð Þ ¼ yk 0ð Þ, and then ek 0ð Þ ¼ 0 k ¼ 0; 1; 2; . . .ð Þ.

278 12 Iterative Learning Control and Applications

The solution of _x tð Þ ¼ A tð Þx tð ÞþB tð Þu tð Þ is

x tð Þ ¼ C exp
Z t

0

Ads

0
@

1
Aþ exp

Z t

0

Ads

0
@

1
AZ t

0

B sð Þu sð Þexp
Zs

0

�Addds

0
@

1
A

¼ C exp Atð Þþ exp Atð Þ
Z t

0

B sð Þu sð Þexp �Asð Þds
Z t

0

¼ C exp Atð Þþ
Z t

0

exp A t � sð Þð ÞB sð Þu sð Þds

Let U t; sð Þ ¼ exp A t � sð Þð Þ, then

xk tð Þ � xkþ 1 tð Þ ¼
Z t

0

U t; sð ÞB sð Þ uk sð Þ � ukþ 1 sð Þð Þds

Let ek tð Þ ¼ yd tð Þ � yk tð Þ; ekþ 1 tð Þ ¼ yd tð Þ � ykþ 1 tð Þ, then

ekþ 1 tð Þ � ek tð Þ ¼ yk tð Þ � ykþ 1 tð Þ ¼ C tð Þ xk tð Þ � xkþ 1 tð Þð Þ

¼
Z t

0

C tð ÞU t; sð ÞB sð Þ uk sð Þ � ukþ 1 sð Þð Þds

i.e.,

ekþ 1 tð Þ ¼ ek tð Þ �
Z t

0

C tð ÞU t; sð ÞB sð Þ ukþ 1 sð Þ � uk sð Þð Þds

Inserting (12.14) into above, we have

ekþ 1 tð Þ ¼ ek tð Þ

�
Z t

0

C tð ÞU t; sð ÞB sð Þ C sð Þ _ek sð ÞþL sð Þek sð ÞþW sð Þ
Zs

0

ek dð Þdd
2
4

3
5ds

ð12:15Þ

Using integration by parts, let G t; sð Þ ¼ C tð ÞB sð ÞC sð Þ, then
Z t

0

C tð ÞB sð ÞC sð Þ _ek sð Þds ¼ G t; sð Þek sð Þ t
0�

 Z t

0

@

@s
G t; sð Þek sð Þds

¼ C tð ÞB sð ÞC sð Þek sð Þ �
Z t

0

@

@s
G t; sð Þek sð Þds

ð12:16Þ

12.5 Iterative Learning Control for Time-Varying Linear System 279

Inserting (12.16) into (12.15), we have

ekþ 1 tð Þ ¼ I � C tð ÞB tð ÞC tð Þ½ �ek tð Þþ
Z t

0

@

@s
G t; sð Þek sð Þds

�
Z t

0
C tð ÞU t; sð ÞB sð ÞL sð Þek sð Þds�

Z t

0

Zs

0

C tð ÞU t; sð ÞB sð Þw sð Þek rð Þdrds

ð12:17Þ

For (12.17), we have

ekþ 1 tð Þk k� I � C tð ÞB tð ÞC tð Þk k ek tð Þk kþ
Z t

0

@

@s
G t; sð Þ

����
���� ek sð Þk kds

þ
Z t

0

C tð ÞU t; sð ÞB sð ÞL sð Þk k ek sð Þk kdsþ
Z t

0

Zs

0

C tð ÞU t; sð ÞB sð Þw sð Þk k ek rð Þk kdrds

� I � C tð ÞB tð ÞC tð Þk k ek tð Þk kþ
Z t

0

b1 ek sð Þk kdsþ
Z t

0

Zs

0

b2 ek rð Þk kdrds

ð12:18Þ

where

b1 ¼ max sup
t;s2 0;T½ �

@

@s
G t; sð Þ

����
����; sup

t;s2 0;T½ �
C tð Þ

Zs

0

C tð ÞU t; sð ÞB sð ÞL sð Þk k
������

������
8<
:

9=
;

b2 ¼ sup
t;s2 0;T½ �

C tð ÞU t; sð ÞB sð Þw sð Þk k

According to the definition of k-norm, fk kk¼ sup
0� t�T

f tð Þk ke�kt
�

.

