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“This	book	is	a	Rosetta	stone	for	the	mystery	of	human	thought.	Even	more
remarkably,	 it	 is	 a	blueprint	 for	 creating	artificial	 consciousness	 that	 is	 as
persuasive	 and	 emotional	 as	 our	 own.	Kurzweil	 deals	with	 the	 subject	 of
consciousness	 better	 than	 anyone	 from	 Blackmore	 to	 Dennett.	 His
persuasive	 thought	experiment	 is	of	Einstein	quality:	 It	 forces	 recognition
of	the	truth.”

—Martine	Rothblatt,	chairman	and	CEO,	United	Therapeutics;	creator
of	Sirius	XM	Satellite	Radio

	

“Kurzweil’s	 book	 is	 a	 shining	 example	 of	 his	 prodigious	 ability	 to
synthesize	 ideas	 from	 disparate	 domains	 and	 explain	 them	 to	 readers	 in
simple,	 elegant	 language.	 Just	 as	 Chanute’s	Progress	 in	 Flying	Machines
ushered	in	the	era	of	aviation	over	a	century	ago,	this	book	is	the	harbinger
of	the	coming	revolution	in	artificial	intelligence	that	will	fulfill	Kurzweil’s
own	prophecies	about	it.”

—Dileep	George,	AI	 scientist;	 pioneer	 of	 hierarchical	models	 of	 the
neocortex;	cofounder	of	Numenta	and	Vicarious	Systems

	

“Ray	Kurzweil’s	understanding	of	 the	brain	and	artificial	 intelligence	will
dramatically	impact	every	aspect	of	our	lives,	every	industry	on	Earth,	and
how	we	 think	 about	 our	 future.	 If	 you	 care	 about	 any	 of	 these,	 read	 this
book!”

—Peter	 H.	 Diamandis,	 chairman	 and	 CEO,	 X	 PRIZE;	 executive
chairman,	 Singularity	 University;	 author	 of	 the	 New	 York	 Times
bestseller	Abundance:	The	Future	Is	Better	Than	You	Think
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INTRODUCTION

	

The	Brain—is	wider	than	the	Sky—
For—put	them	side	by	side—
The	one	the	other	will	contain
With	ease—and	You—beside—
The	Brain	is	deeper	than	the	sea—
For—hold	them—Blue	to	Blue—
The	one	the	other	will	absorb—
As	Sponges—Buckets—do—
The	Brain	is	just	the	weight	of	God—
For—Heft	them—Pound	for	Pound—
And	they	will	differ—if	they	do—
As	Syllable	from	Sound

—Emily	Dickinson
	

	
As	 the	most	 important	phenomenon	 in	 the	universe,	 intelligence	 is	capable	of
transcending	natural	limitations,	and	of	transforming	the	world	in	its	own	image.
In	human	hands,	our	intelligence	has	enabled	us	to	overcome	the	restrictions	of
our	biological	heritage	and	to	change	ourselves	in	the	process.	We	are	the	only
species	that	does	this.

The	 story	 of	 human	 intelligence	 starts	 with	 a	 universe	 that	 is	 capable	 of
encoding	 information.	 This	 was	 the	 enabling	 factor	 that	 allowed	 evolution	 to
take	place.	How	the	universe	got	to	be	this	way	is	itself	an	interesting	story.	The
standard	model	of	physics	has	dozens	of	constants	that	need	to	be	precisely	what
they	are,	or	atoms	would	not	have	been	possible,	and	there	would	have	been	no
stars,	no	planets,	no	brains,	and	no	books	on	brains.	That	the	laws	of	physics	are
so	 precisely	 tuned	 to	 have	 allowed	 the	 evolution	 of	 information	 appears	 to	 be
incredibly	 unlikely.	 Yet	 by	 the	 anthropic	 principle,	 we	 would	 not	 be	 talking



about	it	if	it	were	not	the	case.	Where	some	people	see	a	divine	hand,	others	see
a	 multiverse	 spawning	 an	 evolution	 of	 universes	 with	 the	 boring	 (non-
information-bearing)	ones	dying	out.	But	regardless	of	how	our	universe	got	to
be	the	way	it	is,	we	can	start	our	story	with	a	world	based	on	information.

The	story	of	evolution	unfolds	with	increasing	levels	of	abstraction.	Atoms
—especially	 carbon	 atoms,	 which	 can	 create	 rich	 information	 structures	 by
linking	in	four	different	directions—formed	increasingly	complex	molecules.	As
a	result,	physics	gave	rise	to	chemistry.

A	billion	years	later,	a	complex	molecule	called	DNA	evolved,	which	could
precisely	 encode	 lengthy	 strings	 of	 information	 and	 generate	 organisms
described	by	these	“programs.”	As	a	result,	chemistry	gave	rise	to	biology.

At	 an	 increasingly	 rapid	 rate,	 organisms	 evolved	 communication	 and
decision	 networks	 called	 nervous	 systems,	 which	 could	 coordinate	 the
increasingly	 complex	 parts	 of	 their	 bodies	 as	 well	 as	 the	 behaviors	 that
facilitated	 their	 survival.	 The	 neurons	making	 up	 nervous	 systems	 aggregated
into	 brains	 capable	 of	 increasingly	 intelligent	 behaviors.	 In	 this	 way,	 biology
gave	 rise	 to	 neurology,	 as	 brains	 were	 now	 the	 cutting	 edge	 of	 storing	 and
manipulating	 information.	 Thus	we	went	 from	 atoms	 to	molecules	 to	DNA	 to
brains.	The	next	step	was	uniquely	human.

The	mammalian	brain	has	a	distinct	aptitude	not	found	in	any	other	class	of
animal.	We	 are	 capable	 of	 hierarchical	 thinking,	 of	 understanding	 a	 structure
composed	 of	 diverse	 elements	 arranged	 in	 a	 pattern,	 representing	 that
arrangement	with	a	symbol,	and	 then	using	 that	symbol	as	an	element	 in	a	yet
more	 elaborate	 configuration.	 This	 capability	 takes	 place	 in	 a	 brain	 structure
called	the	neocortex,	which	in	humans	has	achieved	a	threshold	of	sophistication
and	 capacity	 such	 that	 we	 are	 able	 to	 call	 these	 patterns	 ideas.	 Through	 an
unending	recursive	process	we	are	capable	of	building	ideas	that	are	ever	more
complex.	We	 call	 this	 vast	 array	 of	 recursively	 linked	 ideas	 knowledge.	 Only
Homo	sapiens	 have	a	knowledge	base	 that	 itself	 evolves,	grows	exponentially,
and	is	passed	down	from	one	generation	to	another.

Our	brains	gave	rise	to	yet	another	level	of	abstraction,	in	that	we	have	used
the	 intelligence	 of	 our	 brains	 plus	 one	 other	 enabling	 factor,	 an	 opposable
appendage—the	 thumb—to	 manipulate	 the	 environment	 to	 build	 tools.	 These
tools	represented	a	new	form	of	evolution,	as	neurology	gave	rise	to	technology.
It	 is	only	because	of	our	 tools	 that	our	knowledge	base	has	been	able	 to	grow
without	limit.

Our	 first	 invention	 was	 the	 story:	 spoken	 language	 that	 enabled	 us	 to
represent	ideas	with	distinct	utterances.	With	the	subsequent	invention	of	written
language	 we	 developed	 distinct	 shapes	 to	 symbolize	 our	 ideas.	 Libraries	 of



written	language	vastly	extended	the	ability	of	our	unaided	brains	to	retain	and
extend	our	knowledge	base	of	recursively	structured	ideas.

There	 is	 some	 debate	 as	 to	 whether	 other	 species,	 such	 as	 chimpanzees,
have	the	ability	to	express	hierarchical	ideas	in	language.	Chimps	are	capable	of
learning	 a	 limited	 set	 of	 sign	 language	 symbols,	 which	 they	 can	 use	 to
communicate	 with	 human	 trainers.	 It	 is	 clear,	 however,	 that	 there	 are	 distinct
limits	 to	 the	 complexity	 of	 the	 knowledge	 structures	 with	 which	 chimps	 are
capable	of	dealing.	The	 sentences	 that	 they	 can	 express	 are	 limited	 to	 specific
simple	noun-verb	sequences	and	are	not	capable	of	 the	 indefinite	expansion	of
complexity	 characteristic	 of	 humans.	 For	 an	 entertaining	 example	 of	 the
complexity	 of	 human-generated	 language,	 just	 read	 one	 of	 the	 spectacular
multipage-length	sentences	in	a	Gabriel	García	Márquez	story	or	novel—his	six-
page	story	“The	Last	Voyage	of	the	Ghost”	is	a	single	sentence	and	works	quite
well	in	both	Spanish	and	the	English	translation.1

The	 primary	 idea	 in	my	 three	 previous	 books	 on	 technology	 (The	Age	of
Intelligent	Machines,	 written	 in	 the	 1980s	 and	 published	 in	 1989;	The	 Age	 of
Spiritual	Machines,	written	in	the	mid-	to	late	1990s	and	published	in	1999;	and
The	Singularity	Is	Near,	written	in	the	early	2000s	and	published	in	2005)	is	that
an	evolutionary	process	inherently	accelerates	(as	a	result	of	its	increasing	levels
of	 abstraction)	 and	 that	 its	 products	 grow	 exponentially	 in	 complexity	 and
capability.	I	call	this	phenomenon	the	law	of	accelerating	returns	(LOAR),	and	it
pertains	 to	 both	 biological	 and	 technological	 evolution.	 The	 most	 dramatic
example	of	 the	LOAR	is	 the	 remarkably	predictable	exponential	growth	 in	 the
capacity	 and	 price/performance	 of	 information	 technologies.	 The	 evolutionary
process	of	technology	led	invariably	to	the	computer,	which	has	in	turn	enabled	a
vast	expansion	of	our	knowledge	base,	permitting	extensive	links	from	one	area
of	knowledge	 to	another.	The	Web	 is	 itself	 a	powerful	 and	apt	 example	of	 the
ability	of	 a	hierarchical	 system	 to	 encompass	 a	vast	 array	of	knowledge	while
preserving	 its	 inherent	 structure.	 The	 world	 itself	 is	 inherently	 hierarchical—
trees	contain	branches;	branches	contain	leaves;	leaves	contain	veins.	Buildings
contain	floors;	floors	contain	rooms;	rooms	contain	doorways,	windows,	walls,
and	floors.

We	have	also	developed	 tools	 that	 are	now	enabling	us	 to	understand	our
own	 biology	 in	 precise	 information	 terms.	We	 are	 rapidly	 reverse-engineering
the	information	processes	that	underlie	biology,	including	that	of	our	brains.	We
now	 possess	 the	 object	 code	 of	 life	 in	 the	 form	 of	 the	 human	 genome,	 an
achievement	 that	was	 itself	 an	 outstanding	 example	 of	 exponential	 growth,	 in
that	 the	 amount	 of	 genetic	 data	 the	 world	 has	 sequenced	 has	 approximately



doubled	 every	 year	 for	 the	 past	 twenty	 years.2	 We	 now	 have	 the	 ability	 to
simulate	 on	 computers	 how	 sequences	 of	 base	 pairs	 give	 rise	 to	 sequences	 of
amino	 acids	 that	 fold	 up	 into	 three-dimensional	 proteins,	 from	 which	 all	 of
biology	 is	 constructed.	The	 complexity	 of	 proteins	 for	which	we	 can	 simulate
protein	folding	has	been	steadily	increasing	as	computational	resources	continue
to	 grow	 exponentially.3	 We	 can	 also	 simulate	 how	 proteins	 interact	 with	 one
another	 in	 an	 intricate	 three-dimensional	 dance	 of	 atomic	 forces.	Our	 growing
understanding	 of	 biology	 is	 one	 important	 facet	 of	 discovering	 the	 intelligent
secrets	 that	 evolution	 has	 bestowed	 on	 us	 and	 then	 using	 these	 biologically
inspired	paradigms	to	create	ever	more	intelligent	technology.

There	 is	 now	 a	 grand	 project	 under	 way	 involving	 many	 thousands	 of
scientists	and	engineers	working	to	understand	the	best	example	we	have	of	an
intelligent	process:	 the	human	brain.	It	 is	arguably	the	most	 important	effort	 in
the	history	of	the	human-machine	civilization.	In	The	Singularity	Is	Near	I	made
the	 case	 that	 one	 corollary	 of	 the	 law	 of	 accelerating	 returns	 is	 that	 other
intelligent	 species	 are	 likely	 not	 to	 exist.	 To	 summarize	 the	 argument,	 if	 they
existed	we	would	have	noticed	them,	given	the	relatively	brief	time	that	elapses
between	a	civilization’s	possessing	crude	technology	(consider	 that	 in	1850	the
fastest	 way	 to	 send	 nationwide	 information	 was	 the	 Pony	 Express)	 to	 its
possessing	technology	that	can	transcend	its	own	planet.4	From	this	perspective,
reverse-engineering	 the	 human	 brain	 may	 be	 regarded	 as	 the	 most	 important
project	in	the	universe.

The	 goal	 of	 the	 project	 is	 to	 understand	 precisely	 how	 the	 human	 brain
works,	and	then	to	use	these	revealed	methods	to	better	understand	ourselves,	to
fix	 the	brain	when	needed,	and—most	 relevant	 to	 the	 subject	of	 this	book—to
create	 even	more	 intelligent	machines.	Keep	 in	mind	 that	greatly	 amplifying	a
natural	 phenomenon	 is	 precisely	what	 engineering	 is	 capable	 of	 doing.	 As	 an
example,	consider	the	rather	subtle	phenomenon	of	Bernoulli’s	principle,	which
states	 that	 there	 is	 slightly	 less	air	pressure	over	a	moving	curved	surface	 than
over	a	moving	flat	one.	The	mathematics	of	how	Bernoulli’s	principle	produces
wing	lift	is	still	not	yet	fully	settled	among	scientists,	yet	engineering	has	taken
this	delicate	insight,	focused	its	powers,	and	created	the	entire	world	of	aviation.

In	this	book	I	present	a	thesis	I	call	the	pattern	recognition	theory	of	mind
(PRTM),	 which,	 I	 argue,	 describes	 the	 basic	 algorithm	 of	 the	 neocortex	 (the
region	of	the	brain	responsible	for	perception,	memory,	and	critical	thinking).	In
the	chapters	ahead	I	describe	how	recent	neuroscience	 research,	as	well	as	our
own	thought	experiments,	leads	to	the	inescapable	conclusion	that	this	method	is
used	consistently	across	the	neocortex.	The	implication	of	the	PRTM	combined



with	 the	 LOAR	 is	 that	 we	 will	 be	 able	 to	 engineer	 these	 principles	 to	 vastly
extend	the	powers	of	our	own	intelligence.

Indeed	this	process	is	already	well	under	way.	There	are	hundreds	of	tasks
and	activities	formerly	the	sole	province	of	human	intelligence	that	can	now	be
conducted	by	 computers,	 usually	with	greater	 precision	 and	 at	 a	 vastly	greater
scale.	 Every	 time	 you	 send	 an	 e-mail	 or	 connect	 a	 cell	 phone	 call,	 intelligent
algorithms	optimally	route	the	information.	Obtain	an	electrocardiogram,	and	it
comes	back	with	a	 computer	diagnosis	 that	 rivals	 that	of	doctors.	The	 same	 is
true	for	blood	cell	images.	Intelligent	algorithms	automatically	detect	credit	card
fraud,	 fly	 and	 land	 airplanes,	 guide	 intelligent	 weapons	 systems,	 help	 design
products	 with	 intelligent	 computer-aided	 design,	 keep	 track	 of	 just-in-time
inventory	levels,	assemble	products	in	robotic	factories,	and	play	games	such	as
chess	and	even	the	subtle	game	of	Go	at	master	levels.

Millions	 of	 people	 witnessed	 the	 IBM	 computer	 named	Watson	 play	 the
natural-language	game	of	Jeopardy!	and	obtain	a	higher	score	than	the	best	two
human	 players	 in	 the	 world	 combined.	 It	 should	 be	 noted	 that	 not	 only	 did
Watson	read	and	“understand”	the	subtle	language	in	the	Jeopardy!	query	(which
includes	such	phenomena	as	puns	and	metaphors),	but	it	obtained	the	knowledge
it	needed	to	come	up	with	a	response	from	understanding	hundreds	of	millions
of	 pages	 of	 natural-language	 documents	 including	 Wikipedia	 and	 other
encyclopedias	 on	 its	 own.	 It	 needed	 to	 master	 virtually	 every	 area	 of	 human
intellectual	endeavor,	including	history,	science,	literature,	the	arts,	culture,	and
more.	 IBM	 is	 now	 working	 with	 Nuance	 Speech	 Technologies	 (formerly
Kurzweil	Computer	 Products,	my	 first	 company)	 on	 a	 new	version	 of	Watson
that	 will	 read	 medical	 literature	 (essentially	 all	 medical	 journals	 and	 leading
medical	blogs)	to	become	a	master	diagnostician	and	medical	consultant,	using
Nuance’s	 clinical	 language–understanding	 technologies.	 Some	 observers	 have
argued	 that	Watson	 does	 not	 really	 “understand”	 the	 Jeopardy!	 queries	 or	 the
encyclopedias	 it	has	read	because	it	 is	 just	engaging	in	“statistical	analysis.”	A
key	 point	 I	 will	 describe	 here	 is	 that	 the	 mathematical	 techniques	 that	 have
evolved	in	 the	field	of	artificial	 intelligence	(such	as	 those	used	in	Watson	and
Siri,	 the	 iPhone	 assistant)	 are	mathematically	 very	 similar	 to	 the	methods	 that
biology	 evolved	 in	 the	 form	 of	 the	 neocortex.	 If	 understanding	 language	 and
other	 phenomena	 through	 statistical	 analysis	 does	 not	 count	 as	 true
understanding,	then	humans	have	no	understanding	either.

Watson’s	ability	 to	 intelligently	master	 the	knowledge	 in	natural-language
documents	is	coming	to	a	search	engine	near	you,	and	soon.	People	are	already
talking	to	their	phones	in	natural	language	(via	Siri,	for	example,	which	was	also
contributed	 to	 by	 Nuance).	 These	 natural-language	 assistants	 will	 rapidly



become	more	intelligent	as	they	utilize	more	of	the	Watson-like	methods	and	as
Watson	itself	continues	to	improve.

The	Google	self-driving	cars	have	logged	200,000	miles	in	the	busy	cities
and	 towns	of	California	 (a	 figure	 that	will	undoubtedly	be	much	higher	by	 the
time	this	book	hits	the	real	and	virtual	shelves).	There	are	many	other	examples
of	artificial	intelligence	in	today’s	world,	and	a	great	deal	more	on	the	horizon.

As	further	examples	of	the	LOAR,	the	spatial	resolution	of	brain	scanning
and	 the	amount	of	data	we	are	gathering	on	 the	brain	are	doubling	every	year.
We	are	also	demonstrating	 that	we	can	 turn	 this	data	 into	working	models	and
simulations	 of	 brain	 regions.	 We	 have	 succeeded	 in	 reverse-engineering	 key
functions	of	the	auditory	cortex,	where	we	process	information	about	sound;	the
visual	cortex,	where	we	process	information	from	our	sight;	and	the	cerebellum,
where	we	do	a	portion	of	our	skill	formation	(such	as	catching	a	fly	ball).

The	 cutting	 edge	 of	 the	 project	 to	 understand,	 model,	 and	 simulate	 the
human	 brain	 is	 to	 reverse-engineer	 the	 cerebral	 neocortex,	 where	 we	 do	 our
recursive	 hierarchical	 thinking.	 The	 cerebral	 cortex,	 which	 accounts	 for	 80
percent	 of	 the	 human	 brain,	 is	 composed	 of	 a	 highly	 repetitive	 structure,
allowing	humans	to	create	arbitrarily	complex	structures	of	ideas.

In	 the	 pattern	 recognition	 theory	 of	mind,	 I	 describe	 a	model	 of	 how	 the
human	 brain	 achieves	 this	 critical	 capability	 using	 a	 very	 clever	 structure
designed	 by	 biological	 evolution.	 There	 are	 details	 in	 this	 cortical	mechanism
that	we	do	not	yet	fully	understand,	but	we	know	enough	about	the	functions	it
needs	to	perform	that	we	can	nonetheless	design	algorithms	that	accomplish	the
same	 purpose.	 By	 beginning	 to	 understand	 the	 neocortex,	 we	 are	 now	 in	 a
position	 to	 greatly	 amplify	 its	 powers,	 just	 as	 the	world	 of	 aviation	has	 vastly
amplified	 the	 powers	 of	 Bernoulli’s	 principle.	 The	 operating	 principle	 of	 the
neocortex	 is	 arguably	 the	most	 important	 idea	 in	 the	world,	 as	 it	 is	 capable	of
representing	all	knowledge	and	 skills	 as	well	 as	 creating	new	knowledge.	 It	 is
the	neocortex,	 after	 all,	 that	 has	 been	 responsible	 for	 every	novel,	 every	 song,
every	painting,	every	scientific	discovery,	and	the	multifarious	other	products	of
human	thought.

There	 is	 a	 great	 need	 in	 the	 field	 of	 neuroscience	 for	 a	 theory	 that	 ties
together	 the	 extremely	 disparate	 and	 extensive	 observations	 that	 are	 being
reported	 on	 a	 daily	 basis.	 A	 unified	 theory	 is	 a	 crucial	 requirement	 in	 every
major	 area	of	 science.	 In	 chapter	1	 I’ll	 describe	how	 two	daydreamers	 unified
biology	 and	 physics,	 fields	 that	 had	 previously	 seemed	 hopelessly	 disordered
and	varied,	and	then	address	how	such	a	theory	can	be	applied	to	the	landscape
of	the	brain.

Today	 we	 often	 encounter	 great	 celebrations	 of	 the	 complexity	 of	 the



human	 brain.	 Google	 returns	 some	 30	 million	 links	 for	 a	 search	 request	 for
quotations	 on	 that	 topic.	 (It	 is	 impossible	 to	 translate	 this	 into	 the	 number	 of
actual	quotations	it	is	returning,	however,	as	some	of	the	Web	sites	linked	have
multiple	quotes,	and	some	have	none.)	James	D.	Watson	himself	wrote	in	1992
that	“the	brain	is	the	last	and	grandest	biological	frontier,	the	most	complex	thing
we	have	yet	discovered	in	our	universe.”	He	goes	on	to	explain	why	he	believes
that	 “it	 contains	 hundreds	 of	 billions	 of	 cells	 interlinked	 through	 trillions	 of
connections.	The	brain	boggles	the	mind.”5

I	 agree	 with	 Watson’s	 sentiment	 about	 the	 brain’s	 being	 the	 grandest
biological	frontier,	but	the	fact	that	it	contains	many	billions	of	cells	and	trillions
of	connections	does	not	necessarily	make	its	primary	method	complex	if	we	can
identify	 readily	 understandable	 (and	 recreatable)	 patterns	 in	 those	 cells	 and
connections,	especially	massively	redundant	ones.

Let’s	 think	about	what	 it	means	 to	be	complex.	We	might	 ask,	 is	 a	 forest
complex?	The	answer	depends	on	the	perspective	you	choose	to	take.	You	could
note	 that	 there	 are	many	 thousands	 of	 trees	 in	 the	 forest	 and	 that	 each	 one	 is
different.	You	could	then	go	on	to	note	that	each	tree	has	thousands	of	branches
and	that	each	branch	is	completely	different.	Then	you	could	proceed	to	describe
the	 convoluted	 vagaries	 of	 a	 single	 branch.	Your	 conclusion	might	 be	 that	 the
forest	has	a	complexity	beyond	our	wildest	imagination.

But	 such	an	approach	would	 literally	be	a	 failure	 to	 see	 the	 forest	 for	 the
trees.	 Certainly	 there	 is	 a	 great	 deal	 of	 fractal	 variation	 among	 trees	 and
branches,	 but	 to	 correctly	 understand	 the	 principles	 of	 a	 forest	 you	would	 do
better	 to	start	by	identifying	the	distinct	patterns	of	redundancy	with	stochastic
(that	 is,	 random)	variation	 that	are	found	there.	 It	would	be	fair	 to	say	 that	 the
concept	of	a	forest	is	simpler	than	the	concept	of	a	tree.

Thus	 it	 is	 with	 the	 brain,	 which	 has	 a	 similar	 enormous	 redundancy,
especially	in	the	neocortex.	As	I	will	describe	in	this	book,	it	would	be	fair	to	say
that	there	is	more	complexity	in	a	single	neuron	than	in	the	overall	structure	of
the	neocortex.

My	 goal	 in	 this	 book	 is	 definitely	 not	 to	 add	 another	 quotation	 to	 the
millions	 that	 already	 exist	 attesting	 to	 how	 complex	 the	 brain	 is,	 but	 rather	 to
impress	you	with	 the	power	of	 its	 simplicity.	 I	will	do	so	by	describing	how	a
basic	 ingenious	 mechanism	 for	 recognizing,	 remembering,	 and	 predicting	 a
pattern,	repeated	in	the	neocortex	hundreds	of	millions	of	times,	accounts	for	the
great	 diversity	 of	 our	 thinking.	 Just	 as	 an	 astonishing	 diversity	 of	 organisms
arises	from	the	different	combinations	of	the	values	of	the	genetic	code	found	in
nuclear	 and	 mitochondrial	 DNA,	 so	 too	 does	 an	 astounding	 array	 of	 ideas,
thoughts,	and	skills	form	based	on	the	values	of	the	patterns	(of	connections	and



synaptic	strengths)	found	in	and	between	our	neocortical	pattern	recognizers.	As
MIT	neuroscientist	Sebastian	Seung	says,	“Identity	lies	not	in	our	genes,	but	in
the	connections	between	our	brain	cells.”6

We	 need	 to	 distinguish	 between	 true	 complexity	 of	 design	 and	 apparent
complexity.	Consider	 the	 famous	Mandelbrot	 set,	 the	 image	of	which	has	 long
been	a	symbol	of	complexity.	To	appreciate	its	apparent	complication,	it	is	useful
to	zoom	in	on	 its	 image	 (which	you	can	access	via	 the	 links	 in	 this	endnote).7
There	is	endless	intricacy	within	intricacy,	and	they	are	always	different.	Yet	the
design—the	 formula—for	 the	 Mandelbrot	 set	 couldn’t	 be	 simpler.	 It	 is	 six
characters	long:	Z	=	Z2	+	C,	in	which	Z	is	a	“complex”	number	(meaning	a	pair
of	 numbers)	 and	C	 is	 a	 constant.	 It	 is	 not	 necessary	 to	 fully	 understand	 the
Mandelbrot	 function	 to	see	 that	 it	 is	simple.	This	 formula	 is	applied	 iteratively
and	 at	 every	 level	 of	 a	 hierarchy.	 The	 same	 is	 true	 of	 the	 brain.	 Its	 repeating
structure	is	not	as	simple	as	that	of	the	six-character	formula	of	the	Mandelbrot
set,	but	 it	 is	not	nearly	as	complex	as	 the	millions	of	quotations	on	 the	brain’s
complexity	would	suggest.	This	neocortical	design	is	repeated	over	and	over	at
every	 level	 of	 the	 conceptual	 hierarchy	 represented	 by	 the	 neocortex.	Einstein
articulated	my	goals	in	this	book	well	when	he	said	that	“any	intelligent	fool	can
make	things	bigger	and	more	complex…but	it	 takes…a	lot	of	courage	to	move
in	the	opposite	direction.”



One	view	of	the	display	of	the	Mandelbrot	set,	a	simple	formula	that	is
iteratively	applied.	As	one	zooms	 in	on	 the	display,	 the	 images	constantly
change	in	apparently	complex	ways.
So	far	 I	have	been	 talking	about	 the	brain.	But	what	about	 the	mind?	For

example,	 how	 does	 a	 problem-solving	 neocortex	 attain	 consciousness?	 And
while	we’re	on	the	subject,	 just	how	many	conscious	minds	do	we	have	in	our
brain?	There	is	evidence	that	suggests	there	may	be	more	than	one.

Another	pertinent	question	about	the	mind	is,	what	is	free	will,	and	do	we
have	 it?	There	are	experiments	 that	appear	 to	show	that	we	start	 implementing
our	 decisions	 before	 we	 are	 even	 aware	 that	 we	 have	 made	 them.	 Does	 that
imply	that	free	will	is	an	illusion?

Finally,	 what	 attributes	 of	 our	 brain	 are	 responsible	 for	 forming	 our
identity?	Am	I	the	same	person	I	was	six	months	ago?	Clearly	I	am	not	exactly
the	same	as	I	was	then,	but	do	I	have	the	same	identity?

We’ll	 review	 what	 the	 pattern	 recognition	 theory	 of	 mind	 implies	 about
these	age-old	questions.



CHAPTER	1

	



THOUGHT	EXPERIMENTS
ON	THE	WORLD

	

Darwin’s	 theory	 of	 natural	 selection	 came	 very	 late	 in	 the	 history	 of
thought.

Was	 it	 delayed	 because	 it	 opposed	 revealed	 truth,	 because	 it	was	 an
entirely	new	subject	in	the	history	of	science,	because	it	was	characteristic
only	 of	 living	 things,	 or	 because	 it	 dealt	 with	 purpose	 and	 final	 causes
without	 postulating	 an	 act	 of	 creation?	 I	 think	 not.	 Darwin	 simply
discovered	the	role	of	selection,	a	kind	of	causality	very	different	from	the
push-pull	mechanisms	of	science	up	to	 that	 time.	The	origin	of	a	fantastic
variety	 of	 living	 things	 could	 be	 explained	 by	 the	 contribution	 of	 which
novel	features,	possibly	of	random	provenance,	made	it	 to	survival.	There
was	 little	 or	 nothing	 in	 physical	 or	 biological	 science	 that	 foreshadowed
selection	as	a	causal	principle.

—B.	F.	Skinner
	

Nothing	is	at	last	sacred	but	the	integrity	of	your	own	mind.
—Ralph	Waldo	Emerson

	

	



A	Metaphor	from	Geology

In	 the	 early	 nineteenth	 century	 geologists	 pondered	 a	 fundamental	 question.
Great	caverns	and	canyons	such	as	 the	Grand	Canyon	in	 the	United	States	and
Vikos	Gorge	in	Greece	(reportedly	the	deepest	canyon	in	the	world)	existed	all
across	the	globe.	How	did	these	majestic	formations	get	there?

Invariably	 there	was	a	stream	of	water	 that	appeared	 to	 take	advantage	of
the	opportunity	to	course	through	these	natural	structures,	but	prior	to	the	mid-
nineteenth	 century,	 it	 had	 seemed	 absurd	 that	 these	 gentle	 flows	 could	 be	 the
creator	 of	 such	 huge	 valleys	 and	 cliffs.	British	 geologist	Charles	Lyell	 (1797–
1875),	 however,	 proposed	 that	 it	 was	 indeed	 the	movement	 of	water	 that	 had
carved	 out	 these	 major	 geological	 modifications	 over	 great	 periods	 of	 time,
essentially	 one	 grain	 of	 rock	 at	 a	 time.	 This	 proposal	 was	 initially	 met	 with
ridicule,	but	within	two	decades	Lyell’s	thesis	achieved	mainstream	acceptance.

One	 person	 who	 was	 carefully	 watching	 the	 response	 of	 the	 scientific
community	 to	 Lyell’s	 radical	 thesis	 was	 English	 naturalist	 Charles	 Darwin
(1809–1882).	 Consider	 the	 situation	 in	 biology	 around	 1850.	 The	 field	 was
endlessly	complex,	faced	with	countless	species	of	animals	and	plants,	any	one
of	 which	 presented	 great	 intricacy.	 If	 anything,	 most	 scientists	 resisted	 any
attempt	to	provide	a	unifying	theory	of	nature’s	dazzling	variation.	This	diversity
served	 as	 a	 testament	 to	 the	 glory	 of	 God’s	 creation,	 not	 to	 mention	 to	 the
intelligence	of	the	scientists	who	were	capable	of	mastering	it.

Darwin	approached	the	problem	of	devising	a	general	theory	of	species	by
making	an	analogy	with	Lyell’s	thesis	to	account	for	the	gradual	changes	in	the
features	 of	 species	 over	many	 generations.	 He	 combined	 this	 insight	 with	 his
own	thought	experiments	and	observations	in	his	famous	Voyage	of	the	Beagle.
Darwin	argued	that	in	each	generation	the	individuals	that	could	best	survive	in
their	ecological	niche	would	be	the	individuals	to	create	the	next	generation.

On	November	22,	1859,	Darwin’s	book	On	the	Origin	of	Species	went	on
sale,	and	in	it	he	made	clear	his	debt	to	Lyell:

I	am	well	aware	that	this	doctrine	of	natural	selection,	exemplified	in
the	above	imaginary	instances,	is	open	to	the	same	objections	which	were	at
first	urged	against	Sir	Charles	Lyell’s	noble	views	on	“the	modern	changes
of	 the	earth,	as	 illustrative	of	geology”;	but	we	now	very	seldom	hear	 the



action,	 for	 instance,	 of	 the	 coast-waves	 called	 a	 trifling	 and	 insignificant
cause,	 when	 applied	 to	 the	 excavation	 of	 gigantic	 valleys	 or	 to	 the
formation	of	the	longest	lines	of	inland	cliffs.	Natural	selection	can	act	only
by	 the	 preservation	 and	 accumulation	 of	 infinitesimally	 small	 inherited
modifications,	 each	 profitable	 to	 the	 preserved	 being;	 and	 as	 modern
geology	has	almost	banished	such	views	as	the	excavation	of	a	great	valley
by	a	single	diluvial	wave,	so	will	natural	selection,	if	it	be	a	true	principle,
banish	the	belief	of	the	continued	creation	of	new	organic	beings,	or	of	any
great	and	sudden	modification	in	their	structure.1

Charles	 Darwin,	 author	 of	 On	 the	 Origin	 of	 Species,	 which
established	the	idea	of	biological	evolution.

	
There	are	always	multiple	reasons	why	big	new	ideas	are	resisted,	and	it	is

not	hard	 to	 identify	 them	 in	Darwin’s	 case.	That	we	were	descended	not	 from
God	 but	 from	 monkeys,	 and	 before	 that,	 worms,	 did	 not	 sit	 well	 with	 many
commentators.	 The	 implication	 that	 our	 pet	 dog	 was	 our	 cousin,	 as	 was	 the
caterpillar,	not	to	mention	the	plant	it	walked	on	(a	millionth	or	billionth	cousin,
perhaps,	but	still	related),	seemed	a	blasphemy	to	many.

But	 the	 idea	quickly	 caught	on	because	 it	 brought	 coherence	 to	what	had
previously	been	a	plethora	of	apparently	unrelated	observations.	By	1872,	with
the	publication	of	 the	sixth	edition	of	On	the	Origin	of	Species,	Darwin	 added
this	 passage:	 “As	 a	 record	 of	 a	 former	 state	 of	 things,	 I	 have	 retained	 in	 the
foregoing	paragraphs…several	sentences	which	imply	that	naturalists	believe	in
the	separate	creation	of	each	species;	and	I	have	been	much	censured	for	having



thus	expressed	myself.	But	undoubtedly	this	was	the	general	belief	when	the	first
edition	 of	 the	 present	work	 appeared….	Now	 things	 are	wholly	 changed,	 and
almost	every	naturalist	admits	the	great	principle	of	evolution.”2

Over	 the	 next	 century	Darwin’s	 unifying	 idea	 deepened.	 In	 1869,	 only	 a
decade	 after	 the	 original	 publication	 of	 On	 the	 Origin	 of	 Species,	 Swiss
physician	 Friedrich	 Miescher	 (1844–1895)	 discovered	 a	 substance	 he	 called
“nuclein”	 in	 the	 cell	 nucleus,	which	 turned	 out	 to	 be	DNA.3	 In	 1927	Russian
biologist	 Nikolai	 Koltsov	 (1872–1940)	 described	 what	 he	 called	 a	 “giant
hereditary	molecule,”	which	he	said	was	composed	of	“two	mirror	strands	 that
would	replicate	in	a	semi-conservative	fashion	using	each	strand	as	a	template.”
His	finding	was	also	condemned	by	many.	The	communists	considered	it	 to	be
fascist	propaganda,	and	his	sudden,	unexpected	death	has	been	attributed	to	the
secret	police	of	the	Soviet	Union.4	In	1953,	nearly	a	century	after	the	publication
of	Darwin’s	seminal	book,	American	biologist	James	D.	Watson	(born	in	1928)
and	 English	 biologist	 Francis	 Crick	 (1916–2004)	 provided	 the	 first	 accurate
characterization	of	the	structure	of	DNA,	describing	it	as	a	double	helix	of	two
long	twisting	molecules.5	It	is	worth	pointing	out	that	their	finding	was	based	on
what	 is	now	known	as	 “photo	51,”	 taken	by	 their	 colleague	Rosalind	Franklin
using	X-ray	crystallography,	which	was	the	first	representation	that	showed	the
double	helix.	Given	the	insights	derived	from	Franklin’s	image,	there	have	been
suggestions	that	she	should	have	shared	in	Watson	and	Crick’s	Nobel	Prize.6



Rosalind	 Franklin	 took	 the	 critical	 picture	 of	 DNA	 (using	 X-ray
crystallography)	 that	enabled	Watson	and	Crick	 to	accurately	describe	 the
structure	of	DNA	for	the	first	time.
With	the	description	of	a	molecule	that	could	code	the	program	of	biology,

a	unifying	theory	of	biology	was	now	firmly	in	place.	It	provided	a	simple	and
elegant	foundation	to	all	of	life.	Depending	only	on	the	values	of	the	base	pairs
that	 make	 up	 the	 DNA	 strands	 in	 the	 nucleus	 (and	 to	 a	 lesser	 degree	 the
mitochondria),	 an	 organism	 would	 mature	 into	 a	 blade	 of	 grass	 or	 a	 human
being.	This	 insight	 did	 not	 eliminate	 the	 delightful	 diversity	 of	 nature,	 but	we
now	understand	 that	 the	extraordinary	diversity	of	nature	 stems	 from	 the	great
assortment	of	structures	that	can	be	coded	on	this	universal	molecule.



Riding	on	a	Light	Beam

At	 the	 beginning	 of	 the	 twentieth	 century	 the	 world	 of	 physics	 was	 upended
through	 another	 series	 of	 thought	 experiments.	 In	 1879	 a	 boy	 was	 born	 to	 a
German	engineer	and	a	housewife.	He	didn’t	start	 to	talk	until	 the	age	of	 three
and	was	reported	to	have	had	problems	in	school	at	the	age	of	nine.	At	sixteen	he
was	daydreaming	about	riding	on	a	moonbeam.

This	 young	 boy	 was	 aware	 of	 English	 mathematician	 Thomas	 Young’s
(1773–1829)	 experiment	 in	 1803	 that	 established	 that	 light	 is	 composed	 of
waves.	 The	 conclusion	 at	 that	 time	 was	 that	 light	 waves	 must	 be	 traveling
through	some	sort	of	medium;	after	all,	ocean	waves	traveled	through	water	and
sound	 waves	 traveled	 through	 air	 and	 other	 materials.	 Scientists	 called	 the
medium	through	which	light	waves	travel	the	“ether.”	The	boy	was	also	aware	of
the	1887	experiment	by	American	scientists	Albert	Michelson	(1852–1931)	and
Edward	 Morley	 (1838–1923)	 that	 attempted	 to	 confirm	 the	 existence	 of	 the
ether.	That	experiment	was	based	on	 the	analogy	of	 traveling	 in	a	rowboat	up-
and	downstream	in	a	river.	If	you	are	paddling	at	a	fixed	speed,	then	your	speed
as	measured	from	the	shore	will	be	faster	if	you	are	paddling	with	the	stream	as
opposed	 to	 going	 against	 it.	Michelson	 and	Morley	 assumed	 that	 light	 would
travel	through	the	ether	at	a	constant	speed	(that	is,	at	the	speed	of	light).	They
reasoned	that	the	speed	of	sunlight	when	Earth	is	traveling	toward	the	sun	in	its
orbit	 (as	measured	 from	our	vantage	point	on	Earth)	versus	 its	 apparent	 speed
when	Earth	is	traveling	away	from	the	sun	must	be	different	(by	twice	the	speed
of	Earth).	Proving	that	would	confirm	the	existence	of	the	ether.	However,	what
they	 discovered	was	 that	 there	was	 no	 difference	 in	 the	 speed	 of	 the	 sunlight
passing	Earth	regardless	of	where	Earth	was	in	its	orbit.	Their	findings	disproved
the	idea	of	the	“ether,”	but	what	was	really	going	on?	This	remained	a	mystery
for	almost	two	decades.

As	 this	 German	 teenager	 imagined	 riding	 alongside	 a	 light	 wave,	 he
reasoned	that	he	should	be	seeing	the	light	waves	frozen,	in	the	same	way	that	a
train	would	appear	not	to	be	moving	if	you	rode	alongside	it	at	the	same	speed	as
the	train.	Yet	he	realized	that	this	was	impossible,	because	the	speed	of	light	is
supposed	 to	 be	 constant	 regardless	 of	 your	 own	 movement.	 So	 he	 imagined
instead	riding	alongside	the	light	beam	but	at	a	somewhat	slower	speed.	What	if
he	traveled	at	90	percent	of	the	speed	of	light?	If	light	beams	are	like	trains,	he
reasoned,	then	he	should	see	the	light	beam	traveling	ahead	of	him	at	10	percent



of	 the	 speed	 of	 light.	 Indeed,	 that	 would	 have	 to	 be	what	 observers	 on	 Earth
would	see.	But	we	know	that	the	speed	of	light	is	a	constant,	as	the	Michelson-
Morley	 experiment	 had	 shown.	 Thus	 he	would	 necessarily	 see	 the	 light	 beam
traveling	ahead	of	him	at	the	full	speed	of	light.	This	seemed	like	a	contradiction
—how	could	it	be	possible?

The	answer	became	evident	to	the	German	boy,	whose	name,	incidentally,
was	Albert	Einstein	(1879–1955),	by	the	time	he	turned	twenty-six.	Obviously—
to	 young	 Master	 Einstein—time	 itself	 must	 have	 slowed	 down	 for	 him.	 He
explains	his	reasoning	in	a	paper	published	in	1905.7	If	observers	on	Earth	were
to	 look	 at	 the	 young	man’s	watch	 they	would	 see	 it	 ticking	 ten	 times	 slower.
Indeed,	when	he	got	back	to	Earth,	his	watch	would	show	that	only	10	percent	as
much	time	had	passed	(ignoring,	for	the	moment,	acceleration	and	deceleration).
From	 his	 perspective,	 however,	 his	 watch	 was	 ticking	 normally	 and	 the	 light
beam	next	to	him	was	traveling	at	the	speed	of	light.	The	ten-times	slowdown	in
the	speed	of	time	itself	(relative	to	clocks	on	Earth)	fully	explains	the	apparent
discrepancies	 in	 perspective.	 In	 the	 extreme,	 the	 slowdown	 in	 the	 passage	 of
time	would	reach	zero	once	the	speed	of	travel	reached	the	speed	of	light;	hence
it	was	impossible	to	ride	along	with	the	light	beam.	Although	it	was	impossible
to	travel	at	the	speed	of	light,	it	turned	out	not	to	be	theoretically	impossible	to
move	faster	than	the	light	beam.	Time	would	then	move	backward.

This	resolution	seemed	absurd	to	many	early	critics.	How	could	time	itself
slow	down,	based	only	on	someone’s	speed	of	movement?	Indeed,	for	eighteen
years	 (from	 the	 time	of	 the	Michelson-Morley	 experiment),	 other	 thinkers	 had
been	 unable	 to	 see	 a	 conclusion	 that	 was	 so	 obvious	 to	Master	 Einstein.	 The
many	 others	 who	 had	 considered	 this	 problem	 through	 the	 latter	 part	 of	 the
nineteenth	 century	 had	 essentially	 “fallen	 off	 the	 horse”	 in	 terms	 of	 following
through	on	the	implications	of	a	principle,	sticking	instead	to	their	preconceived
notions	of	how	 reality	must	work.	 (I	 should	probably	change	 that	metaphor	 to
“fallen	off	the	light	beam.”)

Einstein’s	second	mind	experiment	was	to	consider	himself	and	his	brother
flying	 through	 space.	 They	 are	 186,000	 miles	 apart.	 Einstein	 wants	 to	 move
faster	 but	 he	 also	 desires	 to	 keep	 the	 distance	 between	 them	 the	 same.	 So	 he
signals	his	brother	with	a	 flashlight	each	 time	he	wants	 to	accelerate.	Since	he
knows	that	it	will	take	one	second	for	the	signal	to	reach	his	brother,	he	waits	a
second	(after	sending	the	signal)	to	initiate	his	own	acceleration.	Each	time	the
brother	 receives	 the	 signal	 he	 immediately	 accelerates.	 In	 this	 way	 the	 two
brothers	 accelerate	 at	 exactly	 the	 same	 time	 and	 therefore	 remain	 a	 constant
distance	apart.

But	now	consider	what	we	would	see	if	we	were	standing	on	Earth.	If	the



brothers	were	moving	away	from	us	(with	Albert	in	the	lead),	it	would	appear	to
take	less	than	a	second	for	the	light	to	reach	the	brother,	because	he	is	traveling
toward	 the	 light.	Also	we	would	 see	Albert’s	brother’s	clock	as	 slowing	down
(as	his	speed	increases	as	he	is	closer	to	us).	For	both	of	these	reasons	we	would
see	the	two	brothers	getting	closer	and	closer	and	eventually	colliding.	Yet	from
the	perspective	of	the	two	brothers,	they	remain	a	constant	186,000	miles	apart.

How	 can	 this	 be?	 The	 answer—obviously—is	 that	 distances	 contract
parallel	to	the	motion	(but	not	perpendicular	to	it).	So	the	two	Einstein	brothers
are	getting	 shorter	 (assuming	 they	 are	 flying	headfirst)	 as	 they	get	 faster.	This
bizarre	conclusion	probably	lost	Einstein	more	early	fans	than	the	difference	in
the	passage	of	time.

During	 the	 same	 year,	 Einstein	 considered	 the	 relationship	 of	matter	 and
energy	 with	 yet	 another	 mind	 experiment.	 Scottish	 physicist	 James	 Clerk
Maxwell	 had	 shown	 in	 the	 1850s	 that	 particles	 of	 light	 called	 photons	 had	 no
mass	 but	 nonetheless	 carried	 momentum.	 As	 a	 child	 I	 had	 a	 device	 called	 a
Crookes	radiometer,8	which	consisted	of	an	airtight	glass	bulb	 that	contained	a
partial	vacuum	and	a	set	of	four	vanes	that	rotated	on	a	spindle.	The	vanes	were
white	on	one	side	and	black	on	the	other.	The	white	side	of	each	vane	reflected
light,	and	the	black	side	absorbed	light.	(That’s	why	it	is	cooler	to	wear	a	white
T-shirt	on	a	hot	day	than	a	black	one.)	When	a	light	was	shined	on	the	device,
the	 vanes	 rotated,	 with	 the	 dark	 sides	 moving	 away	 from	 the	 light.	 This	 is	 a
direct	demonstration	that	photons	carry	enough	momentum	to	actually	cause	the
vanes	of	the	radiometer	to	move.9

The	 issue	 that	 Einstein	 struggled	with	 is	 that	momentum	 is	 a	 function	 of
mass:	Momentum	is	equal	to	mass	times	velocity.	Thus	a	locomotive	traveling	at
30	miles	per	hour	has	a	lot	more	momentum	than,	say,	an	insect	traveling	at	the
same	 speed.	How,	 then,	 could	 there	 be	 positive	momentum	 for	 a	 particle	with
zero	mass?

Einstein’s	mind	experiment	consisted	of	a	box	floating	in	space.	A	photon	is
emitted	inside	the	box	from	the	left	toward	the	right	side.	The	total	momentum
of	the	system	needs	to	be	conserved,	so	the	box	would	have	to	recoil	to	the	left
when	the	photon	was	emitted.	After	a	certain	amount	of	time,	the	photon	collides
with	 the	right	side	of	 the	box,	 transferring	 its	momentum	back	 to	 the	box.	The
total	momentum	of	the	system	is	again	conserved,	so	the	box	now	stops	moving.



A	 Crookes	 radiometer—the	 vane	 with	 four	 wings	 rotates	 when	 light
shines	on	it.
So	far	so	good.	But	consider	the	perspective	from	the	vantage	point	of	Mr.

Einstein,	who	is	watching	the	box	from	the	outside.	He	does	not	see	any	outside
influence	on	 the	 box:	No	particles—with	 or	without	mass—hit	 it,	 and	nothing
leaves	it.	Yet	Mr.	Einstein,	according	to	the	scenario	above,	sees	the	box	move
temporarily	 to	 the	 left	 and	 then	 stop.	 According	 to	 our	 analysis,	 each	 photon
should	permanently	move	the	box	to	the	left.	Since	there	have	been	no	external
effects	on	the	box	or	from	the	box,	its	center	of	mass	must	remain	in	the	same
place.	 Yet	 the	 photon	 inside	 the	 box,	 which	 moves	 from	 left	 to	 right,	 cannot
change	the	center	of	mass,	because	it	has	no	mass.

Or	 does	 it?	 Einstein’s	 conclusion	 was	 that	 since	 the	 photon	 clearly	 has
energy,	and	has	momentum,	it	must	also	have	a	mass	equivalent.	The	energy	of
the	moving	 photon	 is	 entirely	 equivalent	 to	 a	moving	mass.	We	 can	 compute
what	 that	 equivalence	 is	 by	 recognizing	 that	 the	 center	 of	mass	 of	 the	 system
must	 remain	 stationary	 during	 the	 movement	 of	 the	 photon.	Working	 out	 the
math,	Einstein	showed	that	mass	and	energy	are	equivalent	and	are	related	by	a
simple	constant.	However,	there	was	a	catch:	The	constant	might	be	simple,	but
it	turned	out	to	be	enormous;	it	was	the	speed	of	light	squared	(about	1.7	×	1017
meters2	per	second2—that	is,	17	followed	by	16	zeroes).	Hence	we	get	Einstein’s
famous	E	=	mc2.10	Thus	one	ounce	(28	grams)	of	mass	is	equivalent	to	600,000
tons	 of	 TNT.	 Einstein’s	 letter	 of	 August	 2,	 1939,	 to	 President	 Roosevelt
informing	him	of	the	potential	for	an	atomic	bomb	based	on	this	formula	ushered



in	the	atomic	age.11
You	 might	 think	 that	 this	 should	 have	 been	 obvious	 earlier,	 given	 that

experimenters	had	noticed	that	the	mass	of	radioactive	substances	decreased	as	a
result	 of	 radiation	 over	 time.	 It	 was	 assumed,	 however,	 that	 radioactive
substances	 contained	 a	 special	 high-energy	 fuel	 of	 some	 sort	 that	was	burning
off.	 That	 assumption	 is	 not	 all	 wrong;	 it’s	 just	 that	 the	 fuel	 that	 was	 being
“burned	off”	was	simply	mass.

There	are	several	reasons	why	I	have	opened	this	book	with	Darwin’s	and
Einstein’s	mind	experiments.	First	of	all,	 they	show	the	extraordinary	power	of
the	 human	 brain.	Without	 any	 equipment	 at	 all	 other	 than	 a	 pen	 and	 paper	 to
draw	the	stick	figures	 in	 these	simple	mind	experiments	and	to	write	down	the
fairly	simple	equations	that	result	from	them,	Einstein	was	able	to	overthrow	the
understanding	 of	 the	 physical	 world	 that	 dated	 back	 two	 centuries,	 deeply
influence	the	course	of	history	(including	World	War	II),	and	usher	in	the	nuclear
age.

It	 is	 true	 that	 Einstein	 relied	 on	 a	 few	 experimental	 findings	 of	 the
nineteenth	 century,	 although	 these	 experiments	 also	 did	 not	 use	 sophisticated
equipment.	 It	 is	 also	 true	 that	 subsequent	 experimental	validation	of	Einstein’s
theories	has	used	advanced	technologies,	and	if	these	had	not	been	developed	we
would	 not	 have	 the	 validation	 that	 we	 possess	 today	 that	 Einstein’s	 ideas	 are
authentic	and	significant.	However,	such	factors	do	not	detract	from	the	fact	that
these	 famous	 thought	 experiments	 reveal	 the	 power	 of	 human	 thinking	 at	 its
finest.

Einstein	is	widely	regarded	as	the	leading	scientist	of	the	twentieth	century
(and	 Darwin	 would	 be	 a	 good	 contender	 for	 that	 honor	 in	 the	 nineteenth
century),	 yet	 the	 mathematics	 underlying	 his	 theories	 is	 ultimately	 not	 very
complicated.	 The	 thought	 experiments	 themselves	 were	 straightforward.	 We
might	wonder,	 then,	 in	what	 respect	 could	 Einstein	 be	 considered	 particularly
smart.	We’ll	discuss	 later	exactly	what	 it	was	 that	he	was	doing	with	his	brain
when	he	came	up	with	his	theories,	and	where	that	quality	resides.

Conversely,	 this	 history	 also	 demonstrates	 the	 limitations	 of	 human
thinking.	Einstein	was	able	 to	 ride	his	 light	beam	without	 falling	off	 (albeit	he
concluded	 that	 it	was	 impossible	 to	actually	 ride	a	 light	beam),	but	how	many
thousands	 of	 other	 observers	 and	 thinkers	 were	 completely	 unable	 to	 think
through	these	remarkably	uncomplicated	exercises?	One	common	failure	 is	 the
difficulty	 that	 most	 people	 have	 in	 discarding	 and	 transcending	 the	 ideas	 and
perspectives	of	their	peers.	There	are	other	inadequacies	as	well,	which	we	will
discuss	in	more	detail	after	we	have	examined	how	the	neocortex	works.



A	Unified	Model	of	the	Neocortex

The	 most	 important	 reason	 I	 am	 sharing	 what	 are	 perhaps	 the	 most	 famous
thought	experiments	in	history	is	as	an	introduction	to	using	the	same	approach
with	respect	to	the	brain.	As	you	will	see,	we	can	get	remarkably	far	in	figuring
out	 how	 human	 intelligence	works	 through	 some	 simple	mind	 experiments	 of
our	own.	Considering	the	subject	matter	involved,	mind	experiments	should	be	a
very	appropriate	approach.

If	a	young	man’s	idle	thoughts	and	the	use	of	no	equipment	other	than	pen
and	paper	were	sufficient	to	revolutionize	our	understanding	of	physics,	then	we
should	be	able	to	make	reasonable	progress	with	a	phenomenon	with	which	we
are	much	more	familiar.	After	all,	we	experience	our	thinking	every	moment	of
our	waking	lives—and	our	dreaming	lives	as	well.

After	we	construct	a	model	of	how	thinking	works	through	this	process	of
self-reflection,	we’ll	examine	to	what	extent	we	can	confirm	it	through	the	latest
observations	 of	 actual	 brains	 and	 the	 state	 of	 the	 art	 in	 re-creating	 these
processes	in	machines.



CHAPTER	2

	



THOUGHT	EXPERIMENTS
ON	THINKING

	

I	 very	 rarely	 think	 in	 words	 at	 all.	 A	 thought	 comes,	 and	 I	 may	 try	 to
express	it	in	words	afterwards.

—Albert	Einstein
	

The	 brain	 is	 a	 three-pound	 mass	 you	 can	 hold	 in	 your	 hand	 that	 can
conceive	of	a	universe	a	hundred	billion	light	years	across.

—Marian	Diamond
	

What	 seems	 astonishing	 is	 that	 a	 mere	 three-pound	 object,	 made	 of	 the
same	 atoms	 that	 constitute	 everything	 else	 under	 the	 sun,	 is	 capable	 of
directing	 virtually	 everything	 that	 humans	 have	 done:	 flying	 to	 the	moon
and	hitting	seventy	home	runs,	writing	Hamlet	and	building	the	Taj	Mahal
—even	unlocking	the	secrets	of	the	brain	itself.

—Joel	Havemann
	

	
I	 started	 thinking	about	 thinking	around	1960,	 the	same	year	 that	 I	discovered
the	computer.	You	would	be	hard	pressed	 today	 to	 find	a	 twelve-year-old	who
does	not	use	a	computer,	but	back	then	there	were	only	a	handful	of	them	in	my
hometown	of	New	York	City.	Of	course	 these	early	devices	did	not	 fit	 in	your
hand,	and	the	first	one	I	got	access	to	took	up	a	large	room.	In	the	early	1960s	I
did	some	programming	on	an	IBM	1620	to	do	analyses	of	variance	(a	statistical
test)	on	data	that	had	been	collected	by	studying	a	program	for	early	childhood
education,	 a	 forerunner	 to	 Head	 Start.	 Hence	 there	 was	 considerable	 drama
involved	 in	 the	effort,	as	 the	fate	of	 this	national	educational	 initiative	rode	on
our	 work.	 The	 algorithms	 and	 data	 being	 analyzed	 were	 sufficiently	 complex



that	we	were	not	able	 to	anticipate	what	answers	 the	computer	would	come	up
with.	The	 answers	were,	 of	 course,	 determined	 by	 the	 data,	 but	 they	were	 not
predictable.	It	turns	out	that	the	distinction	between	being	determined	and	being
predictable	is	an	important	one,	to	which	I	will	return.

I	 remember	how	exciting	 it	was	when	 the	front-panel	 lights	dimmed	right
before	 the	algorithm	finished	 its	deliberations,	as	 if	 the	computer	were	deep	 in
thought.	When	people	came	by,	eager	to	get	the	next	set	of	results,	I	would	point
to	the	gently	flashing	lights	and	say,	“It’s	thinking.”	This	both	was	and	wasn’t	a
joke—it	 really	did	 seem	 to	 be	 contemplating	 the	 answers—and	 staff	members
started	to	ascribe	a	personality	to	the	machine.	It	was	an	anthropomorphization,
perhaps,	but	it	did	get	me	to	begin	to	consider	in	earnest	the	relationship	between
thinking	and	computing.

In	 order	 to	 assess	 the	 extent	 to	 which	 my	 own	 brain	 is	 similar	 to	 the
computer	programs	 I	was	 familiar	with,	 I	 began	 to	 think	about	what	my	brain
must	be	doing	as	it	processed	information.	I	have	continued	this	investigation	for
fifty	years.	What	I	will	describe	below	about	our	current	understanding	of	how
the	 brain	 works	 will	 sound	 very	 different	 from	 the	 standard	 concept	 of	 a
computer.	 Fundamentally,	 however,	 the	 brain	 does	 store	 and	 process
information,	and	because	of	the	universality	of	computation—a	concept	to	which
I	will	also	return—there	is	more	of	a	parallel	between	brains	and	computers	than
may	be	apparent.

Each	time	I	do	something—or	think	of	something—whether	 it	 is	brushing
my	 teeth,	 walking	 across	 the	 kitchen,	 contemplating	 a	 business	 problem,
practicing	on	a	music	keyboard,	or	coming	up	with	a	new	idea,	I	reflect	on	how	I
was	able	to	accomplish	it.	I	think	even	more	about	all	of	the	things	that	I	am	not
able	to	do,	as	the	limitations	of	human	thought	provide	an	equally	important	set
of	clues.	Thinking	so	much	about	thinking	might	very	well	be	slowing	me	down,
but	I	have	been	hopeful	 that	such	exercises	 in	self-reflection	will	enable	me	to
refine	my	mental	methods.

To	raise	our	own	awareness	of	how	our	brains	work,	let’s	consider	a	series
of	mind	experiments.

Try	this:	Recite	the	alphabet.
You	probably	remember	this	from	childhood	and	can	do	it	easily.
Okay,	now	try	this:	Recite	the	alphabet	backward.
Unless	you	have	studied	the	alphabet	in	this	order,	you	are	likely	to	find	it

impossible	 to	do.	On	occasion	someone	who	has	spent	a	significant	amount	of
time	in	an	elementary	school	classroom	where	the	alphabet	is	displayed	will	be
able	to	call	up	his	visual	memory	and	then	read	it	backward	from	that.	Even	this
is	 difficult,	 though,	 because	 we	 do	 not	 actually	 remember	 whole	 images.



Reciting	 the	alphabet	backward	 should	be	a	 simple	 task,	 as	 it	 involves	exactly
the	same	information	as	reciting	it	forward,	yet	we	are	generally	unable	to	do	it.

Do	you	remember	your	social	security	number?	If	you	do,	can	you	recite	it
backward	without	 first	writing	 it	 down?	How	 about	 the	 nursery	 rhyme	 “Mary
Had	a	Little	Lamb”?	Computers	can	do	this	trivially.	Yet	we	fail	at	it	unless	we
specifically	learn	the	backward	sequence	as	a	new	series.	This	tells	us	something
important	about	how	human	memory	is	organized.

Of	 course,	 we	 are	 able	 to	 perform	 this	 task	 easily	 if	 we	 write	 down	 the
sequence	and	 then	 read	 it	 backward.	 In	doing	 so	we	are	using	a	 technology—
written	 language—to	 compensate	 for	 one	 of	 the	 limitations	 of	 our	 unaided
thinking,	 albeit	 a	 very	 early	 tool.	 (It	 was	 our	 second	 invention,	 with	 spoken
language	 as	 the	 first.)	 This	 is	 why	 we	 invent	 tools—to	 compensate	 for	 our
shortcomings.

This	suggests	that	our	memories	are	sequential	and	 in	order.	They	can
be	 accessed	 in	 the	 order	 that	 they	 are	 remembered.	 We	 are	 unable	 to
directly	reverse	the	sequence	of	a	memory.

We	 also	 have	 some	 difficulty	 starting	 a	 memory	 in	 the	 middle	 of	 a
sequence.	If	I	learn	to	play	a	piece	of	music	on	the	piano,	I	generally	can’t	just
begin	it	at	an	arbitrary	point	in	its	middle.	There	are	a	few	points	at	which	I	can
jump	in,	because	my	sequential	memory	of	the	piece	is	organized	in	segments.	If
I	try	to	start	in	the	middle	of	a	segment,	though,	I	need	to	revert	to	sight-reading
until	my	sequential	memory	kicks	in.

Next,	try	this:	Recall	a	walk	that	you	took	in	the	last	day	or	so.	What	do	you
remember	about	it?

This	mind	experiment	works	best	if	you	took	a	walk	very	recently,	such	as
earlier	 today	 or	 yesterday.	 (You	 can	 also	 substitute	 a	 drive,	 or	 basically	 any
activity	during	which	you	moved	across	some	terrain.)

It	 is	 likely	that	you	don’t	remember	much	about	the	experience.	Who	was
the	fifth	person	you	encountered	(not	just	including	people	you	know)?	Did	you
see	an	oak	tree?	A	mailbox?	What	did	you	see	when	you	turned	the	first	corner?
If	 you	 passed	 some	 stores,	what	was	 in	 the	 second	window?	Perhaps	 you	 can
reconstruct	the	answers	to	some	of	these	questions	from	the	few	clues	that	you
do	 remember,	 but	 it	 is	 likely	 that	 you	 remember	 relatively	 few	 details,	 even
though	this	is	a	very	recent	experience.

If	you	take	walks	regularly,	think	back	to	the	first	walk	you	took	last	month
(or	 to	 the	 first	 trip	 to	 the	 office	 last	 month,	 if	 you	 commute).	 You	 probably
cannot	recall	 the	specific	walk	or	commute	at	all,	and	if	you	do,	you	doubtless
recall	even	fewer	details	about	it	than	about	your	walk	today.

I	will	 later	discuss	 the	 issue	of	consciousness	and	make	 the	point	 that	we



tend	to	equate	consciousness	with	our	memory	of	events.	The	primary	reason	we
believe	 that	 we	 are	 not	 conscious	 when	 under	 anesthesia	 is	 that	 we	 don’t
remember	anything	from	that	period	(albeit	there	are	intriguing—and	disturbing
—exceptions	to	this).	So	with	regard	to	the	walk	I	took	this	morning,	was	I	not
conscious	during	most	of	 it?	 It’s	 a	 reasonable	question,	given	 that	 I	 remember
almost	nothing	about	what	I	saw	or	even	what	I	was	thinking	about.

There	happen	to	be	a	few	things	I	do	remember	from	my	walk	this	morning.
I	 recall	 thinking	 about	 this	 book,	 but	 I	 couldn’t	 tell	 you	 exactly	 what	 those
thoughts	 were.	 I	 also	 recall	 passing	 a	 woman	 pushing	 a	 baby	 carriage.	 I
remember	 that	 the	woman	was	attractive,	and	that	 the	baby	was	cute	as	well.	 I
recall	 two	 thoughts	 I	 had	 in	 connection	 with	 this	 experience:	 This	 baby	 is
adorable,	like	my	new	grandson,	and	What	is	this	baby	perceiving	in	her	visual
surroundings?	 I	 cannot	 recall	what	either	of	 them	was	wearing	or	 the	color	of
their	hair.	 (My	wife	will	 tell	you	 that	 that	 is	 typical.)	Although	 I	am	unable	 to
describe	 anything	 specific	 about	 their	 appearance,	 I	 do	 have	 some	 ineffable
sense	of	what	the	mom	looked	like	and	believe	I	could	pick	out	her	picture	from
among	 those	 of	 several	 different	 women.	 So	 while	 there	 must	 be	 something
about	 her	 appearance	 that	 I	 have	 retained	 in	my	memory,	 if	 I	 think	 about	 the
woman,	 baby	 carriage,	 and	 baby,	 I	 am	 unable	 to	 visualize	 them.	 There	 is	 no
photograph	or	video	of	this	event	in	my	mind.	It	is	hard	to	describe	exactly	what
is	in	my	mind	about	this	experience.

I	 also	 recall	 having	 passed	 a	 different	 woman	with	 a	 baby	 carriage	 on	 a
walk	a	few	weeks	earlier.	In	that	case	I	don’t	believe	I	could	even	recognize	that
woman’s	 picture.	 That	memory	 is	 now	much	 dimmer	 than	 it	 must	 have	 been
shortly	after	that	walk.

Next,	 think	about	people	whom	you	have	encountered	only	once	or	 twice.
Can	 you	 visualize	 them	 clearly?	 If	 you	 are	 a	 visual	 artist,	 then	 you	may	 have
learned	 this	observational	 skill,	but	 typically	we	are	unable	 to	visualize	people
we’ve	only	casually	come	across	to	draw	or	describe	them	sufficiently	but	would
have	little	difficulty	in	recognizing	a	picture	of	them.

This	 suggests	 that	 there	 are	 no	 images,	 videos,	 or	 sound	 recordings
stored	 in	 the	 brain.	 Our	 memories	 are	 stored	 as	 sequences	 of	 patterns.
Memories	 that	 are	 not	 accessed	 dim	 over	 time.	When	 police	 sketch	 artists
interview	a	crime	victim,	they	do	not	ask,	“What	did	the	perpetrator’s	eyebrows
look	 like?”	Rather,	 they	will	 show	a	series	of	 images	of	eyebrows	and	ask	 the
victim	to	select	one.	The	correct	set	of	eyebrows	will	trigger	the	recognition	of
the	same	pattern	that	is	stored	in	the	victim’s	memory.

Let’s	 now	 consider	 faces	 that	 you	 know	well.	Can	 you	 recognize	 any	 of
these	people?



You	 are	 undoubtedly	 able	 to	 recognize	 these	 familiar	 personalities,	 even
though	they	are	partially	covered	or	distorted.	This	represents	a	key	strength	of
human	 perception:	We	 can	 recognize	 a	 pattern	 even	 if	 only	 part	 of	 it	 is
perceived	 (seen,	 heard,	 felt)	 and	 even	 if	 it	 contains	 alterations.	 Our
recognition	 ability	 is	 apparently	 able	 to	 detect	 invariant	 features	 of	 a
pattern—characteristics	 that	 survive	 real-world	 variations.	 The	 apparent
distortions	 in	 a	 caricature	 or	 in	 certain	 forms	 of	 art	 such	 as	 impressionism
emphasize	 the	 patterns	 of	 an	 image	 (person,	 object)	 that	 we	 recognize	 while
changing	other	details.	The	world	of	art	is	actually	ahead	of	the	world	of	science
in	 appreciating	 the	 power	 of	 the	 human	 perceptual	 system.	We	 use	 the	 same
approach	when	we	recognize	a	melody	from	only	a	few	notes.

Now	consider	this	image:

The	image	is	ambiguous—the	corner	indicated	by	the	black	region	may	be
an	 inside	corner	or	an	outside	corner.	At	 first	you	are	 likely	 to	perceive	 it	one
way	or	the	other,	though	with	some	effort	you	can	change	your	perception	to	the
alternate	interpretation.	Once	your	mind	has	fixed	on	an	understanding,	however,
it	 may	 be	 difficult	 to	 see	 the	 other	 perspective.	 (This	 turns	 out	 to	 be	 true	 of
intellectual	 perspectives	 as	 well.)	 Your	 brain’s	 interpretation	 of	 the	 image



actually	 influences	 your	 experience	 of	 it.	 When	 the	 corner	 appears	 to	 be	 an
inside	one,	your	brain	will	interpret	the	grey	region	as	a	shadow,	so	it	does	not
seem	to	be	as	dark	as	when	you	interpret	the	corner	as	being	an	outside	one.

Thus	our	conscious	experience	of	our	perceptions	is	actually	changed	by
our	interpretations.

Consider	that	we	see	what	we	expect	to	___
I’m	confident	that	you	were	able	to	complete	the	above	sentence.
Had	I	written	out	the	last	word,	you	would	have	needed	only	to	glance	at	it

momentarily	to	confirm	that	it	was	what	you	had	expected.
This	 implies	 that	 we	 are	 constantly	 predicting	 the	 future	 and

hypothesizing	what	we	will	experience.	This	expectation	influences	what	we
actually	perceive.	 Predicting	 the	 future	 is	 actually	 the	primary	 reason	 that	we
have	a	brain.

Consider	an	experience	that	we	all	have	on	a	regular	basis:	A	memory	from
years	ago	inexplicably	pops	into	your	head.

Often	 this	 will	 be	 a	 memory	 of	 a	 person	 or	 an	 event	 that	 you	 haven’t
thought	 about	 for	 a	 long	 time.	 It	 is	 evident	 that	 something	 has	 triggered	 the
memory.	The	train	of	thought	that	did	so	may	be	apparent	and	something	you	are
able	to	articulate.	At	other	times	you	may	be	aware	of	the	sequence	of	thoughts
that	 led	 to	 the	 memory	 but	 would	 have	 a	 hard	 time	 expressing	 it.	 Often	 the
trigger	 is	 quickly	 lost,	 so	 the	memory	 appears	 to	 have	 come	 from	 nowhere.	 I
often	experience	these	random	memories	while	doing	routine	procedures	such	as
brushing	my	teeth.	Sometimes	I	may	be	aware	of	the	connection—the	toothpaste
falling	off	 the	 toothbrush	might	remind	me	of	 the	paint	falling	off	a	brush	in	a
painting	 class	 I	 took	 in	 college.	 Sometimes	 I	 have	 only	 a	 vague	 sense	 of	 the
connection,	or	none	at	all.

A	 related	 phenomenon	 that	 everyone	 experiences	 frequently	 is	 trying	 to
think	of	a	name	or	a	word.	The	procedure	we	use	in	this	circumstance	is	to	try	to
remind	ourselves	of	 triggers	 that	may	unlock	 the	memory.	 (For	 example:	Who
played	Queen	Padmé	 in	 Revenge	 of	 the	 Sith?	Let’s	 see,	 it’s	 that	 same	 actress
who	was	the	star	in	a	recent	dark	movie	about	dancing,	that	was	Black	Swan,	oh
yes,	Natalie	Portman.)	Sometimes	we	adopt	idiosyncratic	mnemonics	to	help	us
remember.	(For	example:	She’s	always	slim,	not	portly,	oh	yes,	Portman,	Natalie
Portman.)	Some	of	our	memories	are	sufficiently	robust	that	we	can	go	directly
from	 a	 question	 (such	 as	who	 played	Queen	 Padmé)	 to	 the	 answer;	 often	 we
need	 to	 go	 through	 a	 series	 of	 triggers	 until	we	 find	 one	 that	works.	 It’s	 very
much	 like	having	 the	 right	Web	 link.	Memories	can	 indeed	become	 lost	 like	a
Web	page	to	which	no	other	page	links	to	(at	least	no	page	that	we	can	find).

While	 executing	 routine	 procedures—such	 as	 putting	 on	 a	 shirt—watch



yourself	performing	them,	and	consider	the	extent	to	which	you	follow	the	same
sequence	of	steps	each	 time.	From	my	own	observation	 (and	as	 I	mentioned,	 I
am	constantly	 trying	to	observe	myself),	 it	 is	 likely	that	you	follow	very	much
the	same	steps	each	time	you	perform	a	particular	routine	task,	though	there	may
be	additional	modules	added.	For	example,	most	of	my	shirts	do	not	require	cuff
links,	but	when	one	does,	that	involves	a	further	series	of	tasks.

The	lists	of	steps	in	my	mind	are	organized	in	hierarchies.	I	follow	a	routine
procedure	 before	 going	 to	 sleep.	 The	 first	 step	 is	 to	 brush	my	 teeth.	 But	 this
action	is	in	turn	broken	into	a	smaller	series	of	steps,	the	first	of	which	is	to	put
toothpaste	on	the	toothbrush.	That	step	in	turn	is	made	up	of	yet	smaller	steps,
such	as	finding	the	toothpaste,	removing	the	cap,	and	so	on.	The	step	of	finding
the	toothpaste	also	has	steps,	the	first	of	which	is	to	open	the	bathroom	cabinet.
That	 step	 in	 turn	 requires	steps,	 the	 first	of	which	 is	 to	grab	 the	outside	of	 the
cabinet	 door.	 This	 nesting	 actually	 continues	 down	 to	 a	 very	 fine	 grain	 of
movements,	so	that	there	are	literally	thousands	of	little	actions	constituting	my
nighttime	routine.	Although	I	may	have	difficulty	remembering	details	of	a	walk
I	took	just	a	few	hours	ago,	I	have	no	difficulty	recalling	all	of	these	many	steps
in	preparing	for	bed—so	much	so	that	I	am	able	to	think	about	other	things	while
I	 go	 through	 these	 procedures.	 It	 is	 important	 to	 point	 out	 that	 this	 list	 is	 not
stored	 as	 one	 long	 list	 of	 thousands	 of	 steps—rather,	 each	 of	 our	 routine
procedures	is	remembered	as	an	elaborate	hierarchy	of	nested	activities.

The	 same	 type	 of	 hierarchy	 is	 involved	 in	 our	 ability	 to	 recognize
objects	and	situations.	We	recognize	the	faces	of	people	we	know	well	and	also
recognize	that	these	faces	contain	eyes,	a	nose,	a	mouth,	and	so	on—a	hierarchy
of	 patterns	 that	 we	 use	 in	 both	 our	 perceptions	 and	 our	 actions.	 The	 use	 of
hierarchies	allows	us	to	reuse	patterns.	For	example,	we	do	not	need	to	relearn
the	concept	of	a	nose	and	a	mouth	each	time	we	are	introduced	to	a	new	face.

In	 the	 next	 chapter,	 we’ll	 put	 the	 results	 of	 these	 thought	 experiments
together	 into	 a	 theory	 of	 how	 the	 neocortex	must	work.	 I	will	 argue	 that	 they
reveal	 essential	 attributes	 of	 our	 thinking	 that	 are	 uniform,	 from	 finding	 the
toothpaste	to	writing	a	poem.



CHAPTER	3

	



A	MODEL	OF	THE
NEOCORTEX:	THE	PATTERN
RECOGNITION	THEORY	OF

MIND
	

The	 brain	 is	 a	 tissue.	 It	 is	 a	 complicated,	 intricately	 woven	 tissue,	 like
nothing	else	we	know	of	in	the	universe,	but	it	is	composed	of	cells,	as	any
tissue	 is.	 They	 are,	 to	 be	 sure,	 highly	 specialized	 cells,	 but	 they	 function
according	 to	 the	 laws	 that	 govern	 any	 other	 cells.	 Their	 electrical	 and
chemical	 signals	 can	 be	 detected,	 recorded	 and	 interpreted	 and	 their
chemicals	 can	 be	 identified;	 the	 connections	 that	 constitute	 the	 brain’s
woven	feltwork	can	be	mapped.	 In	short,	 the	brain	can	be	studied,	 just	as
the	kidney	can.

—David	H.	Hubel,	neuroscientist
	

Suppose	that	there	be	a	machine,	the	structure	of	which	produces	thinking,
feeling,	 and	perceiving;	 imagine	 this	machine	enlarged	but	preserving	 the
same	 proportions,	 so	 you	 could	 enter	 it	 as	 if	 it	 were	 a	 mill.	 This	 being
supposed,	 you	 might	 visit	 inside;	 but	 what	 would	 you	 observe	 there?
Nothing	but	parts	which	push	and	move	each	other,	and	never	anything	that
could	explain	perception.

—Gottfried	Wilhelm	Leibniz
	

	



A	Hierarchy	of	Patterns

I	 have	 repeated	 the	 simple	 experiments	 and	 observations	 described	 in	 the
previous	chapter	 thousands	of	 times	 in	myriad	 contexts.	The	 conclusions	 from
these	observations	necessarily	constrain	my	explanation	for	what	the	brain	must
be	 doing,	 just	 as	 the	 simple	 experiments	 on	 time,	 space,	 and	 mass	 that	 were
conducted	 in	 the	 early	 and	 late	 nineteenth	 century	 necessarily	 constrained	 the
young	 Master	 Einstein’s	 reflections	 on	 how	 the	 universe	 functioned.	 In	 the
discussion	 that	 follows	 I’ll	 also	 factor	 in	 some	 very	 basic	 observations	 from
neuroscience,	attempting	to	avoid	the	many	details	that	are	still	in	contention.

First,	 let	me	 explain	why	 this	 section	 specifically	 discusses	 the	neocortex
(from	the	Latin	meaning	“new	rind”).	We	do	know	the	neocortex	is	responsible
for	our	ability	to	deal	with	patterns	of	information	and	to	do	so	in	a	hierarchical
fashion.	 Animals	 without	 a	 neocortex	 (basically	 nonmammals)	 are	 largely
incapable	 of	 understanding	 hierarchies.1	 Understanding	 and	 leveraging	 the
innately	hierarchical	nature	of	reality	is	a	uniquely	mammalian	trait	and	results
from	mammals’	unique	possession	of	 this	evolutionarily	 recent	brain	 structure.
The	neocortex	 is	 responsible	 for	 sensory	 perception,	 recognition	 of	 everything
from	visual	objects	to	abstract	concepts,	controlling	movement,	reasoning	from
spatial	orientation	to	rational	thought,	and	language—basically,	what	we	regard
as	“thinking.”

The	human	neocortex,	the	outermost	layer	of	the	brain,	is	a	thin,	essentially
two-dimensional	 structure	 with	 a	 thickness	 of	 about	 2.5	 millimeters	 (about	 a
tenth	 of	 an	 inch).	 In	 rodents,	 it	 is	 about	 the	 size	 of	 a	 postage	 stamp	 and	 is
smooth.	 An	 evolutionary	 innovation	 in	 primates	 is	 that	 it	 became	 intricately
folded	 over	 the	 top	 of	 the	 rest	 of	 the	 brain	 with	 deep	 ridges,	 grooves,	 and
wrinkles	to	increase	its	surface	area.	Due	to	its	elaborate	folding,	the	neocortex
constitutes	the	bulk	of	the	human	brain,	accounting	for	80	percent	of	its	weight.
Homo	sapiens	developed	a	large	forehead	to	allow	for	an	even	larger	neocortex;
in	 particular	 we	 have	 a	 frontal	 lobe	 where	 we	 deal	 with	 the	 more	 abstract
patterns	associated	with	high-level	concepts.

This	 thin	 structure	 is	 basically	 made	 up	 of	 six	 layers,	 numbered	 I	 (the
outermost	layer)	to	VI.	The	axons	emerging	from	the	neurons	in	layers	II	and	III
project	 to	 other	 parts	 of	 the	 neocortex.	 The	 axons	 (output	 connections)	 from
layers	 V	 and	 VI	 are	 connected	 primarily	 outside	 of	 the	 neocortex	 to	 the



thalamus,	brain	stem,	and	spinal	cord.	The	neurons	in	layer	IV	receive	synaptic
(input)	connections	from	neurons	that	are	outside	the	neocortex,	especially	in	the
thalamus.	The	number	of	layers	varies	slightly	from	region	to	region.	Layer	IV	is
very	 thin	 in	 the	motor	 cortex,	 because	 in	 that	 area	 it	 largely	 does	 not	 receive
input	from	the	thalamus,	brain	stem,	or	spinal	cord.	Conversely,	in	the	occipital
lobe	(the	part	of	 the	neocortex	usually	responsible	for	visual	processing),	 there
are	 three	 additional	 sublayers	 that	 can	 be	 seen	 in	 layer	 IV,	 due	 to	 the
considerable	input	flowing	into	this	region,	including	from	the	thalamus.

A	critically	important	observation	about	the	neocortex	is	 the	extraordinary
uniformity	 of	 its	 fundamental	 structure.	 This	 was	 first	 noticed	 by	 American
neuroscientist	 Vernon	 Mountcastle	 (born	 in	 1918).	 In	 1957	 Mountcastle
discovered	 the	 columnar	 organization	 of	 the	 neocortex.	 In	 1978	 he	 made	 an
observation	that	is	as	significant	to	neuroscience	as	the	Michelson-Morley	ether-
disproving	 experiment	 of	 1887	 were	 to	 physics.	 That	 year	 he	 described	 the
remarkably	 unvarying	 organization	 of	 the	 neocortex,	 hypothesizing	 that	 it	was
composed	of	 a	 single	mechanism	 that	was	 repeated	over	 and	over	 again,2	 and
proposing	the	cortical	column	as	that	basic	unit.	The	differences	in	the	height	of
certain	 layers	 in	 different	 regions	 noted	 above	 are	 simply	 differences	 in	 the
amount	of	interconnectivity	that	the	regions	are	responsible	for	dealing	with.

Mountcastle	 hypothesized	 the	 existence	 of	mini-columns	within	 columns,
but	this	theory	became	controversial	because	there	were	no	visible	demarcations
of	such	smaller	structures.	However,	extensive	experimentation	has	revealed	that
there	are	in	fact	repeating	units	within	the	neuron	fabric	of	each	column.	It	is	my
contention	that	the	basic	unit	is	a	pattern	recognizer	and	that	this	constitutes	the
fundamental	component	of	the	neocortex.	In	contrast	to	Mountcastle’s	notion	of
a	mini-column,	 there	 is	 no	 specific	 physical	 boundary	 to	 these	 recognizers,	 as
they	are	placed	closely	one	to	the	next	in	an	interwoven	fashion,	so	the	cortical
column	is	simply	an	aggregate	of	a	large	number	of	them.	These	recognizers	are
capable	of	wiring	themselves	to	one	another	throughout	the	course	of	a	lifetime,
so	the	elaborate	connectivity	(between	modules)	that	we	see	in	the	neocortex	is
not	prespecified	by	the	genetic	code,	but	rather	is	created	to	reflect	the	patterns
we	 actually	 learn	 over	 time.	 I	 will	 describe	 this	 thesis	 in	 more	 detail,	 but	 I
maintain	that	this	is	how	the	neocortex	must	be	organized.

It	should	be	noted,	before	we	further	consider	the	structure	of	the	neocortex,
that	 it	 is	 important	 to	model	 systems	 at	 the	 right	 level.	Although	 chemistry	 is
theoretically	based	on	physics	and	could	be	derived	entirely	 from	physics,	 this
would	 be	 unwieldy	 and	 infeasible	 in	 practice,	 so	 chemistry	 has	 established	 its
own	 rules	 and	 models.	 Similarly,	 we	 should	 be	 able	 to	 deduce	 the	 laws	 of
thermodynamics	from	physics,	but	once	we	have	a	sufficient	number	of	particles



to	call	them	a	gas	rather	than	simply	a	bunch	of	particles,	solving	equations	for
the	physics	of	each	particle	 interaction	becomes	hopeless,	whereas	 the	 laws	of
thermodynamics	 work	 quite	 well.	 Biology	 likewise	 has	 its	 own	 rules	 and
models.	A	single	pancreatic	islet	cell	is	enormously	complicated,	especially	if	we
model	 it	 at	 the	 level	 of	molecules;	modeling	what	 a	 pancreas	 actually	 does	 in
terms	of	regulating	levels	of	insulin	and	digestive	enzymes	is	considerably	less
complex.

The	same	principle	applies	to	the	levels	of	modeling	and	understanding	in
the	brain.	 It	 is	 certainly	a	useful	 and	necessary	part	of	 reverse-engineering	 the
brain	 to	model	 its	 interactions	at	 the	molecular	 level,	but	 the	goal	of	 the	effort
here	 is	 essentially	 to	 refine	 our	model	 to	 account	 for	 how	 the	 brain	 processes
information	to	produce	cognitive	meaning.

American	 scientist	 Herbert	 A.	 Simon	 (1916–2001),	 who	 is	 credited	 with
cofounding	the	field	of	artificial	intelligence,	wrote	eloquently	about	the	issue	of
understanding	complex	systems	at	the	right	level	of	abstraction.	In	describing	an
AI	program	he	had	devised	called	EPAM	(elementary	perceiver	and	memorizer),
he	 wrote	 in	 1973,	 “Suppose	 you	 decided	 that	 you	 wanted	 to	 understand	 the
mysterious	EPAM	program	that	I	have.	I	could	provide	you	with	two	versions	of
it.	 One	would	 be…the	 form	 in	which	 it	 was	 actually	 written—with	 its	 whole
structure	of	routines	and	subroutines….	Alternatively,	I	could	provide	you	with	a
machine-language	version	of	EPAM	after	the	whole	translation	had	been	carried
out—after	 it	 had	 been	 flattened	 so	 to	 speak….	 I	 don’t	 think	 I	 need	 argue	 at
length	which	 of	 these	 two	 versions	would	 provide	 the	most	 parsimonious,	 the
most	meaningful,	the	most	lawful	description….	I	will	not	even	propose	to	you
the	 third…of	 providing	 you	 with	 neither	 program,	 but	 instead	 with	 the
electromagnetic	equations	and	boundary	conditions	that	the	computer,	viewed	as
a	physical	system,	would	have	to	obey	while	behaving	as	EPAM.	That	would	be
the	acme	of	reduction	and	incomprehensibility.”3

There	are	about	a	half	million	cortical	columns	in	a	human	neocortex,	each
occupying	 a	 space	 about	 two	millimeters	 high	 and	 a	 half	millimeter	wide	 and
containing	about	60,000	neurons	(resulting	in	a	total	of	about	30	billion	neurons
in	 the	 neocortex).	 A	 rough	 estimate	 is	 that	 each	 pattern	 recognizer	 within	 a
cortical	 column	 contains	 about	 100	 neurons,	 so	 there	 are	 on	 the	 order	 of	 300
million	pattern	recognizers	in	total	in	the	neocortex.

As	we	consider	how	these	pattern	recognizers	work,	let	me	begin	by	saying
that	 it	 is	 difficult	 to	 know	 precisely	 where	 to	 begin.	 Everything	 happens
simultaneously	 in	 the	 neocortex,	 so	 there	 is	 no	 beginning	 and	 no	 end	 to	 its
processes.	 I	 will	 frequently	 need	 to	 refer	 to	 phenomena	 that	 I	 have	 not	 yet
explained	but	plan	to	come	back	to,	so	please	bear	with	these	forward	references.



