Jinkun Liu

Intelligent Control Design
and MatLab Simulation

G \ s éf’ . .
ﬁNf\fVliR\tﬁ'\ﬁfo @ Sprlnger

Jinkun Liu
Beihang University
Beijing

China

ISBN 978-981-10-5262-0 ISBN 978-981-10-5263-7 (eBook)
https://doi.org/10.1007/978-981-10-5263-7

Jointly published with Tsinghua University Press, Beijing

Library of Congress Control Number: 2017951417

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.

The registered company address is:

152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Recent years have seen a rapid development of intelligent control techniques and
their successful applications. Numerous theoretical studies and actual industrial
implementations demonstrate that artificial intelligent control is a good candidate
for control system design in solving the control problems of complex nonlinear
systems in the presence of different kinds of uncertainties. Many control
approaches/methods, reporting inventions and control applications within the fields
of adaptive control, neural control, and fuzzy systems, have been published in
various books, journals, and conference proceedings. In spite of these remarkable
advances in neural control field, due to the complexity of nonlinear systems, the
present research on intelligent control is still focused on the development of fun-
damental methodologies.

The advantage of intelligent control is that neural network and fuzzy system can
model any (sufficiently smooth) continuous nonlinear function in a compact set and
the modeling error is becoming smaller. Thus, an adaptive intelligent controller is
most suitable in an environment where system dynamics are significantly changing,
highly nonlinear, and in principle not completely known.

This book is motivated by the need for systematic design approaches for
intelligent control system design using neural network and fuzzy-based techniques.
The main objectives of the book are to introduce the concrete design method and
MATLAB simulation of intelligent control strategies.

It is our goal to accomplish these objectives:

e Offer a catalog of implementable intelligent control design methods for engi-
neering applications;

e Provide advanced intelligent controller design methods and their stability
analysis methods;

e For each intelligent control algorithm, we offer its simulation example and
MATLAB program.

This book provides the reader with a thorough grounding in the intelligent
control system design. Typical intelligent controller design is verified using
MATLAB simulation. In this book, concrete case studies, which present the results
of intelligent controller implementations, are used to illustrate the successful
application of the theory.

The book is structured as follows. The book starts with a brief introduction of
intelligent control in Chap. 1, expert control algorithm and design remarks are given
in Chap. 2, fuzzy sets and membership function are introduced in Chap. 3, fuzzy
logic controller design is introduced in Chap. 4, fuzzy T-S modeling and control is
introduced in Chap. 5, adaptive fuzzy controller design and analysis are given in
Chap. 6, Neural network theory are introduced in Chap. 7, in this Chapter, several
typical neural networks such as BP neural network and RBF neural network are
introduced, the basic design method of adaptive RBF neural network control and
adaptive sliding mode RBF neural network control are introduced in Chaps. 8 and 9,
respectively. Discrete RBF neural network controller design and analysis are given
in Chap. 10. Intelligent optimization algorithms are recommended in Chap. 11, and
at last, iterative learning control algorithm and applications are given in Chap. 12.
For each chapter, several engineering application examples are given. The contents
of each chapter in this book are independent, so that readers can their own needs.

In this book, all the control algorithms and their programs are described separately
and classified by the chapter name, which can be run successfully in MATLAB
7.5.0.342 version or in other more advanced versions. In addition, all the programs
can be downloaded via http://shi.buaa.edu.cn/liujinkun. If you have questions about
algorithms and simulation programs, please E-mail:ljk @buaa.edu.cn.

Beijing, China Jinkun Liu

http://shi.buaa.edu.cn/liujinkun

Contents

Introduction to Intelligent Control. 1
1.1 Expert Control 2
1.2 Fuzzy Logic Control. 2
1.3 Neural Network and Control. 2
1.4 Intelligent Search Algorithm. 4
References. 5
Expert PID Control. 7
2.1 Expert PID Control. 7
2.2 Simulation Example L 9
Reference 13
Foundation of Fuzzy Mathematics. 15
3.1 Characteristic Function and Membership Function........... 15
3.2 Fuzzy Set Expression 16
3.3 Calculation Method of Fuzzy Set............ 17

3.3.1 Basic Calculation Method of Fuzzy Set............. 17

332 Fuzzy Operatorcoiiiiiieano .. 18

3.3.3 Typical Membership Function.................... 19

3.3.4 Design of Fuzzy System 23
34 Fuzzy Matrix Calculation 24

341 Fuzzy MatriX. 24

34.2 Fuzzy Matrix Calculation 25

34.3 Compound of Fuzzy Matrix 26
3.5 FuzzylInference 28
3.6 Fuzzy Equation. 30
Reference 31
Fuzzy Logic Control 33
4.1 Design of Fuzzy Logic Controller 33

4.2 An Example for a Fuzzy Logic Controller Design 34

4.3 Fuzzy Logic Control for Washing Machine 40

44 Fuzzy PIControl 49
4.4.1 PI Tuning Controller with Fuzzy Logic. 49
442 Simulation Example 50
References. 56
Fuzzy T-S Modeling and Control. 57
5.1 Fuzzy T-SModel 57
5.2 Fuzzy T-S Modeling and Control Based on LMI 59
5.2.1 Controller Design of T-S Fuzzy Model
Basedon LMI. 60
5.2.2 LMI Design and Analysis 61
5.2.3 Transformation of LMI 63
524 LMI Design Example 64
5.3 Fuzzy T-S Modeling and Control Based on LMI
for Inverted Pendulum 66
5.3.1 System Description 66
5.3.2 Simulation Based on Two Fuzzy Rules Design. 66
5.3.3 Simulation Based on Four Fuzzy Rules Design. 71
5.4 Simulation Example of YALMIP Toolbox 78
References. 79
Adaptive Fuzzy Control 81
6.1 Adaptive Fuzzy Control 81
6.2 Fuzzy ApproXimation.uiieono... 81
6.2.1 Fuzzy System Design 81
6.2.2 Fuzzy System Approximation 82
6.2.3 Simulation Example 83
6.3 Adaptive Fuzzy Controller Design 89
6.3.1 Problem Description 89
6.3.2 Fuzzy ApproXimation 90
6.3.3 Adaptive Fuzzy Control Design and Analysis........ 91
6.3.4 Simulation Example 92
6.4 Adaptive Fuzzy Control Based on Fuzzy System
CompensSator.ottt 99
6.4.1 System Description 99
6.4.2 Adaptive Fuzzy Control Design and Analysis........ 101
6.4.3 Only Consider Friction 103
6.4.4 Simulation Example 103
References. 112
Neural Networks 113
7.1 Introduction 113
7.2 Single Neural Network 114

7.3 BP Neural Network Design and Simulation 116

7.3.1 BP Network Structure
7.3.2 Approximation of BP Neural Network
7.3.3 Simulation Example
7.4 RBF Neural Network Design and Simulation.
74.1 RBF Algorithm
7.4.2 RBF Design Example with MATLAB Simulation.
7.5 RBF Neural Network Approximation Based on Gradient
Descent Method
7.5.1 RBF Neural Network Approximation
7.5.2 Simulation Example
7.6 Effects of Analysis on RBF Approximation
7.6.1 Effects of Gaussian Function Parameters
on RBF Approximation.
7.6.2 Effects of Hidden Nets Number on RBF
ApProxXimation. i
7.7 RBF Neural Network Training for System Modeling
7.7.1 RBF Neural Network Training
7.7.2 Simulation Example
7.8 RBF Neural Network Approximation.
References.

Adaptive RBF Neural Network Control
8.1 Neural Network Control
8.2 Adaptive Control Based on Neural Approximation.
8.2.1 Problem Description
8.2.2 Adaptive RBF Controller Design.
8.2.3 Simulation Examples.
8.3 Adaptive Control Based on Neural Approximation
with Unknown Parameter.
8.3.1 Problem Description
8.3.2 Adaptive Controller Design.
8.3.3 Simulation Examples.
References.

Adaptive Sliding Mode RBF Neural Network Control.
9.1 Typical Sliding Mode Controller Design
9.2 Sliding Mode Control Based on RBF for Second-Order

SISO Nonlinear Systemt

9.2.1 Problem Statement.

9.2.2 Sliding Mode Control Based on RBF

for Unknown f(+) i

9.2.3 Simulation Example,
9.3 RBF Neural Robot Controller Design with Sliding

Mode Robust Term.

10

11

9.3.1 Problem Description 200

9.3.2 RBF Approximation 201
9.3.3 Control Law Design and Stability Analysis.......... 201
9.3.4 Simulation Examples. 203
References. 213
Discrete RBF Neural Network Control 215
10.1 Digital Adaptive RBF Control for a Continuous System 215
10.1.1 System Description 215
10.1.2 RBF Neural Network Approximation 216
10.1.3 Adaptive Controller Design. 217
10.1.4 Simulation Example 218
10.2 Adaptive RBF Control for a Class of Discrete-Time
Nonlinear Systemt 225
10.2.1 System Description 225
10.2.2 Traditional Controller Design 225
10.2.3 Adaptive Neural Network Controller Design. 225
10.2.4 Stability Analysis 227
10.2.5 Simulation Examples. 229
References. 233
Intelligent Search Algorithm Design 235
11.1 GAand Design. i 235
11.1.1 Principle of GA. 235
11.1.2 Steps of GA Design 236
11.1.3 Simulation Example 238
11.2 PSO Algorithm and Design 243
11.2.1 Introduction..............., 243
11.2.2 PSO Parameter Setting 244
11.2.3 Design Procedure of PSO 244
11.2.4 Simulation Example 245
11.3 DE Algorithm and Design 251
11.3.1 Standard DE Algorithm. 251
1132 BasicFlowof DE..... 252
11.3.3 Parameter Setting of DE 253
11.3.4 Simulation Example 255
11.4 TSP Optimization Based on Hopfield Neural Network. 258
11.4.1 Traveling Salesman Problem..................... 258
11.4.2 Hopfield Network Design for Solving
TSP Problem. 258
11.4.3 Simulation Example 260

References. 266

12 TIterative Learning Control and Applications. 267

12.1 Basic Principle 267
12.2 Basic Iterative Learning Control Algorithm 268
12.3 Key Techniques of Iterative Learning Control 269
12.3.1 Stability and Convergence. 269
12.3.2 Initial Value Problem 269
12.3.3 Learning Speed Problem 269
12.3.4 RObUSINESSt 269
12.4 ILC Simulation for Manipulator Trajectory Tracking 270
12.4.1 Controller Design 270
12.4.2 Simulation Example 270
12.5 TIterative Learning Control for Time-Varying Linear System. ... 278
12.5.1 System Description 278
12.5.2 Design and Convergence Analysis 278
12.5.3 Simulation Example 281

References. 290

Abstract

The advantage of intelligent control is that neural network and fuzzy system can
model any (sufficiently smooth) continuous nonlinear function in a compact set and
the modeling error is becoming smaller. Thus, an adaptive intelligent controller is
most suitable in an environment where system dynamics are significantly changing,
highly nonlinear, and in principle not completely known.

The book is structured as follows. The book starts with a brief introduction of
intelligent control in Chap. 1, expert control algorithm and design remarks are given
in Chap. 2, fuzzy sets and membership function are introduced in Chap. 3, fuzzy
logic controller design is introduced in Chap. 4, fuzzy T-S modeling and control is
introduced in Chap. 5, adaptive fuzzy controller design and analysis are given in
Chap. 6, neural network theory is introduced in Chap. 7, and in this chapter, several
typical neural networks such as BP neural network and RBF neural network are
introduced; the basic design method of adaptive RBF neural network control and
adaptive sliding mode RBF neural network control are introduced in Chaps. 8 and 9,
respectively. Discrete RBF neural network controller design and analysis are given
in Chap. 10. Intelligent optimization algorithms are recommended in Chap. 11, and
at last, iterative learning control algorithm and applications are given in Chap. 12.
For each chapter, several engineering application examples are given. The contents
of each chapter in this book are independent, so that readers can do research by their
own needs.

This book provides the reader with a thorough grounding in the intelligent
controller design. Typical intelligent controller design is emphasized using
MATLAB simulation.

Each chapter of the book is interrelated and mutually independent, and the
readers can choose to learn according to their own needs. This book is suitable for
the readers who engage in the field of production process automation, computer
application, electronic machinery, and electrical automation, especially can be used
for professional teaching book.

Chapter 1
Introduction to Intelligent Control

The term “intelligent control” may be loosely used to denote a control technique
that can be carried out using the “intelligence” of a human who is knowledgeable in
the particular domain of control. In this definition, constraints pertaining to limi-
tations of sensory and actuation capabilities and information processing speeds of
humans are not considered. It follows that if a human in the control loop can
properly control a plant, then that system would be a good candidate for intelligent
control. Information abstraction and knowledge-based decision making that
incorporates abstracted information are considered important in intelligent control.
Unlike conventional control, intelligent control techniques possess capabilities of
effectively dealing with incomplete information concerning the plant and its envi-
ronment, and unexpected or unfamiliar conditions. The term “adaptive control” is
used to denote a class of control techniques where the parameters of the controller
are changed (adapted) during control, utilizing observations on the plant (i.e., with
sensory feedback), to compensate for parameter changes, other disturbances, and
unknown factors of the plant. Combining these two terms, one may view “intelli-
gent adaptive control” as those techniques that rely on intelligent control for proper
operation of a plant, particularly in the presence of parameter changes and unknown
disturbances.

There are several artificial intelligent techniques that can be used as a basis for
the development of intelligent systems, namely expert control, fuzzy logic, neural
network, and intelligent search algorithms.

In this class, we will study some fundamental techniques and some application
examples of expert control, fuzzy logic, neural networks, and intelligent search
algorithms. The main focus here will be their use in intelligent control.

The artificial intelligent techniques should be integrated with modern control
theory to develop intelligent control systems.

In this class, we study intelligent control in four parts: expert control, fuzzy logic
and control, neural network and control, and genetic algorithm.

1.1 Expert Control

Expert control is control tactics to use expert knowledge and experience. Expert
control comes from expert system, it was proposed by K.J. Astrom in 1986 [1], and
its main idea is to design control tactics with expert knowledge and experience.

1.2 Fuzzy Logic Control

Fuzzy logic is useful in representing human knowledge in a specific domain of
application, and in reasoning with that knowledge to make useful inferences or
actions.

In particular, fuzzy logic may be employed to represent, as a set of “fuzzy rules,”
the knowledge of a human controlling a plant. This is the process of knowledge
representation. Then, a rule of inference in fuzzy logic may be used according to
this “fuzzy” knowledge base, to make control decisions for a given set of plant
observations. This task concerns “knowledge processing.” In this sense, fuzzy logic
in intelligent control serves to represent and process the control knowledge of a
human in a given plant.

There are two important ideas in fuzzy systems theory:

e The real world is too complicated for precise descriptions to be obtained;
therefore, approximation (or fuzziness) must be introduced in order to obtain a
reasonable model.

e As we move into the information era, human knowledge becomes increasingly
important. We need a theory to formulate human knowledge in a systematic
manner and put it into engineering systems, together with other information like
mathematical models and sensory measurements.

From the fuzzy universal approximation theorem [2], fuzzy system can
approximate any nonlinear function, which can be used to design adaptive fuzzy
controller. By adjusting a set of weighting parameters of a fuzzy system, it may be
used to approximate an arbitrary nonlinear function to a required degree of
accuracy.

1.3 Neural Network and Control

Artificial neural networks are massively connected networks that can be trained to
represent complex nonlinear functions at a high level of accuracy. They are anal-
ogous to the neuron structure in a human brain.

It is well known that biological systems can perform complex tasks without
recourse to explicit quantitative operations. In particular, biological organisms are

capable of learning gradually over time. This learning capability reflects the ability
of biological neurons to learn through exposure to external stimuli and to gener-
alize. Such properties of nervous systems make them attractive as computation
models that can be designed to process complex data. For example, the learning
capability of biological organisms from examples suggests possibilities for machine
learning.

Neural networks, or more specifically, artificial neural networks, are mathe-
matical models inspired from our understanding of biological nervous systems.

They are attractive as computation devices that can accept a large number of
inputs and learn solely from training samples. As mathematical models for bio-
logical nervous systems, artificial neural networks are useful in establishing rela-
tionships between inputs and outputs of any kind of system. Roughly speaking, a
neural network is a collection of artificial neurons. An artificial neuron is a math-
ematical model of a biological neuron in its simplest form. From our understanding,
biological neurons are viewed as elementary units for information processing in any
nervous system. Without claiming its neurobiological validity, the mathematical
model of an artificial neuron is based on the following theses:

(1) Neurons are the elementary units in a nervous system at which information
processing occurs.

(2) Incoming information is in the form of signals that are passed between neurons
through connection links.

(3) Each connection link has a proper weight that multiplies the signal transmitted.

(4) Each neuron has an internal action, depending on a bias or firing threshold,
resulting in an activation function being applied to the weighted sum of the
input signals to produce an output signal.

Since the idea of the computational abilities of networks composed of simple
models of neurons was introduced in the 1940s, neural network techniques have
undergone great developments and have been successfully applied in many fields
such as learning, pattern recognition, signal processing, modeling, and system
control. Their major advantages of highly parallel structure, learning ability, non-
linear function approximation, fault tolerance, and efficient analog VLSI imple-
mentation for real-time applications greatly motivate the usage of neural networks
in nonlinear system identification and control.

In many real-world applications, there are many nonlinearities, unmodeled
dynamics, unmeasurable noise, and multiloop, which pose problems for engineers
to implement control strategies.

BP or RBF neural network can approximate any nonlinear function [3], which
can be used to design adaptive neural network controller. By adjusting a set of
weighting parameters of a neural network, it may be used to approximate an
arbitrary nonlinear function to a required degree of accuracy.

1.4 Intelligent Search Algorithm

There are several intelligent search algorithms, classical intelligent search algo-
rithms include GA, PSO, and DE.

Genetic algorithms (GA) are commonly used to generate high-quality solutions
to optimization and search problems by relying on bio-inspired operators such as
mutation, crossover, and selection. The basic principle of GA was first laid down by
Holland in 1962 [4]. GA simulates those processes in natural populations that are
essential to evolution. Genetic algorithms belong to the area of evolutionary
computing. They represent an optimization approach where a search is made to
“evolve” a solution algorithm that will retain the “most fit” components, in a
procedure that is analogous to biological evolution through natural selection,
crossover, and mutation. It follows that GAs are applicable in intelligent control,
particularly when optimization is an objective.

Particle swarm optimization (PSO) is originally attributed to Kennedy, Eberhart
[5] and was first intended for simulating social behavior. Particle swarm opti-
mization (PSO) is an evolutionary computation technique. The basic idea of particle
swarm optimization (PSO) is to find the optimal solution through collaboration and
information sharing among individuals in a swarm. The advantages of PSO are
simplicity, ease of implementation, and no adjustment of many parameters. At
present, it has been widely used in function optimization, neural network training,
fuzzy system control, etc.

Differential evolution (DE) is originally due to Storn and Price [6]. In evolu-
tionary computation, DE is a method that optimizes a problem by iteratively trying
to improve a candidate solution with regard to a given measure of quality. DE is
used for multidimensional real-valued functions but does not use the gradient of the
problem being optimized, which means DE does not require for the optimization
problem to be differentiable as is required by classic optimization methods such as
gradient descent and quasi-newton methods. DE can therefore also be used on
optimization problems that are not even continuous, are noisy, change over time,
etc.

DE optimizes a problem by maintaining a population of candidate solutions and
creating new candidate solutions by combining existing ones according to its simple
formulae, and then keeping whichever candidate solution has the best score or
fitness on the optimization problem at hand. In this way, the optimization problem
is treated as a black box that merely provides a measure of quality given a candidate
solution and the gradient is therefore not needed. DE has been applied in parallel
computing, multiobjective optimization, constrained optimization, etc.

Summarizing, the biological analogies of fuzzy, neural, and intelligent search
algorithms can be described as follows: Fuzzy techniques attempt to approximate
human knowledge and the associated reasoning process; neural networks are a
simplified representation of the neuron structure of a human brain; and intelligent
search algorithms follow procedures that are crudely similar to the process of
evolution in biological species.

Modern industrial plants and technological products are often required to per-
form complex tasks with high accuracy, under ill-defined conditions. Conventional
control techniques may not be quite effective in these systems, whereas intelligent
control has a tremendous potential. The emphasis of the class is on practical
applications of intelligent control, primarily using fuzzy logic, neural network, and
intelligent search algorithms techniques. The remainder of the class will give an
introduction to some fundamental techniques of fuzzy logic, neural networks, and
intelligent search algorithms.

References

—

K.J. Astrom, J.J. Anton, K.E. Arzen, Expert control. Automatica 22(3), 277-286 (1986)

2. L.X. Wang, Fuzzy systems are universal approximators, in Proceedings of IEEE Conference
on Fuzzy Systems (1992), pp. 1163-1170

3. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximator. Neural Networks 2(5), 359-366 (1989)

4. F. Jin, W. Chen, The father of the genetic algorithms—Holland and his scientific work.
J. Dialect. Nat. (2007)

5. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International
Conference on Neural Networks (1995), pp. 1942—-1948

6. R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization

over continuous spaces. J. Global Optim. 11, 341-359 (1997)

Chapter 2
Expert PID Control

Expert control is a control tactics to use expert knowledge and experience. Expert
control was proposed firstly by Astrom in 1986 [1].

2.1 Expert PID Control

The expert PID control is to design PID parameters with characteristics of the plant
and experience of the control expert, no need of modeling information.

The experience of the expert is mainly based on the error response of the system.
Typical error response for a second transfer function is shown in Fig. 2.1; for the
area I, III, V, VII, ..., where the absolute value of error tends to smaller, we can use
unloop control;for the area II, IV, VI, VIII, ..., where the absolute value of error
tends to bigger, we can use strong control or general control.

At time k, we consider the ideal position signal as y4(k), the output as y(k), and
then the tracking error is e(k) = yq(k) — y(k) at time k, and e(k — 1) and e(k — 2)
represent the error at time k — 1 and k — 2, respectively, then we have

Ae(k) = e(k) —e(k — 1)

Ae(k— 1) =e(k— 1) — e(k — 2) (2.1)

According to Fig. 2.1, we can do the following analysis:

(1) When |e(k)| > M, we can use unloop controller to minimize error quickly.
(2) When e(k)Ae(k) > 0 or Ae(k) = 0,we consider two conditions as follows:
If |e(k)| > M,, we use strong PID controller as

u(k) = u(k — 1)+ ki {kple(k) — e(k — 1)] + kie(k) + kq[e(k) — 2e(k — 1) + e(k — 2)]}
(2.2)

N e

N

Fig. 2.1 Typical error response for a second transfer function

3

)

®

If |e(k)| <M,, we use weak PID controller as

u(k) = u(k — 1) +kple(k) — e(k — 1)] + kie(k) + kale(k) — 2e(k — 1) + e(k — 2)]
(2.3)

When e(k)Ae(k) <0, Ae(k)Ae(k — 1) > 0, or e(k) = 0 ,which indicates the
absolute value of error tends to smaller or constant value, we can hold the
control input.

When e(k)Ae(k) <0, Ae(k)Ae(k — 1) <0, which indicates the value of error is
in extremism state. We consider the two conditions as follows:

If the absolute value of error is big, |e(k)| > M,, we can use strong controller as

u(k) = u(k — 1)+ kikpe(k) (2.4)

If the absolute value of error is small, |e(k)| <M,, we can adopt weak controller
as

u(k) = u(k — 1) + kakpe(k) (2.5)

When |e(k)| < &, which indicates the absolute value of error tends to very small,
we can use PI controller to decrease the static error,
where

u(k)—control input at time k;

u(k — 1)—control input at time k — 1;
k1—gain coefficient, k; > 1;

ko,—gain coefficient, 0 <k, < 1;

M, M,—Ilimit values, M; > My,
&—positive value.

2.2 Simulation Example

Consider a plant as

- 523500
T s34+ 87.3552 4 10470s

Gy(s)

The sampling time is 1 ms, using MATLAB command “c2d”, the plant can be
discrete as

y(k) = —den(2)y(k — 1) — den(3)y(k — 2) — den(4)y(k — 3)
+num(2)u(k — 1) + num(3)u(k — 2) + num(4)u(k — 3)

where num () and den () can be gotten by the command tfdata.

The ideal position signal is yq(k) = 1.0. In the simulation program, due to the
discretization, there is one delay in control input.

The simulation program of traditional PID controller is chap2_l.m, and the
simulation results are shown in Figs. 2.2 and 2.3. The simulation program of
expert PID controller is chap2_2.m, and the simulation results are shown in
Figs. 2.4 and 2.5.

(1) Program of traditional PID Controller: chap2_1.m.

$Expert PID Controller

clear all;

close all;

ts=0.001;

sys=tf (5.235e005, [1,87.35,1.047e004,0]); %Plant
dsys=c2d(sys,ts, 'z"');

[num,den]=tfdata(dsys, 'v');

Fig. 2.2 Step response with 1.4

traditional PID control
1.2}

0.8}

ry

06

04+t

021

0 L L L L L L L L L
0 0.05 01 0.15 0.2 0.25 0.3 0.35 04 045 05
time (s)

Fig. 2.3 Error response with 1.2
traditional PID control

error

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
time (s)

Fig. 2.4 Step response with 1.4

expert PID control 12

0.8

ry

0.6
0.4
021

0 0.05 01 0.15 0.2 025 0.3 035 04 045 05
time (s)

Fig. 2.5 Error response with 1.2 T T T T T T T - -
expert PID control

error

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 05

time (s)

u_1=0;u_2=0;u_3=0;u_4=0;
y_1=0;y_2=0;y_3=0;

ei=0;
kp=0.96;ki=0.03;kd=0.01;

error_1=0;
for k=1:1:500
time (k) =k*ts;

yd(k)=1.0;
yv(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(l)*u_l+num(2) *u_2+num(3)

*u_3+num(4) *u_4;

error (k) =yd (k) -y (k) ; % Calculating P
derror (k) =error (k) -error_1; % Calculating D

ei=ei+error (k) *ts;
u (k) =kp*error (k) +kd*derror (k) /ts+ki*ei; $PID Controller

u_4=u_3;u_3=u_2;u_2=u_1l;u_1l=u(k);
y_3=y_2;y 2=y _l;y_l=y(k);
error_l=error (k) ;

end

figure (1) ;

plot (time,yd, 'b', time,y, 'r', 'linewidth',2) ;
xlabel ('time(s) ') ;ylabel('r,y"');

figure (2) ;

plot (time,yd-y, 'r', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('error');

(2) Program of expert PID control: chap2_2.m.

$Expert PID Controller
clear all;
close all;
ts=0.001;

sys=tf(5.235e005, [1,87.35,1.047e004,0]); %$Plant
dsys=c2d(sys,ts, 'z");
[num, den]=tfdata(dsys, 'v');

u_1=0;u_2=0;u_3=0;u_4=0;
y_1=0;y_2=0;y_3=0;
ei=0;

error_1=0;derror_1=0;

kp=0.6;ki1=0.03;kd=0.01;
for k=1:1:500
time (k) =k*ts;

yvd(k)=1.0; $Tracing Step Signal
%Linear model
y(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(l)*u_l+num(2) *u_2+num(3)

*u_3+num(4) *u_4;

error (k)=yd (k) -y (k) ; % Calculating P
derror (k) =error (k) -error_1; % Calculating D
ei=ei+error (k) *ts; % Calculating I

u (k) =kp*error (k) +kd*derror (k) /ts+ki*ei; $%$PID Controller

$Expert control rule

if abs(error(k))>0.8 %Rulel:Unclosed control rule
u(k)=0.45;
elseif abs(error(k))>0.40
u(k)=0.40;
elseif abs (error(k))>0.20
u(k)=0.12;
elseif abs(error(k))>0.01
u(k)=0.10;
end
if error(k)*derror(k)>0|(derror(k)::O) $Rule2

if abs(error(k))>=0.05
u(k)=u_l+2*kp*error (k) ;

else
u(k)=u_1+0.4*kp*error (k) ;

end

end

if (error(k)*derror(k)<0&derror(k)*derror_l>0)|(error(k)::O) $Rule3
u(k)=u(k);

end

if error (k) *derror (k) <0&derror (k) *derror_1<0 $%Rule4d
if abs(error(k))>=0.05
u(k)=u_l+2*kp*error (k) ;
else
u(k)=u_1+0.6*kp*error (k) ;
end

end

if abs(error(k))<=0.001 %Rule5:Integration separation PI control
u(k)=0.5*error(k)+0.010%ei;

end

u_4=u_3;u_3=u_2;u_2=u_1l;u_1l=u(k);
y_3=y_2;y 2=y _1;y 1=y (k);
error_l=error (k) ;

derror_l=derror (k) ;

end

figure (1) ;

plot (time,yd, 'r',time,y, 'b: "', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('r,y");

legend('Ideal position', 'Practical position') ;

Reference

1. K.J. Astrom, J.J. Anton, K.E. Arzen, Expert control, Automatica 22(3), 277-286 (1986)

Chapter 3
Foundation of Fuzzy Mathematics

Fuzzy theory was initiated by L.A. Zadeh in 1965 with his seminal paper “Fuzzy
Sets” [1]. In the early 1960s, he thought that classical control theory had put too
much emphasis on precision and therefore could not handle the complex systems.
As early as 1962, he wrote that to handle biological systems “we need a radically
different kind of mathematics, the mathematics of fuzzy or cloudy quantities which
are not describable in terms of probability distributions.” Later, he formalized the
ideas into the paper “fuzzy sets.”
Fuzzy sets are the mathematic foundation of fuzzy control.

3.1 Characteristic Function and Membership Function

(1) Characteristic function

_J1 xeA
me={5 15 1)
(2) Membership function
1 xX€EA
Us(x) =< (0,1) x € A partly (3.2)
0 x¢A

where A is a fuzzy set, which consists of 0, 1, and u,(x), the range of p,(x) is
[0,1].
Membership function is the foundation of fuzzy sets.

3.2 Fuzzy Set Expression

There are two kinds of expression as follows:
(1) Fuzzy set A consists of discrete element:
A= /x+ i/t /Xt (3.3)

or

A:{(xlvul)v(x%l'b)a"'7(xi>pi)7"'} (34)

(2) Fuzzy set A consists of continuous function (Membership Function) g, (x) :

A:/mwﬁ (3.5)

Ex. 3.1 To fuzzy the age, we assume the scope of the age is X = [0,200]; Zadeh
gave “Young” fuzzy set Y as

1.0 0<x<25
Y(x) = { [1 + (%)2}71 25 <x< 100
MF is shown in Fig. 3.1.
Program of MF for “Young”: chap3_1.m.

%Membership function for Young People
clear all;

close all;

for k=1:1:1001
x(k)=(k-1)*0.10;
if x(k)>=0&x(k)<=25

y(k)=1.0;
else
y(k)=1/(1+((x(k)-25)/5)"2);
end
end

plot(x,vy,'k");
xlabel ('X Years') ;ylabel ('Degree of membership') ;

Fig. 3.1 Membership 1
function of “Young”
08}
06}
04}

0.2}

Degree of membership

0

0 10 20 30 40 50 60 70 80
X Years

3.3 Calculation Method of Fuzzy Set

3.3.1 Basic Calculation Method of Fuzzy Set

For fuzzy set A, B, and C, basic calculation methods are given as follows:

(1) Null set
A=09 S =0
(2) Full set
A=E<p(u)=1
(3) Equal set
A =B < py(u) = pg(u)

(4) Complement set
If A is complement set of A, then

A& pp(u) =1—py(u)

(5) Subset
If B is subset of A, then

BCA & pg(u) <py(u)

90 100

(3.6)

(3.7)

(3.10)

(6) Fuzzy union set
If C is union set of A and B, then

C=AUB
AUB =y p(u) = max(py (u), ug(u)) = py(u) V pg(u) (3.11)

(7) Intersection set
If C is intersection set of A and B, then

C=ANB

ANB = pypp(u) = min(py (), p(u)) = py (1) A pg(u) (3.12)

=}

Ex.3.2A:(;—?+ﬂ+%+%,3:%+°'l+ﬂ+ﬂ

up u us Uy

u Uy 2]
Then,
09 02 08 0.6 03 0.1 04 05
AUB=—+4+—+—+ — ANB=—+ —+ — + —
uy up us Uy Uy us us Uy

Ex. 3.3 If py(u) = 0.4, then
() =1 —0.4=0.6

Ua(u) V uz(u) =04V 0.6 =0.6 # 1
Ua(u) A pz(u) =04N06=04#£0

3.3.2 Fuzzy Operator

For fuzzy set A, B, and C, there are three kinds of conventional operators as
follows.

1. Fuzzy intersection operator
For C = AN B, there are three intersection operators as follows:

(1) Basic intersection operator

he(®) = Min{i (), 1y ()} (3.13)

(2) Algebra product operator

fe(x) = pa(x) - pug(x) (3.14)

(3) Limitary product operator
o) = Max {0, iy () + s (x) — 1} (3.15)

2. Fuzzy union operator
For C = A UB, there are three fuzzy union operators as follows:

(1) Basic union operator

ke (x) = Max{y, (x), ug(x) } (3.16)
(2) Probability OR operator
fe(x) = pa (%) + (o) = pa (x) X pp(x) (3.17)
(3) Limitary sum operator

be(x) = Min{ 1,y (x) + ()} (3.18)

3. Fuzzy balanceable operator
For C = A o B, the balanceable operator is

te(x) = (14 (%) '.UB(X)]FT'“ — (1= yx)-(1- ,UB(X))]V (3.19)

where v is in [0 1]. When v = 0, u.(x) = py(x) - ug(x), that is, C = ANB.
When v = 1, p.(x) = py(x) + pup(x) — pa(x) x pg(x), that is, C = AUB.

3.3.3 Typical Membership Function

In fuzzy system, we often use six kinds of typical MF to fuzzify a variable, which
are given as follows:

(1) Gaussian MF

flx,0,¢) =e 2 (3.20)

where G is a positive constant.
The MATLAB function for Gaussian MF is gaussmf(x, [o, c]).
(2) Campanulate MF

f(x,a,b,c) :;ﬂ) (3.21)
e

3) S-type MF

1

foae) =1y (3.22)
The MATLAB function for S-type MF is sigmf(x, [a, c]).
(4) Trapezoid MF
x<a
ﬁ a<x<b
fx,a,b,c,d)=¢ 1 b<x<c (3.23)
% c<x<d
0 x>d
The MATLAB function for trapezoid MF is trapmf(x, [a, b, ¢, d]).
(5) Triangle MF
x<a
_)32 a<x<b
f(x,a,b,c) = Eopor<e (3.24)
xX>c

The MATLAB function for triangle MF is trimf(x, [a, b, c]).
(6) Z-type MF
The MATLAB function for Z-type MF is zmf(x, [a, b]).

Ex. 3.4 Six kinds of MF simulations, x € [0, 10].
The simulation results for the above six types of MFs are shown in Figs. 3.2,
3.3, 34,35, 3.6, and 3.7.

Fig. 3.2 Gaussian MF
M=1

Fig. 3.3 Campanulate MF 1

M =2)

081

061

04+

021

Fig. 3.4 S-type MF (M = 3) 1

08

061

04F}

021

Fig. 3.5 Trapezoid MF 1
M =4

08

061

041

021

10

10

10

Fig. 3.6 Triangle MF 1

M =5)
081

0.6}
04}

021

Fig. 3.7 Z-type MF (M = 6) 1
0.8

06}

0.2}

MF design program: chap3_2.m

%$Membership function
clear all;

close all;

M=6;

if M==1 %Guassian membership function
x=0:0.1:10;
y=gaussmf (x, [2 5]) ;
plot(x,y, 'k");
xlabel ('x') ;ylabel('y');

elseif M== %General Bell membership function
x=0:0.1:10;
y=gbellmf(x, [2 4 6]);
plot(x,y, 'k");
xlabel ('x') ;ylabel('y');

elseif M==3 %S membership function
x=0:0.1:10;

y=sigmf (x, [2 4]) ;
plot(x,y,'k");
xlabel ('x');ylabel('y');
elseif M==4 %Trapezoid membership function
x=0:0.1:10;
y=trapmf (x, [1 57 8]);
plot(x,y,'k");
xlabel ('x') ;ylabel('y"');
elseif M==5 %Triangle membership function
x=0:0.1:10;
y=trimf (x, [3 6 8]);
plot(x,y,'k");
xlabel ('x') ;ylabel('y"');
elseif M==6 %7 membership function
x=0:0.1:10;
y=zmf (x, [3 7]);
plot(x,y, 'k");
xlabel ('x') ;ylabel('y"');
end

3.3.4 Design of Fuzzy System

We can use several fuzzy sets to fuzzify a variable.

Ex. 3.5 To describe the error from negative big to positive big with seven fuzzy
sets.
To fuzzify the error e, we can define seven fuzzy sets as

e = {NB,NM,NS,ZO0, PS,PM, PB}

Use triangle MF, consider variable e varies in the range [—3, 3], we can describe
a fuzzy system by seven fuzzy sets. The simulation result is shown in Fig. 3.8.

Program of fuzzy system design: chap3_3.m

%$Define N+1 triangle membership function
clear all;

close all;

N=6;

x=-3:0.01:3;
for i=1:N+1
f(i)=-3+6/N*(i-1);

Fig. 3.8 Fuzzy system with 1

triangle MF a
@ 08}
o)
QO
E 06}
o
1S
S 04}
o)
o
o2t
a
0
-3 -2 -1 0 1 2 3
X
end

u=trimf (x, [£(1),£(1),£(2)]);

figure (1) ;
plot(x,u);
for j=2:N
u=trimf(x, [£(J-1),£(3),£(3+1)]);
hold on;
plot(x,u);
end
u=trimf (x, [£(N), £(N+1),£(N+1)]);
hold on;
plot(x,u);
xlabel ('x");
ylabel ('Degree of membership') ;

3.4 Fuzzy Matrix Calculation

3.4.1 Fuzzy Matrix

As an example, Fuzzy matrix is defined to describe the level of different students.

Ex. 3.6 Consider three students and four lessons, X = {Zhang, Li, Wang},
Y = {English, Math, Physics, Chemistry}, the scores are given in Table 3.1.

To fuzzify the scores, we can define MF as u(u) = 160> Where u is score, and
then, we can get fuzzy relation matrix R as shown in Table 3.2.

Table 3.1 Scores Name Lesson
English Math Physics Chemistry
Zhang 70 90 80 65
Wang 90 85 76 70
Li 50 95 85 80
Table 3.2 Fuzzy matrix R Name Lesson
English Math Physics Chemistry
Zhang 0.70 0.90 0.80 0.65
Li 0.90 0.85 0.76 0.70
Wang 0.50 0.95 0.85 0.80

From Table 3.2, we can get fuzzy matrix R as

0.70 090 0.80 0.65
R= {090 0.85 0.76 0.70
0.50 095 0.85 0.80

3.4.2 Fuzzy Matrix Calculation

For fuzzy matrix A and B, A = (a;), B = (b;), i,j =1,2,---,n, we can define
several fuzzy matrix calculation methods.

(1) Fuzzy equality calculation
Fora,-j:b,-j,A =B
(2) Fuzzy subset calculation
For ajj S bij7 AQB
(3) Fuzzy set union calculation
For Cij :Clij\/b,'j, C = (C,'j), C=AUB
(4) Fuzzy set interaction calculation
For Cij :aij/\bij7 C = (C,‘j), C=ANB
(5) Fuzzy complementary set calculation
For ¢; = 1 — a;, C = (cy) is defined as complimentary set of A, C = A.

0.7 0.1 0.4 09
Ex. 37 4= {0.3 0.9]’3_ [0.2 0.1}

AUB — {0.7\/0.4 O.1V0.9} _ {0.7 0.9]

03v02 09vO0.l 03 09

ANE = {0.3 702 09A0.1

i_[1-07 1-01] _T03 09
- 107 01

1-03 1-09

3.4.3 Compound of Fuzzy Matrix

07A04 01A09| |04 0.1
102 0.1

If A is defined as fuzzy relation in x X y, B is defined as fuzzy relation in y X z, then
C=AoB is a compound of fuzzy matrix A and B, and A = (ax), B = (by),

C = (C,:j), lJ,k = 1,2, e n

Cij = \k/{aik A bkj}.

Ex. 38 A = [a“ ‘“ﬂ,B: {”“ b”], then
a1 ap by by

C=AoB= {C” C‘z]

c11 = (ann Abi) V(a2 A bay)

()

ci2 = (a1 Abi2) V (a2 A b)

a1 = (@21 Ab11) V (ax A bar)
(

e = (az1 ANbi) V (az A b2)

0.8 0.7 02 04
When 4 = {0.5 0.3}’3_ [0.6 0.9}’ we have
06 0.7
Aok = {0.3 0.4}
04 0.3
Bod= {0.6 0‘6}

We can get the conclusion as

AoB#BoA

(3.25)

Program of fuzzy matrix compound calculation: chap3_4.m

clear all;
close all;
A=[0.8,0.7;
0.5,0.31;
B=[0.2,0.4;
0.6,0.91;
$Compound of A and B
for i=1:2
for j=1:2
AB(i,J)=max (min(A(i,:),B(:,3)"))
end

end

$Compound of B and A
for i=1:2
for j=1:2
BA(i,j)=max(min(B(i,:),A(:,3)"))
end

end

Now, an example of application of fuzzy matrix compound is given as follows.
For a family, consider the similarity between grandson and grandparents or between
granddaughter and grandparents. The similarity relationship between children and
their parents and the similarity relationship between the parents and grandparents
are given in Tables 3.3 and 3.4, respectively.

The relationship in Table 3.3 can be expressed by fuzzy matrix as

02 0.8
k= (0.6 o.1>

Table 3.3 Slmllarlty MF Father Mother
relation:shi;? betvizeen children Son 02 08
and their parents

Daughter 0.6 0.1
Tab!e 3.4. Similarity MF Grandfather Grandmother
relationship between the

Father 0.5 0.7

parents and grandparents

Mother 0.1 0

The relationship in Table 3.4 can be expressed by fuzzy matrix as
0.5 0.7
S= (0.1 0)
For this case, the operation of fuzzy relation synthesis between R and S is
02 038 0.5 0.7
RoS = o
0.6 0.1 0.1 O
((0.2 AN0.5)V (0.8A0.1) (0.2A0.7)V (0.8A 0)) B (0.2 0.2)
(0.6 A0.5)V (0.1A0.1) (0.6A0.7)V(0.1A0)) \0.5 06

The results indicate that the similarity degree between grandson and grandfather
is 0.2, the similarity degree between grandson and grandmother is 0.2. The simi-
larity between granddaughter and grandfather is 0.5, and the similarity between
granddaughter and grandmother is 0.5.

