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Preface to the Classics Edition 

We are pleased and honored that SIAM has decided to reissue our book Integral 
Equation Methods in Scattering Theory in their Classics in Applied Mathematics 
series. On this occasion some explanation seems appropriate as to why this work 
could be considered a "classic" and why interest should remain in a book that has 
been out of print for a number of years. 

When we wrote this book in 1983 the application of integral equations to prob
lems in acoustic and electromagnetic scattering theory was mainly confined to the 
electrical engineering community and to a rather small group of mathematicians. 
At that time the primary mathematical focus in scattering theory was based on a 
rather abstract point of view as exemplified by the seminal monograph Scattering 
Theory by Lax and Phillips. Meanwhile, the field of inverse scattering was almost 
entirely dominated by physicists interested in quantum scattering and the meth
ods of Gelfand-Levitan and Marchenko. In view of this situation, we thought it 
was appropriate to attempt to write a book that presented a mathematically rig
orous development of the use of integral equation techniques to solve acoustic 
and electromagnetic scattering problems that would be appealing to classical an
alysts as well as mathematically sophisticated engineers. In addition we wanted 
to suggest a direction in inverse scattering theory that emphasized the nonlinear 
and ill-posed nature of multi-dimensional inverse scattering problems. The result 
of these considerations was the original edition of this book. 

Our book quickly became a standard reference in the field and was soon trans
lated into Russian. This recognition was mainly due to our treatment of the direct 
scattering problem where the Riesz-Fredholm theory in dual systems was system
atically presented together with a careful and rigorous derivation of the mapping 
properties of surface potentials in Holder spaces. These results were then applied 
to an in-depth examination of the direct scattering problem for acoustic and elec
tromagnetic waves. The lasting value of this book lies in the fact that these basic 
results have not changed in the past thirty years, although nowadays the theory 
is more often presented in a Sobolev space setting. However, as discussed in our 
second book, Inverse Acoustic and Electromagnetic Scattering Theory, the map
ping properties of surface potentials in Sobolev spaces can be derived from the 
Holder space results by using a functional analytic tool due to Lax. As far as 
inverse scattering problems are concerned, the material in our first book is by and 
large outdated. However, since 1983 the themes of nonlinearity and ill-posedness 
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xii PREFACE TO THE CLASSICS EDITION 

have dominated the field of inverse scattering theory, and the fruitfulness of these 
ideas can be seen in our above-mentioned second book on scattering theory, in 
particular the third edition, which appeared in 2013. 

In closing, we would like to alert the reader to several inaccuracies in our 
presentation on inverse scattering and optimal control problems. 

• Our proof of Theorem 6.10 suffers from the same deficiency as the original 
proof in the monograph by Lax and Phillips and is correct only for convex 
scattering objects. A correct proof for arbitrary shaped scattering objects is 
given in our second book on scattering theory. 

• Due to regularity issues, Schiffer 's proof does not carry over to other bound
ary conditions, and therefore Theorem 6.11 requires another proof which 
can again be found in our second book. 

• The proofs of Theorems 9.11 and 9.13 are incorrect (as they are in the re
search paper in which these theorems were originally presented). A correct 
proof of Theorem 9.11 can be found in the book Optimization Methods in 
Electromagnetic Radiation by Angelí and Kirsch, whereas at this time it is 
an open question as to whether or not Theorem 9.13 is valid. 

DAVID COLTON 
RAINER K R E S S 

Newark, Delaware 
Göttingen, Germany 



Preface 

Integral equation methods play a central role in the study of boundary-value 
problems associated with the scattering of acoustic or electromagnetic waves 
by bounded obstacles. This is primarily due to the fact that the mathematical 
formulation of such problems leads to equations defined over unbounded 
domains, and hence their reformulation in terms of boundary integral equa
tions not only reduces the dimensionality of the problem, but also allows one 
to replace a problem over an unbounded domain by one over a bounded 
domain. From a numerical point of view, both of these advantages are 
extremely important, and in the past four decades a consistent and con
centrated effort has been exerted by engineers, physicists, and mathematicians 
to develop and utilize boundary integral equation methods in scattering theory. 
In recent years the development of integral equation methods for the direct 
scattering problem seems to be nearing completion, whereas the use of such an 
approach to study the inverse scattering problem has progressed to an extent 
that a "state of the art" survey appears highly desirable. These considerations, 
combined with the continued scientific interaction between the Department of 
Mathematical Sciences at the University of Delaware and the Institut für 
Numerische und Angewandte Mathematik at the University of Göttingen, 
have motivated us to attempt to present a rigorous and reasonably self-con
tained treatise on the use of integral equation methods in scattering theory. 

In view of the overwhelming amount of literature in the field, we found it 
necessary at the beginning to set clear and well-defined goals concerning the 
content of the present monograph. This choice of subject matter has obviously 
been influenced by our own research interests. Hence, in addition to the basic 
properties of solutions to the Helmholtz and Maxwell equations, we have 
decided to emphasize the following themes: (1) the regularity properties of 
acoustic and electromagnetic potentials; (2) the close relationship between 
Maxwell's equations, the vector Helmholtz equation, and the scalar Helmholtz 
equation; (3) the reformulation of the boundary-value problems of scattering 
theory as integral equations that are uniquely solvable for all values of the 
wave number; (4) the low frequency behavior of solutions to the boundary-value 
problems of scattering theory; (5) the use of function theoretic methods to 

xiii 



XIV 
PREFACE 

study the inverse scattering problem; (6) the role of compactness in stabilizing 
the inverse scattering problem; and (7) the use of integral equation methods to 
reformulate the inverse scattering problem as a problem in constrained optimi
zation, as well as the consideration of various related optimization problems in 
scattering theory. Although references are made throughout the text to papers 
concerned with the numerical implementation of our methods, we have de
cided not to include such material in our presentation. Furthermore, since 
integral equation methods are basically restricted to scattering problems for 
low or intermediate values of the wave number, we have chosen not to attempt 
any treatment of the wealth of material concerned with high frequency 
methods in scattering theory. 

Having formulated the above goals, a major problem arose as to what 
demands to place on the reader as far as mathematical background was 
concerned. In order for our book to be accessible to engineers and physicists as 
well as mathematicians, we have decided to assume only a minimal back
ground in functional analysis and analytic function theory, and to include 
sections in the text covering the more advanced aspects of these areas that are 
needed for an understanding of the material on scattering theory. Hence we 
have included a discussion of such topics as the Riesz-Fredholm theory of 
compact operators, entire functions of a complex variable, univalent function 
theory, improperly posed problems, and weak compactness. Hopefully this will 
make our book digestible to a wider audience than would otherwise have been 
possible. 

The first author would like to gratefully acknowledge financial support from 
the Air Force Office of Scientific Research under grant AFOSR 81-0103. This 
book was completed while the second author was on sabbatical leave at the 
University of Delaware, and both authors would like to thank the University 
of Delaware and the University of Göttingen for making this visit possible. A 
particular note of thanks is given to Alison Chandler for her careful typing of 
the manuscript. 

DAVID COLTON 
R A I N E R K R E S S 

Newark, Delaware 
Göttingen, Germany 



Symbols 

Sets 

dG 
G 
gext 

0 

Boundary of set G 
Closure of set G 
Set of extreme points of set G 
Empty set 
Set of natural numbers 

Scalars 

lim 
lim 
z 

Linear Spaces 

Rn 

C 
( · , ) 

H 
X 

Function Spaces 

C(G) 

C0a(G) 

LP(G) 

Limit superior 
Limit inferior 
Complex conjugate of z 

Euclidean n space 
Space of complex variables 
Scalar product 
Vector product 
Triple product 
Euclidean norm of a vector in R n 

Unit vector in U n 

Normed space of real or complex-valued continuous 
functions defined on G 
Normed space of real or complex-valued uniformly 
Holder continuous functions defined on G 
Set of functions whose /?th power is integrable over G in 
the sense of Lebesgue 
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|| · ||„o Maximum norm 
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See also the index under Function Spaces 
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exp 
log 
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Δ 
arg 
Re 
Im 
grad 
div 
curl 
Grad 
Div 

Exponential 
Logarithm to the base e 
Characteristic function of set G 
Lebesgue measure of set G 
Landau symbols 

Laplace operator 
Argument 
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Imaginary part 
Gradient 
Divergence 
Curl 
Surface gradient 
Surface divergence 
See also the index under Operators 



1 
THE RIESZ-FREDHOLM 
THEORY FOR 
COMPACT OPERATORS 

The basic tool used in this book for the investigation of both the direct and the 
inverse scattering problems for acoustic and electromagnetic waves is the 
method of boundary integral equations. The integral equations that will arise 
in the course of our investigations are of the Fredholm type with either a 
weakly singular or a strongly singular kernel. We will show that in both cases, 
perhaps after the application of a suitable regularizing operator, the resulting 
integral equation can be reduced to one of the form 

( Ι - Α ) φ - / 

where A is a compact integral operator and/is an element of an appropriately 
chosen Banach space. The questions of existence and uniqueness of solutions 
to operator equations of this form are answered by the Riesz-Fredholm theory 
and hence is the subject matter of this chapter. In order to present this theory, 
it is necessary for us to assume that the reader is familiar with the elementary 
properties of normed spaces and bounded linear operators. However, aside 
from this prerequisite we shall try and make the analysis as self-contained as 
possible. 

Our plan of this chapter is as follows. We first introduce the concept of 
compact operators and study their basic properties. We then present the Riesz 
theory for linear operator equations of the second kind and follow this by the 
Fredholm theory in dual systems. A new aspect of our presentation is that we 
do not assume that the bilinear form associated with the dual system is 
bounded. After this discussion of the Riesz-Fredholm theory, we shall con
sider operator equations depending on a parameter as well as singular per
turbation problems associated with such equations. These results will be 
applied in Chapter 5 to study the low frequency behavior of solutions to 
acoustic and electromagnetic scattering problems. We conclude the chapter by 

i 



2 THE RIESZ-FREDHOLM THEORY FOR COMPACT OPERATORS 

an elementary discussion of spectral theory and the method of successive 
approximations for solving operator equations of the second kind. 

1.1 COMPACT OPERATORS 

We begin by introducing the concept of compact operators and the study of 
their basic properties. 

Definition 1.1. A linear operator A: X-* Y from a normed space X into a 
normed space Y is called compact if it maps any bounded set in X into a 
relatively compact set in Y. 

We recall that a set U in a normed space X is called relatively compact if its 
closure is compact, that is, if each sequence in U contains a subsequence 
converging in X. Therefore we have the following equivalent condition for an 
operator to be compact. 

Theorem 1.2. A linear operator A : X -> Y is compact if and only if for each 
bounded sequence (φπ) in X the sequence (Αφ„) contains a convergent subse
quence. 

Theorem 1.3. Compact linear operators are bounded. 

Proof. Assume the compact linear operator A : X -> Y is not bounded. 
Then there exists a sequence (φ„) in X such that ||φΛ|| = 1 and ||Αφ„|| ^ n for all 
« e M . Since A is compact, there exists a subsequence such that Αφπ(Λ) -» ψ e Y, 
k-+oo. In particular, ||ΑφΛ(Α:)|| -» ||ψ||, /c-*oo, which is a contradiction to 
ΙΙΑΦ*(*)ΙΙ > n(k) -* <», Λ -» oo. 

Theorem 1.4. Any linear combination of compact linear operators is com
pact. 

Proof. Let A, B : X -> Y be compact linear operators and let α, β e C. Then 
each bounded sequence (φ„) in X contains a subsequence (<¡>n(k)) such that 
(ΑΦΛ(*)) a n d ΦΦη(ΐο) converge. Hence (αΑ+0Β)φΛ(Λ) = αΑφη(Λ) + 0ΒφΛ(Α) 
converges and therefore αΑ + βΒ is compact. 

Theorem 1.5. Let X9 Y, Z be normed spaces and let A : X-*Y and B : Y -* Z 
be bounded linear operators. Then the product BA : X -* Z is compact if one 
of the two operators A or B is compact. 

Proof. Let (φ„) be a bounded sequence in X: \\φη\\ < C for all n e N. If A is 
compact, then there exists a subsequence (<t>n(k)) such that Αφπ(Λ) -> ψ e 7, 
k-+oo. Since B is bounded and therefore continuous, we have (ΒΑ)φΛ(Λ) = 
Β(Αφη(Α:)) -> Βψ G Z, k -» oo. Hence BA is compact. 

If A is bounded and B compact, the sequence (Αφ„ ) in y is bounded since 
||Αφ„|| < ||Α||||φ„|| < ||A||C for all / J G M . Therefore, there exists a subsequence 
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(ΦΛ<*)) s u c h t h a t (ΒΑ)Φι(*) = Β(ΑΦΐ(*))~*ΧθΖ> k-+oQ. Hence again BA is 
compact. 

Theorem 1.6. Let A" be a normed space and Y be a Banach space. Let the 
sequence \n: X-* Y of compact linear operators converge uniformly to a linear 
operator A : X -+ Y, that is, ||A„ - A|| -> 0, n -» oo. Then A is compact. 

Proof. Let (φ,„) be a bounded sequence in A ^ I ^ J I ^ C for all w e N . 
Since the A„ are compact, we can choose, by the standard diagonalization 
procedure, a subsequence (<t>m{k)) such that (A„<i>m(/c)) converges for every fixed 
n as k -> oo. More precisely, since A x is compact, we can choose a subsequence 
(*«.,(*>) s u c h t h a t (Ai*ml(/c)) converges as /c -^ oo. The sequence (4>mi(fc)) again 
is bounded and, since A2 is compact, we can choose a subsequence ($m2{k)) of 
(Φ/η(λ:)) s u c r i m a t (Α2Φ™2(*)) converges as /c-»oo. Repeating this process of 
selecting subsequences, we arrive at a double array (<j>m (Α:)) such that each row 
(Φ™ (*)) *s a subsequence of the previous row (φ^_ | ( Λ )) and each sequence 
(Αηφ (Λ)) converges as /c->oo. For the diagonal sequence Φ,^ν = Φ,*Α(λ:) w c 
have (A^m(fc)) converges as /c -> oo for all n e N. 

Let e> 0 be arbitrary. Since ||An -A| | -> 0, n -*oo, there exists « 0 e M such 
that ||A -A| | < e/3C. Because (An<t>m{k)) converges there exists Ν(ε)Ε:Ν 
such that 

l | A ^ m ( , ) - A ^ ( / ) | | < | , k,l>N(e). 

But then for all k, / > Ν(ε) we have 

\\A<t>m(k) - A * m ( / ) l l < l l A *m(*) " A n 0 * m ( ^ ) l l 

+ llAW0*m(^)-An0«m(0ll + l l A ^ ( / ) ~ A * ^ ( 0 l l < e · 

Thus (Αφ„,(Λ)) is a Cauchy sequence and therefore convergent in the Banach 
space Y. 

Theorem 1.7. Let A: X-^> Y be a bounded linear operator with finite dimen
sional range A(X). Then A is compact. 

Proof. Let (φΜ) be a bounded sequence in X: \\φη\\ < C for all n e M. Then, 
since ||Αφη|| < ||Α||||φ„|| < ||A||C the sequence (Αφ„) is bounded in the finite 
dimensional subspace A(X). By the Bolzano-Weierstrass theorem any bounded 
sequence in a finite dimensional normed space contains a convergent subse
quence. Therefore A is compact. 

Lemma 1.8 (Riesz). Let A' be a normed space, U g X a closed subspace, and 
a e (0,1). Then there exists an element ψ ε ΐ with ||ψ|| = 1 such that 

ΙΙΨ — ΦΙΙ > « 
for all φ <= U. 
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Proof. Since U =* X, there exists an element / e X with / £ U and because 
U is closed we have 

0 := inf | | / - φ | | > 0 . 

We can choose g&U such that 

0<l l / -* l l<£ . 
Now we define 

/ - g 
ψ: Ί ι / - g i r 

Then ||ψ|| = 1 and for all <j> e 1/ we have 

s i n c e g + | | / - g | ^ e l / . 

Theorem 1.9. The identity operator I: X-* Xis compact if and only if Xhas 
finite dimension. 

Proof. Assume I is compact and X is not finite dimensional. Choose an 
arbitrary φ, e A" with ||ψ,|| = 1. Then Ux\ = span (φλ) is a finite dimensional and 
therefore closed subspace of X. By Lemma 1.8 there exists <j>2el with ||φ2|| = 1 
and ||φ2 — ΦιΙΙ>2· Now consider £/2: = span (Φ\,Φ2)> Again by Lemma 1.8 
there exists φ3 e X with ||ψ3|| = 1 and \\ψ3 - φ,|| > ¿, ||φ3 - φ2|| > ■£. Repeating 
this procedure, we obtain a sequence (φη) with the properties ||φΛ|| = 1 and 

Ι Ι Φ » - Φ Μ Ι Ι > έ . " * ™ · 

This implies that the bounded sequence (φη) does not contain a convergent 
subsequence which contradicts the compactness of the identity operator. 
Therefore, if the identity operator is compact, X has finite dimension. 

The converse is an immediate consequence of Theorem 1.7. 
This theorem, in particular, implies that the converse of Theorem 1.3 is 

false. 
Let G c R 2 be a Jordan-measurable (with nonzero measure) and compact 

set and let C(G) be the Banach space of complex-valued continuous functions 
defined in G equipped with the maximum norm 

| M | M : = m a x M x ) | . 
xe<7 
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Consider the integral operator A : C(G) -> C(G) defined by 

(Αφ)(χ):= ÍK(x,y)<¡>(y)dyi X G G , (1.1) 
JG 

where # : G x G - > C i s a continuous kernel. 

Theorem 1.10. The integral operator A with continuous kernel is a compact 
operator on C(G). 

Proof. Choose a sequence of subdivisions 

such that the measurable open sets Δ , n are disjoint, Δ , η η Δ ) η = 0 , / * j , and 
the diameters satisfy 

max (diamA, n ) ->0 , n-+oo. (1.2) 
1 < / < w 

Select a point y¡ n from each Δ,· „ and consider the sequence of operators 
A„ : C(G) -> C(G) defined by 

(Α„φ)(χ): = ΣΚ(χ,Κ,η){ <t>(y)äy. 

The A„ are bounded 

IIAJL^ max \K(x,y)\fdy 

and have finite dimensional range 

A„(C(G)) = span(*(. , >>,„), i —1 Λ) . 

Thus by Theorem 1.7 the operators A„ are compact. 
Define Kn:GXG->Cby 

Kn(x, y): = K(x, >>·,„), x e G, >> <= Δ Ι Π . 

Then we can rewrite the definition of A n in the form 
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Since K is uniformly continuous on the compact set GxG, given ε > 0, it 
follows from (1.2) that there exists Ν(ε) e M such that 

\Κ(χ,γ)-ΚΗ(χ,γ)\<-1-, x,y^G, n>N{e). 
fay 
JG 

Then 

\(Αφ)(χ)-(Αηφ)(χ)\<ε\\φ\\Ο0, X<EG 
and therefore ||A —AJI^ < ε for all η^Ν(ε). Hence, by Theorem 1.6 the 
operator A is compact. 

Now we consider the integral operator A defined by (1.1) where AT is a 
weakly singular kernel, that is, K is defined and continuous for all J Í J £ ( / , 
x =*= y, and there exist positive constants M and a e (0,2] such that for all 
x, y G G, x =* y, we have 

\K(xiy)\^M\x-y\«-2. (1.3) 

By |x| we denote the euclidean norm of a point x e R2. 

Theorem 1.11. The integral operator A with weakly singular kernel is a 
compact operator on C(G). 

Proof. The integral in (1.1) defining the operator A exists as an improper 
integral since 

\K(x,y)<t>(y)\<M\\<i>\Ux-y\«-2 

and 

i\x-y\a-2dy^27rfdp«-2pdp = —da 
JG J0 a 

where we have introduced polar coordinates with origin at x and d is the 
diameter of G. 

Now we introduce piecewise linear continuous functions kn\ [0, oo)->R, 
n E M , by 

MO:-

fo 

2 / i f - l , 

1 , 
V 

¿n 
1 1 

¿n n 
1 

- < i <oo 
n 
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and define continuous kernels Kn : G X G -» C by 

rkn{\x-y\)K(xty), x*y, 
Kn(x,y): = \ 

nV y) \ 0 , x = y. 

The corresponding integral operators A„: C(G) -+ C(G) are compact by Theo
rem 1.10. We have the estimate 

| (Αφ)(χ)- (Α„φ)(χ) | : f[K(x9y)-KH(x9y)]4>(y)dy 
JG 

<ί \Κ(χ9γ)\\\Φ\\^ 
JGx.l/n 

*Μ\\φ\\αο2π[1/ηρΤ-2ράρ 

= A/ | |< i»IL^(^) a , xeG, 

where Gx x/n\ ={y e G| [y - X| ^ 1/W). From this we observe that \ηφ -> Αφ, 
M -* oo, uniformly and therefore Αφ ^C(G). Furthermore, it follows that 

||A- ■AJ|e o<Jlf^(¿)e-0> n->oo, 

and thus A is compact by Theorem 1.6. 
Theorems 1.10 and 1.11 obviously can be extended to Euclidean spaces of 

arbitrary dimension RJ, where the condition (1.3) is replaced by \K(x, y)\ < 
M\x-y\a~s. 

The compactness of integral operators with continuous kernels also can be 
derived from the following theorem. 

Theorem 1.12 (Arzelá-Ascoli). Let G c R ' b e a compact set. A set K c C(G) 
is relatively compact (with respect to the maximum norm on C{G)) if and only 
if it is bounded and equicontinuous, that is, there exists a constant C such that 

\*(x)\<C 

for all x G G and all φ e K and for any ε > 0 there exists δ > 0 such that 

ΙΦ(*)-Φ(>0|<* 

for all x j e G with \x- y\<8 and all φ<=Κ. 

Proof. Let K be bounded and equicontinuous and let (φ„) be a sequence in 
K. We choose a sequence (xm) in G that is dense in G. Since the sequence 
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(<t>n(xm)) is bounded in C for each xm, by the standard diagonalization 
procedure (see the proof of Theorem 1.6) we can choose a subsequence (<i>n(k)) 
such that (<t>n(k)(xm)) converges in C as k ->oo for each xm. Because the set 
(xm) is dense in G, given ε > 0, we can choose wGl^ such that any point x e G 
has a distance less than Ô from at least one element x} of the set x, , . . . ,xw . 
Next choose N(e) e N such that 

¡<^)(*,)-φ«(/)(*,)ΐ< ε> k,l>N(e) 

and ally = 1,... ,m. From the equicontinuity we obtain 

\Φηα)(Χ)-Φη(!)(Χ)\<\Φη^)(χ)-Φηα)(^)\ 

+ |ΦΛ(*)(*;)-Φπ(/)(*>)| + \Φη(1)(^)-Φη(1)(χ)\ < 3 ε 

for all /c , /^ Ν(ε) and all JC G G which establishes the uniform convergence, 
that is, convergence in the maximum norm of the subsequence (Φ„(Α:)). Hence 
K is relatively compact. 

Conversely, let K be relatively compact. Given ε > 0 there exist functions 
φ,,...,φ„, G AT such that 

min | |Φ-Φ,| |0 0<^ 
1 < j < m J 

for all φ G K. Otherwise we inductively could construct a sequence (φ„) in K 
with the property 

ΙΐΦ,-φ/lloc^f, n*L 

This implies that the sequence (φ„) does not contain a convergent subsequence 
which contradicts the relative compactness of K. Since each of the φ,,...,<t>m is 
uniformly continuous, there exists δ > 0 such that 

\*j(x)-*j(y)\<^ 

for all x,y^G with | J C - J > | < 8 and all j: = l,. . . ,m. Then for all φ G AT, 
choosing y such that 

ΙΙΦ-Φ,ΙΙ^ min ΙΙφ-φ,Ι^, 

we obtain 

ΙΦ(*)-Φ(-Κ)Ι < | φ ( * ) - φ , ( * ) | + ΙΦ^-Φ^ + |Φ,(^)-Φ(^)| < ε 

for all X J G ( / with \x - y\ < δ. Therefore K is equicontinuous. Finally, the 
boundedness of the relatively compact set K is trivial. 
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The proof of Theorem 1.10 with the aid of the Arzelá-Ascoli theorem is left 
as an exercise. 

1.2 THE RIESZ THEORY 

We now present the Riesz [1] theory for an operator equation 

φ - Α φ = / 

of the second kind. We assume that X is a normed space, A : X -* X is a 
compact linear operator and we define 

L: = I - A 

where I denotes the identity operator. 

Theorem 1.13 (First Riesz Theorem). The nullspace of the operator L 

iV(L): = {*eA r |Lu = 0) 

is a finite dimensional subspace. 

Proof. The nullspace of the bounded linear operator L is trivially a closed 
linear subspace of X. Since for all φ e N(L) we have Αφ = φ, the restriction of 
A to the nullspace N(L) coincides with the identity operator A | ̂ (L) = I : NÇL) 
-> N(L). A is compact on X and therefore also compact on closed linear 
subspaces of X. Hence N(L) is finite dimensional by Theorem 1.9. 

Theorem 1.14 (Second Riesz Theorem). The range of the operator L 

L(X): = (L4>\4>eX) 

is a closed linear subspace. 

Proof. The range of the linear operator L is clearly a linear subspace. Let / 
be an element of the closure L( X). Then there exists a sequence (φ„) in X such 
that 

To each φη we choose an element χη e N(L) such that 

||φ„-χ„||< inf | |φ η - χ | |+ Ι 
X e N(L) n 

The sequence (φ^) defined by 

Φ'η'=Φη-Χη 
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is bounded. We prove this indirectly, that is, we assume that it is not bounded. 
Then there exists a subsequence (<i>'n(k)) such that 

\\4>n(k)\\>k> k^™-

Now we define 

Since ||ψ*|| = 1, ^ Ν , there exists a subsequence (Ψ*ο)) s u c n t n a t 

ΑΨ*θ·)-* Ψ e *> y -»oo . 

Furthermore, 

„v / „ l | L t i<*>" , llL*.<*)H , n . _ 
Ι Ι Φ Λ ( Α ) Ι Ι k 

since the sequence (1^φπ) is convergent and therefore bounded. Hence 

We now obtain 

tku)= L^o)+ΑΨ*υ) "* Ψ» y -̂  oo, 
and since L is bounded from the two previous equations we conclude 

Li// = 0. 

But then since xn(k) +||Φ,ί(Α:)ΙΙΨ G N(L) for all /c we find 

ιιψ* " ψ|1 = ïï^ïl|(W) " ( χ ^ ) +ΙΙ#<*>ΙΙΨ)ΙΙ 

ΙΙΦ/ΚΑ:)!! 

ΙΙΦΛ<*)ΙΙ xe7V(L) ^ ï ï ^ iï ΙΙ*η(*)-Χπ ll*í(*)ll r^ ( f t ) A"w" *(*) 

" ' - Í M M ^ ^ 1 ' ^ 0 0 ' 

which contradicts the fact that ψ ^ -» i//,y -* oo. 
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Therefore the sequence (φ'η) is bounded and we can select a subsequence 
(<&(*>) s u c h t h a t (A<t>'n(k)) converges as k -* oo. From ψ;(Λ) = "L<t>'n{k) + Αψ;(Λ) we 
now observe that (Φ^(/0) converges 

But then L<}>'n{k) -> ί φ G * and therefore/ = L<¡> eh(X). Hence L( * ) = L( * ) . 
The iterated operators L", w ^ l , defined by L°: = I, L": = LL"_1, can be 

written in the form 

L« = ( I - A ) " = I - A „ 

where 

is compact by Theorems 1.4 and 1.5. Therefore by Theorem 1.13 the nullspaces 
N(lf) are finite dimensional and by Theorem 1.14 the ranges Ln(X) are closed 
subspaces. 

Theorem 1.15 (Third Riesz Theorem). There exists a uniquely determined 
nonnegative integer r, called the Riesz number of the operator A, such that 

{0} = JV(L°) g N(V) g · · · g N(U) = N(V+ ' ) = · · · , 

X = L ° ( Z ) D L 1 ( ^ ) $ - - - $ L r ( X ) = L r + 1 ( ^ ) = · · · . 

Furthermore, 

X=N(U)(BU(X). 

Proof. 

1. Since for any φ with L"<f> = 0 it follows that Ln+ *φ = 0, we trivially have 

{0} = N(L°) c N(V)a N(L2) c · · · . 

Assume now that 

Since the nullspaces #(1/*) are finite dimensional by Theorem 1.13, from the 
Riesz Lemma 1.8 we conclude that there exists φη e A^L"*l) such that ||φΛ|| = 1 
and 

\\Φη~Φ\\>Ί 
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for all φ e N(Ln). For « > w w e consider 

ΑΦ„ -ΑφΜ - φ„ -(φ„, + Γ,φ„ - L ^ J · 

Here φ„ + L<t>n - Lφm e N(L") since 

LM(φw+LφM-Lφ/M) = Lw--- lL-+ 1φm+L'J + lφπ-L"--L-+ 1φm = 0. 

Hence 

| | A ^ - A * J | > i , n>m. 

Therefore the sequence (Αφη) does not contain a convergent subsequence 
which is a contradiction to the compactness of A. 

Now we know that in the sequence (N(Ln)) there are two successive 
nullspaces that are equal. Define 

r:^rmn{k\N(Lk) = N(Lk+x)). 

We now prove by induction that 

N(U) = N(U+x) = N(U+2) = ·- . 

Assume that we already have that N(Lk) = N(Lk+ ') for some k^r. Then for 
any φ e N(Lk+1) we have Lk+ ! L* = ΐ / + 2 φ = 0, that is, Ι.φ e jV(LÄ+ !) = N(Lk). 
Hence L*+ *φ = L*L* = 0 and thus φ G N(Lk+l). ThereforeJV(L*+2) c tf(L*+ »). 

We can summarize our results up to now by the formula 

{0} = N(l?)gN(V)g·-· g # ( L r ) = #(L r + 1) = · · · . 

2. Since for any ψ = L"+ ]φ <= Ln+1( X) we can write ψ = LnI^, it trivially 
follows that 

Assume now that 

X = L0(X)2V(X)2V(X)2---. 

Since the ranges L"( X) are closed subspaces by Theorem 1.14, it follows from 
the Riesz Lemma 1.8 that there exists ψη e ΙΓ(Χ) such that ||ψΛ|| = 1 and 

\\*n-n>\ 
for all ψ G Ln+1( A"). We write ψ„ = L/ty„ and for m > n we consider 

Αψ„ - Αψ„ = ψ„ - ( ψ „ +L*M - I ^ J . 
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Here ψ„ + L*, -h^m <EL»+\X) since ψ„ +L*n -Li/,m = L " + 1 ( L — ^ + 
φ π - ^ - ^ ) . Hence 

| |Ai / / n -A^ m | |^ , /w>* 

and we can derive the same contradiction as above. 

Therefore in the sequence (Ln(X)) there are two subsequent ranges that are 
equal. Define 

q: = min{k\Lk(X) = Lk+l(X)}. 

We now prove by induction that 

V(X) = L«+ ](X) = L*+2(X) = · · · . 

Assume we already have that L*(AT) = Lk+l(X) for some /c> 4. Then for any 
ψ = L*+ *φ e L*+ *(*) we can write ΐ/ψ = L*+ V with some φ' e Xsince L*(X) 
«L*+1(Jf). Hence ψ = L H V G L H 2 ( I ) and therefore L*+ I(Jf)cL*+ 2(X). 

Again we can summarize our results by the formula 

X=L°(X)^V(X)O-· D L ^ ) = Li+ ,(Ar) = · · · 

3. We now show that r = q. Assume that r > q and let φ G N(U). Then 
since L r "^GL r _ 1 ( I ) = L r(I) , we observe that we can write Ι / - 1φ = Ι/φ' 
with some φ' e X. Since Lr+ 'φ' = \Ιφ = 0, we have φ' e JV(Lr+ >) = #(Lr), that 
is, L/-fy = L y = 0. Thus φεΛΓζΙΤ1) and hence Ν(υ~ι) = N(U)9 which 
contradicts the definition of r. 

Assume now that r<q and let φ = Ιβ~λφ^Ιβ~\Χ). Since Ι,ψ = 
LÍ(()GLÍ(J) = L Í + , ( I ) we can write Li// = L* + V for some φ 'e X 
Then ΙΛΦ - Ι.φ') = Ι,ψ - L«+ *φ' = 0 and since NQJ"l) = NÇL«), we con
clude that L<7-1(φ-Lφ ,) = 0, which impUes ψ = L V e L í ( ^ ) . Therefore 
L*~ !(X) = L^X), which contradicts the definition of #. 

4. Let ψ <= N(U)nU(X). Then ψ - 1 / φ for some φ^Χ and Lty = 0. 
Hence L2ty = 0, which means φ <= iV~(L2r) = W(Lr). Therefore ψ = Lty = 0. 

Let ψ ε Χ be arbitrary. Then Ltyelf(X) = L2r(X) and we can write 
Ι/φ = ΐ7Γφ' for some f e l Define φ\=\Ιφ' ΪΞΙΙ(Χ) and χ: = φ - ψ . Then 
Lrx = Lty-L2ty'=0, which means x^N(U). Therefore the decomposition 
Φ = X + Ψ proves the direct sum X = N(Lr)eLr( Χ). 

Now we derive the fundamental results of the Riesz theory by distinguishing 
the two cases r = 0 and r > 0. 

Theorem 1.16. Let X be a normed space, A : X-* X a compact linear opera
tor, and let I - A be injective. Then the inverse operator (I —A)-1 exists and is 
bounded. 
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Proof. By assumption, the operator L is injective, that is, N(L) = {0}. 
Therefore r = 0 and from Theorem 1.15 we conclude L(X)= X, that is, the 
operator L is surjective. Hence the inverse operator L~1 : X -* X exists. 

Assume L~ * is not bounded. Then there exists a sequence (<¡>n) with ||Φ„|| = 1 
such that the sequence /„: = L~ty„ is not bounded. Define 

Then ψ„-*0, η -» oo, and | | g j | = l. Since A is compact, we can choose a 
subsequence (gn(k)) such that Ag„(Ä) -* g e A', A: -» oo. Then since 

we observe that gn(fc) -> g, A: -> oo, and therefore g G N ( L ) . Hence g = 0, which 
contradicts | | g j | = 1, « e JV. 

We can rewrite Theorem 1.16 in terms of the solvability of the operator 
equation of the second kind as follows. 

Corollary 1.17. Let A" be a normed space and A : I - > I a compact linear 
operator. If the homogeneous equation 

φ - Α φ = 0 

only has the trivial solution φ = 0, then for all / e X the inhomogeneous 
equation 

φ - Α φ = / 

has a unique solution <j>& Xand this solution depends continuously on / . 

Theorem 1.18. Let X be a normed space and A: X-> X a compact linear 
operator and assume I - A is not injective. Then the nullspace iV(I - A) is finite 
dimensional and the range ( I - A) X g X is a proper closed subspace. 

Proof. By assumption, we have N(L) D (0). This means r > 0 and from 
Theorem 1.15 we conclude that L( X) g X. 

Corollary 1.19. If the homogeneous equation 

φ - Α φ = 0 

has nontrivial solutions, then the inhomogeneous equation 

φ - Α φ = / 
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is either unsolvable or its general solution is of the form 

m 

Φ = Φ* + Σ «*Φ* 

where φ* denotes a particular solution of the inhomogeneous equation, φχ,..., 
<f)m are linearly independent solutions of the homogeneous equation, and 
a,, . . . ,am are arbitrary complex numbers. 

Corollary 1.20. Theorems 1.16 and 1.18 and their Corollaries 1.17 and 1.19 
remain valid when we replace I - A by S - A , where S is a bounded linear 
operator that has a bounded inverse S_ 1 . 

Proof. This follows immediately from the fact that we can transform the 
equation 

S<i>-A<f> = / 

into the equivalent form 

where S_1A is compact by Theorem 1.5. 
The main importance of the results of the Riesz theory for compact 

operators lies in the fact that we can conclude existence from uniqueness as in 
the case of finite dimensional linear equations. 

We conclude this section with the following theorem. 

Theorem 1.21. The projection operator P : X-* N(U) defined by the decom
position 

X=N(U)®U(X) 

is compact. The operator L - P = I - A - P i s bijective. 

Proof. The nullspace N(U) is finite dimensional by Theorem 1.13. On 
N(U) it is easily verified that 

|||ψ|||:= inf ||ψ + χ|| 
X €=! / (*) 

defines a norm. In particular, we conclude from |||ψ||| = 0 that ψ = 0 since the 
range U(X) is closed by Theorem 1.14. Since on a finite dimensional linear 
space all norms are equivalent, there exists a positive number C such that 

|<C| |^ | | | , tha t is , 

IWKC inf ||ψ + χ|| 
XeL'(*) 
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for all ψ e N(U). Then for all φ e X we have Ρφ e N(Lr) and therefore 

||P*||«C inf ||Ρψ + χΙΚΙΙΦΙΙ 
x e W ) 

since φ — Ρφ e Lr( X). Hence P is bounded and, since it has finite dimensional 
range P(X) = N(Lr), by Theorem 1.7 it is compact. 

It follows from Theorem 1.4 that the operator A + P is compact. Let 
<f)6iV(L-P), that is, 

Ι .φ-Ρφ = 0. 

Then L r+ 'φ = 0 since Ρφ e N(U). Therefore φ e N(U+1 ) = N(U) and Ρφ = φ, 
which implies 

Lφ = φ. 

From this we get by iteration that 

φ = Ι/φ = 0. 

Therefore N(L — P) = {0) and from Theorem 1.16, applied to the compact 
operator A + P, we conclude that L — P is surjective. 

1.3 THE FREDHOLM THEORY 

In the case of Theorem 1.18 in which the homogeneous equation has nontrivial 
solutions, the Riesz theory gives no answer to the question whether the 
nonhomogeneous equation for a given inhomogeneity is solvable or not. This 
question is settled by the Fredholm theory that we shall develop for dual 
systems following the analysis of Jörgens [1] and Wendland [1], [2]. 

Definition 1.22. Let X and Y be normed spaces and ( . , . ) : I x 7 - * C b e a 
nondegenerate bilinear form, that is, 

1. For any φ £ Χ , φ * 0 , there exists ψ e Y such that (φ, ψ) =*= 0; and for 
any ψ e Y, ψ * 0, there exists φΕ: X such that (φ, ψ) *= 0. 

2. For all φ^φ2,φ& X, ψ,,ψ2 ,ψ e ^ a\*a2>ß\>ß2 G ^ w e have 

<a^i -f α2φ2,ψ> = α1(φ1,ψ> + α2(φ2,ψ>, 

(φ,β]φλ + β2φ2)=β](φ,φ]) + β2(ΦΛ2). 

We call two normed spaces X and Y equipped with a nondegenerate bilinear 
form a dual system and denote it by (X, Y). 



THE FREDHOLM THEORY 17 

Note that as opposed to Jörgens and Wendland, we do not assume the bilinear 
form to be bounded. A similar theory can be developed with a sesquilinear 
form instead of a bilinear form. 

Theorem 1.23. Let G be as in Theorem 1.10. Then (C(G),C(G)) is a dual 
system with the bilinear form 

<Φ,Ψ>:= ί Φ(*)ψ(*)&, Φ,ψεψ) . 
JG 

Proof. Obvious from Definition 1.22. 

Definition 1.24. Let ( X, Y) be a dual system. Then two operators A : X-* X9 
B : Y -» Y are called adjoint if for every φ e X, ψ e 7, 

<Αφ,ψ> = <φ,Βψ>. 

Theorem 1.25. Let ( X, Y> be a dual system. If an operator A : X -> X has an 
adjoint B : Y -» 7, then B is uniquely determined and A and B are linear. 

Proof. Suppose there existed two adjoints to A and we denote these by B, 
and B2. Let B: = B, - B 2 . Then for every ψ <E Y we have <φ,Βψ> = (Φ ,Β ,ψ) -
( φ , Β ^ ) = (Αφ, ψ>-(Αφ, ψ) = 0 for all φ e X. Hence, since (.,.) is nonde-
generate we have Βψ = 0 for every ψ e y, that is, B, = Bj. To show that B is 
linear we simply observe that for every φ e X 

(φ,)81Βψ1+)82Βψ2> = )81(φ,Βψ1) + )82<φ,Β2ψ> 

= )81<Αφ,ψ1> + )82<Αφ,ψ2> 

= <Αφ,0,ψι+&Ψ2> 

= <φ,Β()31ψ1 + )82ψ2)>, 

that is, >β1Βψι 4- )82Βψ2 = BÍjS^, + )32ψ2). In a similar manner, it is seen that 
A is linear. 

Theorem 1.26. Let K be a continuous or a weakly singular kernel. Then in the 
dual system (C(G),C(G)> the (compact) integral operators defined by 

(Αφ)(χ):=ίκ(χ9γ)φ(γ)αγ 
JG 

(B4,)(x):-ÍK(y,x)4,(y)dy 
JG 

are adjoint. 
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Proof. The theorem follows from 

-/.{/. 

<Αφ,ψ)=/"(Αφ)(χ)ψ(χ)Λ 
Jr. 

= /φ(^)(Βψ)(^)φ = <φ,Βψ>. 
JG 

In the case of a weakly singular kernel the interchanging of the order of 
integration is justified by the fact that Α„φ -> Αφ, n -► oo, uniformly on G, 
where A„ is the integral operator with continuous kernel #„ introduced in the 
proof of Theorem 1.11. 

Lemma 1.27. Let (X, Y) be a dual system. Then to every set of linearly 
independent elements φ[9...,φη e X there exists a set ψ!,...,ψΛ e Y such that 

<Φ* .Ψ*> β * ί *> / , / C = 1 , . . . ,A Î . 

A similar statement holds with the roles of X and Y interchanged. 

Proof. For one linearly independent element Φχ^ X the lemma is true 
since (.,.) is nondegenerate. Assume the lemma is proven for n ^ 1 linearly 
independent elements. Let Φι,...,Φπ+ι be n + 1 linearly independent elements. 
By our induction assumption, for every / = l,...,/i + l, to the set φ ΐ 5 . . . , 
Φι^ι,Φι+1,...,φ„+ ! of H elements in A" there exists a set of n elements ψ ( / \ . . . , 
ΨΜ?ι> · · · ,Ψί / ί ι in r such that 

<φ/,ψ1/>> = δ /„ ι ,* = 1,...,/ι + 1, / , * * / . (1.4) 

Then there exists χ , £ 7 such that 

since otherwise 

«/="<♦/. 

= <φ, 

Φ/-

χ,- ΣΨ(ΛΦ*, 

- Σ (Φ,.Ψ^ΦΑ 

λ : « 1 

Χ/» 

, .Χ/)* 

= 0, 

^Ο 

* * / 
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a contradiction to the linear independence of the φ , , . . . , Φ„+1. 
Define 

Then, obviously, <φ„ ψ,> = 1 and for i =* /, 

<Φ'^/> = ^ {<Φ/- Χ/>- [ έ ' <Φ,, Ψ^ΧΦ^ Χ/> J = 0 

because of (1.4). Hence we obtain Ψι,...,ψ„+ι such that 

<Φ,> **>-*,-*> ι ,Λ- Ι , . . . , ι ι + l. 

Theorem 1.28 (First Fredholm Theorem). Let (X, Y) be a dual system, and 
A: X^> X, B : 7 -> y be compact adjoint operators. Then the nullspaces of the 
operators I - A and I - B have the same finite dimension. 

Proof. By the first Riesz Theorem 1.13 we have 

m : = dim N(l - A) < oo, n : = dim N{\ - B) < oo. 

We assume m<n. Choose a basis φ,,...,<¡>m for the nullspace N(l — A) (if 
m > 0) and a basis ψ,,...,ψΛ for the nullspace iV(I-B). By Lemma 1.27 there 
exist elements a{,...,am e Y (if m > 0) and bv...,bn e X such that 

( Φ , Ό ^ 0 , * ' i',fc=rl,...,m, 
(bi9\pk) = 8ik, /,/c = l , . . . ,« . 

Define a linear operator T : X -* A" with finite dimensional range by 

/0 if m = 0, 
Φ : = \ Σ<Φ,α,>&, if « > 0 . 

Let φ e JV(I - A + T), that is, (if m > 0) 

φ - Α φ + £ <φ)αί>ί),. = 0. 
/ - I 

It follows that 
<Φ>α*> = <Φ.Ψ*-Βψ*> + <Φ,α*> 

= <φ-Αφ + Σ<Φ.*,>^.Ψ*> = 0 
i - l 
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for k = 1,..., m. Therefore φ - Αφ = 0 and hence we can write 
m 

Φ = Σ «,-Φ,-

Now from 
/M 

/ = 1 

we obtain a¿ = 0 for /c = l,. . . ,m, and therefore φ = 0. Thus we have proved 
that JV(I - A 4- T) = {0}, that is, I - A 4- T is injective, which of course also is true 
for the case m = 0. 

Now we show that I - A + T is surjective. Let P: X-> N(U) be the projec
tion defined by the decomposition X — N(U)&U(X) and recall that the 
inverse operator (I — A — P)~l: X-* X exists by Theorem 1.21. The operator 
T-f P has a finite dimensional range U: = ÇT + P)(X). Define on the finite 
dimensional space U an operator K : U -> U by 

K: = I + (T + P ) ( I - A - P ) _ 1 = ( I - A - f T ) ( I - A - P ) _ 1 

Let g e N(K). Then, since N(l - A + T) = {0}, we have (I - A - P)~ xg = 0 and 
from this g = 0. Therefore the linear operator K on the finite dimensional space 
U is injective and therefore surjective. Thus, given any / e l , the inhomoge-
neous equation 

K g = ( T + P ) ( I - A - P ) - y 

has a unique solution g^U. Now we set 

φ : - ( Ι - Α - Ρ Γ ' ( / - ί ) 
and obtain 

( I - A + T ) * - / - g + (T + P ) ( I - A - P ) - 1 ( / - g ) 

= / - K g + ( T + P ) ( I - A - P r ' / = / . 

Hence, I — A + T is surjective. 
Now, since I —A+T is bijective, the inhomogeneous equation 

φ - Α φ + Τ φ = ί>„,+ 1 

has a unique solution ψ. We now arrive at the contradiction 

1 = <^+1>ΨΜ+ι> = ( φ - Α φ + Τφ,ψΜ+1> 

= <φ-Αφ,ψ„ + 1) = <φ,ψ„ + 1 -Βψ Μ + 1 ) = 0 

since (Τφ,ψ„+1> = 0. 
Therefore m > n and a similar argument shows n>m. Hence m = n. 
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Theorem 1.29 (Second Fredholm Theorem). The nonhomogeneous equation 

φ - Α φ = / | ψ - Β ψ - g 

is solvable if and only if the condition 

</,Ψ> = 0 | <φ,8> = 0 

is satisfied for all solutions of the homogeneous adjoint equation 

φ - Β ψ = 0 | φ - Α φ = 0. 

Proof. Obviously, it suffices to carry out the proof for the equation 
φ - Α φ = / . 

Necessity. Let φ be a solution of φ - Αφ = / . Then for all solutions ψ of 
ψ - Βψ = 0, we obtain 

</,ψ> = <φ-Αφ,ψ> = <φ,ψ-Βψ> = 0. 

Sufficiency. By the first Fredholm theorem we have 

m = dimAr(I-A) = d i m # ( I - B ) < o o . 

In the case m — 0, the condition ( / , ψ) = 0 is satisfied for all / e X and by 
Corollary 1.17 the equation φ — Αφ = / indeed is solvable for all / G I . 

In the case m > 0, from the proof of the previous theorem, we know that 
I -A- f T is bijective. Hence there exists a unique solution φ of the equation 

φ - Α φ + Τ φ = / . 

Then it follows that 

< Φ > * * > - < Φ . Ψ * - Β Ψ * > + <Φ,Λ*> 

m 

= < φ - Α φ , ψ , ) + Σ<Φ,α,><6„ψ*> 
i - l 

= <φ-Αφ+Τφ,ψ*> = </,ψ*> = 0 

for fc = l,...,ttî since we are assuming that the solvability condition of the 
theorem is satisfied. Hence Τφ = 0 and thus φ also satisfies the original 
equation 

φ - Α φ = / . 

We now summarize our results in the following theorem. 
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Theorem 1.30 (Fredholm Alternative). Let ( I J ) be a dual system and 
A : X-+ X, B : Y-* Y, be compact adjoint operators. Then either 

# ( I - A ) = {0} and tf(I-B) = {0} 

and (I-A)(A r)=A r and (I-B)(Y) = Y 

or 

dim N{\ - A) = dim N{\ - B ) e N 

and ( Ι -Α)(Χ) = { / € ^ | ( / , ψ > = 0, ψ€Ξ#(Ι-Β)> 

and (I-B)(Y) = <g€EY|<<i>,g> = 0, φ ^ ( Ι - Α ) } . 

Choosing the dual system introduced by Theorem 1.23 and the integral 
operator considered in Theorem 1.26, our results include the Fredholm alterna
tive for integral equations of the second kind first obtained by Fredholm [1]. 
The Schauder theory (Schauder [1], Jörgens [1]) is included by taking Y= A'*, 
the dual space of X, and defining a bilinear form by (φ, ψ) = ψ(φ) for all 
elements ( ¡>e l and bounded linear functionals ψ e I* . As a consequence of 
the Hahn-Banach theorem, this bilinear form is nondegenerate. 

Finally, we note the following theorem (Kress [2], Jörgens [1]). 

Theorem 1.31. The operators A and B have Riesz number one if and only if 
for any pair of bases φ,,...,φηι and ψ,,...,i//w of the nullspaces iV(I-A) and 
N(l-B) the matrix (φ,, ψΑ>, /', k = l,...,m, is nonsingular. 

Proof. Obviously, 

^ ( φ / , ψ , ) = 0 

is equivalent to the existence of a nontrivial solution λ,-, / = l, . . . ,w, of the 
homogeneous linear system 

m 
Σ<Φί>Ψ*>λ, = 0, k = ],...,m. 

1 = 1 

By the Fredholm alternative, this is equivalent to the fact that for 

/:= ¿U^(I-A) 
i - l 

with / =* 0 the equation φ ~ Αφ = / has a solution φ, that is, φ e N((l - A)2 ) but 
φ ^ N(l - A), that is, the Riesz number is greater than one. 
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1.4 A SINGULAR PERTURBATION PROBLEM 

In our investigations of the low frequency behavior of solutions to electromag
netic scattering problems, we shall need to consider the following perturbation 
problem. 

Let A" be a Banach space and let K c C be a subset such that 0 e K is an 
accumulation point of K. Consider a family (AK : X-> X, κ e K) of compact 
linear operators and define LK: = 1 - AK. We assume that for κ =*= 0 the operator 
LK has a trivial nullspace and therefore is bijective. Then for all κ *= 0 and all 
/ K e X the equation 

ΚΦκ = L 

has a unique solution <t>K = L~xfK. We are interested in finding sufficient 
conditions to guarantee that Φκ-+Φ0, κ -> 0, where φ0 is a solution of the 
limiting equation 

ο̂Φο = /o 
and it is assumed that 

| | A . - A o l | - 0 , | | / K - / o l l - 0 , K - 0 . 

Let P : X-* N(UQ) be the projection defined by the decomposition X = 
N(U0)®U0(X) of Theorem 1.15 and recall that by Theorems 1.16 and 1.21 the 
operator P is compact and the inverse operator ( L 0 - P ) - 1 exists and is 
bounded. Now define the bounded operator 

L ^ ^ L o - P r ' a - P ) . 

For any φ e X we have L0P<f> e N(U0) and therefore PL0P</> = L0P</>. On the 
other hand, from the decomposition φ = Ρφ + ψ, ψ e U0( X), we can conclude 
that L ^ L ^ + LQI// and P L ^ = P L ^ since y G L r

0
+ 1 ( J ) = L r

0(I) . 
Thus we have the commutative property PL0 = L0P. From this we deduce that 
P ( L 0 - P ) = ( L 0 - P ) P and P(L0 - P ) " 1 = (L0 - P ) P. Then PL0

+ = L0
+P = 0 

and therefore 

L0L0 = L 0 L 0 = I - P . (1.5) 

Note that the latter equations imply that L^ is a generalized inverse of L0. 
Define 

MK: = L 0
+ (L 0 -L K ) . 

Since ||AK - A0|| -» 0, κ -* 0, for sufficiently small κ the operator I - M K has an 
inverse and the Neumann series 

( Ι - Μ , ) - , - Ι + Μ . + Μ , 2 + · . . 
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converges. Now we define 

F . z - L . + P Í L o - L j . (1.6) 

With the help of (1.5) we find that 

F . - M I - M J . (1.7) 

Then for the operator 

FK
+: = (I-MK)- 'L0

+ 

a simple calculation using (1.5) yields 

F , F K = I - P 

F.+ F, = I - ( I - M , ) - ' P . (1.8) 

Note that these equations imply that FK
+ is a generalized inverse of ¥K. 

Now we define 

Ψ„: = Ρ.+Λ, Ψο-Lo/o · 

Then from 

ΙΙΨ«-ΨοΙΙ<IIF«+ -UHII/JI + l|Lo ΙΙΙΙΛ-/oil 

we see that 

From (1.8), we obtain ¥κψκ = (I - P)/K and from this, using the definition of FK, 
we obtain 

Μ . - α - Ρ ΐ Λ + ρ α , - ^ ψ , . (1.9) 

We now try to represent the solution φκ of LK4>K = fK in the form 

where χκ e N(U0). By straightforward calculations, after using (1.6) and (1.7) 
to obtain 

M I - M J - 1 = L 0 + P Í L . - L o K l - M j - ' 

from (1.9), we find that φκ satisfies LK<t>K = /K if and only if χκ e N(Lr
0) is a 
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solution of 

PÍL, - L O X I - M J - ' X , + LoX(t = P/K -P(LK - L 0 H K . (1.10) 

Because of its equivalence with the uniquely solvable equation LK<¡>K = fK the 
linear equation (1.10) has a unique solution χκ for all κ =*= 0 in the finite 
dimensional space N(U0). 

To establish the convergence of the solutions to LK<¡>K = fK it now suffices to 
study the behavior of the solutions χκ of the finite dimensional equation (1.10). 
The following theorem states sufficient conditions for convergence. 

Theorem 1.32. Assume that the Riesz number of A 0 is one and that there 
exists a number Î Ê M such that 

A O - A ^ C V + ^ K * ) 

and 

PfK = gK5 + o(K5) 

where g e N(L0) and C: X^> X is a linear operator such that PC: N(L0) -> 
N(L0) is bijective. Then the unique solution φκ of L>K$K = fK converges to a 
solution φ0 of L0</>0 = /0. 

Pwo/. Since A0 has Riesz number r = 1, equation (1.10) reduces to 

P L K ( I - M j ^ K = P a - M J . 

From our assumptions on the limiting behavior of AK and P/K we conclude that 

PMi-Mj-V„> = pcU0)'<î + <>('<i) 
and 

P ( / « - M , ) = ( « - P C ( L 0 - P ) - ' / 0 ) K « + «(K !). 

From this we conclude that the unique solution χκ of (1.10) converges as κ ~> 0 
to the unique solution χ 0 e N(L0) of 

PCXo=U-PC(L0-P)-70). 

Note: Suppose there exists a second Banach space Y, a nondegenerate 
bilinear form (.,.): XxY->C, and a compact operator B0: Y -* Y that is the 
adjoint of A0 with respect to the dual system (X,Y). Then the projector P, in 
the case of Riesz number one, can be expressed in terms of the nullspaces of 
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I - A 0 and I - B 0 as follows. By Theorem 1.31 we can choose a basis φ,,...,<¡>m 
of JV(I-A0) and a basis ψ,,. , . ,ψ^ of N(l-B0) such that 

<Φ/>Ψ*> = δ,*> /,/c = l , . . . , w . 

Then 
m 

ΡΦ= Σ <Φ,Ψ*>Φ*, ψ ε ^ 

since obviously ΡφθΛ^Ι^) and <¡>-P<¡>£iL0(X) because ( φ - Ρ φ , ψ,) = 0, 
z = l,...,m. Therefore the assumptions of Theorem 1.32 in this case can be 
rewritten in the form 

</..*,> = &«' + <>(*') ( i - i i ) 

and 

(LK4>„>pk) = cikK* + o(K*) (1.12) 

where g, = (g, ψ,) e C and where c/A: = (ΡΟφ,-, ψΛ) is a nonsingular complex 
m X ra-matrix. 

The results of this section were first obtained by Kress [4] and cast into a 
basis-free notation by Kirsch [3]. A detailed discussion of the case where the 
Riesz number is greater than one including an application to a mixed 
boundary-value problem was given by Klein [1]. The more general case where 
the dimension of the nullspaces changes between two nonzero values at the 
critical point κ = 0 was considered by Engl and Kress [1] and includes an 
application to combined transmission and boundary-value problems in electro-
and magnetostatics. 

1.5 SUCCESSIVE APPROXIMATIONS 

In order to solve the integral equations of acoustic and electromagnetic 
scattering by iterative methods, we shall now investigate the convergence of 
successive approximations 

Φ«+ι: = Αφ„ + / 

to solve the equation 

φ - Α φ = / 

where A : X -* X is a bounded linear operator in a Banach space X. 

Definition 1.33. Let A : X -» X be a bounded linear operator mapping a 
Banach space X into itself. Then a complex number λ is called an eigenvalue of 
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A if there exists an element ψ £ ΐ , Φ =* 0, such that Αφ = λφ. φ is called an 
eigenelement of A. A complex number λ is called a regular value of A if 
(XI - A)" l exists and is bounded. The set of all regular values of A is called the 
resolvent set p(A) and Κ(λ;Α): = ( λ Ι - Α ) _ 1 is called the resolvent. The 
complement of p(A) is called the spectrum σ(Α) and 

r(A):= sup |λ| 
λ e σ(Α) 

is called the spectral radius of A. 
For the spectrum of a compact operator we have the following properties. 

Theorem 1.34. Let X be an infinite-dimensional Banach space and let A : X 
-* X be a compact linear operator. Then λ = 0 belongs to the spectrum σ(Α) 
and σ(Α)\{0} consists of at most a countable set of eigenvalues with no point of 
accumulation except, possibly, λ = 0. 

Proof. Suppose λ = 0 is a regular value of A, that is, A - 1 exists and is 
bounded. Then I = A_1A is compact by Theorem 1.5 and by Theorem 1.9 we 
obtain the contradiction that X is finite dimensional. Therefore λ = 0 belongs 
to the spectrum σ(Α). 

For λ*=0 we can apply the Riesz theory to the operator λ Ι - Α . Either 
ΛΓ(λΙ-Α) = {0} and ( λ Ι - A ) - 1 exists and is bounded by Theorem 1.16 or 
N(X1- A) D (0), which means λ is an eigenvalue. Thus any λ *= 0 is either a 
regular value or an eigenvalue of A. 

It remains to show that for each R > 0 there exists only a finite number of 
eigenvalues λ with |λ| > R. Assume, on the contrary, that we have a sequence 
(λ„) of distinct eigenvalues satisfying |λ„| > R. Choose eigenelements φ„ such 
that Αφ„ = ληφη and define finite dimensional subspaces 

t / ^ - s p a n f a , , . . . , ^ ) . 

It is readily verified that eigenelements corresponding to distinct eigenvalues 
are linearly independent. 

We have i/w_,gt/n and by the Riesz Lemma 1.8 we can choose a sequence 
(ψ„) such that ψ„ e Un with ||ψ„|| = 1 and 

\\*n-n>\ 
for all ψ G Un_,. Writing 

n 

Ψ* = Σ a»A 
we obtain 

n-\ 

k = \ 
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Therefore, for m < n we obtain 

Α ψ „ - Α ψ „ = [λ.ψ, ,- ίλ , ,ψ, , -Αψ,,-Αψ,, , )] 

where ψ: = ( 1 / λ „ ) [ λ „ ψ „ - Α ψ „ - A ^ m ] e t/„_,. Hence 

| | Α ψ „ ~ Α ψ „ | | > ^ > | 

for m<n. Therefore the sequence (Αψ„) does not contain a convergent 
subsequence which contradicts the compactness of A. 

Theorem 1.35. Let A: X-+ X be a bounded linear operator mapping the 
Banach space A' into itself. Then the Neumann series 

( X I - A ) ~ l = Σ λ - ' - 'Α" 
n = 0 

converges in the uniform operator norm for all λ > r(A). 

Proof. Consider the power series 
CO 

Σ μηΑΛ 

n = 0 

which obviously converges in the uniform operator norm for all / I G C such 
that |μ| ||A|| < 1, since then we have a convergent geometric series as a majorant. 
As in advanced calculus, it can be shown that 

Urn sup| |An | | , / n]_ 1 

. n -* cc J 
a: = 

is the radius of convergence of this power series, that is, the series converges in 
the uniform operator norm for all μ e C with |/i| < a and diverges for all μ G C 
with \μ\ > a. Therefore 

S(\) := Σ λ~"~ιΑ" 
n = 0 

is uniformly convergent for all \X\> a~l and defines a bounded linear opera
tor. We obviously have (XI-A)S(X) = I = S(X)(XI-A) and therefore λ e p(A) 
and S ( \ ) = R(X; A). Hence r(A) < a~l. 

Now let λ0 <Ξ ρ(Α). Then for all λ with 

|X-X0 | | |R(X0 ;A)| |<1 
the series 

Τ(λ):= Σ (λ0-λ)-[Κ(λ0;Α)] 
« = 0 

n + \ 
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is uniformly convergent and defines a bounded linear operator. We see that 

(λΙ-Α)Τ(λ) = [ ( λ - λ 0 ) Ι + (λ0Ι-Α)]Τ(λ) 

= - Σ ( λ 0 - λ Γ + ,[ΐΙ(λ0;Α)Γ + 1 

H = 0 

+ Σ (λ 0 -λ) π [Κ(λ 0 ;Α)]" = Ι 
/ι = 0 

and similarly Τ ( λ ) ( λ Ι - Α ) = I. Therefore Xep(A) and Τ(λ ) -Κ(λ ;Α) . In 
particular, this means that the resolvent set is open and that the resolvent 
R(X; A) is an analytic mapping from the resolvent set into the Banach space of 
bounded linear operators on X equipped with the uniform operator norm. 