Human	beings	have	only	a	weak	ability	 to	process	 logic,	but	 a	very	deep
core	capability	of	 recognizing	patterns.	To	do	 logical	 thinking,	we	need	 to	use
the	 neocortex,	 which	 is	 basically	 a	 large	 pattern	 recognizer.	 It	 is	 not	 an	 ideal
mechanism	for	performing	logical	transformations,	but	it	is	the	only	facility	we
have	 for	 the	 job.	 Compare,	 for	 example,	 how	 a	 human	 plays	 chess	 to	 how	 a
typical	computer	chess	program	works.	Deep	Blue,	 the	computer	 that	defeated
Garry	 Kasparov,	 the	 human	 world	 chess	 champion,	 in	 1997	 was	 capable	 of
analyzing	 the	 logical	 implications	of	 200	million	board	positions	 (representing
different	move-countermove	sequences)	every	 second.	 (That	can	now	be	done,
by	 the	 way,	 on	 a	 few	 personal	 computers.)	 Kasparov	 was	 asked	 how	 many
positions	he	could	analyze	each	second,	and	he	said	it	was	less	than	one.	How	is
it,	then,	that	he	was	able	to	hold	up	to	Deep	Blue	at	all?	The	answer	is	the	very
strong	ability	humans	have	to	recognize	patterns.	However,	we	need	to	train	this
facility,	which	is	why	not	everyone	can	play	master	chess.

Kasparov	had	learned	about	100,000	board	positions.	That’s	a	real	number
—we	 have	 established	 that	 a	 human	master	 in	 a	 particular	 field	 has	mastered
about	 100,000	 chunks	 of	 knowledge.	 Shakespeare	 composed	 his	 plays	 with
100,000	word	senses	(employing	about	29,000	distinct	words,	but	using	most	of
them	in	multiple	ways).	Medical	expert	systems	that	have	been	built	to	represent
the	knowledge	of	a	human	medical	physician	have	shown	that	a	typical	human
medical	 specialist	 has	mastered	 about	 100,000	 concepts	 in	 his	 or	 her	 domain.
Recognizing	a	chunk	of	knowledge	 from	 this	 store	 is	not	 straightforward,	 as	a
particular	 item	 will	 present	 itself	 a	 little	 bit	 differently	 each	 time	 it	 is
experienced.

Armed	 with	 his	 knowledge,	 Kasparov	 looks	 at	 the	 chessboard	 and
compares	 the	 patterns	 that	 he	 sees	 to	 all	 100,000	 board	 situations	 that	 he	 has
mastered,	 and	 he	 does	 all	 100,000	 comparisons	 simultaneously.	 There	 is
consensus	 on	 this	 point:	 All	 of	 our	 neurons	 are	 processing—considering	 the
patterns—at	 the	 same	 time.	 That	 does	 not	 mean	 that	 they	 are	 all	 firing
simultaneously	(we	would	probably	fall	to	the	floor	if	that	happened),	but	while
doing	their	processing	are	considering	the	possibility	of	firing.

How	 many	 patterns	 can	 the	 neocortex	 store?	 We	 need	 to	 factor	 in	 the
phenomenon	of	redundancy.	The	face	of	a	loved	one,	for	example,	is	not	stored
once	but	on	the	order	of	thousands	of	times.	Some	of	these	repetitions	are	largely
the	 same	 image	 of	 the	 face,	 whereas	 most	 show	 different	 perspectives	 of	 it,
different	 lighting,	 different	 expressions,	 and	 so	 on.	 None	 of	 these	 repeated
patterns	are	stored	as	images	per	se	(that	is,	as	two-dimensional	arrays	of	pixels).
Rather,	 they	 are	 stored	 as	 lists	 of	 features	where	 the	 constituent	 elements	 of	 a
pattern	are	themselves	patterns.	We’ll	describe	below	more	precisely	what	these



hierarchies	of	features	look	like	and	how	they	are	organized.
If	we	take	the	core	knowledge	of	an	expert	as	consisting	of	about	100,000

“chunks”	of	knowledge	 (that	 is,	patterns)	with	a	 redundancy	estimate	of	 about
100	 to	 1,	 that	 gives	 us	 a	 requirement	 of	 10	million	 patterns.	 This	 core	 expert
knowledge	is	built	on	more	general	and	extensive	professional	knowledge,	so	we
can	 increase	 the	order	of	magnitude	of	patterns	 to	about	30	 to	50	million.	Our
everyday	“commonsense”	knowledge	as	a	human	being	is	even	greater;	“street
smarts”	actually	require	substantially	more	of	our	neocortex	than	“book	smarts.”
Including	this	brings	our	estimate	to	well	over	100	million	patterns,	taking	into
account	the	redundancy	factor	of	about	100.	Note	that	the	redundancy	factor	is
far	from	fixed—very	common	patterns	will	have	a	redundancy	factor	well	 into
the	thousands,	whereas	a	brand-new	phenomenon	may	have	a	redundancy	factor
of	less	than	10.

As	I	will	discuss	below,	our	procedures	and	actions	also	comprise	patterns
and	 are	 likewise	 stored	 in	 regions	 of	 the	 cortex,	 so	 my	 estimate	 of	 the	 total
capacity	of	the	human	neocortex	is	on	the	order	of	low	hundreds	of	millions	of
patterns.	This	rough	tally	correlates	well	with	the	number	of	pattern	recognizers
that	I	estimated	above	at	about	300	million,	so	it	is	a	reasonable	conclusion	that
the	 function	 of	 each	 neocortical	 pattern	 recognizer	 is	 to	 process	 one	 iteration
(that	 is,	one	copy	among	 the	multiple	 redundant	copies	of	most	patterns	 in	 the
neocortex)	of	 a	 pattern.	Our	 estimates	of	 the	number	of	 patterns	 that	 a	 human
brain	 is	 capable	 of	 dealing	 with	 (including	 necessary	 redundancy)	 and	 the
number	 of	 physical	 pattern	 recognizers	 happen	 to	 be	 the	 same	 order	 of
magnitude.	It	should	be	noted	here	that	when	I	refer	to	“processing”	a	pattern,	I
am	referring	to	all	of	the	things	we	are	able	to	do	with	a	pattern:	learn	it,	predict
it	(including	parts	of	it),	recognize	it,	and	implement	it	(either	by	thinking	about
it	further	or	through	a	pattern	of	physical	movement).

Three	hundred	million	pattern	processors	may	 sound	 like	 a	 large	number,
and	 indeed	 it	 was	 sufficient	 to	 enable	 Homo	 sapiens	 to	 develop	 verbal	 and
written	language,	all	of	our	tools,	and	other	diverse	creations.	These	inventions
have	 built	 upon	 themselves,	 giving	 rise	 to	 the	 exponential	 growth	 of	 the
information	 content	 of	 technologies	 as	 described	 in	 my	 law	 of	 accelerating
returns.	No	other	species	has	achieved	this.	As	I	discussed,	a	few	other	species,
such	as	chimpanzees,	do	appear	to	have	a	rudimentary	ability	to	understand	and
form	 language	 and	 also	 to	 use	 primitive	 tools.	 They	 do,	 after	 all,	 also	 have	 a
neocortex,	but	their	abilities	are	limited	due	to	its	smaller	size,	especially	of	the
frontal	 lobe.	The	 size	of	 our	 own	neocortex	has	 exceeded	 a	 threshold	 that	 has
enabled	our	species	 to	build	ever	more	powerful	 tools,	 including	tools	 that	can
now	 enable	 us	 to	 understand	 our	 own	 intelligence.	 Ultimately	 our	 brains,



combined	with	 the	 technologies	 they	 have	 fostered,	will	 permit	 us	 to	 create	 a
synthetic	 neocortex	 that	 will	 contain	 well	 beyond	 a	 mere	 300	 million	 pattern
processors.	Why	not	a	billion?	Or	a	trillion?



The	Structure	of	a	Pattern

The	 pattern	 recognition	 theory	 of	 mind	 that	 I	 present	 here	 is	 based	 on	 the
recognition	of	patterns	by	pattern	 recognition	modules	 in	 the	neocortex.	These
patterns	 (and	 the	 modules)	 are	 organized	 in	 hierarchies.	 I	 discuss	 below	 the
intellectual	roots	of	 this	 idea,	 including	my	own	work	with	hierarchical	pattern
recognition	in	the	1980s	and	1990s	and	Jeff	Hawkins	(born	in	1957)	and	Dileep
George’s	(born	in	1977)	model	of	the	neocortex	in	the	early	2000s.

Each	 pattern	 (which	 is	 recognized	 by	 one	 of	 the	 estimated	 300	 million
pattern	recognizers	in	the	neocortex)	is	composed	of	three	parts.	Part	one	is	the
input,	which	consists	of	the	lower-level	patterns	that	compose	the	main	pattern.
The	descriptions	for	each	of	these	lower-level	patterns	do	not	need	to	be	repeated
for	 each	 higher-level	 pattern	 that	 references	 them.	 For	 example,	 many	 of	 the
patterns	 for	words	will	 include	 the	 letter	 “A.”	Each	of	 these	 patterns	 does	 not
need	to	repeat	the	description	of	the	letter	“A”	but	will	use	the	same	description.
Think	 of	 it	 as	 being	 like	 a	Web	 pointer.	 There	 is	 one	Web	 page	 (that	 is,	 one
pattern)	 for	 the	 letter	 “A,”	 and	 all	 of	 the	Web	 pages	 (patterns)	 for	words	 that
include	“A”	will	have	a	link	to	the	“A”	page	(to	the	“A”	pattern).	Instead	of	Web
links,	 the	neocortex	uses	 actual	 neural	 connections.	There	 is	 an	 axon	 from	 the
“A”	 pattern	 recognizer	 that	 connects	 to	multiple	 dendrites,	 one	 for	 each	word
that	uses	“A.”	Keep	in	mind	also	the	redundancy	factor:	There	is	more	than	one
pattern	 recognizer	 for	 the	 letter	 “A.”	 Any	 of	 these	 multiple	 “A”	 pattern
recognizers	can	send	a	signal	up	to	the	pattern	recognizers	that	incorporate	“A.”



The	 second	 part	 of	 each	 pattern	 is	 the	 pattern’s	 name.	 In	 the	 world	 of
language,	 this	 higher-level	 pattern	 is	 simply	 the	 word	 “apple.”	 Although	 we
directly	 use	 our	 neocortex	 to	 understand	 and	 process	 every	 level	 of	 language,
most	of	the	patterns	it	contains	are	not	language	patterns	per	se.	In	the	neocortex
the	 “name”	 of	 a	 pattern	 is	 simply	 the	 axon	 that	 emerges	 from	 each	 pattern
processor;	when	that	axon	fires,	 its	corresponding	pattern	has	been	recognized.
The	firing	of	the	axon	is	that	pattern	recognizer	shouting	the	name	of	the	pattern:
“Hey	guys,	I	just	saw	the	written	word	‘apple.’”



Three	redundant	(but	somewhat	different)	patterns	for	“A”	feeding	up	to
higher-level	patterns	that	incorporate	“A.”
The	 third	 and	 final	 part	 of	 each	 pattern	 is	 the	 set	 of	 higher-level	 patterns

that	 it	 in	 turn	is	part	of.	For	 the	 letter	“A,”	this	 is	all	of	 the	words	that	 include
“A.”	 These	 are,	 again,	 like	 Web	 links.	 Each	 recognized	 pattern	 at	 one	 level
triggers	 the	 next	 level	 that	 part	 of	 that	 higher-level	 pattern	 is	 present.	 In	 the
neocortex,	 these	 links	 are	 represented	 by	 physical	 dendrites	 that	 flow	 into
neurons	in	each	cortical	pattern	recognizer.	Keep	in	mind	that	each	neuron	can
receive	inputs	from	multiple	dendrites	yet	produces	a	single	output	on	an	axon.
That	axon,	however,	can	then	in	turn	transmit	to	multiple	dendrites.

To	take	some	simple	examples,	 the	simple	patterns	on	the	next	page	are	a
small	subset	of	the	patterns	used	to	make	up	printed	letters.	Note	that	every	level
constitutes	a	pattern.	In	this	case,	the	shapes	are	patterns,	the	letters	are	patterns,
and	 the	 words	 are	 also	 patterns.	 Each	 of	 these	 patterns	 has	 a	 set	 of	 inputs,	 a
process	 of	 pattern	 recognition	 (based	 on	 the	 inputs	 that	 take	 place	 in	 the
module),	 and	 an	 output	 (which	 feeds	 to	 the	 next	 higher	 level	 of	 pattern
recognizer).

Southwest	to	north-central	connection:

Southeast	to	north-central	connection:

Horizontal	crossbar:

Leftmost	vertical	line:

Concave	region	facing	south:

Bottom	horizontal	line:

Top	horizontal	line:



Middle	horizontal	line:

Loop	constituting	upper	region:

	

The	 above	 patterns	 are	 constituents	 of	 the	 next	 higher	 level	 of	 pattern,
which	is	a	category	called	printed	letters	(there	is	no	such	formal	category	within
the	neocortex,	however;	indeed,	there	are	no	formal	categories).

“A”:

Two	 different	 patterns,	 either	 of	 which	 constitutes	 “A,”	 and	 two
different	patterns	at	a	higher	level	(“APPLE”	and	“PEAR”)	of	which	“A”	is
a	part.
“P”:



	
Patterns	that	are	part	of	the	higher-level	pattern	“P.”

	

“L”:

	
Patterns	that	are	part	of	the	higher-level	pattern	“L.”

	

“E”:



	
Patterns	that	are	part	of	the	higher-level	pattern	“E.”

	

These	 letter	patterns	 feed	up	 to	an	even	higher-level	pattern	 in	a	category
called	words.	(The	word	“words”	is	our	language	category	for	this	concept,	but
the	neocortex	just	treats	them	only	as	patterns.)

“APPLE”:

	
In	 a	 different	 part	 of	 the	 cortex	 is	 a	 comparable	 hierarchy	 of	 pattern

recognizers	processing	actual	images	of	objects	(as	opposed	to	printed	letters).	If
you	 are	 looking	 at	 an	 actual	 apple,	 low-level	 recognizers	 will	 detect	 curved
edges	and	surface	color	patterns	leading	up	to	a	pattern	recognizer	firing	its	axon
and	 saying	 in	 effect,	 “Hey	guys,	 I	 just	 saw	an	 actual	 apple.”	Yet	other	pattern
recognizers	 will	 detect	 combinations	 of	 frequencies	 of	 sound	 leading	 up	 to	 a
pattern	 recognizer	 in	 the	 auditory	 cortex	 that	might	 fire	 its	 axon	 indicating,	 “I
just	heard	the	spoken	word	‘apple.’”

Keep	 in	mind	 the	 redundancy	 factor—we	don’t	 just	 have	 a	 single	pattern
recognizer	 for	“apple”	 in	each	of	 its	 forms	 (written,	 spoken,	visual).	There	are
likely	to	be	hundreds	of	such	recognizers	firing,	if	not	more.	The	redundancy	not



only	increases	the	likelihood	that	you	will	successfully	recognize	each	instance
of	 an	 apple	 but	 also	 deals	 with	 the	 variations	 in	 real-world	 apples.	 For	 apple
objects,	there	will	be	pattern	recognizers	that	deal	with	the	many	varied	forms	of
apples:	different	views,	colors,	shadings,	shapes,	and	varieties.

Also	 keep	 in	 mind	 that	 the	 hierarchy	 shown	 above	 is	 a	 hierarchy	 of
concepts.	These	recognizers	are	not	physically	placed	above	each	other;	because
of	 the	 thin	 construction	 of	 the	 neocortex,	 it	 is	 physically	 only	 one	 pattern
recognizer	high.	The	conceptual	hierarchy	is	created	by	the	connections	between
the	individual	pattern	recognizers.

An	important	attribute	of	the	PRTM	is	how	the	recognitions	are	made	inside
each	pattern	recognition	module.	Stored	in	the	module	is	a	weight	for	each	input
dendrite	 indicating	 how	 important	 that	 input	 is	 to	 the	 recognition.	 The	 pattern
recognizer	has	a	threshold	for	firing	(which	indicates	that	this	pattern	recognizer
has	 successfully	 recognized	 the	 pattern	 it	 is	 responsible	 for).	 Not	 every	 input
pattern	has	to	be	present	for	a	recognizer	to	fire.	The	recognizer	may	still	fire	if
an	 input	 with	 a	 low	 weight	 is	 missing,	 but	 it	 is	 less	 likely	 to	 fire	 if	 a	 high-
importance	 input	 is	 missing.	 When	 it	 fires,	 a	 pattern	 recognizer	 is	 basically
saying,	“The	pattern	I	am	responsible	for	is	probably	present.”

Successful	recognition	by	a	module	of	its	pattern	goes	beyond	just	counting
the	 input	 signals	 that	 are	 activated	 (even	 a	 count	weighted	 by	 the	 importance
parameter).	 The	 size	 (of	 each	 input)	 matters.	 There	 is	 another	 parameter	 (for
each	input)	indicating	the	expected	size	of	the	input,	and	yet	another	indicating
how	 variable	 that	 size	 is.	 To	 appreciate	 how	 this	 works,	 suppose	 we	 have	 a
pattern	 recognizer	 that	 is	 responsible	 for	 recognizing	 the	 spoken	word	“steep.”
This	spoken	word	has	four	sounds:	[s],	[t],	[E],	and	[p].	The	[t]	phoneme	is	what
is	 known	 as	 a	 “dental	 consonant,”	 meaning	 that	 it	 is	 created	 by	 the	 tongue
creating	a	burst	of	noise	when	air	breaks	 its	 contact	with	 the	upper	 teeth.	 It	 is
essentially	impossible	to	articulate	the	[t]	phoneme	slowly.	The	[p]	phoneme	is
considered	a	“plosive	consonant”	or	“oral	occlusive,”	meaning	that	it	is	created
when	the	vocal	tract	is	suddenly	blocked	(by	the	lips	in	the	case	of	[p])	so	that
air	 no	 longer	 passes.	 It	 is	 also	 necessarily	 quick.	 The	 [E]	 vowel	 is	 caused	 by
resonances	of	 the	vocal	cord	and	open	mouth.	 It	 is	considered	a	“long	vowel,”
meaning	that	it	persists	for	a	much	longer	period	of	time	than	consonants	such	as
[t]	 and	 [p];	 however,	 its	 duration	 can	 be	 quite	 variable.	 The	 [s]	 phoneme	 is
known	as	a	“sibilant	consonant,”	and	is	caused	by	the	passage	of	air	against	the
edges	of	the	teeth,	which	are	held	close	together.	Its	duration	is	typically	shorter
than	that	of	a	long	vowel	such	as	[E],	but	it	is	also	variable	(in	other	words,	the
[s]	can	be	said	quickly	or	you	can	drag	it	out).

In	our	work	in	speech	recognition,	we	found	that	it	is	necessary	to	encode



this	type	of	information	in	order	to	recognize	speech	patterns.	For	example,	the
words	“step”	and	“steep”	are	very	similar.	Although	the	[e]	phoneme	in	“step”
and	 the	 [E]	 in	“steep”	are	 somewhat	different	vowel	 sounds	 (in	 that	 they	have
different	resonant	frequencies),	 it	 is	not	 reliable	 to	distinguish	 these	 two	words
based	 on	 these	 often	 confusable	 vowel	 sounds.	 It	 is	 much	 more	 reliable	 to
consider	the	observation	that	 the	[e]	in	“step”	is	relatively	brief	compared	with
the	[E]	in	“steep.”

We	can	encode	 this	 type	of	 information	with	 two	numbers	 for	each	 input:
the	 expected	 size	 and	 the	 degree	 of	 variability	 of	 that	 size.	 In	 our	 “steep”
example,	[t]	and	[p]	would	both	have	a	very	short	expected	duration	as	well	as	a
small	expected	variability	(that	is,	we	do	not	expect	to	hear	long	t’s	and	p’s).	The
[s]	sound	would	have	a	short	expected	duration	but	a	larger	variability	because	it
is	possible	to	drag	it	out.	The	[E]	sound	has	a	long	expected	duration	as	well	as	a
high	degree	of	variability.

In	our	speech	examples,	the	“size”	parameter	refers	to	duration,	but	time	is
only	one	possible	dimension.	In	our	work	in	character	recognition,	we	found	that
comparable	 spatial	 information	 was	 important	 in	 order	 to	 recognize	 printed
letters	 (for	 example	 the	 dot	 over	 the	 letter	 “i”	 is	 expected	 to	 be	much	 smaller
than	 the	 portion	 under	 the	 dot).	 At	 much	 higher	 levels	 of	 abstraction,	 the
neocortex	will	deal	with	patterns	with	all	sorts	of	continuums,	such	as	levels	of
attractiveness,	 irony,	 happiness,	 frustration,	 and	 myriad	 others.	 We	 can	 draw
similarities	across	rather	diverse	continuums,	as	Darwin	did	when	he	related	the
physical	 size	 of	 geological	 canyons	 to	 the	 amount	 of	 differentiation	 among
species.

In	a	biological	brain,	the	source	of	these	parameters	comes	from	the	brain’s
own	experience.	We	are	not	born	with	an	innate	knowledge	of	phonemes;	indeed
different	 languages	have	very	different	sets	of	 them.	This	 implies	 that	multiple
examples	 of	 a	 pattern	 are	 encoded	 in	 the	 learned	 parameters	 of	 each	 pattern
recognizer	(as	it	requires	multiple	instances	of	a	pattern	to	ascertain	the	expected
distribution	 of	 magnitudes	 of	 the	 inputs	 to	 the	 pattern).	 In	 some	 AI	 systems,
these	types	of	parameters	are	hand-coded	by	experts	(for	example,	linguists	who
can	tell	us	the	expected	durations	of	different	phonemes,	as	I	articulated	above).
In	my	own	work,	we	found	that	having	an	AI	system	discover	these	parameters
on	its	own	from	training	data	(similar	to	the	way	the	brain	does	it)	was	a	superior
approach.	Sometimes	we	used	a	hybrid	approach;	that	is,	we	primed	the	system
with	the	intuition	of	human	experts	(for	the	initial	settings	of	the	parameters)	and
then	 had	 the	 AI	 system	 automatically	 refine	 these	 estimates	 using	 a	 learning
process	from	real	examples	of	speech.

What	the	pattern	recognition	module	is	doing	is	computing	the	probability



(that	 is,	 the	 likelihood	based	on	all	 of	 its	 previous	 experience)	 that	 the	pattern
that	it	is	responsible	for	recognizing	is	in	fact	currently	represented	by	its	active
inputs.	Each	particular	input	to	the	module	is	active	if	the	corresponding	lower-
level	 pattern	 recognizer	 is	 firing	 (meaning	 that	 that	 lower-level	 pattern	 was
recognized).	 Each	 input	 also	 encodes	 the	 observed	 size	 (on	 some	 appropriate
dimension	 such	 as	 temporal	 duration	 or	 physical	 magnitude	 or	 some	 other
continuum)	so	that	the	size	can	be	compared	(with	the	stored	size	parameters	for
each	input)	by	the	module	in	computing	the	overall	probability	of	the	pattern.

How	 does	 the	 brain	 (and	 how	 can	 an	 AI	 system)	 compute	 the	 overall
probability	 that	 the	 pattern	 (that	 the	module	 is	 responsible	 for	 recognizing)	 is
present	 given	 (1)	 the	 inputs	 (each	 with	 an	 observed	 size),	 (2)	 the	 stored
parameters	on	size	(the	expected	size	and	the	variability	of	size)	for	each	input,
and	(3)	the	parameters	of	the	importance	of	each	input?	In	the	1980s	and	1990s,
I	and	others	pioneered	a	mathematical	method	called	hierarchical	hidden	Markov
models	 for	 learning	 these	 parameters	 and	 then	 using	 them	 to	 recognize
hierarchical	patterns.	We	used	this	technique	in	the	recognition	of	human	speech
as	well	as	the	understanding	of	natural	language.	I	describe	this	approach	further
in	chapter	7.

Getting	 back	 to	 the	 flow	 of	 recognition	 from	 one	 level	 of	 pattern
recognizers	to	the	next,	in	the	above	example	we	see	the	information	flow	up	the
conceptual	hierarchy	from	basic	letter	features	to	letters	to	words.	Recognitions
will	continue	to	flow	up	from	there	to	phrases	and	then	more	complex	language
structures.	 If	 we	 go	 up	 several	 dozen	 more	 levels,	 we	 get	 to	 higher-level
concepts	 like	irony	and	envy.	Even	though	every	pattern	recognizer	 is	working
simultaneously,	 it	 does	 take	 time	 for	 recognitions	 to	 move	 upward	 in	 this
conceptual	hierarchy.	Traversing	each	level	takes	between	a	few	hundredths	to	a
few	 tenths	 of	 a	 second	 to	 process.	Experiments	 have	 shown	 that	 a	moderately
high-level	pattern	such	as	a	face	takes	at	least	a	tenth	of	a	second.	It	can	take	as
long	 as	 an	 entire	 second	 if	 there	 are	 significant	 distortions.	 If	 the	 brain	 were
sequential	 (like	 conventional	 computers)	 and	 was	 performing	 each	 pattern
recognition	 in	 sequence,	 it	 would	 have	 to	 consider	 every	 possible	 low-level
pattern	before	moving	on	to	the	next	level.	Thus	it	would	take	many	millions	of
cycles	 just	 to	 go	 through	 each	 level.	 That	 is	 exactly	 what	 happens	 when	 we
simulate	these	processes	on	a	computer.	Keep	in	mind,	however,	that	computers
process	millions	of	times	faster	than	our	biological	circuits.

A	 very	 important	 point	 to	 note	 here	 is	 that	 information	 flows	 down	 the
conceptual	 hierarchy	 as	 well	 as	 up.	 If	 anything,	 this	 downward	 flow	 is	 even
more	 significant.	 If,	 for	 example,	 we	 are	 reading	 from	 left	 to	 right	 and	 have
already	 seen	 and	 recognized	 the	 letters	 “A,”	 “P,”	 “P,”	 and	 “L,”	 the	 “APPLE”



recognizer	will	predict	that	it	is	likely	to	see	an	“E”	in	the	next	position.	It	will
send	a	signal	down	to	the	“E”	recognizer	saying,	in	effect,	“Please	be	aware	that
there	is	a	high	likelihood	that	you	will	see	your	‘E’	pattern	very	soon,	so	be	on
the	lookout	for	 it.”	The	“E”	recognizer	 then	adjusts	 its	 threshold	such	that	 it	 is
more	likely	to	recognize	an	“E.”	So	if	an	image	appears	next	that	is	vaguely	like
an	“E,”	but	is	perhaps	smudged	such	that	it	would	not	have	been	recognized	as
an	 “E”	 under	 “normal”	 circumstances,	 the	 “E”	 recognizer	 may	 nonetheless
indicate	that	it	has	indeed	seen	an	“E,”	since	it	was	expected.

The	 neocortex	 is,	 therefore,	 predicting	 what	 it	 expects	 to	 encounter.
Envisaging	the	future	is	one	of	the	primary	reasons	we	have	a	neocortex.	At	the
highest	conceptual	 level,	we	are	continually	making	predictions—who	is	going
to	 walk	 through	 the	 door	 next,	 what	 someone	 is	 likely	 to	 say	 next,	 what	 we
expect	to	see	when	we	turn	the	corner,	the	likely	results	of	our	own	actions,	and
so	on.	These	predictions	are	constantly	occurring	at	every	level	of	the	neocortex
hierarchy.	 We	 often	 misrecognize	 people	 and	 things	 and	 words	 because	 our
threshold	for	confirming	an	expected	pattern	is	too	low.

In	addition	to	positive	signals,	there	are	also	negative	or	inhibitory	signals
which	indicate	that	a	certain	pattern	is	less	likely	to	exist.	These	can	come	from
lower	conceptual	levels	(for	example,	the	recognition	of	a	mustache	will	inhibit
the	 likelihood	 that	 a	 person	 I	 see	 in	 the	 checkout	 line	 is	my	wife),	 or	 from	 a
higher	level	(for	example,	I	know	that	my	wife	is	on	a	trip,	so	the	person	in	the
checkout	 line	 can’t	 be	 she).	When	 a	 pattern	 recognizer	 receives	 an	 inhibitory
signal,	it	raises	the	recognition	threshold,	but	it	is	still	possible	for	the	pattern	to
fire	(so	if	the	person	in	line	really	is	her,	I	may	still	recognize	her).



The	Nature	of	 the	Data	Flowing	 into	a	Neocortical	Pattern
Recognizer

Let’s	consider	 further	what	 the	data	 for	a	pattern	 looks	 like.	 If	 the	pattern	 is	 a
face,	 the	 data	 exists	 in	 at	 least	 two	 dimensions.	We	 cannot	 say	 that	 the	 eyes
necessarily	come	first,	followed	by	the	nose,	and	so	on.	The	same	thing	is	true
for	most	 sounds.	 A	musical	 piece	 has	 at	 least	 two	 dimensions.	 There	may	 be
more	 than	 one	 instrument	 and/or	 voice	 making	 sounds	 at	 the	 same	 time.
Moreover,	a	 single	note	of	a	complex	 instrument	 such	as	 the	piano	consists	of
multiple	frequencies.	A	single	human	voice	consists	of	varying	levels	of	energy
in	 dozens	 of	 different	 frequency	 bands	 simultaneously.	 So	 a	 pattern	 of	 sound
may	be	complex	at	any	one	instant,	and	these	complex	instants	stretch	out	over
time.	Tactile	inputs	are	also	two-dimensional,	since	the	skin	is	a	two-dimensional
sense	organ,	and	such	patterns	may	change	over	the	third	dimension	of	time.

So	 it	 would	 seem	 that	 the	 input	 to	 a	 neocortex	 pattern	 processor	 must
comprise	 two-	 if	 not	 three-dimensional	 patterns.	 However,	 we	 can	 see	 in	 the
structure	of	the	neocortex	that	the	pattern	inputs	are	only	one-dimensional	lists.
All	 of	 our	 work	 in	 the	 field	 of	 creating	 artificial	 pattern	 recognition	 systems
(such	 as	 speech	 recognition	 and	 visual	 recognition	 systems)	 demonstrates	 that
we	 can	 (and	 did)	 represent	 two-	 and	 three-dimensional	 phenomena	 with	 such
one-dimensional	lists.	I’ll	describe	how	these	methods	work	in	chapter	7,	but	for
now	 we	 can	 proceed	 with	 the	 understanding	 that	 the	 input	 to	 each	 pattern
processor	is	a	one-dimensional	list,	even	though	the	pattern	itself	may	inherently
reflect	more	than	one	dimension.

We	 should	 factor	 in	 at	 this	 point	 the	 insight	 that	 the	 patterns	 we	 have
learned	to	recognize	(for	example,	a	specific	dog	or	the	general	idea	of	a	“dog,”
a	musical	note	or	a	piece	of	music)	are	exactly	the	same	mechanism	that	is	the
basis	 for	 our	 memories.	 Our	 memories	 are	 in	 fact	 patterns	 organized	 as	 lists
(where	each	item	in	each	list	is	another	pattern	in	the	cortical	hierarchy)	that	we
have	learned	and	then	recognize	when	presented	with	the	appropriate	stimulus.
In	fact,	memories	exist	in	the	neocortex	in	order	to	be	recognized.

The	 only	 exception	 to	 this	 is	 at	 the	 lowest	 possible	 conceptual	 level,	 in
which	 the	 input	 data	 to	 a	 pattern	 represents	 specific	 sensory	 information	 (for
example,	 image	 data	 from	 the	 optic	 nerve).	 Even	 this	 lowest	 level	 of	 pattern,
however,	has	been	significantly	 transformed	 into	simple	patterns	by	 the	 time	 it
reaches	the	cortex.	The	lists	of	patterns	that	constitute	a	memory	are	in	forward



order,	and	we	are	able	to	remember	our	memories	only	in	that	order,	hence	the
difficulty	we	have	in	reversing	our	memories.

A	memory	needs	to	be	triggered	by	another	thought/memory	(these	are	the
same	 thing).	 We	 can	 experience	 this	 mechanism	 of	 triggering	 when	 we	 are
perceiving	a	pattern.	When	we	perceived	“A,”	“P,”	“P,”	and	“L,”	the	“A	P	P	L	E”
pattern	predicted	that	we	would	see	an	“E”	and	triggered	the	“E”	pattern	that	it	is
now	expected.	Our	cortex	is	thereby	“thinking”	of	seeing	an	“E”	even	before	we
see	it.	If	this	particular	interaction	in	our	cortex	has	our	attention,	we	will	think
about	 “E”	 before	 we	 see	 it	 or	 even	 if	 we	 never	 see	 it.	 A	 similar	 mechanism
triggers	old	memories.	Usually	there	is	an	entire	chain	of	such	links.	Even	if	we
do	 have	 some	 level	 of	 awareness	 of	 the	 memories	 (that	 is,	 the	 patterns)	 that
triggered	 the	old	memory,	memories	 (patterns)	do	not	have	 language	or	 image
labels.	This	is	the	reason	why	old	memories	may	seem	to	suddenly	jump	into	our
awareness.	Having	been	buried	and	not	activated	for	perhaps	years,	they	need	a
trigger	in	the	same	way	that	a	Web	page	needs	a	Web	link	to	be	activated.	And
just	as	a	Web	page	can	become	“orphaned”	because	no	other	page	links	to	it,	the
same	thing	can	happen	to	our	memories.

Our	 thoughts	 are	 largely	 activated	 in	 one	 of	 two	 modes,	 undirected	 and
directed,	both	of	which	use	these	same	cortical	links.	In	the	undirected	mode,	we
let	 the	 links	 play	 themselves	 out	 without	 attempting	 to	 move	 them	 in	 any
particular	 direction.	 Some	 forms	 of	 meditation	 (such	 as	 Transcendental
Meditation,	 which	 I	 practice)	 are	 based	 on	 letting	 the	 mind	 do	 exactly	 this.
Dreams	have	this	quality	as	well.

In	directed	 thinking	we	attempt	 to	step	 through	a	more	orderly	process	of
recalling	 a	 memory	 (a	 story,	 for	 example)	 or	 solving	 a	 problem.	 This	 also
involves	stepping	through	lists	in	our	neocortex,	but	the	less	structured	flurry	of
undirected	 thought	 will	 also	 accompany	 the	 process.	 The	 full	 content	 of	 our
thinking	is	therefore	very	disorderly,	a	phenomenon	that	James	Joyce	illuminated
in	his	“stream	of	consciousness”	novels.

As	 you	 think	 through	 the	 memories/stories/patterns	 in	 your	 life,	 whether
they	involve	a	chance	encounter	with	a	mother	with	a	baby	carriage	and	baby	on
a	 walk	 or	 the	 more	 important	 narrative	 of	 how	 you	 met	 your	 spouse,	 your
memories	 consist	 of	 a	 sequence	 of	 patterns.	 Because	 these	 patterns	 are	 not
labeled	 with	 words	 or	 sounds	 or	 pictures	 or	 videos,	 when	 you	 try	 to	 recall	 a
significant	event,	you	will	essentially	be	reconstructing	the	images	in	your	mind,
because	the	actual	images	do	not	exist.

If	we	were	to	“read”	the	mind	of	someone	and	peer	at	exactly	what	is	going
on	in	her	neocortex,	it	would	be	very	difficult	to	interpret	her	memories,	whether
we	were	to	take	a	look	at	patterns	that	are	simply	stored	in	the	neocortex	waiting



to	 be	 triggered	 or	 those	 that	 have	 been	 triggered	 and	 are	 currently	 being
experienced	 as	 active	 thoughts.	 What	 we	 would	 “see”	 is	 the	 simultaneous
activation	of	millions	of	pattern	recognizers.	A	hundredth	of	a	second	later,	we
would	 see	 a	 different	 set	 of	 a	 comparable	 number	 of	 activated	 pattern
recognizers.	 Each	 such	 pattern	 would	 be	 a	 list	 of	 other	 patterns,	 and	 each	 of
those	patterns	would	be	a	 list	of	other	patterns,	and	so	on	until	we	reached	the
most	 elementary	 simple	 patterns	 at	 the	 lowest	 level.	 It	 would	 be	 extremely
difficult	 to	 interpret	 what	 these	 higher-level	 patterns	 meant	 without	 actually
copying	 all	 of	 the	 information	 at	 every	 level	 into	 our	 own	 cortex.	 Thus	 each
pattern	in	our	neocortex	is	meaningful	only	in	light	of	all	the	information	carried
in	 the	 levels	below	it.	Moreover,	other	patterns	at	 the	same	level	and	at	higher
levels	are	also	relevant	in	interpreting	a	particular	pattern	because	they	provide
context.	True	mind	 reading,	 therefore,	would	 necessitate	 not	 just	 detecting	 the
activations	of	 the	 relevant	axons	 in	a	person’s	brain,	but	examining	essentially
her	entire	neocortex	with	all	of	its	memories	to	understand	these	activations.

As	we	experience	our	own	thoughts	and	memories,	we	“know”	what	 they
mean,	but	they	do	not	exist	as	readily	explainable	thoughts	and	recollections.	If
we	want	to	share	them	with	others,	we	need	to	translate	them	into	language.	This
task	 is	 also	 accomplished	 by	 the	 neocortex,	 using	 pattern	 recognizers	 trained
with	patterns	that	we	have	learned	for	the	purpose	of	using	language.	Language
is	 itself	 highly	 hierarchical	 and	 evolved	 to	 take	 advantage	 of	 the	 hierarchical
nature	of	the	neocortex,	which	in	turn	reflects	the	hierarchical	nature	of	reality.
The	innate	ability	of	humans	to	learn	the	hierarchical	structures	in	language	that
Noam	Chomsky	wrote	 about	 reflects	 the	 structure	 of	 the	neocortex.	 In	 a	 2002
paper	 he	 coauthored,	Chomsky	 cites	 the	 attribute	 of	 “recursion”	 as	 accounting
for	the	unique	language	faculty	of	the	human	species.4	Recursion,	according	 to
Chomsky,	is	the	ability	to	put	together	small	parts	into	a	larger	chunk,	and	then
use	 that	 chunk	 as	 a	 part	 in	 yet	 another	 structure,	 and	 to	 continue	 this	 process
iteratively.	In	this	way	we	are	able	to	build	the	elaborate	structures	of	sentences
and	 paragraphs	 from	 a	 limited	 set	 of	 words.	 Although	 Chomsky	 was	 not
explicitly	 referring	 here	 to	 brain	 structure,	 the	 capability	 he	 is	 describing	 is
exactly	what	the	neocortex	does.

Lower	 species	 of	 mammals	 largely	 use	 up	 their	 neocortex	 with	 the
challenges	of	 their	particular	 lifestyles.	The	human	 species	 acquired	additional
capacities	 by	 having	 grown	 substantially	 more	 cortex	 to	 handle	 spoken	 and
written	language.	Some	people	have	learned	such	skills	better	than	others.	If	we
have	 told	 a	 particular	 story	 many	 times,	 we	 will	 begin	 to	 actually	 learn	 the
sequence	of	language	that	describes	the	story	as	a	series	of	separate	sequences.
Even	 in	 this	 case	 our	memory	 is	 not	 a	 strict	 sequence	 of	words,	 but	 rather	 of



language	structures	that	we	need	to	translate	into	specific	word	sequences	each
time	we	deliver	the	story.	That	is	why	we	tell	a	story	a	bit	differently	each	time
we	share	it	(unless	we	learn	the	exact	word	sequence	as	a	pattern).

For	each	of	these	descriptions	of	specific	thought	processes,	we	also	need	to
consider	the	issue	of	redundancy.	As	I	mentioned,	we	don’t	have	a	single	pattern
representing	the	important	entities	in	our	lives,	whether	those	entities	constitute
sensory	categories,	 language	concepts,	or	memories	of	events.	Every	 important
pattern—at	 every	 level—is	 repeated	 many	 times.	 Some	 of	 these	 recurrences
represent	simple	repetitions,	whereas	many	represent	different	perspectives	and
vantage	points.	This	is	a	principal	reason	why	we	can	recognize	a	familiar	face
from	various	orientations	and	under	a	range	of	lighting	conditions.	Each	level	up
the	 hierarchy	 has	 substantial	 redundancy,	 allowing	 sufficient	 variability	 that	 is
consistent	with	that	concept.

So	if	we	were	to	imagine	examining	your	neocortex	when	you	were	looking
at	a	particular	loved	one,	we	would	see	a	great	many	firings	of	the	axons	of	the
pattern	 recognizers	 at	 every	 level,	 from	 the	 basic	 level	 of	 primitive	 sensory
patterns	up	 to	many	different	patterns	 representing	 that	 loved	one’s	 image.	We
would	 also	 see	 massive	 numbers	 of	 firings	 representing	 other	 aspects	 of	 the
situation,	such	as	that	person’s	movements,	what	she	is	saying,	and	so	on.	So	if
the	 experience	 seems	 much	 richer	 than	 just	 an	 orderly	 trip	 up	 a	 hierarchy	 of
features,	it	is.

A	 computer	 simulation	 of	 the	 firings	 of	 many	 simultaneous	 pattern



recognizers	in	the	neocortex.
But	the	basic	mechanism	of	going	up	a	hierarchy	of	pattern	recognizers	in

which	 each	 higher	 conceptual	 level	 represents	 a	 more	 abstract	 and	 more
integrated	 concept	 remains	 valid.	 The	 flow	 of	 information	 downward	 is	 even
greater,	 as	 each	 activated	 level	 of	 recognized	 pattern	 sends	 predictions	 to	 the
next	lower-level	pattern	recognizer	of	what	it	 is	 likely	to	be	encountering	next.
The	apparent	lushness	of	human	experience	is	a	result	of	the	fact	that	all	of	the
hundreds	 of	 millions	 of	 pattern	 recognizers	 in	 our	 neocortex	 are	 considering
their	inputs	simultaneously.

In	chapter	5	I’ll	discuss	the	flow	of	information	from	touch,	vision,	hearing,
and	other	sensory	organs	into	the	neocortex.	These	early	inputs	are	processed	by
cortical	 regions	 that	 are	 devoted	 to	 relevant	 types	 of	 sensory	 input	 (although
there	 is	 enormous	 plasticity	 in	 the	 assignment	 of	 these	 regions,	 reflecting	 the
basic	 uniformity	 of	 function	 in	 the	 neocortex).	 The	 conceptual	 hierarchy
continues	 above	 the	 highest	 concepts	 in	 each	 sensory	 region	 of	 the	 neocortex.
The	cortical	association	areas	 integrate	 input	 from	the	different	 sensory	 inputs.
When	we	hear	something	that	perhaps	sounds	like	our	spouse’s	voice,	and	then
see	something	that	is	perhaps	indicative	of	her	presence,	we	don’t	engage	in	an
elaborate	 process	 of	 logical	 deduction;	 rather,	 we	 instantly	 perceive	 that	 our
spouse	 is	 present	 from	 the	 combination	 of	 these	 sensory	 recognitions.	 We
integrate	 all	 of	 the	 germane	 sensory	 and	 perceptual	 cues—perhaps	 even	 the
smell	of	her	perfume	or	his	cologne—as	one	multilevel	perception.

At	a	conceptual	 level	above	 the	cortical	 sensory	association	areas,	we	are
capable	 of	 dealing	 with—perceiving,	 remembering,	 and	 thinking	 about—even
more	abstract	concepts.	At	the	highest	level	we	recognize	patterns	such	as	that’s
funny,	 or	 she’s	pretty,	 or	 that’s	 ironic,	 and	 so	 on.	Our	memories	 include	 these
abstract	recognition	patterns	as	well.	For	example,	we	might	recall	that	we	were
taking	a	walk	with	someone	and	that	she	said	something	funny,	and	we	laughed,
though	we	may	not	 remember	 the	actual	 joke	 itself.	The	memory	sequence	for
that	recollection	has	simply	recorded	the	perception	of	humor	but	not	the	precise
content	of	what	was	funny.

In	the	previous	chapter	I	noted	 that	we	can	often	recognize	a	pattern	even
though	we	don’t	recognize	it	well	enough	to	be	able	to	describe	it.	For	example,
I	believe	I	could	pick	out	a	picture	of	the	woman	with	the	baby	carriage	whom	I
saw	earlier	 today	from	among	a	group	of	pictures	of	other	women,	despite	 the
fact	that	I	am	unable	to	actually	visualize	her	and	cannot	describe	much	specific
about	her.	In	this	case	my	memory	of	her	is	a	list	of	certain	high-level	features.
These	features	do	not	have	language	or	image	labels	attached	to	them,	and	they
are	 not	 pixel	 images,	 so	 while	 I	 am	 able	 to	 think	 about	 her,	 I	 am	 unable	 to



describe	her.	However,	if	I	am	presented	with	a	picture	of	her,	I	can	process	the
image,	which	results	in	the	recognition	of	the	same	high-level	features	that	were
recognized	the	first	time	I	saw	her.	I	would	be	able	to	thereby	determine	that	the
features	match	and	thus	confidently	pick	out	her	picture.

Even	though	I	saw	this	woman	only	once	on	my	walk,	 there	are	probably
already	multiple	copies	of	her	pattern	in	my	neocortex.	However,	if	I	don’t	think
about	her	for	a	given	period	of	time,	then	these	pattern	recognizers	will	become
reassigned	to	other	patterns.	That	is	why	memories	grow	dimmer	with	time:	The
amount	of	redundancy	becomes	reduced	until	certain	memories	become	extinct.
However,	now	that	I	have	memorialized	this	particular	woman	by	writing	about
her	here,	I	probably	won’t	forget	her	so	easily.



Autoassociation	and	Invariance

In	the	previous	chapter	I	discussed	how	we	can	recognize	a	pattern	even	if	 the
entire	 pattern	 is	 not	 present,	 and	 also	 if	 it	 is	 distorted.	 The	 first	 capability	 is
called	autoassociation:	the	ability	to	associate	a	pattern	with	a	part	of	itself.	The
structure	of	each	pattern	recognizer	inherently	supports	this	capability.

As	each	 input	 from	a	 lower-level	pattern	 recognizer	 flows	up	 to	a	higher-
level	 one,	 the	 connection	 can	 have	 a	 “weight,”	 indicating	 how	 important	 that
particular	 element	 in	 the	 pattern	 is.	 Thus	 the	 more	 significant	 elements	 of	 a
pattern	 are	 more	 heavily	 weighted	 in	 considering	 whether	 that	 pattern	 should
trigger	 as	 “recognized.”	 Lincoln’s	 beard,	 Elvis’s	 sideburns,	 and	 Einstein’s
famous	 tongue	 gesture	 are	 likely	 to	 have	 high	 weights	 in	 the	 patterns	 we’ve
learned	 about	 the	 appearance	 of	 these	 iconic	 figures.	 The	 pattern	 recognizer
computes	a	probability	that	takes	the	importance	parameters	into	account.	Thus
the	overall	probability	is	lower	if	one	or	more	of	the	elements	is	missing,	though
the	 threshold	 of	 recognition	 may	 nonetheless	 be	 met.	 As	 I	 pointed	 out,	 the
computation	 of	 the	 overall	 probability	 (that	 the	 pattern	 is	 present)	 is	 more
complicated	than	a	simple	weighted	sum	in	that	the	size	parameters	also	need	to
be	considered.

If	 the	 pattern	 recognizer	 has	 received	 a	 signal	 from	 a	 higher-level
recognizer	that	its	pattern	is	“expected,”	then	the	threshold	is	effectively	lowered
(that	is,	made	easier	to	achieve).	Alternatively,	such	a	signal	may	simply	add	to
the	 total	 of	 the	weighted	 inputs,	 thereby	 compensating	 for	 a	missing	 element.
This	happens	at	every	level,	so	that	a	pattern	such	as	a	face	that	is	several	levels
up	from	the	bottom	may	be	recognized	even	with	multiple	missing	features.

The	 ability	 to	 recognize	 patterns	 even	 when	 aspects	 of	 them	 are
transformed	 is	 called	 feature	 invariance,	 and	 is	 dealt	with	 in	 four	ways.	 First,
there	 are	 global	 transformations	 that	 are	 accomplished	 before	 the	 neocortex
receives	sensory	data.	We	will	discuss	the	voyage	of	sensory	data	from	the	eyes,
ears,	and	skin	in	the	section	“The	Sensory	Pathway”	on	page	94.

The	 second	 method	 takes	 advantage	 of	 the	 redundancy	 in	 our	 cortical
pattern	memory.	Especially	for	important	items,	we	have	learned	many	different
perspectives	 and	 vantage	 points	 for	 each	 pattern.	 Thus	 many	 variations	 are
separately	stored	and	processed.

The	third	and	most	powerful	method	is	the	ability	to	combine	two	lists.	One
list	can	have	a	set	of	transformations	that	we	have	learned	may	apply	to	a	certain



category	of	 pattern;	 the	 cortex	will	 apply	 this	 same	 list	 of	 possible	 changes	 to
another	 pattern.	 That	 is	 how	 we	 understand	 such	 language	 phenomena	 as
metaphors	and	similes.

For	example,	we	have	 learned	 that	certain	phonemes	 (the	basic	 sounds	of
language)	may	be	missing	 in	spoken	speech	(for	example,	“goin’”).	 If	we	 then
learn	a	new	spoken	word	(for	example,	“driving”),	we	will	be	able	to	recognize
that	word	if	one	of	its	phonemes	is	missing	even	if	we	have	never	experienced
that	word	in	that	form	before,	because	we	have	become	familiar	with	the	general
phenomenon	of	certain	phonemes	being	omitted.	As	another	example,	we	may
learn	 that	 a	 particular	 artist	 likes	 to	 emphasize	 (by	 making	 larger)	 certain
elements	of	a	face,	such	as	the	nose.	We	can	then	identify	a	face	with	which	we
are	familiar	to	which	that	modification	has	been	applied	even	if	we	have	never
seen	that	modification	on	that	face.	Certain	artistic	modifications	emphasize	the
very	features	that	are	recognized	by	our	pattern	recognition–based	neocortex.	As
mentioned,	that	is	precisely	the	basis	of	caricature.

The	 fourth	 method	 derives	 from	 the	 size	 parameters	 that	 allow	 a	 single
module	 to	encode	multiple	 instances	of	a	pattern.	For	example,	we	have	heard
the	 word	 “steep”	 many	 times.	 A	 particular	 pattern	 recognition	 module	 that	 is
recognizing	this	spoken	word	can	encode	these	multiple	examples	by	indicating
that	 the	 duration	 of	 [E]	 has	 a	 high	 expected	 variability.	 If	 all	 the	modules	 for
words	 including	 [E]	 share	 a	 similar	 phenomenon,	 that	 variability	 could	 be
encoded	in	the	models	for	[E]	itself.	However,	different	words	incorporating	[E]
(or	many	other	phonemes)	may	have	different	amounts	of	expected	variability.
For	example,	the	word	“peak”	is	likely	not	to	have	the	[E]	phoneme	as	drawn	out
as	in	the	word	“steep.”



Learning

Are	we	not	ourselves	creating	our	successors	in	the	supremacy	of	the	earth?
Daily	adding	to	the	beauty	and	delicacy	of	their	organization,	daily	giving
them	greater	skill	and	supplying	more	and	more	of	that	self-regulating	self-
acting	power	which	will	be	better	than	any	intellect?

—Samuel	Butler,	1871
	

The	principal	activities	of	brains	are	making	changes	in	themselves.
—Marvin	Minsky,	The	Society	of	Mind

	

	
So	 far	we	have	 examined	how	we	 recognize	 (sensory	 and	perceptual)	 patterns
and	 recall	 sequences	 of	 patterns	 (our	 memory	 of	 things,	 people,	 and	 events).
However,	we	are	not	born	with	a	neocortex	filled	with	any	of	these	patterns.	Our
neocortex	 is	 virgin	 territory	when	our	 brain	 is	 created.	 It	 has	 the	 capability	 of
learning	 and	 therefore	 of	 creating	 connections	 between	 its	 pattern	 recognizers,
but	it	gains	those	connections	from	experience.

This	 learning	 process	 begins	 even	 before	 we	 are	 born,	 occurring
simultaneously	with	the	biological	process	of	actually	growing	a	brain.	A	fetus
already	has	a	brain	at	one	month,	although	it	is	essentially	a	reptile	brain,	as	the
fetus	 actually	 goes	 through	 a	 high-speed	 re-creation	 of	 biological	 evolution	 in
the	womb.	The	natal	brain	 is	distinctly	a	human	brain	with	a	human	neocortex
by	the	time	it	reaches	the	third	trimester	of	pregnancy.	At	this	time	the	fetus	is
having	 experiences,	 and	 the	 neocortex	 is	 learning.	 She	 can	 hear	 sounds,
especially	her	mother’s	heartbeat,	which	 is	one	 likely	 reason	 that	 the	 rhythmic
qualities	of	music	are	universal	to	human	culture.	Every	human	civilization	ever
discovered	has	had	music	as	part	of	its	culture,	which	is	not	the	case	with	other
art	 forms,	 such	 as	 pictorial	 art.	 It	 is	 also	 the	 case	 that	 the	 beat	 of	 music	 is
comparable	 to	 our	 heart	 rate.	 Music	 beats	 certainly	 vary—otherwise	 music
would	 not	 keep	 our	 interest—but	 heartbeats	 vary	 also.	 An	 overly	 regular
heartbeat	 is	 actually	 a	 symptom	 of	 a	 diseased	 heart.	 The	 eyes	 of	 a	 fetus	 are
partially	open	twenty-six	weeks	after	conception,	and	are	fully	open	most	of	the
time	 by	 twenty-eight	 weeks	 after	 conception.	 There	 may	 not	 be	 much	 to	 see
inside	 the	 womb,	 but	 there	 are	 patterns	 of	 light	 and	 dark	 that	 the	 neocortex



begins	to	process.
So	while	 a	 newborn	 baby	 has	 had	 a	 bit	 of	 experience	 in	 the	womb,	 it	 is

clearly	 limited.	 The	 neocortex	 may	 also	 learn	 from	 the	 old	 brain	 (a	 topic	 I
discuss	 in	 chapter	 5),	 but	 in	 general	 at	 birth	 the	 child	 has	 a	 lot	 to	 learn—
everything	from	basic	primitive	sounds	and	shapes	to	metaphors	and	sarcasm.

Learning	 is	 critical	 to	 human	 intelligence.	 If	we	were	 to	 perfectly	model
and	simulate	the	human	neocortex	(as	the	Blue	Brain	Project	is	attempting	to	do)
and	 all	 of	 the	 other	 brain	 regions	 that	 it	 requires	 to	 function	 (such	 as	 the
hippocampus	and	thalamus),	it	would	not	be	able	to	do	very	much—in	the	same
way	 that	 a	 newborn	 infant	 cannot	 do	 much	 (other	 than	 to	 be	 cute,	 which	 is
definitely	a	key	survival	adaptation).

Learning	 and	 recognition	 take	 place	 simultaneously.	 We	 start	 learning
immediately,	 and	 as	 soon	 as	 we’ve	 learned	 a	 pattern,	 we	 immediately	 start
recognizing	 it.	 The	 neocortex	 is	 continually	 trying	 to	make	 sense	 of	 the	 input
presented	 to	 it.	 If	 a	 particular	 level	 is	 unable	 to	 fully	 process	 and	 recognize	 a
pattern,	 it	 gets	 sent	 to	 the	 next	 higher	 level.	 If	 none	 of	 the	 levels	 succeeds	 in
recognizing	a	pattern,	it	is	deemed	to	be	a	new	pattern.	Classifying	a	pattern	as
new	does	not	necessarily	mean	that	every	aspect	of	it	is	new.	If	we	are	looking	at
the	 paintings	 of	 a	 particular	 artist	 and	 see	 a	 cat’s	 face	 with	 the	 nose	 of	 an
elephant,	 we	 will	 be	 able	 to	 identify	 each	 of	 the	 distinctive	 features	 but	 will
notice	that	this	combined	pattern	is	something	novel,	and	are	likely	to	remember
it.	 Higher	 conceptual	 levels	 of	 the	 neocortex,	 which	 understand	 context—for
example,	the	circumstance	that	this	picture	is	an	example	of	a	particular	artist’s
work	and	that	we	are	attending	an	opening	of	a	showing	of	new	paintings	by	that
artist—will	note	the	unusual	combination	of	patterns	in	the	cat-elephant	face	but
will	also	include	these	contextual	details	as	additional	memory	patterns.

New	 memories	 such	 as	 the	 cat-elephant	 face	 are	 stored	 in	 an	 available
pattern	 recognizer.	 The	 hippocampus	 plays	 a	 role	 in	 this	 process,	 and	 we’ll
discuss	what	is	known	about	the	actual	biological	mechanisms	in	the	following
chapter.	 For	 the	 purposes	 of	 our	 neocortex	 model,	 it	 is	 sufficient	 to	 say	 that
patterns	 that	 are	 not	 otherwise	 recognized	 are	 stored	 as	 new	 patterns	 and	 are
appropriately	 connected	 to	 the	 lower-level	 patterns	 that	 form	 them.	 The	 cat-
elephant	 face,	 for	example,	will	be	 stored	 in	 several	different	ways:	The	novel
arrangement	 of	 facial	 parts	will	 be	 stored	 as	well	 as	 contextual	memories	 that
include	 the	artist,	 the	 situation,	and	perhaps	 the	 fact	 that	we	 laughed	when	we
first	saw	it.

Memories	that	are	successfully	recognized	may	also	result	in	the	creation	of
a	 new	 pattern	 to	 achieve	 greater	 redundancy.	 If	 patterns	 are	 not	 perfectly
recognized,	they	are	likely	to	be	stored	as	reflecting	a	different	perspective	of	the



item	that	was	recognized.
What,	then,	is	the	overall	method	for	determining	what	patterns	get	stored?

In	mathematical	terms,	the	problem	can	be	stated	as	follows:	Using	the	available
limits	of	pattern	storage,	how	do	we	optimally	represent	 the	 input	patterns	 that
have	thus	far	been	presented?	While	it	makes	sense	to	allow	for	a	certain	amount
of	redundancy,	it	would	not	be	practical	to	fill	up	the	entire	available	storage	area
(that	is,	the	entire	neocortex)	with	repeated	patterns,	as	that	would	not	allow	for
a	sufficient	diversity	of	patterns.	A	pattern	such	as	 the	 [E]	phoneme	 in	spoken
words	is	something	we	have	experienced	countless	times.	It	 is	a	simple	pattern
of	 sound	 frequencies	 and	 it	 undoubtedly	 enjoys	 significant	 redundancy	 in	 our
neocortex.	We	could	fill	up	our	entire	neocortex	with	repeated	patterns	of	the	[E]
phoneme.	There	is	a	limit,	however,	to	useful	redundancy,	and	a	common	pattern
such	as	this	clearly	has	reached	it.

There	is	a	mathematical	solution	to	this	optimization	problem	called	linear
programming,	which	solves	for	the	best	possible	allocation	of	limited	resources
(in	this	case,	a	limited	number	of	pattern	recognizers)	that	would	represent	all	of
the	cases	on	which	the	system	has	trained.	Linear	programming	is	designed	for
systems	with	one-dimensional	inputs,	which	is	another	reason	why	it	is	optimal
to	 represent	 the	 input	 to	 each	 pattern	 recognition	module	 as	 a	 linear	 string	 of
inputs.	We	can	use	this	mathematical	approach	in	a	software	system,	and	though
an	actual	brain	is	further	constrained	by	the	physical	connections	it	has	available
that	it	can	adapt	between	pattern	recognizers,	the	method	is	nonetheless	similar.

An	 important	 implication	 of	 this	 optimal	 solution	 is	 that	 experiences	 that
are	 routine	 are	 recognized	 but	 do	 not	 result	 in	 a	 permanent	 memory’s	 being
made.	With	regard	to	my	walk,	I	experienced	millions	of	patterns	at	every	level,
from	basic	visual	edges	and	shadings	to	objects	such	as	lampposts	and	mailboxes
and	 people	 and	 animals	 and	 plants	 that	 I	 passed.	 Almost	 none	 of	 what	 I
experienced	 was	 unique,	 and	 the	 patterns	 that	 I	 recognized	 had	 long	 since
reached	 their	 optimal	 level	 of	 redundancy.	 The	 result	 is	 that	 I	 recall	 almost
nothing	 from	 this	 walk.	 The	 few	 details	 that	 I	 do	 remember	 are	 likely	 to	 get
overwritten	 with	 new	 patterns	 by	 the	 time	 I	 take	 another	 few	 dozen	 walks—
except	for	the	fact	that	I	have	now	memorialized	this	particular	walk	by	writing
about	it.

One	 important	 point	 that	 applies	 to	 both	 our	 biological	 neocortex	 and
attempts	 to	emulate	 it	 is	 that	 it	 is	difficult	 to	 learn	 too	many	conceptual	 levels
simultaneously.	We	can	essentially	learn	one	or	at	most	two	conceptual	levels	at
a	 time.	Once	 that	 learning	 is	 relatively	 stable,	we	 can	 go	 on	 to	 learn	 the	 next
level.	We	may	 continue	 to	 fine-tune	 the	 learning	 in	 the	 lower	 levels,	 but	 our
learning	 focus	 is	 on	 the	 next	 level	 of	 abstraction.	 This	 is	 true	 at	 both	 the



beginning	of	life,	as	newborns	struggle	with	basic	shapes,	and	later	in	life,	as	we
struggle	to	learn	new	subject	matter,	one	level	of	complexity	at	a	time.	We	find
the	same	phenomenon	in	machine	emulations	of	the	neocortex.	However,	if	they
are	 presented	 increasingly	 abstract	 material	 one	 level	 at	 a	 time,	 machines	 are
capable	of	learning	just	as	humans	do	(although	not	yet	with	as	many	conceptual
levels).

The	output	of	a	pattern	can	feed	back	to	a	pattern	at	a	lower	level	or	even	to
the	 pattern	 itself,	 giving	 the	 human	 brain	 its	 powerful	 recursive	 ability.	 An
element	 of	 a	 pattern	 can	 be	 a	 decision	 point	 based	 on	 another	 pattern.	This	 is
especially	 useful	 for	 lists	 that	 compose	 actions—for	 example,	 getting	 another
tube	of	toothpaste	if	the	current	one	is	empty.	These	conditionals	exist	at	every
level.	 As	 anyone	 who	 has	 attempted	 to	 program	 a	 procedure	 on	 a	 computer
knows,	conditionals	are	vital	to	describing	a	course	of	action.



The	Language	of	Thought

The	dream	acts	as	a	safety-valve	for	the	over-burdened	brain.
—Sigmund	Freud,

The	Interpretation	of	Dreams,	1911
	

Brain:	an	apparatus	with	which	we	think	we	think.
—Ambrose	Bierce,	The	Devil’s	Dictionary

	

	
To	 summarize	what	we’ve	 learned	 so	 far	 about	 the	way	 the	 neocortex	works,
please	refer	to	the	diagram	of	the	neocortical	pattern	recognition	module	on	page
42.

a)	 Dendrites	 enter	 the	 module	 that	 represents	 the	 pattern.	 Even	 though
patterns	may	seem	to	have	two-	or	 three-dimensional	qualities,	 they	are
represented	by	a	one-dimensional	sequence	of	signals.	The	pattern	must
be	present	in	this	(sequential)	order	for	the	pattern	recognizer	to	be	able
to	 recognize	 it.	Each	of	 the	dendrites	 is	 connected	ultimately	 to	one	or
more	axons	of	pattern	recognizers	at	a	 lower	conceptual	 level	 that	have
recognized	a	lower-level	pattern	that	constitutes	part	of	this	pattern.	For
each	 of	 these	 input	 patterns,	 there	 may	 be	 many	 lower-level	 pattern
recognizers	 that	 can	generate	 the	 signal	 that	 the	 lower-level	pattern	has
been	 recognized.	The	necessary	 threshold	 to	 recognize	 the	 pattern	may
be	 achieved	 even	 if	 not	 all	 of	 the	 inputs	 have	 signaled.	 The	 module
computes	 the	probability	 that	 the	pattern	 it	 is	 responsible	for	 is	present.
This	computation	considers	the	“importance”	and	“size”	parameters	(see
[f]	below).
Note	 that	 some	of	 the	dendrites	 transmit	 signals	 into	 the	module	and

some	 out	 of	 the	 module.	 If	 all	 of	 the	 input	 dendrites	 to	 this	 pattern
recognizer	 are	 signaling	 that	 their	 lower-level	 patterns	 have	 been
recognized	except	 for	one	or	 two,	 then	 this	pattern	 recognizer	will	 send	a
signal	 down	 to	 the	 pattern	 recognizer(s)	 recognizing	 the	 lower-level
patterns	 that	 have	not	 yet	 been	 recognized,	 indicating	 that	 there	 is	 a	 high
likelihood	 that	 that	 pattern	 will	 soon	 be	 recognized	 and	 that	 lower-level



recognizer(s)	should	be	on	the	lookout	for	it.

b)	When	this	pattern	recognizer	recognizes	its	pattern	(based	on	all	or	most
of	 the	 input	 dendrite	 signals	 being	 activated),	 the	 axon	 (output)	 of	 this
pattern	recognizer	will	activate.	In	turn,	this	axon	can	connect	to	an	entire
network	of	dendrites	connecting	to	many	higher-level	pattern	recognizers
that	 this	 pattern	 is	 input	 to.	 This	 signal	 will	 transmit	 magnitude
information	so	that	the	pattern	recognizers	at	the	next	higher	conceptual
level	can	consider	it.

c)	If	a	higher-level	pattern	recognizer	is	receiving	a	positive	signal	from	all
or	most	of	its	constituent	patterns	except	for	the	one	represented	by	this
pattern	recognizer,	 then	that	higher-level	recognizer	might	send	a	signal
down	 to	 this	 recognizer	 indicating	 that	 its	 pattern	 is	 expected.	 Such	 a
signal	would	cause	this	pattern	recognizer	to	lower	its	threshold,	meaning
that	it	would	be	more	likely	to	send	a	signal	on	its	axon	(indicating	that
its	 pattern	 is	 considered	 to	 have	 been	 recognized)	 even	 if	 some	 of	 its
inputs	are	missing	or	unclear.

d)	Inhibitory	signals	from	below	would	make	it	less	likely	that	this	pattern
recognizer	will	recognize	its	pattern.	This	can	result	from	recognition	of
lower-level	patterns	that	are	inconsistent	with	the	pattern	associated	with
this	 pattern	 recognizer	 (for	 example,	 recognition	 of	 a	 mustache	 by	 a
lower-level	 recognizer	would	make	 it	 less	 likely	 that	 this	 image	 is	“my
wife”).

e)	 Inhibitory	 signals	 from	 above	 would	 also	 make	 it	 less	 likely	 that	 this
pattern	 recognizer	 will	 recognize	 its	 pattern.	 This	 can	 result	 from	 a
higher-level	context	 that	 is	 inconsistent	with	 the	pattern	associated	with
this	recognizer.

f)	For	each	input,	there	are	stored	parameters	for	importance,	expected	size,
and	 expected	 variability	 of	 size.	 The	 module	 computes	 an	 overall
probability	that	the	pattern	is	present	based	on	all	of	these	parameters	and
the	 current	 signals	 indicating	which	 of	 the	 inputs	 are	 present	 and	 their
magnitudes.	A	mathematically	optimal	way	to	accomplish	this	 is	with	a
technique	 called	 hidden	 Markov	 models.	 When	 such	 models	 are
organized	 in	a	hierarchy	 (as	 they	are	 in	 the	neocortex	or	 in	 attempts	 to
simulate	a	neocortex),	we	call	them	hierarchical	hidden	Markov	models.



	
Patterns	triggered	in	the	neocortex	trigger	other	patterns.	Partially	complete

patterns	 send	 signals	 down	 the	 conceptual	 hierarchy;	 completed	 patterns	 send
signals	up	the	conceptual	hierarchy.	These	neocortical	patterns	are	the	language
of	 thought.	 Just	 like	 language,	 they	are	hierarchical,	 but	 they	are	not	 language
per	 se.	Our	 thoughts	 are	 not	 conceived	 primarily	 in	 the	 elements	 of	 language,
although	since	 language	also	exists	as	hierarchies	of	patterns	 in	our	neocortex,
we	 can	 have	 language-based	 thoughts.	 But	 for	 the	 most	 part,	 thoughts	 are
represented	in	these	neocortical	patterns.

As	 I	 discussed	 above,	 if	we	were	 able	 to	 detect	 the	 pattern	 activations	 in
someone’s	 neocortex,	 we	 would	 still	 have	 little	 idea	 what	 those	 pattern
activations	meant	without	also	having	access	to	the	entire	hierarchy	of	patterns
above	and	below	each	activated	pattern.	That	would	pretty	much	require	access
to	 that	 person’s	 entire	 neocortex.	 It	 is	 hard	 enough	 for	 us	 to	 understand	 the
content	 of	 our	 own	 thoughts,	 but	 understanding	 another	 person’s	 requires
mastering	 a	 neocortex	 different	 from	 our	 own.	 Of	 course	 we	 don’t	 yet	 have
access	 to	someone	else’s	neocortex;	we	need	 instead	 to	rely	on	her	attempts	 to
express	 her	 thoughts	 into	 language	 (as	well	 as	 other	means	 such	 as	 gestures).
People’s	 incomplete	 ability	 to	 accomplish	 these	 communication	 tasks	 adds
another	layer	of	complexity—it	is	no	wonder	that	we	misunderstand	one	another
as	much	as	we	do.

We	 have	 two	 modes	 of	 thinking.	 One	 is	 nondirected	 thinking,	 in	 which
thoughts	trigger	one	another	in	a	nonlogical	way.	When	we	experience	a	sudden
recollection	of	a	memory	from	years	or	decades	ago	while	doing	something	else,
such	as	raking	the	leaves	or	walking	down	the	street,	the	experience	is	recalled—
as	all	memories	are—as	a	sequence	of	patterns.	We	do	not	immediately	visualize
the	 scene	 unless	 we	 can	 call	 upon	 a	 lot	 of	 other	 memories	 that	 enable	 us	 to
synthesize	a	more	robust	recollection.	If	we	do	visualize	the	scene	in	that	way,
we	are	essentially	creating	it	in	our	mind	from	hints	at	the	time	of	recollection;
the	 memory	 itself	 is	 not	 stored	 in	 the	 form	 of	 images	 or	 visualizations.	 As	 I
mentioned	earlier,	the	triggers	that	led	this	thought	to	pop	into	our	mind	may	or
may	 not	 be	 evident.	 The	 sequence	 of	 relevant	 thoughts	 may	 have	 been
immediately	 forgotten.	 Even	 if	we	 do	 remember	 it,	 it	 will	 be	 a	 nonlinear	 and
circuitous	sequence	of	associations.

The	second	mode	of	thinking	is	directed	thinking,	which	we	use	when	we
attempt	to	solve	a	problem	or	formulate	an	organized	response.	For	example,	we
might	be	 rehearsing	 in	our	mind	 something	we	plan	 to	 say	 to	 someone,	or	we
might	 be	 formulating	 a	 passage	 we	 want	 to	 write	 (in	 a	 book	 on	 the	 mind,
perhaps).	As	we	think	about	tasks	such	as	these,	we	have	already	broken	down



each	 one	 into	 a	 hierarchy	 of	 subtasks.	Writing	 a	 book,	 for	 example,	 involves
writing	 chapters;	 each	 chapter	 has	 sections;	 each	 section	 has	 paragraphs;	 each
paragraph	contains	sentences	that	express	ideas;	each	idea	has	its	configuration
of	elements;	each	element	and	each	relationship	between	elements	is	an	idea	that
needs	to	be	articulated;	and	so	on.	At	 the	same	time,	our	neocortical	structures
have	learned	certain	rules	that	should	be	followed.	If	the	task	is	writing,	then	we
should	try	 to	avoid	unnecessary	repetition;	we	should	try	 to	make	sure	 that	 the
reader	 can	 follow	 what	 is	 being	 written;	 we	 should	 try	 to	 follow	 rules	 about
grammar	and	style;	and	so	on.	The	writer	needs	therefore	to	build	a	model	of	the
reader	 in	his	mind,	and	 that	construct	 is	hierarchical	as	well.	 In	doing	directed
thinking,	we	are	stepping	through	lists	in	our	neocortex,	each	of	which	expands
into	extensive	hierarchies	of	sublists,	each	with	its	own	considerations.	Keep	in
mind	that	elements	in	a	list	in	a	neocortical	pattern	can	include	conditionals,	so
our	subsequent	thoughts	and	actions	will	depend	on	assessments	made	as	we	go
through	the	process.

Moreover,	each	such	directed	thought	will	trigger	hierarchies	of	undirected
thoughts.	A	continual	storm	of	ruminations	attends	both	our	sensory	experiences
and	our	attempts	at	directed	thinking.	Our	actual	mental	experience	is	complex
and	 messy,	 made	 up	 of	 these	 lightning	 storms	 of	 triggered	 patterns,	 which
change	about	a	hundred	times	a	second.



The	Language	of	Dreams

Dreams	 are	 examples	 of	 undirected	 thoughts.	 They	make	 a	 certain	 amount	 of
sense	because	 the	phenomenon	of	one	 thought’s	 triggering	another	 is	based	on
the	actual	linkages	of	patterns	in	our	neocortex.	To	the	extent	that	a	dream	does
not	make	sense,	we	attempt	to	fix	it	through	our	ability	to	confabulate.	As	I	will
describe	 in	 chapter	 9,	 split-brain	 patients	 (whose	 corpus	 callosum,	 which
connects	 the	 two	 hemispheres	 of	 the	 brain,	 is	 severed	 or	 damaged)	 will
confabulate	 (make	 up)	 explanations	 with	 their	 left	 brain—which	 controls	 the
speech	 center—to	 explain	what	 the	 right	 brain	 just	 did	with	 input	 that	 the	 left
brain	 did	 not	 have	 access	 to.	 We	 confabulate	 all	 the	 time	 in	 explaining	 the
outcome	of	events.	If	you	want	a	good	example	of	this,	just	tune	in	to	the	daily
commentary	on	the	movement	of	financial	markets.	No	matter	how	the	markets
perform,	 it’s	 always	 possible	 to	 come	 up	 with	 a	 good	 explanation	 for	 why	 it
happened,	 and	 such	 after-the-fact	 commentary	 is	 plentiful.	 Of	 course,	 if	 these
commentators	really	understood	the	markets,	 they	wouldn’t	have	to	waste	their
time	doing	commentary.

The	act	of	confabulating	is	of	course	also	done	in	 the	neocortex,	which	is
good	 at	 coming	up	with	 stories	 and	 explanations	 that	meet	 certain	 constraints.
We	do	 that	whenever	we	 retell	 a	 story.	We	will	 fill	 in	 details	 that	may	 not	 be
available	or	that	we	may	have	forgotten	so	that	the	story	makes	more	sense.	That
is	why	 stories	 change	 over	 time	 as	 they	 are	 told	 over	 and	 over	 again	 by	 new
storytellers	with	 perhaps	 different	 agendas.	As	 spoken	 language	 led	 to	written
language,	however,	we	had	a	technology	that	could	record	a	definitive	version	of
a	story	and	prevent	this	sort	of	drift.

The	actual	content	of	a	dream,	to	the	extent	that	we	remember	it,	is	again	a
sequence	 of	 patterns.	 These	 patterns	 represent	 constraints	 in	 a	 story;	 we	 then
confabulate	a	story	that	fits	these	constraints.	The	version	of	the	dream	that	we
retell	(even	if	only	to	ourselves	silently)	 is	 this	confabulation.	As	we	recount	a
dream	 we	 trigger	 cascades	 of	 patterns	 that	 fill	 in	 the	 actual	 dream	 as	 we
originally	experienced	it.

There	is	one	key	difference	between	dream	thoughts	and	our	thinking	while
awake.	One	of	the	lessons	we	learn	in	life	is	that	certain	actions,	even	thoughts,
are	 not	 permissible	 in	 the	 real	 world.	 For	 example,	 we	 learn	 that	 we	 cannot
immediately	fulfill	our	desires.	There	are	rules	against	grabbing	the	money	in	the
cash	register	at	a	store,	and	constraints	on	interacting	with	a	person	to	whom	we



may	 be	 physically	 attracted.	 We	 also	 learn	 that	 certain	 thoughts	 are	 not
permissible	 because	 they	 are	 culturally	 forbidden.	 As	 we	 learn	 professional
skills,	we	 learn	 the	ways	 of	 thinking	 that	 are	 recognized	 and	 rewarded	 in	 our
professions,	and	thereby	avoid	patterns	of	thought	that	might	betray	the	methods
and	 norms	 of	 that	 profession.	 Many	 of	 these	 taboos	 are	 worthwhile,	 as	 they
enforce	 social	 order	 and	 consolidate	 progress.	However,	 they	 can	 also	 prevent
progress	by	 enforcing	 an	unproductive	orthodoxy.	Such	orthodoxy	 is	 precisely
what	 Einstein	 left	 behind	when	 he	 tried	 to	 ride	 a	 light	 beam	with	 his	 thought
experiments.

Cultural	 rules	are	enforced	 in	 the	neocortex	with	help	 from	 the	old	brain,
especially	 the	 amygdala.	 Every	 thought	 we	 have	 triggers	 other	 thoughts,	 and
some	 of	 them	 will	 relate	 to	 associated	 dangers.	 We	 learn,	 for	 example,	 that
breaking	 a	 cultural	 norm	 even	 in	 our	 private	 thoughts	 can	 lead	 to	 ostracism,
which	 the	 neocortex	 realizes	 threatens	 our	 well-being.	 If	 we	 entertain	 such
thoughts,	 the	 amygdala	 is	 triggered,	 and	 that	 generates	 fear,	 which	 generally
leads	to	terminating	that	thought.

In	 dreams,	 however,	 these	 taboos	 are	 relaxed,	 and	 we	 will	 often	 dream
about	matters	that	are	culturally,	sexually,	or	professionally	forbidden.	It	is	as	if
our	brain	 realizes	 that	we	are	not	an	actual	actor	 in	 the	world	while	dreaming.
Freud	wrote	 about	 this	 phenomenon	 but	 also	 noted	 that	we	will	 disguise	 such
dangerous	thoughts,	at	 least	when	we	attempt	to	recall	 them,	so	that	 the	awake
brain	continues	to	be	protected	from	them.

Relaxing	 professional	 taboos	 turns	 out	 to	 be	 useful	 for	 creative	 problem
solving.	I	use	a	mental	technique	each	night	in	which	I	think	about	a	particular
problem	 before	 I	 go	 to	 sleep.	 This	 triggers	 sequences	 of	 thoughts	 that	 will
continue	 into	 my	 dreams.	 Once	 I	 am	 dreaming,	 I	 can	 think—dream—about
solutions	to	the	problem	without	the	burden	of	the	professional	restraints	I	carry
during	the	day.	I	can	then	access	these	dream	thoughts	in	the	morning	while	in
an	 in-between	 state	 of	 dreaming	 and	 being	 awake,	 sometimes	 referred	 to	 as
“lucid	dreaming.”5

Freud	also	famously	wrote	about	the	ability	to	gain	insight	into	a	person’s
psychology	 by	 interpreting	 dreams.	 There	 is	 of	 course	 a	 vast	 literature	 on	 all
aspects	 of	 this	 theory,	 but	 the	 fundamental	 notion	 of	 gaining	 insight	 into
ourselves	 through	 examination	 of	 our	 dreams	 makes	 sense.	 Our	 dreams	 are
created	 by	 our	 neocortex,	 and	 thus	 their	 substance	 can	 be	 revealing	 of	 the
content	 and	 connections	 found	 there.	 The	 relaxation	 of	 the	 constraints	 on	 our
thinking	 that	 exist	 while	 we	 are	 awake	 is	 also	 useful	 in	 revealing	 neocortical
content	 that	 we	 otherwise	 would	 be	 unable	 to	 access	 directly.	 It	 is	 also
reasonable	 to	 conclude	 that	 the	 patterns	 that	 end	 up	 in	 our	 dreams	 represent



important	 matters	 to	 us	 and	 thereby	 clues	 in	 understanding	 our	 unresolved
desires	and	fears.



The	Roots	of	the	Model

As	I	mentioned	above,	 I	 led	a	 team	in	 the	1980s	and	1990s	 that	developed	the
technique	of	hierarchical	hidden	Markov	models	to	recognize	human	speech	and
understand	 natural-language	 statements.	 This	 work	 was	 the	 predecessor	 to
today’s	widespread	commercial	systems	that	recognize	and	understand	what	we
are	 trying	 to	 tell	 them	(car	navigation	systems	 that	you	can	 talk	 to,	Siri	on	 the
iPhone,	Google	Voice	 Search,	 and	many	 others).	 The	 technique	we	 developed
had	substantially	all	of	the	attributes	that	I	describe	in	the	PRTM.	It	included	a
hierarchy	 of	 patterns	 with	 each	 higher	 level	 being	 conceptually	more	 abstract
than	 the	 one	 below	 it.	 For	 example,	 in	 speech	 recognition	 the	 levels	 included
basic	patterns	of	sound	frequency	at	the	lowest	level,	then	phonemes,	then	words
and	phrases	(which	were	often	recognized	as	if	they	were	words).	Some	of	our
speech	 recognition	 systems	 could	 understand	 the	meaning	 of	 natural-language
commands,	 so	 yet	 higher	 levels	 included	 such	 structures	 as	 noun	 and	 verb
phrases.	Each	pattern	 recognition	module	could	 recognize	a	 linear	 sequence	of
patterns	 from	 a	 lower	 conceptual	 level.	 Each	 input	 had	 parameters	 for
importance,	 size,	 and	 variability	 of	 size.	 There	 were	 “downward”	 signals
indicating	that	a	lower-level	pattern	was	expected.	I	discuss	this	research	in	more
detail	in	chapter	7.

In	 2003	 and	 2004,	 PalmPilot	 inventor	 Jeff	 Hawkins	 and	 Dileep	 George
developed	 a	 hierarchical	 cortical	 model	 called	 hierarchical	 temporal	 memory.
With	science	writer	Sandra	Blakeslee,	Hawkins	described	this	model	eloquently
in	their	book	On	Intelligence.	Hawkins	provides	a	strong	case	for	the	uniformity
of	 the	cortical	algorithm	and	 its	hierarchical	and	 list-based	organization.	There
are	some	important	differences	between	the	model	presented	in	On	Intelligence
and	what	I	present	 in	 this	book.	As	the	name	implies,	Hawkins	 is	emphasizing
the	 temporal	 (time-based)	 nature	 of	 the	 constituent	 lists.	 In	 other	 words,	 the
direction	 of	 the	 lists	 is	 always	 forward	 in	 time.	 His	 explanation	 for	 how	 the
features	 in	 a	 two-dimensional	 pattern	 such	 as	 the	 printed	 letter	 “A”	 have	 a
direction	in	time	is	predicated	on	eye	movement.	He	explains	that	we	visualize
images	using	saccades,	which	are	very	rapid	movements	of	the	eye	of	which	we
are	 unaware.	 The	 information	 reaching	 the	 neocortex	 is	 therefore	 not	 a	 two-
dimensional	set	of	features	but	rather	a	time-ordered	list.	While	it	is	true	that	our
eyes	 do	 make	 very	 rapid	 movements,	 the	 sequence	 in	 which	 they	 view	 the
features	of	a	pattern	such	as	the	letter	“A”	does	not	always	occur	in	a	consistent



temporal	 order.	 (For	 example,	 eye	 saccades	 will	 not	 always	 register	 the	 top
vertex	in	“A”	before	its	bottom	concavity.)	Moreover,	we	can	recognize	a	visual
pattern	that	is	presented	for	only	a	few	tens	of	milliseconds,	which	is	too	short	a
period	of	time	for	eye	saccades	to	scan	it.	It	is	true	that	the	pattern	recognizers	in
the	neocortex	store	a	pattern	as	a	list	and	that	the	list	is	indeed	ordered,	but	the
order	 does	 not	 necessarily	 represent	 time.	That	 is	 often	 indeed	 the	 case,	 but	 it
may	also	 represent	 a	 spatial	or	higher-level	 conceptual	ordering	as	 I	 discussed
above.

The	most	important	difference	is	the	set	of	parameters	that	I	have	included
for	each	 input	 into	 the	pattern	 recognition	module,	especially	 the	size	and	size
variability	parameters.	In	the	1980s	we	actually	tried	to	recognize	human	speech
without	this	type	of	information.	This	was	motivated	by	linguists’	telling	us	that
the	 duration	 information	 was	 not	 especially	 important.	 This	 perspective	 is
illustrated	 by	 dictionaries	 that	 write	 out	 the	 pronunciation	 of	 each	 word	 as	 a
string	 of	 phonemes,	 for	 example	 the	 word	 “steep”	 as	 [s]	 [t]	 [E]	 [p],	 with	 no
indication	of	how	long	each	phoneme	is	expected	to	last.	The	implication	is	that
if	we	create	programs	to	recognize	phonemes	and	then	encounter	this	particular
sequence	 of	 four	 phonemes	 (in	 a	 spoken	 utterance),	 we	 should	 be	 able	 to
recognize	that	spoken	word.	The	system	we	built	using	this	approach	worked	to
some	 extent	 but	 not	 well	 enough	 to	 deal	 with	 such	 attributes	 as	 a	 large
vocabulary,	multiple	 speakers,	 and	words	 spoken	continuously	without	pauses.
When	we	used	the	technique	of	hierarchical	hidden	Markov	models	in	order	to
incorporate	the	distribution	of	magnitudes	of	each	input,	performance	soared.



CHAPTER	4

	



THE	BIOLOGICAL
NEOCORTEX

	

Because	important	things	go	in	a	case,	you’ve	got	a	skull	for	your	brain,	a
plastic	sleeve	for	your	comb,	and	a	wallet	for	your	money.

—George	Costanza,	in	“The	Reverse	Peephole”	episode	of	Seinfeld
	

Now,	 for	 the	 first	 time,	 we	 are	 observing	 the	 brain	 at	 work	 in	 a	 global
manner	 with	 such	 clarity	 that	 we	 should	 be	 able	 to	 discover	 the	 overall
programs	behind	its	magnificent	powers.

—J.	G.	Taylor,	B.	Horwitz,	and	K.	J.	Friston
	

The	mind,	 in	short,	works	on	 the	data	 it	 receives	very	much	as	a	sculptor
works	on	his	block	of	stone.	In	a	sense	the	statue	stood	there	from	eternity.
But	there	were	a	thousand	different	ones	beside	it,	and	the	sculptor	alone	is
to	 thank	 for	having	extricated	 this	one	 from	 the	 rest.	 Just	 so	 the	world	of
each	 of	 us,	 howsoever	 different	 our	 several	 views	 of	 it	 may	 be,	 all	 lay
embedded	 in	 the	 primordial	 chaos	 of	 sensations,	 which	 gave	 the	 mere
matter	 to	the	thought	of	all	of	us	indifferently.	We	may,	if	we	like,	by	our
reasonings	 unwind	 things	 back	 to	 that	 black	 and	 jointless	 continuity	 of
space	and	moving	clouds	of	swarming	atoms	which	science	calls	 the	only
real	world.	But	all	the	while	the	world	we	feel	and	live	in	will	be	that	which
our	 ancestors	 and	 we,	 by	 slowly	 cumulative	 strokes	 of	 choice,	 have
extricated	out	of	this,	like	sculptors,	by	simply	rejecting	certain	portions	of
the	given	 stuff.	Other	 sculptors,	 other	 statues	 from	 the	 same	 stone!	Other
minds,	 other	 worlds	 from	 the	 same	monotonous	 and	 inexpressive	 chaos!
My	world	 is	but	one	 in	a	million	alike	embedded,	alike	real	 to	 those	who
may	abstract	them.	How	different	must	be	the	worlds	in	the	consciousness
of	ant,	cuttle-fish,	or	crab!