3.5 Fuzzy Inference

Consider fuzzy inference for the fuzzy rule “If A AND B then C,” which means
AANB—C),AcUBcUCcl.

According to Mamdani fuzzy inference method, we can get fuzzy relation matrix
R as

R=(AxB)"xC (3.26)

where T, is the column vector transformation.
For new A,B,C, using fuzzy matrix R, we can get C; by A and By:

C,=(A; xB)"xR (3.27)

where T, is the row vector transformation.

Ex. 39 X:{al, a, as }, Y:{bl, bz, b3 }, Z:{Cl, C2, C3 },
A:%JF%JF%, B:%}l+i+%6, C:%Jri. The fuzzy relation of “If A
AND B then C” is R.

0.5 0.1 05 05
AxB=| 1|0[01 1 06]=|01 1.0 0.6
0.1 0.1 0.1 0.1

(AxB)"=[01 05 05 01 10 06 01 01 0.1]"

R=AxB)"xC=[01 05 05 01 10 06 0.1 0.1 0.1]c[04 1]

_J01 04 04 01 04 04 01 01 0.1]"
o1 05 05 01 1 06 01 01 0.1

1 0.1
A xB = |05]0[01 05 1]= |01
0.1 0.1

0.5
0.5
0.1

1
0.5
0.1

(AxB)™=[01 05 1 01 05 05 01 0.1 0.1]

0.1 04 04 0.1

C;=[01 05 1 01 05 05 01 01 0.1]o
01 05 05 0.1

=[04 05]
04 05
C=—+-"=
(5] 2

Fuzzy inference program: chap3_S5.m

clear all;

close all;

A=[0.5;1;0.11;
B=[0.1,1,0.61;
c=[0.4,1];

$Compound of A and B
for i=1:3
for j=1:3
AB(i,3J)=min(A(i),B(3));
end
end
$Transfer to Column
T1=[1;
for i=1:3
T1=[T1;AB(i,:)"'];
end
$Get fuzzy R
for i=1:9
for j=1:2

04 04 0.1 0.1

1

0.6 0.1 0.1

011"
0.1

R(1i,J)=min(T1(1),C(J));

end
$Transfer to Row
T2=[1;
for i=1:3
T2=[T2,AB1(i,:)];
end
$Get output C1
for i=1:9
for j=1:2
D(i,3)=min(T2(i),R(i,3));
Cl(j)=max(D(:,3));
end

end

3.6 Fuzzy Equation
The fuzzy relation equation is an equation of the form A o R = B, where A and B are
fuzzy sets, R is a fuzzy relation, and A o R stands for the composition of A with R.

X1
Ex. 3.10 Solve x;(i = 1,2, 3) for fuzzy equation (0.6 0.2 04)o | x, | =04.
X3
From the equation, we have

(06 /\xl) \Y (02 /\X2) vV (04 /\X3) = 04
Since (0.2 A x;) <0.4, we have x, = [0, 1]; then, we get

(06 /\X]) \ (04 A\ X3) =04

We can consider two conditions as follows:

@® 0.6 Ax; =04, 0.4 Ax; <0.4, then
X1 = 04, X3 = [O, 1]
@ 0.6 Ax;<04, 0.4 Ax;3 =0.4, then

x1 =[0,0.4], x3 = [0.4,1]

Reference

1. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338-353 (1965)

Chapter 4
Fuzzy Logic Control

The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by
Zadeh [1]. Fuzzy logic has been applied to many fields, from control theory to
artificial intelligence.

By contrast, in Boolean logic, the truth values of variables may only be the
integer values 0 or 1. Fuzzy logic employed to handle the concept of partial truth,
where the truth value may range between completely true and completely false.
Furthermore, when fuzzy linguistic variables are used, the degrees may be managed
by specific (membership) functions [2].

4.1 Design of Fuzzy Logic Controller

(1) Fuzzify a variable

To fuzzify the input variable e, we often use three kinds of fuzzy sets as follows:

. = {NB, NS, ZO, PS, PB}
= {NB, NM, NS, ZO, PS, PM, PB}

= {NB, NM, NS, NZ, PZ, PS, PM, PB}

I R R

For example, a fuzzy system with eight fuzzy sets using triangle MF is shown in
Fig. 4.1.

(2) Rule base—RB

Rule base consists of several fuzzy rules. For example, in fuzzy logic control, we
can design RB with two fuzzy rules as follows:

ule)
3

1 1 L L -
Lg

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Fig. 4.1 Eight triangle fuzzy sets

R; : IFEisNBE EC isNB then U is PB
R, : IF E is NB and EC is NS then Uis PM

where E represents error, EC represents error change, U represents control input.
(3) Fuzzy inference and Defuzzy

From the rule base, we can get fuzzy relation matrix R. If we have new premise
information A and B, we can get a new result:

C=(AxB)oR (4.1)

The conclusion matrix C is fuzzy vector, and it must be defuzzified to exact
value for practical use.

4.2 An Example for a Fuzzy Logic Controller Design

Consider the height-level control of water tank as shown in Fig. 4.2, and we can
design two kinds of fuzzy rules as:

“if level is higher than O, then drain”;

“if level is lower than O, then effuse”;

where O represents ideal level.
We can design a fuzzy controller as in the following steps.

(1) Define error

In Fig. 4.2, for the height-level control of water tank, the error is defined as
e=Ah=hy—h

where Ay is ideal height and / is practical height.

Fig. 4.2 Fuzzy control for
height level of water tank

(2) Fuzzify input and output

We can use five fuzzy sets to fuzzify error e, that is, negative big (NB), negative
small (NS), zero (O), positive small (PS), positive big (PB), and we define the error
as seven levels: —3, =2, —1, 0, +1, +2, +3, which is shown in Table 4.1.

To fuzzify control input, we define five fuzzy sets to describe u, that is, negative
big (NB), negative small (NS), zero (O), positive small (PS), positive big (PB). The
range of control input is divided into nine levels: —4, =3, =2, —1, 0, +1, +2, +3, +4,
which is shown in Table 4.2.

(3) Fuzzy logic rule design
According to the experience, we can design the fuzzy logic rules as follows:

(1) If e = NB then u = NB
(2) If e = NS then u = NS

Table 4.1 Water level of e MF degree Range level
-3 |- -1 0 |1 2 3
Fuzzy PB 0 0 0 0 |0 0.5 1
set pPsS (0 (o |o o 05 |0
0 0 0 0.5 1 0.5 0 0
NS [0 |05 0 |0 Jo |0
NB |1 05 |0 0 |0 0 0

Table 4.2 Control input u

MF degree Range level
-4 -3 -2 -1 0 1 2 3 4
Fuzzy set PB 0 0 0 0 0 0 0 0.5 1
PS 0 0 0 0 0 0.5 1 0.5 0
(6] 0 0 0 0.5 1 0.5 0 0 0
NS 0 0.5 1 0.5 0 0 0 0 0
NB 1 0.5 0 0 0 0 0 0 0

3) Ife=0thenu=0
4) If e = PS then u = PS
(5) If e = PB thenu = PB

Fuzzy rules are given in Table 4.3.
(4) Fuzzy inference
From Table 4.3, we can get fuzzy relation matrix as:

R = (NBe x NBu) U (NSe x NSu) U (Oe x Ou) U (PSe x PSu) U (PBe x PB)
(4.2)

The inference can be described as:

.
0.5
0
NBe x NBu= | 0 | x[1 05 0 0 0 0 0 0 O]
0
0
0_
1000500000 0 0]
05 0500000 0 0
0 0 000000 O
={0 0 000000 O
0 0 000000 O
0O 0 000O0O0O0O
(0 0 000000 O]

Table 4.3 Fuzzy rule

(IF) e NBe NSe Oe PSe PBe

(THEN) u NBu NSu Ou PSu PBu

1 05 0 0 0 0 O]

x[0 05

0.5

0

0 0 0 0 OO

0 05 05 05 0 0 0 0 O

0 05

1.0 05 0 0 0 0 O

00 0 0O
00 0 0O
00 0 0O
00 0 0O

0
0
0
0

05 0 0 0]

1

NSe x NSu

10| x[0 0 0 05

0 0 0 05 05 05 000

0 0 0 05

1.0 05 0 0 O

0 0 0 05 05 05 0 00

1.0 05 0]

x[0 0O 0O 0O 0 05

0

0
0
0

0 0 0 0O
00 0 0O
0 0 0 0O

1.0 05 O

0 0 0 0 0 05

0 000 O 05 05 050

0 00 0O

0

0

0

Oe x Ou

PSe x PSu

PBe x PBu =

[~NeNeNeNeNeNa)
[eNeoNeBoNoNoNe)

SO OO OO o

From above fuzzy matrix, we can get:

[1.0 05 0
05 05 05
05 1.0

eoNeBaoNeoNe)
SO OO

(5) Fuzzy decision making

0
0.5
0.5
0.5
0.5

0

eleoNeBoNoRoNe)

SO OO OO o
SO OO OO o

u=eoR

x[00 00 0 0O0 0 05 10]

0
0
0
0
0
0.5
1.0 |
0 0]
0 0
0 0
0 0
05 0
05 05
05 1.0]

(4.3)

When eis NB,e=[1.0 0.5 0 0 0 0 0], the control input is

10 05
0.5 0.5
0 05
u=eoR=[1 050 00 0 0]o| 0
0
0
0

o o o o

0
0.5
0.5
0.5
0.5

=[1 05 05 0500 0 0 0]

o o o o o

Table 4.4 Fuzzy response E

(6) Defuzzy

From above, we have

Ty T3,

0.5

L05,0 0 0 0 0
-10 +2 +3 +4

Since u is fuzzy, it must be defuzzified to be used in engineering. According to
the defuzzification method “MF degree maximum,” we can get u = —4. The fuzzy
response is given in Table 4.4.

Program for water-level control: chap4_1.m

$Fuzzy Control for water tank
clear all;

close all;

a=newfis (' fuzz_tank"') ;

a=addvar (a, 'input','e', [-3,31); $Parameter e
a=addmf (a, 'input',1, 'NB', 'zmf', [-3,-11);

a=addmf (a, 'input',1, 'NS', 'trimf"', [-3,-1,1]);
a=addmf (a, 'input',1,'Z2"', 'trimf', [-2,0,2]);
a=addmf (a, 'input',1,'PS', 'trimf', [-1,1,31]1);

a=addmf (a, 'input',1, 'PB', 'smf', [1,3]);

a=addvar (a, 'output', 'u', [-4,4]); $Parameter u
a=addmf (a, 'output',1, 'NB', 'zmf', [-4,-1]1);

a=addmf (a, 'output',1, 'NS', 'trimf', [-4,-2,1]);
a=addmf (a, 'output',1,'z', 'trimf', [-2,0,21);
a=addmf (a, 'output', 1, 'PS', 'trimf"', [-1,2,4]);
a=addmf (a, 'output', 1, 'PB', 'smf', [1,4]);

rulelist=[1111;
2211;
3311;
44171;
5511];

%Edit rule base

a=addrule(a,rulelist) ;

al=setfis (a, 'DefuzzMethod', 'mom'); %Defuzzy
writefis(al, 'tank'); %Save to fuzzy file "tank.fis”
az2=readfis('tank') ;

figure (1) ;

plotfis(a2) ;

figure (2) ;
plotmf (a, "input',1);
figure (3) ;
plotmf (a, 'output', 1) ;

flag=0;

if flag==
showrule (a) %Show fuzzy rule base
ruleview('tank') ; %Dynamic Simulation

end

disp ("' ')
disp (' fuzzy controller table:e=[-3,+3],u=[-4,+4] ")

disp (" ')

for i=1:1:7
e(i)=1-4;
Ulist(i)=evalfis([e(i)],a2);
end
Ulist=round (Ulist)

e=-3; % Error

u=evalfis([e],a2) %Using fuzzy inference

4.3 Fuzzy Logic Control for Washing Machine

For the washing machine, how to set washing time is an important question. Fuzzy
logic control is an important method for the washing time setting of the washing
machine, which can be described as several steps as follows:

(1) Fuzzy controller structure

Consider washing time control of the washing machine, and we can design a
fuzzy controller with two inputs and one output. According to our experience, we
choose mud and axunge as the inputs and choose washing time as the output.

Fig. 4.3 MF of mud 1

0.8}

06}

0.4}

0.2}

Degree of membership

0 10 20 30 40 50 60 70 80 90 100
X

(2) Define fuzzy sets

According to our experience, we can define three fuzzy sets for mud and axunge,
respectively, and define five fuzzy sets for washing time.

(3) Define MF

Consider MF design of mud, we can define three fuzzy sets: SD (mud small),
MD (mud middle), and LD (mud much), the range of mud is in [0, 100], and the
MF is designed as follows:

Usp(x) = (50 — x)/50 0<x<50
_ | x/50 0<x<50
Hinaa = 4 () = { (100 —x)/50 50<x< 100 (44)
1 p(x) = (x — 50)/50 50 <x < 100

Using triangle MF, the simulation results are shown in Fig. 4.3.

Program of MF of mud: chap4_2.m.m

%Define N+1 triangle membership function
clear all;

close all;

N=2;

x=0:0.1:100;
for 1=1:N+1
£(1)=100/N* (i-1);

end

u=trimf (x, [£(1),£(1),£(2)]1);
figure (1) ;
plot(x,u);

for j=2:N
u=trimf (x, [£(3-1),f(3),E£(3+1)1);
hold on;
plot(x,u);

end

u=trimf (x, [£(N), £(N+1), £(N+1)]);
hold on;

plot(x,u);

xlabel ('x"') ;

ylabel ('Degree of membership') ;

Consider axunge, we can define three fuzzy sets: NG (no axunge), MG (middle
axunge), and LG (much axunge), the range value of axunge is set as [0, 100], and
the MF is designed as follows:

v (¥) = (50 —y)/50 0<y<50
¥/50 0<y<50

(100 —y)/50 50<y<100

te(y) = (y —50)/50 50 <y <100

=4 tuc(y) = (4.5)

Haxunge

MF of axunge is shown in Fig. 4.4, and the program is also chap4_2.m.

For washing time, five fuzzy sets are used: VS (very small), S (small), M
(middle), L (ling), and VL (very long), and the value is in the range of [0, 60]. MF
of washing time is:

pys(z) = (10 —2)/10 0<z<10
() = z/10 0<z<10
W =1025-2/15 10<x<25
(o) = (z—10)/15 10<z<25
frte) = (40 —z)/15 25<z<40 (4.6)

Hiime =
(z—25)/15 25<z<40

“L(Z)_{(éo—z)/zo 40<z< 60
,UVL(Z) = (2—40)/20 40§Z§60

The MF of washing time is shown in Fig. 4.5.

Program of MF of washing time: chap4_3.m

%$Define N+1 triangle membership function
clear all;

close all;

z=0:0.1:60;

Fig. 4.4 MF of axunge

Degree of membership

Fig. 4.5 MF of washing time

Degree of membership

u=trimf(z, [0,0,10]);
figure (1) ;
plot(z,u);

u=trimf(z, [0,10,25]);
hold on;
plot(z,u);

u=trimf (z, [10,25,40]);
hold on;
plot(z,u);

u=trimf (z, [25,40,601);
hold on;
plot(z,u);

u=trimf (z, [40,60,60]);
hold on;

0.8

0.6

0.4

0.2

0.8

0.6

041

0.2

0 10

0 10

20 30

40 50 60 70 80 90

100

20

30 40 50

60

plot(z,u);

xlabel('z");
ylabel ('Degree of membership') ;

(4) Design fuzzy rule

According to experience, we can design fuzzy rules.

The input is mud and axunge, and the output is washing time. If we design three

membership functions for each input, then we can design 9 rules.

The format of the rule is “IF Mud is A AND Axunge is B THEN Washing time

is C”.
(5) Design fuzzy rule table

According to our experience, we can set a fuzzy rule table, which is shown in

Table 4.5.

For example, *th fuzzy rule is described as “IF mud is small and axunge is small

THEN washing time is very short”.
(6) Fuzzy inference
@D Rule activation

If xp(mud) = 60, yo(axunge) = 70, then

#sp(60) =0, uyp(60) =<, wp(60) =

[V Y\ | —

ing(70) =0, uyg(70) =<, i g(70) =

wmlw Wk

Then, four fuzzy rules are activated, and the results are shown in Table 4.6.

@ Fuzzy rules inspiration
From Table 4.6, four fuzzy rules are inspired:

Rule 1 IF x is MD and y is MG THEN z is M
Rule 2 IF x is MD and y is LG THEN z is L
Rule 3 IF x is LD and y is MG THEN z is L

Table 4.5 Fuzzy rule of the Washing time, z Mud. x
washing machine ’ SD - MD LD
Axunge, y NG A M L
MG S M L
LG M L VL

Taple .4.6 Fuzzy rule Washing time, z Mud, x
activation SD MD (4/5) LD (1/5)
Axunge, y NG 0 0 0
MG 3/5) |0 1 (2) #e(2)
LG (2/5) |0 #(2) tve (2)

Rule 4 IF x is LD and y is LG THEN z is VL

(@ Premise inference of each fuzzy rule
(1) Since “AND” is used in the inference, then fuzzy intersection operator can be
used and CF for premise of each fuzzy rule can be calculated as follows:

CF of Rule 1 premise: min(4/5, 3/5) = 3/5
CF of Rule 2 premise: min(4/5, 2/5) = 2/5
CF of Rule 3 premise: min(1/5, 3/5) = 1/5
CF of Rule 4 premise: min(1/5, 2/5) = 1/5

The premise CF of each fuzzy rule is shown in Table 4.7.
@ Inference of each fuzzy rule

Using fuzzy product operator, the inference of each fuzzy rule is shown in
Table 4.8.

(® Total output of the system

For different fuzzy rules, fuzzy union operator can be used to calculate the total
output as follows:

Hage (2) :max{min @,uM(z)>, min (é,,uL(Z)) min @,#L(Z)), min (%HHVL(Z))}
:max{min@,uM(z)),min@7uL(Z)>,minG7MVL(Z))}

® Defuzzy the total output

z—10 3 40—z 3
Table 4.7 CF of premise of Washing time, z Mud, x
each fuzzy rule SD MD (4/5) LD (1/5)
Axunge, y NG 0 0 0
MG (3/5) 0 3/5 /5
LG (2/5) 0 2/5 /5

Table 4.8 Inference of each Washing time, z Mud x
fuzzy rule

SD | MD (4/5) LD (1/5)
Axunge, | NG 0 |0 0
y MG 0 | min(3, uy(2)) | min(, 1.(2))

(3/5)
LG (2/5) |0 |min(3,p(z)) |min(}, uy,(2))

71 = 19, Z2:31

Use the maximum average to defuzzy the output, and we can get precise output
as shown in Figs. 4.6 and 4.7.

Foute 19+31

25
2 2
)y HA HA
10 MD 10 MG
4l L N
5 3
R
0 100 X 0
(a) First fuzzy rule
LA HA)7
10 MD 10 LG 10 L
4l N
3 e N S >
2 2
5 5
0 100 X 0 50 10y 0 20 60 z
(b) Second fuzzy rule
1A HA HA
1.0 LD 1.0 LG 101 VL
2
< 1
l 5 - |5,
5
0 60 100 X 0 50 100y 0 40 60z

(¢) Third fuzzy rule

Fig. 4.6 Fuzzy inference of each fuzzy rule

1.0 M A AL A VL

/N I/ AN /

! \\ / \\\ //l

/ \ // N 7
2 / / N/
5 /
> | {/ \
z) y
5 / \ 7

/ \ /
1 LN \
3 A AV \
-z
0 10 19 31 40 60

Fig. 4.7 Output and defuzzification of fuzzy inference

(7) Simulation example

Choose x = 60, y = 70, use the above six steps (from step 1 to step 6), and we
can get the output as 24.9. The inference process is shown in Fig. 4.8.
Using the order “ruleview”, we can watch the dynamic simulation environment.

¢ Rule Viewer: wash

File Edit View Options
x =60 y=70 z=337
A e] R
= P—= |
6 [l] =] [l
0 100 1] 100 E
0 60
Ilnputj (60 701 |F‘Iot 101 |||Move: Iefk|r'ghl|dow:| _u;.ﬂ
|UpeningFIS Editor for new Sugeno system Help | Close |

Fig. 4.8 Dynamic simulation

Simulation program of washing time: chap4_4.m

$Fuzzy Control for washer

clear all;

close all;

a=newfis (' fuzz_wash') ;

a=addvar (

a, 'input', 'x

', [0,1001);

a=addmf (a, 'input',1,'SD', 'trimf', [0,0,501);
a=addmf (a, 'input',1, 'MD', 'trimf', [0,50,100]) ;
a=addmf (a, 'input',1,'LD', 'trimf', [50,100,100]);

a=addvar (a, '"input', 'y

', [0,100]);

a=addmf (a, 'input',2, 'NG', 'trimf', [0,0,501]);
a=addmf (a, 'input',2, 'MG', 'trimf', [0,50,100]) ;
a=addmf (a, 'input',2, 'LG', 'trimf', [50,100,100]);

a=addvar (a, 'output"', '
a=addmf (a, 'output', 1,
a=addmf (a, 'output', 1,
a=addmf (a, 'output', 1,
a=addmf (a, 'output', 1,
a=addmf (a, 'output', 1,

rulelist=[11111;
12311;
13411;
21211;
22311;
23411;
31311;
32411;
335111;
a=addrule(a,rulelist)

showrule (a)

al=setfis(a, 'DefuzzMethod', 'mom') ;

writefis(al, 'wash') ;

a2=readfis ('wash') ;

figure (1) ;
plotfis(a2) ;
figure (2) ;

z',[0,60]);

'Vs', 'trimf', [0,0,10]);
's', 'trimf', [0,10,25]);
'M', 'trimf', [10,25,40]);
'L', 'trimf', [25,40,60]);
'VL', 'trimf', [40,60,60]);

%Edit rule base

7

%$Show fuzzy rule base

%Defuzzy

%$Save to fuzzy file "wash

$Fuzzy Stain

$Fuzzy Axunge

$Fuzzy Time

fis”

plotmf (a, 'input',1);
figure (3) ;

plotmf (a, 'input',2) ;
figure (4) ;

plotmf (a, 'output', 1) ;

ruleview('wash'); %Dynamic Simulation

x=60;
y=70;

z=evalfis ([x,y],a2) %Using fuzzy inference

4.4 Fuzzy PI Control

4.4.1 PI Tuning Controller with Fuzzy Logic

Discrete PI algorithm is

k
u(k) = kpe(k) + kT Y _ e(j) (4.7)

=0

where 7' is sampling time and e(k) is error at time &, k, > 0, k; > 0.
The term e(k) is

e(k) = ya(k) — y(k) (4.8)

where yq(k) is the desired value.

In PI controller (4.7), how to tuning k, and k; is an important question. To design
fuzzy rule, we consider the range of e and ec as [0, 1] and define fuzzy set of e and
ec as {N,O,P}, which represents negative, zero, and positive.

(1) Fuzzy rules of k, tuning

The principle of k, tuning is: When e(k) is positive, i.e., e is P, we should increase
k, and then Ak, should be positive; when e(k) is negative, overshoot appears (e is
N), we should decrease k, and then Ak, should be negative.

When the error is near to zero, i.e., e is Z, we can get three conditions: If ec is N,
the overshoot value tends to bigger, Akp should be negative;if ec is Z, to decrease
static error, Ak, should be positive; if ec is P, the error will tend to be bigger, we
should increase k,, and Ak, should be positive, which is given in Table 4.9.

Table 4.9 Fuzzy rules of k, . N 7 P
tuning e
N N N N
V4 N P P
P P P P

(2) Fuzzy rules of k; tuning

Using the integrate separation tactics to tune k;, when the error is very small, we
choose big Ak;, otherwise we choose very small Ak;, which is given in Table 4.10.
We can tune k,, k; online as follows:

ky = kpo + Akp, ki = kio + Ak; (4.9)

4.4.2 Simulation Example

Consider the following plant

(s) = 133
pl¥ 24255

Choose sampling time as 7 = 0.001, and we can get the discrete plant as:

y(k) = —den(2)y(k — 1) — den(3)y(k — 2) + num(2)u(k — 1) + num(3)u(k — 2)

The ideal signal is yq(k) = 1.0. Firstly, we run the fuzzy PI tuning program
chap4_5.m and we can get the inference system file “fuzzpid.fis”. Then, we run the
fuzzy control program chap4_6.m. In the program chap4_5.m, according to
Tables 4.9 and 4.10, we can get MF of e, ec, k;, k.

We set the range of e, ec, k;,, and k; according to the ideal signal, the initial error,
and our experience.

For the fuzzy system “a”, if we use the order “plotmf”, we can get the MF of e,
ec, ky, and k;, which are given from Figs. 4.9, 4.10, 4.11, and 4.12.

Using the command “showrule (a)”, we can get 9 fuzzy rules as:

If (e is N) and (ec is N) then (kp is N)(ki is Z) (1)
If (e is N) and (ec is Z) then (kp is N)(ki is Z) (1)
If (e is N) and (ec is P) then (kp is N)(ki is Z) (1)
If (e is Z) and (ec is N) then (kp is N)(ki is P) (1)
If (e is Z) and (ec is Z) then (kp is P)(ki is P) (1)

If (e is Z) and (ec is P) then (kp is P)(ki is P) (1)

If (e is P) and (ec is N) then (kp is P)(ki is Z) (1)

Nk v =

Table 4.10 Fuzzy rules of k; . N 7z P
tuning e
N Z V4 VA
z P P
P Z VA Z
Fig. 4.9 Membership ! ' ' ' z ' ! ! ! 7
function of error 1 /
o
E 08f J b
3 /
c 06 \ / E
3 /
£ /
S 04t),“ i
3 /
E’ 02t -
: /\
<1 08 06 04 02 0 02 04 06 08 1
e
Fig. 4.10 Membership ' T T ' 7 T ' ' T 7
function of error change 1 g
2 /
L 08¢ b
= /
8 /
é 06} / -
5 /
& 04t / i
2 /
g 0.2 /
e J
0
-1 ~D_I8 -I].lS -D.ld 0.2 0 U.l2 04 0B U.lB 1
EcC

8. If (e is P) and (ec is Z) then (kp is P)(ki is Z) (1)
9. If (e is P) and (ec is P) then (kp is P)(ki is Z) (1)

In addition, if we run “fuzzy fuzzpid.fis”, we can edit the MF and the rule of the
fuzzy system,as shown in Fig. 4.13. If we run “ruleview fuzzpid.fis”, we can get the
dynamic simulation, as shown in Fig. 4.14.

Fig. 4.11 Membership
function of k,

Degree of membership

Fig. 4.12 Membership
function of k;

0.8 |
0.6 |
0.4 |

0.2}

Degree of membership

0

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
ki

Using the program chap4_6.m, we can realize the tuning of PI controller by
using the fuzzy system “fuzzpid.fis”.

Choose the initial value of k, and k; as zeros, use the fuzzy tuning PI controller,
we can get the results, as shown in Figs. 4.15 and 4.16.

Simulation programs:

(1) Fuzzy logic tuning for PI tuning: chap4_5.m

%$Fuzzy Tuning PI Control
clear all;
close all;

a=newfis (' fuzzpid') ;

a=addvar (a, 'input','e', [-1,1]1); %$Parameter e
a=addmf (a, 'input',1,'N', 'zmf', [-1,-1/31);
a=addmf (a, 'input',1,'Z2"', 'trimf', [-2/3,0,2/3]1);

e(3) fuzzpid
kp (3)
(mamdani)
Srules
el ki(3)

System fuzzpid: 2 inputs, 2 outputs, 9 rules

Fig. 4.13 Fuzzy system structure

J) Rule Viewer: fuzzpid QD@

a

File Edit View Options
e=0 ec=0 kp = 267 ki=0.0811

1 l N] s]]

2 [N | { | | | |

3 D | | | O | "]

4 | | [| [| "

5 [I l | l A |

6 |] [vl [| | —

7 | | [| { 2 e

& | 7 [| [|

g | | { | { o | [e
-33333 33333 -01 0.1

[ret (0.0 | |[Prtpoints: 101 || {Move: (et) Cright) down) (_up

|0pemdsystemfuupld.9ndes | _ _tep J [Cose)

Fig. 4.14 Dynamic simulation environment

Fig. 4.15 Response with
fuzzy PI

Fig. 4.16 Fuzzy tuning of k,
and kq

a=addmf (a, 'input',1,'P

a=addvar (a, 'input', 'ec'

a=addmf (a, 'input',2, 'N',
a=addmf (a, 'input',2,'Z"’
a=addmf (a, 'input',2,'P',

a=addvar (a, 'output', 'kp'

a=addmf (a, 'output',1, 'N',
a=addmf (a, 'output', 1, 'Z"
a=addmf (a, 'output',1,'P',

a=addvar (a, 'output', 'ki'

a=addmf (a, 'output',2, 'N',
a=addmf (a, 'output', 2, 'z’
a=addmf (a,

1.4
—— lIdeal position
12 Practical position |4
1 .

> 08} i
he]
>

0.6})

okl . - N
0 01 02 03 04 05 06 07 08 09 1
time (s)
2.65F B
261 g
g 2551 .
25} .
245} .
0 01 02 03 04 05 06 07 08 09 1
time (s)
0.1
= 0.05} |
O L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

,'smE', [1/3,11);

,[-1,11);

'zmf', [-1,-1/31);
,'trimf', [-2/3,0,2/31);
'smf', [1/3,11);

,1/3*[-10,10]1);
'zmf',1/3*[-10,-31);

, 'trimf',1/3*[-5,0,51);
'smf',1/3*[3,10]1);

,1/30%[-3,31);
'zmf',1/30*[-3,-1]);
, 'trimf',1/30*[-2,0,2])

'output',2, 'P', 'smf',1/30*%[1,3]);

time (s)

%$Parameter ec

$Parameter kp

%Parameter ki

7

rulelist=[111211;

121211;
131211;
211311;
223311;
233311;
313211;
323211;
3332111;

a=addrule(a,rulelist);
a=setfis (a, 'DefuzzMethod', 'centroid') ;

writefis(a, 'fuzzpid');

a=readfis (' fuzzpid');
figure (1) ;
plotmf (a, "input',1);
figure (2) ;
plotmf (a, "input',2) ;
figure (3) ;
plotmf (a, 'output', 1) ;
figure (4) ;
plotmf (a, 'output',2);
figure (5) ;

plotfis(a) ;

fuzzy fuzzpid;
showrule (a)

ruleview fuzzpid;

(2) Fuzzy PI control: chap4_6.m

$Fuzzy PI Control

close all;

clear all;

warning off;
a=readfis (' fuzzpid'); %Load fuzzpid.fis
ts=0.001;
sys=tf (133, [1,25,0]);
dsys=c2d(sys,ts, 'z");

[num, den]=tfdata(dsys, 'v');
u_1=0;u_2=0;

y_1=0;y_2=0;

e_1=0;ec_1=0;ei=0;

kp0=0;ki0=0;

for k=1:1:1000

time (k) =k*ts;

yad(k)=1;

%Using fuzzy inference to tunning PI
k_pid=evalfis([e_1,ec_1],a);

kp (k) =kpO0+k_pid (1) ;

ki(k)=kiO+k_pid(2);

u (k) =kp (k) *e_1+ki (k) *ei;
v(k)=-den(2)*y_1l-den(3) *y_2+num(2) *u_l+num(3) *u_2;
e (k)=yd(k)-y(k);
%%%%%%%%%%%3%Return of parameters%%%%%%%%%%%%%%%
u_2=u_1;u_1l=u(k);

y_2=y_1;y 1=y (k);

ei=ei+e (k) *ts; % Calculating I
ec(k)=e(k)-e_1;

e _l=e(k);

ec_l=ec (k) ;

end

figure (1) ;
plot(time,yd, 'r',time,y, 'b:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('r,y"');

legend('Ideal position', 'Practical position');
figure (2) ;

subplot (211) ;

plot (time,kp, 'r', 'linewidth',2);

xlabel ('time(s) ') ;ylabel (‘kp') ;

subplot (212) ;

plot (time, ki, 'r', 'linewidth',2);

xlabel (‘time(s) ') ;ylabel (‘ki');

figure (3) ;

plot (time,u, 'r', 'linewidth',2) ;

xlabel (‘time(s) ') ;ylabel (‘Control input') ;
References

1. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338-353 (1965)
2. L.A. Zadeh, Fuzzy Sets, Fuzzy Logic, Fuzzy Systems (World Scientific Press, 1996)

Chapter 5
Fuzzy T-S Modeling and Control

5.1 Fuzzy T-S Model

The traditional fuzzy model, which belongs to the Mamdani fuzzy model, whose
output is fuzzy. The other fuzzy model is Takagi—Sugeno (T-S) fuzzy model, whose
output is constant or linear function as follows

Y= (5.1)
y=ax+b

The difference between T-S fuzzy model and Mamdani fuzzy model is: (1) the
output variable of T-S fuzzy model is constant or linear function; (2) the output of
T-S fuzzy model is accurate.

T-S type fuzzy inference system is very suitable for the piecewise linear control
system, such as missile control system, aircraft control system.

To design a T-S fuzzy model, for example, we can set the inputs as X € [0, 5],
Y €[0,10] and define two fuzzy sets “small” and “large.” The output Z can be
described as a linear function of the input (x,y) as follows:

If Xissmalland YissmallthenZ = —x+y—3
If Xissmalland YisbigthenZ = x+y+1
If X isbigand YissmallthenZ = —2y + 2
If Xisbigand YisbigthenZ =2x+y — 6

The input membership function and the input/output of the fuzzy inference
system are shown in Figs. 5.1 and 5.2.

MF Degree of
input 1

| little

MF Degree of
input 2

Fig. 5.2 Input and output of T-S type fuzzy inference system

In the simulation program chap5_l.m, by using the command “Showrule
(TS2),” fuzzy logic rules can be displayed as the following four fuzzy rules.

(1) If (X is small) and (Y is small) then (Z is first area) (1);
(2) If (X is small) and (Y is big) then (Z is second area) (1);
(3) If (X is big) and (Y is small) then (Z is third area) (1);
(4) If (X is big) and (Y is big) then (Z is fourth area) (1).

Simulation program: chap5_1.m

$T-S type fuzzy model

clear all;

close all;

ts2=newfis('ts2"', 'sugeno’) ;

ts2=addvar (ts2, 'input', 'X', [0 5]);

ts2=addmf (ts2, 'input',1, 'little', 'gaussmf', [1.8 0]);

ts2=addmf (ts2, 'input',1, 'big', 'gaussmf', [1.8 5]);

ts2=addvar (ts2, 'input', 'Y', [0 10]);

ts2=addmf (ts2, 'input',2, 'little', 'gaussmf', [4.4 0]);

ts2=addmf (ts2, 'input',2, 'big', 'gaussmf', [4.4 10]);

ts2=addvar (ts2, 'output', '2', [-3 15]);

ts2=addmf (ts2, 'output', 1, 'first area', 'linear', [-1 1 -31)

ts2=addmf (ts2, 'output',1, 'second area', 'linear', [111]);
)
]

7

ts2=addmf (ts2, 'output',1, 'third area', 'linear', [0 -2 2]) ;
ts2=addmf (ts2, 'output',1, 'fourth area', 'linear', [2 1 -6]);
rulelist=[11111;
12211;
21311;
2241171;
ts2=addrule(ts2,rulelist);
showrule (ts2) ;
figure (1) ;
subplot 211;
plotmf (ts2, 'input',1);
xlabel ('x'),ylabel ('MF Degree of input 1');
subplot 212;
plotmf (ts2, '"input',2);
xlabel ('x'),ylabel ('MF Degree of input 2') ;
figure (2) ;
gensurf (ts2);
xlabel ('x'),ylabel('y'),zlabel('z");

5.2 Fuzzy T-S Modeling and Control Based on LMI

Linear matrix inequality (LMI) is a powerful tool in the field of control domain.
Many control theory and synthesis problems can be reduced to the corresponding
LMI problem.

It is one of the hot spots in the research of control theory to study the nonlinear
system modeling using T-S fuzzy system. It has been proved that the T-S fuzzy
model with linear back part can make full use of the local information of the system

and the experience of expert control in the form of fuzzy rules and can approximate
any actual plant with arbitrary precision.

The stability condition of T-S fuzzy system can be expressed in the form of
linear matrix inequality (LMI). The research on robust stability and adaptive control
of T-S fuzzy model is the focus of control theory.

5.2.1 Controller Design of T-S Fuzzy Model Based on LMI

For a continuous nonlinear system with m control inputs and n output states, T-S
type fuzzy model can be described as the following fuzzy rules:

Fuzzyrulei : If x; (¢) is M} and x,(¢) is M} and - - - x,,(¢) is M" (5.2)

Then x(t) = Ax(t) + Bu(t),i = 1,2,---,r
where x; is state, M} is membership function, x(r) is state vector, x(r) =
[x1(t) - x,(1)]"€R", u(r) is control input vector, u(z)= [u(t)
un(1)]" €R™, A; € R™", B; € R™™.

According to the defuzzification of fuzzy system, the total output of the fuzzy
model is

3 wilAix(¢) + Biu(?))
—1 _ (5.3)
™

x(1) =

where w; is the membership function for fuzzy rule i, w; = [] M} (x(z)), Take 4
k=1

rules as an example, consider the rule premise as x;, then we have k =1,
i=1,2,3,4 w =M (x1), w, = Mlz(xl), wy = Mf(xl), Wy = M‘l‘(xl).

For each T-S fuzzy rule, the state feedback method can be used to design r kinds
of fuzzy control rules as follows

Fuzzy rule i:

If x; (¢) is M} and x,(¢) is M5 and - - - x,,(¢) is M" (5.4)

Then u(t) = Kx(¢),i = 1,2,---,r

Parallel distributed compensation (PDC) method is proposed by Sugeno, etc. [1],
which is a kind of fuzzy controller design method based on the model, and the proof
and analysis are given by [2]. PDC can be applied to solve the control problems for
nonlinear system based on T-S fuzzy modeling [3].

Consider the system (5.2) and fuzzy rules (5.4), T-S fuzzy controller can be
designed by using PDC method [4] as

> wikx(1)
w() ="

Wi

-

j=1

5.2.2 LMI Design and Analysis

Theorem 5.1 [5]: There is a positive definite matrix Q. When the following con-
ditions are satisfied, the T-S fuzzy system (5.2) is asymptotically stable.

QA] +AQ+ VBl +BV;<0, i=12,---,r
QAT +AQ+0A] +AQ+ VB +BV;+ VB +BV<0, i<j<r (56)
0=P'>0

where V;=K;Q, that is K;= V,Q’1 =VP, V;=K;Q, that is
K,=V,0'=VP.

According to (5.6), K; in controller (5.5) can be obtained by using the LMI.
Theorem 5.1 is given in Ref. [5]. Reference to [5], the concrete proof of theorem 5.1
is given below.

Proof Choose Lyapunov function as

1
V() = ngPx

where P is positive and symmetric Matrix.
then

’ L 1. 1
V(t) =5 (xTPx +xTP,§) = 7xTPx+ fxTPx

2 2 2 -
r T r
| ZW,’[A,‘X~FB,‘M] 1 ZW,‘[A,‘X—FB,‘“]
s e LplE

r r
Do Wi dowi
i=1 i=1

Submitting controller (5.5) into above, we have

. T

Z wiK;x

Zw,« Ax+B; =5 ZW,‘ Ax+B; =

’

Z wiK;x

=

. ~ 1
V(t) == Px+ ExTP

L 7
== Px+§xP

,_
T

o
I
T
<
I

<~

i iWiW.f (Ai +BK;)" > Y wowy (Ai +BiK;)

1 i=1j=1

=_xTE Px + ExTP -
Do wiw ZZWW]
i=1j=1 i=1j=
==X =l = x
ZWI

1j=1

Mx

Therefore, when the following inequality is satisfied as

(A;+BiK;)' P+P(A; +BK;) <0

X

We have V(1)< =0, where i = 1,2,---,r,j=1,2,---,r

Consider i = j and i # j, respectively, we have

i i Wiw; |:(Al +B,K])TP+P(A, +B,Kj)i|

. 1 i=1 =
V() = ExT e — x
> D Wi
i=1j=1
1
=% Zwlw,[A +BiKi)TP+P(Ai+BiKi)}x
ZZWI
i=1j=1
1 1
+ ExT — ZWZWJ [GZP—FPG,J}X
'21 z%wiwj i<j
i=1j=

where G,‘j = (Ai+Bin) + (Aj+BjKi).
If the following inequality is satisfied

(A;+BK;)"P+PA;<BK;)<0 i=j=12,...r
GP+ PG;0 i<j<r

Then we have V(r) <0.
From (5.7), if V =0, we havex = 0, according to LaSalle invariance principle,
when t — oo, x — 0.

5.2.3 Transformation of LMI

Firstly, consider (A; +BiKi)TP+P(Ai +BK;)<0, i=j=1,2,....r, define
0= P!, then 0 is also positive and symmetric matrix, let V; = K;Q, then

A/P+K/B[P+PA;+PBK;<0
Multiplied P! by both sides of above inequality, we have
P'AT +P'K'B] +AP' +BK,P ' <0
That is

QA + V!B +A,Q+B;V;<0

That is
QA] +A,0+ VB! +B;V:<0 (5.8)

Consider GjP+PG; <0, G; = (A;+BK;) + (A;+BK,), i<j<r. Let Q =
P! and define V; = K0, V; = K;Q, then

((A;+BiK;) + (A; + BiK,)) 'P+P((A; + BK,) + (A;+ BK;)) <0

Multiplied P! by both sides of above inequality, consider @ = Q", we have
0" ((Ai +BK)) + (A; +BK;))" + ((Ai + BiK;) + (A; + BiK;)) @ <0

That is

(AQ+BK,Q+A,0+BKQ) +AQ+BKQ+A,0+BKQ<0
then

(AQ+BV;+A,0+BV)) +A:Q+B:V,+A,Q0+B;V;<0

That is

QAT +A:Q+QA] +A;0+V B +B;V;+V/B] +B;V;<0 (5.9)

5.2.4 LMI Design Example

First example: consider two fuzzy rules, » = 2, i = 1,2, then we can get two LMI
as follows

QAT +A,Q+ VB +B,V,<0

5.10
QA] +A20Q +ViB) +B,V,<0 (3.10)

For i<j<r, we have i = 1, j = 2, two fuzzy rule are interacted, from (5.9),
then we have an LMI as

QAT +A1Q+ QA5 +A,Q+ V3Bl +BV,+V[B) + B,V <0 (5.11)

For the first example, Matlab program can be written as

L1=Qx*Al'+A1*Q+Vl'*Bl'+ Bl VI;
[2=Qx*A2 +A2%Q+ V2 B2 +B2 % V2;

I3=Q+Al'+A1*Q+Qx*A2 +A2xQ+ V2 xBl'+B1*V2+ V'« B2 +B2x* VI;
F = set(L1 <0) + set(L2 <0) + set(L3 <0) + set(Q > 0);

Second example: consider four fuzzy rules, » = 4, the we have four LMI as
follows

QAT +A,Q+VIB] +B,V, <0
QA] +A,0+ VB, +B,V,<0
QAT +A3Q+ViB] +B3V;<0
QA +A4,Q+ VB +B,V,<0

(5.12)

For the second example, Matlab program can be written as

LI =Q+Al' +A1xQ+VI'«Bl' +Bl1*VI;
L2=Q*xA2 +A2+xQ+V2 xB2 +B2xV2;
13 = QA3 + A3 * Q+ V3 B3 +B3 % V3;
L4 = Q# A4 + Ad « Q+ V4’ x B4’ + B4 * V4:

Fori<j<r,fromQA] +A,Q+ QA +A,Q+ VB +BV;+V]B] +B;V,; <0,
we can design six LMI as follows:

i=1Lj=2i=1,j=3i=1,j=4i=2,j=3;i=2,j=4i=3,j=4.