In particular R(X; A) is analytic for all λ with |λ| > r(A) and as in classical 
analytic function theory, we can expand R(X;A) into a uniquely determined 
Laurent expansion 

R(A;A)= Σ λ - ' - 'Α, , 
W = 0 

with bounded linear operators A„ such that the series converges uniformly for 
all |λ| > r(A) with respect to the uniform operator norm. For |λ| > a~x we 
already know that R(X; A) is given by the Neumann series. Therefore from the 
uniqueness of the Laurent expansion we conclude that the Neumann series is 
the Laurent expansion and hence converges for all |λ| > r(A). 

Now we are in the position to obtain the main result of this section. 

Theorem 1.36. Let A: X-+X be a bounded linear operator mapping the 
Banach space Xinto itself with spectral radius r(A) < 1. Then for a l l / e X the 
successive approximations 

Φ„+ι: = Αφ„+/ , « = 0,1,2,. . . 

with arbitrary φ0 e X converge to the unique solution φ of 

φ - Α φ = / . 

Proof, From Theorem 1.35 we have 

( I - A ) - ! = Σ A*. 
fc = 0 

By induction, it is readily seen that 

Φ* = Α"φ0+ £ A*/, /i = l , 2 , . . . . 
* = o 
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Therefore 

Φ π - Σ A * / - ( I - A ) - 7 , «-»oo. 
A: = 0 

Theorem 1.37. Let K c C be a subset such that 0 e K is an accumulation 
point of K and let {AK : X-» X, κ e A) be a family of bounded linear operators 
such that \\AK — A0|| -> 0, κ -» 0, and assume that A0 has spectral radius 
r(A0) < 1. Then for sufficiently small κ e # the equation φ - Ακφ = / can be 
solved by successive approximations. 

/too/. Our proof is based on Kleinman and Wendland [1]. Choose X0 e 
(r(A0),l). Then R(X;A0) = ( λ Ι - Α 0 ) _ 1 exists and is bounded for all X e C 
with |X|^X 0 . Since R(X;A0) is analytic and ||R(X;A0||-*0, X-»oo (this 
follows from the Neumann series expansion of R(X; A0)), we have 

C:= max | | ( X I - A 0 ) _ , | | < oo. 
| λ | > λ 0 

Since ||ΑΚ - A0|| -* 0, κ -* 0, there exists κ0 > 0 such that 

\\(\l-\oy\AK-A0)\\^q<\ 

for all K e K with |κ| < κ0 and all λ e C with |λ| > λ0. But then 

(I-BJ-'= £ B ; 
H = 0 

converges where 

Βκ: = ( λ Ι - Α 0 ) - , ( Α κ - Α 0 ) . 

Finally, since 

( λ Ι - Α „ ) = ( λ Ι - Α 0 ) [ ΐ - ( λ Ι - Α 0 ) - , ( Α 1 ( - Α 0 ) ] ) 

we see that 

( X I - A j - ^ a - B j - ^ X I - A o ) " 1 

exists and is bounded. Therefore r ( A J < X0 for all κ e K with \κ\ < κ0 and the 
theorem now follows from Theorem 1.36. 

For a more detailed study of the spectral theory for bounded linear 
operators the reader is referred to Jörgens [1]. 



2 
REGULARITY PROPERTIES 
OF SURFACE POTENTIALS 

As the title of this book indicates, the first step in our analysis of the scattering 
of acoustic and electromagnetic waves by an obstacle is to reformulate the 
boundary-value problems of scattering theory as boundary integral equations. 
This will be accomplished by representing the solution of the boundary-value 
problem as a surface potential with respect to a given density, and then using 
the continuity properties of such potentials to arrive at the sought-after integral 
equation. Hence, in order to proceed with this objective, it is necessary to 
examine the regularity properties of surface potentials defined on closed 
surfaces. For the sake of brevity as well as practical importance, we shall 
restrict ourselves to surfaces in R3 that are twice continuously differentiable. 
The extension of these results to Lyapunov surfaces in R" is straightforward 
(cf. Günter [1], Mikhlin [1]), although the problem of the scattering of waves 
by domains with corners presents new difficulties due to the loss of compact
ness of the associated integral operators (cf. Kleinman and Wendland [1], 
Wendland [3]). 

The plan of this chapter is as follows. We first consider the differential 
geometry of closed surfaces in R3 and the concept of Holder continuity and 
spaces of Holder continuous functions defined on subsets of R3. These results 
are then used to study weakly singular operators in the space of continuous 
functions and Holder continuous functions defined on closed surfaces in R3, 
with particular emphasis being placed on the compactness properties of these 
operators. We then turn our attention to single- and double-layer potentials 
and establish results on the continuity and differentiability properties of these 
potentials. After stating the corresponding regularity properties for vector 
potentials, we conclude the chapter by examining the regularity properties of 
the integral operators that will later appear in our study of scattering problems 
in acoustic and electromagnetic wave propagation. 

31 
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2.1 GEOMETRY OF SURFACES 

For the rest of this book, we shall let D denote a bounded open region in R3. 
The boundary of Z), denoted by 3D, is assumed to consist of a finite number of 
disjoint, closed bounded surfaces belonging to the class C2 and we assume that 
the complement R3\D is connected. For the purposes of this chapter, it 
suffices to consider the case in which the boundary 3D has just one compo
nent. Our results can be extended to the case of boundaries consisting of more 
than one component in an obvious way. 

The property "dD belongs to class C 2 " means that for each point z G. 3D 
there exists a three-dimensional neighborhood Vz of z such that the intersection 
dD n Vz can be mapped bijectively onto some open domain i / c R 2 and that 
this mapping is twice continuously differentiable. We describe this mapping in 
the form 

x(u) = (xl(u\u2),x2(u\u2),x3(u\u2)) 

where u = (U\U2)GU. The image of the parameter domain U under such a 
mapping is called a surface element. The whole boundary 3D is obtained by 
patching together a finite number of surface elements. 

Since the mapping is bijective, the two vectors 

3x i n 
* · > : β 7 ~ 7 ' 7 = 1'2' 

3uJ 

are linearly independent. They represent vectors tangent to the surface at the 
point jc, that is, they span the tangent plane at this point. The first fundamen
tal tensor of differential geometry is given by 

Sy*:==(·*,,>*,*)> 7,/c = 1,2. 

Since the tangent vectors are linearly independent, the symmetric matrix gjk is 
positive definite and its determinant satisfies 

g: = det(gjk) = x2
]x2

2-(x^x2)2 = \[xux2]\2>0. 

A curve C on the surface 3D can be described by a parametric representa
tion x(u(t)) where t denotes the arclength on C Then the tangent vector τ to 
this curve at the point x is given by 

duj 
T = — — X , 

dt *J 

where we use the convention to sum over equal subscripts and superscripts. 
The Une element at the point x is given by 

dt2 = [x jduJ,x kduk) = gjkduJduk
y 
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the surface element at the point x by 

ds = \[xAdu\x2du2]\=yfgduxdu2, 

and the unit normal vector v to 3D at the point x by 

l * i , * 2 ] 1 r i 

"(*)=ϊκ^=ττκ"*·2]· 
At each point of the surface we have three linearly independent vectors x x, 
x 2, and v. From (v, *>) = 1 we observe that (dv/duj,v) = 0, y = 1,2, and 
therefore we can write 

for some matrix ¿^,7, A: = 1,2. Then, using (*% JC y) = 0,y = 1,2, we obtain 

(r> *,;,*) ^ ( ¿ ' ^ y p ^ * ' Λ* = 1,2, 
where bjk\ = gjrbr

k denotes the second fundamental tensor of differential geome
try. As is easily verified, the two scalars 

H: = \b\ = \{b\ + b2
2) 

and 
K: = det(b{) = b\b¡-bl

2b2 

are independent of the choice of the coordinate system u\ u2. The quantity H 
is called the mean curvature and K the Gaussian curvature of the surface. 

Let gjk denote the inverse of the matrix gjk, that is, 

Sirgrk = H, j,k-1,2. 

For a continuously differentiable function φ defined on a surface element (i.e., 
the function <¡>(JC(M)) is continuously differentiable in the parameter domain 
U), the surface gradient is defined independently of the choice of the coordi
nate system by 

G t a d * - * ^ * , . 
duJ 

The direction of Grad φ is given by the direction of maximal increase of the 
function φ and the modulus of Grad</> is the value of this increase. The 
directional derivative with respect to a curve C on the surface is given by 

do , _ , v dé duj 
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Theorem 2.1. Let S c dD be a connected surface contained in 3D with 
boundary dS of class C2. Let v0 denote the unit normal vector to the boundary 
curve dS that is perpendicular to the surface normal v and directed to the 
exterior of 5, and let T: = [J>, V0] denote the unit tangent vector. Let the 
function φ be continuously differentiable on S and continuous on S. Then 

and 

ÍGrad<í>ofr=í φν0ώ -lí<ï>Hvds 
JS JdS JS 

¡[v,Gma<i>]ds = ί φτώ. Js Jds 

(2.1) 

(2.2) 

Proof. We first assume that S is a surface element. Then using Gauss' 
theorem in the parameter domain U, we obtain 

2¡<Í>Hvds= Í <t>b/[x l 5 x 2]duldu2 

SÁ dv 
du ,x 2 ' . ' du , . * . 2 du'du2 

= [ φ{[χ l,v]dui+[x 2,v]du2} 
JdU 

Ju\ ou2- du1 ) 

A straightforward calculation now shows that 

[xj,p]duj= [T,J>] dt = v0dt 

and 

*■ Hu1 HijJ du2 '* du 

Thus we conclude that 

duj 

2f<t>Hvds= f $v0dt- ¡Gvdia^ds. Js Jds Js 
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Similarly, we find that 

ί[ν,ατ*άφ]ώ= ( gJk-^[[xtl,xt2],xtk]duxdu2 

•'s Ju ouJ 

- / ( Γ ^ - ^ · ' ) Λ , Λ 2 
Ju\ du dw I 

= f φχ ¡duJ = f φτώ. 
JdU JdS 

Hence we have estabüshed (2.1) and (2.2) for surface elements. For an 
arbitrary surface S the theorem now follows by patching surface elements 
together and observing that boundary integrals over neighboring surface 
elements cancel. 

We shall need the following result in our investigation of the regularity 
properties of single- and double-layer potentials. 

Theorem 2.2. For the twice continuously differentiable surface 3D there 
exists a positive constant L such that 

\("(y),x-y)\<L\x-y\2 (2.3) 
and 

\r(x)-r(y)\<L\x-y\ (2.4) 
for all x j G 3D. 

Proof. Let z be an arbitrary point on 3D. Then we can choose a neighbor
hood Vz and a parametric representation for 3D Π Vz with the parameter 
domain U being the closed interior of a circle in U2. On U XU define the 
matrix 

Gjk(x>y)-ssgjk(x)+(x- y>x,j,k)> M = 1,2, 

with image points u = (w1, u2), v = (v\ v2) e U for x, y G 3D Π Vz. Since the 
matrix gjk(x) is positive definite on U, we can assume U to be small enough 
such that Gjk(x9 y) is positive definite on U X U. Then from the continuity of 
GJk(x, y)ijik on the compact set U XU X Ω, we conclude that 

γ := inf Gjk(x, y)&tk>0 
x,y(=dDnV2

 J 

É = a\£ 2 )ef í 
and 

Γ:= sup Gjk(x,y)£J£k<cc, 
x,yedDDVz 
* - ( * \ E 2 ) e Q 

where Ω denotes the unit circle in R2. 
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Now use Taylor's formula to expand 

(x-y)2 = GJk(x,y)(u'-vJ)(uk-vk) 

where the image point ü of x lies on the straight line connecting u and v. Hence 
we have the estimate 

y | w - t ; | 2 < | ; c - j > | 2 < I > - i > | 2 . (2.5) 

A further application of Taylor's formula yields 

(r(y),x-y) = BJk{z,y){uJ-vJ)(uk-vk) 

with the matrix Bjk(x, y) = (v(y),x j k) and where the image point ü of x 
again lies on the straight line connecting u and v. As above we have the 
estimate 

\(p(y),x-y)\<B\u-v\2 (2.6) 

where 

5 := sup \BJk(x,y)W\<co. 
x,yGdDnVz 

Combining (2.5) and (2.6), we have established that for any z e 3D there exists 
a neighborhood Vz such that 

\(v(y),*-y)\^cz\x-y\2 

for all x, y^ 3D C\VZ, where Cz is a constant depending on z. 
Since 3D is compact, we can select a finite number of points z h . . . , z m such 

that U JI ! 3D n KZ/ = <9D. Then we have 

\{v{y),x-y)\^C\x-y\2 

for all x, y ^ 3D with |JC - y\ < 5 where 

Ô:= min diamK 
/ - l m 

and 
C:= max C,. 

/ - l , . . . , m ' 

Finally, noting that for \x - y\ > δ we have \(v(y), x - y)\ < d < d|jc - y\2/82 

where ¿: = diam d¿>, we observe that (2.3) is satisfied with L = max(C, d/S2). 
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Equation (2.4) follows similarly by using the mean value theorem to 
estimate v(x)- v(y). 

We conclude this section with the remark that we can introduce parallel 
surfaces 3Dh to 3D by the representation 

x = z + hv(z)9 z^3D, (2.7) 

where the parameter h denotes the distance of 3Dh from the generating surface 
3D. Since 3D is assumed to be of class C2, we observe that 3Dh is of class C1 

and straightforward calculations show that 

g{u„u^h) = g{ux,u2)[\-2hH+h2K]\ 

This verifies that the surfaces are well defined provided the parameter h is 
restricted to be sufficiently small to ensure that the invariant 1 -2hH+ h2K 
remains positive. It also shows that we can use (2.7) as a three-dimensional 
coordinate system in a neighborhood of 3D. For a more detailed analysis see 
Martensen [1]. 

2.2 HOLDER CONTINUITY 

The space of uniformly Holder continuous functions is of basic importance in 
the investigation of the regularity properties of single- and double-layer 
potentials. 

Definition 2.3. Let G be a bounded closed subset of R3. By C 0 a (G) , 
0 < a < 1, we denote the linear space of all complex-valued functions φ defined 
on G satisfying 

\<t>(x)-<t>(y)\<C\x-y\° 

where C is a positive constant depending on φ but not on x and y. If G is 
unbounded, then by <f>eC0,flt(G) we mean that φ is bounded and the above 
inequality is satisfied. 

The space C0a(G) is called a Holder space or a space of uniformly Holder 
continuous functions. In our subsequent analysis we shall meet such Holder 
spaces in the cases in which G is either the bounded domain Z>, the unbounded 
domain R 3 \ A or the boundary 3D. 

Obviously, if φ e C0a(G)9 0 < a < 1, then φ is uniformly continuous on G. 

Theorem 2.4. The Holder space C0a(G) is a Banach space with the norm 

ΙΙΨΙΙ.:- -up |*(*)|+ sup l * ( * ) " * ( / ) l . 
x** y 
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Proof. It is clear that 

x ^ y 

defines a seminorm on C0a(G). Then | | · | | α is a norm, since 1^11 :̂ = 
supxeG |0(jc)| defines a norm. 

It remains to be shown that C0,a(G) is complete. Let (φ„) denote a Cauchy 
sequence in C0a(G). Then obviously (φ„) is also.a Cauchy sequence in C(G) 
and therefore there exists a function <¡>^C(G) such that ||Φ„ — ΦΙΙ*,-*0, 
n ->oo. Since (φ„) is a Cauchy sequence in C 0 a(G), given ε> 0, there exists 
]V(e)eM such that 

\Φη-Φη>\α
<ε> n9m>N(e), 

that is, 

lk(*)-U*)]-k(>0-<U.v)]l<e|x-.H<' 

for all H, m > Ν(ε) and all JC, y G G. Since φη-> φ, « -» οο, uniformly on G, by 
letting m-*oowe have 

| [φπ(χ)-φ(^)]-[φη(^)-φ(^)] |<ε|χ->; |α 

for all η^ Ν(ε) and all x, >> e G. From this we conclude that $^CQct{G) and 
\Φη -Φ\α^£>"> Ν(εΧ which implies \\φη - φ\\α -* 0, n -> oo. 

If α < /? then clearly any function φ e Ca/*(G) is also contained in C0a(G). 
For this imbedding we have the following compactness property. 

Theorem 2.5. Let 0 < α < β < 1 and let G be compact. Then the imbedding 
operators 

lß:Coß(G)^C(G) 

I e · ' : C°>ß(G)^C°>a(G) 

are compact. 

Proof. Let AT be a bounded set in Coß(G), that is, \\φ\\β ^ C for all φ<ΕΚ. 
Then obviously we have 

| * ( J C ) | < C , x e G 

and 

Mx)-*(y)\<C\x-y\P, xjGG, (2.8) 
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for all ψ e K, which implies that K is bounded and equicontinuous. Therefore, 
by the Arzelá-Ascoli theorem (Theorem 1.12), the set K is relatively compact 
in C(G), which, in particular, means that I*: C M ( G ) -» C(G) is compact. 

It remains to be verified that K is relatively compact in C0a(G). From (2.8) 
we have that for all φ, ψ e K 

\[*(x)-iKx)]-[*(y)-t(y)]\ 

= \[*(x)- + (x)]-[*(y)-*(y)]\a/ß 

χ\[Φ(χ)-4,(χ)]-[Φ(γ)-4,(γ)]\]-"/β 

<(2C)a/ß\x-y\«(2\tt-nJ]-a/ß, x j e G , 

which implies that 

| φ - ψ | α ^ ( 2 € ) α / * 2 ' - « / * | | φ - ψ | | ^ 

But from this we can conclude that any sequence taken from K and converging 
in C(G) also converges in C°*a(G). 

We note that in a similar way we can introduce the Holder space C l , e(G), 
0 < α < 1 , of uniformly Holder continuously differentiable functions, that is, 
functions for which grad</> (or Grad<> in the case of G = 3D) satisfy 

\graa<¡>(x)-grad<¡>(y)\^C\x- y\a 

and for which φ and grad φ are bounded in case G is unbounded. The norm in 
this case is given by 

ΙΙΦΙΙΙ,« : = 8ΐιρ|φ(*)|+ sup|grad«(x) | 

lgradφ(x)-gradφ(^) | 
+ ™L P^r ' 

x* y 

Then the properties given in Theorems 2.4 and 2.5 remain true for Cha(G). 

2.3 WEAKLY SINGULAR INTEGRAL OPERATORS ON SURFACES 

In the Banach space C(dD) of complex-valued continuous functions defined 
on the surface 3D equipped with the maximum norm ΙΙΦΙΙ :̂ = maxA.e dD\<t>(x)\ 
we consider the integral operator A: C(dD) -> C(dD) defined by 

( Α φ ) ( χ ) : = / K(x,y)t(y)ds(y), x^dD (2.9) 
JdD 
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where K is a continuous or weakly singular kernel. A kernel K is said to be 
weakly singular if K is defined and continuous for all x, y e 3D, x *= y, and 
there exist positive constants M and ae (0 ,2 ] such that for all x,y^3D, 
x *= y, we have 

\K(x,y)\^M\x-y\a~2. (2.10) 

Analogous to Theorems 1.10 and 1.11 we can prove the following. 

Theorem 2.6. The integral operator A with continuous or weakly singular 
kernel is a compact operator on C(dD). 

Proof. The only major difference in the proof as compared with Theorems 
1.10 and 1.11 arises in the verification of the existence of the integral in (2.9) 
defining the operator A as an improper integral in the case of a weakly singular 
kernel. By writing (v(x), v(y)) = 1 -(v(x), v(x)-p(y)), we observe from The
orem 2.2 that there exists a number Ä G ( 0 , 1 ] such that 

(*(x)My))>t (2.Π) 

for all x,y^3D with | . x - j> |<Ä. Furthermore, we can assume that R is 
sufficiently small such that 

SXtR: = {yedD\\y-x\<R) 

is connected for each x e 3D. Then condition (2.11) implies that Sx R can be 
bijectively projected into the tangent plane to 3D at the point JC. By using polar 
coordinates (p,0) in the tangent plane, we now have the estimate 

s* 
I K{x,y)<i>{y)ds(y)UMU\\o0j \x-yr2ds(y) 

^2MU\\xi2URpa-2pdpde 

= 4πΛ/ | |φ | | 0 0 ^ . 

Here we have used the facts that \x - y\ > p, that the surface element 

pdpdß ds{y) = 
('(*),"(JO) 

can be estimated with the aid of (2.11) by ds(y)^2pdpd0, and that the 
projection of Sx R into the tangent plane is contained in the interior of the 
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circle of radius R and center x. Furthermore, 

«ΛΊΙΦΙΙοοί R-2ds(y) 
JdD\Sx,R 

<M\\<t>\\xR«-2\dD\ 

where \dD\ denotes the surface area of dD. Hence, for all x e dD the integral 
(2.9) exists as an improper integral and we have 

ΙΙΑΦΙΙ« < ΟΙΙΦΙΙ^ (2.12) 

where the constant C is defined by C: = (4τ7(Αα/α) + R°-2\dD\)M. 
We shall now impose further conditions on the kernel in order to ensure the 

compactness of the integral operator A on the Holder space C°'ß(dD). 

Theorem 2.7. Let G be a closed domain containing 3D in its interior. Assume 
the function K is defined and continuous for all x e G j e dD, x =* y, and 
assume there exist positive constants M and a e (0,2] such that for all x e G, 
y e dD, x =*= j>, we have 

\K(Xiy)\^M\x-y\«-2. (2.13) 

Assume further that there exists WIGM such that 
m 

\K(xl9 y)~ K(x29 y)\< M Σ l * i - > Ί α - 2 - Ί * , - x2Y (2 ·1 4) 
7 = 1 

for all j c , ,x 2 eG, y^dD with 2\x]- x2\^\xl- y\. Then the generalized 
potential u defined by 

u{x):=f K(x,y)<t>(y)ds{y), X G G , (2.15) 
JdD 

with density <f> e C{dD) belongs to the Holder space C°'ß(G) for all ß e (0, a] 
if 0 < a < 1, for all ß e (0,1) if a = 1, and for all ß e (0,1] if 1 < a < 2 and 

I M k c < W | | ^ D (2.16) 

for some constant Cß depending on ß. 

Proof. By the arguments used in the proof of Theorem 2.6 the function u is 
well defined as an improper integral for x e dD. 

Choose a positive number h0 such that the parallel surfaces (2.7) are well 
defined for all |Λ| < h0 and define the set Dh by 

DhQ: = {x = z + hv(z)9 zedD, \h\^h0). 

f K(x,y)*(y)ds(y) 
;dD\Sxo 
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Then, analogous to (2.12), we can easily show that 

|K(*)I<C| |*I IOO (2 ·1 7) 

for all j c e D , . 
" 0 

To establish the uniform Holder continuity, let x,, x2 & DHQ with 0 < |x, -
x2\<R/4. Both XJ,JC2 may lie on 3D. Now choose uniquely determined 
points z,, z2 e dZ) such that Xj = zy 4- hjv(Zj)J = 1,2. As is easily seen by using 
Theorem 2.2, we have the estimate 

|z, - z2\ ^ 2|jr, - x2\ (2.18) 

provided /? and h0 are chosen small enough depending on the constant L. We 
now set 

r: = 4 | x , - x 2 | (2.19) 

and using (2.13) we find as in Theorem 2.6 that 

/ [K(Xl,y)-K(x2,y)]*(y)ds(y) 

MHWJf \xi-yr2ds(y) + f \x2-y\-2ds(y)\ 

< c . l l * I L I ^ . - ^ l a (2.20) 

for some constant C, depending on M and a. Here we have used the fact that 
by (2.18) Sz r c Sz 2r. Using condition (2.14), we have the estimate 

/ [K(xuy)-K(x2,y)\*(y)ds(y) 

< Μ\\Φ\\» Σ l*i - XiVf I*. - >Ία~2~7<Μ.ν) 

m 

/ - I V 4 

where we have used the fact that the projection of SZx^\Sz^r into the tangent 
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plane at z, is contained in the annulus with radii r/4 and R. We now note that 

/ 1 
j - a 

\xl-x2\a J if j>a 

(R pa~! ~jdp < ( log-

[a-j 
-RaJ 

if j' = a 

if j < a 

and if β e (0,1), I*! - x2\ < 1, we have 

|x, -x 2 | l og 1 
μ , - χ 2 | ^ \-β 

\χχ-χ2\β. 

Hence 

/ [Κ(Χι,γ)-Κ(χ2,γ)]φ(γ)ώ(γ) 

(C2\\4>\Uxl-x2\a, a<\, 
<ic2H\\Jxx-x2\ß, « = 1, 0<yS<l , (2.21) 

I C J I ^ I L I J C . - J C J I , a>\, 

for some constant C2 depending on m, M, R, a, and /3. Finally, again using 
(2.14), we have the estimate 

/ [K(xx,y)-K(x2,y)]*{y)ds(y) 
' 3 0 \ £ , . Λ 

< ΑίΙΙΦΙΙαο Σ I*. - * 2 I 7 7 l*i - y\a-2-Jds(y) 
y - l JBD\StltR 

<c3\\4>\\„\xx-x2\ (2.22) 

for some constant C3 depending on w, M, Ä, a, and \dD\. Combining (2.20), 
(2.21), and (2.22), we obtain 

\u(xx)-u(x2)\ < (C, + C2 + C3)|JC, - χ2|/?||φ||00 

for all JC„ x2 e Ζ)Λο with |JC, - x2\ < Ä/4 . Finally, if |JC, - x2\ > Ä/4 , with the 
aid of (2.17) we can trivially obtain the estimate 

| M ( x 1 ) - M ( x 2 ) | < 2 c ( | ) \χχ-χ2\β 
ΙΙΦΙΙο 
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Thus we find that 

\u(xi)-u(x2)\*C0\xl-x2\ß\\4>\\ao 

for all JC,, x2 e Dh , where C0 is some constant depending on dD, a, and ß. The 
inequality (2.16) now follows from this in a trivial manner. 

Remark 2.8. If the kernel K is defined and continuous for all x, y e dD, 
x *= y, and satisfies conditions (2.13) and (2.14) on dD, then the potential u 
defined by (2.15) with density φ e C(dD) belongs to the Holder space C°'ß(dD) 
and 

\\u\\ß.aD*Cß\\*\UaD· (2 ·2 3 ) 

Corollary 2.9. Let AT be a weakly singular kernel satisfying condition (2.14) 
for all x],x2e dD, y&dD, with 2\x}- x2\<\x¡- y\. Then the integral 
operator A: C°>ß(dD)->C°<ß(dD) defined by (2.9) is compact for all ß e (0, a] 
if 0 < a < 1, for all )3 G (0,1) if a = 1 and for all ß e (0,1] if 1 < a < 2. 

Proof. Inequality (2.23) shows that the integral operator A: C(dD)-+ 
C0,ß(dD) is bounded. Then we combine Theorem 1.5 and the imbedding 
Theorem 2.5 to obtain the compactness of A: C0J*(dD) -* C°>ß(dD). 

We conclude this section with a lemma that we shall prove by the same 
techniques we used in Theorem 2.7. 

Lemma 2.10. Assume the function K to be defined and continuous for all 
JC e Dh , y e dD, x =*= y, and assume that there exists a positive constant M 
such that for all x e Dh , y e dZ), x * >>, we have 

| t f ( j c , > 0 | < A f | x - . y r 2 . (2.24) 

Furthermore, assume there exists w e N such that 

m 

\K(xl9 y)- K(x2, y)\< M Σ \*ι- yr2~J\^~ *i\J (2.25) 
7 = 1 

/ K(x,y)ds(y) 

for all x^x2e Dho,y€; dD, with 2|x1 - x2\ < |JC, - >>|, and that 

UM (2.26) 

for all 2 G dD and x = z + /ii>(z) e Dho and all 0 < r < Ä. Now define 

M ( * ) : - / ^ ^ ) [ φ ( > ) - φ ( 2 ) ] Α ( > ) , x e D v (2.27) 
' d ß 
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with density φ e C°*a(dD\ 0 < a < 1. Then u belongs to C°<a(Dho) and 

N L D A O < Q < J > I I « , 3 D (2.28) 

for some constant C. 

/ W / . Using (2.18) we observe that \K(x, γ)[φ(γ)-φ(ζ)]\^2αΜ\φ\α 
\x~ y\"~2 which establishes the existence of the improper integral in (2.27). 
Then analogous to (2.20), (2.21), and (2.22), we have 

/ {K(Xli γ)[φ(γ)-φ(ζι)]- Κ(χ2, γ)[φ(γ)-φ(ζ2)]) ds(y) 

« C . H J x . - ^ l - , 

/ [K(xuy)-K{x2,y)][4>(y)-4,(z2)]ds{y) 

and 

/ [Κ(χί9γ)-Κ(χ29γ)][φ(γ)-φ(ζ2)]&(γ) 

<^\φ\α\χχ-χ2\ 

for some constants Cu C2, and C3 depending on M, m, a, and d/λ Note that 
the logarithmic term does not appear in the second inequality because 0 < a < 1. 
Finally, because of our assumptions (2.26) and using (2.18), we have 

[φ(ζί)-φ(ζ2)]ί K(Xl,y)ds(y) 
J3D\Sllir 

<Qi<f>i«K-*2r 

since φ G C0,a(dD). The last four inequalities can be combined to yield 

! « ( * , ) - *(x 2 ) | « (C, + C2 + C, + 0 | φ | α | χ , - x2|« 

and the proof is now completed as in Theorem 2.7. 

Remark 2.11. Analogous to Remark 2.8, we can state a variant of Lemma 
2.10 for a kernel K defined only on dD, that is, 

ll«ll«,ao<Q*L,ao· (2.29) 
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2.4 SINGLE- AND DOUBLE-LAYER POTENTIALS 

Let k be a complex number such that 

ImA:>0. 

As is readily verified, the function 

1 eik\x-y\ 
Φ(χ,γ): = — , x,y^U\ x*y, (2.30) 

is a solution to the Helmholtz equation 

ΔΦ + Α:2Φ = 0 

with respect to x for any fixed y. Because of its polelike singularity at x = y, 
the function Φ is called a fundamental solution to the Helmholtz equation. 

Given a function φ e C(dD), the function 

u(x):= f Φ(χ,γ)φ(γ)ώ(γ), x e H 3 \ 3 Z ) , (2.31) 
JdD 

is called the acoustic single-layer potential with density φ. Since for x e U3 \ <9D 
we can differentiate under the integral sign, we see that u is a solution of the 
Helmholtz equation and therefore, as we shall see later (Theorem 3.5), analytic 
in R 3 \ d D . In the following, we shall investigate properties of surface poten
tials for points on the boundary. 

Since 

Ι Φ ( * > > 0 Ι < Τ Ί r> x*y> 
47r|x — y\ 

the kernel Φ is weakly singular with a = 1 and hence the single-layer potential 
is well defined for all points x e dD. Using 

1 1 
l*i - y\ 1*2-J I 

for 2|x, — x2\ < \x2 - y\ and 

21 jc, - x9 

1*1-^11*2--vl | * i - .y | 2 

\eiklx*-yl-eikl*i-yl\^k\xl-x2\ 

we observe that Φ satisfies (2.14) with m = 1. Therefore, applying Theorem 2.7, 
we immediately obtain the following theorem. 
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Theorem 2.12. The single-layer potential u with continuous density φ is 
uniformly Holder continuous throughout R3 and 

I M L . R X C . I M I O O . Í D (2·32) 

for all 0 < a < 1 for some constant Ca depending on 3D and a. 
Given a function ψ e C(dZ>), the function 

Φ ) : = ί ^ Γ γ * Ψ ( > 0 Λ ω , xeR3\dD (2.33) 
^ η ¿M V) 
JdD 

is called the acoustic double-layer potential with density ψ. We assume the unit 
normal v to be directed into the exterior domain U3\D. We note that the 
double-layer potential v is a solution of the Helmholtz equation and, therefore, 
analytic in U3\dD. In the following, we shall distinguish by indices + and -
the limits obtained by approaching the boundary 3D from inside U3\D and 
D, respectively, that is, 

v+(x)= lim v(y), v_(x)= lim v(y), x^dD. 
y -» x y ~* x 

v e R 3 \ D v e D 

For the next three theorems, it suffices to carry out the proof in the 
potential theoretic case k = 0 with fundamental solution 

φο(*^) =
 4 7 Γ | Χ - ^ X ^ G R 3 ' x*y- (2 ·3 4 ) 

The extension to arbitrary k *= 0 follows from the fact that the difference of the 
double-layer potential with kernel Φ and Φ0 and continuous density ψ is 
uniformly Holder continuous throughout U3 by Theorem 2.7. The function 

K(x, y).- — 
dp(y) dv(y) 

= ('M>x-y} [em*-y\ _ ik]x _ y]e*\*-y\ - i] 
Am\x - yy 

satisfies conditions (2.13) and (2.14) with a = 2 and m = 1 on all of R3. 

Theorem 2.13. The double-layer potential v with continuous density ψ can be 
continuously extended from U3\D to U3\D and from D to D with limiting 
values 

M * ) = / d<t^^Uiy)ds(y)±U(x), ^9D, (2.35) JdD ovyy) l 

where the integral exists as an improper integral. 
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Proof. As already pointed out, we need only consider the case k = 0. From 

9*o(x>y) (v(y)>x-y) 
My) 

and Theorem 2.2, we observe that 

3Φ0(χ,γ) 

4π\χ- y\3 

My) 4π\χ - y\ ' 
x,yedD, 

(2.36) 

(2.37) 

Hence the integral in (2.35) exists as an improper integral. 
We first prove Theorem 2.13 for the double-layer potential 

dD dv(y) 
-ds(y), x^U3\dD (2.38) 

with constant density ψ = 1. Using Gauss' theorem, we readily see that 

w(x)«{ _°> J C G R 3 \ D , 
x e D . 

(2.39) 

A further application of Gauss' theorem shows that 

JdD dv(y) r-°JHXt, ov(y) 

= lim - ^ /" ds (^ ) , JC<E¿9Z), 
r - 0 47ΓΓ2 ·///ΛιΓ 

where Hx r denotes that part of the surface of the sphere Ω̂  r of radius r and 
center x that is contained in D and where v denotes the exterior unit normal to 
this sphere. With the help of Theorem 2.2, it can be seen that 

f ds(y) = 2*nr2 + 0{r3) 
JffX.r 

uniformly on 3D. Hence 

d%(x,y) s -
JdD My) -ds{y) 2' dD, (2.40) 

which concludes the proof of Theorem 2.13 in the special case of a constant 
density. 

For arbitrary continuous density in Dh \ dD we first write v in the form 

Ü(X) = Í / / ( Z ) W ( X ) + W ( J C ) , x = z + hv{z), x^Dh\,dD (2.41) 
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where 

• [ψ(>- ) -ψ(ζ ) ]Λ(^) . 
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az> dv(y) 
(2.42) 

In order to prove the theorem we must show that u is continuous on DHQ. By 
(2.37) and Theorem 2.6, the integral in (2.42) exists as an improper integral for 
x G dD and represents a continuous function on 3D. Therefore, it suffices to 
show that 

Urn u(x) = lim u(z + hv(z)) = w(z), z G <9D, 
J C - » Z Λ - > 0 

uniformly on <9D. 

Using Theorem 2.2, we have the estimate 

\x-y\1 = \z-y\1+2{z-y,x-z)+\x-z\2 

>l
2{\z-y\2 + \x-z\2) 

provided h0 is sufficiently small. Then, writing 

4^d<t>0(x,y) = (p(y),z-y) + (v(y),x-z) 
My) \x-yf \x-yf ' 

for r < R, we obtain by projecting onto the tangent plane that 

f \2&p-\My)<cÁr<ip + \x-z\r p-^—^\ 
4,1 My) | V / ; V° J0 (p2 + | x _ z | 2 ) V 2 / 

= C,(r + l ) < C , ( Ä + l) (2.43) 

where C, denotes some constant depending on 3D. From the mean value 
theorem we see that 

d<S>0(x,y) d<S>0{z,y) 
My) My) 

for 2\x — z\ =s \z — y\ and therefore 

d<t>0(x,y) d%(z,y) 

<C, l*-*l 
"\*-y\3 

f. SDKS,,, 
My)^c,1-^- (2.44) 

My) My) 

for some constants C2 and C3. Now we can combine (2.43) and (2.44) to obtain 

| « ( x ) - « ( z ) | < c ( sup |ψΟ, ) -ψ(*) | + ΐ£Ζ£ί\ 

file:///x-yf
file:///x-yf
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for some constant C. Given ε > 0 we can choose r > 0 such that 

| ψ ( > 0 - ψ ( ζ ) | < ^ 

for ally9z e 3D with \y - z\< r since ψ is uniformly continuous on 3D. Then 
taking S < (e/2C)r3, we see that 

\u(x)- u(z)\ < ε 

for all \x - z\ < δ and the theorem is now proved. 

Corollary 2.14. For the double-layer potential v with continuous density^, 
we have the jump relation 

υ + - υ _ = ψ on 3D. (2.45) 

Theorem 2.15. The direct values of the double-layer potential 

»(*)·· = / ^^U(y)ds(y), **!>D, (2.46) 
Jan OV( V) 'dD 

with continuous density ψ represent a uniformly Holder continuous function 
on dD with 

IN«,az><QIMIoo,3D (2.47) 

for 0 < a < 1 and some constant Ca depending on dD and a. 

Proof. The theorem will follow from Remark 2.8 if we can show that the 
kernel (2.36) satisfies conditions (2.13) and (2.14) of Theorem 2.7 with a = 1 
and m = 2 for x, y restricted to the boundary 3D. But condition (2.13) is 
already verified by (2.37), and (2.14) follows from the decomposition 

4π 3v{y) 3v{y) \\x\-y\ \*2~y\ > \x\-y\ \x2~y 

+ ίήΔΐ±Ζ^ (2.48) 
\x\-y\ 

if we use the mean value theorem to estimate the first term on the right-hand 
side and Theorem 2.2 and the inequality 

\{v(y)ixl~x2)\^\(v(y)-v(xl),xl-x2)\ + \(v(xx),xl-x2)\ 

<L{\y~X\\ l*i~*2l + l* i -*2l 2 } 

to estimate the second term. 

file:////x/-y/
file:///x/-y/
file:///x/-y/
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Theorem 2.16. The double-layer potential t; with uniformly Holder continu
ous density ψ G C°'a(3D), 0 < a < 1, is uniformly Holder continuous in R3\D 
and in D with 

N I « , R 3 \ D < ς.| |ψ||βιβί>, \\v\\at5< CaM\\a,8D (2.49) 

where Ca is some constant depending on 3D and a. 

Proof. In the decomposition (2.41), the first term obviously has the proper
ties stated in the theorem in the domain Dh . For the second part, we apply 
Lemma 2.10 and observe that the kernel (2.36) satisfies conditions (2.24) and 
(2.25) with m = 1 for x G R3 and y G 3D. Furthermore, from (2.43) it is seen 
that condition (2.26) is also satisfied. Hence the second term in (2.41) is 
uniformly Holder continuous in Dh . The extension to all of R3 now follows 
from the analytic!ty of v in R3\dD. 

2.5 DERIVATIVES OF SINGLE- AND DOUBLE-LAYER POTENTIALS 

We begin our investigation of the differentiability of surface potentials at the 
boundary with the following theorem. 

Theorem 2.17. The first derivatives of a single-layer potential u with uni
formly Holder continuous density φ G C°'a(dD), 0 < a < 1, can be uniformly 
extended in a Holder continuous fashion from R 3 \ D into U3\D and from D 
into D with limiting values 

grad u± (x) = f g r a d e s , y)*(y) ¿ ( ^ W ^ W , x G dD, 
JdD 

(2.50) 

where the integral exists as a Cauchy principal value. Furthermore, we have the 
estimates 

llgrad ii | |e iR3NI)<CJ|*||e 

| | g radi i | | e f 5<C e W e t e D (2.51) 

for some constant Ca depending on 3D and a. 

Proof. We first treat the case of a single-layer potential 

H > ( * ) = ( Φ(χ,γ)ώ(γ) 
JdD 
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with constant density φ = 1. Using the symmetry relation 

grad^í jc , y) = -gradνΦ(χ, y) (2.52) 

(by the subscripts we indicate differentiation with respect to x and y), we can 
write grad w = U +V where 

U{x):=-f Gr¡id)$(x,y)ds(y), x^U3\dD, 
JdD 

and 

V(x):=-[ v{y)d*{^y)ds{y), xeR\dD. JdD ov(y) 

Obviously, V represents a double-layer potential with density v ^C0,](dD). 
Therefore, we can apply Theorems 2.13 and 2.16 to deduce the uniform Holder 
continuity of V, including the estimates (2.51) and the limiting values 

VA*) = -f v{y)^^ds{y)^\v(x), x^dD. JdD dv(y) 2 

Using the integral identity (2.1), we can rewrite U in the form 

U(x) = lf H(y)v(y)<&(x,y)ds(y), x^U\dD 
JdD 

that is, as a single-layer potential with continuous density 2 H v. We can now 
apply Theorem 2.12 to deduce the uniform Holder continuity of U, including 
the estimates (2.51) and the limiting values 

U±(x) = 2Í H(y)p(y)4>(x,y)ds(y), x^dD. 
JdD 

Thus, by combining these results, the proof can be completed by showing that 

lim f Grad&(x,y)ds(y) = -2f H{y)v(y)$(x, y) ds(y). 
r^0JdD\Sx<r

 JdD 

(2.53) 

From the integral identity (2.1) we have 

/ Grad/D(*, y) ds(y) = / Φ(χ, y)v0(y) dt(y) 
JdD\Sx<r J\y-X\ = r 

-2Í H{y)v{y)<ï>(x,y)ds{y). 
JdD\Sx,r 
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But 

/ Φ(χ,γ)ρ0(γ)Λ(γ) = £ - [ vQ{y)dt{y) 
J\y-x\=r *mr J\y-x\ - r 

53 

0ikr 

2ΤΤΓ f H(y)v(y)ds(y), 

and using the estimate 

/ H{y)p{y)ds{y) 
Sx,r 

^Cr2 

valid for some constant C depending on dD, we now obtain (2.53). 
The extension to arbitrary densities now follows analogously to the proof of 

Theorem 2.16 by writing 

gradw(x) = ή>{ζ)%ν&ά\ν(χ) + \ν(χ) 

and applying Lemma 2.10 to 

JdD 

Corollary 2.18. For the single-layer potential u with uniformly Holder con
tinuous density φ we have the jump relation 

gradw+ -gradw_ = - ρφ on 3D. (2.54) 

As can be seen from counterexamples in Günter [1], for a single-layer 
potential with merely continuous density the gradient on the boundary, in 
general, does not exist. However, for the normal derivative, we can prove the 
following theorem. 

Theorem 2.19. For the single-layer potential u with continuous density φ we 
have 

du 
dv ™y('y\{y)ds{y)TU{x), xedD, (2.55) 

do ovyx) ¿ 

where 

i ^ O O - f t n * " ^ »'(*)) 
dv A-o dv(x) 
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is to be understood in the sense of uniform convergence and where the integral 
in (2.55) exists as an improper integral. 

Proof. Let v denote the double-layer potential with density φ. Then for 
x G Dh\dD, with x = z + hv(z), we can write 

(*>(z),gradw(x))+i;(.x) = Í (p(y)-v(z),ff&dy<b(x, γ))φ(γ) ds(y) 
JdD 

where we have made use of (2.52). From Theorem 2.7, the right-hand side is 
seen to be continuous and conditions (2.13) and (2.14) are satisfied with a = 1 
and m = \. The proof is now completed by applying Theorem 2.13 to the 
double-layer potential v. 

Corollary 2.20. For the single-layer potential u with continuous density φ we 
have the jump relation 

du+ du_ 
dv dv 

= - φ on 3D. (2.56) 

We conclude our analysis of surface potentials with three results on the 
derivatives of double-layer potentials. It again suffices to carry out the proofs 
in the case k = 0. The extension to arbitrary k =* 0 follows from the observation 
that the difference of the gradients of double-layer potentials with kernels Φ 
and Φ0 and continuous density ψ is uniformly Holder continuous throughout 
R3 by Theorem 2.7. The components of 

K(xiy): = gTaax
 7 - g r a d x 

dv{y) dv{y) 

^ C ^ - j ^ ) ^ ^ ^ ^ " ^ [(3-3/7c|x-^|-^2|^-^|2)^^' —>'-3] 
Λττ\χ- yy 

+ , \{y) ,3 [0 - '*l* - y\)emx-» - 1] (2.57) 
4TT\X - yy 

satisfy conditions (2.13) and (2.14) with a = 1 and m = 1 on all of R3. 
As again can be seen from counterexamples given in Günter [1], for a 

double-layer potential with continuous density the derivatives on the boundary 
in general do not exist. But we can prove the following continuity property of 
the normal derivative. 

Theorem 2.21. For the double-layer potential v with continuous density ψ we 
have 

dv, dv_ 
~^ = -τ- on 3D (2.58) 

dv OP v 
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in the sense that 

lim Λ , Kv{x + hv(x))~ v(x-hv(x)) = 0, xedD, 
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A - o dv(x) 
A > 0 

dp(x) 

uniformly for x on 3D. 

Proof. Setting x± = x ± hv(x), and using (2.39), we can write 

dv(x) dp(x) 

*irJdD \\\X-, y\3 \x-~y\2 ("(*).-ω) 

- 3 ("(y),x+- y)(y(x),x+-y) 

\x+-y\5 

(f(y), x_- y){v{x),x_- y) 
ds(y). 

\x--y\ 

We now note the identities 

\x+ - y\2 - \x- - y\2 = 4h(v(x), x - y) 

and 

1 1 
\x+-y\3 \x--y\3 

_ 4h(p(x),y-x){\x+-y\2 + \x+-y\ \x_ - y\ + \x_ - y\2} 

\x+-y\3\x--y\3(\x+-y\ + \x--y\) 

and use Theorem 2.2 to obtain the estimate 

1 1 

(2.59) 

l* + ->1 3 \x--y\3 <c-\x+-y\3 

for some constant C. Analogously, using (v(y),x+ — y)(v(x),x+ — y)— 
(Hy), *_ - yXHx), x--y)~ 2h[(v(y), v(x))(v(x), x - y)+(Hy), x - y)l 
we find the same estimate is true for the second term in the integrand of (2.59). 
The uniform existence of the limit can now be established analogously to the 
proof of Theorem 2.13 (compare with the estimate (2.43)). 
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Our last two theorems deal with sufficient conditions for the differentiabil

ity of double-layer potentials on the boundary. 

Theorem 2.22. The direct values of the double-layer potential v given by 
(2.46) with uniformly Holder continuous density ψ e C0a(dZ)), 0 < α < 1 , 
represent a uniformly Holder continuously differentiable function on 3D with 

\\G**àv\\a.aD<CaM\\a.9D 

where Ca is some constant depending on 3D and a. 

(2.60) 

Proof. Let x e 3D be an arbitrary point and let τ(χ) be a unit vector in 
the tangent-plane at x. Choose a curve C of class C2 on 3D passing through x 
with unit tangent vector r(x). Let xh be a point on C such that the arc between 
xh and x has length h. Then 

xh = x + hr(x) + 0(h2) 

and using this we see that 

4π f 3Φ0(χΗ,γ) 3Φ0(χ, y) 
h \ 3v(y) 3v(y) 

(v(y),*h-y) (y(y)>x-y) 
\xh-y\3 \*-y\3 

(r(x)^(y)) 2(r(y),x-y)(T(x),x-y) ] I \h\ 
\x-y\3 \x-y\5 \\x-y\\ 

Thus, in view of (2.40), we expect that 

u(x): = j-f [ψω-ψ(χ)] 
4 7 Γ JdD 

(r(x),p(y)) 3(v(y),x- y)(r(x),x- y) 

y\' \*-y\ 
ds(y) (2.61) 

represents the derivative (r(x),Gradü(x)). To prove this, we first show that 
the integral in (2.61) exists. By writing (τ(χ), v(y)) = (τ(χ), v(y)-v(x)) and 
using Theorem 2.2 we can verify that the kernel of (2.61) satisfies the 
conditions of Remark 2.11. Therefore the integral exists as an improper 
integral and represents a uniformly Holder continuous function satisfying an 
estimate of the form (2.29). 
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It remains to be shown that (2.61) indeed defines the derivative of v. To do 
this, we have to estimate the difference 

6:=τ[ν(χΗ)-ν(χ)]-"(χ)· 

By subdividing the integral into three parts as in the proofs of Theorems 2.7 
and 2.10, we find that 

/ < . . . ) - 0 ( | A | r - ' ) 

i <·..} = 0(|Λ|) 

provided |A |<r /4 . We now choose r = 4|A| and obtain 8 = 0(\h\a) from 
which the differentiability of v follows 

Theorem 2.23. The first derivatives of a double-layer potential υ with uni
formly Holder continuously differentiable density ψ e Cl,a(dD), 0 < a < 1, can 
be uniformly extended in a Holder continuous fashion from R3\D into R3\D 
and from D into D with limiting values 

gradt)±(x) = /c2/' *(x,y)v(y)${y)ds(y) 
JdD 

-f [p*dM*>y)>[G**W(y)9p(y)]]ds(y) 
JdD 

±^Grad>//(x), xedD, (2.62) 

where the second integral exists as a Cauchy principal value. Furthermore, we 
have the inequality 

l lg r a d ü l la ,RVD^Qliy i l l ,a ,c>Z>> 

| |grado| |e i5<Ce | | * | | l f e i e i ) (2.63) 

for some constant Ca depending on 3D and a. 

Proof. Using (2.52), we can write the double-layer potential in the form 

t>(x) = -div/" ^{x,y)v{y)^{y)ds{y), xeR\dD, 
JdD 
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and use the vector identity curl curl A= ~ ΔΑ + graddiwl to obtain 

gradt;(x) = /c2f Φ(χ, y)v(y)yp(y) ds(y) 
JdD 

-curlcurlf Φ(χ, y)v(y)^(y) ds(y), x^R3\dD. 
JdD 

Since ψ G CXa{dD\ we can use (2.52) and (2.2) to deduce that 

curl/* $(x,y)v(y)>\>{y)ds(y) 
JdD 

= / [p(y),*(y)GT1idy<t>(x,y)]ds(y) 
JdDu 

We now have 

= - ( Φ(x,^)[^(>;) ,GΓadψ(^)]Λ(^), x^R\dD. 

gmdv(x) = k2f Φ(χ, y)v{y)^(y) ds(y) 
JdD 

+ [ [gτSidxΦ(xiy)My)>G™à>l·(y)]]ds(y), x^R3\dD 
JdD 

and the proof is concluded by using Theorems 2.12 and 2.17. 

2.6 VECTOR POTENTIALS 

Given a vector field a e C(dD), we now consider the vector potential 

A(x):= f <t>(x,y)a(y)ds{y), XeR3\dD. (2.64) 
JdD 

We note that we have already encountered vector potentials in the proof of 
Theorem 2.23. In particular, we can conclude the following theorem from our 
previous analysis. 

Theorem 2.24. The first derivatives of the cartesian components of a vector 
potential A with uniformly Holder continuous density a E C0a(dD), 0 < a < 1, 
can be uniformly extended in a Holder continuous fashion from R3\D into 
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U3\D and from D into D with limiting values 

curM , ( x ) = ί ο\χτ\χ{Φ(χ, y)a(y)} ds(y) 
JdD 

+ {[v(x),a(x)], xedD, (2.65) 

divA+{x)=( d\vx{<b(x,y)a(y))ds(y) 
JdD 

T±(v(x),a(x))9 x^dD, (2.66) 

where the integrals exist as Cauchy principal values. Furthermore, we have the 
estimates 

<CJ\a\\a 

| | c u r M | | a > 5 < C > | | a , , D , (2.67) 

\\^A\\at^D<Ca\\a\\atdD, 

\\&vA\\at5<Ca\\a\\atdD (2.68) 

for some constant Ca depending on 3D and a. 

Corollary 2.25. For the vector potential A with uniformly Holder continuous 
density a, the jump relations 

c u r M + - c u r M _ = - | > , e ] (2.69) 

áwA+-áivA__ = -(v9a) on dD (2.70) 

are valid. 
The following theorem is the analog of Theorem 2.19 for the normal 

derivative of a single-layer potential. 

Theorem 2.26. For the vector potential A with continuous tangential density 
a, we have 

[» (*) , curM ± ( * ) ] = / [v(x),cur\x{<l>(x,y)a(y))]ds(y)±{a(x), 
JdD 

xedD, (2.71) 
where 

[v(x),car\A±(x)] = Hm [v(x),cmlA(x ± hv(x)]9 x^dD, 
h-*0 
A > 0 
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has to be understood in the sense of uniform convergence on 3D and where the 
integral in (2.71) exists as an improper integral. 

Proof. The proof follows in the same manner as Theorem 2.19 after 
observing that by Theorem 2.2 the kernel 

[*>(*),curlx{<ï>(x, y)a(y))] = gradxO(x, y){v{x)-v{y), a(y)) 

3<t>(x,y) 
-aiy)~MxY 

has the same regularity properties as the kernel of the double-layer potential. It 
is essential that a is a tangential vector, that is, (a, v) = 0 on 3D. 

Corollary 2.27. For the vector potential A with continuous tangential density 
a we have the jump relation 

[v,c\xx\A+]-[v,Q\iv\A_} = a on 3D. (2.72) 

We conclude this section by developing a sufficient condition for divA to be 
differentiable on the boundary 3D. For this we have to introduce the concept 
of the surface divergence of a continuous tangential field. 

Definition 2.28. Let Sn be a sequence of surfaces contained in 3D with 
boundary 3Sn of class C2 and with surface area \S„\. Let the sequence Sn 
converge to a point x of 3D in the sense that for every ε > 0 there exists a 
Ν(ε)^Ν such that for all n > Ν(ε) the subset Sn is contained in the sphere 
with radius ε and center x. Let v0 denote the unit normal vector to the 
boundary curve 3Sn that is perpendicular to the surface normal v and directed 
to the exterior of Sn. Let a be a continuous tangential field defined on 3D. 
Then, if 

1 f 
s„-+x \W Jdsn 

exists and is independent of the sequence Sn, we denote this limit by Diva and 
call it the surface divergence of a at the point x. 

We note the following form of Gauss' theorem from Müller [5]. Let a and 
Diva be continuous on 3D and let φ be a continuously differentiable function 
on 3D. Then 

f <t>Oi\ads+¡ (Grad<í>,a)^ = 0 (2.73) 
JdD JdD 

and, in particular, 

f Oivads = 0. (2.74) 
JdD 
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Let E be a continuous vector field defined either in D^.={x = z + hv{z)\ 
Z E 3 D , 0 < / ! < A 0 } or in D^:={x = z - hv(z)\z <= 3D, okh^h0) and let E 
be continuously differentiate in the interior of D¿ or D¡¡' such that curl E can 
be extended continuously into Z)A+

o or D^. Then from Stokes' theorem 

f (v0,v9E)dt = - f (r,E)dt = - f (v,cm\E)ds 
JdSn

 JdSn
 JS„ 

where τ: = [ν,ν0] denotes the unit tangent vector to the boundary 3Sn, we can 
conclude that Div[j>, E] exists and is given by the formula 

Div[*>, £ ] = -(*>,curl £ ) . (2.75) 

Theorem 2.29. The divergence of a vector potential A with continuous 
tangential density a possessing a continuous surface divergence DÎVÛ can be 
expressed in the form of a single-layer potential 

divv4(x)=/" <&(x,y)Oiva(y)ds(y), x<=U3\dD. (2.76) 
JdD 

Proof. Use (2.52) and (2.73). 

2.7 INTEGRAL OPERATORS FOR BOUNDARY-VALUE PROBLEMS 

We now conclude this chapter by expressing our regularity results in terms of 
the integral operators that we shall later use in our study of boundary-value 
problems in scattering theory. 

We introduce integral operators Κ,Κ': C(dD) -+ C(dD) by 

(Κψ)(*):-2/ d*{î9*U(y)*(y), x*9D (2.77) 
JdD ov(y) 

(Κ'φ)(*): = 2 / * £ ί £ ι 2 ΐ φ ( ^ ) Λ ( , ) , xe9D. (2.78) 
J an όν\ x ) JdD 

By interchanging the order of integration, it is easily seen that K and K' are 
adjoint with respect to the dual system (C(dD),C(dD)} defined by 

< ψ , φ > : = / Has. (2.79) 
JdD 

Theorem 2.30. The operators Κ,Κ' are compact in C(dD) and C°'a(dD) for 
0 < a < 1. K and K' map C(dD) into C°'a(dD% and K maps C°>a(dD) into 
CUa(dD). 
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and 

Proof. By using Theorem 2.2 (cf. the proof of Theorem 2.15), we see that 

My) \x-y\ 

3Φ(χ,γ) {v{x),y- x) f. ... Λ Α / Λ 

are weakly singular kernels satisfying condition (2.14) with m = 2. The com
pactness of K and K' now follows from Theorem 2.6 and Corollary 2.9. The 
fact that K and K' map C(dD) into C°'e(<91>) follows from Theorem 2.7 and 
the result that K takes C°'a(dD) into Cl,a(dD) is a consequence of Theorem 
2.22. 

We now introduce the integral operator S: C(dD) -* C(dD) by 

(βφ)(χ ) : = 2 / Φ(*,>>)φ(>0Α(>0, * e 3 D . (2.80) 
JdD 

The operator S is obviously self-adjoint, that is, (βφ, ψ) = (φ,βψ) for all 
φ, ψ G C(dD) and from Theorems 2.12 and 2.17 it follows that S has the same 
compactness and mapping properties as K. 

By 91 ( dD) we denote the linear space of all continuous functions ψ with the 
property that the double-layer potential t> with density ψ has continuous 
normal derivatives on both sides of dD. By Theorem 2.21, both normal 
derivatives coincide, and by Theorem 2.23 the set 9l(dZ>) is not empty since 
Cha(dD)<z$L(dD). Now define the operator T: 91 (3D) -> C(dD) by 

(T*)(x): = 2 - f r / d*(Í'*U(y)ds(y), xedD. (2.81) dv{x)JdD ov(y) 

Using Green's theorem and the jump relation (2.45), it can easily be seen that 
the operator T is self-adjoint, that is, (Τψ, φ) = <ψ,Τφ> for all ψ, φ e 9l(dZ)). 
The operator T is unbounded, but since the kernel defined by (2.57) satisfies 
conditions (2.13) and (2.14) with a = 1 and m = 1 for x, y G dD it follows that 
the operator T - T 0 is compact in C(dD) and in C°>a(dD)9 0 < a < 1, where T0 
denotes the operator (2.81) with Φ replaced by Φ0 (see (2.34)). We summarize 
our results in the following theorem. 

Theorem 2.31. The operators S and T - T 0 are compact in C(dD) and 
compact in C°>a(dD) for 0 < a < 1. S and T - T 0 map C(dD) into C0a(dZ)), 
and S maps C°>a(dD) into Cl'°(8D). 

The operators K, K', S, and T occur in the treatment of acoustic scattering 
problems. We shall now define the operators that are relevant for electromag
netic scattering problems. 
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We first introduce the normed subspaces 

<$(3ϋ)\ = {α: dD-+C3\(a9v) = 0,a<=C(dD)} 

of continuous tangential fields and 

($°>a(dD): = {a<=(S(dD)\a<=C0<a(dD)} 

of uniformly Holder continuous tangential fields, 0 < α < 1 , and define the 
integral operators Μ,Μ': 3"(dZ>) -> 5"(dD) by 

(Ma)(x): = 2( [v(x),curlΧ{Φ(x, y)a(y))]ds(y), x^dD (2.82) 
JdD 

M'b: = [v,M[v,b]]. (2.83) 

By interchanging the order of integration, it is easily seen that M and M' are 
adjoint with respect to the dual system ((ö(dD),(ö(dD)) defined by 

(a,b):= f (a9b)ds. (2.84) 
JdD 

By using the decomposition made in the proof of Theorem 2.26, we can prove 
the following theorem which is analogous to Theorem 2.30. 

Theorem 2.32. The operators M, M' are compact in ?T( dD ) and ?Γ °· α( dD ) for 
0 < a < 1, and map <V(dD) into <$°'«(dD). 

Finally, we introduce the subspaces 

%{dD)\ = {a e <ϋ( 3D )| Diva ε C(dD)) 
and 

§ ±(dD): = {ae$(dD)\Oiv[p9a]€:C(dD)) 

of continuous tangential fields possessing continuous surface divergence and 

§°>a(dD): = {aCE($0>a(dD)\Oiva<EC0<a(dD)} 

and 

§°1
a{dD): = {ae<$0>«(dD)\Div[via](=C0<a(dD)} 

of Holder continuous tangential fields with Holder continuous surface diver
gence, 0 < a < 1, and define the operator N: S ±(dD)-*■ ?T(d£>) by 

(Ne)(x) : -2 v(x),cuñxcunf *(x,y)[v(y),a(y)]ds(y) xGdD. 

(2.85) 
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The fact that the operator N is well defined follows from Theorems 2.17 and 
2.29, and the identity 

curlcurl/" Φ(χ, y)[p(y), a(y)] ds(y) = k2 f Φ(χ, y)[v(y), a(y)] ds(y) 
JdD JdD 

-fgrad/" Q(x,y)Dw[v(y),a(y)]ds(y), jceR3\3Z). (2.86) 
JdD 

Using Gauss' theorem and the jump relation (2.72), it is easily seen that N is 
self-adjoint, that is, (Na, b) = (ayNb) for all a, b e S ±(dD). The operator N 
is unbounded, but by using the fact that for a continuous vector field Z>, the 
kernel given by 

K(x, y) = gmdxdivx<P(x, y)b(y)-griidxdivx<P0(x, y)b(y) 

ΘΦ0(χ,γ) ΘΦ(χ,γ) 

satisfies conditions (2.13) and (2.14) with a = 1 and m = 1 for all X J G dD it 
follows from Theorem 2.6 and Corollary 2.9 that the following theorem is true, 
where N0 denotes the operator (2.85) with Φ replaced by Φ0. 

Theorem 2.33. The operator N - N0 is compact in 3"( dD) and ?Γ °'α( dD) for 
0 < a < 1 and maps <S(dD) into ?Γ°·β(3Ζ)). 