—William	James



	

	
Is	 intelligence	the	goal,	or	even	a	goal,	of	biological	evolution?	Steven	Pinker
writes,	 “We	 are	 chauvinistic	 about	 our	 brains,	 thinking	 them	 to	 be	 the	 goal	 of
evolution,”1	and	goes	on	to	argue	that	“that	makes	no	sense….	Natural	selection
does	 nothing	 even	 close	 to	 striving	 for	 intelligence.	 The	 process	 is	 driven	 by
differences	 in	 the	 survival	 and	 reproduction	 rates	of	 replicating	organisms	 in	a
particular	 environment.	 Over	 time,	 the	 organisms	 acquire	 designs	 that	 adapt
them	 for	 survival	 and	 reproduction	 in	 that	 environment,	 period;	 nothing	 pulls
them	in	any	direction	other	than	success	there	and	then.”	Pinker	concludes	that
“life	 is	a	densely	branching	bush,	not	a	scale	or	a	 ladder,	and	 living	organisms
are	at	the	tips	of	branches,	not	on	lower	rungs.”

With	 regard	 to	 the	 human	 brain,	 he	 questions	 whether	 the	 “benefits
outweigh	 the	 costs.”	Among	 the	 costs,	 he	 cites	 that	 “the	 brain	 [is]	 bulky.	 The
female	 pelvis	 barely	 accommodates	 a	 baby’s	 outsized	 head.	 That	 design
compromise	 kills	 many	 women	 during	 childbirth	 and	 requires	 a	 pivoting	 gait
that	 makes	 women	 biomechanically	 less	 efficient	 walkers	 than	 men.	 Also	 a
heavy	head	bobbing	around	on	a	neck	makes	us	more	vulnerable	to	fatal	injuries
in	accidents	such	as	falls.”	He	goes	on	to	list	additional	shortcomings,	including
the	brain’s	energy	consumption,	its	slow	reaction	time,	and	the	lengthy	process
of	learning.

While	each	of	these	statements	is	accurate	on	its	face	(although	many	of	my
female	friends	are	better	walkers	than	I	am),	Pinker	is	missing	the	overall	point
here.	It	is	true	that	biologically,	evolution	has	no	specific	direction.	It	is	a	search
method	that	indeed	thoroughly	fills	out	the	“densely	branching	bush”	of	nature.
It	 is	 likewise	 true	 that	 evolutionary	 changes	 do	 not	 necessarily	 move	 in	 the
direction	 of	 greater	 intelligence—they	move	 in	all	 directions.	 There	 are	many
examples	 of	 successful	 creatures	 that	 have	 remained	 relatively	 unchanged	 for
millions	 of	 years.	 (Alligators,	 for	 instance,	 date	 back	 200	 million	 years,	 and
many	 microorganisms	 go	 back	 much	 further	 than	 that.)	 But	 in	 the	 course	 of
thoroughly	filling	out	myriad	evolutionary	branches,	one	of	the	directions	it	does
move	in	is	toward	greater	intelligence.	That	is	the	relevant	point	for	the	purposes
of	this	discussion.



Physical	layout	of	key	regions	of	the	brain.



The	neocortex	in	different	mammals.
Suppose	we	have	a	blue	gas	in	a	jar.	When	we	remove	the	lid,	there	is	no

message	that	goes	out	to	all	of	the	molecules	of	the	gas	saying,	“Hey,	guys,	the
lid	 is	 off	 the	 jar;	 let’s	 head	 up	 toward	 the	 opening	 and	 out	 to	 freedom.”	 The
molecules	just	keep	doing	what	they	always	do,	which	is	to	move	every	which
way	with	no	seeming	direction.	But	in	the	course	of	doing	so,	some	of	them	near
the	top	will	indeed	move	out	of	the	jar,	and	over	time	most	of	them	will	follow
suit.	 Once	 biological	 evolution	 stumbled	 on	 a	 neural	 mechanism	 capable	 of
hierarchical	 learning,	 it	 found	 it	 to	 be	 immensely	 useful	 for	 evolution’s	 one
objective,	 which	 is	 survival.	 The	 benefit	 of	 having	 a	 neocortex	 became	 acute
when	 quickly	 changing	 circumstances	 favored	 rapid	 learning.	 Species	 of	 all
kinds—plants	and	animals—can	 learn	 to	adapt	 to	changing	circumstances	over
time,	but	without	a	neocortex	they	must	use	the	process	of	genetic	evolution.	It
can	take	a	great	many	generations—thousands	of	years—for	a	species	without	a
neocortex	 to	 learn	 significant	 new	 behaviors	 (or	 in	 the	 case	 of	 plants,	 other
adaptation	strategies).	The	salient	survival	advantage	of	the	neocortex	was	that	it
could	 learn	 in	 a	matter	 of	 days.	 If	 a	 species	 encounters	 dramatically	 changed
circumstances	 and	 one	 member	 of	 that	 species	 invents	 or	 discovers	 or	 just
stumbles	upon	(these	three	methods	all	being	variations	of	innovation)	a	way	to
adapt	to	that	change,	other	individuals	will	notice,	learn,	and	copy	that	method,
and	 it	 will	 quickly	 spread	 virally	 to	 the	 entire	 population.	 The	 cataclysmic



Cretaceous-Paleogene	 extinction	 event	 about	 65	 million	 years	 ago	 led	 to	 the
rapid	 demise	 of	 many	 non-neocortex-bearing	 species	 that	 could	 not	 adapt
quickly	enough	to	a	suddenly	altered	environment.	This	marked	the	turning	point
for	neocortex-capable	mammals	to	take	over	their	ecological	niche.	In	this	way,
biological	evolution	found	that	the	hierarchical	learning	of	the	neocortex	was	so
valuable	that	this	region	of	the	brain	continued	to	grow	in	size	until	it	virtually
took	over	the	brain	of	Homo	sapiens.

Discoveries	 in	 neuroscience	 have	 established	 convincingly	 the	 key	 role
played	 by	 the	 hierarchical	 capabilities	 of	 the	 neocortex	 as	 well	 as	 offered
evidence	 for	 the	 pattern	 recognition	 theory	 of	mind	 (PRTM).	This	 evidence	 is
distributed	 among	many	 observations	 and	 analyses,	 a	 portion	 of	 which	 I	 will
review	 here.	 Canadian	 psychologist	 Donald	 O.	 Hebb	 (1904–1985)	 made	 an
initial	attempt	to	explain	the	neurological	basis	of	learning.	In	1949	he	described
a	 mechanism	 in	 which	 neurons	 change	 physiologically	 based	 on	 their
experience,	 thereby	providing	a	basis	 for	 learning	and	brain	plasticity:	 “Let	us
assume	 that	 the	persistence	or	 repetition	of	a	 reverberatory	activity	 (or	 ‘trace’)
tends	to	induce	lasting	cellular	changes	that	add	to	its	stability….	When	an	axon
of	cell	A	 is	 near	 enough	 to	 excite	 a	 cell	B	 and	 repeatedly	or	persistently	 takes
part	in	firing	it,	some	growth	process	or	metabolic	change	takes	place	in	one	or
both	 cells	 such	 that	A’s	 efficiency,	 as	 one	 of	 the	 cells	 firing	B,	 is	 increased.”2
This	 theory	 has	 been	 stated	 as	 “cells	 that	 fire	 together	wire	 together”	 and	 has
become	 known	 as	 Hebbian	 learning.	 Aspects	 of	 Hebb’s	 theory	 have	 been
confirmed,	 in	 that	 it	 is	 clear	 that	 brain	 assemblies	 can	 create	 new	 connections
and	strengthen	 them,	based	on	 their	own	activity.	We	can	actually	 see	neurons
developing	such	connections	in	brain	scans.	Artificial	“neural	nets”	are	based	on
Hebb’s	model	of	neuronal	learning.

The	central	assumption	in	Hebb’s	theory	is	that	the	basic	unit	of	learning	in
the	 neocortex	 is	 the	 neuron.	 The	 pattern	 recognition	 theory	 of	 mind	 that	 I
articulate	 in	 this	book	 is	based	on	a	different	 fundamental	unit:	not	 the	neuron
itself,	but	 rather	an	assembly	of	neurons,	which	I	estimate	 to	number	around	a
hundred.	The	wiring	and	synaptic	strengths	within	each	unit	are	relatively	stable
and	 determined	 genetically—that	 is,	 the	 organization	 within	 each	 pattern
recognition	module	is	determined	by	genetic	design.	Learning	takes	place	in	the
creation	of	connections	between	these	units,	not	within	them,	and	probably	in	the
synaptic	strengths	of	those	interunit	connections.

Recent	support	for	the	basic	module	of	learning’s	being	a	module	of	dozens
of	 neurons	 comes	 from	 Swiss	 neuroscientist	 Henry	Markram	 (born	 in	 1962),
whose	 ambitious	 Blue	 Brain	 Project	 to	 simulate	 the	 entire	 human	 brain	 I
describe	 in	 chapter	 7.	 In	 a	 2011	 paper	 he	 describes	 how	 while	 scanning	 and



analyzing	 actual	 mammalian	 neocortex	 neurons,	 he	 was	 “search[ing]	 for
evidence	 of	 Hebbian	 assemblies	 at	 the	 most	 elementary	 level	 of	 the	 cortex.”
What	he	found	instead,	he	writes,	were	“elusive	assemblies	[whose]	connectivity
and	synaptic	weights	are	highly	predictable	and	constrained.”	He	concludes	that
“these	 findings	 imply	 that	 experience	 cannot	 easily	 mold	 the	 synaptic
connections	of	these	assemblies”	and	speculates	that	“they	serve	as	innate,	Lego-
like	 building	 blocks	 of	 knowledge	 for	 perception	 and	 that	 the	 acquisition	 of
memories	 involves	 the	 combination	 of	 these	 building	 blocks	 into	 complex
constructs.”	He	continues:

Functional	 neuronal	 assemblies	 have	 been	 reported	 for	 decades,	 but
direct	 evidence	 of	 clusters	 of	 synaptically	 connected	 neurons…has	 been
missing….	 Since	 these	 assemblies	 will	 all	 be	 similar	 in	 topology	 and
synaptic	weights,	not	molded	by	any	specific	experience,	we	consider	these
to	 be	 innate	 assemblies….	 Experience	 plays	 only	 a	 minor	 role	 in
determining	 synaptic	 connections	 and	weights	within	 these	 assemblies….
Our	study	found	evidence	[of]	innate	Lego-like	assemblies	of	a	few	dozen
neurons….	Connections	between	assemblies	may	combine	them	into	super-
assemblies	within	a	neocortical	 layer,	 then	 in	higher-order	assemblies	 in	a
cortical	column,	even	higher-order	assemblies	in	a	brain	region,	and	finally
in	 the	 highest	 possible	 order	 assembly	 represented	 by	 the	whole	 brain….
Acquiring	memories	is	very	similar	to	building	with	Lego.	Each	assembly
is	 equivalent	 to	 a	 Lego	 block	 holding	 some	 piece	 of	 elementary	 innate
knowledge	 about	 how	 to	 process,	 perceive	 and	 respond	 to	 the	 world….
When	 different	 blocks	 come	 together,	 they	 therefore	 form	 a	 unique
combination	of	these	innate	percepts	that	represents	an	individual’s	specific
knowledge	and	experience.3

	
The	 “Lego	 blocks”	 that	 Markram	 proposes	 are	 fully	 consistent	 with	 the

pattern	recognition	modules	that	I	have	described.	In	an	e-mail	communication,
Markram	 described	 these	 “Lego	 blocks”	 as	 “shared	 content	 and	 innate
knowledge.”4	I	would	articulate	that	the	purpose	of	these	modules	is	to	recognize
patterns,	to	remember	them,	and	to	predict	them	based	on	partial	patterns.	Note
that	Markram’s	estimate	of	each	module’s	containing	“several	dozen	neurons”	is
based	only	on	layer	V	of	the	neocortex.	Layer	V	is	indeed	neuron	rich,	but	based
on	 the	usual	 ratio	of	neuron	counts	 in	 the	six	 layers,	 this	would	 translate	 to	an
order	of	magnitude	of	about	100	neurons	per	module,	which	 is	consistent	with
my	estimates.

The	 consistent	wiring	 and	 apparent	modularity	 of	 the	 neocortex	 has	 been



noted	 for	many	years,	 but	 this	 study	 is	 the	 first	 to	demonstrate	 the	 stability	of
these	modules	as	the	brain	undergoes	its	dynamic	processes.

Another	 recent	 study,	 this	 one	 from	 Massachusetts	 General	 Hospital,
funded	by	the	National	Institutes	of	Health	and	the	National	Science	Foundation
and	published	in	a	March	2012	issue	of	the	journal	Science,	also	shows	a	regular
structure	of	connections	across	 the	neocortex.5	The	article	describes	 the	wiring
of	the	neocortex	as	following	a	grid	pattern,	like	orderly	city	streets:	“Basically,
the	overall	structure	of	the	brain	ends	up	resembling	Manhattan,	where	you	have
a	2-D	plan	of	streets	and	a	third	axis,	an	elevator	going	in	the	third	dimension,”
wrote	Van	J.	Wedeen,	a	Harvard	neuroscientist	and	physicist	and	the	head	of	the
study.

In	 a	Science	magazine	 podcast,	Wedeen	 described	 the	 significance	 of	 the
research:	 “This	 was	 an	 investigation	 of	 the	 three-dimensional	 structure	 of	 the
pathways	of	 the	brain.	When	scientists	have	thought	about	 the	pathways	of	 the
brain	for	the	last	hundred	years	or	so,	the	typical	image	or	model	that	comes	to
mind	 is	 that	 these	 pathways	 might	 resemble	 a	 bowl	 of	 spaghetti—separate
pathways	 that	 have	 little	 particular	 spatial	 pattern	 in	 relation	 to	 one	 another.
Using	magnetic	 resonance	 imaging,	 we	 were	 able	 to	 investigate	 this	 question
experimentally.	 And	 what	 we	 found	 was	 that	 rather	 than	 being	 haphazardly
arranged	or	independent	pathways,	we	find	that	all	of	the	pathways	of	the	brain
taken	 together	 fit	 together	 in	 a	 single	 exceedingly	 simple	 structure.	 They
basically	look	like	a	cube.	They	basically	run	in	three	perpendicular	directions,
and	in	each	one	of	those	three	directions	the	pathways	are	highly	parallel	to	each
other	and	arranged	in	arrays.	So,	instead	of	independent	spaghettis,	we	see	that
the	connectivity	of	the	brain	is,	in	a	sense,	a	single	coherent	structure.”

Whereas	the	Markram	study	shows	a	module	of	neurons	that	repeats	itself
across	 the	 neocortex,	 the	 Wedeen	 study	 demonstrates	 a	 remarkably	 orderly
pattern	of	connections	between	modules.	The	brain	starts	out	with	a	very	 large
number	 of	 “connections-in-waiting”	 to	 which	 the	 pattern	 recognition	modules
can	hook	up.	Thus	 if	a	given	module	wishes	 to	connect	 to	another,	 it	does	not
need	to	grow	an	axon	from	one	and	a	dendrite	from	the	other	to	span	the	entire
physical	 distance	 between	 them.	 It	 can	 simply	 harness	 one	 of	 these	 axonal
connections-in-waiting	and	just	hook	up	to	the	ends	of	the	fiber.	As	Wedeen	and
his	colleagues	write,	“The	pathways	of	the	brain	follow	a	base-plan	established
by…early	 embryogenesis.	 Thus,	 the	 pathways	 of	 the	 mature	 brain	 present	 an
image	 of	 these	 three	 primordial	 gradients,	 physically	 deformed	 by
development.”	 In	 other	 words,	 as	 we	 learn	 and	 have	 experiences,	 the	 pattern
recognition	 modules	 of	 the	 neocortex	 are	 connecting	 to	 these	 preestablished
connections	that	were	created	when	we	were	embryos.



There	 is	 a	 type	 of	 electronic	 chip	 called	 a	 field	 programmable	 gate	 array
(FPGA)	 that	 is	 based	 on	 a	 similar	 principle.	 The	 chip	 contains	 millions	 of
modules	 that	 implement	 logic	 functions	 along	with	 connections-in-waiting.	At
the	 time	 of	 use,	 these	 connections	 are	 either	 activated	 or	 deactivated	 (through
electronic	signals)	to	implement	a	particular	capability.

In	 the	 neocortex,	 those	 long-distance	 connections	 that	 are	 not	 used	 are
eventually	pruned	away,	which	 is	one	 reason	why	adapting	a	nearby	 region	of
the	 neocortex	 to	 compensate	 for	 one	 that	 has	 become	damaged	 is	 not	 quite	 as
effective	as	using	the	original	region.	According	to	the	Wedeen	study,	the	initial
connections	 are	 extremely	 orderly	 and	 repetitive,	 just	 like	 the	 modules
themselves,	 and	 their	 grid	 pattern	 is	 used	 to	 “guide	 connectivity”	 in	 the
neocortex.	This	pattern	was	found	in	all	of	the	primate	and	human	brains	studied
and	was	evident	across	the	neocortex,	from	regions	that	dealt	with	early	sensory
patterns	up	to	higher-level	emotions.	Wedeen’s	Science	journal	article	concluded
that	 the	 “grid	 structure	 of	 cerebral	 pathways	 was	 pervasive,	 coherent,	 and
continuous	with	the	three	principal	axes	of	development.”	This	again	speaks	to	a
common	algorithm	across	all	neocortical	functions.

It	 has	 long	 been	 known	 that	 at	 least	 certain	 regions	 of	 the	 neocortex	 are
hierarchical.	The	best-studied	region	is	the	visual	cortex,	which	is	separated	into
areas	known	as	V1,	V2,	and	MT	(also	known	as	V5).	As	we	advance	to	higher
areas	 in	 this	 region	 (“higher”	 in	 the	 sense	 of	 conceptual	 processing,	 not
physically,	 as	 the	 neocortex	 is	 always	 just	 one	 pattern	 recognizer	 thick),	 the
properties	 that	 can	 be	 recognized	 become	 more	 abstract.	 V1	 recognizes	 very
basic	 edges	 and	 primitive	 shapes.	V2	 can	 recognize	 contours,	 the	 disparity	 of
images	presented	by	each	of	 the	eyes,	spatial	orientation,	and	whether	or	not	a
portion	of	the	image	is	part	of	an	object	or	the	background.6	Higher-level	regions
of	the	neocortex	recognize	concepts	such	as	the	identity	of	objects	and	faces	and
their	movement.	 It	has	also	 long	been	known	 that	communication	 through	 this
hierarchy	is	both	upward	and	downward,	and	that	signals	can	be	both	excitatory
and	 inhibitory.	 MIT	 neuroscientist	 Tomaso	 Poggio	 (born	 in	 1947)	 has
extensively	studied	vision	in	the	human	brain,	and	his	research	for	the	last	thirty-
five	years	has	been	instrumental	in	establishing	hierarchical	learning	and	pattern
recognition	in	the	“early”	(lowest	conceptual)	levels	of	the	visual	neocortex.7



The	highly	regular	grid	structure	of	initial	connections	in	the	neocortex
found	in	a	National	Institutes	of	Health	study.

Another	view	of	the	regular	grid	structure	of	neocortical	connections.



The	grid	structure	found	in	the	neocortex	is	remarkably	similar	to	what
is	called	crossbar	switching,	which	is	used	in	integrated	circuits	and	circuit
boards.
Our	understanding	of	the	lower	hierarchical	levels	of	the	visual	neocortex	is

consistent	with	the	PRTM	I	described	in	the	previous	chapter,	and	observation	of
the	 hierarchical	 nature	 of	 neocortical	 processing	 has	 recently	 extended	 far
beyond	 these	 levels.	 University	 of	 Texas	 neurobiology	 professor	 Daniel	 J.
Felleman	and	his	colleagues	traced	the	“hierarchical	organization	of	the	cerebral
cortex…[in]	25	neocortical	areas,”	which	included	both	visual	areas	and	higher-
level	areas	that	combine	patterns	from	multiple	senses.	What	they	found	as	they
went	 up	 the	 neocortical	 hierarchy	was	 that	 the	 processing	 of	 patterns	 became
more	abstract,	comprised	larger	spatial	areas,	and	involved	longer	time	periods.
With	 every	 connection	 they	 found	 communication	 both	 up	 and	 down	 the
hierarchy.8

Recent	 research	 allows	 us	 to	 substantially	 broaden	 these	 observations	 to
regions	well	beyond	 the	visual	cortex	and	even	 to	 the	association	areas,	which
combine	 inputs	 from	multiple	 senses.	A	 study	 published	 in	 2008	 by	Princeton
psychology	 professor	 Uri	 Hasson	 and	 his	 colleagues	 demonstrates	 that	 the
phenomena	 observed	 in	 the	 visual	 cortex	 occur	 across	 a	 wide	 variety	 of
neocortical	 areas:	 “It	 is	well	 established	 that	 neurons	 along	 the	 visual	 cortical
pathways	 have	 increasingly	 larger	 spatial	 receptive	 fields.	 This	 is	 a	 basic
organizing	 principle	 of	 the	 visual	 system….	Real-world	 events	 occur	 not	 only
over	 extended	 regions	 of	 space,	 but	 also	 over	 extended	 periods	 of	 time.	 We
therefore	 hypothesized	 that	 a	 hierarchy	 analogous	 to	 that	 found	 for	 spatial
receptive	field	sizes	should	also	exist	for	the	temporal	response	characteristics	of



different	brain	regions.”	This	is	exactly	what	they	found,	which	enabled	them	to
conclude	that	“similar	to	the	known	cortical	hierarchy	of	spatial	receptive	fields,
there	 is	 a	hierarchy	of	progressively	 longer	 temporal	 receptive	windows	 in	 the
human	brain.”9

The	 most	 powerful	 argument	 for	 the	 universality	 of	 processing	 in	 the
neocortex	 is	 the	 pervasive	 evidence	 of	 plasticity	 (not	 just	 learning	 but
interchangeability):	 In	other	words,	 one	 region	 is	 able	 to	do	 the	work	of	other
regions,	implying	a	common	algorithm	across	the	entire	neocortex.	A	great	deal
of	neuroscience	 research	has	been	 focused	on	 identifying	which	 regions	of	 the
neocortex	are	responsible	for	which	types	of	patterns.	The	classical	technique	for
determining	 this	 has	 been	 to	 take	 advantage	 of	 brain	 damage	 from	 injury	 or
stroke	and	to	correlate	lost	functionality	with	specific	damaged	regions.	So,	for
example,	 when	 we	 notice	 that	 someone	 with	 newly	 acquired	 damage	 to	 the
fusiform	gyrus	region	suddenly	has	difficulty	recognizing	faces	but	 is	still	able
to	 identify	people	from	their	voices	and	language	patterns,	we	can	hypothesize
that	 this	 region	 has	 something	 to	 do	 with	 face	 recognition.	 The	 underlying
assumption	 has	 been	 that	 each	 of	 these	 regions	 is	 designed	 to	 recognize	 and
process	 a	 particular	 type	 of	 pattern.	 Particular	 physical	 regions	 have	 become
associated	with	particular	types	of	patterns,	because	under	normal	circumstances
that	 is	 how	 the	 information	 happens	 to	 flow.	 But	 when	 that	 normal	 flow	 of
information	is	disrupted	for	any	reason,	another	region	of	the	neocortex	is	able	to
step	in	and	take	over.

Plasticity	has	been	widely	noted	by	neurologists,	who	observed	that	patients
with	 brain	 damage	 from	 an	 injury	 or	 a	 stroke	 can	 relearn	 the	 same	 skills	 in
another	area	of	the	neocortex.	Perhaps	the	most	dramatic	example	of	plasticity	is
a	2011	study	by	American	neuroscientist	Marina	Bedny	and	her	colleagues	on
what	 happens	 to	 the	 visual	 cortex	 of	 congenitally	 blind	 people.	 The	 common
wisdom	has	been	that	the	early	layers	of	the	visual	cortex,	such	as	V1	and	V2,
inherently	deal	with	very	low-level	patterns	(such	as	edges	and	curves),	whereas
the	frontal	cortex	(that	evolutionarily	new	region	of	 the	cortex	 that	we	have	 in
our	 uniquely	 large	 foreheads)	 inherently	 deals	with	 the	 far	more	 complex	 and
subtle	 patterns	 of	 language	 and	other	 abstract	 concepts.	But	 as	Bedny	 and	her
colleagues	found,	“Humans	are	thought	to	have	evolved	brain	regions	in	the	left
frontal	 and	 temporal	 cortex	 that	 are	 uniquely	 capable	 of	 language	 processing.
However,	congenitally	blind	 individuals	also	activate	 the	visual	cortex	 in	some
verbal	tasks.	We	provide	evidence	that	this	visual	cortex	activity	in	fact	reflects
language	 processing.	 We	 find	 that	 in	 congenitally	 blind	 individuals,	 the	 left
visual	cortex	behaves	similarly	to	classic	language	regions….	We	conclude	that
brain	 regions	 that	are	 thought	 to	have	evolved	for	vision	can	 take	on	 language



processing	as	a	result	of	early	experience.”10
Consider	 the	 implications	 of	 this	 study:	 It	means	 that	 neocortical	 regions

that	 are	 physically	 relatively	 far	 apart,	 and	 that	 have	 also	 been	 considered
conceptually	 very	 different	 (primitive	 visual	 cues	 versus	 abstract	 language
concepts),	 use	 essentially	 the	 same	 algorithm.	 The	 regions	 that	 process	 these
disparate	types	of	patterns	can	substitute	for	one	another.

University	 of	 California	 at	 Berkeley	 neuroscientist	 Daniel	 E.	 Feldman
wrote	a	comprehensive	2009	review	of	what	he	called	“synaptic	mechanisms	for
plasticity	in	the	neocortex”	and	found	evidence	for	this	type	of	plasticity	across
the	neocortex.	He	writes	that	“plasticity	allows	the	brain	to	learn	and	remember
patterns	 in	 the	 sensory	 world,	 to	 refine	 movements…and	 to	 recover	 function
after	 injury.”	 He	 adds	 that	 this	 plasticity	 is	 enabled	 by	 “structural	 changes
including	 formation,	 removal,	 and	 morphological	 remodeling	 of	 cortical
synapses	and	dendritic	spines.”11

Another	 startling	 example	 of	 neocortical	 plasticity	 (and	 therefore	 of	 the
uniformity	of	the	neocortical	algorithm)	was	recently	demonstrated	by	scientists
at	 the	 University	 of	 California	 at	 Berkeley.	 They	 hooked	 up	 implanted
microelectrode	arrays	to	pick	up	brain	signals	specifically	from	a	region	of	 the
motor	cortex	of	mice	that	controls	the	movement	of	their	whiskers.	They	set	up
their	 experiment	 so	 that	 the	mice	would	 get	 a	 reward	 if	 they	 controlled	 these
neurons	 to	 fire	 in	 a	 certain	 mental	 pattern	 but	 not	 to	 actually	 move	 their
whiskers.	The	pattern	required	to	get	the	reward	involved	a	mental	task	that	their
frontal	 neurons	 would	 normally	 not	 do.	 The	 mice	 were	 nonetheless	 able	 to
perform	this	mental	feat	essentially	by	thinking	with	their	motor	neurons	while
mentally	decoupling	them	from	controlling	motor	movements.12	The	conclusion
is	that	the	motor	cortex,	the	region	of	the	neocortex	responsible	for	coordinating
muscle	movement,	also	uses	the	standard	neocortical	algorithm.

There	 are	 several	 reasons,	 however,	why	 a	 skill	 or	 an	 area	 of	 knowledge
that	has	been	relearned	using	a	new	area	of	the	neocortex	to	replace	one	that	has
been	damaged	will	not	necessarily	be	as	good	as	 the	original.	First,	because	 it
took	an	entire	lifetime	to	learn	and	perfect	a	given	skill,	relearning	it	in	another
area	 of	 the	 neocortex	 will	 not	 immediately	 generate	 the	 same	 results.	 More
important,	that	new	area	of	the	neocortex	has	not	just	been	sitting	around	waiting
as	a	standby	for	an	 injured	region.	 It	 too	has	been	carrying	out	vital	 functions,
and	will	 therefore	be	hesitant	 to	give	up	 its	neocortical	patterns	 to	compensate
for	the	damaged	region.	It	can	start	by	releasing	some	of	the	redundant	copies	of
its	patterns,	but	doing	so	will	subtly	degrade	its	existing	skills	and	does	not	free
up	as	much	cortical	space	as	the	skills	being	relearned	had	used	originally.



There	 is	 a	 third	 reason	why	plasticity	has	 its	 limits.	Since	 in	most	people
particular	 types	 of	 patterns	 will	 flow	 through	 specific	 regions	 (such	 as	 faces
being	 processed	 by	 the	 fusiform	gyrus),	 these	 regions	 have	 become	 optimized
(by	biological	evolution)	for	those	types	of	patterns.	As	I	report	in	chapter	7,	we
found	 the	 same	 result	 in	 our	 digital	 neocortical	 developments.	 We	 could
recognize	speech	with	our	character	recognition	systems	and	vice	versa,	but	the
speech	 systems	 were	 optimized	 for	 speech	 and	 similarly	 the	 character
recognition	 systems	 were	 optimized	 for	 printed	 characters,	 so	 there	 would	 be
some	reduction	in	performance	if	we	substituted	one	for	 the	other.	We	actually
used	 evolutionary	 (genetic)	 algorithms	 to	 accomplish	 this	 optimization,	 a
simulation	of	what	biology	does	naturally.	Given	 that	 faces	have	been	 flowing
through	the	fusiform	gyrus	for	most	people	for	hundreds	of	 thousands	of	years
(or	 more),	 biological	 evolution	 has	 had	 time	 to	 evolve	 a	 favorable	 ability	 to
process	 such	patterns	 in	 that	 region.	 It	uses	 the	 same	basic	algorithm,	but	 it	 is
oriented	 toward	 faces.	 As	 Dutch	 neuroscientist	 Randal	 Koene	 wrote,	 “The
[neo]cortex	 is	 very	 uniform,	 each	 column	 or	 minicolumn	 can	 in	 principle	 do
what	each	other	one	can	do.”13

Substantial	 recent	 research	 supports	 the	 observation	 that	 the	 pattern
recognition	modules	 wire	 themselves	 based	 on	 the	 patterns	 to	 which	 they	 are
exposed.	For	example,	neuroscientist	Yi	Zuo	and	her	colleagues	watched	as	new
“dendritic	 spines”	 formed	 connections	 between	 nerve	 cells	 as	 mice	 learned	 a
new	 skill	 (reaching	 through	 a	 slot	 to	 grab	 a	 seed).14	 Researchers	 at	 the	 Salk
Institute	have	discovered	that	this	critical	self-wiring	of	the	neocortex	modules	is
apparently	controlled	by	only	a	handful	of	genes.	These	genes	and	this	method
of	self-wiring	are	also	uniform	across	the	neocortex.15

Many	 other	 studies	 document	 these	 attributes	 of	 the	 neocortex,	 but	 let’s
summarize	what	we	can	observe	from	the	neuroscience	 literature	and	from	our
own	 thought	 experiments.	 The	 basic	 unit	 of	 the	 neocortex	 is	 a	 module	 of
neurons,	which	 I	 estimate	at	 around	a	hundred.	These	are	woven	 together	 into
each	neocortical	column	so	that	each	module	is	not	visibly	distinct.	The	pattern
of	connections	and	synaptic	strengths	within	each	module	is	relatively	stable.	It
is	 the	 connections	 and	 synaptic	 strengths	 between	 modules	 that	 represent
learning.

There	are	on	the	order	of	a	quadrillion	(1015)	connections	in	the	neocortex,
yet	 only	 about	 25	 million	 bytes	 of	 design	 information	 in	 the	 genome	 (after
lossless	 compression),16	 so	 the	 connections	 themselves	 cannot	 possibly	 be
predetermined	genetically.	It	is	possible	that	some	of	this	learning	is	the	product
of	 the	 neocortex’s	 interrogating	 the	 old	 brain,	 but	 that	 still	 would	 necessarily



represent	 only	 a	 relatively	 small	 amount	 of	 information.	 The	 connections
between	modules	are	created	on	the	whole	from	experience	(nurture	rather	than
nature).

The	brain	does	not	have	sufficient	flexibility	so	that	each	neocortical	pattern
recognition	 module	 can	 simply	 link	 to	 any	 other	 module	 (as	 we	 can	 easily
program	in	our	computers	or	on	the	Web)—an	actual	physical	connection	must
be	made,	composed	of	an	axon	connecting	to	a	dendrite.	We	each	start	out	with	a
vast	stockpile	of	possible	neural	connections.	As	the	Wedeen	study	shows,	these
connections	 are	 organized	 in	 a	 very	 repetitive	 and	 orderly	 manner.	 Terminal
connection	to	these	axons-in-waiting	takes	place	based	on	the	patterns	that	each
neocortical	 pattern	 recognizer	 has	 recognized.	 Unused	 connections	 are
ultimately	pruned	away.	These	connections	are	built	hierarchically,	reflecting	the
natural	hierarchical	order	of	reality.	That	is	the	key	strength	of	the	neocortex.

The	 basic	 algorithm	 of	 the	 neocortical	 pattern	 recognition	 modules	 is
equivalent	across	the	neocortex	from	“low-level”	modules,	which	deal	with	the
most	basic	sensory	patterns,	to	“high-level”	modules,	which	recognize	the	most
abstract	 concepts.	The	vast	 evidence	of	plasticity	 and	 the	 interchangeability	of
neocortical	 regions	 is	 testament	 to	 this	 important	 observation.	 There	 is	 some
optimization	of	 regions	 that	deal	with	particular	 types	of	patterns,	but	 this	 is	 a
second-order	effect—the	fundamental	algorithm	is	universal.

Signals	go	up	and	down	the	conceptual	hierarchy.	A	signal	going	up	means,
“I’ve	 detected	 a	 pattern.”	 A	 signal	 going	 down	 means,	 “I’m	 expecting	 your
pattern	 to	 occur,”	 and	 is	 essentially	 a	 prediction.	 Both	 upward	 and	 downward
signals	can	be	either	excitatory	or	inhibitory.

Each	pattern	is	itself	in	a	particular	order	and	is	not	readily	reversed.	Even
if	a	pattern	appears	to	have	multidimensional	aspects,	it	is	represented	by	a	one-
dimensional	sequence	of	 lower-level	patterns.	A	pattern	is	an	ordered	sequence
of	other	patterns,	so	each	recognizer	is	inherently	recursive.	There	can	be	many
levels	of	hierarchy.

There	is	a	great	deal	of	redundancy	in	the	patterns	we	learn,	especially	the
important	ones.	The	recognition	of	patterns	(such	as	common	objects	and	faces)
uses	 the	 same	 mechanism	 as	 our	 memories,	 which	 are	 just	 patterns	 we	 have
learned.	 They	 are	 also	 stored	 as	 sequences	 of	 patterns—they	 are	 basically
stories.	 That	 mechanism	 is	 also	 used	 for	 learning	 and	 carrying	 out	 physical
movement	 in	 the	 world.	 The	 redundancy	 of	 patterns	 is	 what	 enables	 us	 to
recognize	objects,	people,	and	ideas	even	when	they	have	variations	and	occur	in
different	 contexts.	 The	 size	 and	 size	 variability	 parameters	 also	 allow	 the
neocortex	 to	 encode	 variation	 in	 magnitude	 against	 different	 dimensions
(duration	in	the	case	of	sound).	One	way	that	these	magnitude	parameters	could



be	 encoded	 is	 simply	 through	 multiple	 patterns	 with	 different	 numbers	 of
repeated	 inputs.	 So,	 for	 example,	 there	 could	 be	 patterns	 for	 the	 spoken	word
“steep”	with	 different	 numbers	 of	 the	 long	 vowel	 [E]	 repeated,	 each	with	 the
importance	parameter	set	to	a	moderate	level	indicating	that	the	repetition	of	[E]
is	variable.	This	approach	is	not	mathematically	equivalent	to	having	the	explicit
size	parameters	and	does	not	work	nearly	as	well	in	practice,	but	is	one	approach
to	encoding	magnitude.	The	strongest	evidence	we	have	for	these	parameters	is
that	they	are	needed	in	our	AI	systems	to	get	accuracy	levels	that	are	near	human
levels.

The	 summary	 above	 constitutes	 the	 conclusions	 we	 can	 draw	 from	 the
sampling	 of	 research	 results	 I	 have	 shared	 above	 as	 well	 as	 the	 sampling	 of
thought	 experiments	 I	 discussed	 earlier.	 I	 maintain	 that	 the	 model	 I	 have
presented	is	 the	only	possible	model	that	satisfies	all	of	 the	constraints	 that	 the
research	and	our	thought	experiments	have	established.

Finally,	there	is	one	more	piece	of	corroborating	evidence.	The	techniques
that	 we	 have	 evolved	 over	 the	 past	 several	 decades	 in	 the	 field	 of	 artificial
intelligence	 to	 recognize	 and	 intelligently	process	 real-world	phenomena	 (such
as	 human	 speech	 and	 written	 language)	 and	 to	 understand	 natural-language
documents	turn	out	to	be	mathematically	similar	to	the	model	I	have	presented
above.	 They	 are	 also	 examples	 of	 the	 PRTM.	The	AI	 field	was	 not	 explicitly
trying	 to	 copy	 the	 brain,	 but	 it	 nonetheless	 arrived	 at	 essentially	 equivalent
techniques.



CHAPTER	5

	



THE	OLD	BRAIN
	

I	have	an	old	brain	but	a	terrific	memory.
—Al	Lewis

	

Here	we	 stand	 in	 the	middle	 of	 this	 new	world	with	 our	 primitive	 brain,
attuned	to	the	simple	cave	life,	with	terrific	forces	at	our	disposal,	which	we
are	 clever	 enough	 to	 release,	 but	 whose	 consequences	 we	 cannot
comprehend.

—Albert	Szent-Györgyi
	

	
Our	 old	 brain—the	 one	 we	 had	 before	 we	 were	 mammals—has	 not
disappeared.	 Indeed	 it	 still	 provides	 much	 of	 our	 motivation	 in	 seeking
gratification	and	avoiding	danger.	These	goals	are	modulated,	however,	by	our
neocortex,	which	dominates	the	human	brain	in	both	mass	and	activity.

Animals	 used	 to	 live	 and	 survive	 without	 a	 neocortex,	 and	 indeed	 all
nonmammalian	 animals	 continue	 to	 do	 so	 today.	 We	 can	 view	 the	 human
neocortex	as	the	great	sublimator—thus	our	primitive	motivation	to	avoid	a	large
predator	 may	 be	 transformed	 by	 the	 neocortex	 today	 into	 completing	 an
assignment	to	impress	our	boss;	the	great	hunt	may	become	writing	a	book	on,
say,	 the	 mind;	 and	 pursuing	 reproduction	 may	 become	 gaining	 public
recognition	 or	 decorating	 your	 apartment.	 (Well,	 this	 last	 motivation	 is	 not
always	so	hidden.)

The	neocortex	is	likewise	good	at	helping	us	solve	problems	because	it	can
accurately	model	 the	world,	 reflecting	 its	 true	hierarchical	nature.	But	 it	 is	 the
old	 brain	 that	 presents	 us	 with	 those	 problems.	 Of	 course,	 like	 any	 clever
bureaucracy,	 the	 neocortex	 often	 deals	 with	 the	 problems	 it	 is	 assigned	 by
redefining	them.	On	that	note,	let’s	review	the	information	processing	in	the	old
brain.



The	Sensory	Pathway

Pictures,	propagated	by	motion	along	 the	 fibers	of	 the	optic	nerves	 in	 the
brain,	are	the	cause	of	vision.

—Isaac	Newton
	

Each	 of	 us	 lives	 within	 the	 universe—the	 prison—of	 his	 own	 brain.
Projecting	 from	 it	 are	 millions	 of	 fragile	 sensory	 nerve	 fibers,	 in	 groups
uniquely	 adapted	 to	 sample	 the	 energetic	 states	 of	 the	 world	 around	 us:
heat,	light,	force,	and	chemical	composition.	That	is	all	we	ever	know	of	it
directly;	all	else	is	logical	inference.

—Vernon	Mountcastle1
	

	
Although	we	 experience	 the	 illusion	 of	 receiving	 high-resolution	 images	 from
our	 eyes,	 what	 the	 optic	 nerve	 actually	 sends	 to	 the	 brain	 is	 just	 a	 series	 of
outlines	and	clues	about	points	of	interest	in	our	visual	field.	We	then	essentially
hallucinate	 the	world	 from	 cortical	memories	 that	 interpret	 a	 series	 of	movies
with	very	low	data	rates	that	arrive	in	parallel	channels.	In	a	study	published	in
Nature,	 Frank	 S.	 Werblin,	 professor	 of	 molecular	 and	 cell	 biology	 at	 the
University	 of	 California	 at	 Berkeley,	 and	 doctoral	 student	 Boton	 Roska,	MD,
showed	that	the	optic	nerve	carries	ten	to	twelve	output	channels,	each	of	which
carries	only	a	small	amount	of	information	about	a	given	scene.2	One	group	of
what	 are	 called	ganglion	cells	 sends	 information	only	 about	 edges	 (changes	 in
contrast).	 Another	 group	 detects	 only	 large	 areas	 of	 uniform	 color,	 whereas	 a
third	group	is	sensitive	only	to	the	backgrounds	behind	figures	of	interest.



The	visual	pathway	in	the	brain.
“Even	though	we	think	we	see	the	world	so	fully,	what	we	are	receiving	is

really	just	hints,	edges	in	space	and	time,”	says	Werblin.	“These	12	pictures	of
the	world	constitute	all	the	information	we	will	ever	have	about	what’s	out	there,
and	from	these	12	pictures,	which	are	so	sparse,	we	reconstruct	 the	richness	of
the	visual	world.	 I’m	curious	how	nature	 selected	 these	12	 simple	movies	 and
how	it	can	be	that	they	are	sufficient	to	provide	us	with	all	 the	information	we
seem	to	need.”

This	data	reduction	is	what	in	the	AI	field	we	call	“sparse	coding.”	We	have
found	in	creating	artificial	systems	that	throwing	most	of	the	input	information
away	 and	 retaining	 only	 the	 most	 salient	 details	 provides	 superior	 results.
Otherwise	the	limited	ability	to	process	information	in	a	neocortex	(biological	or
otherwise)	gets	overwhelmed.



Seven	of	 the	 twelve	 low-data-rate	“movies”	sent	by	 the	optic	nerve	 to
the	brain.
The	processing	of	auditory	information	from	the	human	cochlea	through	the

subcortical	regions	and	then	through	the	early	stages	of	the	neocortex	has	been
meticulously	modeled	by	Lloyd	Watts	and	his	research	team	at	Audience,	Inc.3
They	have	developed	research	 technology	 that	extracts	600	different	 frequency
bands	 (60	per	 octave)	 from	 sound.	This	 comes	much	 closer	 to	 the	 estimate	 of
3,000	bands	extracted	by	the	human	cochlea	(compared	with	commercial	speech
recognition,	which	 uses	 only	 16	 to	 32	 bands).	Using	 two	microphones	 and	 its
detailed	(and	high–spectral	 resolution)	model	of	auditory	processing,	Audience
has	created	a	commercial	 technology	(with	somewhat	 lower	spectral	 resolution
than	 its	 research	 system)	 that	 effectively	 removes	 background	 noise	 from
conversations.	 This	 is	 now	 being	 used	 in	many	 popular	 cell	 phones	 and	 is	 an
impressive	example	of	a	commercial	product	based	on	an	understanding	of	how
the	human	auditory	perceptual	 system	 is	able	 to	 focus	on	one	 sound	source	of
interest.



The	auditory	pathway	in	the	brain.
Inputs	 from	 the	 body	 (estimated	 at	 hundreds	 of	 megabits	 per	 second),

including	that	of	nerves	from	the	skin,	muscles,	organs,	and	other	areas,	stream
into	 the	 upper	 spinal	 cord.	 These	 messages	 involve	 more	 than	 just
communication	 about	 touch;	 in	 addition	 they	 carry	 information	 about
temperature,	acid	levels	(for	example,	lactic	acid	in	muscles),	the	movement	of
food	 through	 the	 gastrointestinal	 tract,	 and	 many	 other	 signals.	 This	 data	 is
processed	 through	 the	 brain	 stem	 and	 midbrain.	 Key	 cells	 called	 lamina	 1
neurons	create	 a	map	of	 the	body,	 representing	 its	 current	 state,	not	unlike	 the
displays	used	by	flight	controllers	to	track	airplanes.	From	here	the	sensory	data
heads	 to	 a	mysterious	 region	 called	 the	 thalamus,	which	brings	 us	 to	 our	 next
topic.



A	simplified	model	of	auditory	processing	in	both	the	subcortical	areas
(areas	prior	to	the	neocortex)	and	the	neocortex,	created	by	Audience,	Inc.
Figure	adapted	from	L.	Watts,	“Reverse-Engineering	 the	Human	Auditory
Pathway,”	 in	 J.	 Liu	 et	 al.	 (eds.),	 WCCI	 2012	 (Berlin:	 Springer-Verlag,
2012),	p.	49.



The	Thalamus

Everyone	knows	what	attention	is.	It	is	the	taking	possession	by	the	mind,
in	 clear	 and	 vivid	 form,	 of	 one	 out	 of	what	 seem	 several	 simultaneously
possible	 objects	 or	 trains	 of	 thought.	 Focalization,	 concentration,	 of
consciousness,	are	of	its	essence.	It	implies	withdrawal	from	some	things	in
order	to	deal	effectively	with	others.

—William	James
	

	
From	 the	midbrain,	 sensory	 information	 then	 flows	 through	 a	 nut-sized	 region
called	 the	 posterior	 ventromedial	 nucleus	 (VMpo)	 of	 the	 thalamus,	 which
computes	complex	reactions	to	bodily	states	such	as	“this	tastes	terrible,”	“what
a	 stench,”	 or	 “that	 light	 touch	 is	 stimulating.”	 The	 increasingly	 processed
information	 ends	 up	 at	 two	 regions	 of	 the	 neocortex	 called	 the	 insula.	 These
structures,	the	size	of	small	fingers,	are	located	on	the	left	and	right	sides	of	the
neocortex.	 Dr.	 Arthur	 Craig	 of	 the	 Barrow	 Neurological	 Institute	 in	 Phoenix
describes	the	VMpo	and	the	two	insula	regions	as	“a	system	that	represents	the
material	me.”4



The	sensory-touch	pathway	in	the	brain.
Among	 its	 other	 functions,	 the	 thalamus	 is	 considered	 a	 gateway	 for

preprocessed	sensory	information	to	enter	the	neocortex.	In	addition	to	the	tactile
information	 flowing	 through	 the	VMpo,	 processed	 information	 from	 the	 optic
nerve	(which,	as	noted	above,	has	already	been	substantially	transformed)	is	sent
to	 a	 region	 of	 the	 thalamus	 called	 the	 lateral	 geniculate	 nucleus,	 which	 then
sends	 it	 on	 to	 the	 V1	 region	 of	 the	 neocortex.	 Information	 from	 the	 auditory
sense	is	passed	through	the	medial	geniculate	nucleus	of	the	thalamus	en	route	to
the	 early	 auditory	 regions	 of	 the	 neocortex.	 All	 of	 our	 sensory	 data	 (except,
apparently,	 for	 the	 olfactory	 system,	 which	 uses	 the	 olfactory	 bulb	 instead)
passes	through	specific	regions	of	the	thalamus.

The	 most	 significant	 role	 of	 the	 thalamus,	 however,	 is	 its	 continual
communication	 with	 the	 neocortex.	 The	 pattern	 recognizers	 in	 the	 neocortex
send	 tentative	 results	 to	 the	 thalamus	 and	 receive	 responses	 principally	 using
both	 excitatory	 and	 inhibitory	 reciprocal	 signals	 from	 layer	 VI	 of	 each
recognizer.	 Keep	 in	 mind	 that	 these	 are	 not	 wireless	 messages,	 so	 that	 there
needs	 to	 be	 an	 extraordinary	 amount	 of	 actual	 wiring	 (in	 the	 form	 of	 axons)
running	between	all	regions	of	the	neocortex	and	the	thalamus.	Consider	the	vast
amount	of	real	estate	(in	terms	of	the	physical	mass	of	connections	required)	for
the	hundreds	of	millions	of	pattern	recognizers	in	the	neocortex	to	be	constantly



checking	in	with	the	thalamus.5
So	 what	 are	 the	 hundreds	 of	 millions	 of	 neocortical	 pattern	 recognizers

talking	 to	 the	 thalamus	 about?	 It	 is	 apparently	 an	 important	 conversation,
because	profound	damage	to	the	main	region	of	the	thalamus	bilaterally	can	lead
to	prolonged	unconsciousness.	A	person	with	a	damaged	thalamus	may	still	have
activity	 in	his	neocortex,	 in	 that	 the	 self-triggering	 thinking	by	association	can
still	work.	But	directed	 thinking—the	kind	 that	will	get	us	out	of	bed,	 into	our
car,	and	sitting	at	our	desk	at	work—does	not	function	without	a	thalamus.	In	a
famous	case,	twenty-one-year-old	Karen	Ann	Quinlan	suffered	a	heart	attack	and
respiratory	failure	and	remained	in	an	unresponsive,	apparently	vegetative	state
for	 ten	 years.	 When	 she	 died,	 her	 autopsy	 revealed	 that	 her	 neocortex	 was
normal	but	her	thalamus	had	been	destroyed.

In	order	 to	play	its	key	role	 in	our	ability	 to	direct	attention,	 the	 thalamus
relies	 on	 the	 structured	 knowledge	 contained	 in	 the	 neocortex.	 It	 can	 step
through	a	list	(stored	in	the	neocortex),	enabling	us	to	follow	a	train	of	thought
or	follow	a	plan	of	action.	We	are	apparently	able	to	keep	up	to	about	four	items
in	 our	 working	 memory	 at	 a	 time,	 two	 per	 hemisphere	 according	 to	 recent
research	 by	 neuroscientists	 at	 the	 MIT	 Picower	 Institute	 for	 Learning	 and
Memory.6	 The	 issue	 of	whether	 the	 thalamus	 is	 in	 charge	 of	 the	 neocortex	 or
vice	versa	is	far	from	clear,	but	we	are	unable	to	function	without	both.



The	Hippocampus

Each	brain	hemisphere	contains	a	hippocampus,	a	small	region	that	looks	like	a
sea	 horse	 tucked	 in	 the	 medial	 temporal	 lobe.	 Its	 primary	 function	 is	 to
remember	novel	events.	Since	sensory	information	flows	through	the	neocortex,
it	 is	 up	 to	 the	 neocortex	 to	 determine	 that	 an	 experience	 is	 novel	 in	 order	 to
present	 it	 to	 the	 hippocampus.	 It	 does	 so	 either	 by	 failing	 to	 recognize	 a
particular	 set	 of	 features	 (for	 example,	 a	 new	 face)	 or	 by	 realizing	 that	 an
otherwise	 familiar	 situation	 now	 has	 unique	 attributes	 (such	 as	 your	 spouse’s
wearing	a	fake	mustache).

The	 hippocampus	 is	 capable	 of	 remembering	 these	 situations,	 although	 it
appears	to	do	so	primarily	through	pointers	into	the	neocortex.	So	memories	in
the	 hippocampus	 are	 also	 stored	 as	 lower-level	 patterns	 that	 were	 earlier
recognized	 and	 stored	 in	 the	 neocortex.	 For	 animals	 without	 a	 neocortex	 to
modulate	 sensory	 experiences,	 the	 hippocampus	 will	 simply	 remember	 the
information	 from	 the	 senses,	 although	 this	 will	 have	 undergone	 sensory
preprocessing	(for	example,	the	transformations	performed	by	the	optic	nerve).

Although	the	hippocampus	makes	use	of	the	neocortex	(if	a	particular	brain
has	 one)	 as	 its	 scratch	 pad,	 its	memory	 (of	 pointers	 into	 the	 neocortex)	 is	 not
inherently	hierarchical.	Animals	without	a	neocortex	can	accordingly	remember
things	using	their	hippocampus,	but	their	recollections	will	not	be	hierarchical.

The	capacity	of	the	hippocampus	is	limited,	so	its	memory	is	short-term.	It
will	transfer	a	particular	sequence	of	patterns	from	its	short-term	memory	to	the
long-term	 hierarchical	 memory	 of	 the	 neocortex	 by	 playing	 this	 memory
sequence	 to	 the	 neocortex	 over	 and	 over	 again.	 We	 need,	 therefore,	 a
hippocampus	in	order	to	learn	new	memories	and	skills	(although	strictly	motor
skills	 appear	 to	 use	 a	 different	 mechanism).	 Someone	 with	 damage	 to	 both
copies	of	her	hippocampus	will	retain	her	existing	memories	but	will	not	be	able
to	form	new	ones.

University	 of	 Southern	California	 neuroscientist	Theodore	Berger	 and	 his
colleagues	 modeled	 the	 hippocampus	 of	 a	 rat	 and	 have	 successfully
experimented	with	implanting	an	artificial	one.	In	a	study	reported	in	2011,	the
USC	scientists	blocked	particular	learned	behaviors	in	rats	with	drugs.	Using	an
artificial	hippocampus,	the	rats	were	able	to	quickly	relearn	the	behavior.	“Flip
the	 switch	 on,	 and	 the	 rats	 remember.	 Flip	 it	 off	 and	 the	 rats	 forget,”	 Berger
wrote,	referring	to	his	ability	to	control	the	neural	implant	remotely.	In	another



experiment	the	scientists	allowed	their	artificial	hippocampus	to	work	alongside
the	 rats’	 natural	 one.	 The	 result	 was	 that	 the	 ability	 of	 the	 rats	 to	 learn	 new
behaviors	 strengthened.	“These	 integrated	experimental	modeling	studies	 show
for	the	first	time,”	Berger	explained,	“that…a	neural	prosthesis	capable	of	real-
time	 identification	 and	 manipulation	 of	 the	 encoding	 process	 can	 restore	 and
even	enhance	cognitive	mnemonic	processes.”7	The	hippocampus	is	one	of	 the
first	regions	damaged	by	Alzheimer’s,	so	one	goal	of	this	research	is	to	develop
a	neural	 implant	 for	humans	 that	will	mitigate	 this	 first	phase	of	damage	 from
the	disease.



The	Cerebellum

There	are	 two	approaches	you	can	use	 to	catch	a	 fly	ball.	You	could	solve	 the
complex	simultaneous	differential	equations	controlling	the	ball’s	movement	as
well	 as	 further	 equations	 governing	 your	 own	 particular	 angle	 in	 viewing	 the
ball,	 and	 then	compute	 even	more	 equations	on	how	 to	move	your	body,	 arm,
and	hand	to	be	in	the	right	place	at	the	right	time.

This	 is	not	 the	approach	 that	your	brain	adopts.	 It	basically	 simplifies	 the
problem	by	collapsing	a	lot	of	equations	into	a	simple	trend	model,	considering
the	trends	of	where	the	ball	appears	to	be	in	your	field	of	vision	and	how	quickly
it	is	moving	within	it.	It	does	the	same	thing	with	your	hand,	making	essentially
linear	predictions	of	the	ball’s	apparent	position	in	your	field	of	view	and	that	of
your	hand.	The	goal,	of	course,	 is	 to	make	sure	they	meet	at	 the	same	point	 in
space	 and	 time.	 If	 the	 ball	 appears	 to	 be	 dropping	 too	 quickly	 and	 your	 hand
appears	to	be	moving	too	slowly,	your	brain	will	direct	your	hand	to	move	more
quickly,	 so	 that	 the	 trends	will	 coincide.	This	 “Gordian	knot”	 solution	 to	what
would	 otherwise	 be	 an	 intractable	 mathematical	 problem	 is	 called	 basis
functions,	 and	 they	 are	 carried	 out	 by	 the	 cerebellum,	 a	 bean-shaped	 and
appropriately	baseball-sized	region	that	sits	on	the	brain	stem.8

The	 cerebellum	 is	 an	 old-brain	 region	 that	 once	 controlled	 virtually	 all
hominid	movements.	 It	 still	contains	half	of	 the	neurons	 in	 the	brain,	although
most	are	relatively	small	ones,	so	the	region	constitutes	only	about	10	percent	of
the	weight	of	the	brain.	The	cerebellum	likewise	represents	another	instance	of
massive	repetition	in	the	design	of	the	brain.	There	is	relatively	little	information
about	its	design	in	the	genome,	as	its	structure	is	a	pattern	of	several	neurons	that
is	repeated	billions	of	times.	As	with	the	neocortex,	there	is	uniformity	across	its
structure.9

Most	of	the	function	of	controlling	our	muscles	has	been	taken	over	by	the
neocortex,	 using	 the	 same	 pattern	 recognition	 algorithms	 that	 it	 uses	 for
perception	and	cognition.	In	the	case	of	movement,	we	can	more	appropriately
refer	to	the	neocortex’s	function	as	pattern	implementation.	The	neocortex	does
make	 use	 of	 the	 memory	 in	 the	 cerebellum	 to	 record	 delicate	 scripts	 of
movements—for	 example,	 your	 signature	 and	 certain	 flourishes	 in	 artistic
expression	such	as	music	and	dance.	Studies	of	the	role	of	the	cerebellum	during
the	 learning	 of	 handwriting	 by	 children	 reveal	 that	 the	 Purkinje	 cells	 of	 the
cerebellum	actually	sample	the	sequence	of	movements,	with	each	one	sensitive



to	a	specific	sample.10	Because	most	of	our	movement	is	now	controlled	by	the
neocortex,	many	people	can	manage	with	a	relatively	modest	obvious	disability
even	 with	 significant	 damage	 to	 the	 cerebellum,	 except	 that	 their	 movements
may	become	less	graceful.

The	 neocortex	 can	 also	 call	 upon	 the	 cerebellum	 to	 use	 its	 ability	 to
compute	real-time	basis	functions	to	anticipate	what	the	results	of	actions	would
be	 that	we	 are	 considering	 but	 have	 not	 yet	 carried	 out	 (and	may	 never	 carry
out),	as	well	as	the	actions	or	possible	actions	of	others.	It	is	another	example	of
the	innate	built-in	linear	predictors	in	the	brain.

Substantial	 progress	 has	 been	 made	 in	 simulating	 the	 cerebellum	 with
respect	 to	 the	 ability	 to	 respond	 dynamically	 to	 sensory	 cues	 using	 the	 basis
functions	 I	 discussed	 above,	 in	 both	 bottom-up	 simulations	 (based	 on
biochemical	models)	and	top-down	simulations	(based	on	mathematical	models
of	how	each	repeating	unit	in	the	cerebellum	operates).11



Pleasure	and	Fear

Fear	 is	 the	 main	 source	 of	 superstition,	 and	 one	 of	 the	 main	 sources	 of
cruelty.	To	conquer	fear	is	the	beginning	of	wisdom.

—Bertrand	Russell
	

Feel	the	fear	and	do	it	anyway.
—Susan	Jeffers

	

	
If	the	neocortex	is	good	at	solving	problems,	then	what	is	the	main	problem	we
are	 trying	 to	 solve?	 The	 problem	 that	 evolution	 has	 always	 tried	 to	 solve	 is
survival	 of	 the	 species.	 That	 translates	 into	 the	 survival	 of	 the	 individual,	 and
each	 of	 us	 uses	 his	 or	 her	 own	 neocortex	 to	 interpret	 that	 in	myriad	ways.	 In
order	to	survive,	animals	need	to	procure	their	next	meal	while	at	the	same	time
avoiding	 becoming	 someone	 else’s	 meal.	 They	 also	 need	 to	 reproduce.	 The
earliest	brains	evolved	pleasure	and	fear	systems	that	rewarded	the	fulfillment	of
these	 fundamental	 needs	 along	 with	 basic	 behaviors	 that	 facilitated	 them.	 As
environments	 and	 competing	 species	 gradually	 changed,	 biological	 evolution
made	 corresponding	 alterations.	 With	 the	 advent	 of	 hierarchical	 thinking,	 the
satisfaction	of	critical	drives	became	more	complex,	as	it	was	now	subject	to	the
vast	complex	of	 ideas	within	 ideas.	But	despite	 its	considerable	modulation	by
the	 neocortex,	 the	 old	 brain	 is	 still	 alive	 and	well	 and	 still	motivating	 us	with
pleasure	and	fear.

One	 region	 that	 is	 associated	with	 pleasure	 is	 the	 nucleus	 accumbens.	 In
famous	 experiments	 conducted	 in	 the	 1950s,	 rats	 that	 were	 able	 to	 directly
stimulate	 this	 small	 region	 (by	 pushing	 a	 lever	 that	 activated	 implanted
electrodes)	preferred	doing	so	 to	anything	else,	 including	having	sex	or	eating,
ultimately	 exhausting	 and	 starving	 themselves	 to	 death.12	 In	 humans,	 other
regions	are	also	involved	in	pleasure,	such	as	the	ventral	pallidum	and,	of	course,
the	neocortex	itself.

Pleasure	is	also	regulated	by	chemicals	such	as	dopamine	and	serotonin.	It
is	 beyond	 the	 scope	 of	 this	 book	 to	 discuss	 these	 systems	 in	 detail,	 but	 it	 is
important	 to	 recognize	 that	 we	 have	 inherited	 these	 mechanisms	 from	 our
premammalian	 cousins.	 It	 is	 the	 job	 of	 our	 neocortex	 to	 enable	 us	 to	 be	 the



master	of	pleasure	and	fear	and	not	 their	slave.	To	the	extent	 that	we	are	often
subject	 to	 addictive	 behaviors,	 the	 neocortex	 is	 not	 always	 successful	 in	 this
endeavor.	 Dopamine	 in	 particular	 is	 a	 neurotransmitter	 involved	 in	 the
experience	 of	 pleasure.	 If	 anything	 good	 happens	 to	 us—winning	 the	 lottery,
gaining	 the	 recognition	 of	 our	 peers,	 getting	 a	 hug	 from	 a	 loved	 one,	 or	 even
subtle	achievements	such	as	getting	a	friend	to	laugh	at	a	joke—we	experience	a
release	of	dopamine.	Sometimes	we,	like	the	rats	who	died	overstimulating	their
nucleus	accumbens,	use	a	shortcut	to	achieve	these	bursts	of	pleasure,	which	is
not	always	a	good	idea.

Gambling,	 for	example,	can	release	dopamine,	at	 least	when	you	win,	but
this	 is	dependent	on	its	 inherent	 lack	of	predictability.	Gambling	may	work	for
the	 purpose	 of	 releasing	 dopamine	 for	 a	 while,	 but	 given	 that	 the	 odds	 are
intentionally	 stacked	 against	 you	 (otherwise	 the	 business	 model	 of	 a	 casino
wouldn’t	work),	it	can	become	ruinous	as	a	regular	strategy.	Similar	dangers	are
associated	 with	 any	 addictive	 behavior.	 A	 particular	 genetic	 mutation	 of	 the
dopamine-receptor	D2	 gene	 causes	 especially	 strong	 feelings	 of	 pleasure	 from
initial	experiences	with	addictive	substances	and	behaviors,	but	as	is	well	known
(but	not	always	well	heeded),	the	ability	of	these	substances	to	produce	pleasure
on	 subsequent	 use	 gradually	 declines.	 Another	 genetic	 mutation	 results	 in
people’s	 not	 receiving	 normal	 levels	 of	 dopamine	 release	 from	 everyday
accomplishments,	 which	 can	 also	 lead	 to	 seeking	 enhanced	 early	 experiences
with	 addictive	 activities.	The	minority	of	 the	population	 that	 has	 these	genetic
proclivities	to	addiction	creates	an	enormous	social	and	medical	problem.	Even
those	who	manage	to	avoid	severely	addictive	behaviors	struggle	with	balancing
the	 rewards	 of	 dopamine	 release	 with	 the	 consequences	 of	 the	 behaviors	 that
release	them.

Serotonin	is	a	neurotransmitter	 that	plays	a	major	role	in	the	regulation	of
mood.	 In	 higher	 levels	 it	 is	 associated	 with	 feelings	 of	 well-being	 and
contentment.	 Serotonin	 has	 other	 functions,	 including	 modulating	 synaptic
strength,	appetite,	sleep,	sexual	desire,	and	digestion.	Antidepression	drugs	such
as	selective	serotonin	reuptake	inhibitors	(which	tend	to	increase	serotonin	levels
available	to	receptors)	tend	to	have	far-reaching	effects,	not	all	of	them	desirable
(such	as	suppressing	libido).	Unlike	actions	in	the	neocortex,	where	recognition
of	 patterns	 and	 activations	 of	 axons	 affect	 only	 a	 small	 number	 of	 neocortical
circuits	at	a	 time,	 these	substances	affect	 large	regions	of	 the	brain	or	even	the
entire	nervous	system.

Each	hemisphere	of	the	human	brain	has	an	amygdala,	which	consists	of	an
almond-shaped	region	comprising	several	small	lobes.	The	amygdala	is	also	part
of	 the	old	brain	 and	 is	 involved	 in	processing	a	number	of	 types	of	 emotional



responses,	the	most	notable	of	which	is	fear.	In	premammalian	animals,	certain
preprogrammed	 stimuli	 representing	 danger	 feed	 directly	 into	 the	 amygdala,
which	in	turn	triggers	the	“fight	or	flight”	mechanism.	In	humans	the	amygdala
now	 depends	 on	 perceptions	 of	 danger	 to	 be	 transmitted	 by	 the	 neocortex.	 A
negative	comment	by	your	boss,	for	example,	might	trigger	such	a	response	by
generating	the	fear	of	losing	your	job	(or	maybe	not,	if	you	have	confidence	in	a
plan	 B).	 Once	 the	 amygdala	 does	 decide	 that	 danger	 is	 ahead,	 an	 ancient
sequence	of	events	occurs.	The	amygdala	signals	the	pituitary	gland	to	release	a
hormone	 called	 ACTH	 (adrenocorticotropin).	 This	 in	 turn	 triggers	 the	 stress
hormone	 cortisol	 from	 the	 adrenal	 glands,	which	 results	 in	more	 energy	being
provided	to	your	muscles	and	nervous	system.	The	adrenal	glands	also	produce
adrenaline	 and	 noradrenaline,	 which	 suppress	 your	 digestive,	 immune,	 and
reproductive	 systems	 (figuring	 that	 these	 are	 not	 high-priority	 processes	 in	 an
emergency).	Levels	of	blood	pressure,	blood	sugar,	 cholesterol,	 and	 fibrinogen
(which	 speeds	 blood	 clotting)	 all	 rise.	 Heart	 rate	 and	 respiration	 go	 up.	 Even
your	pupils	dilate	 so	 that	you	have	better	visual	 acuity	of	your	enemy	or	your
escape	route.	This	is	all	very	useful	if	a	real	danger	such	as	a	predator	suddenly
crosses	your	path.	It	is	well	known	that	in	today’s	world,	the	chronic	activation
of	this	fight-or-flight	mechanism	can	lead	to	permanent	health	damage	in	terms
of	hypertension,	high	cholesterol	levels,	and	other	problems.

The	 system	 of	 global	 neurotransmitter	 levels,	 such	 as	 serotonin,	 and
hormone	 levels,	 such	as	dopamine,	 is	 intricate,	and	we	could	spend	 the	 rest	of
this	book	on	the	issue	(as	a	great	many	books	have	done),	but	it	is	worth	pointing
out	that	the	bandwidth	of	information	(the	rate	of	information	processing)	in	this
system	 is	 very	 low	 compared	with	 the	 bandwidth	 of	 the	 neocortex.	 There	 are
only	a	limited	number	of	substances	involved	and	the	levels	of	these	chemicals
tend	to	change	slowly	and	are	relatively	universal	across	the	brain,	as	compared
with	 the	neocortex,	which	 is	 composed	of	 hundreds	of	 trillions	of	 connections
that	can	change	quickly.

It	is	fair	to	say	that	our	emotional	experiences	take	place	in	both	the	old	and
the	 new	 brains.	 Thinking	 takes	 place	 in	 the	 new	 brain	 (the	 neocortex),	 but
feeling	 takes	 place	 in	 both.	 Any	 emulation	 of	 human	 behavior	 will	 therefore
need	to	model	both.	However,	if	 it	 is	just	human	cognitive	intelligence	that	we
are	after,	the	neocortex	is	sufficient.	We	can	replace	the	old	brain	with	the	more
direct	 motivation	 of	 a	 nonbiological	 neocortex	 to	 achieve	 the	 goals	 that	 we
assign	 to	 it.	 For	 example,	 in	 the	 case	 of	Watson,	 the	 goal	 was	 simply	 stated:
Come	 up	with	 correct	 answers	 to	 Jeopardy!	 queries	 (albeit	 these	were	 further
modulated	by	a	program	that	understood	Jeopardy!	wagering).	In	the	case	of	the
new	Watson	 system	 being	 jointly	 developed	 by	Nuance	 and	 IBM	 for	medical



knowledge,	 the	 goal	 is	 to	 help	 treat	 human	 disease.	 Future	 systems	 can	 have
goals	 such	 as	 actually	 curing	 disease	 and	 alleviating	 poverty.	 A	 lot	 of	 the
pleasure-fear	 struggle	 is	 already	obsolete	 for	humans,	 as	 the	old	brain	evolved
long	 before	 even	 primitive	 human	 society	 got	 started;	 indeed	 most	 of	 it	 is
reptilian.

There	is	a	continual	struggle	in	the	human	brain	as	to	whether	the	old	or	the
new	brain	 is	 in	charge.	The	old	brain	 tries	 to	set	 the	agenda	with	 its	control	of
pleasure	 and	 fear	 experiences,	 whereas	 the	 new	 brain	 is	 continually	 trying	 to
understand	 the	 relatively	 primitive	 algorithms	 of	 the	 old	 brain	 and	 seeking	 to
manipulate	 it	 to	 its	 own	 agenda.	Keep	 in	mind	 that	 the	 amygdala	 is	 unable	 to
evaluate	 danger	 on	 its	 own—in	 the	 human	 brain	 it	 relies	 on	 the	 neocortex	 to
make	those	judgments.	Is	that	person	a	friend	or	a	foe,	a	lover	or	a	threat?	Only
the	neocortex	can	decide.

To	the	extent	that	we	are	not	directly	engaged	in	mortal	combat	and	hunting
for	food,	we	have	succeeded	in	at	least	partially	sublimating	our	ancient	drives	to
more	creative	endeavors.	On	 that	note,	we’ll	discuss	 creativity	 and	 love	 in	 the
next	chapter.



CHAPTER	6

	



TRANSCENDENT	ABILITIES
	

This	 is	 my	 simple	 religion.	 There	 is	 no	 need	 for	 temples;	 no	 need	 for
complicated	philosophy.	Our	own	brain,	 our	own	heart	 is	 our	 temple;	 the
philosophy	is	kindness.

—The	Dalai	Lama
	

My	 hand	 moves	 because	 certain	 forces—electric,	 magnetic,	 or	 whatever
“nerve-force”	 may	 prove	 to	 be—are	 impressed	 on	 it	 by	 my	 brain.	 This
nerve-force,	 stored	 in	 the	 brain,	 would	 probably	 be	 traceable,	 if	 Science
were	complete,	 to	chemical	forces	supplied	 to	 the	brain	by	 the	blood,	and
ultimately	derived	from	the	food	I	eat	and	the	air	I	breathe.

—Lewis	Carroll
	

	
Our	emotional	thoughts	also	take	place	in	the	neocortex	but	are	influenced	by
portions	of	the	brain	ranging	from	ancient	brain	regions	such	as	the	amygdala	to
some	 evolutionarily	 recent	 brain	 structures	 such	 as	 the	 spindle	 neurons,	which
appear	to	play	a	key	role	in	higher-level	emotions.	Unlike	the	regular	and	logical
recursive	structures	found	in	the	cerebral	cortex,	the	spindle	neurons	have	highly
irregular	 shapes	 and	 connections.	 They	 are	 the	 largest	 neurons	 in	 the	 human
brain,	spanning	its	entire	breadth.	They	are	deeply	interconnected,	with	hundreds
of	thousands	of	connections	tying	together	diverse	portions	of	the	neocortex.

As	mentioned	 earlier,	 the	 insula	 helps	 process	 sensory	 signals,	 but	 it	 also
plays	a	key	role	in	higher-level	emotions.	It	is	this	region	from	which	the	spindle
cells	 originate.	 Functional	 magnetic	 resonance	 imaging	 (fMRI)	 scans	 have
revealed	 that	 these	 cells	 are	 particularly	 active	when	 a	 person	 is	 dealing	with
emotions	such	as	love,	anger,	sadness,	and	sexual	desire.	Situations	that	strongly
activate	 them	 include	 when	 a	 subject	 looks	 at	 her	 partner	 or	 hears	 her	 child
crying.

Spindle	cells	have	long	neural	filaments	called	apical	dendrites,	which	are



able	to	connect	to	faraway	neocortical	regions.	Such	“deep”	interconnectedness,
in	 which	 certain	 neurons	 provide	 connections	 across	 numerous	 regions,	 is	 a
feature	 that	 occurs	 increasingly	 as	we	 go	 up	 the	 evolutionary	 ladder.	 It	 is	 not
surprising	 that	 the	 spindle	 cells,	 involved	 as	 they	 are	 in	 handling	 emotion	 and
moral	 judgment,	 would	 have	 this	 form	 of	 connectedness,	 given	 the	 ability	 of
higher-level	 emotional	 reactions	 to	 touch	 on	 diverse	 topics	 and	 thoughts.
Because	of	their	links	to	many	other	parts	of	the	brain,	the	high-level	emotions
that	 spindle	 cells	 process	 are	 affected	 by	 all	 of	 our	 perceptual	 and	 cognitive
regions.	 It	 is	 important	 to	 point	 out	 that	 these	 cells	 are	 not	 doing	 rational
problem	solving,	which	is	why	we	don’t	have	rational	control	over	our	responses
to	 music	 or	 over	 falling	 in	 love.	 The	 rest	 of	 the	 brain	 is	 heavily	 engaged,
however,	in	trying	to	make	sense	of	our	mysterious	high-level	emotions.

There	 are	 relatively	 few	 spindle	 cells:	 only	 about	 80,000,	 with
approximately	 45,000	 in	 the	 right	 hemisphere	 and	 35,000	 in	 the	 left.	 This
disparity	 is	at	 least	one	 reason	 for	 the	perception	 that	emotional	 intelligence	 is
the	 province	 of	 the	 right	 brain,	 although	 the	 disproportion	 is	modest.	 Gorillas
have	about	16,000	of	these	cells,	bonobos	about	2,100,	and	chimpanzees	about
1,800.	Other	mammals	lack	them	completely.

Anthropologists	believe	that	spindle	cells	made	their	first	appearance	10	to
15	million	years	 ago	 in	 the	 as	yet	 undiscovered	 common	ancestor	 to	 apes	 and
hominids	 (precursors	 to	 humans)	 and	 rapidly	 increased	 in	 numbers	 around
100,000	years	ago.	 Interestingly,	 spindle	cells	do	not	exist	 in	newborn	humans
but	 begin	 to	 appear	 only	 at	 around	 the	 age	 of	 four	 months	 and	 increase
significantly	 in	 number	 from	ages	one	 to	 three.	Children’s	 ability	 to	 deal	with
moral	issues	and	perceive	such	higher-level	emotions	as	love	develop	during	this
same	period.



Aptitude

Wolfgang	Amadeus	Mozart	(1756–1791)	wrote	a	minuet	when	he	was	five.	At
age	 six	 he	 performed	 for	 the	 empress	Maria	 Theresa	 at	 the	 imperial	 court	 in
Vienna.	 He	 went	 on	 to	 compose	 six	 hundred	 pieces,	 including	 forty-one
symphonies,	 before	 his	 death	 at	 age	 thirty-five,	 and	 is	widely	 regarded	 as	 the
greatest	composer	in	the	European	classical	tradition.	One	might	say	that	he	had
an	aptitude	for	music.

So	what	does	this	mean	in	the	context	of	the	pattern	recognition	theory	of
mind?	Clearly	part	of	what	we	regard	as	aptitude	is	the	product	of	nurture,	that	is
to	say,	the	influences	of	environment	and	other	people.	Mozart	was	born	into	a
musical	family.	His	father,	Leopold,	was	a	composer	and	kapellmeister	(literally
musical	leader)	of	the	court	orchestra	of	the	archbishop	of	Salzburg.	The	young
Mozart	was	 immersed	 in	music,	 and	 his	 father	 started	 teaching	 him	 the	 violin
and	clavier	(a	keyboard	instrument)	at	the	age	of	three.

However,	 environmental	 influences	 alone	 do	 not	 fully	 explain	 Mozart’s
genius.	There	is	clearly	a	nature	component	as	well.	What	form	does	this	take?
As	 I	 wrote	 in	 chapter	 4,	 different	 regions	 of	 the	 neocortex	 have	 become
optimized	(by	biological	evolution)	for	certain	types	of	patterns.	Even	though	the
basic	 pattern	 recognition	 algorithm	 of	 the	 modules	 is	 uniform	 across	 the
neocortex,	since	certain	types	of	patterns	tend	to	flow	through	particular	regions
(faces	 through	 the	 fusiform	 gyrus,	 for	 example),	 those	 regions	 will	 become
better	 at	 processing	 the	 associated	 patterns.	 However,	 there	 are	 numerous
parameters	that	govern	how	the	algorithm	is	actually	carried	out	in	each	module.
For	example,	how	close	a	match	is	required	for	a	pattern	to	be	recognized?	How
is	that	threshold	modified	if	a	higher-level	module	sends	a	signal	that	its	pattern
is	“expected”?	How	are	the	size	parameters	considered?	These	and	other	factors
have	been	 set	 differently	 in	different	 regions	 to	be	 advantageous	 for	 particular
types	of	patterns.	In	our	work	with	similar	methods	in	artificial	intelligence,	we
have	noticed	 the	 same	phenomenon	and	have	used	 simulations	of	 evolution	 to
optimize	these	parameters.

If	particular	regions	can	be	optimized	for	different	types	of	patterns,	then	it
follows	 that	 individual	brains	will	also	vary	 in	 their	ability	 to	 learn,	 recognize,
and	 create	 certain	 types	 of	 patterns.	 For	 example,	 a	 brain	 can	 have	 an	 innate
aptitude	 for	 music	 by	 being	 better	 able	 to	 recognize	 rhythmic	 patterns,	 or	 to
better	understand	the	geometric	arrangements	of	harmonies.	The	phenomenon	of



perfect	 pitch	 (the	 ability	 to	 recognize	 and	 to	 reproduce	 a	 pitch	 without	 an
external	 reference),	which	 is	 correlated	with	musical	 talent,	 appears	 to	 have	 a
genetic	basis,	although	the	ability	needs	 to	be	developed,	so	 it	 is	 likely	 to	be	a
combination	of	nature	and	nurture.	The	genetic	basis	of	perfect	pitch	is	likely	to
reside	 outside	 the	 neocortex	 in	 the	 preprocessing	 of	 auditory	 information,
whereas	the	learned	aspect	resides	in	the	neocortex.

There	are	other	skills	that	contribute	to	degrees	of	competency,	whether	of
the	 routine	 variety	 or	 of	 the	 legendary	 genius.	 Neocortical	 abilities—for
example,	 the	 ability	 of	 the	 neocortex	 to	 master	 the	 signals	 of	 fear	 that	 the
amygdala	generates	(when	presented	with	disapproval)—play	a	significant	role,
as	 do	 attributes	 such	 as	 confidence,	 organizational	 skills,	 and	 the	 ability	 to
influence	others.	A	very	important	skill	I	noted	earlier	 is	 the	courage	to	pursue
ideas	 that	 go	 against	 the	 grain	 of	 orthodoxy.	 Invariably,	 people	 we	 regard	 as
geniuses	pursued	 their	own	mental	 experiments	 in	ways	 that	were	not	 initially
understood	or	appreciated	by	their	peers.	Although	Mozart	did	gain	recognition
in	his	 lifetime,	most	of	 the	adulation	came	 later.	He	died	a	pauper,	buried	 in	a
common	grave,	and	only	two	other	musicians	showed	up	at	his	funeral.



Creativity

Creativity	is	a	drug	I	cannot	live	without.
—Cecil	B.	DeMille

	

The	problem	is	never	how	to	get	new,	innovative	thoughts	into	your	mind,
but	how	 to	get	 old	ones	out.	Every	mind	 is	 a	building	 filled	with	 archaic
furniture.	Clean	out	a	corner	of	your	mind	and	creativity	will	instantly	fill
it.

—Dee	Hock
	

Humanity	can	be	quite	cold	to	those	whose	eyes	see	the	world	differently.
—Eric	A.	Burns

	

Creativity	 can	 solve	 almost	 any	 problem.	 The	 creative	 act,	 the	 defeat	 of
habit	by	originality,	overcomes	everything.

—George	Lois
	

	
A	key	 aspect	 of	 creativity	 is	 the	 process	 of	 finding	great	metaphors—symbols
that	represent	something	else.	The	neocortex	is	a	great	metaphor	machine,	which
accounts	 for	 why	 we	 are	 a	 uniquely	 creative	 species.	 Every	 one	 of	 the
approximately	 300	million	 pattern	 recognizers	 in	 our	 neocortex	 is	 recognizing
and	defining	a	pattern	and	giving	it	a	name,	which	in	the	case	of	the	neocortical
pattern	 recognition	 modules	 is	 simply	 the	 axon	 emerging	 from	 the	 pattern
recognizer	 that	 will	 fire	when	 that	 pattern	 is	 found.	 That	 symbol	 in	 turn	 then
becomes	 part	 of	 another	 pattern.	 Each	 one	 of	 these	 patterns	 is	 essentially	 a
metaphor.	 The	 recognizers	 can	 fire	 up	 to	 100	 times	 a	 second,	 so	we	 have	 the
potential	of	recognizing	up	to	30	billion	metaphors	a	second.	Of	course	not	every
module	 is	 firing	 in	 every	 cycle—but	 it	 is	 fair	 to	 say	 that	 we	 are	 indeed
recognizing	millions	of	metaphors	a	second.

Of	 course,	 some	 metaphors	 are	 more	 significant	 than	 others.	 Darwin
perceived	 that	 Charles	 Lyell’s	 insight	 on	 how	 very	 gradual	 changes	 from	 a



trickle	of	water	could	carve	out	great	canyons	was	a	powerful	metaphor	for	how
a	 trickle	 of	 small	 evolutionary	 changes	 over	 thousands	 of	 generations	 could
carve	out	great	 changes	 in	 the	differentiation	of	 species.	Thought	 experiments,
such	 as	 the	 one	 that	 Einstein	 used	 to	 illuminate	 the	 true	 meaning	 of	 the
Michelson-Morley	experiment,	are	all	metaphors,	in	the	sense	of	being	a	“thing
regarded	as	representative	or	symbolic	of	something	else,”	to	quote	a	dictionary
definition.

Do	you	see	any	metaphors	in	Sonnet	73	by	Shakespeare?

That	time	of	year	thou	mayst	in	me	behold
When	yellow	leaves,	or	none,	or	few,	do	hang
Upon	those	boughs	which	shake	against	the	cold,
Bare	ruined	choirs,	where	late	the	sweet	birds	sang.
In	me	thou	seest	the	twilight	of	such	day
As	after	sunset	fadeth	in	the	west,
Which	by	and	by	black	night	doth	take	away,
Death’s	second	self	that	seals	up	all	in	rest.
In	me	thou	seest	the	glowing	of	such	fire
That	on	the	ashes	of	his	youth	doth	lie,
As	the	deathbed	whereon	it	must	expire
Consumed	with	that	which	it	was	nourished	by.
This	thou	perceiv’st,	which	makes	thy	love	more	strong,
To	love	that	well	which	thou	must	leave	ere	long.

	
In	this	sonnet,	the	poet	uses	extensive	metaphors	to	describe	his	advancing

age.	His	age	is	like	late	autumn,	“when	yellow	leaves,	or	none,	or	few,	do	hang.”
The	weather	 is	cold	and	 the	birds	can	no	 longer	 sit	on	 the	branches,	which	he
calls	“bare	ruin’d	choirs.”	His	age	is	like	the	twilight	as	the	“sunset	fadeth	in	the
west,	which	by	and	by	black	night	doth	take	away.”	He	is	the	remains	of	a	fire
“that	 on	 the	 ashes	 of	 his	 youth	 doth	 lie.”	 Indeed,	 all	 language	 is	 ultimately
metaphor,	though	some	expressions	of	it	are	more	memorable	than	others.

Finding	 a	 metaphor	 is	 the	 process	 of	 recognizing	 a	 pattern	 despite
differences	 in	 detail	 and	 context—an	 activity	 we	 undertake	 trivially	 every
moment	 of	 our	 lives.	 The	metaphorical	 leaps	 that	we	 consider	 of	 significance
tend	to	take	place	in	the	interstices	of	different	disciplines.	Working	against	this
essential	force	of	creativity,	however,	is	the	pervasive	trend	toward	ever	greater
specialization	 in	 the	 sciences	 (and	 just	 about	 every	 other	 field	 as	 well).	 As
American	 mathematician	 Norbert	 Wiener	 (1894–1964)	 wrote	 in	 his	 seminal
book	Cybernetics,	published	the	year	I	was	born	(1948):



There	are	fields	of	scientific	work,	as	we	shall	see	in	the	body	of	this
book,	 which	 have	 been	 explored	 from	 the	 different	 sides	 of	 pure
mathematics,	 statistics,	 electrical	 engineering,	 and	 neurophysiology;	 in
which	every	single	notion	receives	a	separate	name	from	each	group,	and	in
which	 important	 work	 has	 been	 triplicated	 or	 quadruplicated,	 while	 still
other	important	work	is	delayed	by	the	unavailability	in	one	field	of	results
that	may	have	already	become	classical	in	the	next	field.

It	is	these	boundary	regions	which	offer	the	richest	opportunities	to	the
qualified	investigator.	They	are	at	the	same	time	the	most	refractory	to	the
accepted	techniques	of	mass	attack	and	the	division	of	labor.

	
A	 technique	 I	 have	 used	 in	 my	 own	 work	 to	 combat	 increasing

specialization	 is	 to	assemble	 the	experts	 that	 I	have	gathered	 for	a	project	 (for
example,	 my	 speech	 recognition	 work	 included	 speech	 scientists,	 linguists,
psychoacousticians,	 and	 pattern	 recognition	 experts,	 not	 to	 mention	 computer
scientists)	and	encourage	each	one	 to	 teach	 the	group	his	particular	 techniques
and	 terminology.	We	 then	 throw	 out	 all	 of	 that	 terminology	 and	make	 up	 our
own.	 Invariably	 we	 find	 metaphors	 from	 one	 field	 that	 solve	 problems	 in
another.