In the design of LMI, the interaction between membership function i and
membership function j should be considered.

Consider i = 3, j = 4, the interaction between the third rule and the fourth rule
are considered, we can get a LMI as

QAT +A3Q + QAL +AsQ +ViB; +B3Va+ ViB{ +BsV3<0 (5.13)
The Matlab program is

L=QxA34+A3xQ+QxA4 +A4xQ+V4 xB3 +B3xV44+V3
* B4 +B4 x V3;

5.3 Fuzzy T-S Modeling and Control Based on LMI
for Inverted Pendulum

5.3.1 System Description

The single inverted pendulum system is a complex nonlinear and uncertain system.
The control problem of the inverted pendulum system is a typical problem; the aim
is to keep the cart in a predetermined position by applying a control input, and at the
same time, the pendulum is kept in the range of a predefined vertical deviation
angle.

The single inverted pendulum model is

X1 =X
. gsinx; — amlx% sin(2x1)/2 — au cos x; (5.14)
X =

2 41/3 — aml cos? x,

where x; is angle of pendulum, x; is angle speed of pendulum, 2! is Length of

pendulum, u is control input, a = m M and m are mass of car and pendulum.

5.3.2 Simulation Based on Two Fuzzy Rules Design

When x; — 0, sinx; — x;, cosx; — 1; when x; — %73, sinx; — +1 — %xl, from
(5.14), we have two T-S type fuzzy rules

Rule 1 IF x(¢) is about 0, THEN x(z) = Ax(¢) + Byu(z);
Rule 2 IF x;(¢) is about +% (|x| < %), then x(z) = Aox(z) + Bou(t).

0 1 0 0 1
where A| = g , Bi=|_ 4 , Ay = 2g 0l
4/3—aml 4/3—aml n(41/3—amif?)

0
B, = [_ op] [= cos(88°).
41/3—amlf?

According to theorem 5.1, using (5.10) and (5.11), LMI of the inverted pen-
dulum can be expressed as
QAT +A,Q+V B +B,V, <0,
QA] +A,0+ VB, +B,V, <0,
QAT +A,Q+ QAT +A,Q + VIBT +B,V, + VIBI + B,V, <0
Q=P '>0 (5.15)

where K| =V P, K, =V,P,i=1,2.

From above LMI, the programs are designed as follows:

L1=Q*A1'+Al1*Q+V1'*B1l'+B1*Vl;
L2=Q*A2 '+A2*Q+V2 ' *B2'+B2*V2;
L3=Q*A1'+A1l*Q+Q*A2"'+A2*Q+V2'*B1l'+B1*V2+V1'*B2'+B2*V1l;

Then we can set LMI as follows and get K; by (5.15)
F=set (L1<0)+set (L2<0) +set (L3<0) +set (Q0>0) ;

In the simulation, we choose g = 9.8 m/s?, m= 2.0 kg, M= 8.0kg, 2] = 1.0m.
According to the experience of inverted pendulum, two fuzzy rules can be
designed:

Rule 1 : If x; (¢) is about O then u = K;x(¢)
Rule?2 : If x; (r) isabout &2 (|x; ()| < %) then u = K;x(7)

According to (5.5), the T-S based fuzzy controller is designed by using PDC
method:

u :W[(X[)le(l)+W2(X1)K2x(t) (516)

where wy +w, = 1.

According to two fuzzy rules of the inverted pendulum, the membership func-
tion should be designed according to Fig. 5.3. Triangular membership function is
used to fuzzify x;(¢). The initial states are chosen as [§ 0].

Using LMI toolbox, YALMIP toolbox, we can get @, V;, V, from the program
chap5_2LMLm, we can get K; = [2400.8 692.3], K, =[5171.6 1515.3]. The
main program is chap5_2sim.mdl; simulation results are shown in Figs. 5.4, 5.5,
and 5.6.

Fig. 5.3 Schematic diagram

X X about — L2 about 0 about =
of fuzzy membership function 2 2

.88 0 88 (deg)

Fig. 5.4 Fuzzy membership 1

function in simulation
0.8

0.6

0.4

0.2

Membership function

Fig. 5.5 Angle and angle 0.4

speed response ozl

0.2}
04}
06}
-0.8

position and speed response

time (s)
Fig. 5.6 Control input 1000
+— 800
=}
Q.
c
— 600}
e
<
8 400t
200 L
0 1 1 1 1
0 1 2 3 4
time (s)

Matlab Programs:
(1) Controller gain based on LMI: chap5_2LMI.m;

clearall;
closeall;
g=9.8;m=2.0;M=8.0;1=0.5;

a=1/ (m+M) ;beta=cos (88*pi/180) ;
al=4*1/3-a*m*1;
Al=[01;g/al 0];
Bl=[0 ;-a/all;
a2=4*1/3-a*m*1l*beta”2;
A2=[01;2*g/(pi*a2) 0];
B2=[0;-a*beta/a2];
Q=sdpvar(2,2) ;
Vl=sdpvar(l,2);
V2=sdpvar(1,2);
L1=Q*Al1'+A1*Q+V1'*B1l'+B1*V1l;
L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;
L3=Q*Al'+A1*Q+Q*A2 ' +A2*Q+V2 ' *B1l'+B1*V2+V1' *B2'+B2*V1;
F=set (L1<0)+set (L2<0) +set (L3<0) +set (Q>0) ;
solvesdp (F); %$Toget Q, V1, V2
Q=double (Q) ;

Vl=double (V1) ;

V2=double (V2) ;

P=inv(Q) ;

K1=V1*Pp

K2=V2*P
saveK_fileK1K2;

(2) Membership function design: chap5_2mf.m;

clearall;
closeall;
Ll=-pi/2;L2=pi/2;
L=L2-L1;
h=pi/2;
N=L/h;
T=0.01;
x=L1:T:L2;
fori=1:N+1
e(i)=L1+L/N*(i-1);
end
u=trimf (x, [e(1l),e(2),e(3)]); %The middle MF
plot(x,u, 'r', 'linewidth',2);
for j=1:N
if j==
u=trimf (x, [e(1l),e(1l),e(2)]); $The first MF
elseif j==N
u=trimf (x, [e(N),e(N+1),e(N+1)]); %The last MF

end

holdon;

plot(x,u, 'b', 'linewidth',2) ;

end

xlabel ('x') ;ylabel ('Membership function') ;

legend('First Rule', 'Second rule') ;

(3) Simulink main program: chap5_2sim.mdl;

P ut

P chap5_2ctrl P> chap5_2plant

X

1

Clock To Workspace

(4) Fuzzy controller program: chapS_2ctrl.m;

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[];

otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end

function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 0;

sizes.NumOutputs =1;

sizes.NumInputs =2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

Paosition

sys = simsizes (sizes) ;
x0 =1[1;
str=[];
ts =[00];
function sys=mdlOutputs (t,x,u)
x=[u(l);u(2)];
loadK_file;
utl=K1l*x;
ut2=K2*x;
Ll=-pi/2;L2=pi/2;
L=L2-L1;
N=2;
fori=1:N+1
e(i)=L1+L/N*(i-1);
end
hl=trimf(x(1l),[e(1l),e(2),e(3)]1); %$The middle
1f x(1)<=0
h2=trimf (x(1), [e(1l),e(1l),e(2)]); $The first
else
h2=trimf (x(1l), [e(2),e(3),e(3)]); %The last
end
$hl+h2
ut=(hl*utl+h2*ut2)/ (hl+h2);
sys (1) =ut;

(5) Plot program: chap5_2plot.m.

closeall;

figure (1) ;

plot(t,x(:,1),'r',t,x(:,2),'b");
xlabel('time(s) ') ;ylabel ('angle and angle speed response') ;
figure (2) ;

plot(t,ut(:,1),'r');

xlabel ('time(s) ') ;ylabel ('control input');

5.3.3 Simulation Based on Four Fuzzy Rules Design

In order to control the pendulum in a wide range of initial angle, the number of
fuzzy rules should be increased on the basis of the above two rules.

From (5.14), we know if x; — :I:%(|x1| > g), then sinx; — +1 — %xl, let
f = cos(88°), then cos(x;) = cos(180° — 88°) = —cos(88°) = —f3; if x; — 7,

then sinx; — 0, cosx; — —1, and x, = ﬁ'

From above, we can get another two T-S type fuzzy rules:

Rule 3: 1IF x;(t) is about =% (|x| > J), THEN x(z) = A3x(t) + B3u(t);
Rule 4: IF x;(¢) is about £, then x(7) = Asx(t) + Bau(t)

0 1 0 0 1
where Az = 2g ol B; = af s Ay = s
n(4l/3—amlf?) 4/3—amlf? 0 0
0
B, = o .
41/3—aml

Then we can design two fuzzy control rules as follows
Rule 3: If x;(z)isabout + X (|x;| >) thenu = K3x(7)
Rule 4: If x(¢) isabout + nthenu = K4x(7)

According to theorem 5.1, using (5.12), LMI of the inverted pendulum for above
fuzzy rules can be expressed as

QAT +A,Q + VB + BV, <0,

QA] +A,Q0+ VB, +B,V, <0,

QA} +A30+ ViB] +B3V; <0, (5.17)
QA} +AsQ + VB + B4V, <0,

Q=P '>0

where K1 = V1P, K2 = V2P, K3 = V3P, K4 = V4P, = 1,2,3,4.
From above two LMI, the programs are given as follows:

L1=Q*Al1'+A1*Q+V1'*B1'+B1*V1;
L2=0Q%*A2 ' +A2*Q+V2 ' *B2 ' +B2*V2;
L3=0Q0*A3"'+A3*Q+V3'*B3'+B3*V3;
LA=Q*A4 ' +AA*Q+V4A' *B4 ' +BA*V4;
Schematic diagram of membership function with four fuzzy rules are shown in
Fig. 5.7, we can see that Rule 1 intersect Rule 2, and Rule 3 intersect Rule 4,

therefore, only two LMI can be constructed from (5.9), the corresponding LMI is as
follows.

QAT +A,Q+QA] +A,Q+ViB] +B,\V,+VIB) +B,V, <0

5.18
QA] +A30+ QA +AsQ + VB +B3Vy + ViB, + B4V;<0 (5-18)

Rule4
Rule4 Rule3 | Rule2 Rule% Rule3

|
|
|
|
|
|
|
|
|
| ! X1

-90 0 90 180 [deg.]

Fig. 5.7 Schematic diagram of membership function

From above two LMI, the programs are given as follows:

L5=Q*Al' +A1*Q+Qx A2 +A2xQ+ V2 «B1'+B1*V2+VIl'«B2' +B2* VI;
L6 =Q+A3 +A3xQ+Qx* A4 + A4 % Q+ V4 B3 +B3 x V44 V3 « B4 + B4 x V3;

From above three LMI, the programs are designed as follows:

F=set (L1<0)+set (L2<0) +set (L3<0) +set (L4<0) +set (L5<0) +set
(L6<0) +set (Q>0) ;

According to (5.5), T-S based fuzzy controller is designed by using PDC
method:

U= w (xl)le(t) + Wz(xl)sz(l) + W3(X1)K3x(l) + W4(X1)K4x(l) (519)

According to the rules of two T-S fuzzy model of the inverted pendulum, the
membership function is designed in Fig. 5.3. The triangular membership function is
used to fuzzify x (), and the initial states are [z 0].

Using LMI toolbox, YALMIP toolbox, to get K, the program is chap5_3LMI.m,
we have Q, Vi, V,, V3, V4, then we can get K; =[3301.3 969.9], K, =
[6366.3 1879.7], K;=[-6189.6 —1883.7], K4=[-31052 -969.9].
Running Simulink main program chap5_3sim.mdl, the simulation results are shown
in Figs. 5.8, 5.9, and 5.10.

Fig. 5.8 08}
Membership function

Membership function

Fig. 5.9 Angle and angle

speed response

4t

6l

-8

angle and angle speed response
I\

-10

0 05 1 15

2

25 3

time (s)

35

45

Fig. 5.10 Control input 2000

0 (\—\
-2000

-4000

control input

-6000 -

-8000

-10000 : : :
0 05 1 15

Matlab Programs:
(1) Controller gain based on LMI: chap5_3LMIL.m;

clear all;

close all;
g=9.8;m=2.0;M=8.0;1=0.5;
a=1/(m+M) ;beta=cos (88*pi/180) ;
al=4*1/3-a*m*1;
Al=[01;g/al0];

B1=[0 ;-a/all;
az2=4*1/3-a*m*1l*beta”2;
A2=[01;2*g/(pi*a2) 0];
B2=[0;-a*beta/a2];
A3=[01;2*g/(pi*a2) 0];
B3=[0;a*beta/a2l;
A4=[01;001;

2

2‘.5 3
time (s)

3.5

4

4.5

B4=[0;a/all;
Q=sdpvar(2,2);
Vl=sdpvar (1,2

)i
V2=sdpvar(l,2);
V3=sdpvar(l,2);
V4=sdpvar (1,2)
L1=Q*Al'+Al1*Q+V1'*Bl'+B1*V1l;
L2=Q*A2'+A2*Q+V2'*B2'+B2*V2;
L3=Q*A3'+A3*Q+V3'*B3'+B3*V3;
LA=Q*A4'+A4*Q+V4 ' *B4'+B4*V4;
L5=Q*Al'+A1*Q+Q*A2"'+A2*Q+V2'*Bl'+B1*V2+V1'*B2'+B2*V1l; %$from R1 and R2
L6=Q*A3"'+A3*Q+Q*Ad "' +A4*Q+V4 ' *B3'+B3*V4+V3'*B4'+B4*V3; $from R3 and R4
F=set (L1<0)+set (L2<0) +set (L3<0) +set (L4<0) +set (L5<0) +set (L6<0) +set
(0>0) ;
solvesdp (F); %$TogetQ, V1, V2, V3, V4

Q=double (Q) ;

Vl=double (V1) ;

V2=double (V2) ;

V3=double (V3) ;

V4=double (V4) ;

P=inv(Q) ;

K1=V1*P

K2=V2*P

K3=V3*Pp

K4=v4*p
saveK_fileK1K2K3K4;

7

(2) Membership function design: chapS_3mf.m;

clear all;

close all;

Ll=-pi;L2=pi;

L=L2-L1;

h=pi/2;

N=L/h;

T=0.01;

x=L1:T:L2;

fori=1:N+1

e(1)=L1+L/N*(i-1);

end

figure (2) ;

% hl

hl=trimf(x, [e(2),e(3),e(4)]); %Rule 1:x1 is to zero
plot(x,hl, 'r', 'linewidth',2);

% h2, Rule 2: x1 is about +-pi/2,but smaller

%if x<=0

h2=trimf (x, [e(2),e(2),e(3)]);
holdon
plot(x,h2, 'b', 'linewidth',2);
%else

h2=trimf (x, [e(3),e(4),e(4)]);
holdon
plot(x,h2, 'b', 'linewidth',2);

$end

% h3, Rule 3: x1 is about +-pi/2,but bigger

%if x<0
h3=trimf (x, [e(1),e(2),e(2)]);
holdon;
plot(x,h3,'g', 'linewidth',2);
%else
h3=trimf(x, [e(4),e(4),e(5)]);
holdon;
plot(x,h3,'g', 'linewidth',2);
%end
% h4, Rule 4: x1 is about +-pi
%if x<0
hi=trimf (x, [e(1),e(1),e(2)]);
holdon;
plot(x,h4,'k', 'linewidth',2);
% else
hd=trimf (x, [e(4),e(5),e(5)]);
holdon;
plot(x,h4,'k', 'linewidth',2) ;

$end

(3) Simulink Program: chap5_3sim.md];

ut

4

P chap5_3ctrl

1

chap5_3plant

2

t

Clock To workspace

\ J

X

Paosition

(4) S function for controller design: chapS_3ctrl.m;

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]l=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[];

otherwise

error (['Unhandled flag = ' ,num2str (flag) 1) ;
end

function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =1;
sizes.NumInputs =2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =1[1;
str=1[1;
ts =[00];
function sys=mdlOutputs (t,x,u)
x=[u(l);u(2)];
loadK_file;
utl=K1l*x;
ut2=K2*x;
ut3=K3*x;
utd=Kd*x;
Ll=-pi;L2=pi;
L=L2-L1;
h=pi/2;
N=L/h;
fori=1:N+1
e(i)=L1+L/N*(i-1);
end
% hl
hl=trimf(x(1l),[e(2),e(3),e(4)]); %Rule 1:x1 is to zero
% h2, Rule 2: x1 is about +-pi/2,but smaller
if x(1)<=0

h2=trimf (x(1), [e(2),e(2),e(3)]);

else
h2=trimf (x(1), [e(3),e(4),e(4)]);
end
% h3, Rule 3: x1 is about +-pi/2,but bigger
if x(1)<0
h3=trimf (x(1), [e(1l),e(2),e(2)]);
else
h3=trimf(x(1), [e(4),e(4),e(5)]);
end
% h4, Rule 4: x1 is about +-pi
if x(1)<0
h4=trimf (x(1), [e(1l),e(l),e(2)]);
else
hi=trimf (x(1), [e(4),e(5),e(5)]);
end
hl+h2+h3+h4;
ut=(hl*utl+h2*ut2+h3*ut3+h4*ut4)/ (hl+h2+h3+h4) ;
sys(1l)=ut;

(5) Plot program: chap5_3plot.m.

closeall;

figure (1) ;

plot(t,x(:,1),'r',t,x(:,2),'b");

xlabel ('time(s) ') ;ylabel ('angle and angle speed response') ;
figure (2) ;

plot(t,ut(:,1),'r');
xlabel ('time(s) ') ;ylabel ('control input') ;

5.4 Simulation Example of YALMIP Toolbox

YALMIP is an independent Matlab toolbox, it has a strong ability to optimize the
solution, and the toolbox has the following features:

(1) YALMIP is a toolbox based on symbolic computing toolbox;

(2) YALMIP is a modeling language for defining and solving advanced opti-
mization problems;

(3) YALMIP toolbox is used to solve linear programming, integer programming,
nonlinear programming, mixed programming, and other standard optimization
problems and LMI problems.

YALMIP toolbox can be used to solve the LMI problem. LMI constraints can be
described by the command “set,” without specific description of the location and
content of the inequality, the results can be used to view by “double.”

YALMIP toolbox can be downloaded from the network for free; the toolbox
name is “yalmip.rar”.

For example, consider a LMI as

AP+ F'B"P+ PA + PBF <0 (5.20)
—2548 9.1 0 1 00
set A= 1 -1 of, B={(0 1 0],
0 —-142 0 0 0 1
1000000 0 0
P = 0 1000000 0 , solve the LMI by YALMIP toolbox, we
0 0 1000000
—492.4768 —5.05 0
can get F = —5.05 —494.0248 6.6
0 6.6 —495.0248

Program: chap5_4.m

clear all;

close all;

%First example
A=1[-2.5489.10;1-11;0-15.201;
B=[100;010;0011;

F = sdpvar(3,3);
P=1,000,000*eye(3);

FATI = (A' + F'*B')*P + P* (A + B*F) ;
$LMI description

L = set (FAI < 0);

solvesdp (L) ;

F = double (F)

References

1. M. Sugeno, G.T. Kang, Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets Syst.
18, 329-346 (1986)

2. K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst.
45(2), 135-156 (1992)

3. H.O. Wang, K. Tanaka, M.F. Griffin, Parallel distributed compensation of nonlinear systems by
Takagi-Sugeno fuzzy model, International Joint Conference of the Fourth IEEE International
Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium,
1995. pp. 531-538

4. S. Farinwata, D. Filev, R. Langari, Fuzzy Control: Synthesis and Analysis (Wiley, 2000)

5. H.O. Wang, K. Tanaka, M. Griffin, An analytical framework of fuzzy modeling and control of
nonlinear systems: stability and design issues. Am. Control Conf. 3, 2272-2276 (1995)

Chapter 6
Adaptive Fuzzy Control

6.1 Adaptive Fuzzy Control

Since the idea of fuzzy system universal approximation theorem was introduced [1],
adaptive fuzzy control techniques have undergone great developments and have
been successfully applied in many fields such as learning, pattern recognition,
signal processing, modeling, and system control. The major advantages of adaptive
fuzzy control greatly motivate the usage in nonlinear system identification and
control [2].

There are several reasons that have motivated vast research interests in the
application of adaptive fuzzy control for control purposes, as alternatives to tradi-
tional control methods, among which the main points are:

(1) Better performance is usually achieved since adaptive fuzzy controller can
adjust itself to the changing environment.

(2) Modeling is not needed, and the adaptive law can help to learn the dynamics of
the plant during operation.

6.2 Fuzzy Approximation

6.2.1 Fuzzy System Design

Step 1. Define N; fuzzy sets A!, A,-2 . Aﬁv" in [o;, B;], and design membership
functions fi1, ..., f,n;.
Step 2. Design M = N; X N, fuzzy rules in the following form:

R%: if x; is A} and x; is AL then y is B™

where i1:1,2,...,N1, i2=1,2, ...,N2.

Fig. 6.1 Example of fuzzy 4 X,

sets 5 5
Ay~ ey opommmoooes pooooee- poooeeoes !
I I I
4 3 3 3
4
R e
i i i
} : : :
4, T T T :
i i i
2 i i i
I I I
4, P bommoeeees booooeeee !
i i i
I I I
N IR
2T ‘3% ! 3 14 "
1 € € C
I I
: :
1 2 3 ' g4
Al Al Al Al
The center of fuzzy set B is designed as
it (i i
y‘z—g(ell7 ezz) (6.1)

Step 3. Design fuzzy system f(x) from the above N; x N, fuzzy rules by using
product inference engine, singleton fuzzifier, and center average defuzzifier:

N Na
Dot D yl”z(ﬂA? (xl)ﬂA;z (x2))
N N
Zillzl i22:1 (:“A"ll (xl)ﬂAiz (x2))

fx) = (6.2)

Figure 6.1 shows an example of fuzzy sets with Ny =4, N, =5, o1 = op = 0,
and ﬁl = /32 = 1

6.2.2 Fuzzy System Approximation

Fuzzy system approximation is based on universal approximation theorem as
follows.

Theorem 6.1 Universal approximation theorem [1, 2]
Let f(x) be the fuzzy system (6.2); if g(x) is continuously differentiable on
U=][a, p;]x[o1 p,], then we can get the approximation accuracy as

Jg Jg
— <=2l h || h 6.3
Is f|oc_H8leml+H8x2 z (63)
where
P :+1—] | —
hi = nglgaﬁifl‘ei efli=1, 2) (6.4)

where |||, is defined as ||d(x)||,.= sup|d(x)|.
xeU

From (6.4), we can get a conclusion: If the number of fuzzy sets of x; is N; ,and
the length of its range is L;, then the approximation accuracy of fuzzy system is
— L i > L
h; = N1 ,that is N; > Tt 1.
From the theorem, we can get the following conclusions:

(1) In the universal approximation (6.3), for ¢ > 0, if we design s; and &, as small

Og
o ||t

Sell Jo<e and suplg(x) — /()] =
xe€

enough, we can get

llg — fll, <& can be ensured.
(2) Since N; > % 41, the more fuzzy sets designed are, the smaller value of A; is.

That is, to get more approximation accuracy of fuzzy system, we must design
more fuzzy sets.

(3) To design a fuzzy system with a specified accuracy, we must get Z—f and
i),—f , and we must also get the value of g(x) at x= (el e),
(i|:17 2a Ty Nl7i2:17 2a Ty NZ)

6.2.3 Simulation Example

6.2.3.1 One Dimension Function Approximation

Consider one dimension function as
g(x) = sinx (6.5)

where x € [-3, +3].
Define triangle membership function in [L; L,] as shown in Fig. 6.2. The
fuzzy system is designed as

S sin(ef) py (x)
SV ()

f(x) = (6.6)

If we choose N = 30, then MF design and function approximation are shown in
Figs. 6.3 and 6.4. If we choose N = 50, then the function approximation error is

Fig. 6.2 Membership 1
function
0.

©

0.

(e}

0.

S

0.

N

0

0

L

00

Fig. 6.3 Function 100
approximation

20

20

40 60 80 100

Fig. 6.4 Function 1
approximation error (N = 30)

0 20

40 60 80 100

shown in Fig. 6.5. We can see that the more fuzzy sets are designed, the smaller the

approximation error is gotten.

Matlab program: chap6_1.m

$Fuzzy approximation
clear all;

close all;

Fig. 6.5 Function 0.4 T T
approximation error (N = 50)

0 20 40

L1=-3;L2=3;
L=L2-L1;

h=0.2;
N=L/h+1;
T=0.01;

x=L1:T:L2;
for i=1:N
e(i)=L1+L/(N-1)*(i-1);

end

c=0;d=0;
for j=1:N
if j==
u=trimf (x, [e(1l),e(l),e(2)]); %The first MF
elseif j==
u=trimf (x, [e(N-1),e(N),e(N)]); %The last MF
else
u=trimf (x, [e(j-1),e(]),e(J+1)]);
end
hold on;
plot(x,u);
c=c+sin(e(3)) *u;
d=d+u;
end

xlabel ('x') ;ylabel ('Membership function') ;

for k=1:L/T+1
f(k)=c(k)/d(k);

end

60 80 100

y=sin(x) ;

figure (2) ;

plot(x, £, 'b',x,y,'x");

xlabel ('x'") ;ylabel ('fx approximation') ;
figure (3) ;

plot(x, f-y, 'r');

xlabel ('x");ylabel ('approximation error') ;

6.2.3.2 Two Dimension Function Approximation
Consider two dimension function as
g(x) = 0.524+0.1x% +0.28 %3 — 0.06x1x2

Define triangle membership function in U =[—1 1] x[—1
Figs. 6.6 and 6.7; the fuzzy system is designed as

le 1212 18(911 elz)ﬂA"l (x1) Mair (x2)
le 1 Zizzl fan (X1) fan (x2)

fx) =

Choose N1=N2=11, the results are given in Figs. 6.8 and 6.9.

Fig. 6.6 Membership 1

(6.7)

1] as shown in

(6.8)

A

Fig. 6.7 Membership 1

|

Fig. 6.8 Function
approximation

Fig. 6.9 Function
approximation error

Program name: chap6_2.m

$Fuzzy approximation
clear all;

close all;

T=0.1;
x1=-1:T:1;
x2=-1:T:1;

L=2;
h=0.1;
N=L/h+1;

for i=1:1:N SN MF
for j=1:1:N
el (i)=-1+L/(N-1)*(i-1);
e2(j)=-1+L/(N-1)*(3-1);
gx(1,3)=0.52+0.1%el(i)"3+0.28*%e2(j)"3-0.06%el(i)*e2(J);
end

end

df=zeros (L/T+1,L/T+1);
cf=zeros (L/T+1,L/T+1);
form=1:1:N %ul change from 1 to N
if m==1
ul=trimf(x1l, [-1,-1,-1+L/(N-1)]); $%$Firstul
elseif m==N
ul=trimf(x1, [1-L/(N-1),1,11); %Last ul
else
ul=trimf (x1, [el(m-1),el(m),el(m+1l)]);
end
figure (1) ;
hold on;
plot(x1l,ul);
xlabel ('x1') ;ylabel ('Membership function') ;

forn=1:1:N %$u2 change from 1 to N
if n==1
u2=trimf (x2, [-1,-1,-1+L/(N-1)]); SFirstu2
elseif n==N
u2=trimf (x2, [1-L/(N-1),1,1]); %Last u2
else
u2=trimf (x2, [e2(n-1),e2(n),e2(n+l)]1);
end
figure (2) ;
hold on;
plot (x2,u2);
xlabel ('x2"') ;ylabel ('Membership function') ;

for i=1:1:L/T+1
for j=1:1:L/T+1
d=df (i,J)+ul(i)*u2(Jj);
df (i, j)=d;
c=cf (i,J)+gx(m,n)*ul (i) *u2(j);
cf(i,3)=c;
end

end

for i=1:1:L/T+1
for j=1:1:L/T+1
f(i,3)=cf(i,3)/df(i,3);
v(i,3)=0.52+0.1*x1(1)"3+0.28*x2(3j)"3-0.06*x1(1)*x2(3);
end

end

figure (3) ;
subplot (211) ;
surf (x1,x2,f);
title('£(x)"');
subplot (212) ;
surf (x1,x2,V);
title('g(x)"');
figure (4) ;

surf (x1,x2, f-y);

title('Approximation error') ;

6.3 Adaptive Fuzzy Controller Design

6.3.1 Problem Description
Consider a dynamic system as
0 :f(e, é) tu (6.9)

where 0 is angle and u is control input.
We can rewrite (6.9) as

X = X
X =f(x)+u (6.10)
where x; = 0, f(x) = f(x1,x2) :f(e, 6) is unknown.
Assuming ideal angle is x4, then we get
e=X| —Xq, 6 =X —Xq
Define error function as
s=ce+eé,c>0 (6.11)

then
§=cet+é=ce+iy—Xg=ce+f(x)+u—3i

From (6.11), we have if s — O ,then ¢ — 0 and ¢ — 0.

6.3.2 Fuzzy Approximation

Using the universal approximation theorem of fuzzy system, we design fuzzy
system £ (x|0) to approximate f(x).

Consider the input x; and x,, we design five MF, then we getn =2, i =1, 2,
p1 =p2 =5, and we can get p; X py = 25 fuzzy rules.

We use two steps to construct fuzzy system f(x|0) as follows:

Step 1: For the variable x; (i = 1, 2), define p; fuzzy sets Af" (i=1,2,3,4,5);
Step 2: Use [] pi = p1 X p2 = 25 fuzzy rules to construct fuzzy system f(x|6). The

i=1
Jjth fuzzy rule is expressed as

RU):if x; is A} and x, is A7 then f is B2 (6.12)

where ; =1,2,3,4,5,i=1,2,j=1,2,---, 25, B"" is the fuzzy sets off.
Then, the first and the twenty-fifth fuzzy rule can be expressed as

RW:if x; is Al and x, is Al thenf is E'
R®):if x; is A} and x, is A] then f is E?

The fuzzy inference is designed as follows:

(1) Using product inference engine for the premise of fuzzy rule, we can get
2
Hl i ()-

(2) Use singleton fuzzifier to get y.'2, where 312 = f(x, x,) is the point [x;, x,] at
which pgy, (j}i‘lz) achieves its maximum value, and we assume that

Shiby _
Mgl (yf) =1.0.
(3) Using product inference engine for the premise and conclusion of fuzzy rule,

2
then we get ;" (H By (x,-)), and using the union operator for different fuzzy

rules, then we can get the output of fuzzy system as le 1212 LRl

<iI——[l Kyl (x,-)) :

(4) Using the center average defuzzifier, we can get output of the fuzzy system.

D REL (i)

7ixl0) =
S (M)

(6.13)

_ 5T .
Let)7;) L to be freedom parameter, 0 = [y} yfzs] is a parameter vector,

introduce the fuzzy basis vector &(x), then (6.13) becomes

F(x]0) = 0"¢(x) (6.14)

n
where &(x) is fuzzy basis vector with [] p; = p1 X p2 = 25 elements, its [/, th

i=1
element is

f[:uAii (x;)
&1, (x) = - (6.15)
22:1 2152:1 <ﬁl #Aii (xi))

6.3.3 Adaptive Fuzzy Control Design and Analysis

We set the optimum parameter as

0" = arg min [sup V‘(x|0) —f(x)|] (6.16)
0cQ eR?
Then,

f(x) = 0TEx) +e

where ¢ is the approximation error.

F) =F(x) = 0TE(x) +6 = 0¢(x) = —0"E(x) +¢

Define Lyapunov function as

1 -

where y >0, 0 =8 — 0"
Then, 0= 9, and

. 1~ 1-
V= st SO0 = s(ee+f(x) +u—5a) + 2070

Design control law as

u=—ce—f(x)+%x — nsgn(s) (6.18)

Then,

V = s(f(x) — J(x) — nsgn(s)) + %éTé

= s(—0"¢(x) +e& — nsgn(s)) + %éTﬂ
= es —n|s| + 0" (%9 — sf(x))

Choosing 1 > |¢| .« +Ho- 1o > 0, then adaptive law is

0 = ysé(x) (6.19)
Then, V = &s — n|s| < — 1|s| <O0.
From above analysis, we can see that fuzzy system approximation error can be
overcome by the robust term 7 sgn(s).
From V< — ols| <0, we have

t t t
/ Vdr < — 110/ |s|dt,ie. V() — V(0) < — 110/ |s|dr
0 0 0

Then V is limited, s and 0 are all limited, from § expression, § is limited, the
fooc |s|dt is limited. From Barbalat Lemma [3], when — oo, we have s — 0, then
e—0,¢e—0.

Since V is limited as t — oo, thus 0 is limited. Since when V = 0, we cannot get
6 = 0, 6 will not converge to 6"

6.3.4 Simulation Example

Consider the plant as

jC] = X2

562 :f(x) +u

where f(x) = 10x;x;.

09r

0.8

0.7F

06

0.5

04}

03

Membership function degree

0.2f

0.1F

Fig. 6.10 MF of x;

We consider that ideal position signal is x4(¢) = sin#, and choose five MF to
fuzzy x; as follows:

i (x) = exp| (i +/3)/(n/12))?],
s () = exp | —((xi+7/6)/ (x/12))]
() = exp |~/ (n/12))].

s () = exp [~((xi = 7/6)/(/12))]

o) = exp| — (i — 7/3)/ (n/12))?].

Then, we can get 25 fuzzy rules to construct fuzzy system f . The MF is given as
Fig. 6.10.

We use FS,, FS; and FS to express the &(x) in the program. The initial states of
the plant are [0.15,0], we use the control law (6.18) and adaptive law(6.19), the
initial value of is set as 0.10, and choose ¢ = 15, y = 5000, # = 0.50. The
simulation results are shown in Figs. 6.11 and 6.12.

position tracking

speed tracking

0 2 4 6 8 10 12 14 16 18 20
time(s)

Fig. 6.11 Position and speed tracking

50 T T T T T T T T T

40| .

30 1

20 | 1

10 4

f approximation

2 4 6 8 10 12 14 16 18 20
time(s)

Fig. 6.12 f(x) and f(x)
Simulation programs:

(1) Membership function design: chap6_3mf.m

clear all;

close all;

Ll=-pi/3;
L2=pi/3;
L=L2-L1;

T=L*1/1000;

x=L1:T:L2;

figure (1) ;

for i=1:1:5
gs=-[(x+pi/3-(i-1)*pi/6)/(pi/12)]."2;
u=exp (gs) ;
hold on;
plot(x,u);

end

xlabel ('x") ;ylabel ('Membership function degree') ;

(2) Simulink main program: chap6_3sim.md

Pasition

A :
|V ji
Mux chap6_3ctrl ®| chap6_3plant P Demux
Sine Wave &
S-Function S-Function1 »

Y

fx

id

Clock To Waorkspace

(3) S function of control law: chap6_3ctrl.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
casel,
sys=mdlDerivatives(t,x,u);
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[1];
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 25;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =4;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0=[0.1*ones (25,1)1;
str=[];
ts=[00];
function sys=mdlDerivatives (t,x,u)
xd=sin(t);
dxd=cos (t) ;

x1l=u(2);
x2=u(3);
e=x1-xd;
de=x2-dxd;
c=15;

s=c*e+de;
xi=[x1;x2];

FS1=0;

for 11=1:1:5
gsl=-[(x1l+pi/3-(11-1)*pi/6)/(pi/12)]1"2;
ul (11) =exp(gsl) ;

end

for 12=1:1:5
gs2=-[(x2+pi/3-(12-1)*pi/6)/ (pi/12)]1"2;
u2(12)=exp(gs2) ;
end
for 11=1:1:5
for 12=1:1:5
FS2 (5% (11-1)+12)=ul(11)*u2(12);
FS1=FSl+ul(11)*u2(12);
end
end
FS=FS2/ (FS1+0.001) ;

for i=1:1:25
thta(i,1)=x(1i);

end

gama=5000;

S=gama*s*FS;

for i=1:1:25
sys(i)=S(i);
end
function sys=mdlOutputs (t,x,u)
xd=sin(t) ;
dxd=cos (t) ;
ddxd=-sin(t) ;

x1l=u(2);
x2=u(3);
e=x1-xd;
de=x2-dxd;
c=15;

s=c*e+de;
xi=[x1;x2];

FS1=0;
for 11=1:1:5
gsl=-[(x1l+pi/3-(11-1)*pi/6)/ (pi/12)]1"2;
ul (11) =exp(gsl) ;
end
for 12=1:1:5
gs2=-[(x2+pi/3-(12-1)*pi/6)/(pi/12)]1"2;
u2 (12) =exp(gs2) ;
end
for 11=1:1:5
for 12=1:1:5
FS2 (5% (11-1)+12)=ul(11) *u2(12);
FS1=FSl+ul(11)*u2(12);
end
end
FS=FS2/ (FS1+0.001) ;

for 1=1:1:25
thta(i,1)=x(1i);

end
fxp=thta'*FS";
xite=0.50;

ut=-c*de+ddxd-fxp-xite*sign(s) ;

sys(1l)=ut;
sys(2)=fxp;

(4) S function of plant: chap6_3plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
casel,

sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs(t,x,u) ;
case {2, 4, 9}

sys = [1;
otherwise

error (['Unhandled flag = ' ,num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =3;
sizes.NumInputs =2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes(sizes);
x0=[0.15;0];
str=[];
ts=[1;
function sys=mdlDerivatives (t,x,u)
ut=u(l);

£=3%(x(1)+x(2));

sys(1)=x(2);

sys (2)=f+ut;

function sys=mdlOutputs (t,x,u)
£=3%(x(1)+x(2));

sys(1)=x(1);
sys(2)=x(2);
sys (3)=f;

(5) Plot program: chap6_3plot.m

close all;

figure (1) ;

subplot (211) ;
plot(t,x(:,1),'r',t,x(:,2),'b");

xlabel ('time(s) ') ;ylabel ('position tracking') ;
subplot (212) ;
plot(t,cos(t),'r',t,x(:,3),'b");

xlabel ('time(s) ') ;ylabel ('speed tracking') ;
figure (2) ;

plot(t,f(:,1),'r',t,£(:,3),'b");

xlabel ('time(s) ') ;ylabel ('f approximation') ;

6.4 Adaptive Fuzzy Control Based on Fuzzy System
Compensator

6.4.1 System Description

A typical manipulator is described as shown in Fig. 6.13.
The dynamic equation with n-joint manipulator can be described as

D(q)§+C(q,9)§+G(@)+F(g)+ta=7 (6.20)

Fig. 6.13 A 8-joint
manipulator

where g € R" is the generalized coordinates; D(g) € R™" is the symmetric,
bounded, positive definite inertia matrix; C(g,q)q € R" presents the centripetal and
Coriolis torques; G(q) € R" , F(q) € R", 4 € R", and t € R” represent the grav-
itational torques, friction, disturbance, and applied joint torques, respectively.

The dynamic equation with n-joint manipulator is characterized by the following
structural properties.

Property 1: D(q) is the symmetric, bounded, positive definite inertia matrix; for
known positive constant m; and m,, there exists m I <D(q) <myl;

Property 2: Using a proper definition of matrix C(q,), both D(q) and C(q, q) are
not independent and satisfy

x"(D-2C)x=0 (6.21)

that is, xT (D -2C)x =0 is a skew-symmetric matrix.
This property is simply a statement that the so-called fictitious forces, defined by
C(q,q)q, do not work on the system. This property is utilized in stability analysis.

Property 3: C(q,q) is limited, that is, for known c(g), there exists ||C(q,q)l|]

<cv(g)llqlls
Property 4: For the unknown disturbance g4, ||74|| < Tm , T™ is a positive constant.

A typical rigid two-joint manipulator is shown in Fig. 6.14.
Just like the Eq. (6.20), we consider that the dynamic equation with n-joint
manipulator can be described as

D(q)§+C(q.4)4+G(q)+F(q.4,4) == (6.22)

where F(q,q,§) consists of friction force F,, disturbance 74, and uncertainties.

Fig. 6.14 A Two-joint
manipulator

6.4.2 Adaptive Fuzzy Control Design and Analysis

Assume D(q), C(q,q) and G(q) are known, and define sliding mode function as
s=q+Aq (6.23)

where A is a positive definite matrix, §(z) is the tracking error, §(t) = q(z) — q4(1),
and g4(¢) is the ideal angle.
Define

q,(1) = 4q4(1) — Aq(2) (6.24)
Considering F(q,q,q) as unknown nonlinear function, we design the fuzzy

system F(q,§,§|®) to approximate F(q,q,{§).
The fuzzy system F(q,q,§|@) can be described as

Fléméi@lg 01¢(q.4.4)
~ Lo F2 q7q7q @2 @2§(q7q7q)
F(q,4,40) = : = : (6.25)
F.(q.4,40,) 0)¢(q,4.4)
where &(q,4,q) is fuzzy basis function vector.
Define Lyapunov function as
l n ~T -
V(t)==|s"D 0, TI,0; 6.26
0=} (e 3-0lre) (629
where @; = O — 0;, 07 is ideal weight value, I'; > 0.
Since s = g+ A4 = q — 4, + Ag = ¢ — g, ,then
S=q+AG=4 -4+ A3=4-4,
Ds =Dg—Dg.=t—Cq—G—F —Dg,
and then,
. 1 . "1 2
V(t) = s"Ds+ =s'D 0,0,
(t) =s Ds+ 55 Ds + ; ;
= §T(~1+C4+G+F+Dj, —Cs)+ > 0, I0, (6.27)

= —s"(D§,+C4,+G+F —1)+) 0. 10,
i=1

i=

To overcome the approximation error, adaptive fuzzy control law with robust
term is designed as

where Kp = diag(K;), K; >0,
W = diag[wy,, - -, wm, |, wm, > o, i = 1,2, n.
The fuzzy approximation error is

®=F(q,4.4) — F(¢.4,4/0") (6:29)
Define the adaptive law as
0 =-T7"'58(q.4.,8),i=1,2,n (6.30)
Substituting control law (6.28) and adaptive law (6.30) into (6.27), we can get
V(t)< —s"Kps

From above analysis, we can see that fuzzy system approximation error can be
overcome by the robust term Wsgn(s).
From V(¢) < — s"Kps, we have

t t t
/ Vdt < — o (Kp) / Isl|de,i.e.V(2) — V(0) < — Juin () / lsl|d
0 0 0

Then V is limited, s and (:)i are all limited, from § expression, § is limited, the
Jo* lIs||dt is limited. From Barbalat Lemma [3], when r — oo, we have s — 0, then
e—0,e—0.