3 
BOUNDARY-VALUE 
PROBLEMS FOR THE 
SCALAR HELMHOLTZ 
EQUATION 

This chapter is probably the most important chapter of this book because 
essentially all of what follows is either based on or motivated by the results we 
are now about to discuss. Our basic aim is to show how the existence of a 
unique solution to exterior boundary-value problems for the Helmholtz equa
tion can be established by the method of integral equations defined over the 
boundary of the scattering obstacle. We will discuss in subsequent chapters the 
generalization of these results to the case of Maxwell's equations as well as 
their application to the investigation of the inverse scattering problem. The 
main advantage of the use of boundary integral equation methods to study 
exterior boundary-value problems for the Helmholtz equation lies in the fact 
that this approach reduces a problem defined over an unbounded domain to 
one defined on a bounded domain of lower dimension, that is, the boundary of 
the scattering obstacle. This fact is, of course, crucial from the point of view of 
numerical analysis. However, the gains inherent in the method of boundary 
integral equations are not achieved without cost. This is basically due to the 
fact that the straightforward use of potential theory to formulate boundary 
integral equations for the classical boundary-value problems of scattering 
theory lead to equations that are not uniquely solvable at the eigenvalues of 
certain interior boundary-value problems. Hence a major task is to derive 
analytic methods for overcoming this difficulty. The numerical implementation 
of these methods presents further problems because, in general, the eigenvalues 
are not known in advance, and this necessitates the use of more sophisticated 
methods to deal with the problem of interior eigenvalues, in particular, the 
study of strongly singular integral equations and their regularization. 

65 
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The broad plan of this chapter is as follows. We first discuss the physical 
origins of exterior boundary-value problems for the Helmholtz equation, the 
concept of a radiation condition, and the asymptotic behavior of solutions to 
the Helmholtz equation satisfying such a radiation condition. This discussion 
enables us to introduce the concept of a far-field pattern and to derive the 
basic uniqueness results for the exterior Dirichlet and Neumann problems. We 
then turn to the problem of the existence of solutions to these two boundary-
value problems, and first establish this by looking for a solution in the form of 
either a double- or single-layer potential. As mentioned above, this leads to the 
problem of the unique solvability at interior eigenvalues, and we shall see that 
this problem arises regardless of whether we reformulate the boundary-value 
problems as an integral equation of the first or second kind. Motivated by this 
analysis, we consider various modifications of the above approach in order to 
obtain integral equations that are uniquely solvable for all values of the wave 
number. The first of these methods, due to Jones [1] and Ursell [1], [2], leads to 
weakly singular integral equations, whereas the second approach, due to Leis 
[2], Brakhage and Werner [1], and Panich [1], leads, in the case of the 
Neumann problem, to a strongly singular integral equation that needs to be 
regularized. After completing this discussion of the Dirichlet and Neumann 
problems, we then show how these results can be extended to treat the 
impedance and transmission problems. We conclude the chapter by showing 
how Green's representation theorem can be used to derive integral equations 
for the boundary-value problems of scattering theory that are adjoint to those 
obtained by the use of potential theory and to briefly discuss the use of this 
representation theorem to derive the so-called null-field method for solving 
acoustic scattering problems. 

For an interesting survey of topics closely related to those of this chapter we 
refer the reader to Dolph [1]. 

Throughout this chapter, we shall assume that our problems are three 
dimensional; the minor modifications needed to treat the two-dimensional case 
are discussed in Section 3.10. 

3.1 TIME-HARMONIC ACOUSTIC SCATTERING 

Consider acoustic wave propagation in a homogeneous isotropic medium in R3 

with density p, speed of sound c, and damping coefficient γ. The wave motion 
can be determined from a velocity potential U=U{x,t) from which the 
velocity field v is obtained by 

t> = — gradt/ 
P 

and the pressure p by 
Bu IT 

p-Po = -~ßf~yU 
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where p0 denotes the pressure of the undisturbed medium. In the linearized 
theory, the velocity potential U satisfies the dissipative wave equation 

and hence for time-harmonic acoustic waves of the form U(x, t) = u(x)e~l0}t 

with frequency ω > 0, we deduce that the space dependent part u satisfies the 
reduced wave equation or Helmholtz equation 

au + k2u = 0 (3.2) 

where the wave number k =*= 0 is given by k2 = ω(ω + iy)/c2. We choose the 
sign of k such that 

lmk>0. (3.3) 

Therefore the mathematical description of the scattering of time-harmonic 
waves by an obstacle D leads to boundary-value problems for the Helmholtz 
equation. Prescribing the values of u on the boundary of the obstacle (i.e., the 
Dirichlet problem) physically corresponds to prescribing the pressure of the 
acoustic wave. In particular, consider the scattering of a given incoming 
acoustic wave ul by an obstacle D. Then the total acoustic wave is of the form 
u = u' + us where us denotes the scattered wave and for a sound-soft obstacle 
the total pressure must vanish on the boundary, that is, us = — u' on the 
boundary. Similarly, prescribing the normal derivative of u on the boundary 
(i.e., the Neumann problem) physically corresponds to prescribing the normal 
component of the velocity of the acoustic wave, that is, to acoustic scattering 
from a sound-hard obstacle. 

A boundary condition that presents a more realistic treatment of the 
acoustic properties of the obstacle D as compared with the Dirichlet or 
Neumann boundary condition is given by 

(ν,ν) + χ(ρ- p0) = 0, 

that is, the normal velocity on the boundary is proportional to the excess 
pressure on the boundary. The coefficient χ is called the acoustic impedance of 
the obstacle D and is, in general, a space dependent function defined on the 
boundary dD. This impedance condition leads to a boundary-value problem 
for the velocity potential u of the form 

f ^ A W = 0 av 

where λ = /χρ(ω + ζγ). 
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3.2 GREENS REPRESENTATION THEOREM AND SOMMERFELDS 
RADIATION CONDITION 

We begin our analysis by establishing the basic property that any solution to 
the Helmholtz equation can be represented as the combination of a single- and 
a double-layer acoustic surface potential. 

For any domain G with boundary dG of class C2, we introduce the linear 
space <3l(G) of all complex-valued functions u e C2(G)C\C(G) for which the 
normal derivative on the boundary exists in the sense that the limit 

- T - ( A : ) = lim (*>(*),grad u(x - hv(x)) x^dG, 
dv /,_>() 7 / 

Λ > 0 
exists uniformly on dG. Here we assume the normal v to be directed into the 
exterior of G. We note that the assumption w, v e <3l(G) suffices to guarantee 
the validity of the first Green's theorem 

dv 
u 

JG JdG 

and the second Green's theorem 

/ wAi?¿/x= / u—ds— I (grad w,gradt>) âx (3.4) 

Jc(u^-vAu)dx=jJu^;-v^;)ds (3.5) 

for a bounded domain G with C2 boundary dG. This follows by first integrat
ing over the parallel surfaces introduced by (2.7) and then passing to the limit 
dG. 

Recall that by D we denote a bounded region in R3 with the boundary dD 
consisting of a finite number of disjoint, closed, bounded surfaces belonging to 
the class C2. The exterior R3\D is assumed to be connected, whereas D itself 
may have more than one component. We assume the normal v to dD to be 
directed into the exterior of D. Finally, recall the fundamental solution 

1 eik\x-y\ 
Φ(χ,γ) = — - -

J ' Απ \χ- y\ 

of the Helmholtz equation in R3 that we first introduced in (2.30). 

Theorem 3.1. Let u G 91(D) be a solution to the Helmholtz equation 

ΔΙ/ + Α:2Μ = 0 in D. 
Then 

/.(^-^^"■("""ί xeD, 
x<=R3\D. 
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Proof. We choose an arbitrary fixed point x& D and circumscribe it with 
a sphere Ωχ r:={>> e R 3 | |jc->>| = r}. We assume the radius r to be small 
enough such that Ωχ Γ c D and direct the unit normal v to Ωχ r into the interior 
of Ωχ r. Now we apply the second Green's theorem (3.5) to the functions u(y) 
and Φ(χ, y) in the region {y e D| \x - y\ > r) to obtain 

Since on Ωχ r we have 

eikr I 1 \ e i7cr 

φ ( * ' r ) = w grad/H*, ^)β \7 - '*) 4^"^) 

a straightforward calculation, using the mean value theorem, shows that 

lim/ ¡η^)^ψ^-^)φ{χ^)\άΞ{γ)^η{χ) 

whence from (3.6) the representation theorem is established for X G / ) . 
The statement for x e R 3 \Z) readily follows from Green's theorem applied 

to the functions u(y) and Φ(χ, y) in the region D. 
Straightforward calculations show that 

(jf['^^*(x'>'))",**(x^)e0(r^)» 1̂1 ̂ 00 

and 

x 3Φ(χ,γ)\ .κ3Φ(χ,γ) J 1 \ 
—-»grad ,— n \ ( - z / c — „ \ f = O — τ l· U -* oo 

uniformly for all directions x/\x\ and uniformly for all y contained in the 
bounded set 3D. From this we conclude the following. 

Theorem 3.2. Both the single-layer acoustic potential defined by (2.31) and 
the double-layer acoustic potential defined by (2.33) satisfy the Sommerfeld 
radiation condition 

( i ^ , g r a d u ( x ) ) - / M * ) = <>(¿-) , 1*1 ■ >00 

uniformly for all directions x / | x | . 
As we shall soon see, the Sommerfeld radiation condition completely 

characterizes the behavior of solutions to the Helmholtz equation at infinity. 
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Theorem 3.3. Let u e <3l(R3\D) be a solution to the Helmholtz equation 

Aw + A:2w = 0 in R 3 \ 5 ~ 

satisfying the Sommerfeld radiation condition 

( iff ,grad "(*Ί ~ iku(x) = ° 
uniformly for all directions JC/|JC|. Then 

ΘΦ(χ,γ) dui 

J_ 
\x\r 

■ 00, (3.7) 

Ü^W-^^'-'^'H.M. 'dD\ dv(y) 

Proof. We first show that 

f \u\2ds = 0(\), R->oo. 
■ΊΛΊ-Λ 

XG:R\D. 

(3.8) 

To accomplish this, we first observe that from the radiation condition (3.7) it 
follows that 

0 = lim / — iku 
Λ—00 J\y\ = R\ OV 

ds 

= lim f du 
dv + |fc|2 |u|2+2Im [kUTv ds (3.9) 

where v denotes the outward unit normal to the sphere ΩΑ: = {y e R3 | \y\ = R). 
We take R large enough so that ß Ä c R 3 \ Z ) and apply the first Green's 
theorem (3.4) in the domain DR: = {y e R 3 \Z) | |y\ < R) to obtain 

kf u^-ds = kf u^-ds-k\k\2f \u\2dy + kf \gradu\2dy. 
J\y\ = R dv JdD vv JD JD 

Now we substitute the imaginary part of the last equation into (3.9) and find 
that 

J i m ( / {\ΊΖ\ + l * | 2 M 2 U + 2 I m ( ¿ ) / {|/c|2|i/|2 + |gradW |2}¿yl 

dû -HkLulA (3.10) 
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All four terms on the left-hand side of (3.10) are nonnegative since Im(/c) > 0. 
Hence these terms must be individually bounded as R -» oo since their sum 
tends to a finite limit. Equation (3.8) follows immediately. 

We now note the identity 

• V I - Λ Ι dv(y) dv j 

J\y\-R l öv\y) i 

- / H^y){^{y)-iku{y)) ds{y) = :I, + I2 
J\y\-R \ a v > 

and apply Schwarz's inequality to each of the integrals /, and I2. From the 
radiation condition 

for the fundamental solution and (3.8) we see that /j = 0(1/R) as R -» oo. The 
radiation condition (3.7) and Φ(χ, y) = 0(\/R\ y^tiR, yield 72 = 6>(l) for 
R ->oo. Hence 

R-QoJ\y\-R\ op(y) dv j 

The proof is now completed as in Theorem 3.1 by applying the second Green's 
theorem in the domain {y e DR\ \x - y\ > r) if x e R3\D or DR if x e D. 

Remark 3.4. It is obvious that any solution of the Helmhohz equation 
satisfying the Sommerfeld radiation condition (3.7) automatically satisfies 

tt(jc)-O^), |*|->oo, (3.11) 

uniformly for all directions JC/ |X | . 
Note that it is not necessary to impose this additional condition for the 

representation theorem to be valid. 
Physically, the fundamental solution Φ(χ, y) describes an outgoing spheri

cal wave of the form 

eHk\x-y\ -ωί) 

4 Τ Γ | Χ - > > | 
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Thus the radiation condition (3.7), first introduced by Sommerfeld [1], 
mathematically characterizes outgoing waves. Similarly, using the fundamental 
solution 

e~ik\x-y\ 

4π\χ- y\ ' 

it is possible to develop an analogous theory of incoming waves characterized 
by the condition 

-^9&adu(x)] + iku(x) = o 

From the representation Theorem 3.1, we immediately conclude that solu
tions to the Helmholtz equation are analytic functions of their independent 
variables. 

Theorem 3.5. Any two times continuously differentiable solution to the 
Helmholtz equation is analytic. 

Proof. We make use of the fact that any holomorphic function of several 
complex variables, that is, a function satisfying the Cauchy-Riemann equa
tions with respect to each of the complex variables, is also analytic, that is, it 
has a local power series expansion and vice versa (Gilbert [1]). Our theorem 
now follows from the observation that the fundamental solution Φ(χ, y) is an 
analytic function of the cartesian coordinates x,, x2, x3 of x and the fact that 
the integrands in the representation Theorem 3.1 are continuous with respect 
to y if x is contained in a compact subset of D. Therefore the Cauchy-
Riemann equations for u can be verified by differentiating with respect to x 
under the integral sign. 

It follows from Theorem 3.5 that any solution to the Helmholtz equation 
that vanishes in an open subset of its domain of definition must vanish 
identically. 

Another direct consequence of the representation Theorem 3.3 is the follow
ing expansion theorem due to Atkinson [1] and Wilcox [1], [2]. 

Theorem 3.6. Let M G C 2 ( R 3 \ 5 ) be a solution of the Helmholtz equation 
satisfying the Sommerfeld radiation condition. Let R0 be such that 
ßÄQ: =(JC e R3 | \x\ = R0) c R3\D and let r, 0,φ denote the spherical coordi
nates of x. Then u has an expansion of the form 

ikr oo F ÍQ , \ 

Φ) = 7 Σ ^ (3.12) 

' 0 0 . 

that is valid for all r^R0 and that converges absolutely and uniformly with 
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respect to the variables r, θ, φ. The series can be differentiated term by term 
with respect to r, 0, φ any number of times and the resulting series all converge 
absolutely and uniformly. 

Proof. From the representation Theorem 3.3 applied to the exterior of a 
sphere ΩΛ with appropriately chosen radius R< Ä0 we have 

for \x\^ R0. Introducing spherical coordinates (Γ,Θ,Φ) and (R,6\ φ') for x 
and y, respectively, we can rewrite this equation in the form 

, \ Rl f I < \l y y-x\deikp du, ,eikp\ _, ,„ „ . 

where Ω denotes the unit sphere, άω = ΰηθ'άθ'άφ' is the surface element on 
the unit sphere, and 

P = I* - y\ = ( # 2 -IrRcosy + r 2 ) 1 / 2 , 

cosy = cos0cos0' + s in0s in0 ' cos^ -ψ ' ) . 

Consider first the function 

ux(x):-f^f(e\+')dt> 
Jü P 

where/: Ω ->C is continuous. Put w:=R/r. Then 

eik{p-r) weikR[{\-2wcosy + w2)x^-\]/w 

p # ( l - 2 w c o s y + w 2 ) 1 / 2 

where the square root is the branch having the value -1-1 at w = 0. Since 
(1 -2wcosy + w2)x/1 is an analytic function of w for w < 1, we see that for 
w < 1 the expansion 

eik(p-r) oo 

is vahd. This series is absolutely and uniformly convergent for r^R0 and 
γ e [0,27T], it can be differentiated term by term with respect to r and γ any 
number of times, and the resulting series all converge absolutely and uni-
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formly. Multiplying by / (# ' , φ') and integrating over Ω, we obtain an expan
sion 

, x elkr f Λ(Μ) 
r w = o r 

with the convergence properties indicated in the theorem. 
The function u is represented in equation (3.13) as a sum of integrals ux and 

u 2 where 

JüP "P P 

with a continuous function g: ß - > C . The integral defining u2 is similar in 
structure to wt and may be treated in the same way. Hence the expansion 
theorem for u follows. 

Corollary 3.7. Every solution u of the Helmholtz equation satisfying the 
radiation condition has the asymptotic behavior 

« ( χ ) - ^ 0 ( β , φ ) + θ ( - ί ) . (3.14) 

The function F0: Ω -» C is called the far-field pattern or radiation pattern of u. 

Corollary 3.8. The coefficients Fn in the expansion (3.12) are recursively 
determined in terms of the far-field pattern F0 by the formula 

2iknFH = n{n-l)Fn_x+BFn_l9 n = 1,2,3,..., 

where 

0 _ 1 d ( . . d \ 1 d2 

is Beltrami's operator for the sphere. 

Proof. The expansion (3.12) has to satisfy the Helmholtz equation. Dif
ferentiating the series term by term in spherical coordinates we find 

bu + ^ u - Ç t - ¿ T { - 2 i * » i ^ l + «(n-l) JFB_ 1+BF e_ 1>. 
n = 1 r 
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Since ΔΜ + k2u = 0 the coefficients of the powers of \/r in this series must 
vanish. This gives the recursion formula. 

The following corollary establishes a one-to-one correspondence between 
solutions to the Helmholtz equation satisfying the radiation condition and 
their far-field pattern. 

Corollary 3.9. Let i / e C 2 ( R 3 \ D ) be a solution to the Helmholtz equation 
satisfying the Sommerfeld radiation condition for which the far-field pattern 
vanishes identically. Then u = 0 in R3\D. 

Proof. Since F0 = 0 we see from Corollary 3.8 and the expansion (3.12) 
that u = 0 in the exterior of a suitably chosen sphere. By the analyticity of u 
(Theorem 3.5) we can now conclude that u = 0 in R 3 \ D . 

3.3 THE DIRICHLET AND NEUMANN BOUNDARY-VALUE 
PROBLEMS: UNIQUENESS THEOREMS 

We shall consider the following boundary-value problems for the Helmholtz 
equation. Recall again that D is a bounded region in R3 with C2 boundary 3D. 

Interior Dirichlet Problem 

Find a function u e C2(D)n C(D) satisfying the Helmholtz equation in D and 
the boundary condition 

w = / on 3D (3.15) 

where / is a given continuous function. 

Interior Neumann Problem 

Find a function we<3l(Z>) (i.e., a function u^C2(D)nC(D) possessing 
normal derivatives in the sense of uniform convergence) satisfying the 
Helmholtz equation in D and the boundary condition 

f f « S on BD (3.16) 

where g is a given continuous function. 
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Exterior Dirichlet Problem 

Find a function u e C2(R3\D)DC(R3\D) satisfying the Helmholtz equation 
in R 3 \ D , the Sommerfeld radiation condition at infinity, and the boundary 
condition 

w = / on 3D (3.17) 

where / is a given continuous function. 

Exterior Neumann Problem 

Find a function w e<3l(IR3\Z)) satisfying the Helmholtz equation in R3 \Z), 
the Sommerfeld radiation condition at infinity, and the boundary condition 

- ^ = g on 3D (3.18) 
ov 

where g is a given continuous function. 
In the following analysis we shall make use of the fact that any solution u to 

the homogeneous Dirichlet problem, that is, any solution with identically 
vanishing boundary values w = 0 on dDf is automatically continuously dif-
ferentiable up to the boundary. A proof of this property will be given later in 
Theorem 3.27. 

Theorem 3.10. Let Im k > 0. Then the interior Dirichlet and Neumann prob
lems have at most one solution. 

Proof. We have to show that solutions to the homogeneous boundary 
value problems vanish identically. Let w e 9t(D) be a solution to the Helmholtz 
equation. Then from the first Green's theorem (3.4) we obtain 

/ i 7 ^ ^ = / ( | g r a d t / | 2 - / : 2 | W | 2 } ^ . 
JdD ov JD 

Since the left-hand side of this equation vanishes if either w = 0 or du/dv = 0 
on <9Z>, and Im k> 0, we see that 

¡\u\2dx = Q. 

Hence u = 0 in D. 
For k real, we in general do not have uniqueness for the interior problems. 

To see this, we note that by separation of variables in spherical coordinates 
r, 0, φ we have that the functions 

u:(x) = j„(kr)Y„m(e,<¡>), (3.19) 
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n = 0,1,2,..., m = - A7,...,Αί, are solutions to the Helmholtz equation that are 
regular at the origin. Here jn denotes the spherical Bessel function of order n 
and 

1/2 
pW(co$e)eim+ 

denotes the spherical harmonic of order n where Pn
m denotes the associated 

Legendre polynomial (Erdélyi et al. [1]). In particular, for n = 0, we have the 
special case 

n / v sin kr 
y4nkr 

If D is the unit ball then from (3.19) we observe that for all values of k that are 
zeros of the spherical Bessel functions, the homogeneous interior Dirichlet 
problem has nontrivial solutions. Similarly, the homogeneous interior Neumann 
problem for the unit ball has nontrivial solutions for all values of k that are 
zeros of the first derivatives of the spherical Bessel functions. In general, by 
means of variational methods or by the Hubert-Schmidt theory of symmetric 
integral operators, it can be shown that for any bounded domain D there exists 
a countable set tf)(D) of positive wave numbers k accumulating only at infinity 
for which the interior Dirichlet problem admits nontrivial solutions. We call 
these values interior Dirichlet eigenvalues. For the interior Neumann problem, 
there also exists a countable set 91(D) of positive wave numbers k accumulat
ing only at infinity for which nontrivial solutions occur. These values we call 
interior Neumann eigenvalues. For a detailed discussion of these eigenvalue 
problems, see Courant and Hilbert [1], Leis [3], or Stakgold [2]. 

The uniqueness results for the exterior problems are based on the following 
lemma due to Rellich [1]. 

Lemma 3.11. Let k be positive and u e C 2 (R 3 \D) a solution to the Helmholtz 
equation satisfying the Sommerfeld radiation condition and 

( \u\2ds = o(\), R->oo. (3.20) 
J \ x \ - * 

Then w = 0 i n R 3 \ Z ) . 

Proof. From the expansion (3.12) we get 

/ | W | 2 ^ = /|F0|2</<o + o ( ~ ) , tf^oo, 
J\x\-R JQ \KJ 

for any radiating solution of the Helmholtz equation. Hence (3.20) implies 
F0 = 0, and therefore from Corollary 3.9 we can conclude that u = 0 in R3\D. 

Ynm(e>4>) = 
(2n + l ) ( i i - | m | ) I 

47r(w + |m|)! 
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Theorem 3.12. Let u^^H(U3\D) be a solution to the Helmholtz equation 
satisfying the radiation condition and 

i mKD"£*)> o · (32i) 
Then w = 0 inR 3 \ £> . 

Proof. If Im k > 0, then from (3.10) we see that 

f \u\2dx-+0, R-*oo. 

Hence u = 0 in R\D. If Imk = 0, then from (3.10) we have 

f |w|2dy->0, Ä->oo 

and w = 0in R 3 \Z)by Lemma 3.11. 
An immediate consequence of Theorem 3.12 is the following uniqueness 

result. 

Theorem 3.13. The exterior Dirichlet and Neumann problems have at most 
one solution. 

In concluding this section we wish to mention that Lemma 3.10 is actually a 
special case of a stronger result by Rellich [1] of which we shall now outline a 
short proof making extensive use of properties of spherical Bessel functions 
and spherical harmonics. 

Lemma 3.14. Let k be positive and let I / G C 2 ( R 3 \ D ) be a solution of the 
Helmholtz equation satisfying 

f |W | 2ds->0, Ä - o o . (3.22) 

Then u = 0inR3\D. 

Proof. Let (r, ̂ , φ) denote spherical coordinates. For sufficiently large 
fixed r we can expand u in a uniformly convergent series of spherical 
harmonics 

oo n 

«(*)= Σ Σ anm{r)Y?{9,*) (3.23) 
n — 0 m— — n 

where 
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Since u e C2(R3\D\ we can differentiate under the integral and integrate by 
parts using Aw 4- k2u = 0 to conclude that anm is a solution of BessePs equation 

í/r2 ' dr \ r1 

that is, 
anm{r) = ccnmh^(kr)-^ßnmh^{kr) 

where <*„„, and ß„m are constants and Aj,1,2) denotes a spherical Hankel function 
of the first and second kind, respectively. 

We integrate (3.23) term by term using the orthonormality of the spherical 
harmonics to obtain 

/ | u | 2 *-Ä 2 ' £ Σ \anm(R)\2. 
1*1 — ^ n = 0 m = — n 

From the assumption (3.22), we see that 

R2\anm(R)\2^0, Ä - o o , 

w = 0,1,2,..., m==-A2,...,/í. Hence, using the asymptotic formulae 

we obtain anm = 0 for all n = 0,1,2,..., m = - Λ , . . . ,^. Therefore w = 0 outside 
a sufficiently large sphere and hence « = 0 in R3\D by analyticity (Theorem 
3.5). 

3.4 THE EXISTENCE OF SOLUTIONS TO THE DIRICHLET AND 
NEUMANN PROBLEMS 

We shall show in this section that analogous to the potential theoretic case 
k = 0, we can reduce the boundary-value problems for the Helmholtz equation 
to integral equations of the second kind by seeking the solution in the form of 
an appropriate surface potential. However, in contrast to the case of Laplace's 
equation, it is now necessary to take into consideration the fact that the 
interior boundary-value problems are in general not uniquely solvable. 

Theorem 3.15. The double-layer potential 

«(*)=/ d\{X/{]Hy)ds{y), xeR3\dD, (3.24) 
Jan OV\ V I JdD 
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with continuous density ψ is a solution of the interior Dirichlet problem (3.15) 
in D provided ψ is a solution of the integral equation 

Ψ ( * ) - 2 ( a*{ï9?)4>(y)ds(y) = -2f(*)> xedD. (3.25) JdD ov(y) 

It solves the exterior Dirichlet problem (3.17) in U3\D provided ψ is a solution 
of the integral equation 

Ψ(*) + 2 ( d*{*'y\{y)ds{y) = 2f{x), xedD. (3.26) 
J3D 

Proof. The double-layer potential u obviously satisfies the Helmholtz 
equation in R3\dZ> and the Sommerfeld radiation condition (Theorem 3.2). 
By Theorem 2.13 we see that u continuously assumes the prescribed boundary 
values on 3D if the density ψ solves the integral equation (3.25) or (3.26) for 
the interior or exterior problem, respectively. 

In a similar fashion, Theorem 2.19 implies the following result. 

Theorem 3.16. The single-layer potential 

u(x)=[ Φ(χ,γ)φ(γ)ώ(γ)9 x<=R3\dD, (3.27) 
JdD 

with continuous density φ is a solution of the interior Neumann problem (3.16) 
in D provided φ is a solution of the integral equation 

Φ(Χ) + 2( 8*¿Í9*U(y)ds(y) = 2g(x)9 xedD. (3.28) 
JdD OP(x) 

It solves the exterior Neumann problem (3.18) in U3\D provided φ is a 
solution of the integral equation 

Φ(Χ)-2{ d*¿Í'*h(y)My)--2g(x), xedD. (3.29) 
Jan OVKX) J8D 

The above integral equations for boundary-value problems for the Helm
holtz equation—in two dimensions—were first considered by Kupradse [1], 
[2], [3]. Rigorous proofs for the existence of solutions based on the first and 
second part of Fredholm's alternative were given by Vekua [1], [2], Weyl [1], 
Müller [2], and Leis [1], In the following, we shall describe a slightly modified 
version of their approach. 

Recalling the definitions (2.77) and (2.78) of the compact operators Κ,Κ': 
C(dD) -> C(dD), we can rewrite the integral equations in the form 

ψ - Κ ψ = - 2 / (3.250 
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and 

ψ+Κψ = 2 / (3.260 

for the interior and exterior Dirichlet problems and 

<f>+K'<f> = 2g (3.28') 

and 

</>-K'<|> = - 2 g (3.290 

for the interior and exterior Neumann problems. We shall now apply the 
Riesz-Fredholm theory to these equations. Note that the equations belonging 
to the interior (exterior) Dirichlet and exterior (interior) Neumann problems 
are adjoint to one another. 

We shall soon see that the nullspace of the operator I-f-K corresponds to 
solutions of the homogeneous interior Neumann problem. líbnce, we introduce 
the linear space 

U: = lu\dD\u<=qi(D), ΔΜ + Α:2Μ = 0 in Z), -y = 0 on dü\. 

Note that if k is not an interior Neumann eigenvalue then U = (0). 

Theorem 3.17. N(1 + K) = U. 

Proof. Let ψ e JV(I + K) and define a double-layer potential u by (3.24). 
Then w+ = 0 on dD and from the uniqueness of the solution to the exterior 
Dirichlet problem (Theorem 3.13) it follows that w = 0 in R 3 \ D . From 
Theorem 2.21 we see that du_/dv = 0 on 3D, that is, u is a solution to the 
homogeneous interior Neumann problem. Finally, from Corollary 2.14, we 
find that ψ = w+ - u_ = — u_ and hence ψ e U. 

Conversely, let ψ£ ί / , that is, \p = u\dD where u is a solution to the 
homogeneous interior Neumann problem. Then from Theorem 3.1 we see that 

/ , dD ov(y) 

Letting x->3D and using Theorem 2.13 we have ψ+Κψ = 0, that is, 
ψ€Ξ#(Ι + Κ). 

By Fredholm's alternative (Theorem 1.30) we have dim N(l + K) = 
dim iV(I + K') = mN where mN = 0 if k is not an interior Neumann eigenvalue 
and where mNeN if k is an eigenvalue. In the second case, we have the 
following theorem. 
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Theorem 3.18. Let φ^. . . ,φ,^ be a basis of N(l + K') and define 

uj(x):=[ Φ(χ,γ)φ^γ)ώ(γ), xeR\dD, (3.30) 
JdD 

7 = 1,.·.,%· Then, 

du,;. 
φ, = - - / - on 3D, (3.31) 

J dv 

7 = 1,..., Wyyr, and the functions 

ψ7:=-277 + on 3D, (3.32) 
y = 1,..., w^, form a basis for N(l + K). The matrix 

JdD
 y CP 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Proof. Since φ7 +K'</>y = 0 we clearly have duj_/dv = 0 on dD. Using the 
jump relations for single-layer potentials, we therefore have φ. = - duj+/dv on 
dD and QJ+ = w,_ e i / = JV(I + K) by Theorem 3.17. 

Assume α̂ ;, j = 1,...,mN, solve 

Σ«7<Ψ,,Φ/> = 0, / = l,...,m„ 

and define 

7 ~ 1 

Then 

and from Theorem 3.12 we can conclude that u = 0 in R 3 \ D . In particular, 
du+/dv = Q on 3D and therefore Σ^,δ,-φ. = 0. Hence ay = 0, 7 = Ι , . , . , /ΤΪ^ , 
since the φ^,^ = l , . . . ,w^, are linearly independent. 

The above analysis implies that the matrix (ψ7,φ,), y, / = \,...,mN, is 
regular and the ψ.,7 = l , . . . ,m^ are Unearly independent, that is, they form a 
basis for ΛΤ(Ι + Κ). 
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Remark 3.19. Since the interior Neumann eigenvalues are real, we can choose 
the basis of solutions to the homogeneous interior Neumann problem to be 
real. Therefore, we can select the basis Φι,...,Φ„,Ν for 7V(I + K') in Theorem 
3.18 such that the ψ ^ . , . , ψ ^ are real valued. 

We now are in the position to establish the existence of solutions to the 
interior Neumann and the exterior Dirichlet problems. 

Theorem 3.20. The interior Neumann problem (3.16) is solvable if and only if 

f guds = 0 (3.33) 
JdD 

for all solutions u of the homogeneous interior Neumann problem. 

Proof, If k is not an interior Neumann eigenvalue, condition (3.33) is 
trivially satisfied for any inhomogeneity g. Furthermore, by Theorem 3.17 and 
Fredholm's alternative we have N(l + K') = (0) and the integral equation 
<|>+K'</> = 2g for the inhomogeneous interior Neumann problem is uniquely 
solvable for all inhomogeneities g. 

If k is an eigenvalue, then Theorem 3.17 shows that condition (3.33) 
coincides with the solvability condition of Fredholm's alternative for the 
inhomogeneous equation <f> + K'<i> = 2g and hence a solution to the integral 
equation exists. 

The necessity of condition (3.33) for the solvability of the inhomogeneous 
interior Neumann problem follows from applying the second Green's theorem 
(3.5) to solutions of the inhomogeneous and homogeneous problems. 

Theorem 3.21. The exterior Dirichlet problem (3.17) is uniquely solvable. 

Proof. If k is not an eigenvalue of the interior Neumann problem, the 
integral equation ψ + Κψ = 2 / for the inhomogeneous exterior Dirichlet prob
lem is uniquely solvable by the first part of Fredholm's alternative since by 
Theorem 3.17 N(\ + K) = (0). 

If k is an eigenvalue, we seek a solution of (3.17) in the form 

« ( * ) « / d^l\(y)ds{y)-mtajuJ{x), x*U\D, (3.34) JdD ov{y) > = 1 

where the Uj,j = \,...,mN, are defined by (3.30). According to Remark 3.19, 
we can assume uj+\dD to be real. Using (3.32), we see that u solves the exterior 
Dirichlet problem provided ψ and the coefficients aJ9j = l , . . . ,m^, are chosen 
such that 

mN 

ψ+Κψ = 2 / - 2 ΐ « ; ψ ; . (3.35) 
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By Theorem 3.18, we can determine the coefficients to be the unique solution 
of the linear system 

Σ « / Ψ ; . Φ / > = </></>/>> l = h...,mN. 

By the second part of Fredholm's alternative, we can now conclude that the 
integral equation (3.35) has a solution since its right-hand side satisfies the 
solvability condition. Note that the solution to the integral equation is not 
unique. 

The nullspace of the operator I - K' corresponds to solutions to the homoge
neous interior Dirichlet problem. We therefore introduce the linear space 

"=-<£ dD 
t> € & ( / ) ) , Δυ + Α:2υ = 0ιηΖ), υ = 0 on dü\ 

and note that V = {0} if k is not an interior Dirichlet eigenvalue. For the 
definition of V we have anticipated the fact that solutions to the homogeneous 
Dirichlet problem automatically belong to 91(D) by Theorem 3.27. 

Theorem 3.22. W(I-K') = K 

Proof. This is proved in the same manner as Theorem 3.17 with the roles 
of Dirichlet and Neumann problems and single- and double-layer potentials 
interchanged. 

Note that by Fredholm's alternative dim N(I - K') = dimN(I-K) = mD 
where mD = 0 if k is not an interior Dirichlet eigenvalue and where mD^N if 
k is an eigenvalue. In the second case, we have the following theorem. 

Theorem 3.23. Let δ,,. . . , ômD be a basis for N(l - K) and define 

vj(x):=f ^f^-ij(y)My), x*R\dD, (3.36) JdD ov\y) 

j = \,...,mD. Then 
8j = Vj+ on 3D, (3.37) 

7 = 1,...,/«^, and the functions 

Χ > + : " ~ Λ Γ o n dD> ( 3 3 8 ) 

j — \,...,mDi form a basis for N(I-K' ) . The matrix 

f dvj+ 

JdD a v 

is regular and hence by Theorem 1.31 the Riesz number is one. 



EXISTENCE OF SOLUTIONS TO THE DIRICHLET AND NEUMANN PROBLEMS 85 

Proof. This is proved in the same way as Theorem 3.18. 
Note that since the interior Dirichlet eigenvalues are real, we can again 

choose the basis δ,, . . . , 8mo such that the χ,,..., χ mp are real valued. 

/ / l > = 0 (3.39) 
Jan OV 

Theorem 3.24. The interior Dirichlet problem (3.15) is solvable if and only if 

tdv 
JdD 

for all solutions v to the homogeneous interior Dirichlet problem. 

Proof. This is proved in the same way as Theorem 3.20. In proving the 
necessity of condition (3.39) by a direct application of the second Green's 
theorem (3.5) to a solution u of the inhomogeneous and a solution v of the 
homogeneous problem, we must have u e 91 (Z>). This is true by Theorem 3.27 
if / e Cu"(dD). For general/ e C(dD) define 

V = / fXjds, 
JdD 

y = l , . . . ,wD , where the Xj are defined by (3.38). Let α,, / = l , . . . ,mD , be the 
unique solution of 

mD 

Then the funct ion/ :==/-Σ^α/δ , satisfies condition (3.39). Since this condi
tion is sufficient for the solvability of the interior Dirichlet problem, there 
exists a solution ü with boundary-value w = / o n 3D. Then u*: = u — ü solves 
the interior Dirichlet problem with boundary values u* = Σ ^ α / δ , . By Theo
rem 2.30 the operator K maps C(dD) into C°*a(dD) and C°>a(dD) into 
CXa{dD). Therefore, the elements dl,...,SniD of the nullspace iV(I-K) auto
matically belong to Cl,a(dD) and by our previous argument the solvability 
condition (3.39) for u* must be satisfied, that is, 

mD 

Σ «/(Χ,Λ)^0' j = l,...,mD. 
/ = 1 

This implies γ̂ , = 0, j = 1,... ,mD, which completes the proof. 

Theorem 3.25. The exterior Neumann problem (3.18) is uniquely solvable. 

Proof This is proved in the same way as Theorem 3.21 if a solution is 
sought in the form 

mD 

u(x) = f <i>(x,y)<t>(y)ds(y)+Z«Mx), ^ R 3 \ ß , (3.40) JdD J = l 
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which leads to the integral equation 

7 - 1 

We now conclude this section by showing that any solution to the Dirichlet 
problem with boundary values belonging to Cl,a(dD) is automatically uni
formly Holder continuously differentiable up to the boundary; in particular, 
the solution belongs to <31(JD) or <&(IR3\Z)). 

Lemma 3.26. Let G be a bounded domain with diameter J , « G C2(G)C\ C(G) 
a solution to the Helmholtz equation in G with u = 0on dG, and assume 

2\k\2(ed-\)<\. 

Then u = 0 in G. 

Proof. Without loss of generality we assume G is contained in the cube 
Q: = {x = (xx,x2,x3)GR3\0 4ixx,x2Lx3^d}. We first show that for any 
real-valued function w e C2(G)DC(G) with ΔΗ> e C(G) and w = 0 on dG we 
have 

I M I O O , G < ( ^ - I ) I I A H U C . (3.42) 

To show this we consider the function 

v(x): = (ed-ex^w\\O0, x e G . 

Then 

- A«(JC) - HAwll̂ e*» > llAwll«,, x e G , 

and hence if we define 

t?1)2-= — v ± w 

we see that Δυ, 2 > 0 in G. Since on the boundary dG we have vx 2 = - v < 0 
from the maximum principle (cf. Col ton [4]), we can conclude that vx 2 < 0 in 
G. Hence \\\ν\\„ < Ht)^ from which (3.42) follows. 

We now write u and k2 in terms of their real and imaginary parts, 
M = W14-/W2, k2 = kx + ik2. Since ΔΙΛ{ = - kxux + /c2w2 and ku2 = - kxii2-
k2ux, we can apply (3.42) to w1 and w2 to find 

Hui««,+ii"2iioo < m2(ed - i)(\\ux\\„+\\u2\\j. 
Since 2\k\2(ed - 1) < 1 we can now conclude that u = 0 in G. 



BOUNDARY INTEGRAL EQUATIONS OF THE FIRST KIND 87 

Theorem 3.27. Let u be a solution to the interior or the exterior Dirichlet 
problem with boundary values / e C]a(3D), 0 < a < 1. Then « 6 C u ( 5 ) o r 
u e C l i f l t(R3\/)), respectively. 

/Voo/. It suffices to consider the interior problem. We choose an arbitrary 
point x0 e 3D and show that u&Cl,a(DnU) where Uis some neighborhood 
of JC0. Let G be a bounded domain contained in D whose boundary is of class 
C2 and contains 3D Π Í7. We assume G is small enough such that by Lemma 
3.26 the only solution to the homogeneous Dirichlet problem in G is the trivial 
solution. Then we can uniquely solve the interior Dirichlet problem Δυ + k 2v 
= 0 in G, υ = u on dG. We now look for a solution to this problem in the form 
(3.24) applied to the domain G. Since we have chosen G such that the 
homogeneous form of equation (3.25) only has the trivial solution, the inhomo-
geneous equation is uniquely solvable. But for this equation the right-hand side 
u\dG coincides with/on 3D Π U and is of class C l a . Hence, by Theorem 2.30 
the solution ψ of the integral equation is also of class C l a . The proof now 
follows from Theorem 2.23. 

3.5 BOUNDARY INTEGRAL EQUATIONS OF THE FIRST KIND 

It is also possible to reduce the boundary-value problems for the Helmholtz 
equation to boundary integral equations of the first kind. In particular, for the 
Dirichlet problem we immediately have the following result: 

Theorem 3.28. The single-layer potential 

u{x)=f <P(xyy)<t>{y)ds(y), x<=U3\3D, (3.43) 
JdD 

with continuous density φ solves the interior and the exterior Dirichlet prob
lems (3.15) and (3.17) provided φ is a solution of the integral equation 

/ 4>{x9y)*(y)ds(y)=f(x), x^3D. (3.44) 
JdD 

Recalling the definition (2.80) of the compact operator S: C(3D) -+ C(3D), 
we can rewrite (3.44) in the short form 

S<i> = 2 / . (3.44') 

Since by Theorem 2.19 the single-layer potential with continuous density 
has continuous normal derivatives on the boundary, the integral equation 
(3.44') is only solvable for those functions / for which the solutions to the 
interior and the exterior Dirichlet problems belong to $l(D) and <3l(IR3\Z)), 
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respectively. Recalling the linear subspace ?fi(3D) of all continuous functions 
ψ e C(dD) for which the double-layer potential v with density ψ has continu
ous normal derivatives on both sides of 3D (cf. Section 2.7), we can state the 
following theorem. 

Theorem 3.29. A solution u to the interior (and the exterior) Dirichlet 
problem with boundary values u = f on 3D has continuous normal derivatives 
on 3D, that is, u e i ( D ) (and u e & ( R 3 \ 5 ) ) if and only if/ e 9l(dZ)). 

/Voo/. The necessity that / e 91 (3D) follows immediately from Theorem 
3.1 and Theorem 2.19. 

To show that the condition is also sufficient, we first define the double-layer 
potential 

v(x): = { ~f^-f(y)ds(y), x^R\dD. JdD ov{y) 

In R3\D we can regard v as the unique solution w of the exterior Neumann 
problem with the continuous normal derivatives 3w/3i> = 3v/3v on 3D. As 
shown in Theorems 3.16 and 3.25, this solution w can be represented in the 
form of a single-layer potential 

w(x)=[ *(x,y)4>(y)ds(y)> x^R\3D, 
JdD 

provided k is not an interior Dirichlet eigenvalue. Now consider the function 

w.= lw-v-u in D _ 
U-t) in R3\D. 

Then from Corollaries 2.14 and 2.20 and the boundary condition u = / o n 3D 
we see that W + — W_ = 0 on 3D. Since by construction W vanishes in R3 \ D 
we conclude that W = 0 in D if k is not an interior Dirichlet eigenvalue. Thus 
u = w — v in D from which we finally get « e <3l (D). This proof can easily be 
extended to the case where k is an interior eigenvalue by representing the 
solution to the exterior Neumann problem in the form (3.40). For the exterior 
problem the proof is carried out in an analogous manner. 

Theorem 3.30. For any inhomogeneity / e %(3D) the integral equation 
(3.44) of the first kind for the Dirichlet problem has a unique solution 
provided k is not an interior Dirichlet eigenvalue. If k is an eigenvalue, then 
the integral equation is solvable if and only if / satisfies the condition (3.39) 
and, in this case, the solution is not unique. 

Proof. We first prove uniqueness. Let <$>^C(3D) be a solution of the 
homogeneous equation S<i> = 0. Then the single-layer potential u defined by 
(3.43) solves the homogeneous interior and exterior Dirichlet problem. Hence, 
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from the uniqueness results for the Dirichlet problem and the jump relation of 
Corollary 2.20, we can conclude that φ = 0 provided k is not an interior 
eigenvalue. If k is an eigenvalue, we see from Theorem 3.1 that N(S) = V. 

To establish existence, we use Theorems 3.21 and 3.24 and denote by u the 
solution to the interior Dirichlet problem in D and the solution to the exterior 
Dirichlet problem in R3\D. Observe that u^^l(D) and u e<3l(|R3\Z>) by 
Theorem 3.29 and the assumption/ e 9l(c?D). We now define 

3u_ du, 
φ: = · ^ ^ - on 3D 

dp dv 

and use Theorems 3.1 and 3.3 to see that 

u(x)~f <t>(x,y)<l>(y)ds{y), xeR3 \c>Z), 
JdD 

which implies that φ solves the equation S</> = 2 / . 
Recall now the definition (2.81) of the unbounded operator T: %(3Ώ) -» 

C(dD). Then if k is not an eigenvalue to the interior Dirichlet or Neumann 
problem, we see by the existence proof of Theorem 3.30 and our previous 
analysis of the integral equations (3.25) and (3.26) for the Dirichlet problems 
that the solution φ to the equation (3.44) is given by 

φ=-2Τ(Ι-ΚΓ1(Ι + Κ)~7· 

To arrive at this relationship we have used the fact that (I - K) ~] + (1+ K) " ' = 
2(1 - K) - ] (I + K) - ». Hence the inverse operator S " ] : 91 ( 3D ) -* C( 3D ) of S is 
given by 

β-^-ΤίΙ-ΚΓ'ίΙ + Κ)"1. (3.45) 

If we look for a solution to the Neumann problem in the form of a 
double-layer potential, we are faced with the difficulty that the normal 
derivative of a double-layer potential with continuous density in general does 
not exist. Hence we assume the density to belong to %(3D). We can then state 
the following theorem. 

Theorem 3.31. The double-layer potential 

«(*) = / d^'y^(y)ds(y), x e R ' V Z ) , (3.46) 
JdD ovyy) 

with density ψ € 91 (<?£>) solves the interior and the exterior Neumann prob
lems, (3.16) and (3.18), provided ψ is a solution of the singular integral 
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equation 

T T T / d*¿Í9P*(y)ds(y)-g(x), ^ Ϊ Λ (3.47) 
ov(x)JdD ov(y) 

Using our previous operator notation, we can rewrite (3.47) in the form 

T* = 2g (3.47) 

and analogous to Theorem 3.30 obtain the following result. 
Theorem 3.32. For any inhomogeneity g^C(dD) the integral equation 
(3.47) has a unique solution provided k is not an interior Neumann eigenvalue. 
If k is an eigenvalue, then the integral equation is solvable if and only if g 
satisfies condition (3.33) and, in this case, the solution is not unique. 

From the details of the proof, it is easily seen that if k is not an eigenvalue 
to the interior Dirichlet or Neumann problem, the solution ψ of (3.47) is given 
by 

ψ = - 2 8 ( Ι - Κ ' ) ~ 1 ( Ι + Κ ' ) ~ ν 

Hence the inverse operator T"1: C(dD) -* 9l(dD) of T is given by 

T - | = - S ( I - K ' ) ~ I ( I + K')~1. (3.48) 

Traditionally, the use of integral equations of the first kind for studying 
boundary-value problems in acoustic scattering theory has been neglected due 
to the lack of a Riesz-Fredholm theory for equations of the first kind and the 
fact that integral equations of the first kind are improperly posed. The 
ill-posed nature of such equations can be seen from the facts that the inverse 
S" ] of the compact operator S given by (3.45) cannot, in view of Theorems 1.5 
and 1.9, be bounded and, in addition, the range S(C(dD)) = 9l(dZ>) is not 
closed in C(dD). Hence small perturbations of the right-hand side of the 
equation S<¿> = 2/can cause large perturbations in the solution φ or might even 
render the equation unsolvable if the perturbed right-hand side no longer 
belongs to %(dD). Despite these difficulties, within recent years significant 
advances have been made in the numerical analysis of integral equations of the 
first kind, particularly through the work of Giroire [1], Nedelec [1], Giroire and 
Nedelec [1], and Hsiao and Wendland [1] in the limiting potential theoretic 
case k = 0, and the interested reader is referred to these references for further 
details. 

3.6 MODIFIED INTEGRAL EQUATIONS 

In our analysis of the integral equations (3.26) and (3.29) of the second kind 
and (3.44) and (3.47) of the first kind for exterior boundary-value problems, we 
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had to distinguish between uniquely and nonuniquely solvable integral equa
tions. Because the solutions of the exterior boundary-value problems are 
unique for all wave numbers with Im k > 0, the complication of nonuniqueness 
for the integral equations at the interior eigenvalues arises from our method of 
solution rather than from the nature of the problem itself. Therefore it is 
desirable to develop methods leading to integral equations that are uniquely 
solvable for all values of the wave numbers. This is particularly important for 
our later study of the inverse scattering problem because in this case the shape 
of the domain is unknown and hence the interior eigenvalues are also un
known. However, the formulation of uniquely solvable integral equations is 
also important for the direct problem, since if attempts are made to obtain 
numerical approximations to the solution by discretizing the integral equations 
of the previous sections, then the resulting linear systems will become ill-condi
tioned in a neighborhood of the interior eigenvalues and for a general domain 
D we do not know beforehand where these eigenvalues ar^. Since integral 
equation methods for exterior boundary-value problems have the advantage of 
reducing the problems from the unbounded three-dimensional domain R 3 \ D 
to its bounded two-dimensional boundary 3D and automatically satisfy the 
radiation condition at infinity, there is an increasing interest in numerical 
methods based on integral equations, and from this point of view it is 
important to develop integral equations that are uniquely solvable for all wave 
numbers. 

Leis [2], Brakhage and Werner [1], and Panich [1] independently suggested 
to try and find the solution of the exterior Dirichlet problem (3.17) in the form 
of a combined double- and single-layer potential 

JBD\ OV(y) j 

(3.49) 

where η =*= 0 is an arbitrary real number such that 

T)ReA:^0. (3.50) 

Obviously, (3.49) solves the exterior Dirichlet problem (3.17) provided the 
density ψ G C(dD) is a solution of the integral equation 

ψ + Κ ψ - / τ ) 8 ψ = 2 / . (3.51) 

Theorem 3.33. The combined double- and single-layer integral equation 
(3.51) for the exterior Dirichlet problem is uniquely solvable for all wave 
numbers satisfying Im k ^ 0. 

Proof. Since K - ITJS is a compact operator, by Theorem 1.16 it suffices to 
show that the homogeneous form of equation (3.51) has only the trivial 
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solution ψ = 0. Let ¡p^C(dD) be a solution to the homogeneous equation 
ψ +Κψ — ÍJ]S\¡/ = 0. Then u as defined by (3.49) solves the homogeneous 
exterior Dirichlet problem and, therefore, w = 0 in R 3 \ D . From the jump 
relations of Corollaries 2.14 and 2.20, we now have 

— Μ_ = ψ, T.— =/ηψ on 3D, 
ov 

and the first Green's theorem (3.4) implies that 

ΐηί \t\2ds=[ û_-^ds= f (\grsidu\2-k2\u\2)dx. 
JdD JdD ö v JD 

The imaginary part of this equation is 

ηί \\P\2ds = -2Reklmkf\u\2dx 
JdD JD 

from which we see that ψ = 0 because of (3.50) and the fact that Im k ^ 0. 
A similar approach for the exterior Neumann problem runs into difficulties 

due to the fact that the normal derivative of a double-layer potential with 
continuous density in general does not exist on the boundary and even if it 
does exist, the corresponding integral equation is strongly singular. In this case, 
results on the existence of a solution requires regularization of the integral 
equation, that is, transforming the integral equation into a form for which the 
Riesz theory is applicable. Keeping these comments in mind, we seek the 
solution of the exterior Neumann problem in the form of a combined single-
and double-layer potential 

JdD\ <>v\y) i 

(3.52) 

where η =* 0 is chosen as in (3.50) and where we require the density φ to belong 
to %(dD). Obviously, (3.52) solves the exterior Neumann problem (3.18) 
provided the density φ G 9l(3D) is a solution of the singular integral equation 

φ - Κ ' φ - π , Τ φ = - 2 £ . (3.53) 

Theorem 3.34. The combined single- and double-layer integral equation 
(3.53) for the exterior Neumann problem is uniquely solvable for all wave 
numbers satisfying Im k > 0. 

Proof. By using essentially the same argument as in the proof of Theorem 
3.33, it can be seen that the homogeneous equation φ — Κ'φ — /ηΤφ = 0 has 
only the trivial solution φ = 0 in ?fi(dD). 



MODIFIED INTEGRAL EQUATIONS 93 

To establish existence we shall regularize the singular integral equation 
(3.53) by using a slight modification of an approach due to Leis [3]. We start 
by picking a wave number k0 that is not an interior eigenvalue to the Dirichlet 
and Neumann problems, for instance, any k0 with Im k0 > 0. In the following, 
we indicate by a subscript the fact that the parameter k appearing in the 
operators is set equal to k0. From (3.48), we recall that the operator A0: = 
-Soi l -K'oK^I + KO)"1 is the inverse of the operator T0. Since S0 is com
pact, by Theorems 1.5 and 1.16 the operator A0 is compact. 

For an arbitrary k we can use the identity A0T0 = T0A0 = I to transform 
(3.53) into the equivalent form 

A0(l-K'-/r,(T-T0))<í>-/T7<í>=-2A0g, (3.54) 

an equation which we have to consider in the space C(dD). By Theorem 2.31 
the difference T - T 0 is compact, and hence the combination A 0 ( I - K ' - Z T J 
(T-T0)) is compact and the Riesz theory is applicable to (3.54). Since we have 
already shown uniqueness, we can now conclude existence from Corollary 1.20. 

Numerical implementations of the combined double- and single-layer 
potential approach have been described by Greenspan and Werner [1], 
Kussmaul [1], Bolomey and Tabbara [1], Ruland [1], Giroire [1], and Meyer 
et al. [1], [2]. We would like to point out that in the numerical procedure for the 
exterior Neumann problem one can either use the regularized form (3.54) of 
the integral equation or directly discretize the singular integral equation (3.53) 
by making use of (2.62). An analysis of the appropriate choice of the coupling 
parameter η in order to minimize the condition number of the integral 
operators has been carried out by Kress and Spassov [1]. 

Another method leading to uniquely solvable integral equations for the 
exterior boundary-value problems was proposed by Jones [1] who suggested 
adding a series of radiating waves of the form 

X(x,y): = ikt Î aHmh«\k\x\)Yr(±)hMk\y\)Y?(^) 

(3.55) 

to the fundamental solution Φ(χ, y). Here h^ denote the spherical Hankel 
function of the first kind and of order n and Y™ denote the spherical 
harmonics introduced in (3.19). In the following analysis of Jones' method we 
assume D to be a connected domain containing the origin and choose a ball B 
of radius R and center at the origin such that Bo D. On the coefficients anm 
we impose the condition that the series (3.55) is uniformly convergent in x and 
y in any region |JC|, |>>| > R + ε, e> 0, and that the series can be two times 
differentiated term by term with respect to any of the variables with the 
resulting series being uniformly convergent. 
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Replacing the fundamental solution Φ(χ, y) by the modification 

we see that the modified double-layer potential 

« ( * ) - / d*(Í^U(y)ds(y), xeR*\dD\B, (3.56) JdD ov(y) 

with continuous density ψ is a solution of the exterior Dirichlet problem (3.17) 
provided ψ is a solution of the integral equation 

Ψ0Ο+2/ d1{^U(y)ds{y)-2f(x), x<=dD. (3.57) 
JdD 

By our assumptions on the series (3.55) the kernel <?χ(χ, y)/3v(y) is con
tinuous on 3D X 3D, and hence by Theorem 2.6 the modified operator 
K: C(3D) -> C(3D) defined by 

(Κψ)(*): = 2/ d*{?'*U(y)ds(y)> xedD JdD ov\y) 

is compact. 

Theorem 3.35. The modified double-layer integral equation (3.57) for the 
exterior Dirichlet problem is uniquely solvable for all positive wave numbers 
k > 0 provided that either 

|2*„m + l | < l (3.58) 

for all « = 0,1,2,..., m = —/ι,...,/ι, or 

\2anm + \\>\ (3.59) 

for all n = 0,1,2,..., m = - Λ , . . . , «. 

Proof. We have to show that the homogeneous integral equation only has 
the trivial solution. Let ψ e C(3D) be a solution of the homogeneous equation 
ψ + Κψ = 0. Then w, as defined by (3.56), solves the homogeneous exterior 
Dirichlet problem. Hence, from the uniqueness of solutions to the exterior 
Dirichlet problem, w = 0 in R 3 \Z) and from the jump relations of Theorem 
2.21 (which remain valid for the modified double-layer potential) we have 
3u_/3v = 0on 3D. 

From the expansion (cf. Erdélyi et al. [1]) 

(3.60) 
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and (3.55) we see that there exist constants anm such that u can be expanded in 
the form 

« 0 0 « Σ Σ ^m{Uk\x\) + anmh^(k\x\)}Yn
m(^). (3.61) 

n = 0 m 

This expansion and its term by term derivatives are uniformly convergent in 
some domain Rx < \x\ ^ R2, where R + e<R]< R2. Using this expansion, the 
orthogonality of the spherical harmonics, and the Wronskian relation for the 
spherical Bessel functions, we now obtain from the second Green's theorem 
(3.5) that 

r i dü_ _ du_\ r (dû _du\. 
JdD\ dv dv ) ή χ | - Λ , \ dv dv I 

- ¿ Σ Σ | a _ | 2 ( l - | l + 2 û w m | 2 ) . (3.62) 
n=» 0 m — — n 

From this and the conditions (3.58) or (3.59), we can now conclude that 
anm = 0 for n = 0,1,2,..., m = — Λ , . , . ,Λ . Hence w = 0 in Äj ^ \x\ < Ä2

 an(* 
therefore u — 0 in Z ) \ 5 by the analyticity of u (Theorem 3.5). The jump 
relation of Corollary 2.14 now implies that ψ = 0. 

In the same manner the modified single-layer potential 

u(x)-[ *(x,y)4>(y)ds(y)> x^R3\dD\B9 (3.63) 
JdD 

with continuous density φ solves the exterior Neumann problem (3.18) pro
vided φ is a solution of the integral equation 

Φ(χ)-2ί d*{*>y\{y)ds{y)=-2g{x), x<=dD. (3.64) 
JdD dv(x) 

Noting that the operator K': C(dD) -» C(dD) defined by 

( S » ( * ) : - 2 f B*y*U(y)ds(y). x^dD, 
o n OV\X) 

is compact and repeating essentially the same argument as used in the proof of 
Theorem 3.35 yields the following theorem. 

Theorem 3.36. The modified single-layer integral equation (3.64) for the 
exterior Neumann problem is uniquely solvable for all positive wave numbers 
k > 0 provided that either (3.58) or (3.59) is satisfied. 
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Note that in contrast to the combined single- and double-layer approach for 
the Neumann problem the modified single-layer approach only involves com
pact operators and avoids regularization techniques. 

In our proof of Theorem 3.35 we have followed Ursell [2], who clarified 
parts of Jones' work, and Kleinman and Roach [2], who suggested various 
criteria for choosing the coefficients anm. 

From (3.62) we see that for the validity of Theorems 3.35 and 3.36 it is 
crucial that all coefficients anm in the modification (3.55) are chosen to be 
different from zero. If we have only a finite number of non vanishing coeffi
cients, say anm = 0 for n > N for some N e N, then from (3.62) we get anm = 0 
for all n < N and hence by (3.61) we can conclude that u can be extended into 
the whole interior domain D and represents a solution to the homogeneous 
interior Neumann problem. Therefore, if we let K^ denote the operator K with 
anm = 0 for n > N, the operator I + K^ can have a nontrivial nullspace only at 
the interior Neumann eigenvalues. Using the fact that the operator I + K with 
all coefficients different from zero has a trivial nullspace for all positive wave 
numbers, by a continuity argument employing the Neumann series of the 
operator (I + K)~!(KN — K), we observe that in order to make the modified 
integral equation uniquely solvable for a fixed finite range of positive wave 
numbers it suffices to require only that a sufficiently large number of the 
coefficients anm be different from zero. In a more detailed analysis Jones [1] 
actually proved that in order to remove the first N interior eigenvalues it 
suffices to have the first N coefficients in the series (3.55) different from zero. 

We shall conclude by showing that a special choice of the coefficients anm 
allows us to identify the fundamental solution Ψ with the Green's function for 
a ball with impedance boundary condition (cf. Ursell [1]). In particular, let the 
anm be defined by 

" , B : = y - (3-65) 

n = 0,1,2,..., m = - AÍ,...,/7, where 

an: = kti(kR)+iiJn(kR), 

ßn: = khy'(kR) + ivhy(kR), 

n = 0,1,2,..., for some constant η > 0. Using the Wronskian relation for the 
spherical Bessel functions, we see that 

l&l2 = *2|Α<"·(ω?)|2 + η2 |Α</>(^)|2 + - ^ 

\βη -2«„|2 = kW(kRr + i,2|A<B'>(*Ä)|2 - - ^ 
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from which we conclude that ßn =*= 0 for all n = 0,1,2,..., and that condition 
(3.58) is satisfied. The choice (3.65) of the coefficients anm now implies that for 
|JC| = R and \y\ > R the function 

*(x, y) = Φ(χ, y) + x(x, y) 

satisfies the boundary condition 

d*{*'*)+iV*(x1y) = 0, (3.66) 
3v{x) 

that is, Ψ is the Green's function for the exterior of the ball B of radius R with 
an impedance boundary condition. We note that the unique solvability of the 
exterior boundary integral equations using a fundamental solution satisfying 
(3.66) can be shown in a manner that is considerably simpler than the above 
approach due to Jones (cf. Ursell [1]). 

3.7 THE IMPEDANCE BOUNDARY-VALUE PROBLEM 

We shall now consider the impedance boundary-value problem for the 
Helmholtz equation. 

Exterior Impedance Boundary-Value Problem 

Find a function a e <3l (R3 \ Z>) satisfying the Helmholtz equation in R3\D, 
the Sommerfeld radiation condition at infinity, and the boundary condition 

- ^ + Xw = g on 3D (3.67) 

where g and λ are given continuous functions defined on 3D. 