A	mouse	that	finds	an	escape	route	when	confronted	with	the	household	cat
—and	can	do	so	even	if	the	situation	is	somewhat	different	from	what	it	has	ever
encountered	 before—is	 being	 creative.	 Our	 own	 creativity	 is	 orders	 of
magnitude	 greater	 than	 that	 of	 the	 mouse—and	 involves	 far	 more	 levels	 of
abstraction—because	 we	 have	 a	 much	 larger	 neocortex,	 which	 is	 capable	 of
greater	 levels	 of	 hierarchy.	 So	 one	 way	 to	 achieve	 greater	 creativity	 is	 by
effectively	assembling	more	neocortex.

One	 approach	 to	 expand	 the	 available	 neocortex	 is	 through	 the
collaboration	 of	 multiple	 humans.	 This	 is	 accomplished	 routinely	 via	 the
communication	 between	 people	 gathered	 in	 a	 problem-solving	 community.
Recently	there	have	been	efforts	to	use	online	collaboration	tools	to	harness	the
power	of	real-time	collaboration,	which	have	shown	success	in	mathematics	and
other	fields.1

The	 next	 step,	 of	 course,	 will	 be	 to	 expand	 the	 neocortex	 itself	 with	 its
nonbiological	equivalent.	This	will	be	our	ultimate	act	of	creativity:	to	create	the
capability	of	being	creative.	A	nonbiological	neocortex	will	ultimately	be	faster
and	 could	 rapidly	 search	 for	 the	 kinds	 of	metaphors	 that	 inspired	Darwin	 and
Einstein.	 It	 could	 systematically	 explore	 all	 of	 the	 overlapping	 boundaries
between	our	exponentially	expanding	frontiers	of	knowledge.

Some	people	express	concern	about	what	will	happen	to	those	who	would



opt	 out	 of	 such	 mind	 expansion.	 I	 would	 point	 out	 that	 this	 additional
intelligence	 will	 essentially	 reside	 in	 the	 cloud	 (the	 exponentially	 expanding
network	of	computers	that	we	connect	to	through	online	communication),	where
most	of	our	machine	intelligence	is	now	stored.	When	you	use	a	search	engine,
recognize	speech	from	your	phone,	consult	a	virtual	assistant	such	as	Siri,	or	use
your	phone	to	translate	a	sign	into	another	language,	the	intelligence	is	not	in	the
device	itself	but	in	the	cloud.	Our	expanded	neocortex	will	be	housed	there	too.
Whether	we	access	such	expanded	intelligence	through	direct	neural	connection
or	 the	way	we	do	now—by	 interacting	with	 it	via	our	devices—is	an	arbitrary
distinction.	In	my	view	we	will	all	become	more	creative	through	this	pervasive
enhancement,	 whether	 we	 choose	 to	 opt	 in	 or	 out	 of	 direct	 connection	 to
humanity’s	 expanded	 intelligence.	 We	 have	 already	 outsourced	 much	 of	 our
personal,	 social,	 historical,	 and	 cultural	 memory	 to	 the	 cloud,	 and	 we	 will
ultimately	do	the	same	thing	with	our	hierarchical	thinking.

Einstein’s	breakthrough	resulted	not	only	from	his	application	of	metaphors
through	mind	experiments	but	also	from	his	courage	in	believing	in	the	power	of
those	metaphors.	He	was	willing	 to	 relinquish	 the	 traditional	 explanations	 that
failed	to	satisfy	his	experiments,	and	he	was	willing	to	withstand	the	ridicule	of
his	peers	to	the	bizarre	explanations	that	his	metaphors	implied.	These	qualities
—belief	in	metaphor	and	courage	of	conviction—are	ones	that	we	should	be	able
to	program	into	our	nonbiological	neocortex	as	well.



Love

Clarity	of	mind	means	clarity	of	passion,	too;	this	is	why	a	great	and	clear
mind	loves	ardently	and	sees	distinctly	what	it	loves.

—Blaise	Pascal
	

There	 is	 always	 some	 madness	 in	 love.	 But	 there	 is	 also	 always	 some
reason	in	madness.

—Friedrich	Nietzsche
	

When	you	have	seen	as	much	of	life	as	I	have,	you	will	not	underestimate
the	power	of	obsessive	love.

—Albus	Dumbledore,	in	J.	K.	Rowling,	Harry	Potter	and	the	Half-
Blood	Prince

	

I	always	like	a	good	math	solution	to	any	love	problem.
—Michael	Patrick	King,	from	the	“Take	Me	Out	to	the	Ballgame”

episode	of	Sex	and	the	City
	

	
If	 you	 haven’t	 actually	 experienced	 ecstatic	 love	 personally,	 you	 have
undoubtedly	 heard	 about	 it.	 It	 is	 fair	 to	 say	 that	 a	 substantial	 fraction	 if	 not	 a
majority	of	 the	world’s	art—stories,	novels,	music,	dance,	paintings,	 television
shows,	and	movies—is	inspired	by	the	stories	of	love	in	its	earliest	stages.

Science	 has	 recently	 gotten	 into	 the	 act	 as	well,	 and	we	 are	 now	 able	 to
identify	 the	 biochemical	 changes	 that	 occur	 when	 someone	 falls	 in	 love.
Dopamine	 is	 released,	 producing	 feelings	 of	 happiness	 and	 delight.
Norepinephrine	levels	soar,	which	lead	to	a	racing	heart	and	overall	feelings	of
exhilaration.	 These	 chemicals,	 along	 with	 phenylethylamine,	 produce	 elation,
high	energy	levels,	focused	attention,	loss	of	appetite,	and	a	general	craving	for
the	object	of	one’s	desire.	Interestingly,	recent	research	at	University	College	in
London	 also	 shows	 that	 serotonin	 levels	 go	 down,	 similar	 to	what	 happens	 in
obsessive-compulsive	disorder,	which	is	consistent	with	the	obsessive	nature	of



early	 love.2	 The	 high	 levels	 of	 dopamine	 and	 norepinephrine	 account	 for	 the
heightened	short-term	attention,	euphoria,	and	craving	of	early	love.

If	these	biochemical	phenomena	sound	similar	to	those	of	the	fight-or-flight
syndrome,	 they	 are,	 except	 that	 here	 we	 are	 running	 toward	 something	 or
someone;	 indeed,	a	cynic	might	say	toward	rather	 than	away	from	danger.	The
changes	 are	 also	 fully	 consistent	 with	 those	 of	 the	 early	 phases	 of	 addictive
behavior.	 The	 Roxy	 Music	 song	 “Love	 Is	 the	 Drug”	 is	 quite	 accurate	 in
describing	this	state	(albeit	the	subject	of	the	song	is	looking	to	score	his	next	fix
of	 love).	Studies	of	ecstatic	 religious	experiences	also	 show	 the	 same	physical
phenomena;	it	can	be	said	that	the	person	having	such	an	experience	is	falling	in
love	with	God	or	whatever	spiritual	connection	on	which	they	are	focused.

In	the	case	of	early	romantic	love,	estrogen	and	testosterone	certainly	play	a
role	 in	 establishing	 sex	 drive,	 but	 if	 sexual	 reproduction	 were	 the	 only
evolutionary	objective	of	love,	then	the	romantic	aspect	of	the	process	would	not
be	necessary.	As	psychologist	John	William	Money	(1921–2006)	wrote,	“Lust	is
lewd,	love	is	lyrical.”

The	ecstatic	phase	of	love	leads	to	the	attachment	phase	and	ultimately	to	a
long-term	 bond.	 There	 are	 chemicals	 that	 encourage	 this	 process	 as	 well,
including	oxytocin	 and	vasopressin.	Consider	 two	 related	 species	of	voles:	 the
prairie	vole	 and	 the	montane	vole.	They	are	pretty	much	 identical,	 except	 that
the	prairie	vole	has	receptors	for	oxytocin	and	vasopressin,	whereas	the	montane
vole	does	not.	The	prairie	vole	is	noted	for	lifetime	monogamous	relationships,
while	 the	 montane	 vole	 resorts	 almost	 exclusively	 to	 one-night	 stands.	 In	 the
case	 of	 voles,	 the	 oxytocin	 and	 vasopressin	 receptors	 are	 pretty	 much
determinative	as	to	the	nature	of	their	love	life.

While	these	chemicals	are	influential	on	humans	as	well,	our	neocortex	has
taken	 a	 commanding	 role,	 as	 in	 everything	 else	 we	 do.	 Voles	 do	 have	 a
neocortex,	but	it	is	postage-stamp	sized	and	flat	and	just	large	enough	for	them
to	find	a	mate	for	life	(or,	in	the	case	of	montane	voles,	at	least	for	the	night)	and
carry	 out	 other	 basic	 vole	 behaviors.	 We	 humans	 have	 sufficient	 additional
neocortex	 to	 engage	 in	 the	 expansive	 “lyrical”	 expressions	 to	 which	 Money
refers.

From	an	evolutionary	perspective,	love	itself	exists	to	meet	the	needs	of	the
neocortex.	If	we	didn’t	have	a	neocortex,	 then	lust	would	be	quite	sufficient	 to
guarantee	reproduction.	The	ecstatic	instigation	of	love	leads	to	attachment	and
mature	love,	and	results	in	a	lasting	bond.	This	in	turn	is	designed	to	provide	at
least	 the	 possibility	 of	 a	 stable	 environment	 for	 children	 while	 their	 own
neocortices	 undergo	 the	 critical	 learning	 needed	 to	 become	 responsible	 and
capable	adults.	Learning	in	a	rich	environment	is	 inherently	part	of	the	method



of	 the	 neocortex.	 Indeed	 the	 same	 oxytocin	 and	 vasopressin	 hormone
mechanisms	 play	 a	 key	 role	 in	 establishing	 the	 critical	 bonding	 of	 parent
(especially	mother)	and	child.

At	the	far	end	of	the	story	of	love,	a	loved	one	becomes	a	major	part	of	our
neocortex.	After	decades	of	being	together,	a	virtual	other	exists	in	the	neocortex
such	 that	we	 can	 anticipate	 every	 step	of	what	 our	 lover	will	 say	 and	do.	Our
neocortical	patterns	are	filled	with	the	thoughts	and	patterns	that	reflect	who	they
are.	When	we	lose	that	person,	we	literally	lose	part	of	ourselves.	This	is	not	just
a	metaphor—all	of	 the	vast	pattern	recognizers	 that	are	 filled	with	 the	patterns
reflecting	the	person	we	love	suddenly	change	their	nature.	Although	they	can	be
considered	 a	precious	way	 to	keep	 that	 person	 alive	within	ourselves,	 the	vast
neocortical	patterns	of	a	lost	loved	one	turn	suddenly	from	triggers	of	delight	to
triggers	of	mourning.

The	evolutionary	basis	for	love	and	its	phases	is	not	the	full	story	in	today’s
world.	We	have	already	 largely	 succeeded	 in	 liberating	 sex	 from	 its	biological
function,	in	that	we	can	have	babies	without	sex	and	we	can	certainly	have	sex
without	babies.	The	vast	majority	of	sex	takes	place	for	its	sensual	and	relational
purposes.	And	we	routinely	fall	in	love	for	purposes	other	than	raising	children.

Similarly,	the	vast	expanse	of	artistic	expression	of	all	kinds	that	celebrates
love	and	 its	myriad	forms	dating	back	 to	antiquity	 is	also	an	end	 in	 itself.	Our
ability	to	create	these	enduring	forms	of	transcendent	knowledge—about	love	or
anything	else—is	precisely	what	makes	our	species	unique.

The	neocortex	is	biology’s	greatest	creation.	In	turn,	 it	 is	 the	poems	about
love—and	 all	 of	 our	 other	 creations—that	 represent	 the	 greatest	 inventions	 of
our	neocortex.



CHAPTER	7

	



THE	BIOLOGICALLY
INSPIRED	DIGITAL

NEOCORTEX
	

Never	trust	anything	that	can	think	for	itself	if	you	can’t	see	where	it	keeps
its	brain.

—Arthur	Weasley,	in	J.	K.	Rowling,	Harry	Potter	and	the	Prisoner
of	Azkaban

	

No,	I’m	not	interested	in	developing	a	powerful	brain.	All	I’m	after	is	just	a
mediocre	 brain,	 something	 like	 the	 President	 of	 the	 American	 Telephone
and	Telegraph	Company.

—Alan	Turing
	

A	 computer	 would	 deserve	 to	 be	 called	 intelligent	 if	 it	 could	 deceive	 a
human	into	believing	that	it	was	human.

—Alan	Turing
	

I	 believe	 that	 at	 the	 end	 of	 the	 century	 the	 use	 of	 words	 and	 general
educated	opinion	will	have	altered	so	much	that	one	will	be	able	to	speak	of
machines	thinking	without	expecting	to	be	contradicted.

—Alan	Turing
	

	
A	mother	rat	will	build	a	nest	for	her	young	even	if	she	has	never	seen	another
rat	in	her	lifetime.1	Similarly,	a	spider	will	spin	a	web,	a	caterpillar	will	create
her	own	cocoon,	and	a	beaver	will	build	a	dam,	even	 if	no	contemporary	ever



showed	 them	 how	 to	 accomplish	 these	 complex	 tasks.	 That	 is	 not	 to	 say	 that
these	are	not	learned	behaviors.	It	is	just	that	these	animals	did	not	learn	them	in
a	single	lifetime—they	learned	them	over	thousands	of	lifetimes.	The	evolution
of	animal	behavior	does	constitute	 a	 learning	process,	but	 it	 is	 learning	by	 the
species,	not	by	the	individual,	and	the	fruits	of	this	learning	process	are	encoded
in	DNA.

To	 appreciate	 the	 significance	 of	 the	 evolution	 of	 the	 neocortex,	 consider
that	 it	 greatly	 sped	 up	 the	 process	 of	 learning	 (hierarchical	 knowledge)	 from
thousands	of	years	to	months	(or	less).	Even	if	millions	of	animals	in	a	particular
mammalian	species	failed	to	solve	a	problem	(requiring	a	hierarchy	of	steps),	it
required	 only	 one	 to	 accidentally	 stumble	 upon	 a	 solution.	 That	 new	 method
would	then	be	copied	and	spread	exponentially	through	the	population.

We	 are	 now	 in	 a	 position	 to	 speed	up	 the	 learning	process	 by	 a	 factor	 of
thousands	or	millions	once	again	by	migrating	from	biological	to	nonbiological
intelligence.	Once	 a	 digital	 neocortex	 learns	 a	 skill,	 it	 can	 transfer	 that	 know-
how	in	minutes	or	even	seconds.	As	one	of	many	examples,	at	my	first	company,
Kurzweil	 Computer	 Products	 (now	 Nuance	 Speech	 Technologies),	 which	 I
founded	 in	 1973,	 we	 spent	 years	 training	 a	 set	 of	 research	 computers	 to
recognize	printed	letters	from	scanned	documents,	a	technology	called	omni-font
(any	type	font)	optical	character	recognition	(OCR).	This	particular	 technology
has	now	been	in	continual	development	for	almost	forty	years,	with	the	current
product	called	OmniPage	from	Nuance.	If	you	want	your	computer	to	recognize
printed	letters,	you	don’t	need	to	spend	years	training	it	to	do	so,	as	we	did—you
can	 simply	 download	 the	 evolved	 patterns	 already	 learned	 by	 the	 research
computers	in	the	form	of	software.	In	the	1980s	we	began	on	speech	recognition,
and	 that	 technology,	which	 has	 also	 been	 in	 continuous	 development	 now	 for
several	decades,	is	part	of	Siri.	Again,	you	can	download	in	seconds	the	evolved
patterns	learned	by	the	research	computers	over	many	years.

Ultimately	we	will	create	an	artificial	neocortex	that	has	the	full	range	and
flexibility	of	its	human	counterpart.	Consider	the	benefits.	Electronic	circuits	are
millions	 of	 times	 faster	 than	 our	 biological	 circuits.	 At	 first	 we	 will	 have	 to
devote	 all	 of	 this	 speed	 increase	 to	 compensating	 for	 the	 relative	 lack	 of
parallelism	in	our	computers,	but	ultimately	the	digital	neocortex	will	be	much
faster	than	the	biological	variety	and	will	only	continue	to	increase	in	speed.

When	we	augment	our	own	neocortex	with	a	 synthetic	version,	we	won’t
have	to	worry	about	how	much	additional	neocortex	can	physically	fit	 into	our
bodies	and	brains,	as	most	of	it	will	be	in	the	cloud,	like	most	of	the	computing
we	use	today.	I	estimated	earlier	that	we	have	on	the	order	of	300	million	pattern
recognizers	 in	 our	 biological	 neocortex.	 That’s	 as	much	 as	 could	 be	 squeezed



into	 our	 skulls	 even	with	 the	 evolutionary	 innovation	 of	 a	 large	 forehead	 and
with	the	neocortex	taking	about	80	percent	of	the	available	space.	As	soon	as	we
start	thinking	in	the	cloud,	there	will	be	no	natural	limits—we	will	be	able	to	use
billions	 or	 trillions	 of	 pattern	 recognizers,	 basically	 whatever	 we	 need,	 and
whatever	the	law	of	accelerating	returns	can	provide	at	each	point	in	time.

In	order	for	a	digital	neocortex	to	learn	a	new	skill,	it	will	still	require	many
iterations	 of	 education,	 just	 as	 a	 biological	 neocortex	 does,	 but	 once	 a	 single
digital	neocortex	somewhere	and	at	some	time	learns	something,	it	can	share	that
knowledge	with	every	other	digital	neocortex	without	delay.	We	can	each	have
our	 own	 private	 neocortex	 extenders	 in	 the	 cloud,	 just	 as	 we	 have	 our	 own
private	stores	of	personal	data	today.

Last	 but	 not	 least,	 we	 will	 be	 able	 to	 back	 up	 the	 digital	 portion	 of	 our
intelligence.	 As	 we	 have	 seen,	 it	 is	 not	 just	 a	 metaphor	 to	 state	 that	 there	 is
information	contained	in	our	neocortex,	and	it	is	frightening	to	contemplate	that
none	 of	 this	 information	 is	 backed	 up	 today.	 There	 is,	 of	 course,	 one	 way	 in
which	we	do	back	up	some	of	the	information	in	our	brains—by	writing	it	down.
The	ability	to	transfer	at	least	some	of	our	thinking	to	a	medium	that	can	outlast
our	biological	 bodies	was	 a	 huge	 step	 forward,	 but	 a	 great	 deal	 of	 data	 in	our
brains	continues	to	remain	vulnerable.



Brain	Simulations

One	approach	to	building	a	digital	brain	is	to	simulate	precisely	a	biological	one.
For	example,	Harvard	brain	sciences	doctoral	student	David	Dalrymple	(born	in
1991)	 is	 planning	 to	 simulate	 the	 brain	 of	 a	 nematode	 (a	 roundworm).2
Dalrymple	 selected	 the	 nematode	 because	 of	 its	 relatively	 simple	 nervous
system,	which	consists	of	about	300	neurons,	and	which	he	plans	to	simulate	at
the	very	detailed	level	of	molecules.	He	will	also	create	a	computer	simulation	of
its	 body	 as	 well	 as	 its	 environment	 so	 that	 his	 virtual	 nematode	 can	 hunt	 for
(virtual)	food	and	do	the	other	things	that	nematodes	are	good	at.	Dalrymple	says
it	 is	 likely	 to	 be	 the	 first	 complete	 brain	 upload	 from	a	 biological	 animal	 to	 a
virtual	one	 that	 lives	 in	 a	virtual	world.	Like	his	 simulated	nematode,	whether
even	 biological	 nematodes	 are	 conscious	 is	 open	 to	 debate,	 although	 in	 their
struggle	 to	 eat,	 digest	 food,	 avoid	 predators,	 and	 reproduce,	 they	 do	 have
experiences	to	be	conscious	of.

At	the	opposite	end	of	the	spectrum,	Henry	Markram’s	Blue	Brain	Project
is	planning	to	simulate	the	human	brain,	including	the	entire	neocortex	as	well	as
the	old-brain	regions	such	as	 the	hippocampus,	amygdala,	and	cerebellum.	His
planned	 simulations	 will	 be	 built	 at	 varying	 degrees	 of	 detail,	 up	 to	 a	 full
simulation	 at	 the	 molecular	 level.	 As	 I	 reported	 in	 chapter	 4,	 Markram	 has
discovered	a	key	module	of	several	dozen	neurons	that	is	repeated	over	and	over
again	in	the	neocortex,	demonstrating	that	learning	is	done	by	these	modules	and
not	by	individual	neurons.

Markram’s	 progress	 has	 been	 scaling	 up	 at	 an	 exponential	 pace.	 He
simulated	 one	 neuron	 in	 2005,	 the	 year	 the	 project	 was	 initiated.	 In	 2008	 his
team	simulated	an	entire	neocortical	column	of	a	rat	brain,	consisting	of	10,000
neurons.	By	2011	this	expanded	to	100	columns,	totaling	a	million	cells,	which
he	calls	a	mesocircuit.	One	controversy	concerning	Markram’s	work	 is	how	to
verify	that	the	simulations	are	accurate.	In	order	to	do	this,	these	simulations	will
need	to	demonstrate	learning	that	I	discuss	below.

He	projects	simulating	an	entire	rat	brain	of	100	mesocircuits,	totaling	100
million	neurons	and	about	a	trillion	synapses,	by	2014.	In	a	talk	at	the	2009	TED
conference	 at	 Oxford,	 Markram	 said,	 “It	 is	 not	 impossible	 to	 build	 a	 human
brain,	 and	 we	 can	 do	 it	 in	 10	 years.”3	 His	most	 recent	 target	 for	 a	 full	 brain
simulation	is	2023.4

Markram	and	his	 team	are	basing	 their	model	on	detailed	anatomical	 and



electrochemical	 analyses	 of	 actual	 neurons.	 Using	 an	 automated	 device	 they
created	called	a	patch-clamp	robot,	they	are	measuring	the	specific	ion	channels,
neurotransmitters,	 and	 enzymes	 that	 are	 responsible	 for	 the	 electrochemical
activity	within	each	neuron.	Their	automated	system	was	able	to	do	thirty	years
of	analysis	in	six	months,	according	to	Markram.	It	was	from	these	analyses	that
they	noticed	the	“Lego	memory”	units	that	are	the	basic	functional	units	of	the
neocortex.

Actual	 and	 projected	 progress	 of	 the	 Blue	 Brain	 brain	 simulation
project.
Significant	 contributions	 to	 the	 technology	of	 robotic	patch-clamping	was

made	by	MIT	neuroscientist	Ed	Boyden,	Georgia	Tech	mechanical	engineering
professor	Craig	Forest,	 and	Forest’s	graduate	 student	Suhasa	Kodandaramaiah.
They	demonstrated	an	automated	system	with	one-micrometer	precision	that	can
perform	 scanning	 of	 neural	 tissue	 at	 very	 close	 range	 without	 damaging	 the
delicate	membranes	 of	 the	 neurons.	 “This	 is	 something	 a	 robot	 can	 do	 that	 a
human	can’t,”	Boyden	commented.

To	return	to	Markram’s	simulation,	after	simulating	one	neocortical	column,
Markram	was	quoted	as	saying,	“Now	we	just	have	 to	scale	 it	up.”5	Scaling	 is
certainly	one	big	factor,	but	there	is	one	other	key	hurdle,	which	is	 learning.	 If
the	Blue	Brain	Project	 brain	 is	 to	 “speak	 and	have	 an	 intelligence	 and	behave
very	much	 as	 a	 human	 does,”	which	 is	 how	Markram	 described	 his	 goal	 in	 a



BBC	 interview	 in	 2009,	 then	 it	 will	 need	 to	 have	 sufficient	 content	 in	 its
simulated	neocortex	to	perform	those	tasks.6	As	anyone	who	has	tried	to	hold	a
conversation	with	 a	 newborn	 can	 attest,	 there	 is	 a	 lot	 of	 learning	 that	must	 be
achieved	before	this	is	feasible.

The	tip	of	the	patch-clamping	robot	developed	at	MIT	and	Georgia	Tech
scanning	neural	tissue.
There	are	two	obvious	ways	this	can	be	done	in	a	simulated	brain	such	as

Blue	Brain.	One	would	be	to	have	the	brain	learn	this	content	the	way	a	human
brain	does.	It	can	start	out	 like	a	newborn	human	baby	with	an	innate	capacity
for	 acquiring	 hierarchical	 knowledge	 and	 with	 certain	 transformations
preprogrammed	in	its	sensory	preprocessing	regions.	But	the	learning	that	takes
place	 between	 a	 biological	 infant	 and	 a	 human	 person	 who	 can	 hold	 a
conversation	 would	 need	 to	 occur	 in	 a	 comparable	 manner	 in	 nonbiological
learning.	The	problem	with	that	approach	is	that	a	brain	that	is	being	simulated
at	the	level	of	detail	anticipated	for	Blue	Brain	is	not	expected	to	run	in	real	time
until	at	least	the	early	2020s.	Even	running	in	real	time	would	be	too	slow	unless
the	researchers	are	prepared	to	wait	a	decade	or	two	to	reach	intellectual	parity
with	an	adult	human,	although	real-time	performance	will	get	steadily	faster	as
computers	continue	to	grow	in	price/performance.

The	 other	 approach	 is	 to	 take	 one	 or	 more	 biological	 human	 brains	 that
have	 already	 gained	 sufficient	 knowledge	 to	 converse	 in	meaningful	 language



and	to	otherwise	behave	in	a	mature	manner	and	copy	their	neocortical	patterns
into	 the	 simulated	 brain.	 The	 problem	 with	 this	 method	 is	 that	 it	 requires	 a
noninvasive	 and	 nondestructive	 scanning	 technology	 of	 sufficient	 spatial	 and
temporal	resolution	and	speed	to	perform	such	a	task	quickly	and	completely.	I
would	not	 expect	 such	an	“uploading”	 technology	 to	be	 available	until	 around
the	2040s.	(The	computational	requirement	to	simulate	a	brain	at	that	degree	of
precision,	which	I	estimate	to	be	1019	calculations	per	second,	will	be	available
in	a	supercomputer	according	to	my	projections	by	the	early	2020s;	however,	the
necessary	nondestructive	brain	scanning	technologies	will	take	longer.)

There	 is	 a	 third	 approach,	which	 is	 the	 one	 I	 believe	 simulation	 projects
such	as	Blue	Brain	will	need	to	pursue.	One	can	simplify	molecular	models	by
creating	functional	equivalents	at	different	levels	of	specificity,	ranging	from	my
own	 functional	 algorithmic	method	 (as	 described	 in	 this	 book)	 to	 simulations
that	are	closer	to	full	molecular	simulations.	The	speed	of	learning	can	thereby
be	 increased	by	a	 factor	of	hundreds	or	 thousands	depending	on	 the	degree	of
simplification	 used.	An	 educational	 program	 can	 be	 devised	 for	 the	 simulated
brain	(using	 the	functional	model)	 that	 it	can	 learn	relatively	quickly.	Then	the
full	molecular	simulation	can	be	substituted	for	the	simplified	model	while	still
using	 its	 accumulated	 learning.	 We	 can	 then	 simulate	 learning	 with	 the	 full
molecular	model	at	a	much	slower	speed.

American	computer	 scientist	Dharmendra	Modha	and	his	 IBM	colleagues
have	created	a	cell-by-cell	simulation	of	a	portion	of	the	human	visual	neocortex
comprising	 1.6	 billion	 virtual	 neurons	 and	 9	 trillion	 synapses,	 which	 is
equivalent	to	a	cat	neocortex.	It	runs	100	times	slower	than	real	time	on	an	IBM
BlueGene/P	supercomputer	consisting	of	147,456	processors.	The	work	received
the	Gordon	Bell	Prize	from	the	Association	for	Computing	Machinery.

The	purpose	of	a	brain	simulation	project	such	as	Blue	Brain	and	Modha’s
neocortex	 simulations	 is	 specifically	 to	 refine	 and	confirm	a	 functional	model.
AI	 at	 the	 human	 level	 will	 principally	 use	 the	 type	 of	 functional	 algorithmic
model	 discussed	 in	 this	 book.	However,	molecular	 simulations	will	 help	 us	 to
perfect	 that	model	 and	 to	 fully	 understand	which	 details	 are	 important.	 In	my
development	of	speech	recognition	technology	in	the	1980s	and	1990s,	we	were
able	 to	 refine	our	algorithms	once	 the	actual	 transformations	performed	by	 the
auditory	nerve	and	early	portions	of	the	auditory	cortex	were	understood.	Even	if
our	 functional	 model	 was	 perfect,	 understanding	 exactly	 how	 it	 is	 actually
implemented	 in	 our	 biological	 brains	 will	 reveal	 important	 knowledge	 about
human	function	and	dysfunction.

We	 will	 need	 detailed	 data	 on	 actual	 brains	 to	 create	 biologically	 based
simulations.	Markram’s	 team	 is	 collecting	 its	 own	 data.	 There	 are	 large-scale



projects	to	gather	this	type	of	data	and	make	it	generally	available	to	scientists.
For	 example,	 Cold	 Spring	Harbor	 Laboratory	 in	 New	York	 has	 collected	 500
terabytes	 of	 data	 by	 scanning	 a	 mammal	 brain	 (a	 mouse),	 which	 they	 made
available	in	June	2012.	Their	project	allows	a	user	to	explore	a	brain	similarly	to
the	way	Google	Earth	allows	one	to	explore	 the	surface	of	 the	planet.	You	can
move	 around	 the	 entire	 brain	 and	 zoom	 in	 to	 see	 individual	 neurons	 and	 their
connections.	 You	 can	 highlight	 a	 single	 connection	 and	 then	 follow	 its	 path
through	the	brain.

Sixteen	 sections	 of	 the	National	 Institutes	 of	Health	 have	 gotten	 together
and	 sponsored	 a	 major	 initiative	 called	 the	 Human	 Connectome	 Project	 with
$38.5	 million	 of	 funding.7	 Led	 by	 Washington	 University	 in	 St.	 Louis,	 the
University	 of	Minnesota,	Harvard	University,	Massachusetts	General	Hospital,
and	 the	University	 of	 California	 at	 Los	Angeles,	 the	 project	 seeks	 to	 create	 a
similar	three-dimensional	map	of	connections	in	the	human	brain.	The	project	is
using	 a	 variety	 of	 noninvasive	 scanning	 technologies,	 including	 new	 forms	 of
MRI,	magnetoencephalography	(measuring	the	magnetic	fields	produced	by	the
electrical	activity	in	the	brain),	and	diffusion	tractography	(a	method	to	trace	the
pathways	of	fiber	bundles	in	the	brain).	As	I	point	out	in	chapter	10,	the	spatial
resolution	of	noninvasive	 scanning	of	 the	brain	 is	 improving	at	 an	exponential
rate.	 The	 research	 by	 Van	 J.	 Wedeen	 and	 his	 colleagues	 at	 Massachusetts
General	Hospital	showing	a	highly	regular	gridlike	structure	of	the	wiring	of	the
neocortex	that	I	described	in	chapter	4	is	one	early	result	from	this	project.

Oxford	University	computational	neuroscientist	Anders	Sandberg	 (born	 in
1972)	and	Swedish	philosopher	Nick	Bostrom	(born	 in	1973)	have	written	 the
comprehensive	 Whole	 Brain	 Emulation:	 A	 Roadmap,	 which	 details	 the
requirements	 for	 simulating	 the	 human	 brain	 (and	 other	 types	 of	 brains)	 at
different	 levels	 of	 specificity	 from	 high-level	 functional	 models	 to	 simulating
molecules.8	 The	 report	 does	 not	 provide	 a	 timeline,	 but	 it	 does	 describe	 the
requirements	to	simulate	different	types	of	brains	at	varying	levels	of	precision
in	 terms	 of	 brain	 scanning,	 modeling,	 storage,	 and	 computation.	 The	 report
projects	ongoing	exponential	gains	in	all	of	these	areas	of	capability	and	argues
that	 the	 requirements	 to	 simulate	 the	human	brain	 at	 a	 high	 level	 of	detail	 are
coming	into	place.



An	 outline	 of	 the	 technological	 capabilities	 needed	 for	 whole	 brain
emulation,	in	Whole	Brain	Emulation:	A	Roadmap	by	Anders	Sandberg	and
Nick	Bostrom.



An	outline	of	Whole	Brain	Emulation:	A	Roadmap	by	Anders	Sandberg
and	Nick	Bostrom.



Neural	Nets

In	 1964,	 at	 the	 age	 of	 sixteen,	 I	 wrote	 to	 Frank	 Rosenblatt	 (1928–1971),	 a
professor	 at	 Cornell	 University,	 inquiring	 about	 a	 machine	 called	 the	Mark	 1
Perceptron.	He	had	created	it	four	years	earlier,	and	it	was	described	as	having
brainlike	properties.	He	invited	me	to	visit	him	and	try	the	machine	out.

The	Perceptron	was	built	from	what	he	claimed	were	electronic	models	of
neurons.	Input	consisted	of	values	arranged	in	two	dimensions.	For	speech,	one
dimension	represented	frequency	and	the	other	 time,	so	each	value	represented
the	intensity	of	a	frequency	at	a	given	point	in	time.	For	images,	each	point	was
a	pixel	 in	a	two-dimensional	 image.	Each	point	of	a	given	input	was	randomly
connected	to	the	inputs	of	the	first	layer	of	simulated	neurons.	Every	connection
had	an	associated	synaptic	strength,	which	represented	its	importance,	and	which
was	 initially	 set	 at	 a	 random	value.	Each	neuron	 added	up	 the	 signals	 coming
into	it.	If	 the	combined	signal	exceeded	a	particular	threshold,	 the	neuron	fired
and	sent	a	signal	 to	 its	output	connection;	 if	 the	combined	 input	signal	did	not
exceed	the	threshold,	the	neuron	did	not	fire,	and	its	output	was	zero.	The	output
of	each	neuron	was	randomly	connected	to	the	inputs	of	the	neurons	in	the	next
layer.	The	Mark	1	Perceptron	had	 three	 layers,	which	 could	be	 organized	 in	 a
variety	of	configurations.	For	example,	one	 layer	might	feed	back	to	an	earlier
one.	At	the	top	layer,	the	output	of	one	or	more	neurons,	also	randomly	selected,
provided	 the	 answer.	 (For	 an	 algorithmic	 description	 of	 neural	 nets,	 see	 this
endnote.)9



Since	the	neural	net	wiring	and	synaptic	weights	are	initially	set	randomly,
the	answers	of	an	untrained	neural	net	are	also	random.	The	key	to	a	neural	net,
therefore,	is	that	it	must	learn	its	subject	matter,	just	like	the	mammalian	brains
on	which	it’s	supposedly	modeled.	A	neural	net	starts	out	ignorant;	its	teacher—
which	may	be	a	human,	a	computer	program,	or	perhaps	another,	more	mature
neural	 net	 that	 has	 already	 learned	 its	 lessons—rewards	 the	 student	 neural	 net
when	 it	 generates	 the	 correct	 output	 and	 punishes	 it	 when	 it	 does	 not.	 This
feedback	is	in	turn	used	by	the	student	neural	net	to	adjust	the	strength	of	each
interneuronal	 connection.	 Connections	 that	 are	 consistent	 with	 the	 correct
answer	are	made	stronger.	Those	that	advocate	a	wrong	answer	are	weakened.

Over	 time	 the	 neural	 net	 organizes	 itself	 to	 provide	 the	 correct	 answers
without	 coaching.	 Experiments	 have	 shown	 that	 neural	 nets	 can	 learn	 their
subject	matter	 even	with	 unreliable	 teachers.	 If	 the	 teacher	 is	 correct	 only	 60
percent	 of	 the	 time,	 the	 student	 neural	 net	 will	 still	 learn	 its	 lessons	 with	 an
accuracy	approaching	100	percent.

However,	 limitations	 in	 the	 range	 of	 material	 that	 the	 Perceptron	 was
capable	 of	 learning	 quickly	 became	 apparent.	 When	 I	 visited	 Professor
Rosenblatt	in	1964,	I	tried	simple	modifications	to	the	input.	The	system	was	set
up	to	recognize	printed	letters,	and	would	recognize	them	quite	accurately.	It	did
a	fairly	good	job	of	autoassociation	(that	is,	it	could	recognize	the	letters	even	if
I	covered	parts	of	them),	but	fared	less	well	with	invariance	(that	is,	generalizing
over	size	and	font	changes,	which	confused	it).

During	 the	 last	 half	 of	 the	 1960s,	 these	 neural	 nets	 became	 enormously
popular,	and	the	field	of	“connectionism”	took	over	at	least	half	of	the	artificial
intelligence	 field.	 The	 more	 traditional	 approach	 to	 AI,	 meanwhile,	 included



direct	 attempts	 to	 program	 solutions	 to	 specific	 problems,	 such	 as	 how	 to
recognize	the	invariant	properties	of	printed	letters.

Another	person	I	visited	in	1964	was	Marvin	Minsky	(born	in	1927),	one	of
the	 founders	 of	 the	 artificial	 intelligence	 field.	 Despite	 having	 done	 some
pioneering	work	on	neural	nets	himself	in	the	1950s,	he	was	concerned	with	the
great	surge	of	interest	in	this	technique.	Part	of	the	allure	of	neural	nets	was	that
they	 supposedly	 did	 not	 require	 programming—they	 would	 learn	 solutions	 to
problems	 on	 their	 own.	 In	 1965	 I	 entered	 MIT	 as	 a	 student	 with	 Professor
Minsky	 as	 my	 mentor,	 and	 I	 shared	 his	 skepticism	 about	 the	 craze	 for
“connectionism.”

In	1969	Minsky	and	Seymour	Papert	(born	in	1928),	the	two	cofounders	of
the	 MIT	 Artificial	 Intelligence	 Laboratory,	 wrote	 a	 book	 called	 Perceptrons,
which	 presented	 a	 single	 core	 theorem:	 specifically,	 that	 a	 Perceptron	 was
inherently	incapable	of	determining	whether	or	not	an	image	was	connected.	The
book	created	a	firestorm.	Determining	whether	or	not	an	image	is	connected	is	a
task	 that	humans	can	do	very	easily,	and	 it	 is	also	a	straightforward	process	 to
program	a	computer	to	make	this	discrimination.	The	fact	that	Perceptrons	could
not	do	so	was	considered	by	many	to	be	a	fatal	flaw.



Two	images	from	the	cover	of	the	book	Perceptrons	by	Marvin	Minsky
and	Seymour	Papert.	The	top	image	is	not	connected	(that	is,	the	dark	area
consists	 of	 two	 disconnected	 parts).	 The	 bottom	 image	 is	 connected.	 A
human	 can	 readily	 determine	 this,	 as	 can	 a	 simple	 software	 program.	 A
feedforward	 Perceptron	 such	 as	 Frank	 Rosenblatt’s	 Mark	 1	 Perceptron
cannot	make	this	determination.
Perceptrons,	however,	was	widely	interpreted	to	imply	more	than	it	actually

did.	Minsky	and	Papert’s	theorem	applied	only	to	a	particular	type	of	neural	net
called	 a	 feedforward	 neural	 net	 (a	 category	 that	 does	 include	 Rosenblatt’s
Perceptron);	other	types	of	neural	nets	did	not	have	this	limitation.	Still,	the	book
did	manage	to	largely	kill	most	funding	for	neural	net	research	during	the	1970s.
The	field	did	return	in	the	1980s	with	attempts	to	use	what	were	claimed	to	be
more	realistic	models	of	biological	neurons	and	ones	that	avoided	the	limitations
implied	 by	 the	Minsky-Papert	 Perceptron	 theorem.	Nevertheless,	 the	 ability	 of
the	neocortex	to	solve	the	invariance	problem,	a	key	to	its	strength,	was	a	skill
that	remained	elusive	for	the	resurgent	connectionist	field.



Sparse	Coding:	Vector	Quantization

In	 the	 early	 1980s	 I	 started	 a	 project	 devoted	 to	 another	 classical	 pattern
recognition	problem:	understanding	human	speech.	At	first,	we	used	traditional
AI	 approaches	 by	 directly	 programming	 expert	 knowledge	 about	 the
fundamental	 units	 of	 speech—phonemes—and	 rules	 from	 linguists	 on	 how
people	string	phonemes	together	to	form	words	and	phrases.	Each	phoneme	has
distinctive	 frequency	 patterns.	 For	 example,	we	 knew	 that	 vowels	 such	 as	 “e”
and	“ah”	are	characterized	by	certain	resonant	frequencies	called	formants,	with
a	characteristic	ratio	of	formants	for	each	phoneme.	Sibilant	sounds	such	as	“z”
and	“s”	are	characterized	by	a	burst	of	noise	that	spans	many	frequencies.

We	captured	speech	as	a	waveform,	which	we	then	converted	into	multiple
frequency	 bands	 (perceived	 as	 pitches)	 using	 a	 bank	 of	 frequency	 filters.	 The
result	 of	 this	 transformation	 could	be	visualized	 and	was	 called	 a	 spectrogram
(see	page	136).

The	filter	bank	is	copying	what	the	human	cochlea	does,	which	is	the	initial
step	 in	 our	 biological	 processing	 of	 sound.	 The	 software	 first	 identified
phonemes	 based	 on	 distinguishing	 patterns	 of	 frequencies	 and	 then	 identified
words	based	on	identifying	characteristic	sequences	of	phonemes.

A	spectrogram	of	three	vowels.	From	left	to	right:	[i]	as	in	“appreciate,”
[u]	as	in	“acoustic,”	and	[a]	as	in	“ah.”	The	Y	axis	represents	frequency	of
sound.	 The	 darker	 the	 band	 the	 more	 acoustic	 energy	 there	 is	 at	 that
frequency.



A	spectrogram	of	a	person	saying	the	word	“hide.”	The	horizontal	lines
show	 the	 formants,	 which	 are	 sustained	 frequencies	 that	 have	 especially
high	energy.10
The	result	was	partially	successful.	We	could	 train	our	device	 to	 learn	 the

patterns	for	a	particular	person	using	a	moderate-sized	vocabulary,	measured	in
thousands	 of	 words.	 When	 we	 attempted	 to	 recognize	 tens	 of	 thousands	 of
words,	 handle	 multiple	 speakers,	 and	 allow	 fully	 continuous	 speech	 (that	 is,
speech	 with	 no	 pauses	 between	 words),	 we	 ran	 into	 the	 invariance	 problem.
Different	 people	 enunciated	 the	 same	 phoneme	 differently—for	 example,	 one
person’s	 “e”	 phoneme	 may	 sound	 like	 someone	 else’s	 “ah.”	 Even	 the	 same
person	was	inconsistent	in	the	way	she	spoke	a	particular	phoneme.	The	pattern
of	 a	 phoneme	was	 often	 affected	 by	 other	 phonemes	 nearby.	Many	 phonemes
were	left	out	completely.	The	pronunciation	of	words	(that	is,	how	phonemes	are
strung	 together	 to	 form	 words)	 was	 also	 highly	 variable	 and	 dependent	 on
context.	The	linguistic	rules	we	had	programmed	were	breaking	down	and	could
not	keep	up	with	the	extreme	variability	of	spoken	language.

It	 became	 clear	 to	me	 at	 the	 time	 that	 the	 essence	 of	 human	 pattern	 and
conceptual	 recognition	was	based	on	hierarchies.	This	 is	certainly	apparent	 for
human	 language,	 which	 constitutes	 an	 elaborate	 hierarchy	 of	 structures.	 But
what	 is	 the	element	at	 the	base	of	 the	 structures?	That	was	 the	 first	question	 I
considered	as	I	looked	for	ways	to	automatically	recognize	fully	normal	human
speech.

Sound	 enters	 the	 ear	 as	 a	 vibration	 of	 the	 air	 and	 is	 converted	 by	 the
approximately	 3,000	 inner	 hair	 cells	 in	 the	 cochlea	 into	 multiple	 frequency
bands.	Each	hair	 cell	 is	 tuned	 to	 a	 particular	 frequency	 (note	 that	we	perceive
frequencies	 as	 tones)	 and	 each	 acts	 as	 a	 frequency	 filter,	 emitting	 a	 signal
whenever	there	is	sound	at	or	near	its	resonant	frequency.	As	it	leaves	the	human
cochlea,	 sound	 is	 thereby	 represented	by	approximately	3,000	separate	signals,
each	one	signifying	 the	 time-varying	 intensity	of	a	narrow	band	of	 frequencies



(with	substantial	overlap	among	these	bands).
Even	 though	 it	 was	 apparent	 that	 the	 brain	 was	 massively	 parallel,	 it

seemed	 impossible	 to	me	 that	 it	was	doing	pattern	matching	on	3,000	separate
auditory	 signals.	 I	 doubted	 that	 evolution	 could	 have	been	 that	 inefficient.	We
now	 know	 that	 very	 substantial	 data	 reduction	 does	 indeed	 take	 place	 in	 the
auditory	nerve	before	sound	signals	ever	reach	the	neocortex.

In	our	software-based	speech	recognizers,	we	also	used	filters	implemented
as	software—sixteen	to	be	exact	(which	we	later	 increased	to	thirty-two,	as	we
found	 there	was	 not	much	 benefit	 to	 going	much	 higher	 than	 this).	 So	 in	 our
system,	each	point	 in	 time	was	 represented	by	 sixteen	numbers.	We	needed	 to
reduce	these	sixteen	streams	of	data	into	one	while	at	the	same	emphasizing	the
features	that	are	significant	in	recognizing	speech.

We	 used	 a	 mathematically	 optimal	 technique	 to	 accomplish	 this,	 called
vector	quantization.	Consider	that	at	any	particular	point	in	time,	sound	(at	least
from	one	ear)	was	represented	by	our	software	by	sixteen	different	numbers:	that
is,	the	output	of	the	sixteen	frequency	filters.	(In	the	human	auditory	system	the
figure	would	be	3,000,	 representing	 the	output	of	 the	3,000	cochlea	 inner	hair
cells.)	In	mathematical	terminology,	each	such	set	of	numbers	(whether	3,000	in
the	biological	case	or	16	in	our	software	implementation)	is	called	a	vector.

For	simplicity,	let’s	consider	the	process	of	vector	quantization	with	vectors
of	 two	 numbers.	 Each	 vector	 can	 be	 considered	 a	 point	 in	 two-dimensional
space.

	
If	we	have	a	very	large	sample	of	such	vectors	and	plot	them,	we	are	likely

to	notice	clusters	forming.



	
In	order	to	identify	the	clusters,	we	need	to	decide	how	many	we	will	allow.

In	our	project	we	generally	allowed	1,024	clusters	so	that	we	could	number	them
and	 assign	 each	 cluster	 a	 10-bit	 label	 (because	 210	 =	 1,024).	 Our	 sample	 of
vectors	 represents	 the	 diversity	 that	 we	 expect.	We	 tentatively	 assign	 the	 first
1,024	vectors	to	be	one-point	clusters.	We	then	consider	the	1,025th	vector	and
find	 the	 point	 that	 it	 is	 closest	 to.	 If	 that	 distance	 is	 greater	 than	 the	 smallest
distance	between	any	pair	of	the	1,024	points,	we	consider	it	as	the	beginning	of
a	 new	 cluster.	 We	 then	 collapse	 the	 two	 (one-point)	 clusters	 that	 are	 closest
together	 into	 a	 single	 cluster.	We	 are	 thus	 still	 left	 with	 1,024	 clusters.	 After
processing	the	1,025th	vector,	one	of	those	clusters	now	has	more	than	one	point.
We	keep	processing	points	in	this	way,	always	maintaining	1,024	clusters.	After
we	 have	 processed	 all	 the	 points,	 we	 represent	 each	multipoint	 cluster	 by	 the
geometric	center	of	the	points	in	that	cluster.

	
We	continue	this	iterative	process	until	we	have	run	through	all	the	sample

points.	Typically	we	would	process	millions	of	points	 into	1,024	(210)	clusters;
we’ve	also	used	2,048	(211)	or	4,096	(212)	clusters.	Each	cluster	 is	 represented
by	one	vector	that	is	at	the	geometric	center	of	all	the	points	in	that	cluster.	Thus
the	total	of	the	distances	of	all	the	points	in	the	cluster	to	the	center	point	of	the
cluster	is	as	small	as	possible.

The	result	of	this	technique	is	that	instead	of	having	the	millions	of	points
that	we	started	with	(and	an	even	larger	number	of	possible	points),	we	have	now
reduced	the	data	to	just	1,024	points	that	use	the	space	of	possibilities	optimally.
Parts	of	the	space	that	are	never	used	are	not	assigned	any	clusters.

We	 then	 assign	 a	 number	 to	 each	 cluster	 (in	 our	 case,	 0	 to	 1,023).	 That
number	is	the	reduced,	“quantized”	representation	of	that	cluster,	which	is	why



the	technique	is	called	vector	quantization.	Any	new	input	vector	that	arrives	in
the	future	is	then	represented	by	the	number	of	the	cluster	whose	center	point	is
closest	to	this	new	input	vector.

We	 can	 now	 precompute	 a	 table	 with	 the	 distance	 of	 the	 center	 point	 of
every	cluster	to	every	other	center	point.	We	thereby	have	instantly	available	the
distance	of	this	new	input	vector	(which	we	represent	by	this	quantized	point—
in	other	words,	by	the	number	of	the	cluster	that	this	new	point	is	closest	to)	to
every	other	cluster.	Since	we	are	only	representing	points	by	their	closest	cluster,
we	now	know	 the	distance	of	 this	point	 to	any	other	possible	point	 that	might
come	along.

I	described	the	technique	above	using	vectors	with	only	two	numbers	each,
but	 working	with	 sixteen-element	 vectors	 is	 entirely	 analogous	 to	 the	 simpler
example.	Because	we	 chose	vectors	with	 sixteen	numbers	 representing	 sixteen
different	 frequency	 bands,	 each	 point	 in	 our	 system	 was	 a	 point	 in	 sixteen-
dimensional	space.	It	is	difficult	for	us	to	imagine	a	space	with	more	than	three
dimensions	 (perhaps	 four,	 if	 we	 include	 time),	 but	 mathematics	 has	 no	 such
inhibitions.

We	have	accomplished	four	things	with	this	process.	First,	we	have	greatly
reduced	 the	 complexity	 of	 the	 data.	 Second,	 we	 have	 reduced	 sixteen-
dimensional	data	 to	one-dimensional	data	 (that	 is,	each	sample	 is	now	a	single
number).	Third,	we	have	improved	our	ability	to	find	invariant	features,	because
we	 are	 emphasizing	 portions	 of	 the	 space	 of	 possible	 sounds	 that	 convey	 the
most	 information.	Most	 combinations	of	 frequencies	 are	 physically	 impossible
or	 at	 least	 very	 unlikely,	 so	 there	 is	 no	 reason	 to	 give	 equal	 space	 to	 unlikely
combinations	 of	 inputs	 as	 to	 likely	 ones.	 This	 technique	 reduces	 the	 data	 to
equally	likely	possibilities.	The	fourth	benefit	is	that	we	can	use	one-dimensional
pattern	 recognizers,	 even	 though	 the	 original	 data	 consisted	 of	 many	 more
dimensions.	 This	 turned	 out	 to	 be	 the	 most	 efficient	 approach	 to	 utilizing
available	computational	resources.



Reading	Your	Mind	with	Hidden	Markov	Models

With	vector	quantization,	we	simplified	 the	data	 in	a	way	 that	emphasized	key
features,	 but	 we	 still	 needed	 a	 way	 to	 represent	 the	 hierarchy	 of	 invariant
features	that	would	make	sense	of	new	information.	Having	worked	in	the	field
of	pattern	recognition	at	that	time	(the	early	1980s)	for	twenty	years,	I	knew	that
one-dimensional	 representations	 were	 far	 more	 powerful,	 efficient,	 and
amenable	to	invariant	results.	There	was	not	a	lot	known	about	the	neocortex	in
the	early	1980s,	but	based	on	my	experience	with	a	variety	of	pattern	recognition
problems,	 I	 assumed	 that	 the	 brain	 was	 also	 likely	 to	 be	 reducing	 its
multidimensional	data	(whether	from	the	eyes,	the	ears,	or	the	skin)	using	a	one-
dimensional	 representation,	 especially	 as	 concepts	 rose	 in	 the	 neocortex’s
hierarchy.

For	the	speech	recognition	problem,	the	organization	of	information	in	the
speech	 signal	 appeared	 to	 be	 a	 hierarchy	 of	 patterns,	 with	 each	 pattern
represented	by	a	linear	string	of	elements	with	a	forward	direction.	Each	element
of	a	pattern	could	be	another	pattern	at	a	 lower	 level,	or	a	 fundamental	unit	of
input	(which	in	the	case	of	speech	recognition	would	be	our	quantized	vectors).

You	 will	 recognize	 this	 situation	 as	 consistent	 with	 the	 model	 of	 the
neocortex	 that	 I	 presented	 earlier.	 Human	 speech,	 therefore,	 is	 produced	 by	 a
hierarchy	 of	 linear	 patterns	 in	 the	 brain.	 If	 we	 could	 simply	 examine	 these
patterns	in	the	brain	of	the	person	speaking,	it	would	be	a	simple	matter	to	match
her	 new	 speech	 utterances	 against	 her	 brain	 patterns	 and	 understand	what	 the
person	was	saying.	Unfortunately	we	do	not	have	direct	access	to	the	brain	of	the
speaker—the	only	information	we	have	is	what	she	actually	said.	Of	course,	that
is	 the	whole	 point	 of	 spoken	 language—the	 speaker	 is	 sharing	 a	 piece	 of	 her
mind	with	her	utterance.

So	I	wondered:	Was	there	a	mathematical	technique	that	would	enable	us	to
infer	 the	 patterns	 in	 the	 speaker’s	 brain	 based	 on	 her	 spoken	 words?	 One
utterance	 would	 obviously	 not	 be	 sufficient,	 but	 if	 we	 had	 a	 large	 number	 of
samples,	 could	 we	 use	 that	 information	 to	 essentially	 read	 the	 patterns	 in	 the
speaker’s	neocortex	(or	at	 least	formulate	something	mathematically	equivalent
that	would	enable	us	to	recognize	new	utterances)?

People	often	fail	to	appreciate	how	powerful	mathematics	can	be—keep	in
mind	 that	 our	 ability	 to	 search	 much	 of	 human	 knowledge	 in	 a	 fraction	 of	 a
second	with	search	engines	is	based	on	a	mathematical	technique.	For	the	speech



recognition	 problem	 I	 was	 facing	 in	 the	 early	 1980s,	 it	 turned	 out	 that	 the
technique	 of	 hidden	Markov	 models	 fit	 the	 bill	 rather	 perfectly.	 The	 Russian
mathematician	Andrei	Andreyevich	Markov	 (1856–1922)	 built	 a	mathematical
theory	 of	 hierarchical	 sequences	 of	 states.	 The	 model	 was	 based	 on	 the
possibility	 of	 traversing	 the	 states	 in	 one	 chain,	 and	 if	 that	 was	 successful,
triggering	a	state	in	the	next	higher	level	in	the	hierarchy.	Sound	familiar?

A	simple	example	of	one	layer	of	a	hidden	Markov	model.	S1	 through
S4	represent	the	“hidden”	internal	states.	The	Pi,	j	transitions	each	represent
the	 probability	 of	 going	 from	 state	 Si	 to	 state	 Sj.	 These	 probabilities	 are
determined	 by	 the	 system	 learning	 from	 training	 data	 (including	 during
actual	use).	A	new	sequence	(such	as	a	new	spoken	utterance)	 is	matched
against	 these	 probabilities	 to	 determine	 the	 likelihood	 that	 this	 model
produced	the	sequence.
Markov’s	 model	 included	 probabilities	 of	 each	 state’s	 successfully

occurring.	He	went	on	to	hypothesize	a	situation	in	which	a	system	has	such	a
hierarchy	 of	 linear	 sequences	 of	 states,	 but	 those	 are	 unable	 to	 be	 directly
examined—hence	 the	 name	 hidden	 Markov	 models.	 The	 lowest	 level	 of	 the
hierarchy	emits	signals,	which	are	all	we	are	allowed	to	see.	Markov	provides	a
mathematical	 technique	 to	 compute	 what	 the	 probabilities	 of	 each	 transition
must	be	based	on	the	observed	output.	The	method	was	subsequently	refined	by
Norbert	Wiener	in	1923.	Wiener’s	refinement	also	provided	a	way	to	determine
the	connections	in	the	Markov	model;	essentially	any	connection	with	too	low	a
probability	 was	 considered	 not	 to	 exist.	 This	 is	 essentially	 how	 the	 human
neocortex	 trims	 connections—if	 they	 are	 rarely	 or	 never	 used,	 they	 are
considered	unlikely	and	are	pruned	away.	In	our	case,	the	observed	output	is	the
speech	 signal	 created	 by	 the	 person	 talking,	 and	 the	 state	 probabilities	 and
connections	 of	 the	 Markov	 model	 constitute	 the	 neocortical	 hierarchy	 that
produced	it.

I	envisioned	a	 system	 in	which	we	would	 take	samples	of	human	speech,
apply	 the	 hidden	Markov	model	 technique	 to	 infer	 a	 hierarchy	 of	 states	 with



connections	 and	 probabilities	 (essentially	 a	 simulated	 neocortex	 for	 producing
speech),	 and	 then	 use	 this	 inferred	 hierarchical	 network	 of	 states	 to	 recognize
new	utterances.	To	create	a	speaker-independent	system,	we	would	use	samples
from	many	different	individuals	to	train	the	hidden	Markov	models.	By	adding
in	the	element	of	hierarchies	to	represent	the	hierarchical	nature	of	information
in	 language,	 these	 were	 properly	 called	 hierarchical	 hidden	 Markov	 models
(HHMMs).

My	 colleagues	 at	 Kurzweil	 Applied	 Intelligence	 were	 skeptical	 that	 this
technique	would	work,	given	that	it	was	a	self-organizing	method	reminiscent	of
neural	 nets,	 which	 had	 fallen	 out	 of	 favor	 and	 with	 which	 we	 had	 had	 little
success.	I	pointed	out	that	the	network	in	a	neural	net	system	is	fixed	and	does
not	 adapt	 to	 the	 input:	 The	weights	 adapt,	 but	 the	 connections	 do	 not.	 In	 the
Markov	model	system,	if	it	was	set	up	correctly,	the	system	would	prune	unused
connections	so	as	to	essentially	adapt	the	topology.

I	 established	 what	 was	 considered	 a	 “skunk	 works”	 project	 (an
organizational	term	for	a	project	off	the	beaten	path	that	has	little	in	the	way	of
formal	 resources)	 that	 consisted	 of	 me,	 one	 part-time	 programmer,	 and	 an
electrical	 engineer	 (to	 create	 the	 frequency	 filter	 bank).	 To	 the	 surprise	 of	my
colleagues,	 our	 effort	 turned	 out	 to	 be	 very	 successful,	 having	 succeeded	 in
recognizing	speech	comprising	a	large	vocabulary	with	high	accuracy.

After	that	experiment,	all	of	our	subsequent	speech	recognition	efforts	have
been	 based	 on	 hierarchical	 hidden	 Markov	 models.	 Other	 speech	 recognition
companies	 appeared	 to	 discover	 the	 value	 of	 this	 method	 independently,	 and
since	the	mid-1980s	most	work	in	automated	speech	recognition	has	been	based
on	 this	 approach.	Hidden	Markov	models	 are	 also	 used	 in	 speech	 synthesis—
keep	in	mind	that	our	biological	cortical	hierarchy	is	used	not	only	to	recognize
input	but	also	to	produce	output,	for	example,	speech	and	physical	movement.

HHMMs	are	also	used	in	systems	that	understand	the	meaning	of	natural-
language	sentences,	which	represents	going	up	the	conceptual	hierarchy.



Hidden	Markov	states	and	possible	transitions	to	produce	a	sequence	of
words	in	natural-language	text.
To	understand	how	the	HHMM	method	works,	we	start	out	with	a	network

that	consists	of	all	the	state	transitions	that	are	possible.	The	vector	quantization
method	described	 above	 is	 critical	 here,	 because	otherwise	 there	would	be	 too
many	possibilities	to	consider.

Here	is	a	possible	simplified	initial	topology:

A	 simple	 hidden	 Markov	 model	 topology	 to	 recognize	 two	 spoken
words.
Sample	 utterances	 are	 processed	 one	 by	 one.	 For	 each,	 we	 iteratively

modify	 the	probabilities	of	 the	 transitions	 to	better	 reflect	 the	 input	 sample	we
have	 just	 processed.	 The	Markov	models	 used	 in	 speech	 recognition	 code	 the
likelihood	 that	 specific	patterns	of	 sound	are	 found	 in	 each	phoneme,	how	 the
phonemes	influence	one	another,	and	the	likely	orders	of	phonemes.	The	system
can	 also	 include	 probability	 networks	 on	 higher	 levels	 of	 language	 structure,
such	as	the	order	of	words,	the	inclusion	of	phrases,	and	so	on	up	the	hierarchy
of	language.



Whereas	 our	 previous	 speech	 recognition	 systems	 incorporated	 specific
rules	 about	 phoneme	 structures	 and	 sequences	 explicitly	 coded	 by	 human
linguists,	 the	 new	HHMM-based	 system	was	 not	 explicitly	 told	 that	 there	 are
forty-four	 phonemes	 in	 English,	 the	 sequences	 of	 vectors	 that	 were	 likely	 for
each	phoneme,	or	what	phoneme	sequences	were	more	likely	than	others.	We	let
the	 system	 discover	 these	 “rules”	 for	 itself	 from	 thousands	 of	 hours	 of
transcribed	human	speech	data.	The	advantage	of	this	approach	over	hand-coded
rules	is	 that	 the	models	develop	probabilistic	rules	of	which	human	experts	are
often	 not	 aware.	 We	 noticed	 that	 many	 of	 the	 rules	 that	 the	 system	 had
automatically	 learned	from	the	data	differed	 in	subtle	but	 important	ways	from
the	rules	established	by	human	experts.

Once	the	network	was	trained,	we	began	to	attempt	to	recognize	speech	by
considering	the	alternate	paths	through	the	network	and	picking	the	path	that	was
most	 likely,	 given	 the	 actual	 sequence	 of	 input	 vectors	 we	 had	 seen.	 In	 other
words,	 if	 we	 saw	 a	 sequence	 of	 states	 that	 was	 likely	 to	 have	 produced	 that
utterance,	 we	 concluded	 that	 the	 utterance	 came	 from	 that	 cortical	 sequence.
This	simulated	HHMM-based	neocortex	included	word	labels,	so	it	was	able	to
propose	a	transcription	of	what	it	heard.

We	were	then	able	to	improve	our	results	further	by	continuing	to	train	the
network	 while	 we	 were	 using	 it	 for	 recognition.	 As	 we	 have	 discussed,
simultaneous	 recognition	 and	 learning	 also	 take	 place	 at	 every	 level	 in	 our
biological	neocortical	hierarchy.



Evolutionary	(Genetic)	Algorithms

There	 is	another	 important	consideration:	How	do	we	set	 the	many	parameters
that	control	a	pattern	recognition	system’s	functioning?	These	could	include	the
number	 of	 vectors	 that	 we	 allow	 in	 the	 vector	 quantization	 step,	 the	 initial
topology	of	hierarchical	states	(before	the	training	phase	of	the	hidden	Markov
model	process	prunes	them	back),	the	recognition	threshold	at	each	level	of	the
hierarchy,	 the	 parameters	 that	 control	 the	 handling	 of	 the	 size	 parameters,	 and
many	others.	We	can	establish	these	based	on	our	intuition,	but	 the	results	will
be	far	from	optimal.

We	call	these	parameters	“God	parameters”	because	they	are	set	prior	to	the
self-organizing	 method	 of	 determining	 the	 topology	 of	 the	 hidden	 Markov
models	 (or,	 in	 the	 biological	 case,	 before	 the	 person	 learns	 her	 lessons	 by
similarly	 creating	 connections	 in	 her	 cortical	 hierarchy).	 This	 is	 perhaps	 a
misnomer,	given	that	 these	 initial	DNA-based	design	details	are	determined	by
biological	evolution,	though	some	may	see	the	hand	of	God	in	that	process	(and
while	I	do	consider	evolution	to	be	a	spiritual	process,	 this	discussion	properly
belongs	in	chapter	9).

When	 it	 came	 to	 setting	 these	 “God	 parameters”	 in	 our	 simulated
hierarchical	 learning	and	 recognizing	system,	we	again	 took	a	cue	 from	nature
and	decided	 to	 evolve	 them—in	our	 case,	using	a	 simulation	of	 evolution.	We
used	what	 are	 called	 genetic	 or	 evolutionary	 algorithms	 (GAs),	which	 include
simulated	sexual	reproduction	and	mutations.

Here	 is	 a	 simplified	 description	 of	 how	 this	 method	 works.	 First,	 we
determine	a	way	to	code	possible	solutions	to	a	given	problem.	If	the	problem	is
optimizing	the	design	parameters	for	a	circuit,	then	we	define	a	list	of	all	of	the
parameters	 (with	 a	 specific	 number	 of	 bits	 assigned	 to	 each	 parameter)	 that
characterize	 the	circuit.	This	 list	 is	 regarded	as	 the	genetic	 code	 in	 the	genetic
algorithm.	Then	we	 randomly	generate	 thousands	or	more	genetic	codes.	Each
such	genetic	code	(which	represents	one	set	of	design	parameters)	is	considered
a	simulated	“solution”	organism.

Now	we	evaluate	each	simulated	organism	in	a	simulated	environment	by
using	a	defined	method	to	assess	each	set	of	parameters.	This	evaluation	is	a	key
to	 the	 success	 of	 a	 genetic	 algorithm.	 In	 our	 example,	 we	 would	 run	 each
program	generated	by	the	parameters	and	judge	it	on	appropriate	criteria	(did	it
complete	the	task,	how	long	did	it	take,	and	so	on).	The	best-solution	organisms



(the	best	designs)	are	allowed	to	survive,	and	the	rest	are	eliminated.
Now	we	cause	each	of	the	survivors	to	multiply	themselves	until	they	reach

the	 same	 number	 of	 solution	 creatures.	 This	 is	 done	 by	 simulating	 sexual
reproduction:	In	other	words,	we	create	new	offspring	where	each	new	creature
draws	 one	 part	 of	 its	 genetic	 code	 from	 one	 parent	 and	 another	 part	 from	 a
second	 parent.	 Usually	 no	 distinction	 is	 made	 between	 male	 or	 female
organisms;	it’s	sufficient	to	generate	an	offspring	from	any	two	arbitrary	parents,
so	we’re	basically	talking	about	same-sex	marriage	here.	This	is	perhaps	not	as
interesting	 as	 sexual	 reproduction	 in	 the	 natural	 world,	 but	 the	 relevant	 point
here	 is	 having	 two	 parents.	 As	 these	 simulated	 organisms	 multiply,	 we	 allow
some	mutation	(random	change)	in	the	chromosomes	to	occur.

We’ve	now	defined	one	generation	of	simulated	evolution;	now	we	repeat
these	 steps	 for	 each	 subsequent	 generation.	At	 the	 end	 of	 each	 generation	we
determine	 how	 much	 the	 designs	 have	 improved	 (that	 is,	 we	 compute	 the
average	 improvement	 in	 the	 evaluation	 function	 over	 all	 the	 surviving
organisms).	When	 the	 degree	 of	 improvement	 in	 the	 evaluation	 of	 the	 design
creatures	 from	 one	 generation	 to	 the	 next	 becomes	 very	 small,	 we	 stop	 this
iterative	 cycle	 and	 use	 the	 best	 design(s)	 in	 the	 last	 generation.	 (For	 an
algorithmic	description	of	genetic	algorithms,	see	this	endnote.)11

The	key	 to	 a	genetic	 algorithm	 is	 that	 the	human	designers	don’t	 directly
program	 a	 solution;	 rather,	 we	 let	 one	 emerge	 through	 an	 iterative	 process	 of
simulated	competition	and	improvement.	Biological	evolution	is	smart	but	slow,
so	 to	 enhance	 its	 intelligence	 we	 greatly	 speed	 up	 its	 ponderous	 pace.	 The
computer	 is	 fast	 enough	 to	 simulate	many	 generations	 in	 a	matter	 of	 hours	 or
days,	 and	 we’ve	 occasionally	 had	 them	 run	 for	 as	 long	 as	 weeks	 to	 simulate
hundreds	of	 thousands	of	generations.	But	we	have	 to	go	 through	 this	 iterative
process	only	once;	as	soon	as	we	have	let	this	simulated	evolution	run	its	course,
we	 can	 apply	 the	 evolved	 and	highly	 refined	 rules	 to	 real	 problems	 in	 a	 rapid
fashion.	In	the	case	of	our	speech	recognition	systems,	we	used	them	to	evolve
the	 initial	 topology	of	 the	network	and	other	critical	parameters.	We	 thus	used
two	self-organizing	methods:	a	GA	to	simulate	the	biological	evolution	that	gave
rise	 to	 a	 particular	 cortical	 design,	 and	 HHMMs	 to	 simulate	 the	 cortical
organization	that	accompanies	human	learning.

Another	major	 requirement	 for	 the	 success	 of	 a	GA	 is	 a	 valid	method	 of
evaluating	each	possible	solution.	This	evaluation	needs	to	be	conducted	quickly,
because	 it	must	 take	account	of	many	 thousands	of	possible	solutions	 for	each
generation	of	simulated	evolution.	GAs	are	adept	at	handling	problems	with	too
many	variables	for	which	to	compute	precise	analytic	solutions.	The	design	of	an
engine,	 for	 example,	may	 involve	more	 than	 a	 hundred	 variables	 and	 requires



satisfying	 dozens	 of	 constraints;	 GAs	 used	 by	 researchers	 at	 General	 Electric
were	 able	 to	 come	 up	 with	 jet	 engine	 designs	 that	 met	 the	 constraints	 more
precisely	than	conventional	methods.

When	using	GAs	you	must,	however,	be	careful	what	you	ask	for.	A	genetic
algorithm	was	 used	 to	 solve	 a	 block-stacking	 problem,	 and	 it	 came	 up	with	 a
perfect	solution…except	that	it	had	thousands	of	steps.	The	human	programmers
forgot	to	include	minimizing	the	number	of	steps	in	their	evaluation	function.

Scott	 Drave’s	 Electric	 Sheep	 project	 is	 a	 GA	 that	 produces	 art.	 The
evaluation	 function	 uses	 human	 evaluators	 in	 an	 open-source	 collaboration
involving	many	 thousands	of	people.	The	art	moves	 through	 time	and	you	can
view	it	at	electricsheep.org.

For	speech	 recognition,	 the	combination	of	genetic	algorithms	and	hidden
Markov	models	 worked	 extremely	 well.	 Simulating	 evolution	 with	 a	 GA	was
able	 to	 substantially	 improve	 the	 performance	 of	 the	HHMM	networks.	What
evolution	came	up	with	was	far	superior	to	our	original	design,	which	was	based
on	our	intuition.

We	 then	experimented	with	 introducing	a	 series	of	 small	variations	 in	 the
overall	 system.	 For	 example,	 we	 would	 make	 perturbations	 (minor	 random
changes)	to	the	input.	Another	such	change	was	to	have	adjacent	Markov	models
“leak”	into	one	another	by	causing	the	results	of	one	Markov	model	to	influence
models	that	are	“nearby.”	Although	we	did	not	realize	it	at	the	time,	the	sorts	of
adjustments	 we	 were	 experimenting	 with	 are	 very	 similar	 to	 the	 types	 of
modifications	that	occur	in	biological	cortical	structures.

At	 first,	 such	 changes	 hurt	 performance	 (as	 measured	 by	 accuracy	 of
recognition).	 But	 if	 we	 reran	 evolution	 (that	 is,	 reran	 the	 GA)	 with	 these
alterations	 in	 place,	 it	 would	 adapt	 the	 system	 accordingly,	 optimizing	 it	 for
these	introduced	modifications.	In	general,	this	would	restore	performance.	If	we
then	 removed	 the	 changes	 we	 had	 introduced,	 performance	 would	 be	 again
degraded,	because	the	system	had	been	evolved	to	compensate	for	the	changes.
The	adapted	system	became	dependent	on	the	changes.

One	type	of	alteration	that	actually	helped	performance	(after	rerunning	the
GA)	was	to	introduce	small	random	changes	to	the	input.	The	reason	for	this	is
the	 well-known	 “overfitting”	 problem	 in	 self-organizing	 systems.	 There	 is	 a
danger	that	such	a	system	will	overgeneralize	to	the	specific	examples	contained
in	 the	 training	 sample.	By	making	 random	 adjustments	 to	 the	 input,	 the	more
invariant	patterns	in	the	data	survive,	and	the	system	thereby	learns	these	deeper
patterns.	This	helped	only	if	we	reran	the	GA	with	the	randomization	feature	on.

This	 introduces	a	dilemma	 in	our	understanding	of	our	biological	 cortical
circuits.	 It	 had	 been	 noticed,	 for	 example,	 that	 there	might	 indeed	 be	 a	 small



amount	 of	 leakage	 from	one	 cortical	 connection	 to	 another,	 resulting	 from	 the
way	 that	biological	connections	are	 formed:	The	electrochemistry	of	 the	axons
and	 dendrites	 is	 apparently	 subject	 to	 the	 electromagnetic	 effects	 of	 nearby
connections.	Suppose	we	were	able	to	run	an	experiment	where	we	removed	this
effect	 in	 an	 actual	 brain.	That	would	be	difficult	 to	 actually	 carry	out,	 but	 not
necessarily	 impossible.	 Suppose	 we	 conducted	 such	 an	 experiment	 and	 found
that	the	cortical	circuits	worked	less	effectively	without	this	neural	leakage.	We
might	then	conclude	that	this	phenomenon	was	a	very	clever	design	by	evolution
and	 was	 critical	 to	 the	 cortex’s	 achieving	 its	 level	 of	 performance.	We	might
further	point	out	 that	such	a	result	shows	that	 the	orderly	model	of	 the	flow	of
patterns	 up	 the	 conceptual	 hierarchy	 and	 the	 flow	 of	 predictions	 down	 the
hierarchy	was	in	fact	much	more	complicated	because	of	this	intricate	influence
of	connections	on	one	another.

But	 that	 would	 not	 necessarily	 be	 an	 accurate	 conclusion.	 Consider	 our
experience	with	a	simulated	cortex	based	on	HHMMs,	in	which	we	implemented
a	modification	very	similar	to	interneuronal	cross	talk.	If	we	then	ran	evolution
with	 that	 phenomenon	 in	 place,	 performance	 would	 be	 restored	 (because	 the
evolutionary	 process	 adapted	 to	 it).	 If	 we	 then	 removed	 the	 cross	 talk,
performance	would	be	compromised	again.	In	the	biological	case,	evolution	(that
is,	biological	evolution)	was	 indeed	“run”	with	 this	phenomenon	 in	place.	The
detailed	parameters	of	the	system	have	thereby	been	set	by	biological	evolution
to	 be	 dependent	 on	 these	 factors,	 so	 that	 changing	 them	will	 negatively	 affect
performance	unless	we	run	evolution	again.	Doing	so	is	feasible	in	the	simulated
world,	where	evolution	only	takes	days	or	weeks,	but	in	the	biological	world	it
would	require	tens	of	thousands	of	years.

So	 how	 can	 we	 tell	 whether	 a	 particular	 design	 feature	 of	 the	 biological
neocortex	 is	a	vital	 innovation	 introduced	by	biological	evolution—that	 is,	one
that	 is	 instrumental	 to	 our	 level	 of	 intelligence—or	merely	 an	 artifact	 that	 the
design	of	the	system	is	now	dependent	on	but	could	have	evolved	without?	We
can	 answer	 that	 question	 simply	 by	 running	 simulated	 evolution	 with	 and
without	these	particular	variations	to	the	details	of	the	design	(for	example,	with
and	without	connection	cross	talk).	We	can	even	do	so	with	biological	evolution
if	 we’re	 examining	 the	 evolution	 of	 a	 colony	 of	 microorganisms	 where
generations	are	measured	in	hours,	but	it	is	not	practical	for	complex	organisms
such	as	humans.	This	is	another	one	of	the	many	disadvantages	of	biology.

Getting	 back	 to	 our	work	 in	 speech	 recognition,	we	 found	 that	 if	we	 ran
evolution	(that	 is,	a	GA)	separately	on	 the	 initial	design	of	(1)	 the	hierarchical
hidden	Markov	models	 that	were	modeling	 the	 internal	 structure	 of	 phonemes
and	 (2)	 the	HHMMs’	modeling	of	 the	structures	of	words	and	phrases,	we	got



even	better	results.	Both	levels	of	 the	system	were	using	HHMMs,	but	 the	GA
would	 evolve	 design	 variations	 between	 these	 different	 levels.	 This	 approach
still	allowed	the	modeling	of	phenomena	that	occurs	in	between	the	two	levels,
such	 as	 the	 smearing	 of	 phonemes	 that	 often	 happens	when	we	 string	 certain
words	together	(for	example,	“How	are	you	all	doing?”	might	become	“How’re
y’all	doing?”).

It	 is	 likely	 that	 a	 similar	 phenomenon	 took	 place	 in	 different	 biological
cortical	regions,	 in	that	 they	have	evolved	small	differences	based	on	the	types
of	patterns	 they	deal	with.	Whereas	all	of	 these	 regions	use	 the	 same	essential
neocortical	algorithm,	biological	evolution	has	had	enough	time	to	fine-tune	the
design	of	each	of	them	to	be	optimal	for	their	particular	patterns.	However,	as	I
discussed	 earlier,	 neuroscientists	 and	 neurologists	 have	 noticed	 substantial
plasticity	 in	 these	 areas,	 which	 supports	 the	 idea	 of	 a	 general	 neocortical
algorithm.	 If	 the	 fundamental	methods	 in	 each	 region	were	 radically	 different,
then	such	interchangeability	among	cortical	regions	would	not	be	possible.

The	 systems	 we	 created	 in	 our	 research	 using	 this	 combination	 of	 self-
organizing	methods	were	very	successful.	In	speech	recognition,	they	were	able
for	 the	 first	 time	 to	 handle	 fully	 continuous	 speech	 and	 relatively	 unrestricted
vocabularies.	We	were	able	to	achieve	a	high	accuracy	rate	on	a	wide	variety	of
speakers,	accents,	and	dialects.	The	current	state	of	the	art	as	this	book	is	being
written	 is	 represented	by	a	product	called	Dragon	Naturally	Speaking	 (Version
11.5)	for	the	PC	from	Nuance	(formerly	Kurzweil	Computer	Products).	I	suggest
that	 people	 try	 it	 if	 they	 are	 skeptical	 about	 the	 performance	 of	 contemporary
speech	 recognition—accuracies	 are	 often	 99	 percent	 or	 higher	 after	 a	 few
minutes	 of	 training	 on	 your	 voice	 on	 continuous	 speech	 and	 relatively
unrestricted	vocabularies.	Dragon	Dictation	is	a	simpler	but	still	impressive	free
app	for	the	iPhone	that	requires	no	voice	training.	Siri,	the	personal	assistant	on
contemporary	Apple	iPhones,	uses	the	same	speech	recognition	technology	with
extensions	to	handle	natural-language	understanding.

The	 performance	 of	 these	 systems	 is	 a	 testament	 to	 the	 power	 of
mathematics.	With	 them	we	are	 essentially	 computing	what	 is	 going	on	 in	 the
neocortex	of	a	speaker—even	though	we	have	no	direct	access	to	that	person’s
brain—as	a	vital	step	in	recognizing	what	the	person	is	saying	and,	in	the	case	of
systems	like	Siri,	what	those	utterances	mean.	We	might	wonder,	if	we	were	to
actually	 look	 inside	 the	 speaker’s	 neocortex,	 would	 we	 see	 connections	 and
weights	corresponding	 to	 the	hierarchical	hidden	Markov	models	computed	by
the	software?	Almost	certainly	we	would	not	find	a	precise	match;	the	neuronal
structures	would	invariably	differ	in	many	details	compared	with	the	models	in
the	 computer.	 However,	 I	 would	 maintain	 that	 there	 must	 be	 an	 essential



mathematical	 equivalence	 to	 a	 high	 degree	 of	 precision	 between	 the	 actual
biology	and	our	attempt	to	emulate	it;	otherwise	these	systems	would	not	work
as	well	as	they	do.



LISP

LISP	(LISt	Processor)	is	a	computer	language,	originally	specified	by	AI	pioneer
John	McCarthy	 (1927–2011)	 in	 1958.	 As	 its	 name	 suggests,	 LISP	 deals	 with
lists.	Each	LISP	statement	is	a	list	of	elements;	each	element	is	either	another	list
or	 an	 “atom,”	 which	 is	 an	 irreducible	 item	 constituting	 either	 a	 number	 or	 a
symbol.	A	 list	 included	 in	a	 list	can	be	 the	 list	 itself,	hence	LISP	 is	capable	of
recursion.	Another	way	that	LISP	statements	can	be	recursive	is	if	a	list	includes
a	list,	and	so	on	until	the	original	list	is	specified.	Because	lists	can	include	lists,
LISP	is	also	capable	of	hierarchical	processing.	A	list	can	be	a	conditional	such
that	 it	only	“fires”	 if	 its	elements	are	satisfied.	 In	 this	way,	hierarchies	of	such
conditionals	can	be	used	to	identify	increasingly	abstract	qualities	of	a	pattern.

LISP	became	the	rage	in	the	artificial	intelligence	community	in	the	1970s
and	early	1980s.	The	conceit	of	 the	LISP	enthusiasts	of	 the	earlier	decade	was
that	the	language	mirrored	the	way	the	human	brain	worked—that	any	intelligent
process	 could	most	 easily	 and	 efficiently	 be	 coded	 in	 LISP.	 There	 followed	 a
mini-boomlet	in	“artificial	intelligence”	companies	that	offered	LISP	interpreters
and	 related	LISP	products,	but	when	 it	became	apparent	 in	 the	mid-1980s	 that
LISP	 itself	was	 not	 a	 shortcut	 to	 creating	 intelligent	 processes,	 the	 investment
balloon	collapsed.

It	 turns	out	 that	 the	LISP	enthusiasts	were	not	entirely	wrong.	Essentially,
each	pattern	recognizer	in	the	neocortex	can	be	regarded	as	a	LISP	statement—
each	one	constitutes	a	list	of	elements,	and	each	element	can	be	another	list.	The
neocortex	 is	 therefore	 indeed	 engaged	 in	 list	 processing	 of	 a	 symbolic	 nature
very	similar	to	that	which	takes	place	in	a	LISP	program.	Moreover,	it	processes
all	300	million	LISP-like	“statements”	simultaneously.

However,	 there	 were	 two	 important	 features	 missing	 from	 the	 world	 of
LISP,	one	of	which	was	learning.	LISP	programs	had	to	be	coded	line	by	line	by
human	programmers.	There	were	attempts	to	automatically	code	LISP	programs
using	a	variety	of	methods,	but	these	were	not	an	integral	part	of	the	language’s
concept.	The	neocortex,	in	contrast,	programs	itself,	filling	its	“statements”	(that
is,	the	lists)	with	meaningful	and	actionable	information	from	its	own	experience
and	from	its	own	feedback	loops.	This	 is	a	key	principle	of	how	the	neocortex
works:	Each	one	of	its	pattern	recognizers	(that	is,	each	LISP-like	statement)	is
capable	of	filling	in	its	own	list	and	connecting	itself	both	up	and	down	to	other
lists.	The	second	difference	is	the	size	parameters.	One	could	create	a	variant	of



LISP	(coded	in	LISP)	that	would	allow	for	handling	such	parameters,	but	these
are	not	part	of	the	basic	language.

LISP	is	consistent	with	the	original	philosophy	of	the	AI	field,	which	was	to
find	 intelligent	 solutions	 to	 problems	 and	 to	 code	 them	 directly	 in	 computer
languages.	The	first	attempt	at	a	self-organizing	method	that	would	teach	itself
from	experience—neural	nets—was	not	successful	because	it	did	not	provide	a
means	 to	 modify	 the	 topology	 of	 the	 system	 in	 response	 to	 learning.	 The
hierarchical	hidden	Markov	model	effectively	provided	that	through	its	pruning
mechanism.	Today,	the	HHMM	together	with	its	mathematical	cousins	makes	up
a	major	portion	of	the	world	of	AI.

A	corollary	of	the	observation	of	the	similarity	of	LISP	and	the	list	structure
of	 the	neocortex	 is	an	argument	made	by	 those	who	 insist	 that	 the	brain	 is	 too
complicated	 for	 us	 to	 understand.	 These	 critics	 point	 out	 that	 the	 brain	 has
trillions	of	connections,	and	since	each	one	must	be	there	specifically	by	design,
they	constitute	 the	equivalent	of	 trillions	of	 lines	of	code.	As	we’ve	seen,	 I’ve
estimated	 that	 there	 are	 on	 the	 order	 of	 300	million	 pattern	 processors	 in	 the
neocortex—or	 300	 million	 lists	 where	 each	 element	 in	 the	 list	 is	 pointing	 to
another	list	(or,	at	the	lowest	conceptual	level,	to	a	basic	irreducible	pattern	from
outside	the	neocortex).	But	300	million	is	still	a	reasonably	big	number	of	LISP
statements	and	indeed	is	larger	than	any	human-written	program	in	existence.

However,	we	need	to	keep	in	mind	that	these	lists	are	not	actually	specified
in	the	initial	design	of	the	nervous	system.	The	brain	creates	these	lists	itself	and
connects	 the	 levels	 automatically	 from	 its	 own	 experiences.	 This	 is	 the	 key
secret	of	the	neocortex.	The	processes	that	accomplish	this	self-organization	are
much	simpler	than	the	300	million	statements	that	constitute	the	capacity	of	the
neocortex.	Those	processes	are	specified	in	the	genome.	As	I	will	demonstrate	in
chapter	 11,	 the	 amount	 of	 unique	 information	 in	 the	 genome	 (after	 lossless
compression)	 as	 applied	 to	 the	 brain	 is	 about	 25	 million	 bytes,	 which	 is
equivalent	to	less	than	a	million	lines	of	code.	The	actual	algorithmic	complexity
is	 even	 less	 than	 that,	 as	most	 of	 the	 25	million	 bytes	 of	 genetic	 information
pertain	 to	 the	 biological	 needs	 of	 the	 neurons,	 and	 not	 specifically	 to	 their
information-processing	 capability.	 However,	 even	 25	 million	 bytes	 of	 design
information	is	a	level	of	complexity	we	can	handle.