Since V is limited as ¢t — oo, thus @); is limited. Since when V = 0, we cannot
get @; = 0, @ will not converge to @".

Considering fuzzy system F(q, ¢,§|®), if we select k fuzzy labels on each input
variable of the FLS for n-link robot manipulator, the fuzzy compensator needs k*"
fuzzy rules [4].

For example, considering two-joint manipulator, we use F(gq,q,§|®) to
approximate F(q,q,§), then we have n = 2 ,and there are three input variables for
each joint; if we design 5 MF for each input variable, the fuzzy rules will be
53%2 = 56 = 15625, which will cost much more calculation time.

To solve this problem, therefore, we need to consider the methods to reduce the
number of fuzzy rules; one way is to consider the properties of robot dynamics and
uncertainties.

6.4.3 Only Consider Friction

If we only consider friction force, then we can get F(q,q,4) = F(q). For this
condition, we can consider to design one input fuzzy system F (410) to approximate

F(q,4,4).
Then from (6.28), the adaptive robust fuzzy control law becomes

© = D(q)i; +C(4,9)d. + G(q) + F(4|0) — Kps — Wsgn(s) (6:31)
And the adaptive law (6.30) becomes
0 =—T7'5:¢().i=1,2,n (6.32)

The fuzzy system is designed as

Fi(q,) z; ;(‘11)
F(qlo) = Fz(flz) _ | % .(‘12)
Fn(qn) Ozgn(qn)

6.4.4 Simulation Example

Consider a two-joint rigid manipulator dynamic Eq. (6.20) as
(Dii1(q2) Di2(q2)) (511 > . <—C12(42)512 —C12(q2) (4 +512)> <g1(q1 +‘12)g>
Dai(q2) Dnl(q2)) \ 42 Cia(g2)dn 0 82(q1+a2)8

+n%¢®—<?>

where
Di1(q2) = (my + mz)rf + mzrg + 2myriry cos(q2)
Di2(q2) = D21(q2) = mar; +marira cos(qn)
Dx(q2) = mar;

Ci2(q2) = mariry sin(qa)

Lety = [q1,q2]T, T= [‘Cl,fz]T, q= [ql q1 ¢» QQ]T, choose 1 =1.0, 1 =0.8,
my =10,m =1.5.
Consider ideal trajectory as yq; = 0.3sint and yg = 0.3 sin¢. Define member

function as
X; —)_Cf 2
ﬂAi (‘xi) = exp - 71_/24

where i = 1,2,3,4,5, Scf is chosen as —m/6 , —n/12 ,0, ©/12 ,and /6, respec-
tively, and A; is designed as NB, NS, ZO, PS, PB.

Choose parameters of the control law as A, =10, 4, =10, Kp =201,
I'y = I'; = 0.0001, the initial states of the plant are chosen as g;(0) = ¢2(0) =
104, + 3sgn(qy)
104, + 3sgn(q2)

¢1(0) = ¢2(0) = 0 ,the friction model is F(g) = [] and the dis-

0.05 sin(20¢)
0.1 sin(20¢) }

Using the robust adaptive control law (6.31) with the adaptive law (6.32), in the
fuzzy system, the inputs are chosen as [g; ¢z]. Choose ©;(0) =0.10, and let
W = diag[1.5, 1.5]; the simulation results are shown in Figs. 6.15, 6.16, 6.17, and
6.18.

turbance is 7q = [

Angle tracking of first link

0.4 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time(s)

Angle tracking of second link

Fig. 6.15 Angle tracking

0.5 T T

Angle speed tracking of second link Angle speed tracking of first link

=)
s

g
&
[
=)

Angle speed tracking

Fig. 6.17 Friction force and
compensation

F and Fc

F and Fc

time(s)

Fig. 6.18 Control input

Simulation programes:

(1) Simulink main program:

Control input of Link2 ~ Control input of Link1
%’.
[0
@

100 T T

50

chap6_4sim.mdl

8 10

>
Muze yd1
- I »
P it »
| To Worspace1
Derivative Muwx2
.
To Workspace3
Sine Wave
chap8_dctrl - chap@_4plant
S-Function S-Function1
Mux1
Sine Wave1
>
m To Werspace2
Derivative1 Mux3
10
To Wi
Cloo: © Worlspace

(2) S function of Control law

: chap6_4ctrl.m

function [sys,x0,str,ts] = MIMO_ctrl (t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,
sys=mdlDerivatives (t,x,u) ;
case 3,
sys=mdlOutputs(t,x,u) ;
case {2,4,9}
sys=[1];
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
global nmnl nmn2 Fai
nmnl=10;nmn2=10;
Fai=[nmnl 0;0 nmn2] ;

sizes = simsizes;

sizes.NumContStates 10;

sizes.NumDiscStates 0;

sizes.NumOutputs =4;
sizes.NumInputs =8;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;
sys = simsizes (sizes) ;

x0 = [0.1*ones(10,1)];
str = [];

ts =[1;

function sys=mdlDerivatives (t,x,u)
global nmnl nmn2 Fai
gdl=u(l);

qgd2=u(2);

dgdl=0.3*cos (t) ;
dgd2=0.3*cos (t) ;
dgd=[dqdl dgd2]';

ddgdl=-0.3*sin(t) ;
ddgd2=-0.3*sin(t) ;
ddgd=[ddqdl ddad2] ' ;

gl=u(3);dgl=u(4);
a2=u(5) ;dg2=u(6

(
%3 %5%%%%%%%%%%

)

)i

B35 9525355%%3%%3%%%

fsd1=0;

for 11=1:1:5
gsl=-[(dqgl+pi/6-(11-1)*pi/12)/(pi/24)1"2;
ul (1l1l)=exp(gsl) ;

end

fsd2=0;

for 12=1:1:5
gs2=-[(dg2+pi/6-(12-1)*pi/12)/(pi/24)]1"2;
u2(12)=exp(gs2);
end
for 11=1:1:5
fsul (11)=ul(1l1l);
fsdl=fsdl+ul (11);
end
for 12=1:1:5
fsu2(12)=u2(12);
fsd2=£fsd2+u2(12) ;
end
fsl=fsul/ (£sd1+0.001) ;
fs2=fsu2/ (£sd2+0.001) ;
B R R R R TR R R R TR TR T R R T e
el=gl-qgdl;
e2=gq2-qd2;
e=[el e2]"';
del=dgl-dqgdl;
de2=dg2-dgd?2;
de=[del de2]"';

s=de+Fai*e;
Gamal=0.0001;Gama2=0.0001;

Sl=-1/Gamal*s (1) *fsl;

S2=-1/Gama2*s(2) *£s2;

for i=1:1:5
sys(i)=S1(1i);

end

for j=6:1:10
sys(3)=S2(3-5);

end

function sys=mdlOutputs (t,x,u)
global nmnl nmn2 Fai
gl=u(3);dgl=u(4);

a2=u(5) ;dg2=u(6) ;

rl=1;r2=0.8;
ml=1;m2=1.5;

D11=(ml+m2) *rl1"2+m2*r2°2+2*m2*rl*r2*cos (q2) ;
D22=m2*r2"2;

D21=m2*r2"2+m2*rl*r2*cos (g2) ;

D12=D21;

D=[D11 D12;D21 D22] ;

Cl2=m2*rl*sin(qg2) ;
Cc=[-C12*dqg2 -C12* (dgl+dqg2) ; C12*gl 0] ;

gl=(ml+m2)*rl*cos(g2)+m2*r2*cos (gl+qg2) ;
g2=m2*r2*cos (gql+qg2) ;
G=I[gl;g2];

gdl=u(1);
gd2=u(2);
dgdl=0.3*cos (t) ;
dgd2=0.3*cos (t) ;
dgd=[dgdl dgd2] ' ;

ddgdl=-0.3*sin(t) ;
ddgd2=-0.3*sin(t) ;
ddgd=[ddgdl ddgd2] ' ;

el=gl-qdl;
e2=g2-qd2;
e=[el e2]"';
del=dgl-dqgdl;
de2=dg2-dgd2;
de=[del de2]"';

s=de+Fai*e;

dgr=dgd-Fai*e;
ddgr=ddgd-Fai*de;

for i=1:1:5
thtal(i,1)=x(1i);

end

for i=1:1:5
thta2(i,1)=x(i+5);

end

fsd1=0;

for 11=1:1:5
gsl=-[(dgl+pi/6-(11-1)*pi/12)/(pi/24)]1"2;
ul (11)=exp(gsl);

end

£sd2=0;

for 12=1:1:5
gs2=-[(dg2+pi/6-(12-1)*pi/12)/ (pi/24)]1"2;
u2(12)=exp(gs2);

end

for 11=1:1:5
fsul(11l)=ul(11);
fsdl=£fsdl+ul(11);

end

for 12=1:1:5
fsu2(12)=u2(12);
fsd2=fsd2+u2(12) ;

end

fsl=fsul/ (£sd1+0.001) ;

fs2=fsu2/ (£sd2+0.001) ;

Fp(l)=thtal'*fsl"';
Fp(2)=thta2'*fs2"';

KD=20*eye(2) ;
W=[1.50;01.5];

tol=D*ddgr+C*dqr+G+1*Fp'-KD*s-W*sign(s); %(4.134)

sys(1l)=tol(1);
sys(2)=tol(2);
sys(3)=Fp(l);
sys(4)=Fp(2);

(3) S function of Plant: chap6_4plant.m

function [sys,x0,str,ts]=MIMO_plant(t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,
sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}
sys = [];
otherwise
error (['Unhandled flag = ' ,num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 4;

sizes.NumDiscStates

1}
o

sizes.NumOutputs =6;
sizes.NumInputs =4;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);
x0=[0000];

str=[];

ts=[1];

function sys=mdlDerivatives (t,x,u)
rl=1;r2=0.8;
ml=1;m2=1.5;

D1l=(ml+m2) *rl1" "2+m2*r2°2+2*m2*rl*r2*cos(x(3)) ;
D22=m2*r2"2;

D21=m2*r2"2+m2*rl*r2*cos(x(3));

D12=D21;

D=[D11 D12;D21 D22];

Cl2=m2*rl*sin(x(3));
C=[-Cl2*x(4) -C1l2* (x(2)+x(4));Cl2*x (1) 0];

gl=(ml+m2) *rl*cos (x(3))+m2*r2*cos (x(1)+x(3));
g2=m2*r2*cos (x(1)+x(3));
=[gl;g2];

Fr=[10*x(2)+3*sign(x(2));10*x(4)+3*sign(x(4))1];
told=[0.05*sin(20*t);0.1*sin(20*t)];

tol=[u(l) u(2)1';
S=inv (D) * (tol-C* [x(2);x(4)]1-G-Fr) ;

sys(1)=x(2);
sys(2)=S(1);
sys(3)=x(4);
sys(4)=S(2);

function sys=mdlOutputs (t,x,u)
Fr=[10*x(2)+3*sign(x(2));10*x(4)+3*sign(x(4))1;

sys(1l)=x(1);
sys (2)=x(2);
sys (3)=x(3);

(
% (
x(3);
sys (4)=x(4);
sys(5)=Fr(1l);

sys(6)=Fr(2);

(4) Plot program: chap6_4plot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,ydl(:,1),'r',t,y(:,1),'b");

xlabel ('time(s) ') ;ylabel ('Angle tracking of first link"') ;
subplot (212) ;

plot(t,yd2(:,1),'r',t,y(:,3),'b");

xlabel ('time(s) ') ;ylabel ('Angle tracking of second link') ;

figure (2) ;

subplot (211) ;

plot(t,ydl(:,2),'r',t,y(:,2),'b");

xlabel ('time(s) ') ;ylabel ('Angle speed tracking of first 1ink"');
subplot (212) ;

plot(t,yd2(:,2),'r',t,y(:,4),'b");

xlabel ('time(s) ') ;ylabel ('Angle speed tracking of second link') ;

figure (3) ;

subplot (211) ;
plot(t,y(:,5),'r",t,u(:,3),'b");
xlabel ('time(s)');ylabel ('F and Fc');
subplot (212) ;
plot(t,y(:,6),'r',t,u(:,4),'b");
xlabel ('time(s)');ylabel ('F and Fc');

figure (4) ;

subplot (211) ;

plot(t,u(:,1),'r");

xlabel ('time(s) ') ;ylabel ('Control input of Linkl") ;
subplot (212) ;

plot(t,u(:,2),'r");

xlabel ('time(s) ') ;ylabel ('Control input of Link2') ;

References
1. L.X.Wang, A Course in Fuzzy Systems and Control, (Prentice-Hall International, Inc., 1996)
2. L.X. Wang, Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2),

146-155 (1993)

3. P.A. loannou, J. Sun, Robust Adaptive Control, (PTR Prentice-Hall, 1996), pp. 75-76

4. B.K. Yoo, W.C. Ham, Adaptive control of robot manipulator using fuzzy compensator. IEEE
Trans. Fuzzy Syst. 8(2), 186-199 (2000)

Chapter 7
Neural Networks

7.1 Introduction

Neural networks are networks of nerve cells (neurons) in the brain. The human
brain has billions of individual neurons and trillions of interconnections. Neurons
are continuously processing and transmitting information to one another.

In 1909, Cajal found that the brain consists of a large number of highly con-
nected neurons which apparently can send very simple excitatory and inhibitory
messages to each other and can update their excitations on the basis of these simple
messages [1]. A neuron has three major regions: the cell body, the axon (send out
messages), and the dendrites (receive messages). The cell body provides the support
functions, the structure of the cell. The axon is a branching fiber which carries
signals away from the neurons. The dendrites consist of more branching fibers
which receive signals from other nerve cells.

The historical reviews of neural networks are as follows:

(1) In 1943, McCulloch and Pitts proposed first mathematical model of the neurons
and showed how neuron-like networks could be computed.

(2) The first set of ideas of learning in neural networks was contained in Hebb’s
book entitled The Organization of Behaviour in 1949.

(3) In 1951, Edmonds and Minsky built their learning machine using Hebb’s idea.

(4) The real beginning of a meaningful neuron-like network learning can be traced
to the work of Rosenblatt in 1962. Rosenblatt invented a class of simple
neuron-like learning networks which is called perceptron neural network.

(5) In a breakthrough paper published in 1982, Hopfield introduced a neural net-
work architecture which is called Hopfield network. This NN can be used to
solve optimization problems such as the traveling salesman problem.

(6) An important NN which has been widely used in NN is the back-error prop-
agation or backpropagation (BP). BP NN was first presented in 1974 by
Werbos and then was independently reinvented in 1986 by Rumelhart et al. [2].

Their book, Parallel Distributed Processing, introduced a broad perspective of
the neural network approaches.

(7) RBF neural networks were addressed in 1988 [3], which have recently drawn
much attention due to their good generalization ability and a simple network
structure that avoids unnecessary and lengthy calculation as compared to the
multilayer feed-forward network (MFN). Past research of universal approxi-
mation theorems on RBF have shown that any nonlinear function over a
compact set with arbitrary accuracy can be approximated by RBF neural net-
work [4]. There have been significant research efforts on RBF neural control for
nonlinear systems.

RBF neural network has three layers: the input layer, the hidden layer, and the
output layer. Neurons at the hidden layer are activated by a radial basis function.
The hidden layer consists of an array of computing units called hidden nodes. Each
hidden node contains a center ¢ vector that is a parameter vector of the same
dimension as the input vector x, the Euclidean distance between the center and the
network input vector x is defined by Hx(t) — (1) H

7.2 Single Neural Network

From Fig. 7.1, the algorithm of single neural network can be described as

Net; = ZWUXI' +5; — 0,’ (71)
u; :f(Net,-) (72)
yi = g(u;) = h(Net;) (7.3)

where g(u;) = w;, y;i = f(Net;).

Fig. 7.1 Single NN model X u

1 i
x‘
w,
2
x, — 2 » —J
/

n
X

n

Nonlinearity characteristic function f(Net;) can be divided as three kinds as
follows:

(1) Threshold value

1 Net; >0
f(Net;) = {O Net, <0 (7.4)
The threshold function is shown in Fig. 7.2.

(2) Linear function

0 Net; < Nety,
f(Neti) = < kNet; Netjy<Net; <Net;; (75)
fmax Neri ZNetil

Choose Netjy = 30, Net;; = 70, fnax = 5.0, the linearity function is shown in
Fig. 7.3.
(3) Nonlinear function

Sigmoid function and Gaussian function are often used in neural network.
Sigmoid type is expressed as

1
J(Net;) = —— (7.6)
l4+e T

Choose T = 1.0, the sigmoid function is shown in Fig. 7.4.

Fig. 7.2 Threshold function 1
0.9

0.8

0.7

0.6

0.5

f(Neti)

0.4

0.3

0.2

0.1

Fig. 7.3 Linearity function 5

f(Neti)
N
[¢,]

0 10 20 80 90 100

Neti

Fig. 7.4 Sigmoid function 1

0.9 7
0.8 /
0.7

0.6 /
0.5
0.4

0.3 /
0.2 /

0.1 %

f(Neti)

7.3 BP Neural Network Design and Simulation

The backpropagation (BP) neural network is a multilayered neural network. Thus,
the BP algorithm employs three or more layers of processing unit (neurons).

7.3.1 BP Network Structure

Figure 7.5 shows a structure of a typical three-layered network for the BP algo-
rithm. The leftmost layer of units is the input layer to which the input data is
supplied. The layer after it is the hidden layer where the processing units are

Fig. 7.5 BP NN structure

input hidden output

interconnected to the layers before and after it. The rightmost layer is the output
layer. The layers shown in Fig. 7.5 are fully interconnected, which means that each
processing unit is connected to every unit in the previous layer and in the suc-
ceeding layer. However, units are not connected to other units in the same layer.

7.3.2 Approximation of BP Neural Network

BP neural network scheme for approximation is shown in Fig. 7.6.
BP neural network structure for approximation is shown in Fig. 7.7.
Classical BP neural network algorithm is described as follows:

(1) Feed-forward calculation

Input of hidden layer is

Xj = Zwijx,- (77)

Fig. 7.6 BP imati k) (k
1g approximation u (k) m y(k)
scheme L | ‘

v, (k)

Fig. 7.7 BP neural network
structure for approximation

Output of hidden layer is

=) = 1 (138)
then
/
g_fcj = xj’.(l — xj’)
Output of output layer is
Yolk) =D wio; (7.9)
J
Then, the approximation error is
e(k) = y(k) — yu(k)
Error index function is designed as
E= %e(k)z (7.10)

(2) Learning algorithm of BP

According to the steepest descent (gradient) method, the learning of weight
value wj, is

The weight value at time k4 1 is
Wjo(k + 1) = Wjo(k) + AWjO

The learning of weight value wy; is

OE o
Awij = —n=—=1n-e(k) - Yo
aWij 8W,‘j
Do O By Oy 05—) e x
where the chain rule is used, oy~ ox Ty g Wio * g5 " Xi = Wjo)H](l X)) - Xi.

The weight value at time k+ 1 is
W,‘j(k+ 1) = W,j(k) +AW,']'

Considering the effect of previous weight value change, the algorithm of weight
value is

wio(k+1) = wjo (k) + Awjo + ot (wjo (k) — wjo (k — 1)) (7.11)
where 7 is learning rate, « is momentum factor, n € [0, 1], « € [0, 1].

By using BP neural network approximation, Jacobian value can be calculated as
follows:

(k) _ Oyolk) _ yolk) 0% ax,
k)~ Duk) ox, o Zw,ox(Mwy - (713)

7.3.3 Simulation Example

The plant is as follows

3, Yk=1)
(k) = u(k) + ————
14 y(k — 1)

Input signal is chosen as u(k) = 0.5sin(67nz), let RBF neural network input
vector as x = [u(k) y(k)], NN structure is chosen as 2-6-1, the initial value of Wj,,
W;; is chosen as random value in [—1 +1], # = 0.50, « = 0.05.

The program is chap7_1.m, and the results are shown from Figs. 7.8, 7.9, and
7.10.

Fig. 7.8 BP approximation

y and yo

08 s s s s s s s s s
0 01 02 03 04 05 06 07 08 09 1
times
Fig. 7.9 BP approximation 0.1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
error
0 /\’V‘f—‘/&’_\r’——\&vﬁ
0.1 1
§ -0.2 1
® o3}]
0.4} .
0.5F 1
0.6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.1 02 03 04 05 06 07 08 09 1
times
Fig. 7.10 Jacobian value 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
identification 005 |

0 0.1 02 03 04 05 06 07 08 09 1
times

Simulation program: chap7_1.m

%$BP approximation
clear all;

close all;

xite=0.50;
alfa=0.05;

wjo=rands(6,1) ;

wjo_l=wjo;wjo_2=wjo_1;

wij=rands(2,6);

wij_l=wij;wij_2=wij;
dwij=0*wij;
x=[0,0]";

u_1=0;
y_1=0;

I=[0,0,0,0,0,01";
Tout=[0,0,0,0,0,0]";
FI=[0,0,0,0,0,01";

ts=0.001;
for k=1:1:1000

time (k) =k*ts;
u(k)=0.50*sin (3*2*pi*k*ts) ;
yvi(k)=u_1""3+y_1/(1l+y_172);

x(1)=u(k);
x(2)=y(k);

for j=1:1:6
I(3)=x"*wij(:,3);
Tout (j)=1/(l+exp(-I(3)));

end
vo (k)=wjo'*Iout; % Output of NNI networks
e(k)=y(k)-yo(k); % Error calculation

wjo=wjo_1l+ (xite*e (k)) *Iout+alfa* (wjo_l-wjo_2);

for j=1:1:6
FI(j)=exp(-I(3j))/(l+exp(-I(])))"2;
end

for i=1:1:2
for j=1:1:6
dwij (i,J)=e(k)*xite*FI(J)*wjo(J)*x(i);
end
End
wij=wij_l+dwij+alfa* (wij_1l-wij_2);

o0

3%%%%%%%%%%%%TJacobian%s%%%%%%%%%%%%%%
u=0;

for j=1:1:6
yu=yu+wjo (J) *wij (1,3) *FI(3);

<

end

dyu (k) =yu;

wij_2=wij_1;wij_l=wij;
wjo_2=wjo_1;wjo_l=wjo;

u_l=u(k);

y_1l=y(k);

end

figure (1) ;

plot(time,y, 'r',time,yo, 'b');
xlabel ('times');ylabel ('y andyo');
figure (2) ;

plot (time,y-yo, 'r');

xlabel ('times') ;ylabel ('error') ;
figure (3) ;

plot (time,dyu) ;

xlabel ('times') ;ylabel('dyu');

7.4 RBF Neural Network Design and Simulation

The radial basis function (RBF) neural network is a multilayered neural network.
Like BP neural network structure, RBF algorithm also employs three layers of
processing unit (neurons).

The difference between BP and RBF is that RBF have only output layer, and
activation function is Gaussian function instead of S function in hidden layer, which
will simplify the algorithm and decrease computational burden.

7.4.1 RBF Algorithm

The structure of a typical three-layer RBF neural network is shown as Fig. 7.11.
In RBF neural network, x = [xi]T is input vector. Assuming there are mth neural

nets, and radial basis function vector in hidden layer of RBF is h = [hj]T, h; is
Gaussian function value for neural net j in hidden layer, and

2
b = o]
J

C11 Clm
where¢ = [cj] = | © ... : | represents the coordinate value of center point

Cnl ot Cnm
of the Gaussian function of neural net j for the ith input, i=1,2,...,n,
j=1,2,...,m. For the vector b = [by,.. .7bm]T, b; represents the width value of

Gaussian function for neural net j.
The weight value of RBF is

W= Wi, W] (7.15)
The output of RBF neural network is

y(l) = wTh = Wlhl +W2h2 + te +Wmhm (716)

7.4.2 RBF Design Example with MATLAB Simulation

7.4.2.1 For Structure 1-5-1 RBF Neural Network

Consider a structure 1-5-1 RBF neural network, we have one input as x = xp,
and b: [b] bz b3 b4 bs]T, C:[Cll Cl2 C13 Cl4 Clj], h:
[h hy hs he hs]'. w=[wi wr ws wy ws], and y(r)=w'h=
Wwihy +wahy +wshs +wahg +wshs.

Choose the input as sin ¢, the output of RBF is shown in Fig. 7.12, the output of
hidden neural net is shown in Fig. 7.13.

The Simulink program of this example is chap7_2sim.mdl, and MATLAB
programs of the example are given in the Appendix.

Fig. 7.11 RBF neural
network structure

Fig. 7.12 Output of RBF

Fig. 7.13 Output of hidden
neural net

Simulation programs:

(1) Simulink main program: chap7_2sim.mdl

¥/ P chap7?_2rbf ——P» y

Sine Wave S-Function Position1

30 /P
Clock To Workspace

(2) S function of RBF: chap7_2rbf.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
case 3,

sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[];
otherwise

error (['Unhandled flag = ', num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =7;

sizes.NumInputs =1;

sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;

sys = simsizes (sizes) ;

x0 =1[1;

str=[];

ts =[1;

function sys=mdlOutputs (t,x,u)

x=u(l); %$Input Layer

2i=1
%9=1,2,3,4,5

2k=1
=[-0.5-0.2500.250.5];

b=[0.20.20.20.20.2]"; %bj

%cij

W=ones (5,1) ;
h=zeros(5,1);
for j=1:1:5
h(3)
end
y=W'*h;

w5
$hi
~2/(2%b(

=exp (-norm(x-c(:,3)) 3) *b(

$Output Layer

sys (1) =y;
sys(2)=x;
sys (3)=h(
sys (4) =h(
sys (5)=h(

(

(

1);

2);

3);
sys(6)=h(4)
sys(7)=h(5)

7

7

(3) Plot program: chap7_2plot.m

close all;

Fy=y(:,1);

T x=y(:,2);

$hl=y(:,3);

% h2=y(:,4);

$ h3=y(:,5);

% hd=y(:,6);

% h5=y(:,7);

figure (1) ;

plot(t,y(:,1),'k', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('y');
figure (2) ;

plot(y(:,2),y(:,3),'k', '1linewidth"',2);
xlabel ('x');ylabel('hj"');

hold on;

plot(y(:,2),y(:,4),'k', '1linewidth"',2);
hold on;

plot(y(:,2),y(:,5),'k', 'linewidth"',2);

hold on;

)

%Hidden Layer

plot(y(:,2),y(:,6),'k', 'linewidth',2);
hold on;
plot(y(:,2),y(:,7),'k"', " 'linewidth"',2);

7.4.2.2 For Structure 2-5-1 RBF Neural Network

Consider a structure 2-5-1 RBF neural network, we have x = [x| ,xz]T,
T i1 Ci2 €13 Ci4 Ci5
b=1[bi b2 by by bs], “Tlew o en ocu s h=
[l hy hy hg hS]T, w=[w w2 ws wy ws]T, and y(t) =wth =
wihy + wahy +wshs +wahg + wshs.
Two inputs are chosen as sin #, the output of RBF is shown in Fig. 7.14, and the
output of hidden neural net is shown in Figs. 7.15 and 7.16.

Simulation programs:

(1) Simulink main program: chap7_3sim.mdl

>
\J Mux f—ppl chap7_3rbf B
Sine Wave _
— S-Function Position1
30 ¥ ¢
Clock To Workspace

(2) S function of RBF: chap7_3rbf.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}
sys=[];

Fig. 7.14 Output of RBF 1.5

AIVRVEVEVAVAVAVAVAVA|

Fig. 7.15 Output of hidden
neural net for first input

Fig. 7.16 Output of hidden
neural net for second input

otherwise

error (['Unhandled flag =
end
function [sys,x0,str, ts]
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =8;
sizes.NumInputs =2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;
sys = simsizes (sizes) ;
x0 =1[1;
str=[1];
ts =[1;

',num2str (flag)]) ;

=mdlInitializeSizes

function sys=mdlOutputs (t,x,u)

x1=u(l); $%$Input Layer
x2=u(2);
x=[x1 x2]"

%i=2

%9=1,2,3,4,5

2k=1

c=[-0.5-0.2500.250.5;
-0.5-0.2500.250.5];

b=[0.20.20.20.20.2]"

W=ones (5,1); %Wj

h=zeros(5,1); %hj

for j=1:1:5
h(j)=exp(-norm(x-c(:,

end

%cij
%bj

3))"2/(2*b(3) *b(3)));

yout=W'*h; $Output Layer

sys (1) =yout;

sys (2)=x1;

sys (3)=x2;

sys(4)=h(1);
sys(5)=h(2);
sys(6)=h(3);
sys(7)=h(4);
sys(8)=h(5);

%Hidden Layer

(3) Plot program: chap7_3plot.m

close all;

Sy=y(:,1);
$ x1l=y(:,2);
& x2=y(:,3);
% hl=y(:,4);
% h2=y(:,5);
% h3=y(:,6);
S hd=y(:,7);
$ h5=y(:,8);
figure (1) ;

plot(t,y(:,1),'k"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('y");

figure (2) ;
plot(y(:,2),y(:,4),'k"', 'linewidth',2);
xlabel ('x1") ;ylabel('hj");

hold on;

plot(y(:,2),y(:,5),'k", 'linewidth"', 2);
hold on;

plot(y(:,2),y(:,6),'k"', 'linewidth",2);
hold on;

plot(y(:,2),y(:,7),'k", 'linewidth"', 2);
hold on;
plot(y(:,2),y(:,8),'k

, 'linewidth',2);

figure (3) ;
plot(y(:,3),y(:,4), 'k", 'linewidth", 2);
xlabel ('x2');ylabel('hj"');

hold on;

plot(y(:,3),y(:,5),'k', 'linewidth',2);
hold on;

plot(y(:,3),y(:,6),'k', 'linewidth',2);
hold on;

plot(y(:,3),y(:,7),'k"', 'linewidth',2);
hold on;
plot(y(:,3),y(:,8),'k

, 'linewidth',2);

7.5 RBF Neural Network Approximation Based
on Gradient Descent Method

7.5.1 RBF Neural Network Approximation

We use RBF neural network to approximate a plant, the structure is shown in
Fig. 7.17.

In RBF neural network, x = [x; x, ... X,]T is the input vector, and F; is
Gaussian function for neural net j, then
EECIRY
]’lj:eXp —T ,]:1,2,...71’” (717)
J
where ¢; = [cj1, ..., cin] is the center vector of neural net j.

The width vector of Gaussian function is
b= [bla . 'abm}T

where b; > 0 represents the width value of Gaussian function for neural net j.
The weight value is

W= [Wi,. ..l (7.18)
The output of RBF is
Ym(t) = wihy +waha + - +wphy, (7.19)

The performance index function of RBF is

E(t) =5 (y(1) = ym (1))’ (7.20)

| =

Fig. 7.17 RBF neural
network approximation u (k)

According to gradient descent method, the parameters can be updated as follows:

Aw;(t) = _77% = (1) = ym(2))h;

Wj(l) = Wj(l — 1) +AW](1) +O€(Wj(l — l) — Wj(l — 2)) (721)
2

Abj = - g—fj =n0() - ym(t))w;-hj% (7.22)

by(r) = bj(t — 1)+ Ab; +au(by(r — 1) — by(r - 2)) (7.23)

Ay = =g = 00—yl (724

Cji(l) = Cj,'([— 1) -I-ACJ','-I-O((CJ','(I — 1) — Cji(l — 2)) (725)

where 1 € (0, 1) is the learning rate, o € (0, 1) is momentum factor.

In RBF neural network approximation, the parameters of ¢; and b; must be
chosen according to the scope of the input value. If the parameters ¢; and b; are
chosen inappropriately, Gaussian function will not be effectively mapped, and RBF
network will be invalid. The gradient descent method is an effective method to
adjust ¢; and b; in RBF neural network approximation.

If the initial ¢; and b are set in the effective range of inputs of RBF, we can only
update weight value with fixed ¢; and b.

7.5.2 Simulation Example

First example: only update w

Using RBF neural network to approximate the following discrete plant

133
Gls) = §2+25s
Consider a structure 2-5-1 RBF neural network, we choose inputs as
x(1) = u(r), x(2) = y(¢), and set o = 0.05, n = 0.5. The initial weight value is
chosen as random value between O and 1.
Choose the input as u(t) = sin¢, consider the range of the first input x(1) is [0, 1],
the range of the second input x(2) is about [0, 10], we choose the initial parameters of

-1 —05 0 05 11"

Gaussian function as ¢; = 10 -5 0 5 10 ,bj=15,j=1,2,3,4,5.

y and ym

12

ideal signal
signal approximation

4 5 6
time(s)

Fig. 7.18 RBF neural network approximation

In the simulation, we only update w with fixed ¢; and b in RBF neural network
approximation, the results are shown in Fig. 7.18.

Simulation programs:

(1) Simulink main program: chap7_4sim.mdl

V P chap7_4plant
Sine Wave S-Function2
B
Y i oI
Scope1
.
-
Mux P chap7_drbf
R To Workspace 2
L
S-Functioni
Clock To Workspace

(2) S function of RBF: chap7_4rbf.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]l=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}
sys = [1;
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end

function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates =0;
sizes.NumOutputs =1;
sizes.NumInputs =2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);

x0=[1;

str=[];

ts=[1;

function sys=mdlOutputs (t,x,u)

persistent ww_1w_2 b ci

alfa=0.05;
xite=0.5;
if t==
b=1.5;
ci=[-1-0.500.51;
-10 -505101];

w=rands (5, 1) ;
w_l=w;w_2=w_1;
end
ut=u(l);
yout=u(2);
xi=[ut yout]';
for j=1:1:5
h(j)=exp(-norm(xi-ci(:,3))"2/(2*b"2));
end

ymout=w'*h"';

d_w=0%*w;

for j=1:1:5 %0nly weight value update
d_w(j)=xite* (yout-ymout) *h(j) ;

end

w=w_1+d_w+alfa* (w_1-w_2);
w_2=w_1;w_1=w;
sys (1) =ymout;

(3) Plot program: chap7_4plot.m

close all;

close all;

figure (1) ;
plot(t,y(:,1),'r',t,y(:,2),'k:", 'linewidth',2);
xlabel ('time(s) ') ;ylabel('yandym');

legend('ideal signal', 'signal approximation') ;

Second example: update w, c¢;, b by gradient descent method

Using RBF neural network to approximate the following discrete plant

yk=1)
(k) = ulk) + =y
1+y(k— 1)
Consider a structure 2-5-1 RBF neural network, and we choose x(1) = u(k),
x(2) = y(k), and a = 0.05, # = 0.15. The initial weight value is chosen as random
value between 0 and 1. Choose the input as u(k) = sint, t = k x T, T = 0.001, we

. . -1 -05 0 05 17"
set the initial parameters of Gaussian functionas¢; = | 1 —05 0 05 1/|°
bj=3.0,j=1,2,3,4,5.

In the simulation, M = 1 indicates only updating w with fixed ¢; and b and
M = 2 indicates updating w, ¢;, b, the results are shown from Figs. 7.19 and 7.20.

From the simulation test, we can see that better results can be gotten than only
adjusting w by the gradient descent method, especially the initial parameters of
Gaussian function ¢; and b are chosen not suitably.

Simulation program: chap7_5.m

%RBF approximation
clear all;

close all;

alfa=0.05;
xite=0.15;
x=[0,11";

2 T T T T T T T T

ideal signal

signal approximation

y and ym

0 1 2 3 4 5 6 7 8 9 10
time(s)
0.5 T T T T T T T T T
0
5
£ 05} E
[0}
1F -
_15 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
time(s)

Fig. 7.19 RBF neural network approximation by only updating w (M = 1)

2 T T T T T T T T

ideal signal

signal approximation []

y and ym

_2 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
time(s)
1.5 T T T T T T T T T
11 i
2 os} .
[0}
0
_05 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time(s)

Fig. 7.20 RBF neural network approximation by updating w, b, c (M = 2)

b=3*ones (5,1) ;
c=[-1-0.500.51;
-1-0.500.517;

w=rands (5,1) ;

w_l=w;w_2=w_1;
c_l=c;c_2=c_1;
b_1=b;b_2=b_1;
d_w=0*w;
d_b=0*b;
y_1=0;

ts=0.001;
for k=1:1:10000

time (k) =k*ts;
u(k)=sin(k*ts) ;

v(k)=u(k)"3+y_1/(1+y_1"2);

x(1)=u(k);
x(2)=y_1;

for j=1:1:5
h(j)=exp(-norm(x-c(:,3))"2/(2*b(3)*b(3)));

end

ym(k)=w'*h"';

em (k) =y (k) -ym(k) ;

M=1;
if M==1 %Only weight value update
d w(j)=xite*em(k)*h(7j);
elseif M==2 %Update w,b,c
for j=1:1:5
d_w(j)=xite*em(k)*h(J);
d_b(j)=xite*em(k)*w(j)*h(j)*(b(j)"-3)*norm(x-c(:,3))"2;

for i=1:1:2
d_c(i,j)=xite*em(k)*w(j)*h(J)*(x(1)-c(i,]))*(b(3)"-2);
end

end

b=b_1+d_b+alfa*(b_1-b_2);
c=c_1+d_c+alfa*(c_1-c_2);
end

w=w_1+d_w+alfa* (w_1-w_2);

y_1l=y(k);

w_2=w_1;

w_1l=w;

c_2=c_1;

c_l=c;

b_2=b_1;

b_1=b;

end

figure (1) ;

subplot (211) ;

plot(time,y, 'r',time,ym, 'k:"', 'linewidth',2);
xlabel ('time(s)"');ylabel('y andym');
legend('ideal signal', 'signal approximation') ;
subplot (212) ;

plot (time,y-ym, 'k', 'linewidth',2);

xlabel ('time(s) ') ;ylabel('error');

7.6 Effects of Analysis on RBF Approximation

We consider approximation of the following discrete plant y(k) = u(k)3 + %

7.6.1 Effects of Gaussian Function Parameters on RBF
Approximation

In the simulation, we choose « = 0.05, # = 0.3. The initial weight value is chosen
as zeros.

From Gaussian function expression, we know that the effect of Gaussian func-
tion is related to the design of center vector c;, width value b;, and the number of
hidden nets. The principle of ¢; and b; design should be as follows:

(1) Width value b; represents the width of Gaussian function. The bigger value b;
is, the wider Gaussian function is. The width of Gaussian function represents
the covering scope for the network input. The wider the Gaussian function is,
the greater the covering scope of the network for the input is, otherwise worse
covering scope is. Width value b; should be designed moderate.

(2) Center vector c¢; represents the center coordination of Gaussian function for
neural net j. The nearer ¢; is to the input value, the better sensitivity of Gaussian
function is to the input value, otherwise the worse sensitivity is. Center vector c;
should be designed moderate.

Fig. 7.21 Five Gaussian
membership function

o o o
= @ =]

o
N

Memnbership function degree

-2

K] 0 1 2 3
Input value of Redial Basis Function

(3) The center vector ¢; should be designed within the effective mapping of
Gaussian membership function. For example, the scope of RBF input value is
[—3, + 3], and then, the center vector ¢; should be set in [—3, +3].

In simulation, we should design the center vector ¢; and the width value b;
according to the scope of practical network input value, in other words, the input
value must be within the effective mapping of Gaussian membership function. Five
Gaussian membership functions are shown in Fig. 7.21.

Simulation program:

Five Gaussian membership function design: chap7_6.m

%RBF function
clear all;

close all;

c=[-3-1.501.53];

M=1;
if M==1
b=0.50%ones (5,1) ;
elseif M==
b=1.50%*ones (5,1) ;

end

h=[0,0,0,0,0]";

ts=0.001;
for k=1:1:2000

time (k) =k*ts;

$RBF function

x(1)=3*sin(2*pi*k*ts);

for j=1:1:5
h(j)=exp(-norm(x-c(:,3))"2/(2*b(3)*b(J)));

end

x1(k)=x(1);
%First Redial Basis Function
hl(k)=h(1);
%Second Redial Basis Function
h2 (k)=h(2);
%Third Redial Basis Function
h3(k)=h(3);
%Fourth Redial Basis Function
hd (k)=h(4);
%Fifth Redial Basis Function
h5(k)=h(5);
end
figure (1) ;
plot(x1l,hl, 'b');
figure (2) ;
plot(xl,h2,'g");
figure (3) ;
plot(x1l,h3,'r");
figure (4) ;
plot(xl,hd,'c');
figure (5) ;
plot(xl,h5, 'm");
figure (6) ;
plot(x1l,hl, 'b');
hold on;plot(x1l,h2, 'g")
hold on;plot(x1l,h3,'r");
(c')
(m')

'
7

7

hold on;plot(xl,h4,"
hold on;plot(xl,h5,"

xlabel (' Input value of Redial Basis Function') ;ylabel

7

('Membership function degree') ;

In the simulation, we choose the input of RBF as 0.5sin(2nt), and set the
structure as 2-5-1. By changing c; and b; values, the effects of ¢; and b; on RBF
approximation are given.

Now, we analyze the effect of different ¢; and b; on RBF approximation as
follows:

Ideal value
Approximation value

y and ym

time(s)

Fig. 7.22 RBF approximation with moderate b; and ¢; (Mb = 1, Mc = 1)

0.6

Ideal value
"""""" Approximation value

0.4

0.2}

y and ym

04}

06| i

0.8 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(s)

Fig. 7.23 RBF approximation with improper b; and moderate ¢; (Mb = 2, Mc = 1)

(1) RBF approximation with moderate b; and ¢; (Mb = 1, Mc = 1);
(2) RBF approximation with improper b; and moderate ¢; (Mb = 2, Mc = 1);
(3) RBF approximation with moderate b; and improper ¢; (Mb = 1, Mc = 2);
(4) RBF approximation with improper b; and ¢; (Mb = 2, Mc = 2).