Theorem 3.37. The exterior impedance boundary-value problem has at most 
one solution provided 

lm(£\) r>0 on 3D. (3.68) 

Proof. Let u satisfy the homogeneous boundary condition (du/dv)+\u = 
0 on 3D. Then 

îm{kLuïds)=lm(*LX]u]2ds 

and the statement follows from Theorem 3.12. 
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Analogous to the exterior Neumann problem (i.e., the special case when 
λ = 0), the single-layer potential 

u{x)=¡ <t>(x,y)<¡>(y)ds(y), x^R3\dD, 

is a solution of the exterior impedance problem (3.67) provided the continuous 
density φ is a solution to the integral equation 

<í>-K'<í>-\S<í>=-2g. (3.69) 

It is easily seen (cf. Theorem 3.22) that the homogeneous form of equation 
(3.69) has nontrivial solutions if and only if the wave number k is an interior 
Dirichlet eigenvalue. In fact, we have Λ ^ Ι - Κ ' - A S ) = 7V(I-K') = K, that is, 
N(l — K' — XS) is independent of λ. Therefore we shall not discuss the integral 
equation (3.69) any further but instead shall proceed to uniquely solvable 
integral equations via the combined single- and double-layer approach and the 
modified single-layer approach described in the previous section for the 
Neumann problem. 

The combined single- and double-layer potential 

« ( * ) « / [φ(χ9y) + iη^Φ^9ζ))φ(y)ds(y)9 x**3\dD 
JdD{ ov{y) j 

(3.70) 

where η =*= 0 is chosen as in (3.50) solves the exterior impedance problem (3.67) 
provided the density φ e %(dD) is a solution of the singular integral equation 

(1 - ιηλ)φ - (K'+ hjT+ ίη\Κ+ XS)<f> = - 2 g . (3.71) 

Using the same arguments as for the exterior Dirichlet problem (cf. the proof 
of Theorem 3.33), it can be shown that the homogeneous form of equation 
(3.71) only has the trivial solution φ = 0 in %(dD). Existence follows as in the 
proof of Theorem 3.34 by regularizing (3.71) into the equivalent form 

A 0 [ ( l - / η λ ) I - ( K , - l · / τ ? ( T - T 0 ) - l · / η λ K + λ S ) ] φ - I η φ = - 2 A 0 g . 

Therefore we have the following theorem. 

Theorem 3.38. The combined single- and double-layer integral equation 
(3.71) for the exterior impedance boundary-value problem is uniquely solvable 
for all wave numbers Im k ^ 0 and all impedances satisfying (3.68). 

An integral equation which we do not have to regularize is obtained by 
seeking for a solution in the form of a modified single-layer potential 

«(*)-/ *{*>y)*(y)*(y) (3-72) 
JdD 
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that solves the impedance boundary-value problem (3.67) provided the con
tinuous density φ is a solution of the integral equation 

JdD\ dv{x) ) 

x<EdD. (3.73) 

Proceeding as in the case of the Neumann problem, we can prove the following 
result. 

Theorem 3.39. The modified single-layer integral equation (3.73) for the 
exterior impedance boundary-value problem is uniquely solvable for all posi
tive wave numbers k > 0 provided that Im λ ^ 0 on dD and either (3.58) or 
(3.59) is satisfied. 

By using the integral equation (3.73), it can easily be shown that the 
solution to the impedance boundary value problem converges to the solution of 
the Neumann problem as λ -> 0. The corresponding and mathematically more 
challenging problem of the singular perturbation of the impedance problem 
into the Dirichlet problem as λ -> oo has been studied by Kirsch [6]. 

3.8 THE TRANSMISSION BOUNDARY-VALUE PROBLEM 

The mathematical description of the diffraction of time-harmonic acoustic 
waves by an obstacle D with acoustic constants different from those of the 
surrounding medium R3\D leads to a transmission problem of the following 
form. 

Transmission Problem 

Find two functions u ^ C2(R3\D)nC(R3\D) and u0 e C2(D)nC(D) satis
fying the Helmholtz equations 

ΔΜ + Α:2Μ = 0 in R3\D, ΔΜΟ + Α:2ΜΟ = 0 in D, (3.74) 

the radiation condition 

( j l [ ' g r a d "^)~ ^ ^ " M j x f r 1*1 ^°°> 
uniformly for all directions x/\x\ and the transmission conditions 

μκ-μ 0 Μ 0 = / 

du_duo_ on 3D. (3.75) 
3v 3v " g 
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Here k and /c0, μ and μ0 are given complex numbers and / and g are given 
continuous functions defined on 3D. The second boundary condition in (3.75) 
has to be understood in the sense described in Theorem 2.21. 

We note that the transmission conditions (3.75) are quite general in the 
sense that they always can be renormalized to read 

7 du 3u0 
u-u0 = f, λη^ - λ0-τ^- = g on 3D 

for appropriate functions / and g and complex numbers λ and λ0. From a 
physical point of view, an appropriate choice of the constants μ and μ0 
guarantees the continuity of the pressure and the normal velocity of the 
acoustic wave across the boundary 3D. 

For the sake of simplicity, we assume all the constants k and k0, μ and μ0 to 
be positive. However, our results can easily be extended to the case of complex 
values of these parameters (cf. Kress and Roach [2]). 

Theorem 3.40. The transmission problem has at most one solution. 

Proof. Let u and u0 satisfy the homogeneous transmission conditions 
μΐΑ - μ0Μ0 = 0, (du/3i>)-(3u0/dv) = 0 on 3D. Then from the second Green's 
theorem (3.5), we have 

HkLu%*)~Hk^!jfJUol2dx) 
and from Theorem 3.12 we obtain u = 0 in R3\Z>. The homogeneous boundary 
data now imply that u0 = 0, 3u0/3v = 0 on 3D, and hence from the represen
tation Theorem 3.1 we have that i/0 = 0 in D. 

In order to prove the existence of a solution to the transmission problem we 
seek the solution in the form of combined double- and single-layer potentials 

JdD\ op(y) j 
(3.76) 

»oW-f^^^jj^Hy^HM^yHiy^My), *ez>, 

with continuous densities ψ and φ and Φ0 denoting the fundamental solution Φ 
with k replaced by k0. Using Theorems 2.13, 2.19, and 2.21, it can be seen that 
(3.76) defines a solution of the transmission problem (3.75) if ψ and φ are a 
solution of the system of integral equations 

(μ + μ 0 ) ψ + ( μ Κ - μ 0 Κ 0 ) ψ + (μ 2 8-μ 2
0 8 0 )φ = 2 / , 

(3.77) 
(μ + μ 0 ) φ - ( T - T 0 ) ψ - ( μ K ' - μ 0 K ' 0 ) φ = - 2 g . 
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( : ) On the product space C(dD)xC(dD) equipped with the norm 
ΙΙ1ΑΧ(ΙΙΨΙΙοο>ΙΙΦΐΙοο)> w e introduce the operator A defined by 

A / - ( μ Κ - μ 0 Κ 0 ) - ( M
2 S - / t 2

0 S 0 ) \ 
\ (T-T0) (μΚ'-μ0Κ'0) I" 

A is obviously compact since by Theorems 2.30 and 2.31 all its components are 
compact. We can now write the system (3.77) in the abbreviated form 

(μ + μ 0 ) χ - Α χ = 2Α (3.77) 

where χ = I I and A = I _ M. 

Theorem 3.41. The transmission problem has a unique solution. 

Proof. The proof is accomplished by showing that (3.77) is uniquely 
solvable. Let χ = I be a solution to the homogeneous equation (μ + μ 0 ) χ -

Αχ = 0. Then the potentials u and u0 given by (3.76) solve the homogeneous 
transmission problem. Therefore, by the uniqueness Theorem 3.40, we have 
u = 0 in R 3 \ D and w0 = 0 in D. Now define 

iloJdD\ ov\y) ) 

ü°(*):=-i/ {^Í'PtM+Mx-yMyÜMy), **». 
Then by the jump relations for single- and double-layer potentials we have 

μ ο υ - Μ ο = Ψ> Μ + μυ0 = ψ 
on 3D. (3.78) 

dv_ _ ±du^ _ _ ]_du_ dv0 _ 

dv μ0 dv μ dv dv 

Hence v and t>0 solve the homogeneous transmission problem 

Δυ + Αφ = 0 in R 3 \ D , Δυ0 + Α:2υ0 = 0 in D 
with transmission conditions 

dv dv0 
μ ο υ - μ υ ο = 0, -r τ~ = 0 on 3D. 

dv dv 



102 BOUNDARY-VALUE PROBLEMS FOR THE SCALAR HELMHOLTZ EQUATION 

From Theorem 3.40 we now see that Ü = 0 in U3\D and v0 = 0 in D. Hence 
from (3.78) we can conclude that ψ = φ = 0. 

3.9 INTEGRAL EQUATIONS BASED ON THE REPRESENTATION 
THEOREMS 

Up to now, we have transformed the boundary-value problems to integral 
equations by seeking the solution in the form of surface potentials. However, it 
is also possible to obtain integral equations based on the representation 
Theorems 3.1 and 3.3. These equations will turn out to be adjoint to those 
derived by the surface potential approach. For brevity, we shall confine 
ourselves to the exterior boundary-value problems. For a detailed analysis see 
Kleinman and Roach [1]. 

Under the assumptions of Theorem 3.3, in particular u e <3l(IR3\Z)), we can 
represent radiating solutions u to the Helmholtz equation in the form 

Letting x tend to the boundary and using Theorem 2.13, we see that 

- w + K w - S ^ = 0 on 3D. (3.79) 
ov 

Taking the normal derivative on the boundary and using Theorem 2.19 shows 
that 

- - ^ + T W - K ' ^ = 0 on 3D. (3.80) 

Observe that u\dD e 9l(3D) since by assumption u e <3l(IR3\i5). 
Now let u be the solution to the exterior Dirichlet problem with boundary 

values / e %(3D). Then, by Theorem 3.29, we have that u e <3l(IR3\Z)) and 
using u = / on 3D and (3.80), we obtain the integral equation 

φ+Κ'φ = Τ/ (3.81) 

of the second kind for the unknown normal derivative $\ = 3u/3v. Since we 
have already established the existence of a solution to the exterior Dirichlet 
problem, the existence of a solution to the integral equation (3.81) is im
mediate. Hence we need only be concerned with the question of uniqueness. 
Equation (3.81) is obviously the adjoint equation of equation (3.26) obtained 
from the double-layer potential approach. Hence by Theorem 3.17 and the 
Fredholm alternative, equation (3.81) is uniquely solvable if and only if 
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the wave number k is not an interior Neumann eigenvalue. Having solved 
the integral equation for φ, the solution of the boundary-value problem is 
given through the representation Theorem 3.3. 

Now let u be a solution to the exterior Neumann problem. Then using 
du/dv = g on 3D and (3.79), we obtain the integral equation 

ψ - Κ ψ ^ - S g (3.82) 

of the second kind for the unknown boundary values ψ: = u on 3D. Since (3.82) 
is the adjoint of equation (3.29) obtained from the single-layer approach, by 
Theorem 3.22 and Fredholm's alternative, equation (3.82) is uniquely solvable 
if and only if the wave number k is not an interior Dirichlet eigenvalue. 

It is also possible to derive integral equations of the first kind. For the 
Dirichlet problem we obtain from (3.79) the equation 

S<i>=-/ + K/ (3.83) 

for the unknown normal derivative φ: = du/dv. The existence of a solution to 
the integral equation (3.83) again follows from the existence of a solution to 
the exterior Dirichlet problem and uniqueness is settled by Theorem 3.30 with 
unique solvability if and only if k is not an interior Dirichlet eigenvalue. 

As suggested by Burton and Miller [1] we can linearly combine the equa
tions (3.81) and (3.83) to obtain the integral equation 

φ + Κ ' φ - / η 8 φ = Τ / - / η ( Κ / - / ) (3.84) 

of the second kind. This combined Green's formula integral equation is the 
adjoint of equation (3.51) obtained by the combined double- and single-layer 
approach. Therefore, if η =*= 0 and η Re k ^ 0, the following theorem is a 
consequence of Fredholm's alternative. 

Theorem 3.42. The combined integral equation (3.84) for the exterior Dirichlet 
problem is uniquely solvable for all wave numbers satisfying Imk^O. 

For the Neumann problem we find from (3.80) the equation 

Τ ψ - g + K ' g (3.85) 

of the first kind for the unknown boundary values ψ: = u on 3D. This equation 
is uniquely solvable if and only if the wave number k is not an interior 
Neumann eigenvalue. 

Combining equations (3.82) and (3.85) we get the equation 

ψ - Κ ψ - ίηΎφ = - S g - îi |(g + K'g) (3.86) 

of the second kind. This combined Green's formula integral equation again is 
the adjoint of equation (3.53) obtained via the combined single- and double-
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layer approach. Because the operator T is not compact, a straightforward 
application of Fredholm's alternative is not possible and uniqueness for (3.86) 
has to be dealt with separately. Let ψ e ?fi(dD) be a solution of the homoge
neous equation ψ - Κ ψ - / η Τ ψ = 0 and define the double-layer potential v 
with density ψ. Then ¿η(3ν_/3ν)+ υ_ = 0 on dD and applying Green's 
theorem as in the proof of Theorem 3.33, we can conclude that v_ = dv_/dv 
= 0. Hence by Theorem 3.1 we have that t> = 0 in D and by Theorem 2.21 v 
solves the homogeneous exterior Neumann problem. Hence v = 0 in U3 \ D 
and from Corollary 2.14 we can now conclude that ψ = 0. 

Theorem 3.43. The combined integral equation (3.86) for the exterior 
Neumann problem is uniquely solvable for all wave numbers satisfying 
lmk>0. 

We can also use Jones' modification to derive integral equations that are 
uniquely solvable for all positive wave numbers. Theorem 3.3 remains valid 
after replacing the fundamental solution Φ(χ, y) by Ψ(χ, y) as defined by 
(3.55). Thus, analogous to (3.81) and (3.82), we obtain the modified integral 
equations 

φ + Κ'φ = Τ/ (3.87) 

for the Dirichlet problem and 

t-Kxp = -Sg (3.88) 

for the Neumann problem where the modified operators S and T are defined 
in an obvious way. Since the equations (3.87) and (3.88) are the adjoints of 
(3.57) and (3.64), respectively, we have the following theorem. 

Theorem 3.44. The Jones' modification (3.87) and (3.88) of the integral 
equations for the exterior Dirichlet and Neumann problems are uniquely 
solvable for all positive wave numbers k> 0 provided either (3.58) or (3.59) is 
satisfied. 

In a similar way, integral equations based on equations (3.79) and (3.80) can 
be obtained for the impedance and the transmission problem and these are the 
adjoints of (3.69), (3.71), (3.73), and (3.77). 

Closely related to the derivation of integral equations based on the represen
tation Theorem 3.3 is a procedure known as the null-field method. We shall 
now briefly describe this method. For any radiating solution u e <3l(IR3\i)) of 
the Helmholtz equation we have 

iaD{u{y)Ê^T^-^{,)^y)}My)-°' XŒD- (3·89) 

We assume the origin to be contained in D. Then, using the expansion (3.60) 
and the orthonormality of the spherical harmonics Yn

m over the unit sphere, we 
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find that 

JdD 
/ {«ω^ω-| ίω^ω}*ω-ο a*» 

for/i = 0,1,2,..., m = - Λ , . , . ,Λ where, analogous to (3.19), thet)™ are given by 

v?(y): = h™(kr)Y?(0,*). (3.91) 

Hence, for the exterior Dirichlet problem the unknown normal derivative 
φ'. — du/dv on dD is a solution of the moment problem 

JdD 

n = 0,1,2,..., m = - /?,...,« where 

/ φ ^ Λ - Λ " (3.92) 

The corresponding equations for the Neumann problem are 

M = 0,1,2,.,.., m = - «,.. . ,« where 

/ ψ ^ - Λ - g . " (3.93) 
Jan vv 

Equations of this type were first derived by Waterman [1] for electromagnetic 
scattering and later for acoustic scattering problems (Waterman [2]). A possi
ble approach for the numerical solution of the null-field equations is to choose 
a complete set of functions {w™} in L2(dD) and seek finite approximations of 
the form 

N n 

ΦΑ Σ Σ «nm<-
n = 0 m = — n 

Such an approach leads to a linear system of equations for the coefficients anm. 
For further details we refer the reader to Waterman [2]. 

Remarkably, as shown by Martin [1] and later in a simplified manner by 
Colton and Kress [3], the null-field equations are uniquely solvable for all wave 
numbers, that is, no nonuniqueness difficulties occur at interior eigenvalues. 

Theorem 3.45. The null-field equations for the exterior Dirichlet and 
Neumann problems are uniquely solvable for all wave numbers satisfying 
Im k > 0. 
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Proof. Since existence to the boundary-value problems and hence to the 
null-field equations is already established, we need only to establish unique
ness. Our proof of this is based on Colton and Kress [3]. 

Let </> be a solution to the homogeneous null-field equations for the exterior 
Dirichlet problem, that is, 

/ φν?ώ = 0 
JdD 

« = 0,1,2,..., m = — «,.. . ,«. Multiplying this equation by u™ as defined by 
(3.19) and reversing the steps leading from (3.89) to (3.92) shows that the 
single-layer potential 

JdD 

is identically zero in some ball contained in D and hence by Theorem 3.5 we 
have w = 0 in D. By Theorem 2.12 we now see that w is a solution to the 
homogeneous exterior Dirichlet problem. Hence w = 0 in R3 \Z) and from 
Corollary 2.20 we see that φ = 0 on dD. 

The uniqueness for the null-field equations to the exterior Neumann prob
lem follows in a similar manner. 

We note in closing that uniquely solvable null-field equations can also be 
obtained for the impedance and transmission problems (Colton and Kress [3]). 

3.10 THE TWO-DIMENSIONAL CASE 

It is occasionally important to look at boundary-value problems for the 
Helmholtz equation in R2 that describe acoustic scattering from infinitely long 
cylindrical bodies. Therefore, without going into any details, we would like to 
point out that all the results of this chapter remain valid in two dimensions 
after the appropriate modification of the fundamental solution and of the 
Sommerfeld radiation condition. We now quickly list these modifications. 

The fundamental solution (2.30) has to be replaced by 

φ(*, .κ)-^ 1 )(*Ι*->Ί) (3-94) 

where H^X) denotes the Hankel function of the first kind of order zero. Since 
(3.94) has a singularity at x = y of the form of the fundamental solution 

Φ0(χ,,) = ^ 1 ο 8 - 4 - (3.95) 
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of the Laplace equation in two dimensions, it can be verified that the 
properties of acoustic single- and double-layer potentials derived in Chapter 2 
remain valid in R2. 

The Sommerfeld radiation condition (3.7) has to be replaced by 

( | | j - , g r a d u ( * ) ) - i M * ) - o ( - ^ ) , M - o o , (3.96) 

uniformly for all directions X/|JC|. Then the two-dimensional version of 
Theorem 3.3, Lemma 3.11, and the corresponding uniqueness results remain 
valid. Finally, we note that from the asymptotic formula 

"¿,V) = /Je'('-''/4>(l + 0(7)) 

it can be seen that the fundamental solution (3.94) satisfies the radiation 
condition (3.96). 



4 
BOUNDARY-VALUE 
PROBLEMS FOR THE 
TIME-HARMONIC 
MAXWELL EQUATIONS 
AND THE VECTOR 
HELMHOLTZ EQUATION 

The aim of this chapter is to extend the results of the previous chapter to the 
case of the time-harmonic Maxwell equations. In particular, we shall use 
the method of integral equations to establish the existence of solutions to the 
classical boundary-value problems in electromagnetic scattering theory. How
ever, there are significant differences in the analysis needed to study the 
electromagnetic scattering problems and the acoustic scattering problems 
treated in the previous chapter. These differences lead to the need to examine 
the regularity properties of single-layer potentials in the space C0,a as well as 
the ne?d to develop new regularization techniques for treating the singular 
integral equations that arise in the course of our analysis. As in the case of 
acoustic wave propagation, a central difficulty is that the classical approach for 
solving electromagnetic boundary-value problems by the method of integral 
equations leads to equations that are noninvertible at interior eigenvalues. 

We begin our analysis by deriving representation theorems and introducing 
the Silver-Müller radiation condition for the time-harmonic Maxwell equa
tions. Because the elimination of either the magnetic or electric field from 
Maxwell's equations leads to the vector Helmholtz equation for the remaining 
field, we include a treatment of this equation in our discussion. This has the 
further advantage of clarifying the close relationship between acoustic and 
electromagnetic scattering theory. Having introduced the vector Helmholtz 
108 
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equation, we then proceed to consider boundary-value problems for the 
scattering of electromagnetic waves by a perfect conductor formulated either as 
a boundary-value problem for Maxwell's equations or for the vector Helmholtz 
equation. Included in our discussion are results on uniqueness, the existence of 
solutions via the classical approach leading to the previously mentioned 
problems of interior eigenvalues, and the recent approach of Kress [5], [6] and 
Knauff and Kress [1] that avoids these problems. After a brief consideration of 
the impedance boundary-value problem, we conclude by deriving integral 
equations for the solutions of the above boundary-value problems by means of 
the representation theorems. This approach leads to integral equations that are 
the adjoints of the ones obtained via the layer approach. 

4.1 TIME-HARMONIC ELECTROMAGNETIC SCATTERING 

We consider electromagnetic wave propagation in a homogeneous isotropic 
medium in R3 with electric permittivity ε, magnetic permeability μ, and electric 
conductivity σ. The electromagnetic wave with frequency ω > 0 will be de
scribed by the electric and magnetic field 

E(x9t)=(e+^) Ε(χ)β-ίωί 

i / ( ;c ,0 = M~1 /2#(*)e~ ,w ' . 

From the time dependent form of Maxwell's equations 

curl E + μ^- « 0, curl H - ε ^ = oE (4.1) 

we conclude that the space dependent parts E and H satisfy the time-harmonic 
form of Maxwell's equations 

curl E - ikH = 0, curl H + ikE = 0 (4.2) 

where the wave number k is given by k2 = (ε + (/'σ/ω))μω2. We choose the 
sign of k such that 

lmk>0. (4.3) 

Therefore the mathematical description of the scattering of time-harmonic 
waves by an obstacle D leads to boundary-value problems for the reduced 
Maxwell equations. In particular, consider the scattering of a given incoming 
electromagnetic wave E\ H' by a perfectly conducting body D. Then for the 
total wave Etot = Ei + £ \ Htot = Hi + H\ where E\ Hs denotes the scattered 
wave, the tangential component of the electric field must vanish on the 
conducting surface 3D, that is, [vy Etot] = 0. The scattering by a body D that is 
not perfectly conducting but that does not allow the electromagnetic wave to 
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penetrate deeply into the body leads to an impedance boundary condition of 
the form 

[v9[r,Htot]]-xp[i>,Etot] = 0 

where ψ denotes the (possibly nonconstant) electromagnetic impedance of the 
obstacle D. 

4.2 REPRESENTATION THEOREMS AND 
RADIATION CONDITIONS 

We begin our analysis by establishing a representation theorem due to Stratton 
and Chu [1] that shows that any solution to the time-harmonic Maxwell equa
tions can be represented as the electromagnetic field generated by a combina
tion of surface distributions of electric and magnetic dipoles. 

Theorem 4.1. Let E,H e C\D)D C(D) be a solution to Maxwell's equations 

curl E-ikH=09 cm\H+ikE = 0 in D. 

Then 

cur l / [p(y),E(y)]<t>{x,y)ds(y) 
·> an 'dD 

- -Uur lcur l /* [v(y), Η(γ)]Φ(χ, y) ds{y) = f E ^ ' X&Dl _ ik JdD
l y*h V ' , J v ' " K" \ o, xeR3\D, 

and 

curl/ [p(y),H(y)^(x,y)ds(y) 
JdD 

+ 4-curlcurl( [v(y), Ε(γ)]Φ(χ9 y) ds(y) = ( " HM> X^D\ _ 

Proof. We shall use the notations introduced in the proof of Theorem 3.1 
and choose an arbitrary fixed point x e D and an arbitrary fixed unit vector 
e e R 3 . Using Maxwell's equations for E and H and the relation 
curl curl curl βΦ = k2cur\ βΦ, we compute 

d iv / [£ , curl ^Φ ] - - ^ [ i / , curl curl βΦ]\ = 0 in D\{x). 
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Hence, from Gauss' theorem, we find 

f l(p(y)9E(y)9cur\ye<P(x9y)) 
JdD + nx Λ 

(4.4) 
- -¡¡¿('(y), H(y),cunJ/au\yg9(x, y))} ds(y) = 0. 

With the help of Stokes' theorem and the second Maxwell equation, we see 
that 

f (v(y), H(y),grad divye<í>(x, y)) ds(y) 

= - ikf (v{y), E(y))divye<b(x, y) ds{y). 
&x,r 

Then, since on Ωχ r we have Φ(χ9 y) = 0(\/r) and 

dive»(x, y) = ^ ψ + oU) cuAe*(x. y) = ̂ ψ + ol·-), 

we use curl curl βΦ = k2e$ +graddiveO to obtain by straightforward calcula
tion that 

lim f l(v{y)9E(y)9çmlye<b(x9y)) 

-jj^{"(y), H(y),cunycurlye<¡>(x, y))) ds{y) = (e, E(x)). 

Finally, by observing the symmetry relation (2.52) it is easily verified that 

(v(y), E(y)9cmlye<l>(x9 y)) = (e,cunx[v(y), E(y)]<b{x, y)) 

and 

(v(y)9 H(y)9cunycurl^(x9 y)) = (e9cunxcm\x[v(y)9 //(>>)]Φ(χ, y)). 

Hence we can now conclude from (4.4) that 

( e ^ J c u r U i ^ ) , £ ( > ) ] * ( * , .V) 

-jj¿canxcanx[p{y),H(y)]*{x,y)}ds{y)+E(x)}-0. 

Since e is arbitrary, we have established Theorem 4.1 for x e D. 
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If x e R 3 \ D , the proof follows in a similar manner from the identity 

/ l(v(y),E(y)9cunye<l>(x9y) 

-~ß(p(y)> H(y)9cunycuñye<b(x9 y)j ds(y) = 0. 

The representation of H is now easily obtained by using H= (1//A:)curl E. 
Analogous to Theorem 3.5, we now have the following theorem. 

Theorem 4.2. Any continuously differentiable solution to Maxwell's equa
tions possesses analytic cartesian components. 

In particular, the cartesian components of solutions to Maxwell's equations 
are automatically two times continuously differentiable. Therefore we can 
employ the vector identity 

curl curl E = - ΔΕ +graddiv£ 

to prove the following result. 

Theorem 4.3. Let £, H be a solution to Maxwell's equations. Then E and H 
are divergence free and satisfy the vector Helmholtz equation 

Δ£ + k2E = 0, AH + k2H = 0. 

Conversely, let £ (or / / ) be a solution to the vector Helmholtz equation 
satisfying div£ = 0 (or div// = 0). Then E and i/: = (l//7c)curl£ (or H and 
E: = ( - l/zÁ:)curl H) satisfy Maxwell's equations. 

Let flGR3bea constant vector. Then 

£ m ( x ) : = curlxûO(x, y) 
(4.5) 

Hm(x): = ±caúEm(x), x^U3\{y) 

represent the electromagnetic field generated by a magnetic dipole located at 
the point y G R3 and solve Maxwell's equations. Similarly, 

Η6(χ): = ο\ιήχαΦ(χ, y) 
(4.6) 

Ee(x):---^carlxHt(x), xe&\{y) 

represent the electromagnetic field generated by an electric dipole. Theorem 
4.1 obviously gives a representation of any solution of Maxwell's equations in 
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terms of electric and magnetic dipoles distributed on the boundary surface and 
in this sense the fields (4.5) and (4.6) may be considered as fundamental 
solutions to Maxwell's equations. 

By straightforward calculations, it can be seen that 

Em(x) = ik<b(x,y) 1*1 , 0 + 0 
1 

\x\2 ► o o , 

HM--M{x,y){a-(a,±)±)+o(±}, | * | - o o , 

uniformly for all directions x/\x\ and uniformly for all y contained in any 
bounded set of R3. From this, and the property Ee=-Hmy He = Em, we 
conclude the following. 

Theorem 4.4. Both the electromagnetic field Em, Hm of a magnetic dipole and 
the electromagnetic field Ee, He of an electric dipole satisfy the Silver-Müller 
radiation conditions (Müller [5], Silver [1]) 

H,- x\ E = o\ -i-
1*1 

| x | - »oo , 

and 

E9 x\ 1*1 | x | - »oo , 

uniformly for all directions JC/|JC|. 
As we shall see, it suffices to impose only one of these radiation conditions 

to completely characterize the behavior of solutions to Maxwell's equations at 
infinity. 

Theorem 4.5. Let £ ,H e Cl(R3\D)C\ C(R 3 \D) solve Maxwell's equations 

COi\E-ikH = 0, cunH + ikE = 0 in R3\D 

and one of the Silver-Müller radiation conditions 

* Γ 7 ι -•(R)· | x | - * o o , (4.7) 

or 

E, 1*1 
H=oi | x | - » o o , (4.8) 
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uniformly for all directions x / | x | . Then 

cur l / [v(y),E(y)]<t>(x9y)ds(y) 
JdD 

and 

cur l / [p(y),H(y)]<t(x,y)ds(y) 
JdD 

Proof. We shall again use the notations introduced in the proofs of 
Theorems 3.1 and 3.3. Proceeding as in Theorem 4.1, we see that the proof is 
established if we can show that 

/ l(v(y)9E(y)9cailye<t>(x9y)) 

- jj¿{"(y), H(y),cunycur\ye<¡>(x, y))} âs(y) -> 0, R - oo. 

To establish this we first verify that (4.7) implies that 

f \E\2ds = 0(\), *->oo. (4.9) 
J\y\-R 

We observe that from (4.7) it follows that 

0 = lim f \[H,p]-E\2ds 

- lim [ {|[//,r] |2 + | £ | 2 - 2 R e ( » , E9H)) ds. 

We now apply Gauss' theorem to obtain 

/ (v9E9H)ds=[ {v,E,H)ds + i[ {k\E\2-k\H\2)dy. 
J\y\ = R JBD JDR 
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Inserting the real part of this equation into the previous equation, we find that 

lim / {|[//,Hl2 + |£ | 2 }^+2Im(/c) í {\E\2 + \H\2} dy\ 
Ä - o o [J\y\-R JDR ) 

- 2 R e / (v,E,H)ds. (4.10) 
JdD 

From (4.10) and the fact that Im k > 0, it follows that (4.9) is true. 
From Stokes' theorem and the identity curl curl βΦ = - Δ^Φ + g radd iv^ , 

we now see that 

f l(r(y),E(y),cuxlye4>(x,y)) 

--£(v(y), H(y),CMlycmlye<t>(x, y))} ds(y) 

= / {(r(y), E(y),curíye<t>(x, y)) + (r(y), E(y))divye<i>(x, y) 
J\y\-R 

+ ik{v{y),H{y),e)<S>{x,y))ds{y) 

- / [E(y), 
J\y\ = x\ 

-ikf le, 

= :/ , + / 2 , 

οηή^Φ(χ, 

;*<>).£ 
"•¡frl 
-E(y) 

+ ^divye<ï>(x,y)-ike<ï>(x,y)\ds(y) 

By straightforward calculations we see that 

[ c u r l ^ ( x , > ; ) , | ^ ] + ^ d i v ^ ( x , j ) - / / c ^ ( x , j ) = o | ^ ) ^ \y\ = R, 

for the fundamental solution Φ, and using (4.9) and Schwarz's inequality, we 
can now deduce that Ix = 0(\/R\ R-+oo The radiation condition (4.7) and 
Φ(χ, y) = 0(\/R), \y\ = R, imply that I2 = o(l), R -> 00. Hence 

hm ( l(v(y),E(y),cur\e<ï>(x,y)) 

- -¡¡-("(y), H(y)9cm\ycun^(x, y))} ds(y) = 0, 

which completes the proof in case condition (4.7) is satisfied. 
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Finally, let (4.8) be satisfied. Then £ := - H and H: = E solve Maxwell's 
equations and satisfy [Hy(x/\x\)]- É= o(l/\x\), |x |-*oo. Hence verifying 
the representation under the radiation condition (4.8) can be reduced to the 
previous case of the radiation condition (4.7). 

Combining Theorems 4.4 and 4.5, we now have the following corollary. 

Corollary 4.6. Any solution to Maxwell's equations satisfying the radiation 
condition 

_ £ = 0 ( R ) ' |X |~*°°' 

uniformly for all directions x/\x\ also satisfies 

uniformly for all directions and vice versa. 
Since straightforward calculations show that the cartesian components of 

the fundamental solutions (4.5) and (4.6) satisfy the Sommerfeld radiation 
condition uniformly for all y contained in any bounded set of R3, from 
Theorem 4.5 we can also conclude the following result. 

Corollary 4.7. The cartesian components of any solution to Maxwell's 
equations satisfying the Silver-Müller radiation conditions also satisfy the 
Sommerfeld radiation condition for the scalar Helmholtz equation. 

As we shall see later in Corollary 4.14, the converse of Corollary 4.7 is also 
true. 

Theorem 4.8. Let E, H &Cl(R3\D) be a solution to Maxwell's equations 
satisfying one of the Silver-Müller radiation conditions. Then the expansions 

1 m = 0 Γ 

and 

*(x)-Ç Σ i £ í í 
™ = o r 

are valid in the sense of Theorem 3.6. 

H, x\ 

+ - Ρ Γ · | * | - > o o , 

Proof. This is an immediate consequence of Theorem 4.3, Corollary 4.7, 
and Theorem 3.6. 
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Corollary 4.9. Every solution E, H to Maxwell's equations satisfying one of 
the Silver-Miiller radiation conditions has the asymptotic form 

0ikr 

with the property 

and 

Ε ( * ) - ^ £ ο ( 0 , φ ) + θ ( ^ ) 

tf(*)-Çff0(*,*)+o(-L) 

H0 = [er,E0] 

(er,E0) = (er,Ho) = 0 

where er denotes the unit vector in the radial direction. The field E0: Ω -+ C3 is 
called the far-field pattern or radiation pattern of £, H. 

Proof. This follows from Theorem 4.8. The properties of E0 and H0 follow 
from the radiation conditions. 

Corollary 4.10. Let E, H &Cl(U3\D) be a solution to Maxwell's equations 
satisfying one of the Silver-Miiller radiation conditions for which the far-field 
pattern vanishes identically. Then E = H = 0 inR3\D. 

Proof. This is a consequence of Corollary 4.7 and Corollary 3.9. 
We conclude this section by considering representation theorems and radia

tion conditions for the vector Helmholtz equation. To simplify notations, for 
any domain G with boundary dG of class C2 we introduce the linear space of 
vector fields 

$(G): = {E:G^C3\EeC2(G)nC{G)ydWE,c\xnEe:C(G)}. 

The assumptions E9 F e ^(G) suffice for the application of the first vector 
Green's theorem 

f { (£ , AF) + (curl £,curl F) + div£divF} dx 
JG 

= f {(p,E,curlF) + (*>,£)divF}<fc (4.11) 
JdG 

and the second vector Green's theorem 

f{(E,AF)-(F,AE)}dx 
JG 

= f {(?,£,curl F) + (P, E)di\F- (v, F,curl E)- (v9 F)divE) ds 
JdG 

(4.12) 
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in a bounded domain G. Both of these Green's theorems follow easily from 
Gauss' theorem. 

Theorem 4.11. Let E e ^F(D) be a solution of the vector Helmholtz equation 

Δ£ + Α:2£ = 0 in D. 
Then 

curl / [v{y),E{y)]9(x9y)ds(y)-&*àf {v(y)9 E(y))<b(x, y) ds(y) 
JdD JdD 

- f {[cuAE{y),p(y)] + v(y)áivE(y))<l>{x,y)ds{y) 
JdD 

( - £ ( * ) , x e f l , 
\ 0, x e H 3 \ f l . 

Proof. In the setting of the proof of Theorem 4.1, we use the second vector 
Green's theorem to find 

/ {(v(y),E(y),cur\ye<t>(x,y)) + (v(y),E(y))divye<!>(x,y) 

-[{p(y),e,oulE{y))+{p(y),e)áivE(y)]l>(x,y))ds(y)-0. 

(4.13) 

From this we can easily derive the representation formula by the same type of 
calculations as carried out in Theorem 4.1. 

Let a G R3 be a constant vector and define vector fields satisfying the vector 
Helmholtz equation by 

£ , ( χ ) : = ™ΓΐχΰΦ(χ,>>) 

Ε2(χ): = αΦ(χ^) (4.14) 

£ 3 (x ) : = g r a d ^ ( x , j ) , xeU\{y). 

Then, Theorem 4.11 gives a representation of any solution of the vector 
Helmholtz equation in terms of the fields Ex, E2, and E3. By straightforward 
calculations (see Knauff and Kress [1]) it can be seen that the behavior at 
infinity of these fields is characterized by the following theorem. 

Theorem 4.12. The fields El9 E2, E3 satisfy the radiation condition 

[curl£'|f| + 7—rdiv£ - ikE = o —-
1*1 \ l*l 
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uniformly for all directions x/\x\ and uniformly for all y contained in any 
bounded set of R3. 

Theorem 4.13. Let E ^^(U3\D) be a solution to the vector Helmholtz 
equation 

&E + k2E = 0 in U\D 

satisfying the radiation condition 

curl E, -—-
\x\ 

+ -^-div£ - îfc£ = *( ΓΎ I (4.15) 
\x\ \\x\ ' 

uniformly for all directions x / | x | . Then 

curlf [p(y),E(y)]<b(x,y)ds(y)-ff*df (p(y)9 Ε(γ))Φ(χ9 y) ds(y) 
J3D JdD 

-f {[cunE(y)9v(y)] + v(y)dWE(y)}<ï>(x9y)ds(y) 
JdD 

0, x^D9 

E(x), x<=R3\D. 

Proof. Proceeding as in Theorem 4.5, it has to be shown that 

/ {(v(y)9 E(y)9cm\ye<ï>(x9 y)) + (v(y)9 E(y))divye<ï>(x9 y) 

-[(p(y)9e9cuilE(y))+(p(y)9e)áivE(y)^(x9y))ds(y)-+09 R^oo. 

We first show that 

f \E\2ds = 0{\)9 Ä->oo. (4.16) 
J\y\ = R 

Using the radiation condition and the first vector Green's theorem, we derive 

lim f ( | [ cur l£>] + *>div£|2 + \k\2\E\2} ds 

+ 2lm{k)j {|A:|2|£|2 + |curl£ |2 + |div£|2}¿>> (4.17) 

= -2\rÁkj {(v,E,c\xnE) + (v,E)divE)\ds 

from which (4.16) follows. 
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We now rearrange 

f {{p(y), E(y),cwl^(x, y)) + (*(y), E(y))diwye<t>(x, y) 
J\y\~R 

-[(p(y),e,cw\E(y)) + (p(y),e)dwE(y)]<!>(x,y)}ds(y) 

J\y\-R 

J\y\ = R\ 

cunye<b(x, y), 
\y\ 

+ y-ai\ye<b(x, y)-ike$(x, y)\ ds{y) 

c u r l £ ( ^ ) , ^ + ^aivE{y)-ikE{y)y{x,y)ds{y) 

and complete the proof analogously to Theorem 4.5. 

Corollary 4.14. Let £ be a solution to the vector Helmholtz equation satisfy
ing the radiation condition (4.15). Then the cartesian components of £ satisfy 
the Sommerfeld radiation condition (3.7) and vice versa. 

Proof. This can be seen either by straightforward calculations using the 
representation formulas of Theorems 3.3 and 4.13 or deduced from the 
identities 

(r(y), E(y),mrlye1>(x, y)) + (v(y), Ε(γ))άϊνγβΦ(χ, y) 

+ (v(y),cml/l>(x,y)[E(y),e]) 

and 

(r(y),e,curlyE(y)) + (v{y),e)divyE(y) 

dv{y) 
(e,E(y)) + {v(y),cur\y[e,E(y)]). 

JdD 

From these relations it follows from Stokes theorem that 

/ {(v(y), E(y),cur\ye<ï>(xy y)) + (v(y), E(y))divye<b(x, y) 
Jan 

[{p(y),e,cUríyE(y)) + (v(y),e)divyE(y)]<t>(x,y))ds(y) 

d9(x,y) U^'^^^^-^^^)^'^^}^^ 
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which in view of (4.13) demonstrates that the representation formulas for the 
vector Helmholtz equation stemming from Theorems 3.1 and 3.3 and Theo
rems 4.11 and 4.13 can be transformed into each other. 

Corollary 4.14 combined with Theorem 4.3 shows that the converse of 
Corollary 4.7 is also valid. 

4.3 THE BOUNDARY-VALUE PROBLEMS FOR A PERFECT 
CONDUCTOR: UNIQUENESS THEOREMS 

We shall consider the following interior and exterior boundary-value problems 
for Maxwell's equations: 

Interior Maxwell Boundary-Value Problem 

Find two vector fields E, H G C\D)D C(D) satisfying Maxwell's equations in 
D and the boundary condition 

[v,E] = c on 3D (4.18) 

where c G C0,a(3D) is a given tangential field with the additional property that 
its surface divergence Dive exists in the sense of the limit integral definition 
and is of class C°>a(3D), that is, c G %^«(3D). 

Exterior Maxwell Boundary-Value Problem 

Find two vector fields £, / / G ( C ! ( R 3 \ 5 j n C ( R 3 \ Z ) ) ) satisfying Maxwell's 
equations in R3 \Z), the Silver-Müller radiation condition (4.7) and (4.8), and 
the boundary condition 

[v,E] = c on 3D (4.19) 

where c G S°'a(dD) is a given tangential field. 
From the vector formula (2.75), we observe that the condition on the given 

tangential field c to possess a continuous surface divergence is necessary for 
the existence of a solution to the boundary-value problems. As we shall see 
later, Holder continuity of the boundary data is required for our boundary 
integral equation treatment of the boundary-value problems. 

Recalling Theorem 4.3 we eliminate the magnetic field and obtain from the 
boundary-value problem for Maxwell's equations a boundary-value problem 
for the vector Helmholtz equation ΔΕ + k2E = 0 with boundary conditions of 
the form 

[*>,£] = c, div£ = 0 on 3D. (4.20) 
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Similarly, eliminating the electric field and using (2.75) we obtain a boundary-
value problem for AH + k2H= 0 with boundary conditions 

[[cuAH,v]9p]=ik[c,v], (v,H) = jOivc on 3D. (4.21) 

Hence, in addition to the boundary-value problems for Maxwell's equations, 
we shall also consider the following süghtly more general boundary-value 
problems for the vector Helmholtz equation. 

Interior Electric Boundary-Value Problem 

Find a vector field E<E<$(D) (i.e., a vector field E &C2(D)C\C(D) with 
div£,curl E ^C(D)) satisfying the vector Helmholtz equation in D and the 
boundary condition 

[*>,£] = c, div£ = y on 3D (4.22) 

where γ e C°'a(3D) is a given function and c e S0a(dZ)) is a given tangential 
field. 

Exterior Electric Boundary-Value Problem 

Find ja vector field E e S r(R3\D) satisfying the vector Helmholtz equation in 
R3 \Z), the radiation condition (4.15), and the boundary condition 

[*>,£] = <:, div£ = y on 3D (4.23) 

where γ and c are given as in the interior problem. 

Interior Magnetic Boundary-Value Problem 

Find a vector field H e ÍF(D) satisfying the vector Helmholtz equation in D 
and the boundary condition 

[[curl #,*>],*>]=</, (*>,//) = Ô on 3D (4.24) 

where δ e C°'a(3D) is a given function and d G C°'a(3D) is a given tangential 
field. 

Exterior Magnetic Boundary-Value Problem 

Find a_ vector field H e 9 r (R 3 \5 ) satisfying the vector Helmholtz equation in 
R3 \Z), the radiation condition (4.15), and the boundary condition 

[[curli/, *>],*>]=</, {v,H) = 8 on 3D (4.25) 

where δ and d are given as in the interior problem. 
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From the relation Adiv£ = divA£ we observe that for any solution E of the 
vector Helmholtz equation div£ solves the scalar Helmholtz equation. In 
addition, for the exterior problems, div£ satisfies the Sommerfeld radiation 
condition (3.7) provided E satisfies the radiation condition (4.15). This can be 
seen from taking the divergence in the representation Theorem 4.13 to obtain 

d iv£(x ) - /" (k2{v{y),E{y))$(x,y)-{&2idfi{x9y)9v{y),cunE{y)) 
JdD\ 

+ dWE(y)d*{*'y))ds(y), XŒR\D. 3v{y) ) 

Hence, from the special boundary condition div£ = 0 on 3D for the electric 
boundary-value problem, we can conclude in the case of the interior problem 
for Im k > 0 and in the case of the exterior problem for Im k ^ 0 that div£ = 0 
in D or R3 \Z), respectively. Hence, in view of Theorem 4.3, the Maxwell 
boundary-value problem and the special case of the electric boundary-value 
problem where γ = 0 are equivalent. Similarly, the Maxwell boundary-value 
problem is equivalent to the magnetic boundary-value problem where Div[d, v] 
+ k2S = 0. In this case, under the assumption that curl curl / / e C(D) or 
C(R 3 \D) , we see from (2.75), 

-^-div//=(*>, curl curl / / ) + (*% Δ// ) dv 

= -Div[ï%curl//]-Â:2(ï>,//), 

and the boundary conditions on H that div// satisfies the homogeneous 
Neumann condition (d/dp)divH = 0 on 3D. The required regularity for H 
follows from the fact that HeC0a(D) or C°'a(R3\D) which is a conse
quence of the analysis in the next section and the following lemma. 

Lemma 4.15. Let A e C2(D)DC°'a(D) beji solution of the vector Helmholtz 
equation with the property that di\A e C(D) and that the surface divergence 
Oiv[p,cunA] exists_and is of class C^a(3D\ that is, [*>,curM]€E S°'a(d/)). 
Then div.4 e C]a(D) and curlcurl A G C°-a(D). 

Proof. Taking the divergence in the representation Theorem 4.11, we find 
that 

div^(x)= [ l-k2(r(y)M(y)Wx,y)+(ff&d<l>(x,y)9v(y)9cwlA(y)) 
JdD\ 

-àivA{y)d*{*'y)\ds{y), x*D. 9»{y) I 



124 MAXWELL'S EQUATIONS AND THE VECTOR HELMHOLTZ EQUATION 

From this, using Gauss' theorem (2.73), it follows that 

<ΆνΑ{χ)-[ U(y)<t>(x,y)-divA(y)d*{*'y))ds(y), x*D, 

(4.26) 

where we have set </>: = - k2(v, A)-Oiv[p,cur\A]. Now letting x tend to the 
boundary and using Theorem 2.13, we obtain the integral equation 

div^í(x) + 2 / d*{*'y)divA(y)ds(y) = 2Í Φ(χ, γ)φ(γ) ds( y)9 JdD ov(y) JdD 

X(EdD, 

which we can rewrite in the abbreviated form 

for \p: = di\A on 3D. Since by assumption we have 4>eC°'e(dZ>), from 
Theorem 2.31 we have S<f>e CUa(dD), and thus from Theorem 2.30 we 
conclude that ψ e Cu"(dD), that is, diwA <ECha(dD). Then, using Theorems 
2.17 and 2.23, we finally conclude from (4.26) that d\wA^CXa(D). The 
statement on curl curl A follows from the identity curl curl A = k2A + graddivA 

Lemma 4.15 is, of course, also valid for A defined in an exterior domain. 

Theorem 4.16. Let Im k > 0. Then the interior Maxwell boundary-value 
problem, and the interior electric and the interior magnetic boundary-value 
problems have at most one solution. 

Proof. For any solution E e ^(D) of the vector Helmholtz equation, we 
have from the first Green's theorem (4.11) that 

f {(p, £,curl £ ) + (*>, £ )d iv£} ds = ( (|curl E\2 + |div£|2 - k2\E\2} dx. 
JdD JD 

Because the left-hand side of this equation vanishes if E satisfies either the 
homogeneous electric or magnetic boundary condition, splitting the right-hand 
side into real and imaginary parts and using Im k > 0 shows that 

f \ E \ 2 d x = 
JD 

0. 

Hence, E = 0 in D. 
For k real, we in general do not have uniqueness for the interior problems. 

As is easily seen, the fields 

E( x) = curl xu(x), H(x) = η-cun E(x) 
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satisfy Maxwell's equations provided u is a solution to the Helmholtz equation. 
In particular, if we choose « to be a nontrivial solution to the homogeneous 
Dirichlet problem for the unit ball as described by (3.19), we see that the 
homogeneous boundary condition [v, £ ] = 0 on the boundary is satisfied. In 
general, as in the case of the Dirichlet and Neumann problem, it can be shown 
that for any domain D there exists for each of the interior Maxwell, interior 
electric, and interior magnetic problems a countable set of positive wave 
numbers k9 called eigenvalues, accumulating only at infinity for which the 
homogeneous problem has nontrivial solutions (see Müller and Niemeyer [1]). 

If we denote the set of interior eigenvalues of the Dirichlet problem by Φ, of 
the Maxwell problem by 911, and of the electric boundary-value problem by S, 
we have the relation & = 911 U D̂. To see this, we note that by the eUmination 
process described in Theorem 4.3 it is obvious that 911 c S. To show Φ c S we 
note that for any solution u of the homogeneous Dirichlet problem, grada 
solves the homogeneous electric problem. Hence 9H U ^ c S. Conversely, if E 
is a solution of the homogeneous electric problem, then divis solves the 
homogeneous Dirichlet problem. Hence, either div£ = 0 and by Theorem 4.3 
the field E leads to a nontrivial solution of the homogeneous Maxwell problem 
or div£ is a nontrivial solution of the homogeneous Dirichlet problem. Hence 
S c 9H U <3). Similarly, we have % = 9H U 91 where % denotes the interior 
magnetic eigenvalues and 91 the interior Neumann eigenvalues. 

Uniqueness results for the exterior electromagnetic boundary-value prob
lems are based on the following result. 

Theorem 4.17. Let £ e ^ ( R 3 \ 5 ) be a solution to the vector Helmholtz 
equation satisfying the radiation condition (4.15) and 

Imikj {(v,E,cunË) + (v,E)divE)ds\>Q. (4.27) 

Then£ = OinR 3 \Z) . 

Proof. If Im k > 0, then from (4.17) we see that 

f |£ | 2¿x-0, JR-*OO. 

Hence E = 0 in U3\D. If Im k = 0 then from (4.17) we see that 

f \E\2dx^>0, R-+O0. 
J\x\ = R 

Then, using Corollary 4.14 and applying Lemma 3.11 to the cartesian compo
nents of £ , we find that E = 0 in R 3 \ D . 
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Theorem 4.18. The exterior Maxwell boundary-value problem and the exte
rior electric and magnetic boundary-value problem have no more than one 
solution. 

Proof. This follows from Theorem 4.17. 

4.4 EXISTENCE OF SOLUTIONS TO THE ELECTROMAGNETIC 
BOUNDARY-VALUE PROBLEMS BY INTEGRAL EQUATIONS OF THE 
SECOND KIND 

We shall now reduce the electromagnetic boundary-value problems to integral 
equations of the second kind that, as opposed to the acoustic boundary-value 
problems, we must discuss in spaces of Holder continuous functions rather 
than merely continuous functions. 

Theorem 4.19. The electromagnetic field of a surface distribution of magnetic 
dipoles 

£ ( * ) = curl/" Q(x,y)a(y)ds(y), 
JdD 

x^U3\3D (4.28) 
/ / ( * ) =-¿curl £ ( x ) , 

with tangential density aeC°'a(3D), 0 < a < l , solves the interior Maxwell 
problem in D provided a is a solution of the integral equation 

a(x)-2Í [ν(χ),ο\ιτ\χ{Φ(χ,γ)α(γ))]α3(γ) = -2α(χ), xedD. 
JdD 

(4.29) 

It solves the exterior Maxwell problem in R3\D provided a is a solution of the 
integral equation 

a (x) + 2 f [ρ(χ),οηήχ{Φ(χ, y)a(y)}] ds(y) = 2c(x), x e 3D. 
JdD 

(4.30) 

Proof. From Theorems 4.3 and 4.4 we see that £ , H satisfy the Maxwell 
equations in R3\3D and_the radiation conditions (4.7) and (4.8). By Theorem 
2.24 we have E e C°'a(D) and E G C°'a(R3 \Z)) and the boundary conditions 
(4.18) or (4.19) are fulfilled if a is a solution to the integral equation (4.29) or 
(4.30), respectively. Furthermore, since E satisfies [p, £ ] = c on 3D where 
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Dive e C0'"(<?/)), wc see from Lemma 4.15 as applied to 

A(x):= f <&(x,y)a(y)ds(y), x<EU3\dD, 
JdD 

that H^C0a{D) or H e C°'a(R3\D) for the interior or exterior problem, 
respectively. 

Since for the interior problem we now have div^4 G C U ( D ) , we see from 
Corollary 2.25 that avwA restricted to U3\D has boundary values in class 
Cla(<9£>). Hence by Theorem 3.27 we have divA<=Cla(U3\D) and again 
using the identity curl curl Λ = - áA +graddiv,4, we can conclude that 
H G C0,a(R3\D). Similarly, for the exterior problem we also have H e 
C0t*(D). We can now apply (2.75) to the jump relation a = [v, E+]-[p, E_] of 
Corollary 2.25 to obtain Diva<=C0a(<?£>)· Thus we have established the 
following result. 

Corollary 4.20. Any solution a to the integral equation (4.29) or (4.30) 
automatically belongs to %°'a(dD) if c e S°'a(dD). 

In an analogous manner, we can prove the following theorems for the 
electric and magnetic boundary-value problems. 

Theorem 4.21. The vector field 

£ ( x ) = cur l / <b(x,y)a(y)ds(y)-f Φ(χ, y)\(y)p(y) ds(y), 
JdD JdD 

x^U3\dD, (4.31) 

with tangential density a and scalar function λ of class C°*a(dD) solves the 
interior electric boundary-value problem provided a and λ solve the system of 
integral equations 

a(x)-l( [ρ(χ),οηήχ{Φ(χ, y)a(y))] ds(y) 
JdD 

+ 2Í *>(x9y)[r(x),p(y)]\(y)ds(y) = -Mx), (4-32) 
JdD 

λ(χ)-2ί d<í>i*'y)\(y)ds(y) = -2y(x), x € Í D . 
JdD äviy) 

It solves the exterior electric boundary value problem provided a and λ solve 
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the system of integral equations 

a(x) + 2[ [v(x),cm\x{<!>(x,y)a(y)}]ds(y) 
JdD 

-if <b(x,y)[v(x),r(y)]\(y)ds(y) = 2c{x), (4.33) 
JdD 

\(x) + 2[ d*{*>y)\(y)ds(y) = 2y(x), x^dD. JdD ov(y) 

Theorem 4.22. The vector field 

H(x)=f 4>(x,y)[p(y),b(y)]ds(y) + ff*d[ <»(x9yMy)ds(y)> 
JdD JdD 

x<EU3\dD (4.34) 

with tangential density b and scalar function μ of class C°'a(dD) solves the 
interior magnetic boundary-value problem provided b and μ solve the system 
of integral equations 

b(x) + 2Í [p(x),[p(x),cun^(x,y)[v{y),b(y)])]]ds(y) = 2d(x), 
JdD 

μ(χ) + ΐί <t>(x,y)(p(x),p(y),b(y))ds(y) (4.35) 
JdD 

+2i d¥?!\(y)ds(y) = 2*(x), x*9D. 
JdD dv{x) 

It solves the exterior magnetic boundary-value problem provided b and μ solve 
the system of integral equations 

b(x)-l( [ν(χ),[ρ(χ),ονχήχ{Φ(χ, y)[V(y)>b(y)])]]ds(y) = -2d(x), 
J3D 

μ(χ)-2ί *(x,y)(*(x),*(y),b(y))ds(y) (4-36) 
o n 
JdD 

2r M(x>yK{y)ds{y) = _2Hx)> x^dD 
JdD OV(X) 

The proof of the existence of solutions to these integral equations based on 
the first and second parts of Fredholm's alternative was first given by Müller 
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[1], [3] and Weyl [2]. In the following we shall describe a slightly modified 
version of their approach. 

Recalling the definition (2.82) of the compact operators Μ,Μ': ?Γαα((9Ζ)) 
-> ?Γ 0a(dZ>), we can write the integral equations (4.29) and (4.30) in the short 
form 

a -Ma = - 2 c (4.29') 

and 

fl+Mû = 2c. (4.300 

Note that equation (4.29') for the interior Maxwell problem is equivalent to the 
equation 

b + M'b = -2[v9c] (4.29") 

for the density b: = [v,a]. Hence the integral equations of the interior and 
exterior Maxwell problems are adjoint. 

As we shall see, the nullspace of the operator 1 + M corresponds to solutions 
of the homogeneous interior Maxwell problem. Therefore we introduce the 
linear space 

^ : = {[v,H]\dD\EtH<ECl(D)r)C(D),cunE-ikH = 0, 

cunH + ikE = 0 in D, [*>,£] = 0 on 3D). 

If k is not an interior Maxwell eigenvalue, then obviously 911 = {0}. Note that 
the pair H, — E satisfies Maxwell's equations if and only if the pair E, H does. 

Note also that because of Theorem 2.32 the nullspace of I + M in the spaces 
C(3D) and C°>a(dD) is the same. 

Theorem 4.23. JV(I + M) = 911. 

Proof. Let a e N(l + M ) and define an electromagnetic field £ , H by 
(4.28). Then [v, £ + ] = 0 on 3D and from the uniqueness Theorem 4.18 it 
follows that E = 0 in U3\D. From the conclusions on the regularity of H 
leading to Corollary 4.20, we see that ikH = curl curl A = k2A +graddiv/i has 
continuous tangential components across the boundary dD. Thus [v, H_] = 0 
on dD, that is, H, — E form a nontrivial solution to the interior Maxwell 
problem. Finally, from Corollary 2.25, we find a = [P, E+]—[P, E]. Hence 
a e 9 H . 

Conversely, let a G 911, that is, a = [py H]\dD where E, H is a solution of the 
homogeneous interior Maxwell problem. Then from the representation Theo
rem 4.1 we have 

curlf <b(x,y)a(y)ds{y) = 0, x<=R3\D. 
JdD 
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Passing to the limit x-+ 3D and using Theorem 2.26, we have α + Μα = 0, that 
is, £ieJV(I + M). 

By Fredholm's alternative Theorem 1.30 we have dim N(l + M) = 
dimJV(I + M') — WIM where ffi^ — 0 if k is not an interior Maxwell eigenvalue 
and mM^N if k is an eigenvalue. For the second case, we have the following 
theorem. 

Theorem 4.24. Let bx,..., bm be a basis for N(l + M') and define 

£ , (x ) : = cur l / Φ(*, JO[Ä,( .V) , I - ( .V)] &(>0, ^Z) 

i / y (x) : = -^cur l£ y (x) , X G R 3 \ 5 D , 

(4.37) 

j = \,...,mM. Then 

*>- [* , [*,£>+]] on 3D (4.38) 

7 = 1,..., m M9 and the tangential fields 

aj: = [*9HJ+] (4.39) 

7 = l, . . . ,mM , form a basis of N(\ + M). The matrix 

(aj>bi)=f {v,Ei+,îfj+)dsy j9l=\9...9mM9 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Proof. Since bj+M'bj = Q we have [v9 £y_] = 0 on 3D. Using the jump 
relations of Corollary 2.25, we therefore see that [bJ9 v] = [v9 EJ+] on 3D. The 
pair Ej, Hj is a solution of the homogeneous interior problem. Since interior 
Maxwell eigenvalues are real, the pair Ej9 — Hj also solves the homogeneous 
problem. As in the proof of the previous theorem, we have the continuity result 
[v, Hj+] = [v, Hj_] and therefore by Theorem 4.23 [v9 HJ+] e 9H = N(l + M). 

Assume aj9j = \9... 9 m M, satisfies 

and define 
7 - 1 

mM mM 

E:= Σ SJEJ, # : = £ a,//,. 
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Then 

f (r,H+,E+)ds = 0 
JdD 

that is, 

í { ( ^ £ + , c u r l £ + ) + ( ^ ,£ + )d iv£ + }¿y = 0 
JdD 

and from Theorem 4.17 we conclude E = H = 0 in U3\D. In particular, 
[v, £+] = 0 on 3D and therefore Σ^δ,.ο,-= 0. Hence a, = 0,j: = \,...,mM, and 
the proof is completed as in Theorem 3.18. 

Remark 4.25. Since the interior Maxwell eigenvalues are real, we can choose 
the basis of the solutions to the homogeneous interior Maxwell problem in 
such a way that the electric fields are purely imaginary and the magnet fields 
are real. Therefore we can select the basis b,,...,bmM of N(l + M') in Theorem 
4.24 such that the au...,amM are real valued. 

We are now able to obtain existence results on the interior and exterior 
Maxwell problems. 

Theorem 4.26. The interior Maxwell problem is solvable if and only if 

f (cyH)ds = 0 (4.40) 
JdD 

for all solutions E, H to the homogeneous interior Maxwell problem. 

Proof. The proof proceeds as in Theorem 3.20 with Fredholm's alternative 
applied to the integral equation (4.29") and use being made of Theorem 4.23. 

The necessity of the solvability condition (4.40) follows from the second 
vector Green's theorem (4.12) applied to a solution of the inhomogeneous and 
a solution of the homogeneous problem. 

Theorem 4.27. The exterior Maxwell problem is uniquely solvable. 

Proof. This is proved in a manner analogous to Theorem 3.21 using the 
integral equation (4.30). The necessary modification of (4.28) in the case when 
k is an interior Maxwell eigenvalue is 

£ ( x ) = curl/ <b(x9y)a(y)ds(y)+ Σ « ,# , (* ) , 
JdD j - l 

(4.41) 
H(x) = — cur l£ (x) , x<ER\dD, 
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where the / / · , j = \,...,mM, are defined by (4.37). Using (4.39) and Remark 
4.25, we observe that (4.41) is a solution of the exterior Maxwell problem if a 
and the coefficients aJ9j = l , . . . ,mM , are chosen such that 

α+Μα = 2ο-2Σ ajaj- (4 ·4 2) 
7 = 1 

The proof is now completed as in Theorem 3.21 by using Theorem 4.24. 
To discuss the system of integral equations given in Theorems 4.21 and 4.22, 

we introduce the product space X0^(dD): = ̂ ^a(dD)xC°^(dD) endowed 
with the product orm 

(x)||0 e:-max(||fl | |0 i e , | |X||0 f e). 

In an obvious notation, we define operators L,L': X°'a(dD)-* X°'a(dD) of 
the form 

L = | L " H L': = ̂ L'" L' 
^2i L22 / \ L2, L22 

where 

L n ( f l ) : -M(e) , L'n(6):=M'(b), 

L I 2(A):«-[r ,S(Xp)], L'2l(b):=(v,S[V, b]), 

L21(a):=0, L'12(M): = 0, 

L22(A):=K(X), L22(M):=K'(M). 