Hierarchical	Memory	Systems

As	I	discussed	in	chapter	3,	Jeff	Hawkins	and	Dileep	George	in	2003	and	2004
developed	 a	 model	 of	 the	 neocortex	 incorporating	 hierarchical	 lists	 that	 was
described	in	Hawkins	and	Blakeslee’s	2004	book	On	Intelligence.	A	more	up-to-
date	and	very	elegant	presentation	of	the	hierarchical	temporal	memory	method
can	 be	 found	 in	 Dileep	 George’s	 2008	 doctoral	 dissertation.12	 Numenta	 has
implemented	 it	 in	 a	 system	 called	 NuPIC	 (Numenta	 Platform	 for	 Intelligent
Computing)	 and	 has	 developed	 pattern	 recognition	 and	 intelligent	 data-mining
systems	 for	 such	 clients	 as	 Forbes	 and	 Power	 Analytics	 Corporation.	 After
working	 at	 Numenta,	 George	 has	 started	 a	 new	 company	 called	 Vicarious
Systems	 with	 funding	 from	 the	 Founder	 Fund	 (managed	 by	 Peter	 Thiel,	 the
venture	 capitalist	 behind	 Facebook,	 and	 Sean	 Parker,	 the	 first	 president	 of
Facebook)	 and	 from	 Good	 Ventures,	 led	 by	 Dustin	 Moskovitz,	 cofounder	 of
Facebook.	 George	 reports	 significant	 progress	 in	 automatically	 modeling,
learning,	and	recognizing	information	with	a	substantial	number	of	hierarchies.
He	 calls	 his	 system	 a	 “recursive	 cortical	 network”	 and	 plans	 applications	 for
medical	imaging	and	robotics,	among	other	fields.	The	technique	of	hierarchical
hidden	 Markov	 models	 is	 mathematically	 very	 similar	 to	 these	 hierarchical
memory	systems,	especially	if	we	allow	the	HHMM	system	to	organize	its	own
connections	 between	 pattern	 recognition	 modules.	 As	 mentioned	 earlier,
HHMMs	 provide	 for	 an	 additional	 important	 element,	 which	 is	 modeling	 the
expected	 distribution	 of	 the	magnitude	 (on	 some	 continuum)	 of	 each	 input	 in
computing	the	probability	of	 the	existence	of	 the	pattern	under	consideration.	I
have	 recently	 started	 a	 new	 company	 called	 Patterns,	 Inc.,	 which	 intends	 to
develop	hierarchical	self-organizing	neocortical	models	that	utilize	HHMMs	and
related	 techniques	 for	 the	 purpose	 of	 understanding	 natural	 language.	 An
important	 emphasis	 will	 be	 on	 the	 ability	 for	 the	 system	 to	 design	 its	 own
hierarchies	in	a	manner	similar	to	a	biological	neocortex.	Our	envisioned	system
will	 continually	 read	 a	 wide	 range	 of	 material	 such	 as	 Wikipedia	 and	 other
knowledge	 resources	 as	 well	 as	 listen	 to	 everything	 you	 say	 and	 watch
everything	you	write	(if	you	let	it).	The	goal	is	for	it	to	become	a	helpful	friend
answering	 your	 questions—before	 you	 even	 formulate	 them—and	 giving	 you
useful	information	and	tips	as	you	go	through	your	day.



The	 Moving	 Frontier	 of	 AI:	 Climbing	 the	 Competence
Hierarchy

1.	 A	long	tiresome	speech	delivered	by	a	frothy	pie	topping.
2.	 A	garment	worn	by	a	child,	perhaps	aboard	an	operatic	ship.
3.	 Wanted	 for	 a	 twelve-year	 crime	 spree	 of	 eating	 King	 Hrothgar’s

warriors;	officer	Beowulf	has	been	assigned	the	case.
4.	 It	 can	 mean	 to	 develop	 gradually	 in	 the	 mind	 or	 to	 carry	 during

pregnancy.
5.	 National	Teacher	Day	and	Kentucky	Derby	Day.
6.	 Wordsworth	said	they	soar	but	never	roam.
7.	 Four-letter	word	for	 the	 iron	fitting	on	 the	hoof	of	a	horse	or	a	card-

dealing	box	in	a	casino.
8.	 In	act	three	of	an	1846	Verdi	opera,	this	Scourge	of	God	is	stabbed	to

death	by	his	lover,	Odabella.

—Examples	of	Jeopardy!	queries,	all	of	which	Watson	got	correct.
Answers	 are:	 meringue	 harangue,	 pinafore,	 Grendel,	 gestate,
May,	 skylark,	 shoe.	 For	 the	 eighth	 query,	 Watson	 replied,
“What	 is	 Attila?”	 The	 host	 responded	 by	 saying,	 “Be	 more
specific?”	 Watson	 clarified	 with,	 “What	 is	 Attila	 the	 Hun?,”
which	is	correct.

	

The	computer’s	techniques	for	unraveling	Jeopardy!	clues	sounded	just	like
mine.	 That	 machine	 zeroes	 in	 on	 key	 words	 in	 a	 clue,	 then	 combs	 its
memory	 (in	Watson’s	case,	a	15-terabyte	data	bank	of	human	knowledge)
for	 clusters	 of	 associations	with	 these	words.	 It	 rigorously	 checks	 the	 top
hits	against	all	the	contextual	information	it	can	muster:	the	category	name;
the	kind	of	answer	being	sought;	the	time,	place,	and	gender	hinted	at	in	the
clue;	and	so	on.	And	when	it	feels	“sure”	enough,	it	decides	to	buzz.	This	is
all	 an	 instant,	 intuitive	 process	 for	 a	 human	 Jeopardy!	 player,	 but	 I	 felt
convinced	 that	under	 the	hood	my	brain	was	doing	more	or	 less	 the	same
thing.

—Ken	Jennings,	human	Jeopardy!	champion	who	lost	to	Watson
	



I,	for	one,	welcome	our	new	robot	overlords.
—Ken	 Jennings,	 paraphrasing	 The	 Simpsons,	 after	 losing	 to

Watson
	

Oh	my	god.	[Watson]	is	more	intelligent	than	the	average	Jeopardy!	player
in	answering	Jeopardy!	questions.	That’s	impressively	intelligent.

—Sebastian	Thrun,	former	director	of	the	Stanford	AI	Lab
	

Watson	understands	nothing.	It’s	a	bigger	steamroller.
—Noam	Chomsky

	

	
Artificial	intelligence	is	all	around	us—we	no	longer	have	our	hand	on	the	plug.
The	simple	act	of	connecting	with	someone	via	a	 text	message,	e-mail,	or	cell
phone	 call	 uses	 intelligent	 algorithms	 to	 route	 the	 information.	 Almost	 every
product	we	 touch	 is	originally	designed	 in	a	collaboration	between	human	and
artificial	intelligence	and	then	built	in	automated	factories.	If	all	the	AI	systems
decided	 to	 go	 on	 strike	 tomorrow,	 our	 civilization	 would	 be	 crippled:	 We
couldn’t	 get	 money	 from	 our	 bank,	 and	 indeed,	 our	 money	 would	 disappear;
communication,	 transportation,	 and	 manufacturing	 would	 all	 grind	 to	 a	 halt.
Fortunately,	our	 intelligent	machines	are	not	yet	 intelligent	enough	 to	organize
such	a	conspiracy.

What	 is	 new	 in	 AI	 today	 is	 the	 viscerally	 impressive	 nature	 of	 publicly
available	examples.	For	example,	consider	Google’s	self-driving	cars	(which	as
of	this	writing	have	gone	over	200,000	miles	in	cities	and	towns),	a	technology
that	 will	 lead	 to	 significantly	 fewer	 crashes,	 increased	 capacity	 of	 roads,
alleviating	the	requirement	of	humans	to	perform	the	chore	of	driving,	and	many
other	 benefits.	 Driverless	 cars	 are	 actually	 already	 legal	 to	 operate	 on	 public
roads	in	Nevada	with	some	restrictions,	although	widespread	usage	by	the	public
throughout	 the	world	 is	not	expected	until	 late	 in	 this	decade.	Technology	 that
intelligently	 watches	 the	 road	 and	 warns	 the	 driver	 of	 impending	 dangers	 is
already	 being	 installed	 in	 cars.	 One	 such	 technology	 is	 based	 in	 part	 on	 the
successful	 model	 of	 visual	 processing	 in	 the	 brain	 created	 by	MIT’s	 Tomaso
Poggio.	 Called	 MobilEye,	 it	 was	 developed	 by	 Amnon	 Shashua,	 a	 former
postdoctoral	 student	 of	 Poggio’s.	 It	 is	 capable	 of	 alerting	 the	 driver	 to	 such
dangers	as	an	impending	collision	or	a	child	running	in	front	of	the	car	and	has



recently	been	installed	in	cars	by	such	manufacturers	as	Volvo	and	BMW.
I	will	focus	in	this	section	of	the	book	on	language	technologies	for	several

reasons.	Not	surprisingly,	the	hierarchical	nature	of	language	closely	mirrors	the
hierarchical	 nature	 of	 our	 thinking.	 Spoken	 language	was	 our	 first	 technology,
with	written	language	as	 the	second.	My	own	work	in	artificial	 intelligence,	as
this	 chapter	 has	 demonstrated,	 has	 been	 heavily	 focused	 on	 language.	 Finally,
mastering	 language	 is	 a	 powerfully	 leveraged	 capability.	 Watson	 has	 already
read	 hundreds	 of	 millions	 of	 pages	 on	 the	Web	 and	 mastered	 the	 knowledge
contained	in	these	documents.	Ultimately	machines	will	be	able	to	master	all	of
the	 knowledge	 on	 the	Web—which	 is	 essentially	 all	 of	 the	 knowledge	 of	 our
human-machine	civilization.

English	mathematician	Alan	Turing	(1912–1954)	based	his	eponymous	test
on	 the	 ability	 of	 a	 computer	 to	 converse	 in	 natural	 language	 using	 text
messages.13	 Turing	 felt	 that	 all	 of	 human	 intelligence	 was	 embodied	 and
represented	 in	 language,	 and	 that	no	machine	could	pass	a	Turing	 test	 through
simple	 language	 tricks.	 Although	 the	 Turing	 test	 is	 a	 game	 involving	 written
language,	Turing	believed	that	the	only	way	that	a	computer	could	pass	it	would
be	 for	 it	 to	 actually	possess	 the	 equivalent	 of	 human-level	 intelligence.	Critics
have	proposed	that	a	true	test	of	human-level	intelligence	should	include	mastery
of	visual	and	auditory	information	as	well.14	Since	many	of	my	own	AI	projects
involve	 teaching	 computers	 to	 master	 such	 sensory	 information	 as	 human
speech,	 letter	shapes,	and	musical	sounds,	I	would	be	expected	to	advocate	 the
inclusion	of	these	forms	of	information	in	a	true	test	of	intelligence.	Yet	I	agree
with	 Turing’s	 original	 insight	 that	 the	 text-only	 version	 of	 the	 Turing	 test	 is
sufficient.	 Adding	 visual	 or	 auditory	 input	 or	 output	 to	 the	 test	 would	 not
actually	make	it	more	difficult	to	pass.

One	does	not	need	to	be	an	AI	expert	 to	be	moved	by	the	performance	of
Watson	 on	 Jeopardy!	 Although	 I	 have	 a	 reasonable	 understanding	 of	 the
methodology	used	in	a	number	of	its	key	subsystems,	that	does	not	diminish	my
emotional	 reaction	 to	 watching	 it—him?—perform.	 Even	 a	 perfect
understanding	of	how	all	of	its	component	systems	work—which	no	one	actually
has—would	not	help	you	to	predict	how	Watson	would	actually	react	to	a	given
situation.	 It	 contains	 hundreds	 of	 interacting	 subsystems,	 and	 each	 of	 these	 is
considering	millions	of	competing	hypotheses	at	the	same	time,	so	predicting	the
outcome	is	impossible.	Doing	a	thorough	analysis—after	the	fact—of	Watson’s
deliberations	for	a	single	three-second	query	would	take	a	human	centuries.

To	continue	my	own	history,	in	the	late	1980s	and	1990s	we	began	working
on	natural-language	understanding	 in	 limited	domains.	You	could	speak	 to	one



of	our	products,	called	Kurzweil	Voice,	about	anything	you	wanted,	so	long	as	it
had	to	do	with	editing	documents.	(For	example,	“Move	the	third	paragraph	on
the	 previous	 page	 to	 here.”)	 It	 worked	 pretty	 well	 in	 this	 limited	 but	 useful
domain.	 We	 also	 created	 systems	 with	 medical	 domain	 knowledge	 so	 that
doctors	could	dictate	patient	reports.	It	had	enough	knowledge	of	fields	such	as
radiology	 and	 pathology	 that	 it	 could	 question	 the	 doctor	 if	 something	 in	 the
report	 seemed	 unclear,	 and	 would	 guide	 the	 physician	 through	 the	 reporting
process.	 These	 medical	 reporting	 systems	 have	 evolved	 into	 a	 billion-dollar
business	at	Nuance.

Understanding	 natural	 language,	 especially	 as	 an	 extension	 to	 automatic
speech	 recognition,	 has	 now	entered	 the	mainstream.	As	of	 the	writing	of	 this
book,	Siri,	the	automated	personal	assistant	on	the	iPhone	4S,	has	created	a	stir
in	the	mobile	computing	world.	You	can	pretty	much	ask	Siri	to	do	anything	that
a	self-respecting	smartphone	should	be	capable	of	doing	(for	example,	“Where
can	I	get	some	Indian	food	around	here?”	or	“Text	my	wife	that	I’m	on	my	way,”
or	“What	do	people	think	of	 the	new	Brad	Pitt	movie?”),	and	most	of	 the	time
Siri	will	comply.	Siri	will	entertain	a	small	amount	of	nonproductive	chatter.	If
you	ask	her	what	the	meaning	of	life	is,	she	will	respond	with	“42,”	which	fans
of	The	 Hitchhiker’s	 Guide	 to	 the	 Galaxy	 will	 recognize	 as	 its	 “answer	 to	 the
ultimate	 question	 of	 life,	 the	 universe,	 and	 everything.”	 Knowledge	 questions
(including	the	one	about	 the	meaning	of	 life)	are	answered	by	Wolfram	Alpha,
described	on	page	170.	There	is	a	whole	world	of	“chatbots”	who	do	nothing	but
engage	in	small	talk.	If	you	would	like	to	talk	to	our	chatbot	named	Ramona,	go
to	our	Web	site	KurzweilAI.net	and	click	on	“Chat	with	Ramona.”

Some	people	have	complained	to	me	about	Siri’s	failure	to	answer	certain
requests,	 but	 I	 often	 recall	 that	 these	 are	 the	 same	 people	 who	 persistently
complain	about	human	service	providers	also.	I	sometimes	suggest	that	we	try	it
together,	and	often	it	works	better	than	they	expect.	The	complaints	remind	me
of	the	story	of	the	dog	who	plays	chess.	To	an	incredulous	questioner,	the	dog’s
owner	 replies,	 “Yeah,	 it’s	 true,	 he	 does	 play	 chess,	 but	 his	 endgame	 is	weak.”
Effective	competitors	are	now	emerging,	such	as	Google	Voice	Search.

That	 the	 general	 public	 is	 now	 having	 conversations	 in	 natural	 spoken
language	with	their	handheld	computers	marks	a	new	era.	It	is	typical	that	people
dismiss	 the	 significance	 of	 a	 first-generation	 technology	 because	 of	 its
limitations.	A	few	years	later,	when	the	technology	does	work	well,	people	still
dismiss	 its	 importance	 because,	well,	 it’s	 no	 longer	 new.	 That	 being	 said,	Siri
works	 impressively	 for	 a	 first-generation	 product,	 and	 it	 is	 clear	 that	 this
category	of	product	is	only	going	to	get	better.

Siri	 uses	 the	 HMM-based	 speech	 recognition	 technologies	 from	 Nuance.



The	 natural-language	 extensions	 were	 first	 developed	 by	 the	 DARPA-funded
“CALO”	project.15	Siri	has	been	enhanced	with	Nuance’s	own	natural-language
technologies,	and	Nuance	offers	a	very	similar	technology	called	Dragon	Go!16

The	methods	 used	 for	 understanding	 natural	 language	 are	 very	 similar	 to
hierarchical	 hidden	 Markov	 models,	 and	 indeed	 HHMM	 itself	 is	 commonly
used.	Whereas	some	of	these	systems	are	not	specifically	labeled	as	using	HMM
or	HHMM,	the	mathematics	is	virtually	identical.	They	all	involve	hierarchies	of
linear	 sequences	 where	 each	 element	 has	 a	 weight,	 connections	 that	 are	 self-
adapting,	 and	 an	 overall	 system	 that	 self-organizes	 based	 on	 learning	 data.
Usually	 the	 learning	 continues	 during	 actual	 use	 of	 the	 system.	This	 approach
matches	 the	 hierarchical	 structure	 of	 natural	 language—it	 is	 just	 a	 natural
extension	up	the	conceptual	 ladder	from	parts	of	speech	to	words	to	phrases	to
semantic	 structures.	 It	 would	 make	 sense	 to	 run	 a	 genetic	 algorithm	 on	 the
parameters	that	control	the	precise	learning	algorithm	of	this	class	of	hierarchical
learning	systems	and	determine	the	optimal	algorithmic	details.

Over	the	past	decade	there	has	been	a	shift	in	the	way	that	these	hierarchical
structures	 are	 created.	 In	 1984	 Douglas	 Lenat	 (born	 in	 1950)	 started	 the
ambitious	 Cyc	 (for	 enCYClopedic)	 project,	 which	 aimed	 to	 create	 rules	 that
would	codify	everyday	“commonsense”	knowledge.	The	rules	were	organized	in
a	 huge	 hierarchy,	 and	 each	 rule	 involved—again—a	 linear	 sequence	 of	 states.
For	example,	one	Cyc	rule	might	state	that	a	dog	has	a	face.	Cyc	can	then	link	to
general	rules	about	the	structure	of	faces:	that	a	face	has	two	eyes,	a	nose,	and	a
mouth,	and	so	on.	We	don’t	need	 to	have	one	set	of	 rules	for	a	dog’s	face	and
then	another	for	a	cat’s	face,	though	we	may	of	course	want	to	put	in	additional
rules	 for	 ways	 in	 which	 dogs’	 faces	 differ	 from	 cats’	 faces.	 The	 system	 also
includes	an	inference	engine:	If	we	have	rules	that	state	that	a	cocker	spaniel	is	a
dog,	that	dogs	are	animals,	and	that	animals	eat	food,	and	if	we	were	to	ask	the
inference	engine	whether	cocker	spaniels	eat,	the	system	would	respond	that	yes,
cocker	 spaniels	 eat	 food.	 Over	 the	 next	 twenty	 years,	 and	 with	 thousands	 of
person-years	 of	 effort,	 over	 a	 million	 such	 rules	 were	 written	 and	 tested.
Interestingly,	 the	 language	 for	 writing	 Cyc	 rules—called	 CycL—is	 almost
identical	to	LISP.

Meanwhile,	an	opposing	school	of	thought	believed	that	the	best	approach
to	natural-language	understanding,	and	to	creating	intelligent	systems	in	general,
was	 through	 automated	 learning	 from	 exposure	 to	 a	 very	 large	 number	 of
instances	 of	 the	 phenomena	 the	 system	 was	 trying	 to	 master.	 A	 powerful
example	of	such	a	system	is	Google	Translate,	which	can	translate	to	and	from
fifty	 languages.	That’s	2,500	different	 translation	directions,	 although	 for	most



language	pairs,	rather	than	translate	language	1	directly	into	language	2,	 it	will
translate	language	1	into	English	and	then	English	into	language	2.	That	reduces
the	number	of	translators	Google	needed	to	build	to	ninety-eight	(plus	a	limited
number	of	non-English	pairs	 for	which	 there	 is	direct	 translation).	The	Google
translators	 do	 not	 use	 grammatical	 rules;	 rather,	 they	 create	 vast	 databases	 for
each	 language	 pair	 of	 common	 translations	 based	 on	 large	 “Rosetta	 stone”
corpora	of	 translated	documents	between	 two	 languages.	For	 the	six	 languages
that	 constitute	 the	 official	 languages	 of	 the	 United	 Nations,	 Google	 has	 used
United	Nations	documents,	 as	 they	are	published	 in	all	 six	 languages.	For	 less
common	languages,	other	sources	have	been	used.

The	results	are	often	impressive.	DARPA	runs	annual	competitions	for	the
best	 automated	 language	 translation	 systems	 for	 different	 language	 pairs,	 and
Google	 Translate	 often	 wins	 for	 certain	 pairs,	 outperforming	 systems	 created
directly	by	human	linguists.

Over	the	past	decade	two	major	insights	have	deeply	influenced	the	natural-
language-understanding	field.	The	first	has	to	do	with	hierarchies.	Although	the
Google	 approach	 started	 with	 association	 of	 flat	 word	 sequences	 from	 one
language	to	another,	 the	inherent	hierarchical	nature	of	 language	has	inevitably
crept	 into	 its	 operation.	 Systems	 that	 methodically	 incorporate	 hierarchical
learning	 (such	 as	 hierarchical	 hidden	 Markov	 models)	 provided	 significantly
better	performance.	However,	such	systems	are	not	quite	as	automatic	to	build.
Just	as	humans	need	to	learn	approximately	one	conceptual	hierarchy	at	a	time,
the	same	 is	 true	 for	computerized	systems,	so	 the	 learning	process	needs	 to	be
carefully	managed.

The	other	 insight	 is	 that	hand-built	 rules	work	well	 for	a	core	of	common
basic	knowledge.	For	translations	of	short	passages,	this	approach	often	provides
more	 accurate	 results.	 For	 example,	 DARPA	 has	 rated	 rule-based	 Chinese-to-
English	translators	higher	than	Google	Translate	for	short	passages.	For	what	is
called	 the	 tail	of	a	 language,	which	refers	 to	 the	millions	of	 infrequent	phrases
and	 concepts	 used	 in	 it,	 the	 accuracy	 of	 rule-based	 systems	 approaches	 an
unacceptably	 low	 asymptote.	 If	 we	 plot	 natural-language-understanding
accuracy	against	the	amount	of	training	data	analyzed,	rule-based	systems	have
higher	 performance	 initially	 but	 level	 off	 at	 fairly	 low	 accuracies	 of	 about	 70
percent.	In	sharp	contrast,	statistical	systems	can	reach	the	high	90s	in	accuracy
but	require	a	great	deal	of	data	to	achieve	that.

Often	we	need	a	combination	of	at	least	moderate	performance	on	a	small
amount	of	training	data	and	then	the	opportunity	to	achieve	high	accuracies	with
a	more	significant	quantity.	Achieving	moderate	performance	quickly	enables	us
to	 put	 a	 system	 in	 the	 field	 and	 then	 to	 automatically	 collect	 training	 data	 as



people	actually	use	it.	In	this	way,	a	great	deal	of	learning	can	occur	at	the	same
time	that	the	system	is	being	used,	and	its	accuracy	will	improve.	The	statistical
learning	needs	 to	be	 fully	hierarchical	 to	 reflect	 the	nature	of	 language,	which
also	reflects	how	the	human	brain	works.

This	 is	 also	 how	 Siri	 and	 Dragon	 Go!	 work—using	 rules	 for	 the	 most
common	and	reliable	phenomena	and	then	learning	the	“tail”	of	the	language	in
the	 hands	 of	 real	 users.	When	 the	 Cyc	 team	 realized	 that	 they	 had	 reached	 a
ceiling	 of	 performance	 based	 on	 hand-coded	 rules,	 they	 too	 adopted	 this
approach.	Hand-coded	rules	provide	two	essential	functions.	They	offer	adequate
initial	 accuracy,	 so	 that	 a	 trial	 system	 can	 be	 placed	 into	 widespread	 usage,
where	it	will	improve	automatically.	Secondly,	they	provide	a	solid	basis	for	the
lower	levels	of	the	conceptual	hierarchy	so	that	the	automated	learning	can	begin
to	learn	higher	conceptual	levels.

As	mentioned	above,	Watson	represents	a	particularly	impressive	example
of	 the	 approach	 of	 combining	 hand-coded	 rules	 with	 hierarchical	 statistical
learning.	 IBM	 combined	 a	 number	 of	 leading	 natural-language	 programs	 to
create	 a	 system	 that	 could	 play	 the	 natural-language	 game	 of	 Jeopardy!	 On
February	14–16,	2011,	Watson	competed	with	 the	 two	 leading	human	players:
Brad	Rutter,	who	had	won	more	money	than	anyone	else	on	the	quiz	show,	and
Ken	 Jennings,	 who	 had	 previously	 held	 the	 Jeopardy!	 championship	 for	 the
record	time	of	seventy-five	days.

By	way	of	context,	I	had	predicted	in	my	first	book,	The	Age	of	Intelligent
Machines,	written	in	the	mid-1980s,	that	a	computer	would	take	the	world	chess
championship	 by	 1998.	 I	 also	 predicted	 that	 when	 that	 happened,	 we	 would
either	 downgrade	 our	 opinion	 of	 human	 intelligence,	 upgrade	 our	 opinion	 of
machine	 intelligence,	 or	 downplay	 the	 importance	of	 chess,	 and	 that	 if	 history
was	a	guide,	we	would	minimize	chess.	Both	of	these	things	happened	in	1997.
When	 IBM’s	 chess	 supercomputer	 Deep	 Blue	 defeated	 the	 reigning	 human
world	 chess	 champion,	 Garry	 Kasparov,	 we	 were	 immediately	 treated	 to
arguments	that	it	was	to	be	expected	that	a	computer	would	win	at	chess	because
computers	are	logic	machines,	and	chess,	after	all,	is	a	game	of	logic.	Thus	Deep
Blue’s	victory	was	 judged	 to	be	neither	 surprising	nor	 significant.	Many	of	 its
critics	 went	 on	 to	 argue	 that	 computers	 would	 never	 master	 the	 subtleties	 of
human	 language,	 including	 metaphors,	 similes,	 puns,	 double	 entendres,	 and
humor.



The	accuracy	of	natural-language-understanding	 systems	as	a	 function
of	the	amount	of	training	data.	The	best	approach	is	to	combine	rules	for	the
“core”	 of	 the	 language	 and	 a	 data-based	 approach	 for	 the	 “tail”	 of	 the
language.
That	 is	 at	 least	 one	 reason	 why	 Watson	 represents	 such	 a	 significant

milestone:	Jeopardy!	is	precisely	such	a	sophisticated	and	challenging	language
task.	 Typical	 Jeopardy!	 queries	 includes	 many	 of	 these	 vagaries	 of	 human
language.	What	is	perhaps	not	evident	to	many	observers	is	that	Watson	not	only
had	to	master	the	language	in	the	unexpected	and	convoluted	queries,	but	for	the
most	 part	 its	 knowledge	 was	 not	 hand-coded.	 It	 obtained	 that	 knowledge	 by
actually	reading	200	million	pages	of	natural-language	documents,	including	all
of	Wikipedia	and	other	encyclopedias,	comprising	4	 trillion	bytes	of	 language-
based	 knowledge.	 As	 readers	 of	 this	 book	 are	 well	 aware,	 Wikipedia	 is	 not
written	 in	 LISP	 or	 CycL,	 but	 rather	 in	 natural	 sentences	 that	 have	 all	 of	 the
ambiguities	and	intricacies	inherent	in	language.	Watson	needed	to	consider	all	4
trillion	 characters	 in	 its	 reference	 material	 when	 responding	 to	 a	 question.	 (I
realize	 that	Jeopardy!	queries	are	answers	 in	search	of	a	question,	but	 this	 is	a
technicality—they	ultimately	are	really	questions.)	If	Watson	can	understand	and
respond	 to	 questions	 based	 on	 200	million	 pages—in	 three	 seconds!—there	 is
nothing	to	stop	similar	systems	from	reading	the	other	billions	of	documents	on
the	Web.	Indeed,	that	effort	is	now	under	way.

When	we	were	 developing	 character	 and	 speech	 recognition	 systems	 and
early	 natural-language-understanding	 systems	 in	 the	 1970s	 through	 1990s,	 we
used	 a	methodology	of	 incorporating	 an	 “expert	manager.”	We	would	develop
multiple	systems	to	do	the	same	thing	but	would	incorporate	somewhat	different
approaches	in	each	one.	Some	of	the	differences	were	subtle,	such	as	variations



in	 the	parameters	 controlling	 the	mathematics	of	 the	 learning	 algorithm.	Some
variations	 were	 fundamental,	 such	 as	 including	 rule-based	 systems	 instead	 of
hierarchical	 statistical	 learning	 systems.	 The	 expert	 manager	 was	 itself	 a
software	program	that	was	programmed	to	learn	the	strengths	and	weaknesses	of
these	different	systems	by	examining	their	performance	in	real-world	situations.
It	 was	 based	 on	 the	 notion	 that	 these	 strengths	 were	 orthogonal;	 that	 is,	 one
system	would	 tend	 to	 be	 strong	where	 another	 was	 weak.	 Indeed,	 the	 overall
performance	of	the	combined	systems	with	the	trained	expert	manager	in	charge
was	far	better	than	any	of	the	individual	systems.

Watson	 works	 the	 same	 way.	 Using	 an	 architecture	 called	 UIMA
(Unstructured	 Information	Management	Architecture),	Watson	deploys	 literally
hundreds	of	different	systems—many	of	the	individual	language	components	in
Watson	are	 the	same	ones	 that	are	used	 in	publicly	available	natural-language-
understanding	systems—all	of	which	are	attempting	 to	either	directly	come	up
with	 a	 response	 to	 the	 Jeopardy!	 query	 or	 else	 at	 least	 provide	 some
disambiguation	of	the	query.	UIMA	is	basically	acting	as	the	expert	manager	to
intelligently	 combine	 the	 results	 of	 the	 independent	 systems.	 UIMA	 goes
substantially	 beyond	 earlier	 systems,	 such	 as	 the	 one	 we	 developed	 in	 the
predecessor	company	to	Nuance,	in	that	its	individual	systems	can	contribute	to
a	 result	without	necessarily	 coming	up	with	 a	 final	 answer.	 It	 is	 sufficient	 if	 a
subsystem	helps	narrow	down	the	solution.	UIMA	is	also	able	to	compute	how
much	confidence	it	has	in	the	final	answer.	The	human	brain	does	this	also—we
are	probably	very	confident	of	our	 response	when	asked	 for	our	mother’s	 first
name,	 but	 we	 are	 less	 so	 in	 coming	 up	 with	 the	 name	 of	 someone	 we	 met
casually	a	year	ago.

Thus	rather	than	come	up	with	a	single	elegant	approach	to	understanding
the	language	problem	inherent	in	Jeopardy!	 the	IBM	scientists	combined	all	of
the	 state-of-the-art	 language-understanding	modules	 they	 could	get	 their	 hands
on.	 Some	 use	 hierarchical	 hidden	 Markov	 models;	 some	 use	 mathematical
variants	of	HHMM;	others	use	rule-based	approaches	to	code	directly	a	core	set
of	reliable	rules.	UIMA	evaluates	the	performance	of	each	system	in	actual	use
and	combines	 them	 in	an	optimal	way.	There	 is	 some	misunderstanding	 in	 the
public	 discussions	 of	 Watson	 in	 that	 the	 IBM	 scientists	 who	 created	 it	 often
focus	 on	 UIMA,	 which	 is	 the	 expert	 manager	 they	 created.	 This	 leads	 to
comments	by	some	observers	that	Watson	has	no	real	understanding	of	language
because	it	is	difficult	to	identify	where	this	understanding	resides.	Although	the
UIMA	 framework	 also	 learns	 from	 its	 own	 experience,	 Watson’s
“understanding”	 of	 language	 cannot	 be	 found	 in	 UIMA	 alone	 but	 rather	 is
distributed	 across	 all	 of	 its	 many	 components,	 including	 the	 self-organizing



language	modules	that	use	methods	similar	to	HHMM.
A	separate	part	of	Watson’s	technology	uses	UIMA’s	confidence	estimate	in

its	answers	to	determine	how	to	place	Jeopardy!	bets.	While	the	Watson	system
is	 specifically	 optimized	 to	 play	 this	 particular	 game,	 its	 core	 language-	 and
knowledge-searching	technology	can	easily	be	adapted	to	other	broad	tasks.	One
might	 think	that	 less	commonly	shared	professional	knowledge,	such	as	 that	 in
the	medical	 field,	 would	 be	more	 difficult	 to	master	 than	 the	 general-purpose
“common”	knowledge	that	is	required	to	play	Jeopardy!	Actually,	the	opposite	is
the	case:	Professional	knowledge	tends	to	be	more	highly	organized,	structured,
and	less	ambiguous	than	its	commonsense	counterpart,	so	it	is	highly	amenable
to	 accurate	 natural-language	 understanding	 using	 these	 techniques.	 As
mentioned,	 IBM	 is	 currently	 working	 with	 Nuance	 to	 adapt	 the	 Watson
technology	to	medicine.

The	 conversation	 that	 takes	 place	when	Watson	 is	 playing	 Jeopardy!	 is	 a
brief	one:	A	question	 is	posed,	 and	Watson	comes	up	with	 an	 answer.	 (Again,
technically,	 it	 comes	 up	with	 a	 question	 to	 respond	 to	 an	 answer.)	 It	 does	 not
engage	in	a	conversation	that	would	require	tracking	all	of	the	earlier	statements
of	all	participants.	(Siri	actually	does	do	this	to	a	limited	extent:	If	you	ask	it	to
send	a	message	to	your	wife,	it	will	ask	you	to	identify	her,	but	it	will	remember
who	 she	 is	 for	 subsequent	 requests.)	 Tracking	 all	 of	 the	 information	 in	 a
conversation—a	task	that	would	clearly	be	required	to	pass	the	Turing	test—is	a
significant	 additional	 requirement	 but	 not	 fundamentally	 more	 difficult	 than
what	Watson	is	doing	already.	After	all,	Watson	has	read	hundreds	of	millions	of
pages	 of	 material,	 which	 obviously	 includes	 many	 stories,	 so	 it	 is	 capable	 of
tracking	 through	 complicated	 sequential	 events.	 It	 should	 therefore	 be	 able	 to
follow	 its	own	conversations	and	 take	 that	 into	consideration	 in	 its	 subsequent
replies.

Another	limitation	of	the	Jeopardy!	game	is	that	the	answers	are	generally
brief:	It	does	not,	for	example,	pose	questions	of	the	sort	that	ask	contestants	to
name	the	five	primary	themes	of	A	Tale	of	Two	Cities.	To	the	extent	 that	 it	can
find	 documents	 that	 do	 discuss	 the	 themes	 of	 this	 novel,	 a	 suitably	 modified
version	 of	 Watson	 should	 be	 able	 to	 respond	 to	 this.	 Coming	 up	 with	 such
themes	on	 its	own	 from	 just	 reading	 the	book,	 and	not	 essentially	 copying	 the
thoughts	(even	without	the	words)	of	other	thinkers,	is	another	matter.	Doing	so
would	constitute	a	higher-level	task	than	Watson	is	capable	of	today—it	is	what	I
call	a	Turing	test–level	task.	(That	being	said,	I	will	point	out	that	most	humans
do	 not	 come	 up	with	 their	 own	 original	 thoughts	 either	 but	 copy	 the	 ideas	 of
their	peers	and	opinion	leaders.)	At	any	rate,	this	is	2012,	not	2029,	so	I	would
not	expect	Turing	test–level	intelligence	yet.	On	yet	another	hand,	I	would	point



out	that	evaluating	the	answers	to	questions	such	as	finding	key	ideas	in	a	novel
is	 itself	 not	 a	 straightforward	 task.	 If	 someone	 is	 asked	 who	 signed	 the
Declaration	of	Independence,	one	can	determine	whether	or	not	her	response	is
true	or	false.	The	validity	of	answers	to	higher-level	questions	such	as	describing
the	themes	of	a	creative	work	is	far	less	easily	established.

It	 is	 noteworthy	 that	 although	 Watson’s	 language	 skills	 are	 actually
somewhat	below	that	of	an	educated	human,	 it	was	able	 to	defeat	 the	best	 two
Jeopardy!	 players	 in	 the	 world.	 It	 could	 accomplish	 this	 because	 it	 is	 able	 to
combine	 its	 language	 ability	 and	 knowledge	 understanding	 with	 the	 perfect
recall	and	highly	accurate	memories	that	machines	possess.	That	is	why	we	have
already	largely	assigned	our	personal,	social,	and	historical	memories	to	them.

Although	I’m	not	prepared	to	move	up	my	prediction	of	a	computer	passing
the	 Turing	 test	 by	 2029,	 the	 progress	 that	 has	 been	 achieved	 in	 systems	 like
Watson	 should	 give	 anyone	 substantial	 confidence	 that	 the	 advent	 of	 Turing-
level	AI	 is	 close	 at	 hand.	 If	 one	were	 to	 create	 a	 version	 of	Watson	 that	was
optimized	for	the	Turing	test,	it	would	probably	come	pretty	close.

American	 philosopher	 John	 Searle	 (born	 in	 1932)	 argued	 recently	 that
Watson	 is	 not	 capable	 of	 thinking.	 Citing	 his	 “Chinese	 room”	 thought
experiment	(which	I	will	discuss	further	in	chapter	11),	he	states	that	Watson	is
only	 manipulating	 symbols	 and	 does	 not	 understand	 the	 meaning	 of	 those
symbols.	 Actually,	 Searle	 is	 not	 describing	 Watson	 accurately,	 since	 its
understanding	of	language	is	based	on	hierarchical	statistical	processes—not	the
manipulation	of	symbols.	The	only	way	that	Searle’s	characterization	would	be
accurate	is	if	we	considered	every	step	in	Watson’s	self-organizing	processes	to
be	 “the	manipulation	 of	 symbols.”	 But	 if	 that	 were	 the	 case,	 then	 the	 human
brain	would	not	be	judged	capable	of	thinking	either.

It	 is	 amusing	 and	 ironic	 when	 observers	 criticize	 Watson	 for	 just	 doing
statistical	analysis	of	language	as	opposed	to	possessing	the	“true”	understanding
of	 language	 that	 humans	 have.	Hierarchical	 statistical	 analysis	 is	 exactly	what
the	 human	 brain	 is	 doing	 when	 it	 is	 resolving	 multiple	 hypotheses	 based	 on
statistical	inference	(and	indeed	at	every	level	of	the	neocortical	hierarchy).	Both
Watson	and	the	human	brain	 learn	and	respond	based	on	a	similar	approach	 to
hierarchical	 understanding.	 In	many	 respects	Watson’s	 knowledge	 is	 far	more
extensive	 than	 a	 human’s;	 no	 human	 can	 claim	 to	 have	 mastered	 all	 of
Wikipedia,	which	is	only	part	of	Watson’s	knowledge	base.	Conversely,	a	human
can	today	master	more	conceptual	levels	than	Watson,	but	that	is	certainly	not	a
permanent	gap.

One	important	system	that	demonstrates	the	strength	of	computing	applied
to	organized	knowledge	 is	Wolfram	Alpha,	 an	answer	engine	 (as	opposed	 to	a



search	 engine)	 developed	 by	 British	mathematician	 and	 scientist	 Dr.	Wolfram
(born	1959)	 and	his	 colleagues	 at	Wolfram	Research.	For	 example,	 if	 you	 ask
Wolfram	Alpha	 (at	WolframAlpha.com),	 “How	many	primes	are	 there	under	a
million?”	 it	 will	 respond	 with	 “78,498.”	 It	 did	 not	 look	 up	 the	 answer,	 it
computed	 it,	and	following	the	answer	 it	provides	 the	equations	 it	used.	 If	you
attempted	to	get	that	answer	using	a	conventional	search	engine,	it	would	direct
you	to	links	where	you	could	find	the	algorithms	required.	You	would	then	have
to	plug	those	formulas	into	a	system	such	as	Mathematica,	also	developed	by	Dr.
Wolfram,	but	this	would	obviously	require	a	lot	more	work	(and	understanding)
than	simply	asking	Alpha.

Indeed,	 Alpha	 consists	 of	 15	 million	 lines	 of	 Mathematica	 code.	 What
Alpha	is	doing	is	literally	computing	the	answer	from	approximately	10	trillion
bytes	 of	 data	 that	 have	 been	 carefully	 curated	 by	 the	Wolfram	Research	 staff.
You	can	ask	a	wide	 range	of	 factual	questions,	 such	as	“What	country	has	 the
highest	GDP	per	person?”	(Answer:	Monaco,	with	$212,000	per	person	in	U.S.
dollars),	or	“How	old	is	Stephen	Wolfram?”	(Answer:	52	years,	9	months,	2	days
as	of	the	day	I	am	writing	this).	As	mentioned,	Alpha	is	used	as	part	of	Apple’s
Siri;	if	you	ask	Siri	a	factual	question,	it	is	handed	off	to	Alpha	to	handle.	Alpha
also	handles	some	of	the	searches	posed	to	Microsoft’s	Bing	search	engine.

In	 a	 recent	 blog	 post,	Dr.	Wolfram	 reported	 that	Alpha	 is	 now	 providing
successful	 responses	 90	 percent	 of	 the	 time.17	 He	 also	 reports	 an	 exponential
decrease	 in	 the	failure	rate,	with	a	half-life	of	around	eighteen	months.	 It	 is	an
impressive	system,	and	uses	handcrafted	methods	and	hand-checked	data.	It	is	a
testament	 to	why	we	 created	 computers	 in	 the	 first	 place.	As	we	discover	 and
compile	 scientific	 and	 mathematical	 methods,	 computers	 are	 far	 better	 than
unaided	human	intelligence	in	implementing	them.	Most	of	the	known	scientific
methods	 have	 been	 encoded	 in	Alpha,	 along	with	 continually	 updated	 data	 on
topics	ranging	from	economics	 to	physics.	In	a	private	conversation	I	had	with
Dr.	Wolfram,	 he	 estimated	 that	 self-organizing	methods	 such	 as	 those	 used	 in
Watson	 typically	achieve	about	an	80	percent	accuracy	when	 they	are	working
well.	Alpha,	he	pointed	out,	is	achieving	about	a	90	percent	accuracy.	Of	course,
there	 is	 self-selection	 in	both	of	 these	accuracy	numbers	 in	 that	users	 (such	as
myself)	 have	 learned	what	 kinds	 of	 questions	Alpha	 is	 good	 at,	 and	 a	 similar
factor	 applies	 to	 the	 self-organizing	 methods.	 Eighty	 percent	 appears	 to	 be	 a
reasonable	 estimate	 of	 how	 accurate	Watson	 is	 on	 Jeopardy!	 queries,	 but	 this
was	sufficient	to	defeat	the	best	humans.

It	 is	 my	 view	 that	 self-organizing	 methods	 such	 as	 I	 articulated	 in	 the
pattern	 recognition	 theory	of	mind	 are	 needed	 to	 understand	 the	 elaborate	 and
often	ambiguous	hierarchies	we	encounter	 in	 real-world	phenomena,	 including



human	 language.	An	 ideal	combination	for	a	 robustly	 intelligent	system	would
be	to	combine	hierarchical	intelligence	based	on	the	PRTM	(which	I	contend	is
how	 the	human	brain	works)	with	precise	 codification	of	 scientific	knowledge
and	data.	That	essentially	describes	a	human	with	a	computer.	We	will	enhance
both	 poles	 of	 intelligence	 in	 the	 years	 ahead.	 With	 regard	 to	 our	 biological
intelligence,	 although	 our	 neocortex	 has	 significant	 plasticity,	 its	 basic
architecture	 is	 limited	 by	 its	 physical	 constraints.	 Putting	 additional	 neocortex
into	our	foreheads	was	an	important	evolutionary	innovation,	but	we	cannot	now
easily	expand	the	size	of	our	frontal	lobes	by	a	factor	of	a	thousand,	or	even	by
10	percent.	That	is,	we	cannot	do	so	biologically,	but	that	is	exactly	what	we	will
do	technologically.



A	Strategy	for	Creating	a	Mind

There	are	billions	of	neurons	in	our	brains,	but	what	are	neurons?	Just	cells.
The	brain	has	no	knowledge	until	connections	are	made	between	neurons.
All	 that	 we	 know,	 all	 that	 we	 are,	 comes	 from	 the	 way	 our	 neurons	 are
connected.

—Tim	Berners-Lee
	

	
Let’s	use	the	observations	I	have	discussed	above	to	begin	building	a	brain.	We
will	 start	 by	 building	 a	 pattern	 recognizer	 that	 meets	 the	 necessary	 attributes.
Next	 we’ll	 make	 as	 many	 copies	 of	 the	 recognizer	 as	 we	 have	 memory	 and
computational	 resources	 to	 support.	 Each	 recognizer	 computes	 the	 probability
that	 its	pattern	has	been	recognized.	In	doing	so,	 it	 takes	into	consideration	the
observed	magnitude	of	each	input	(in	some	appropriate	continuum)	and	matches
these	 against	 the	 learned	 size	 and	 size	 variability	 parameters	 associated	 with
each	 input.	 The	 recognizer	 triggers	 its	 simulated	 axon	 if	 that	 computed
probability	exceeds	a	 threshold.	This	 threshold	and	 the	parameters	 that	 control
the	 computation	of	 the	pattern’s	 probability	 are	 among	 the	parameters	we	will
optimize	with	 a	 genetic	 algorithm.	 Because	 it	 is	 not	 a	 requirement	 that	 every
input	be	active	for	a	pattern	 to	be	recognized,	 this	provides	 for	autoassociative
recognition	(that	is,	recognizing	a	pattern	based	on	only	part	of	the	pattern	being
present).	 We	 also	 allow	 for	 inhibitory	 signals	 (signals	 that	 indicate	 that	 the
pattern	is	less	likely).

Recognition	of	the	pattern	sends	an	active	signal	up	the	simulated	axon	of
this	 pattern	 recognizer.	 This	 axon	 is	 in	 turn	 connected	 to	 one	 or	more	 pattern
recognizers	 at	 the	 next	 higher	 conceptual	 level.	 All	 of	 the	 pattern	 recognizers
connected	at	the	next	higher	conceptual	level	are	accepting	this	pattern	as	one	of
its	inputs.	Each	pattern	recognizer	also	sends	signals	down	to	pattern	recognizers
at	 lower	 conceptual	 levels	 whenever	 most	 of	 a	 pattern	 has	 been	 recognized,
indicating	that	the	rest	of	the	pattern	is	“expected.”	Each	pattern	recognizer	has
one	or	more	of	these	expected	signal	input	channels.	When	an	expected	signal	is
received	 in	 this	way,	 the	 threshold	 for	 recognition	of	 this	pattern	 recognizer	 is
lowered	(made	easier).

The	 pattern	 recognizers	 are	 responsible	 for	 “wiring”	 themselves	 to	 other



pattern	 recognizers	 up	 and	 down	 the	 conceptual	 hierarchy.	 Note	 that	 all	 the
“wires”	in	a	software	implementation	operate	via	virtual	links	(which,	like	Web
links,	 are	 basically	 memory	 pointers)	 and	 not	 actual	 wires.	 This	 system	 is
actually	much	more	flexible	than	that	in	the	biological	brain.	In	a	human	brain,
new	patterns	 have	 to	 be	 assigned	 to	 an	 actual	 physical	 pattern	 recognizer,	 and
new	connections	have	to	be	made	with	an	actual	axon-to-dendrite	link.	Usually
this	means	taking	an	existing	physical	connection	that	is	approximately	what	is
needed	 and	 then	 growing	 the	 necessary	 axon	 and	 dendrite	 extensions	 to
complete	the	full	connection.

Another	 technique	used	 in	 biological	mammalian	brains	 is	 to	 start	with	 a
large	number	of	possible	connections	and	then	prune	the	neural	connections	that
are	not	used.	If	a	biological	neocortex	reassigns	cortical	pattern	recognizers	that
have	already	learned	older	patterns	 in	order	 to	 learn	more	recent	material,	 then
the	connections	need	to	be	physically	reconfigured.	Again,	these	tasks	are	much
simpler	in	a	software	implementation.	We	simply	assign	new	memory	locations
to	 a	 new	 pattern	 recognizer	 and	 use	memory	 links	 for	 the	 connections.	 If	 the
digital	neocortex	wishes	to	reassign	cortical	memory	resources	from	one	set	of
patterns	to	another,	it	simply	returns	the	old	pattern	recognizers	to	memory	and
then	 makes	 the	 new	 assignment.	 This	 sort	 of	 “garbage	 collection”	 and
reassignment	 of	 memory	 is	 a	 standard	 feature	 of	 the	 architecture	 of	 many
software	 systems.	 In	 our	 digital	 brain	 we	 would	 also	 back	 up	 old	 memories
before	discarding	them	from	the	active	neocortex,	a	precaution	we	can’t	take	in
our	biological	brains.

There	 are	 a	 variety	 of	 mathematical	 techniques	 that	 can	 be	 employed	 to
implement	this	approach	to	self-organizing	hierarchical	pattern	recognition.	The
method	I	would	use	is	hierarchical	hidden	Markov	models,	for	several	reasons.
From	my	 personal	 perspective,	 I	 have	 several	 decades	 of	 familiarity	with	 this
method,	 having	 used	 it	 in	 the	 earliest	 speech	 recognition	 and	 natural-language
systems	starting	in	the	1980s.	From	the	perspective	of	the	overall	field,	there	is
greater	experience	with	hidden	Markov	models	than	with	any	other	approach	for
pattern	 recognition	 tasks.	 They	 are	 also	 extensively	 used	 in	 natural-language
understanding.	 Many	 NLU	 systems	 use	 techniques	 that	 are	 at	 least
mathematically	similar	to	HHMM.

Note	that	not	all	hidden	Markov	model	systems	are	fully	hierarchical.	Some
allow	for	just	a	few	levels	of	hierarchy—for	example,	going	from	acoustic	states
to	phonemes	 to	words.	To	build	a	brain,	we	will	want	 to	enable	our	 system	 to
create	 as	many	new	 levels	 of	 hierarchy	 as	 needed.	Also,	most	 hidden	Markov
model	 systems	 are	 not	 fully	 self-organizing.	 Some	 have	 fixed	 connections,
although	 these	systems	do	effectively	prune	many	of	 their	 starting	connections



by	 allowing	 them	 to	 evolve	 zero	 connection	 weights.	 Our	 systems	 from	 the
1980s	 and	 1990s	 automatically	 pruned	 connections	 with	 connection	 weights
below	 a	 certain	 level	 and	 also	 allowed	 for	 making	 new	 connections	 to	 better
model	the	training	data	and	to	learn	on	the	fly.	A	key	requirement,	I	believe,	is	to
allow	for	the	system	to	flexibly	create	its	own	topologies	based	on	the	patterns	it
is	 exposed	 to	while	 learning.	We	can	use	 the	mathematical	 technique	of	 linear
programming	to	optimally	assign	connections	to	new	pattern	recognizers.

Our	 digital	 brain	 will	 also	 accommodate	 substantial	 redundancy	 of	 each
pattern,	especially	ones	that	occur	frequently.	This	allows	for	robust	recognition
of	common	patterns	and	 is	also	one	of	 the	key	methods	 to	achieving	 invariant
recognition	of	different	forms	of	a	pattern.	We	will,	however,	need	rules	for	how
much	 redundancy	 to	permit,	 as	we	don’t	want	 to	use	up	excessive	amounts	of
memory	on	very	common	low-level	patterns.

The	 rules	 regarding	 redundancy,	 recognition	 thresholds,	 and	 the	 effect	 on
the	threshold	of	a	“this	pattern	is	expected”	indication	are	a	few	examples	of	key
overall	 parameters	 that	 affect	 the	 performance	 of	 this	 type	 of	 self-organizing
system.	 I	 would	 initially	 set	 these	 parameters	 based	 on	 my	 intuition,	 but	 we
would	then	optimize	them	using	a	genetic	algorithm.

A	 very	 important	 consideration	 is	 the	 education	 of	 a	 brain,	 whether	 a
biological	 or	 a	 software	 one.	 As	 I	 discussed	 earlier,	 a	 hierarchical	 pattern
recognition	system	(digital	or	biological)	will	only	learn	about	two—preferably
one—hierarchical	 levels	 at	 a	 time.	 To	 bootstrap	 the	 system	 I	would	 start	with
previously	 trained	hierarchical	networks	 that	have	already	learned	their	 lessons
in	 recognizing	 human	 speech,	 printed	 characters,	 and	 natural-language
structures.	 Such	 a	 system	 would	 be	 capable	 of	 reading	 natural-language
documents	but	would	only	be	able	to	master	approximately	one	conceptual	level
at	 a	 time.	 Previously	 learned	 levels	would	 provide	 a	 relatively	 stable	 basis	 to
learn	 the	 next	 level.	 The	 system	 can	 read	 the	 same	 documents	 over	 and	 over,
gaining	new	conceptual	levels	with	each	subsequent	reading,	similar	to	the	way
people	reread	and	achieve	a	deeper	understanding	of	texts.	Billions	of	pages	of
material	are	available	on	the	Web.	Wikipedia	itself	has	about	four	million	articles
in	the	English	version.

I	 would	 also	 provide	 a	 critical	 thinking	module,	 which	 would	 perform	 a
continual	 background	 scan	 of	 all	 of	 the	 existing	 patterns,	 reviewing	 their
compatibility	with	the	other	patterns	(ideas)	in	this	software	neocortex.	We	have
no	 such	 facility	 in	 our	 biological	 brains,	 which	 is	 why	 people	 can	 hold
completely	 inconsistent	 thoughts	 with	 equanimity.	 Upon	 identifying	 an
inconsistent	 idea,	 the	 digital	 module	 would	 begin	 a	 search	 for	 a	 resolution,
including	its	own	cortical	structures	as	well	as	all	of	the	vast	literature	available



to	 it.	A	 resolution	might	 simply	mean	determining	 that	one	of	 the	 inconsistent
ideas	 is	 simply	 incorrect	 (if	 contraindicated	 by	 a	 preponderance	 of	 conflicting
data).	More	constructively,	it	would	find	an	idea	at	a	higher	conceptual	level	that
resolves	the	apparent	contradiction	by	providing	a	perspective	that	explains	each
idea.	The	system	would	add	this	resolution	as	a	new	pattern	and	link	to	the	ideas
that	initially	triggered	the	search	for	the	resolution.	This	critical	thinking	module
would	run	as	a	continual	background	task.	It	would	be	very	beneficial	if	human
brains	did	the	same	thing.

I	 would	 also	 provide	 a	 module	 that	 identifies	 open	 questions	 in	 every
discipline.	As	another	continual	background	task,	it	would	search	for	solutions	to
them	 in	 other	 disparate	 areas	 of	 knowledge.	As	 I	 noted,	 the	 knowledge	 in	 the
neocortex	consists	of	deeply	nested	patterns	of	patterns	and	is	therefore	entirely
metaphorical.	 We	 can	 use	 one	 pattern	 to	 provide	 a	 solution	 or	 insight	 in	 an
apparently	disconnected	field.

As	an	example,	recall	the	metaphor	I	used	in	chapter	4	relating	the	random
movements	 of	 molecules	 in	 a	 gas	 to	 the	 random	 movements	 of	 evolutionary
change.	Molecules	in	a	gas	move	randomly	with	no	apparent	sense	of	direction.
Despite	this,	virtually	every	molecule	in	a	gas	in	a	beaker,	given	sufficient	time,
will	 leave	 the	 beaker.	 I	 noted	 that	 this	 provides	 a	 perspective	 on	 an	 important
question	 concerning	 the	 evolution	 of	 intelligence.	 Like	 molecules	 in	 a	 gas,
evolutionary	 changes	 also	move	 every	which	way	with	 no	 apparent	 direction.
Yet	 we	 nonetheless	 see	 a	 movement	 toward	 greater	 complexity	 and	 greater
intelligence,	indeed	to	evolution’s	supreme	achievement	of	evolving	a	neocortex
capable	of	hierarchical	 thinking.	So	we	are	able	 to	gain	an	insight	 into	how	an
apparently	 purposeless	 and	 directionless	 process	 can	 achieve	 an	 apparently
purposeful	 result	 in	one	 field	 (biological	evolution)	by	 looking	at	another	 field
(thermodynamics).

I	mentioned	earlier	how	Charles	Lyell’s	insight	that	minute	changes	to	rock
formations	 by	 streaming	 water	 could	 carve	 great	 valleys	 over	 time	 inspired
Charles	Darwin	to	make	a	similar	observation	about	continual	minute	changes	to
the	characteristics	of	organisms	within	a	species.	This	metaphor	search	would	be
another	continual	background	process.

We	 should	 provide	 a	 means	 of	 stepping	 through	 multiple	 lists
simultaneously	 to	provide	 the	equivalent	of	structured	 thought.	A	 list	might	be
the	statement	of	 the	constraints	 that	a	solution	 to	a	problem	must	satisfy.	Each
step	can	generate	a	recursive	search	through	the	existing	hierarchy	of	ideas	or	a
search	through	available	literature.	The	human	brain	appears	to	be	able	to	handle
only	 four	 simultaneous	 lists	 at	 a	 time	 (without	 the	 aid	 of	 tools	 such	 as
computers),	 but	 there	 is	 no	 reason	 for	 an	 artificial	 neocortex	 to	 have	 such	 a



limitation.
We	 will	 also	 want	 to	 enhance	 our	 artificial	 brains	 with	 the	 kind	 of

intelligence	 that	 computers	 have	 always	 excelled	 in,	 which	 is	 the	 ability	 to
master	vast	databases	accurately	and	implement	known	algorithms	quickly	and
efficiently.	Wolfram	 Alpha	 uniquely	 combines	 a	 great	 many	 known	 scientific
methods	and	applies	them	to	carefully	collected	data.	This	type	of	system	is	also
going	to	continue	to	improve	given	Dr.	Wolfram’s	observation	of	an	exponential
decline	in	error	rates.

Finally,	our	new	brain	needs	a	purpose.	A	purpose	is	expressed	as	a	series
of	 goals.	 In	 the	 case	 of	 our	 biological	 brains,	 our	 goals	 are	 established	 by	 the
pleasure	 and	 fear	 centers	 that	 we	 have	 inherited	 from	 the	 old	 brain.	 These
primitive	drives	were	initially	set	by	biological	evolution	to	foster	the	survival	of
species,	but	the	neocortex	has	enabled	us	to	sublimate	them.	Watson’s	goal	was
to	respond	to	Jeopardy!	queries.	Another	simply	stated	goal	could	be	to	pass	the
Turing	 test.	To	do	so,	a	digital	brain	would	need	a	human	narrative	of	 its	own
fictional	story	so	that	it	can	pretend	to	be	a	biological	human.	It	would	also	have
to	dumb	itself	down	considerably,	for	any	system	that	displayed	the	knowledge
of,	say,	Watson	would	be	quickly	unmasked	as	nonbiological.

More	 interestingly,	 we	 could	 give	 our	 new	 brain	 a	more	 ambitious	 goal,
such	as	contributing	to	a	better	world.	A	goal	along	these	lines,	of	course,	raises
a	lot	of	questions:	Better	for	whom?	Better	in	what	way?	For	biological	humans?
For	all	conscious	beings?	If	that	is	the	case,	who	or	what	is	conscious?

As	nonbiological	brains	become	as	capable	as	biological	ones	of	effecting
changes	 in	 the	 world—indeed,	 ultimately	 far	 more	 capable	 than	 unenhanced
biological	ones—we	will	need	to	consider	their	moral	education.	A	good	place	to
start	would	be	with	one	old	idea	from	our	religious	traditions:	the	golden	rule.



CHAPTER	8

	



THE	MIND	AS	COMPUTER
	

Shaped	a	little	like	a	loaf	of	French	country	bread,	our	brain	is	a	crowded
chemistry	 lab,	 bustling	 with	 nonstop	 neural	 conversations.	 Imagine	 the
brain,	that	shiny	mound	of	being,	that	mouse-gray	parliament	of	cells,	that
dream	factory,	that	petit	tyrant	inside	a	ball	of	bone,	that	huddle	of	neurons
calling	 all	 the	 plays,	 that	 little	 everywhere,	 that	 fickle	 pleasuredome,	 that
wrinkled	wardrobe	of	selves	stuffed	into	the	skull	like	too	many	clothes	into
a	gym	bag.

—Diane	Ackerman
	

Brains	exist	because	the	distribution	of	resources	necessary	for	survival	and
the	hazards	that	threaten	survival	vary	in	space	and	time.

—John	M.	Allman
	

The	modern	geography	of	the	brain	has	a	deliciously	antiquated	feel	to	it—
rather	 like	 a	 medieval	 map	 with	 the	 known	 world	 encircled	 by	 terra
incognita	where	monsters	roam.

—David	Bainbridge
	

In	mathematics	you	don’t	understand	things.	You	just	get	used	to	them.
—John	von	Neumann

	

	
E	 ver	 since	 the	 emergence	 of	 the	 computer	 in	 the	 middle	 of	 the	 twentieth
century,	there	has	been	ongoing	debate	not	only	about	the	ultimate	extent	of	its
abilities	but	about	whether	the	human	brain	itself	could	be	considered	a	form	of
computer.	As	far	as	the	latter	question	was	concerned,	the	consensus	has	veered
from	 viewing	 these	 two	 kinds	 of	 information-processing	 entities	 as	 being



essentially	 the	 same	 to	 their	 being	 fundamentally	 different.	 So	 is	 the	 brain	 a
computer?

When	 computers	 first	 became	 a	 popular	 topic	 in	 the	 1940s,	 they	 were
immediately	regarded	as	thinking	machines.	The	ENIAC,	which	was	announced
in	 1946,	was	 described	 in	 the	 press	 as	 a	 “giant	 brain.”	As	 computers	 became
commercially	available	in	the	following	decade,	ads	routinely	referred	to	them	as
brains	capable	of	feats	that	ordinary	biological	brains	could	not	match.

A	 1957	 ad	 showing	 the	 popular	 conception	 of	 a	 computer	 as	 a	 giant
brain.
Computer	programs	quickly	enabled	the	machines	to	live	up	to	this	billing.

The	“general	problem	solver,”	created	in	1959	by	Herbert	A.	Simon,	J.	C.	Shaw,
and	Allen	Newell	at	Carnegie	Mellon	University,	was	able	to	devise	a	proof	to	a
theorem	 that	 mathematicians	 Bertrand	 Russell	 (1872–1970)	 and	 Alfred	 North
Whitehead	 (1861–1947)	 had	 been	 unable	 to	 solve	 in	 their	 famous	 1913	work
Principia	Mathematica.	What	became	apparent	in	the	decades	that	followed	was
that	computers	could	readily	significantly	exceed	unassisted	human	capability	in
such	 intellectual	 exercises	 as	 solving	 mathematical	 problems,	 diagnosing
disease,	 and	 playing	 chess	 but	 had	 difficulty	 with	 controlling	 a	 robot	 tying
shoelaces	or	with	understanding	the	commonsense	language	that	a	five-year-old
child	could	comprehend.	Computers	are	only	now	starting	to	master	these	sorts



of	skills.	Ironically,	the	evolution	of	computer	intelligence	has	proceeded	in	the
opposite	direction	of	human	maturation.

The	issue	of	whether	or	not	the	computer	and	the	human	brain	are	at	some
level	equivalent	remains	controversial	today.	In	the	introduction	I	mentioned	that
there	were	millions	of	links	for	quotations	on	the	complexity	of	the	human	brain.
Similarly,	 a	Google	 inquiry	 for	 “Quotations:	 the	 brain	 is	 not	 a	 computer”	 also
returns	millions	 of	 links.	 In	my	 view,	 statements	 along	 these	 lines	 are	 akin	 to
saying,	“Applesauce	is	not	an	apple.”	Technically	that	statement	is	true,	but	you
can	make	applesauce	from	an	apple.	Perhaps	more	to	the	point,	it	is	like	saying,
“Computers	 are	 not	 word	 processors.”	 It	 is	 true	 that	 a	 computer	 and	 a	 word
processor	exist	at	different	conceptual	levels,	but	a	computer	can	become	a	word
processor	if	it	is	running	word	processing	software	and	not	otherwise.	Similarly,
a	 computer	 can	 become	 a	 brain	 if	 it	 is	 running	 brain	 software.	 That	 is	 what
researchers	including	myself	are	attempting	to	do.

The	question,	then,	is	whether	or	not	we	can	find	an	algorithm	that	would
turn	a	computer	into	an	entity	that	is	equivalent	to	a	human	brain.	A	computer,
after	 all,	 can	 run	 any	 algorithm	 that	 we	 might	 define	 because	 of	 its	 innate
universality	(subject	only	to	its	capacity).	The	human	brain,	on	the	other	hand,	is
running	a	specific	set	of	algorithms.	Its	methods	are	clever	 in	that	 it	allows	for
significant	 plasticity	 and	 the	 restructuring	 of	 its	 own	 connections	 based	 on	 its
experience,	but	these	functions	can	be	emulated	in	software.

The	 universality	 of	 computation	 (the	 concept	 that	 a	 general-purpose
computer	can	implement	any	algorithm)—and	the	power	of	this	idea—emerged
at	 the	same	 time	as	 the	 first	actual	machines.	There	are	 four	key	concepts	 that
underlie	 the	 universality	 and	 feasibility	 of	 computation	 and	 its	 applicability	 to
our	thinking.	They	are	worth	reviewing	here,	because	the	brain	itself	makes	use
of	 them.	 The	 first	 is	 the	 ability	 to	 communicate,	 remember,	 and	 compute
information	 reliably.	 Around	 1940,	 if	 you	 used	 the	 word	 “computer,”	 people
assumed	 you	were	 talking	 about	 an	 analog	 computer,	 in	which	 numbers	were
represented	 by	 different	 levels	 of	 voltage,	 and	 specialized	 components	 could
perform	 arithmetic	 functions	 such	 as	 addition	 and	 multiplication.	 A	 big
limitation	 of	 analog	 computers,	 however,	 was	 that	 they	 were	 plagued	 by
accuracy	issues.	Numbers	could	only	be	represented	with	an	accuracy	of	about
one	part	in	a	hundred,	and	as	voltage	levels	representing	them	were	processed	by
increasing	 numbers	 of	 arithmetic	 operators,	 errors	 would	 accumulate.	 If	 you
wanted	 to	 perform	 more	 than	 a	 handful	 of	 computations,	 the	 results	 would
become	so	inaccurate	as	to	be	meaningless.

Anyone	who	can	 remember	 the	days	of	 recording	music	with	analog	 tape
machines	will	 recall	 this	 effect.	 There	was	 noticeable	 degradation	 on	 the	 first



copy,	 as	 it	 was	 a	 little	 noisier	 than	 the	 original.	 (Remember	 that	 “noise”
represents	random	inaccuracies.)	A	copy	of	the	copy	was	noisier	still,	and	by	the
tenth	 generation	 the	 copy	 was	 almost	 entirely	 noise.	 It	 was	 assumed	 that	 the
same	problem	would	plague	 the	 emerging	world	of	 digital	 computers.	We	can
understand	 such	 concerns	 if	 we	 consider	 the	 communication	 of	 digital
information	 through	 a	 channel.	 No	 channel	 is	 perfect	 and	 each	 one	will	 have
some	inherent	error	rate.	Suppose	we	have	a	channel	that	has	a	.9	probability	of
correctly	 transmitting	 each	 bit.	 If	 I	 send	 a	 message	 that	 is	 one	 bit	 long,	 the
probability	of	accurately	transmitting	it	through	that	channel	will	be	.9.	Suppose
I	 send	 two	bits?	Now	 the	accuracy	 is	 .92	=	 .81.	How	about	 if	 I	 send	one	byte
(eight	 bits)?	 I	 have	 less	 than	 an	 even	 chance	 (.43	 to	 be	 exact)	 of	 sending	 it
correctly.	The	probability	of	accurately	sending	five	bytes	is	about	1	percent.

An	 obvious	 solution	 to	 circumvent	 this	 problem	 is	 to	 make	 the	 channel
more	accurate.	Suppose	the	channel	makes	only	one	error	in	a	million	bits.	If	I
send	a	file	consisting	of	a	half	million	bytes	(about	the	size	of	a	modest	program
or	 database),	 the	 probability	 of	 correctly	 transmitting	 it	 is	 less	 than	 2	 percent,
despite	 the	very	high	 inherent	 accuracy	of	 the	 channel.	Given	 that	 a	 single-bit
error	can	completely	 invalidate	a	computer	program	and	other	 forms	of	digital
data,	 that	 is	 not	 a	 satisfactory	 situation.	 Regardless	 of	 the	 accuracy	 of	 the
channel,	since	the	likelihood	of	an	error	in	a	transmission	grows	rapidly	with	the
size	of	the	message,	this	would	seem	to	be	an	intractable	barrier.

Analog	 computers	 approached	 this	 problem	 through	 graceful	 degradation
(meaning	that	users	only	presented	problems	in	which	they	could	tolerate	small
errors);	 however,	 if	 users	 of	 analog	 computers	 limited	 themselves	 to	 a
constrained	 set	 of	 calculations,	 the	 computers	 did	 prove	 somewhat	 useful.
Digital	computers,	on	the	other	hand,	require	continual	communication,	not	just
from	 one	 computer	 to	 another,	 but	 within	 the	 computer	 itself.	 There	 is
communication	from	its	memory	to	and	from	the	central	processing	unit.	Within
the	central	processing	unit,	there	is	communication	from	one	register	to	another
and	back	and	forth	to	the	arithmetic	unit,	and	so	forth.	Even	within	the	arithmetic
unit,	there	is	communication	from	one	bit	register	to	another.	Communication	is
pervasive	 at	 every	 level.	 If	 we	 consider	 that	 error	 rates	 escalate	 rapidly	 with
increased	communication	and	that	a	single-bit	error	can	destroy	the	integrity	of	a
process,	digital	computation	was	doomed—or	so	it	seemed	at	the	time.

Remarkably,	 that	 was	 the	 common	 view	 until	 American	 mathematician
Claude	Shannon	(1916–2001)	came	along	and	demonstrated	how	we	can	create
arbitrarily	 accurate	 communication	 using	 even	 the	 most	 unreliable
communication	 channels.	 What	 Shannon	 stated	 in	 his	 landmark	 paper	 “A
Mathematical	 Theory	 of	 Communication,”	 published	 in	 the	 Bell	 System



Technical	 Journal	 in	 July	 and	 October	 1948,	 and	 in	 particular	 in	 his	 noisy
channel-coding	theorem,	was	that	if	you	have	available	a	channel	with	any	error
rate	 (except	 for	exactly	50	percent	per	bit,	which	would	mean	 that	 the	channel
was	 just	 transmitting	pure	noise),	you	are	able	 to	 transmit	a	message	 in	which
the	error	 rate	 is	as	accurate	as	you	desire.	 In	other	words,	 the	error	 rate	of	 the
transmission	can	be	one	bit	out	of	n	bits,	where	n	can	be	as	large	as	you	define.
So,	 for	example,	 in	 the	extreme,	 if	you	have	a	channel	 that	correctly	 transmits
bits	of	information	only	51	percent	of	the	time	(that	is,	it	transmits	the	correct	bit
just	 slightly	 more	 often	 than	 the	 wrong	 bit),	 you	 can	 nonetheless	 transmit
messages	such	that	only	one	bit	out	of	a	million	is	incorrect,	or	one	bit	out	of	a
trillion	or	a	trillion	trillion.

How	 is	 this	 possible?	The	 answer	 is	 through	 redundancy.	That	may	 seem
obvious	now,	but	it	was	not	at	the	time.	As	a	simple	example,	if	I	transmit	each
bit	three	times	and	take	the	majority	vote,	I	will	have	substantially	increased	the
reliability	 of	 the	 result.	 If	 that	 is	 not	 good	 enough,	 simply	 increase	 the
redundancy	until	you	get	the	reliability	you	need.	Simply	repeating	information
is	 the	easiest	way	 to	achieve	arbitrarily	high	accuracy	 rates	 from	low-accuracy
channels,	 but	 it	 is	 not	 the	 most	 efficient	 approach.	 Shannon’s	 paper,	 which
established	 the	 field	of	 information	 theory,	presented	optimal	methods	of	 error
detection	and	correction	codes	that	can	achieve	any	target	accuracy	through	any
nonrandom	channel.

Older	readers	will	recall	telephone	modems,	which	transmitted	information
through	 noisy	 analog	 phone	 lines.	 These	 lines	 featured	 audibly	 obvious	 hisses
and	 pops	 and	 many	 other	 forms	 of	 distortion,	 but	 nonetheless	 were	 able	 to
transmit	 digital	 data	with	 very	 high	 accuracy	 rates,	 thanks	 to	 Shannon’s	 noisy
channel	theorem.	The	same	issue	and	the	same	solution	exist	for	digital	memory.
Ever	wonder	how	CDs,	DVDs,	and	program	disks	continue	 to	provide	 reliable
results	even	after	the	disk	has	been	dropped	on	the	floor	and	scratched?	Again,
we	can	thank	Shannon.

Computation	 consists	 of	 three	 elements:	 communication—which,	 as	 I
mentioned,	is	pervasive	both	within	and	between	computers—memory,	and	logic
gates	(which	perform	the	arithmetic	and	logical	functions).	The	accuracy	of	logic
gates	 can	 also	 be	made	 arbitrarily	 high	 by	 similarly	 using	 error	 detection	 and
correction	codes.	It	is	due	to	Shannon’s	theorem	and	theory	that	we	can	handle
arbitrarily	 large	and	complex	digital	data	and	algorithms	without	 the	processes
being	disturbed	or	destroyed	by	errors.	It	is	important	to	point	out	that	the	brain
uses	 Shannon’s	 principle	 as	 well,	 although	 the	 evolution	 of	 the	 human	 brain
clearly	 predates	 Shannon’s	 own!	Most	 of	 the	 patterns	 or	 ideas	 (and	 an	 idea	 is
also	a	pattern),	as	we	have	seen,	are	stored	in	the	brain	with	a	substantial	amount



of	redundancy.	A	primary	reason	for	the	redundancy	in	the	brain	is	the	inherent
unreliability	of	neural	circuits.

The	second	important	idea	on	which	the	information	age	relies	is	the	one	I
mentioned	 earlier:	 the	 universality	 of	 computation.	 In	 1936	 Alan	 Turing
described	his	 “Turing	machine,”	which	was	not	 an	actual	machine	but	 another
thought	 experiment.	 His	 theoretical	 computer	 consists	 of	 an	 infinitely	 long
memory	tape	with	a	1	or	a	0	in	each	square.	Input	to	the	machine	is	presented	on
this	 tape,	which	 the	machine	can	 read	one	 square	 at	 a	 time.	The	machine	also
contains	 a	 table	 of	 rules—essentially	 a	 stored	 program—that	 consist	 of
numbered	states.	Each	rule	specifies	one	action	if	the	square	currently	being	read
is	a	0,	and	a	different	action	if	the	current	square	is	a	1.	Possible	actions	include
writing	a	0	or	1	on	the	tape,	moving	the	tape	one	square	to	the	right	or	left,	or
halting.	 Each	 state	 will	 then	 specify	 the	 number	 of	 the	 next	 state	 that	 the
machine	should	be	in.

The	input	to	the	Turing	machine	is	presented	on	the	tape.	The	program	runs,
and	when	the	machine	halts,	it	has	completed	its	algorithm,	and	the	output	of	the
process	is	left	on	the	tape.	Note	that	even	though	the	tape	is	theoretically	infinite
in	length,	any	actual	program	that	does	not	get	into	an	infinite	loop	will	use	only
a	finite	portion	of	the	tape,	so	if	we	limit	ourselves	to	a	finite	tape,	the	machine
will	still	solve	a	useful	set	of	problems.

If	 the	Turing	machine	 sounds	 simple,	 it	 is	because	 that	was	 its	 inventor’s
objective.	Turing	wanted	his	machine	to	be	as	simple	as	possible	(but	no	simpler,
to	 paraphrase	 Einstein).	 Turing	 and	 Alonzo	 Church	 (1903–1995),	 his	 former
professor,	went	 on	 to	 develop	 the	Church-Turing	 thesis,	which	 states	 that	 if	 a
problem	that	can	be	presented	to	a	Turing	machine	is	not	solvable	by	it,	it	is	also
not	 solvable	 by	 any	 machine,	 following	 natural	 law.	 Even	 though	 the	 Turing
machine	has	only	a	handful	of	commands	and	processes	only	one	bit	at	a	time,	it
can	compute	anything	that	any	computer	can	compute.	Another	way	to	say	this
is	 that	 any	 machine	 that	 is	 “Turing	 complete”	 (that	 is,	 that	 has	 equivalent
capabilities	to	a	Turing	machine)	can	compute	any	algorithm	(any	procedure	that
we	can	define).



A	block	diagram	of	a	Turing	machine	with	a	head	that	reads	and	writes
the	tape	and	an	internal	program	consisting	of	state	transitions.
“Strong”	 interpretations	 of	 the	 Church-Turing	 thesis	 propose	 an	 essential

equivalence	between	what	a	human	can	think	or	know	and	what	is	computable
by	 a	 machine.	 The	 basic	 idea	 is	 that	 the	 human	 brain	 is	 likewise	 subject	 to
natural	 law,	and	 thus	 its	 information-processing	ability	cannot	exceed	 that	of	a
machine	(and	therefore	of	a	Turing	machine).

We	can	properly	credit	Turing	with	establishing	the	 theoretical	foundation
of	computation	with	his	1936	paper,	but	it	is	important	to	note	that	he	was	deeply
influenced	 by	 a	 lecture	 that	 Hungarian	 American	 mathematician	 John	 von
Neumann	 (1903–1957)	 gave	 in	 Cambridge	 in	 1935	 on	 his	 stored	 program
concept,	a	concept	enshrined	in	the	Turing	machine.1	In	turn,	von	Neumann	was
influenced	 by	 Turing’s	 1936	 paper,	 which	 elegantly	 laid	 out	 the	 principles	 of
computation,	 and	made	 it	 required	 reading	 for	his	colleagues	 in	 the	 late	1930s
and	early	1940s.2

In	 the	 same	 paper	 Turing	 reports	 another	 unexpected	 discovery:	 that	 of
unsolvable	 problems.	 These	 are	 problems	 that	 are	 well	 defined	 with	 unique
answers	 that	 can	 be	 shown	 to	 exist,	 but	 that	 we	 can	 also	 prove	 can	 never	 be
computed	by	any	Turing	machine—that	is	to	say,	by	any	machine,	a	reversal	of
what	had	been	a	nineteenth-century	dogma	that	problems	that	could	be	defined
would	 ultimately	 be	 solved.	 Turing	 showed	 that	 there	 are	 as	many	 unsolvable
problems	 as	 solvable	 ones.	Austrian	American	mathematician	 and	 philosopher
Kurt	Gödel	reached	a	similar	conclusion	in	his	1931	“incompleteness	theorem.”
We	are	thus	left	with	the	perplexing	situation	of	being	able	to	define	a	problem,
to	prove	that	a	unique	answer	exists,	and	yet	know	that	the	answer	can	never	be
found.

Turing	had	shown	that	at	its	essence,	computation	is	based	on	a	very	simple
mechanism.	 Because	 the	 Turing	 machine	 (and	 therefore	 any	 computer)	 is



capable	of	basing	its	future	course	of	action	on	results	it	has	already	computed,	it
is	capable	of	making	decisions	and	modeling	arbitrarily	complex	hierarchies	of
information.

In	1939	Turing	designed	an	electronic	calculator	called	Bombe	that	helped
decode	messages	that	had	been	encrypted	by	the	Nazi	Enigma	coding	machine.
By	1943,	an	engineering	team	influenced	by	Turing	completed	what	is	arguably
the	 first	 computer,	 the	 Colossus,	 that	 enabled	 the	 Allies	 to	 continue	 decoding
messages	 from	 more	 sophisticated	 versions	 of	 Enigma.	 The	 Bombe	 and
Colossus	were	designed	for	a	single	task	and	could	not	be	reprogrammed	for	a
different	 one.	 But	 they	 performed	 this	 task	 brilliantly	 and	 are	 credited	 with
having	 enabled	 the	 Allies	 to	 overcome	 the	 three-to-one	 advantage	 that	 the
German	Luftwaffe	enjoyed	over	the	British	Royal	Air	Force	and	win	the	crucial
Battle	of	Britain,	as	well	as	to	continue	anticipating	Nazi	tactics	throughout	the
war.

It	was	on	these	foundations	that	John	von	Neumann	created	the	architecture
of	the	modern	computer,	which	represents	our	third	major	 idea.	Called	 the	von
Neumann	 machine,	 it	 has	 remained	 the	 core	 structure	 of	 essentially	 every
computer	 for	 the	 past	 sixty-seven	 years,	 from	 the	 microcontroller	 in	 your
washing	machine	to	the	largest	supercomputers.	In	a	paper	dated	June	30,	1945,
and	titled	“First	Draft	of	a	Report	on	the	EDVAC,”	von	Neumann	presented	the
ideas	 that	 have	 dominated	 computation	 ever	 since.3	 The	 von	Neumann	model
includes	a	central	processing	unit,	where	arithmetical	and	logical	operations	are
carried	out;	a	memory	unit,	where	the	program	and	data	are	stored;	mass	storage;
a	program	counter;	and	input/output	channels.	Although	this	paper	was	intended
as	an	internal	project	document,	it	has	become	the	bible	for	computer	designers.
You	 never	 know	 when	 a	 seemingly	 routine	 internal	 memo	 will	 end	 up
revolutionizing	the	world.

The	 Turing	machine	was	 not	 designed	 to	 be	 practical.	 Turing’s	 theorems
were	 concerned	 not	 with	 the	 efficiency	 of	 solving	 problems	 but	 rather	 in
examining	the	range	of	problems	that	could	in	theory	be	solved	by	computation.
Von	Neumann’s	 goal,	 on	 the	other	 hand,	was	 to	 create	 a	 feasible	 concept	 of	 a
computational	machine.	His	model	replaces	Turing’s	one-bit	computations	with
multiple-bit	words	(generally	some	multiple	of	eight	bits).	Turing’s	memory	tape
is	sequential,	 so	Turing	machine	programs	spend	an	 inordinate	amount	of	 time
moving	 the	 tape	 back	 and	 forth	 to	 store	 and	 retrieve	 intermediate	 results.	 In
contrast,	von	Neumann’s	memory	is	random	access,	so	that	any	data	item	can	be
immediately	retrieved.

One	 of	 von	 Neumann’s	 key	 ideas	 is	 the	 stored	 program,	 which	 he	 had
introduced	 a	 decade	 earlier:	 placing	 the	 program	 in	 the	 same	 type	 of	 random



access	memory	as	the	data	(and	often	in	the	same	block	of	memory).	This	allows
the	 computer	 to	 be	 reprogrammed	 for	 different	 tasks	 as	 well	 as	 for	 self-
modifying	 code	 (if	 the	 program	 store	 is	 writable),	 which	 enables	 a	 powerful
form	 of	 recursion.	 Up	 until	 that	 time,	 virtually	 all	 computers,	 including	 the
Colossus,	were	built	for	a	specific	task.	The	stored	program	makes	it	possible	for
a	 computer	 to	 be	 truly	 universal,	 thereby	 fulfilling	 Turing’s	 vision	 of	 the
universality	of	computation.

Another	 key	 aspect	 of	 the	 von	Neumann	machine	 is	 that	 each	 instruction
includes	 an	operation	code	 specifying	 the	 arithmetic	or	 logical	operation	 to	be
performed	and	the	address	of	an	operand	from	memory.

Von	 Neumann’s	 concept	 of	 how	 a	 computer	 should	 be	 architected	 was
introduced	 with	 his	 publication	 of	 the	 design	 of	 the	 EDVAC,	 a	 project	 he
conducted	with	collaborators	J.	Presper	Eckert	and	John	Mauchly.	The	EDVAC
itself	 did	 not	 actually	 run	 until	 1951,	 by	 which	 time	 there	 were	 other	 stored-
program	computers,	such	as	the	Manchester	Small-Scale	Experimental	Machine,
ENIAC,	EDSAC,	and	BINAC,	all	of	which	had	been	deeply	influenced	by	von
Neumann’s	paper	and	involved	Eckert	and	Mauchly	as	designers.	Von	Neumann
was	a	direct	contributor	to	the	design	of	a	number	of	these	machines,	including	a
later	version	of	ENIAC,	which	supported	a	stored	program.

There	were	a	few	precursors	to	von	Neumann’s	architecture,	although	with
one	 surprising	 exception,	 none	 are	 true	 von	 Neumann	 machines.	 In	 1944
Howard	Aiken	introduced	the	Mark	I,	which	had	an	element	of	programmability
but	did	not	use	a	stored	program.	It	read	instructions	from	a	punched	paper	tape
and	 then	 executed	 each	 command	 immediately.	 It	 also	 lacked	 a	 conditional
branch	instruction.

In	 1941	 German	 scientist	 Konrad	 Zuse	 (1910–1995)	 created	 the	 Z-3
computer.	It	also	read	its	program	from	a	tape	(in	this	case,	coded	on	film)	and
also	had	no	conditional	branch	instruction.	Interestingly,	Zuse	had	support	from
the	 German	 Aircraft	 Research	 Institute,	 which	 used	 the	 device	 to	 study	 wing
flutter,	but	his	proposal	to	the	Nazi	government	for	funding	to	replace	his	relays
with	 vacuum	 tubes	was	 turned	 down.	 The	Nazis	 deemed	 computation	 as	 “not
war	 important.”	 That	 perspective	 goes	 a	 long	 way,	 in	 my	 view,	 toward
explaining	the	outcome	of	the	war.

There	is	actually	one	genuine	forerunner	to	von	Neumann’s	concept,	and	it
comes	from	a	full	century	earlier!	English	mathematician	and	 inventor	Charles
Babbage’s	(1791–1871)	Analytical	Engine,	which	he	first	described	in	1837,	did
incorporate	 von	 Neumann’s	 ideas	 and	 featured	 a	 stored	 program	 via	 punched
cards	borrowed	 from	 the	 Jacquard	 loom.4	 Its	 random	access	memory	 included
1,000	words	 of	 50	 decimal	 digits	 each	 (the	 equivalent	 of	 about	 21	 kilobytes).



Each	instruction	included	an	op	code	and	an	operand	number,	 just	 like	modern
machine	languages.	It	did	include	conditional	branching	and	looping,	so	it	was	a
true	 von	Neumann	machine.	 It	was	 based	 entirely	 on	mechanical	 gears	 and	 it
appears	 that	 the	 Analytical	 Engine	 was	 beyond	 Babbage’s	 design	 and
organizational	skills.	He	built	parts	of	it	but	it	never	ran.	It	is	unclear	whether	the
twentieth-century	pioneers	of	the	computer,	including	von	Neumann,	were	aware
of	Babbage’s	work.

Babbage’s	 computer	 did	 result	 in	 the	 creation	 of	 the	 field	 of	 software
programming.	 English	 writer	 Ada	 Byron	 (1815–1852),	 Countess	 of	 Lovelace
and	 the	 only	 legitimate	 child	 of	 the	 poet	 Lord	 Byron,	 was	 the	 world’s	 first
computer	programmer.	She	wrote	programs	for	the	Analytical	Engine,	which	she
needed	to	debug	in	her	own	mind	(since	the	computer	never	worked),	a	practice
well	known	 to	software	engineers	 today	as	“table	checking.”	She	 translated	an
article	 by	 the	 Italian	mathematician	 Luigi	Menabrea	 on	 the	Analytical	 Engine
and	 added	 extensive	 notes	 of	 her	 own,	 writing	 that	 “the	 Analytical	 Engine
weaves	algebraic	patterns,	just	as	the	Jacquard	loom	weaves	flowers	and	leaves.”
She	 went	 on	 to	 provide	 perhaps	 the	 first	 speculations	 on	 the	 feasibility	 of
artificial	 intelligence,	 but	 concluded	 that	 the	 Analytical	 Engine	 has	 “no
pretensions	whatever	to	originate	anything.”

Babbage’s	 conception	 is	 quite	 miraculous	 when	 you	 consider	 the	 era	 in
which	 he	 lived	 and	worked.	However,	 by	 the	mid-twentieth	 century,	 his	 ideas
had	 been	 lost	 in	 the	 mists	 of	 time	 (although	 they	 were	 subsequently
rediscovered).	It	was	von	Neumann	who	conceptualized	and	articulated	the	key
principles	of	the	computer	as	we	know	it	today,	and	the	world	recognizes	this	by
continuing	 to	 refer	 to	 the	 von	 Neumann	 machine	 as	 the	 principal	 model	 of
computation.	Keep	in	mind,	though,	that	the	von	Neumann	machine	continually
communicates	data	between	its	various	units	and	within	these	units,	so	it	could
not	 be	 built	 without	 Shannon’s	 theorems	 and	 the	 methods	 he	 devised	 for
transmitting	and	storing	reliable	digital	information.