The results are shown from Figs. 7.22, 7.23, 7.24, and 7.25. From the results, we
can see if we design improper ¢; and b;, the RBF approximation performance will
not be ensured.

x10%
8

Ideal value
6r e Approximation value

y and ym

42 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(s)

Fig. 7.24 RBF approximation with moderate b; and improper ¢; (Mb = 1, Mc = 2)

0.6 T T T T T T T T T
Ideal value
"""""" Approximation value

0.4

0.2

y and ym

time(s)

Fig. 7.25 RBF approximation with improper b; and ¢; (Mb = 2, Mc = 2)

Simulation program: chap7_7.m

%$RBF approximation test
clear all;

close all;

alfa=0.05;
xite=0.5;

x=[0,0]";

%The parameters design of Guassian Function
%The input of RBF (u(k),y

(k)) must be in the effect range of Guassian function overlay

%The value of b represents the widenth of Guassian function overlay
Mb=1;
1f Mb==1 %The width of Guassian function is moderate
b=1.5%ones(5,1);
elseif Mb==2 %The width of Guassian function is too narrow, most overlap
of the function is near to zero
b=0.0005*ones (5,1) ;

end

%The value of c represents the center position of Guassian function overlay
%the NN structure is 2-5-1: i=2; j=1,2,3,4,5; k=1
Mc=1;
if Mc==1 %The center position of Guassian function is moderate
c=[-1.5-0.500.51.5;

-1.5-0.500.51.5]; %cij
elseif Mc==2 %The center position of Guassian function is improper
c=0.1*[-1.5-0.500.51.5;

-1.5-0.500.51.5]; %cij

end
w=rands (5, 1) ;
w_l=w;w_2=w_1;
y_1=0;

ts=0.001;
for k=1:1:2000

time (k) =k*ts;
u(k)=0.50*sin(1*2*pi*k*ts) ;

y(k)=u(k)"3+y_1/(1+y_172);

x(1)=u(k);
x(2)=y (k) ;

for j=1:1:5
h(j)=exp(-norm(x-c(:,3))"2/(2*b(3)*b(J)));

end

ym(k)=w'*h"';

em (k) =y (k) -ym (k) ;

d_w=xite*em(k)*h"';

w=w_1+ d_w+alfa* (w_1-w_2);

y_1=y(k);
w_2=w_1;w_1l=w;

end

figure (1) ;

plot(time,y, 'r',time,ym, 'b:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('yandym');

legend('Ideal value', 'Approximation value') ;

7.6.2 Effects of Hidden Nets Number on RBF
Approximation

From Gaussian function expression, besides the moderate center vector ¢; and width
value b;, the approximation error is also related to the number of hidden nets.

In the simulation, we choose o = 0.05, 7 = 0.3. The initial weight value is chosen
as zeros, and the parameter of Gaussian function is chosen as b; = 1.5. The inputs of
RBF are u(k) = sinz and y(k), set the structure as 2-m-1, where m represents the
number of hidden nets. We analyze the effect of different number of hidden nets on
RBF approximationasm = 1, m = 3, and m = 7. According to the practical scope of
the two inputs u(k) and y(k), for different m, the parameter ¢; is chosen ¢; = 0,

T
¢i=4i[-1 0 1]" and¢; =1 o2 o2 respectively
s T3 2 -1 001 2 3|7 '

The results are shown from Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31. From the
results, we can see that the more number the hidden nets is chosen, the smaller the
approximation error can be received.

It should be noted that the more number the hidden nets is chosen, to prevent
from divergence, the smaller value of 5 should be designed.

1

Fig. 7.26 One Gaussian
function with only one hidden
net (m=1) 09y

0.8
0.7

0.6

Membership function degree

05F

04 L L L L L L L L
-1 -0.8 -06 -04 -02 0 02 04 06 08 1

Input value of Redial Basis Function

Fig. 7.27

Fig. 7.28

functions with three hidden
nets (m = 3)

2 T T T T T T T T T
Ideal value
 Approximation value []

y and ym
o

_2 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4 45 5
time(s)

5 0.02 T T T T T T - - -

5]

< 0.01

RS

®

1S 0

=

o

g -0.01

<

_002 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(s)

Approximation with only one hidden net (m = 1)

Three Gaussian 1

o o o o
=2} ~ ® ©

Membership function degree
o
[$)]

0.4

6 -04 -02 0 02 04 06

-1 -08 -0

Input value of Redial Basis Function

Simulation program: chap7_8.m

$RBF approximation test

clear all;

close all;

alfa=0.05;

xite=0.3;

0.8 1

2 T T T T T T T T T
Ideal value
L I N Approximation value [|

y and ym
o

-1

_2 1 1 1 1 1 1 1 1 1

time(s)

Approximation error

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time(s)

Fig. 7.29 Approximation with three hidden nets (m = 3)

Fig. 7.30 Seven Gaussian 1
functions with seven hidden
nets (m=17) 09}

08

0.7

0.5

Membership function degree

0.4

-1 08 06 -04 02 0 02 04 06 08 1
Input value of Redial Basis Function

x=[0,0]";

%The parameters design of Guassian Function
%The input of RBF (u(k),y(k))must be in the effect range of Guassian func-
tion overlay

%The value of b represents the widenth of Guassian function overlay

2 T T T T T T T T T
Ideal value
Approximation value [|

y and ym
o

-1

_2 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time(s)
x 10
. 4 T T T T T T T T T
2
(0]
c
K]
©
£
X
o
Q.
Q.
< _4 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time(s)

Fig. 7.31 Approximation with seven hidden nets (m = 7)

bj=1.5; %$The width of Guassian function
%The value of c represents the center position of Guassian function overlay
%the NN structure is 2-m-1: i=2; j=1,2,...,m; k=1
M=3; %Different hidden nets number
if M==1 %only one hidden net
m=1;
c=0;
elseif M==
m=3;
c=1/3*[-101;
-10171;
elseif M==3
m=7;
c=1/9*[-3-2-10123;
-3-2-101231];
end
w=zeros (m, 1) ;
w_l=w;w_2=w_1;
y_1=0;

ts=0.001;
for k=1:1:5000

time (k) =k*ts;
u(k)=sin(k*ts) ;

y(k)=u(k)"3+y_1/(1+y_1"2);

x(1)=u(k);
x(2)=y(k);

for j=1:1:m
h(j)=exp(-norm(x-c(:,3))"2/(2*bj"2));

end

ym(k)=w'*h"';

em (k) =y (k) -ym (k) ;

d_w=xite*em(k)*h"';

w=w_1+ d_w+alfa*(w_1-w_2);

y_1=y(k);
w_2=w_1;w_1l=w;

x1(k)=x(1);
for j=1:1:m
H(j,k)=h(3);

end

if k==5000
figure (1) ;
for j=1:1:m
plot(x1,H(j,:), 'linewidth',2);
hold on;
end
xlabel ('Input value of Redial Basis Function') ;ylabel
('Membership function degree') ;
end
end
figure (2) ;
subplot (211) ;
plot(time,y, 'r',time,ym, 'b:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('y andym');
legend('Ideal value', 'Approximation value') ;
subplot (212) ;
plot (time,y-ym, 'r', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Approximation error') ;

7.7 RBF Neural Network Training for System Modeling

7.7.1 RBF Neural Network Training

We can use RBF neural network to train a data vector with multiinput and multi-
output or to model a system off-line.

In RBF neural network, x = [x; x, -+ X,]T is the input vector, and h; is
Gaussian function for neural net j, then
2
Jx =" .
hj:exp —T ,]:1727...,171 (722)
J
where ¢; = [cj1, ..., cin] is the center vector of neural net j.

The width vector of Gaussian function is
b= [bla . '1bm}T

where b; > 0 represents the width value of Gaussian function for neural net j.
The weight value is

w=[Wi,...,wn]" (7.23)
The output of RBF is
i =wihy +wahy + - +wphy (724)

Denote)¢ as the ideal output, / = 1,2,...,N.
The error of the /th output is

azﬁ—w

The performance index function of the training is

el (7.25)

M=

E(r) =

1

According to gradient descent method, the weight value can be updated as
follows:

Wj(l) = Wj(l — 1) +ij<f) + O((Wj(l — 1) — Wj(l — 2)) (726)

where 1 € (0, 1) is the learning rate, oo € (0, 1) is momentum factor.

7.7.2 Simulation Example

First example: MIMO data sample training.
Consider three-input and two-output data as a training sample, which is shown in
Table 7.1.
RBF network structure is chosen as 3-5-1. Gaussian function parameter values
¢;j and b; must be chosen according to the scope of practical input value. According
to the practical scope of x; and x,, the parameters of ¢; and b; are designed as
-1 =05 0 05 1
—1 —05 0 0.5 1] and 10, the initial weight value is chosen as random
-1 =05 0 05 1

value in the interval of [—1 +1]; 1 =0.10 and o = 0.05 are chosen.

Firstly, we run chap7_9a.m, set the error index as E = 10~2°, error index change
is shown as Fig. 7.32, the trained weight values are saved as wfile.dat.

Then, we run chap7_9b.m, use wfile.dat, the test results with two samples are
shown in Table 7.2. From the results, we can see that good modeling performance
can be received.

The programs of this example are chap7_9a.m and chap7_9b.m, which are given
in the Appendix.

Table 7.1 One training sample

Input Output
1 0 0 1 0

Fig. 7.32 Error index change 0.7

0.6 :

04} .

Error index change

0.2 :

0.1 .

Table 7.2 Test samples and

Input Output
results

0.970 0.001 0.001 1.0004 —0.0007
1.000 0.000 0.000 1.000 0.0000

Simulation program:

(1) MIMO data sample training: chap7_9a.m

$RBF Training for MIMO
clear all;

close all;

xite=0.10;
alfa=0.05;

W=rands (5,2) ;
W_1=W;

W_2=Ww_1;
h=[0,0,0,0,0]";

c=2*[-0.5-0.2500.250.5;
-0.5-0.2500.250.5;
-0.5-0.2500.250.5]; %cij
b=10; %bj

xs=[1,0,0];%Ideal Input
ys=[1,0]; %Ideal Output
ouT=2;
NS=1;

k=0;

E=1.0;

while E>=1e-020
$for k=1:1:1000
k=k+1;
times (k) =k;

for s=1:1:NS $%MIMO Samples

x=xs (s, :);

for j=1:1:5

h(j)=exp(-norm(x'-c(:,3J))"2/(2*b"2)); %Hidden Layer
end
v1=W'*h; %O0utput Layer

el=0;
y=ys(s,:);
for 1=1:1:00T
el=el+0.5*(y(1)-y1(1))"2; $Output error
end

es(s)=el;

E=0;
if s==NS
for s=1:1:NS
E=E+es(s);
end
end
error=y-yl';

dW=xite*h*error;
W=w_1l+dwW+alfa* (W_1-W_2) ;

W_2=W_1;W_1=W;

end %End of for

Ek (k) =E;

end %End of while

figure (1) ;

plot (times,Ek, 'r', 'linewidth',2);
xlabel ('k') ;ylabel ('Error index change') ;
save wille b c W;

(2) MIMO data sample test: chap7_9b.m

$Test RBF
clear all;
load wiile b c W;

$N Samples

x=[0.970,0.001,0.001;
1.000,0.000,0.0001;

NS=2;

h=zeros(5,1); %hj

for i=1:1:NS

for j=1:1:5
h(j)=exp(-norm(x(i,:)'-c(:,3))"2/(2*b"2));
end
v1l(i,:)=W'*h; $%Output Layer
end

vl

%Hidden Layer

Second example: system modeling

Consider a nonlinear discrete-time system as

~ 0.5y(k—1)(1 —y(k— 1))
YO = ok =) Tk

To model the system above, we choose RBF neural network. The network
structure is chosen as 2-5-1; according to the practical scope of two inputs u(k) and
-3 -2 -1 01 2 3
-3 -2 -1 01 2 3
and 1.5, each element of the initial weight vector is chosen as 0.10, and n = 0.50
and o = 0.05 are chosen.

Firstly, we run chap7_10a.m, the input is chosen as x = [u(k) y(k)],
u(k) =sinz, and ¢t =k x ts, where ts = 0.001 represents sampling time. The
number of samples are chosen as NS = 3000. After 500-step training off-line, we
get the error index change as Fig. 7.33. The trained weight values and Gaussian
function parameters are saved as wfile.dat.

Then, we run chap7_10b.m, use wfile.dat, and the test results with input sin ¢ are
shown in Fig. 7.34. From the results, we can see that good modeling performance
can be received.

y(k), the parameters of ¢; and b; are designed as

Simulation program:

(1) System training: chap7_10a.m

%RBF Training for a Plant
clear all;

close all;

0.04
0.035 §
g, 003 i
C
[0
S 0.025 g
x
()
2 002 g
2 o015 i
L
0.01} .
0.005 | g
0 . ‘ .
0 100 200 300 400 500 600

Fig. 7.33 Error index change

Fig. 7.34 Modeling test 1.4

0.8

y and yp

0.6

0.4

0.2

0 500 1000

ts=0.001;
xite=0.50;
alfa=0.05;

u_1=0;y_1=0;
fx_1=0;

W=0.1l*ones (1,7);
W_1=W;
W_2=W_1;

h=zeros(7,1) ;

cl=[-3-2-10123];
c2=[-3-2-10123];

c=[cl;c2];

NS=3000;
for s=1:1:NS %Samples

u(s)=sin(s*ts);

fx(s)=0.5*y_1*(1-y_1)/(1l+exp(-0.25*y_1));
v(s)=fx_1+u_1;

u_l=u(s);
y_1l=y(s);
fx_1=fx(s);
end

k=0;

for k=1:1:500
k=k+1;
times (k) =k;

1500
times

2000

2500

3000

for s=1:1:NS %Samples
x=[u(s),y(s)];

for j=1:1:7
h(j)=exp(-norm(x'-c(:,3))"2/(2*b"2)); %Hidden Layer
end

vl (s)=W*h; $%Output Layer
el=0.5*(y(s)-yl(s))"2; $%Output error
es(s)=el;

E=0;
if s==NS
for s=1:1:NS
E=E+es (s);
end
end
error=y(s)-yl(s);

dWw=xite*h'*error;
W=w_1l+dw+alfa* (W_1-W_2) ;

W_2=W_1;W_1=W;

end %End of for

Ek (k) =E;

end %End of while

figure (1) ;

plot (times,Ek, 'r', 'linewidth',2);
xlabel('k'");ylabel ('Error index change') ;
save wfile b ¢ WNS;

(2) System test: chap7_10b.m

%0Online RBF Etimation for Plant
clear all;
load wfile b ¢ WNS;

ts=0.001;

u_1=0;y_1=0;

fx_1=0;

h=zeros(7,1);

for k=1:1:NS
times (k) =k;
u(k)=sin(k*ts) ;

fx(k)=0.5*y_1*(1-y_1)/(1l+exp(-0.25*y_1));
yvik)=fx_1+u_1;

x=[u(k),y(k)1;

for j=1:1:7
h(j)=exp(-norm(x'-c(:,3J))"2/(2*b"2)); $%$Hidden Layer
end

yp (k) =W*h; %Output Layer

u_l=u(k);y_l=y(k);

fx 1=fx(k);

end

figure (1) ;

plot(times,y, 'r',times,yp, 'b-."', 'linewidth',2);
xlabel ('times') ;ylabel('yandyp');

7.8 RBF Neural Network Approximation

Since any nonlinear function over a compact set with arbitrary accuracy can be
approximated by RBF neural network [4, 5], RBF neural network can be used to
approximate uncertainties in the control systems. Many books about neural network
control have been published [6-12].

For example, to approximate the function f(x), the algorithm of RBF is
expressed as

=g (Il = sl */57)

(7.27)
fF=WTh(x)+e¢

where x is the input vector, i denotes input neural net number in the input layer,
J denotes hidden neural net number in the hidden layer, h = [k, hy, .. .,h,,]T
denotes the output of hidden layer, W* is the ideal weight vector, and ¢ is
approximation error, ¢ < .

In the control system, if we use RBF to approximate f, we often choose the
system states as the input of RBF neural network. For example, we can choose the

tracking error and its derivative value as the input vector, i.e., x = [e é]T, and
then, the output of RBF is

fx) = Wh(x) (7.28)

where W is the estimated weight vector, which can be tuned by the adaptive
algorithm in the Lyapunov stability analysis.

In Chaps. 8, 9, and 10, we use RBF approximation to design adaptive RBF

controllers.

References

1.

2.

3.

10.

11.

12.

D. Graupe, Principles of Artificial Neural Networks (World Scientific Publishing, Singapore,
2013), p. 8

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error
propagation. Parallel Distrib. Process. 1, 318-362 (1986)

D.S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks.
Complex Syst. 2, 321-355 (1988)

. J. Park, L.W. Sandberg, Universal approximation using radial-basis-function networks.

Neural Comput. 3(2), 246-257 (1991)

. J.K. Liu, RBF Neural Network Control for Mechanical Systems_Design, Analysis and Matlab

Simulation (Tsinghua & Springer Press, 2013)

. S.S. Ge, T.H. Lee, C.J. Harris, Adaptive Neural Network Control of Robotic Manipulators

(World Scientific, London, 1998)

. S.S. Ge, C.C. Hang, T.H. Lee, T. Zhang, Stable Adaptive Neural Network Control, Boston

(Kluwer, MA, 2001)

. F.L. Lewis, S. Jagannathan, A. Ygildirek, Neural Network Control of Robot Manipulators

and Nonlinear Systems (Taylor & Francis, London, 1999)

. F.L. Lewis, J. Campos, R. Selmic, Neuro-fuzzy Control of Industrial Systems with Actuator

Nonlinearities. Frontiers in Applied Mathematics (2002)

H.A. Talebi, R.V. Patel, K. Khorasani, Control of Flexible-link Manipulators using Neural
Networks, London (Springer, New York, 2000)

Y.H. Kim, F.L. Lewis, High-Level feedback control with neural networks, Singapore (World
Scientific, River Edge, NJ, 1998)

S.G. Fabri, V. Kadirkamanathan, Functional Adaptive Control: An Intelligent Systems
Approach (Springer, New York, 2001)

Chapter 8
Adaptive RBF Neural Network Control

8.1 Neural Network Control

Since the idea of the computational abilities of networks composed of simple
models of neurons was introduced in the 1940s [1], neural network techniques have
undergone great developments and have been successfully applied in many fields
such as learning, pattern recognition, signal processing, modeling, and system
control. Their major advantages of highly parallel structure, learning ability, non-
linear function approximation, fault tolerance, and efficient analog VLSI imple-
mentation for real-time applications, greatly motivate the usage of neural networks
in nonlinear system identification and control [2].

In many real-world applications, there are many nonlinearities, unmodeled
dynamics, unmeasurable noise, and multiloop, etc., which pose problems for
engineers to implement control strategies.

During the past several decades, development of new control strategies has been
largely based on modern and classical control theories. Modern control theories
such as adaptive and optimal control techniques and classical control theory have
been based mainly on linearization of systems. In the application of such tech-
niques, development of mathematical models is a prior necessity.

There are several reasons that have motivated vast research interests in the
application of neural networks for control purposes, as alternatives to traditional
control methods, among which the main points are as follows:

e Neural networks can be trained to learn any function. Thus, this self-learning
ability of the neural networks eliminates the use of complex and difficult
mathematical analysis which is dominant in many traditional adaptive and
optimal control methods.

e The inclusions of activation function in the hidden neurons of multilayered
neural networks offer nonlinear mapping ability for solving highly nonlinear
control problems where to this end traditional control approaches have no
practical solution yet.

e The requirement of vast a priori information regarding the plant to be controlled
such as mathematical modeling is a prior necessity in traditional adaptive and
optimal control techniques before they can be implemented. Due to the
self-learning capability of neural networks such vast information is not required
for neural controllers. Thus, neural controllers seem to be able to be applied
under a wider range of uncertainty.

e The massive parallelism of neural networks offers very fast multiprocessing
technique when implemented using neural chips or parallel hardware.

e Damage to some parts of the neural network hardware may not affect the overall
performance badly due to its massive parallel processing architecture.

8.2 Adaptive Control Based on Neural Approximation

Note that using the gradient descent method to design the neural network weights
adjustment law, neural network parameters are selected by experience, only local
optimization can be guaranteed, closed-loop system stability can not be guaranteed,
and closed-loop system control is easy to diverge. To solve this problem, there has
been online adaptive neural network control method, the adaptive law is designed
based on the Lyapunov stability theory, and the closed-loop system stability can be
achieved.

8.2.1 Problem Description

Consider a second-order nonlinear system
X =f(x,x) +g(x, X)u (8.1)

Where fis unknown nonlinear function, g is known nonlinear function, # € R", and
y € R" is input and output.
Eq. (8.1) can also be written as

X1 =x
X = f(x1,%2) + g(x1,%2)u (8.2)
y=x1

We assume the ideal position signal is yq, let

e=ya—y=yi—x,E=(e &)

Design the control law as

u = ﬁ [—f(x)+a+ K"E] (8.3)

Substitute (8.3) into (8.1), we can get the closed control system as

é+kpe + kge = 0 (8.4)

We design K = (kp, kd)T so that all the roots of the polynomial s* + kgs +k, = 0
are in the left part of the complex plane. Then, we have ¢ — oo, e(f) — 0, and
e(t) — 0.

From (8.3), we know if the function f(x) is unknown, the control law will not be
realized.

8.2.2 Adaptive RBF Controller Design

8.2.2.1 RBF Neural Network Design

In this section, we use RBF to design f(x) to approximate f(x). The algorithm of
RBF is described as

=g (llx — esl*/52)
f=Wh(x)+e

where x is the input vector, i denotes input neural nets number in the input layer,

Jj denotes hidden neural nets number in the hidden layer, h = [k}, hy, - -~,hn]T
denotes the output of hidden layer, W is weight value, ¢ is approximation error,
le] < en.

We use RBF to approximate f, the input vector is chosen as x = [e é]T

output of RBF is

, the

Fx) = W'h(x) (8.5)

8.2.2.2 Control Law and Adaptive Law Design

The fuzzy system approximation algorithm was applied to design indirect adaptive
fuzzy controller [3]. Now, we used RBF to replace fuzzy system to design RBF
adaptive controller.

Adaptive .

Mechanism
RBF NN [«
7 (x) v
Ya
u y Ya
—
_,| Controller g Plant >+
— +

Fig. 8.1 Block diagram of the control scheme

If we use RBF neural network to represent the unknown nonlinear function f, the
control law becomes

U= g(% [—f(x) + 34+ K"E] (8.6)
Fx) = W'h(x) (8.7)

where h(x) is Gaussian function, W is the estimated parameter for W.
Figure 8.1 shows the closed-loop neural-based adaptive control scheme.
We choose the adaptive law as

W = —E"Pbh(x) (8.8)

8.2.2.3 Stability Analysis
Submitting the control law (8.6) into (8.1), the closed-loop system is expressed as
é=-K'E+ [f(x) - f(x)] (8.9)

Let

A= {_(;Cp _lkd],B: m (8.10)

Now, (8.9) can be rewritten as
E=AE +B[f(x) — f(x)] (8.11)

The optimal weight values is
W= i f(x) — 8.12
arg min [sup|f (x) — f(x)|] (8.12)

Define the modeling error as

o =fx[W) —f(x) (8.13)

where |0| < Opax.
Then, Eq. (8.11) becomes

E = AE+B{[f(x|) — f(x|W")] + 0} (8.14)
Submit (8.7) into (8.14), we can get closed equation as
E:AE+B{(W—W*)Th(x)+w} (8.15)

Choose a Lyapunov function as

V= %ETPE+ %(W — W) (W — W) (8.16)

where 7y is positive constant. W — W* denotes the parameter estimation error, and
the matrix P is symmetric and positive definite and satisfies the following Lyapunov
equation

AP+ PA=—-Q (8.17)

With @ >0, A4 is given by (8.10).
Choosing Vi = SETPE, Vs = £ (W~ W) (W—W"), let M = B| (W - W")'
h(x)+ w], Eq. (8.15) becomes

E=AE+M

Then,

1.7

. 1 1
Vi=3EPE+ EETPE =~ (E"A" +M")PE + EETP(AEJrM)

— N =

1 1
= EET(ATP—s—PA)E—F SM'PE + SE'PM
1 1 1
=— EETQE +5 (M'PE+E'PM) = — zETQE +E'PM
Submitting M into above, noting that ETPB(W — W*)Th (x) = (W - W*)T
[E"PBh(x)], we get

. 1 ~
Vi = —SETQE + E"PB(W — W*) 'h(x) + E"PBo

o %ETQE + (W — W) E"PBh(x) + E"PBo
. 1, T A
Vy = ;(-W)w

Then, the derivative V becomes
. . . 1 1 . R
V= Vi+ Vs = —SE"QE+E"PBo+ ~ (W= W')' [W-+7E"PBh(x)|
Y
Submitting the adaptive law (8.8) into above, we have
’ 1ot T
V= _EE OF +E PBw

Since — %ETQE <0, if we can make the approximation error o very small by using

RBF, we can get V <0. Then we can get that E and W are all limited. The
convergence is

2 /max (PB) Wmax

=)

where A(-) is characteristic value, A, and A, are the maximum and minimum
value of matrix.

8.2.3 Simulation Examples

8.2.3.1 First Simulation Example: Linear System
Consider a linear plant as follows:

X] = X2
i =f(x) +glx)u

where x; and x, are position and speed, respectively, u is control input,
f(x) = =25x,, g(x) = 133.

We use ideal position signal as y4(7) = sin¢ and choose the initial states of the
plant as [n/60,0]. RBF network structure is chosen as 2-5-1. The choice of
Gaussian function parameters value ¢; and b; must be chosen according to the
scope of practical input value, which have important role in the neural network
control. If the parameters value is chosen inappropriately, Gaussian function will
not be effectively mapped, and RBF network will be invalid.

According to the practical scope of x; and x,, the parameters of ¢; and b; are
designed as [—1 —0.5 0 0.5 1] and 1.0, and the initial weight value is
chosen as zero. Adopting control law (8.6) and adaptive law (8.8), choose
0= {580 580], kg = 50, kp, = 30, y = 1000.

The results are shown as Figs. 8.2 and 8.3.

2 T T T T T T T T T
ideal position
position tracking []

yd,y

dyd,dy

Fig. 8.2 Position and speed tracking

30 T T T T T T T T T
Practical fx
200N e fx estimation []

10

fx
)
o

time(s)

Fig. 8.3 f(x) and f(x)

Simulation programs:

1. Simulink main program: chap8_1sim.mdl

Paosition2

Yy

Demux

Position

Sine Wave chap8_1ctrl chap8_1plant

S-Function S-Function1

A 4

Position5

To Workspace

Clock

2. S function of Control law: chap8_lctrl.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,

case 0,

[sys,x0,str,ts]l=mdlInitializeSizes;
case 1,

sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs(t,x,u) ;
case {2,4,9}

sys=1[];
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
global cb
sizes = simsizes;
sizes.NumContStates =5;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =4;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;
sys = simsizes (sizes) ;
x0 = [0*ones(5,1)];
c=[-1-0.500.51;

-1-0.500.51];
b=1.0;
str=[];
ts =1[1;
function sys=mdlDerivatives (t,x,u)
global cb
gama=1000;
yd=sin(t) ;
dyd=cos(t) ;
ddyd=-sin(t) ;

x1=u(2);x2=u(3);

e=yd-x1;
de=dyd-x2;

kp=30;kd=50;
K=[kp kd] ';

E=[e,de]"';

Fai=[0 1;-kp -kd];
A=Fai';

Q=[500 0;0 5007 ;
P=lyap(A,Q);

xi=[x1;x2];

h=zeros(5,1) ;

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

W=[x(1) x(2) x(3) x(4) x(5)1";

B=[0;11;
S=-gama*E' *P*B*h;

for i=1:1:5
sys(i)=S(i);
end

function sys=mdlOutputs (t,x,u)
global c b

yd=sin(t) ;

dyd=cos (t) ;

ddyd=-sin(t) ;

x1=u(2);x2=u(3);
e=yd-x1;
de=dyd-x2;

kp=30;kd=50;
K=[kp kd]';

E=[ede]"';

W=[x(1) x(2) x(3) x(4) x(5)]1";

xi=[x1;x2];

h=zeros(5,1) ;

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

fxp=W'*h;

gx=133;
ut=1/gx* (-fxp+ddyd+K' *E) ;

sys(1l)=ut;
sys(2)=fxp;

3. S function of Plant: chap8_lplant.m

function [sys,x0,str, ts]l=s_function(t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
casel,

sys=mdlDerivatives (t,x,u) ;
case 3,

sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}

sys = [1;
otherwise

error (['Unhandled flag = ', num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =3;
sizes.NumInputs =1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes) ;
x0=[pi/60 0] ;
str=[];
ts=[1];
function sys=mdlDerivatives (t,x,u)
fx=-25*x(2) ;

sys(1l)=x(2);

sys (2)=fx+133*u;

function sys=mdlOutputs (t,x,u)
fx=-25*x(2) ;

sys(1l)=x(1);
sys(2)=x(2);
sys(3)=£fx;

4. Plot program: chap8_1plot.m
close all;
figure (1) ;

subplot (211) ;
plot(t,sin(t),'r',t,y(:,1), 'k:", 'linewidth"',2);

xlabel ('time(s) ') ;ylabel('yd,y"');

legend('ideal position', 'position tracking') ;
subplot (212) ;

plot(t,cos(t),'r',t,y(:,2),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('dyd,dy');
legend('ideal speed', 'speed tracking') ;

figure (2) ;

plot(t,ut(:,1),'r', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Control input') ;
figure (3) ;

plot(t,fx(:,1),'r',t,fx(:,2),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('fx"');

legend('Practical fx', 'fx estimation') ;

8.2.3.2 Second Simulation Example: Nonlinear System

Consider a single inverted pendulum system as Fig. 8.4.
The dynamic equation is described as

jCl = X2

iy = f(x) +glx)u

g sinxy—mix3 cos x| sinx; /(m +m) . cosxy/(m. +m)
where f(x) = 1@ /3—m cosZx1 [(me +m)) .8(x) = T3 =mcos J(m.) X1» and x, are

angle and angle speed value, respectively, g = 9.8 m/s”, m,. = 1 kg is mass of cart,
m = 0.1 kg is mass of the pendulum, / = 0.5 m is the half length of the pendulum,
u is control input.

Consider ideal angle signal as yq(7) = 0.1 sinz, the initial states are chosen as
[7/60,0]. RBF network structure is chosen as 2-5-1.

Fig. 8.4 Single inverted 9

pendulum system 0 »
u 4——‘_(T m, H
x

0.2 - ' ' ' '
ideal angle
--------- Angle tracking []
> \/ \
©
B
02 : ' I I I
: 10 15 20 25 30
time(s)
0.2 - ' ' ' '
ideal angle speed
--------- Angle speed tracking []

>

©

he) \/ \/

>

©

02 : ' I I I
0 5 10 15 2 2 %
time(s)

Fig. 8.5 Angle tracking and angle speed tracking
According to the practical scope of x; and x;, the parameters of ¢; and b; are

designedas[—2 —1 0 1 2]and0.20, and the initial weight value is chosen as

)

zero. Adopting control law (8.6) and adaptive law (8.8), choose Q {580 500

kq = 50, k, = 30, y = 1200. The results are shown as Figs. 8.5 and 8.6

5 T T
Practical fx
--------- fx estimation

time(s)

Fig. 8.6 f(x) and f(x)

Simulation programs:

1. Simulink main program: chap8_2sim.mdl

Sine Wave

Mux

chap8_2ctrl

S-Function

chap8_2plant

S-Functioni

30

Clock To Workspace

Demux

2. S function of Control law: chap8_2ctrl.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 1,

sys=mdlDerivatives (t,x,u) ;

case 3,

sys=mdlOutputs (t,x,u) ;

case {2,4,9}
sys=[1;
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;

end

function [sys,x0,str,ts]=mdlInitializeSizes

global c b

sizes = simsizes;

sizes.NumContStates =5;

sizes.NumDiscStates = 0;

sizes.NumOutputs

sizes.NumInputs

=2;
=4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes (sizes) ;

x0 = [O*ones(5,1)1];

c=[-2-1012;
-2-10121;

b=0.20;

str = [];

ts =1[1;

function sys=mdlDerivatives (t,x,u)
global cb

gama=1200;

yd=0.1*sin(t) ;

dyd=0.1*cos(t);

ddyd=-0.1*sin(t);

x1=u(2);x2=u(3);
e=yd-x1;de=dyd-x2;

kp=30;kd=50;
K=[kp kd] ';
E=[e del]"';

Fai=[0 1;-kp -kd];
A=Fai';

Q=[500 0;0 5007 ;
P=1lyap(A,Q);

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

W=[x(1) x(2) x(3) x(4) x(5)]1";

B=[0;1];
S=-gama*E' *P*B*h;

for i=1:1:5
sys(i)=S(i);

end

function sys=mdlOutputs (t,x,u)
global cb

yd=0.1*sin(t) ;
dyd=0.1*cos(t);
ddyd=-0.1*sin(t) ;

x1l=u(2);x2=u(3);
e=yd-x1;de=dyd-x2;

kp=30;kd=50;
K=[kp kd]"';
E=[e del]"';

Fai=[01;-kp -kd];
A=Fai';

W=[x(1) x(2) x(3) x(4) x(5)1";

xi=[e;de];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

fxp=W'*h;

g=9.8;mc=1.0;m=0.1;1=0.5;
S=1*(4/3-m* (cos(x(1))) "2/ (mc+m)) ;

gx=cos (x(1))/ (mc+m) ;

o

t=1/gx* (-fxp+ddyd+K' *E) ;

sys (1) =ut;
sys(2)=fxp;

3. S function of Plant: chap8_2plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,
sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}
sys = [];
otherwise
error (['Unhandled flag = ', num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =3;
sizes.NumInputs =1;
sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 0;

sys=simsizes(sizes);

x0=[pi/60 0];

str=[];

ts=[1];

function sys=mdlDerivatives (t,x,u)
g=9.8;mc=1.0;m=0.1;1=0.5;

S=1*(4/3-m* (cos(x(1)))"2/(mc+m)) ;
fx=g*sin(x(1))-m*1*x(2)"2*cos(x (1)) *sin(x (1)) / (mc+m) ;
fx=fx/S;

gx=cos (x(1))/ (mc+m) ;

gx=gx/S;

sys(1)=x(2);

sys (2) =fx+gx*u;

function sys=mdlOutputs (t,x,u)
g=9.8;mc=1.0;m=0.1;1=0.5;

S=1*(4/3-m* (cos(x(1))) "2/ (mc+m)) ;
fx=g*sin(x(1))-m*1*x(2)"2*cos (x(1))*sin(x(1))/ (mc+m) ;
fx=fx/S;

gx=cos (x (1)) / (mc+m) ;

gx=9gx/S;

sys(1l)=x(1);
sys(2)=x(2);
sys (3)=£fx;

4. Plot program: chap8_2plot.m

close all;

figure (1) ;

subplot (211) ;
plot(t,0.1*sin(t),'r',t,y(:,1), 'k:', 'linewidth"',2);
xlabel ('time(s) ') ;ylabel('yd,y"');

legend('ideal angle', 'Angle tracking') ;

subplot (212) ;
plot(t,0.1*cos(t),'r',t,y(:,2), 'k:', "linewidth"',2);
xlabel ('time(s) ') ;ylabel ('dyd,dy');

legend('ideal angle speed', 'Angle speed tracking') ;

figure (2) ;
plot(t,ut(:,1),'r', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Control input') ;

figure (3) ;
plot(t, fx(:,1),'r',t,fx(:,2),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('fx');

legend('Practical fx', 'fx estimation') ;

8.3 Adaptive Control Based on Neural Approximation
with Unknown Parameter

8.3.1 Problem Description

Consider a second-order nonlinear system
X =f(x,x)+mu (8.18)
where f is unknown nonlinear function, m is unknown, the lower bound of m is

known, m>m, and m > 0.
Eq. (8.18) can also be written as

fC] = X2
X = f(x) +mu (8.19)
y=xi

We assume the ideal position signal is yq, let

1T
e=yi—y=ya—x,E=[e ¢]
Design the control law as

1
ut = — [—f(x) + 34+ K"E] (8.20)
Substitute (8.20) into (8.18), we can get the closed control system as
é+kpe+kse =0 (8.21)

We design K = [k, kq]T so that all the roots of the polynomial s* + kgs + k, = 0
are in the left part of the complex plane. Then, we have t — oo, e(f) — 0, and
e(t) — 0.

From (8.20), we know if the function f(x) and parameter m are unknown, the
control law will not be realized.

8.3.2 Adaptive Controller Design

8.3.2.1 RBF Neural Network Design

In this section, just like Sect. 8.1, reference to the indirect adaptive fuzzy controller
tactics given in [3], we use RBF to replace fuzzy system to design RBF indirect
adaptive controller.

The algorithm of RBF to approximate f(x) is described as

= g(llx = eill>/07)
f=Whx)+e

where x is the input vector, i denotes input neural nets number in the input layer,
J denotes hidden neural nets number in the hidden layer, h = [k, hy, - - ~,h,,]T
denotes the output of hidden layer, W is weight value, ¢ is approximation error,
le] < en.

We use RBF to approximate f; the input vector is chosen asx = [e ¢]T, and the
output of RBF is

Fx) = W'h(x) (8.22)

8.3.2.2 Control Law and Adaptive Law Design

If we use RBF neural network to represent the unknown nonlinear function f, the
control law becomes

u= % [—f(x) +34+K'E] (8.23)
Fx) = W'h(x) (8.24)

where h(x) is Gaussian function, and W is the estimated parameter for W.

8.3.2.3 Stability Analysis
Submitting the control law (8.23) into (8.18), the closed-loop system is expressed as

¢=—K"E+ (f(x) —f(x)) + (m — in)u (8.25)

Let

A= [_(;Cp _1]((1],3: m (8.26)

Now, (8.25) can be rewritten as
E = AE + B[(f(x) — f(x)) + (m — iin)u] (8.27)
The optimal weight values is
W* = arg min [sup|f (x) — £ (x)]] (8.28)
Define the modeling error as
o = f(x|W*) - f(x) (8.29)
Then, Eq. (8.27) becomes
E = AE +B{[f(x|) = f(x|W")] + &+ (m — iin)u} (8.30)

Submit Eq. (8.24) into (8.13), we can get closed equation as
E:AE+B[(W—W*)Th(x)—i-w—i—(m—nh)u} (8.31)

Choose a Lyapunov function as

_1 T i v AT (G _ W* l ~2
V—ZEPE—i—Zy(W W) (W W)+2nm (8.32)

where v is positive constant. W — W* denotes the parameter estimation error, and
the matrix P is symmetric and positive definite and satisfies the following Lyapunov
equation

A"P+PA=—-Q (8.33)
With Q@ >0, A is given by (8.26), n > 0, m = m — 7.

Choosing Vi =1E"PE, Va=L(W—W) (W—W), Vs=lyi?, let

M=B8 [(W — W) h(x) + o+ |, Bq. (8.31) becomes

E=AE+M

Then,

1.7

. 1 1
Vi=3EPE+ EETPE =~ (E"A" +M")PE + EETP(AEJrM)

—

1 1
= EET(ATP—s—PA)E—F SM'PE + SE'PM

1 1 1
=— EETQE+ 5 (M'PE+E"PM) = —EETQE—i—ETPM

Submitting M into above, noting that ETPB(W — W*)Th(x) =(W- W*)T
[E"PBh(x)], we get

Vi

1)
—~SETQE + E"PB(W — W*) ' h(x) + E"PBw + E"PBinu

1 .
=—5 E'QE + (W — W*)TETPBh (x) + E"PBw + E'PBinu

7, :%(A —wW
V3 = —1’]1’711’;1

Then, the derivative V becomes
V= Vl + Vz + V3

1 1, 2 .
= 3 E"QE +ETPBo+ - (W - W)' [W+ E"PBR(x) | + i (E"PBu — wi)

We choose the adaptive law as
W = —E"Pbh(x) (8.34)

To guarantee ih(ETPBu — m'h) <0, at the same time to avoid singularity in
(8.23) and guarantee m > m, we used the adaptive law tactics proposed in [4] as

%ETPBM, if ETPBu > 0
m =< YE"PBu, if E"PBu<Oandm

>
% ifETPBu<0andm <

(8.35)

m
m

where 7i1(0) > m.
Reference to [4], the adaptive law (8.35) can also be analyzed as

1. if E"PBu > 0, we get i (E"PBu — ni) = 0 and 7in > 0, thus 7 > m;

2. if E"PBu <0 and i > m, we get n(E"PBu — nin) = 0;

3. if ETPBu<0 and m<m, we have m=m—m>m—m>0, thus
m(ETPBu — nyin) = mE"PBu— m <0 and if 7 increases gradually, then
i > m will be guaranteed with i > 0.

Submitting the adaptive law (8.34) and (8.35) into above, we have
’ | T
V= _EE QE +E PBow

Since — %ETQE <0, if we can make the approximation error o very small by

using RBF, we can get V <0. Then we can get E, W and 7 are all limited.
The convergence is

2 Amax (PB) Wmax

IEl< == @

where A(-) is characteristic value, A, and Z,;, are the maximum and minimum
value of matrix.

8.3.3 Simulation Examples

Consider a simple plant as

fCl = X2
X =f(x)+mu

where x; and x, are position and speed, respectively, u is control input,
f(x) = —25x, — 10x;, m = 133.

We use ideal position signal as y4(¢) = sinz and choose the initial states of the
plant as [0.50, 0].

We use RBF to approximate f(x) and design adaptive algorithm to estimate
parameter m. The structure is used as 2-5-1, and the input vector of RBF is
z2=[x1 x]T. For each Gaussian function, the parameters of ¢; and b; are designed
as[—1 —0.5 0 0.5 1] and 2.0. The initial weight value is chosen as zero.