Multiply by exp �ktð Þ on both sides in (12.18), k[0, considerR t
0 exp ksð Þds ¼ exp ktð Þ�1

k , we have

exp �ktð Þ
Z t

0

b1 ek sð Þk kds ¼ exp �ktð Þ
Z t

0

b1 ek sð Þk kexp �ksð Þexp ksð Þds� b1 exp �ktð Þ ek sð Þk kk
Z t

0

exp ksð Þds

¼ b1exp �ktð Þ ek sð Þk kk
exp ktð Þ � 1

k
¼ b1

k
ek sð Þk kkexp �ktð Þ exp ktð Þ � 1ð Þ

¼ b1
1� exp �ktð Þð Þ

k
ek sð Þk kk � b1

1� exp �kTð Þð Þ
k

ek sð Þk kk
ð12:19Þ

For 8t 2 0; T½ �; 8s 2 0; t½ �; 8r 2 0; s½ �, we have ek rð Þk kk � ek sð Þk kk.

280 12 Iterative Learning Control and Applications

From (12.19), we have

exp �ktð Þ
Z t

0

Zs

0

b2 ek rð Þk kdrds ¼ exp �ktð Þ
Z t

0

exp ksð Þexp �ksð Þ
Zs

0

b2 ek rð Þk kdrds

� exp �ktð Þ
Z t

0

exp ksð Þb2 1� exp �kTð Þ
k

ek rð Þk kkds

� b2
1� exp �kTð Þ

k
exp �ktð Þ

Z t

0

exp ksð Þ ek sð Þk kkds

¼ b2
1� exp �kTð Þ

k
exp �ktð Þ ek sð Þk kk

Z t

0

exp ksð Þds

¼ b2
1� exp �kTð Þ

k
exp �ktð Þ ek sð Þk kk

exp ktð Þ � 1
k

¼ b2
1� exp �kTð Þ

k
ek sð Þk kk

1� exp �ktð Þ
k

� b2
1� exp �kTð Þ

k

� 	2

ek sð Þk kk

where 0\ 1�exp �ktð Þ
k � 1�exp �kTð Þ

k .
i.e.,

exp �ktð Þ
Z t

0

Zs

0

b2 ek rð Þk kdrds� b2
1� exp �kTð Þ

k

� 	2

ek sð Þk kk ð12:20Þ

Then, inserting (12.19) and (12.20) into (12.18), we have

ekþ 1k kk � ~q ekk kk ð12:21Þ

where ~q ¼ �qþ b1
1�exp �kTð Þ

k þ b2
1�exp �kTð Þ

k

� �2
.

Since �q\1, when we choose k larger value, we can guarantee ~q\1, and then
lim
k!1

ekk kk¼ 0.

In (12.14), if we replace e kð Þ as e kþ 1ð Þ, then the controller becomes closed-loop
PID-type ILC, and the convergence analysis is the same as Theorem 12.1.

12.5.3 Simulation Example

Consider two-input two-output linear system

_x1 tð Þ
_x2 tð Þ

" #
¼ �2 3

1 1

� �
x1 tð Þ
x2 tð Þ

" #
þ 1 1

0 1

� �
u1 tð Þ
u2 tð Þ

" #

12.5 Iterative Learning Control for Time-Varying Linear System 281

y1 tð Þ
y2 tð Þ

" #
¼ 2 0

0 1

� �
x1 tð Þ
x2 tð Þ

" #

The ideal trajectory is

y1d tð Þ
y2d tð Þ

" #
¼ sinð3tÞ

cosð3tÞ

" #
; t 2 0; 1½ �

To guarantee the conditions in Theorem 12.1, from CB ¼ 2 2
0 1

� �
, let

C ¼ 0:95 0
0 0:95

� �
, choosing L ¼ 2:0 0

0 2:0

� �
;W ¼ 0 in (12.14), the initial states

are set as
x1 0ð Þ 0ð Þ
x2 0ð Þ 0ð Þ

" #
¼ 0

1

" #
.

Firstly, using PD open-loop control, the simulation results are shown in
Figs. 12.4, 12.5, and 12.6, and then, using PD closed-loop control, the simulation
results are shown in Figs. 12.7, 12.8, and 12.9.