That	 brings	 us	 to	 the	 fourth	 important	 idea,	 which	 is	 to	 go	 beyond	 Ada
Byron’s	conclusion	that	a	computer	could	not	think	creatively	and	find	the	key
algorithms	employed	by	 the	brain	and	 then	use	 these	 to	 turn	a	computer	 into	a
brain.	 Alan	 Turing	 introduced	 this	 goal	 in	 his	 1950	 paper	 “Computing
Machinery	 and	 Intelligence,”	 which	 includes	 his	 now-famous	 Turing	 test	 for
ascertaining	whether	or	not	an	AI	has	achieved	a	human	level	of	intelligence.

In	1956	von	Neumann	began	preparing	a	series	of	lectures	intended	for	the
prestigious	 Silliman	 lecture	 series	 at	 Yale	 University.	 Due	 to	 the	 ravages	 of
cancer,	he	never	delivered	these	talks	nor	did	he	complete	the	manuscript	from
which	 they	were	 to	be	given.	This	unfinished	document	nonetheless	 remains	a



brilliant	 and	 prophetic	 foreshadowing	 of	 what	 I	 regard	 as	 humanity’s	 most
daunting	and	important	project.	It	was	published	posthumously	as	The	Computer
and	the	Brain	in	1958.	It	is	fitting	that	the	final	work	of	one	of	the	most	brilliant
mathematicians	of	the	last	century	and	one	of	the	pioneers	of	the	computer	age
was	 an	 examination	 of	 intelligence	 itself.	 This	 project	was	 the	 earliest	 serious
inquiry	 into	 the	 human	 brain	 from	 the	 perspective	 of	 a	 mathematician	 and
computer	 scientist.	 Prior	 to	 von	Neumann,	 the	 fields	 of	 computer	 science	 and
neuroscience	were	two	islands	with	no	bridge	between	them.

Von	 Neumann	 starts	 his	 discussion	 by	 articulating	 the	 similarities	 and
differences	 between	 the	 computer	 and	 the	 human	brain.	Given	when	 he	wrote
this	manuscript,	 it	 is	 remarkably	accurate.	He	noted	 that	 the	output	of	neurons
was	digital—an	axon	either	fired	or	 it	didn’t.	This	was	far	from	obvious	at	 the
time,	in	that	the	output	could	have	been	an	analog	signal.	The	processing	in	the
dendrites	leading	into	a	neuron	and	in	the	soma	neuron	cell	body,	however,	was
analog,	 and	 he	 described	 its	 calculations	 as	 a	 weighted	 sum	 of	 inputs	 with	 a
threshold.	This	model	 of	 how	neurons	work	 led	 to	 the	 field	 of	 connectionism,
which	built	systems	based	on	this	neuron	model	in	both	hardware	and	software.
(As	I	described	in	the	previous	chapter,	the	first	such	connectionist	system	was
created	by	Frank	Rosenblatt	as	a	software	program	on	an	IBM	704	computer	at
Cornell	 in	 1957,	 immediately	 after	 von	 Neumann’s	 draft	 lectures	 became
available.)	We	 now	 have	more	 sophisticated	models	 of	 how	 neurons	 combine
inputs,	 but	 the	 essential	 idea	 of	 analog	 processing	 of	 dendrite	 inputs	 using
neurotransmitter	concentrations	has	remained	valid.

Von	 Neumann	 applied	 the	 concept	 of	 the	 universality	 of	 computation	 to
conclude	 that	 even	 though	 the	 architecture	 and	 building	 blocks	 appear	 to	 be
radically	 different	 between	 brain	 and	 computer,	 we	 can	 nonetheless	 conclude
that	 a	 von	 Neumann	 machine	 can	 simulate	 the	 processing	 in	 a	 brain.	 The
converse	 does	 not	 hold,	 however,	 because	 the	 brain	 is	 not	 a	 von	 Neumann
machine	and	does	not	have	a	stored	program	as	such	(albeit	we	can	simulate	a
very	simple	Turing	machine	in	our	heads).	Its	algorithm	or	methods	are	implicit
in	its	structure.	Von	Neumann	correctly	concludes	that	neurons	can	learn	patterns
from	their	inputs,	which	we	have	now	established	are	coded	in	part	in	dendrite
strengths.	 What	 was	 not	 known	 in	 von	 Neumann’s	 time	 is	 that	 learning	 also
takes	place	through	the	creation	and	destruction	of	connections	between	neurons.

Von	 Neumann	 presciently	 notes	 that	 the	 speed	 of	 neural	 processing	 is
extremely	slow,	on	the	order	of	a	hundred	calculations	per	second,	but	 that	 the
brain	 compensates	 for	 this	 through	 massive	 parallel	 processing—another
unobvious	 and	 key	 insight.	Von	Neumann	 argued	 that	 each	 one	 of	 the	 brain’s
1010	 neurons	 (a	 tally	 that	 itself	 was	 reasonably	 accurate;	 estimates	 today	 are



between	 1010	 and	 1011)	was	 processing	 at	 the	 same	 time.	 In	 fact,	 each	 of	 the
connections	 (with	 an	 average	 of	 about	 103	 to	 104	 connections	 per	 neuron)	 is
computing	simultaneously.

Von	 Neumann’s	 estimates	 and	 his	 descriptions	 of	 neural	 processing	 are
remarkable,	given	the	primitive	state	of	neuroscience	at	the	time.	One	aspect	of
his	 work	 that	 I	 do	 disagree	 with,	 however,	 is	 his	 assessment	 of	 the	 brain’s
memory	capacity.	He	assumes	that	the	brain	remembers	every	input	for	its	entire
life.	Von	Neumann	assumes	an	average	 life	span	of	60	years,	or	about	2	×	109
seconds.	With	about	14	inputs	to	each	neuron	per	second	(which	is	actually	low
by	 at	 least	 three	 orders	 of	magnitude)	 and	with	 1010	 neurons,	 he	 arrives	 at	 an
estimate	of	about	1020	bits	for	the	brain’s	memory	capacity.	The	reality,	as	I	have
noted	earlier,	is	that	we	remember	only	a	very	small	fraction	of	our	thoughts	and
experiences,	and	even	these	memories	are	not	stored	as	bit	patterns	at	a	low	level
(such	as	a	video	image),	but	rather	as	sequences	of	higher-level	patterns.

As	von	Neumann	describes	each	mechanism	in	the	brain,	he	shows	how	a
modern	 computer	 could	 accomplish	 the	 same	 thing,	 despite	 their	 apparent
differences.	 The	 brain’s	 analog	 mechanisms	 can	 be	 simulated	 through	 digital
ones	 because	 digital	 computation	 can	 emulate	 analog	 values	 to	 any	 desired
degree	of	precision	(and	the	precision	of	analog	information	in	the	brain	is	quite
low).	 The	 brain’s	 massive	 parallelism	 can	 be	 simulated	 as	 well,	 given	 the
significant	 speed	 advantage	 of	 computers	 in	 serial	 computation	 (an	 advantage
that	 has	 vastly	 expanded	 over	 time).	 In	 addition,	 we	 can	 also	 use	 parallel
processing	 in	 computers	 by	 using	 parallel	 von	 Neumann	machines—which	 is
exactly	how	supercomputers	work	today.

Von	Neumann	 concludes	 that	 the	 brain’s	methods	 cannot	 involve	 lengthy
sequential	algorithms,	when	one	considers	how	quickly	humans	are	able	to	make
decisions	combined	with	the	very	slow	computational	speed	of	neurons.	When	a
third	 baseman	 fields	 a	 ball	 and	 decides	 to	 throw	 to	 first	 rather	 than	 to	 second
base,	he	makes	this	decision	in	a	fraction	of	a	second,	which	is	only	enough	time
for	 each	 neuron	 to	 go	 through	 a	 handful	 of	 cycles.	 Von	 Neumann	 concludes
correctly	 that	 the	 brain’s	 remarkable	 powers	 come	 from	 all	 its	 100	 billion
neurons	being	able	to	process	information	simultaneously.	As	I	have	noted,	the
visual	cortex	makes	sophisticated	visual	judgments	in	only	three	or	four	neural
cycles.

There	is	considerable	plasticity	in	the	brain,	which	enables	us	to	learn.	But
there	is	far	greater	plasticity	in	a	computer,	which	can	completely	restructure	its
methods	by	changing	its	software.	Thus,	in	that	respect,	a	computer	will	be	able
to	emulate	the	brain,	but	the	converse	is	not	the	case.



When	 von	 Neumann	 compared	 the	 capacity	 of	 the	 brain’s	 massively
parallel	 organization	 to	 the	 (few)	 computers	 of	 his	 time,	 it	 was	 clear	 that	 the
brain	 had	 far	 greater	 memory	 and	 speed.	 By	 now	 the	 first	 supercomputer	 to
achieve	specifications	matching	some	of	the	more	conservative	estimates	of	the
speed	required	to	functionally	simulate	the	human	brain	(about	1016	operations
per	second)	has	been	built.5	 (I	estimate	 that	 this	 level	of	computation	will	cost
$1,000	 by	 the	 early	 2020s.)	With	 regard	 to	memory	we	 are	 even	 closer.	 Even
though	 it	 was	 remarkably	 early	 in	 the	 history	 of	 the	 computer	 when	 his
manuscript	was	written,	von	Neumann	nonetheless	had	confidence	that	both	the
hardware	 and	 software	 of	 human	 intelligence	would	 ultimately	 fall	 into	 place,
which	was	his	motivation	for	having	prepared	these	lectures.

Von	Neumann	was	deeply	aware	of	the	increasing	pace	of	progress	and	its
profound	 implications	 for	 humanity’s	 future.	 A	 year	 after	 his	 death	 in	 1957,
fellow	mathematician	Stan	Ulam	quoted	him	as	having	said	 in	 the	early	1950s
that	 “the	ever	 accelerating	progress	of	 technology	and	changes	 in	 the	mode	of
human	life	give	the	appearance	of	approaching	some	essential	singularity	in	the
history	 of	 the	 race	 beyond	which	 human	 affairs,	 as	we	 know	 them,	 could	 not
continue.”	This	is	the	first	known	use	of	the	word	“singularity”	in	the	context	of
human	technological	history.

Von	 Neumann’s	 fundamental	 insight	 was	 that	 there	 is	 an	 essential
equivalence	 between	 a	 computer	 and	 the	 brain.	 Note	 that	 the	 emotional
intelligence	of	a	biological	human	 is	part	of	 its	 intelligence.	 If	von	Neumann’s
insight	 is	correct,	and	 if	one	accepts	my	own	leap	of	faith	 that	a	nonbiological
entity	that	convincingly	re-creates	the	intelligence	(emotional	and	otherwise)	of
a	biological	human	is	conscious	(see	the	next	chapter),	 then	one	would	have	to
conclude	 that	 there	 is	 an	 essential	 equivalence	 between	 a	 computer—with	 the
right	software—and	a	(conscious)	mind.	So	is	von	Neumann	correct?

Most	 computers	 today	 are	 entirely	 digital,	 whereas	 the	 human	 brain
combines	 digital	 and	 analog	 methods.	 But	 analog	 methods	 are	 easily	 and
routinely	 re-created	by	digital	ones	 to	any	desired	 level	of	accuracy.	American
computer	scientist	Carver	Mead	(born	in	1934)	has	shown	that	we	can	directly
emulate	the	brain’s	analog	methods	in	silicon,	which	he	has	demonstrated	with
what	he	calls	“neuromorphic”	chips.6	Mead	has	demonstrated	how	this	approach
can	 be	 thousands	 of	 times	 more	 efficient	 than	 digitally	 emulating	 analog
methods.	 As	 we	 codify	 the	 massively	 repeated	 neocortical	 algorithm,	 it	 will
make	sense	to	use	Mead’s	approach.	The	IBM	Cognitive	Computing	Group,	led
by	 Dharmendra	 Modha,	 has	 introduced	 chips	 that	 emulate	 neurons	 and	 their
connections,	 including	 the	 ability	 to	 form	 new	 connections.7	 Called



“SyNAPSE,”	one	of	the	chips	provides	a	direct	simulation	of	256	neurons	with
about	a	quarter	million	synaptic	connections.	The	goal	of	the	project	is	to	create
a	 simulated	 neocortex	 with	 10	 billion	 neurons	 and	 100	 trillion	 connections—
close	to	a	human	brain—that	uses	only	one	kilowatt	of	power.

As	von	Neumann	described	over	a	half	century	ago,	the	brain	is	extremely
slow	but	massively	parallel.	Today’s	digital	circuits	are	at	least	10	million	times
faster	 than	 the	brain’s	electrochemical	 switches.	Conversely,	all	300	million	of
the	 brain’s	 neocortical	 pattern	 recognizers	 process	 simultaneously,	 and	 all
quadrillion	 of	 its	 interneuronal	 connections	 are	 potentially	 computing	 at	 the
same	 time.	 The	 key	 issue	 for	 providing	 the	 requisite	 hardware	 to	 successfully
model	 a	 human	 brain,	 though,	 is	 the	 overall	 memory	 and	 computational
throughput	 required.	We	 do	 not	 need	 to	 directly	 copy	 the	 brain’s	 architecture,
which	would	be	a	very	inefficient	and	inflexible	approach.

Let’s	 estimate	what	 those	hardware	 requirements	 are.	Many	projects	have
attempted	 to	 emulate	 the	 type	 of	 hierarchical	 learning	 and	 pattern	 recognition
that	 takes	 place	 in	 the	 neocortical	 hierarchy,	 including	 my	 own	 work	 with
hierarchical	 hidden	 Markov	 models.	 A	 conservative	 estimate	 from	 my	 own
experience	 is	 that	 emulating	 one	 cycle	 in	 a	 single	 pattern	 recognizer	 in	 the
biological	 brain’s	 neocortex	 would	 require	 about	 3,000	 calculations.	 Most
simulations	run	at	a	fraction	of	this	estimate.	With	the	brain	running	at	about	102
(100)	cycles	per	second,	that	comes	to	3	×	105	(300,000)	calculations	per	second
per	 pattern	 recognizer.	 Using	 my	 estimate	 of	 3	 ×	 108	 (300	 million)	 pattern
recognizers,	we	 get	 about	 1014	 (100	 trillion)	 calculations	 per	 second,	 a	 figure
that	 is	 consistent	with	my	 estimate	 in	The	 Singularity	 Is	 Near.	 In	 that	 book	 I
projected	that	to	functionally	simulate	the	brain	would	require	between	1014	and
1016	 calculations	 per	 second	 (cps)	 and	 used	 1016	 cps	 to	 be	 conservative.	 AI
expert	 Hans	 Moravec’s	 estimate,	 based	 on	 extrapolating	 the	 computational
requirement	of	the	early	(initial)	visual	processing	across	the	entire	brain,	is	1014
cps,	which	matches	my	own	assessment	here.

Routine	 desktop	 machines	 can	 reach	 1010	 cps,	 although	 this	 level	 of
performance	can	be	significantly	amplified	by	using	cloud	resources.	The	fastest
supercomputer,	Japan’s	K	Computer,	has	already	reached	1016	cps.8	Given	 that
the	 algorithm	 of	 the	 neocortex	 is	 massively	 repeated,	 the	 approach	 of	 using
neuromorphic	chips	such	as	 the	IBM	SyNAPSE	chips	mentioned	above	is	also
promising.

In	terms	of	memory	requirement,	we	need	about	30	bits	(about	four	bytes)
for	one	connection	to	address	one	of	300	million	other	pattern	recognizers.	If	we
estimate	an	average	of	eight	inputs	to	each	pattern	recognizer,	that	comes	to	32



bytes	per	recognizer.	If	we	add	a	one-byte	weight	for	each	input,	that	brings	us	to
40	 bytes.	 Add	 another	 32	 bytes	 for	 downward	 connections,	 and	we	 are	 at	 72
bytes.	 Note	 that	 the	 branching-up-and-down	 figure	 will	 often	 be	much	 higher
than	 eight,	 though	 these	 very	 large	 branching	 trees	 are	 shared	 by	 many
recognizers.	 For	 example,	 there	 may	 be	 hundreds	 of	 recognizers	 involved	 in
recognizing	the	letter	“p.”	These	will	feed	up	into	thousands	of	such	recognizers
at	 this	 next	 higher	 level	 that	 deal	 with	 words	 and	 phrases	 that	 include	 “p.”
However,	each	“p”	recognizer	does	not	repeat	the	tree	of	connections	that	feeds
up	to	all	of	the	words	and	phrases	that	include	“p”—they	all	share	one	such	tree
of	connections.	The	same	is	true	of	downward	connections:	A	recognizer	that	is
responsible	 for	 the	 word	 “APPLE”	 will	 tell	 all	 of	 the	 thousands	 of	 “E”
recognizers	at	a	level	below	it	that	an	“E”	is	expected	if	it	has	already	seen	“A,”
“P,”	 “P,”	 and	 “L.”	 That	 tree	 of	 connections	 is	 not	 repeated	 for	 each	 word	 or
phrase	 recognizer	 that	 wants	 to	 inform	 the	 next	 lower	 level	 that	 an	 “E”	 is
expected.	Again,	they	are	shared.	For	this	reason,	an	overall	estimate	of	eight	up
and	 eight	 down	 on	 average	 per	 pattern	 recognizer	 is	 reasonable.	 Even	 if	 we
increase	 this	 particular	 estimate,	 it	 does	 not	 significantly	 change	 the	 order	 of
magnitude	of	the	resulting	estimate.

With	3	×	108	(300	million)	pattern	recognizers	at	72	bytes	each,	we	get	an
overall	memory	requirement	of	about	2	×	1010	(20	billion)	bytes.	That	is	actually
a	quite	modest	number	that	routine	computers	today	can	exceed.

These	estimates	are	intended	only	to	provide	rough	estimates	of	the	order	of
magnitude	 required.	Given	 that	 digital	 circuits	 are	 inherently	 about	 10	million
times	faster	than	the	biological	neocortical	circuits,	we	do	not	need	to	match	the
human	 brain	 for	 parallelism—modest	 parallel	 processing	 (compared	 with	 the
trillions-fold	parallelism	of	the	human	brain)	will	be	sufficient.	We	can	see	that
the	necessary	computational	requirements	are	coming	within	reach.	The	brain’s
rewiring	of	itself—dendrites	are	continually	creating	new	synapses—can	also	be
emulated	 in	 software	 using	 links,	 a	 far	 more	 flexible	 system	 than	 the	 brain’s
method	of	plasticity,	which	as	we	have	seen	is	impressive	but	limited.

The	 redundancy	 used	 by	 the	 brain	 to	 achieve	 robust	 invariant	 results	 can
certainly	 be	 replicated	 in	 software	 emulations.	The	mathematics	 of	 optimizing
these	 types	of	 self-organizing	hierarchical	 learning	systems	 is	well	understood.
The	organization	of	the	brain	is	far	from	optimal.	Of	course	it	didn’t	need	to	be
—it	 only	 needed	 to	 be	 good	 enough	 to	 achieve	 the	 threshold	 of	 being	 able	 to
create	tools	that	would	compensate	for	its	own	limitations.

Another	restriction	of	 the	human	neocortex	is	 that	 there	 is	no	process	 that
eliminates	or	even	reviews	contradictory	ideas,	which	accounts	for	why	human



thinking	is	often	massively	inconsistent.	We	have	a	weak	mechanism	to	address
this	 called	 critical	 thinking,	 but	 this	 skill	 is	 not	 practiced	 nearly	 as	 often	 as	 it
should	be.	In	a	software-based	neocortex,	we	can	build	in	a	process	that	reveals
inconsistencies	for	further	review.

It	 is	 important	 to	note	 that	 the	design	of	 an	entire	brain	 region	 is	 simpler
than	the	design	of	a	single	neuron.	As	discussed	earlier,	models	often	get	simpler
at	 a	 higher	 level—consider	 an	 analogy	 with	 a	 computer.	 We	 do	 need	 to
understand	the	detailed	physics	of	semiconductors	to	model	a	transistor,	and	the
equations	underlying	 a	 single	 real	 transistor	 are	 complex.	A	digital	 circuit	 that
multiples	 two	 numbers	 requires	 hundreds	 of	 them.	 Yet	 we	 can	 model	 this
multiplication	circuit	very	simply	with	one	or	two	formulas.	An	entire	computer
with	billions	of	transistors	can	be	modeled	through	its	instruction	set	and	register
description,	which	 can	 be	 described	 on	 a	 handful	 of	written	 pages	 of	 text	 and
formulas.	The	software	programs	for	an	operating	system,	 language	compilers,
and	assemblers	are	reasonably	complex,	but	modeling	a	particular	program—for
example,	 a	 speech	 recognition	 program	 based	 on	 hierarchical	 hidden	Markov
modeling—may	 likewise	 be	 described	 in	 only	 a	 few	 pages	 of	 equations.
Nowhere	 in	 such	 a	 description	 would	 be	 found	 the	 details	 of	 semiconductor
physics	or	even	of	computer	architecture.

A	 similar	 observation	 holds	 true	 for	 the	 brain.	 A	 particular	 neocortical
pattern	 recognizer	 that	 detects	 a	 particular	 invariant	 visual	 feature	 (such	 as	 a
face)	 or	 that	 performs	 a	 bandpass	 filtering	 (restricting	 input	 to	 a	 specific
frequency	 range)	 on	 sound	 or	 that	 evaluates	 the	 temporal	 proximity	 of	 two
events	 can	 be	 described	with	 far	 fewer	 specific	 details	 than	 the	 actual	 physics
and	chemical	relations	controlling	the	neurotransmitters,	ion	channels,	and	other
synaptic	and	dendritic	variables	involved	in	the	neural	processes.	Although	all	of
this	 complexity	 needs	 to	 be	 carefully	 considered	 before	 advancing	 to	 the	 next
higher	conceptual	level,	much	of	it	can	be	simplified	as	the	operating	principles
of	the	brain	are	revealed.



CHAPTER	9

	



THOUGHT	EXPERIMENTS
ON	THE	MIND

	

Minds	are	simply	what	brains	do.
—Marvin	Minsky,	The	Society	of	Mind

	

When	 intelligent	machines	 are	 constructed,	we	 should	not	be	 surprised	 to
find	 them	 as	 confused	 and	 as	 stubborn	 as	men	 in	 their	 convictions	 about
mind-matter,	consciousness,	free	will,	and	the	like.

—Marvin	Minsky,	The	Society	of	Mind
	

	



Who	Is	Conscious?

The	real	history	of	consciousness	starts	with	one’s	first	lie.
—Joseph	Brodsky

	

Suffering	is	the	sole	origin	of	consciousness.
—Fyodor	Dostoevsky,	Notes	from	Underground

	

There	is	a	kind	of	plant	that	eats	organic	food	with	its	flowers:	when	a	fly
settles	 upon	 the	 blossom,	 the	 petals	 close	 upon	 it	 and	 hold	 it	 fast	 till	 the
plant	has	absorbed	the	insect	into	its	system;	but	they	will	close	on	nothing
but	what	is	good	to	eat;	of	a	drop	of	rain	or	a	piece	of	stick	they	will	take	no
notice.	Curious!	that	so	unconscious	a	thing	should	have	such	a	keen	eye	to
its	 own	 interest.	 If	 this	 is	 unconsciousness,	 where	 is	 the	 use	 of
consciousness?

—Samuel	Butler,	1871
	

	
We	have	been	examining	the	brain	as	an	entity	that	is	capable	of	certain	levels
of	accomplishment.	But	that	perspective	essentially	leaves	our	selves	out	of	the
picture.	We	appear	to	live	in	our	brains.	We	have	subjective	lives.	How	does	the
objective	view	of	the	brain	that	we	have	discussed	up	until	now	relate	to	our	own
feelings,	to	our	sense	of	being	the	person	having	the	experiences?

British	 philosopher	 Colin	 McGinn	 (born	 in	 1950)	 writes	 that	 discussing
“consciousness	 can	 reduce	 even	 the	 most	 fastidious	 thinker	 to	 blabbering
incoherence.”	 The	 reason	 for	 this	 is	 that	 people	 often	 have	 unexamined	 and
inconsistent	views	on	exactly	what	the	term	means.

Many	observers	consider	consciousness	 to	be	a	form	of	performance—for
example,	 the	capacity	for	self-reflection,	 that	 is,	 the	ability	 to	understand	one’s
own	thoughts	and	to	explain	 them.	I	would	describe	 that	as	 the	ability	 to	 think
about	 one’s	 own	 thinking.	 Presumably,	 we	 could	 come	 up	 with	 a	 way	 of
evaluating	 this	 ability	 and	 then	 use	 this	 test	 to	 separate	 conscious	 things	 from
unconscious	things.



However,	we	quickly	get	into	trouble	in	trying	to	implement	this	approach.
Is	 a	 baby	 conscious?	 A	 dog?	 They’re	 not	 very	 good	 at	 describing	 their	 own
thinking	 process.	 There	 are	 people	 who	 believe	 that	 babies	 and	 dogs	 are	 not
conscious	beings	precisely	because	they	cannot	explain	themselves.	How	about
the	computer	known	as	Watson?	It	can	be	put	into	a	mode	where	it	actually	does
explain	how	it	came	up	with	a	given	answer.	Because	it	contains	a	model	of	its
own	thinking,	 is	Watson	therefore	conscious	whereas	 the	baby	and	the	dog	are
not?

Before	we	proceed	to	parse	this	question	further,	it	is	important	to	reflect	on
the	most	 significant	 distinction	 relating	 to	 it:	What	 is	 it	 that	we	 can	 ascertain
from	science,	versus	what	remains	truly	a	matter	of	philosophy?	One	view	is	that
philosophy	is	a	kind	of	halfway	house	for	questions	that	have	not	yet	yielded	to
the	 scientific	 method.	 According	 to	 this	 perspective,	 once	 science	 advances
sufficiently	to	resolve	a	particular	set	of	questions,	philosophers	can	then	move
on	to	other	concerns,	until	such	time	that	science	resolves	them	also.	This	view
is	endemic	where	 the	 issue	of	consciousness	 is	concerned,	and	specifically	 the
question	“What	and	who	is	conscious?”

Consider	 these	 statements	 by	 philosopher	 John	 Searle:	 “We	 know	 that
brains	cause	consciousness	with	specific	biological	mechanisms….	The	essential
thing	 is	 to	 recognize	 that	 consciousness	 is	 a	 biological	 process	 like	 digestion,
lactation,	 photosynthesis,	 or	 mitosis….	 The	 brain	 is	 a	 machine,	 a	 biological
machine	to	be	sure,	but	a	machine	all	the	same.	So	the	first	step	is	to	figure	out
how	 the	 brain	 does	 it	 and	 then	 build	 an	 artificial	machine	 that	 has	 an	 equally
effective	mechanism	for	causing	consciousness.”1	People	are	often	surprised	to
see	these	quotations	because	they	assume	that	Searle	is	devoted	to	protecting	the
mystery	of	consciousness	against	reductionists	like	Ray	Kurzweil.

The	Australian	philosopher	David	Chalmers	(born	in	1966)	has	coined	the
term	“the	hard	problem	of	consciousness”	 to	describe	 the	difficulty	of	pinning
down	 this	 essentially	 indescribable	 concept.	 Sometimes	 a	 brief	 phrase
encapsulates	an	entire	school	of	thought	so	well	that	it	becomes	emblematic	(for
example,	 Hannah	 Arendt’s	 “the	 banality	 of	 evil”).	 Chalmers’s	 famous
formulation	accomplishes	this	very	well.

When	 discussing	 consciousness,	 it	 becomes	 very	 easy	 to	 slip	 into
considering	 the	 observable	 and	 measurable	 attributes	 that	 we	 associate	 with
being	 conscious,	 but	 this	 approach	misses	 the	 very	 essence	 of	 the	 idea.	 I	 just
mentioned	the	concept	of	metacognition—the	idea	of	thinking	about	one’s	own
thinking—as	 one	 such	 correlate	 of	 consciousness.	 Other	 observers	 conflate
emotional	intelligence	or	moral	intelligence	with	consciousness.	But,	again,	our
ability	 to	 express	 a	 loving	 sentiment,	 to	get	 the	 joke,	or	 to	be	 sexy	are	 simply



types	 of	 performances—impressive	 and	 intelligent	 perhaps,	 but	 skills	 that	 can
nonetheless	 be	 observed	 and	measured	 (even	 if	we	 argue	 about	 how	 to	 assess
them).	Figuring	out	how	the	brain	accomplishes	these	sorts	of	tasks	and	what	is
going	on	in	the	brain	when	we	do	them	constitutes	Chalmers’s	“easy”	question
of	consciousness.	Of	course,	the	“easy”	problem	is	anything	but	and	represents
perhaps	the	most	difficult	and	important	scientific	quest	of	our	era.	Chalmers’s
“hard”	question,	meanwhile,	is	so	hard	that	it	is	essentially	ineffable.

In	 support	 of	 this	 distinction,	 Chalmers	 introduces	 a	 thought	 experiment
involving	what	he	calls	zombies.	A	zombie	is	an	entity	that	acts	just	like	a	person
but	 simply	 does	 not	 have	 subjective	 experience—that	 is,	 a	 zombie	 is	 not
conscious.	Chalmers	argues	 that	since	we	can	conceive	of	zombies,	 they	are	at
least	 logically	 possible.	 If	 you	 were	 at	 a	 cocktail	 party	 and	 there	 were	 both
“normal”	humans	and	zombies,	how	would	you	tell	the	difference?	Perhaps	this
sounds	like	a	cocktail	party	you	have	attended.

Many	 people	 answer	 this	 question	 by	 saying	 they	 would	 interrogate
individuals	 they	wished	 to	assess	about	 their	emotional	 reactions	 to	events	and
ideas.	 A	 zombie,	 they	 believe,	 would	 betray	 its	 lack	 of	 subjective	 experience
through	 a	 deficiency	 in	 certain	 types	 of	 emotional	 responses.	 But	 an	 answer
along	 these	 lines	 simply	 fails	 to	 appreciate	 the	 assumptions	 of	 the	 thought
experiment.	 If	 we	 encountered	 an	 unemotional	 person	 (such	 as	 an	 individual
with	certain	emotional	deficits,	as	 is	common	 in	certain	 types	of	autism)	or	an
avatar	or	a	robot	that	was	not	convincing	as	an	emotional	human	being,	then	that
entity	 is	 not	 a	 zombie.	 Remember:	 According	 to	 Chalmers’s	 assumption,	 a
zombie	 is	 completely	 normal	 in	 his	 ability	 to	 respond,	 including	 the	 ability	 to
react	 emotionally;	 he	 is	 just	 lacking	 subjective	 experience.	 The	 bottom	 line	 is
that	 there	 is	 no	 way	 to	 identify	 a	 zombie,	 because	 by	 definition	 there	 is	 no
apparent	indication	of	his	zombie	nature	in	his	behavior.	So	is	this	a	distinction
without	a	difference?

Chalmers	 does	 not	 attempt	 to	 answer	 the	 hard	 question	 but	 does	 provide
some	possibilities.	One	is	a	form	of	dualism	in	which	consciousness	per	se	does
not	 exist	 in	 the	 physical	 world	 but	 rather	 as	 a	 separate	 ontological	 reality.
According	to	this	formulation,	what	a	person	does	is	based	on	the	processes	in
her	brain.	Because	the	brain	is	causally	closed,	we	can	fully	explain	a	person’s
actions,	including	her	thoughts,	through	its	processes.	Consciousness	then	exists
essentially	in	another	realm,	or	at	least	is	a	property	separate	from	the	physical
world.	This	explanation	does	not	permit	 the	mind	(that	 is	 to	say,	 the	conscious
property	associated	with	the	brain)	to	causally	affect	the	brain.

Another	possibility	that	Chalmers	entertains,	which	is	not	logically	distinct
from	his	notion	of	dualism,	and	is	often	called	panprotopsychism,	holds	that	all



physical	 systems	 are	 conscious,	 albeit	 a	 human	 is	more	 conscious	 than,	 say,	 a
light	switch.	I	would	certainly	agree	that	a	human	brain	has	more	to	be	conscious
about	than	a	light	switch.

My	own	view,	which	 is	perhaps	a	 subschool	of	panprotopsychism,	 is	 that
consciousness	 is	 an	 emergent	 property	 of	 a	 complex	 physical	 system.	 In	 this
view	a	dog	is	also	conscious	but	somewhat	less	than	a	human.	An	ant	has	some
level	of	consciousness,	too,	but	much	less	that	of	a	dog.	The	ant	colony,	on	the
other	hand,	could	be	considered	to	have	a	higher	level	of	consciousness	than	the
individual	ant;	it	is	certainly	more	intelligent	than	a	lone	ant.	By	this	reckoning,
a	 computer	 that	 is	 successfully	 emulating	 the	 complexity	 of	 a	 human	 brain
would	also	have	the	same	emergent	consciousness	as	a	human.

Another	way	to	conceptualize	the	concept	of	consciousness	is	as	a	system
that	has	“qualia.”	So	what	are	qualia?	One	definition	of	 the	 term	is	“conscious
experiences.”	 That,	 however,	 does	 not	 take	 us	 very	 far.	 Consider	 this	 thought
experiment:	 A	 neuroscientist	 is	 completely	 color-blind—not	 the	 sort	 of	 color-
blind	in	which	one	mixes	up	certain	shades	of,	say,	green	and	red	(as	I	do),	but
rather	a	condition	in	which	the	afflicted	individual	lives	entirely	in	a	black-and-
white	world.	(In	a	more	extreme	version	of	this	scenario,	she	has	grown	up	in	a
black-and-white	world	and	has	never	 seen	any	colors.	Bottom	 line,	 there	 is	no
color	in	her	world.)	However,	she	has	extensively	studied	the	physics	of	color—
she	is	aware	that	the	wavelength	of	red	light	is	700	nanometers—as	well	as	the
neurological	processes	of	a	person	who	can	experience	colors	normally,	and	thus
knows	a	great	deal	about	how	the	brain	processes	color.	She	knows	more	about
color	 than	most	 people.	 If	 you	 wanted	 to	 help	 her	 out	 and	 explain	 what	 this
actual	experience	of	“red”	is	like,	how	would	you	do	it?

Perhaps	you	would	read	her	a	section	from	the	poem	“Red”	by	the	Nigerian
poet	Oluseyi	Oluseun:

Red	the	colour	of	blood
the	symbol	of	life
Red	the	colour	of	danger
the	symbol	of	death

	

Red	the	colour	of	roses
the	symbol	of	beauty
Red	the	colour	of	lovers
the	symbol	of	unity

	



Red	the	colour	of	tomato
the	symbol	of	good	health
Red	the	colour	of	hot	fire
the	symbol	of	burning	desire

	
That	actually	would	give	her	a	pretty	good	idea	of	some	of	the	associations

people	 have	 made	 with	 red,	 and	 may	 even	 enable	 her	 to	 hold	 her	 own	 in	 a
conversation	about	the	color.	(“Yes,	I	love	the	color	red,	it’s	so	hot	and	fiery,	so
dangerously	beautiful…”)	If	she	wanted	to,	she	could	probably	convince	people
that	she	had	experienced	red,	but	all	the	poetry	in	the	world	would	not	actually
enable	her	to	have	that	experience.

Similarly,	 how	would	 you	 explain	what	 it	 feels	 like	 to	 dive	 into	water	 to
someone	who	has	never	 touched	water?	We	would	again	be	forced	 to	resort	 to
poetry,	 but	 there	 is	 really	 no	 way	 to	 impart	 the	 experience	 itself.	 These
experiences	are	what	we	refer	to	as	qualia.

Many	of	the	readers	of	this	book	have	experienced	the	color	red.	But	how
do	I	know	whether	your	experience	of	red	is	not	the	same	experience	that	I	have
when	I	 look	at	blue?	We	both	look	at	a	red	object	and	state	assuredly	that	 it	 is
red,	 but	 that	 does	 not	 answer	 the	 question.	 I	 may	 be	 experiencing	 what	 you
experience	when	you	 look	at	blue,	but	we	have	both	 learned	 to	call	 red	 things
red.	We	 could	 start	 swapping	 poems	 again,	 but	 they	would	 simply	 reflect	 the
associations	that	people	have	made	with	colors;	they	do	not	speak	to	the	actual
nature	 of	 the	 qualia.	 Indeed,	 congenitally	 blind	 people	 have	 read	 a	 great	 deal
about	colors,	as	such	references	are	replete	 in	 literature,	and	 thus	 they	do	have
some	 version	 of	 an	 experience	 of	 color.	 How	 does	 their	 experience	 of	 red
compare	with	the	experience	of	sighted	people?	This	is	really	the	same	question
as	the	one	concerning	the	woman	in	the	black-and-white	world.	It	is	remarkable
that	 such	 common	 phenomena	 in	 our	 lives	 are	 so	 completely	 ineffable	 as	 to
make	a	simple	confirmation,	like	one	that	we	are	experiencing	the	same	qualia,
impossible.

Another	definition	of	qualia	is	the	feeling	of	an	experience.	However,	 this
definition	is	no	less	circular	than	our	attempts	at	defining	consciousness	above,
as	 the	 phrases	 “feeling,”	 “having	 an	 experience,”	 and	 “consciousness”	 are	 all
synonyms.	 Consciousness	 and	 the	 closely	 related	 question	 of	 qualia	 are	 a
fundamental,	perhaps	the	ultimate,	philosophical	question	(although	the	issue	of
identity	may	be	even	more	important,	as	I	will	discuss	in	the	closing	section	of
this	chapter).

So	with	 regard	 to	consciousness,	what	 exactly	 is	 the	question	 again?	 It	 is
this:	Who	or	what	is	conscious?	I	refer	to	“mind”	in	the	title	of	this	book	rather



than	“brain”	because	a	mind	is	a	brain	that	is	conscious.	We	could	also	say	that	a
mind	has	free	will	and	identity.	The	assertion	that	these	issues	are	philosophical
is	 itself	 not	 self-evident.	 I	 maintain	 that	 these	 questions	 can	 never	 be	 fully
resolved	 through	 science.	 In	 other	 words,	 there	 are	 no	 falsifiable	 experiments
that	 we	 can	 contemplate	 that	 would	 resolve	 them,	 not	 without	 making
philosophical	assumptions.	If	we	were	building	a	consciousness	detector,	Searle
would	 want	 it	 to	 ascertain	 that	 it	 was	 squirting	 biological	 neurotransmitters.
American	philosopher	Daniel	Dennett	(born	in	1942)	would	be	more	flexible	on
substrate,	 but	might	want	 to	 determine	whether	 or	 not	 the	 system	 contained	 a
model	of	itself	and	of	its	own	performance.	That	view	comes	closer	to	my	own,
but	at	its	core	is	still	a	philosophical	assumption.

Proposals	 have	 been	 regularly	 presented	 that	 purport	 to	 be	 scientific
theories	 linking	 consciousness	 to	 some	 measurable	 physical	 attribute—what
Searle	 refers	 to	 as	 the	 “mechanism	 for	 causing	 consciousness.”	 American
scientist,	 philosopher,	 and	 anesthesiologist	Stuart	Hameroff	 (born	 in	1947)	has
written	 that	 “cytoskeletal	 filaments	 are	 the	 roots	 of	 consciousness.”2	 He	 is
referring	to	thin	threads	in	every	cell	(including	neurons	but	not	limited	to	them)
called	microtubules,	which	give	each	cell	structural	 integrity	and	play	a	role	 in
cell	 division.	His	 books	 and	 papers	 on	 this	 issue	 contain	 detailed	 descriptions
and	 equations	 that	 explain	 the	 plausibility	 that	 the	microtubules	 play	 a	 role	 in
information	 processing	 within	 the	 cell.	 But	 the	 connection	 of	 microtubules	 to
consciousness	requires	a	leap	of	faith	not	fundamentally	different	from	the	leap
of	faith	implicit	in	a	religious	doctrine	that	describes	a	supreme	being	bestowing
consciousness	 (sometimes	 referred	 to	 as	 a	 “soul”)	 to	 certain	 (usually	 human)
entities.	Some	weak	evidence	is	proffered	for	Hameroff’s	view,	specifically	the
observation	 that	 the	 neurological	 processes	 that	 could	 support	 this	 purported
cellular	computing	are	stopped	during	anesthesia.	But	this	is	far	from	compelling
substantiation,	 given	 that	 lots	 of	 processes	 are	 halted	 during	 anesthesia.	 We
cannot	 even	 say	 for	 certain	 that	 subjects	 are	 not	 conscious	when	 anesthetized.
All	 we	 do	 know	 is	 that	 people	 do	 not	 remember	 their	 experiences	 afterward.
Even	 that	 is	 not	 universal,	 as	 some	 people	 do	 remember—accurately—their
experience	 while	 under	 anesthesia,	 including,	 for	 example,	 conversations	 by
their	 surgeons.	 Called	 anesthesia	 awareness,	 this	 phenomenon	 is	 estimated	 to
occur	 about	 40,000	 times	 a	 year	 in	 the	 United	 States.3	 But	 even	 setting	 that
aside,	consciousness	and	memory	are	completely	different	concepts.	As	 I	have
discussed	 extensively,	 if	 I	 think	 back	 on	 my	 moment-to-moment	 experiences
over	 the	 past	 day,	 I	 have	 had	 a	 vast	 number	 of	 sensory	 impressions	 yet	 I
remember	very	few	of	them.	Was	I	therefore	not	conscious	of	what	I	was	seeing



and	hearing	all	day?	It	is	actually	a	good	question,	and	the	answer	is	not	so	clear.
English	physicist	and	mathematician	Roger	Penrose	(born	 in	1931)	 took	a

different	leap	of	faith	in	proposing	the	source	of	consciousness,	though	his	also
concerned	 the	 microtubules—specifically,	 their	 purported	 quantum	 computing
abilities.	 His	 reasoning,	 although	 not	 explicitly	 stated,	 seemed	 to	 be	 that
consciousness	 is	mysterious,	 and	 a	 quantum	 event	 is	 also	mysterious,	 so	 they
must	be	linked	in	some	way.

Penrose	started	his	analysis	with	Turing’s	theorems	on	unsolvable	problems
and	 Gödel’s	 related	 incompleteness	 theorem.	 Turing’s	 premise	 (which	 was
discussed	 in	 greater	 detail	 in	 chapter	8)	 is	 that	 there	 are	 algorithmic	 problems
that	 can	 be	 stated	 but	 that	 cannot	 be	 solved	 by	 a	 Turing	 machine.	 Given	 the
computational	 universality	 of	 the	 Turing	machine,	we	 can	 conclude	 that	 these
“unsolvable	 problems”	 cannot	 be	 solved	 by	 any	 machine.	 Gödel’s
incompleteness	 theorem	has	a	 similar	 result	with	 regard	 to	 the	ability	 to	prove
conjectures	 involving	 numbers.	 Penrose’s	 argument	 is	 that	 the	 human	 brain	 is
able	to	solve	these	unsolvable	problems,	so	is	therefore	capable	of	doing	things
that	a	deterministic	machine	such	as	a	computer	is	unable	to	do.	His	motivation,
at	 least	 in	 part,	 is	 to	 elevate	 human	 beings	 above	 machines.	 But	 his	 central
premise—that	 humans	 can	 solve	 Turing’s	 and	Gödel’s	 insoluble	 problems—is
unfortunately	simply	not	true.

A	famous	unsolvable	problem	called	 the	busy	beaver	problem	is	stated	as
follows:	Find	the	maximum	number	of	1s	that	a	Turing	machine	with	a	certain
number	of	 states	can	write	on	 its	 tape.	So	 to	determine	 the	busy	beaver	of	 the
number	n,	we	build	all	of	the	Turing	machines	that	have	n	states	(which	will	be	a
finite	number	if	n	is	finite)	and	then	determine	the	largest	number	of	1s	that	these
machines	write	on	their	tapes,	excluding	those	Turing	machines	that	get	into	an
infinite	 loop.	This	 is	unsolvable	because	as	we	seek	 to	simulate	all	of	 these	n-
state	 Turing	 machines,	 our	 simulator	 will	 get	 into	 an	 infinite	 loop	 when	 it
attempts	 to	 simulate	 one	 of	 the	 Turing	machines	 that	 does	 get	 into	 an	 infinite
loop.	 However,	 it	 turns	 out	 that	 computers	 have	 nonetheless	 been	 able	 to
determine	 the	 busy	 beaver	 function	 for	 certain	 ns.	 So	 have	 humans,	 but
computers	 have	 solved	 the	 problem	 for	 far	 more	 ns	 than	 unassisted	 humans.
Computers	 are	 generally	 better	 than	 humans	 at	 solving	 Turing’s	 and	 Gödel’s
unsolvable	problems.

Penrose	 linked	 these	claimed	 transcendent	capabilities	of	 the	human	brain
to	 the	quantum	computing	 that	 he	hypothesized	 took	place	 in	 it.	According	 to
Penrose,	these	neural	quantum	effects	were	somehow	inherently	not	achievable
by	 computers,	 so	 therefore	 human	 thinking	 has	 an	 inherent	 edge.	 In	 fact,
common	electronics	uses	quantum	effects	(transistors	rely	on	quantum	tunneling



of	 electrons	 across	 barriers);	 quantum	 computing	 in	 the	 brain	 has	 never	 been
demonstrated;	 human	 mental	 performance	 can	 be	 satisfactorily	 explained	 by
classical	 computing	methods;	 and	 in	 any	 event	 nothing	 bars	 us	 from	 applying
quantum	 computing	 in	 computers.	 None	 of	 these	 objections	 has	 ever	 been
addressed	by	Penrose.	 It	was	when	critics	pointed	out	 that	 the	brain	 is	a	warm
and	 messy	 place	 for	 quantum	 computing	 that	 Hameroff	 and	 Penrose	 joined
forces.	 Penrose	 found	 a	 perfect	 vehicle	within	 neurons	 that	 could	 conceivably
support	 quantum	 computing—namely,	 the	 microtubules	 that	 Hameroff	 had
speculated	 were	 part	 of	 the	 information	 processing	 within	 a	 neuron.	 So	 the
Hameroff-Penrose	 thesis	 is	 that	 the	 microtubules	 in	 the	 neurons	 are	 doing
quantum	computing	and	that	this	is	responsible	for	consciousness.

This	 thesis	 has	 also	 been	 criticized,	 for	 example,	 by	 Swedish	 American
physicist	 and	 cosmologist	Max	 Tegmark	 (born	 in	 1967),	 who	 determined	 that
quantum	events	in	microtubules	could	survive	for	only	10−13	seconds,	which	is
much	too	brief	a	period	of	time	either	to	compute	results	of	any	significance	or
to	 affect	 neural	 processes.	 There	 are	 certain	 types	 of	 problems	 for	 which
quantum	computing	would	show	superior	capabilities	 to	classical	computing—
for	 example,	 the	 cracking	 of	 encryption	 codes	 through	 the	 factoring	 of	 large
numbers.	 However,	 unassisted	 human	 thinking	 has	 proven	 to	 be	 terrible	 at
solving	 them,	 and	 cannot	 match	 even	 classical	 computers	 in	 this	 area,	 which
suggests	that	the	brain	is	not	demonstrating	any	quantum	computing	capabilities.
Moreover,	 even	 if	 such	 a	phenomenon	as	quantum	computing	 in	 the	brain	did
exist,	it	would	not	necessarily	be	linked	to	consciousness.



You	Gotta	Have	Faith

What	 a	 piece	 of	 work	 is	 a	 man!	 How	 noble	 in	 reason!	 How	 infinite	 in
faculties!	In	form	and	moving,	how	express	and	admirable!	In	action	how
like	an	angel!	 In	apprehension,	how	 like	a	god!	The	beauty	of	 the	world!
The	paragon	of	animals!	And	yet,	to	me,	what	is	this	quintessence	of	dust?

—Hamlet,	in	Shakespeare’s	Hamlet
	

	
The	reality	is	that	these	theories	are	all	leaps	of	faith,	and	I	would	add	that	where
consciousness	is	concerned,	the	guiding	principle	is	“you	gotta	have	faith”—that
is,	we	each	need	a	leap	of	faith	as	to	what	and	who	is	conscious,	and	who	and
what	we	are	as	conscious	beings.	Otherwise	we	could	not	get	up	in	the	morning.
But	we	should	be	honest	about	 the	fundamental	need	for	a	 leap	of	faith	 in	 this
matter	and	self-reflective	as	to	what	our	own	particular	leap	involves.

People	 have	 very	 different	 leaps,	 despite	 impressions	 to	 the	 contrary.
Individual	 philosophical	 assumptions	 about	 the	 nature	 and	 source	 of
consciousness	 underlie	 disagreements	 on	 issues	 ranging	 from	 animal	 rights	 to
abortion,	and	will	result	in	even	more	contentious	future	conflicts	over	machine
rights.	My	objective	prediction	 is	 that	machines	 in	 the	 future	will	appear	 to	be
conscious	and	that	they	will	be	convincing	to	biological	people	when	they	speak
of	 their	 qualia.	 They	 will	 exhibit	 the	 full	 range	 of	 subtle,	 familiar	 emotional
cues;	they	will	make	us	laugh	and	cry;	and	they	will	get	mad	at	us	if	we	say	that
we	don’t	believe	that	they	are	conscious.	(They	will	be	very	smart,	so	we	won’t
want	 that	 to	happen.)	We	will	 come	 to	accept	 that	 they	are	conscious	persons.
My	 own	 leap	 of	 faith	 is	 this:	Once	machines	 do	 succeed	 in	 being	 convincing
when	 they	 speak	 of	 their	 qualia	 and	 conscious	 experiences,	 they	 will	 indeed
constitute	 conscious	 persons.	 I	 have	 come	 to	 my	 position	 via	 this	 thought
experiment:	Imagine	that	you	meet	an	entity	in	the	future	(a	robot	or	an	avatar)
that	 is	 completely	 convincing	 in	 her	 emotional	 reactions.	 She	 laughs
convincingly	at	your	jokes,	and	in	turn	makes	you	laugh	and	cry	(but	not	just	by
pinching	you).	She	convinces	you	of	her	sincerity	when	she	speaks	of	her	fears
and	 longings.	 In	 every	 way,	 she	 seems	 conscious.	 She	 seems,	 in	 fact,	 like	 a
person.	Would	you	accept	her	as	a	conscious	person?

If	your	 initial	 reaction	 is	 that	you	would	 likely	detect	 some	way	 in	which



she	 betrays	 her	 nonbiological	 nature,	 then	 you	 are	 not	 keeping	 to	 the
assumptions	 in	 this	 hypothetical	 situation,	 which	 established	 that	 she	 is	 fully
convincing.	Given	that	assumption,	if	she	were	threatened	with	destruction	and
responded,	 as	 a	 human	 would,	 with	 terror,	 would	 you	 react	 in	 the	 same
empathetic	 way	 that	 you	 would	 if	 you	 witnessed	 such	 a	 scene	 involving	 a
human?	For	myself,	 the	 answer	 is	 yes,	 and	 I	 believe	 the	 answer	would	be	 the
same	 for	 most	 if	 not	 virtually	 all	 other	 people	 regardless	 of	 what	 they	might
assert	now	 in	a	philosophical	debate.	Again,	 the	emphasis	here	 is	on	 the	word
“convincing.”

There	is	certainly	disagreement	on	when	or	even	whether	we	will	encounter
such	a	nonbiological	entity.	My	own	consistent	prediction	 is	 that	 this	will	 first
take	place	in	2029	and	become	routine	in	the	2030s.	But	putting	the	time	frame
aside,	I	believe	that	we	will	eventually	come	to	regard	such	entities	as	conscious.
Consider	how	we	already	treat	them	when	we	are	exposed	to	them	as	characters
in	stories	and	movies:	R2D2	from	the	Star	Wars	movies,	David	and	Teddy	from
the	movie	A.I.,	Data	from	the	TV	series	Star	Trek:	The	Next	Generation,	Johnny
5	from	the	movie	Short	Circuit,	WALL-E	from	Disney’s	movie	Wall-E,	T-800—
the	(good)	Terminator—in	the	second	and	later	Terminator	movies,	Rachael	the
Replicant	from	the	movie	Blade	Runner	(who,	by	the	way,	is	not	aware	that	she
is	not	human),	Bumblebee	from	the	movie,	TV,	and	comic	series	Transformers,
and	Sonny	from	the	movie	I,	Robot.	We	do	empathize	with	these	characters	even
though	 we	 know	 that	 they	 are	 nonbiological.	 We	 regard	 them	 as	 conscious
persons,	just	as	we	do	biological	human	characters.	We	share	their	feelings	and
fear	 for	 them	 when	 they	 get	 into	 trouble.	 If	 that	 is	 how	 we	 treat	 fictional
nonbiological	 characters	 today,	 then	 that	 is	 how	 we	 will	 treat	 real-life
intelligences	in	the	future	that	don’t	happen	to	have	a	biological	substrate.

If	 you	 do	 accept	 the	 leap	 of	 faith	 that	 a	 nonbiological	 entity	 that	 is
convincing	 in	 its	 reactions	 to	 qualia	 is	 actually	 conscious,	 then	 consider	what
that	 implies:	 namely	 that	 consciousness	 is	 an	 emergent	 property	 of	 the	 overall
pattern	of	an	entity,	not	the	substrate	it	runs	on.

There	 is	 a	 conceptual	 gap	 between	 science,	 which	 stands	 for	 objective
measurement	 and	 the	 conclusions	 we	 can	 draw	 thereby,	 and	 consciousness,
which	is	a	synonym	for	subjective	experience.	We	obviously	cannot	simply	ask
an	 entity	 in	 question,	 “Are	 you	 conscious?”	 If	 we	 look	 inside	 its	 “head,”
biological	 or	 otherwise,	 to	 ascertain	 that,	 then	 we	 would	 have	 to	 make
philosophical	assumptions	in	determining	what	it	is	that	we	are	looking	for.	The
question	as	to	whether	or	not	an	entity	is	conscious	is	therefore	not	a	scientific
one.	 Based	 on	 this,	 some	 observers	 go	 on	 to	 question	 whether	 consciousness
itself	has	any	basis	 in	reality.	English	writer	and	philosopher	Susan	Blackmore



(born	 in	 1951)	 speaks	 of	 the	 “grand	 illusion	 of	 consciousness.”	 She
acknowledges	the	reality	of	the	meme	(idea)	of	consciousness—in	other	words,
consciousness	certainly	exists	as	an	idea,	and	there	are	a	great	many	neocortical
structures	 that	deal	with	 the	 idea,	not	 to	mention	words	 that	have	been	spoken
and	written	about	it.	But	it	is	not	clear	that	it	refers	to	something	real.	Blackburn
goes	 on	 to	 explain	 that	 she	 is	 not	 necessarily	 denying	 the	 reality	 of
consciousness,	 but	 rather	 attempting	 to	 articulate	 the	 sorts	 of	 dilemmas	 we
encounter	 when	we	 try	 to	 pin	 down	 the	 concept.	 As	 British	 psychologist	 and
writer	 Stuart	 Sutherland	 (1927–1998)	wrote	 in	 the	 International	Dictionary	 of
Psychology,	 “Consciousness	 is	 a	 fascinating	 but	 elusive	 phenomenon;	 it	 is
impossible	to	specify	what	it	is,	what	it	does,	or	why	it	evolved.”4

However,	we	would	be	well	advised	not	to	dismiss	the	concept	too	easily	as
just	 a	polite	debate	between	philosophers—which,	 incidentally,	dates	back	 two
thousand	 years	 to	 the	 Platonic	 dialogues.	 The	 idea	 of	 consciousness	 underlies
our	moral	 system,	and	our	 legal	 system	 in	 turn	 is	 loosely	built	on	 those	moral
beliefs.	 If	 a	 person	 extinguishes	 someone’s	 consciousness,	 as	 in	 the	 act	 of
murder,	we	consider	that	to	be	immoral,	and	with	some	exceptions,	a	high	crime.
Those	exceptions	are	also	relevant	to	consciousness,	in	that	we	might	authorize
police	 or	 military	 forces	 to	 kill	 certain	 conscious	 people	 to	 protect	 a	 greater
number	 of	 other	 conscious	 people.	 We	 can	 debate	 the	 merits	 of	 particular
exceptions,	but	the	underlying	principle	holds	true.

Assaulting	 someone	 and	 causing	 her	 to	 experience	 suffering	 is	 also
generally	considered	immoral	and	illegal.	If	I	destroy	my	property,	it	is	probably
acceptable.	If	I	destroy	your	property	without	your	permission,	it	is	probably	not
acceptable,	but	not	because	I	am	causing	suffering	to	your	property,	but	rather	to
you	as	the	owner	of	the	property.	On	the	other	hand,	if	my	property	includes	a
conscious	 being	 such	 as	 an	 animal,	 then	 I	 as	 the	 owner	 of	 that	 animal	 do	 not
necessarily	have	free	moral	or	 legal	rein	 to	do	with	 it	as	I	wish—there	are,	 for
example,	laws	against	animal	cruelty.

Because	a	great	deal	of	our	moral	and	legal	system	is	based	on	protecting
the	existence	of	and	preventing	the	unnecessary	suffering	of	conscious	entities,
in	 order	 to	make	 responsible	 judgments	we	 need	 to	 answer	 the	 question	 as	 to
who	is	conscious.	That	question	is	therefore	not	simply	a	matter	for	intellectual
debate,	 as	 is	 evident	 in	 the	 controversy	 surrounding	 an	 issue	 like	 abortion.	 I
should	 point	 out	 that	 the	 abortion	 issue	 can	 go	 somewhat	 beyond	 the	 issue	 of
consciousness,	as	pro-life	proponents	argue	 that	 the	potential	 for	an	embryo	 to
ultimately	become	a	 conscious	person	 is	 sufficient	 reason	 for	 it	 to	be	awarded
protection,	just	as	someone	in	a	coma	deserves	that	right.	But	fundamentally	the
issue	is	a	debate	about	when	a	fetus	becomes	conscious.



Perceptions	 of	 consciousness	 also	 often	 affect	 our	 judgments	 in
controversial	 areas.	 Looking	 at	 the	 abortion	 issue	 again,	many	 people	make	 a
distinction	 between	 a	 measure	 like	 the	 morning-after	 pill,	 which	 prevents	 the
implantation	of	an	embryo	in	the	uterus	in	the	first	days	of	pregnancy,	and	a	late-
stage	 abortion.	The	 difference	 has	 to	 do	with	 the	 likelihood	 that	 the	 late-stage
fetus	 is	 conscious.	 It	 is	 difficult	 to	 maintain	 that	 a	 few-days-old	 embryo	 is
conscious	unless	one	takes	a	panprotopsychist	position,	but	even	in	these	terms	it
would	rank	below	the	simplest	animal	in	terms	of	consciousness.	Similarly,	we
have	 very	 different	 reactions	 to	 the	 maltreatment	 of	 great	 apes	 versus,	 say,
insects.	No	one	worries	too	much	today	about	causing	pain	and	suffering	to	our
computer	 software	 (although	 we	 do	 comment	 extensively	 on	 the	 ability	 of
software	 to	 cause	 us	 suffering),	 but	when	 future	 software	 has	 the	 intellectual,
emotional,	 and	 moral	 intelligence	 of	 biological	 humans,	 this	 will	 become	 a
genuine	concern.

Thus	my	position	 is	 that	 I	will	 accept	nonbiological	 entities	 that	 are	 fully
convincing	 in	 their	 emotional	 reactions	 to	 be	 conscious	 persons,	 and	 my
prediction	is	that	the	consensus	in	society	will	accept	them	as	well.	Note	that	this
definition	extends	beyond	entities	 that	can	pass	 the	Turing	 test,	which	 requires
mastery	of	human	 language.	The	 latter	 are	 sufficiently	humanlike	 that	 I	would
include	them,	and	I	believe	that	most	of	society	will	as	well,	but	I	also	include
entities	that	evidence	humanlike	emotional	reactions	but	may	not	be	able	to	pass
the	Turing	test—for	example,	young	children.

Does	 this	 resolve	 the	 philosophical	 question	of	who	 is	 conscious,	 at	 least
for	myself	and	others	who	accept	this	particular	leap	of	faith?	The	answer	is:	not
quite.	 We’ve	 only	 covered	 one	 case,	 which	 is	 that	 of	 entities	 that	 act	 in	 a
humanlike	 way.	 Even	 though	 we	 are	 discussing	 future	 entities	 that	 are	 not
biological,	we	are	talking	about	entities	that	demonstrate	convincing	humanlike
reactions,	 so	 this	 position	 is	 still	 human-centric.	 But	 what	 about	 more	 alien
forms	of	intelligence	that	are	not	humanlike?	We	can	imagine	intelligences	that
are	 as	 complex	 as	 or	 perhaps	 vastly	 more	 complex	 and	 intricate	 than	 human
brains,	but	that	have	completely	different	emotions	and	motivations.	How	do	we
decide	whether	or	not	they	are	conscious?

We	 can	 start	 by	 considering	 creatures	 in	 the	 biological	 world	 that	 have
brains	 comparable	 to	 those	 of	 humans	 yet	 evince	 very	 different	 sorts	 of
behaviors.	 British	 philosopher	 David	 Cockburn	 (born	 in	 1949)	 writes	 about
viewing	a	video	of	a	giant	squid	 that	was	under	attack	(or	at	 least	 it	 thought	 it
was—Cockburn	hypothesized	that	it	might	have	been	afraid	of	the	human	with
the	video	camera).	The	squid	shuddered	and	cowered,	and	Cockburn	writes,	“It
responded	in	a	way	which	struck	me	immediately	and	powerfully	as	one	of	fear.



Part	of	what	was	striking	in	this	sequence	was	the	way	in	which	it	was	possible
to	 see	 in	 the	 behavior	 of	 a	 creature	 physically	 so	 very	 different	 from	 human
beings	an	emotion	which	was	so	unambiguously	and	specifically	one	of	fear.”5
He	 concludes	 that	 the	 animal	 was	 feeling	 that	 emotion	 and	 he	 articulates	 the
belief	 that	 most	 other	 people	 viewing	 that	 film	 would	 come	 to	 the	 same
conclusion.	If	we	accept	Cockburn’s	description	and	conclusion,	then	we	would
have	to	add	giant	squids	to	our	list	of	conscious	entities.	However,	this	has	not
gotten	us	very	far	either,	because	it	is	still	based	on	our	empathetic	reaction	to	an
emotion	that	we	recognize	in	ourselves.	It	is	still	a	self-centric	or	human-centric
perspective.

If	 we	 step	 outside	 biology,	 nonbiological	 intelligence	 will	 be	 even	 more
varied	than	intelligence	in	the	biological	world.	For	example,	some	entities	may
not	 have	 a	 fear	 of	 their	 own	 destruction,	 and	 may	 not	 have	 a	 need	 for	 the
emotions	we	see	in	humans	or	in	any	biological	creature.	Perhaps	they	could	still
pass	the	Turing	test,	or	perhaps	they	wouldn’t	even	be	willing	to	try.

We	 do	 in	 fact	 build	 robots	 today	 that	 do	 not	 have	 a	 sense	 of	 self-
preservation	 to	 carry	 out	 missions	 in	 dangerous	 environments.	 They’re	 not
sufficiently	intelligent	or	complex	yet	for	us	to	seriously	consider	their	sentience,
but	we	 can	 imagine	 future	 robots	 of	 this	 sort	 that	 are	 as	 complex	 as	 humans.
What	about	them?

Personally	 I	 would	 say	 that	 if	 I	 saw	 in	 such	 a	 device’s	 behavior	 a
commitment	 to	 a	 complex	 and	worthy	 goal	 and	 the	 ability	 to	 execute	 notable
decisions	and	actions	to	carry	out	its	mission,	I	would	be	impressed	and	probably
become	upset	 if	 it	got	destroyed.	This	 is	now	perhaps	stretching	 the	 concept	 a
bit,	in	that	I	am	responding	to	behavior	that	does	not	include	many	emotions	we
consider	 universal	 in	 people	 and	 even	 in	 biological	 creatures	 of	 all	 kinds.	But
again,	I	am	seeking	to	connect	with	attributes	that	I	can	relate	to	in	myself	and
other	people.	The	idea	of	an	entity	totally	dedicated	to	a	noble	goal	and	carrying
it	 out	 or	 at	 least	 attempting	 to	 do	 so	without	 regard	 for	 its	 own	well-being	 is,
after	 all,	 not	 completely	 foreign	 to	 human	 experience.	 In	 this	 instance	we	 are
also	considering	an	entity	that	is	seeking	to	protect	biological	humans	or	in	some
way	advance	our	agenda.

What	if	this	entity	has	its	own	goals	distinct	from	a	human	one	and	is	not
carrying	out	a	mission	we	would	recognize	as	noble	in	our	own	terms?	I	might
then	attempt	to	see	if	I	could	connect	or	appreciate	some	of	its	abilities	in	some
other	 way.	 If	 it	 is	 indeed	 very	 intelligent,	 it	 is	 likely	 to	 be	 good	 at	 math,	 so
perhaps	 I	 could	 have	 a	 conversation	 with	 it	 on	 that	 topic.	 Maybe	 it	 would
appreciate	math	jokes.

But	if	the	entity	has	no	interest	in	communicating	with	me,	and	I	don’t	have



sufficient	access	to	its	actions	and	decision	making	to	be	moved	by	the	beauty	of
its	internal	processes,	does	that	mean	that	it	is	not	conscious?	I	need	to	conclude
that	entities	that	do	not	succeed	in	convincing	me	of	their	emotional	reactions,	or
that	don’t	care	to	try,	are	not	necessarily	not	conscious.	It	would	be	difficult	 to
recognize	another	conscious	entity	without	establishing	some	level	of	empathetic
communication,	but	that	judgment	reflects	my	own	limitations	more	than	it	does
the	 entity	 under	 consideration.	 We	 thus	 need	 to	 proceed	 with	 humility.	 It	 is
challenging	enough	to	put	ourselves	in	the	subjective	shoes	of	another	human,	so
the	task	will	be	that	much	harder	with	intelligences	that	are	extremely	different
from	our	own.



What	Are	We	Conscious	Of?

If	we	could	look	through	the	skull	into	the	brain	of	a	consciously	thinking
person,	 and	 if	 the	 place	 of	 optimal	 excitability	 were	 luminous,	 then	 we
should	 see	 playing	 over	 the	 cerebral	 surface,	 a	 bright	 spot	with	 fantastic,
waving	 borders	 constantly	 fluctuating	 in	 size	 and	 form,	 surrounded	 by	 a
darkness	more	or	less	deep,	covering	the	rest	of	the	hemisphere.

—Ivan	Petrovich	Pavlov,	19136
	

	
Returning	 to	 the	giant	 squid,	we	can	 recognize	 some	of	 its	 apparent	 emotions,
but	much	of	its	behavior	is	a	mystery.	What	is	it	like	being	a	giant	squid?	How
does	 it	 feel	as	 it	 squeezes	 its	spineless	body	 through	a	 tiny	opening?	We	don’t
even	 have	 the	 vocabulary	 to	 answer	 this	 question,	 given	 that	 we	 cannot	 even
describe	experiences	that	we	do	share	with	other	people,	such	as	seeing	the	color
red	or	feeling	water	splash	on	our	bodies.

But	we	don’t	have	to	go	as	far	as	the	bottom	of	the	ocean	to	find	mysteries
in	the	nature	of	conscious	experiences—we	need	only	consider	our	own.	I	know,
for	 example,	 that	 I	 am	conscious.	 I	 assume	 that	you,	 the	 reader,	 are	 conscious
also.	(As	for	people	who	have	not	bought	my	book,	I	am	not	so	sure.)	But	what
am	I	conscious	of?	You	might	ask	yourself	the	same	question.

Try	this	thought	experiment	(which	will	work	for	those	of	you	who	drive	a
car):	Imagine	that	you	are	driving	in	the	left	lane	of	a	highway.	Now	close	your
eyes,	grab	an	imagined	steering	wheel,	and	make	the	movements	to	change	lanes
to	the	lane	to	your	right.

Okay,	before	continuing	to	read,	try	it.
Here	is	what	you	probably	did:	You	held	the	steering	wheel.	You	checked

that	the	right	lane	is	clear.	Assuming	the	lane	was	clear,	you	turned	the	steering
wheel	 to	 the	 right	 for	 a	 brief	 period.	 Then	 you	 straightened	 it	 out	 again.	 Job
done.

It’s	a	good	thing	you	weren’t	in	a	real	car,	because	you	just	zoomed	across
all	 the	 lanes	 of	 the	 highway	 and	 crashed	 into	 a	 tree.	While	 I	 probably	 should
have	 mentioned	 that	 you	 shouldn’t	 try	 this	 in	 a	 real	 moving	 car	 (but	 then	 I
assume	you	have	already	mastered	 the	 rule	 that	you	 shouldn’t	drive	with	your
eyes	closed),	that’s	not	really	the	key	problem	here.	If	you	used	the	procedure	I



just	described—and	almost	everyone	does	when	doing	 this	 thought	experiment
—you	got	it	wrong.	Turning	the	wheel	to	the	right	and	then	straightening	it	out
causes	 the	car	 to	head	in	a	direction	that	 is	diagonal	 to	 its	original	direction.	It
will	cross	the	lane	to	the	right,	as	you	intended,	but	it	will	keep	going	to	the	right
indefinitely	 until	 it	 zooms	 off	 the	 road.	 What	 you	 needed	 to	 do	 as	 your	 car
crossed	the	lane	to	the	right	was	to	then	turn	the	wheel	to	the	left,	just	as	far	as
you	had	turned	it	to	the	right,	and	then	straighten	it	out	again.	This	will	cause	the
car	to	again	head	straight	in	the	new	lane.

Consider	the	fact	that	if	you’re	a	regular	driver,	you’ve	done	this	maneuver
thousands	of	 times.	Are	you	not	conscious	when	you	do	 this?	Have	you	never
paid	attention	to	what	you	are	actually	doing	when	you	change	lanes?	Assuming
that	 you	 are	 not	 reading	 this	 book	 in	 a	 hospital	while	 recovering	 from	a	 lane-
changing	 accident,	 you	 have	 clearly	 mastered	 this	 skill.	 Yet	 you	 are	 not
conscious	of	what	you	did,	however	many	times	you’ve	accomplished	this	task.

When	 people	 tell	 stories	 of	 their	 experiences,	 they	 describe	 them	 as
sequences	of	situations	and	decisions.	But	this	is	not	how	we	experience	a	story
in	the	first	place.	Our	original	experience	is	as	a	sequence	of	high-level	patterns,
some	of	which	may	have	triggered	feelings.	We	remember	only	a	small	subset	of
those	patterns,	if	that.	Even	if	we	are	reasonably	accurate	in	our	recounting	of	a
story,	we	use	our	powers	of	confabulation	to	fill	 in	missing	details	and	convert
the	 sequence	 into	 a	 coherent	 tale.	 We	 cannot	 be	 certain	 what	 our	 original
conscious	 experience	was	 from	 our	 recollection	 of	 it,	 yet	memory	 is	 the	 only
access	we	have	to	that	experience.	The	present	moment	is,	well,	fleeting,	and	is
quickly	 turned	 into	 a	 memory,	 or,	 more	 often,	 not.	 Even	 if	 an	 experience	 is
turned	into	a	memory,	it	is	stored,	as	the	PRTM	indicates,	as	a	high-level	pattern
composed	of	other	patterns	 in	 a	huge	hierarchy.	As	 I	 have	pointed	out	 several
times,	almost	all	of	the	experiences	we	have	(like	any	of	the	times	we	changed
lanes)	 are	 immediately	 forgotten.	 So	 ascertaining	 what	 constitutes	 our	 own
conscious	experience	is	actually	not	attainable.



East	Is	East	and	West	Is	West

Before	brains	there	was	no	color	or	sound	in	the	universe,	nor	was	there	any
flavor	or	aroma	and	probably	little	sense	and	no	feeling	or	emotion.

—Roger	W.	Sperry7
	

René	Descartes	walks	into	a	restaurant	and	sits	down	for	dinner.	The	waiter
comes	over	and	asks	if	he’d	like	an	appetizer.

“No	thank	you,”	says	Descartes,	“I’d	just	like	to	order	dinner.”
“Would	you	like	to	hear	our	daily	specials?”	asks	the	waiter.
“No,”	says	Descartes,	getting	impatient.
“Would	you	like	a	drink	before	dinner?”	the	waiter	asks.
Descartes	 is	 insulted,	 since	 he’s	 a	 teetotaler.	 “I	 think	 not!”	 he	 says

indignantly,	and	POOF!	he	disappears.
—A	joke	as	recalled	by	David	Chalmers

	

	
There	are	two	ways	to	view	the	questions	we	have	been	considering—converse
Western	and	Eastern	perspectives	on	the	nature	of	consciousness	and	of	reality.
In	the	Western	perspective,	we	start	with	a	physical	world	that	evolves	patterns
of	information.	After	a	few	billion	years	of	evolution,	the	entities	in	that	world
have	 evolved	 sufficiently	 to	 become	 conscious	 beings.	 In	 the	 Eastern	 view,
consciousness	 is	 the	 fundamental	 reality;	 the	 physical	 world	 only	 comes	 into
existence	through	the	thoughts	of	conscious	beings.	The	physical	world,	in	other
words,	 is	 the	 thoughts	of	conscious	beings	made	manifest.	These	are	of	course
simplifications	 of	 complex	 and	 diverse	 philosophies,	 but	 they	 represent	 the
principal	 polarities	 in	 the	philosophies	 of	 consciousness	 and	 its	 relationship	 to
the	physical	world.

The	 East-West	 divide	 on	 the	 issue	 of	 consciousness	 has	 also	 found
expression	in	opposing	schools	of	thought	in	the	field	of	subatomic	physics.	In
quantum	mechanics,	 particles	 exist	 as	 what	 are	 called	 probability	 fields.	 Any
measurement	carried	out	on	them	by	a	measuring	device	causes	what	is	called	a
collapse	 of	 the	 wave	 function,	 meaning	 that	 the	 particle	 suddenly	 assumes	 a
particular	 location.	 A	 popular	 view	 is	 that	 such	 a	 measurement	 constitutes
observation	by	a	conscious	observer,	because	otherwise	measurement	would	be	a



meaningless	concept.	Thus	the	particle	assumes	a	particular	location	(as	well	as
other	properties,	such	as	velocity)	only	when	 it	 is	observed.	Basically	particles
figure	that	if	no	one	is	bothering	to	look	at	them,	they	don’t	need	to	decide	where
they	 are.	 I	 call	 this	 the	 Buddhist	 school	 of	 quantum	mechanics,	 because	 in	 it
particles	essentially	don’t	exist	until	they	are	observed	by	a	conscious	person.

There	 is	 another	 interpretation	 of	 quantum	 mechanics	 that	 avoids	 such
anthropomorphic	terminology.	In	this	analysis,	the	field	representing	a	particle	is
not	 a	 probability	 field,	 but	 rather	 just	 a	 function	 that	 has	 different	 values	 in
different	 locations.	 The	 field,	 therefore,	 is	 fundamentally	 what	 the	 particle	 is.
There	are	constraints	on	what	the	values	of	the	field	can	be	in	different	locations,
because	the	entire	field	representing	a	particle	represents	only	a	limited	amount
of	 information.	That	 is	where	 the	word	 “quantum”	 comes	 from.	The	 so-called
collapse	of	the	wave	function,	this	view	holds,	is	not	a	collapse	at	all.	The	wave
function	actually	never	goes	away.	 It	 is	 just	 that	 a	measurement	device	 is	 also
made	up	of	particles	with	 fields,	 and	 the	 interaction	of	 the	particle	 field	being
measured	and	the	particle	fields	of	the	measuring	device	results	in	a	reading	of
the	 particle	 being	 in	 a	 particular	 location.	 The	 field,	 however,	 is	 still	 present.
This	 is	 the	 Western	 interpretation	 of	 quantum	 mechanics,	 although	 it	 is
interesting	 to	 note	 that	 the	more	 popular	 view	 among	 physicists	worldwide	 is
what	I	have	called	the	Eastern	interpretation.

There	was	one	philosopher	whose	work	spanned	this	East-West	divide.	The
Austrian	 British	 thinker	 Ludwig	 Wittgenstein	 (1889–1951)	 studied	 the
philosophy	of	language	and	knowledge	and	contemplated	the	question	of	what	it
is	 that	we	 can	 really	 know.	He	pondered	 this	 subject	while	 a	 soldier	 in	World
War	I	and	took	notes	for	what	would	be	his	only	book	published	while	he	was
alive,	Tractatus	Logico-Philosophicus.	The	work	had	an	unusual	structure,	and	it
was	only	through	the	efforts	of	his	former	instructor,	British	mathematician	and
philosopher	Bertrand	Russell,	 that	 it	 found	 a	 publisher	 in	 1921.	 It	 became	 the
bible	 for	 a	 major	 school	 of	 philosophy	 known	 as	 logical	 positivism,	 which
sought	to	define	the	limits	of	science.	The	book	and	the	movement	surrounding
it	were	influential	on	Turing	and	the	emergence	of	the	theory	of	computation	and
linguistics.

Tractatus	Logico-Philosophicus	anticipates	the	insight	that	all	knowledge	is
inherently	 hierarchical.	 The	 book	 itself	 is	 arranged	 in	 nested	 and	 numbered
statements.	For	example,	the	first	four	statements	in	the	book	are:

1		The	world	is	all	that	is	the	case.
1.1		The	world	is	the	totality	of	facts,	not	of	things.
1.11		The	world	is	determined	by	the	facts,	and	by	their	being	all	the



facts.
1.12	 	 For	 the	 totality	 of	 facts	 determines	 what	 is	 the	 case,	 and	 also

whatever	is	not	the	case.
	
Another	significant	statement	in	the	Tractatus—and	one	that	Turing	would	echo
—is	this:

4.0031	All	philosophy	is	a	critique	of	language.
	

Essentially	both	Tractatus	Logico-Philosophicus	and	the	logical	positivism
movement	assert	 that	physical	 reality	exists	separate	 from	our	perception	of	 it,
but	 that	all	we	can	know	of	 that	 reality	 is	what	we	perceive	with	our	senses—
which	can	be	heightened	 through	our	 tools—and	 the	 logical	 inferences	we	can
make	from	these	sensory	impressions.	Essentially	Wittgenstein	is	attempting	to
describe	 the	methods	 and	 goals	 of	 science.	 The	 final	 statement	 in	 the	 book	 is
number	 7,	 “What	 we	 cannot	 speak	 about	 we	must	 pass	 over	 in	 silence.”	 The
early	 Wittgenstein,	 accordingly,	 considers	 the	 discussion	 of	 consciousness	 as
circular	and	tautological	and	therefore	a	waste	of	time.

The	 later	 Wittgenstein,	 however,	 completely	 rejected	 this	 approach	 and
spent	all	of	his	philosophical	attention	talking	about	matters	 that	he	had	earlier
argued	 should	 be	 passed	 over	 in	 silence.	His	writings	 on	 this	 revised	 thinking
were	collected	and	published	in	1953,	two	years	after	his	death,	in	a	book	called
Philosophical	 Investigations.	 He	 criticized	 his	 earlier	 ideas	 in	 the	 Tractatus,
judging	them	to	be	circular	and	void	of	meaning,	and	came	to	the	view	that	what
he	had	advised	that	we	not	speak	about	was	in	fact	all	that	was	worth	reflecting
on.	 These	 writings	 heavily	 influenced	 the	 existentialists,	 making	Wittgenstein
the	only	figure	in	modern	philosophy	to	be	a	major	architect	of	two	leading	and
contradictory	schools	of	thought	in	philosophy.

What	is	it	that	the	later	Wittgenstein	thought	was	worth	thinking	and	talking
about?	 It	 was	 issues	 such	 as	 beauty	 and	 love,	 which	 he	 recognized	 exist
imperfectly	as	ideas	in	the	minds	of	men.	However,	he	writes	that	such	concepts
do	exist	in	a	perfect	and	idealized	realm,	similar	to	the	perfect	“forms”	that	Plato
wrote	about	in	the	Platonic	dialogues,	another	work	that	illuminated	apparently
contradictory	approaches	to	the	nature	of	reality.

One	 thinker	 whose	 position	 I	 believe	 is	 mischaracterized	 is	 the	 French
philosopher	and	mathematician	René	Descartes.	His	famous	“I	think,	therefore	I
am”	is	generally	interpreted	to	extol	rational	thought,	in	the	sense	that	“I	think,
that	 is	 I	 can	perform	 logical	 thought,	 therefore	 I	 am	worthwhile.”	Descartes	 is
therefore	considered	the	architect	of	the	Western	rational	perspective.



Reading	this	statement	in	the	context	of	his	other	writings,	however,	I	get	a
different	impression.	Descartes	was	troubled	by	what	is	referred	to	as	the	“mind-
body	 problem”:	 Namely,	 how	 does	 a	 conscious	 mind	 arise	 from	 the	 physical
matter	of	 the	brain?	From	this	perspective,	 it	seems	he	was	attempting	 to	push
rational	skepticism	to	the	breaking	point,	so	in	my	view	what	his	statement	really
means	 is,	 “I	 think,	 that	 is	 to	 say,	 a	 subjective	 experience	 is	 occurring,	 so
therefore	all	we	know	for	sure	is	that	something—call	it	I—exists.”	He	could	not
be	 certain	 that	 the	 physical	 world	 exists,	 because	 all	 we	 have	 are	 our	 own
individual	sense	impressions	of	it,	which	might	be	wrong	or	completely	illusory.
We	do	know,	however,	that	the	experiencer	exists.

My	religious	upbringing	was	in	a	Unitarian	church,	where	we	studied	all	of
the	world’s	religions.	We	would	spend	six	months	on,	say,	Buddhism	and	would
go	to	Buddhist	services,	read	their	books,	and	have	discussion	groups	with	their
leaders.	 Then	 we	 would	 switch	 to	 another	 religion,	 such	 as	 Judaism.	 The
overriding	 theme	 was	 “many	 paths	 to	 the	 truth,”	 along	 with	 tolerance	 and
transcendence.	 This	 last	 idea	 meant	 that	 resolving	 apparent	 contradictions
between	 traditions	 does	 not	 require	 deciding	 that	 one	 is	 right	 and	 the	 other	 is
wrong.	The	truth	can	be	discovered	only	by	finding	an	explanation	that	overrides
—transcends—seeming	 differences,	 especially	 for	 fundamental	 questions	 of
meaning	and	purpose.

This	is	how	I	resolve	the	Western-Eastern	divide	on	consciousness	and	the
physical	world.	In	my	view,	both	perspectives	have	to	be	true.

On	the	one	hand,	it	is	foolish	to	deny	the	physical	world.	Even	if	we	do	live
in	a	simulation,	as	speculated	by	Swedish	philosopher	Nick	Bostrom,	reality	 is
nonetheless	a	conceptual	level	that	is	real	for	us.	If	we	accept	the	existence	of	the
physical	world	and	the	evolution	that	has	taken	place	in	it,	then	we	can	see	that
conscious	entities	have	evolved	from	it.

On	 the	 other	 hand,	 the	 Eastern	 perspective—that	 consciousness	 is
fundamental	 and	 represents	 the	 only	 reality	 that	 is	 truly	 important—is	 also
difficult	to	deny.	Just	consider	the	precious	regard	we	give	to	conscious	persons
versus	 unconscious	 things.	 We	 consider	 the	 latter	 to	 have	 no	 intrinsic	 value
except	 to	 the	 extent	 that	 they	 can	 influence	 the	 subjective	 experience	 of
conscious	persons.	Even	if	we	regard	consciousness	as	an	emergent	property	of	a
complex	 system,	 we	 cannot	 take	 the	 position	 that	 it	 is	 just	 another	 attribute
(along	with	“digestion”	and	“lactation,”	to	quote	John	Searle).	It	represents	what
is	truly	important.

The	word	“spiritual”	is	often	used	to	denote	the	things	that	are	of	ultimate
significance.	Many	people	don’t	 like	 to	use	 such	 terminology	 from	spiritual	or
religious	traditions,	because	it	implies	sets	of	beliefs	that	they	may	not	subscribe



to.	 But	 if	 we	 strip	 away	 the	 mystical	 complexities	 of	 religious	 traditions	 and
simply	 respect	 “spiritual”	 as	 implying	 something	 of	 profound	 meaning	 to
humans,	 then	 the	 concept	of	 consciousness	 fits	 the	bill.	 It	 reflects	 the	ultimate
spiritual	value.	Indeed,	“spirit”	itself	is	often	used	to	denote	consciousness.

Evolution	 can	 then	 be	 viewed	 as	 a	 spiritual	 process	 in	 that	 it	 creates
spiritual	beings,	that	is,	entities	that	are	conscious.	Evolution	also	moves	toward
greater	 complexity,	 greater	 knowledge,	 greater	 intelligence,	 greater	 beauty,
greater	creativity,	and	the	ability	to	express	more	transcendent	emotions,	such	as
love.	These	 are	 all	 descriptions	 that	 people	 have	used	 for	 the	 concept	 of	God,
albeit	God	is	described	as	having	no	limitations	in	these	regards.

People	often	feel	threatened	by	discussions	that	imply	the	possibility	that	a
machine	could	be	conscious,	as	they	view	considerations	along	these	lines	as	a
denigration	of	the	spiritual	value	of	conscious	persons.	But	this	reaction	reflects
a	misunderstanding	of	the	concept	of	a	machine.	Such	critics	are	addressing	the
issue	 based	 on	 the	 machines	 they	 know	 today,	 and	 as	 impressive	 as	 they	 are
becoming,	I	agree	that	contemporary	examples	of	technology	are	not	yet	worthy
of	 our	 respect	 as	 conscious	 beings.	 My	 prediction	 is	 that	 they	 will	 become
indistinguishable	 from	 biological	 humans,	 whom	 we	 do	 regard	 as	 conscious
beings,	 and	 will	 therefore	 share	 in	 the	 spiritual	 value	 we	 ascribe	 to
consciousness.	This	is	not	a	disparagement	of	people;	rather,	it	is	an	elevation	of
our	 understanding	 of	 (some)	 future	 machines.	 We	 should	 probably	 adopt	 a
different	 terminology	 for	 these	 entities,	 as	 they	 will	 be	 a	 different	 sort	 of
machine.

Indeed,	 as	 we	 now	 look	 inside	 the	 brain	 and	 decode	 its	 mechanisms	 we
discover	methods	and	algorithms	that	we	can	not	only	understand	but	re-create
—“the	 parts	 of	 a	 mill	 pushing	 on	 each	 other,”	 to	 paraphrase	 German
mathematician	and	philosopher	Gottfried	Wilhelm	Leibniz	(1646–1716)	when	he
wrote	about	the	brain.	Humans	already	constitute	spiritual	machines.	Moreover,
we	 will	 merge	 with	 the	 tools	 we	 are	 creating	 so	 closely	 that	 the	 distinction
between	 human	 and	 machine	 will	 blur	 until	 the	 difference	 disappears.	 That
process	is	already	well	under	way,	even	if	most	of	the	machines	that	extend	us
are	not	yet	inside	our	bodies	and	brains.