(4.43) 

From Theorems 2.30, 2.31, and 2.32 we see that the operators L and L' are 
compact since their components are. We introduce a bilinear form ( · , ·> : 
X°-a(dD)XX°'a(dD)-*C by 

(l)il)):'ija'b^+Lx^· (444) 

Then the operators L and L' are adjoint with respect to this dual system. 
We can now rewrite the systems of integral equations of Theorems 4.21 and 

4.22 in the abbreviated operator form 

(iKí)--^) <«2') 
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and 

for the interior and exterior electric problem and 

(ÎMÎMÎ) 
and 

(íMíMí) 
for the interior and exterior magnetic problem. 

We introduce the linear space 

He9(D), A ¿ / + ¿ 2 / / = 0 in D \ 
[[cwAH,v],v] = 0, (v,H) = 0 on dDj' 

Theorem 4.28. N(l + L) = %. 

Proof. Let (*)e N(l + L) and define a field E by (4.31). Then [v, £ + ] = 0 
and div2Í+ = 0 on dD and from the uniqueness Theorem 4.18 it follows that 
£ = 0 in R3\D. By the jump relations of Corollary 2.25, we now obtain 
(p, E_) — 0 on dD and as in the proof of Theorem 4.23 it can be shown that 
curl E has continuous tangential components across the boundary 3D. Thus 
[[curl E_, p], v] = 0 on dl>, that is, £ is a solution to the homogeneous interior 
magnetic problem. Finally, from Corollary 2.25 we see that a = — [v9 E_] and 
X = - d i v £ _ . Hence ( j e l 

Conversely, let Í * j e 3C, that is, a = [i% H]\dD and λ = div/f | a r ) where H is 
a solution to the homogeneous interior magnetic problem. Then from the 
representation Theorem 4.11 we have 

curl f Φ(χ,γ)α(γ)ώ(γ)- ί Φ(χ9 y)\(y)v(y) ds(y) = 0, x^R3\D. 
JdD JdD 

Passing to the limit x-+ dD and taking the tangential component we find 
with the aid of Theorem 2.26 that a + L n a +L12X = 0. Taking the divergence 
and letting x -» 3D, we obtain with the aid of Theorem 2.13 that λ +L22A = 0. 
Hence (°)eiV(I + L). Note that as in the case of Theorem 4.23 the nullspaces 
are the same in the space C(dD) and C°'a(dD). 

By Fredholm's alternative we have dim NQL + L) = dim NQL + L') — mH where 
mH = 0 if k is not an interior magnetic eigenvalue and where mH e N if k is an 
eigenvalue. For the second case we have the following theorem. 

(4.330 

(4.350 

(4.360 

5C: = 
[v,H]\dD 

divH\dD 
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Theorem 4.29. Let Í M , . . . , [ *m" J be a basis for N(\ + L') and define 

Hj{x):=[ *(x,y)[r(y),bj(y)]ds(y)+e*àf Hx,yhj(y)My), 
J JdD L JdD 

x^U\dD, (4.45) 

j = l , . . . ,ww . Then 

bj = -[[curlHJ+,v]9p], μ^-(ρ,Η^) on 3/), (4.46) 

j = 1,.,.,/W//, and 

« / « [ ' . Ä / + ] . X / - d i v ^ . + (4.47) 

form a basis for N(l + L). The matrix 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Proof. Since I J ) + L'( J= 0 we clearly have [[curl//y_, i>], *>] = 0 and 
(p,i/7_) = 0on # À that is H- (and also //,) is a solution of the homogeneous 
interior magnetic problem. Then (4.46) follows from the jump relations of 
Corollaries 2.20 and 2.25. Since by the same jump relations we also have 
[v, HJ + ] - [p, Hj_) and àivHJ+ = div//y_ on 3D, IA e X = ]V(I + L) by Theo
rem 4.28. 

Assume ctj,j = \,...,mH, satisfies 

and define 

Then 

( {(v,H+,caAH+)-(v,H+)divH+)ds = 0 
J3D 
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and therefore 

Im f {(*>, i/+ ,curl H+ ) + (i>, H+ )di\H+ }ds = 0. 
JdD 

From Theorem 4.17 we can now conclude that H= 0 in R3\D. The proof is 
now completed as in Theorem 3.18. 

Theorem 4.30. The interior magnetic boundary-value problem is solvable if 
and only if 

f {(v9H,d) + OdivH}ds = 0 (4.48) 
JdD 

is satisfied for all solutions H to the homogeneous interior magnetic problem. 

Proof, This is proved in an analogous manner to Theorem 3.20 with 
Fredholm's alternative applied to the integral equation (4.35) using Theorem 
4.28. 

The necessity of the solvability condition (4.48) follows from the second 
vector Green's theorem (4.12) applied to a solution of the inhomogeneous 
problem and a solution of the homogeneous problem. 

Theorem 4.31. The exterior electric boundary-value problem is uniquely 
solvable. 

Proof. The proof follows that of Theorem 3.21 using the integral equation 
(4.33). The modification of (4.31) in the case of an interior magnetic eigenvalue 
is 

£(x) = curl/ <b(x,y)a(y)ib(y)-[ Φ(χ, y)\(y)v(y) ds(y) 
JdD JdD 

mH 

+ Σ «,#/(*)> x^U3\dD (4.49) 

where the HJ9 j = \,...,mM, are defined by (4.45). This leads to the integral 
equation 

«MiMi)-*!^;). 
Here we have again assumed the basis of N(l + L) given by (4.47) to be real 
valued. 

Finally, without giving the proofs, we state the corresponding theorems for 
the interior electric and exterior magnetic boundary-value problems. We 
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introduce the linear space 

, l[[ounE,v],v]\dD 

\(»,E)\dD 

£ e ^ ( D ) , Δ£ + Α:2£ = 0 in D 
[v,E] = 0, div£ = 0 on 3D 

Theorem 4.32. N(l-L') = &. 

Theorem 4.33. Let (^ ) , . . . , Í ^ £ ) be a basis of N(l-L) and define 

£ ( x ) : = cur l / Φ(χ, y)cj(y) ds(y)- ί Φ(χ, y)yj(y)r(y) ds(y)9 
J J3D JdD 

x€=R3\dZ), (4.50) 

j = l , . . . ,m£ . Then 

Cj=[v,Ej]+, yj = divEJ+ on 3D, (4.51) 

j = \,...,mE, and 

</,:« [curl Ç.+ , * ] , , ] , i7: = ( r , £ ; + ) (4.52) 

form a basis of N(l - L'). The matrix 

^)'(CV/))= /J" ("'£ / + ' c u r l V ) + ("'£ y- ) d i v £ '+ } í / í ' 
'4 

j,l=l,...,mE, 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Theorem 4.34. The interior electric boundary-value problem is solvable if and 
only if 

j {(c,curlE)-(v,E)y}ds = 0 (4.53) 
JdD 

is satisfied for all solutions E to the homogeneous interior electric problem. 

Theorem 4.35. The exterior magnetic boundary-value problem is uniquely 
solvable. 

4.5 BOUNDARY INTEGRAL EQUATIONS OF THE FIRST KIND 

As in the case of boundary-value problems in acoustic scattering, it is also 
possible to use integral equations of the first kind in the study of electromag
netic scattering. 
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Theorem 4.36. The electromagnetic field of a surface distribution of electric 
dipoles 

E(x) = curl curl f Φ(*, y)[v{y), b(y)] ds(y), 
JdD 

(4.54) 
Η(χ) = η- cu r l£ (x ) , x^U3\dD, 

with tangential density ¿£§°;α(^Ζ)) , 0 < α < 1 (i.e., the surface divergence 
Div[r, b] exists and is of class C0,a(dD)) is a solution of the interior and the 
exterior Maxwell problems provided b is a solution of the singular integral 
equation 

*>(*), curl curl f Φ(χ, y)[v(y), b(y)] ds(y) = c(x), x G dD. 

(4.55) 

Recalling the definition (2.85) of the operator N: S ±(dD)-* ^{dD\ we 
rewrite (4.55) in the short form 

Nb = 2c (4.55') 

and establish the following theorem. 

Theorem 4.37. For any inhomogeneity ceS0a(<9D), the integral equation 
(4.55) of the first kind for the Maxwell boundary-value problem has a unique 
solution provided k is not an interior Maxwell eigenvalue. If k is an eigenvalue, 
then the integral equation is solvable if and only if c satisfies condition (4.40) 
and in this case the solution is not unique. 

Proof. We proceed along the Unes of Theorem 3.30. Existence is shown by 
solving the interior and exterior Maxwell problems using the integral equations 
of Theorem 4.19 and then using the representation Theorems 4.1 and 4.5. The 
solution of equation (4.55) is given by 

b = ^[K[(l-MVl(l + MVlc,v],p] (4.56) 

that in particular shows that the inverse N" 1 of N is not bounded. 
For the electric and magnetic boundary-value problems, we obtain the 

following results by exchanging the approaches of Theorems 4.21 and 4.22. 

Theorem 4.38. The vector field 

£ ( * ) = / <t>(x,y)[v(y),b(y)]ds(y)+&zd[ Φ{χ, y)μ(y) ds(y), 
JdD JdD 

x^R\dD, (4.57) 
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with tangential field b and scalar function μ of class C0,a(dD) is a solution of 
the interior and exterior electric boundary-value problem provided b and μ 
satisfy the system of singular integral equations 

JdD 

+ f [ρ{χ)^τ<ιάχ{Φ(χ, γ)μ(γ))] ds{y) = c(x), 
JdD 

f divx{1>(x,y)[y(y),b(y)]}My) 

-k2( <b(x,y)ß(y)ds(y) = y(x), xtdD. 
Jan 

(4.58) 

JdD 

Theorem 4.39. The vector field 

H(x) = curíí Φ(χ, y)a(y)ds(y)- ί Φ{χ, y)\(y)v(y) ds(y), 
JdD JdD 

x € R 3 \ 3 D , (4.59) 

with tangential field a<E%^a{dD) and scalar function / iGC 0 ' a (^/) ) is a 
solution of the interior and exterior magnetic boundary-value problems pro
vided a and λ satisfy the system of singular integral equations 

v{x)Av(x), curl curl/ Φ(χ, y)a(y) ds(y) 
L JdD 

-f [»(x)Mx)>*"h{*(x,y)HyMy))]]My)-d(x) 
JdD 

( (v(x),cur\x{<t>(x,y)a{y)})ds(y) 
JdD 

-f 9(x,y)X(y)(y{x),p{y))ds(y) = 8(x), x^dD. 
Jan 

(4.60) 

'dD 

We introduce operators R: X^a(dD) -> X^a(dD) and Q: §°·β(3/))Χ 
C°'a(dO)-*X°'a(dD) of the form 

R = 
R n R12 

* *21 ^ 2 2 
Q 

Qll Q.2 

Q21 Q22 
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where 
R „ ( 6 ) : - [ I . , S [ F , & ] ] , 

R 2 2 ( M ) : = - / : 2 S ( M ) , (4.61) 

(Rl2/i)(x): = 2 ( [v{x),ffuax{<b(x,yMy))]ds(y), x^dD, 
J3D 

(R2lb){x):-2[ àivx{<î>(x,y)[v(y),b(y)]}ds(y), x^dD, 
J3D 

Qu{a): = [v,n[a,v]-\, 

Q 2 2 ( X ) : = - ( , , S ( \ , ) ) , (4.62) 

( Q 1 2 X ) ( x ) : = - 2 / [v(x),[v(x),curl^(x,y)X(y)p(y))]]ds(y), 
JdD 

(Q2la)(x): = 2Í (ν(χ)^ηήχ{Φ(χ, y)a(y)}) ds(y), x^dD. 
JdD 

Out of these eight operators, Ru , R22, and Q22 are clearly compact and the 
operator Q u is unbounded. For the remaining operators R12, R2i, Q12» a nd 
Q21, the integrals have to be understood in the sense of Cauchy's principal 
value. These four operators are bounded by Theorems 2.17 and 2.24, but they 
are not compact. We now write the systems of integral equations (4.58) and 
(4.60) in the short form 

R(J) = 2(Ï) (4.580 

for the electric boundary-value problem and 

O-Ai) <«°'> 
for the magnetic boundary-value problem and note that both are singular. We 
also note that the adjoints R' and Q' of R and Q with respect to the dual 
system (4.44) are given by R' = R and Q' = Q. 

Analogous to Theorem 4.37 we have the following theorems. 

Theorem 4.40. For any inhomogeneity (^)e S°'a(dZ))XC0'a(<9Z)) the in
tegral equation (4.58) of the first kind for the electric boundary-value problem 
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has a unique solution provided k is not an interior electric eigenvalue. If k is an 
eigenvalue, then the integral equation is solvable if and only if c and γ satisfy 
condition (4.53). 

Theorem 4.41. For any inhomogeneity (A e <ϋ°'a(dD)xC°<a(dD) the in
tegral equation (4.60) of the first kind for the magnetic boundary-value 
problem has a unique solution provided k is not an interior magnetic eigen
value. If k is an eigenvalue, then the integral equation is solvable if and only if 
d and δ satisfy condition (4.48). 

If k is not an interior eigenvalue of the electric or magnetic boundary-value 
problem, the inverse R ]: §°>a(dD)XC0>a(dD) -> XQ>a(dD) is explicitly given 
by 

R ^ - Q i l - L ) '(I + L) ' (4.63) 

and the inverse Q ': X°>a(dD)-+ &°>a(dD)xC°>a(dD) is given by 

Q ^ - R i l - L ) (I + L ) \ (4.64) 

4.6. MODIFIED INTEGRAL EQUATIONS 

For the same reasons as in acoustic scattering, it is desirable to develop 
modifications of the integral equations for the exterior electromagnetic 
boundary-value problems that are uniquely solvable for all wave numbers. 
Hence in the following analysis we shall describe the analogue of the combined 
double- and single-layer potential approach in the electromagnetic situation. 
As opposed to the Dirichlet and Neumann problems, the integral equations for 
all three electromagnetic problems become singular and thus the regularization 
procedures are different from those used for the scalar problem. 

Knauff and Kress [1] suggested seeking the solution to the exterior electric 
boundary-value problem in the combination of the forms (4.31) and (4.57), 
namely, 

£ ( x ) = curl / 1>(x,y)a{y)ds(y)-f Φ(χ, y)\(y)v(y) ds{y) 
JdD JdD 

+ ΐη(( 4>(x9y)[r(y),a(y)]ds(y)+pad[ Φ(χ, y)X(y)ds(y)\, 
\JdD JdD ) 

x<EU\dD, (4.65) 

where η =*= 0 is an arbitrary real number such that 

TjReÂ^O. (4.66) 
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Then (4.65) is a solution to the exterior electric boundary-value problem if the 
densities a e $°'a(dD) and λ e C°'a(dD) are solutions of the integral equa
tion 

Since the operator R is bounded but not compact, the integral equation (4.67) 
is singular and requires regularization before applying the Riesz theory. The 
following technique is a slight simplification of the methods used by Kress [6]. 

Theorem 4.42. The combined integral equation (4.67) for the exterior electric 
boundary-value problem is uniquely solvable for all wave numbers Im k > 0. 

Proof. We first show that if a solution exists to the integral equation it is 
unique. Let (^) be a solution of the homogeneous form of equation (4.67). 
Then the field E defined by (4.65) solves the homogeneous exterior electric 
boundary value problem and thus E = 0 in W\D. Then from the jump rela
tions of Corollaries 2.18 and 2.25 and the regularity argument employed in the 
proof of Theorem 4.19, we have 

- [v , E_] = a, -[p,curl E_] = ίη[ν, a] 
(4.68) 

— di\E_ = λ, —(p9 E_)= - ίηλ 

on dD. Hence the first vector Green's theorem (4.11) yields 

ii\¡ (|α|2 + | λ | 2 ) & = f( |curl£ | 2 + |d iv£ | 2 -A: 2 | £ | 2 )¿x . 
JdD JD 

The imaginary part of this equation reads 

ηί ( |a | 2 4- |X | 2 )^ = -2ReÁ:ImA:/ , |£ | 2^ 
JdD JD 

from which we deduce a = 0, λ = 0 because of (4.66) and the fact that 
Im k > 0. 

For small η the existence of a solution to the inhomogeneous equation (4.67) 
follows by Corollary 1.20 since L is compact and I+ITJR has a bounded 
inverse given by a Neumann series provided |η| < ||R||_1. For arbitrary η we 
regularize the equation (4.67) by actually showing that the solution to the 
exterior electric problem can always be represented in the form (4.65). 

To achieve this, we consider the solution to the exterior electric boundary-
value problem as the solution of a special case of the following problem: Find 
a vector field F G Î ( R 3 \ Z ) ) satisfying the vector Helmholtz equation in 
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R3 \Z), the radiation condition (4.15), and the boundary condition 

[y ,F ] = c*, di\F+w(v,F) = y* on 3D (4.69) 

where c*G§°'a(^Z)) and Y*eC°' a(5D) are given. In our special case, the 
boundary values are specified by c*:=c and y*:=y + ¿η(ρ, Ε) where E 
denotes the solution to the exterior electric problem. Note that the existence of 
such a solution is guaranteed by the approach (4.65) if the parameter η is 
chosen small enough. 

In the subsequent analysis we shall show that the boundary-value problem 
described by (4.69) has a unique solution and that this solution can be 
uniquely expressed in the form 

F(x) = cur\[ 1>(x9y)a(y)ds(y)-ßf Φ(χ, y)X(y)v(y)ds(y) 
JdD JdD 

+ ii\\f ${x,y)[v{y),a{y)}ds(y) + gx<ia( Φ(χ, y)\(y)ds(y)\, 
\JdD JdD ) 

x<ER3\dD, (4.70) 

with a e $°'a(dD) and λ e C0a(dD) where β is a fixed, but arbitrary positive 
constant. If we now choose 0 = 1, the proof of Theorem 4.42 is complete. 

We start by proving uniqueness for the boundary-value problem (4.69). If F 
satisfies the homogeneous conditions [v, F] = 0, divF + ¿η(ρ, F) = 0 on 3D, 
then 

Imlkf {(^>,F,cuήF) + (piF)divF}ds) = ηRekí \(v9F)\2ds>0 
\ JdD I JdD 

and from Theorem 4.17 we conclude that F = 0 in R 3 \ D . 
Straightforward combination of the Theorems 4.21, 4.22, 4.38, and 4.39 

shows that (4.70) satisfies the boundary condition (4.69) if a and λ satisfy the 
integral equation 

*(ΛΜΛΗ(; :) < 4 · 7 , ) 

where 

and B has the form 

I njR12 

0 (ß + V2)l 

B = | B 1 1 B 1 2 
B21 B22 
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with B n = L u + /TjRn, B,2 = 0L12, B21 = ÍTJ(R21 + Q 2 1 ) - T ? 2 L 2 1 , and B22 = 
ßL22 + 'η(1*22 + ^Q22)_T?2^22· Note that since RI2 is bounded, A has a 
bounded inverse. From our previous analysis we see that the operators B n , 
B12, and B22 are compact. The operator B21 is also compact since R21 + Q2i has 
the form 

(R2 1+Q2 1)(fl)(*) = 2 / (p(x)-r(y),gmdx<t>(x,y),a(y))ds(y) 
JdD 

from which we can deduce compactness by Corollary 2.9. Hence B is compact 
and Corollary 1.20 can be applied to equation (4.71). Note that this result also 
remains valid for the limiting case β = 0. 

The uniqueness of solutions to the integral equation (4.71) follows by 
repeating the arguments used in establishing the uniqueness of solutions to 
equation (4.67). In particular, the formulas corresponding to (4.68) read 

— [v, F_] = a, — [*>,curlF_] = ιη[ν, a] 
(4.72) 

-d ivF_ = 0λ, -(*>, F_) = - ζηλ 

on 3D and in the case β > 0 the proof is completed as above. For later use we 
also want to verify that in the limiting case j8 = 0we still have uniqueness if k 
is not an interior Dirichlet eigenvalue. In this case we see from the previous 
argument that if (c* I = 0, then a = 0 on 3D. From (4.72) we see that div.F_ = 0 
on 3D. Hence, by our assumption on k it follows that d ivF = 0 in D. Then 
from the transformation 

divF(x) = - njÄ:2 f <ï>(x,y)X(y)ds(y), x<ER3\dD 
JdD 

we can conclude that λ = 0 by the jump relation of Corollary 2.20. 
The corresponding approach obtained by seeking a solution H in the form 

H(x) = f *(x,y)[p(y),b(y)]ds(y) + gmd[ Φ(χ, y)ß(y) ds(y) 
JdD JdD 

-ίηΐοηήί ${x,y)b(y)ds{y)- f Φ(χ, y)μ(y)v(y) ds(y)\, 
dD JdD 

X^U\dD, (4.73) 

solves the exterior magnetic problem provided the densities b G S°¿a(dZ)) and 
μ G C0,a(dD) satisfy the singular integral equation 

(ΐΜίΜίΙ-Ίί)- <«■»> 
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Theorem 4.43. The combined integral equation (4.74) for the exterior mag
netic boundary-value problem is uniquely solvable for all wave numbers 
Imfc^O. 

Proof. By Theorem 4.35 we know that a unique solution to the exterior 
magnetic boundary-value problem exists. Then we can consider this field as the 
solution to an exterior electric boundary-value problem which by the preceding 
theorem we can uniquely represent in the form (4.65) with η replaced by 1/η. 
But then we also have a representation in the form (4.73) with b: = ia/y and 
μ: = / λ / η . Uniqueness for the integral equation (4.74) follows by the same 
argument as for (4.67). 

We wish to point out that it is also possible to obtain a direct existence 
proof for equation (4.74) without relying on Theorem 4.35. This can be done 
by regularizing the equation in a manner similar to the one we shall use for the 
exterior Maxwell problem. 

We now observe that the combined magnetic and electric dipole approach 

E(x) = curl / Φ(χ, y)a(y) ds(y) 
JdD 

+ ι η curl curl ί Φ(χ, y)[v(y),a(y)]ds(y), (4.75) 
JdD 

H(x) = \cur\E(x), x<=U\dD, 
IK 

solves the exterior Maxwell boundary-value problem provided the density 
a e ξ>°ια(8Ώ) is a solution of the singular integral equation 

a + Ma + ΐηΝα = 2c. (4-76) 

Theorem 4.44. The combined integral equation (4.76) for the exterior Maxwell 
problem is uniquely solvable for all wave numbers Im k ^ 0. 

Proof. Let a^%\a{dD) be a solution of the homogeneous equation 
a + Ma -I- ίηΝα = 0. Then the electromagnetic field defined by (4.75) solves the 
homogeneous exterior Maxwell problem and therefore £ = / / = 0 in U3\D. 
The jump relations of Corollary 2.25 and the transformation (2.86) yield 

-[j>, £_ ] = a, -[*>,curl£_ ] = ii]k2[v, a] on dD. 

Hence from Gauss' theorem we have 

ir]k2( \a\2ds=( (*>,£_,curl£_)¿y 
JdD JdD 

= f fleuri £ | 2 - Á : 2 | £ | 2 } ¿ J C . 
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Multiplying by k2 and then taking the imaginary part, we get 

V\k\4f \a\2ds = -2Reklmkf |curl£|2dx 
JdD JD 

from which we can conclude that a = 0. 
To prove existence we follow a regularization technique introduced by Kress 

[5]. First, we choose a value k0 that is not an interior Dirichlet or Maxwell 
eigenvalue and indicate by a subscript that the operators are taken for the 
fundamental solution Φ with k set equal to k0. In this case, by Theorem 4.27 
we can solve the exterior Maxwell problem in the form 

E(x) = cur\f <P0(x,y)ä(y)ds(y) 
JdD 

where ä is given by 

â = 2 ( / + M0)_1<: 

with a bounded operator (/ + M0)~y. We can now consider 

F(x):=[ <b0(x,y)ä(y)ds(y)> x^U3\D 
JdD 

as the solution to a boundary-value problem of the form (4.69) where η is 
replaced by l / η and the boundary values are specified by c*: = [v9F] and 
γ*: = divF + (//7j)(*', F) or in terms of the bounded operators S0 and R2i,o 

Following our previous treatment of the boundary conditions (4.69), we can 
represent F with the special parameter /? = 0 in the form 

F(x) = cur\[ <t>(xiy)b(y)ds{y) 
JdD 

+ ^ ( / Hx>y)[v{y)My)]ds(y)+v*a( Φ(χ,γ)λ(γ)ά*(γ)\, 
V \JdD JdD ) 

x<=n\D9 

where the densities b e S0,e(3Z)) and λ e C0a(dD) are given by 

- 2 ( A 0 + B b ) - ' ( ^ ) 
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with (A 0+ B0)~ l a bounded operator. Now setting α: = (ΐ/η)[ν, b] we get a 
representation of the electric field E = curl F in the required form (4.75). 
Summarizing our construction of a, we see that we can write 

a = 2C0c 

where C0: ?>0'a(dD)-+ ^°'a{dD) is bounded. (More precisely, we have 
C0: %°'a(dD) -> §°ia(dD).) Since, of course, a = 2C0c is a solution to 

a + M0a + ÍTJN0 = 2c 

the operator C0 is the inverse of I + M 0 + /TJN0. 
Now, for an arbitrary wave number k we can transform equation (4.76) into 

the equivalent form 

a - f C 0 [ ( M - M 0 ) + /T|(N-N0)]û = 2C0c (4.77) 

where the operator N - N 0 is compact in ?T0,a(dD) by Theorem 2.33. The 
proof can now be completed as in Theorem 3.34. 

Numerical implementations of the modified integral equations of this 
section have been considered by Knauff [1], Knauff and Kress [2], and Mautz 
and Harrington [2]. 

It should also be possible to extend Jones' modifications to the electromag
netic problems. To our knowledge this has not yet been carried out. 

4.7 THE IMPEDANCE BOUNDARY-VALUE PROBLEM 

We shall now briefly consider the following exterior impedance boundary-value 
problem. 

Exterior Impedance Boundary-Value Problem 

Find two vector fields £, H G C\R3\D)r)C(U3\D) satisfying Maxwell's 
equations in R 3 \ D , the Silver-Müller radiation condition at infinity, and the 
boundary condition 

[r,[v9H]-t[p9E]] = d (4.78) 

where d GC 0 , a(3D) is a given tangential field and ψ &C°'a(dD) a given 
function. 

Theorem 4.45. The exterior impedance boundary-value problem has at most 
one solution provided 

Re*//>0 on dD. (4.79) 
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Proof. Let E9 H satisfy the homogeneous boundary condition [v9[v9 H]-
ψ[*>, £]] = 0. Then by Theorem 4.3 the electric field E is a solution to the 
vector Helmholtz equation satisfying the radiation condition (4.15) and 

[v9[v9c\xnE]-ik^[v9E)}=^9 div£ = 0 on 3D. 

Hence, 

\m\kf {{v9E9c\inE) + {v9E)a\\E)ds\ = \k\2( Rei//|[*>, E]\2 ds > 0 
\ JdD I JdD 

and the proof is completed by using Theorem 4.17. 
We now try to find the solution to the exterior impedance problem in the 

form of the electromagnetic fields of a combination of magnetic and electric 
dipoles as in (4.75) where we assume the density a belongs to S0,a(<9Z))n 
S °¿a( <?£>). Then (4.75) solves the impedance problem if a is a solution of the 
singular integral equation 

{r\k + ψ)α + ψΜα - i\kMfa + /ηψΝα + j - [ r ,N[a, v]] = -2d. (4.80) 

Theorem 4.46. The combined integral equation (4.80) for the exterior imped
ance boundary-value problem is uniquely solvable for all wave numbers 
Im k ^ 0 and all impedances satisfying (4.79). 

Proof. Uniqueness is shown as in the uniqueness proof for equation (4.76) 
in Theorem 4.44. Existence is obtained by a rather lengthy regularizaron of the 
singular integral equation, the details of which can be found in Colton and 
Kress [2]. 

4.8 INTEGRAL EQUATIONS BASED ON THE REPRESENTATION 
THEOREMS 

We finally derive integral equations for the exterior problems based on the 
representation Theorems 4.5 and 4.13. Consider first the exterior Maxwell 
problem with boundary data in class C°'a(dD). Letting x tend to the boundary 
in the representation Theorem 4.5, making use of Theorems 2.17, 2.26, and the 
transformation (2.86), we obtain the equations 

[p,E]-M[r,E]--jj¿N[v,[r9H]]=0 (4.81) 

and 

[p,H]-M[r9H]+lrN[p9[p9E]]=0. (4.82) 

file:///m/kf
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Let E, H be the solution to the exterior Maxwell problem. Then from (4.82) we 
obtain the integral equation 

b + M'b = - ^ [P,N[P, c]] (4.83) 

of the second kind for the unknown tangential components b: = [v,[v, H]] of 
the magnetic field H. By our previous analysis the existence of a solution to the 
exterior Maxwell problem and, therefore, the existence of a solution to 
the integral equation (4.83) is already established. Since equation (4.83) is the 
adjoint of the integral equation (4.30) obtained from the magnetic dipole 
approach, by Theorem 4.23 and the Fredholm alternative, equation (4.83) is 
uniquely solvable if and only if k is not an interior Maxwell eigenvalue. 

From (4.81) we obtain the singular integral equation 

N* = i * ( c - M c ) (4.84) 

of the first kind. Existence is again already established, and by Theorem 4.37 
the solution is unique if and only if k is not an interior Maxwell eigenvalue. 

Because equations (4.83) and (4.84) are derived from the magnetic and 
electric fields in the representation Theorem 4.5, they are called the magnetic 
field equations and the electric field equations, respectively. They were first 
used by Maue [1]. 

We can add equations (4.83) and (4.84) to obtain the combined magnetic 
and electric field equation 

b + M7> + ιηΝΑ = - -~ 0 , N [ v , c ] ] - i \ k { c - M c ) (4.85) 

of the second kind that is the adjoint of equation (4.76) associated with the 
combined magnetic and electric dipole approach. Since the operator N is not 
compact, uniqueness for (4.85) has to be treated separately. Let b e S°[a(dZ>) 
be a solution to the homogeneous equation b + M'b + /ηΝ& = 0 and define the 
electromagnetic field E, H of the electric dipole distribution [v, b] as in 
Theorem 4.36. Then [v,[v, H_)]+T)k[v, £_] = 0 on 3D and proceeding as in 
the uniqueness proof of Theorem 4.44, we find that E = H = 0 in D. By the 
jump relations, E, H satisfy the homogeneous exterior Maxwell problem in 
R3 \Z) . Hence E = # = 0 in R3\D and finally 6 = 0 on 3D. Therefore, we 
have the following theorem. 

Theorem 4.47. The combined magnetic and electric field equation (4.85) for 
the exterior Maxwell problem is uniquely solvable for all wave numbers 
Im k > 0. 

The numerical implementation of equation (4.85) was considered by Mautz 
and Harrington [1]. 

Now let £ be a solution to the vector Helmholtz equation satisfying the 
radiation condition (4.15). Under the assumption that 2seC 2 (R 3 \Z) )n 
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C°'a(IR3\Z)), div£,curl£eC°'a(R3 \Z)), from the representation Theorem 
4.13 and Theorems 2.17 and 2.26 we obtain the equations 

f [ " ' £ n - L f l " ' £ n + R Í [ [ c U ; 1 £ ' ' ; ] ' ' ' ] ) = 0 (4.86) 
\ div£ / I div£ ) \ (p,E) j 

and 

If E is the solution to the exterior electric boundary-value problem, then 
from (4.87) we obtain the integral equation 

of the second kind for the unknown tangential components b: = [[curl E, p], v] 
and the normal component μ: = (ρ, Ε). This equation is adjoint to the equation 
(4.33) obtained by the layer approach and is uniquely solvable if and only if k 
is not an interior magnetic eigenvalue. From (4.86) we obtain the singular 
integral equation 

«(îMîMi) <4 ·8 9> 
of the first kind which has a unique solution provided k is not an interior 
electric eigenvalue. A linear combination of the last two equations gives 

( îMiMîMîHNîMî) ] <«■»> 
which is the adjoint of equation (4.67) associated with the combined layer 
approach. As demonstrated in Kress [6], this equation is uniquely solvable for 
all wave numbers Im k > 0. 

In the same manner, we can derive equations for the magnetic boundary-
value problem that are the adjoints of the corresponding layer equations. 



5 
LOW FREQUENCY 
BEHAVIOR OF SOLUTIONS 
TO BOUNDARY-VALUE 
PROBLEMS IN 
SCATTERING THEORY 

In this chapter, we shall study the behavior of solutions to boundary-value 
problems in acoustic and electromagnetic scattering theory as the frequency or 
wave number tends to zero. We first consider the case of acoustic waves and 
show that in the limiting case when the wave number is zero the corresponding 
integral equations can be solved by the method of successive approximations. 
This leads to an iterative procedure for solving the integral equations of 
acoustic scattering theory for small values of the wave number. We then 
consider the corresponding case of electromagnetic waves and show that for 
simply connected domains a similar regular perturbation argument can be 
made to establish an iterative procedure for solving the exterior Maxwell 
problem. However, in the case of multiply connected domains, the solutions of 
the exterior electromagnetic boundary-value problems are not unique in the 
potential theoretic limit. Hence, in this case the study of the limiting behavior 
of solutions, as the wave number tends to zero, leads to the investigation of a 
problem in singular perturbation theory. We shall study this problem in the 
final section of this chapter and establish necessary and sufficient conditions 
for the existence of the low frequency limit for solutions of the exterior electric 
boundary-value problem, the exterior magnetic boundary-value problem, and 
the exterior Maxwell problem. 

150 
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5.1 ITERATIVE METHODS FOR SOLVING THE EXTERIOR 
DIRICHLET AND NEUMANN PROBLEMS 

We begin by observing that the integral equation methods in Chapter 3 remain 
valid in the potential theoretic case k = 0 if we replace the Sommerfeld 
radiation condition (3.7) by the condition 

K(JC) = O ( 1 ) , | * | - > O O , (5 .1) 

with the limit holding uniformly with respect to all directions x / | x | . In 
particular, this assumption suffices to establish the exterior Green's representa
tion Theorem 3.3 in the potential theoretic case (cf. Martensen [1]). From this 
representation we see that any harmonic function satisfying (5.1) automatically 
satisfies the stronger property 

«(x) = o ( | ^ ) , gradi<(*) = o ( - ^ ) , |*|->oo, (5.2) 

uniformly for all directions. 
In the following analysis, we shall distinguish the fundamental solutions of 

the Helmholtz equation and the Laplace equation by writing 

eik\x-y\ 
®k(x>y) = ir~\ r 

kX 7/ Air\x-y\ 
and use subscripts to distinguish the operators in both cases. 

To motivate the reader, we recall that the first existence results on the 
integral equations of potential theory were not based on the Riesz-Fredholm 
theory but were obtained by Neumann [1] with the aid of successive approxi
mations. Although Neumann's convergence proofs were confined to the case of 
convex domains, they were later extended to arbitrary regions D with the aid 
of the following result on the spectrum of the integral operators K0 and K'0 (see 
(2.77) and (2.78)) due to Plemelj [1]. 

Theorem 5.1. In the potential theoretic case k = 0 the integral operators K0 
and KQ have spectrum 

a(K0) = a ( K ' 0 ) c [ - l , l ) . 

In particular, - 1 is an eigenvalue with m linearly independent eigenfunctions 
where m denotes the number of components of D. 

Proof. Let λ be an eigenvalue of K'0 with eigenfunction φ, that is, λφ - Κφ 
= 0. Define the single-layer potential u with density φ. Then from Theorems 
2.12 and 2.19 we have 

M+ = M_ on 3D (5.3) 
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and 

^ = \κ'0φ + \φ = \(λ + \)φ on 3D. 
dv 2 ^ 2Ύ 2 

Hence 

(λ + 1 ) ^ ± - = ( λ - 1 ) - ^ on dD. (5.4) 
v ' dv dv 

Applying the first Green's theorem (3.4) with the help of (5.2), we now see that 

(1 + λ ) ( |gradM|2¿/x=(l-X)/ ' |gradw|2¿/x. (5.5) 
JR3\D JD 

Now define 

/ ( « ) : = /*|gradw|2¿/jc, î(u): = f |gradw|2¿x. 
JD JR3\D 

Assume I(u) = î(u) = 0. Then grad u = 0 in R3 and from the jump relation of 
Corollary 2.20 we have φ = 0, which is a contradiction to the fact that φ is an 
eigenfunction. Hence we can write 

λ / (« ) - / (» ) 

which implies that λ e [— 1,1]. Now assume λ = 1. Then from (5.5) we have 
grad u = 0 in R 3 \Z) and therefore u == 0 in U3\D because of (5.1). Then from 
(5.3) we have u_ = 0 on 3D and from the uniqueness of the interior Dirichlet 
problem for the Laplace equation we obtain u = 0. Therefore by Corollary 2.20 
we have φ = 0, that is, λ = 1 is not an eigenvalue. Hence σ(Κ'0) c [ - 1,1) and 
by the Fredholm alternative the adjoint operator K0 has the same spectrum as 
K'0. 

The fact that - 1 is an eigenvalue of multiplicity m is a consequence of the 
following theorem. 

Theorem 5.2. N(I + K0) = (v\dD\v e C\D\ grad v = 0 in D). 

Proof. This is the special case k = 0 of Theorem 3.17; alternatively, the 
result follows directly from (2.40). 

We now consider the integral equation (3.29) for the exterior Neumann 
problem. The successive approximations 

Φη+ι = (\-β)φη + βΚ'0φ„-2β8, « = 0,1,2,. . . (5.6) 

with arbitrary φ0 e C(dD) and where β e (0,1) converge in the Banach space 
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C(dD) to the unique solution φ of the equation φ -Κ'0φ = -2g. This follows 
from Theorem 1.36 applied to the operator A = (1 - ß ) I + j3K'0 which by 
Theorem 5.1 has spectral radius less than one if ß e (0,1). The optimal choice 
of the relaxation parameter ß yielding the minimal spectral radius of A 
depends on the eigenvalues of K'0. If all the eigenvalues are negative (which is 
the case if 3D is a sphere), then ß = § is optimal (Kleinman [1]). 

Using the power series for the exponential function, we easily see that 

UK, - κ 0 | | = o(/c2), ιρκ; -Kyi = o(k2) (5.7) 

in both C(dD) and C°'a(dD). Hence, using Theorem 1.37, we have the 
following theorem due to Ahner and Kleinman [1] and Kleinman and 
Wendland [1]. 

Theorem 5.3. For any fixed ß e (0,1) the successive approximations 

Φη+ι = (\-β)φη + βΚ\φη-2β8, η = 0,1,2,.. . (5.8) 

with arbitrary φ0 ^C(dD) converge in the Banach space C(dD) to the unique 
solution φ of the equation φ — Κ'̂ φ = — 2 g of the exterior Neumann problem 
for the Helmholtz equation provided k is sufficiently small. 

Kleinman and Wendland also give estimates on the range of wave numbers 
k where (5.8) converges in the case of convex domains D and describe the 
discretization of the integral equation. In particular, they show that the discrete 
linear system can also be solved by successive approximations and that the rate 
of convergence does not depend on the discretization if the discretization error 
is small enough. 

Similarly to (5.8), the adjoint equation (3.82) based on the representation 
Theorem 3.3 and the integral equation (3.25) for the interior Dirichlet problem 
can be solved by successive approximation for small values of k. 

For the exterior Dirichlet problem, the integral equations (3.26) and (3.81) 
are not uniquely solvable since, for k = 0, - 1 is an eigenvalue of K0 and K'0, 
that is, k = 0 is an interior Neumann eigenvalue. Therefore we cannot expect 
straightforward convergence of successive approximations for these equations. 
By eliminating the eigenvalue - 1 through the use of the eigenfunctions for this 
eigenvalue, Ahner [1] developed modifications of the integral equations (3.26) 
and (3.81) that can be solved by successive approximations for sufficiently 
small values of k. A further method that avoids dealing with the eigenfunctions 
of K0 and K'0 was suggested by Colton and Kress [1]. In this approach, the 
fundamental solution Φ^ is replaced by a green 's function Gk defined in the 
exterior of a ball B of radius R with Bcz D. For these modified integral 
operators, denoted by K¿ R and K'k R, we have in the potential theoretic case 
that σ(Κ0 Λ) = σ(Κ'0 Ä ) c ( -1,1) . Then, as in the case of the exterior Neu
mann problem, the successive approximations will converge for sufficiently 
small values of k. The eigenvalues of K0 R and K'0 R9 and therefore the 
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convergence rate of the iteration scheme, depend on the radius R of the ball B. 
By using an appropriate scalar product, it can be shown that the operator K0 R 
can be symmetrized and hence its eigenvalues can be characterized by a 
variational principle (Kress and Roach [1]). From this it can be seen that the 
eigenvalues increase as R increases, that is, by using relaxation methods we can 
make the spectral radius of the operator smaller by choosing R larger. In 
particular, when D is the unit ball and B is a concentric ball with radius R < 1, 
we have the eigenvalues 

a ( K 0 , J = a ( K V J = { - 2 ^ V T ( l - ( 2 ' " + 2 ) Ä 2 m + l ) | m = 0 ) l ,2 , . . .}u{0}. 

Iteration methods for the impedance boundary-value problem have been 
described by Ahner [2], and for the transmission problem by Kittappa and 
Kleinman [1]. 

5.2 ITERATIVE METHODS FOR ELECTROMAGNETIC PROBLEMS 

In the potential theoretic case k = 0, the time-harmonic Maxwell equations 
separate into the system 

div£ = 0, curl£ = 0 (5.9) 

for the electric field E and the same system for the magnetic field H. Solutions 
to the system (5.9) are called harmonic vector fields. Again, our investigations 
on the integral equation methods for the Maxwell boundary-value problem 
remain valid after replacing the Silver-Müller radiation condition (4.7) and 
(4.8) by 

E(x) = o(\)f |x|->oo (5.10) 

where the limit holds uniformly for all directions x / | x | . The representation 
Theorems 4.1 and 4.5 take the form 

- g r a d / (r(y)9E(y))<l>0(x9y)ds(y) 
JdD 

+ curl / [v(y),E(y)]<!>Q(x9y)ds(y)={-E(x)> X Ê ^ (5.11) 
JBD 10, J C G R 3 \ D » 

div/* [v(y),E(y)^0(x,y)ds(y) = 0 JCGR3 , 
JdD 
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for harmonic vector fields E e C\D)nC(D) and 

- g r a d f (v(y),E(y))<b0{x,y)ds(y) 
JdD 

+ c u r l / ^ ( 7 ) ^ ( , ) ] O o ( ^ . ) ^ ( . ) = ( £ ( ; c ) ; H ^ n (5.12) 

divf [v{y)9E(y)]<l>0(x9y)ds(y) = 0, 
JdD 

X G R 3 

for harmonic vector fields E <=C\U3\D)nC(R3\D) (Martensen [1]). From 
(5.12), we observe that harmonic fields satisfying condition (5.10) automati
cally satisfy 

E(x) = ol-^Y |x|->oo, (5.13) 

uniformly for all directions. The fact that (5.11) and (5.12) are the limiting 
forms of Theorems 4.1 and 4.5 follows from the transformation (2.86) using 
(2.75) and eliminating the magnetic field H by Maxwell's equations. 

In the case of the vector Laplace equation Δ£ = 0, we have to replace the 
radiation condition (4.15) by 

£ ( x ) = o( l) , |x|->oo, (5.14) 

with the limit holding uniformly with respect to all directions JC/ |X | . Then the 
limiting form k = 0 of the representation Theorems 4.11 and 4.13 is valid 
(Kress [3]). In particular, from this fact we see that 

£ ( x ) = o ( j ^ - ) , d iv£(x) ,cur l£(x) = o ( - ^ ) , |x|->oo (5.15) 

uniformly for all directions. 
We again use subscripts to distinguish the operators in the potential 

theoretic case. The spectrum of the potential theoretic operators M 0 and MO 
(see (2.82) and (2.83)) has been studied by Müller and Niemeyer [1], Werner 
[2], Kress [1], [3], and Gray [1], Analogous to Theorem 5.1, we have the 
following result. 

Theorem 5.4. In the potential theoretic case k = 0, the integral operators M 0 
and M'0 have a spectrum 

a(M 0 ) = a ( M ' 0 ) c [ - l , l ] . 



156 LOW FREQUENCY BEHAVIOR 

If all the components of D are simply connected, then 

σ(Μ0) = σ(Μ'0)<=(-1,1); 

otherwise 1 and — 1 are eigenvalues with p linearly independent eigenfunctions 
where p denotes the topological genus of D. 

Proof. From Theorem 2.32 we see that the spectrum of M 0 is the same in 
C(3D) and C0,a(3D). Let λ be an eigenvalue of M 0 with eigenfunction 
a e C°'a(dD), that is, λα-Μ0α = 0. Define a vector potential A by 

A(x):= f %{x,y)a(y)ds{y), J C € = R 3 \ 3 D . (5.16) 
JdD 

Then from Theorems 2.12 and 2.24 we have 

Λ+ = Λ_, $\\A+ = d\vA_ on 3D (5.17) 

and 

[v,c\inA±] = {MQa±{a = {(\±\)a on 3D. 

Hence 

(λ - \)[v,cux\A+ ] = (λ + l)[*>,curl,4_ ] on 3D. (5.18) 

Now assume di\A =* 0 on 3D and apply the potential theoretic form of the 
representation Theorems 4.11 and 4.13 to the vector potential A. Multiply the 
formula of Theorem 4.13 by (λ - 1) and of Theorem 4.11 by (λ +1), subtract, 
and take the divergence to get, with the help of (5.18), that 

(X-\)dWA(x) = -2( d*o{*^)divA(y)ds(y), x^U\D. JdD 3v(y) 

Letting x tend to the boundary and using Theorem 2.13 shows that 

Xdiv^+K0div^ = 0 on 3D, (5.19) 

that is, - λ is an eigenvalue of K0 and therefore λ e ( - 1,1] by Theorem 5.1. 
If div/4 = 0 on 3D, we can use the first vector Green's theorem to obtain 

from (5.17) and (5.18) that 

( l - A ) f | c u r l ^ | 2 ^ = (l + X)f |curM| 2^jc 
JR3\D JD 

and from this we deduce that λ e [ - 1,1] as in Theorem 5.1. 
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Since M0a = \a we have M'0[a, v] = - X[ay v] and hence by the Fredholm 
alternative the spectrum of M 0 and M'0 is symmetric with respect to the origin. 
The statement on the eigenvalues - 1 and 1 now follows from the following 
theorem. 

Theorem 5.5. N(l + M0) = (K E]\dD\E e C\D n C{D), 

div£ = 0, curl£ = 0inZ>, (v, E) = 0 on dD}. 

Proof. Let a be a solution of a +M0a = 0 and define the vector potential 
A by (5.16) and set £: = curl^. By (5.18) we have [v, E+] = 0 on 3D and by 
(5.19) we see that a\\A\dD e N ( I - K 0 ) . Hence by Theorem 5.1 we have 
άν\Α = 0 on 3D and from the uniqueness property for the Dirichlet problem 
for harmonic functions, it follows that div^i = 0 in R3. We now have curl E = 
- ΔΑ + graddiv>4 = 0 and div£ = divcurl/i = 0 in R3\3D, that is, £ is a 
harmonic field in D and R3\D. 

Using the representation formula (5.12) and [v, £ + ] = 0 on 3D, we observe 
that we can write E = grad u in R3\D for some harmonic function 
« e C 2 ( R 3 \ 5 ) n C 1 ( R 3 \ i ) ) . From the boundary condition [p,gradt*] = 0 on 
3D, we see that u = const on 3D where the constant might be different on the 
components of 3D. Then using the first Green's theorem and Stokes' theorem 
we have 

f \E\2dx=-f ü^ds = -f u{v,cunA)ds = 0 
JR\D JdD °v JdD 

from which we can conclude that E = 0 in R3\D. From the jump relations of 
Corollary 2.25, we now see that (v, E_) = 0 and a = —[v, EJ\ on 3D. 

Conversely, let E be a harmonic vector field in D with vanishing normal 
components on the boundary 3D and define a: = [v,E] on 3D. Then from 
(5.11) we have 

curlf <b0(x,y)a(y)ds{y) = Q, x^R3\D. 
JdD 

Letting x tend to the boundary and using Theorem 2.26 we see that a-f-M0û = 
0, that is, Û<= JV(I + M0) . 

Harmonic vector fields with vanishing normal components on the boundary 
are called Neumann vector fields (Martensen [1]). If all the components of D 
are simply connected, there exists only the trivial Neumann vector field E = 0. 
In this case, we can represent any curl free vector field in the form E — grad u 
with a harmonic function u e C2(D)n C\B). Then from ( ^ £ ) = 0on32)we 
have the homogeneous Neumann condition 3u/3v = 0 on 3D. Hence grad u = 0 
in D. 

If D has multiply connected components, then, as shown by Martensen [1] 
and Werner [2], there exist p linearly independent Neumann vector fields in D. 
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We do not want to repeat this proof here, but instead we give an explicit 
example of the field generated by a static current on an infinite straight line. In 
cylindrical coordinates (ρ,θ,ζ) this field is given by 

where ee denotes the unit vector in the azimuthal direction. This vector field is 
a Neumann vector field in any body of revolution that does not contain points 
lying on the z-axis, that is, in any torus. In view of the representation formula 
(5.11), we observe that nontrivial Neumann fields cannot have identically 
vanishing tangential components. Hence the tangential components of linearly 
independent Neumann fields are linearly independent on the boundary. There
fore we have that dim N(L + M 0) = p. 

In the case/? = 0 we have from Theorem 5.4 that the successive approxima
tions 

*n+i = -M 0 t f „+2c , « = 0,1,2,... (5.20) 

with arbitrary aQ converge in the Banach space C0,a(dD) to the unique 
solution a of the equation Û + M 0 Û = 2C. If we now observe that 

| | M , - M 0 | | = 0(/c2) (5.21) 

both in C{dD) and C0a(dD), then from Theorem 1.37 we arrive at the 
following convergence result for the exterior Maxwell problem (Gray [1]). 

Theorem 5.6. If R 3 \ D is simply connected, then the successive approxima
tions 

aH+l--MkaH+2c9 « = 0,1,2,... (5.22) 

with arbitrary a0 e C°'a(dD) converge in the Banach space C°'a(dD) to the 
unique solution a of the equation a+Mka = 2c of the exterior Maxwell 
problem (4.19) provided k is sufficiently small. 

In the potential theoretic case k = 0, extensions of this iterative method have 
been given by Kress [2] using deflation methods. It is also possible to treat the 
exterior Maxwell problem in a manner similar to Ahner's [ 1 ] approach for the 
exterior Dirichlet problem, but with the disadvantage that one needs to know 
the eigenelements in the potential theoretic case, that is, the Neumann vector 
fields. 

5.3 LOW WAVE NUMBER BEHAVIOR OF SOLUTIONS TO THE 
EXTERIOR ELECTROMAGNETIC BOUNDARY-VALUE PROBLEMS 

For the exterior Dirichlet and Neumann problems, uniqueness also remains 
valid in the potential theoretic case k = 0. Hence, by using the uniquely 
solvable integral equations of Section 3.6, it is easily seen that the solutions to 
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the exterior acoustic boundary-value problems depend continuously on the 
wave number k as k -* 0. 

In contrast to the case of acoustic waves, the solutions of the exterior 
electromagnetic boundary-value problems are not in general unique in the 
potential theoretic limit. Hence, in the case of electromagnetic waves, the study 
of the limiting behavior of solutions as the wave number tends to zero leads to 
the investigation of a singular perturbation problem of the type described in 
Section 1.4. 

We first show that the operators K0 and K'0 satisfy the assumptions of 
Theorem 1.32, and start with the analog of Theorem 3.18 for the case k = 0. 

Theorem 5.7. Let φ,,... ,<í>m be a real basis for JV(14- K'0) and define 

«,.(*):«/" *0(x,y)*j{y)ds(y), x*R3\dD, (5.23) 
JdD 

j= l,.. . ,m. Then 

Φ, = - - ^ on 3D, (5.24) 

j — 1,..., m, and the functions 

Ψ / . = - Μ , + on 3D (5.25) 

j = 1,... ,m, form a basis for JV(I + K0). The matrix 

<*>>+ù-LuJ+-ir*> ¿/-1· JdD 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Proof. The proof is the same as for Theorem 3.18 except that instead of 
the uniqueness Theorem 3.12 we apply the first Green's Theorem 3.4 and the 
asymptotic behavior (5.2) to conclude that if u is harmonic in U3\D and 

Jan OP JdD 

)3 then u = Q in R3\D. 
A closer examination of the proof of Theorem 5.7 shows that Uj = const in 

Z), where the constant might be different for different components of D. Hence 
we have Uj+ = const on 3D and therefore the vector fields 

y^ — gradw, (5.26) 
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j = 1,..., m, are harmonic in R3 \ D and satisfy 

[j>,yy] = 0 on 3D. (5.27) 

Harmonic vector fields with vanishing tangential components on the boundary 
and satisfying condition (5.13) at infinity are called Dirichlet vector fields 
(Martensen [1]). The YJ9j: = 1,... ,m, defined by (5.26) form a basis of the linear 
space of Dirichlet fields in U3\D since 

iV(I + K'0) = {(*>, Y)\aD\ Y is a Dirichlet field in U3\D). 

In view of (5.24) and (5.26) we only have to show that for any Dirichlet field Y 
in R3 \Z), the normal component φ: = (ν,Υ) on 3D satisfies φ + Κ'0φ = 0. But 
this follows from the representation formula (5.12), which yields 

gradf <&0(x,y)<t>(y)ds(y) = 0, X(ED> 
JdD 

and then using Theorem 2.19 to take the normal component on the boundary 
of this expression. 

From the power series for the exponential function, we see that Kk and K'k 
satisfy the first condition of Theorem 1.32 with s = 2. We use the bases 
φ,,...,<j>m for#(I + K'0) and ψ,,.. . ,ψ^ for 7V(I + K0) introduced in Theorem 5.7 
and define 

uj%k{x): = j $k{x,y)<t>J(y)ds{y), XŒU\3D, 
JdD 

j = 1,... ,m. Then, using duj_/dv = 0 on 3D, we can apply the second Green's 
theorem (3.5) to obtain 

<(ι+κ,)ψ.,φ/> = (ψ;,(ι+κ;)φ /> 

Λη J 3v JdD 

3u fan - 2 /„{".-^-v^}* 
= 2 ( ' { « ; ΑΔιι · -Μ.Διι / ι Α}έ/χ 

= 2/c2 / UjU¡ kdx 
JD 

= 2k2fuiuldx + 0(k3). 
JD 
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Since the matrix fDUj utdx, 7, I = l,.. . ,m, is positive definite, the third condi
tion of Theorem 1.32 in the form of (1.12) is satisfied. 

We now consider the operators M 0 and M'0 and prove the analog of 
Theorem 4.24 for the case k — 0. 

Theorem 5.8. Let b,,..., b be a (real) basis of N(l 4- M'0 ) and define 

Aj(x)—[ φ0(χ>y)[bj(y)>v<<y)]My)> *eR3\3z>, (5.28) 
JdD 

y = l , . . . , / ? . Let Wj9 j: = 1,...,/?, be solutions of the Neumann problem satisfying 

Aw, = 0 in D (5.29) 

and 

-jj- = (v,Aj) on 3D. (5.30) 

The Wj are uniquely determined up to an additive constant. Then 

¿r =[»>,[*>,curl Λ7 +]] on 3D, (5.31) 

7 = 1,...,/?, and the tangential fields 

α/ = [ρ,Λ>+]-[*>,gradua] on 3D, (5.32) 

7 = 1,...,/?, form a basis of N(I -f M 0) . The matrix 

<fl/, &/>=/" (f,curli4 /+ ,i4,+ ) A , 7,/ = 1,...,/?, (5.33) 

is regular and hence by Theorem 1.31 the Riesz number is one. 

Proof. Since b} +M'0i>y· = 0 is equivalent to -\v, bj] + M0[v, bj] = 0, if we 
set λ = 1 in (5.19) we see that divAj\dD e 7V(I + K0). Hence by Theorem 5.2 we 
have divAj = const on 3D where the constant might be different on the 
components of 3D. Note that aivAj£C\R3\D) by Theorem 3.27. Using 
Stokes' theorem and the first Green's theorem, we see that 

/ |graddiwL|2djc = - / diwL-r-diwl, ds 
JR\D J JdD J d v J 

= — / divA (v, curl curl A ¡) ds 
JdD 

= 0. 
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From this we conclude that divAj = 0 in R 3 \Z) since divAj(x) = 0 ( l / | x | 2 ) , 
|x| -» oo. From the uniqueness of solutions to the interior Dirichlet problem for 
harmonic functions, we now see that 

div^y. = 0 in U\ (5.34) 

In particular, the Neumann problems for the Wj are solvable since by Gauss' 
theorem we have 

f (v,Aj)ds= f divAjdx^O. 
JdD JD 

Using (5.34) we now have curl curl Aj = - ΔΛ ■ + graddivy4y = 0 and 
divcurM7- = 0 in R3 \dZ), that is, c u r l ^ is a harmonic field in U3\dD. Since 
bj+M'0bj = 0, we have the boundary condition [p,curM-_] = 0 on 3D and 
using this we can conclude as in Theorem 5.5 that 

curMy. = 0 in D. (5.35) 

Hence, from the jump relation of Corollary 2.27 we see that (5.31) is true. 
By construction, the fields 

Ej:=Aj-gT3idwj in D, (5.36) 

7 = 1,...,/?, are Neumann vector fields. Hence by Theorem 5.5 we have 
[v, Ej]\dD G N(l + M0). Since curl Aj is harmonic, by (2.75) we have 
DÍ\[V,C\XT\ AJ+] = 0 and therefore from Gauss' theorem (2.73) we see that 

f (y,gradw.,ft/)d!s = 0, 
JdD 

which establishes (5.33). Now, let aj,j = \,...9p, be a solution of 

7 - 1 

and define 

Then 

p 

7 - 1 

f (v,cwAA + ,A+)ds = 0 
JdD 
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and from the first vector Green's theorem (4.11) and (5.34) we conclude that 
curial = 0 in U3\D. In particular, [i>,cur\A+] = 0 on dD and therefore 
Ej^iOyb, = 0. Hence a,, = 0, j = 1,...,/?, and the proof is concluded as in 
Theorem 3.18. 

From (5.35) and the jump relations of Corollary 2.25, we see that the 
harmonic vector fields 

Zj: = cunAj in U3\D, (5.37) 

j = l,.. . ,m, satisfy 

(v9Zj) = 0 on 3D (5.38) 

and are therefore Neumann fields in U3\D. Actually, they form a basis for the 
linear space of Neumann fields in U3\D satisfying condition (5.13) at infinity 
as is seen from the property 

tf(I + M'0) = {Z\dD\Z is a Neumann field in U3\D). 

In view of (5.31) and (5.37), we can establish this identity by showing that for 
any Neumann field Z in R3\Z> the tangential component b: = Z on dD 
satisfies b +M'0¿> = 0. But this follows from the representation formula (5.12) 
which yields 

curl/" %(x,y)[b(y),v{y)]ds(y) = ^ X G D , 
JdD 

by taking the tangential component with the aid of Theorem 2.26. 
The operators Mk and M'k again satisfy the first of the conditions of 

Theorem 1.32 with s = 2. We now consider the bases Û, , . . . , a of 7V*(I + M 0 ) 
and /?,,...,bp of iV(I + M'0) introduced in Theorem 5.8 and define 

AJtk(x): = f <t>k(x>y)[bj(y),p(y)]ds{y), * e n 3 \ a z > , 

7 = 1,...,/?. Using (v,Ej) = 0 on dD and (l + M'k)bt= -2[v,[v,cunAi%k_]] on 
3D, we can apply the second vector Green's theorem (4.12) to obtain 

<(Ι + Μ*)α,Λ>-<ΜΙ + Μ*)*/> 

= 2 / (v, E-,cur\Af k_ ) ds 
JdD 

= -2k2f(Ej,Altk)dx 
JD 

= -2k2f (E„Ai)dx + 0(k3). 
Jn J 
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Since 

f (E ,gradw /)¿/x= Í w^p.E^ds^O 
JD JdD 

the matrix jD(EJy A¡) dx = fD(Ej9 E¡) dx, j , I = 1,...,/?, is positive definite and 
therefore the third condition of Theorem 1.32 in the form of (1.12) is satisfied. 

We now are in the position to state the main result of this section. 

Theorem 5.9. The existence of constants el,...fem and functions c0,y0 such 
that the limits 

l lc-c 0L, a i )->o, *->o, 

| |Divc-Divco | | a > ,D-*0, Λ->0, (5.39) 

llY-ïoll«.3D->0, Λ - 0 , 

and 

j¿[ γ(ι>,ζ.) &-><?,-, * ->0 , (5.40) 
kZJdD 

y = l,...,m, exist are necessary and sufficient for the convergence 

I | £ - £ O I I « , R \ Z > - * O , *->o, 

||div£ -d iv£ 0 | | e t R 3 N D - 0, * -> 0, (5.41) 

||curl E - curl £0lla,R\D -* °> * "* 0, 

of the solution E of the exterior electric boundary-value problem (4.23). The 
limiting field E0 solves the exterior electric boundary-value problem for the 
vector Laplace equation 

Δ£0 = 0 in U\D (5.42) 

satisfying the boundary condition 

[v,E0] = c0, div£0 = y0 on 3D (5.43) 

and at infinity 

E0(x) = o(\), |*|->oo, (5.44) 
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uniformly for all directions JC/ |X | . It is uniquely determined by the additional 
properties 

/ (E0,Yj)dx-ej, (5.45) 
JR3\D 

7 = 1, ...,m. 