In simulation, we use control law (8.23) and adaptive law (8.34) and (8.35), the
500 O
0 500
n =0.0001, m = 100, 7(0)= 120. The results are shown from Figs. 8.7, 8.8,
and 8.9.

parameters are chosen as Q = [], ky =30, kq =50, y=1200,

ideal position
position tracking

T

0 2 4 6 8 10 12
time(s)

14 16 18 20

dyd,dy

2 1 1 1 1 1 1

ideal speed
speed tracking [

0 2 4 6 8 10 12
time(s)

Fig. 8.7 Position and speed tracking

0.4 T T T T T

14 16 18 20

0.3}

Control input

Fig. 8.8 Control input

14 16 18 20

True fx
fx estimation

2 4 6 8 10 12 14 16 18 20
time(s)
140 T T T T T T T T T
True m
130 | o S S e e e m estimation
£ :
120 4
110 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
time(s)

Fig. 8.9 Estimation of f(x) and m

Simulation programs:

1. Simulink main program: chap8_3sim.mdl

—f]

-
>
Sine Wave Mux chap8 3ctd chap8 3plant Demux]
e pB_3plan Position
S-Function S-Function1
Muzx
=0 B 1

Clock To Workspace

2. S function of Control law: chap8_3ctrl.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,

case 0,
[sys,x0,str,ts]=mdlInitializeSizes;

case 1,
sys=mdlDerivatives (t,x,u) ;
case 3,
sys=mdlOutputs(t,x,u) ;
case {2,4,9}
sys=[1];
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
global node c b
node=5;
sizes = simsizes;
sizes.NumContStates = node+1;
0;

sizes.NumDiscStates
sizes.NumOutputs =

3;
sizes.NumInputs =5;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 0;

sys = simsizes (sizes) ;

x0 = [zeros(1l,5),120];

c=[-1-0.500.51;
-1-0.500.51];

b=2;

str = [];

ts =1[1;

function sys=mdlDerivatives (t,x,u)

global node c b

yd=sin(t) ;

dyd=cos (t) ;

ddyd=-sin(t) ;

x1=u(2);x2=u(3);
e=yd-x1;de=dyd-x2;

kp=30;kd=50;
K=[kp kd] ';
E=[e del]";

Fai=[0 1;-kp -kd];
A=Fai';

Q=[500 0;0 500];
P=lyap(A,Q);

W=[x(1) x(2) x(3) x(4) x(5)1";

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3J))"2/(2*b"2));

end

fxp=W'*h;

mp=x (node+1) ;
ut=1/mp* (-fxp+ddyd+K' *E) ;

B=[0;1];
gama=1200;
S=-gama*E' *P*B*h;
for i=1:1:node

sys(i)=S(i);
end

eta=0.0001;

ml=100;

if (E'*P*B*ut>0)
dm=(1l/eta) *E' *P*B*ut;

end

if (E'*P*B*ut<=0)
if (mp>ml)
dm=(1l/eta) *E' *P*B*ut;
else
dm=1/eta;
end

end

sys (node+1) =dm;

function sys=mdlOutputs (t,x,u)
global node c b

yd=sin(t) ;

dyd=cos(t) ;

ddyd=-sin(t) ;

x1=u(2);x2=u(3);
e=yd-x1;de=dyd-x2;

kp=30;kd=50;
K=[kp kd]"';
E=[e del]"';

W=[x(1) x(2) x(3) x(4) x(5)1";

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:node
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

fxp=W'*h;

mp=x (node+1) ;

ut=1/mp* (-fxp+ddyd+K' *E) ;

sys(1)=ut;
sys (2)=fxp;
sys (3)=mp;

3. S function of Plant: chap8_3plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
case 1,

sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}

sys = [];
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =4;
sizes.NumInputs =3;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);
x0=[0.50];
str=[];

ts=[1;
function sys=mdlDerivatives (t,x,u)
ut=u(l);

fx=-25*x(2)-10*x (1) ;
m=133;

sys(1)=x(2);

sys (2)=fx+m*ut;

function sys=mdlOutputs(t,x,u)
fx=-25*x(2)-10*x(1) ;

m=133;

sys(1)=x(1);
sys(2)=x(2);
sys(3)=£fx;
sys (4)=m;

4. Plot program: chap8_3plot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,sin(t),'r',t,y(:,1),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel (‘yd,y"');

legend('ideal position', 'position tracking') ;
subplot (212) ;

plot(t,cos(t),'r',t,y(:,2),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('dyd,dy"');
legend('ideal speed', 'speed tracking') ;

figure (2) ;
plot(t,ut(:,1),'r', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Control input');

figure (3) ;

subplot (211) ;

plot(t,p(:,1),'r',t,p(:,4),'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('fx"');

legend('True fx', 'fx estimation') ;

subplot (212) ;

plot(t,p(:,2),'r',t,p(:,5),'k:"', 'linewidth',2) ;
xlabel ('time(s) ') ;ylabel('m');

legend('Truem', 'm estimation') ;

References

1. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5, 115-133 (1943)

2. K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop, Neural networks for control system-a
survey. Automatica 28(6), 1083-1112 (1992)

3. L.X. Wang, A Course in Fuzzy Systems and Control (Prentice-Hall, New York, 1997)

4. A.C. Huang, Y.C. Chen, Adaptive sliding control for single-link flexible joint robot with
mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770-775 (2004)

Chapter 9
Adaptive Sliding Mode RBF Neural
Network Control

Sliding mode control is an effective approach for the robust control of a class of
nonlinear systems with uncertainties defined in compact sets. The direction of the
control action at any moment is determined by a switching condition to force the
system to evolve on the sliding surface so that the closed-loop system behaves like
a lower order linear system. For the method to be applicable, a so-called matching
condition should be satisfied, which requires that the uncertainties be in the range
space of the control input to ensure an invariance property of the system behavior
during the sliding mode.

Sliding mode control is frequently used for the control of nonlinear systems
incorporated with neural network. Stability, reaching condition, and chattering
phenomena are known important difficulties. For mathematically known models,
such a control is used directly to track the reference signals. However, for uncertain
systems with disturbance, to eliminate chattering phenomena, there is the need to
design neural network compensator and then the sliding mode control law is used to
generate the control input.

9.1 Typical Sliding Mode Controller Design

Sliding mode control (SMC) was first proposed and elaborated in the early 1950s in
the Soviet Union by Emelyanov and several co-researchers such as Utkins and Itkis.
During the last decades, significant interest on SMC has been generated in the
control research community.

For linear system

X=Ax+bu,x cR",ucR (9.1)

A sliding variable can be designed as
n n—1
s(x) = Tx = Zcixi = Zc,-x,- + X, (9.2)
i=1 i=1

where x is state vector, ¢ = [¢1 -+ €y l]T.

In sliding mode control, parameters cy,cs, - - -, c,—; should be selected so that
the polynomial p"~!'+4 ¢, 1p" 2+ ---cop+c; is Hurwitz, where p is Laplace
operator.

For example, n =2, s(x) = ¢;x; +x;, to guarantee the polynomial p + ¢,
Hurwitz, the eigenvalue of p +c¢; = 0 should has negative real part, i.e., ¢; > 0;
e.g., if we set ¢; = 10, then s(x) = 10x; + x.

For another example, n = 3, s(x) = ¢;x; + c2x2 + X3, to guarantee the polyno-
mial p? 4 cop + ¢; Hurwitz, the eigenvalue of p? + cp + ¢; = 0 should has nega-
tive real part. For example, we can design 4 > 0 in (p + /1)2 = 0, and then, we can
get p> 4+ 2/p + 42 = 0. Therefore, we have ¢, = 2, ¢; = 72 e.g., if weset L =35,
we can get ¢; = 25, ¢; = 10 and then s(x) = 25x; + 10x; + x3.

Now, we consider a second-order system and there are two steps in the SMC
design. The first step is to design a sliding surface so that the plant restricted to the
sliding surface has a desired system response. The second step is to construct a
controller to drive the plant’s state trajectory to the sliding surface. These con-
structions are built on the generalized Lyapunov stability theory.

For example, consider a plant as

JO(r) = u(r) +d(7) (9.3)
where J is inertia moment, 0(z) is angle signal, u(¢) is control input, df is distur-
bance, and |d(¢)| < D.

Firstly, we design the sliding mode function as

s(t) = ce(t) +&(t) (9.4)

where ¢ must satisfy Hurwitz condition, ¢ > 0.
The tracking error and its derivative value is

e(t) = B(r) — 8a(1), &(t) = O(r) — 0a (1)

where 04(¢) is ideal position signal.
Design Lyapunov function as

Therefore, we have
§(1) = ce(r) +&(1) = ce(t) + 0(r) — 04(¢) = ce(r) + ;(u +d(1)) —04() (9.5)

and
) 1 N
5§ = s(ce—l— j(u—l—d(t)) - 6d>
Secondly, to guarantee ss <0, we design the sliding mode controller as
u(t) = J(—cé + 0y — nsgn (s)) — Dsgn(s) (9.6)
Then, we get
) 1 B
5§ = s<ce+ j(u+d(t)) - 9d>
and
. D
V=55 =—nls| = 15| <0

The closed system is asymptotically stable, s — 0 as t — oo, then e — 0 and
¢ — 0 as t — oo, and the convergence precision is related to 7.

From this example, we can see that the sliding mode control have good
robustness performance. However, if we use bigger D value to overcome big dis-
turbance dt, control input chattering phenomenon can be created, which can dec-
orate the control performance.

In addition, in the control law (9.6), modeling information J must be known,
which is difficult in practical engineering. In this chapter, we use RBF neural
network to approximate unknown part of the plant.

9.2 Sliding Mode Control Based on RBF
for Second-Order SISO Nonlinear System

9.2.1 Problem Statement

Consider a second-order nonlinear system as follows:

jC] = X2

X =f(x) +bu+d(r) 6-7)

where f(+) is unknown nonlinear function, b > 0, u and 0 are the control input and

output, respectively, d(¢) is outer disturbance, and |d(¢)| < D.
Let the desired output be x4 and denote

e =X —Xq
Design sliding mode function as
s=e+ce
where ¢ > 0, then
§=é+ce=% —Xa+ce=f+bu+d(t)—Xq+ceé

If fand b are known, we can design control law as

u =

(=f +%a — ce —nsgn(s))

S =

Using (9.10), (9.9) becomes
§=—nsgn(s)+d(r)
If we choose n > D, then we have
s§=—nls| —s-d(t) <0

Design Lyapunov function V = %sz, then we have V <0.

(9.10)

The closed system is asymptotically stable, s — 0 as t — oo, then ¢ — 0 and

e — 0 as t — o0, and the convergence precision is related to 7.

If f(-) is unknown, we should estimate f(-) by some algorithms. In the fol-
lowing, we will simply use RBF neural network to approximate the unknown

function f(-).

9.2.2 Sliding Mode Control Based on RBF for Unknown f (")

In this control system, we use RBF network to approximate f. The algorithm of

RBF network is

I —eil®
hj = exp (72
207

where x is input of the network, i is input number of the network, j is the number of

. . T. . . .
hidden layer nodes in the network, h = [h]} is the output of Gaussian function, W*
is the ideal neural network weights, ¢ is approximation error of the neural network,
and ¢ <ey, fis the output value of the network.

The network input is selected as x = [x; x2]T, and the output of RBF is

f(x)=WTh (x) (9.11)

where h (x) is the Gaussian function of RBF neural network.
Then, the control input (9.10) can be written as

u=—(—f+is—ce—nsgn(s)) (9.12)

wl»—

Submitting (9.12) to (9.9), we have

§=f+bu+d(t) —Fq+ce=f+ (=f +3% — ce — nsgn(s)) — kg +d(r) +cé
=f—f —nsgn(s)+d(t) =] —nsgn (s) +d(1)

(9.13)
where
F=f—F=WThx)+e—Wh(x)=Whx) +e (9.14)
and W =W"—W.
Define the Lyapunov function as
c=Ltey Lww
= —S b}
2 2’
where y > 0.
Derivative L, and from (9. 12) and (9.13), we have
=55+ yWT W = s(f +d(1) — nsgn (s)) — yWTW
= s(WTh (x)+e+d(t) — nsgn (s)) —yWTW
=w" (sh (x) — yW) +s(e+d(r) —nsgn(s))
Let adaptive law as
— 1
W = —sh (x) (9.15)

Then

L = s(s+d(1) — nsgn (s)) = s(e+d(2)) — nls]

Due to the approximation error ¢ that is limited and sufficiently small, we can
design n>en+D+1#y, 1o >0; then, we can obtain approximately
L< —ngls| <0,

From above analysis, we can see that RBF approximation error can be overcome
by the robust term # sgn (s).

From L< — 1ols| <0, we have

t 1 t
/Ldtg *’70/ s|dr, ie. L(r) — L(0) < 7110/ |s|dz
0 0 0

Then, V is limited, s and W are all limited, from § expression, § is limited, and
the [; ||s||dt is limited. From Barbalat Lemmma [1], when ¢ — oo, we have s — 0,
then e — 0, ¢ — 0.

Since V is limited as t — oo, W\ is limited. Since when V = 0, we cannot get

W =0, /147 cannot converge to W*.

9.2.3 Simulation Example

Consider the following single rank inverted pendulum

5(1 = X2

X = f(x) 4+ 100u + d(z)

where x; and x, are, respectively, angle and angle speed, u is the control input,
f(x) =x1+x2, d(t) = cost.

Choose desired trajectory as xg = sint#, and the initial state of the plant is
[0.20 0]. We adapt control law (9.12) and adaptive law (9.15), and choose ¢ =
10, # = 10 and adaptive parameter y = 0.01.

I s>A
sat(s) =< ks |s|<A , k=1/A (9.16)
-1 s<—-A

In the controller, to eliminate chattering, we use saturation function to replace
sign function, and choose A = 0.05.

T 7%
ideal signal
practical signal [

Position tracking

ideal signal
practical signal [

Speed tracking
o

time(s)

Fig. 9.1 Position and speed tracking

Fig. 9.2 Control input 0.1

0.05 i

Control input

-0.05F R

015 : : : : :
0 5 10 15 20 25 30
time(s)

The structure of RBF is chosen as 2-5-1, ¢; and b; are designed as
[-1.0 —05 0 0.5 1.0]andb; =5.0, and the initial value of each element of
RBF weight value is set as 0.10.

The curves of position tracking and uncertainty approximation are shown in
Figs. 9.1, 9.2 and 9.3.

16 T T

fx
-------------- estiamted fx |

12

fx and estiamted fx
(o)}

Fig. 9.3 f(x) and f(x)

Simulation programs:

1. Simulink main program: chap9_1sim.mdl

ctrl

- chap@_1iplant | Demux p

S-Function1
S-Function
Muxe
] ~

Clock To Workspace
2. S function of Control law: chap9_1ctrl.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs (t,x,u) ;

case {2,4,9}
sys=[1];
otherwise
error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
global cij bj ¢
sizes = simsizes;
sizes.NumContStates =5;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =3;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 0;
sys = simsizes (sizes) ;
x0 =0.1*ones(1,5);

str=[1];

ts =[1;

cij=0.5*[-2-1012;
-2-10121;

bj=5;

c=10;

function sys=mdlDerivatives (t,x,u)
global cij bj ¢

xd=sin(t) ;dxd=cos(t);
x1l=u(l);x2=u(2);

e=x1-xd;

de=x2-dxd;

s=c*e+de;

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-cij(:,3))"2/(2*bj"2));

end

gama=0.01;

W=[x(1) x(2) x(3) x(4) x(5)]";
for i=1:1:5

sys(i)=1/gama*s*h (i) ;
end
function sys=mdlOutputs (t,x,u)
global cij bj ¢
xd=sin(t) ;dxd=cos (t) ;ddxd=-sin(t) ;
x1=u(l);x2=u(2);

e=x1-xd;
de=x2-dxd;

s=c*e+de;

W=[x(1) x(2) x(3) x(4) x(5)]1";

xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-cij(:,3))"2/(2*bj" 2));

end

fn=w'*h;

xite=10;

b=100;

delta=0.05;
kk=1/delta;

if abs(s)>delta
sats=sign(s) ;
else
sats=kk*s;

end
ut=1/b* (-fn+ddxd-c*de-xite*sats) ;

sys (1) =ut;
sys (2)=fn;

3. S function of Plant: chap9_lplant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
casel,

sys=mdlDerivatives (t,x,u) ;
case 3,

sys=mdlOutputs (t,x,u) ;
case {2, 4, 9}

sys = [1;
otherwise

error (['Unhandled flag = ', num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;

sizes.NumContStates

1}
o N

sizes.NumDiscStates = 0;

sizes.NumOutputs =3;
sizes.NumInputs =1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);
x0=[0.200];

str=[];

ts=[1];

function sys=mdlDerivatives (t,x,u)
fx=x(1)+x(2);

b=100;

ut=u(l);

dt=cos (t);

sys(1)=x(2);

sys (2) =fx+b*ut+dt;

function sys=mdlOutputs (t,x,u)
fx=x(1)+x(2);

sys (1)=x(1);

sys(2)=x(2);

sys (3)=£fx;

4. Plot program: chap9_1plot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,sin(t),'k',t,y(:,1),'r:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Position tracking') ;

legend('ideal signal', 'practical signal');
subplot (212) ;

plot(t,cos(t), 'k',t,y(:,2),'r:', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Speed tracking') ;
legend('ideal signal', 'practical signal');

figure (2) ;

plot(t,ut(:,1),'k', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Control input') ;
figure (3) ;

plot(t, fx(:,1),'k',t,fx(:,2),'r:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel (' fx and estiamted fx');

legend('fx', 'estiamted fx') ;

9.3 RBF Neural Robot Controller Design with Sliding
Mode Robust Term

9.3.1 Problem Description

Consider dynamic equation of n-link manipulator as
M(q)§+C(q:4)§+G(g) +F(§) +ra=r (9.17)

where M(q) is an n X n inertia matrix, C (g,4) is an n X n matrix containing the
centrifugal and Coriolis terms, G(g) is an n x 1 vector containing gravitational
forces and torques, g is generalized joint coordinates, 7 is joint torques, and T4
denotes disturbances.

The tracking error vector is designed as e (7) = q4(¢) — q (¢), and define the
sliding mode function as

r=eé+Ae (9.18)

where A = AT =1[) Jy --- /I,I]T > 0 is an appropriately chosen coefficient
vector such that "' + 1,_1s" 2+ -+ + Ay is Hruwitz (i.e., e — 0 exponentially as
r —0).

The sliding mode tracking error r can be viewed as the real-valued utility
function of the plant performance. When r is small, system performance is good.
For the system (9.16), all modeling information was expressed as f(x) by using the
sliding mode tracking error r [2].

The item (9.18) gives

q=-r+q,+1e (9.19)
and

Mi = M(jy — §+ Aé) = M(§, + Ae) — M
=M(Gg;+4¢)+C4+G+F+1—1
=M(Gy+Aé) —Cr+C(q,+Ae)+G+F+14—7
=—Cr—t+f+14

(9.20)

where f(x) = Mg, +Cq,+G+F, §,=q,+ Ae.

From f(x) expression, we can see that the term f(x) includes all the modeling
information.

The goal is to design a stable robust controller without any modeling informa-
tion. In this section, we use RBF to approximate f(x).

9.3.2 RBF Approximation

RBF algorithm is described as

e —eill®
hy=exp———,j=1,2,---,m
! b? (9.21)
f(x) =WTh+e
where x is input of RBF, W is optimum weight value, h = [h; hy - - - hm]T, and ¢ is
a very small value.
The output of RBF is used to approximate f(x):
fx)=WTh (9.22)

where W =W — W, Wz < Winax.
From (9.21) and (9.22), we have

f—f=Wh+e—Wh=Wh+e

From f(x) expression, the input of RBF should be chosen as

x=1[e" & ¢ ¢7 4]

9.3.3 Control Law Design and Stability Analysis

For the system (9.17), refer to [2], the control law is designed as
T=f(x)+ Ko —v (9.23)
With robust term v = —(ex + ba) sgn (r), where f(x) is estimation of f(x) and

v is robustness term.
The corresponding RBF adaptive law is designed as

W = Thr" (9.24)

where ' =TT > 0.

Inserting (9.23) to (9.20) yields

Mi = —Cr — (f(x) F Ko — v) g

= —(Ky+C)r+ Wh+ (se+14) +v
=—(K,+C)r+g

(9.25)

where ¢; = WTo + (4 14) +.
Define Lyapunov function as

_ Ll 1 =7 71’“)
L=y Mr+2tr(WF W

Thus
L=r"Mi+ %rTMr +tr <WTF1 W)
Inserting (9.24) into above yields
L=—r"K,r+ %rT(M —2C)r+u W' (1"1 W —|—hrT> +ri(e+1a+v)

Since

1. According to the skew-symmetric characteristics of manipulator dynamic
equation, r’ (M -20)r=0;
2. FTWTh = tr(WThrT);

3. W=—W = —Thr".
Then
L=—r"Kyo+r(e+t+v)
Consider

ri(e+ta+v) =r"(e+71a) +r (—(en +bg) sgn (r))
=r'(e+1a) — |Irfl(en +ba) <O

There results finally

L< —rTK,r<0

From above analysis, we can see that RBF approximation error can be overcome
by the robust term.
From L < — rTK,r <0, we have

t t t
/Ldtg —;me(KV)/ IFlldr, e L(r) — L(0) < —zmm(KV)/ ||| de
0 0 0

where /i (Ky) is the minimum eigenvalue of K.

Then, L is limited, r and W are all limited, from 7 expression, 7 is limited, and
the [;° ||r||dt is limited. From Barbalat Lemmma [1], when ¢ — oo, we have r — 0,
then e — 0, ¢ — 0, and the convergence precision is related to K.

Since L >0, L<0, L is limited as t — oo; thus, W is limited. Since when

L =0, we cannot get W= 0, W cannot converge to W.

9.3.4 Simulation Examples

Consider a plant as

M(q)§+V(g4)§+G@)+F(@)+ta=r7

p1+p2+2p3cosqy pr+p3cosgr :

where M(q) = [s+ P COS P }, Vig,q) =
—p3qpsings —p3(q1+§2) sings _ | Pagcosqi +psgcos (q1 +q2)

P31 sings Psgcos (q1+q2)

F(¢) =0.02sgn(q), ta=1[02sin(s) 02sin(t)]", p=[p1,p2,p3,pa:ps) =
[2.9,0.76,0.87,3.04,0.87].

For RBF neural network, the structure is 2-7-1, the input is chosen as
z=/[e e], the parameters of Gaussian function ¢; and b; are chosen as
[-15 —1.0 —05 0 0.5 1.0 1.5] and 10, the number of hidden nets are
chosen as 7, and the initial weight value is chosen as zero. The desired trajectory is
g1a = 0.1sin?, goq = 0.1sinz. The initial value of the plant is [0.09 0 —0.09 O0].

Use control law (9.23) and adaptive law (9.24), K, = diag{10, 10},
I' = diag{15,15}, A = diag{5,5}. The simulation results are shown from
Figs. 9.4, 9.5, 9.6, and 9.7.

)

Angle tracking for link 1

Angle tracking for link 2

40

06 T T T T T T T
ideal angle for link 1
04r e angle tracking for link 1 T
_02 i 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
time(s)
0.2 T T T T T T T
ideal angle for link 2
angle tracking for link 2 R
_02 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
time(s)

Fig. 9.4 Angle tracking

Speed tracking for link 1

Angle speed tracking for link 2

40

1 : T T T T T T T
i ideal angle speed for link 1
""""" angle speed tracking for link 1]
_1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
time(s)
1 T T T T T T T
ideal angle speed for link 2
o5k e angle speed tracking for link 2 ||

5 10

Fig. 9.5 Angle speed tracking

20 25 30 35
time(s)

40

_ 100 T T T T T T
4
£
G 50 8
=
a
£
° Of 4
€
9
o
_50 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
time(s)
o~
x
£
—
S
5
a
£
°
<
o)
o
_10 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
time(s)
Fig. 9.6 Control input of links 1 and 2
70 T T T T T T T
ideal fx
ol e estimation of fx

fand fn

time(s)

Fig. 9.7 ||f(x)[| and ||f(x)]|

30

35

40

Simulation programs:

1. Simulink main program: chap9_2sim.mdl

eal angie

chapi_Znput

S-Functon3

chap_2etrl

SFunctond

S-Function1

Clock To Werkspace r, A e
l— 1

2. S function of ideal input: chap9_2input.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
case 1,

sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[];
otherwise

error (['Unhandled flag = ' ,num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates =0;
sizes.NumOutputs =6;
sizes.NumInputs =0;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =1[1;

str=[1];

ts =[00];

function sys=mdlOutputs(t,x,u)
gdl=0.1*sin(t) ;
d_qgdl=0.1*cos(t);
dd_qgdl=-0.1*sin(t);
gd2=0.1*sin(t) ;
d_gd2=0.1*cos(t);
dd_gd2=-0.1*sin(t) ;

sys (1)=qgdl;
sys(2)=d_qdl;
sys(3)=dd_qgdl;
sys (4)=qd2;
sys (5)=d_qgd2;
sys (6)=dd_qd2;

3. S function of control law: chap9_2ctrl.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives (t,x,u) ;
case 3,
sys=mdlOutputs(t,x,u);
case {2,4,9}
sys=1[1;
otherwise
error (['Unhandled flag = ' ,num2str (flag)]) ;

end

function [sys,x0,str,ts]=mdlInitializeSizes

global node ¢ b Fai

node=7;

c=[-1.5-1-0.500.511.5;
-1.5-1-0.500.511.5];

b=10;

Fai=5*eye(2);

sizes = simsizes;
sizes.NumContStates = 2*node;
sizes.NumDiscStates = 0;
sizes.NumOutputs =3;

sizes.NumInputs =11;

1]
[

sizes.DirFeedthrough
sizes.NumSampleTimes = 0;

sys = simsizes (sizes) ;

x0 = zeros(1l,2*node) ;

str=[];

ts =1[1;

function sys=mdlDerivatives (t,x,u)
global node ¢ b Fai

gdl=u(l);

d_qgdl=u(2);

dd_gdl=u(3);

gd2=u(4) ;

d_qgd2=u(5) ;

dd_qgd2=u(6) ;

ql=u(7);
d_gl=u(8);
g2=u(9);
d_q2=u(10);

g=[gl;q2];

el=qgdl-ql;
e2=qd2-g2;
del=d_qdl-d_qgl;
de2=d_qd2-d_qg2;
e=[el;e2];
de=[del;de2];

r=de+Fai*e;

qd=[qgdl;qd2];
dgd=[d_qdl;d_qd2];
dgr=dgd+Fai*e;
ddgd=[dd_qdl;dd_qd2];
ddgr=ddgd+Fai*de;

zl=[e(1l);de(1)];

z2=[e(2);de(2)];

for j=1:1:node
hl(j)=exp(-norm(zl-c(:,3))"2/(b*b));
h2 (j)=exp(-norm(z2-c(:,3)) "2/ (b*b));

end

F=15*eye (node) ;

for i=1:1:node
sys(i)=15*hl1(i)*r(1);
sys (i+node)=15*h2 (1) *r(2) ;

end

function sys=mdlOutputs(t,x,u)
global node c b Fai

gdl=u(l);

d_qgdl=u(2);

dd_gdl=u(3);

qgd2=u(4) ;

d_gd2=u(5) ;

dd_qgd2=u(6) ;

ql=u(7);
d_gl=u(8);
az2=u(9);
d_g2=u(10);

g=[gl;q2];

el=qgdl-qgl;
e2=qd2-g2;
del=d_qdl-d_qgl;
de2=d_qgd2-d_qg2;
e=[el;e2];
de=[del;de2];

r=de+Fai*e;

qd=[qgdl;qd2];
dgd=[d_qgdl;d_gd2];
dgr=dgd+Fai*e;
ddqd=[dd_qdl;dd_qd2] ;
ddgr=ddgd+Fai*de;

W_fl=[x(1l:node)]";
W_f2=[x(node+1l:node*2)]1"';

zl=[e(1l);de(1)1;

z2=[e(2);de(2)]1;

for j=1:1:node
hl(j)=exp(-norm(zl-c(:,3))" 2/ (b*b));
h2(j)=exp(-norm(z2-c(:,3)) "2/ (b*b));

end

fn=[W_£f1*hl"';
W_£f2*h2'];
Kv=20*eye(2) ;

epN=0.20;bd=0.1;
v=- (epN+bd) *sign(r) ;

tol=fn+Kv*r-v;

fn_norm=norm(fn) ;
sys(1l)=tol(1);
sys(2)=tol(2);

sys (3)=£fn_norm;

4. S function of plant: chap9_2plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)

switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives (t,x,u);
case 3,
sys=mdlOutputs(t,x,u) ;
case {2, 4, 9}
sys = [1;
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
globalpg
sizes = simsizes;
sizes.NumContStates =4;
sizes.NumDiscStates = 0;
sizes.NumOutputs =5;
sizes.NumInputs =3;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);
x0=[0.090-0.0901;
str=[];
ts=1[1;

p=[2.90.76 0.873.040.871];
g=9.8;
function sys=mdlDerivatives (t,x,u)

globalpg

D=[p(1)+p(2)+2*p(3) *cos (x(3)) p(2)+p(3) *cos (x(3));
p(2)+p(3)*cos(x(3)) p(2)];

C=[-p(3)*x(4) *sin(x(3)) -p(3)* (x(2)+x(4)) *sin(x(3));
p(3)*x(2) *sin(x(3)) 0];

G=[p(4)*g*cos(x(1l))+p(5) *g*cos (x(1)+x(3));
p(5) *g*cos (x(1)+x(3))1;

da=[x(2);x(4)];

F=0.2*sign (dq) ;

told=[0.1*sin(t);0.1*sin(t)];

tol=u(1l:2);
S=inv (D) * (tol-C*dg-G-F-told) ;

sys(1l)=x

(2);

sys(2)=s(1);

sys(3)=x(4);

sys(4)=S(2);

function sys=mdlOutputs (t,x,u)

globalpg

D=[p(1)+p(2)+2*p(3) *cos (x(3)) p(2)+p(3) *cos (x(3));
p(2)+p(3)*cos(x(3)) p(2)];

C=[-p(3)*x(4)*sin(x(3)) -p(3)* (x(2)+x(4)) *sin(x(3));
p(3)*x(2)*sin(x(3)) 0];

G=[p(4) *g*cos (x(1))+p(5) *g*cos (x(1)+x(3));
p(5)*g*cos(x(1)+x(3))]1;

da=[x(2);x(4)];

F=0.2*sign (dq) ;

told=[0.1*sin(t);0.1*sin(t)];

gdl=sin(t) ;
d_qgdl=cos(t);
dd_qgdl=-sin(t) ;
gd2=sin(t) ;
d_gd2=cos(t) ;
dd_qgd2=-sin(t) ;
qgdl=0.1*sin(t);
d_qgdl=0.1*cos (t);
dd_gdl=-0.1*sin(t);
gd2=0.1*sin(t) ;
d_qgd2=0.1*cos (t) ;
dd_gd2=-0.1*sin(t);

gl=x(1);

d_gl=dq(1);
a2=x(3) ;

d_a2=dq(2);
g=[gl;qg2];
el=qgdl-gl;
e2=qd2-g2;

del=d_qdl-d_qgl;
de2=d_qgd2-d_q2;
e=[el;e2];
de=[del;de2];
Fai=5*eye(2) ;
dgd=[d_qgdl;d_gd2];
dgr=dgd+Fai*e;
ddgd=[dd_qgdl;dd_qgd2];
ddgr=ddgd+Fai*de;
f=D*ddgr+C*dqr+G+F;

f_norm=norm(f) ;

sys(1)=x(1);
sys(2)=x(2);
sys(3)=x(3);
sys (4)=x(4);

sys (5)=£f_norm;

5. Plot program: chap9_2plot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,qgd(:,1),'r',t,a(:,1),'k:"', 'linewidth',2);

xlabel ('time(s) ') ;ylabel('Angle tracking for 1ink 1');
legend('ideal angle for 1link 1', 'angle tracking for link 1');
subplot (212) ;

plot(t,gd(:,4), 'r',t,ag(:,3),'k:"', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Angle tracking for 1link 2') ;
legend('ideal angle for 1link 2', 'angle tracking for 1link 2');

figure (2) ;

subplot (211) ;

plot(t,qd(:,2),'r',t,q(:,2), 'k:', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Speed tracking for 1link 1');

legend('ideal angle speed for link 1', 'angle speed tracking for link 1');
subplot (212) ;

plot(t,qd(:,5),'r',t,qa(:,4), 'k:', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Angle speed tracking for 1ink 2') ;
legend('ideal angle speed for link 2', 'angle speed tracking for 1link 2') ;

figure (3) ;

subplot (211) ;

plot(t,toll(:,1),'k", 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('control input of link 1');
subplot (212) ;

plot(t,tol2(:,1),'k', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('control input of 1link 2');

figure (4) ;
plot(t,f(:,1),'r',t,£(:,2), " 'k:", 'linewidth',2);
xlabel ('time(s) ') ;ylabel('f and fn');

legend('ideal fx', 'estimation of fx');

References

1. P.A. Ioannou, J. Sun, Robust Adaptive Control. (PTR Prentice-Hall, 1996), pp. 75-76
2. F.L. Lewis, K. Liu, A. Yesildirek, Neural net robot controller with guaranteed tracking
performance. IEEE Trans. Neural Netw. 6(3), 703-715 (1995)

Chapter 10
Discrete RBF Neural Network Control

The discrete-time implementation of controllers is important. There are two
methods for designing the digital controller. One method, called emulation, is to
design a controller based on the continuous-time system, then discrete the con-
troller. The other method is to design the discrete controller directly based on the
discrete system. In this section, we consider the second approach to design the
NN-based nonlinear controller.

Discrete-time adaptive control design is much more complicated than the
continuous-time adaptive control design since the discrete-time Lyapunov deriva-
tives tend to have pure and coupling quadratic terms in the states and/or NN
weights. There have been many papers to be published about adaptive neural
control for discrete-time nonlinear systems [1—4].

10.1 Digital Adaptive RBF Control for a Continuous
System

10.1.1 System Description

Consider a simple dynamic system as
é:f(@,é))m (10.1)

where 0 is angle, u is control input.

Eq. (10.1) can be written as

X1 =X
X =f(x)+u (10.2)
where f(x) is unknown function.
Let the desired output be x4 and denote
e =X —Xq, € =X — Xq
Define sliding mode function as
s=Xe+é, >0 (10.3)

then

From (10.3), we can see that if s — 0, then ¢ — 0 and ¢ — 0.

10.1.2 RBF Neural Network Approximation

RBF networks are often used to approximate any unknown function [5]. The
algorithm of RBF networks is:

Il —eil?
hj = exp <72 (104)
ij

fF=WTh(x)+e¢ (10.5)

where x is the input signal of the network, i is the input number of the network, j is

the number of hidden layer nodes in the network, & = [y, hy, . . ., hn]T is the output
of Gaussian function, W* is the ideal neural network weight value, ¢ is the
approximation error of neural network, and |¢| < ée.

If we use RBF network to approximate f(x), the network input is selected as

x =[x x]", and output of RBF neural network is

f(x) = Wh(x) (10.6)

10.1.3 Adaptive Controller Design

Define Lyapunov function as

1 | .
V=-s+_—W'w 10.7
55 +2"/ ()

where 9 >0, W = W — W*.
Since f(x) — f(x) = WTh(x) +& — W'h(x) = —W"h(x) + &, then

. 1 -~ 1~z
V=si+-W'W=s(le+f(x)+u—3)+-W'W
Y Y
Design sliding mode controller as
u = —Jé—f(x)+3% — nsgn(s) (10.8)

then

. 1 ~ 2
V =s(f(x) — f(x) — nsgn(s)) + ;WTW
- 1 ~r
= s(—W'h(x) + ¢ — nsgn(s)) + ;WTW
ol
=es—nls|+W ;W—sh(x)
Design adaptive law as
W = ysh(x) (10.9)
e then V = gs — y|s| <O0.

From above analysis, we can see that RBF approximation error can be overcome
by the robust term ysgn(s).

If we choose 1 > |¢|

When V =0, we have s = 0; according to LaSalle invariance principle, the
closed system is asymptotically stable, s — 0 as t — oo, and the convergence
precision is related to #.

Since V>0, V<0, V is limited as 1 — oo, thus W is limited. Since when
V = 0, we cannot get W =0, W we cannot converge to Ww*.

2 T T T T T T T T T

> ideal position

'_8 position tracking []
g \
= J
kel

=]
o

o

_2 Il Il Il Il Il Il Il Il Il

Speed tracking

0 1 2 3 4 5 6 7 8 9 10
time(s)
Fig. 10.1 Position and speed tracking
10.1.4 Simulation Example
Consider a plant as
5(1 = X2
562 :f(x) +u

where f(x) = 10x;x,.

The desired trajectory is chosen as xq = sin¢. The initial state of the plant is set
as [0.50]. We adapt control law as (10.8) and adaptive law as (10.9), choose
A =200, n =0.20, and y = 100.

The structure of RBF is chosen as 2-5-1. Consider the range of x; and x,, we
choose ¢; =[—1 —05 0 05 1],b5;=3.0, and the initial value of each
element of RBF weight matrix is set as zero.

The continuous system simulation is chapl1_1sim.mdl. If we discrete the con-
trol law (10.8) and adaptive law (10.9), and denote the sampling time as ts = 0.001,
simulation results are shown from Figs. 10.1 and 10.2.

The shortcoming of the digital adaptive RBF control simulation for a continuous
system is that the stability cannot be guaranteed [6]. To overcome this problem,
controller design and stability analysis for discrete system directly is needed.

25

Practical uncertainties
----------- Estimation uncertainties

20

LTI

SRS,

Fig. 10.2 f(x) and f(x)

Matlab Programs:
1. Continuous simulation programs

(1) Main Simulink program: chap10_1sim.mdl

E'_. i

Position

y
y
y
;""F

U Mux

chap10_1ctr chap10_1plant Demux
Sine Wave
> S-Function S-Function1 =
Position4
0
Clock To Workspace

(2) S function program of controller: chap10_1ctrl.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,

case 0,

[sys,x0,str,ts]l=mdlInitializeSizes;
case 1,

sys=mdlDerivatives(t,x,u);
case 3,

sys=mdlOutputs(t,x,u) ;
case {2,4,9}

sys=1[];
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
global b ¢ namna
sizes = simsizes;
sizes.NumContStates =5;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =4;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =rands(1l,5);
str = [];
ts = [00];
c=[-1-0.500.51;

-1-0.500.51];
b=1.2;
namna=10;
function sys=mdlDerivatives (t,x,u)
global b ¢ namna
xd=sin(t) ;
dxd=cos (t) ;

x1=u(2);
x2=u(3);
e=x1-xd;
de=x2-dxd;

s=namna*e+de;

W=[x(1) x(2) x(3) x(4) x(5)1";

xi=[x1;x2];

h=zeros(5,1) ;
for j=1:1:5
h(j)=exp(-norm(xi-c(:,3J))"2/(2*b"2));

end

gama=100;
for i=1:1:5
sys(i)=gama*s*h (i) ;

end

function sys=mdlOutputs (t,x,u)
global b ¢ namna

xd=sin(t) ;

dxd=cos (t) ;

ddxd=-sin(t) ;

x1l=u(2);
x2=u(3);
e=x1-xd;
de=x2-dxd;

s=namna*e+de;

W=[x(1) x(2) x(3) x(4) x(5)1;
xi=[x1;x2];

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3))"2/(2*b"2));

end

fn=W+*h;

xite=0.20;

%$fn=10*x1+x2; %Precise f

ut=-namna*de+ddxd-fn-xite*sign(s) ;

sys(1l)=ut;
sys(2)=fn;

(3) S function program of plant: chap10_1plant.m

function [sys,x0,str,ts]=s_function(t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]l=mdlInitializeSizes;
case 1,
sys=mdlDerivatives (t,x,u) ;
case 3,
sys=mdlOutputs(t,x,u) ;
case {2, 4, 9}
sys = [1;
otherwise

error (['Unhandled flag = ' ,num2str (flag) 1) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =3;
sizes.NumInputs =2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 0;
sys=simsizes (sizes);
x0=[0.15;01];
str=[];
ts=[1];
function sys=mdlDerivatives (t,x,u)
ut=u(l);

£=10*x (1) *x(2) ;

sys(1l)=x(2);

sys (2)=f+ut;

function sys=mdlOutputs (t,x,u)
£=10*x (1) *x(2) ;

sys(1)=x(1);
sys(2)=x(2);
sys(3)=f;

(4) Plot program: chap10_1plot.m

close all;

figure (1) ;

subplot (211) ;

plot(t,x(:,1),'r',t,x(:,2),'b", 'linewidth"',2);
xlabel ('time(s) ') ;ylabel ('position tracking') ;
subplot (212) ;

plot(t,cos(t),'r',t,x(:,3),'b', 'linewidth"',2);
xlabel ('time(s) ') ;ylabel ('speed tracking') ;

figure (2) ;
plot(t,f(:,1),'r',t,£(:,3),'b", 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('f approximation') ;

2. Digital simulation program

(1) Main program: chap10_2.m

%Discrete RBF control
clear all;
close all;

ts=0.001; %Sampling time

node=5; $Number of neural nets in hidden layer

gama=100;

c=[-1-0.500.51;
-1-0.500.511;

bj=1.2;

h=zeros (node, 1) ;

x1_1=0;x2_1=0;u_1=0;

xk=[0.1001;
w_l=rands (node, 1) ;
namna=10;
xite=0.20;

for k=1:1:10000
time (k) =k*ts;

xd (k) =sin(k*ts) ;
dxd (k) =cos (k*ts) ;
ddxd (k) =-sin(k*ts) ;

tSpan=[0 ts];

para=u_1; $D/A

[t,xx]=0ded5 ('chapl0_2plant', tSpan,xk, [],para) ;
xk=xx(length(xx),:); %A/D

x1 (k)=xk (1) ;

x2 (k)=xk (2) ;

e(k)=x1(k)-xd(k);
de (k) =x2 (k) -dxd (k) ;

s (k) =namna*e (k) +de (k) ;

xi=[x1(k);x2(k)]1;

for i=1:1:node

$Plant

w(i,1l)=w_1(i,1)+ts*(gama*s(k)*h(i)); %Adaptive law

end

h=zeros(5,1);

for j=1:1:5
h(j)=exp(-norm(xi-c(:,3J))"2/(2*bj*bj));

end

fn(k)=w'*h;

u (k)=-namna*de (k) -fn (k) +ddxd (k) -xite*sign(s (k)) ;

£(k)=10*x1 (k) *x2 (k) ;

x1_1=x1(k);

x2_1=x2 (k) ;

w_1l=w;

u_l=u(k);

end

figure (1) ;

subplot (211) ;

plot (time,xd, 'r',time,x1, 'k:', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Position tracking') ;
legend('ideal position', 'position tracking') ;
subplot (212) ;

plot (time,dxd, 'r',time,x2, 'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('Speed tracking') ;
legend('ideal speed', 'speed tracking') ;

figure (2) ;

plot (time,u, 'r', 'linewidth',2) ;

xlabel ('time(s) ') ,ylabel ('Control input of single link');
figure (3) ;

plot(time, f, 'r',time, fn, 'k: ', 'linewidth',2);

xlabel ('time(s)'),ylabel('f and fn"');

legend ('Practical uncertainties', 'Estimation uncertainties');

(2) Program of plant: chap10_2plant.m

function dx=Plant (t, x,flag, para)

dx=zeros(2,1);
u=para;

£f=10*x (1) *x(2) ;
dx (1) =x(2);
dx (2)=f+u;

10.2 Adaptive RBF Control for a Class of Discrete-Time
Nonlinear System

10.2.1 System Description

Consider a nonlinear discrete system as follows:
y(k+1) =f(x(k)) 4+ u(k) (10.10)
where x(k) = [y(k) y(k—1) --- y(k—n+1)]" is the state vector, u(k) is the

control input, and y(k) is the plant output. The nonlinear smooth function f : R" —
R is assumed unknown.