0 0.2 0.4 0.6 0.8 1
-50

0

50

100

time(s)

x1
d,

x1

0 0.2 0.4 0.6 0.8 1
-50

0

50

time(s)

x2
d,

x2

Fig. 12.4 xi tracking during thirty times (open-loop PD control)

282 12 Iterative Learning Control and Applications

0 0.2 0.4 0.6 0.8 1
0

0.5

1

time(s)

Po
si

tio
n

tra
ck

in
g

of
 x

1

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

time(s)

Po
si

tio
n

tra
ck

in
g

of
 x

2

Fig. 12.5 Position tracking for thirty times (open-loop PD control)

0 5 10 15 20 25 30
0

10

20

30

40

50

60
Change of maximum absolute value of error1 and error2 with times

times

er
ro

r 1
 a

nd
 e

rro
r 2

Fig. 12.6 Absolute maximum value of error during thirty times (open-loop PD control)

12.5 Iterative Learning Control for Time-Varying Linear System 283

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

time(s)

x1
d,

x1

0 0.2 0.4 0.6 0.8 1
-2

0

2

time(s)

x2
d,

x2

Fig. 12.7 xi tracking during thirty times (closed PD control)

0 0.2 0.4 0.6 0.8 10

0.5

1

time(s)

Po
si

tio
n

tra
ck

in
g

of
 x

1

0 0.2 0.4 0.6 0.8 1-1

0

1

2

time(s)

Po
si

tio
n

tra
ck

in
g

of
 x

2

Fig. 12.8 Position tracking for thirty times (closed PD control)

284 12 Iterative Learning Control and Applications

Simulink programs:

(1) Main program: chap12_2main.m

%Iterative D-Type Learning Control

clear all;

close all;

t=[0:0.01:1]';

k(1:101)=0; %Total initial points

k=k';

T1(1:101)=0;

T1=T1';

T2=T1;

T=[T1 T2];

k1(1:101)=0; %Total initial points

k1=k1';

E1(1:101)=0;

E1=E1';

E2=E1;

E3=E1;

E4=E1;

E=[E1 E2 E3 E4];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
Change of maximum absolute value of error1 and error2 with times

times

er
ro

r 1
 a

nd
 e

rro
r 2

Fig. 12.9 Absolute maximum value of error during thirty times (closed PD control)

12.5 Iterative Learning Control for Time-Varying Linear System 285

M=30;

for i=0:1:M % Start Learning Control

i

pause(0.01);

sim('chap12_2sim',[0,1]);

x1=x(:,1);

x2=x(:,2);

x1d=xd(:,1);

x2d=xd(:,2);

dx1d=xd(:,3);

dx2d=xd(:,4);

e1=E(:,1);

e2=E(:,2);

de1=E(:,3);

de2=E(:,4);

e=[e1 e2]';

de=[de1 de2]';

figure(1);

subplot(211);

hold on;

plot(t,x1,'b'',t,x1d,'r');

xlabel('time(s)'');ylabel('x1d,x1');

subplot(212);

hold on;

plot(t,x2,'b',t,x2d,'r');

xlabel('time(s)');ylabel('x2d,x2');

j=i+1;

times(j)=i;

e1i(j)=max(abs(e1));

e2i(j)=max(abs(e2));

de1i(j)=max(abs(de1));

de2i(j)=max(abs(de2));

end %End of i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2);

subplot(211);

plot(t,x1d,'r',t,x1,'b');

xlabel('time(s)');ylabel('Position tracking of x1');

subplot(212);

plot(t,x2d,'r',t,x2,'b');

xlabel('time(s)');ylabel('Position tracking of x2');

286 12 Iterative Learning Control and Applications

figure(3);

subplot(211);

plot(t,T(:,1),'r');

xlabel('time(s)');ylabel('Control input 1');

subplot(212);

plot(t,T(:,2),'r');

xlabel('time(s)');ylabel('Control input 2');

figure(4);

plot(times,e1i,'*-r',times,e2i,'o-b');

title('Change of maximum absolute value of error1 and error2 with times');

xlabel('times');ylabel('error 1 and error 2');

(2) Simulink program: chap12_2sim.mdl

(3) S function for plant: chap12_2plant.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives(t,x,u);

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

12.5 Iterative Learning Control for Time-Varying Linear System 287

sizes = simsizes;

sizes.NumContStates = 2;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 2;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [0;1];

str = [];

ts = [0 0];

function sys=mdlDerivatives(t,x,u)

A=[-2 3;1 1];

C=[1 0;0 1];

B=[1 1;0 1];

Gama=0.95;

norm(eye(2)-C*B*Gama); % Must be smaller than 1.0

U=[u(1);u(2)];

dx=A*x+B*U;

sys(1)=dx(1);

sys(2)=dx(2);

function sys=mdlOutputs(t,x,u)

sys(1)=x(1);

sys(2)=x(2);

(4) S function for controller: chap12_2ctrl.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 4;