Proof. Necessity. The necessity of the conditions (5.39) follows from 
(5.41) with the help of (2.75). The necessity of (5.40) and the formula (5.45) 
follow by the second vector Green's theorem from 

f y(v,Y.)ds= ( àivE{v,Yj)ds 
JdD JdD 

= - / (A£,ry)rfx = W (E,Yj)dx. 
''R'XD JRi\D 

Sufficiency. We use the integral equation (4.88) obtained from the repre
sentation Theorem 4.13. Using the definitions (4.43) and (4.62) of the integral 
operators L' and Q, the first equation of the system (4.88) reads 

b+M'b = 2[v,[p,cuî\F+]] on 3D (5.46) 

for b: =[?,[*>,curl E]] where we have set 

F{x): = cml[ Φ*(χ, y)c(y) ds{y)- f Φ*(χ, y)y(y)v(y) ds{y), 
JdD JdD 

J C € = R 3 \ 3 Z ) . (5.47) 

Now, for the right-hand side of (5.46) by using Theorem 5.5, the first vector 
Green's theorem, and the jump relation of Corollary 2.25, we find that for any 
solution a to the homogeneous adjoint equation that 

([*>,[*>,curlF],a) = f (*>, F ,cur lF + ) ds 
JdD 

= Γ {(*%£,curlF_)+(i>,£)divF_}cfc 
JdD 

= f(E9kF)dx = -k2[(E,F)dx 
JD JD 

= -k2f(E,F0)dx + o(k2) 
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where E denotes a Neumann field in D and F0 is the limit of (5.47) as k -> 0. 
Note that c and γ also depend on k. Then by Theorem 1.32, we can conclude 
that 

\\b-b{ Olla , 3D •0, Â:-»0, 

for the solution of (5.46). 
The second equation of the system (4.88) is 

M+K> = 2(i>,F+)-(i>,S[ *>,&]) 

(5.48) 

(5.49) 

for μ: = (ρ, Ε). Using Stokes' and Gauss' theorems for any solution ψ to the 
homogeneous adjoint equation, we find for the right-hand side 

of (5.49) that 

f: = 2(r,F+)-(p9S[",l>]) 

(/,ψ) = -2( vdivAdx 

where by Theorem 5.2 υ denotes a function that is constant on the components 
of D and 

A(x):=f *k(x,y){y(y)r(y)+['(y),l>(y)]}My). * e R 3 \ 3 Z > . 
JdD 

(5.50) 

From the integral equation (5.46), the transformation (2.86), and Theorem 2.17 
we see that 

\v(x),c\xt\A_ (x)] v(x),k2f <t>k(x,y)c(y)ds(y) 
JdD 

+ grad/ Φ*(χ, y)Divc(y) ds(y) 
Jan JdD 

xedD. (5.51) 

Now denote the components of D by Z),,...,Z)m and noting that the 
function v is a linear combination of the characteristic functions for the D^ 
determine a Dirichlet field Y in U3 \ D such that 

f (v,Y)ds= f vdx, / = 1,... 
JdD, JD, 

(5.52) 



LOW WAVE NUMBER BEHAVIOR FOR ELECTROMAGNETIC PROBLEMS 167 

By Theorems 5.2 and 5.7, the basis given by (5.26) has the property that the 
matrix 

f (r,Yj)ds, y,/ = l, . . . ,m 
JdD, 

is regular. Hence Y is uniquely determined by (5.52). Consider the interior 
Neumann problem 

Δνν = 0 in D 

- ^ = ( ^ , y ) - | ü ( ^ , g r a d | x | 2 ) on 3D 

for Laplace's equation. Since Δ|Λ:|2 = 6, by (5.52) the solvability condition for 
this boundary-value problem is satisfied. Since the boundary values belong to 
C0,a(dZ)), we conclude by the single-layer approach to the Neumann problem 
that for any solution we have w e C1,a(D). Define u(x): = w(x)+ iv\x\2. Then 
u satisfies 

ΔΜ = v in D 
and 

ψ = (ν9Υ) on 3D, ov 

and hence by the second Green's theorem 

f vdivAdx^ f ukdi\Adx+ f divA_(v,Y) ds - f u-r-di\A_ ds. 
JD JD JdD JdD ov 

Therefore 

/ ukdivAdx= - k2 f udivAdx= - k2 f udivA0dx + o(k2) 
JD JD JD 

where A0 denotes the limit of (5.50) as k -* 0. Using the jump relations of 
Corollary 2.25, the condition (5.40), and the first vector Green's theorem, we 
now see that 

f divA_{v,Y)ds = f (y+divA+)(v,Y)ds 
Jan o n JdD JdD 

= ( y(v,Y)ds-[ (àA,Y)dx 
JdD JR\D 

= k2\e + f (A09Y)dx \ + o(k2) 
L JR\D J 
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for some constant e e C according to (5.40). Using Stokes' theorem and the 
boundary value (5.51), we have 

i w(*>,curlcurl,4_ ) ds = / (*>,curly4_,grad w) ds 
JdD JdD 

JdD 

and therefore 

= k2f ( j / ,S 0r 0 ,gradi /)^ + ö(/c2), 
Jan 

f u— ds = k2\[ {u(v,A0)+(v,S0c0,gT2idu)}ds 
Jan ov \Jan JdD 

Summarizing, we see that 

+ o(k>). 

f vdivAdx = ck2 + o(k2) 
J n 

for some constant C G C and therefore the right-hand side of equation (5.49) 
satisfies condition (1.11) of Theorem 1.32. Hence 

llM-Moll«.3i>->0, * - 0 , (5.53) 

for the solution of (5.49). 
From the convergence (5.39), (5.48), and (5.53) of the boundary data we 

now obtain the convergence (5.41) of E, div£, and curl£ by the representa
tion Theorem 4.13 and the regularity Theorems 2.12, 2.17, and 2.24. For curl E 
we also make use of the transformation (2.86). The differential equation and 
asymptotic properties of the limiting field E0 follow from the limiting form of 
the representation Theorem 4.13. The boundary conditions for E0 are obvious. 

In a similar way, convergence for the exterior magnetic boundary-value 
problem can also be shown (Gülzow [ 1 ]). 

Theorem 5.10. The existence of constants dx,...,dp and functions d0,S0 such 
that the limits 

ΙΙ«-βοΙΙ«.™->0, * ->0 , (5.54) 

and 

k2hD 
f {v,d,Z.)ds^dj, k^O, (5.55) 
Jan J J 



LOW WAVE NUMBER BEHAVIOR FOR ELECTROMAGNETIC PROBLEMS 

7 = 1,...,/?, exist are necessary and sufficient for the convergence 
169 

\H-H( OlU,R3\£> ' o, o, 
| | d iv / / -d iv / / 0 | | û R 3 X / ) ^0 , ¿-+0, 

Ijcurl H - curl / / 0II«,R 3 \D "> °> k "* °> 

(5.56) 

of the solution / / of the exterior magnetic boundary-value problem (4.25). The 
limiting field solves the exterior magnetic boundary-value problem for the 
vector Laplace equation 

Δ//ο = 0 in U3\D 

satisfying the boundary condition 

[[c\ir\H0,v],v]=dQi (v,H0) = 80 on dD 

and at infinity 

tf0(x) = o( l ) , |x|->oo, 

(5.57) 

(5.58) 

(5.59) 

uniformly for all directions X/ | JC | . It is uniquely determined by the additional 
properties 

/ (H09Zj)dx = dJ9 (5.60) 

7 = 1,...,/?. 
Finally, we want to apply Theorem 5.9 to the exterior Maxwell problem. 

Theorem 5.11. The existence of constants d]9...,dp and functions c0,δ0 such 
that the limits 

\\c-c 

-Divc-Λ 

Olla, 3 D ~~" 0» 

o, 
a,BD 

k-»0, 

k-»0, 

and 

¡¡fjcZjds^dj, *-0, 

(5.61) 

(5.62) 

exist are necessary and sufficient for the convergence 

P-£OI I« .R>V>-»0, ||#-#οΙΙβ,,,ν>-»0, *-»0, (5.63) 

file:////c-c
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of the solutions E and H of the exterior Maxwell problem (4.19). The limiting 
field EQ is a harmonic field 

div£0 = 0, curl £0 = 0 in U3\D (5.64) 

satisfying the boundary condition 

[v9E0] = c0 on 3D (5.65) 
and at infinity 

E0(x) = o(\), |x |-*oo. (5.66) 

It is uniquely determined by 

/ {EO9YJ)dx = 09 (5.67) 

J' — 1,... ,m. The limiting field H0 is a harmonic field 

div//o = 0, curl//o = 0 in U3\D (5.68) 

satisfying the boundary condition 

(*%//0) = Ô0 on ¿Z> (5.69) 
and at infinity 

H0(x) = o{\)9 | x | - > o o . (5.70) 

It is uniquely determined by 

/ (H09Zj)dx = dj9 (5.71) 

y = i,...,/?. 

Pwo/. Necessity. The necessity of (5.61) follows from (5.63) and the 
boundary condition (4.19) with the help of the identity Div[*>, E] = 
-(v9cm\E)= - ik(v9 H). The necessity of (5.62) and the property (5.71) 
follow from the identity 

i/>z^4/>£-z^ 'BD Λ JdD 

= — f {(K,Z,,curl//) + (v,Z,)div//}ifc 
k¿J3D 

"-Til, (AH<zj)dx 

= ( {H,Zj)dx. 
JR3\D 
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Sufficiency. The convergence of E is obtained from Theorem 5.9 for the 
special case γ = 0. 

We now consider the magnetic field H. Using the same notations as in the 
proof of Theorem 5.9, we see from the representation Theorem 4.5 and the 
transformation (2.86) that 

H(x) = jcurl[ <l>k(x9y)[r(y),b(y)]ds(y)-ik[ <bk(x, y)c(y) ds(y) 
* JdD JdD 

- f g r a d f <&k(x,y)Oivc(y)ds(y), x<=R3\D. 
* JdD 

Hence, noting (5.61), the convergence of H will follow if we can show the 
convergence of b/k as k -* 0. Dividing the integral equation (5.46) by k and 
using the analysis following (5.46), we see that in order to show convergence of 
b/k, we only have to prove that 

lim | ( (E,F)dx (5.72) 
k - o k JD

X ' 

exists for all Neumann vector fields E in D. Using (5.47) with γ = 0 we apply 
Gauss' theorem and interchange the order of integration to arrive at 

í (E,F)dx= Í {c,A)ds 
JD JdD 

where 

A(x):=f *k{x,y)[E{y),v(y)]ds(y), x*R3\dD. (5.73) 
JdD 

By the representation formula (5.11) we see that the limit AQ of (5.73) as k -» 0 
satisfies 

divv40 = 0, curMo = 0 in R3\D. 

Now let w be the solution of the exterior Neumann problem for the Laplace 
equation 

Δνν = 0 in U\D 

satisfying 

dw 
dv (v,A0) on dD 
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and 

w(x) = o(\), |x|-*oo. 

Then Z:=A0 — gradvv is a Neumann field in U2\D and from Gauss' theorem 
(2.73) we obtain 

f (c,A0)ds=( {(c9Z)+wOi\c)ds. 
JdD JdD 

The existence of the limit (5.72) now follows from (5.61) and (5.62). 
To conclude the proof of the theorem, we have to verify the stated 

properties of the limiting fields E0 and H0. From div£ = 0 for all k =*= 0 we 
obtain div£0 = 0. Then divcurl E0 = 0, curl curl EQ = - ΔΕ0 + graddiv2s0 = 0 
in U3\D and (p,curlis0) = -Divc 0 = 0 on dD because of (5.61). Therefore 
curl EQ is a Neumann field in R 3 \ D . Since curl E = ikH we see that 

f (curl£o,Z.)<fc = 0, 
JD 

j; = 1,...,/?, whence curl E0 = 0 in IR3 \ D follows. Then E0 is harmonic and the 
remaining properties (5.65), (5.66), and (5.67) follow from Theorem 5.9. 

We now consider H0. Arguing as above, we see that the field curl/^0 is 
harmonic in R3\Z) and from [p,curl H] = - ike on dD we can conclude that 
curl H0 is a Dirichlet field in IR3\D. Then since curl H = - ikE we have 

/"(curlJ^Kj&^O, 
JD 

7 = l,... ,m, whence curli/o = 0 in IR3\D follows. Therefore H0 is harmonic. 
The boundary condition (5.69) follows from (v, H) = (\/ik)(v,curl E) = 
(i/k)(Divc) on 3D and (5.71) has already been shown. 

The above results on the continuity of solutions to the exterior electromag
netic boundary-value problems as k -> 0 were first obtained for the special case 
of simply connected domains (i.e.,/? = 0) by Werner [1], [3]. Through the use of 
methods considerably more complicated than that of this chapter, Werner has 
extended his work to multiply connected domains (Werner [4]). The above 
analysis based on the use of singular perturbation properties for integral 
operators follows the work of Kress [4], [7J. 

We wish to mention that by applying the general theory of Section 1.4, it is 
also possible to obtain continuity results on the solutions to the interior 
boundary-value problems for the scalar and vector Helmholtz equation in the 
vicinity of the interior eigenvalues (Wilde [1]). 



6 
THE INVERSE 
SCATTERING PROBLEM: 
EXACT DATA 

Up until now we have been considering the direct problem of scattering theory, 
that is, given the shape of the obstacle and boundary data to determine the 
field outside the obstacle. In this chapter we shall begin our study of the 
inverse problem of scattering theory, that is, given the far-field pattern to 
determine either the shape or the surface impedance of the obstacle. We note 
that these are not the only types of inverse problems that arise in scattering 
theory, although it is probably safe to say that they are the ones of primary 
practical importance, and for this and pedagogical reasons we have decided to 
restrict ourselves to these special cases. We have furthermore decided not to 
discuss high frequency methods such as physical or geometric optics. Our 
motivation for this decision was twofold: first, the use of integral equation 
methods in inverse scattering theory is basically restricted to low or inter
mediate values of the frequency, and second, the mathematical difficulties in 
rigorously establishing the validity of high frequency methods in inverse 
scattering theory is formidable and beyond the intended aim of this book. For 
a survey of some of the formal approaches to high frequency methods in the 
inverse scattering problem we refer the interested reader to Chapter 9 of Jones 
[2], and for an indication of the mathematical techniques needed to justify such 
a formal analysis the reader can consult Majda [1]. 

The inverse scattering problem is considerably more difficult to solve than 
the direct scattering problem. This is due to two main reasons: the problem is 
(1) nonlinear and (2) improperly posed. Furthermore, as will be seen in the 
sequel, in order to treat the inverse problem it is necessary to be able to solve 
the direct problem for arbitrary domains and frequencies. Since this problem 
has been satisfactorily resolved in the first five chapters, we can now turn our 
attention to the inverse problem itself. Of the two basic problems, nonlinearity 

173 
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and improperly posedness, it is the latter that presents the more basic diffi
culty. Indeed, for a given measured far-field pattern we shall see shortly that 
no solution exists in general to the inverse scattering problem, and if a solution 
does exist it does not depend continuously on the measured data. Hence before 
we can begin to construct a solution to the inverse scattering problem we must 
answer the question of what we mean by a "solution." This question will be 
answered in Chapters 7 and 8. However, for the time being it is worthwhile 
recalling the remark of Lanczos: "A lack of information cannot be remedied 
by any mathematical trickery." Hence in order to determine what we mean by 
a solution it will be necessary to introduce "nonstandard" information that 
reflects the physical situation we are trying to model. Having resolved the 
question of what is meant by a solution, we then have to actually construct this 
solution, and this is complicated not only by the fact that the problem is 
nonlinear, but also by the fact that the above-mentioned nonstandard informa
tion has been incorporated into the mathematical model. 

Before we can begin to deal with the problem of constructing a solution to 
the inverse scattering problem, we must first examine the simple problem of 
why the problem is improperly posed to begin with. In particular, what kind of 
functions are far-field patterns of scattered waves, and given such a function 
what can be said of the location of the sources that generated such a pattern? 
This will be the subject matter of the first part of this chapter. We shall show 
that a necessary condition for a function to be a far-field pattern can be 
expressed in terms of entire functions of exponential type, and hence we begin 
our discussion with a brief introduction to those parts of the theory of entire 
functions that are relevant to the development of this condition, in particular 
the definitions of order and type, the connection between the growth of an 
entire function and its Taylor coefficients, the indicator function, and finally 
Polya's theorem. We shall then use these results to establish Muller's theorem 
(Müller [4], Hartman and Wilcox [1]) that establishes necessary conditions for 
a function to be a far-field pattern. By deriving a reflection principle for the 
Helmholtz equation it is possible to considerably sharpen Muller's results in 
the case of axial symmetry, and we shall do this following the presentation of 
Col ton [1]. Since no boundary conditions are imposed, the above analysis 
applies to both acoustic and electromagnetic scattering. 

We conclude this chapter by presenting various theorems on the uniqueness 
of the solution of the inverse scattering problem due to Schiffer (cf. Lax and 
Phillips [1]), Colton and Kirsch [1], and Colton and Kress [1]. The proofs of 
these theorems are all based on the unique continuation property of solutions 
to the Helmholtz equation. Note that the improperly posed nature of the 
inverse scattering problem does not affect the question of uniqueness, since in 
this case our aim is to show that if two far-field patterns are the same then the 
corresponding obstacles or surface impedances are also the same, and it is 
assumed a priori that the far-field patterns are known exactly and correspond 
to some scattering obstacle or surface impedance. 
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6.1 ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

An entire function / of a complex variable z is an analytic function that is 
holomorphic in the entire complex z plane and hence can be represented in the 
form 

/ W - I v " (6.1) 
« = 0 

where the series is convergent for all values of z. In the theory of entire 
functions an important role is played by the growth of such functions as \z\ 
tends to infinity, and to this end we introduce the function 

M / ( r ) : = m a x | / ( z ) | . 
| 2 | - r 

Note that it follows from the maximum modulus principle that Mf is a 
monotonically increasing function of r. An entire function / is said to be of 
finite order if there exists a positive constant k such that 

Mf{r)<erk 

for r sufficiently large. The greatest lower bound p of such numbers k is called 
the order of / , that is, 

— loglogMr(r) 
p = lim : . 

1 ο β Γ 

Similarly, we define the type σ of an entire function / of order p to be the 
greatest lower bound of the positive numbers A such that 

Mf(r)<eA" 

for r sufficiently large, that is, 

logM7(r) 
σ = hm . 

rp 

r -> oo 

The following theorem characterizes the order and type of an entire function in 
terms of its Taylor series coefficients an defined by (6.1). 
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Theorem 6.1. Let / be an entire function of finite order p and finite type σ 
and have the Taylor series expansion (6.1). Then 

-— nlogn 
p = h m ■ l08¿ 

(aep)]/p= lim (nl*>\an\l'n). 
n —► oo 

Proof. From Cauchy's inequality we have that 

Mf(r) 

For r sufficiently large there exist positive constants A and k such that 

Mf{r)<eArk 

and hence 

\an\<eArkr~\ (6.2) 

The minimum value (for r > 0) of the right-hand side of (6.2) is achieved when 
r = (n/Ak){/k and hence 

,..!<(?)■" <«> 
for « sufficiently large. 

We now assume that (6.3) holds for n sufficiently large and deduce an 
estimate for Mf{r). For n > n0 = [2keAkrk] and r sufficiently large we have 
from (6.3) that 

ΙνΊ<2"" 
and hence 

n = 0 

Therefore, if we define μ(τ) by 

/x ( r ) :=max |û j r w 
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then 

Mf(r) < (1 + 2**ΛΛΓ*)μ(/·) + 2-π°. (6.4) 

Without loss of generality assume that/is not a polynomial. Then the index of 
the largest term in the series (6.1) tends to infinity as r tends to infinity, and 
hence for r sufficiently large 

, v (eAk\n/k
 n 

Since the maximum on the right hand side is attained for n = Akrk we have 

M(r)<é^r* (6.5) 

for r sufficiently large. Expressions (6.4) and (6.5) now imply that 

Mf(r)<{2 + 2keAkrk)eArk 

for r sufficiently large. 
The above analysis now allows us to conclude that the order p of / is the 

greatest lower bound of the numbers k such that (6.3) is valid, and the type σ is 
equal to the greatest lower bound of the numbers A for which (6.3) is valid for 
k = p. This statement now immediately implies the theorem. 

The theory of entire functions of order one and finite type σ > 0 is of special 
interest to us and we shall call such functions entire functions of exponential 
type. The theory of entire functions of exponential type is particularly rich, due 
mainly to the exploitation of the Phragmen-Lindelöf indicator function hf 
defined by 

r —» oo 

The importance of the indicator function in the study of entire functions of 
exponential type lies in the fact that it has a simple geometric interpretation in 
terms of convex sets. This property is based on the following simple, but 
fundamental, theorem. 

Theorem 6.2. The indicator function of an entire function of exponential type 
satisfies the relation 

A/(ei)sin(ff2 - 03)+ Ä /(ö2)sin(i3 - θλ) + hf(e3)sin{ei - θ2) < 0 

for all θχ^θ2^ 03, θ3-θ2< ττ, θ2-θλ< π. 

Proof. We first note that if a and b are real numbers and F(z) = e{a~ib)z, 
then the indicator function of F is given by Η(θ) = acosO + bsinO and if 
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//(#,) = Α,, i/(02) = Α2, we can write H as 

U(0) _ Ηιήη(θ2- θ)+ hiMO - θι) ( 6 6 ) 
sin(02 —0j) 

Now let / be an entire function of exponential type with indicator function 
hf satisfying Α^(0,) = hx, hf(B2) = A2. Let Ô > 0 and define Ηδ by 

Ηδ(θ) = ancoso + b8sm6 

where αδ, b8 are chosen such that //Ä(0,) = A, 4- δ, Ηδ(θ2)= A2 -f δ. Then the 
function 

<l>(z) = f(z)e-(a°-ib')z 

has the indicator function 

Α φ ( * ) - Α / ( * ) - " * ( * ) · (6.7) 

Now note that along the rays argz = 0,, argz = 02, we have from (6.7) that φ 
tends to zero as |z| tends to infinity. Hence if θ2 - θχ < π, it follows from the 
Phragmen-Lindelöf theorem (cf. Boas [1] or Levin [1]) that φ is bounded in the 
sector 0, < arg z < θ2 which implies that Αφ(0)<Οίη this region, that is, 

hf(0)<Hs(e), 0 , < 0 < 0 2 . (6.8) 

The statement of the theorem for the special case when 03 - 0, < π now follows 
from (6.8) if we let δ -> 0, use (6.6), and relabel the indices on the angles. To 
prove the theorem in general let 7/(0) = ÛCOS0 + Asin0 where a and b are 
chosen such that i/(0,) = Α^(0,) and Η(θ2) = A^(02) and note that the inequal
ity of the theorem becomes an equality for this function. Choose 04 such that 
02 < 04 < 0, + 7Γ. Then by an argument similar to that leading to (6.8) we can 
conclude that if hf{BA)< i/(04) then hf{62)< //(02), a contradiction. Hence 
h/(04)> Η(θ4), and a similar argument applied to 02, 04 and 03 shows that 
A /(03)>i/(03) . Since 

Α /(01)8Ϊη(02-03) + Α / (0 2 )8Ϊη(03-0 1 )+^(0 3 )8Ϊη(0 1 -0 2 ) = Ο 

and sin(0, - 02) < 0, the theorem now follows in the general case. 
In order to see the connection between Theorem 6.2 and convex sets in the 

plane, it is first necessary to review some of the basic properties of plane 
convex sets. We recall that a convex set is a nonempty set that contains any 
line segment joining two points in the set. The intersection of all convex sets 
containing a given set is the smallest convex set containing the given set and is 
called the convex hull of the set. The supporting function of a bounded convex 
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set G is the function k defined by 

k(0)\= sup (JCCOS0 + ysind) 
x + iy e G 

= supRe(ze - '*). 

z<aG 

The lines le defined by 

jccos0 + .ysin0-fc(0) = O 
are called the supporting lines of G and we note that all points of G lie on one 
side of Iß. If G is closed, then it follows from the definition of k and the 
compactness of G that each line le has a point in common with G. It is 
furthermore easily seen that the value of the supporting function at an angle 0 
is equal to the distance from the supporting line to the origin. 

Theorem 6.3. A necessary and sufficient condition that a function k be the 
supporting function of a bounded convex set is that the following conditions 
hold: 

(a) A:(0+2T7) = /C(0) 

(b) A:(0,)sin(02 - 03) + A:(02)sin(03 - 0,) + ¿(03)sin(0, - 02) < 0 

for all 01 < 02 < 03, 03 - 02 < ττ, 02 - 0, < π. 

Proof. Let k be the supporting function of a bounded convex set G and let 
z = x + iy be a point on the boundary of G lying on the supporting line Ιθ . 
Then 

XCOS0, + ^sin0! - A:(0,) < 0 

xcos02 + j>sin02 - /c(02) = 0 

JCCOS03 + >>sin03 - &(03) < 0. 

If we multiply the first of these equations by sin(03 - 02) > 0, the second by 
sin(0! - 03), and the third by sin(02 - ΘΧ) > 0, and add we obtain (b). Condi
tion (a) is obviously a necessary condition on k. 

Now suppose we have a function k satisfying conditions (a) and (b). 
Without loss of generality, let 02 = π/2 and construct the Une Ιπ/2 defined by 

>-*(§)■ (6-9) 
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Now note that the union of the intersections of the half planes 

XCOS0, + γήηθ] - k(ex)> 0, - | < 0, < | (6.10) 

with the line Ιπ/2 is an interval (6, + oo), and the union of the intersections of 
the half planes 

*cos03 + >>sin03 - k(e3) > 0 , | < 03 < - y (6.11) 

with the line lm/1 is an interval ( -00 ,0 ) . Suppose a point of lv/2 belonged to 
both the intervals (— 00, a) and (b, + 00). Then the coordinates of such a point 
would satisfy (6.9) to (6.11) for some angles 0,, 03, and multiplying these 
equations by sin(0, - 03), sin(03 -(77/2)), and sin((77/2)- 0,), respectively, and 
adding would lead to a contradiction to condition (b). Hence a < b, and all 
points of the interval a < x < b on lm/1 belong to all the half planes 

xcos0 + >>sin0 - k(6) ^ 0 , 0 < 0 < 2ττ. 

Hence the intersection of these half planes is not empty and is therefore some 
bounded convex set G. By construction the supporting lines of this convex set 
are given by 

xcos0 + >>sin0 - k(e) = 0, 0 < 0 < 2ττ 

and hence k is the supporting function of this set. 
It now follows from Theorems 6.2 and 6.3 that the indicator function of an 

entire function of exponential type is the supporting function of some bounded 
convex set. This convex set is called the indicator diagram of the given 
function. We are now in a position to prove a remarkable connection between 
the indicator diagram of an entire function of exponential type and the 
location of the singularities of the Borel transform of this function. To define 
the Borel transform, let / be an entire function of exponential type having the 
Taylor series expansion 

n = 0 " * 

Then the Borel transform of / is defined by 

φ(ζ):= Σ cnz-"-\ 

We note that it follows from Theorem 6.1 that if / i s of type σ, then 

σ = ÏÏrn \cn\x/n 

n —* 00 
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and hence φ is analytic for \z\ > σ. The smallest convex set containing all the 
singularities of φ is called the conjugate diagram of/. This set clearly lies inside 
\z\ < σ. The following theorem is due to Polya (cf. Levin [1]). 

Theorem 6.4 (Polya's Theorem). The conjugate diagram of an entire function 
of exponential type is the reflection of the indicator diagram with respect to 
the real axis or, more concisely, the conjugate indicator diagram. 

Proof. We first note that it follows from termwise integration that 

/ ( ζ ) = ά $ / Ζ φ ( Μ (612) 

where C is any contour containing the conjugate diagram. We now want to 
show that (6.12) can be inverted by the formula 

Φ(ζ)=/ν^/αΜ (6.13) 

where the integration is along a ray ζ = te ιθ. To this end we first note that it 
follows from the inequality (valid for t sufficiently large and ε > 0) 

| / ( r e - ^ ) | < e x p ( [ A / ( - 0 ) + | ] i ) 

that the integral in (6.13) is absolutely and uniformly convergent for 

Reze-iB>hf(-0) + e. 

It suffices to show that (6.13) is valid in a part of this domain, for example, in 

RezeT'*>3a. 

But for such values of z we have 

\e~zte~ie\<e~3ot (6.14) 

and from the inequality 

\c„l r
MÁr) 

it follows that 

Σ 
k = n + \ 

n\ 

k\ 
Mf{r),ty + \ 

1 - -
r 
m 
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or, setting r = It, 

\ e2(a + e)t^ (6.15) 

It now follows from (6.14) and (6.15) that the series 

¿ = 0 

ckSk 
zit± 

k\ 

converges uniformly on the ray Ç = te 'θ, t > 0, and termwise integration now 
yields (6.13). 

We shall now use (6.12) and (6.13) to prove the theorem. Let kf be the 
supporting function of the conjugate diagram. In (6.12) let the distance 
between C and the conjugate diagram be less than ε > 0. We then have 

r m a x R c ( f ^ ) 
f e e 

\f(re»)\<Mfixp 

<Mjsxp[(kf(-0)+e)r] 

where 

Me — max|$(£)|. 
¿ti f e C 

This implies that hf{6)<ikf(-Θ). On the other hand, <j> is analytic in the 
domain Ktze~i$ > hf(- θ)+ ε and hence kf{6) < Λ / ( - θ\ that is, kf{- Θ) = 
hf(0) and the theorem is proved. 

For further information on the theory of entire functions of exponential 
type the reader is referred to Levin [1] or Boas [1], and for applications of 
Polya's theorem to the problem of polynomial expansion of analytic functions 
see Boas and Buck [1], In the next section of this chapter we shall apply the 
above results on entire functions, and in particular Polya's theorem, to the 
problem of trying to determine the class of functions that are far-field patterns 
corresponding to scattering by bounded obstacles. 

6.2 FAR-FIELD PATTERNS AND THEIR CLASSIFICATION 

Let u be a solution of the three-dimensional Helmholtz equation 

ΔΜ + Α:2Μ = 0 

in the exterior of the sphere of radius R0 such that u satisfies the Sommerfeld 
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radiation condition 

gradu(x) ,— \-iku(x) = o 

For convenience we shall assume in this and subsequent chapters that the wave 
number k is strictly positive. We recall from Corollary 3.7 that in this case u 
has the asymptotic behavior 

where (Γ,Θ,Φ) are the spherical coordinates of x and F is known as the 
far-field pattern of u. 

Our aim in this section is to use the theory of entire functions of a complex 
variable to classify those functions that can be far-field patterns of a radiating 
solution of the Helmholtz equation. The first result that we shall prove is a 
theorem due to Müller [4] (see also Hartman and Wilcox [1]) that gives 
necessary conditions for a function to be a far-field pattern corresponding to 
the scattering of an incoming wave by a bounded obstacle. We note that in 
Müller's original presentation the following theorem was presented as a 
necessary and sufficient condition for a function to be a far-field pattern. The 
reason we are calling it only a necessary condition is that for us, in contrast to 
Müller, a far-field pattern means the far-field pattern corresponding to an 
actual physical scattering problem, that is, u is required to satisfy certain 
boundary data on the boundary of the scattering obstacle. We wish to make 
this assumption implicit in our use of the term far-field pattern to emphasize 
the problem of actually characterizing such functions in a complete and 
satisfactory manner. Indeed, as we shall see in Chapter 8, it is this problem 
that causes many of the difficulties in solving the inverse scattering problem, 
that is, it is, in general, not possible to determine whether or not a given 
measured function corresponds to a far-field pattern for some bounded ob
stacle. In mathematical terms what is needed is a characterization of the range 
of the mapping taking bounded domains into their corresponding far-field 
patterns, and this problem is one of the many intriguing open problems in 
inverse scattering theory. As the following theorem indicates, an answer to this 
problem will probably require the use of deep results in the theory of entire 
functions. For partial results in this direction, we refer the reader to Colton 
and Kirsch [3]. 

Since the theorems that follow do not depend in an essential way on the 
wave number k as long as it is greater than zero, without loss of generality we 
set k = 1, that is, M is a solution of 

» 0 0 . 

ΔΜ + Μ = 0 (6.16) 
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in the exterior of the sphere of radius R0 satisfying the Sommerfeld radiation 
condition 

[ff*du(x),^]-iu(x) = ol — J, |x|->oo. (6.17) 

Theorem 6.5 (Miiller's Theorem). Let F be the far-field pattern correspond
ing to an obstacle situated inside the sphere \x\ = RQ. Then there exists a 
harmonic function h defined in all of R3 such that 

(a) Λ(1,0,φ) = / · (β,φ) 

^ Jo J0 ' ^ ' ^' ̂ ' sinffέ/βέ/φ i s a n e n t i r e f u n c t i o n o f r o f exponential 

type less than or equal to R0. 

Proof. It follows from Theorem 3.6 that F can be expanded in a uniformly 
convergent Legendre series 

oo n 
Π»,Φ)- Σ Σ a„m/r'(cos0)e""*. 

n — 0 m = — n 

Following the proof of Lemma 3.14 and using the asymptotic behavior of the 
spherical Hankel functions, we see that for r ^ R0, u has the expansion 

" (* ) = Σ Σ anmin+xh^(r)Plm\{cose)eim* (6.18) 
n = 0 m— — n 

where the series is absolutely and uniformly convergent in this region, that is, F 
is the far-field pattern corresponding to the outgoing wave function u. In 
particular 

o -Ό Λ - ο « - - π (2/i + l ) ( « - | m | ) ! ( ¡\κ(Γ,θ,φ)\2$ίηθάθαφ = 4πΣ Σ 

is bounded for r > R0. Hence if we define 

0"-4\^Α2η + ])(η-Μ)1 ( 6 · 1 9 ) 

we can conclude from the asymptotic relation 

* ■ > ( , ) - - , T ( " + * > 2 " 
]/7T rn l 

1-f °(¿) 
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that bn[T(n + \)2"R0 "]2 is bounded, that is, using Stirling's formula, 

Em n2\bH\l/n <ie2Rl- (6.20) 
n -* oo 

We now define the function Λ by 

* 0 % M ) : - £ Σ e ^ r - P r ^ c o s e ) ^ - * (6.21) 
n = 0 m=-n 

and note that the absolute convergence of (6.18) implies that (6.21) converges 
and defines a harmonic function in all of R3 such that condition (a) of the 
theorem is satisfied. Furthermore, 

ί2πΓ\Η(κ9θ,φ)\23ΐηθαθάφ= Σ bHr2" 

where the bn are defined by (6.19). From (6.20) we can now conclude from 
Theorem 6.1 that (6.21) defines an entire function of order one and type at 
most R0, that is, of exponential type less than or equal to R0. 

We shall now show that Miiller's theorem can be considerably sharpened in 
the case when u is axially symmetric (Colton [1], [4], Sleeman [1]). This is 
basically due to the fact that the harmonic function in Miiller's theorem is now 
independent of <f>, which we indicate by writing h as h = Ä(r, 0), and note that 
h is uniquely determined by the function /i(r,0). Hence instead of considering 
the function 

F* Γ\Η{Γ,θ,φ)\2ΰηθάθαφ 
Jo Jo 

as in Miiller's theorem we can consider A(2/z,0) that is also of exponential type 
less than or equal to R0. Since in this case we are not averaging h over spheres 
as in Müller's theorem, we might expect that sharper results are possible. By 
using the theory of the indicator diagram we shall show that this is indeed the 
case. However, in order to accomplish this goal we first must establish a 
reflection principle for solutions of the Helmholtz equation vanishing on a 
sphere (Colton [2], [4]) and Gilbert's envelope method as applied to solutions 
of the axially symmetric potential equation (Gilbert [1], [2]). 

We begin by proving the above-mentioned reflection principle. Let u be a 
solution of the Helmholtz equation (6.16) defined in D\B where D is a 
bounded starlike domain containing the closed ball B = {x\ \x\ < a). On the 
boundary of B we assume that u continuously assumes the boundary data 

« = 0 on dB. (6.22) 
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We shall obtain a reflection principle for solutions of (6.16), (6.22) by using an 
integral operator that maps harmonic functions defined in D\B and vanishing 
on r = a onto solutions of (6.16), (6.22). Our presentation follows that of 
Colton [2]. We begin by looking for a solution of (6.16) in the form 

Μ(Α·,0,Φ) = Λ ( / * , 0 , Φ ) + (rK(r,s)h(sJ,<t>)ds (6.23) 

where heC2(D\B)nC(D\B) is a harmonic function vanishing on r = a. 
Substituting (6.23) in to (6.16) and integrating by parts shows that (6.23) will 
be a solution of (6.16) provided K satisfies the initial value problem 

•Krr + -Kr + K = s2 *„+§*, 

K(r,r) = -j-r(r*-a2) 

K(r,a) 1 = 0. 

(6.24a) 

(6.24b) 

(6.24c) 

If we now set 

£ = log r 

η = log s 
(6.25) 

we can transform (6.24) into the form 

Λ/ α -Μ η 7 ϊ + £>2*Μ = 0 (6.26a) 

Μ(ξ,ζ) = -±(β2*-α2) 

M(£,loga) = 0 

(6.26b) 

(6.26c) 

where Μ(ζ, η): = β(]/2)(*+η)Κ(β*, βη). Equation (6.26) is a Goursat problem for 
a hyperbolic equation and by using the method of successive approximations 
(cf. Garabedian [2]), it can easily be shown that a unique, analytic solution to 
(6.26) exists in the cone £ < TJ, η < loga, or ξ > η, η ^ logû. Hence we have 
established the existence of the operator (6.23). Since (6.23) is a Volterra 
integral equation for h if u is given, it is easy to show that i f w e C 2 ( D \ J 9 ) n 
C(D\B) is any solution of (6.16), (6.22) then u can be represented in the form 
(6.23) for some harmonic function defined in D\B and vanishing on r = a. 

Before using (6.23) to establish a reflection principle for solutions of (6.16), 
we shall establish the existence of another integral operator similar to (6.23) 
that is needed to obtain our desired result on the far-field patterns of axially 
symmetric solutions of the Helmholtz equation. This operator is of the same 
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form as (6.23), that is, 
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u(r,e,<t>) = h{r,e,<i>)+fk{r,s)h{s,e,<ï>)ds (6.27) 

but where now h e C2(D\B)C)C\D\B) is a harmonic function satisfying 

r 2a (6.28) 

on r = a. In order for the right-hand side of (6.27) to be a solution of the 
Helmholtz equation (6.16) we now must require A' to be a solution of the initial 
value problem 

[¿r,+ ^ r + ¿]=52[¿ s s + ^ s ] 

K(r,r) = -¿-r(ri-a>) 

Ks(r,a)+—k(r,a) = 0. 

(6.29a) 

(6.29b) 

(6.29c) 

By using the change of variables (6.25) and setting Μ(ζ,η): = £( |/2)<ί+'') 

K(e(, ev) we can now reduce (6.29) to the initial value problem 

M((-M„ + e2tM-0 

Mv(i,loga) = 0. 

(6.30a) 

(6.30b) 

(6.30c) 

In order to construct a solution to (6.30) we introduce the function E defined 
as the unique solution of the characteristic initial value problem 

ΕΗ-Εηη + ε«Ε = 0 

EU,t) = -HeU-a2) 
£ U , - £ + 21oga) = - ! ( e 2 £ - a

2 ) . 

(6.31a) 

(6.31b) 

(6.31c) 

It again follows by the method of successive approximations that a unique 
analytic solution of (6.31) exists in the cone | < η , i) + |<21oga, or ξ>η, 
η + ξ 3s 2loga. It is now easily verified that 

M{i, t») =\[E{i,η)+ Ε(ξ, - η +2\oga)] 
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defines a solution of (6.30). Hence we have established the existence of the 
integral operator (6.27). It is again easily verified that if u&C2(D\B)n 
CX(D\B) is any solution of (6.16) satisfying 

wr + x-w = 0 
¿a 

on r = a, then u can be represented in the form (6.27) for some harmonic 
function satisfying (6.28). 

We are now in a position to prove the following reflection principle for 
solutions of the Helmholtz equation vanishing on a sphere in R3. 

Theorem 6.6. Let u e C2(D\B)nC(D\B) be a solution of (6.16), (6.22) and 
let D* denote the set obtained by inverting D\B across the boundary of B, 
that is, (r,0,<(>)eD* if and only if (Ο2/Α%0,Φ,)€Ξ D\B. Then u can be 
analytically continued as a solution of (6.16) into (D\B)U D*. 

Proof. We first represent u in the form (6.23) where h is an harmonic 
function in D\B vanishing on r = a. Then u ̂  C2(D\B)nC(D\B) implies 
that h e C2(D\B)nC(D\B) and hence by the Schwarz reflection principle 
for harmonic functions (Colton [4]), h is harmonic in (D\B)UD*. Hence by 
(6.23) u can also be continued into this region. 

Before passing on to our next topic, Gilbert's envelope method, we pause to 
make two observations on Theorem 6.6. The first is that, in contrast to the 
Schwarz reflection principle for harmonic functions, the domain of dependence 
of u at a point outside B is a line segment inside B (instead of a point in the 
case of harmonic functions). Second, Theorem 6.6 remains valid if u only 
vanishes on a portion σ of the boundary of B, in which case D* is replaced by 
the "truncated cone" {(>\0,φ): (a2/r,0,<¡>)<= D\B, ( ΰ ^ , φ ) Ε σ } . 

In order to sharpen Müller's theorem in the case of axial symmetry it is 
necessary to determine the location of the singularities of axially symmetric 
harmonic functions in terms of the regularity properties of their axial values. 
To this end we shall need the following theorem. 

Theorem 6.7 (The Envelope Method). Let F be defined by 

Ρ(ζ): = φκ(ζ,ξ)άξ 

where K is an analytic function of its two independent complex variables 
except for possible singularities lying on the set G0 = ((z, ζ): S(z, ξ) = 0} where 
S is analytic and C is a simple closed contour. Then F is analytic for all points 
z such that (z, ζ) £ G0 Π G, for any ζ where G, = {(z, ξ): dS(z, ξ)/3ζ = 0). 

Proof. Let F be analytic at z = z0 and hence in a neighborhood N(z0) of 
z0. Let γ be a path beginning at z = z0. Then F can be analytically continued 
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along γ as long as no point of γ corresponds to a singularity of the integrand 
on C. Suppose now that F has been continued along γ to a point z = zx 
corresponding to a singularity of the integrand K at (z, ζ) = (ζ,, a). However, 
if dS(z, α)/3ζ * 0 w e can locally write 

i ( ^ i , f ) * ( f - a ) ( M ( z l f i : ) / 3 f ) 

and deform C about the point ζ = a by allowing it to follow a portion of the 
circle \ξ - a | = ε for ε sufficiently small. This implies that F is analytic at z = zx 
and the theorem is proved. 

We now apply the envelope method to solutions of the axially symmetric 
potential equation 

*!* + * ? * + Ι « * 0 . (6.32) 
dz2 dr2 r dr v ' 

A simple power series argument shows that if h is an analytic solution of (6.32) 
in some neighborhood of the origin, then h is an even function of r and is 
uniquely determined by its axial values / ( z ) : = h(z,0). Furthermore, we can 
explicitly represent h in terms of / by the integral representation h = A[/] 
where 

Μ-άΦβ'^ 
where C is a simple closed contour surrounding the origin and σ == z + ir/2(f 
+ ζ~ *). The following theorem is due to Gilbert [1], [2]; see also Erdélyi [1] and 
Henrici [1]. 

Theorem 6.8. If the only singularities of / in the complex plane are at z = a, 
then the only possible singularities of h on its first Riemann sheet are at 
z + ir = a and z — ir = a. 

Proof. We write h = A[/]. Then by the envelope method the only possible 
singularities of h are in the set G = G0 Π GY where 

Go={(z,r,Ol(z-«K+ftt2 + l)=0} 

C,-<(z,r,£)| (*"«) +frf-0). 

Eliminating ζ gives 

G = G o n G , = { ( z , r ) | ( r - a ) 2 + r 2 = 0} 

which implies z + ir = a or z - ir = a. 
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We note that singularities of h can exist on other sheets of the Riemann 
surface of h if h has branch points (Gilbert [1]). Furthermore, it is possible to 
show that z + /r = a and z - ir = a are indeed singular points of h if / is 
singular at z = a (Gilbert [1], [2]). 

We now return to Müller's theorem and make the assumption that u is an 
axially symmetric solution of (6.16) for r > RQi that is, u is independent of the 
angle φ. Then the far-field pattern has an expansion of the form 

*·(*)= Σ anPn{cose) (6.33) 

and for r^RQ 

u(rj)= Σ anin+W\r)Pn(cose) (6.34) 
Λ = 0 

where the series is absolutely and uniformly convergent. The harmonic func
tion h in Müller's theorem is given by 

h(r,e)- Σ anrnPn(cosΘ) 
κ = 0 

and is uniquely determined by the function 

00 

*Μ)"Σ«/ (6-35) 
rt = 0 

since P„(l) = l. From (6.19), (6.20) and Theorem 6.1 we see that /z(z,0) is an 
entire function of order one and type at most R0/2, which implies Λ(2/ζ,0) is 
an entire function of exponential type less than or equal to R0. Considering the 
complex z plane as superimposed over the Euclidean plane, we shall show that 
if G is the indicator diagram of h(2iz,0) and G* is its conjugate, then w, as 
defined by (6.34), can be continued as a solution of (6.16) into the exterior of 
G U G*. Note how this is a considerable strengthening of Muller's theorem: In 
terms of A(2zz,0) Müller's theorem says that if the scattering obstacle is inside 
r — R0, then this function must be of exponential type less than or equal to R0, 
whereas the result we are about to show now goes further and relates the 
indicator diagram of h(2iz,0) to the domain of regularity of u. 

Theorem 6.9. Let u be an axially symmetric solution of (6.16) regular for 
r>R0 and satisfying the radiation condition (6.17). Let F be the far-field 
pattern of u and G the indicator diagram of /i(2/z,0) where h is related to the 
far-field pattern F by (6.33), (6.35). Then if G* denotes the conjugate of G, u is 
a solution of (6.16) in the exterior of G U G*. 
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Proof. We first want to show that the function defined by 

n = 0 \R0l 
(6.36) 

can be analytically continued into the exterior of G*. We note that from (6.34) 
the series (6.36) converges and defines an analytic function for \z\ > R0. Hence 
to show g is analytic in the exterior of G*, by Polya's theorem and the 
Hadamard multiplication of singularities theorem (cf. Colton [4]), it suffices to 
show that the singularities of 

CÍA- y tnñsll z Y" (6.37) 

lie on the closed interval [0,1]. But we can actually sum the series (6.37) (cf. 
Erdélyietal. [1]) to get 

n«A σ<*>~£ΚΓ ^h(i-i) 
that is, the only singularities of G are branch points at zero and one. 

We now construct an axially symmetric harmonic function v such that on 
the axis of symmetry υ is equal to g(r): 

v(r,6):= Σ a„i"+'A<J>(Ä0)(-f Γ " Λ „ ( « κ β ) . 
„-o \κο) 

Then (\/r)v(Rl/r, Θ) is an axially symmetric harmonic function in a neigh
borhood of the origin and hence from Theorem 6.8 we can conclude that v is 
harmonic in the exterior of GUG*. Note that by construction we have 
o(R0,ê)-u(R0,e). 

Now define the axially symmetric harmonic function h by 

h(r,e) 1 
o(r,*) + ^ ü ( ^ . « 

Then h is harmonic in the domain exterior to GUG* and interior to the 
inversion of G U G* across the circle r = R0, and satisfies 

hr + 
1 

2*o 
A = 0 

for r = R0. If we now use the operator (6.27) to define U by 

U(r,e): = h(rJ)+ f K(r,s)h(s,e)ds 
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we see that U is a solution of (6.16) in the same region that h is harmonic and 
U(R0,e) = h(Ro,0). Hence w = U-u is a solution of (6.16) in the region 
bounded by r = R0 and the inversion of 3GU3G* across this circle and 
satisfies \ν(Κο,θ) = 0. Therefore by Theorem 6.6 we can continue vv into the 
complement of GUG* with respect to the disk r < R0. Since U is already 
known to be regular in this region, we can conclude that u must also be regular 
there, and since we already know that u is regular for r > R0, the theorem is 
proved. 

6.3 UNIQUENESS OF SOLUTIONS TO THE INVERSE 
SCATTERING PROBLEM 

We now want to establish the uniqueness of the solution to the inverse 
scattering problems that we shall be considering in the next two chapters. We 
shall first formulate these problems for acoustic waves and then for electro
magnetic waves. Although we shall formulate our problems in R3, they may 
also be considered in M2 with obvious modifications. In what follows D shall 
always denote a bounded domain with C2 boundary 3D with λ and ψ being 
continuous functions defined on 3D. u'(x) = elk{x,a) will denote a fixed plane 
wave solution of the Helmholtz equation 

Aw + A:2w = 0 (6.38) 

and (£"', H') a plane wave solution of the time-harmonic Maxwell equations 

curl H + ikE = 0, curl E - ikH = 0 (6.39) 

where k> 0 and the superscript / denotes "incident wave." As before, v will 
denote the unit outward normal to 3D. 

Problem Al 

Let u = ul + u5 be a solution of (6.38) in the exterior of D such that us satisfies 
the radiation condition 

( g r a d M
s ( x ) , i | | - ) - / ^ ( x ) = 0 ( | j y j , |*|-»oo (6.40) 

and u = 0 on 3D. From a knowledge of the far-field pattern of w5, deter
mine D. 

We are purposely being vague about what is meant by a " knowledge" of the 
far-field pattern since we desire to be flexible in this regard. In general it will 
mean knowing the far-field pattern at least for an interval of angles and a fixed 
set of frequencies, the precise requirements to be stated explicitily in each 
theorem. 
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Problem A2 

Let u^u' + u5 be a solution of (6.38) in the exterior of a given domain D such 
that us satisfies the radiation condition (6.40) and (3u/3v)+Xu = 0 on 3D 
where Im λ > 0. From a knowledge of the far-field pattern of M5, determine 
λ = λ(χ), X<E3D. 

Problem El 

Let E = El + Es, H=H( + Hs be a solution of (6.39) in the exterior of D such 
that ( £ \ H5) satisfies the radiation condition 

"'(*>· ϊίί S ( * ) = O ( R ) ; |x|""") ( 6 · 4 1 ) 

and [v,E] = 0 on 3D. From a knowledge of the far-field pattern for E\ 
determine D. 

Problem E2 

Let E = Ei; + Es, Η=Η* + Hs be a solution of (6.39) in the exterior of a given 
domain D such that (£5 , Hs) satisfies the radiation condition (6.41) and 

[v,[v,H]]-xp[v,E] = 0 on 3D (6.42) 

where Re ψ > 0. From a knowledge of the far-field pattern for E\ determine 

Although we shall not discuss it in this book, the Neumann boundary-value 
problem corresponding to Problem Al can be treated in an almost identical 
manner to the Dirichlet problem considered here. Furthermore, as is well 
known (cf. Baker and Copson [1]), the two-dimensional version of Problem El 
can be reduced to the two-dimensional problem corresponding to Problem Al. 
Perhaps it is worthwhile to point out at this time that our aim in this book is 
not to consider all possible problems that can be treated by our methods, but 
rather to discuss them for the "canonical" problems Al, A2, El, E2, and then 
leave it to the reader to adjust the techniques given here to those problems that 
are minor variations of these canonical problems. 

The following uniqueness theorem for Problem Al is due to Schiffer (Lax 
and Phillips [1]) and is based on the analyticity of solutions to the Helmholtz 
equation (Theorem 3.5). 

Theorem 6.10. Let F be the far-field pattern of us in Problem Al. Then D is 
uniquely determined by a knowledge of F on some surface element of the unit 
sphere and k on any interval of the positive real axis. 

Proof. Since we have shown in Section 6.2 that F is an analytic function, 
knowing F on a surface element of the unit sphere implies that F is known on 
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the entire unit sphere by analytic continuation. Now suppose there existed two 
obstacles Dx and D2 having the same far-field pattern F. Consider first the case 
when Dx and D2 are disjoint. Then since F uniquely determines us outside a 
ball containing Dx and D2 in its interior, we can conclude by analytic 
continuation that us is an entire solution of (6.38) satisfying the radiation 
condition (6.40). But this implies us = 0 (cf. Theorem 3.40), that is, ul = 0 on 
3DX. But this is a contradiction since ul is a plane wave. Now consider the case 
when D = DXD D2 has a nonempty interior. Then by the above arguments u is 
a solution of (6.38) in DX\D or D2\D satisfying u = 0 on the boundary, that is, 
k2 is an eigenvalue of the Laplacian in this region. But since the set of 
eigenvalues for this problem is discrete, we again arrive at a contradiction. The 
case when Dx and: D2 are tangent can be easily handled by simply considering 
Dx instead of DX\D or D2\D and this completes the proof of the theorem. 

The above method of proof immediately carries over to the case of Problem 
El, and for completeness we simply state the theorem without proof. 

Theorem 6.11. Let F be the far-field pattern of Es in Problem El. Then D is 
uniquely determined by a knowledge of F on some surface element of the unit 
sphere and k on any interval of the positive real axis. 

We now turn to the uniqueness theorems for Problems A2 and E2. In 
contrast to the case of Problems Al and El it turns out in this case that 
different proofs must be derived for each of these problems, although both 
ultimately depend upon an application of Holmgren's uniqueness theorem. A 
further interesting contrast to Problems Al and El is that in this case it is only 
necessary to know the far-field patterns for a single fixed value of the wave 
number k instead of an interval of k values. As we have just stated, both proofs 
depend upon Holmgren's uniqueness theorem, and hence for convenience we 
state this theorem here as it applies to the situation in which we are interested. 
For a proof of Holmgren's theorem we refer the reader to Colton [4] or 
Garabedian [2]. 

Theorem 6.12 (Holmgren's Uniqueness Theorem). Let u^C2(R2\D)D 
Cl(R3\D) be a solution of (6.38) in the exterior of D such that u has zero 
Cauchy data on a surface element of 3D. Then u is identically zero. 

We first consider Problem A2 (Colton and Kirsch [1]). 

Theorem 6.13. Let F be the far-field pattern of us in Problem A2. Then λ is 
uniquely determined by a knowledge of F on some surface element of the unit 
sphere and fixed k > 0. 

Proof. As in Theorem 6.11 we can assume F is known on the entire unit 
sphere. Now suppose there were two solutions λ1 and λ2 of Problem A2. We 
want to show that λχ(χ) = λ 2 (χ) for all x e 3D. Let ux and u2 be the solutions 
of (6.38) corresponding to λ, and λ2. Then we can conclude from Corollary 3.9 
that w, = u2 outside of D and hence dux/dv = du2/dv on 3D. Then from the 
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boundary condition satisfied by w, and u2 we have 

( λ , - λ 2 ) Μ , = 0 on 3D. (6.43) 

We now note that if ux = 0 on a surface element S of 3D, then from the 
boundary condition satisfied by ux we would have 3ux/3v = 0 on S and hence 
by Holmgren's uniqueness theorem w, = 0 in U3\D. But this is a contradiction 
since ux = w' + u\ and u\ satisfies the radiation condition but u' does not. 
Hence w, cannot vanish on any surface element of 3D and therefore if x e 3D 
there exists a sequence of points xn -* A; such that Wi(x„) * 0. Then from (6.43) 
we have λχ(χη) = λ2(χη) and since λ, and λ2 are continuous we have λι(χ) = 
λ 2(χ) . Since x was an arbitrary point on 3D this completes the proof of the 
theorem. 

Note that in the proof of Theorem 6.13 no direct use was made of the fact 
that Im λ ^ 0. This restriction was incorporated in the formulation ;of Problem 
A2 only for the purpose of consistency since this condition is required for the 
proof of the existence and uniqueness of a solution to the corresponding direct 
scattering problem (Theorems 3.37 and 3.38). 

We now conclude this section and the chapter by a proof of the uniqueness 
of the solution to Problem E2 (Colton and Kress [2]). As with Problem A2 no 
use will be made of the fact that Re ψ > 0, although this condition is required 
for the proof of the existence and uniqueness of the direct scattering problem 
(Theorems 4.45 and 4.46). The necessity to modify the proof of Theorem 6.13 
in order to treat Problem E2 arises from the fact that the boundary condition 
satisfied by (E, H) does not explicitly involve the Cauchy data of E and H. 

Theorem 6.14. Let F be the far-field pattern of Es in Problem E2. Then ψ is 
uniquely determined by a knowledge of F on some surface element of the unit 
sphere and fixed k > 0. 

Proof. We can again assume by analyticity that F is known on the entire 
unit sphere. Suppose there were two solutions ψ, and ψ2 of Problem E2. We 
again want to show that ψ,(.χ) = ψ2(*) f° r an< x^9D. Let (EX,HX) and 
(E2, H2) be the total fields corresponding to ψ, and ψ2. Then by Corollary 3.9 
we can conclude that Ex = E2 and Ηλ = H2 in R3 \ D. Hence from the boundary 
condition (6.42), we have that 

( Ψ ι - Ψ 2 ) [ " , £ ι ] = 0 on 3D. (6.44) 

Suppose [v, Ex\ = 0 on a surface element S c 3D. Then since from (6.42) 

[>,[*>,#,]] = 0 on S 

we have that Hx is normal to S and hence using (2.75) 

ik(v,E}) = -(v,cunHx) = Orv[v,Hx] = 0 on S. 
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Therefore Ex = 0 on S. We note that from the regularity result contained in 
Theorem 3.27 we can now conclude that Ex e C\R3\DU S). Now let x0^S 
and without loss of generality assume x0 is the origin and that the outward 
normal to 3D at x0 points along the positive ;c3-axis where x = (xl9x2,x3). 
Recall that 

curl Ex = 

divE] = 

ΠθΕ^ 5£<2>\ /3£('> 
^ dx2 dx3 J'\ dxi 

3EW 3E™ 8Em 

-z + ^ + -^ 

ΘΕ™ \ 
dxx y 

l dE& 
\ dxi 

dE^ 
dx2 

3xx dx2 3x3 

where Ex = (E{1\ Ei2\ £ (3 )) and note that from Maxwell's equations and the 
regularity of E{ in R 3 \ D U S we have di\Ex = 0 at x0. Hence since curl Ex is 
normal to 3D at xQ, we have, using the facts that 3D is in class C2 and Ex = 0 
on 5, that 

3E(l) 3E(2) 3E(3)
 Λ 

3x3 3x3 3x3 

Since x0 was an arbitrary point of S, it follows that each component of Ex 
vanishes along with its normal derivative on S. Since Ex is a solution of the 
vector Helmholtz equation it now follows from Holmgren's uniqueness theo
rem that Ex ΞΞ 0 in U3\D. But this is a contradiction since E* does not satisfy 
the radiation condition. Hence [P, £,]=*= 0 on any surface element S c 3D. We 
can now conclude from (6.44) exactly as in the proof of Theorem 6.13 that 
Ψι(χ) = Ψ2(χ) f° r au< * G ^£>, and this completes the proof of the theorem. 



7 
IMPROPERLY POSED 
PROBLEMS AND 
COMPACT FAMILIES 

Our aim in this chapter is to introduce methods for dealing with linear 
improperly posed problems of the type that arise in studying inverse scattering 
problems. The approaches that we shall focus on are Tikhonov's selection 
method, Ivanov's idea of a quasi-solution, and the Backus-Gilbert method. 
These are perhaps the simplest approaches for dealing with a wide variety of 
improperly posed problems and are based on the idea of making use of a priori 
assumptions in order to restrict the solution sought after to lie in a compact 
set. The selection method and the concept of a quasi-solution have the added 
advantage of being easily adaptable to studying nonlinear improperly posed 
problems of the type we shall discuss in Chapter 8. There are, of course, more 
general methods for studying improperly posed problems than the ones we 
discuss here, for example, Tikhonov's regularization method (cf. Tikhonov and 
Arsenin [1]). However, our aim in this chapter is to outline only a few simple 
procedures that are all based on the concept of compactness and are well 
suited to treating improperly posed problems in scattering theory rather than 
attempting to give any kind of a survey of the numerous methods that can be 
used to deal with such problems. For an idea of alternate approaches the 
reader is referred to the previously mentioned book of Tikhonov and Arsenin 
as well as the survey papers by Bertero, De Mol, and Viano [1], Angelí and 
Nashed [1], and Nashed [1]. 

After our discussion of the above methods for treating improperly posed 
problems we shall illustrate their applicability by considering two inverse 
problems arising in scattering theory. The first of these is to determine the 
surface impedance of an obstacle from a knowledge of the far-field pattern of 
the scattered acoustic wave (Problem A2 of Chapter 6) and the second is to 
determine the shape of the scattering obstacle from a knowledge of the 
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scattering cross section, given the fact that the obstacle is acoustically soft 
(Problem Al of Chapter 6). In this second problem we shall assume that an 
initial approximation to the shape is known, thus linearizing the problem. The 
full nonlinear problem will be dealt with in Chapter 8. 

The final section of this chapter is concerned with compact families of 
univalent functions and is designed to connect the subject matter of this 
chapter with that of Chapter 8. The theory of conformai mappings and 
univalent functions exhibits a rich interplay between geometry and analysis 
and hence it is not surprising that this area of mathematics is particularly 
useful in the investigation of two-dimensional inverse scattering problems. In 
this chapter we shall present the basic theorems on normal families of 
univalent functions and in particular introduce an appropriate compact family 
that will be exploited in Chapter 8 to study the problem of determining the 
shape of a bounded two-dimensional obstacle from a knowledge of the 
far-field pattern. 

7.1 A PRIORI ASSUMPTIONS AND THE SOLUTION OF 
IMPROPERLY POSED PROBLEMS 

Let A: A"-» Y be a bounded (and hence continuous) linear operator mapping 
the Banach space X into the Banach space Y and let Z c Y denote the range of 
A. Assume further that A - 1 exists on Z, although no assumption is made on 
the continuity of A - '. (In what follows the assumption of the existence of A~ l 

can be removed by considering A as a set valued map; however, for the sake of 
simplicity, we shall not pursue this generalization here.) Our aim is to "solve" 
the operator equation 

Kx = y, γ<ΞΥ (7.1) 

such that the solution x is stable under small changes of the right-hand side y. 
Note that unless y^Z, no solution to (7.1) exists, and even if y e Z, small 
perturbations of y in Z can cause large perturbations of the solution x, since 
A ~! is not in general continuous. The approach that we shall now present to 
"solve" (7.1) is based on restricting the class of admissible solutions to lie a 
priori in a compact set I 0 c l and to define the "solution" of (7.1) to be that 
element x^ X such that ||AJC — >>|| is a minimum. Restricting the class of 
admissible solutions to he in a compact set is known as Tikhonov's selection 
method. 

We begin our analysis by proving the following theorem that demonstrates 
how continuity of the inverse operator can be restored by restricting the 
domain of A to be a compact set. 