10.2.2 Traditional Controller Design

The tracking error e(k) is defined as e(k) = y(k) — ya(k). If f(x(k)) is known, a
feedback linearization-type control law can be designed as

u(k) = ya(k+1) — f(x(k)) — cre(k) (10.11)

Submitting (10.11) into (10.10), we can get an asymptotical convergence error
dynamic system as

e(k+1)+cre(k) =0 (10.12)

where |¢q] < 1.

10.2.3 Adaptive Neural Network Controller Design

If f(x(k)) is unknown, and RBF neural network can be used to approximate
f(x(k)). The network output is given as

Fx(k)) = w(k) h(x(k)) (10.13)

where w(k) denotes the network output weight vector, and h(x(k)) denotes the
vector of Gaussian basis functions.

Given any arbitrary nonzero approximation error bound g, there exist some
optimal weight vector w* such that

Fo) =Fe,w") = Ar(x) (10.14)

where As(x) denotes the optimal network approximation error, and |As(x)| <é;.
Then we can get the general network approximation error as

=() Af(x()) =W (k) h(x(k)) (10.15)

where w(k) = w(k) — w*.
The control law with RBF approximation can be designed in [7] as follows

u(k) = ya(k+1) = f(x(k)) — cre(k) (10.16)

Figure 10.3 shows the closed-loop neural-based adaptive control scheme.
Substituting (10.16) into (10.10) yields

e(k+1) = f(x(k)) — cre(k)
Thus

e(k) +cre(k — 1) = f(x(k — 1)) (10.17)

Adaptive

Mechanism

d
RSN u(k)
Controller E—b(e——

Fig. 10.3 Block diagram of the control scheme

The term (10.17) can also be expressed as

e(k) =T ' (z")f(x(k — 1)) (10.18)

Refer to [7], we can where I'(z7!) = 1 +¢;z7!,z7! denotes the discrete-time delay
operator.
Define a new augmented error as

e1(k) = B(e(k) — T ' (z ")v(k)) (10.19)

where 3 > 0.
Substituting (10.18) into (10.19) yields

er(k) = I (z7") (fx(k — 1)) — v(k))

1 -
= Brﬂ,l (f(x(k -1)) - V(k))

Which leads to the relation as

B(F(x(k — 1)) — v(k)) — e (k)

(&

el(k— l) =

(10.20)

Refer to [7] the adaptive law as can be designed as

%h(x(k—)er(k) if lei(k)] > &/G

»C
e

AW(k) = .
0 if |61(k)| < 8f/G

<lendarray > (10.21)

—N—

where Aw (k) = w(k) — w(k — 1), y, and G are strictly positive constants.

10.2.4 Stability Analysis

For the closed system, the discrete-time Lyapunov function can be designed as
V(k) = ej (k) +yw" (k)w(k) (10.22)
The first difference is

AV(k) =V (k) — V(k—1)
=ej(k) —ej(k— 1) +y (W' (k) +w" (k — 1)) (w(k) —w(k — 1))

The stability proof is given with the following three steps. Firstly, using (10.20)
for e;(k — 1), it follows that

AV (k) = (k) — ei (k) + B2(f(x(k - 1)) - V(k)) —2[3(];(36(](-1)) - v(k))el(k)

2
1

C

I GG G D) - v()er) + (AT () + 25T (k — 1)) A (k)
51

(k) (1-c2 :
00-d)

51 T

Secondly, substituting for f(x(k — 1)) via (10.15) yields:

where V| =

)
B(f(x(kfi))w(k)) >0

2B (= (k= 1)"h(x(k = 1)) = A (k = 1)) = v(8)) e (k)

2
C1

+9AWT (k) AW (k) + 29w T (k — 1)Aw (k)
=-Vi+2wT(k—1) (yM(k) - C—Bzh(x(k - 1))e1(k))
2p

- (Ap(x(k — 1)) +v(k))er (k) +yAw" (k) Aw (k)

AV(k) = -V +

Thirdly, substituting the adaptive law (10.21) into above, AV (k) is

-V, - i_zﬁ (Ar(x(k = 1)) +v(k))ei (k) +

1

(P)2hT(x(k—1))h(x(k—1))e2(k) if |ei(k)| >¢/G
AV (k) = Vel LN

-V, = i—f (W7 (k — Dh(x(k— 1)) +

1

v(k) +Ar(x(k = 1)er(k)], if lei(k)| <er/G

(10.23)

The auxiliary signal v(k) must also be designed so that e; (k) — 0 could deduce
e(k) — 0. The auxiliary term is designed as [7]

v(k) = vi(k) 4+ va(k) (10.24)

with v (k) = 522 k" (x(k — 1)h(x(k = 1))er (K) and va(k) = Gen (k).

If |e; (k)| > & /G, substituting for v(k) in (10.19)=(10.17), it follows that

AV(k) = —V; — %f (Ar(x(k — 1)) + Gey (k))er (k)

1

< -

H.g\-!;

= (A (x(k = 1)) + Ge (k) er (k)

|Af<x(Gk—l)>| and

Since |Af(x)| <g and |ei(k)| > g /G, then |ei(k)| >
(k) > — 2B g (Ar(x(k — 1)) + Gey (k)) e (k) > 0, then AV(k) <0
If |e; (k)| < & /G, tracking performance can be satisfied, and AV (k) can be taken

on any value.
In the simulation, we give three remarks as follows:

Remark 1 From (10.19), we have e(k)= B(e(k) - Tl.rlv(k))’ then
e1(k)(1+c1z71) = B(e(k)(1 +ciz7') — v(k)), therefore

ei(k) = —ciei(k — 1)+ P(e(k) +cre(k — 1) — v(k)) (10.25)

Remark 2 From Lyapunov analysis, if k — oo, e1(k) — 0, from (10.24) we have
v(k) — 0, then from (10.25), e(k) +c1e(k — 1) — 0, consider |c;| <1, and we get
e(k) — 0.

Remark 3 Consider v(k) is a virtual variable, for (10.24); let v, (k) = B
R (x(k — 1))h(x(k — 1)), then we get v(k) = (v, (k) + G)e (k), substltutmg v()

into (10.25), we have e; (k) = —cye;(k — 1) + B(e(k) + cre(k — 1) (+G) x
e1(k)), then

.—N‘

—crei(k— 1)+ Ble(k) +cre(k — 1))
1+ B(v) (k) +G)

e (k) = (10.26)

10.2.5 Simulation Examples

Consider a nonlinear discrete-time system as

0.5y(k — 1)(1 — y(k — 1))
1+ exp(—0.25y(k — 1))

y(k) = +u(k—1)

05y(k—1)(1—y(k—1))
where f(x(k — 1)) = T =051

——— v
Ideal position signal
Position tracking

yd,y

Fig. 10.4 Position tracking

Control input

time(s)

Fig. 10.5 Control input

Firstly, we assume f(x(k — 1)) is known, use the control law (10.11), and set
c1 = —0.01; the results are shown in Figs. 10.4 and 10.5. Then we use RBF to
approximate f(x(k — 1)). For RBF neural network, the structure is 1-9-1, and from
Sf(x(k—1)) expression, only one input y(k — 1) is chosen; the parameters of
Gaussian function ¢; and b; as chosen as [-2 —1.5 —1.0 —0.5 0 0.5 1.0 1.5 2]
and 15(=1,j=1,2,...,9), the initial weight value is chosen as random value in the
range (0,1). The initial value of the plant is set as zero. The reference signal is
va(k) =sint. Using the control law (10.16) with adaptive law (10.21), e;(k) is
calculated by (10.26), and the parameters are chosen as ¢; =—0.01, 3=0.001,y=
0.001,y= 0.001, G=50000, ¢ =0.003. The results are shown in Figs. 10.6, 10.7,
and 10.8. The program of this example is chapl0O_3.m, which is given in the
Appendix.

0.5}

yd’y

~ T

Ideal position signal

Position tracking

Fig. 10.6 Position tracking

wt

0.8
0.6
0.4
0.2

-0.2

Control input

-0.4
06}
08}

Fig. 10.7 Control input

Simulation program with unknown f(x(k-1)): chap10_3.m

%Discrete RBF controller
clear all;
close all;
ts=0.001;

Ideal fx
-+ fx estimation

fx and fx estimation

Fig. 10.8 f(x(k— 1)) and its estimation

cl=-0.01;
beta=0.001;
epcf=0.003;
gama=0.001;
G=50000;

b=15;
c=[-2-1.5-1-0.500.511.52];
w=rands(9,1) ;

w_1l=w;

u_1=0;

y_1=0;

el 1=0;

e_1=0;

fx_1=0;

for k=1:1:10000
time (k) =k*ts;

vd(k)=sin(k*ts) ;

ydl (k)=sin((k+1)*ts);

%Nonlinear plant
fx(k)=0.5*y_1*(1l-y_1)/(l+exp(-0.25*y_1));
vi(k)=fx_1+u_1;

e(k)=y(k)-yd(k);

x(1)=y_1;
for j=1:1:9

h(j)=exp(-norm(x-c(:,3))"2/(2*b"2));
end
vl1l_bar (k)=beta/ (2*gama*cl”2)*h*h"';

el (k)=(-cl*el_l+beta*(e(k)+cl*e_1))/ (l+beta* (vl_bar (k)+G)) ;

if abs (el (k))>epcf/G
w=w_1l+beta/ (gama*cl”2)*h' *el (k) ;
elseif abs (el (k))<=epcf/G
w=w_1;
end
fnn(k)=w'*h"';

u(k)=ydl (k) -fnn(k)-cl*e (k) ;
gu (k)=ydl (k) -fx(k)-cl*e(k); %With precise fx

fx_1=fx(k);
y_l=y(k);

w_1l=w;

u_l=u(k);

el_1l=el(k);

e_l=e(k);

end

figure (1) ;

plot (time,yd, 'r',time,y, 'k:"', 'linewidth',2);
xlabel ('time(s) ') ;ylabel('yd,y"');
legend('Ideal position signal', 'Position tracking');
figure (2) ;

plot(time,u, 'r', 'linewidth',2);

xlabel ('time(s) ') ;ylabel ('Control input') ;

figure (3) ;
plot (time, fx, 'r', time, fnn, 'k: ', 'linewidth',2);
xlabel ('time(s) ') ;ylabel ('fx and fx estimation') ;

legend('Ideal fx', 'fx estimation');

References

1. S. Jagannathan, F.L. Lewis. Discrete-time neural net controller with guaranteed performance.
in Proceedings American Control Conference, (1994) pp. 3334-3339

2. S.S. Ge, C. Yang, S. Dai, Z. Jiao, T.H. Lee, Robust adaptive control of a class of nonlinear
strict-feedback discrete-time systems with exact output tracking. Automatica 45(11), 2537-
2545 (2009)

3. C. Yang, S.S. Ge, T.H. Lee, Output feedback adaptive control of a class of nonlinear
discrete-time systems with unknown control directions. Automatica 45(1), 270-276 (2009)

. C. Yang, S.S. Ge, C. Xiang, T. Chai, T.H. Lee, Output feedback NN control for two classes of
discrete-time systems with unknown control directions in a unified approach. IEEE Trans.
Neural Networks 19(11), 1873-1886 (2008)

. J. Park, LW. Sandberg, Universal approximation using radial-basis-function networks. Neural
Comput. 3(2), 246-257 (1991)

. J.K. Liu, RBF Neural Network Control for Mechanical Systems_Design, Analysis and Matlab
Simulation. (Tsinghua and Springer Press, 2013)

. S.G. Fabri, V. Kadirkamanathan. Functional Adaptive Control: An Intelligent Systems
Approach (Springer, New York, 2001)

Chapter 11
Intelligent Search Algorithm Design

With the development of the optimization theory, some new intelligent algorithms
have been rapidly developed and widely used, and these algorithms have become
new methods to solve the traditional system identification problems, such as genetic
algorithm, ant colony algorithm, particle swarm optimization algorithm, differential
evolution algorithm. These optimization algorithms simulate natural phenomena
and processes.

11.1 GA and Design
11.1.1 Principle of GA

The basic principle of GA(genetic algorithms) were first laid down by Holland in
1962. GA simulate those processes in natural populations that are essential to
evolution.

Some common definitions of the technical terms used are described below:

e Chromosome is a vector of parameters which represents the solution of an
application task, for example, the dimensions of the beams in a bridge design.
These parameters, known as genes, are joined together to form a string of values
called chromosomes.

e Gene is a solution which will combine to form a chromosome.

Selection is the process of choosing parents or offspring chromosome for the

next generation.

Individuals are the solution vectors of chromosome.

Population is the collection of individuals.

Population size is the number of chromosome in a population.

Fitness function is the function which evaluates how each solution is suitable for

a given task.

e Phenotype defines the expression type of solution values in the task world, for
example, “red,” “blue,” “80 kg”.

e Genotype are the binary (bit) expression type of solution values used in the GA
search space, for example, “011”, “000111011"".

Some advantages of GA are the following:

(1) Fast convergence to near global optimum,;

(2) Superior global searching capability in a space that has a complex searching
surface;

(3) Applicability to a searching space where one cannot use gradient information of
the space.

A GA determines the next set of searching points using the fitness values of the
current searching points, which are widely distributed throughout the searching
space. It uses the mutation operator to escape from a local minimum. A key dis-
advantage of GA is that their convergence speed near the global optimum can be
quite slow.

11.1.2 Steps of GA Design

GA use a direct analogy of natural behavior (see Fig. 11.1). They work with a
population of individuals, each reprinting a possible solution to a given problem.
Each individual is assigned a fitness score according to how good its solution to the
problem is. The highly fit individuals are given opportunities to reproduce, by
crossbreeding with other individuals in the population. This produces new indi-
viduals as offspring, who share some features taken from each parent. The least fit
members of the population are less likely to get selected for reproduction and will
eventually die out.
The standard GA algorithm mainly includes the following four operators:

(1) GA Selection

Selection is an operation that will choose parent solutions. New solution vectors
in the next generation are calculated from them. Since it is expected that better
parent generator generates better offspring, parent solution vectors that have higher
fitness values will have a higher probability to be selected. There are several
selection methods. The roulette wheel selection is a typical selection method.

(2) GA Reproduction

During the reproductive phase of a GA, individuals are selected from the pop-
ulation and recombined, producing offspring which, in turn, will comprise the next
generation. Parents are selected randomly from the population using a scheme that
favors the more fit individuals. Having selected two parents, their chromosomes are
recombined using the mechanism of crossover and mutation.

Fig.

3

“

11.1 Flowchart of GA

Start

|

Initialization

|

Generation=0

|

Time-step=0
Mutation
l Encoding
Population
Crossover
Decoding
No
Termination?
Reproduction

Evaluation fitness

Get the best
solution

End

Crossover takes two individuals and cuts their chromosome strings at some
randomly chosen positions, to produce two “head” segments and two “tail”
segments. The tail segments are then swapped over to produce two new
full-length chromosomes (see Fig. 11.2). Each of the two offspring will inherit
some genes from each parent. This is known as a single-point crossover.
Crossover is not usually applied to all pairs of individuals that are chosen for
mating. A random choose is made, where the likelihood of crossover being
applied is typically between 0.6 and 1.0.

Mutation is applied to each child individually, after crossover. It randomly alters
each gene with a small probability (typically 0.001). Figure 11.3 shows the fifth
gene of the chromosome being mutated. The traditional view is that crossover is
the more important of the two techniques for rapidly exploring a search space.

Fig. 11.2 Single-point parents 1010 001110 0011 010010

o I X

offsoring 1010 010010 0011 001110

Mutation provides a small amount of random search and helps ensures that no
point in the search space has zero probability of being examined.

11.1.3 Simulation Example

Using GA to get maximum value of Rosenbrock function,

{fz(xl,xz): 1000} —x2)” + (1 = x1)° (1L.1)

—2.048 <x; <2.048 (i=1,2)

From the program function_plot.m, it can be seen that the function has two
local maximum values, namely f(2.048, —2.048) = 3897.7342 and f(—2.048,
—2.048) = 3905.9262, and the latter is the global maximum, which can be seen in
Fig. 11.4. Therefore, it is necessary to avoid falling into the local optimal solution
when the maximum of the optimization algorithm is used.

Firstly, we use 10-bit binary genes to code x;, —2.048 is coded as
0000000000(0), and 2.048 is coded as 1111111111(1023); then, string x1,x, can
be coded to 20-bit binary cluster. For example, we can use x:
0000110111 1101110001 to express a gene,the former 10-bit expresses xj, the
second half expresses x;.

Secondly, we decode 20-bit binary string to two 10-bit binary strings and change
them to decimal system value y; and ;.

The relation of x; and y; can be written as

Yi
1023

x; = 4.096 x —2.048 (i=1,2) (11.2)

Fig. 11.3 Single mutation Mutation point

:

Offspring 1010010010

Mutated 1010110010
Offspring

Fig. 11.4 f(x;,x;) plot

For example, x : 0000110111 1101110001 can be decoded as
y1 = 55,y, = 881
By using (11.2), we can get practical value as
x; = —1.828, x, = 1.476
Thirdly, calculate evaluation fitness function
F(x) =f(x1,x2)
Then, we can get the objective function as

1

0=

(11.3)

Fourthly, design operators, including proportion selection operator,single-point
crossover operator,and basic bit mutation operator, and choose parameters of GA as
follows:population Size = 80, generation G = 100, crossover probability P, = 0.60,

mutation probability P, = 0.10.

Adopting the above steps, after 100-step iterations, we get the best individual as

BestS = [00000000000000000000]

Using (11.2), we can get x; = —2.0480,x, = —2.0480, and then we can get the
maximum value of Rosenbrock function, that is, 3905.9. The simulation results are

given in Figs. 11.5 and 11.6.

Fig. 11.5 Objective
function J 3.1 T T T T

2.9 E

2.8 1

Best J

26| 1

0 20 40 60 80 100
Times

Fig. 11.6 Fitness function F 4000

3800

3600

Best F

3400

3200 1 1 i 1
0 20 40 60 80 100

times

Simulation program of f(x;,x;): function_plot.m

clear all;

close all;

x_min=-2.048;

x_max=2.048;

L=xX_max-x_min;
N=101;
for i=1:1:N
for j=1:1:N
x1(i)=x_min+L/(N-1)*(i-1); %set 100 points in x1 axis
x2 (j)=x_min+L/(N-1)*(j-1); %$set 100 points in x2 axis
fx(1,3)=100*(x1(1)"2-x2(J))" "2+ (1-x1(1))"2;
end
end
figure (1) ;
surf (x1,x2, fx) ;
title('£(x)"');

display ('Maximum value of fx="');

disp (max (max (fx)));

Program: chapl11_1.m

%Generic Algorithm for function f (x1,x2) optimum
clear all;

close all;

%Parameters
Size=80;
G=100;
CodeL=10;

umax=2.048;

umin=-2.048;
E=round(rand(Size,2*CodeL)); $%$Initial Code

$Main Program
for k=1:1:G
time (k) =k;

for s=1:1:Size
m=E (s, :);
y1=0;y2=0;

%$Uncoding

ml=m(1l:1:Codel) ;

for i=1:1:CodeL
yl=yl+ml(i)*2~(i-1);

end

x1=(umax-umin) *y1/1023+umin;

m2=m(CodeL+1:1:2*CodeL) ;

for i=1:1:CodeL
y2=y2+m2 (1) *2~ (i-1) ;

end

x2=(umax-umin) *y2/1023+umin;

F(s)=100* (x1"2-x2) "2+ (1-x1)"2;

end

Ji=1./F;
grx*x***GStep 1 : Evaluate BestJ******

BestJ (k) =min (Ji) ;

fi=F; %$Fitness Function

[Oderfi, Indexfi]=sort (fi) ; $Arranging fi small to bigger

Bestfi=Oderfi(Size) ; $Let Bestfi=max (fi)
BestS=E (Indexfi(Size), :); %Let BestS=E

(m) , m is the Indexfi belong to max (f1)

bfi (k) =Bestfi;

g*r* *x***Step 2 : Select and Reproduct Operation******
fi_sum=sum (fi) ;

fi_ Size=(0Oderfi/fi_sum) *Size;

fi_S=floor (fi_Size) ; %Selecting Bigger fi value
kk=1;
for i=1:1:Size
for j=1:1:fi_S (i) %$Select and Reproduce
TempE (kk, :) =E (Indexfi(i), :);
kk=kk+1; %$kk is used to reproduce
end

end

%************ Step 3 . CrOSSOVer Operatlon *hkkkkkkkkk kK
pc=0.60;
n=ceil (20*rand) ;
for i=1:2:(Size-1)
temp=rand;
if pc>temp %Crossover Condition
for j=n:1:20
TempE (i,])=E(i+1,3);
TempE (i+1,3j)=E(i,3);
end
end
end
TempE (Size, :) =BestS;
E=TempE;

%************ Step 4: Mutation Operation *hkhkkhkhkkhkkhkkhkkkk
$pm=0.001;

%pm=0.001-[1:1:Sizel*(0.001)/Size; $Bigger fi, smaller Pm
%pm=0.0; %No mutation

pm=0.1; %$Big mutation

for i=1:1:8ize
for j=1:1:2*CodeL
temp=rand;
if pm>temp $Mutation Condition
if TempE(i,3j)==0
TempE (1,7j)=1;

else

TempE (i, j)=0;
end
end
end

end

%$Guarantee TempPop (30, :) is the code belong to the best individual (max (fi))
TempE (Size, :) =BestS;

E=TempE;

end

Max_Value=Bestfi

BestsS

x1

x2

figure (1) ;

plot (time, BestJ) ;

xlabel ('Times') ;ylabel('Best J');
figure (2) ;

plot (time, bfi) ;

xlabel ('times') ;ylabel ('Best F');

11.2 PSO Algorithm and Design

11.2.1 Introduction

Kennedy and Eberhart first proposed particle swarm optimization (PSO) algorithm
in 1995, which is an optimization algorithm simulating the social behavior of bird
flock and their means of information communication [1]. In PSO algorithm, a great
number of particles move around in a multidimensional problem space, each
individual is characterized by the position vector and represents a potential solution
to the optimization problem.

Unlike other swarm intelligence algorithms in which the evolutionary operators
are used to manipulate the individuals, each individual in PSO in the problem space
has been provided with a velocity which is dynamically adjusted according to the
flying experiences of its own and those of its companions. Therefore, every indi-
vidual is gravitated toward a stochastically weighted average of the previous best
point of its own and that of its neighborhood companions.

Initially, a swarm of particles are randomly generated. Each particle has a
position vector and a velocity vector. The basic concept of PSO lies in accelerating
each particle toward its pbest which is the fittest solution achieved so far by itself,

and the gbest which is the best solution obtained so far by the whole swarm with a
random weighted acceleration. At every step, a particle’s personal best position
pbest and the gbest in the swarm are updated if an improvement in any of better
fitness values is captured.

11.2.2 PSO Parameter Setting

There are two important steps in the application of PSO algorithm to solve the
optimization problem as follows.

(1) Coding and fitness function:One advantage of PSO is the use of real coding, for
example, for the problem of f(x) = x} + x3 + x maximization, the particle can
be directly decoded as (x1,x2,x3), and fitness function is f(x).

(2) The parameters need to be adjusted in PSO are as follows:

(a) Number of particles: Generally, the number of particles can be taken to 100
or 200.

(b) Maximum speed Vi : Vinax determines the maximum moving distance of
a particle in a loop, usually less than the width of the particle. Larger Vi«
can guarantee the global search ability of particle swarm, and smaller Vi,
can strengthen local search ability of particle swarm.

(c) Learning factors c; and c; : ¢; is the local learning factor, ¢, is the global
learning factor. In PSO design, generally we take a larger c;.

(d) Weight value: A large weight value is good for global optimization, and a
small weight value is good for local optimization. When the maximum
velocity Vi is very small, the weight value should be close to 1.0.

In PSO, linear decreasing weight value in the iterative process is always
used to obtain global optimal solution. Generally, the weight value can be
set from 0.90 to 0.10.

(e) Stop conditions: Maximum number of cycles or minimum error are often used
to judge the stop conditions.

11.2.3 Design Procedure of PSO

The standard PSO algorithm mainly includes the following six steps:

(1) Initialization: The parameters should be set as follows: the range of each
parameter, the learning factors ¢; and ¢;, the maximum evolution times G, and
the particles population Size. Each particle represents a candidate solution in
space solution, the position and the velocity of ith (1 <i < Size) particle in the
whole solution space can be expressed as X; and V.

(2) Individual evaluation (fitness evaluation): The initial position of each particle is
taken as the individual extreme value, and the initial fitness value f(X;) of each
particle in the population is calculated. For the i th particle, from the initial to
the current iteration, the individual extreme is P;, the current optimal solution of
entire population is BestS. The initial position matrix and velocity matrix are
randomly generated.

(3) Update the particle velocity and position, produce new species, check the
speed, and position scope. To avoid the algorithm into a local optimal solution,
we can use a local adaptive mutation operator as follows:

VRN — () x V4o (p:-(g — X:(g) +can (BestSi.(g - X:(g) (11.4)
Xl!‘g“ :ngJrV,-kgH (11.5)
where kg =1,2,...,G,i=1,2,..., Size, r; and r, are random number from O to

1, ¢y is the local learning factors, and c; is the global learning factor; generally, take
a larger ¢, ¢ > ¢ > 0.

(4) Compare the current fitness f(X;) value of the particle and its own historical
optimal value p;, if f(X;) is better than p;, then p; can be set as f(X;), and the
particle position can be updated.

(5) Compare the current fitness f(X;) value of the particle and the optimal BestS
value of the population, if f(X;) is better than BestS, then set BestS as f(X;),
and update the global optimal value.

(6) If the termination conditions are satisfied, end the search, otherwise, go to step
(3). The termination conditions can be chosen as maximum evolution times, or
the given precision.

PSO algorithm’s flowchart is shown in Fig. 11.7.

11.2.4 Simulation Example

Using PSO to get maximum value of Rosenbrock function,

{f(xl,m =100 — x> + (1 = x1)* (11.6)

—2.048 <x; <2.048 (i=1,2)

Just like Sect. 11.1.3, the function has two local maximum value, namely
f(2.048,—2.048) = 3897.7342 and f(—2.048, —2.048) = 3905.9262, and the lat-
ter is the global maximum.

In global PSO algorithm, the ith particle’s neighborhood gradually increases
with the increase of iterations. For the first iteration, the number of the ith particle’s

Fig. 11.7 Flowchart of PSO
Initial PSO

4
Update particles’s
velocity and position

Y

Evaluate fitness, update
pbest and gbest

Termination
criteria met?

Output gbest

neighborhood is set as 0 and then increases linearly as the number of iterations and
finally extended to the entire neighborhood particle swarm. Global PSO algorithm
can converge quickly, but it is easy to fall into local optimum. The local PSO
algorithm converges slowly, but it can avoid local optimum.

In global PSO, the velocity of each particle is updated according to the optimal
value of the particle p; and the global optimal value p,. In order to avoid being
trapped into local minima, local PSO algorithm can be used to update the velocity
of each particle according to the optimal history value p; of the particle and the
optimal value pjo, of the particle in the neighborhood.

In this section, we use a simplest circular neighborhood method to implement the
local PSO algorithm, as shown in Fig. 11.8.

As an example, eight particles are chosen to illustrate local PSO algorithm, as
shown in Fig. 11.8. In each update of velocity and position, particle no. 1 tracks the
best individuals of particle no. 1, no. 2, and no. 8, and the particle no. 2 tracks the
best individuals of the particle no. 1, no. 2, and no. 3. In the simulation, the optimal
individual in the neighborhood of a particle is solved by program chap11_2lbest.m.

In local PSO, the speed and position of the particle are updated as follows

Fig. 11.8 Annular
neighborhood method

VET = w(t) x VE ey (P?g - X:!(g> +cams (Pkg X (11.7)

ilocal — i

X = xE et (11.8)

where pﬁieal is locally optimized particle.

At the same time, the range of velocity and position of the particles should be
examined. To prevent the algorithm from falling into the local optimal solution,
local adaptive mutation operator is always used.

Real coding is used in PSO design, two real variables are used to represent two
decision variables x; and x,, respectively, which are discretized into real value from
—2.048 to —2.048. The fitness of individual is taken as the corresponding objective
function value, that is, F(x) = f(x1,x2).

In the simulation, the number of particles is taken as Size = 50, the iterations
maximum number is G = 100, maximum velocity of particle is Vi .x = 1.0, and the
velocity range is set as [—1,1]. The learning factors are chosen as ¢; = 1.3 and
¢ = 1.7. Using the linear decreasing method, weight value is designed to decrease
from 0.90 to 0.10.

In the program, M =1 and M =2 indicate local PSO and global PSO,
respectively. According to (11.7) and (11.8), the velocity and position of the par-
ticles are updated to produce new species. After 100 iterations, the best sample is
BestS = [—2.048 —2.048], that is, x; = —2.048,x,= — 2.048, and then we can
get maximum value, that is, 3905.9.

The change of fitness function F is shown in Fig. 11.9. From the simulation, to
find the global optimal solution, the speed and position of particles are updated by
tracking the particle swarm and local extremum along with the iterative process,
the local search ability is enhanced by using local PSO algorithm, and local
optimal solution is avoided. The simulation results have shown that the correct rate
is above 95%.

4000 T T T T T T

3900

3800 [

3700

3600 [

3500

Fitness function

3400

3300

3200 ! ! ! ! ! !

0 10 20 30 40 50 60
generations

Fig. 11.9 Optimization process of fitness function F

PSO programs are listed as follows:

(1) Main program: chapll_2.m

clear all;

close all;
%(1l)Initialize PSO
min=-2.048;max=2.048;
Vmax=1;Vmin=-1;
cl=1.3;c2=1.7;
wmin=0.10;wmax=0.90;
G=100;

Size=50;

for i=1:G
w(1i)=wmax- ((wmax-wmin) /G) *1i;

end

for i=1:Size
for j=1:2
% (1,3)=min+ (max-min) *rand (1) ;
v(i,j)=Vmin + (Vmax-Vmin) *rand (1) ;
end

end

70

80

90

100

%(2) Calculte fitness

for i=1:Size
p(i)=chapll_2func(x(i,:));
y(i,:)=x(i,:);

if i==

plocal(i, :)=chapll_2lbest (x(Size,:),x(1,:),x(i+l,:));
elseif i==Size

plocal (i, :)=chapll_2lbest(x(i-1,:),x(i,:),x(1,:));

else

plocal (i, :)=chapll_2lbest(x(i-1,:),x(i,:),x(i+l,:));
end

end

BestS=x(1,:);
for i=2:Size
if chapll_2func(x(i, :))>chapll_2func (BestS)
BestS=x (i, :);
end

end

%(3) Main loop
for kg=1:G

for i=1:Size

M=1;

if M==1
v(i,:)=w(kg)*v(i,:)+cl*rand* (y(i,:)-x(i,:))+c2*rand* (plocal (i,
(i,:));%Local optimization

elseif M==2
v(i,:)=w(kg)*v(i,:)+cl*rand* (y(i,:)-x(1i,:))+c2*rand* (BestS-x
(1,:)); %Global optimization
end
for j=1:2 %Judge the limit of velocity
if v(i,3J)<Vmin
v(i,J)=Vmin;
elseif x(i,3j)>Vmax
v(i,Jj)=Vmax;
end
end
x(i,:)=x(i,:)+v(i,:)*1; %Update position
for j=1:2 %Check the 1limit
if x(1i,7j)<min
x(i,J)=min;

elseif x(i,3)>max

1) -X

x(i,7)=max;

end

end
%Adaptive mutation

if rand>0.60

k=ceil (2*rand) ;

x(1i,k)=min+ (max-min) *rand (1) ;
end

% (4)Judge and update

if i==1

plocal(i, :)=chapll_2lbest(x(Size,:),x(1,:),x(i+1,:));
elseif i==Size

plocal (i, :)=chapll_2lbest(x(i-1,:),x(i,:),x(1,:));
else

plocal (i, :)=chapll_2lbest(x(i-1,:),x(i,:),x(i+1l,:));
end

if chapll_2func(x (i, :))>p(i) %$Judge and update
p(i)=chapll_2func(x(i,:));
yv(i,:)=x(i,:);
end
if p(i)>chapll_2func (BestS)
BestS=y(i,:);
end
end
Best_value (kg)=chapll_2func (BestS) ;
end
figure (1) ;
kg=1:G;
plot (kg,Best_value, 'r', 'linewidth',2);
xlabel ('generations') ;ylabel ('Fitness function') ;
display ('Best Sample="') ;disp (BestS) ;
display ('Biggest value="') ;disp (Best_value(G)) ;

(2) Program for local best evaluation: chap11_2lbest.m

function f =evaluate_localbest (x1,x2,x3)

KO=[x1;x2;x3];
Kl=[chapll_2func(xl),chapll_2func(x2),chapll_2func(x3)];
[maxvalue index]=max (K1) ;

plocalbest=KO0 (index, :) ;

f=plocalbest;

(3) Object function program: chap11_2func.m

function f = func (x)
£=100* (x(1)"2-x(2)) "2+ (1-x(1))"2;

11.3 DE Algorithm and Design

In evolutionary computation, differential evolution (DE) is a method that optimizes
a problem by iteratively trying to improve a candidate solution with regard to a
given measure of quality. Such methods are commonly known as metaheuristics as
they make few or no assumptions about the problem being optimized and can
search very large spaces of candidate solutions.

DE is used for multidimensional real-valued functions but does not use the
gradient of the problem being optimized, which means DE is not required for the
optimization problem to be differentiable. DE can therefore also be used on opti-
mization problems that are not even continuous, are noisy, change over time, etc. [2].

DE optimizes a problem by maintaining a population of candidate solutions and
creating new candidate solutions by combining existing ones according to its simple
formulae, and then keeping whichever candidate solution has the best score or
fitness on the optimization problem at hand. In this way, the optimization problem
is treated as a black box that merely provides a measure of quality given a candidate
solution and the gradient is therefore not needed.

DE is originally due to Storn and Price [2]. Many books have been published on
theoretical and practical aspects of using DE in parallel computing, multiobjective
optimization, constrained optimization, and some books also contain surveys of
application areas.

11.3.1 Standard DE Algorithm

DE algorithm is an optimization algorithm based on swarm intelligence theory and
is guided by swarm intelligence which is generated by the cooperation and com-
petition among individuals. DE preserves the global searching strategy based on
population. By using real encoding, simple mutation differential, and one-on-one
competition strategies, the complexity of DE can be reduced. DE algorithm has
strong global convergence ability and robustness. The main advantages of the DE
algorithm can be summarized as the following three points: few parameters, not
easy to fall into local optimum, and faster convergence rate.

DE algorithm can do mutation, crossover, and selection operations based on
parent individual difference; the basic idea is to generate a random initial population
from the beginning, and then any two individuals are weighted and a third

individual is added according to certain rules to produce new individual.
Comparing a predetermined individual with the contemporary new individual in a
population, if the new individual’s fitness is better than the predetermined indi-
vidual fitness value, then in the next generation the new individual will replace the
predetermined individual, otherwise we must preserve the predetermined individ-
ual. Through iterations, we can keep good individuals, eliminate inferior individ-
uals, and guide the search process approach to the optimal solution.

Compared with the traditional optimization method, DE algorithm has the fol-
lowing main characteristics:

(1) DE algorithm starts from a group instead of one point, which is the main reason
that DE can find global optimal solution with a higher probability.

(2) The evolution rule of DE algorithm is based on the adaptive information, which
can greatly extend its application range without aid of other auxiliary infor-
mation, such as function differentiability or continuity.

(3) DE algorithm has inherent parallelism, which makes it very suitable for mas-
sively parallel distributed processing and reduces the time cost overhead.

(4) DE algorithm uses the probability transition rule and does not need determin-
istic rules.

11.3.2 Basic Flow of DE

DE algorithm is an evolutionary algorithm based on real coding, which is similar to
other evolutionary algorithms on the whole structure. It is composed of three basic
operations: mutation, crossover, and selection. Standard DE algorithm mainly
includes the following four steps:

(1) Initial population generation

In the dimensional n space, M individuals are randomly generated as
x;j(0) = rand;(0, 1) (xfjJ - xb) —&—xiLj (11.9)

where xg and xiLj are the upper and lower bounds of the jth chromosome, rand;;(0, 1)
is a real value in the range [0, 1].

(2) Mutation operator

Three individuals x,1, X5, and xp3 are randomly selected from the population, let
i # p1 # p2 # p3, and then basic mutation operator is

hyj(t+1) = xpa;(1) +F(xp2j(f) - Xp3j(l)) (11.10)

If there is no local optimization problem, the mutation operator can be written as
h[j(l—‘r-l) :ij(l)-l-F(xpzj(l) —)Cp3j(l)) (1111)

where xp;i() — xp3j(#) is the difference vector, the difference operation is the key of
DE algorithm, and F is a scaling factor. p;,p,,ps; are random integer, which
indicates the number of individuals in a population, and xy;(¢) indicates the best
individual in the current generation. Since (11.11) draws on the best individual
information in the current population, the convergence speed can be accelerated.

(3) Cross operator

Cross operator is to increase the diversity of the group, and the operator is as
follows:

hy(1+ 1), rand I; < CR
v,-j(t+l){ i1+ 1), rand I (11.12)

x;j(t),rand [; > CR

where rand /;; is a random value, CR is the crossover probability, CR € [0,1].
(4) Selection operator

In order to determine whether x;(#) become a member of the next generation,
vector v;i(f+ 1) and vector x;(¢) are used to compare the evaluation functions:

(1) = {Vi(t+1),f(w1(t+1),--~,vz'n(t+1))<f(xi1(t),~-,xm(t)) (11.13)

xii(t)7f(vil(t+ 1)) o ',Vi,l(f+ 1)) zf(xil(t)a o 7xin(t))

where j =1,2,--- ,n.
Repeat the steps (2) to step (4) until the maximum evolutionary iteration G is
reached. The basic flow of DE is shown in Fig. 11.10.

11.3.3 Parameter Setting of DE

In order to improve the convergence speed of DE algorithm, we need to set rea-
sonable parameters. For different optimization problems, parameter settings are
often different.

The main parameters of DE algorithm are given as follows.

(1) Mutation factor F'

The mutation factor F is an important parameter for the diversity and conver-
gence of the population; generally, F is set in [0, 2]. When the mutation factor is
small, the difference degree of the population will decrease, and the evolutionary
process may not jump out of the local extremum. When the mutation factor F is

Fig. 11.10 Flowchart of DE Start DE

‘ Initialization ‘

»

v
‘ Evaluate fitness ‘

Get the best

Termination? .
solution

No

Mutation
Crossover

Selection

G=G+1

large, it is easy to jump out of the local extremum, but the convergence rate will
slow down. Generally, we can set F = 0.3-0.6.

(2) Crossover factor CR

Crossover factor CR can affect the balance between global and local search
ability. The smaller the crossover factor CR is, the less diversity of the population
is, and the more easily DE algorithm will be deceived. The larger the crossover
factor CR is, the larger convergence rate is, but too large CR may lead to slow
convergence. Generally, we can set CR as the range [0.6,0.9].

(3) Group size

The group Size contains individual number between 5 D and 10 D(D is generally
the space dimension), and D must be not less than 4, otherwise the mutation
operation cannot be effective. The larger value Size is chosen, the greater the
probability of obtaining the optimal solution, but the computing time is longer,
usually Size can be designed from 20 to 50.

(4) Maximum iterations G

Maximum iteration G is generally used as the termination condition of evolu-
tionary process. The greater the number of iterations, the more accurate the optimal
solution, but the time will be longer.

The above four parameters have great influence on the performance of DE
algorithm and efficiency of the solution.

11.3.4 Simulation Example

Solve the maximum value of Rosenbrock function by DE

{f<xhx2> = 10007 —x) + (1 = x1)’ (11.14)

—2.048 <x; <2.048 (i=1,2)

Just like Sect. 11.1.3, the function has two local maximum value, namely
f(2.048,—2.048) = 3897.7342 and f(—2.048,—2.048) = 3905.9262, and the lat-
ter is the global maximum.

Real coding is used to find the maximum value of the function CodeL = 2, two
real variables are used to represent two decision variables x; and x,, respectively. x|
and x; are discretized into Size real numbers from the discrete point —2.048 to
—2.048. The fitness of individual is taken as the corresponding objective function
value, that is, F(x) = f(x1,x2).

In the simulation, the number of particles is taken as Size = 30, the iterations’
maximum number is G =50, DE algorithm is designed according to (11.9)-
(11.13), F = 1.2, CR=1.9, after a total of 30 iterations, the best sample is
BestS = [—2.048 —2.048], that is, x; = —2.048, x,= — 2.0438, and at this point,
Rosenbrock function has a maximum value, the maximum value is 3905.9.

The change process of fitness function F(x) is shown in Fig. 11.11. By appro-
priately increasing F value, the local optimal solution can be avoided. The results
show that the correct rate is close to 100%.