Free	Will

A	central	aspect	of	consciousness	is	the	ability	to	look	ahead,	the	capability
we	call	“foresight.”	It	is	the	ability	to	plan,	and	in	social	terms	to	outline	a
scenario	of	what	is	likely	going	to	happen,	or	what	might	happen,	in	social
interactions	 that	 have	 not	 yet	 taken	 place….	 It	 is	 a	 system	 whereby	 we
improve	our	chances	of	doing	those	things	that	will	represent	our	own	best
interests….	I	suggest	 that	“free	will”	 is	our	apparent	ability	 to	choose	and
act	 upon	 whichever	 of	 those	 seem	 most	 useful	 or	 appropriate,	 and	 our
insistence	upon	the	idea	that	such	choices	are	our	own.

—Richard	D.	Alexander
	

Shall	we	say	that	the	plant	does	not	know	what	it	is	doing	merely	because	it
has	 no	 eyes,	 or	 ears,	 or	 brains?	 If	 we	 say	 that	 it	 acts	 mechanically,	 and
mechanically	 only,	 shall	we	 not	 be	 forced	 to	 admit	 that	 sundry	 other	 and
apparently	very	deliberate	actions	are	also	mechanical?	If	it	seems	to	us	that
the	plant	kills	and	eats	a	fly	mechanically,	may	it	not	seem	to	the	plant	that
a	man	must	kill	and	eat	a	sheep	mechanically?

—Samuel	Butler,	1871
	

Is	the	brain,	which	is	notably	double	in	structure,	a	double	organ,	“seeming
parted,	but	yet	a	union	in	partition”?

—Henry	Maudsley8
	

	
Redundancy,	 as	we	have	 learned,	 is	 a	key	 strategy	deployed	by	 the	neocortex.
But	 there	 is	 another	 level	 of	 redundancy	 in	 the	 brain,	 in	 that	 its	 left	 and	 right
hemispheres,	while	not	identical,	are	largely	the	same.	Just	as	certain	regions	of
the	 neocortex	 normally	 end	 up	 processing	 certain	 types	 of	 information,	 the
hemispheres	 also	 specialize	 to	 some	 extent—for	 example,	 the	 left	 hemisphere
typically	 is	 responsible	 for	verbal	 language.	But	 these	assignments	can	also	be
rerouted,	to	the	point	that	we	can	survive	and	function	somewhat	normally	with
only	one	half.	American	neuropsychology	researchers	Stella	de	Bode	and	Susan
Curtiss	reported	on	forty-nine	children	who	had	undergone	a	hemispherectomy



(removal	 of	 half	 of	 their	 brain),	 an	 extreme	 operation	 that	 is	 performed	 on
patients	 with	 a	 life-threatening	 seizure	 disorder	 that	 exists	 in	 only	 one
hemisphere.	 Some	who	 undergo	 the	 procedure	 are	 left	with	 deficits,	 but	 those
deficits	are	specific	and	the	patients	have	reasonably	normal	personalities.	Many
of	 them	 thrive,	 and	 it	 is	 not	 apparent	 to	 observers	 that	 they	 only	 have	 half	 a
brain.	De	Bode	 and	Curtiss	write	 about	 left-hemispherectomized	 children	who
“develop	 remarkably	 good	 language	 despite	 removal	 of	 the	 ‘language’
hemisphere.”9	They	describe	one	such	student	who	completed	college,	attended
graduate	 school,	 and	 scored	 above	 average	 on	 IQ	 tests.	 Studies	 have	 shown
minimal	long-term	effects	on	overall	cognition,	memory,	personality,	and	sense
of	humor.10	 In	a	2007	study	American	 researchers	Shearwood	McClelland	and
Robert	Maxwell	showed	similar	long-term	positive	results	in	adults.11

A	ten-year-old	German	girl	who	was	born	with	only	half	of	her	brain	has
also	been	reported	to	be	quite	normal.	She	even	has	almost	perfect	vision	in	one
eye,	 whereas	 hemispherectomy	 patients	 lose	 part	 of	 their	 field	 of	 vision	 right
after	 the	 operation.12	 Scottish	 researcher	 Lars	Muckli	 commented,	 “The	 brain
has	 amazing	 plasticity	 but	 we	were	 quite	 astonished	 to	 see	 just	 how	well	 the
single	 hemisphere	 of	 the	 brain	 in	 this	 girl	 has	 adapted	 to	 compensate	 for	 the
missing	half.”

While	 these	 observations	 certainly	 support	 the	 idea	 of	 plasticity	 in	 the
neocortex,	their	more	interesting	implication	is	that	we	each	appear	to	have	two
brains,	not	one,	and	we	can	do	pretty	well	with	either.	If	we	lose	one,	we	do	lose
the	 cortical	 patterns	 that	 are	 uniquely	 stored	 there,	 but	 each	 brain	 is	 in	 itself
fairly	complete.	So	does	each	hemisphere	have	its	own	consciousness?	There	is
an	argument	to	be	made	that	such	is	the	case.

Consider	split-brain	patients,	who	still	have	both	of	their	brain	hemispheres,
but	the	channel	between	them	has	been	cut.	The	corpus	callosum	is	a	bundle	of
about	250	million	axons	that	connects	the	left	and	right	cerebral	hemispheres	and
enables	them	to	communicate	and	coordinate	with	each	other.	Just	as	two	people
can	 communicate	 closely	 with	 each	 other	 and	 act	 as	 a	 single	 decision	 maker
while	remaining	separate	and	whole	individuals,	the	two	brain	hemispheres	can
function	as	a	unit	while	remaining	independent.

As	the	term	implies,	in	split-brain	patients	the	corpus	callosum	has	been	cut
or	damaged,	leaving	them	effectively	with	two	functional	brains	without	a	direct
communication	 link	 between	 them.	 American	 psychology	 researcher	 Michael
Gazzaniga	 (born	 in	 1939)	 has	 conducted	 extensive	 experiments	 on	what	 each
hemisphere	in	split-brain	patients	is	thinking.

The	 left	 hemisphere	 in	 a	 split-brain	 patient	 usually	 sees	 the	 right	 visual



field,	and	vice	versa.	Gazzaniga	and	his	colleagues	showed	a	split-brain	patient	a
picture	 of	 a	 chicken	 claw	 to	 the	 right	 visual	 field	 (which	was	 seen	 by	 his	 left
hemisphere)	and	a	snowy	scene	 to	 the	 left	visual	 field	 (which	was	seen	by	his
right	 hemisphere).	 He	 then	 showed	 a	 collection	 of	 pictures	 so	 that	 both
hemispheres	could	see	them.	He	asked	the	patient	to	choose	one	of	the	pictures
that	went	well	with	 the	 first	 picture.	The	patient’s	 left	 hand	 (controlled	by	his
right	hemisphere)	pointed	to	a	picture	of	a	shovel,	whereas	his	right	hand	pointed
to	 a	 picture	 of	 a	 chicken.	 So	 far	 so	 good—the	 two	 hemispheres	 were	 acting
independently	 and	 sensibly.	 “Why	 did	 you	 choose	 that?”	Gazzaniga	 asked	 the
patient,	 who	 answered	 verbally	 (controlled	 by	 his	 left-hemisphere	 speech
center),	 “The	 chicken	 claw	 obviously	 goes	 with	 the	 chicken.”	 But	 then	 the
patient	 looked	 down	 and,	 noticing	 his	 left	 hand	 pointing	 to	 the	 shovel,
immediately	 explained	 this	 (again	 with	 his	 left-hemisphere-controlled	 speech
center)	as	“and	you	need	a	shovel	to	clean	out	the	chicken	shed.”

This	is	a	confabulation.	The	right	hemisphere	(which	controls	the	left	arm
and	hand)	correctly	points	to	the	shovel,	but	because	the	left	hemisphere	(which
controls	 the	 verbal	 answer)	 is	 unaware	 of	 the	 snow,	 it	 confabulates	 an
explanation,	yet	 is	not	aware	 that	 it	 is	 confabulating.	 It	 is	 taking	 responsibility
for	an	action	it	had	never	decided	on	and	never	took,	but	thinks	that	it	did.

This	implies	that	each	of	the	two	hemispheres	in	a	split-brain	patient	has	its
own	consciousness.	The	hemispheres	appear	not	 to	be	aware	 that	 their	body	 is
effectively	controlled	by	two	brains,	because	they	learn	to	coordinate	with	each
other,	and	their	decisions	are	sufficiently	aligned	and	consistent	that	each	thinks
that	the	decisions	of	the	other	are	its	own.

Gazzaniga’s	 experiment	 doesn’t	 prove	 that	 a	 normal	 individual	 with	 a
functioning	corpus	callosum	has	 two	conscious	half-brains,	but	 it	 is	suggestive
of	that	possibility.	While	the	corpus	callosum	allows	for	effective	collaboration
between	 the	 two	 half-brains,	 it	 doesn’t	 necessarily	 mean	 that	 they	 are	 not
separate	 minds.	 Each	 one	 could	 be	 fooled	 into	 thinking	 it	 has	 made	 all	 the
decisions,	 because	 they	 would	 all	 be	 close	 enough	 to	 what	 each	 would	 have
decided	on	its	own,	and	after	all,	it	does	have	a	lot	of	influence	on	each	decision
(by	collaborating	with	the	other	hemisphere	through	the	corpus	callosum).	So	to
each	of	the	two	minds	it	would	seem	as	if	it	were	in	control.

How	would	you	test	the	conjecture	that	they	are	both	conscious?	One	could
assess	them	for	neurological	correlates	of	consciousness,	which	is	precisely	what
Gazzaniga	has	done.	His	experiments	show	that	each	hemisphere	is	acting	as	an
independent	brain.	Confabulation	is	not	restricted	to	brain	hemispheres;	we	each
do	it	on	a	regular	basis.	Each	hemisphere	is	about	as	intelligent	as	a	human,	so	if
we	believe	that	a	human	brain	is	conscious,	then	we	have	to	conclude	that	each



hemisphere	 is	 independently	 conscious.	 We	 can	 assess	 the	 neurological
correlates	 and	 we	 can	 conduct	 our	 own	 thought	 experiments	 (for	 example,
considering	that	if	two	brain	hemispheres	without	a	functioning	corpus	callosum
constitute	two	separate	conscious	minds,	then	the	same	would	have	to	hold	true
for	 two	 hemispheres	 with	 a	 functioning	 connection	 between	 them),	 but	 any
attempt	at	a	more	direct	detection	of	consciousness	in	each	hemisphere	confronts
us	again	with	the	lack	of	a	scientific	test	for	consciousness.	But	if	we	do	allow
that	 each	 hemisphere	 of	 the	 brain	 is	 conscious,	 then	 do	we	 grant	 that	 the	 so-
called	unconscious	activity	in	the	neocortex	(which	constitutes	the	vast	bulk	of
its	activity)	has	an	 independent	consciousness	 too?	Or	maybe	 it	has	more	 than
one?	Indeed,	Marvin	Minsky	refers	to	the	brain	as	a	“society	of	mind.”13

In	another	split-brain	experiment	the	researchers	showed	the	word	“bell”	to
the	right	brain	and	“music”	to	the	left	brain.	The	patient	was	asked	what	word	he
saw.	 The	 left-hemisphere-controlled	 speech	 center	 says	 “music.”	 The	 subject
was	then	shown	a	group	of	pictures	and	asked	to	point	to	a	picture	most	closely
related	 to	 the	 word	 he	 was	 just	 shown.	 His	 right-hemisphere-controlled	 arm
pointed	 to	 the	 bell.	When	 he	 was	 asked	 why	 he	 pointed	 to	 the	 bell,	 his	 left-
hemisphere-controlled	speech	center	replied,	“Well,	music,	the	last	time	I	heard
any	 music	 was	 the	 bells	 banging	 outside	 here.”	 He	 provided	 this	 explanation
even	 though	 there	 were	 other	 pictures	 to	 choose	 from	 that	 were	 much	 more
closely	related	to	music.

Again,	 this	 is	 a	 confabulation.	 The	 left	 hemisphere	 is	 explaining	 as	 if	 it
were	its	own	a	decision	that	it	never	made	and	never	carried	out.	It	is	not	doing
so	 to	 cover	 up	 for	 a	 friend	 (that	 is,	 its	 other	 hemisphere)—it	 genuinely	 thinks
that	the	decision	was	its	own.

These	 reactions	 and	 decisions	 can	 extend	 to	 emotional	 responses.	 They
asked	 a	 teenage	 split-brain	 patient—so	 that	 both	 hemispheres	 heard—“Who	 is
your	favorite…”	and	then	fed	the	word	“girlfriend”	just	to	the	right	hemisphere
through	 the	 left	 ear.	 Gazzaniga	 reports	 that	 the	 subject	 blushed	 and	 acted
embarrassed,	 an	 appropriate	 reaction	 for	 a	 teenager	 when	 asked	 about	 his
girlfriend.	But	 the	 left-hemisphere-controlled	speech	center	 reported	 that	 it	had
not	heard	any	word	and	asked	for	clarification:	“My	favorite	what?”	When	asked
again	 to	 answer	 the	 question,	 this	 time	 in	 writing,	 the	 right-hemisphere-
controlled	left	hand	wrote	out	his	girlfriend’s	name.

Gazzaniga’s	tests	are	not	thought	experiments	but	actual	mind	experiments.
While	 they	offer	 an	 interesting	perspective	on	 the	 issue	of	consciousness,	 they
speak	even	more	directly	to	the	issue	of	free	will.	In	each	of	these	cases,	one	of
the	hemispheres	believes	that	it	has	made	a	decision	that	it	 in	fact	never	made.
To	what	extent	is	that	true	for	the	decisions	we	make	every	day?



Consider	the	case	of	a	ten-year-old	female	epileptic	patient.	Neurosurgeon
Itzhak	 Fried	 was	 performing	 brain	 surgery	 while	 she	 was	 awake	 (which	 is
feasible	 because	 there	 are	 no	 pain	 receptors	 in	 the	 brain).14	 Whenever	 he
stimulated	 a	 particular	 spot	 on	 her	 neocortex,	 she	 would	 laugh.	 At	 first	 the
surgical	team	thought	that	they	might	be	triggering	some	sort	of	laugh	reflex,	but
they	quickly	 realized	 that	 they	were	 triggering	 the	 actual	perception	of	humor.
They	 had	 apparently	 found	 a	 point	 in	 her	 neocortex—there	 is	 obviously	more
than	one—that	recognizes	the	perception	of	humor.	She	was	not	just	laughing—
she	actually	found	the	situation	funny,	even	though	nothing	had	actually	changed
in	 the	 situation	 other	 than	 their	 having	 stimulated	 this	 point	 in	 her	 neocortex.
When	they	asked	her	why	she	was	laughing,	she	did	not	reply	along	the	lines	of,
“Oh,	 no	 particular	 reason,”	 or	 “You	 just	 stimulated	 my	 brain,”	 but	 would
immediately	 confabulate	 a	 reason.	 She	would	 point	 to	 something	 in	 the	 room
and	try	to	explain	why	it	was	funny.	“You	guys	are	just	so	funny	standing	there”
was	a	typical	comment.

We	are	 apparently	very	 eager	 to	 explain	 and	 rationalize	our	 actions,	 even
when	 we	 didn’t	 actually	 make	 the	 decisions	 that	 led	 to	 them.	 So	 just	 how
responsible	are	we	for	our	decisions?	Consider	these	experiments	by	physiology
professor	Benjamin	Libet	(1916–2007)	at	the	University	of	California	at	Davis.
Libet	 had	 participants	 sit	 in	 front	 of	 a	 timer,	 EEG	 electrodes	 attached	 to	 their
scalps.	He	instructed	them	to	do	simple	tasks	such	as	pushing	a	button	or	moving
a	 finger.	The	participants	were	 asked	 to	 note	 the	 time	on	 the	 timer	when	 they
“first	become	aware	of	the	wish	or	urge	to	act.”	Tests	indicated	a	margin	of	error
of	 only	 50	 milliseconds	 on	 these	 assessments	 by	 the	 subjects.	 They	 also
measured	 an	 average	 of	 about	 200	 milliseconds	 between	 the	 time	 when	 the
subjects	reported	awareness	of	the	urge	to	act	and	the	actual	act.15

The	researchers	also	looked	at	the	EEG	signals	coming	from	the	subjects’
brains.	Brain	activity	involved	in	initiating	the	action	by	the	motor	cortex	(which
is	responsible	for	carrying	out	the	action)	actually	occurred	on	average	about	500
milliseconds	 prior	 to	 the	 performance	 of	 the	 task.	 That	 means	 that	 the	motor
cortex	was	preparing	 to	carry	out	 the	 task	about	a	 third	of	a	second	before	 the
subject	was	even	aware	that	she	had	made	a	decision	to	do	so.

The	 implications	of	 the	Libet	 experiments	have	been	hotly	debated.	Libet
himself	 concluded	 that	 our	 awareness	 of	 decision	 making	 appears	 to	 be	 an
illusion,	 that	 “consciousness	 is	 out	 of	 the	 loop.”	 Philosopher	 Daniel	 Dennett
commented,	“The	action	is	originally	precipitated	in	some	part	of	the	brain,	and
off	fly	the	signals	to	muscles,	pausing	en	route	to	tell	you,	the	conscious	agent,
what	is	going	on	(but	like	all	good	officials	letting	you,	the	bumbling	president,



maintain	 the	 illusion	 that	 you	 started	 it	 all).”16	 At	 the	 same	 time	Dennett	 has
questioned	 the	 timings	 recorded	 by	 the	 experiment,	 basically	 arguing	 that
subjects	may	not	really	be	aware	of	when	they	become	aware	of	the	decision	to
act.	One	might	wonder:	If	the	subject	is	unaware	of	when	she	is	aware	of	making
a	 decision,	 then	 who	 is?	 But	 the	 point	 is	 actually	 well	 taken—as	 I	 discussed
earlier,	what	we	are	conscious	of	is	far	from	clear.

Indian	 American	 neuroscientist	 Vilayanur	 Subramanian	 “Rama”
Ramachandran	 (born	 in	 1951)	 explains	 the	 situation	 a	 little	 differently.	 Given
that	we	have	on	the	order	of	30	billion	neurons	in	the	neocortex,	there	is	always
a	lot	going	on	there,	and	we	are	consciously	aware	of	very	little	of	it.	Decisions,
big	 and	 little,	 are	 constantly	 being	 processed	 by	 the	 neocortex,	 and	 proposed
solutions	 bubble	 up	 to	 our	 conscious	 awareness.	 Rather	 than	 free	 will,
Ramachandran	suggests	we	should	talk	about	“free	won’t”—that	is,	the	power	to
reject	solutions	proposed	by	the	nonconscious	parts	of	our	neocortex.

Consider	 the	 analogy	 to	 a	 military	 campaign.	 Army	 officials	 prepare	 a
recommendation	 to	 the	 president.	 Prior	 to	 receiving	 the	 president’s	 approval,
they	perform	preparatory	work	that	will	enable	the	decision	to	be	carried	out.	At
a	 particular	moment,	 the	 proposed	 decision	 is	 presented	 to	 the	 president,	who
approves	 it,	 and	 the	 rest	 of	 the	mission	 is	 then	 undertaken.	 Since	 the	 “brain”
represented	by	this	analogy	involves	the	unconscious	processes	of	the	neocortex
(that	is,	the	officials	under	the	president)	as	well	as	its	conscious	processes	(the
president),	we	would	 see	 neural	 activity	 as	well	 as	 actual	 actions	 taking	 place
prior	to	the	official	decision’s	being	made.	We	can	always	get	into	debates	in	a
particular	 situation	 as	 to	 how	 much	 leeway	 the	 officials	 under	 the	 president
actually	 gave	 him	 or	 her	 to	 accept	 or	 reject	 a	 recommendation,	 and	 certainly
American	presidents	have	done	both.	But	 it	 should	not	 surprise	us	 that	mental
activity,	even	 in	 the	motor	cortex,	would	start	before	we	were	aware	 that	 there
was	a	decision	to	be	made.

What	the	Libet	experiments	do	underscore	is	that	there	is	a	lot	of	activity	in
our	brains	underlying	our	decisions	that	is	not	conscious.	We	already	knew	that
most	of	what	goes	in	the	neocortex	is	not	conscious;	it	should	not	be	surprising,
therefore,	 that	 our	 actions	 and	 decisions	 stem	 from	 both	 unconscious	 and
conscious	activity.	Is	this	distinction	important?	If	our	decisions	arise	from	both,
should	it	matter	if	we	sort	out	the	conscious	parts	from	the	unconscious?	Is	it	not
the	case	that	both	aspects	represent	our	brain?	Are	we	not	ultimately	responsible
for	 everything	 that	goes	on	 in	our	brains?	 “Yes,	 I	 shot	 the	victim,	but	 I’m	not
responsible	because	I	wasn’t	paying	attention”	is	probably	a	weak	defense.	Even
though	there	are	some	narrow	legal	grounds	on	which	a	person	may	not	be	held
responsible	 for	 his	 decisions,	we	 are	 generally	 held	 accountable	 for	 all	 of	 the



choices	we	make.
The	 observations	 and	 experiments	 I	 have	 cited	 above	 constitute	 thought

experiments	 on	 the	 issue	 of	 free	 will,	 a	 subject	 that,	 like	 the	 topic	 of
consciousness,	 has	 been	 debated	 since	 Plato.	 The	 term	 “free	will”	 itself	 dates
back	to	the	thirteenth	century,	but	what	exactly	does	it	mean?

The	Merriam-Webster	 dictionary	 defines	 it	 as	 the	 “freedom	of	 humans	 to
make	choices	that	are	not	determined	by	prior	causes	or	by	divine	intervention.”
You	 will	 notice	 that	 this	 definition	 is	 hopelessly	 circular:	 “Free	 will	 is
freedom….”	 Setting	 aside	 the	 idea	 of	 divine	 intervention’s	 standing	 in
opposition	to	free	will,	there	is	one	useful	element	in	this	definition,	which	is	the
idea	of	a	decision’s	“not	[being]	determined	by	prior	causes.”	I’ll	come	back	to
that	momentarily.

The	 Stanford	 Encyclopedia	 of	 Philosophy	 states	 that	 free	 will	 is	 the
“capacity	 of	 rational	 agents	 to	 choose	 a	 course	 of	 action	 from	 among	 various
alternatives.”	By	this	definition,	a	simple	computer	is	capable	of	free	will,	so	it	is
less	helpful	than	the	dictionary	definition.

Wikipedia	is	actually	a	bit	better.	It	defines	free	will	as	“the	ability	of	agents
to	 make	 choices	 free	 from	 certain	 kinds	 of	 constraints….	 The	 constraint	 of
dominant	 concern	 has	 been…determinism.”	 Again,	 it	 uses	 the	 circular	 word
“free”	in	defining	free	will,	but	it	does	articulate	what	has	been	regarded	as	the
principal	enemy	of	free	will:	determinism.	 In	that	respect	 the	Merriam-Webster
definition	 above	 is	 actually	 similar	 in	 its	 reference	 to	 decisions	 that	 “are	 not
determined	by	prior	causes.”

So	what	do	we	mean	by	determinism?	If	I	put	“2	+	2”	into	a	calculator	and
it	displays	“4,”	can	I	say	that	the	calculator	displayed	its	free	will	by	deciding	to
display	 that	 “4”?	 No	 one	 would	 accept	 that	 as	 a	 demonstration	 of	 free	 will,
because	 the	 “decision”	 was	 predetermined	 by	 the	 internal	 mechanisms	 of	 the
calculator	and	the	input.	If	I	put	in	a	more	complex	calculation,	we	still	come	to
the	same	conclusion	with	regard	to	its	lack	of	free	will.

How	 about	 Watson	 when	 it	 answers	 a	 Jeopardy!	 query?	 Although	 its
deliberations	are	far	more	complex	than	those	of	the	calculator,	very	few	if	any
observers	would	ascribe	free	will	to	its	decisions.	No	one	human	knows	exactly
how	 all	 of	 its	 programs	 work,	 but	 we	 can	 identify	 a	 group	 of	 people	 who
collectively	 can	 describe	 all	 of	 its	 methods.	 More	 important,	 its	 output	 is
determined	by	(1)	all	of	its	programs	at	the	moment	that	the	query	is	posed,	(2)
the	 query	 itself,	 (3)	 the	 state	 of	 its	 internal	 parameters	 that	 influence	 its
decisions,	 and	 (4)	 its	 trillions	 of	 bytes	 of	 knowledge	 bases,	 including
encyclopedias.	 Based	 on	 these	 four	 categories	 of	 information,	 its	 output	 is
determined.	We	might	 speculate	 that	 presenting	 the	 same	 query	would	 always



get	the	same	response,	but	Watson	is	programmed	to	learn	from	its	experience,
so	there	is	the	possibility	that	subsequent	answers	would	be	different.	However,
that	does	not	contradict	this	analysis;	rather,	it	just	constitutes	a	change	in	item	3,
the	parameters	that	control	its	decisions.

So	how	exactly	does	a	human	differ	from	Watson,	such	that	we	ascribe	free
will	 to	 the	 human	 but	 not	 to	 the	 computer	 program?	We	 can	 identify	 several
factors.	 Even	 though	Watson	 is	 a	 better	 Jeopardy!	 player	 than	most	 if	 not	 all
humans,	it	 is	nonetheless	not	nearly	as	complex	as	a	human	neocortex.	Watson
does	possess	a	 lot	of	knowledge,	and	 it	does	use	hierarchical	methods,	but	 the
complexity	 of	 its	 hierarchical	 thinking	 is	 still	 considerably	 less	 than	 that	 of	 a
human.	 So	 is	 the	 difference	 simply	 one	 of	 the	 scale	 of	 complexity	 of	 its
hierarchical	thinking?	There	is	an	argument	to	be	made	that	the	issue	does	come
down	to	this.	In	my	discussion	of	the	issue	of	consciousness	I	noted	that	my	own
leap	of	faith	is	that	I	would	consider	a	computer	that	passed	a	valid	Turing	test	to
be	conscious.	The	best	chatbots	are	not	able	to	do	that	today	(although	they	are
steadily	improving),	so	my	conclusion	with	regard	to	consciousness	is	a	matter
of	 the	 level	 of	 performance	 of	 the	 entity.	 Perhaps	 the	 same	 is	 true	 of	 my
ascribing	free	will	to	it.

Consciousness	 is	 indeed	 one	 philosophical	 difference	 between	 human
brains	 and	 contemporary	 software	 programs.	We	 consider	 human	 brains	 to	 be
conscious,	whereas	we	do	not—yet—attribute	that	to	software	programs.	Is	this
the	factor	we	are	looking	for	that	underlies	free	will?

A	simple	mind	experiment	would	argue	that	consciousness	is	indeed	a	vital
part	of	free	will.	Consider	a	situation	in	which	someone	performs	an	action	with
no	 awareness	 that	 she	 is	 doing	 it—it	 is	 carried	 out	 entirely	 by	 nonconscious
activity	in	that	person’s	brain.	Would	we	regard	this	to	be	a	display	of	free	will?
Most	 people	would	 answer	 no.	 If	 the	 action	was	 harmful,	we	would	 probably
still	 hold	 that	 person	 responsible	 but	 look	 for	 some	 recent	 conscious	 acts	 that
may	have	 caused	 that	 person	 to	 perform	 actions	without	 conscious	 awareness,
such	as	taking	one	drink	too	many,	or	 just	failing	to	train	herself	adequately	to
consciously	consider	her	decisions	before	she	acted	on	them.

According	 to	 some	 commentators,	 the	 Libet	 experiments	 argued	 against
free	will	 by	 highlighting	 how	much	 of	 our	 decision	making	 is	 not	 conscious.
Since	 there	 is	 a	 reasonable	 consensus	 among	 philosophers	 that	 free	 will	 does
imply	conscious	decision	making,	it	appears	to	be	one	prerequisite	for	free	will.
However,	 to	 many	 observers,	 consciousness	 is	 a	 necessary	 but	 not	 sufficient
condition.	 If	our	decisions—conscious	or	otherwise—are	predetermined	before
we	make	them,	how	can	we	say	that	our	decisions	are	free?	This	position,	which
holds	 that	 free	 will	 and	 determinism	 are	 not	 compatible,	 is	 known	 as



incompatibilism.	For	example,	American	philosopher	Carl	Ginet	(born	in	1932)
argues	that	if	events	in	the	past,	present,	and	future	are	determined,	then	we	can
be	considered	to	have	no	control	over	them	or	their	consequences.	Our	apparent
decisions	and	actions	are	simply	part	of	this	predetermined	sequence.	To	Ginet,
this	rules	out	free	will.

Not	everyone	regards	determinism	as	being	incompatible	with	the	concept
of	 free	will,	 however.	The	 compatibilists	 argue,	 essentially,	 that	 you’re	 free	 to
decide	what	 you	want	 even	 though	what	 you	decide	 is	 or	may	be	determined.
Daniel	 Dennett,	 for	 example,	 argues	 that	 while	 the	 future	may	 be	 determined
from	the	state	of	the	present,	the	reality	is	that	the	world	is	so	intricately	complex
that	we	cannot	possibly	know	what	the	future	will	bring.	We	can	identify	what
he	refers	to	as	“expectations,”	and	we	are	indeed	free	to	perform	acts	that	differ
from	 these	 expectations.	 We	 should	 consider	 how	 our	 decisions	 and	 actions
compare	 to	 these	expectations,	not	 to	a	 theoretically	determined	 future	 that	we
cannot	in	fact	know.	That,	Dennett	argues,	is	sufficient	for	free	will.

Gazzaniga	 also	 articulates	 a	 compatibilist	 position:	 “We	 are	 personally
responsible	agents	and	are	 to	be	held	accountable	 for	our	actions,	even	 though
we	live	in	a	determined	world.”17	A	cynic	might	interpret	this	view	as:	You	have
no	control	over	your	actions,	but	we’ll	blame	you	anyway.

Some	 thinkers	 dismiss	 the	 idea	 of	 free	 will	 as	 an	 illusion.	 Scottish
philosopher	David	Hume	(1711–1776)	described	it	as	simply	a	“verbal”	matter
characterized	 by	 “a	 false	 sensation	 or	 seeming	 experience.”18	 German
philosopher	 Arthur	 Schopenhauer	 (1788–1860)	 wrote	 that	 “everyone	 believes
himself	a	priori	 to	be	perfectly	 free,	 even	 in	his	 individual	 actions,	 and	 thinks
that	 at	 every	 moment	 he	 can	 commence	 another	 manner	 of	 life….	 But	 a
posteriori,	 through	experience,	he	 finds	 to	his	astonishment	 that	he	 is	not	 free,
but	 subjected	 to	necessity,	 that	 in	 spite	of	all	his	 resolutions	and	 reflections	he
does	not	change	his	conduct,	and	that	from	the	beginning	of	his	life	to	the	end	of
it,	he	must	carry	out	the	very	character	which	he	himself	condemns.”19

I	 would	 add	 several	 points	 here.	 The	 concept	 of	 free	 will—and
responsibility,	 which	 is	 a	 closely	 aligned	 idea—is	 useful,	 and	 indeed	 vital,	 to
maintaining	 social	 order,	 whether	 or	 not	 free	 will	 actually	 exists.	 Just	 as
consciousness	clearly	exists	as	a	meme,	so	too	does	free	will.	Attempts	to	prove
its	existence,	or	even	to	define	it,	may	become	hopelessly	circular,	but	the	reality
is	 that	 almost	 everyone	 believes	 in	 the	 idea.	 Very	 substantial	 portions	 of	 our
higher-level	neocortex	are	devoted	to	the	concept	that	we	make	free	choices	and
are	 responsible	 for	 our	 actions.	Whether	 in	 a	 strict	 philosophical	 sense	 that	 is
true	 or	 even	 possible,	 society	would	 be	 far	worse	 off	 if	we	 did	 not	 have	 such



beliefs.
Furthermore,	the	world	is	not	necessarily	determined.	I	discussed	above	two

perspectives	on	quantum	mechanics,	which	differ	with	respect	to	the	relationship
of	quantum	fields	to	an	observer.	A	popular	interpretation	of	the	observer-based
perspective	 provides	 a	 role	 for	 consciousness:	 Particles	 do	 not	 resolve	 their
quantum	ambiguity	until	observed	by	a	conscious	observer.	There	is	another	split
in	the	philosophy	of	quantum	events	that	has	a	bearing	on	our	discussion	of	free
will,	one	 that	 revolves	around	the	question:	Are	quantum	events	determined	or
random?

The	most	common	interpretation	of	a	quantum	event	is	that	when	the	wave
function	 constituting	 a	 particle	 “collapses,”	 the	 particle’s	 location	 becomes
specific.	Over	a	great	many	such	events,	there	will	be	a	predictable	distribution
(which	is	why	the	wave	function	is	considered	to	be	a	probability	distribution),
but	 the	 resolution	 for	 each	 such	 particle	 undergoing	 a	 collapse	 of	 its	 wave
function	 is	 random.	 The	 opposing	 interpretation	 is	 deterministic:	 specifically,
that	there	is	a	hidden	variable	that	we	are	unable	to	detect	separately,	but	whose
value	 determines	 the	 particle’s	 position.	 The	 value	 or	 phase	 of	 the	 hidden
variable	at	the	moment	of	the	wave	function	collapse	determines	the	position	of
the	 particle.	 Most	 quantum	 physicists	 seem	 to	 favor	 the	 idea	 of	 a	 random
resolution	 according	 to	 the	 probability	 field,	 but	 the	 equations	 for	 quantum
mechanics	do	allow	for	the	existence	of	such	a	hidden	variable.

Thus	 the	 world	 may	 not	 be	 determined	 after	 all.	 According	 to	 the
probability	 wave	 interpretation	 of	 quantum	 mechanics,	 there	 is	 a	 continual
source	of	uncertainty	at	the	most	basic	level	of	reality.	However,	this	observation
does	not	necessarily	 resolve	 the	concerns	of	 the	 incompatibilists.	 It	 is	 true	 that
under	this	interpretation	of	quantum	mechanics,	the	world	is	not	determined,	but
our	 concept	 of	 free	will	 extends	 beyond	 decisions	 and	 actions	 that	 are	merely
random.	Most	 incompatibilists	 would	 find	 the	 concept	 of	 free	 will	 to	 also	 be
incompatible	with	our	decisions’	being	essentially	accidental.	Free	will	seems	to
imply	purposeful	decision	making.

Dr.	Wolfram	proposes	a	way	to	resolve	the	dilemma.	His	book	A	New	Kind
of	Science	(2002)	presents	a	comprehensive	view	of	the	idea	of	cellular	automata
and	their	role	in	every	facet	of	our	lives.	A	cellular	automaton	is	a	mechanism	in
which	the	value	of	information	cells	is	continually	recomputed	as	a	function	of
the	 cells	 near	 it.	 John	 von	 Neumann	 created	 a	 theoretical	 self-replicating
machine	 called	 a	 universal	 constructor	 that	 was	 perhaps	 the	 first	 cellular
automaton.

Dr.	 Wolfram	 illustrates	 his	 thesis	 with	 the	 simplest	 possible	 cellular
automata,	a	group	of	cells	in	a	one-dimensional	line.	At	each	point	in	time,	each



cell	 can	 have	 one	 of	 two	 values:	 black	 or	 white.	 The	 value	 of	 each	 cell	 is
recomputed	for	each	cycle.	The	value	of	a	cell	for	the	next	cycle	is	a	function	of
its	current	value	as	well	as	the	value	of	its	two	adjacent	neighbors.	Each	cellular
automaton	is	characterized	by	a	rule	that	determines	how	we	compute	whether	a
cell	is	black	or	white	in	the	next	cycle.

Consider	the	example	of	what	Dr.	Wolfram	calls	rule	222.

The	eight	possible	combinations	of	value	for	the	cell	being	recomputed	and
its	left	and	right	neighbors	are	shown	in	the	top	row.	Its	new	value	is	shown	in
the	bottom	row.	So,	 for	example,	 if	 the	cell	 is	black	and	 its	 two	neighbors	are
also	black,	then	the	cell	will	remain	black	in	the	next	generation	(see	the	leftmost
subrule	of	rule	222).	If	the	cell	 is	white,	its	left	neighbor	is	white,	and	its	right
neighbor	is	black,	then	it	will	be	changed	to	black	in	the	next	generation	(see	the
subrule	of	rule	222	that	is	second	from	the	right).

The	universe	for	this	simple	cellular	automaton	is	just	one	row	of	cells.	If
we	start	with	just	one	black	cell	in	the	middle	and	show	the	evolution	of	the	cells
over	multiple	generations	(where	each	row	as	we	move	down	represents	a	new
generation	of	values),	the	results	of	rule	222	look	like	this:



An	automaton	is	based	on	a	rule,	and	a	rule	defines	whether	the	cell	will	be
black	or	white	based	on	which	of	the	eight	possible	patterns	exist	in	the	current
generation.	Thus	 there	 are	 28	 =	 256	 possible	 rules.	Dr.	Wolfram	 listed	 all	 256
possible	 such	 automata	 and	 assigned	 each	 a	 Wolfram	 code	 from	 0	 to	 255.
Interestingly,	these	256	theoretical	machines	have	very	different	properties.	The
automata	 in	 what	 Dr.	 Wolfram	 calls	 class	 I,	 such	 as	 rule	 222,	 create	 very
predictable	patterns.	If	I	were	to	ask	what	the	value	of	the	middle	cell	was	after	a
trillion	trillion	iterations	of	rule	222,	you	could	answer	easily:	black.

Much	more	 interesting,	however,	 are	 the	class	 IV	automata,	 illustrated	by
rule	110.

Multiple	generations	of	this	automaton	look	like	this:



The	interesting	thing	about	the	rule	110	automaton	and	class	IV	automata	in
general	 is	 that	 the	 results	 are	 completely	 unpredictable.	 The	 results	 pass	 the
strictest	 mathematical	 tests	 for	 randomness,	 yet	 they	 do	 not	 simply	 generate
noise:	 There	 are	 repeating	 patterns,	 but	 they	 repeat	 in	 odd	 and	 unpredictable
ways.	If	I	were	to	ask	you	what	the	value	of	a	particular	cell	was	after	a	trillion
trillion	 iterations,	 there	 would	 be	 no	 way	 to	 answer	 that	 question	 without
actually	 running	 this	 machine	 through	 that	 many	 generations.	 The	 solution	 is
clearly	determined,	because	this	is	a	very	simple	deterministic	machine,	but	it	is
completely	unpredictable	without	actually	running	the	machine.

Dr.	Wolfram’s	primary	 thesis	 is	 that	 the	world	 is	one	big	class	IV	cellular
automaton.	The	reason	that	his	book	is	titled	A	New	Kind	of	Science	 is	because
this	theory	contrasts	with	most	other	scientific	laws.	If	there	is	a	satellite	orbiting
Earth,	we	can	predict	where	it	will	be	five	years	from	now	without	having	to	run
through	 each	 moment	 of	 a	 simulated	 process	 by	 using	 the	 relevant	 laws	 of
gravity	 and	 solve	where	 it	 will	 be	 at	 points	 in	 time	 far	 in	 the	 future.	 But	 the
future	state	of	class	IV	cellular	automata	cannot	be	predicted	without	simulating
every	 step	 along	 the	way.	 If	 the	 universe	 is	 a	 giant	 cellular	 automaton,	 as	Dr.
Wolfram	 postulates,	 there	 would	 be	 no	 computer	 big	 enough—since	 every
computer	would	be	a	subset	of	 the	universe—that	could	run	such	a	simulation.
Therefore	the	future	state	of	the	universe	is	completely	unknowable	even	though
it	is	deterministic.

Thus	 even	 though	 our	 decisions	 are	 determined	 (because	 our	 bodies	 and
brains	 are	 part	 of	 a	 deterministic	 universe),	 they	 are	 nonetheless	 inherently
unpredictable	 because	 we	 live	 in	 (and	 are	 part	 of)	 a	 class	 IV	 automaton.	We
cannot	predict	the	future	of	a	class	IV	automaton	except	to	let	the	future	unfold.
For	Dr.	Wolfram,	this	is	sufficient	to	allow	for	free	will.

We	 don’t	 have	 to	 look	 to	 the	 universe	 to	 see	 future	 events	 that	 are
determined	 yet	 unpredictable.	 None	 of	 the	 scientists	 who	 have	 worked	 on



Watson	can	predict	what	it	will	do,	because	the	program	is	just	too	complex	and
varied,	and	its	performance	is	based	on	knowledge	that	 is	far	 too	extensive	for
any	human	to	master.	If	we	believe	that	humans	exhibit	free	will,	then	it	follows
that	we	have	 to	 allow	 that	 future	 versions	of	Watson	or	Watson-like	machines
can	exhibit	it	also.

My	own	leap	of	faith	is	that	I	believe	that	humans	have	free	will,	and	while
I	act	as	 if	 that	 is	 the	case,	 I	am	hard	pressed	 to	 find	examples	among	my	own
decisions	 that	 illustrate	 that.	Consider	 the	decision	 to	write	 this	book—I	never
made	that	decision.	Rather,	the	idea	of	the	book	decided	that	for	me.	In	general,	I
find	myself	 captive	 to	 ideas	 that	 seem	 to	 implant	 themselves	 in	my	 neocortex
and	 take	 over.	 How	 about	 the	 decision	 to	 get	 married,	 which	 I	 made	 (in
collaboration	with	one	other	person)	thirty-six	years	ago?	At	the	time,	I	had	been
following	the	usual	program	of	being	attracted	to—and	pursuing—a	pretty	girl.	I
then	fell	in	love.	Where	is	the	free	will	in	that?

But	 what	 about	 the	 little	 decisions	 I	 make	 every	 day—for	 example,	 the
specific	words	I	choose	to	write	in	my	book?	I	start	with	a	blank	virtual	sheet	of
paper.	 No	 one	 is	 telling	 me	 what	 to	 do.	 There	 is	 no	 editor	 looking	 over	 my
shoulder.	My	 choices	 are	 entirely	 up	 to	 me.	 I	 am	 free—totally	 free—to	write
whatever	I…

Uh,	grok…
Grok?	Okay,	I	did	it—I	finally	applied	my	free	will.	I	was	going	to	write	the

word	“want,”	but	I	made	a	free	decision	 to	write	something	 totally	unexpected
instead.	This	is	perhaps	the	first	time	I’ve	succeeded	in	exercising	pure	free	will.

Or	not.
It	should	be	apparent	that	that	was	a	display	not	of	will,	but	rather	of	trying

to	illustrate	a	point	(and	perhaps	a	weak	sense	of	humor).
Although	I	share	Descartes’	confidence	that	I	am	conscious,	I’m	not	so	sure

about	free	will.	It	is	difficult	to	escape	Schopenhauer’s	conclusion	that	“you	can
do	what	you	will,	but	 in	any	given	moment	of	your	 life	you	can	will	 only	one
definite	thing	and	absolutely	nothing	other	than	that	one	thing.”20	Nonetheless	I
will	continue	to	act	as	if	I	have	free	will	and	to	believe	in	it,	so	long	as	I	don’t
have	to	explain	why.



Identity

A	philosopher	once	had	the	following	dream.
First	Aristotle	appeared,	and	the	philosopher	said	to	him,	“Could	you

give	me	a	fifteen-minute	capsule	sketch	of	your	entire	philosophy?”	To	the
philosopher’s	surprise,	Aristotle	gave	him	an	excellent	exposition	in	which
he	compressed	an	enormous	amount	of	material	into	a	mere	fifteen	minutes.
But	then	the	philosopher	raised	a	certain	objection	which	Aristotle	couldn’t
answer.	Confounded,	Aristotle	disappeared.

Then	 Plato	 appeared.	 The	 same	 thing	 happened	 again,	 and	 the
philosopher’s	objection	to	Plato	was	the	same	as	his	objection	to	Aristotle.
Plato	also	couldn’t	answer	it	and	disappeared.

Then	all	the	famous	philosophers	of	history	appeared	one	by	one	and
our	philosopher	refuted	every	one	with	the	same	objection.

After	the	last	philosopher	vanished,	our	philosopher	said	to	himself,	“I
know	I’m	asleep	and	dreaming	all	this.	Yet	I’ve	found	a	universal	refutation
for	all	philosophical	 systems!	Tomorrow	when	I	wake	up,	 I	will	probably
have	forgotten	it,	and	the	world	will	really	miss	something!”	With	an	iron
effort,	the	philosopher	forced	himself	to	wake	up,	rush	over	to	his	desk,	and
write	down	his	universal	 refutation.	Then	he	 jumped	back	into	bed	with	a
sigh	of	relief.

The	 next	morning	when	 he	 awoke,	 he	went	 over	 to	 the	 desk	 to	 see
what	he	had	written.	It	was,	“That’s	what	you	say.”

—Raymond	Smullyan,	as	quoted	by	David	Chalmers21
	

	
What	I	wonder	about	ever	more	than	whether	or	not	I	am	conscious	or	exercise
free	will	is	why	I	happen	to	be	conscious	of	the	experiences	and	decisions	of	this
one	 particular	 person	 who	 writes	 books,	 enjoys	 hiking	 and	 biking,	 takes
nutritional	 supplements,	 and	 so	 on.	 An	 obvious	 answer	 would	 be,	 “Because
that’s	who	you	are.”

That	exchange	is	probably	no	more	tautological	than	my	answers	above	to
questions	 about	 consciousness	 and	 free	 will.	 But	 actually	 I	 do	 have	 a	 better
answer	for	why	my	consciousness	is	associated	with	this	particular	person:	It	is
because	that	is	who	I	created	myself	to	be.



A	common	aphorism	is,	“You	are	what	you	eat.”	It	is	even	more	true	to	say,
“You	 are	 what	 you	 think.”	 As	 we	 have	 discussed,	 all	 of	 the	 hierarchical
structures	in	my	neocortex	that	define	my	personality,	skills,	and	knowledge	are
the	result	of	my	own	thoughts	and	experiences.	The	people	I	choose	to	interact
with	 and	 the	 ideas	 and	 projects	 I	 choose	 to	 engage	 in	 are	 all	 primary
determinants	 of	 who	 I	 become.	 For	 that	 matter,	 what	 I	 eat	 also	 reflects	 the
decisions	made	 by	my	 neocortex.	 Accepting	 the	 positive	 side	 of	 the	 free	will
duality	for	the	moment,	it	is	my	own	decisions	that	result	in	who	I	am.

Regardless	of	how	we	came	to	be	who	we	are,	each	of	us	has	the	desire	for
our	 identity	 to	 persist.	 If	 you	didn’t	 have	 the	will	 to	 survive,	 you	wouldn’t	 be
here	 reading	 this	 book.	 Every	 creature	 has	 that	 goal—it	 is	 the	 principal
determinant	of	evolution.	The	issue	of	identity	is	perhaps	even	harder	to	define
than	 consciousness	 or	 free	will,	 but	 is	 arguably	more	 important.	After	 all,	we
need	to	know	what	we	are	if	we	seek	to	preserve	our	existence.

Consider	 this	 thought	experiment:	You	are	 in	 the	 future	with	 technologies
more	 advanced	 than	 today’s.	While	 you	 are	 sleeping,	 some	 group	 scans	 your
brain	 and	 picks	 up	 every	 salient	 detail.	 Perhaps	 they	 do	 this	with	 blood	 cell–
sized	scanning	machines	traveling	in	the	capillaries	of	your	brain	or	with	some
other	suitable	noninvasive	technology,	but	they	have	all	of	the	information	about
your	brain	at	a	particular	point	in	time.	They	also	pick	up	and	record	any	bodily
details	 that	might	 reflect	 on	your	 state	of	mind,	 such	 as	 the	 endocrine	 system.
They	instantiate	 this	“mind	file”	 in	a	nonbiological	body	that	 looks	and	moves
like	 you	 and	 has	 the	 requisite	 subtlety	 and	 suppleness	 to	 pass	 for	 you.	 In	 the
morning	you	 are	 informed	 about	 this	 transfer	 and	you	watch	 (perhaps	without
being	noticed)	your	mind	clone,	whom	we’ll	call	You	2.	You	2	is	talking	about
his	 or	 her	 life	 as	 if	 s/he	were	 you,	 and	 relating	 how	 s/he	 discovered	 that	 very
morning	 that	 s/he	had	been	given	a	much	more	durable	new	version	2.0	body.
“Hey,	I	kind	of	like	this	new	body!”	s/he	exclaims.

The	 first	question	 to	consider	 is:	 Is	You	2	conscious?	Well,	 s/he	certainly
seems	to	be.	S/he	passes	the	test	I	articulated	earlier,	 in	that	s/he	has	the	subtle
cues	of	being	 a	 feeling,	 conscious	person.	 If	 you	 are	 conscious,	 then	 so	 too	 is
You	2.

So	 if	 you	 were	 to,	 uh,	 disappear,	 no	 one	 would	 notice.	 You	 2	 would	 go
around	claiming	to	be	you.	All	of	your	friends	and	loved	ones	would	be	content
with	the	situation	and	perhaps	pleased	that	you	now	have	a	more	durable	body
and	mental	substrate	than	you	used	to	have.	Perhaps	your	more	philosophically
minded	friends	would	express	concerns,	but	for	the	most	part,	everybody	would
be	happy,	including	you,	or	at	least	the	person	who	is	convincingly	claiming	to
be	you.



So	 we	 don’t	 need	 your	 old	 body	 and	 brain	 anymore,	 right?	 Okay	 if	 we
dispose	of	it?

You’re	probably	not	going	 to	go	along	with	 this.	 I	 indicated	 that	 the	scan
was	 noninvasive,	 so	 you	 are	 still	 around	 and	 still	 conscious.	 Moreover	 your
sense	of	identity	is	still	with	you,	not	with	You	2,	even	though	You	2	thinks	s/he
is	a	continuation	of	you.	You	2	might	not	even	be	aware	that	you	exist	or	ever
existed.	In	fact	you	would	not	be	aware	of	 the	existence	of	You	2	either,	 if	we
hadn’t	told	you	about	it.

Our	conclusion?	You	2	is	conscious	but	is	a	different	person	than	you—You
2	has	a	different	 identity.	S/he	is	extremely	similar,	much	more	so	 than	a	mere
genetic	 clone,	 because	 s/he	 also	 shares	 all	 of	 your	 neocortical	 patterns	 and
connections.	Or	I	should	say	s/he	shared	those	patterns	at	the	moment	s/he	was
created.	At	that	point,	the	two	of	you	started	to	go	your	own	ways,	neocortically
speaking.	You	are	still	around.	You	are	not	having	the	same	experiences	as	You
2.	Bottom	line:	You	2	is	not	you.

Okay,	so	far	so	good.	Now	consider	another	thought	experiment—one	that
is,	I	believe,	more	realistic	in	terms	of	what	the	future	will	bring.	You	undergo	a
procedure	 to	 replace	a	very	small	part	of	your	brain	with	a	nonbiological	unit.
You’re	convinced	that	it’s	safe,	and	there	are	reports	of	various	benefits.

This	 is	 not	 so	 far-fetched,	 as	 it	 is	 done	 routinely	 for	 people	 with
neurological	 and	 sensory	 impairments,	 such	 as	 the	 neural	 implant	 for
Parkinson’s	 disease	 and	 cochlear	 implants	 for	 the	 deaf.	 In	 these	 cases	 the
computerized	 device	 is	 placed	 inside	 the	 body	 but	 outside	 the	 brain	 yet
connected	into	the	brain	(or	in	the	case	of	the	cochlear	implants,	to	the	auditory
nerve).	In	my	view	the	fact	that	the	actual	computer	is	physically	placed	outside
the	actual	brain	is	not	philosophically	significant:	We	are	effectively	augmenting
the	brain	and	replacing	with	a	computerized	device	those	of	its	functions	that	no
longer	work	properly.	In	the	2030s,	when	intelligent	computerized	devices	will
be	the	size	of	blood	cells	(and	keep	in	mind	that	white	blood	cells	are	sufficiently
intelligent	 to	 recognize	 and	 combat	 pathogens),	 we	 will	 introduce	 them
noninvasively,	no	surgery	required.

Returning	to	our	future	scenario,	you	have	the	procedure,	and	as	promised,
it	works	just	fine—certain	of	your	capabilities	have	improved.	(You	have	better
memory,	 perhaps.)	 So	 are	 you	 still	 you?	 Your	 friends	 certainly	 think	 so.	 You
think	 so.	 There	 is	 no	 good	 argument	 that	 you’re	 suddenly	 a	 different	 person.
Obviously,	 you	 underwent	 the	 procedure	 in	 order	 to	 effect	 a	 change	 in
something,	 but	 you	 are	 still	 the	 same	 you.	 Your	 identity	 hasn’t	 changed.
Someone	else’s	consciousness	didn’t	suddenly	take	over	your	body.

Okay,	 so,	 encouraged	 by	 these	 results,	 you	 now	 decide	 to	 have	 another



procedure,	 this	 time	 involving	a	different	 region	of	 the	brain.	The	 result	 is	 the
same:	You	experience	some	improvement	in	capability,	but	you’re	still	you.

It	 should	 be	 apparent	 where	 I	 am	 going	 with	 this.	 You	 keep	 opting	 for
additional	 procedures,	 your	 confidence	 in	 the	 process	 only	 increasing,	 until
eventually	 you’ve	 changed	 every	 part	 of	 your	 brain.	 Each	 time	 the	 procedure
was	carefully	done	 to	preserve	all	of	your	neocortical	patterns	and	connections
so	that	you	have	not	lost	any	of	your	personality,	skills,	or	memories.	There	was
never	 a	 you	 and	 a	 You	 2;	 there	 was	 only	 you.	 No	 one,	 including	 you,	 ever
notices	you	ceasing	to	exist.	Indeed—there	you	are.

Our	 conclusion:	 You	 still	 exist.	 There’s	 no	 dilemma	 here.	 Everything	 is
fine.

Except	 for	 this:	 You,	 after	 the	 gradual	 replacement	 process,	 are	 entirely
equivalent	to	You	2	in	the	prior	thought	experiment	(which	I	will	call	the	scan-
and-instantiate	scenario).	You,	after	the	gradual	replacement	scenario,	have	all	of
the	 neocortical	 patterns	 and	 connections	 that	 you	 had	 originally,	 only	 in	 a
nonbiological	 substrate,	which	 is	also	 true	of	You	2	 in	 the	 scan-and-instantiate
scenario.	 You,	 after	 the	 gradual	 replacement	 scenario,	 have	 some	 additional
capabilities	 and	 greater	 durability	 than	 you	 did	 before	 the	 process,	 but	 this	 is
likewise	true	of	You	2	in	the	scan-and-instantiate	process.

But	 we	 concluded	 that	 You	 2	 is	 not	 you.	 And	 if	 you,	 after	 the	 gradual
replacement	 process,	 are	 entirely	 equivalent	 to	 You	 2	 after	 the	 scan-and-
instantiate	process,	then	you	after	the	gradual	replacement	process	must	also	not
be	you.

That,	however,	contradicts	our	earlier	conclusion.	The	gradual	replacement
process	 consists	 of	 multiple	 steps.	 Each	 of	 those	 steps	 appeared	 to	 preserve
identity,	 just	 as	 we	 conclude	 today	 that	 a	 Parkinson’s	 patient	 has	 the	 same
identity	after	having	had	a	neural	implant	installed.22

It	 is	 just	 this	 sort	 of	 philosophical	 dilemma	 that	 leads	 some	 people	 to
conclude	that	these	replacement	scenarios	will	never	happen	(even	though	they
are	 already	 taking	 place).	 But	 consider	 this:	 We	 naturally	 undergo	 a	 gradual
replacement	 process	 throughout	 our	 lives.	 Most	 of	 our	 cells	 in	 our	 body	 are
continuously	 being	 replaced.	 (You	 just	 replaced	 100	 million	 of	 them	 in	 the
course	 of	 reading	 the	 last	 sentence.)	 Cells	 in	 the	 inner	 lining	 of	 the	 small
intestine	turn	over	in	about	a	week,	as	does	the	stomach’s	protective	lining.	The
life	span	of	white	blood	cells	ranges	from	a	few	days	to	a	few	months,	depending
on	the	type.	Platelets	last	about	nine	days.

Neurons	 persist,	 but	 their	 organelles	 and	 their	 constituent	molecules	 turn
over	 within	 a	 month.23	 The	 half-life	 of	 a	 neuron	 microtubule	 is	 about	 ten



minutes;	the	actin	filaments	in	the	dendrites	last	about	forty	seconds;	the	proteins
that	 provide	 energy	 to	 the	 synapses	 are	 replaced	 every	 hour;	 the	 NMDA
receptors	in	synapses	are	relatively	long-lived	at	five	days.

So	you	are	completely	replaced	in	a	matter	of	months,	which	is	comparable
to	the	gradual	replacement	scenario	I	describe	above.	Are	you	the	same	person
you	were	a	few	months	ago?	Certainly	there	are	some	differences.	Perhaps	you
learned	a	few	things.	But	you	assume	that	your	identity	persists,	that	you	are	not
continually	destroyed	and	re-created.

Consider	a	river,	like	the	one	that	flows	past	my	office.	As	I	look	out	now	at
what	 people	 call	 the	 Charles	 River,	 is	 it	 the	 same	 river	 that	 I	 saw	 yesterday?
Let’s	first	reflect	on	what	a	river	is.	The	dictionary	defines	it	is	“a	large	natural
stream	 of	 flowing	 water.”	 By	 that	 definition,	 the	 river	 I’m	 looking	 at	 is	 a
completely	different	one	than	it	was	yesterday.	Every	one	of	its	water	molecules
has	changed,	a	process	 that	happens	very	quickly.	Greek	philosopher	Diogenes
Laertius	wrote	in	the	third	century	AD	that	“you	cannot	step	into	the	same	river
twice.”

But	that	is	not	how	we	generally	regard	rivers.	People	like	to	look	at	them
because	they	are	symbols	of	continuity	and	stability.	By	the	common	view,	the
Charles	River	that	I	looked	at	yesterday	is	the	same	river	I	see	today.	Our	lives
are	much	the	same.	Fundamentally	we	are	not	the	stuff	that	makes	up	our	bodies
and	 brains.	 These	 particles	 essentially	 flow	 through	 us	 in	 the	 same	 way	 that
water	molecules	flow	through	a	river.	We	are	a	pattern	that	changes	slowly	but
has	 stability	 and	 continuity,	 even	 though	 the	 stuff	 constituting	 the	 pattern
changes	quickly.

The	 gradual	 introduction	 of	 nonbiological	 systems	 into	 our	 bodies	 and
brains	 will	 be	 just	 another	 example	 of	 the	 continual	 turnover	 of	 parts	 that
compose	 us.	 It	 will	 not	 alter	 the	 continuity	 of	 our	 identity	 any	more	 than	 the
natural	 replacement	 of	 our	 biological	 cells	 does.	 We	 have	 already	 largely
outsourced	 our	 historical,	 intellectual,	 social,	 and	 personal	 memories	 to	 our
devices	 and	 the	 cloud.	The	 devices	we	 interact	with	 to	 access	 these	memories
may	 not	 yet	 be	 inside	 our	 bodies	 and	 brains,	 but	 as	 they	 become	 smaller	 and
smaller	 (and	we	 are	 shrinking	 technology	 at	 a	 rate	 of	 about	 a	 hundred	 in	 3-D
volume	per	decade),	 they	will	make	 their	way	 there.	 In	any	event,	 it	will	be	a
useful	place	to	put	them—we	won’t	lose	them	that	way.	If	people	do	opt	out	of
placing	microscopic	devices	inside	their	bodies,	that	will	be	fine,	as	there	will	be
other	ways	to	access	the	pervasive	cloud	intelligence.

But	we	come	back	to	the	dilemma	I	introduced	earlier.	You,	after	a	period
of	 gradual	 replacement,	 are	 equivalent	 to	 You	 2	 in	 the	 scan-and-instantiate
scenario,	 but	 we	 decided	 that	 You	 2	 in	 that	 scenario	 does	 not	 have	 the	 same



identity	as	you.	So	where	does	that	leave	us?
It	leaves	us	with	an	appreciation	of	a	capability	that	nonbiological	systems

have	that	biological	systems	do	not:	the	ability	to	be	copied,	backed	up,	and	re-
created.	We	do	that	routinely	with	our	devices.	When	we	get	a	new	smartphone,
we	 copy	 over	 all	 of	 our	 files,	 so	 it	 has	much	 the	 same	 personality,	 skills,	 and
memories	that	the	old	smartphone	did.	Perhaps	it	also	has	some	new	capabilities,
but	the	contents	of	the	old	phone	are	still	with	us.	Similarly,	a	program	such	as
Watson	 is	 certainly	 backed	 up.	 If	 the	 Watson	 hardware	 were	 destroyed
tomorrow,	Watson	would	easily	be	re-created	from	its	backup	files	stored	in	the
cloud.

This	represents	a	capability	in	the	nonbiological	world	that	does	not	exist	in
the	 biological	world.	 It	 is	 an	 advantage,	 not	 a	 limitation,	which	 is	 one	 reason
why	we	are	so	eager	today	to	continue	uploading	our	memories	to	the	cloud.	We
will	certainly	continue	in	this	direction,	as	nonbiological	systems	attain	more	and
more	of	the	capabilities	of	our	biological	brains.

My	resolution	of	the	dilemma	is	this:	It	is	not	true	that	You	2	is	not	you—it
is	you.	It	is	just	that	there	are	now	two	of	you.	That’s	not	so	bad—if	you	think
you	are	a	good	thing,	then	two	of	you	is	even	better.

What	I	believe	will	actually	happen	is	that	we	will	continue	on	the	path	of
the	gradual	replacement	and	augmentation	scenario	until	ultimately	most	of	our
thinking	 will	 be	 in	 the	 cloud.	 My	 leap	 of	 faith	 on	 identity	 is	 that	 identity	 is
preserved	 through	 continuity	 of	 the	 pattern	 of	 information	 that	 makes	 us	 us.
Continuity	does	allow	for	continual	change,	so	whereas	I	am	somewhat	different
than	 I	 was	 yesterday,	 I	 nonetheless	 have	 the	 same	 identity.	 However,	 the
continuity	of	the	pattern	that	constitutes	my	identity	is	not	substrate-dependent.
Biological	substrates	are	wonderful—they	have	gotten	us	very	far—but	we	are
creating	a	more	capable	and	durable	substrate	for	very	good	reasons.



CHAPTER	10

	



THE	LAW	OF
ACCELERATING	RETURNS
APPLIED	TO	THE	BRAIN

	

And	though	man	should	remain,	in	some	respects,	the	higher	creature,	is	not
this	 in	accordance	with	 the	practice	of	nature,	which	allows	superiority	 in
some	things	to	animals	which	have,	on	the	whole,	been	long	surpassed?	Has
she	 not	 allowed	 the	 ant	 and	 the	 bee	 to	 retain	 superiority	 over	man	 in	 the
organization	 of	 their	 communities	 and	 social	 arrangements,	 the	 bird	 in
traversing	the	air,	the	fish	in	swimming,	the	horse	in	strength	and	fleetness,
and	the	dog	in	self-sacrifice?

—Samuel	Butler,	1871
	

There	was	 a	 time,	 when	 the	 earth	was	 to	 all	 appearance	 utterly	 destitute
both	of	animal	and	vegetable	life,	and	when	according	to	the	opinion	of	our
best	 philosophers	 it	 was	 simply	 a	 hot	 round	 ball	 with	 a	 crust	 gradually
cooling.	Now	if	a	human	being	had	existed	while	the	earth	was	in	this	state
and	 had	 been	 allowed	 to	 see	 it	 as	 though	 it	were	 some	 other	world	with
which	he	had	no	concern,	and	if	at	the	same	time	he	were	entirely	ignorant
of	 all	 physical	 science,	would	 he	 not	 have	 pronounced	 it	 impossible	 that
creatures	possessed	of	anything	like	consciousness	should	be	evolved	from
the	seeming	cinder	which	he	was	beholding?	Would	he	not	have	denied	that
it	 contained	 any	 potentiality	 of	 consciousness?	 Yet	 in	 the	 course	 of	 time
consciousness	came.	Is	it	not	possible	then	that	there	may	be	even	yet	new
channels	dug	out	for	consciousness,	though	we	can	detect	no	signs	of	them
at	present?

—Samuel	Butler,	1871
	

When	we	reflect	upon	the	manifold	phases	of	life	and	consciousness	which



have	 been	 evolved	 already,	 it	would	 be	 rash	 to	 say	 that	 no	 others	 can	 be
developed,	 and	 that	 animal	 life	 is	 the	 end	of	 all	 things.	There	was	a	 time
when	fire	was	the	end	of	all	things:	another	when	rocks	and	water	were	so.

—Samuel	Butler,	1871
	

There	 is	 no	 security	 against	 the	 ultimate	 development	 of	 mechanical
consciousness,	in	the	fact	of	machines	possessing	little	consciousness	now.
A	 mollusk	 has	 not	 much	 consciousness.	 Reflect	 upon	 the	 extraordinary
advance	which	machines	have	made	during	the	last	few	hundred	years,	and
note	 how	 slowly	 the	 animal	 and	 vegetable	 kingdoms	 are	 advancing.	 The
more	highly	organized	machines	are	creatures	not	so	much	of	yesterday,	as
of	the	last	five	minutes,	so	to	speak,	in	comparison	with	past	time.	Assume
for	 the	 sake	 of	 argument	 that	 conscious	 beings	 have	 existed	 for	 some
twenty	 million	 years:	 see	 what	 strides	 machines	 have	 made	 in	 the	 last
thousand!	May	not	the	world	last	twenty	million	years	longer?	If	so,	what
will	they	not	in	the	end	become?

—Samuel	Butler,	1871
	

	
My	 core	 thesis,	which	 I	 call	 the	 law	 of	 accelerating	 returns	 (LOAR),	 is	 that
fundamental	 measures	 of	 information	 technology	 follow	 predictable	 and
exponential	trajectories,	belying	the	conventional	wisdom	that	“you	can’t	predict
the	 future.”	There	 are	 still	many	 things—which	project,	 company,	or	 technical
standard	will	 prevail	 in	 the	marketplace,	when	 peace	will	 come	 to	 the	Middle
East—that	 remain	 unknowable,	 but	 the	 underlying	 price/performance	 and
capacity	 of	 information	 has	 nonetheless	 proven	 to	 be	 remarkably	 predictable.
Surprisingly,	 these	 trends	 are	 unperturbed	 by	 conditions	 such	 as	war	 or	 peace
and	prosperity	or	recession.

A	primary	reason	that	evolution	created	brains	was	to	predict	the	future.	As
one	of	our	ancestors	walked	 through	 the	 savannas	 thousands	of	years	ago,	 she
might	have	noticed	that	an	animal	was	progressing	toward	a	route	that	she	was
taking.	 She	 would	 predict	 that	 if	 she	 stayed	 on	 course,	 their	 paths	 would
intersect.	 Based	 on	 this,	 she	 decided	 to	 head	 in	 another	 direction,	 and	 her
foresight	proved	valuable	to	survival.

But	 such	 built-in	 predictors	 of	 the	 future	 are	 linear,	 not	 exponential,	 a
quality	that	stems	from	the	linear	organization	of	the	neocortex.	Recall	that	the
neocortex	 is	 constantly	making	 predictions—what	 letter	 and	word	we	will	 see



next,	whom	we	expect	to	see	as	we	round	the	corner,	and	so	on.	The	neocortex	is
organized	 with	 linear	 sequences	 of	 steps	 in	 each	 pattern,	 which	 means	 that
exponential	 thinking	 does	 not	 come	 naturally	 to	 us.	 The	 cerebellum	 also	 uses
linear	 predictions.	 When	 it	 helps	 us	 to	 catch	 a	 fly	 ball	 it	 is	 making	 a	 linear
prediction	about	where	the	ball	will	be	in	our	visual	field	of	view	and	where	our
gloved	hand	should	be	in	our	visual	field	of	view	to	catch	it.

As	 I	 have	 pointed	 out,	 there	 is	 a	 dramatic	 difference	 between	 linear	 and
exponential	 progressions	 (forty	 steps	 linearly	 is	 forty,	 but	 exponentially	 is	 a
trillion),	 which	 accounts	 for	 why	 my	 predictions	 stemming	 from	 the	 law	 of
accelerating	returns	seem	surprising	to	many	observers	at	first.	We	have	to	train
ourselves	to	think	exponentially.	When	it	comes	to	information	technologies,	it	is
the	right	way	to	think.

The	 quintessential	 example	 of	 the	 law	 of	 accelerating	 returns	 is	 the
perfectly	 smooth,	 doubly	 exponential	 growth	 of	 the	 price/performance	 of
computation,	which	has	held	steady	for	110	years	 through	two	world	wars,	 the
Great	 Depression,	 the	 Cold	 War,	 the	 collapse	 of	 the	 Soviet	 Union,	 the
reemergence	 of	 China,	 the	 recent	 financial	 crisis,	 and	 all	 of	 the	 other	 notable
events	 of	 the	 late	 nineteenth,	 twentieth,	 and	 early	 twenty-first	 centuries.	 Some
people	refer	to	this	phenomenon	as	“Moore’s	law,”	but	that	is	a	misconception.
Moore’s	law—which	states	that	you	can	place	twice	as	many	components	on	an
integrated	circuit	every	two	years,	and	they	run	faster	because	they	are	smaller—
is	just	one	paradigm	among	many.	It	was	in	fact	the	fifth,	not	the	first,	paradigm
to	bring	exponential	growth	to	the	price/performance	of	computing.

The	exponential	rise	of	computation	started	with	the	1890	U.S.	census	(the
first	to	be	automated)	using	the	first	paradigm	of	electromechanical	calculation,
decades	 before	 Gordon	 Moore	 was	 even	 born.	 In	 The	 Singularity	 Is	 Near	 I
provide	 this	 graph	 through	 2002,	 and	 here	 I	 update	 it	 through	 2009	 (see	 the
graph	on	page	257	 titled	 “Exponential	Growth	 of	Computing	 for	 110	Years”).
The	 smoothly	 predictable	 trajectory	 has	 continued,	 even	 through	 the	 recent
economic	downturn.

Computation	 is	 the	 most	 important	 example	 of	 the	 law	 of	 accelerating
returns,	 because	 of	 the	 amount	 of	 data	 we	 have	 for	 it,	 the	 ubiquity	 of
computation,	 and	 its	 key	 role	 in	 ultimately	 revolutionizing	 everything	we	 care
about.	 But	 it	 is	 far	 from	 the	 only	 example.	 Once	 a	 technology	 becomes	 an
information	technology,	it	becomes	subject	to	the	LOAR.

Biomedicine	is	becoming	the	most	significant	recent	area	of	technology	and
industry	to	be	transformed	in	this	way.	Progress	in	medicine	has	historically	been
based	on	accidental	discoveries,	so	progress	during	the	earlier	era	was	linear,	not
exponential.	This	has	nevertheless	been	beneficial:	Life	 expectancy	has	grown



from	twenty-three	years	as	of	a	 thousand	years	ago,	 to	 thirty-seven	years	as	of
two	hundred	years	ago,	to	close	to	eighty	years	today.	With	the	gathering	of	the
software	 of	 life—the	 genome—medicine	 and	 human	 biology	 have	 become	 an
information	 technology.	 The	 human	 genome	 project	 itself	 was	 perfectly
exponential,	with	the	amount	of	genetic	data	doubling	and	the	cost	per	base	pair
coming	down	by	half	each	year	since	the	project	was	initiated	in	1990.3	(All	the
graphs	 in	 this	 chapter	 have	 been	 updated	 since	 The	 Singularity	 Is	 Near	 was
published.)

The	cost	of	sequencing	a	human-sized	genome.1



The	amount	of	genetic	data	sequenced	in	the	world	each	year.2
We	now	have	 the	ability	 to	design	biomedical	 interventions	on	computers

and	 to	 test	 them	on	biological	 simulators,	 the	scale	and	precision	of	which	are
also	doubling	every	year.	We	can	also	update	our	own	obsolete	software:	RNA
interference	 can	 turn	 genes	 off,	 and	 new	 forms	 of	 gene	 therapy	 can	 add	 new
genes,	not	just	to	a	newborn	but	to	a	mature	individual.	The	advance	of	genetic
technologies	 also	 affects	 the	 brain	 reverse-engineering	 project,	 in	 that	 one
important	aspect	of	it	is	understanding	how	genes	control	brain	functions	such	as
creating	new	connections	to	reflect	recently	added	cortical	knowledge.	There	are
many	 other	 manifestations	 of	 this	 integration	 of	 biology	 and	 information
technology,	as	we	move	beyond	genome	sequencing	to	genome	synthesizing.

Another	information	technology	that	has	seen	smooth	exponential	growth	is
our	 ability	 to	 communicate	with	 one	 another	 and	 transmit	 vast	 repositories	 of
human	knowledge.	There	are	many	ways	to	measure	this	phenomenon.	Cooper’s
law,	 which	 states	 that	 the	 total	 bit	 capacity	 of	 wireless	 communications	 in	 a
given	amount	of	radio	spectrum	doubles	every	thirty	months,	has	held	true	from
the	 time	 Guglielmo	 Marconi	 used	 the	 wireless	 telegraph	 for	 Morse	 code
transmissions	 in	1897	 to	 today’s	4G	communications	 technologies.4	According
to	Cooper’s	law,	the	amount	of	information	that	can	be	transmitted	over	a	given
amount	of	radio	spectrum	has	been	doubling	every	two	and	a	half	years	for	more
than	a	century.	Another	example	is	the	number	of	bits	per	second	transmitted	on
the	Internet,	which	is	doubling	every	one	and	a	quarter	years.5

The	 reason	 I	 became	 interested	 in	 trying	 to	 predict	 certain	 aspects	 of
technology	 is	 that	 I	 realized	 about	 thirty	 years	 ago	 that	 the	 key	 to	 becoming



successful	as	an	inventor	(a	profession	I	adopted	when	I	was	five	years	old)	was
timing.	Most	 inventions	 and	 inventors	 fail	 not	 because	 the	gadgets	 themselves
don’t	work,	but	because	their	timing	is	wrong,	appearing	either	before	all	of	the
enabling	 factors	 are	 in	 place	 or	 too	 late,	 having	 missed	 the	 window	 of
opportunity.

The	 international	 (country-to-country)	 bandwidth	 dedicated	 to	 the
Internet	for	the	world.6



The	highest	bandwidth	(speed)	of	the	Internet	backbone.7
Being	 an	 engineer,	 about	 three	 decades	 ago	 I	 started	 to	 gather	 data	 on

measures	 of	 technology	 in	 different	 areas.	When	 I	 began	 this	 effort,	 I	 did	 not
expect	that	it	would	present	a	clear	picture,	but	I	did	hope	that	it	would	provide
some	guidance	and	enable	me	to	make	educated	guesses.	My	goal	was—and	still
is—to	 time	my	own	 technology	efforts	 so	 that	 they	will	be	appropriate	 for	 the
world	 that	 exists	 when	 I	 complete	 a	 project—which	 I	 realized	would	 be	 very
different	from	the	world	that	existed	when	I	started.

Consider	how	much	and	how	quickly	the	world	has	changed	only	recently.
Just	a	few	years	ago,	people	did	not	use	social	networks	(Facebook,	for	example,
was	 founded	 in	 2004	 and	 had	 901	million	monthly	 active	 users	 at	 the	 end	 of
March	 2012),8	 wikis,	 blogs,	 or	 tweets.	 In	 the	 1990s	 most	 people	 did	 not	 use
search	engines	or	cell	phones.	Imagine	the	world	without	them.	That	seems	like
ancient	 history	 but	 was	 not	 so	 long	 ago.	 The	 world	 will	 change	 even	 more
dramatically	in	the	near	future.

In	 the	 course	 of	 my	 investigation,	 I	 made	 a	 startling	 discovery:	 If	 a
technology	 is	 an	 information	 technology,	 the	 basic	 measures	 of
price/performance	 and	 capacity	 (per	 unit	 of	 time	 or	 cost,	 or	 other	 resource)
follow	amazingly	precise	exponential	trajectories.

These	trajectories	outrun	the	specific	paradigms	they	are	based	on	(such	as
Moore’s	 law).	 But	when	 one	 paradigm	 runs	 out	 of	 steam	 (for	 example,	 when
engineers	were	no	longer	able	to	reduce	the	size	and	cost	of	vacuum	tubes	in	the
1950s),	 it	creates	research	pressure	to	create	the	next	paradigm,	and	so	another
S-curve	of	progress	begins.



The	 exponential	 portion	 of	 that	 next	 S-curve	 for	 the	 new	 paradigm	 then
continues	the	ongoing	exponential	of	the	information	technology	measure.	Thus
vacuum	tube–based	computing	in	the	1950s	gave	way	to	transistors	in	the	1960s,
and	 then	 to	 integrated	circuits	and	Moore’s	 law	 in	 the	 late	1960s,	and	beyond.
Moore’s	 law,	 in	 turn,	will	 give	way	 to	 three-dimensional	 computing,	 the	 early
examples	 of	 which	 are	 already	 in	 place.	 The	 reason	 why	 information
technologies	are	able	 to	consistently	 transcend	 the	 limitations	of	any	particular
paradigm	is	that	the	resources	required	to	compute	or	remember	or	transmit	a	bit
of	information	are	vanishingly	small.

We	might	wonder,	 are	 there	 fundamental	 limits	 to	 our	 ability	 to	 compute
and	transmit	 information,	regardless	of	paradigm?	The	answer	is	yes,	based	on
our	current	understanding	of	the	physics	of	computation.	Those	limits,	however,
are	 not	 very	 limiting.	 Ultimately	we	 can	 expand	 our	 intelligence	 trillions-fold
based	on	molecular	 computing.	By	my	calculations,	we	will	 reach	 these	 limits
late	in	this	century.

It	 is	 important	 to	 point	 out	 that	 not	 every	 exponential	 phenomenon	 is	 an
example	 of	 the	 law	 of	 accelerating	 returns.	 Some	 observers	 misconstrue	 the
LOAR	by	citing	exponential	trends	that	are	not	information-based:	For	example,
they	point	out,	men’s	shavers	have	gone	from	one	blade	to	two	to	four,	and	then
ask,	 where	 are	 the	 eight-blade	 shavers?	 Shavers	 are	 not	 (yet)	 an	 information
technology.

In	The	Singularity	 Is	Near,	 I	 provide	 a	 theoretical	 examination,	 including
(in	the	appendix	to	that	book)	a	mathematical	treatment	of	why	the	LOAR	is	so
remarkably	 predictable.	 Essentially,	 we	 always	 use	 the	 latest	 technology	 to
create	the	next.	Technologies	build	on	themselves	in	an	exponential	manner,	and
this	phenomenon	is	readily	measurable	if	it	involves	an	information	technology.
In	 1990	 we	 used	 the	 computers	 and	 other	 tools	 of	 that	 era	 to	 create	 the
computers	of	1991;	in	2012	we	are	using	current	information	tools	to	create	the
machines	 of	 2013	 and	 2014.	 More	 broadly	 speaking,	 this	 acceleration	 and
exponential	 growth	 applies	 to	 any	 process	 in	 which	 patterns	 of	 information
evolve.	So	we	see	acceleration	 in	 the	pace	of	biological	 evolution,	 and	 similar
(but	 much	 faster)	 acceleration	 in	 technological	 evolution,	 which	 is	 itself	 an
outgrowth	of	biological	evolution.

I	 now	 have	 a	 public	 track	 record	 of	more	 than	 a	 quarter	 of	 a	 century	 of
predictions	 based	 on	 the	 law	 of	 accelerating	 returns,	 starting	 with	 those
presented	 in	The	Age	of	 Intelligent	Machines,	which	I	wrote	 in	 the	mid-1980s.
Examples	of	accurate	predictions	from	that	book	include:	 the	emergence	in	the
mid-	 to	 late	1990s	of	 a	vast	worldwide	web	of	 communications	 tying	 together
people	 around	 the	world	 to	 one	 another	 and	 to	 all	 human	 knowledge;	 a	 great



wave	 of	 democratization	 emerging	 from	 this	 decentralized	 communication
network,	 sweeping	 away	 the	 Soviet	 Union;	 the	 defeat	 of	 the	 world	 chess
champion	by	1998;	and	many	others.

I	described	the	law	of	accelerating	returns,	as	it	is	applied	to	computation,
extensively	in	The	Age	of	Spiritual	Machines,	where	I	provided	a	century	of	data
showing	 the	 doubly	 exponential	 progression	 of	 the	 price/performance	 of
computation	through	1998.	It	is	updated	through	2009	below.

I	recently	wrote	a	146-page	review	of	the	predictions	I	made	in	The	Age	of
Intelligent	 Machines,	 The	 Age	 of	 Spiritual	 Machines,	 and	 The	 Singularity	 Is
Near.	(You	can	read	the	essay	here	by	going	to	the	link	in	this	endnote.)9The	Age
of	 Spiritual	 Machines	 included	 hundreds	 of	 predictions	 for	 specific	 decades
(2009,	2019,	2029,	and	2099).	For	example,	I	made	147	predictions	for	2009	in
The	Age	of	Spiritual	Machines,	which	 I	wrote	 in	 the	1990s.	Of	 these,	 115	 (78
percent)	 are	 entirely	 correct	 as	 of	 the	 end	 of	 2009;	 the	 predictions	 that	 were
concerned	 with	 basic	 measurements	 of	 the	 capacity	 and	 price/performance	 of
information	technologies	were	particularly	accurate.	Another	12	(8	percent)	are
“essentially	 correct.”	 A	 total	 of	 127	 predictions	 (86	 percent)	 are	 correct	 or
essentially	correct.	(Since	the	predictions	were	made	specific	to	a	given	decade,
a	prediction	for	2009	was	considered	“essentially	correct”	if	it	came	true	in	2010
or	 2011.)	 Another	 17	 (12	 percent)	 are	 partially	 correct,	 and	 3	 (2	 percent)	 are
wrong.



Calculations	 per	 second	 per	 (constant)	 thousand	 dollars	 of	 different
computing	devices.10

Floating-point	operations	per	second	of	different	supercomputers.11



Transistors	per	chip	for	different	Intel	processors.12

Bits	per	dollar	for	dynamic	random	access	memory	chips.13



Bits	per	dollar	for	random	access	memory	chips.14

The	average	price	per	transistor	in	dollars.15



The	total	number	of	bits	of	random	access	memory	shipped	each	year.16

Bits	per	dollar	(in	constant	2000	dollars)	for	magnetic	data	storage.17
Even	the	predictions	that	were	“wrong”	were	not	all	wrong.	For	example,	I

judged	my	 prediction	 that	we	would	 have	 self-driving	 cars	 to	 be	wrong,	 even
though	Google	has	demonstrated	self-driving	cars,	and	even	though	in	October
2010	four	driverless	electric	vans	successfully	concluded	a	13,000-kilometer	test
drive	 from	 Italy	 to	 China.18	 Experts	 in	 the	 field	 currently	 predict	 that	 these
technologies	will	be	routinely	available	to	consumers	by	the	end	of	this	decade.

Exponentially	 expanding	 computational	 and	 communication	 technologies



all	 contribute	 to	 the	 project	 to	 understand	 and	 re-create	 the	 methods	 of	 the
human	brain.	This	effort	is	not	a	single	organized	project	but	rather	the	result	of
a	great	many	diverse	projects,	including	detailed	modeling	of	constituents	of	the
brain	 ranging	 from	 individual	 neurons	 to	 the	 entire	 neocortex,	 the	mapping	 of
the	 “connectome”	 (the	 neural	 connections	 in	 the	 brain),	 simulations	 of	 brain
regions,	and	many	others.	All	of	these	have	been	scaling	up	exponentially.	Much
of	the	evidence	presented	in	this	book	has	only	become	available	recently—for
example,	 the	 2012	Wedeen	 study	 discussed	 in	 chapter	4	 that	 showed	 the	 very
orderly	 and	 “simple”	 (to	 quote	 the	 researchers)	 gridlike	 pattern	 of	 the
connections	 in	 the	 neocortex.	 The	 researchers	 in	 that	 study	 acknowledge	 that
their	 insight	 (and	 images)	 only	 became	 feasible	 as	 the	 result	 of	 new	 high-
resolution	imaging	technology.

Brain	 scanning	 technologies	 are	 improving	 in	 resolution,	 spatial	 and
temporal,	at	an	exponential	rate.	Different	types	of	brain	scanning	methods	being
pursued	 range	 from	 completely	 noninvasive	 methods	 that	 can	 be	 used	 with
humans	to	more	invasive	or	destructive	methods	on	animals.

MRI	(magnetic	resonance	imaging),	a	noninvasive	imaging	technique	with
relatively	 high	 temporal	 resolution,	 has	 steadily	 improved	 at	 an	 exponential
pace,	 to	 the	 point	 that	 spatial	 resolutions	 are	 now	 close	 to	 100	 microns
(millionths	of	a	meter).

A	Venn	diagram	of	brain	imaging	methods.19



Tools	for	imaging	the	brain.20

MRI	spatial	resolution	in	microns.21



Spatial	resolution	of	destructive	imaging	techniques.22

Spatial	resolution	of	nondestructive	imaging	techniques	in	animals.23
Destructive	imaging,	which	is	performed	to	collect	the	connectome	(map	of

all	 interneuronal	 connections)	 in	 animal	 brains,	 has	 also	 improved	 at	 an
exponential	 pace.	 Current	 maximum	 resolution	 is	 around	 four	 nanometers,
which	is	sufficient	to	see	individual	connections.

Artificial	 intelligence	technologies	such	as	natural-language-understanding



systems	 are	 not	 necessarily	 designed	 to	 emulate	 theorized	 principles	 of	 brain
function,	but	rather	for	maximum	effectiveness.	Given	this,	it	is	notable	that	the
techniques	that	have	won	out	are	consistent	with	the	principles	I	have	outlined	in
this	book:	 self-organizing,	 hierarchical	 recognizers	of	 invariant	 self-associative
patterns	with	redundancy	and	up-and-down	predictions.	These	systems	are	also
scaling	up	exponentially,	as	Watson	has	demonstrated.

A	primary	 purpose	 of	 understanding	 the	 brain	 is	 to	 expand	 our	 toolkit	 of
techniques	to	create	intelligent	systems.	Although	many	AI	researchers	may	not
fully	appreciate	this,	they	have	already	been	deeply	influenced	by	our	knowledge
of	the	principles	of	the	operation	of	the	brain.	Understanding	the	brain	also	helps
us	 to	 reverse	 brain	 dysfunctions	 of	 various	 kinds.	 There	 is,	 of	 course,	 another
key	goal	of	the	project	to	reverse-engineer	the	brain:	understanding	who	we	are.



CHAPTER	11

	



OBJECTIONS
	

If	a	machine	can	prove	indistinguishable	from	a	human,	we	should	award	it
the	respect	we	would	to	a	human—we	should	accept	that	it	has	a	mind.

—Stevan	Harnad
	

	
T	he	most	significant	source	of	objection	to	my	thesis	on	the	law	of	accelerating
returns	and	its	application	to	the	amplification	of	human	intelligence	stems	from
the	 linear	nature	of	human	 intuition.	As	I	described	earlier,	each	of	 the	several
hundred	 million	 pattern	 recognizers	 in	 the	 neocortex	 processes	 information
sequentially.	One	of	the	implications	of	this	organization	is	 that	we	have	linear
expectations	about	the	future,	so	critics	apply	their	linear	intuition	to	information
phenomena	that	are	fundamentally	exponential.