Theorem 7.1. Let X0 be a compact set of a Banach space X and A a 
continuous operator (not necessarily linear) defined on X0 such that A ~] exists 
on A(X0). Then A - 1 is continuous on \(X0). 
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Proof. Since the continuous image of a compact set is compact, A( X} ) is a 
compact set for any closed subset X] c X0, that is, the inverse image under the 
mapping A - 1 of an arbitrary closed set X] c X0 is closed. But this statement 
implies that A ~] is continuous on A( X0 ). 

By itself Theorem 7.1 is not of much use in solving (7.1) since in most cases 
of practical importance it is not possible to decide if _yE A(X0) or not. In 
particular, if y is arrived at through measurements subject to a certain amount 
of experimental error we cannot in general claim that this "noisy" data lies in 
A(X0). In this case we define a quasi-solution of (7.1) to be any element 
x0 e X0 such that 

| | A x 0 - ^ | | = inf \\Ax-y\\. (7.2) 

Note that since X0 is compact the infimum on the right-hand side of (7.2) 
exists, and that there may be more than one quasi-solution to equation (7.1). 
The following theorem gives sufficient conditions for a quasi-solution to be 
unique and depend continuously on j^ey . 

Theorem 7.2. Let A: X-*Y be a continuous linear operator mapping the 
Banach space X into the Banach space Y. Assume further that the compact set 
X0 c X is convex and that the Banach space Y is strictly convex. Then the 
quasi-solution of (7.1) is unique and depends continuously on the element y. 

Proof. Let x0 G I 0 be a quasi-solution and set y0 = Ax0. Since X0 is 
convex, so is Α(ΑΌ), and^0 is the projection of y on A(X0). Since Y is strictly 
convex, this projection is unique. Let P: Y-+A(X0) denote this projection 
operator. Then P is well defined, continuous, and we can write x0 = A~]y0 = 
A_1P>>. By Theorem 7.1 A - 1 is continuous on A(X0), and hence we can 
conclude that A~ lP is continuous on Y. The theorem is now proved. 

From the point of view of applications it is, of course, important to provide 
a constructive procedure for approximating a quasi-solution to (7.1). We shall 
present one such procedure now, where the operator A and spaces X0 and Y 
are as in Theorem 7.2. Let Xx c X2 c X3... be a sequence of nested compact 
sets in X0 such that U ™„λΧη = XQ and let Qn denote the set of all quasi-solu-
tions of Ax = y with x restricted to the set Xn. 

Theorem 7.3. Let x0 e X0 be the unique quasi-solution of Ax = y, y e Y, 
where A, X0, and Y are as in Theorem 7.2. Then if xn G Qn, lim^^^x^ = x0. 

Proof. Let Z0 = A(A"0) and Z„ = A(Xn). Denote by d(y, Zn) the distance 
between >> and Z„, that is, 

d(y,ZH):~ inf \\y-z\\. 
zeZ„ 

Then d(y9Zx)>--d(y9Z„)>--d(y,Z0) = \\y-Ax0\\ where x0 is the 
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unique quasi-solution of Ax = y. Then since U ^L, Xn = X0 we have 

lim d(y9Z„) = \\y-Ax0\\. 
n —» oo 

But d(y, Z„) = d(y,\(Qn)) and hence 

lim d(y,A(Qn)) = \\y-Ax0\\. 
n ~* oo 

Since A((2„) is a closed subset of the compact set Zn it is compact, and hence 
there exists a sequence (z„), zn e A(<2„), such that 

\\zn-y\\= inf Hz-^ll . 
¿eA(0„) 

Since Z0 is compact, Z, c Z2 c · · -~c Zn c · · · c Z0, the sequence (z„) has a 
limit point in Z0, denoted by z0. Let (ζπ(Λ)) be a subsequence of (z„) such that 

l i m ll^(^-^oll = 0· 
k —* oo 

Then from the above we have that 

| |>>-z0 | |= lim \\y-zn{k)\\ 
k —* oo 

= lim d{y,A(Qnik))) 
k -* oo 

-ILy-Axoii, 

and from the uniqueness of the quasi-solution x0 we can conclude that 

ZQ — \XQ. 

Since z0 was an arbitrary limit point of (z„), we have 

lim | |z„-Ax0 | | = 0 
n - + oo 

and hence 

lim ! K - x 0 | | = lim HA^Ax,, - A-'Axoll 
n -* oo « —» oo 

= lim | | A - ' ( ^ - A x 0 ) l l 
« - * oo 

= 0 

due to the fact that from Theorem 7.1, A" l is continuous on Z0 and A" '0 = 0. 
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We note that if Xn is taken as an «-dimensional subset, the problem of 
approximating the quasi-solution x0 of Ax = y reduces to the problem of 
minimizing the functional ||A* - y\\ for x e Xn, that is, to finding the mini
mum of a function of n variables. 

Although the approach described above for solving the improperly posed 
operator equation is quite general, it suffers from several defects. In particular 
the assumption on the existence of A " * is often not valid for practical inverse 
problems. In what follows we shall present a method for solving a rather 
specialized class of improperly posed equations of the form AJC = y where it is 
no longer assumed that A"1 exists. Indeed, the nonuniqueness of the solution 
will be seen to play a central role in deciding what is meant by a solution and 
how to approximate it. The method we have in mind is due to Backus and 
Gilbert [1] and is designed to treat linear moment problems of the form 

μΗ=[1φ(χ)Ε„(χ)<1χ (7.3) 

where the gn are known linearly independent continuous real-valued functions 
defined on [0,1], the μη are given constants, and φ is a real-valued continuous 
function defined on [0,1] that is to be determined from the relations (7.3) 
where it is only assumed that a finite number of the μη are known, that is, 
μ0, μ^.,. ,μ^ for some integer N. Note that the solution of (7.3) is nonunique 
since if φ is any function orthogonal to g0, g,,... ,gN then 

[}i(x)gn(x)dx = 0. 

Note also that <f> does not depend continuously on the μ„, rt = 0, 1,...,JV. 
Indeed, by the Riemann-Lebesgue lemma 

lim f sin mxgn(x) dx = 0 
m —* oo * 0 

for each fixed w, and hence the numbers μ„, n = 0, \,...,N, tending to zero 
does not imply that the "solution" of (7.3) tends to zero unless further 
restrictions are placed on the class of admissible solutions to (7.3). As we shall 
see in the next section, moment problems of the form (7.3) arise in the study of 
inverse scattering problems where the μη correspond to TV + 1 distinct measure
ments of the far-field pattern or to the scattering amplitudes corresponding to 
N + 1 distinct incoming waves. In these cases the region of integration in (7.3) 
is no longer [0,1] but rather the surface of a domain in R2 or R3; however, this 
difference has no effect on the validity of the Backus-Gilbert method and the 
one-dimensional interval of integration in (7.3) is taken purely for the sake of 
notational simplicity. 

We first consider the case when the μ„, n = 0, l,...,iV, are known exactly. 
The Backus-Gilbert method for solving (7.3) in this case is to first choose 
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functions an such that 

TV 

κ = 0 

is a delta sequence or, more specifically, such that for each y 

and 

f 8N(x,y)dx = \ 

f\x-y)2[ôN(x,y)]2dx 

(7.4) 

(7.5) 

(7.6) 

is minimized. We denote this minimum value by ε= ε(Ν, y). Note that (after 
possibly defining a new unknown function φ = φβαχ for a a constant) we can 
assume without loss of generality that 

c:= f go(x)dx*0, 
Ja 

that is, there exist numbers an such that (7.5) is valid. Furthermore, if we 
assume the unknown function φ in (7.3) lies in a class U of functions satisfying 
(7.3) and that in addition are Lipschitz continuous with uniformly bounded 
Lipschitz constant, that is, 

\φ(χ)-φΜ\<Μ\χ-γ\ 

where M is a positive constant independent of φ, then from the inequality 

I Mo 
■ Φ ( ^ ) 

1 /■■ 
c JQ 

f <t>(x)go(x)dx-<l>(y) 

);(λ[φ{x)-φ(y)}gv{x)dx 
C JQ 

<— (\x-y\\go(x)\<ix 
C Jf\ 

= : M o 

we can conclude that 

|Φ(>>)Ι<Μ0 + Mo 
c 
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where the positive constant M0 is independent of φ. Hence from the 
Arzéla-Ascoli theorem (Theorem 1.12) we can conclude that the set U is 
compact in C[0,1]. Assuming a priori that φ £ ί / , an approximation to the 
solution of (7.3) is now given by 

* = o 

Indeed, we have the estimates 

\<t>N(y)-<i>(y)\ = \(l<l>(x)aN(x,y)<tx-<t>(y) 
KO 

= \(l[<i>(x)-<t>(y)]àN(x,y)dx 
KO 

^fM\x-y\\8N(x9y)\dx 

(7.7) 

< M l\x-y\2\6N(^y)\2dx Jo 

1/2 

<Λ/ε1 /2 . 

Thus an approximation to φ can be found provided we know the constant M 
and can construct the functions an. One approach for doing this is as follows. 
For each y we can write (7.6) as 

(\x-y)2[8N(x,y)]2dx= £ S„m(y)a„am (7.8) 
n, m — 0 

where 

Snm(y)'= ( (x-y)2gn(x)gm(x)dx 

and rewrite (7.5) as 

* = 0 J0 
(7.9) 

Hence our problem is to minimize the quadratic function (7.8) subject to the 
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linear constraint (7.9) or, in matrix notation, 

minimize aTSa (7.10) 
subject to g a = \ 

where the superscript denotes transpose, S = (Snm), a = (a0, ax,...,aN)T, and 

£ = ( / go(x)dx>j g\(x)dx,...,f gN(x)dxJ . 

Geometrically aTSa = γ represents a family of ellipsoids and gTa = 1 a hyper-
plane. Hence problem (7.10) is to find the smallest ellipsoid of the above 
family having a nonempty intersection with the hyperplane gTa = 1. Analyti
cally the solution to (7.10) can be found by introducing the Lagrange multi
plier λ and solving the system 

Sa = Xg 

gTa = l. (7.11) 

The solution of (7.11) is given by 

1 
λ = 

gTs->g 

1 
g S xg 

The invertibility of S follows from the fact that S is positive definite. 
We now turn our attention to the case when the μη are not known exactly, 

but only to within a certain experimental error. This is often the case in 
practice, where in a typical situation we have many estimates for each μ„, each 
one the result of combining many independent observations. In particular we 
shall assume we know the means μη and the variance matrix E = (Enm) where 
the bar denotes mean value, 

E„m=A„Am; «,m = 0,l,...,7V, 
μη = μΜ + Δπ; n = 0,1,...,7V, (7.13) 
Δ„ = 0; AI = 0 ,1 , . . . , 7V . 

From (7.7) we have that for fixed x 

φΝ(*) = αΤμ (7.14) 



THE SOLUTION OF IMPROPERLY POSED PROBLEMS 205 

where μ = (μ0, μ\,...,μΝ)τ and hence from (7.12) 

gTs-]p 
gTs-*g' 

If we now write 

ΦΝ(Χ)=ΦΝ(Χ)+ΔΦΝ 

and define e by 

^ ( Δ φ „ ) 2 

= αΓΕα (7.15) 

we can interpret e as a measure of the error made in approximating φΝ from 
the means fin. The important point to notice here is that in computing 
<j>N(x) = ατμ it is possible that additions take place in such a manner that e is 
large even though the relative errors Δ„ are small. In this case it may be 
advantageous to allow aTSa to be slightly larger than its minimum value if in 
so doing the accuracy of the approximation to φΝ can be significantly im
proved. More precisely, we can pose the following optimization problem: For 
fixed γ, minimize e subject to the constraints that gTa = 1 and aTSa < γ. Let 
ïmin denote the minimum value of aTSa subject to the constraint gTa = 1. Then 
the following situations can arise: If γ < ymin, there is no solution to the 
above-defined optimization problem, whereas if γ > yaún either e is minimized 
for a value of a such that aTSa = γ or at a value of a such that aTSa < y. Since 
the parameter γ is at our disposal, the case of primary interest is when e is 
minimized for a value of a such that aTSa — y where y > yttún. In this case our 
optimization problem can be solved by introducing Lagrange multipliers λ, 
and λ2 and solving the system 

Ea + \lSa = X2g 

gTa = \ 

aTSa = y. (7.16) 

Having computed the solution of (7.16) we now evaluate e = aTEa and 
compare its value to that corresponding to γ = γ ^ . Note that for each value of 
γ there may be several solutions of (7.16) of which we hope only one will 
minimize e. 

For more details on the above procedure, we refer the reader to Backus and 
Gilbert [1] and Burridge [1]. 
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7.2 LINEARIZED IMPROPERLY POSED PROBLEMS IN 
SCATTERING THEORY 

We shall now turn our attention to the application of the Backus-Gilbert 
method to two inverse problems arising in the scattering of acoustic waves. The 
first problem we shall consider is that of determining the surface impedance 
λ = X(x) from a knowledge of the far-field pattern for a fixed wave number k 
(Problem A2 of Chapter 6). 

From Corollary 3.7 we have 

u'M—w-Fi*)+0(tf) ( 7 · 1 7 ) 

where F is the far-field pattern, and the problem we want to consider is that of 
determining λ from a knowledge of F for all angles x= x/\x\ and fixed wave 
number k. From Theorem 6.13 we know that λ is uniquely determined by F. 
However, in practice F is determined from measurements that are subject to a 
certain amount of experimental error, and hence the measured F may not even 
be in the class of far-field patterns corresponding to Problem A2, that is, in 
general no solution exists to our problem. We note also that the problem under 
consideration is nonlinear, that is, F does not depend linearly on the function 
λ. In what follows we shall show that the first difficulty can be handled by 
using our previously derived results on improperly posed problems, whereas 
the second difficulty can be circumvented by using Green's function to re
duce the nonlinear problem to that of solving two linear moment problems 
where the kernel of the second depends upon the solution of the first (cf. 
Colton and Kirsch [1]). 

In order to carry out the above program we need to restrict the class of 
admissible impedances λ to he in a compact set. More specifically, let C+(dD) 
denote the cone in C(dD) consisting of all functions λ such that Im λ ^ 0 and 
let the set U be defined by 

U={X^C+(dD)\\X(x)\^M„\X(x)-X(y)\^M2\x-y\} 

where M, and M2 are fixed constants. Then since U is bounded, closed, and 
equicontinuous, by the Arzéla-Ascoli theorem U is compact in C(dD). Now 
let λ e U and let G denote the radiating Green's function for the Helmholtz 
equation defined in the exterior of Z), that is, G is a fundamental solution of 
the Helmholtz equation satisfying the Sommerfeld radiation condition and the 
boundary condition 

G(x,j>) = 0, x e d Z ) , y<ER3\D. (7.18) 

Then using Green's formula we can represent us in the form 

MÍW = ¿ / "s(y)-^fr(^y)My). (7.19) 
4π JdD ov{y) 
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We now note that for |x| large G has the asymptotic behavior 

PikW r / 1 \ 

where, as a function of y, g is a solution of the Helmholtz equation in the 
exterior of D, satisfies the Sommerfeld radiation condition, and on 3D assumes 
the boundary data 

g(x,y) = -e-ik{*>y\ y^3D. 

Letting x tend to infinity in (7.19) now leads to the relation 

F(*) = ± [ u*(y)-^—[e-'k^yï + g(x,y)]ds(y). 
4TTJdD dv{y) 

Suppose now that F is known for the observation angles x0, x,, . . . ,JC^, and 
define 

for n = 0, l,...,iV. Then we have the improperly posed generalized moment 
problem 

" » - ¿ / «s(y)TTr[e--ik(*-y) + g(K,y)]ds(y) (7.20) 
4π JdD dv(y) 

for u5 on dZ). However, by using regularity results analogous to Theorem 3.27 
we have that us e C\R3\D) and hence if we have an a priori bound on the 
velocity grad us we have a bound on the Lipschitz constant for us. Such a 
bound in fact follows from potential theoretic arguments using the fact that 
X e t / and 3D is in class C2. With this information at our disposal we can now 
apply the Backus-Gilbert method to (7.20) and arrive at an approximation to 
u5 on 3D. 

Having determined an approximation to us on 3D we have an approxima
tion to u on 3D, and an application of Green's formula now gives 

«'<*>-¿Í 
d e'k\x-y\ e>k\x-y\ du(yj 

U{y)dv(y) \x-y\ \x-y\ dv My). 

Letting x tend to infinity and making use of the impedance boundary condi
tion satisfied by u now gives us the moment problem 

Y« = i / HyMy)e-ik(í"^]ds(y) (7.21) 
^π ¿an 
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where 

Note that errors in computing u on dD are equivalent to errors of known 
magnitude in the computation of yn since a bound on λ is assumed known. 
Hence under the assumption that λ e (/ and a sufficient number of measure
ments of the far-field pattern have been made we can use the Backus-Gilbert 
method to determine an approximation to the unknown impedance λ. 

We note that from a practical point of view the above procedure is 
complicated by the fact that one must know both the Green's function for D as 
well as an a priori bound on grad us. This last restriction can be removed if one 
has low frequency data available (Colton [6]). 

We now turn our attention to the problem of determining the shape of the 
scattering obstacle from a knowledge of the far-field pattern, given the fact 
that the scattering obstacle is acoustically "soft," that is, Problem Al of 
Chapter 6. We note that in order to guarantee uniqueness it is in general 
necessary to know F=F(x\k) for an interval of k values, k e [/C0, Z C J C R 
(Theorem 6.11). We also observe that this problem is nonlinear, for example, if 
D is starlike and described by r = ¡(Θ, φ) then/ is not a linear function of the 
far-field pattern F. In order to arrive at a linear moment problem amenable to 
the Backus-Gilbert method, we shall assume that an initial guess D0 to D is 
known and then derive a linear moment problem for the first variation of D0. 
Under this assumption we shall show that an improved approximation to D 
can be determined from a knowledge of the scattering cross section σ defined 
by 

σ:= lim / \us(x)\2ds 

= / \F(x)\2ds, (7.23) 

that is, it is only necessary to know the amplitude, and not the phase, of the 
far-field pattern F in order to arrive at an improved approximation to the 
initial guess D0. However, we shall need to know the scattering cross section, 
corresponding to waves incident upon D from N -f 1 different directions, that 
is, on = σ(/τ, <xn), n = 0,1,...,N where an is the direction of propagation of the 
incoming plane wave u' = u'(x; k,an). Our presentation will be based on a 
variational principle due to Garabedian [1] and was first presented in Colton 
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and Kirsch [2] and Angelí, Colton, and Kirsch [1]. For related results, 
including numerical examples, we refer the reader to Roger [1], Sleeman [3], 
and Kirsch [5]. 

We emphasize the fact that our analysis is based on having an initial 
approximation D0 to the domain D. The situation where this is not the case 
(i.e., the full nonlinear problem) will be discussed in the next chapter. 

We begin by deriving the above-mentioned variational formula of Gara-
bedian. Suppose dD is obtainable from dD0 by shifting dD0 an infinitesimal 
positive amount δν along the inner normal to dD0. Let u+ = w+(x; k,an) and 
u_ = u(x; k, an) be the total fields due to the scattering by DQ of the incoming 
plane waves e

ik{x,an) and e-tk(x*a»)^ respectively, and let u+ and us_ denote the 
corresponding scattered fields. Denote by H>+, W_, and so on, the correspond
ing quantities associated with 3D and let σ = σ(Α:,αη) denote the scattering 
cross section corresponding to D and σ° = σ°(/:,απ) the scattering cross 
section corresponding to D0. Then from Green's theorem, the radiation condi
tion, and the boundary conditions «+ = «_ = 0on dD0, w+ = w_ = 0 on dD, 
we have (where v denotes the unit outward normal to dD or dD0) 

σ - σ ° = lim f [\ws
+ |2 - \us

+ \2] ds 
' — oc J\x\=r 

= Im— / κΛ,——ds-lm-r \ tf^—z—ds kJRn
 + dv kJin + dv 

1*1 

dD ov k J3Dr< 

1 C .... dw+ 1 r ow+ i r 
= Im-7-/ w i — — d s - \ m — I us, 

kJdD dv kJdDo
 + 

1 r ( s dw+ dws_ \ 

i f t s du_ du% \ 
kJdD0\ 9P dv ) 

dv ds 

1 /· / deik{x'an) . dws , 
dv dv 

-"4/ ( 
K JdDÁ 

3u+ dw_ \ 
dD0\ OV dv 

1 f r du+ r du+ = lmT{ f w_—r±-ds-f w_ 
* \JdD0 OP hü 

= -Im— / / (grad w,grad w+ - k2w_u+ ) dx 
K J JD(\D 
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where we have assumed for the time being that dD0 is analytic and Sv is small 
enough such that u+ can be continued across dD0 into the exterior of D. 
Introducing the notation δσ = σ — σ° and splitting the above volume integral 
into an integration over 3D0 and an integration normal to it, we now see that 
up to first-order terms in δν we have (again using the fact that «+ = w_ = 0on 
dD0) the Hadamard variational formula 

δσ = -1π\γί -^--^-Svds. (7.24) 
kJdD0 dv dv 

Although (7.24) was derived under the assumption that δν was positive and 
dD0 was analytic, it can be shown that the result is valid for small shifts δν of 
either sign as well as domains D0 with twice continuously differentiable 
boundary. 

We now assume that k is fixed and σ is measured for N +1 different 
directions α0, α,,... yaN. Since DQ is given, we „can compute w_, w+, and σ°, and 
hence δσ is known (to within a certain experimental error). Hence (7.24) 
defines an improperly posed moment problem for δν and is amenable to 
solution by the Backus-Gilbert method, provided suitable a priori restrictions 
are made on δν. In particular it is reasonable to assume that not only is δ*> 
small, but is also a slowly varying function of arclength on dD0, that is, as a 
function of arclength s, positive constants e and M are known such that 

1. maxaDo|e*>(j)|<£. 
2. \SV(S1)-SP(S2)\^M\S1-S2\. 

Under these assumptions we can apply the Backus-Gilbert method to (7.24), 
thus yielding an approximation to δ*> and hence a refined approximation to 
3D. It is now possible to repeat this procedure using this new approximation in 
place of dZ>0, although the amount of labor involved in such an iterative 
process rapidly becomes prohibitive. 

The major drawback in the above procedure for finding the shape of the 
scattering obstacle is that it is necessary to have a reasonably accurate initial 
guess D0 to the shape. If this strong a priori information is not available, then 
the only alternative remaining if one wants to use this method is to compare 
the measured scattering cross section to those arising from given canonical 
figures, for example, spheres or ellipsoids, and to choose that figure whose 
scattering cross section is closest to the one measured. The drawback of this 
approach is that the shape of the obstacle does not depend continuously on the 
far-field pattern unless a priori constraints are imposed, that is, small perturba
tions of the scattering cross section can lead to large perturbations of the 
scattering obstacle. This problem will be dealt with in the next chapter where 
we shall show how to stabilize this problem and thereby construct accurate 
initial approximations to the unknown scattering obstacle. 
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7.3 NORMAL FAMILIES OF UNIVALENT FUNCTIONS 

The problem of determining the shape of a scattering obstacle from a knowl
edge of the far-field pattern is basically one of deducing geometric information 
on the shape of the obstacle from the analytic knowledge of the far-field 
pattern. Furthermore, if the analytic data are imprecise, we have reasons to 
suspect that the problem can be stabilized by restricting the class of scattering 
obstacles to lie in a compact set. (This will indeed be verified in the next 
chapter.) In view of these facts it can be expected that for the case of infinite 
cylinders (i.e., scattering problems in R2), geometric function theory, in 
particular the theory of compact families of univalent functions, will provide a 
useful tool in the analysis of such problems. This will indeed turn out to be the 
case, and hence in this section we shall provide a brief introduction to the 
theory of compact families of univalent functions, delaying its application to 
the next chapter. For more details concerning the material of this section, we 
refer the reader to the monographs by Nehari [1] and Pommerenke [1], both of 
which have influenced our own presentation. 

As in the case of compact families of continuous functions inR" (Theorem 
1.12) the concepts of equicontinuity and uniform boundedness play a central 
role in our theory. In what follows / will always denote an analytic function of 
a complex variable z defined in some domain D of the complex plane. It is also 
always assumed that / is single valued in D. 

Definition 7.4. Let / e G where G is a class of analytic functions defined in a 
domain D. Then the functions in G are said to be equicontinuous in D if for 
every ε > 0 and closed subdomain D0 of D there exists a positive number 
δ = δ(ε, D0), independent of/, such that for any z,, z2 e D0 we have 

l / ( * i ) - / ( * 2 ) l < * 
if \zx - z2\ < δ. 

Definition 7.5. Let / e G where G is a class of analytic functions defined in a 
domain D. Then the functions in G are said to be locally uniformly bounded if 
for every z0 e D there exists a positive constant M = Λ/(ζ0) and a neighbor
hood N = N(z0) of z0, where M and N are independent of/, such that 

| / ( z ) | < M ( z 0 ) 

for z€EJV(z0). 
Note that it is easily verified that if a class of functions is locally uniformly 

bounded in D it is also uniformly bounded in any closed subdomain of D. 

Theorem 7.6. Let G be a class of analytic, locally uniformly bounded func
tions defined in a domain D. Then the functions in G are equicontinuous. 
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Proof. Let S2r be a closed disk in D of radius r. Then if zx,z2e. ΩΓ, we have 
from Cauchy's integral theorem that 

2»ί Λο,(Ε-^,)(ί-^)" 

Hence if/ e G, |/ | ^ M on dß r , and we restrict z,, z2 e ΩΓ/2, we have 

l / ( ^ , ) - / (^ )K 4 A / | V Z 2 ' · (7-25) 

Now let DQ be a closed subdomain of D. Let (ß( /c)) be a finite subcovering of 
D0 of disks Ω(Μ c D with centers at $k and radii r¿/4. Let |/| < M¿ on £2(/c), 
r = min rk, M = max Λ/Λ, and for given ε > 0 let δ = min{r/4, er/4M}. Then if 
|z, - z2\ < δ and \z2 - £J < rk/A we have \zx - ík\ < δ + r^/4 < rk/2. Hence 
from (7.25) we have 

Ι/(*ι)-/(*2)Ι < - Γ " < -T" < ε> 

that is, the functions in G are equicontinuous. 

Theorem 7.7. Let G be a class of analytic, equicontinuous functions defined 
in a domain D. Then if the functions in G are uniformly bounded at one point 
in D, they are locally uniformly bounded. 

Proof. Let z 0 e D such that | / (z 0 ) | < M for a l l / e G where M is a positive 
constant. Let z e D , D 0 a closed subdomain containing z and z0, and C a 
contour joining z0 to z and contained in D0. Let L be the length of C. By 
equicontinuity we have that for every ε > 0 there exists a Ô such that if 
|z, - z2| < δ then | / ( z j ) - / ( z 2 ) | < ε for z,, z2 G Z)0. Hence if m > L / δ we can 
find points z,, z2 , . . . ,zm_, on C such that 

l/(*,)-/(*o)l<*. 
Ι/(*2)-/(*ι)Ι<* 

l /(0-/(*„-i)l<e, 
that is, 

| / (2 ) - / (z 0 ) |<me, 
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or \f(z)\<\f(z0)\ + rne^M + me. Hence in a neighborhood of z we have 

| / ( z ) | < M + (m + l ) e , 

and this establishes the theorem. 
We now turn our attention to compact families of analytic functions. 

Definition 7.8. A family G of analytic functions defined in a domain D is 
called normal if from any sequence (/„), / „ e G , it is possible to find a 
subsequence that is uniformly convergent in any closed subdomain of D. 

It is customary in the above definition to include the case in which the 
sequence tends to infinity, that is, for any positive constant M, \fn(z)\> M for 
all z in the closed subdomain of D provided n is large enough. 

Definition 7.9. A normal family G is said to be compact if the limits of all 
convergent sequences of functions in G are also functions in G. 

The main result on normal families of analytic functions is the following 
theorem due to Montel. 

Theorem 7.10 (Montel's Theorem). If the functions of a family G are analytic 
and locally uniformly bounded in a domain Z), then G is a normal family in D. 

Proof. Since the functions in G are locally uniformly bounded they are 
uniformly bounded on any closed subdomain of Z>, and by Theorem 7.6 the 
functions in G are equicontinuous. Hence by the Arzéla-Ascoli theorem G is 
normal. 

Corollary 7.11. The class of analytic functions that are analytic and uniformly 
bounded in a domain D is compact. 

Proof. By Montel's theorem this class is clearly normal. Moreover, if (/„) 
is a uniformly convergent sequence of functions from this class such that 
|/„(z)| < M, then the limit function/also satisfies this inequality and since the 
uniform limit of analytic functions is analytic, / is analytic. Hence the class of 
functions under consideration is compact. 

Theorem 7.12 (Hurwitz's Theorem). Let (/„) be a sequence of analytic 
functions defined in a domain D such that /„ converges uniformly (on compact 
subsets) to a nonconstant (analytic) function defined in D. Then if z0 e D such 
that/(z0) = 0, for every e > 0 there must be a zero of /„ in the disk \z - z0\ < ε, 
provided n is sufficiently large. 

Proof. Let ε be sufficiently small such that |z - z0| < ε is contained in D 
and / does not vanish in this disk (except of course at z = z0). Since / is 
continuous there exists a positive constant m such that | / (z) | > m on \z - z0| 
= e. Furthermore, by the uniform convergence of the sequence (/„), | / ( z ) -
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fn(z)\< m on \z - z0) | = ε for n sufficiently large, that is, 

| / ( z ) - / „ ( z ) | < m < | / ( z ) | , | ζ - ζ 0 | = ε. 

Hence by Rouche's theorem 

Λω=/ω+[/„ω-/ω] 
has the same number of zeros in \z - z0\ < ε as /does, that is, exactly one zero. 
This proves the theorem. 

Definition 7.13. An analytic function / defined in a domain D is said to be 
univalent in D if for z,, z2 e D, ZX^ Z2, we havef(zl)*=f(z2). 

Corollary 7.14. Let (/„) be a sequence of univalent functions defined in a 
domain D such that /„* converges in D to a nonconstant analytic function / . 
Then / is also univalent in D. 

Proof. Suppose on the contrary that / (z , ) = f(z2) for z,, z2 & D, ζ^ z2, 
and consider the sequence (gn) where 

&,(*):=/„(*)-/„(*,). 
Then since fn is univalent, g„(z)=*=0 except at z = Zj. But the limit function 
g(z) = / ( z ) - / ( z , ) vanishes at z = z2 which implies by Hurwitz's theorem that 
gn must have a zero within an arbitrarily small neighborhood of z = z2, 
provided n is large enough. But this contradicts the fact that gn{z) = 0 only for 
z = zx. Hence/must be univalent. 

We now want to consider a particular class of univalent functions that will 
be basic to our discussion of the inverse scattering problem in Chapter 8. 
However, before doing this we need to slightly extend our definition of 
univalency as given in Definition 7.13 by allowing/to have a simple pole in Z>, 
that is, / can be meromorphic, and allowing D to be a domain of the extended 
z plane, that is, D can contain the point z = oo. With this extension of 
Definition 7.13, we now want to consider the class of functions univalent in 
Δ = {z\ |z| > 1} and analytic in this region except for a simple pole at infinity. 
(Δ is considered as a subset of the extended z plane.) In particular, functions in 
this class have Laurent expansions of the form 

/ ( z ) = 0z + ao + ^ - + . . . , | z | > l . (7.26) 

We shall make the further restriction that there exist positive constants α, β, 
and γ such that 

Ι«οΙ<Υ· (7.27) 
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The motivation for considering this class of functions is that if D is a bounded 
simply connected domain in the complex plane, then by the Riemann mapping 
theorem there exists a unique function of the form (7.26) with a > 0 that maps 
Δ univalently onto U2\D. In this case a is known as the mapping radius or 
transfinite diameter of D. We shall see in the next chapter that conditions 
(7.27) are met if 3D is required to lie in a given annulus centered at the origin, 
and we shall show presently that conditions (7.27) are sufficient to guarantee 
the compactness of this class of functions. Hence this class of functions will 
allow us to characterize a compact family of scattering obstacles by simple a 
priori geometric information. 

Definition 7.15. The class of meromorphic functions that are univalent in Δ 
and have the Laurent expansion (7.26) where a and a0 are subject to (7.27) is 
denoted by Σ(α, β, γ). 

We note that if a univalent function has a pole at z = z0 then z-0 must be a 
simple pole in order that the function be univalent. 

Our first result on functions lying the class Σ(α,β, γ) relates the area of the 
compliment of the image of Δ under the mapping (7.26) to the Laurent 
coefficients of/. In particular le t / e Σ(α, /?, γ) such that/: Δ -+ R2\D and let 
Er be the image under/of the set {z\ \z\ ^ r > 1}. Define 

H(r)=C\Er 

where C denotes the complex z plane. Then H{r) is bounded by an analytic 
Jordan curve C(r) and the area of D is given by the formula 

area D = lim area H{ r ). 
r -*· 1 

Theorem 7.16 (Area Theorem). Let / e Σ(α, j3, γ). Then 

areai) = 7 r L 2 - £ w|fln|2). 

Proof. Let w = u + iv = / (z) . We first apply Green's theorem to H(r) to 
find that 

areai / ( r ) = / / dudo 
J JH(r) 

1 - if £i(u2 + v2)dudv 

= j ( ^r{u2 + v2)ds 4 JC(r) dv 

where v denotes the unit outward normal to C(r) and s denotes arclength. 
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Since v = ((dv/ds),(- du/ds)) we have 

area " ( r ) « ï / ±(u
2 + v2)ds 4 JC{r) di> 

- I udv- υ du 
'C(r) 

JC{r) 

where we have used the fact that 

— — / (u — iv)(du + idv), 
2- Jr(r\ 

I udu= I vdv = 0. 
JC(r) JC(r) 

area 

Recalling that C(r) is the image of \z\ = r under the mapping/we now have 
that 

00 

= πα2κ2-π Σ n\an\lr~2n (7 ·2 8) 
n = l 

where we have used the uniform convergence of the series (7.26) in \z\ ^ r > 1 
to integrate termwise. Since the area of //(/*) is nonnegative we can conclude 
from (7.28) that for any integer N 

N 
Σ n\an\2r-2n^a2r2. (7.29) 

Hence letting r -> 1 in (7.29) and then letting N -+ oo we have that 
00 

Σ n\an\2 

n = \ 

converges. We can therefore take the limit r -> 1 in (7.28) and thus conclude 
the validity of the theorem. 

Corollary 7.17. Le t / e Σ(α ,β ,γ) . Then | α , | < 0 . 

Proof. Since area D ^ O w e have from Theorem 7.16 that 
00 

a2-\a,\2>a2- £ n\an\2>0 
n = l 

and the corollary follows from (7.27). 



NORMAL FAMILIES OF UNIVALENT FUNCTIONS 217 

We now want to obtain an upper bound on the radius of the smallest disk 
centered at the origin and containing D in its interior where/: &-+U2\D, 
/€=Σ(α ,0 ,γ ) . 

Theorem 7.18. Let / e Σ(α, 0, γ) and w e D. Then 

/V00/. The even function z~2(f(z2)-w) is analytic and nonvanishing in 
Δ. Hence the odd function 

/ , ( z ) = a ' / 2 z [ z - 2 ( / ( 2 2 ) - w ) ] 1/2 

= a»/2z e+Kz2lO + .. 
1/2 

: az + + 
¿z 

is analytic in Δ. Furthermore, if/1(z1) = /1(z2) then/(z!2) = / ( z | ) and since/ 
is univalent z2 = ± z,. The minus sign is impossible since/j is nonvanishing in 
Δ a n d / , ( - z , )= - / 1 ( z , )^= / , ( z 1 ) . Hence/, is univalent in Δ and in particular 
/ , e Σ(α, β,Ο). It now follows from Corollary 7.17 that 

w 

that is, by the triangle inequality 

Μ < 2 0 + γ. 

Coroliary 7.19. Let / e Σ(α, β, γ). Then 

| / ( ζ ) | < ( 2 0 + γ ) | ζ | 

for | ζ | > 1 . 

Proof. Since/(z)/z is analytic at infinity, by the maximum principle we 
have 

/ ( * ) < lim 
É 

= max|w| < 2ß + y 
D 

for |z| > 1, and the result follows. 
We are now in a position to prove our main result concerning the class 

Σ(α, β, γ), that is, that it is compact. A sequence (/„) in Σ(α, /?, γ) is said to be 
convergent if (z~ xfn) *s uniformly convergent on compact subsets of Δ. 
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Theorem 7.20. The class Σ(α, β, γ) is compact. 

Proof. Let (/„) be any sequence in Σ(α, β, γ) and define gn(z) = z~ lfn(z). 
Then the functions gn are analytic in the exterior of the unit disk and by 
Corollary 7.19 are uniformly bounded. Hence, by Corollary 7.11, from the 
sequence (g„) it is possible to find a subsequence that converges uniformly for 
| z | > r > l to a function g that is analytic for | z | > l . Since for each n, 
\gn(°°)\ > a > 0, the limit function g also satisfies this inequality. Then/(z) = 
zg(z) has a simple pole at infinity and a Laurent expansion of the form (7.26). 
Since each/n e Σ(α, β, γ), it is easily verified that the Laurent coefficients of g 
satisfy the inequalities (7.27). It remains to be shown that / i s univalent in Δ. 
But from the above analysis / ( z ) =*= oo for 1 < \z\ < oo, where f(co) = co. By 
Corollary 7.14,/(z1)^fc/(z2) for z,, z2 in the (finite) z plane, z^ z2. Hence/is 
univalent in Δ and the theorem is proved. 



8 
THE DETERMINATION OF 
THE SHAPE OF AN 
OBSTACLE FROM INEXACT 
FAR-FIELD DATA 

In this chapter we shall consider the problem of determining the shape of an 
acoustically "soft" obstacle (i.e., Dirichlet boundary data) from a knowledge of 
the phase and amplitude of the far-field pattern or, alternatively, the scattering 
cross section. We note that from the optical theorem (cf. Stakgold [1], p. 304) 
the scattering cross section can be determined from a knowledge of the phase 
and amplitude of the far-field pattern at a single point, that is, the direction of 
propagation of the incident plane wave. We wish to emphasize that our choice 
of considering the inverse problem of determining the shape of an acoustically 
soft obstacle is somewhat arbitrary in the sense that our methods apply equally 
well to the problem of determining the shape of a "hard" obstacle (i.e., 
Neumann boundary data) as well as to the inverse scattering problem for 
electromagnetic waves. In addition we can easily treat the problem of de
termining the impedance of an obstacle of known geometry (cf. Colton and 
Kirsch [1], Colton and Kress [2]). However, because we plan to treat the closely 
related problem of optimal control of the surface impedance of an antenna in 
the next chapter, we have decided not to discuss this class of inverse problems 
at present. For a survey of inverse problems in acoustic scattering theory we 
refer the reader to Colton [7]. 

The problem we are going to consider in this chapter is different from the 
inverse problems in scattering theory considered in Chapter 7 in that it is not 
only improperly posed but also basically nonlinear, that is, it cannot be 
reduced to one or more linear problems. Hence we are faced with two 
problems: one the question of sufficient conditions to stabilize the improperly 
posed problem, and the other to derive appropriate methods for approximating 

219 
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the solution of the resulting stabilized nonlinear problem. We shall concentrate 
here on the first of these problems and to this end use the method of integral 
equations to reformulate our inverse scattering problem as an optimization 
problem. The problem can then be stabilized by restricting the class of 
admissible domains to he a priori in a compact set. 

In order to approximate the solution of the resulting constrained optimiza
tion problem a variety of approaches are available, the simplest being to obtain 
an initial approximation by minimizing the nonlinear functional over a finite 
dimensional subset and then to use a Newton-type procedure to iteratively 
improve this initial estimate (cf. Kirsch [5], Roger [1], Sleeman [3]). If the given 
data are assumed to be the scattering cross section, we can make use of the 
variational principle developed in Chapter 7 in order to accomplish the second 
of these two steps. Hence in principle the construction of the solution to our 
inverse scattering problem is relatively straightforward, although since our 
mapping is defined by means of an integral equation it means that this integral 
equation must be solved at each step of the iterative process. 

We begin our discussion with a simple two-dimensional model problem, 
which, at the risk of a slight abuse of the English language, we shall describe as 
the case of partially inexact data. By this we shall mean that the first N Fourier 
coefficients of the far-field pattern are known exactly for all values of the wave 
number k for 0 < k < k0 where k0 is an arbitrarily small positive constant and 
nothing is known of the remaining Fourier coefficients. From this knowledge 
we shall use the theory of univalent functions to construct an approximation to 
the (normalized) univalent function mapping the exterior of the unit circle onto 
the exterior of the unknown scattering obstacle and provide explicit estimates 
of the mean square error made in arriving at this approximation. From a 
practical point of view there are, of course, serious criticisms to be made of this 
approach, in particular the restriction of the method to two-
dimensional problems as well as the need to know N Fourier coefficients 
exactly in the low frequency limit. However, this model problem provides one 
of the few examples of an essentially complete solution to a nonlinear inverse 
scattering problem and lends considerable insight to the more general and 
physically relevant modes to be discussed subsequently. Although we shall 
discuss only the case of an acoustically soft scattering obstacle, basing our 
results on Colton and Kleinman [1], the same approach is also valid for hard 
obstacles (Colton [3]) as well as the electromagnetic case in which elementary 
polarization effects are seen to play an important role (Colton [5]). Further 
extensions may be found in Sleeman [2], Hariharan [1], and Smith [1]. 

Following our discussion of the model problem, we shall use the theory of 
univalent functions as developed in Chapter 7 combined with integral equation 
methods in scattering theory due to Garabedian [1] to reformulate the two-
dimensional inverse scattering problem as an optimization problem. Here we 
shall assume that the wave number k lies in the "resonant region" (i.e., outside 
the range where either low frequency or high frequency methods are applica
ble). The analysis in this section is based on the work of Colton and Kirsch [2]. 
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The final section of this chapter is devoted to extending the two-dimen
sional results of Section 8.2 to the case of three dimensions (Angelí, Colton, 
and Kirsch [1]). In order to do this conveniently we shall make the extra 
assumption that the (unknown) scattering obstacle is starlike (with respect to 
the origin). 

We note that in what follows we always assume that the scattering obstacle 
is connected. The extension to the case of more than one scattering obstacle 
should present no basic difficulty, at least a far as Sections 8.2 and 8.3 are 
concerned. 

8.1 A MODEL PROBLEM 

We now consider the inverse scattering problem for a soft cylinder under the 
assumption that the first N Fourier coefficients of the far-field pattern are 
known exactly for small values of the wave number. Our aim is to obtain a 
nonlinear moment problem for the conformai mapping taking the exterior of 
the unit disk onto the exterior of the unknown scattering obstacle D and then 
to solve this moment problem. In order to arrive at this moment problem it is 
first necessary to use the method of integral equations to solve the exterior 
Dirichlet problem for the Helmholtz equation by iteration, and then to identify 
the low frequency approximation of the solution to the integral equation as the 
velocity potential of an incompressible fluid flow past the (unknown) obstacle 
D. In this connection our results here are related to those of Chapter 5, except 
that in the present case the low frequency limit is identically zero and we are 
interested in the first nonzero term in the low frequency expansion of the 
solution to the integral equation. The solution of the integral equation is 
complicated by the fact that it has a nontrivial nullspace and hence in order to 
arrive at our desired iterative process we must modify the kernel of the integral 
operator. We begin our discussion with this problem. 

Let D be a bounded simply connected domain in R2 with C2 boundary 
3D such that D contains the origin and let v denote the outward unit nor
mal to 3D. We first consider two boundary-value problems for Laplace's 
equation that_we denote by Problem I and Problem II. Problem I is to find 
K€=C2(R2 \5)nC(R2 \Z>) such that 

u{x) = \og—Y + us(x), J C G R 2 \ D \x\ 

Aw = 0 in R2\D (I) 

u = 0 on 3D 

us is bounded as x tends to infinity. 

Note that by Theorem 3.27 we can conclude that u e C 2 (R 2 \5)OC 1 (R 2 \Z>) . 
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Since u5 is bounded as x tends to infinity we can conclude that grad us(x) = 
0(\/\x\2) and 

lim us(x) = a 

exists where a is a constant. Then from Green's formula we have 

— f log- T-T-(y)-us(y) . , .log- r \ds(y) 
2nJdD[ \*-y\ Bv ' Bv(y) \x~y\\ 

-us(x) + a ; x&U2\D 

-us(x)+a; x^dD 

JLr 
IvJdD 

log 1 5 i ! i ] d i 1 

-log-— - log — , .logT l*->1 M-v) *\y\ b\y\ dv{y) *\x-y\ 

1 

ds(y) 

- log- - 1 - ; j c e R 2 \ Z ) 6 | x | 

xedD 

and hence for JC e R2\Z) we have 

JdD 
— f log- r^-(y)ds(y) = - u(x) + a. 
irJan \x~y\ ov ' 

Since 

2π JdD 

we have that (8.1) is equivalent to 

U„S</>*<»~i 

log-, 
1 J, J_ 

x-y\ 2 ° g | x | 
5M 

(8.1) 

1. 1 
dp(y) My) = - u(x)+<*+ 2lo%]x\ 

(8.2) 

and hence from the discontinuity properties of single-layer potentials (Theo
rem 2.19) we have 

du, . 1 f d , 1 1 . 1 
dvx ' ' ov \x\ 

(8.3) 
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for x e dD. If we can solve (8.3) for du/dv then u and a can be determined 
from (8.2) and the fact that u = 0 on dD. 

We now consider our second boundary-value problem for Laplace's equa
tion, which is to find u e C2(U2\D)nC(U2\D) such that 

W(X) = M ' ( X ) + M 5 ( X ) , j c e R 2 \ D 

ΔΜ = 0 in U2\D / v 
(II) 

w = 0 on <9Z) 

w* is bounded as x tends to infinity 
where ul is a known solution of Laplace's equation in all of IR2. Again we can 
conclude that ueC2(R2\D)nCl(U2\D). Applying Green's formulas as 
above, with logl/|jc| replaced by u'(x), we arrive at 

-„<(*) + -!- / log—L^3¡L{y)dsiy) = -uix) + a (8.4) 

for x€:U2\D. If we now use the fact that in this case 

\ r dut 
JdD 

we have 
¿π Jan ov 

du, . I f d Γ, 1 1 , 1 
- r - ( x ) - f - / log- - - - l o g - — 

ov vJdDdv{x)[ \x-y\ 2 °\x\ 
%M«')-*%1*> 

(8.5) 

for x e dD. If this equation can be solved for du/dv then u and a can be 
determined from (8.4) and the fact that u = 0 on dD. 

In order to complete our discussion of Problems I and II we shall now show 
that (8.3) and (8.5) can be solved by iteration. It was for this purpose that the 
logarithmic term was added to (8.1) and (8.4) since the operator K'0: C(dD) -» 
C(dD) defined by (cf. Definition 2.78) 

^ W ^ / . / ^ ^ l o g ^ ^ ) (8.6) 

has an eigenvalue at λ = - 1 (Theorem 5.1) and hence without the extra 
logarithmic term, (8.3) and (8.5) would not be uniquely solvable. Note that in 
terms of the operator K'0 defined in (8.6) we can write (8.3) and (8.5) in the 
form 

ί(*)-φ(*)+(Κ'0φ)(*)-^:^1ο8|1-<φ>1> 
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where 

<ψ,φ> = / ψ φ ^ 
JdD 

, v du(x) 

and g(x) = (d/dv)\og\/\x\ and 2(du'(x)/dv), respectively. 

Theorem 8.1. Let L0: C{dD) -* C(dD) be defined by (L0$)(JC): = (Κ'0φ)Ο)-
(1/27Γ)(^/^)(1οβ1/|χ|)<φ,1>. Then a ( L 0 ) c ( - 1 , 1 ) . 

Proof. Let K0 be the adjoint of K'0 with respect to the dual system 
(C(dD),C(dD)) and N(l + K'0) the nullspace of I + K'0. Then from Theorems 
5.1 and 5.7 we have that 7V(I + K'0) = span^ 0 ) for some continuous function φ0 
such that (φ0,1> =*= 0. Note that for any φ in C(dD) we have 

<Κ'0φ,1> = (φ,Κ01> = -<φ,1> 

and since 

JdDdv b\x\ 

we have 

<ίοφ,1> = (Κ'οφ,1> + <φ,1> = 0. (8.7) 

Since L0 is compact, its spectrum consists only of a discrete set of eigenvalues 
together with the point λ = 0 (Theorem 1.34). We shall show that if λ is an 
eigenvalue of L0 then λ e ( — 1,1). Suppose ί 0 φ = λφ where λ £ [ — 1,1). Then 
from (8.7) 

λ<φ,1> = ^ ο φ,1> = 0 

and hence (φ, 1) = 0 and L0φ = Κ'0φ. But σ(Κ'0) c [ - 1,1) (Theorem 5.1) and 
this contradicts the assumption that λ £ [ - 1,1). We now complete the proof 
of the theorem by showing that λ = - 1 is not an eigenvalue. Suppose L<$ 4- φ 
= 0. Then from (8.7) we again have (φ, 1) = 0 and ί 0 φ = Κ'0φ. Hence φ = αφ0 
for some constant a. But then 

0 = <φ,1> = <αφ0,1) = α(φ0,1> 

and since (φ0,1) =* 0 we have a = 0 and hence φ = 0, a contradiction. There
fore λ = — 1 is not an eigenvalue and a(L0) c ( — 1,1). 
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Theorem 8.1 implies that the integral equations (8.3) and (8.5) can be solved 
by successive approximations (Theorem 1.36). 

We are now in a position to derive an iterative method for solving the 
exterior Dirichlet problem for the Helmholtz equation for low values of the 
wave number k. Our problem is to determine (by iteration) a function 
u<=C2(U2\D)nC(U2\D) such that 

Μ(Χ) = Ι / ' ( Χ ) + Μ 5 ( Λ ; ) , X^U2\D 

ΔΜ + Α:2Μ = 0 in U2\D 

u = 0 on dD 

[gmdus(x),-^j-ikus(x) = o 1 
|V2 

where u' is a solution of the Helmholtz equation in all of R2. Noting that 
us = 0(\/\x\l/2) and proceeding exactly as in the case of Laplace's equation, 
we can establish the relationship 

-u'(x)+y3[H^(k\x-y\)^;(y)ds(y) = -u(x) (8.8) 

for x e R2\£> where H¿1) denotes a Hankel function of the first kind. Choose 
R such that D is contained in a disk of radius R. Then since u = 0 on 3D we 
have from Green's formula and the radiation condition satisfied by us at 
infinity that 

du 
*JdD ov{y) 

J\y\-R 
HhHk\y\)^(y)-u{y)1^H^k\y^ 

'\y\-R 

- I I ' - ( O ) . 

Hence (8.8) is equivalent to 

"<^.νΐ)^ω-«'ω^"Γ(*Μ) 

ds(y) 

My) 

4 JdD 
H^(k\x-y\) + 

41og/c H^(k\x\)H^(k\y\) dv (y)ds(y) 

■«'(*)+^^^υ (* ι* ι ) 

file://'/y/-R
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for x e U2\D, and from the discontinuity properties of single-layer potentials 
(Theorem 2.19) we now have that 

3u , v ir 3 H«\k\x-y\) + •ni 
41ogfc 

H™(k\x\)H™{k\y\) Tv(y)ds(y) 

¿ dvKX> 2\ogk dv(x) H¿»(k\x\) (8.9) 

for x on 3D. 
We now want to show that for k sufficiently small we can solve the integral 

equation (8.9) by iteration. To this end we define L0 as in Theorem 8.1 and let 
Lk be given by 

(M0(x):-|/ 
1 JdD dv(x) 

HP(k\x-y\) + 7TI 

4 log/: 
H¡?Hk\x\)HP(k\y\) 4>(y)ds(y) 

Then we have a ( L 0 ) c ( - l , l ) and from the low frequency behavior of 
Hankel's function that 

HLfc-Lo|| = 0 
1 

|log*| 
(8.10) 

where | | | | denotes the maximum operator norm. From (8.10) and Theorem 1.37 
we can now conclude that (8.9) can be solved by iteration for low values of the 
wave number k. 

We now turn our attention to the inverse problem with "partially inexact,, 

data. In particular let u = ul' + us be the solution of the exterior Dirichlet 
problem for the Helmholtz equation in the exterior of D (where 3D has the 
smoothness requirements previously stated) such that u = 0 on 3D, u1 (the 
"incoming wave") is an entire solution of the Helmholtz equation, and us 

(the "scattered wave") satisfies the radiation condition. We assume that D is 
unknown, but ul is given along with the behavior of us at infinity (cf. Section 
3.10) 

us — JLei(kr + n/4) (^rF(0;k) + o[-^) 

where F is the far-field pattern and (r, Θ) are polar coordinates. The factor 
multiplying r~x/1F(6\k) has been chosen purely for the sake of notational 
convenience, and the precise information assumed known about F will be 
made clear shortly. From (8.8) we have that 

u*(x)--*4Jj£(y)HhHk\x-y\)ds(y) 
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and hence from the asymptotic behavior of Hankel's function we see that F is 
given by 

ΠθΛ) = -( %(y)exp[-ikpcos(e-<l>)]ds(y) (8.11) 
j d D av 

where x = relB, y = pe'*. Expanding F in a Fourier series we have 

00 

F{e-,k)= £ b„(k)e>"e 

n — — oo 

where 

M * ) = - ¿ f ( %(y)exp[-ine-ikpœs(e-ï)]ds(y)de 
¿IT J-„JaD °v 

- " ' " " / " ^Ukp)e-"*ds (8.12) 
JdD av 

and Jn denotes a Bessel function of order n. 

Assumption. The coefficients bn are known exactly for n = Ι, . , . ,Ν and all 
fc, |/c| </c0 where Λ̂  is a positive integer and /c0 is an arbitrarily small, but 
fixed, positive constant. 

Given the N coefficients bn, our aim is to compute an approximation to 3D 
and to obtain error estimates for this approximation. (It will turn out that in 
order to do this we will need one additional piece of information.) 

In order to accomplish our objectives we first need to obtain a low 
frequency approximation to du/dv evaluated on the (unknown) boundary 3D 
(for a related calculation see MacCamy [1]). To this end we first assume 
u'(x) = elkX] where x = (xux2). Then from our previous analysis we have that 
for \k\ < k0, where k0 is sufficiently small, and x on 3D we can write the 
solution of (8.9) in the form 

= Σ ( - í r L - o í r ^ - r ^ - l o g - U + o í — i — ) (8.13) 
„-o °\logkdr B\x\J [(log/t)2] 

I du0. . I 1 \ 

where for x&U2\D we can identify w0 as the solution of Problem I for 
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Laplace's equation. If z = / _ , (w) , w = JC, + /JC2, is the (unique) analytic func
tion that conformally maps the exterior of the (unknown) obstacle D onto the 
exterior of the unit disk Ω such that at infinity / " ' has the Laurent expansion 
(where a is the mapping radius) 

/ - i ( w ) = fl-iw + ¿ + £ + - ^ - + . . . ; a>0, 
w w2 

then we can write 

u0(x) = -\og\f-l(w)\. (8.14) 

Hence from (8.12) to (8.14) and the Taylor series expansion of Bessel's 
function we have that for n = 1,2,... 

Hence if we define (for n ^ 1 ) 

μ : = /"2,,/ι! lim "v } 5 

we can reformulate our inverse scattering problem as follows: Given μ„, 
n = Ι,.,.,Ν, as defined above, to determine an approximation to dD (together 
with error estimates) from the relation 

μ π = / -^\og\rl(pe^)\pne-^ds, 

or, taking the complex conjugate of both sides, 

ft,-/ ^ l o g l T ' Í P e ' * ) ! ^ ' - * * . (8.15) 
JdD °v 

We shall now proceed to the determination of (an approximation to) 3D 
from (8.15). More specifically we shall show that from (8.15) we can compute 
the Laurent coefficients of the mapping w = f(z), module the mapping radius 
a. In order to determine a we shall need to consider the far-field pattern arising 
from an incoming wave from the negative xx direction. But first we consider 
(8.15) and note that from the Cauchy-Riemann equations 

^ logLTHpe '* )! = - " £ arg/ - ' (pe '*) · 
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Hence from (8.15) we have 

fin = -j J^aigr '{oe^)pneinUs 

J\z\=\ ΟΖ 

J\ rl = 1 ¿ 

Note that the basic nonlinear nature of the inverse scattering problem is clearly 
seen from the relation (8.16). We now note tha t /has a Laurent expansion of 
the form 

f(z)=*az + a0 + ^-+--- (8.17) 

and since dD is assumed to be smooth the series (8.17) is uniformly convergent 
on \z\ = 1. Hence from (8.16) and (8.17) we have 

μχ = -2πα0 

β2 = -2π(αΙ+2αα{) (8.18) 

and in general 

βη = — 2ττηαη~λαη_¡ + lower order coefficients. 

Hence, module the mapping radius a, we can determine the Laurent coeffi
cients an recursively in terms of the far-field data μη. 

In order to determine the mapping radius we propose to use the information 
gained by measuring the far-field pattern arising from the scattering of the 
incident wave w'(x) = e~lkx\ or combined with u\x) = elkx\ the standing 
wave w'(x) = sin kxv If u* is the solution of our scattering problem corre
sponding to the incident field u'(x) = sin kxx, and \k\ < k0, then for x on dD 
we have 

n = 0 
»**>-£(-1)·φ£) + 0(*»> 

n = 0 \ ' 
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where for x e R 2 \ D we can identify wg as the solution of Problem II for 
Laplace's equation with u'(x) = xl. Then in terms of the conformai mapping 
f~l we can write 

UQ(X) = öRe rV)· 1 
r'(w). 

and if b*(k) are the Fourier coefficients of the far-field pattern we have that 

du* b„*(k) = -r"f ^-jn(kp)e-"' 
JdD av 

ds 

rnkn+] 

2n 
du* 

n\ JdD dp r I log/: 

Hence if we define 

we have 

μ*„:==ΐη2ηη\\ιτη^-γ-

Jan vv 

dvt 

JdD ds 

where v* is the harmonic conjugate of UQ defined by 

i 1 
v* = aim rlM-

Hence we now have 

-* f à r\pe») 

= / — 1 z 
z 

1 

rl(pe») 

[f(z)]"dz 

pne,n*ds 

J\ ■ | z | - l 
1 + ^ [/(*)]"&· 

(8.19) 
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From (8.17) and (8.19) we now have that 

μ* = 2παΐ(αχ + α) (8.20) 

and therefore we can compute a from (8.18) and (8.20). Thus assuming we 
know μ,,...,μΝ and /Tf exactly we can define an approximation to the mapping 
w = / ( z ) b y 

/ N ( z ) :=az + a0 + ^ + - . . + ^ (8.21) 

and hence an approximation to dD by evaluating/^ on the unit circle. In order 
to compute the mean square error in this approximation we can appeal to the 
area theorem (Theorem 7.16) to arrive at 

1 flfr 
¿ j \f(e")-fN(e")\2de= Σ \a„\ 

u n = N 

1 
^Τ? Σ Φη\2 

n = N 

a2 

Note that although for large N the mean square error is small, the pointwise 
error could nevertheless be large. An improvement on this error estimate can 
be obtained if it is known a priori that D is convex, since in this case we have 
(Pommerenke [1], p. 50) that 

KK^y (8.22) 

and hence 

¿/2V('")-/W(«")i2<«= Σ M2 
l7rJ0 „-N 

00 

<4a2 Σ 1 
, 2 / „ . i \2 

n = H n (n + 1 ) 

Λ 2( N + \\2 ffdx 

4a2(N+])2 

3N5 
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This provides a simple example of the fact that the more a priori information 
one has in trying to solve an inverse scattering problem, the better results one 
can expect if this extra information is built into the mathematical analysis, for 
example, in the present case by the estimate (8.22). 

8.2 THE DETERMINATION OF THE SHAPE OF AN OBSTACLE IN U2 

We now want to consider the inverse scattering problem for an infinite 
cylinder where no assumptions are made on knowing a finite number of 
Fourier coefficients of the far-field pattern in the low frequency limit. In 
particular we no longer assume that the wave number k is small and make the 
assumption that the far-field pattern is only known to within a certain error in 
the least squares sense. Our aim is to show that the continuous dependence of 
the boundary on the far-field data can be obtained by restricting the class of 
admissible boundary curves to lie a priori in a compact class of continuously 
differentiable simple closed curves, and to indicate a constructive method for 
obtaining an approximation to the boundary from the given far-field data. Our 
work is based on Colton and Kirsch [2]. 

We first formulate our inverse scattering problem in a more precise fashion. 
Let D be an acoustically soft simply connected domain bounded by a continu
ously differentiable simple closed curve dD and let F(0; /c,a) be the far-field 
pattern corresponding to the scattering of a plane time-harmonic incident wave 
with wave number k > 0 moving in a direction making an angle a with the 
positive real axis. Our aim is to determine the shape of D from a knowledge of 
F, the precise information needed about F being made clear in the sequel. 
Mathematically we can formulate this problem as in Section 8.1 by letting u 
and us denote the velocity potential of the total and scattered fields, respec
tively: 

u(x) = exp[z/c(jc1cosa + ;c2sina)] + us(x) (8.23a) 

ΔΜ + Α:2Μ = 0 in R2\D (8.23b) 

w = 0 on dD (8.23c) 

( 
g r a d ^ ( x ) , ^ ) - / ^ ( x ) = 0 | - — ) (8.23d) 

F(0;A:,a) = j jwsy-exp[-/Â:pcos(0-<i>)] 
P = Po 

du 

d 
i 

exp[ — ikpcos(6 — φ)] > ds 

dp 

dtS 
dp 

(8.23e) 



THE DETERMINATION OF THE SHAPE OF AN OBSTACLE IN R 2 233 

where x = (xx, x2), (r, Θ) are the polar coordinates of the point x and (p, Θ) are 
the polar coordinates of a point y on the circle p = p0 containing D in its 
interior. The expression (8.23e) for the far-field pattern is chosen for our later 
convenience and is obtained by using Green's formula to represent us in terms 
of the radiating fundamental solution and then letting x tend to infinity. In 
particular (8.23e) is consistent with (8.11). 