DE programs are listed as follows:

(1) Main program: chapll_3.m

%To Get maximum value of function f (x1,x2) by Differential Evolution
clear all;

close all;

Size=30;
CodeL=2;

MinX(1)=-2.048;
MaxX (1)=2.048;
MinX(2)=-2.048;
MaxX (2)=2.048;

3906

3905

3904

3903

3902

Best f

3901

3900

3899

L

3898

3897 1 1 1 1 1
0 5 10 15 20 25 30

Times

Fig. 11.11 Optimization process of fitness function F(x)

G=50;
F=1.2; %[0,2]
cr=0.9; %$[0.6,0.9]

% Initialization
for i=1:1:CodeL
P(:,1)=MinX(1i)+ (MaxX(1)-MinX (1)) *rand(Size,1);

end

BestS=P (1, :); % Best individual
for i=2:Size
if (chapll_30bj(P(i,1),P(i,2))>chapll_30bj(BestS(1l),BestS(2)))
BestS=P(i,:);
end
end
fi=chapll_3o0bj (BestS(1l),BestS(2));

for kg=1:1:G
time (kg) =kg;
gmutation
for i=1:Size
rl=1;r2=1;r3=1;
while(rl==r2|| rl==r3 || r2==1r3 || rl==1 || r2==1]]|r3==1)
rl = ceil(Size * rand (1)) ;
r2 = ceil(Size * rand (1)) ;

r3 =ceil(Size * rand(1));

end
h(i,:) =P(xrl, :)+F*(P(r2,:)-P(x3,:));

for j=1:CodeL %Check limit
ifh(i,j)<MinX(3)
h(i,Jj)=MinX(j);
elseif h(i,j)>MaxX(3)
h(i,j)=MaxxX(3j);
end

end

%crossover
for j =1:1:CodeL
tempr = rand (1) ;
if (tempr<cr)
v(i,3) =h(i,3);
else

v(i,j) =P(i,3);

end
end
%selection
if(chapll_3obj(v(i,1),v(i,2))>chapll_30bj(P(i,1),P(i,2)))
P(i,:)=v(i,:);
end

$Judge and update
if (chapll_3o0bj(P(i,1),P(i,2))>f)
fi=chapll_3o0bj (P(i,1),P(i,2));
BestS=P (i, :);
end
end
Best_f (kg)=chapll_3obj(BestS(1l),BestS(2));
end
BestsS % Best individual

Best_f (kg) %Biggest value

figure (1) ;
plot(time,Best_f (time), 'k', 'linewidth',2);
xlabel ('Times"') ;ylabel ('Best £');

(2) Object function program: chap11_3obj.m

function J=evaluate_objective (x1,x2)
J=100* (x172- x2) "2+ (1- x1)"2;

end

11.4 TSP Optimization Based on Hopfield Neural
Network

11.4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given a list of
cities and the distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?” It is an
NP-hard problem in combinatorial optimization, important in operations research
and theoretical computer science.

TSP is a special case of the traveling purchaser problem and the vehicle routing
problem.

In the theory of computational complexity, the decision version of the TSP
(where, given a length L, the task is to decide whether the graph has any tour
shorter than L) belongs to the class of NP-complete problems. Thus, it is possible
that the worst-case running time for any algorithm for the TSP increases super-
polynomially (but no more than exponentially) with the number of cities.

The problem was first formulated in 1930 and is one of the most intensively
studied problems in optimization. It is used as a benchmark for many optimization
methods. Even though the problem is computationally difficult, a large number of
heuristics and exact algorithms are known, so that some instances with tens of
thousands of cities can be solved completely and even problems with millions of
cities can be approximated within a small fraction of 1%.

The TSP has several applications even in its purest formulation, such as plan-
ning, logistics, and the manufacture of microchips. Slightly modified, it appears as a
subproblem in many areas, such as DNA sequencing. In these applications, the
concept city represents, for example, customers, soldering points, or DNA frag-
ments, and the concept distance represents traveling times or cost, or a similarity
measure between DNA fragments. The TSP also appears in astronomy, as
astronomers observing many sources will want to minimize the time spent moving
the telescope between the sources. In many applications, additional constraints such
as limited resources or time windows may be imposed.

11.4.2 Hopfield Network Design for Solving TSP Problem

The TSP problem is to find the shortest path in a set of cities {A., B, Ce...}. In
order to map the TSP problem into a dynamic process of a neural network, Hopfield
uses N x N matrix to express the visit of N cities.

For example, there are four cities {A.,B¢,Cc,Dc}, the route is
D. — A, — C. — B, — D¢, and then Hopfield network output can be expressed

Table.1.1.1 Visit routes for City Visit order

four cities | 5 ; 4
B, 0 0 0 1
C. 0 0 1 0

by the effective solution with the following two-dimensional matrix (see
Table 11.1).

Table 11.1 consists of a matrix 4 X 4; in the matrix, each column has only one
element whose value is 1; the remaining elements are 0, otherwise the path is an
invalid path. V,; indicates output of the neuron (x,i),U,, which is the corre-
sponding input. If the city x is accessed at location i, we set V,; = 1, otherwise we
set V,; = 0.

For the TSP problem, Hopfield defines the energy function as follows [3]

AN NN BN NN
) 3D DI ATED S S A
XC_I IZNI FNl 21-1;—1N>’—XN N (11.15)
) <ZZVM-—N) + Ezzz%"xi(%,m+vy‘,<,1)
e x=1 y=1 i=1

where A, B, C, D, are weight value, d,, is the distance between city x and city y.

In (11.15), the first three items of E are the constraints, and the last one is the
optimization item. The first term expresses that £ is minimum when each row of V
matrix is no more than 1 (i.e., each city only once), the second guarantees that E is
minimum when each column of V matrix is no more than 1 (i.e., visit only one city
at a time), and the third term expresses that £ is minimum when the number of
Vis N.

Hopfield introduces the concept of energy function to the neural network and
creates a new method to solve the optimization problem. However, this method has
some problems such as local minima and instability, and to solve this problem, in
paper [4], the authors proposed an improved energy function of TSP as follows

N N N

AN (X 2 AN [N D
S (;vﬂq) +43° (;in—1> SO S S Ve

x=1 y=1 i=1

(11.16)

DR e

From (11.16), the dynamic equation of Hopfield network is as follows:

dUu, OE

dt Vg

N N N
:—A(ZIVXI—1> —A(Zlvyl—1> —Dzdxyvy,ﬂrl
i= y=

y=1

(x,i=1,2,..,N—1)
(11.17)

To solve the problem, Hopfield network algorithm is described as follows:

. Initialization: set t = 0, A = B;
. Calculate the distance dyy(x,y = 1,2,...,N) between any two cities;
. Initialize neural network input U,;(¢);

Use dynamic Eq. (11.17) to calculate d(%‘i;

Calculate U,;(¢+ 1) based on first-order Euler method;

dU,;

Ui(t+1)=Uy
e+ 1) = Ul + %5

AT (11.18)

. In order to ensure the convergence to the correct solution, that is, for every row

and every column in the matrix V, only one element is 1, and the remaining are
0, use adapt Sigmoid function to calculate V,;(z)

1

Vi) = T

(11.19)
where u > 0.

Calculate energy function E according to (11.16);

Check the legitimacy of the path, if the number of iterations are arrived, then
terminate the iterative algorithm, or else return to step (4).

Give the number of iterations, the optimal path, the optimal energy function, the
length of the path, and plot the curve of the energy function with time.

11.4.3 Simulation Example

In (11.16), we choose A = 1.5, D = 1.0 and we set sampling time as AT = 0.01; the
initial value of network input U,(¢) is chosen as random values in the range
[—1, +1]. In (11.19), we choose larger u value as p = 50, so that the Sigmoid
function can be relatively steep, and thus in the steady states, V,;(¢) can tend to 1 or 0.

Taking the path optimization of eight cities as an example, the path coordinates

are stored in the program city8.txt. If the optimization path is effective, after 2000

iterations, the optimal energy function is Final_E = 1.4468, the initial distance is
Initial_Length = 4.1419, and the shortest distance is Final_Length = 2.8937.

As the initial value of input U,;(¢) is random, which may lead to invalid path
matrix V, that is, for matrix V, some row or some column does not meet “only one
element is 1, the remains are 0,” the optimization program should be re-run. The
simulation results have shown that in the 20 times simulation experiments, about 16
times can converge to the optimal solution.

The simulation results are shown in Figs. 11.12 and 11.13. Figure 11.12 shows
the comparison between the initial path and the optimized path, and Fig. 11.13
shows energy function E change with time. The simulation results show that the
energy function E tends to decrease monotonically, and the minimum point of E is
the optimal solution.

The key commands used in the simulation are explained as follows:

(1) Sumsqr(X) can be used to Summarize the squares of all elements in matrix X;
(2) Sum(X) or Sum(X,1) can be used to get the sum of each row in X matrix, and
Sum (X, 2) is the sum of each column in X matrix;

Original Route TSP solution
1 T 1 .
09 g 09 g
08 1 08 1
0.7 | E 0.7 F]
0.6 g 0.6 | .
2 2
X 05 p 1 Fo5f ONE
> >
04 . 04} g
03} g 03} g
02 E 02}]
0.1} R 01 ¢ ® D A
0 . 0 .
0 0.5 1 0 0.5 1
X axis X axis

Fig. 11.12 [Initial path and optimized path for eight cities

Energy Function Change

140 T T T

120 b

100 | b

80 b

40t .

S,

0 200 400 600 800 1000 1200 1400 1600 1800 2000
k

Fig. 11.13 Energy function changes with iterations

2] , then

(3) Repmat can be used for matrix replication, for example, X = [3 4

repmat(X, 1,1) = X,

1 2
repmat(X,l,Z):B i ;’ Lﬂ,repmat(X,Ll): i’ ;1 ;
3 4

(4) dist(x,y) can be used to Calculate the distance between two points, for
example, x=[1 1l]y=]2 2]’, then

dist(x,y) = /(2 = 1)+ (2~ 1)* = V2.

Simulation programs

(1) Main program: chapll_4.m

% TSP Solving by Hopfield Neural Network
function TSP_hopfield ()
clear all;

close all;

%Step 1: Initialization
A=1.5;

D=1;

Mu=50;

Step=0.01;

%Step 2: %Calculate initial route length
N=8;

cityfile = fopen('city8.txt', 'rt');

cities = fscanf (cityfile, '%f %f', [2,inf])
fclose(cityfile) ;
Initial_Length=Initial_RouteLength(cities) ;

DistanceCity=dist(cities',cities);
$Step 3: Initialization NN

U=rands (N, N) ;

V=1./(l+exp(-Mu*U)); % S function

for k=1:1:2000

times (k) =k;

$Step 4: Calculate du/dt
dU=DeltaU(V,DistanceCity,A,D) ;

$Step 5: Calculate u(t)
U=U+dU*Step;

$Step 6: Calculate output of NN
V=1l./(l+exp(-Mu*U)); % S function

%Step 7: Calculate energy function
E=Energy (V,DistanceCity,A,D) ;
Ep (k) =E;

%Step 8: Check validity of the route
[V1, CheckR]=RouteCheck (V) ;

End

$Step 9: Results

if (CheckR==0)
Final_E=Energy (V1l,DistanceCity,A,D);
Final_Length=Final_RouteLength(Vl,cities); %$Give final length
disp('Iteration times') ;k
disp (' the optimization route is');V1
disp('Final optimization engergy function:');Final_E
disp('Initial length');Initial_Length
disp('Final optimization length') ;Final_Length

PlotR(V1l,cities);

else
disp('the optimization route is');V1
disp('the route is invalid');

end

figure (2) ;

plot (times,Ep, 'r');
title('Energy Function Change') ;
xlabel('k');ylabel('E"');

% Calculate energy function
function E=Energy(V,d,A,D)
[n,n]l=size (V) ;

tl=sumsqgr (sum(V,2)-1);
t2:sumsqr(sum(v 1)-1);
PermitV=V(:,2:n);
PermitV=[PermitV,V(:,1)];
temp=d*PermitV;
t3=sum(sum(V.*temp)) ;
E=0.5* (A*t1+A*t24D*t3) ;

%%%%%%% Calculate du/dt
function du=DeltaU(V,d,A,D)
[n,nl=size(V);

tl=repmat (sum(V,2)-1,1,n);
t2:repmat(sum(v 1)-1,n,1);
PermitV=v(:,2:n);
PermitV=[PermitVv, v (:,1)];
t3=d*PermitVv;

du=-1* (A*t1+A*t2+D*t3) ;

%Check the validity of route
function [V1,CheckR]=RouteCheck (V)
[rows,cols]=size(V);
Vl=zeros (rows, cols) ;
[XC,Order]=max (V) ;
for j=1l:cols

V1 (Order(j),j)=1;
end
C=sum (V1) ;
R=sum(V1"') ;
CheckR=sumsgr (C-R) ;

% Calculate Initial Route Length

function LO=Initial_RouteLength(cities)

[r,c]=size(cities);

L0=0;

for i=2:c
LO=LO+dist(cities(:,1i-1)"',cities(:,1));

end

% Calculate Final Route Length

function L=Final_RouteLength(V,cities)

[xxx,order]=max (V) ;

New=cities(:,order) ;

New=[New New (:,1)];

[rows,cs]=size (New) ;

L=0;
for i=2:cs
L=L+dist (New(:,i-1)',New(:,1));

end

% Give Path optimization plot
function PlotR(V,cities)

figure;
cities=[cities cities(:,1)]1;

[xxx, order]=max (V) ;
New=cities(:,order) ;
New=[New New (:,1)1];

subplot(1,2,1);

plot(cities(1l,1), cities(2,1),'xr*'); %First city

hold on;

plot(cities(1,2), cities(2,2),"'+'); %Secondcity

hold on;

plot(cities(1l,:), cities(2,:),'o-"'), xlabel ('X axis'), ylabel
('Yaxis'), title('Original Route"') ;

axis([0,1,0,1]);

subplot(1,2,2);

plot(New(l,1), New(2,1),'r*'); %First city
hold on;

plot(New(l,2), New(2,2),'+"'); %Second city
hold on;

plot (New(l,:),New(2,:),'o-");

title('TSP solution') ;
xlabel ('X axis');ylabel ('Y axis');
axis([0,1,0,1]1);

axis on
(2) Program for coordinates of eight cities: city8.txt

0.10.1
0.90.5
0.90.1
0.450.9
0.90.8
0.70.9
0.10.45
0.450.1

References

1. J. Kennedy, R. Eberhart, Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4,
1942-1948 (1995)

2. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11, 341-359 (1997)

3. J.J. Hopfield, D.W. Tank, Neural computation of decision in optimization problems. Biol.
Cybernrtics 52, 141-152 (1985)

4. S.Y. Sun, J.L. Zheng, A modified algorithm and theoretical analysis for hopfield neural solving
TSP. Acta Electronica Sinca 23(1), 73-78 (1995). (in Chinese)

Chapter 12
Iterative Learning Control
and Applications

There is a kind of trajectory tracking problem in practical control. The control task
is to find the control law, which makes the output of the controlled object to achieve
the zero error of trajectory tracking along the desired trajectory. This tracking
problem is a challenging control problem.

When dealing with the repetitive tasks in the actual practical engineering, we
often adjust the decision according to the difference between the dynamic behavior
and the expected behavior. Through repeated operations, the object behavior and
the expected behavior can meet the requirements.

The idea of iterative learning control (ILC) was first proposed by Uchiyama, a
Japanese scholar in 1978, Arimoto, etc. [1] made a pioneering study in 1984.

Iterative learning control method has strong engineering background, and these
backgrounds include the following: industrial robot such as welding, spraying,
assembly, handling, and other repetitive tasks, disk drive system used in mechanical
manufacturing, and coordinate measuring machine [2—4].

Iterative learning control is a typical intelligent control method, which simulates
the function of human brain learning and self-regulation. After more than thirty
years of development, iterative learning control has become a branch of intelligent
control with strict mathematical description. At present, iterative learning control
has made great progress in learning algorithm, convergence, robustness, learning
speed, and engineering applications.

12.1 Basic Principle

Consider a dynamic model as

(1) = f(x(2), u(t),1),y(t) = gx(2),u(), 1) (12.1)

where x € Ry € R" . u € R" are system state, output and input variables,
respectively, f(-) and g(-) are unknown vector functions.

For the expected control uq4(?), if the initial states x;(0) and expected output y4(¢)
are given, for the given period of time ¢ € [0, T], according to the learning algorithm
by repeated operation, we can realize uy(z) — uq(t) and y,(¢) — y,4(¢), in the k
times running, (12.1) can be represented as

xi(t) = f(xx(t), wic(2), 1), yi(t) = g(xu(t), i (2), 1) (12.2)
The tracking error is
ex(t) = ya(t) — (1) (12.3)

The iterative learning control can be divided into open-loop learning control and
closed-loop learning control.

For the open-loop learning control, the k + 1 times control is equal to the cor-
rection of the k times control combine with the k times output error.

uk+1(t) :L(uk(t),ek(t)) (124)

The closed-loop learning strategy is to take the error in k+ 1 times as the
correction of learning

w1 (1) = L(ug(), e 1 1(1)) (12.5)

where L is linear or nonlinear operator.

12.2 Basic Iterative Learning Control Algorithm

The D-type iterative learning control law for linear time-varying continuous sys-
tems is given by Arimoto et al. [1]

s 1(f) = ug(t) + (1) (12.6)

where I' is constant gain matrix.
PID-type iterative learning control law is expressed as

mﬂmzwm+nmmnwm+w/q@m (12.7)
0

where I', @, and ¥ are learning gain matrices.
In iterative learning control law, if e(¢) is used, the control law is called as
open-loop LTC, if e; . | (¢) is used, the control law is called as closed-loop LTC, and

if ex(¢) and e 4 (¢) are used at the same time, the control law is called as open-loop
and closed-loop LTC.

In addition, there also have other LTC algorithm, such as higher order iterative
learning control algorithm, optimal iterative learning control algorithm, forgetting
factor iterative learning control algorithm and feedback feed-forward iterative
learning control algorithm, etc.

12.3 Key Techniques of Iterative Learning Control

12.3.1 Stability and Convergence

For learning control system, only stability is not enough, only convergence can
guarantee that the practical value converges to ideal value.

12.3.2 Initial Value Problem

Most of the iterative learning control algorithms require that the initial states’ value
of the system is equal to the initial states’ value of the desired trajectory, i.e.,

x(0) = x4(0),k =0,1,2, ... (12.8)

12.3.3 Learning Speed Problem

In iterative learning algorithm, the convergence condition is given by k — oo,
which is obviously of no practical significance. Therefore, how to make the iterative
learning process converge faster to the expected value is another important problem
in the research of iterative learning control.

12.3.4 Robustness

In addition to the initial offset, a practical iterative learning control system has more
or less disturbances such as state disturbance, measurement noise, and input dis-
turbance. Robustness problems should be discussed for iterative learning control
systems with various disturbances.

12.4 1ILC Simulation for Manipulator Trajectory
Tracking

12.4.1 Controller Design

Consider dynamic equation of N link manipulator as

D(gly+C(q,4)4+G(g) =7 — (12.9)

where g € R" is joint angular vector, D(g) € R"™" is inertia matrix, C(q,q) € R"
represents centrifugal force and Coriolis force, G(q) € R”" is gravity term, T € R" is
control input vector, and 74 € R" is disturbance.

The desired trajectory to be tracked by the system is set as y4(¢), 7 € [0, T]. The
system output at i times at time # is y;(¢), and let e;(¢r) = y4(¢) — y,(2).

Based on feedback, three kinds of iterative learning control laws are as follows:

(1) D-type closed-loop ILC
1 (1) = wet) + Ka(dg(t) = g1 (1) (12.10)
(2) PD-type closed-loop ILC

we 1 (1) = wi(t) + Ky (qa (1) — g 41 (1)) +Ka(§a(?) — g1 (1)) (12.11)

(3) Exponential variable gain D-type closed-loop ILC

i 1(r) = (1) + Ka(@a(t) — iy 1 (1)) (12.12)

The convergence analysis of above controller is given in paper [1].

12.4.2 Simulation Example

Consider the plant as (12.9), we assume

D= [di‘}zxz’

dit =\l +d (B + 12+ 2l cosqp) + 1 + I

dip = doy = dr (5 + lilacos q2) + 1

dyp =dyly)+ 1
C = [y,

c11 = hgz, c12 = hgy +hga, c21 = —hgy,cn = 0,h = —malil sing,
G=[G G

Gi = (dila +dali)g cos g1 + dalag cos(q1 + q2), G2 = dalag cos(q1 + q2)
g =[03sins 0.1(1 —e)]".

The physical parameters are setas d; = d, = 1,1} =1, = 0.5, .1 =l = 0.25,
Il = 12 = 01, 8 = 9.81.

Three kinds of closed-loop iterative learning control laws are used; set M = 1 as
D-type ILC, set M = 2 as PD-type ILC, and set M = 3 as exponential variable gain
D-type ILC.

The ideal position signal of the two joints is set as sin(3¢) and cos(37),
respectively. To ensure g4(0) = ¢(0), choose x(0) =[0 3 1 0]". Choosing
100 O}K_[SOO 0

0 10077 | 0 500
Figs. 12.1, 12.2, and 12.3.

M=2K,= [}the simulation results are shown in

2 -
o
&
g: 0
©
(op
_2 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3
time(s)
2 -
o)
o
~ 0 _/\
o
el
N
(o
_2 1 1 1 1 1]
0 0.5 1 1.5 2 25 3
time(s)

Fig. 12.1 Tracking process during the twentieth times

Position tracking of Link 1

b B
_2 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
time(s)
N
€ 2 :
£
=
(@]
o 1
£
4
[$]
£ of
C
il
'g _1 1 1 1
& 0 0.5 1 1.5 2 2.5 3

time(s)

Fig. 12.2 Angle tracking process for the twentieth times

Change of maximum absolute value of errorl
and error2 with times i

0.35

03+ .

0.25 .

0.2 .

0.15 ¢ .

error! and error2

01t .

005 .

:
times

Fig. 12.3 Convergence of error norm process during the twentieth times

Simulation programs:
(1) Main program: chap12_1main.m

%$Adaptive switching Learning Control for 2DOF robot manipulators
clear all;

close all;

t=[0:0.01:31";

k(1:301)=0; %Total initial points
k=k';

T1(1:301)=0;

for i=0:1:M % Start Learning Control
i

pause(0.01) ;
sim('chapl2_1sim', [0,31);

gl=a(:,1);
dgl=q(:,2);
a2=q(:,3);
da2=q(:,4);

gld=qgd(:,1);
dgld=qd(:,2);
g2d=qd(:,3);
dg2d=qd(:,4);

el=gld-qgl;
e2=g2d-qg2;
del=dgld-dgl;
de2=dg2d-dqg2;

figure (1) ;

subplot (211) ;

hold on;

plot(t,ql, 'b',t,qld, 'x");

xlabel ('time(s) ') ;ylabel('qld, gl (rad)');

subplot (212) ;

hold on;

plot(t,g2,'b',t,qg2d, 'r');

xlabel ('time(s) ') ;ylabel ('g2d,qg2 (rad)');

j=i+1;

times (j)=1;

eli(j)=max(abs(el));

e2i(j)=max(abs(e2));

deli(j)=max(abs(del)) ;

de2i (j) =max (abs (de2)) ;

end %End of i

B BTV L%%5%%

figure (2) ;

subplot (211) ;

plot(t,qgld, 'r',t,ql, 'b");

xlabel ('time(s) ') ;ylabel ('Position tracking of Link 1');
subplot (212) ;

plot(t,qg2d, 'r',t,q2,'b");

xlabel ('time(s) ') ;ylabel ('Position tracking of Link 2') ;

figure (3) ;

plot (times,eli, '*-r',times,e2i, 'o-b");

title

('Change of maximum absolute value of errorl and error2 with times i');

xlabel ('times') ;ylabel ('error 1 and error 2');

(2) Simulink program: chap12_1sim.mdl

—]
- To Workspace

To Workspace?

Ti
— chap12_1plant —bEl

chap12_tinput B 0 SFundion ToW a2
Mux chap12_1etr

S-Functioni

_— S-Function2

T
From
To Workspace3 Fen Workspace
From =
Workspace2 Switch

Constant

Clock To Workspace

(3) Ideal signal program: chap12_linput.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

case 3,

sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[1];
otherwise

error (['Unhandled flag = ', num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =4;
sizes.NumInputs =0;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =1[1;
str = [];
ts =[00];
function sys=mdlOutputs (t,x,u)
gld=sin(3*t) ;
dgld=3*cos (3*t) ;
g2d=cos (3*t) ;
dg2d=-3*sin(3*t) ;

sys (1) =qld;
sys (2)=dgld;
sys (3)=g2d;

sys (4)=dg2d;

(4) S function for plant: chap12_1plant.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]l=mdlInitializeSizes;
case 1,
sys=mdlDerivatives (t,x,u) ;
case 3,
sys=mdlOutputs(t,x,u) ;
case {2,4,9}
sys=[1;
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;
sizes.NumContStates =4;
sizes.NumDiscStates = 0;
sizes.NumOutputs =4;
sizes.NumInputs =2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes (sizes) ;

x0 =1[0;3;1;0]; %$Must be equal to x(0) of ideal input
str=[];

ts =[00];

function sys=mdlDerivatives (t,x,u)
Tol=[u(l) u(2)1"';

g=9.81;
dl=10;d2=5;
11=1;12=0.5;
1c1=0.5;1c2=0.25;
I11=0.83;12=0.3;

D11=d1*1cl"2+d2* (1172+1c272+2*11*1c2*cos (x(3)))+I1+I2;
D12=d2* (1lc2”2+11*1c2*cos(x(3)))+I2;

D21=D12;

D22=d2*1c2"2+I2;

D=[D11 D12;D21 D22] ;

h=-d2*11*1c2*sin(x(3));

Cll=h*x(4) ;

Cl2=h*x(4)+h*x(2) ;

C21=-h*x(2) ;

C22=0;

C=[Cl1 Cl2;C21 C22];

gl=(dl*1cl+d2*11) *g*cos(x(1))+d2*1lc2*g*cos (x(1)+x(3));
g2=d2*1c2*g*cos (x(1)+x(3)) ;

G=[gl;g2];

a=1.0;
dl=a*0.3*sin(t);
d2=a*0.1* (1-exp(-t));
Td=[d1l;d2];

S=-inv (D) *C* [x(2) ;x(4)]-inv (D) *G+inv (D) * (Tol-Td) ;

sys (1) =x(
sys (2)=S(
sys (3)=x(
sys (4)=S(

function sys=mdlOutputs (t,x,u)

sys(2)=x(2); %Anglel speed:dql
sys(3)=x(3); %Angle2:g2
sys(4)=x(4); %Angle2 speed:dqg2

(5) S function of controller: chap12_1ctrl.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]l=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}
sys=[];
otherwise
error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =8;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =1[1;
str = [];
ts =[00];
function sys=mdlOutputs (t,x,u)
gld=u(1l) ;dgld=u(2);
g2d=u(3) ;dg2d=u(4) ;

gl=u(5) ;dgl=u(6) ;
g2=u(7);dg2=u(8) ;

el=gld-gl;
e2=g2d-qg2;
e=[el e2]"';
del=dgld-dgl;
de2=dg2d-dg2;
de=[del de2]';

Kp=[100 0;0 10071 ;
Kd=[500 0;0 5007 ;

M=2;
if M==
Tol=Kd*de; $D Type
elseif M==2
Tol=Kp*e+Kd*de; %PD Type
elseif M==
Tol=Kd*exp (0.8*t) *de; $%$Exponential Gain D Type
end
sys(1l)=Tol(1l);
sys(2)=Tol(2);

12.5 [Iterative Learning Control for Time-Varying Linear
System

12.5.1 System Description

Consider a time-varying linear system as

(12.13)
y() = C(0)x (1)
The open-loop PID-type LTC law is
d
uk+1(l‘) :uk(t)-i- (ra —I—L—i—‘l’/dt)ek(t) (1214)

where I', L, ¥ are gain matrices.

12.5.2 Design and Convergence Analysis

Theorem 12.1 For the control system (12.13) and (12.14), if the following con-
ditions are satisfied [1, 5]:

W) - COBOI@| <p<1;
(2) For each iteration, x;(0) = xo(k = 1,2,3,...),¥9(0) = y4(0).

Refer to [5], the concrete analysis is given below.
Then, k — 00,y (t) — y4(¢), Vt€[0,T].

Proof From (12.13) and above condition (2), we have y,,(0) = Cx;.(0) =
Cx;(0) =y,(0), and then €,(0) =0(k =0,1,2,...).

The solution of x(r) = A(¢)x(z) + B(r)u(z) is

x(t) = Cexp (/Ad‘f) +exp (/Adr) / B(t)u exp(—Adédr)

0 0 0
t

:Cexp(At)+exp(At)/B(Ju(t)exp(—AT) dr/ Cexp(Ar) + /exp 7)dt
0

Let ®(z,7) = exp(A(f — 1)), then

1

xet) — xear (1) = / O (1, 7)B(7)(ue(t) — my 1 1 ())de

0
Let ex(t) = yq(t) —yi (1), ex +1(t) =y4(t) =y 1(2), then

exi1(t) —ex(t) = yp(t) = yr i1 (t) = C(1) (xx () —x41(1))

= /C(I)CI)(L T)B(7) (i (t) — ug11(7))de
0

1

e 1(r) = exlt) - / C()D (1, 7)B(x) (1 (1) — (1)) de

0

Inserting (12.14) into above, we have
ek+1(l‘) = ek(t)

- / C(n)®(z,7)B(7) [T(r)ék(r) +L(1)er(t) +¥(7) /ek(é)dé} dr
0

0
(12.15)
Using integration by parts, let G(¢,7) = C(7)B(7)I'(), then
/C([)B(‘L’)F(T)ék()dt = G(t,7)ex(t)|O—/%G(t7 7)e(t)dr
0 0 t (12.16)

=C()B(t)I'(1)ex(t) — /%G(Z7 7)ex(t)dt
0

Inserting (12.16) into (12.15), we have

1

evi1(t) = [I — COBOT(1))ex(r) + / %G(r, ey (1)dt
0

—/OtC(t)(I)(t,‘c)B(r)L(r)ek(‘c)d‘c—//C(t)(I)(t, 7)B(1)¥(1)er(o)dodr
00

(12.17)
For (12.17), we have
lewsr ()] < I — COBE@T) lex(s ||+/H— 0.9 llex o) e
/ IC()®(t, B(OL()| [lew()de + / / IC()® (1, DB (2 [lex(0) [dode
<= COBOTOIleco)ll + [bils(s)le+ / [viatanas
0 0 0
(12.18)

where

2G(t)

R , Sup

1,7€(0,7]

c(r / |C(O®(,)B()L()|

j

Multiply by exp(—Af) on both sides in (12.18), 4> 0, consider
ft) exp(/Lt) 1
oexp(Ar)dt =

b; = max{ sup
1,1€(0,7]

by = sup [[C(1)® (s, 7)B(1)¥(7)]

t,1€(0,7]

According to the definition of A-norm, ||f[|,= sup {||f(z)|le~*}.
0<1<T

, we have

t 1 1

exp(—/lt)/blHek(r)Hdr:exp(—lt)/h1Hek(r)||exp(—/lr)exp().1:)drSbl exp(—).t)”ek(r)ﬂ/«v/exp(l‘:)dt
0 0

0

= mexp(~0)ex() |, P =P ey) enp-) expin) ~ 1)
= i U=2PED) o, 0y, <y TR D oy),

(12.19)

For vVt € [0,T], Vte[0,1], Vo €][0,1], we have |ex(a)]; < |lex()|,-

From (12.19), we have

T

exp(—kt)//b2|\ek(a)Hdodr=exp(—/1t)/exp().r)exp(—ir)/bZHek(J)Hdodr
00

0 0

I3
<exp(—) [expiem =2 ey o)) 00
1 AT 7
<, =0 enp) [explin)feu(o)
| — exp(—AT) /
— expl—4
=b, %exp(flt)\\ek(r)ﬂi/ exp(Ar)dt
’ 0
1 —exp(—=AT exp(ir) — 1
b, %expeiouek(r)n,;p(%

A

5 5 2
=y LA) L oy (LAY ey o

where 0 < lfexli(fm) < lfexp/l(flT)'
ie.,

t T ~ex . 2
exp(— 1) / / b2||ek(a)||dadrgb2<¥w) lec@)l, (12.20)
0 0

Then, inserting (12.19) and (12.20) into (12.18), we have

llex+1ll; < pllexll; (12.21)

2
where p = p+b =22 4 p, (M) .

Since p <1, when we choose 4 larger value, we can guarantee p <1, and then
lim ||e||,= O.
k—o00

In (12.14), if we replace e(k) as e(k + 1), then the controller becomes closed-loop
PID-type ILC, and the convergence analysis is the same as Theorem 12.1.

12.5.3 Simulation Example

Consider two-input two-output linear system

e Rl e S

The ideal trajectory is
t in(3¢
yia(t) | | sin(37) refo1]
y24(2) cos(31)

To guarantee the conditions in Theorem 12.1, from CB = {(2) ﬂ, let

095 0 . 20 0 . .
= {0 0.95} , choosing L = {0 2-0] ,' ¥ = 0in (12.14), the initial states
x1(0y(0) 0
are set as = .
X2(0) (0) 1

Firstly, using PD open-loop control, the simulation results are shown in
Figs. 12.4, 12.5, and 12.6, and then, using PD closed-loop control, the simulation
results are shown in Figs. 12.7, 12.8, and 12.9.

1001
— 501
><..
©
x 0 ﬁ
i 1 1 1 1
50O 0.2 0.4 0.6 0.8 1
time(s)
50
N
X
A
x
i 1 1 1 1 1
50O 0.2 0.4 0.6 0.8 1
time(s)

Fig. 12.4 x; tracking during thirty times (open-loop PD control)

= : : .

(@]

(o))

£

S

® 0.5f b

[

Re]

a O 1 1 1 1

0‘2 0 0.2 0.4 0.6 0.8 1

N time(s)

x

%5 2 T T T T

()]

c

= 1 i

[&]

o

c of _

i)

-tz _1 1 1 1 1

o 0 0.2 0.4 0.6 0.8 1
time(s)

Fig. 12.5 Position tracking for thirty times (open-loop PD control)

Change of maximum absolute value of error1 and error2 with times
60

50

40

30

error 1 and error 2

Fig. 12.6 Absolute maximum value of error during thirty times (open-loop PD control)

x1d,x1

x2d,x2

o

-2

time(s)

0.2

0.4 0.6 0.8
time(s)

Fig. 12.7 x; tracking during thirty times (closed PD control)

Position tracking of x1

Position tracking of x2

1 . . .
0.5t
O 1 1 1 1
0 0.2 0.4 0.6 0.8
time(s)
2
1
O -
_1 1 1 1 1
0 0.2 0.4 0.6 0.8
time(s)

Fig. 12.8 Position tracking for thirty times (closed PD control)

Change of maximum absolute value of error1 and error2 with times
1

0.8

0.6

0.4

error 1 and error 2

0.2

Fig. 12.9 Absolute maximum value of error during thirty times (closed PD control)

Simulink programs:

(1) Main program: chap12_2main.m

%Iterative D-Type Learning Control
clear all;

close all;

t=[0:0.01:1]1";

k(1:101)=0; %Total initial points
k=k';

T1(1:101)=0;

T1=T1"';

T2=T1;

T=[T1 T2];

k1(1:101)=0; %Total initial points

kl=k1l"';

E1(1:101)=0;

El=E1l"';

E2=E1;

E3=E1l;

E4=E1;

E=[E1 E2 E
%

%%%%%%%%

M=30;
for i=0:1:M % Start Learning Control
i

pause(0.01) ;
sim('chapl2_2sim', [0,11);

x1=x(:,1);
x2=x(:,2);

x1d=xd(:,1);
x2d=xd (:,2) ;
dxld=xd(:,3);
dx2d=xd(:,4);

el=E(:,1);
e2=E(:,2);
del=E(:,3);
de2=E(:,4);
e=[el e2]"';

de=[del de2]"';

figure (1) ;

subplot (211) ;

hold on;

plot(t,x1,'b'',t,x1d, 'r");

xlabel ('time(s)'');ylabel ('x1ld,x1"');

subplot (212) ;

hold on;

plot(t,x2,'b',t,x2d,'x");

xlabel ('time(s) ') ;ylabel ('x2d,x2");

J=i+1;

times(j)=1i;

eli(j)=max(abs(el));

e2i(j)=max(abs(e2));

deli (j)=max(abs(del)) ;

de2i (j) =max (abs (de2)) ;

end %End of i

EE R R R R R R R R R R R Rt

figure (2) ;

subplot (211) ;

plot(t,x1d,'r',t,x1,'b");

xlabel ('time(s) ') ;ylabel ('Position tracking of x1');
subplot (212) ;

plot(t,x2d,'r',t,x2,'b");

xlabel ('time(s) ') ;ylabel ('Position tracking of x2');

figure (3) ;

subplot (211) ;

plot(t,T(:,1),'r");

xlabel ('time(s) ') ;ylabel ('Control input 1');
subplot (212) ;

plot(t,T(:,2),'r");

xlabel ('time(s) ') ;ylabel ('Control input 2');

figure (4) ;
plot (times,eli, '*-r',times,e2i, 'o-b');
title('Change of maximum absolute value of errorl and error2 with times') ;

xlabel ('times') ;ylabel ('error 1 and error 2');

(2) Simulink program: chap12_2sim.mdl

I-

n _,E Ti To Workspace1
Ei
To Workspacel To Workspaced
chap12_Zplant —E
SFunct 1o 2
chap12_Zinput - -Function
o chap12_Zctrl
S-Functiont -
o | Manual Switch S-Function? Ti-1
o n_
Ei-t
1
Subsystem Subsystem
Clock To Workspace
]du'd[E—q‘
Derivative

(3) S function for plant: chap12_2plant.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}
sys=[1];
otherwise
error (['Unhandled flag = ', num2str (flag) 1) ;
end

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;
sizes.NumContStates = 2;
sizes.NumDiscStates = 0;
sizes.NumOutputs =2;
sizes.NumInputs =2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;

x0 = [0;1];

str=[];

ts =[00];

function sys=mdlDerivatives (t,x,u)
A=[-23;11];

C=[10;01];

B=[11;01];

Gama=0.95;

norm(eye(2)-C*B*Gama) ; % Must be smaller than 1.0

U=[u(l);u(2)];

dx=A*x+B*U;

sys(1l)=dx(1l);

sys(2)=dx(2);

function sys=mdlOutputs (t,x,u)
sys(1)=x(1);

sys(2)=x(2);

(4) S function for controller: chap12_2ctrl.m

function [sys,x0,str, ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 3,
sys=mdlOutputs (t,x,u) ;
case {2,4,9}
sys=[1];
otherwise
error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs =2;
=4;

sizes.NumInputs

sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes (sizes) ;

x0 =[1;

str=[];

ts =[00];

function sys=mdlOutputs(t,x,u)
el=u(l);e2=u(2);

del=u(3) ;de2=u(4);

e=[el e2]"';
de=[del de2]"';

Kp=2.0;
Gama=0.95;
Kd=Gama*eye (2) ;

Tol=Kp*e+Kd*de; $PD Type

sys(1)=Tol (1) ;
sys(2)=Tol(2);

(5) S function for ideal trajectory: chap12_2input.m

function [sys,x0,str,ts] = spacemodel (t,x,u,flag)
switch flag,
case 0,

[sys,x0,str,ts]=mdlInitializeSizes;
case 3,

sys=mdlOutputs (t,x,u) ;
case {2,4,9}

sys=[];
otherwise

error (['Unhandled flag = ' ,num2str (flag)]) ;
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs =4;
sizes.NumInputs =0;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes) ;
x0 =1[1;

str=1[1;

ts =[00];

function sys=mdlOutputs(t,x,u)
x1d=sin(3*t);

dxld=3*cos (3*t) ;

x2d=cos (3*t) ;
dx2d=-3*sin(3*t) ;

sys (1) =x1d;
sys (2)=x2d;
sys (3)=dx1ld;
sys (4)=dx2d;

References

1. S. Arimoto, S. Kawamura, F. Miyazaki, Bettering operation of robotics by leaning. J. Rob.
Syst. 1(2), 123-140 (1984)

2. P.R. Ouyang, W.J. Zhang, M.M. Gupta, An adaptive switching learning control method for
trajectory tracking of robot manipulators. Mechatronics 16, 51-61 (2006)

3. A. Tayebi, Adaptive iterative learning control for robot manipulators. Automatica 40,
1195-1203 (2004)

4. A. Mohammadi, M. Tavakoli, H.J. Marquez, F. Hashemzadeh, Nonlinear disturbance observer
design for robotic manipulators. Eng. Practice 21, 253-267 (2013)

5. S.L. Xie, S.P. Tian, Theory and application of iterative learning control. Science Press, China,
(2005)

	Preface
	Contents
	Abstract
	Intro to Intelligent Control
	Expert Control
	Fuzzy Logic Control
	Neural Network & Control
	Intelligent Search Algorithm
	Refs

	Expert PID Control
	Expert PID Control
	Simulation Example
	Ref

	Foundation of Fuzzy Mathematics
	Characteristic Function & Membership Function
	Fuzzy Set Expression
	Calculation Method of Fuzzy Set
	Fuzzy Matrix Calculation
	Fuzzy Inference
	Fuzzy Equation
	Ref

	Fuzzy Logic Control
	Design of Fuzzy Logic Controller
	Fuzzy Logic Controller Design example
	Fuzzy Logic Control for Washing Machine
	Fuzzy PI Control
	Refs

	Fuzzy T-S Modeling & Control
	Fuzzy T-S Model
	Fuzzy T-S Modeling & Control based on LMI
	Fuzzy T-S Modeling & Control based on LMI for Inverted Pendulum
	Simulation Example of YALMIP Toolbox
	Refs

	Adaptive Fuzzy Control
	Adaptive Fuzzy Control
	Fuzzy Approximation
	Adaptive Fuzzy Controller Design
	Adaptive Fuzzy Control based on Fuzzy System Compensator
	Refs

	Neural Networks
	Introduction
	Single Neural Network
	BP NN Design & Simulation
	RBF NN Design & Simulation
	RBF NN Approximation based on Gradient Descent Method
	Effects of Analysis on RBF Approximation
	RBF NN Training for System Modeling
	RBF Neural Network Approximation
	Refs

	Adaptive RBF Neural Network Control
	Neural Network Control
	Adaptive Control based on Neural Approximation
	Adaptive Control based on Neural Approximation with Unknown Parameter
	Refs

	Adaptive Sliding Mode RBF NN Control
	Typical Sliding Mode Controller Design
	Sliding Mode Control based on RBF for 2nd-Order SISO Nonlinear System
	RBF Neural Robot Controller Design with Sliding Mode Robust Term
	Refs

	Discrete RBF Neural Network Control
	Digital Adaptive RBF Control for Continuous System
	Adaptive RBF Control for Class of Discrete-Time Nonlinear System
	Refs

	Intelligent Search Algorithm Design
	GA & Design
	PSO Algorithm & Design
	DE Algorithm & Design
	TSP Optimization based on Hopfield NN
	Refs

	Iterative Learning Control & Applications
	Basic Principle
	Basic Iterative Learning Control Algorithm
	Key Techniques of Iterative Learning Control
	ILC Simulation for Manipulator Trajectory Tracking
	Iterative Learning Control for Time-varying Linear System
	Refs