288 12 Iterative Learning Control and Applications

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

ts = [0 0];

function sys=mdlOutputs(t,x,u)

e1=u(1);e2=u(2);

de1=u(3);de2=u(4);

e=[e1 e2]';

de=[de1 de2]';

Kp=2.0;

Gama=0.95;

Kd=Gama*eye(2);

Tol=Kp*e+Kd*de; %PD Type

sys(1)=Tol(1);

sys(2)=Tol(2);

(5) S function for ideal trajectory: chap12_2input.m

function [sys,x0,str,ts] = spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs(t,x,u);

case {2,4,9}

sys=[];

otherwise

error(['Unhandled flag = ',num2str(flag)]);

end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 0;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [];

str = [];

12.5 Iterative Learning Control for Time-Varying Linear System 289

ts = [0 0];

function sys=mdlOutputs(t,x,u)

x1d=sin(3*t);

dx1d=3*cos(3*t);

x2d=cos(3*t);

dx2d=-3*sin(3*t);

sys(1)=x1d;

sys(2)=x2d;

sys(3)=dx1d;

sys(4)=dx2d;

References

1. S. Arimoto, S. Kawamura, F. Miyazaki, Bettering operation of robotics by leaning. J. Rob.
Syst. 1(2), 123–140 (1984)

2. P.R. Ouyang, W.J. Zhang, M.M. Gupta, An adaptive switching learning control method for
trajectory tracking of robot manipulators. Mechatronics 16, 51–61 (2006)

3. A. Tayebi, Adaptive iterative learning control for robot manipulators. Automatica 40,
1195–1203 (2004)

4. A. Mohammadi, M. Tavakoli, H.J. Marquez, F. Hashemzadeh, Nonlinear disturbance observer
design for robotic manipulators. Eng. Practice 21, 253–267 (2013)

5. S.L. Xie, S.P. Tian, Theory and application of iterative learning control. Science Press, China,
(2005)

290 12 Iterative Learning Control and Applications

	Preface
	Contents
	Abstract
	Intro to Intelligent Control
	Expert Control
	Fuzzy Logic Control
	Neural Network & Control
	Intelligent Search Algorithm
	Refs

	Expert PID Control
	Expert PID Control
	Simulation Example
	Ref

	Foundation of Fuzzy Mathematics
	Characteristic Function & Membership Function
	Fuzzy Set Expression
	Calculation Method of Fuzzy Set
	Fuzzy Matrix Calculation
	Fuzzy Inference
	Fuzzy Equation
	Ref

	Fuzzy Logic Control
	Design of Fuzzy Logic Controller
	Fuzzy Logic Controller Design example
	Fuzzy Logic Control for Washing Machine
	Fuzzy PI Control
	Refs

	Fuzzy T-S Modeling & Control
	Fuzzy T-S Model
	Fuzzy T-S Modeling & Control based on LMI
	Fuzzy T-S Modeling & Control based on LMI for Inverted Pendulum
	Simulation Example of YALMIP Toolbox
	Refs

	Adaptive Fuzzy Control
	Adaptive Fuzzy Control
	Fuzzy Approximation
	Adaptive Fuzzy Controller Design
	Adaptive Fuzzy Control based on Fuzzy System Compensator
	Refs

	Neural Networks
	Introduction
	Single Neural Network
	BP NN Design & Simulation
	RBF NN Design & Simulation
	RBF NN Approximation based on Gradient Descent Method
	Effects of Analysis on RBF Approximation
	RBF NN Training for System Modeling
	RBF Neural Network Approximation
	Refs

	Adaptive RBF Neural Network Control
	Neural Network Control
	Adaptive Control based on Neural Approximation
	Adaptive Control based on Neural Approximation with Unknown Parameter
	Refs

	Adaptive Sliding Mode RBF NN Control
	Typical Sliding Mode Controller Design
	Sliding Mode Control based on RBF for 2nd-Order SISO Nonlinear System
	RBF Neural Robot Controller Design with Sliding Mode Robust Term
	Refs

	Discrete RBF Neural Network Control
	Digital Adaptive RBF Control for Continuous System
	Adaptive RBF Control for Class of Discrete-Time Nonlinear System
	Refs

	Intelligent Search Algorithm Design
	GA & Design
	PSO Algorithm & Design
	DE Algorithm & Design
	TSP Optimization based on Hopfield NN
	Refs

	Iterative Learning Control & Applications
	Basic Principle
	Basic Iterative Learning Control Algorithm
	Key Techniques of Iterative Learning Control
	ILC Simulation for Manipulator Trajectory Tracking
	Iterative Learning Control for Time-varying Linear System
	Refs