In order to establish the continuous dependence of 3D on F (for suitably 
restricted boundary curves!) we first need to give a more precise definition of 
the mapping from 3D to F. Following Garabedian [1], [2] we shall do this by 
reformulating the direct scattering problem (8.23a) to (8.23d) as an integral 
equation involving the conformai mapping taking the exterior \z\ > R of a disk 
of radius R onto the exterior of D. In particular we assume that this conformai 
mapping is normalized such that 

w = x¡ + ix2 = z+ 2 . -ï 
* = o z 

(8.24) 
= z + <?(z), 

and note that in this case R is the mapping radius of D. Under this transforma
tion the radiation condition (8.23d) remains the same, whereas the Helmholtz 
equation becomes 

Δ£/ + k2\ 1 + q\z)\2U= 0 (8.25) 

in the z = ξ 4- ζ'η plane. Now let G(z, ζ) be the radiating Green's function for 
the Helmholtz equation in the exterior of the disk of radius R in the z plane 
and apply Green's formula to G and the solution £/(z) = us(w) in the ring 
R<\z\<Rx, where R{ is an arbitrary large positive number. The result of such 
a calculation is that U satisfies 

υ(ζ)-[( (ΔΟ + ^\\ + ϊ(ζ)\2θ)υόξάη 

J\z\ = R dv ·Ί*|-Λ,\ dv dv I 

where v is the unit outward normal to the circles \z\ = R and \z\ = Rv If we 
now let /?, tend to infinity and make use of the fact that G is a radiating 
solution of the Helmholtz equation, we have that U is a solution of the integral 
equation 

u(t;)-k2( p(z)G(z,!;)u(z)dtdv=f u(z)dG{¡'^ ds 

(8.26) 
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where U is known on \z\ = R and 

H z ) : = 2Re<7'(z)+|<7'(z)|2. 

Multiplying (8.26) by yfp and setting 

K(z): = vR7yt/(z) 

enables us to rewrite (8.26) in the form 

g(!;) = V(i;)-k2i V(z)K(z,i)dtdri (8.27) 
J\z\>R 

where 

J\z\ = R 0V 

(8.28) 
Jf(: , î ) : -^C(: , î ) Î i (0. 

It is easily verified that (8.27) is equivalent to the scattering problem (8.23a) to 
(8.23d) and since \ζ\3/2\ξ\3/2Κ(ζ,ζ) is bounded at infinity and has a logarith
mic singularity at z = f, the symmetric kernel Κ(ζ,ξ) is square integrable in 
|z| > Ä, |f | > Ä. Hence we can conclude from the uniqueness of a solution to 
(8.23a) to (8.23d) and the Fredholm alternative that (8.27) has a unique 
solution for any positive value of the wave number k. Solving (8.27) for K, 
transforming back to the w plane, and substituting into (8.23e) now provide us 
with a direct method (although computationally nontrivial!) for determining 
the far-field pattern F corresponding to a given domain D. 

We now want to restrict the class of admissible boundary curves 3D to lie in 
a compact set. Consider the class of all simple, closed, continuously differentia-
ble curves containing the disk r < a in their interior and contained in the disk 
r < b, where a and b are fixed positive constants. For a given curve 3D in this 
family let w = f(z) map the exterior of the unit disk Ω in the z plane 
conformally onto the exterior of 3D in the w plane such that at infinity 
f\z)> 0. Then in terms of the mapping (8.24) we can write 

f(z) = Rz + q(Rz) 

and the curve 3D permits the parametrization 

z = / ( e ' * ) , φ€Ξ[0,2ττ]. 

We further restrict our class of curves by requiring the mappings / to satisfy 
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the following restrictions: 

1. There exists a positive constant M, independent of / such that 

d 
max 

φ<=[0,2ττ] * ' < ' * > < M , . 

2. There exists a positive constant M2 independent of / such that 

< Μ 2 | ί , φ | - £ , φ 2 | £,(*<♦.)-£/(«»0 
for φ,,φ2 s [0,2ΤΓ]. 

We denote the class of functions described above by Σ(α, ft) and consider it as 
a subset of the class of analytic functions defined in the exterior of Ω having a 
simple pole at infinity and continuously differentiable in R 2 \ ß with norm 
given by 

| , := max |/(e''*)| + max 
φ<=[0,2ττ] φε[0 ,2ττ ] á/(e'*> 

Since | / (* / φ ) | < ft, it follows from condition (1), the mean value theorem, and 
the Arzéla-Ascoli theorem, that for any sequence (fn) there exists a subse
quence that is uniformly convergent on \z\ = 1. From conditions (1), (2), and 
the Arzéla-Ascoli theorem again there exists a subsequence (fnU)) that is 
convergent to a function/ e Cl[0,27r] with respect to the norm | | | | , . 

We now want to show that/ is the restriction to the unit circle of a univalent 
function defined in \z\ > 1 and continuously differentiable for \z\ ^ 1. We first 
note that since D contains a disk of radius a > 0 it follows from Theorem 7.16 
that i f / e E ( a , f t ) then the mapping radius is uniformly bounded away from 
zero, and an elementary application of Cauchy's integral formula shows that 
the mapping radius and conformai center (i.e., the constant term in the 
Laurent expansion o f / ) are uniformly bounded for all / e Σ(α, ft) (since ft is 
finite and fixed). Hence from Theorem 7.20 we can conclude that Σ(α, ft) is a 
compact set of univalent functions with respect to the topology of uniform 
convergence on compact subsets of \z\ > 1. This fact, and an application of the 
maximum principle for analytic functions (consider for example the sequence 
(z~lfn{J)(z))), now shows that the limit function/of the sequence (/„(7)) with 
respect to || · {(, is the restriction to the unit circle of a univalent function 
defined in \z\ > 1 and continuously differentiable for \z\ ^ 1. In particular the 
image of \z\ = 1 under the mapping/is a simple closed continuously differen
tiable curve. 

We can now conclude that Σ(α, ft) is a compact family of univalent 
functions with respect to the topology induced by the norm ||-||,. At the risk of 
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making a slight abuse of notation we shall henceforth identify a given 
admissible curve 3D by its associated conformai mapping in the set Σ(α, b) 
and denote this by either 3D e Σ(α, b) or / e Σ(α, b). 

Theorem 8.2. Let F be the far-field pattern associated with a given domain D 
where 3D e Σ(α, b). Then the mapping 3D -> Fis a continuousvmapping from 
2(a,b) into C[0,2TT], 

/V00/. We shall only give an outline of the proof, and refer the reader to 
Smith [1] for details of the tedious derivation of the explicit estimates in a 
closely related case. Suppose (3Dn) is a sequence of simple closed curves such 
that 3ϋη-> 3D in Σ(α, b) and consider the integral equation (8.27). By an 
appropriate change of variables we can make the region of integration in (8.27) 
and (8.28) (and the domains of definition of the corresponding known and 
unknown functions) the same for both the limiting and the perturbed prob
lems. From (8.28) we can conclude that with respect to the L2 norm over 
|f I > R and |£| > R, \z\ > R, respectively, \\gn - g\\ -* 0 and \\Kn - K\\ -+ 0 as 
n -> 00, where the subscripts indicate the functions corresponding to Dn. The 
integral equation (8.27) corresponding to the domain Dn can be written in the 
form 

g + ( g n - g ) = ( l - T - ( T „ - T ) ) F „ (8.29) 

where the subscripts again identify the functions and operators corresponding 
to Dn. Since (I — T)" ] exists as a bounded operator we have 

( I - T ) - , g + ( I - T ) - ' ( g n - g ) = F n - ( I - T ) - , ( T „ - T ) F „ . (8.30) 

Then since V= ( I -T) _ 1 g and ||TW - T | | -> 0 as n -> 00 we can conclude from 
(8.30) that 

| | K - j g | - 0 as Ai-oo. (8.31) 

Since V and Vn are known to be continuous for | f | ^ Ä , it can easily be 
verified by using (8.31) and the integral equation (8.27) that the pointwise 
limits 

lim KO;)-VU) 
n —*■ 00 

lim gradK„(?) = g r a d i n ) 
n - » 00 

are uniformly valid for Ç on compact subsets of \ζ \ > R. Now let p = p0 be a 
circle containing D and (£>„) in its interior. Transforming back to the w = x, + 
ix2 plane we have that for p = p0 the scattered fields us

n and us (corresponding 
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to Vn and V, respectively) satisfy the uniform pointwise limit relations 

lim us
n = us 

n -* oo 

lim gradw* = gradwi, 
n -* oo 

and hence from (8.23e) the theorem follows. 
Note that F depends continuously on 3D as a mapping from Σ(α, b) into 

C[0,27r], that is, loosely speaking, F depends continuously on smooth defor
mations of 3D. 

In order to establish the continuity of the inverse mapping F -* dD it is now 
tempting to use Theorem 7.1 that states that a one-to-one continuous mapping 
of a compact set is a homeomorphism. However, this is not applicable in our 
situation for two reasons. The first is that it is not clear that the mapping 
3D-* F is one-to-one for fixed k (cf. Theorem 6.11). More seriously (as 
discussed in Chapter 6) a characterization of the range of this mapping is 
unknown. In particular there is no way of telling if a given measurement of F 
lies in the range or not. For these reasons we shall reformulate our inverse 
scattering problem as an optimization problem. This will allow us to give a 
precise statement on what is meant by saying that 3D depends continuously on 
F for 3D e Σ(α, b). To fix our ideas let g e Ζ,2[0,2π] be a measured far-field 
pattern and let F be a far-field pattern associated with a domain D9 3D e 
Σ(α, b). Then we define the optimization problem denoted by Pg as follows: 
Minimize 

C8(f)~ [2v\F(0;k9a)-g(0',k9a)\2dO 

for fixed k and a, subject to the constraint that / e Σ(α, b). Note that if 
3D* e Σ(α, b) is a solution of the inverse scattering problem corresponding to 
the far-field pattern g then the mapping/* taking the unit circle onto 3D* is a 
solution of Pg since Cg(f*) = 0. Conversely, if /* is a solution of Pg and 
Cg(/*) = 0 then 3D* is a solution of the inverse scattering problem. If 
Cg(f*)> 0 then the inverse scattering problem is not solvable, but 3D* is a 
best approximation in Σ(α, b) in the sense that Cg(f) is minimal. 

Theorem 8.3. There exists a solution /* of P . 

Proof. Let (/„) be a minimizing sequence, that is, limn_>00Cg(/M) = 
inf^e2Cg(/). Since 2 ( Û , b) is compact there exists a convergent subsequence 
(fn(J)) such that /„ ( y ) ->/* where / * e 2 ( e , f t ) . By Theorem 8.2 and the 
continuity of Cg it now follows that Cg(/*) = inf / e 2 C^(/ ) , that is, / * is a 
solution of P0. 
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In general we cannot expect the solution of the optimization problem P to 
be unique. Let <í>*(g) be the set of all solutions /* of Pg and denote the 
numerical value of Cg(/*) by C*. Then we have the following result on the 
continuous dependence of 3D e Σ(α, b) on the far-field data. 

Theorem 8.4. The set <$*(g) is graph compact, that is, if gn -^ g in L2[0,27r], 
f* e <I>*(gn), then there exists a convergent subsequence of (f*) and every limit 
point lies in Φ*(g). 

Proof. The functions /„* lie in a compact set and therefore there exists a 
convergent subsequence of (/„*). Let/* be any limit point of (/„*) that is, there 
exists a subsequence (/„*(y)) of (/„*) such that/„* -} ->/*. We want to show that 
/* is optimal for P . Let /**GO*(g). Then, using Theorem 8.2 and the 
continuity of the function Cg9 we have Cg* ^ Cg(/*) = l i m ^ ^ Q (f*{j)) = 
hmj^jCl^hmj^jC^Jf**)^^ that is, Cg* = Cg(/*), and tins implies 
the theorem. 

As previously mentioned, even if g is a far-field pattern for some/ e Σ(α, ¿?), 
we cannot conclude that the solution of Pg is unique.However, it follows from 
Theorem 6.11 that if in this case we look at the set Φ*(g) for an interval of k 
values, that is, Φ*^) , k0 < k < /c,, then there exists a unique / e 
n *0« *<*,**(#)· Therefore in practice one could compute the solutions of Pg 
for sufficiently many values of k such that there is only one / lying in the 
intersection of all the solution sets. This / will map the unit circle onto 3D* 
where 3D* is the solution of the inverse scattering problem. 

A modification of the arguments used in Theorem 8.4 shows that if 3D is 
known a priori to lie in Σ(α, ¿>), then 3D depends continuously on the 
scattering cross section σ defined by 

σ:= lim f \us(x)\2ds, 
r — oo J\ x | = r 

where continuity is defined in the sense of Theorem 8.4. An initial approxima
tion to the unknown boundary 3D can now be obtained by choosing the ellipse 
in Σ(α, b) such that the scattering cross section best fits the measured cross 
section. (An even simpler choice would be to consider circles in Σ(α, b) instead 
of ellipses.) Improvements to this initial estimate can now be found by using 
the variational procedure discussed in Chapter 7, which is applicable to both 
two- and three-dimensional problems. We note at this point that the procedure 
in Chapter 7 is based on solving the variational formula (7.24) and the 
"solution" of this improperly posed problem can be obtained by methods 
other than the Backus-Gilbert method, for example, a least squares minimiza
tion procedure for suitably restricted variations δ*> (cf. the following section). 
Finally, we note that the iterative use of (7.24) to find 3D e 2 ( u , ¿ ) is 
essentially the Newton-Kantorovich method. 
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8.3 THE DETERMINATION OF THE SHAPE OF AN 
OBSTACLE IN R3 

We now conclude this chapter by describing how the results of the previous 
section can be extended to obstacles in U3 (Angelí, Col ton, and Kirsch [1]). 
Since conformai mapping methods are no longer applicable, we shall impose 
the simplifying assumption that the unknown scattering obstacle is strictly 
starlike with respect to the origin, that is, can be described in the form 

x = f(x)x (8.32) 

where X G R 3 , X=X/\X\9 a n d / i s required to be in a compact set of smooth 
functions defined on the unit sphere. As in the previous section we shall again 
need to use an integral equation formulation of the direct scattering problem 
that is applicable for all wave numbers and (sufficiently smooth) scattering 
obstacles (cf. Chapter 3). This need follows from the fact that the shape of the 
obstacle is unknown and hence the eigenvalues of the interior problem are 
unknown. Thus in order to guarantee that the integral equation formulation of 
the direct scattering problem has a unique solution we must use the ideas of 
Chapter 3 to formulate an integral equation that is uniquely solvable for a 
given wave number and any sufficiently smooth bounded domain (or equiva-
lently a given domain and any value of the wave number). 

We now proceed to make the above ideas more precise and show how they 
can be used as in the previous section to reformulate the inverse scattering 
problem as an optimization problem over a compact set. We begin by defining 
more specifically the compact set in which the function / defined in (8.32) is 
supposed to lie. Let 

r = ( j c E R 3 | |x| = l} 

denote the unit sphere in R3 and let C],a(T) denote the space of Holder 
continuously differentiable functions equipped with the Holder norm ||-||, a (cf. 
Section 2.2). Then we require the function/in (8.32) to be in a compact subset 
U of the set ?F defined by 

9-{feCl-"(r)\\\f\\i<a*b,f(A)>a) 

where a and b are positive constants. In particular, a possible choice for U is 
for U to be a bounded subset of Cuß(T) for any ß, a < ß < 1, such that U is 
closed in C , a ( T ) since the imbedding C]ß(T)^CUa(T) is compact (cf. 
Section 2.2). 

Now let D be a bounded simply connected domain in R3 such that 3D is 
described by (8.32) for/ e £/, and let u' be an entire solution of the Helmholtz 
equation. Then we can describe the direct scattering problem as the problem of 
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finding u = u'+ u\ u^C2(U3\D)nC(U3\D), such that 

bu + k2u = 0 in U3\D (8.33a) 

w = 0 on 3D (8.33b) 

g r a d ^ ( x ) , ^ - ) - / ^ ( x ) = ö ( ^ | ) (8.33c) 

where /c is assumed positive and the radiation condition (8.33c) holds uni
formly in all directions. In order to reformulate (8.33) as an integral equation 
that is uniquely solvable for all values of the wave number /c, we now have a 
variety of possibilities at our disposal (cf. Section 3.6). We choose to follow the 
method of Ursell [1] and represent the scattered wave u5 in the form 

us(x)=f ψ(γ)—Ε—β(χ9γ)Λ(γ)9 x^U3\D (8.34) 
JdD ov(y) 

where G is the dissipative Green's function for a ball contained in the interior 
of D, v is the unit outward normal to 3D, and ψ is a continuous density to be 
determined. For details of this approach the reader is referred to Ursell's 
original paper or Section 3.6 of this book. Letting x tend to 3D in (8.34) now 
gives us the integral equation 

Ψ Μ + ί >P(y)ir^G(x,y)ds(y) = -u'(x), X<E3D (8.35) JdD ov{y) 

for the determination of the unknown density ψ. Due to the choice of (7, it can 
easily be verified that (8.35) has a unique solution ψ for any wave number k 
(Ursell [1] and Section 3.6). Hence we now have the desired reformulation of 
the direct scattering problem (8.33) as an integral equation (8.35). In particu
lar, from (8.34) we see that us has the asymptotic behavior 

„.(j0 = l _ F ( i ) + o ( J _ ) (8.36) 

where F(x) = (F\p)(x) is defined by 

F(x): = f t(y)1r^-TG0(x,y)ds(y) (8.37) 
JdD àvyy) 

with G0 being an analytic function of its independent variables. (The explicit 
form of G0 can easily be computed, but for our purposes the above-stated 
regularity result is sufficient.) As in Section 8.2 we can now formulate our 
inverse scattering problem as follows: If g is the measured far-field pattern, 
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minimize the functional 

Cg(f) = \\F-g\\LHr) (8.38) 

subject to the constraint that 3D is described by (8.32) where / e i / . Having 
discussed the existence and continuous dependence of the solution to this 
problem, we can easily treat the problem where the functional to be minimized 
is 

/ ( / ) - £ Κ(/)-σ,·|2 

7 = 1 

where àj is the measured scattering cross section corresponding to an incident 
wave in the α· direction and σ·(/) is the scattering cross section corresponding 
to a domain D described by (8.32) with/ e U (cf. Section 8.2). 

In order to establish the existence of a function / e U that minimizes the 
functional Cg over the set U we first need to use the integral equation (8.35) to 
study the map / -> F as a mapping from U into C(T). In particular we want to 
show that this mapping is continuous and hence Cg assumes its minimum value 
on the compact set U. To this end we use (8.32) to rewrite the integral equation 
(8\35) in the form 

φ(*) + / β , ( * , γ)φ(γ) ds(y) = vf(x), Χ Ε Γ (8.39) 

where 

φ(χ): = φ(/(χ)χ) 

vf(x):= - w ' ( / ( x ) x ) 

and 

AC 

af(x>y)-' = j¡^(f(x)x>f(y)y)Jf(y) 

where Jf denotes the Jacobian of the mapping (8.32). A long but straightfor
ward calculation now establishes the following lemma, the proof of which we 
refer to Angelí, Colton, and Kirsch [1]. 

Lemma 8.5. For any δ < £(1 - a) there exists a constant γ such that 

(a) |fl/(Jc, y)\^y\x~ y\a~2 for all x J e T and / e t / , 
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(b) \af(*,j>)-ag(*,)>)\<y\x-tr2\\f-g\\la 

for all JC, y e Γ and / , g e ί/. 

We can now use Lemma 8.5 to establish the continuity of the mapping 
f -* F. From the definition of F in (8.37) and the fact that / is Holder 
continuously differentiate, it is easily seen that it suffices to prove that the 
mapping/ -» φ of U into C(T) is continuous. Defining the operator A / by 

(Α7φ)(χ): = jaf(X9 γ)φ(γ) ds(y), x<=T 

we have the following result: 

Theorem 8.6. Let B(C(T), C(T)) denote the space of bounded linear opera
tors on C(T) into itself equipped with the usual operator norm. Then the 
mapping / - » A , from Cla(T) into B(C(T\C(T)) is Holder continuous. 
Moreover the mapping/ -> <fy of U into C(T) where <iy is the unique solution of 
the integral equation (8.39) is Holder continuous. 

Proof. Let f,g^U and <t>^C(T). Then for any x e Γ we have, using 
Lemma 8.5, 

\\^(x)-A^(x)\^f\af(x,y)-ag(x,y)\^(y)\ds(y) 

^y\\<t>\\J\f-g\\t*f\x-yr2ds(y) 

where δ <¿(1 - a) and HH^ is the usual norm on C(T). This establishes the 
first part of the theorem. To prove the second part of the theorem we note that 
it suffices to show that the operators (I + Ay) - 1 , / £ ( / , are equibounded. 
Indeed, if this is the case, the results follows from the identity 

^ - φ , - ί ΐ + Α ^ - ^ υ , - ^ + ί Α , - Α , Κ ΐ + Α , ) - ' » , } 

and the Holder continuity of the mapping / -> ty. To see that the family of 
operators ((I + A^) - 1) is equibounded, assume the contrary. Then there exist 
sequences (Ü„ ),(/„), with H^JI^ < 1 such that ||(I + \/η)~ιυη\\ -* oo. Since U is 
compact, we can assume without loss of generality that there is an / e U such 
that /n -> / e 17. Then, setting 

„ (i + A / X 1 ^ 
Ιΐίΐ + Α ^ Λ χ , ' 
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we have 

*. = (I + A / J ^ + (A/ ~ A / J ^ - A / 4V 
But (Ι + Α / Λ ) Φ „ - > 0 and Α / Λ -> A, in B(C(T),C(T)). Furthermore, the com
pactness of the operator A^now implies that there exists a subsequence of (φπ), 
which we again denote by (φ„), such that Φη^Φ for some φ^(Γ(Γ) and 
φ = — Ay-φ. Since (8.39) is uniquely solvable, this implies that φ = 0, which 
contradicts the fact that φ is a limit of functions of norm one. This completes 
the proof. 

As we have already mentioned the continuity of the mapping / - > φ^- implies 
the continuity of the mapping/ -> F where F is the far-field pattern. This fact, 
and the compactness of £/, now imply the following theorem (cf. Theorem 8.3). 

Theorem 8.7. The functional Cg takes its absolute minimum on the set U. 
Let <î>*(g) be the set of all functions/* G U such that Cg(f*) is equal to the 

minimum value of Cg over U. Then we have the following result on the 
continuous dependence o f /on the far-field pattern F (cf. Theorem 8.4). 

Theorem 8.8. The set Φ*^) is graph compact. 



9 
OPTIMAL CONTROL 
PROBLEMS 
IN RADIATION AND 
SCATTERING THEORY 

In this final chapter we shall consider two optimal control problems associated 
with the radiation or scattering by an infinite cylinder, basing our presentation 
on the results of Angelí and Kleinman [1] and Kirsch [1]. In both of these 
problems we are given a bounded connected domain and our aim is to 
"control" the boundary data such that the far-field power flux through a given 
angle is maximized. The difference between the two problems lies in the nature 
of the boundary data. In the first case the boundary data are assumed to be of 
Dirichlet type and hence the analysis is considerably simplified due to the 
linear nature of the problem. From a physical point of view this problem can 
be viewed as a radiation or an antenna synthesis problem. The second problem 
we shall consider is a scattering problem with an impedance-type boundary 
condition, that is, we wish to choose the impedance such that the far-field 
power flux due to the scattering of a given incident field is maximized. We note 
that this problem is nonlinear and, except for a change in the functional to be 
minimized (the "cost" functional), is essentially the same mathematical prob
lem as the inverse scattering Problem A2 of Chapter 6. Indeed it was for this 
reason that we did not discuss this inverse scattering problem in Chapter 8, 
preferring to present the mathematical details in the context of an optimal 
control problem rather than an inverse scattering problem. As in the case of 
the inverse scattering problem, the concept of compactness is seen to play an 
essential role. However, from the point of view of optimal control the idea of 
weak compactness is more appropriate than strong compactness, and hence we 
shall begin this chapter with a brief review of the basic concepts of weak 
compactness in Hubert space. 

244 
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Although the analysis of this chapter is restricted to two dimensions, the 
analysis is easily extendable to the three-dimensional case for both acoustic 
and electromagnetic waves. 

9.1 WEAK COMPACTNESS IN HILBERT SPACE 

Let H be a complex Hubert space with inner product ( · , · ) . A sequence (x„) in 
H is said to be weakly convergent to an element x G / / if limn_00(x„,>') = 
(x, y) for every y e H. It is easily verified that the element x is unique. 

Definition 9.1. A set K in H is said to be weakly compact if every sequence in 
K has a weakly convergent subsequence whose limit lies in K. 

Theorem 9.2. Let H be a separable Hubert space. Then every bounded subset 
of H has a weakly convergent subsequence. 

Proof. Since H is separable there exists a countable dense subset D = {yn}. 
Let K denote the given bounded subset of H and (xn) a sequence in K. Then 
since ((x„, >>,)) is bounded, there exists a subsequence (xn(])) of (xn) such that 
((xn{iy yx)) converges. Similarly, for every integery^2 there exists a subse
quence (x„u)) of (*„(,_!)) such that ( ( χ „ ω , yk)) is convergent for 1 < k < j . 
Hence (xn(n)) is a subsequence of (xn) for which ((x„(w), ^ ) ) convergences for 
every /c>l . 

We now want to show that this subsequence is weakly convergent. For 
notational convenience we relabel xn(n) by xn. Let span{/)} be the subspace of 
H formed by taking all linear combinations of elements in D. Then for 
y e span{D} the linear functional / defined by f(y) = lim r t_00(xn, y) is well 
defined and continuous. Since D is dense in H, f has an extension to all of //, 
and by the Riesz representation theorem there exists an X G ^ such that 
f(y)β (*> y) for y G # · Now let y e H and e > 0, z e D, such that ||>> - z\\ < ε. 
Then 

|(x„ - x, >0| < !(*„, y - z)\ + | (x, y - z)\ + \{xn- x, z)\ 

^ε\\χη\\+ ε\\χ\\+\{χη- x,z)\. 

Hence since (xn) is bounded and (xw, z) -» (x, z) for z e D we have (since ε is 
arbitrary) that (x„, y) -> (x, >>) for y e i/, that is, x is the weak limit of (x„). 

Definition 9.3. A set K in H is said to be weakly closed if the limit of every 
weakly convergent sequence from K is contained in K. 

Note that since strong convergence (i.e., convergence in norm) implies weak 
convergence, a weakly closed set is necessarily closed. 

Definition 9.4. A set K in H is said to be convex if for x, y e K and 0 < λ < 1, 
we have that λχ +(1 - \)y G K. 
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Theorem 9.5. Every closed, convex set of a Hubert space is weakly closed. 

Proof. Let K be a closed convex set of H and x an element of H that is not 
in K. Then since every nonempty closed convex subset of a Hubert space has 
an element of minimal norm, there is an JC0 e K such that min^ e K\\y - JC|| = 
||JC0 - x\\. Without loss of generality we can assume (by translation) that 
x = - xQ. Since (x9 x0) < 0, the theorem will be proved if we can show that 
Re(z, x0) > 0 for all z E l This follows from the fact that if (z „), zn e K, is 
weakly convergent to an element JC not in K, then Re(z„ - JC, x0) ^ - (x, x0) > 
0, contradicting the fact that \(zn - x, x0)\ tends to zero. To show that 
Re(z, x0) > 0 for all z G AT we consider the function φ: [0,1] -+ U defined by 

φ(ί) = | | (1 - t)x0 + tz-x\\2 

and note that since K is convex, φ has its minimum at t = 0. Therefore <f>'(0 + ) 
is nonnegative, that is, 

R e ( x 0 , z - x 0 ) ^ 0 . 

But since x = - x0 this implies that Re(z, JC0) > ||x0ll2 > 0-

Corollary 9.6. Every closed, bounded, convex subset of a separable Hubert 
space is weakly compact. 

Proof. This follows immediately from Theorems 9.2 and 9.5. 

Definition 9.7. Let K be a subset of a Hilbert space //. A function F: K -» IR 
is said to be weakly continuous at x e # if for every sequence (xn)'\nK that is 
weakly convergent to x e K we have F(x) = limM _ « ^ * , , ) . 

For our purposes the importance of weak compactness is that weakly 
continuous functions assume their maximum and minimum on weakly com
pact sets. 

Theorem 9.8. Let K be a weakly compact subset of a Hilbert space H and let 
F: K -* IR be weakly continuous at every point of K. Then 

1. F is bounded on K. 
2. F achieves its maximum and minimum on K. 

Proof. Suppose F is not bounded from above on K. Then there exists a 
sequence (xn) in K such that F(xn)^ n. Since K is weakly compact there is a 
subsequence (xnik)) of (xn) such that (x„(yk)) is weakly convergent to an 
element J C G I Since F is weakly continuous we have lim¿ __ 00F(xn(k)) — F(x) 
< oo, which is a contradiction. Hence F is bounded above and a similar proof 
shows that F is bounded below. 



OPTIMAL CONTROL FOR A RADIATION PROBLEM 247 

Now let M = supxeKF(x) and (xn) a sequence in K for which M = 
\\mn^O0F(xn). Then (xn) has a weakly convergent subsequence (xn(k)) such 
that (xn(k)) converges weakly to an element x e K. By the weak continuity of 
F we now have Af = Hmk-+o0F(xt1(k)) = .F(x) and hence F achieves its maxi
mum on K. A similar proof shows that F also achieves its minimum on K. 

In concluding this section we wish to emphasize that the results presented 
here for the case of a Hubert space have a straightforward and natural 
extension to reflexive Banach spaces and, more generally, to reflexive dual 
systems, for example, <L°°(ß), Ll(ß)> for some given set Ω. The reader should 
have little difficulty in modifying the proofs just given for Hubert spaces to 
these more general settings. Such extensions are not presented here since our 
aim is only to present the basic concepts of weak compactness in their simplest 
setting (i.e., a Hubert space) and no attempt is made toward a definitive 
treatment. However, having given the basic results on weak compactness in a 
Hubert space we shall not hesitate to make use, where appropriate, of their 
natural generalizations to the above-mentioned broader settings, and with the 
background given in this section we trust that this will cause no difficulty for 
the reader. 

9.2 OPTIMAL CONTROL FOR A RADIATION PROBLEM 

In this section we shall consider the problem of choosing the surface current on 
a bounded obstacle D such as to maximize the far-field power flux through a 
given angle. In order for a solution to exist to this problem (for both 
mathematical and physical reasons!) it is necessary to restrict the class of 
admissible surface currents, and this shall be done by requiring the currents to 
be in a weakly compact subset of L2(dD). We shall then show that the optimal 
solution can be constructed by standard procedures. We then consider a class 
of control sets such that the optimal solution is the limit of a sequence of 
bang-bang controls. Our analysis is based on the work of Angelí and Kleinman 
[1]· 

Let D be a bounded connected domain in the plane with C2 boundary 3D 
and unit outward normal v. Then if φ e L2(dD) denotes the surface current on 
3D, we can express the radiating field us arising from this current in the form 
(cf. Section 4.1). 

us(x) = j[ HP(k\x-y\)4>{y)ds{y); X G R 2 \ Â 
*JdD 

where k is the wave number (assumed positive) and H¿1) denotes a Hankel 
function of the first kind of order zero. Then from the asymptotic behavior of 
HankeFs function we see that at infinity us has the asymptotic behavior 
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where (r, Θ) are polar coordinates and the far-field pattern F is defined by 

F(d\k)=( $(y)ex$[-ikr'cos(e-0')]ds(y) (9.1) 
JdD 

with (r', 0') denoting polar coordinates of y e dD (we assume that the origin is 
contained in D). Note that (9.1) defines a compact operator F: L2(dZ>)-> 
L2(0,2IT) and henceforth we shall write (9.1) simply as 

F=F<¡>. (9.2) 

In what follows, we shall denote the inner product and norm in ¿2(0,2π) by 
( · , ·) and || ||, respectively, and those in L2(dD) by ( · , -)dD and ||-||aD. 

Now let Q{r\ <j>) denote the power flux through a circle of radius r due to 
the surface current φ on 3D. Let Cr denote this circle and assume that D is 
contained inside the disk bounded by Cr. Then 

ρ(Γ;φ) = £|Μψώ = γ/ο
2ν(0)|2^ + θ(±) 

where γ = y(k) is a positive constant. If we define the far-field radiated power 
by 

β ( φ ) = Hm Qir-,φ) 
r —* oo 

-Y /2V(*)I2¿* 

then we have (?(Φ) = ϊΙΙ^Φ||2. Now let a be a measurable subset of [0,2π] and 
<χ{θ) its characteristic function. Then, ignoring the unimportant constant γ, we 
define the (normalized) far-field power flux through a by 

= (2\{θ)\Ψ^άθ. (9.3) 
Jo 

We can now formulate our optimal control problem as follows: For a given 
closed, bounded, convex subset U of L2(dD) (called the class of admissible 
controls) find a<¡>0e[/ (an optimal control) such that βα(φ0) ^s t n e maximum 
value of Qa over U. 

We shall now establish the existence of an optimal control φ0 as defined 
above. 

Lemma 9.9. The functional Qa is weakly continuous on L2(dD). 
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Proof. Let (</>„) be weakly convergent to φ in L2(dD). Then since F is 
compact it follows from the uniform boundedness principle that ¥φη -» ¥φ 
strongly in L2 (0,2 77). But 

\ΩΛφ^-Ωα(φ)\=\{^)[\(^η)(η2-\(Η)(θ)\2]αθ\ 

^/2Ίΐ(ρ<*θ(0)ι2-ι(ΓΦ)(0)ι2μ 

<||(|Ρφ„| + |Ρφ|)| |2 | |( |Ρφ„|-|Ρφ|)| |2 

<(||Ρφ„|| + ||Ρφ||)2||Ρφ,,-Ρφ||2. 

Since Ρφ„ tends to Ρφ strongly in L2(0,2w) we now have that 

ϋΓη |Ο α (φ Μ ) -β β (φ) | = 0, 
n —* 00 

that is, Qa is weakly continuous. 

Theorem 9.10. Let U be a closed, bounded, convex subset of L2(dD). Then 
there exists a φ0 e U such that 

0«(Φο)= s u p ρ α ( φ ) . 
φ€Ξ£/ 

Pwo/. Since L2(dD) is a separable Hubert space we have from Corollary 
9.6 that U is weakly compact. The theorem now follows from Theorem 9.8. 

Theorem 9.10 can be strengthened to state that Qa assumes its optimal value 
at a point on the boundary of U. 

Theorem 9.11. Let U be a closed, bounded, convex subset of L2(dD). Then 
the functional Qa takes its optimal value at a point of the boundary of U. 

Proof. Let φ^ φ2 G U. Then since U is convex, φ = λφ, + (1 - λ)φ2 e JJ for 
0 < λ < 1, and a short calculation shows that 

β β (φ ) = ( λ 2 - λ ) ρ α ( φ 1 - φ 2 ) + λ ρ α ( φ 1 ) + ( ι - λ ) ρ α ( φ 2 ) . 

Therefore, since λ2 ~ λ < 0 and ρα(φ] - Φ2) > 0, we have 

β . ( φ ) < λ β α ( φ , ) + ( 1 - λ ) β β ( φ 2 ) , 

that is, Qa is a convex functional. Now suppose that φ0 is an optimal control. 
Then, since U is closed, bounded, and convex, by Corollary 9.6 and the 
Krein-Milman theorem (cf. Royden [1]) we can state that U is equal to the 
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convex hull of its boundary points. Hence we can write φ0 in the form 

n' 

Φ ο = Σ λ/Φ/ 
/ = 1 

where φ,, / = l,...,/i, are on the boundary of U, λ, ^ 0 for ¿ = 1,2,...,«, and 

/ = 1 

The convexity of Qa now implies that 

βα(Φο)=οα(έλ,«ί.,) 

< Σ λ,οα(Φ,) 
1 = 1 

< max (ρα(φ,)} Σ λ, 
1 « ι « n , = ! 

= max {ρα(ψ)} 
1 < ι < n 

and since Qa assumes its maximum value at φ0, there exists a φ on the 
boundary of U such that βα(Φο)= Οα(Φ)· 

By using more sophisticated techniques it is possible to show that Qa takes 
its optimal value at an extreme point of U, that is, a point φ € ί / that is not 
properly contained in any set of the form λφ^ + (1 - λ)φ2, λ G (0,1), φ,, φ2 e U 
(Kirsch [4]). 

We shall now show that in the case when U is the unit ball in L2(dD\ 
Theorem 9.11 leads to a constructive procedure for finding an approximation 
to the optimal control φ0 and the maximum power flux βα(Φ0). To show this 
we let B denote the closed unit ball in L2(dD), and note that B is closed, 
bounded, and convex. If we now rewrite the functional Qa in the form 

ρ α (φ) = (α¥φ,¥φ) = (¥*α¥φ, φ) dD 

where F*: L2(0,2TT) -* L2(dD) is the adjoint operator to F defined by 

(F*xp)(y):= (2 ,V(0)exp|>r 'cos(0 - >.)] άθ, y={r\6') (9.4) 

for ψ G L2(0,2TT), and define the operator R: L2(dD) -> L2(dZ)) by 

Ity: = F*crfty, (9.5) 
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then choosing i / = 5 w e can reformulate our optimal control problem as that 
of determining φ0, ΙΙΦΟΙΙ^ = * » s u c h t n a t 

(Κφ,φ)9ϋ^ (RφoîΦo)5D 

for all φ^Ζ,2(3D), ||φ||™ = 1. 

Theorem 9.12. The operator R is compact and self-adjoint. Let λ0 be the 
largest eigenvalue of R. Then the optimal control φ0 is an eigenfunction of R 
corresponding to the eigenvalue λ0. 

Proof. Since F is compact so is R = F*aF and since a is real valued, R is 
self-adjoint. Hence the spectrum of R is discrete and real with zero as its only 
accumulation point. Furthermore, 

sup φ φ , φ ) ^ ^ |λ0 | 
Ι ΙΦΙΙβ£>- ΐ 

where λ0 is the eigenvalue of R having the largest absolute value (cf. Stakgold 
[2]). But since a is a characteristic function, a = a2, and therefore 

( R φ , φ ) , Z ) = ( F * α F φ , φ ) , D = ( α F φ , α F φ ) > 0 

which implies that R is positive and its spectrum nonnegative. It now follows 
that 

sup (Ι1φ,φ)5ί> = λ0 
ll*ll*D-i 

and if φ0 is a (not necessarily unique) normalized eigenfunction corresponding 
to the eigenvalue λ0, then 

(ΐ*Φθ> Φθ) dD = (λ0Φθ> Φθ) dD = ^o-

The Galerkin procedure for constructing an approximation to the eigen
value λ0 and the eigenfunction φ0 is well known and can be found in any 
number of textbooks (cf. Stakgold [2]). 

The above discussion shows that by choosing U to be the closed unit ball in 
L2{dD), Theorem 9.11 reduces the candidates for optimal solutions and leads 
to a constructive procedure for their calculation. We shall now consider a 
situation in which the control set U has empty interior and hence Theorem 
9.11 becomes vacuous. We shall show that in this case there exists a maximiz
ing sequence of extreme points of the control set and that furthermore we can 
characterize these extreme points as bang-bang controls. To be more specific 
we consider the control set 

G = (φ e L2(dD)\xP0{y) < φ(γ) < ψ,(^) a.e. on 3D) (9.6) 
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where ψ0̂  Ψι a r e real-valued continuous functions defined on 3D. It is easily 
verified that G is closed, bounded, and convex; however, every point of G is a 
boundary point (we leave this last observation as an exercise for the reader). 
Since in this case Theorem 9.11 gives no new information, we shall consider, 
instead of the boundary of G, the set of extreme points of G. 

Theorem 9.13. Let G be the class of admissible controls defined in (9.6) and 
φ0 the optimal control that maximizes Qa over G. Then there exists a sequence 
of extreme points (<j>e

n) of G such that 

lim QMen) = QÀ<t>o). 
n-*oo 

Proof. By Corollary 9.6, G is weakly compact. Let Gext be the set of 
extreme points of G. Then by the Krein-Milman theorem G is the closed, 
convex hull of Gext and hence there exists a sequence (φ„), where each φη lies in 
the convex hull of Gext, such that φη tends (strongly) to φ0. Then since Qa is 
weakly continuous on G 

lim 0Λ(Φ„) = ο„(Φο)· (9-7) 
n - » oo 

But for every «,« = 1,2,..., we can write 

mn 

Φη = Σ λ>7 

where 

and each φ" is an extreme point of G. Reasoning now as in Theorem 9.11 we 
have that for each n there exists an integer /„, 1 < ln < m„, such that 

Qa(<t>n)<Qa(<t>l)<Qa(*o) (9-8) 

where φ ^ ο Η ΐ , and hence from (9.7), (9.8) 

lim οα(φ7„) = 00(Φο)· 
n -* oo 

We shall now show that the extreme points of G are " bang-bang" controls, 
that is, the functions in Gext take on only the extreme values ψ0(^) or \p{(y) at 
almost all points >> e dD. In the proof of the following theorem we shall let χΜ 
denote the characteristic function of a measurable set M and μ(Μ) its 
measure. 
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Theorem 9.14. Let Gext denote the set of extreme points of G. Then φ e Gext 

if and only if 

almost everywhere where E0 Π Ex = 0 , μ(Ε0 U Ex) = μ(#/)). 

Proe/. Suppose φ is not of the prescribed form. Then there exists an ε > 0 
and a measurable set E2 c 3D, μ(£2) > 0, such that for y e £ 2 

Ψο(^)<Φ(> ;)- ε <Φ(·> ;)<Φ(> ;) + ε < Ψι(> ; ) · 

Define the functions φ! and φ2 by 

w x (<t>(y) > yedD\E2 

^ , λ /Φ(^) , yedD\E2 

\φ(^) + ε, y^E2. 

Then (¡>„(¡>2GG and 

Φ(>')=Ϊ(Φΐ(^)+Φ2(>')) 

almost everywhere on dD, that is, φ is not an extreme point of G. Hence every 
extreme point must have the form 

Φ = ΧΕ0ΨΟ + ΧΕ1ΨΙ (9.9) 

almost everywhere for a suitable choice of E0 and Ex. 
Now suppose conversely that (9.9) is valid and that 

φ = λ φ , + ( 1 - λ ) φ 2 (9.10) 

for 0 < λ < 1 and <^X^2&G. We shall show that for i = 0,1, φι = φ2 = ψ, on E¡ 
and hence φ cannot be expressed as a proper convex combination of other 
points of G, that is, φ e Gext. To see this, first assume that y e E0. Then from 
(9.9) we have that <l>(y) = Ψο(>0· Hence from (9.10) we have 

λ(φ, (>' ) -ψο(>') )+(1-λ)(φ 2 (^)-ψο(>') ) = 0 

almost everywhere for y e E0. Since 0 < λ < 1 and φ, > ψ0 for almost all y e EQ 
we must have φ, = ψ0 and φ2 = ψ0. The corresponding argument for y e £'1 
now completes the proof. 

Corollary 9.15. Let G be the class of admissible controls defined in (9.6) and 
φ0 the optimal control that maximizes Qa over G. Then φ0 is the limit of a 
sequence of bang-bang controls. 
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For further results on the existence of bang-bang controls the reader is 
referred to Kirsch [2]. 

9.3 OPTIMAL CONTROL FOR A SCATTERING PROBLEM 

We shall now consider the problem of the optimal choice of the impedance of 
an obstacle in order to maximize the far-field power flux through a given angle. 
We shall view this as a scattering problem in which the incident field is given, 
that is, we assume the total field u and the impedance λ satisfy the set of 
equations 

u^u' + u5 (9.11a) 

Au + A:2w = 0 in U2\D (9.11b) 

4 ^ + Aw = 0 on 3D (9.11c) 

( g r a d u ' W , ^ ) - / * ^ * ) ^ ^ ) (9-lld) 

where u' and us denote the incident and scattered waves, respectively, with u' 
being an entire solution of (9.1 lb), the wave number k is positive and fixed, the 
impedance λ satisfies Im λ ^ 0, and the scattering obstacle D is bounded, 
connected, and has C2 boundary 3D with unit outward normal v. Our aim is to 
choose λ, subject to certain a priori restrictions, such that the far-field power 
flux through the angle a 

Qa(us)= lim (2\(e)\u5(rJ)\2de (9.12) 
r->oo Λ) 

is maximized, where a is the characteristic function of a measurable subset a of 
[0,277·]. Our approach will follow that of Kirsch [1], except that for simplicity 
we shall assume that the wave number k is less than the first eigenvalue of the 
interior Dirichlet problem for (9.11b) in D and denote this eigenvalue by k0. 
By a suitable modification of the integral equations involved in our analysis 
(cf. Section 3.7) this restriction can easily be avoided. 

For an alternate approach to the above optimal control problem the reader 
is referred to Angelí and Kleinman [2]. 

We begin our analysis by reformulating (9.1 la)—(9.1 Id) as an integral 
equation. This is accomplished by looking for a solution u5 to (9.11) in the 
form 

u*(x) = U H"(k\x-y\)<¡>(y)ds(y) 
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where //¿° denotes a Hankel function of the first kind and φ is a continuous 
density to be determined. In a manner that by now is well known one is led to 
an integral equation for φ of the form 

2JSDdv{x) 

or 

where 

<t>-K'4>-\S<t> = gl + Xg2 (9.13) 

¿JBD OV\X) 

(8φ)(χ):-/ HP(k\x-y\)*(y)ds(y)9 
JdD 

and g,:= —2{dul/dv\ g2:= ~2w'. From the results of Section 3.7 we have 
that the integral equation (9.13) is uniquely solvable provided Ιτηλ^Ο and 
k < k0, the first eigenvalue of the interior Dirichlet problem. Furthermore, 
from the previous section of this chapter we have that us has the asymptotic 
behavior 

where F is defined by (9.1), (9.2), that is, 

F=F<I> (9.14) 

where F: C(dD)-* C(0,27r) is compact. Hence we can define the (normalized) 
power flux through the angle a by 

αα(φ)-(2η«(θ)\¥φ(θ)\2αθ, (9.15) 

and define our optimization problem as that of choosing λ such that Qa is 
maximized where Qa is related to λ through the integral equation (9.13). In this 
context it is advantageous from the point of view of existence results to look 
for generalized solutions of the optimization problem in the sense that we 
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allow λ to be an element of L°°(dD) and look for a solution of the integral 
equation (9.13) in L2(dD), that is, we assume φ, g,, and g2 are in L2(dD). All 
the operators are well defined in this case and since the spectrum is unchanged, 
the integral equation (9.13) is uniquely solvable in L2(dD) for k < kQ. 

Before stating our generalized optimization problem in a precise fashion we 
introduce some convenient notational shorthand. In particular let H = L2( 3D), 
H=L°°(dD\ and, defining H to be L\ 3D), wc have that ( £ , H) is a reflexive 
dual system. Let U be a weakly compact subset of 7/+ = { \ e / / | I m X > 0 ) 
with respect to (H, H). Then our generalized optimization problem, that we 
shall call problem P, is to determine (λ*,φ*) e t/ x i / such that Qa: H-*U is 
maximized subject to 

1. (^-K^-XSci^gj + Ag^ 
2. Xet/, 

Note that from Lemma 9.9 we have that Qa is weakly continuous on L2(dD). 

Theorem 9.16. The mapping λ -» φ is a weakly continuous mapping from H+ 

into //, that is, if (λΜ) tends weakly to λ in H+ then (φη) is weakly convergent 
to the image of λ in H. 

Proof. We shall first show that the mapping is bounded. Assume that this 
is not true. Then there exists a sequence (λ„), λ „ £ / / + , such that the λη are 
bounded but ||φη|| -> oo, where φη is the solution of (9.13) with λ set equal to Xn. 
Let ψ„ = Φ„/||φ„||. Then ψη satisfies the integral equation 

ψ„ -Κ'ψ„ - XMn = j¡¿f (gi + λ„*2) . (9.16) 

Since the λ„ and ψπ are bounded, there exist subsequences, which we shall 
again denote by (λ„) and (ψη), such that (Xn) and (ψπ) are weakly convergent 
to λ 6 H+ , ψ € //, respectively. (The weak convergence of (Xn) is with respect 
to the dual system (H, H).) Then since 

λ „ 8 ψ „ - λ 8 ψ = λ „ 8 ( ψ „ - ψ ) + ( λ π - λ ) 8 ψ (9.17) 

and the first term on the right-hand side converges strongly to zero (by the 
compactness of S), whereas the second term is weakly convergent to zero, we 
have from (9.16) that 

ψ - Κ / ψ - λ 8 ψ = 0. 

From the fact that (9.13) is uniquely solvable we can now conclude that ψ = 0, 
and from (9.16) and (9.17) we have that ψ„ converges strongly to zero. But this 
is impossible since ||ψΛ|| = 1. Hence the mapping X -> φ is bounded. 

Now let (Xn) be weakly convergent to λ e H+ and φη the solution of (9.13) 
with λ replaced by λ„. Then (φη) is a bounded sequence and hence from the 
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above argument there exists a subsequence, which we shall again denote by 
(ö„), such that (ö„) converges weakly to a solution ö of (9.13). But since this 
integral equation is uniquely solvable, the whole sequence (ö„) is weakly 
convergent to ö, that is, the mapping ë -» ö is weakly continuous. 

We can now establish the existence of a solution to problem P. 

Theorem 9.17. There exists a solution (ë*, ö*) e U X H of problem P. 

Proof. From the weak continuity of Qa and Theorem 9.16 we have that Qa 
achieves its maximum for ë e (/, ö G //, where ö is related to ë through (9.13). 
The ordered pair (ë*, ö*) for which Qa achieves this maximum is the solution 
of problem P. 

We now want to present a method for obtaining approximations to the 
solution of problem P. Recall that for the linear optimal control problem 
discussed in the previous section we were able to obtain an approximation to 
the optimal control by applying a standard Galerkin procedure for finding the 
largest eigenvalue of a compact self-adjoint operator, the details of which can 
be found in any number of textbooks, for example, Stakgold [2]. In the present 
case, due to the nonlinearity of the mapping from the impedance ë to the 
far-field pattern F, the situation is considerably more complicated. Neverthe
less we shall show in the sequel that approximations to the optimal control can 
again be found via a Galerkin procedure. Our analysis is again based on 
Kirsch [1]. 

Let Hn, Hn c Hn+] c H, n = 1,2,..., be closed subspaces such that U ™„xHn 
is dense in H and let P„: H -* Hn be the projection operator of H onto Hn. 
Then we can formulate a sequence of approximation problems to problem P, 
denoted by problem Pn, as the problem of determining (ë*, ö*) G £/ x Hn such 
that Qa: Hn-+U is maximized subject to 

1. Ö-(ÑðÊ')Ö-(Ñðë8)ö = ñ é é ( * é 4 ^ 2 ) . 
2. A G Í / . 

Theorem 9.18. There exists an integer n0 such that for n > w0, ë G £/, g G Hn, 
the equation 

ö-(Ñ„Ê')ö-(Ñ„ë8)ö = ? (9.18) 

is uniquely solvable in Hn. 

Proof. Since the integral equation (9.18) is of Fredholm type, by the 
Fredholm alternative it suffices to show that the only solution of the homoge
neous integral equation is the trivial solution, that is, ö identically zero. 
Suppose the theorem were not true. Then there exist integers n(m) and 
functions ö„ G Hn(m)9 \m G U, m = 1,2,3,... with | ^ J | = 1 such that 
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There exist weakly convergent subsequences of (ö^) and (Xm), that we again 
denote by (<>m) and (Xm) such that (<i>m) is weakly convergent to ø £ Η and 
(\m) is weakly convergent to ë G (/. By following the arguments of Theorem 
9.16 it is easily seen that (P„(m)K')<f>w is strongly convergent to Ê'ö and 
(Pn ( m )XmS^m is weakly convergent to ë8ö. Hence 

ö - Ê ' ö - ë 8 ö = 0 

and we can conclude by the unique solvability of this integral equation that 
ö = 0, that is, (<j>m) is weakly convergent to zero. Since K' and S are compact 
we can conclude now, as in Theorem 9.16, that (ö^) is strongly convergent to 
zero. But this is a contradiction since ||ö„,|| = 1. 

The following existence theorem now follows exactly as the case of Theorem 
9.17. 

Theorem 9.19. Let n > w0, where n0 is defined in Theorem 9.18. Then there 
exists a solution (ë*, ö*) G U X Hn of problem Pn. 

Now let (ë*,ö*) be a solution to problem P and (ë*,ö*) a solution to 
problem Pn, where we assume n > n0. We would like to show that (ë*,ö*) 
tends to (ë*, ö*) in some sense as n tends to infinity. In order to establish such 
a result we first need the following lemma (compare this to Theorem 9.16). 

Lemma 9.20. For a given À 6 / / + let ö„ e Hn be the solution of (9.18) for 
g = Pn(gi + Xg2), « > 0 . Then the mapping ë-»ö„ is a weakly continuous 
mapping from H+ into Hn and is uniformly bounded with respect to n. 

Proof. The weak continuity of the mapping follows exactly as in Theorem 
9.16. In order to show the uniform boundedness of the mapping with respect 
to Ë, assume the contrary. Then there exist a subsequence n(m) and a sequence 
( ë ^ , ö ^ ) ^ ß / x Hn(m) such that | | X J | < C for some positive constant C, 
ÉÉÖ#çÉÉ "~* °°> anc* Φ„ι is a solution of the integral equation 

Ö*, - (P„<noK')<ï>m - (Ñ„(,«)ë,„8)ö,„ = g, + Xmg2. 

Setting ^m^bm/W^mW w e n a v e t n a t Ø'm ^s a solution of 

Ø. - (Pni«)̂ )*« - (P„(„o^s^m = ¿ ( e i + *mg2). 

Then since (Aw) and (\pm) are bounded, there exist subsequences, which we 
shall again denote by (Xm) and (i/>m), such that (Xw) and (r//m) are weakly 
convergent to ë e / / + , ø G //W. Hence we can conclude that (Ñð(ç,)Ê')ø#Ì is 
strongly convergent to Ê'ø and (XmS)\pm is weakly convergent to (ë!8)ø. From 
the uniform boundedness principle we have that there exists a positive constant 
C such that | |Pn | |<C for all integers n. Therefore (Prt(m)XmS)i//m is bounded 
and there exists a subsequence again denoted by (Pn(m)XmS)i//m, such that 
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(Pn(m)XmS)\pm is weakly convergent to an element y e / / . But for any positive 
integer j we have that (PjPn{m)XmS)\pm is weakly convergent to (Py\S)\// and 
hence Pjj = (Pj\S)\p for every integer j , that is, ã = XS\p. Therefore 
(Pn(m)XmS)\pm is weakly convergent to \S\p. The unique solvability of (9.13) 
now implies that ø = 0 and arguing as in Theorem 9.16, we can now conclude 
that (øð) converges strongly to zero. But this is impossible since ||ø„|| = 1. Thus 
the mapping ë -* φη is uniformly bounded with respect to n. 

Theorem 9.21. Let Q* and Q* be the optimal values of problems P and Pn, 
respectively, where n^n0, and let Ö and Ö„ denote the sets of solutions to 
these problems. Then 

2. Every sequence (ë*, ö*) e Φη contains a weakly convergent subsequence 
and every weak limit point lies in Ö. 

Proof. Lemma 9.20 implies that there exists a weakly convergent subse
quence of (ë*, ö*) that we again denote by (ë*, ö*). Let (ë*, ö*) be any weak 
limit point of (ë*,ö*). By our previous arguments we can conclude that 
(ë*, ö*) e U X H. Now let (ë, ö) e U X H be any solution of problem P. Let φη 
be a solution of (9.18) with ë = ë and g = Pn(g\ + Xg2)· Then by our previous 
arguments we can conclude that φη is strongly convergent to ö and 

0*>0«(Ö*)= um Ïá(ö„*) 
n -* oo 

= um e : 
n -* oo 

= ñá(Ö) = ñ*. 

Therefore g* = £?á(Ö*) = l im^^^g j and the theorem is proved. 
In closing we shall briefly make a few remarks on the existence of bang-bang 

controls for the optimization problem considered in this section. Due to the 
nonlinear nature of this problem, results are considerably harder to obtain 
than in the case of the linear optimization problem considered in Section 9.2. 
To state one result that is known (Kirsch [2]), let R be a compact and convex 
subset of the closed upper half plane with nonempty interior and let the class 
of admissible impedances be given by 

£/= {ë e L°°(dD)|A(x) e R almost everywhere on dD). 

Let (ë*,ö*) be a solution of problem P and u* the corresponding total field. 
Define w to be the unique solution of the following "adjoint" scattering 
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problem: 

W = H>' + W* (9.19a) 

Äê> + Á:2íí = 0 in U2\D (9.19b) 

- ^ + ë*íí = 0 on dD (9.19c) 

( g r a d w i ( x ) , | | i - ) - / ^ ( ^ ) = 0 | — î j ^ j (9.19d) 

where 

w'(x)= (2"α{θ)Ψφ*{θ)β-^χ)άθ (9.20) 

with £ = (cosö, sinö). Then it has been shown by Kirsch [2] that 

X*(x)<=dR for all x £ N(w)nN(u*) 

where N(w) and N(u*) denote the set of zeros of the functions w and t/*, 
respectively, restricted to 3D. Although the set N(w)U N(u*) can be very wild 
in general, it has been shown by Kirsch [2] that it does not contain any disk, 
that is, a set that is the intersection of a ball with 3D. 
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Adjoint operator, 17 
Admissible contol, 248 
Area theorem, 215 
Arzelá-Ascoli theorem, 7 

Backus-Gilbert method, 201 
Bang-bang control, 252 
Bilinear form, 16 
Borel transform, 180 

Compact operator, 2 
Conformai center, 235 
Conjugate diagram, 181 
Conjugate indicator diagram, 181 
Convex hull, 178 
Convex set, 178, 245 
Curvature: 

Gaussian, 33 
mean, 33 

Dipole: 
electric, 112 
magnetic, 112 

Dirichlet problem: 
exterior, 76 
interior, 75 

Dirichlet vector field, 160 
Double-layer potential, see Potential 
Dual system, 16 

Eigenelement, 27 
Eigenvalue: 

electric boundary-value problem, 125 
interior Dirichlet, 77 
interior Neumann, 77 
magnetic boundary-value problem, 125 
Maxwell problem, 125 
of an operator, 26 

Electric boundary-value problem: 

exterior, 122 
interior, 122 

Electric dipole, 112 
Electric field equations, 148 
Entire function: 

of exponential type, 177 
order, 175 
type,175 

Envelope method, 188 
Equicontinuity, 7,211 

Far-field pattern, 74, 117 
Fredholm alternative, 22 
Fredholm theorems, 19, 21 
Function spaces: 

9l(dD),62 
9"(ôD),63 
5" °-a(aD), 63 
S'(dD),63 
SiäD),63 
S°'a(dD),63 
§2'a(öD),63 
<&.(G),68 
l/„ 81 
K,84 
S m i n 

911,129 
Χ°·α(ΘΌ), 132 
OC,133 
S, 136 
Ó(á,0,ã),215 
2(a,b),235 

Fundamental solution: 
to Helmholtz equation, 46, 106 
to Maxwell's equations, 113 

Fundamental tensors of differential 
geometry, 32, 33 

Galerkin procedure, 257 
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Gauss1 theorem, 60 
Green's theorem, 68, 117 

Harmonic vector fields, 154 
Holder continuity, 37, 39 
Holmgren's uniqueness theorem, 194 
Hurwitz's theorem, 213 

Impedance: 
acoustic, 67 
boundary-value problem, 97, 146 
electromagnetic, 110 

Indicator diagram, 180 
Indicator function, 177 
Injective operator, 14 
Iterative methods, see Successive 

approximations 

Jones' method, 93 
Jump relation: 

double-layer potential, 50 
single-layer potential, 53, 54 
vector potential, 59, 60 

Kernel, 5, 6, 40 

Lipschitz continuity, 202 
Locally uniformly bounded, 211 

Magnetic boundary-value problem: 
exterior, 122 
interior, 122 

Magnetic dipole, see Dipole 
Magnetic field equations, 148 
Mapping radius, 215 
Maxwell boundary value problem: 

exterior, 121 
interior, 121 

Montel's theorem, 213 
Miiller's theorem, 184 

Neumann problem: 
exterior, 76 
interior, 76 

Neumann series, 23, 28 
Neumann vector field, 157, 163 
Normal family, 213 
Null-field method, 104 
Null space, 9 

Operators: 
K, 61 
K',61 
R,94 
K',95 

L, 132 
L', 132 
M,63 
M',63 
N,63 
Q, 138 
R, 138 
S,62 
T,62 

Optimal control, 248 

Parallel surfaces, 37 
Partially inexact data, 220 
Perfectly conducting body, 109 
Plemelj's theorem, 151 
Polya's theorem, 181 
Potential: 

combined, 91, 103, 141, 144, 147, 148, 149 
double-layer, 47 
modified double-layer, 94 
modified single-layer, 95, 226 
single-layer, 46 
vector, 58 

Power flux, 248 

Quasi-solution, 199 

Radiation condition: 
Silver-Müller, 113 
Sommerfeld, 69, 107 
vector Helmholtz equation, 119 

Range,9 
Reflection principle for Helmholtz equation, 

188 
Regular value, 27 
Relatively compact set, 2 
Rellich's lemma, 77 
Representation theorems: 

Helmholtz equation, 68, 70 
Maxwell's equations, 110, 113 
vector Helmholtz equation, 118, 119 

Resolvent, 27 
Resolvent set, 27 
Resonant region, 220 
Riesz lemma, 3 
Riesz number, 11 
Riesz theorems, 9, 11 

Scattering cross section: 
definition, 208, 238 
variational formula, 210 

Schauder theory, 22 
Selection method, 198 
Silver-Müller radiation condition, see 

Radiation condition 
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Single-layer potential, see Potential 
Sommerfeld radiation condition, see 

Radiation condition 
Sound-hard obstacle, 67 
Sound-soft obstacle, 67 
Spectral radius, 27 
Spectrum, 27 
Stokes' theorem, 61 
Strong convergence, 245 
Successive approximations: 

exterior Dirichlet problem, 153, 226 
exterior Maxwell problem, 158 
exterior Neumann problem, 152, 

153 
operator equations, 29 

Supporting function, 178 
Supporting lines, 179 
Surface divergence, 60 
Surface element, 32 

Surface gradient, 33 
Surjective operator, 14 

Transfinite diameter, 215 

Transmission boundary-value problem, 99 

Univalent function, 214 

Variational formula, see Scattering cross 
section 

Vector potential, see Potential 
Velocity potential, 67 
Wave number, 67, 109 
Weakly closed set, 245 
Weakly compact set, 245 
Weakly continuous function, 246 
Weakly convergent sequence, 245 
Weakly singular kernel, 6, 40 
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