I	 call	 objections	 along	 these	 lines	 “criticism	 from	 incredulity,”	 in	 that
exponential	projections	 seem	 incredible	given	our	 linear	predilection,	 and	 they
take	a	variety	of	forms.	Microsoft	cofounder	Paul	Allen	(born	in	1953)	and	his
colleague	Mark	Greaves	 recently	 articulated	 several	 of	 them	 in	 an	 essay	 titled
“The	Singularity	Isn’t	Near”	published	in	Technology	Review	magazine.1	While
my	response	here	is	to	Allen’s	particular	critiques,	they	represent	a	typical	range
of	 objections	 to	 the	 arguments	 I’ve	made,	 especially	with	 regard	 to	 the	 brain.
Although	Allen	references	The	Singularity	 Is	Near	 in	 the	 title	of	his	 essay,	his
only	 citation	 in	 the	 piece	 is	 to	 an	 essay	 I	 wrote	 in	 2001	 (“The	 Law	 of
Accelerating	Returns”).	Moreover,	his	article	does	not	acknowledge	or	respond
to	arguments	I	actually	make	in	the	book.	Unfortunately,	I	find	this	often	to	be
the	case	with	critics	of	my	work.

When	The	 Age	 of	 Spiritual	Machines	 was	 published	 in	 1999,	 augmented
later	by	the	2001	essay,	it	generated	several	lines	of	criticism,	such	as:	Moore’s
law	will	come	 to	an	end;	hardware	capability	may	be	expanding	exponentially
but	 software	 is	 stuck	 in	 the	 mud;	 the	 brain	 is	 too	 complicated;	 there	 are
capabilities	 in	 the	 brain	 that	 inherently	 cannot	 be	 replicated	 in	 software;	 and



several	 others.	 One	 of	 the	 reasons	 I	 wrote	 The	 Singularity	 Is	 Near	 was	 to
respond	to	those	critiques.

I	 cannot	 say	 that	 Allen	 and	 similar	 critics	 would	 necessarily	 have	 been
convinced	by	the	arguments	I	made	in	that	book,	but	at	least	he	and	others	could
have	 responded	 to	 what	 I	 actually	 wrote.	 Allen	 argues	 that	 “the	 Law	 of
Accelerating	Returns	 (LOAR)…is	 not	 a	 physical	 law.”	 I	would	 point	 out	 that
most	 scientific	 laws	 are	 not	 physical	 laws,	 but	 result	 from	 the	 emergent
properties	of	a	large	number	of	events	at	a	lower	level.	A	classic	example	is	the
laws	of	 thermodynamics	(LOT).	If	you	 look	at	 the	mathematics	underlying	 the
LOT,	 it	models	 each	particle	 as	 following	a	 random	walk,	 so	by	definition	we
cannot	predict	where	any	particular	particle	will	be	at	 any	 future	 time.	Yet	 the
overall	properties	of	the	gas	are	quite	predictable	to	a	high	degree	of	precision,
according	 to	 the	 laws	of	 thermodynamics.	So	 it	 is	with	 the	 law	of	accelerating
returns:	Each	technology	project	and	contributor	is	unpredictable,	yet	the	overall
trajectory,	 as	 quantified	 by	 basic	measures	 of	 price/performance	 and	 capacity,
nonetheless	follows	a	remarkably	predictable	path.

If	 computer	 technology	 were	 being	 pursued	 by	 only	 a	 handful	 of
researchers,	 it	 would	 indeed	 be	 unpredictable.	 But	 it’s	 the	 product	 of	 a
sufficiently	dynamic	system	of	competitive	projects	 that	a	basic	measure	of	 its
price/performance,	such	as	calculations	per	second	per	constant	dollar,	follows	a
very	 smooth	 exponential	 path,	 dating	 back	 to	 the	 1890	American	 census	 as	 I
noted	 in	 the	 previous	 chapter.	 While	 the	 theoretical	 basis	 for	 the	 LOAR	 is
presented	extensively	in	The	Singularity	Is	Near,	the	strongest	case	for	it	is	made
by	the	extensive	empirical	evidence	that	I	and	others	present.

Allen	writes	that	“these	‘laws’	work	until	they	don’t.”	Here	he	is	confusing
paradigms	with	the	ongoing	trajectory	of	a	basic	area	of	information	technology.
If	we	were	examining,	 for	example,	 the	 trend	of	creating	ever	 smaller	vacuum
tubes—the	 paradigm	 for	 improving	 computation	 in	 the	 1950s—it’s	 true	 that	 it
continued	until	it	didn’t.	But	as	the	end	of	this	particular	paradigm	became	clear,
research	pressure	grew	for	the	next	paradigm.	The	technology	of	transistors	kept
the	 underlying	 trend	 of	 the	 exponential	 growth	 of	 price/performance	 of
computation	 going,	 and	 that	 led	 to	 the	 fifth	 paradigm	 (Moore’s	 law)	 and	 the
continual	compression	of	features	on	integrated	circuits.	There	have	been	regular
predictions	that	Moore’s	law	will	come	to	an	end.	The	semiconductor	industry’s
“International	 Technology	 Roadmap	 for	 Semiconductors”	 projects	 seven-
nanometer	 features	 by	 the	 early	 2020s.2	At	 that	 point	 key	 features	will	 be	 the
width	of	 thirty-five	carbon	atoms,	and	 it	will	be	difficult	 to	continue	shrinking
them	any	 farther.	However,	 Intel	 and	other	 chip	makers	 are	 already	 taking	 the
first	steps	toward	the	sixth	paradigm,	computing	in	three	dimensions,	to	continue



exponential	 improvement	 in	 price/performance.	 Intel	 projects	 that	 three-
dimensional	 chips	 will	 be	 mainstream	 by	 the	 teen	 years;	 three-dimensional
transistors	 and	 3-D	 memory	 chips	 have	 already	 been	 introduced.	 This	 sixth
paradigm	will	keep	the	LOAR	going	with	regard	to	computer	price/performance
to	a	time	later	in	this	century	when	a	thousand	dollars’	worth	of	computation	will
be	trillions	of	times	more	powerful	than	the	human	brain.3	(It	appears	that	Allen
and	 I	 are	 at	 least	 in	 agreement	 on	 what	 level	 of	 computation	 is	 required	 to
functionally	simulate	the	human	brain.)4

Allen	 then	 goes	 on	 to	 give	 the	 standard	 argument	 that	 software	 is	 not
progressing	in	 the	same	exponential	manner	as	hardware.	 In	The	Singularity	 Is
Near	 I	 addressed	 this	 issue	 at	 length,	 citing	 different	 methods	 of	 measuring
complexity	and	capability	in	software	that	do	demonstrate	a	similar	exponential
growth.5	One	recent	study	(“Report	to	the	President	and	Congress,	Designing	a
Digital	Future:	Federally	Funded	Research	and	Development	in	Networking	and
Information	Technology,”	by	the	President’s	Council	of	Advisors	on	Science	and
Technology)	states	the	following:

Even	more	 remarkable—and	even	 less	widely	understood—is	 that	 in
many	 areas,	 performance	 gains	 due	 to	 improvements	 in	 algorithms	 have
vastly	 exceeded	 even	 the	 dramatic	 performance	 gains	 due	 to	 increased
processor	speed.	The	algorithms	that	we	use	today	for	speech	recognition,
for	 natural	 language	 translation,	 for	 chess	 playing,	 for	 logistics	 planning,
have	 evolved	 remarkably	 in	 the	past	 decade….	Here	 is	 just	 one	 example,
provided	 by	 Professor	 Martin	 Grötschel	 of	 Konrad-Zuse-Zentrum	 für
Informationstechnik	Berlin.	Grötschel,	an	expert	 in	optimization,	observes
that	 a	 benchmark	 production	 planning	 model	 solved	 using	 linear
programming	 would	 have	 taken	 82	 years	 to	 solve	 in	 1988,	 using	 the
computers	and	the	linear	programming	algorithms	of	the	day.	Fifteen	years
later—in	2003—this	same	model	could	be	solved	in	roughly	1	minute,	an
improvement	by	a	factor	of	roughly	43	million.	Of	this,	a	factor	of	roughly
1,000	was	 due	 to	 increased	 processor	 speed,	whereas	 a	 factor	 of	 roughly
43,000	 was	 due	 to	 improvements	 in	 algorithms!	 Grötschel	 also	 cites	 an
algorithmic	 improvement	 of	 roughly	 30,000	 for	 mixed	 integer
programming	 between	 1991	 and	 2008.	 The	 design	 and	 analysis	 of
algorithms,	 and	 the	 study	 of	 the	 inherent	 computational	 complexity	 of
problems,	are	fundamental	subfields	of	computer	science.

	
Note	 that	 the	 linear	 programming	 that	 Grötschel	 cites	 above	 as	 having

benefited	 from	 an	 improvement	 in	 performance	 of	 43	 million	 to	 1	 is	 the



mathematical	 technique	 that	 is	 used	 to	 optimally	 assign	 resources	 in	 a
hierarchical	memory	system	such	as	HHMM	that	I	discussed	earlier.	I	cite	many
other	similar	examples	like	this	in	The	Singularity	Is	Near.6

Regarding	AI,	Allen	is	quick	to	dismiss	IBM’s	Watson,	an	opinion	shared
by	 many	 other	 critics.	 Many	 of	 these	 detractors	 don’t	 know	 anything	 about
Watson	 other	 than	 the	 fact	 that	 it	 is	 software	 running	 on	 a	 computer	 (albeit	 a
parallel	one	with	720	processor	cores).	Allen	writes	that	systems	such	as	Watson
“remain	 brittle,	 their	 performance	 boundaries	 are	 rigidly	 set	 by	 their	 internal
assumptions	 and	 defining	 algorithms,	 they	 cannot	 generalize,	 and	 they
frequently	give	nonsensical	answers	outside	of	their	specific	areas.”

First	 of	 all,	we	 could	make	 a	 similar	 observation	 about	 humans.	 I	would
also	point	out	that	Watson’s	“specific	areas”	include	all	of	Wikipedia	plus	many
other	 knowledge	 bases,	which	 hardly	 constitute	 a	 narrow	 focus.	Watson	 deals
with	 a	 vast	 range	 of	 human	 knowledge	 and	 is	 capable	 of	 dealing	 with	 subtle
forms	of	language,	including	puns,	similes,	and	metaphors	in	virtually	all	fields
of	 human	 endeavor.	 It’s	 not	 perfect,	 but	 neither	 are	 humans,	 and	 it	 was	 good
enough	to	be	victorious	on	Jeopardy!	over	the	best	human	players.

Allen	 argues	 that	 Watson	 was	 assembled	 by	 the	 scientists	 themselves,
building	each	link	of	narrow	knowledge	in	specific	areas.	This	is	simply	not	true.
Although	 a	 few	 areas	 of	 Watson’s	 data	 were	 programmed	 directly,	 Watson
acquired	the	significant	majority	of	its	knowledge	on	its	own	by	reading	natural-
language	documents	such	as	Wikipedia.	That	represents	its	key	strength,	as	does
its	ability	to	understand	the	convoluted	language	in	Jeopardy!	queries	(answers
in	search	of	a	question).

As	 I	mentioned	 earlier,	much	 of	 the	 criticism	 of	Watson	 is	 that	 it	 works
through	 statistical	probabilities	 rather	 than	“true”	understanding.	Many	 readers
interpret	 this	 to	 mean	 that	 Watson	 is	 merely	 gathering	 statistics	 on	 word
sequences.	 The	 term	 “statistical	 information”	 in	 the	 case	 of	 Watson	 actually
refers	 to	 distributed	 coefficients	 and	 symbolic	 connections	 in	 self-organizing
methods	 such	 as	 hierarchical	 hidden	Markov	models.	One	 could	 just	 as	 easily
dismiss	 the	 distributed	 neurotransmitter	 concentrations	 and	 redundant
connection	patterns	in	the	human	cortex	as	“statistical	information.”	Indeed	we
resolve	ambiguities	in	much	the	same	way	that	Watson	does—by	considering	the
likelihood	of	different	interpretations	of	a	phrase.

Allen	continues,	“Every	structure	 [in	 the	brain]	has	been	precisely	shaped
by	millions	of	years	of	evolution	to	do	a	particular	thing,	whatever	it	might	be.	It
is	 not	 like	 a	 computer,	with	billions	of	 identical	 transistors	 in	 regular	memory
arrays	 that	are	controlled	by	a	CPU	with	a	few	different	elements.	 In	 the	brain
every	 individual	 structure	 and	 neural	 circuit	 has	 been	 individually	 refined	 by



evolution	and	environmental	factors.”
This	contention	that	every	structure	and	neural	circuit	in	the	brain	is	unique

and	there	by	design	is	simply	impossible,	for	it	would	mean	that	the	blueprint	of
the	brain	would	require	hundreds	of	trillions	of	bytes	of	information.	The	brain’s
structural	plan	(like	that	of	the	rest	of	the	body)	is	contained	in	the	genome,	and
the	brain	 itself	cannot	contain	more	design	 information	 than	 the	genome.	Note
that	 epigenetic	 information	 (such	 as	 the	 peptides	 controlling	 gene	 expression)
does	 not	 appreciably	 add	 to	 the	 amount	 of	 information	 in	 the	 genome.
Experience	 and	 learning	 do	 add	 significantly	 to	 the	 amount	 of	 information
contained	 in	 the	 brain,	 but	 the	 same	 can	 be	 said	 of	AI	 systems	 like	Watson.	 I
show	in	The	Singularity	Is	Near	that,	after	lossless	compression	(due	to	massive
redundancy	in	the	genome),	the	amount	of	design	information	in	the	genome	is
about	50	million	bytes,	 roughly	half	of	which	 (that	 is,	 about	25	million	bytes)
pertains	to	the	brain.7	That’s	not	simple,	but	 it	 is	a	 level	of	complexity	we	can
deal	 with	 and	 represents	 less	 complexity	 than	 many	 software	 systems	 in	 the
modern	world.	Moreover	much	of	the	brain’s	25	million	bytes	of	genetic	design
information	 pertain	 to	 the	 biological	 requirements	 of	 neurons,	 not	 to	 their
information-processing	algorithms.

How	do	we	arrive	at	on	the	order	of	100	to	1,000	trillion	connections	in	the
brain	from	only	tens	of	millions	of	bytes	of	design	information?	Obviously,	the
answer	 is	 through	 massive	 redundancy.	 Dharmendra	 Modha,	 manager	 of
Cognitive	Computing	for	IBM	Research,	writes	that	“neuroanatomists	have	not
found	 a	 hopelessly	 tangled,	 arbitrarily	 connected	 network,	 completely
idiosyncratic	to	the	brain	of	each	individual,	but	instead	a	great	deal	of	repeating
structure	 within	 an	 individual	 brain	 and	 a	 great	 deal	 of	 homology	 across
species….	 The	 astonishing	 natural	 reconfigurability	 gives	 hope	 that	 the	 core
algorithms	of	neurocomputation	are	independent	of	the	specific	sensory	or	motor
modalities	 and	 that	much	of	 the	 observed	variation	 in	 cortical	 structure	 across
areas	 represents	 a	 refinement	 of	 a	 canonical	 circuit;	 it	 is	 indeed	 this	 canonical
circuit	we	wish	to	reverse	engineer.”8

Allen	 argues	 in	 favor	 of	 an	 inherent	 “complexity	 brake	 that	 would
necessarily	 limit	progress	 in	understanding	 the	human	brain	and	 replicating	 its
capabilities,”	 based	 on	 his	 notion	 that	 each	 of	 the	 approximately	 100	 to	 1,000
trillion	 connections	 in	 the	 human	 brain	 is	 there	 by	 explicit	 design.	 His
“complexity	brake”	confuses	the	forest	with	the	trees.	If	you	want	to	understand,
model,	simulate,	and	re-create	a	pancreas,	you	don’t	need	to	re-create	or	simulate
every	 organelle	 in	 every	 pancreatic	 islet	 cell.	 You	 would	 want	 instead	 to
understand	 one	 islet	 cell,	 then	 abstract	 its	 basic	 functionality	 as	 it	 pertains	 to



insulin	 control,	 and	 then	 extend	 that	 to	 a	 large	 group	 of	 such	 cells.	 This
algorithm	is	well	understood	with	 regard	 to	 islet	cells.	There	are	now	artificial
pancreases	 that	 utilize	 this	 functional	 model	 being	 tested.	 Although	 there	 is
certainly	 far	 more	 intricacy	 and	 variation	 in	 the	 brain	 than	 in	 the	 massively
repeated	 islet	 cells	 of	 the	 pancreas,	 there	 is	 nonetheless	 massive	 repetition	 of
functions,	as	I	have	described	repeatedly	in	this	book.

Critiques	along	the	lines	of	Allen’s	also	articulate	what	I	call	the	“scientist’s
pessimism.”	Researchers	working	on	 the	next	generation	of	a	 technology	or	of
modeling	 a	 scientific	 area	 are	 invariably	 struggling	with	 that	 immediate	 set	 of
challenges,	 so	 if	 someone	 describes	what	 the	 technology	will	 look	 like	 in	 ten
generations,	their	eyes	glaze	over.	One	of	the	pioneers	of	integrated	circuits	was
recalling	 for	 me	 recently	 the	 struggles	 to	 go	 from	 10-micron	 (10,000
nanometers)	 feature	 sizes	 to	 5-micron	 (5,000	 nanometers)	 features	 over	 thirty
years	 ago.	 The	 scientists	 were	 cautiously	 confident	 of	 reaching	 this	 goal,	 but
when	 people	 predicted	 that	 someday	 we	 would	 actually	 have	 circuitry	 with
feature	sizes	under	1	micron	(1,000	nanometers),	most	of	them,	focused	on	their
own	 goal,	 thought	 that	 was	 too	 wild	 to	 contemplate.	 Objections	 were	 made
regarding	the	fragility	of	circuitry	at	that	level	of	precision,	thermal	effects,	and
so	on.	Today	Intel	is	starting	to	use	chips	with	22-nanometer	gate	lengths.

We	 witnessed	 the	 same	 sort	 of	 pessimism	 with	 respect	 to	 the	 Human
Genome	Project.	Halfway	 through	 the	fifteen-year	effort,	only	1	percent	of	 the
genome	 had	 been	 collected,	 and	 critics	 were	 proposing	 basic	 limits	 on	 how
quickly	it	could	be	sequenced	without	destroying	the	delicate	genetic	structures.
But	thanks	to	the	exponential	growth	in	both	capacity	and	price/performance,	the
project	was	finished	seven	years	later.	The	project	to	reverse-engineer	the	human
brain	 is	making	similar	progress.	 It	 is	only	recently,	 for	example,	 that	we	have
reached	 a	 threshold	 with	 noninvasive	 scanning	 techniques	 so	 that	 we	 can	 see
individual	interneuronal	connections	forming	and	firing	in	real	time.	Much	of	the
evidence	I	have	presented	in	this	book	was	dependent	on	such	developments	and
has	only	recently	been	available.

Allen	describes	my	proposal	about	reverse-engineering	the	human	brain	as
simply	scanning	the	brain	to	understand	its	fine	structure	and	then	simulating	an
entire	 brain	 “bottom	 up”	 without	 comprehending	 its	 information-processing
methods.	This	 is	 not	my	proposition.	We	do	 need	 to	 understand	 in	 detail	 how
individual	 types	 of	 neurons	 work,	 and	 then	 gather	 information	 about	 how
functional	modules	are	connected.	The	functional	methods	that	are	derived	from
this	 type	 of	 analysis	 can	 then	 guide	 the	 development	 of	 intelligent	 systems.
Basically,	we	are	 looking	 for	biologically	 inspired	methods	 that	 can	 accelerate
work	in	AI,	much	of	which	has	progressed	without	significant	insight	as	to	how



the	brain	performs	similar	functions.	From	my	own	work	in	speech	recognition,	I
know	that	our	work	was	greatly	accelerated	when	we	gained	insights	as	to	how
the	brain	prepares	and	transforms	auditory	information.

The	way	that	the	massively	redundant	structures	in	the	brain	differentiate	is
through	learning	and	experience.	The	current	state	of	 the	art	 in	AI	does	 in	fact
enable	systems	to	also	learn	from	their	own	experience.	The	Google	self-driving
cars	learn	from	their	own	driving	experience	as	well	as	from	data	from	Google
cars	driven	by	human	drivers;	Watson	learned	most	of	its	knowledge	by	reading
on	its	own.	It	is	interesting	to	note	that	the	methods	deployed	today	in	AI	have
evolved	to	be	mathematically	very	similar	to	the	mechanisms	in	the	neocortex.

Another	objection	to	the	feasibility	of	“strong	AI”	(artificial	intelligence	at
human	 levels	 and	 beyond)	 that	 is	 often	 raised	 is	 that	 the	 human	 brain	makes
extensive	 use	 of	 analog	 computing,	whereas	 digital	methods	 inherently	 cannot
replicate	 the	 gradations	 of	 value	 that	 analog	 representations	 can	 embody.	 It	 is
true	 that	 one	 bit	 is	 either	 on	 or	 off,	 but	 multiple-bit	 words	 easily	 represent
multiple	gradations	and	can	do	so	to	any	desired	degree	of	accuracy.	This	is,	of
course,	done	all	 the	 time	 in	digital	 computers.	As	 it	 is,	 the	accuracy	of	 analog
information	in	the	brain	(synaptic	strength,	for	example)	is	only	about	one	level
within	256	levels	that	can	be	represented	by	eight	bits.

In	chapter	9	I	cited	Roger	Penrose	and	Stuart	Hameroff’s	objection,	which
concerned	microtubules	and	quantum	computing.	Recall	that	they	claim	that	the
microtubule	structures	in	neurons	are	doing	quantum	computing,	and	since	it	is
not	 possible	 to	 achieve	 that	 in	 computers,	 the	 human	 brain	 is	 fundamentally
different	 and	 presumably	 better.	 As	 I	 argued	 earlier,	 there	 is	 no	 evidence	 that
neuronal	microtubules	are	carrying	out	quantum	computation.	Humans	in	fact	do
a	very	poor	job	of	solving	the	kinds	of	problems	that	a	quantum	computer	would
excel	at	(such	as	factoring	large	numbers).	And	if	any	of	this	proved	to	be	true,
there	would	be	nothing	barring	quantum	computing	from	also	being	used	in	our
computers.

John	Searle	 is	 famous	 for	 introducing	 a	 thought	 experiment	 he	 calls	 “the
Chinese	 room,”	an	argument	 I	discuss	 in	detail	 in	The	Singularity	 Is	Near.9	 In
short,	 it	 involves	 a	 man	 who	 takes	 in	 written	 questions	 in	 Chinese	 and	 then
answers	them.	In	order	to	do	this,	he	uses	an	elaborate	rulebook.	Searle	claims
that	the	man	has	no	true	understanding	of	Chinese	and	is	not	“conscious”	of	the
language	 (as	 he	 does	 not	 understand	 the	 questions	 or	 the	 answers)	 despite	 his
apparent	 ability	 to	 answer	 questions	 in	 Chinese.	 Searle	 compares	 this	 to	 a
computer	and	concludes	that	a	computer	that	could	answer	questions	in	Chinese
(essentially	passing	 a	Chinese	Turing	 test)	would,	 like	 the	man	 in	 the	Chinese
room,	have	no	real	understanding	of	the	language	and	no	consciousness	of	what



it	was	doing.
There	are	a	few	philosophical	sleights	of	hand	in	Searle’s	argument.	For	one

thing,	 the	 man	 in	 this	 thought	 experiment	 is	 comparable	 only	 to	 the	 central
processing	 unit	 (CPU)	 of	 a	 computer.	 One	 could	 say	 that	 a	 CPU	 has	 no	 true
understanding	of	what	 it	 is	doing,	but	 the	CPU	is	only	part	of	 the	structure.	 In
Searle’s	Chinese	room,	it	is	the	man	with	his	rulebook	that	constitutes	the	whole
system.	That	system	does	have	an	understanding	of	Chinese;	otherwise	it	would
not	 be	 capable	 of	 convincingly	 answering	 questions	 in	 Chinese,	 which	would
violate	Searle’s	assumption	for	this	thought	experiment.

The	 attractiveness	 of	 Searle’s	 argument	 stems	 from	 the	 fact	 that	 it	 is
difficult	 today	 to	 infer	 true	 understanding	 and	 consciousness	 in	 a	 computer
program.	 The	 problem	with	 his	 argument,	 however,	 is	 that	 you	 can	 apply	 his
own	 line	 of	 reasoning	 to	 the	 human	 brain	 itself.	 Each	 neocortical	 pattern
recognizer—indeed,	each	neuron	and	each	neuronal	component—is	following	an
algorithm.	(After	all,	these	are	molecular	mechanisms	that	follow	natural	law.)	If
we	conclude	that	following	an	algorithm	is	inconsistent	with	true	understanding
and	consciousness,	 then	we	would	have	 to	also	conclude	 that	 the	human	brain
does	not	exhibit	these	qualities	either.	You	can	take	John	Searle’s	Chinese	room
argument	 and	 simply	 substitute	 “manipulating	 interneuronal	 connections	 and
synaptic	 strengths”	 for	his	words	“manipulating	 symbols”	and	you	will	have	a
convincing	 argument	 to	 the	 effect	 that	 human	 brains	 cannot	 truly	 understand
anything.

Another	 line	 of	 argument	 comes	 from	 the	 nature	 of	 nature,	 which	 has
become	 a	 new	 sacred	 ground	 for	many	 observers.	 For	 example,	New	Zealand
biologist	Michael	Denton	(born	in	1943)	sees	a	profound	difference	between	the
design	principles	of	machines	 and	 those	of	biology.	Denton	writes	 that	natural
entities	 are	 “self-organizing,…self-referential,…self-replicating,…reciprocal,…
self-formative,	and…holistic.”10	He	claims	 that	such	biological	 forms	can	only
be	 created	 through	 biological	 processes	 and	 that	 these	 forms	 are	 thereby
“immutable,…impenetrable,	 and…fundamental”	 realities	 of	 existence,	 and	 are
therefore	basically	a	different	philosophical	category	from	machines.

The	reality,	as	we	have	seen,	is	that	machines	can	be	designed	using	these
same	 principles.	 Learning	 the	 specific	 design	 paradigms	 of	 nature’s	 most
intelligent	 entity—the	 human	 brain—is	 precisely	 the	 purpose	 of	 the	 brain
reverse-engineering	 project.	 It	 is	 also	 not	 true	 that	 biological	 systems	 are
completely	“holistic,”	as	Denton	puts	it,	nor,	conversely,	do	machines	need	to	be
completely	 modular.	 We	 have	 clearly	 identified	 hierarchies	 of	 units	 of
functionality	 in	natural	systems,	especially	 the	brain,	and	AI	systems	are	using
comparable	methods.



It	 appears	 to	 me	 that	 many	 critics	 will	 not	 be	 satisfied	 until	 computers
routinely	 pass	 the	 Turing	 test,	 but	 even	 that	 threshold	 will	 not	 be	 clear-cut.
Undoubtedly,	 there	will	be	controversy	as	 to	whether	claimed	Turing	 tests	 that
have	been	administered	are	valid.	Indeed,	I	will	probably	be	among	those	critics
disparaging	early	claims	along	these	lines.	By	the	time	the	arguments	about	the
validity	 of	 a	 computer	 passing	 the	 Turing	 test	 do	 settle	 down,	 computers	will
have	long	since	surpassed	unenhanced	human	intelligence.

My	emphasis	here	 is	 on	 the	word	 “unenhanced,”	because	 enhancement	 is
precisely	 the	 reason	 that	 we	 are	 creating	 these	 “mind	 children,”	 as	 Hans
Moravec	 calls	 them.11	 Combining	 human-level	 pattern	 recognition	 with	 the
inherent	speed	and	accuracy	of	computers	will	result	in	very	powerful	abilities.
But	 this	 is	 not	 an	 alien	 invasion	 of	 intelligent	 machines	 from	Mars—we	 are
creating	these	tools	to	make	ourselves	smarter.	I	believe	that	most	observers	will
agree	with	me	 that	 this	 is	 what	 is	 unique	 about	 the	 human	 species:	We	 build
these	tools	to	extend	our	own	reach.



EPILOGUE

	

The	picture’s	pretty	bleak,	gentlemen…The	world’s	climates	are	changing,
the	mammals	are	 taking	over,	and	we	all	have	a	brain	about	 the	 size	of	a
walnut.

—Dinosaurs	talking,	in	The	Far	Side	by	Gary	Larson
	

	
Intelligence	 may	 be	 defined	 as	 the	 ability	 to	 solve	 problems	 with	 limited
resources,	in	which	a	key	such	resource	is	time.	Thus	the	ability	to	more	quickly
solve	a	problem	like	finding	food	or	avoiding	a	predator	reflects	greater	power
of	 intellect.	Intelligence	evolved	because	it	was	useful	for	survival—a	fact	 that
may	seem	obvious,	but	one	with	which	not	everyone	agrees.	As	practiced	by	our
species,	it	has	enabled	us	not	only	to	dominate	the	planet	but	to	steadily	improve
the	quality	of	our	lives.	This	latter	point,	too,	is	not	apparent	to	everyone,	given
that	 there	 is	 a	widespread	perception	 today	 that	 life	 is	 only	getting	worse.	For
example,	a	Gallup	poll	released	on	May	4,	2011,	revealed	that	only	“44	percent
of	 Americans	 believed	 that	 today’s	 youth	 will	 have	 a	 better	 life	 than	 their
parents.”1

If	 we	 look	 at	 the	 broad	 trends,	 not	 only	 has	 human	 life	 expectancy
quadrupled	 over	 the	 last	 millennium	 (and	 more	 than	 doubled	 in	 the	 last	 two
centuries),2	 but	 per	 capita	 GDP	 (in	 constant	 current	 dollars)	 has	 gone	 from
hundreds	 of	 dollars	 in	 1800	 to	 thousands	 of	 dollars	 today,	 with	 even	 more
pronounced	 trends	 in	 the	 developed	 world.3	 Only	 a	 handful	 of	 democracies
existed	 a	 century	 ago,	 whereas	 they	 are	 the	 norm	 today.	 For	 a	 historical
perspective	 on	 how	 far	 we	 have	 advanced,	 I	 suggest	 people	 read	 Thomas
Hobbes’s	Leviathan	(1651),	in	which	he	describes	the	“life	of	man”	as	“solitary,
poor,	 nasty,	 brutish,	 and	 short.”	 For	 a	 modern	 perspective,	 the	 recent	 book
Abundance	 (2012),	by	X-Prize	Foundation	 founder	 (and	cofounder	with	me	of
Singularity	 University)	 Peter	 Diamandis	 and	 science	 writer	 Steven	 Kotler,



documents	the	extraordinary	ways	in	which	life	today	has	steadily	improved	in
every	dimension.	Steven	Pinker’s	recent	The	Better	Angels	of	Our	Nature:	Why
Violence	 Has	 Declined	 (2011)	 painstakingly	 documents	 the	 steady	 rise	 of
peaceful	relations	between	people	and	peoples.	American	lawyer,	entrepreneur,
and	author	Martine	Rothblatt	(born	in	1954)	documents	the	steady	improvement
in	 civil	 rights,	 noting,	 for	 example,	 how	 in	 a	 couple	 of	 decades	 same-sex
marriage	 went	 from	 being	 legally	 recognized	 nowhere	 in	 the	 world	 to	 being
legally	accepted	in	a	rapidly	growing	number	of	jurisdictions.4

A	primary	 reason	 that	 people	 believe	 that	 life	 is	 getting	worse	 is	 because
our	information	about	the	problems	of	the	world	has	steadily	improved.	If	there
is	a	battle	today	somewhere	on	the	planet,	we	experience	it	almost	as	if	we	were
there.	During	World	War	II,	tens	of	thousands	of	people	might	perish	in	a	battle,
and	if	the	public	could	see	it	at	all	it	was	in	a	grainy	newsreel	in	a	movie	theater
weeks	later.	During	World	War	I	a	small	elite	could	read	about	 the	progress	of
the	conflict	 in	 the	newspaper	 (without	pictures).	During	 the	nineteenth	century
there	was	almost	no	access	to	news	in	a	timely	fashion	for	anyone.

The	 advancement	 we	 have	 made	 as	 a	 species	 due	 to	 our	 intelligence	 is
reflected	in	the	evolution	of	our	knowledge,	which	includes	our	technology	and
our	 culture.	 Our	 various	 technologies	 are	 increasingly	 becoming	 information
technologies,	which	inherently	continue	to	progress	in	an	exponential	manner.	It
is	through	such	technologies	that	we	are	able	to	address	the	grand	challenges	of
humanity,	 such	 as	maintaining	 a	 healthy	 environment,	 providing	 the	 resources
for	 a	 growing	 population	 (including	 energy,	 food,	 and	 water),	 overcoming
disease,	vastly	extending	human	longevity,	and	eliminating	poverty.	It	is	only	by
extending	ourselves	with	 intelligent	 technology	that	we	can	deal	with	 the	scale
of	complexity	needed	to	address	these	challenges.

These	technologies	are	not	the	vanguard	of	an	intelligent	invasion	that	will
compete	 with	 and	 ultimately	 displace	 us.	 Ever	 since	 we	 picked	 up	 a	 stick	 to
reach	 a	 higher	 branch,	 we	 have	 used	 our	 tools	 to	 extend	 our	 reach,	 both
physically	and	mentally.	That	we	can	take	a	device	out	of	our	pocket	today	and
access	 much	 of	 human	 knowledge	 with	 a	 few	 keystrokes	 extends	 us	 beyond
anything	 imaginable	 by	 most	 observers	 only	 a	 few	 decades	 ago.	 The	 “cell
phone”	(the	term	is	placed	in	quotes	because	it	 is	vastly	more	than	a	phone)	in
my	 pocket	 is	 a	 million	 times	 less	 expensive	 yet	 thousands	 of	 times	 more
powerful	than	the	computer	all	the	students	and	professors	at	MIT	shared	when	I
was	 an	 undergraduate	 there.	 That’s	 a	 several	 billion-fold	 increase	 in
price/performance	over	the	last	forty	years,	an	escalation	we	will	see	again	in	the
next	twenty-five	years,	when	what	used	to	fit	in	a	building,	and	now	fits	in	your
pocket,	will	fit	inside	a	blood	cell.



In	this	way	we	will	merge	with	the	intelligent	technology	we	are	creating.
Intelligent	nanobots	 in	our	bloodstream	will	keep	our	biological	bodies	healthy
at	the	cellular	and	molecular	levels.	They	will	go	into	our	brains	noninvasively
through	 the	 capillaries	 and	 interact	 with	 our	 biological	 neurons,	 directly
extending	our	 intelligence.	This	 is	 not	 as	 futuristic	 as	 it	may	 sound.	There	 are
already	 blood	 cell–sized	 devices	 that	 can	 cure	 type	 I	 diabetes	 in	 animals	 or
detect	 and	 destroy	 cancer	 cells	 in	 the	 bloodstream.	 Based	 on	 the	 law	 of
accelerating	 returns,	 these	 technologies	 will	 be	 a	 billion	 times	more	 powerful
within	three	decades	than	they	are	today.

I	already	consider	the	devices	I	use	and	the	cloud	of	computing	resources	to
which	 they	 are	 virtually	 connected	 as	 extensions	 of	myself,	 and	 feel	 less	 than
complete	 if	 I	 am	 cut	 off	 from	 these	 brain	 extenders.	 That	 is	why	 the	 one-day
strike	by	Google,	Wikipedia,	and	thousands	of	other	Web	sites	against	the	SOPA
(Stop	Online	Piracy	Act)	on	January	18,	2012,	was	so	remarkable:	I	felt	as	if	part
of	my	brain	were	going	on	strike	(although	I	and	others	did	find	ways	to	access
these	online	resources).	It	was	also	an	impressive	demonstration	of	the	political
power	of	these	sites	as	the	bill—which	looked	as	if	it	was	headed	for	ratification
—was	instantly	killed.	But	more	important,	it	showed	how	thoroughly	we	have
already	outsourced	parts	of	our	thinking	to	the	cloud	of	computing.	It	is	already
part	of	who	we	are.	Once	we	routinely	have	intelligent	nonbiological	intelligence
in	our	brains,	this	augmentation—and	the	cloud	it	is	connected	to—will	continue
to	grow	in	capability	exponentially.

The	 intelligence	we	will	 create	 from	 the	 reverse-engineering	 of	 the	 brain
will	have	access	to	its	own	source	code	and	will	be	able	to	rapidly	improve	itself
in	an	accelerating	iterative	design	cycle.	Although	there	is	considerable	plasticity
in	 the	biological	human	brain,	as	we	have	seen,	 it	does	have	a	 relatively	 fixed
architecture,	 which	 cannot	 be	 significantly	 modified,	 as	 well	 as	 a	 limited
capacity.	We	are	unable	 to	 increase	 its	 300	million	pattern	 recognizers	 to,	 say,
400	million	 unless	we	 do	 so	 nonbiologically.	Once	we	 can	 achieve	 that,	 there
will	be	no	reason	to	stop	at	a	particular	level	of	capability.	We	can	go	on	to	make
it	a	billion	pattern	recognizers,	or	a	trillion.

From	 quantitative	 improvement	 comes	 qualitative	 advance.	 The	 most
important	 evolutionary	 advance	 in	 Homo	 sapiens	 was	 quantitative:	 the
development	 of	 a	 larger	 forehead	 to	 accommodate	 more	 neocortex.	 Greater
neocortical	capacity	enabled	this	new	species	to	create	and	contemplate	thoughts
at	higher	conceptual	levels,	resulting	in	the	establishment	of	all	the	varied	fields
of	art	and	science.	As	we	add	more	neocortex	in	a	nonbiological	form,	we	can
expect	ever	higher	qualitative	levels	of	abstraction.

British	mathematician	Irvin	J.	Good,	a	colleague	of	Alan	Turing’s,	wrote	in



1965	 that	“the	 first	ultraintelligent	machine	 is	 the	 last	 invention	 that	man	need
ever	 make.”	 He	 defined	 such	 a	 machine	 as	 one	 that	 could	 surpass	 the
“intellectual	activities	of	any	man	however	clever”	and	concluded	that	“since	the
design	 of	 machines	 is	 one	 of	 these	 intellectual	 activities,	 an	 ultraintelligent
machine	could	design	even	better	machines;	there	would	then	unquestionably	be
an	‘intelligence	explosion.’”

The	last	invention	that	biological	evolution	needed	to	make—the	neocortex
—is	inevitably	leading	to	the	last	invention	that	humanity	needs	to	make—truly
intelligent	 machines—and	 the	 design	 of	 one	 is	 inspiring	 the	 other.	 Biological
evolution	 is	 continuing	 but	 technological	 evolution	 is	moving	 a	million	 times
faster	than	the	former.	According	to	the	law	of	accelerating	returns,	by	the	end	of
this	 century	 we	 will	 be	 able	 to	 create	 computation	 at	 the	 limits	 of	 what	 is
possible,	based	on	the	laws	of	physics	as	applied	to	computation.5	We	call	matter
and	 energy	 organized	 in	 this	 way	 “computronium,”	 which	 is	 vastly	 more
powerful	 pound	 per	 pound	 than	 the	 human	 brain.	 It	 will	 not	 just	 be	 raw
computation	 but	 will	 be	 infused	with	 intelligent	 algorithms	 constituting	 all	 of
human-machine	 knowledge.	Over	 time	we	will	 convert	much	 of	 the	mass	 and
energy	 in	 our	 tiny	 corner	 of	 the	 galaxy	 that	 is	 suitable	 for	 this	 purpose	 to
computronium.	Then,	to	keep	the	law	of	accelerating	returns	going,	we	will	need
to	spread	out	to	the	rest	of	the	galaxy	and	universe.

If	the	speed	of	light	indeed	remains	an	inexorable	limit,	then	colonizing	the
universe	will	take	a	long	time,	given	that	the	nearest	star	system	to	Earth	is	four
light-years	 away.	 If	 there	 are	 even	 subtle	 means	 to	 circumvent	 this	 limit,	 our
intelligence	and	technology	will	be	sufficiently	powerful	to	exploit	them.	This	is
one	 reason	 why	 the	 recent	 suggestion	 that	 the	 muons	 that	 traversed	 the	 730
kilometers	from	the	CERN	accelerator	on	 the	Swiss-French	border	 to	 the	Gran
Sasso	Laboratory	in	central	Italy	appeared	to	be	moving	faster	than	the	speed	of
light	was	such	potentially	significant	news.	This	particular	observation	appears
to	be	a	false	alarm,	but	there	are	other	possibilities	to	get	around	this	limit.	We
do	not	even	need	to	exceed	the	speed	of	 light	 if	we	can	find	shortcuts	 to	other
apparently	 faraway	 places	 through	 spatial	 dimensions	 beyond	 the	 three	 with
which	we	are	familiar.	Whether	we	are	able	to	surpass	or	otherwise	get	around
the	speed	of	light	as	a	limit	will	be	the	key	strategic	issue	for	the	human-machine
civilization	at	the	beginning	of	the	twenty-second	century.

Cosmologists	argue	about	whether	the	world	will	end	in	fire	(a	big	crunch
to	match	 the	big	bang)	or	 ice	 (the	death	of	 the	stars	as	 they	spread	out	 into	an
eternal	expansion),	but	this	does	not	take	into	account	the	power	of	intelligence,
as	 if	 its	 emergence	 were	 just	 an	 entertaining	 sideshow	 to	 the	 grand	 celestial
mechanics	that	now	rule	the	universe.	How	long	will	it	take	for	us	to	spread	our



intelligence	 in	 its	 nonbiological	 form	 throughout	 the	 universe?	 If	 we	 can
transcend	 the	 speed	 of	 light—admittedly	 a	 big	 if—for	 example,	 by	 using
wormholes	 through	space	(which	are	consistent	with	our	current	understanding
of	physics),	it	could	be	achieved	within	a	few	centuries.	Otherwise,	it	will	likely
take	 much	 longer.	 In	 either	 scenario,	 waking	 up	 the	 universe,	 and	 then
intelligently	 deciding	 its	 fate	 by	 infusing	 it	with	 our	 human	 intelligence	 in	 its
nonbiological	form,	is	our	destiny.
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Introduction

1.	 Here	 is	 one	 sentence	 from	 One	 Hundred	 Years	 of	 Solitude	 by
Gabriel	García	Márquez:
Aureliano	 Segundo	 was	 not	 aware	 of	 the	 singsong	 until	 the

following	day	after	breakfast	when	he	felt	himself	being	bothered	by	a
buzzing	that	was	by	then	more	fluid	and	louder	than	the	sound	of	the
rain,	 and	 it	 was	 Fernanda,	 who	 was	 walking	 throughout	 the	 house
complaining	 that	 they	had	 raised	her	 to	 be	 a	 queen	only	 to	 have	her
end	 up	 as	 a	 servant	 in	 a	madhouse,	with	 a	 lazy,	 idolatrous,	 libertine
husband	 who	 lay	 on	 his	 back	 waiting	 for	 bread	 to	 rain	 down	 from
heaven	 while	 she	 was	 straining	 her	 kidneys	 trying	 to	 keep	 afloat	 a
home	held	together	with	pins	where	there	was	so	much	to	do,	so	much
to	 bear	 up	 under	 and	 repair	 from	 the	 time	 God	 gave	 his	 morning
sunlight	until	it	was	time	to	go	to	bed	that	when	she	got	there	her	eyes
were	 full	 of	 ground	 glass,	 and	 yet	 no	 one	 ever	 said	 to	 her,	 “Good
morning,	Fernanda,	did	you	sleep	well?,”	nor	had	they	asked	her,	even
out	of	 courtesy,	why	 she	was	 so	pale	or	why	 she	 awoke	with	purple
rings	under	her	eyes	in	spite	of	the	fact	that	she	expected	it,	of	course,
from	a	family	that	had	always	considered	her	a	nuisance,	an	old	rag,	a
booby	painted	on	the	wall,	and	who	were	always	going	around	saying
things	 against	 her	 behind	 her	 back,	 calling	 her	 churchmouse,	 calling
her	 Pharisee,	 calling	 her	 crafty,	 and	 even	Amaranta,	may	 she	 rest	 in
peace,	had	said	aloud	that	she	was	one	of	those	people	who	could	not
tell	 their	rectums	from	their	ashes,	God	have	mercy,	such	words,	and
she	 had	 tolerated	 everything	 with	 resignation	 because	 of	 the	 Holy
Father,	but	she	had	not	been	able	to	tolerate	it	any	more	when	that	evil
José	Arcadio	Segundo	said	that	the	damnation	of	the	family	had	come
when	 it	 opened	 its	 doors	 to	 a	 stuck-up	 highlander,	 just	 imagine,	 a
bossy	highlander,	Lord	 save	us,	 a	highlander	daughter	of	 evil	 spit	 of
the	same	stripe	as	the	highlanders	the	government	sent	to	kill	workers,
you	tell	me,	and	he	was	referring	to	no	one	but	her,	the	godchild	of	the
Duke	 of	 Alba,	 a	 lady	 of	 such	 lineage	 that	 she	 made	 the	 liver	 of
presidents’	wives	quiver,	a	noble	dame	of	fine	blood	like	her,	who	had
the	right	to	sign	eleven	peninsular	names	and	who	was	the	only	mortal
creature	in	that	 town	full	of	bastards	who	did	not	feel	all	confused	at



the	sight	of	sixteen	pieces	of	silverware,	so	that	her	adulterous	husband
could	die	of	laughter	afterward	and	say	that	so	many	knives	and	forks
and	spoons	were	not	meant	for	a	human	being	but	for	a	centipede,	and
the	only	one	who	could	tell	with	her	eyes	closed	when	the	white	wine
was	served	and	on	what	side	and	in	which	glass	and	when	the	red	wine
and	on	what	 side	 and	 in	which	 glass	 and	not	 like	 that	 peasant	 of	 an
Amaranta,	may	 she	 rest	 in	 peace,	 who	 thought	 that	 white	 wine	was
served	 in	 the	daytime	and	red	wine	at	night,	and	 the	only	one	on	 the
whole	coast	who	could	take	pride	in	the	fact	that	she	took	care	of	her
bodily	 needs	 only	 in	 golden	 chamberpots,	 so	 that	Colonel	Aureliano
Buendía,	may	 he	 rest	 in	 peace,	 could	 have	 the	 effrontery	 to	 ask	 her
with	his	Masonic	ill	humor	where	she	had	received	that	privilege	and
whether	 she	did	not	 shit	 shit	 but	 shat	 sweet	 basil,	 just	 imagine,	with
those	very	words,	and	so	that	Renata,	her	own	daughter,	who	through
an	 oversight	 had	 seen	 her	 stool	 in	 the	 bedroom,	 had	 answered	 that
even	if	the	pot	was	all	gold	and	with	a	coat	of	arms,	what	was	inside
was	 pure	 shit,	 physical	 shit,	 and	 worse	 even	 than	 any	 other	 kind
because	it	was	stuck-up	highland	shit,	just	imagine,	her	own	daughter,
so	that	she	never	had	any	illusions	about	the	rest	of	the	family,	but	in
any	case	 she	had	 the	 right	 to	 expect	 a	 little	more	consideration	 from
her	husband	because,	 for	better	or	 for	worse,	he	was	her	consecrated
spouse,	 her	 helpmate,	 her	 legal	 despoiler,	who	 took	 upon	 himself	 of
his	own	free	and	sovereign	will	the	grave	responsibility	of	taking	her
away	from	her	paternal	home,	where	she	never	wanted	for	or	suffered
from	anything,	where	she	wove	funeral	wreaths	as	a	pastime,	since	her
godfather	had	sent	a	letter	with	his	signature	and	the	stamp	of	his	ring
on	 the	 sealing	wax	 simply	 to	 say	 that	 the	 hands	 of	 his	 goddaughter
were	not	meant	 for	 tasks	of	 this	world	except	 to	play	 the	clavichord,
and,	 nevertheless,	 her	 insane	 husband	 had	 taken	 her	 from	 her	 home
with	all	manner	of	admonitions	and	warnings	and	had	brought	her	 to
that	frying	pan	of	hell	where	a	person	could	not	breathe	because	of	the
heat,	 and	before	 she	had	completed	her	Pentecostal	 fast	he	had	gone
off	with	 his	 wandering	 trunks	 and	 his	wastrel’s	 accordion	 to	 loaf	 in
adultery	with	a	wretch	of	whom	it	was	only	enough	to	see	her	behind,
well,	that’s	been	said,	to	see	her	wiggle	her	mare’s	behind	in	order	to
guess	that	she	was	a,	that	she	was	a,	just	the	opposite	of	her,	who	was	a
lady	in	a	palace	or	a	pigsty,	at	the	table	or	in	bed,	a	lady	of	breeding,
God-fearing,	obeying	His	laws	and	submissive	to	His	wishes,	and	with
whom	 he	 could	 not	 perform,	 naturally,	 the	 acrobatics	 and	 trampish



antics	 that	 he	 did	with	 the	 other	 one,	who,	 of	 course,	was	 ready	 for
anything,	 like	 the	 French	matrons,	 and	 even	worse,	 if	 one	 considers
well,	 because	 they	at	 least	had	 the	honesty	 to	put	 a	 red	 light	 at	 their
door,	 swinishness	 like	 that,	 just	 imagine,	 and	 that	 was	 all	 that	 was
needed	by	the	only	and	beloved	daughter	of	Doña	Renata	Argote	and
Don	Fernando	del	Carpio,	and	especially	the	latter,	an	upright	man,	a
fine	Christian,	a	Knight	of	the	Order	of	the	Holy	Sepulcher,	those	who
receive	 direct	 from	 God	 the	 privilege	 of	 remaining	 intact	 in	 their
graves	with	their	skin	smooth	like	the	cheeks	of	a	bride	and	their	eyes
alive	and	clear	like	emeralds.
2.	See	the	graph	“Growth	in	Genbank	DNA	Sequence	Data”	in	chapter
10.

3.	 Cheng	 Zhang	 and	 Jianpeng	 Ma,	 “Enhanced	 Sampling	 and
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Chemical	 Physics	 132,	 no.	 24	 (2010):	 244101.	 See	 also
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“[The	Impact…]	on	the	Intelligent	Destiny	of	the	Cosmos:	Why	We
Are	Probably	Alone	in	the	Universe”	in	chapter	6	of	The	Singularity
Is	Near	by	Ray	Kurzweil	(New	York:	Viking,	2005).

5.	James	D.	Watson,	Discovering	the	Brain	(Washington,	DC:	National
Academies	Press,	1992).
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5.	 The	 following	 passage	 from	 the	 book	 Transcend:	 Nine	 Steps	 to
Living	Well	Forever,	 by	Ray	Kurzweil	 and	 Terry	Grossman	 (New
York:	 Rodale,	 2009),	 describes	 this	 lucid	 dreaming	 technique	 in
more	detail:
I’ve	developed	a	method	of	solving	problems	while	I	sleep.	I’ve

perfected	 it	 for	 myself	 over	 several	 decades	 and	 have	 learned	 the
subtle	means	by	which	this	is	likely	to	work	better.

I	 start	 out	 by	 assigning	myself	 a	 problem	when	 I	 get	 into	 bed.
This	can	be	any	kind	of	problem.	It	could	be	a	math	problem,	an	issue
with	 one	 of	my	 inventions,	 a	 business	 strategy	 question,	 or	 even	 an
interpersonal	problem.

I’ll	 think	 about	 the	 problem	 for	 a	 few	minutes,	 but	 I	 try	 not	 to



solve	it.	That	would	just	cut	off	the	creative	problem	solving	to	come.	I
do	try	to	think	about	it.	What	do	I	know	about	this?	What	form	could	a
solution	 take?	 And	 then	 I	 go	 to	 sleep.	 Doing	 this	 primes	 my
subconscious	mind	to	work	on	the	problem.

Terry:	Sigmund	Freud	pointed	out	 that	when	we	dream,	many	of
the	 censors	 in	 our	 brain	 are	 relaxed,	 so	 that	 we	 might	 dream	 about
things	 that	 are	 socially,	 culturally,	 or	 even	 sexually	 taboo.	 We	 can
dream	 about	weird	 things	 that	we	wouldn’t	 allow	 ourselves	 to	 think
about	 during	 the	 day.	 That’s	 at	 least	 one	 reason	 why	 dreams	 are
strange.

Ray:	There	are	also	professional	blinders	that	prevent	people	from
thinking	 creatively,	 many	 of	 which	 come	 from	 our	 professional
training,	mental	 blocks	 such	 as	 “you	 can’t	 solve	 a	 signal	 processing
problem	that	way”	or	“linguistics	is	not	supposed	to	use	those	rules.”
These	mental	assumptions	are	also	relaxed	 in	our	dream	state,	so	I’ll
dream	about	new	ways	of	solving	problems	without	being	burdened	by
these	daytime	constraints.

Terry:	There’s	another	part	of	our	brain	also	not	working	when	we
dream,	our	rational	faculties	to	evaluate	whether	an	idea	is	reasonable.
So	 that’s	 another	 reason	 that	weird	 or	 fantastic	 things	 happen	 in	 our
dreams.	When	the	elephant	walks	through	the	wall,	we	aren’t	shocked
as	to	how	the	elephant	could	do	this.	We	just	say	to	our	dream	selves,
“Okay,	an	elephant	walked	through	the	wall,	no	big	deal.”	Indeed,	if	I
wake	 up	 in	 the	 middle	 of	 the	 night,	 I	 often	 find	 that	 I’ve	 been
dreaming	 in	 strange	 and	 oblique	 ways	 about	 the	 problem	 that	 I
assigned	myself.

Ray:	 The	 next	 step	 occurs	 in	 the	 morning	 in	 the	 halfway	 state
between	 dreaming	 and	 being	 awake,	 which	 is	 often	 called	 lucid
dreaming.	 In	this	state,	I	still	have	the	feelings	and	imagery	from	my
dreams,	but	now	I	do	have	my	rational	faculties.	I	realize,	for	example,
that	 I	 am	 in	 a	bed.	And	 I	 could	 formulate	 the	 rational	 thought	 that	 I
have	 a	 lot	 to	 do	 so	 I	 had	 better	 get	 out	 of	 bed.	But	 that	would	 be	 a
mistake.	Whenever	I	can,	I	will	stay	in	bed	and	continue	in	this	lucid
dream	 state	 because	 that	 is	 key	 to	 this	 creative	 problem-solving
method.	By	the	way,	this	doesn’t	work	if	the	alarm	rings.



Reader:	Sounds	like	the	best	of	both	worlds.

Ray:	Exactly.	 I	 still	 have	access	 to	 the	dream	 thoughts	 about	 the
problem	I	assigned	myself	 the	night	before.	But	now	I’m	sufficiently
conscious	and	rational	to	evaluate	the	new	creative	ideas	that	came	to
me	 during	 the	 night.	 I	 can	 determine	which	 ones	make	 sense.	 After
perhaps	 20	minutes	 of	 this,	 I	 invariably	will	 have	 keen	 new	 insights
into	the	problem.

I’ve	 come	up	with	 inventions	 this	way	 (and	 spent	 the	 rest	 of	 the
day	writing	a	patent	application),	figured	out	how	to	organize	material
for	a	book	such	as	this,	and	come	up	with	useful	ideas	for	a	diverse	set
of	problems.	If	I	have	a	key	decision	to	make,	I	will	always	go	through
this	 process,	 after	 which	 I	 am	 likely	 to	 have	 real	 confidence	 in	 my
decision.

The	key	to	the	process	is	to	let	your	mind	go,	to	be	nonjudgmental,
and	 not	 to	 worry	 about	 how	 well	 the	 method	 is	 working.	 It	 is	 the
opposite	of	a	mental	discipline.	Think	about	the	problem,	but	then	let
ideas	wash	over	you	as	you	fall	asleep.	Then	in	the	morning,	let	your
mind	 go	 again	 as	 you	 review	 the	 strange	 ideas	 that	 your	 dreams
generated.	I	have	found	this	to	be	an	invaluable	method	for	harnessing
the	natural	creativity	of	my	dreams.

Reader:	Well,	for	the	workaholics	among	us,	we	can	now	work	in
our	dreams.	Not	sure	my	spouse	is	going	to	appreciate	this.

Ray:	 Actually,	 you	 can	 think	 of	 it	 as	 getting	 your	 dreams	 to	 do
your	work	for	you.
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are	possible,	and	the	designer	of	the	system	needs	to	provide	certain
critical	parameters	and	methods,	detailed	on	the	following	pages.

Creating	 a	 neural	 net	 solution	 to	 a	 problem	 involves	 the	 following
steps:
Define	the	input.

	
Define	 the	 topology	 of	 the	 neural	 net	 (i.e.,	 the	 layers	 of	 neurons



and	the	connections	between	the	neurons).
	

Train	the	neural	net	on	examples	of	the	problem.
	

Run	the	trained	neural	net	to	solve	new	examples	of	the	problem.
	

Take	your	neural	net	company	public.
	

These	steps	(except	for	the	last	one)	are	detailed	below:

The	Problem	Input

The	problem	 input	 to	 the	 neural	 net	 consists	 of	 a	 series	 of	 numbers.
This	input	can	be:
In	a	visual	pattern	recognition	system,	a	two-dimensional	array	of

numbers	representing	the	pixels	of	an	image;	or
	

In	an	auditory	(e.g.,	speech)	recognition	system,	a	two-dimensional
array	 of	 numbers	 representing	 a	 sound,	 in	which	 the	 first	 dimension
represents	parameters	of	 the	 sound	 (e.g.,	 frequency	components)	 and
the	second	dimension	represents	different	points	in	time;	or

	
In	an	arbitrary	pattern	recognition	system,	an	n-dimensional	array

of	numbers	representing	the	input	pattern.
	

Defining	the	Topology
To	set	up	the	neural	net,	the	architecture	of	each	neuron	consists	of:

Multiple	 inputs	 in	 which	 each	 input	 is	 “connected”	 to	 either	 the
output	of	another	neuron	or	one	of	the	input	numbers.

	
Generally,	a	single	output,	which	is	connected	to	either	the	input	of

another	neuron	(which	is	usually	in	a	higher	layer)	or	the	final	output.
	

Set	Up	the	First	Layer	of	Neurons
Create	N0	 neurons	 in	 the	 first	 layer.	 For	 each	 of	 these	 neurons,

“connect”	 each	of	 the	multiple	 inputs	 of	 the	neuron	 to	 “points”	 (i.e.,
numbers)	 in	 the	problem	input.	These	connections	can	be	determined
randomly	or	using	an	evolutionary	algorithm	(see	below).



	
Assign	 an	 initial	 “synaptic	 strength”	 to	 each	 connection	 created.

These	weights	can	start	out	all	the	same,	can	be	assigned	randomly,	or
can	be	determined	in	another	way	(see	below).

	

Set	Up	the	Additional	Layers	of	Neurons
Set	up	a	total	of	M	layers	of	neurons.	For	each	layer,	set	up	the	neurons
in	that	layer.

For	layeri:
Create	Ni	neurons	 in	 layeri.	For	 each	of	 these	neurons,	 “connect”

each	of	the	multiple	inputs	of	the	neuron	to	the	outputs	of	the	neurons
in	layeri–1	(see	variations	below).

	
Assign	 an	 initial	 “synaptic	 strength”	 to	 each	 connection	 created.

These	weights	can	start	out	all	the	same,	can	be	assigned	randomly,	or
can	be	determined	in	another	way	(see	below).

	
The	outputs	of	the	neurons	in	layerM	are	the	outputs	of	the	neural

net	(see	variations	below).
	

The	Recognition	Trials

How	Each	Neuron	Works
Once	 the	 neuron	 is	 set	 up,	 it	 does	 the	 following	 for	 each

recognition	trial:
	

Each	weighted	input	to	the	neuron	is	computed	by	multiplying	the
output	of	the	other	neuron	(or	initial	input)	that	the	input	to	this	neuron
is	connected	to	by	the	synaptic	strength	of	that	connection.

	
All	of	these	weighted	inputs	to	the	neuron	are	summed.

	
If	this	sum	is	greater	than	the	firing	threshold	of	this	neuron,	then

this	 neuron	 is	 considered	 to	 fire	 and	 its	 output	 is	 1.	 Otherwise,	 its
output	is	0	(see	variations	below).

	

Do	the	Following	for	Each	Recognition	Trial



For	each	layer,	from	layer0	to	layerM:
For	each	neuron	in	the	layer:

Sum	its	weighted	 inputs	(each	weighted	 input	=	 the	output	of	 the
other	neuron	[or	initial	input]	that	the	input	to	this	neuron	is	connected
to,	multiplied	by	the	synaptic	strength	of	that	connection).

	
If	 this	 sum	of	weighted	 inputs	 is	greater	 than	 the	 firing	 threshold

for	this	neuron,	set	the	output	of	this	neuron	=	1,	otherwise	set	it	to	0.
	



To	Train	the	Neural	Net

Run	repeated	recognition	trials	on	sample	problems.
	

After	 each	 trial,	 adjust	 the	 synaptic	 strengths	 of	 all	 the	 interneuronal
connections	to	improve	the	performance	of	the	neural	net	on	this	trial	(see
the	discussion	below	on	how	to	do	this).

	
Continue	 this	 training	 until	 the	 accuracy	 rate	 of	 the	 neural	 net	 is	 no

longer	improving	(i.e.,	reaches	an	asymptote).
	

Key	Design	Decisions

In	the	simple	schema	above,	the	designer	of	this	neural	net	algorithm	needs
to	determine	at	the	outset:
What	the	input	numbers	represent.

	
The	number	of	layers	of	neurons.

	
The	number	of	neurons	in	each	layer.	(Each	layer	does	not	necessarily

need	to	have	the	same	number	of	neurons.)
	

The	 number	 of	 inputs	 to	 each	 neuron	 in	 each	 layer.	 The	 number	 of
inputs	(i.e.,	interneuronal	connections)	can	also	vary	from	neuron	to	neuron
and	from	layer	to	layer.

	
The	 actual	 “wiring”	 (i.e.,	 the	 connections).	 For	 each	 neuron	 in	 each

layer,	this	consists	of	a	list	of	other	neurons,	the	outputs	of	which	constitute
the	 inputs	 to	 this	 neuron.	 This	 represents	 a	 key	 design	 area.	 There	 are	 a
number	of	possible	ways	to	do	this:

	
(1)	Wire	the	neural	net	randomly;	or

	
(2)	 Use	 an	 evolutionary	 algorithm	 (see	 below)	 to	 determine	 an	 optimal

wiring;	or
	



(3)	Use	the	system	designer’s	best	judgment	in	determining	the	wiring.
	

The	 initial	 synaptic	 strengths	 (i.e.,	weights)	of	each	connection.	There
are	a	number	of	possible	ways	to	do	this:

	
(1)	Set	the	synaptic	strengths	to	the	same	value;	or

	
(2)	Set	the	synaptic	strengths	to	different	random	values;	or

	
(3)	 Use	 an	 evolutionary	 algorithm	 to	 determine	 an	 optimal	 set	 of	 initial

values;	or
	

(4)	 Use	 the	 system	 designer’s	 best	 judgment	 in	 determining	 the	 initial
values.

	
The	firing	threshold	of	each	neuron.

	
Determine	the	output.	The	output	can	be:

	
(1)	the	outputs	of	layerM	of	neurons;	or

	
(2)	the	output	of	a	single	output	neuron,	the	inputs	of	which	are	the	outputs

of	the	neurons	in	layerM;	or
	

(3)	a	function	of	(e.g.,	a	sum	of)	the	outputs	of	the	neurons	in	layerM;	or
	

(4)	another	function	of	neuron	outputs	in	multiple	layers.
	

Determine	how	the	synaptic	strengths	of	all	the	connections	are	adjusted
during	 the	 training	of	 this	neural	net.	This	 is	a	key	design	decision	and	 is
the	subject	of	a	great	deal	of	research	and	discussion.	There	are	a	number	of
possible	ways	to	do	this:

	
(1)	 For	 each	 recognition	 trial,	 increment	 or	 decrement	 each	 synaptic

strength	 by	 a	 (generally	 small)	 fixed	 amount	 so	 that	 the	 neural	 net’s
output	more	closely	matches	the	correct	answer.	One	way	to	do	this	is
to	try	both	incrementing	and	decrementing	and	see	which	has	the	more
desirable	 effect.	This	 can	be	 time-consuming,	 so	other	methods	exist
for	making	local	decisions	on	whether	to	increment	or	decrement	each
synaptic	strength.



	
(2)	Other	statistical	methods	exist	for	modifying	the	synaptic	strengths	after

each	recognition	trial	so	that	the	performance	of	the	neural	net	on	that
trial	more	closely	matches	the	correct	answer.

	
Note	 that	 neural	 net	 training	 will	 work	 even	 if	 the	 answers	 to	 the

training	trials	are	not	all	correct.	This	allows	using	real-world	training	data
that	may	have	an	inherent	error	rate.	One	key	to	the	success	of	a	neural	net–
based	recognition	system	is	the	amount	of	data	used	for	training.	Usually	a
very	 substantial	 amount	 is	 needed	 to	 obtain	 satisfactory	 results.	 As	 with
human	 students,	 the	 amount	 of	 time	 that	 a	 neural	 net	 spends	 learning	 its
lessons	is	a	key	factor	in	its	performance.

	

Variations
Many	variations	of	the	above	are	feasible.	For	example:

There	are	different	ways	of	determining	the	topology.	In	particular,	the
interneuronal	wiring	 can	 be	 set	 either	 randomly	 or	 using	 an	 evolutionary
algorithm.

	
There	are	different	ways	of	setting	the	initial	synaptic	strengths.

	
The	inputs	to	the	neurons	in	layeri	do	not	necessarily	need	to	come	from

the	 outputs	 of	 the	 neurons	 in	 layeri–1.	 Alternatively,	 the	 inputs	 to	 the
neurons	in	each	layer	can	come	from	any	lower	layer	or	any	layer.

	
There	are	different	ways	to	determine	the	final	output.

	
The	method	described	above	results	in	an	“all	or	nothing”	(1	or	0)	firing

called	a	nonlinearity.	There	are	other	nonlinear	functions	that	can	be	used.
Commonly	 a	 function	 is	 used	 that	 goes	 from	 0	 to	 1	 in	 a	 rapid	 but	more
gradual	fashion.	Also,	the	outputs	can	be	numbers	other	than	0	and	1.

	
The	 different	 methods	 for	 adjusting	 the	 synaptic	 strengths	 during

training	represent	key	design	decisions.
	

The	above	schema	describes	a	“synchronous”	neural	net,	in	which	each
recognition	 trial	proceeds	by	computing	the	outputs	of	each	 layer,	starting
with	layer0	through	layerM.	In	a	true	parallel	system,	in	which	each	neuron



is	 operating	 independently	 of	 the	 others,	 the	 neurons	 can	 operate
“asynchronously”	(i.e.,	independently).	In	an	asynchronous	approach,	each
neuron	 is	constantly	scanning	 its	 inputs	and	fires	whenever	 the	sum	of	 its
weighted	 inputs	 exceeds	 its	 threshold	 (or	 whatever	 its	 output	 function
specifies).

	
10.	 Robert	 Mannell,	 “Acoustic	 Representations	 of	 Speech,”	 2008,

http://clas.mq.edu.au/acoustics/frequency/acoustic_speech.xhtml.
11.	Here	is	the	basic	schema	for	a	genetic	(evolutionary)	algorithm.	Many

variations	are	possible,	and	the	designer	of	the	system	needs	to	provide
certain	critical	parameters	and	methods,	detailed	below.



The	Evolutionary	Algorithm

Create	N	solution	“creatures.”	Each	one	has:
A	 genetic	 code:	 a	 sequence	 of	 numbers	 that	 characterize	 a	 possible

solution	 to	 the	 problem.	 The	 numbers	 can	 represent	 critical	 parameters,
steps	to	a	solution,	rules,	etc.

	
For	each	generation	of	evolution,	do	the	following:

Do	the	following	for	each	of	the	N	solution	creatures:
	

Apply	 this	 solution	 creature’s	 solution	 (as	 represented	 by	 its	 genetic
code)	to	the	problem,	or	simulated	environment.	Rate	the	solution.

	
Pick	the	L	solution	creatures	with	the	highest	ratings	to	survive	into	the

next	generation.
	

Eliminate	the	(N	–	L)	nonsurviving	solution	creatures.
	

Create	 (N	 –	 L)	 new	 solution	 creatures	 from	 the	 L	 surviving	 solution
creatures	by:

	
(1)	Making	 copies	 of	 the	 L	 surviving	 creatures.	 Introduce	 small	 random

variations	into	each	copy;	or
	

(2)	Create	 additional	 solution	 creatures	by	 combining	parts	of	 the	genetic
code	(using	“sexual”	reproduction,	or	otherwise	combining	portions	of
the	chromosomes)	from	the	L	surviving	creatures;	or

	
(3)	Do	a	combination	of	(1)	and	(2).

	
Determine	whether	or	not	to	continue	evolving:

Improvement	 =	 (highest	 rating	 in	 this	 generation)	 –	 (highest	 rating	 in
the	previous	generation).

	
If	Improvement	<	Improvement	Threshold	then	we’re	done.

	
The	solution	creature	with	the	highest	rating	from	the	last	generation	of



evolution	 has	 the	 best	 solution.	Apply	 the	 solution	 defined	 by	 its	 genetic
code	to	the	problem.

	

Key	Design	Decisions
In	the	simple	schema	above,	the	designer	needs	to	determine	at	the	outset:

Key	parameters:
	

N
	

L
	

Improvement	threshold.
	

What	the	numbers	in	the	genetic	code	represent	and	how	the	solution	is
computed	from	the	genetic	code.

	
A	 method	 for	 determining	 the	 N	 solution	 creatures	 in	 the	 first

generation.	 In	 general,	 these	 need	 only	 be	 “reasonable”	 attempts	 at	 a
solution.	 If	 these	 first-generation	 solutions	 are	 too	 far	 afield,	 the
evolutionary	algorithm	may	have	difficulty	converging	on	a	good	solution.
It	 is	often	worthwhile	to	create	the	initial	solution	creatures	in	such	a	way
that	 they	 are	 reasonably	 diverse.	 This	 will	 help	 prevent	 the	 evolutionary
process	from	just	finding	a	“locally”	optimal	solution.

	
How	the	solutions	are	rated.

	
How	the	surviving	solution	creatures	reproduce.

	
Variations
Many	variations	of	the	above	are	feasible.	For	example:

There	 does	 not	 need	 to	 be	 a	 fixed	 number	 of	 surviving	 solution
creatures	 (L)	 from	 each	 generation.	 The	 survival	 rule(s)	 can	 allow	 for	 a
variable	number	of	survivors.

	
There	 does	 not	 need	 to	 be	 a	 fixed	 number	 of	 new	 solution	 creatures

created	 in	 each	 generation	 (N	 –	 L).	 The	 procreation	 rules	 can	 be
independent	 of	 the	 size	 of	 the	 population.	 Procreation	 can	 be	 related	 to
survival,	 thereby	 allowing	 the	 fittest	 solution	 creatures	 to	 procreate	 the
most.



	
The	decision	as	to	whether	or	not	to	continue	evolving	can	be	varied.	It

can	 consider	 more	 than	 just	 the	 highest-rated	 solution	 creature	 from	 the
most	recent	generation(s).	It	can	also	consider	a	trend	that	goes	beyond	just
the	last	two	generations.
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IBM,	“IBM	3380	Direct	Access	Storage	Device,”	http://www.03-
ibm.com/ibm/history/exhibits/storage/storage_3380.xhtml.

18.	 “Without	Driver	 or	Map,	Vans	Go	 from	 Italy	 to	 China,”	Sydney
Morning	 Herald,	 October	 29,	 2010,
http://www.smh.com.au/technology/technology-news/without-
driver-or-map-vans-go-from-italy-to-china-20101029-
176ja.xhtml.



19.	KurzweilAI.net.
20.	 Adapted	 with	 permission	 from	 Amiram	 Grinvald	 and	 Rina

Hildesheim,	 “VSDI:	 A	 New	 Era	 in	 Functional	 Imaging	 of
Cortical	Dynamics,”	Nature	Reviews	Neuroscience	5	 (November
2004):	874–85.
The	main	tools	for	imaging	the	brain	are	shown	in	this	diagram.

Their	capabilities	are	depicted	by	the	shaded	rectangles.
Spatial	 resolution	 refers	 to	 the	 smallest	 dimension	 that	 can	 be

measured	 with	 a	 technique.	 Temporal	 resolution	 is	 imaging	 time	 or
duration.	There	are	 tradeoffs	with	each	technique.	For	example,	EEG
(electroencephalography),	 which	 measures	 “brain	 waves”	 (electrical
signals	from	neurons),	can	measure	very	rapid	brain	waves	(occurring
in	short	time	intervals),	but	can	only	sense	signals	near	the	surface	of
the	brain.

In	 contrast,	 fMRI	 (functional	 magnetic	 resonance	 imaging),
which	uses	a	special	MRI	machine	to	measure	blood	flow	to	neurons
(indicating	 neuron	 activity),	 can	 sense	 a	 lot	 deeper	 in	 the	 brain	 (and
spinal	 cord)	 and	 with	 higher	 resolution,	 down	 to	 tens	 of	 microns
(millionths	 of	 a	 meter).	 However,	 fMRI	 operates	 very	 slowly
compared	with	EEG.

These	 are	 noninvasive	 techniques	 (no	 surgery	 or	 drugs	 are
required).	 MEG	 (magnetoencephalography)	 is	 another	 noninvasive
technique.	It	detects	magnetic	fields	generated	by	neurons.	MEG	and
EEG	 can	 resolve	 events	 with	 a	 temporal	 resolution	 of	 down	 to	 1
millisecond,	 but	 better	 than	 fMRI,	 which	 can	 at	 best	 resolve	 events
with	 a	 resolution	 of	 several	 hundred	 milliseconds.	 MEG	 also
accurately	pinpoints	 sources	 in	primary	 auditory,	 somatosensory,	 and
motor	areas.

Optical	 imaging	 covers	 almost	 the	 entire	 range	 of	 spatial	 and
temporal	resolutions,	but	is	invasive.	VSDI	(voltage-sensitive	dyes)	is
the	most	sensitive	method	of	measuring	brain	activity,	but	is	limited	to
measurements	near	the	surface	of	the	cortex	of	animals.

The	exposed	cortex	is	covered	with	a	transparent	sealed	chamber;
after	 the	 cortex	 is	 stained	with	 a	 suitable	 voltage-sensitive	 dye,	 it	 is
illuminated	with	light	and	a	sequence	of	images	is	taken	with	a	high-
speed	 camera.	 Other	 optical	 techniques	 used	 in	 the	 lab	 include	 ion
imaging	(typically	calcium	or	sodium	ions)	and	fluorescence	imaging
systems	(confocal	imaging	and	multiphoton	imaging).

Other	lab	techniques	include	PET	(positron	emission	tomography,



a	 nuclear	 medicine	 imaging	 technique	 that	 produces	 a	 3-D	 image),
2DG	 (2-deoxyglucose	 postmortem	 histology,	 or	 tissue	 analysis),
lesions	 (involves	 damaging	 neurons	 in	 an	 animal	 and	 observing	 the
effects),	 patch	 clamping	 (to	 measure	 ion	 currents	 across	 biological
membranes),	 and	 electron	 microscopy	 (using	 an	 electron	 beam	 to
examine	tissues	or	cells	at	a	very	fine	scale).	These	techniques	can	also
be	integrated	with	optical	imaging.
21.	MRI	spatial	resolution	in	microns	(μm),	1980–2012:

22.	 Spatial	 resolution	 in	 nanometers	 (nm)	 of	 destructive	 imaging
techniques,	1983–2011:



	

23.	 Spatial	 resolution	 in	 microns	 (μm)	 of	 nondestructive	 imaging
techniques	in	animals,	1985–2012:

Year Finding 	
2012 Resolution 0.07

	 Citation Sebastian	Berning	et	al.,	“Nanoscopy	in	a	Living	Mouse
Brain,”	Science	335,	no.	6068	(February	3,	2012):	551.

	 URL http://dx.doi.org/10.1126/science.1215369

	 Technique Stimulated	emission	depletion	(STED)	fluorescencenanoscopy



	 Notes Highest	resolution	achieved	in	vivo	so	far
2012 Resolution 0.25

	 Citation Sebastian	Berning	et	al.,	“Nanoscopy	in	a	Living	Mouse
Brain,”	Science	335,	no.	6068	(February	3,	2012):	551.

	 URL http://dx.doi.org/10.1126/science.1215369
	 Technique Confocal	and	multiphoton	microscopy
2004 Resolution 50

	 Citation
Amiram	Grinvald	and	Rina	Hildesheim,	“VSDI:	A	New
Era	in	Functional	Imaging	of	Cortical	Dynamics,”	Nature
Reviews	Neuroscience	5	(November	2004):	874–85.

	 URL http://dx.doi.org/10.1038/nrn1536
	 Technique Imaging	based	on	voltage-sensitive	dyes	(VSDI)

	 Notes
“VSDI	has	provided	high-resolution	maps,	which
correspond	to	cortical	columns	in	which	spiking	occurs,
and	offer	a	spatial	resolution	better	than	50	μm.”

1996 Resolution 50

	 Citation

Dov	Malonek	and	Amiram	Grinvald,	“Interactions
between	Electrical	Activity	and	Cortical	Microcirculation
Revealed	by	Imaging	Spectroscopy:	Implications	for
Functional	Brain	Mapping,”	Science	272,	no.	5261	(April
26,	1996):	551–54.

	 URL http://dx.doi.org/10.1126/science.272.5261.551
	 Technique Imaging	spectroscopy

	 Notes

“The	study	of	spatial	relationships	between	individual
cortical	columns	within	a	given	brain	area	has	become
feasible	with	optical	imaging	based	on	intrinsic	signals,	at
a	spatial	resolution	of	about	50	μm.”

1995 Resolution 50

	 Citation

D.	H.	Turnbull	et	al.,	“Ultrasound	Backscatter	Microscope
Analysis	of	Early	Mouse	Embryonic	Brain
Development,”	Proceedings	of	the	National	Academy	of
Sciences	92,	no.	6	(March	14,	1995):	2239–43.

	 URL http://www.pnas.org/content/92/6/2239.short
	 Technique Ultrasound	backscatter	microscopy

“We	demonstrate	application	of	a	real-time	imaging



	 Notes
method	called	ultrasound	backscatter	microscopy	for
visualizing	mouse	early	embryonic	neural	tubes	and
hearts.	This	method	was	used	to	study	live	embryos	in
utero	between	9.5	and	11.5	days	of	embryogenesis,	with	a
spatial	resolution	close	to	50	μm.”

1985 Resolution 500

	 Citation

H.	S.	Orbach,	L.	B.	Cohen,	and	A.	Grinvald,	“Optical
Mapping	of	Electrical	Activity	in	Rat	Somatosensory	and
Visual	Cortex,”	Journal	of	Neuroscience	5,	no.	7	(July	1,
1985):	1886–95.

	 URL http://www.jneurosci.org/content/5/7/1886.short
	 Technique Optical	methods
	

	



Chapter	11:	Objections

1.	Paul	G.	Allen	and	Mark	Greaves,	“Paul	Allen:	The	Singularity	Isn’t
Near,”	 Technology	 Review,	 October	 12,	 2011,
http://www.technologyreview.com/blog/guest/27206/.

2.	 ITRS,	 “International	 Technology	 Roadmap	 for	 Semiconductors,”
http://www.itrs.net/Links/2011ITRS/Home2011.htm.

3.	Ray	Kurzweil,	The	Singularity	 Is	Near	 (New	York:	Viking,	2005),
chapter	2.

4.	Endnote	2	in	Allen	and	Greaves,	“The	Singularity	Isn’t	Near,”	reads
as	follows:	“We	are	beginning	to	get	within	range	of	 the	computer
power	 we	 might	 need	 to	 support	 this	 kind	 of	 massive	 brain
simulation.	 Petaflop-class	 computers	 (such	 as	 IBM’s	 BlueGene/P
that	 was	 used	 in	 the	 Watson	 system)	 are	 now	 available
commercially.	Exaflop-class	computers	are	currently	on	the	drawing
boards.	These	systems	could	probably	deploy	the	raw	computational
capability	needed	to	simulate	 the	firing	patterns	for	all	of	a	brain’s
neurons,	though	currently	it	happens	many	times	more	slowly	than
would	happen	in	an	actual	brain.”

5.	 Kurzweil,	 The	 Singularity	 Is	 Near,	 chapter	 9,	 section	 titled	 “The
Criticism	from	Software”	(pp.	435–42).

6.	Ibid.,	chapter	9.
7.	Although	 it	 is	 not	 possible	 to	 precisely	 determine	 the	 information
content	 in	 the	 genome,	 because	 of	 the	 repeated	 base	 pairs	 it	 is
clearly	much	 less	 than	 the	 total	 uncompressed	 data.	Here	 are	 two
approaches	to	estimating	the	compressed	information	content	of	the
genome,	 both	 of	 which	 demonstrate	 that	 a	 range	 of	 30	 to	 100
million	bytes	is	conservatively	high.
1.	 In	 terms	 of	 the	 uncompressed	 data,	 there	 are	 3	 billion	DNA

rungs	 in	 the	human	genetic	 code,	 each	coding	2	bits	 (since	 there	 are
four	possibilities	for	each	DNA	base	pair).	Thus	the	human	genome	is
about	800	million	bytes	uncompressed.	The	noncoding	DNA	used	 to
be	 called	 “junk	DNA,”	but	 it	 is	 now	clear	 that	 it	 plays	 an	 important
role	 in	 gene	 expression.	However,	 it	 is	 very	 inefficiently	 coded.	 For
one	thing,	there	are	massive	redundancies	(for	example,	the	sequence
called	 “ALU”	 is	 repeated	 hundreds	 of	 thousands	 of	 times),	 which



compression	algorithms	can	take	advantage	of.
With	 the	 recent	explosion	of	genetic	data	banks,	 there	 is	a	great

deal	of	interest	in	compressing	genetic	data.	Recent	work	on	applying
standard	 data	 compression	 algorithms	 to	 genetic	 data	 indicates	 that
reducing	 the	 data	 by	 90	 percent	 (for	 bit	 perfect	 compression)	 is
feasible:	 Hisahiko	 Sato	 et	 al.,	 “DNA	 Data	 Compression	 in	 the	 Post
Genome	 Era,”	 Genome	 Informatics	 12	 (2001):	 512–14,
http://www.jsbi.org/journal/GIW01/GIW01P130.pdf.

Thus	 we	 can	 compress	 the	 genome	 to	 about	 80	 million	 bytes
without	loss	of	information	(meaning	we	can	perfectly	reconstruct	the
full	800-million-byte	uncompressed	genome).

Now	consider	that	more	than	98	percent	of	the	genome	does	not
code	 for	 proteins.	 Even	 after	 standard	 data	 compression	 (which
eliminates	 redundancies	 and	 uses	 a	 dictionary	 lookup	 for	 common
sequences),	 the	algorithmic	content	of	 the	noncoding	regions	appears
to	 be	 rather	 low,	 meaning	 that	 it	 is	 likely	 that	 we	 could	 code	 an
algorithm	 that	 would	 perform	 the	 same	 function	 with	 fewer	 bits.
However,	since	we	are	still	early	in	the	process	of	reverse-engineering
the	 genome,	 we	 cannot	 make	 a	 reliable	 estimate	 of	 this	 further
decrease	 based	 on	 a	 functionally	 equivalent	 algorithm.	 I	 am	 using,
therefore,	 a	 range	 of	 30	 to	 100	 million	 bytes	 of	 compressed
information	 in	 the	 genome.	 The	 top	 part	 of	 this	 range	 assumes	 only
data	compression	and	no	algorithmic	simplification.

Only	 a	 portion	 (although	 the	 majority)	 of	 this	 information
characterizes	the	design	of	the	brain.

2.	 Another	 line	 of	 reasoning	 is	 as	 follows.	 Though	 the	 human
genome	 contains	 around	 3	 billion	 bases,	 only	 a	 small	 percentage,	 as
mentioned	 above,	 codes	 for	 proteins.	By	 current	 estimates,	 there	 are
26,000	genes	that	code	for	proteins.	If	we	assume	those	genes	average
3,000	bases	of	useful	data,	those	equal	only	approximately	78	million
bases.	A	base	of	DNA	requires	only	2	bits,	which	translate	to	about	20
million	bytes	(78	million	bases	divided	by	four).	In	the	protein-coding
sequence	 of	 a	 gene,	 each	 “word”	 (codon)	 of	 three	 DNA	 bases
translates	 into	 one	 amino	 acid.	There	 are,	 therefore,	 43	 (64)	 possible
codon	codes,	each	consisting	of	three	DNA	bases.	There	are,	however,
only	20	amino	acids	used	plus	a	stop	codon	(null	amino	acid)	out	of
the	64.	The	rest	of	the	43	codes	are	used	as	synonyms	of	the	21	useful
ones.	 Whereas	 6	 bits	 are	 required	 to	 code	 for	 64	 possible



combinations,	only	about	4.4	(log2	21)	bits	are	required	to	code	for	21
possibilities,	a	savings	of	1.6	out	of	6	bits	(about	27	percent),	bringing
us	 down	 to	 about	 15	 million	 bytes.	 In	 addition,	 some	 standard
compression	 based	 on	 repeating	 sequences	 is	 feasible	 here,	 although
much	less	compression	is	possible	on	this	protein-coding	portion	of	the
DNA	 than	 in	 the	 so-called	 junk	 DNA,	 which	 has	 massive
redundancies.	So	this	will	bring	the	figure	probably	below	12	million
bytes.	However,	 now	we	 have	 to	 add	 information	 for	 the	 noncoding
portion	 of	 the	 DNA	 that	 controls	 gene	 expression.	 Although	 this
portion	of	 the	DNA	constitutes	 the	bulk	of	 the	genome,	 it	 appears	 to
have	 a	 low	 level	 of	 information	 content	 and	 is	 replete	with	massive
redundancies.	Estimating	that	it	matches	the	approximately	12	million
bytes	 of	 protein-coding	 DNA,	 we	 again	 come	 to	 approximately	 24
million	bytes.	From	this	perspective,	an	estimate	of	30	to	100	million
bytes	is	conservatively	high.
8.	 Dharmendra	 S.	 Modha	 et	 al.,	 “Cognitive	 Computing,”
Communications	 of	 the	 ACM	 54,	 no.	 8	 (2011):	 62–71,
http://cacm.acm.org/magazines/2011/8/114944-cognitive-
computing/fulltext.

9.	 Kurzweil,	 The	 Singularity	 Is	 Near,	 chapter	 9,	 section	 titled	 “The
Criticism	 from	 Ontology:	 Can	 a	 Computer	 Be	 Conscious?”	 (pp.
458–69).

10.	Michael	Denton,	“Organism	and	Machine:	The	Flawed	Analogy,”
in	Are	We	 Spiritual	 Machines?	 Ray	 Kurzweil	 vs.	 the	 Critics	 of
Strong	AI	(Seattle:	Discovery	Institute,	2002).

11.	 Hans	 Moravec,	 Mind	 Children	 (Cambridge,	 MA:	 Harvard
University	Press,	1988).

	



Epilogue

1.	“In	U.S.,	Optimism	about	Future	for	Youth	Reaches	All-Time	Low,”
Gallup	 Politics,	 May	 2,	 2011,
http://www.gallup.com/poll/147350/optimism-future-youth-reaches-
time-low.aspx.

2.	 James	 C.	 Riley,	 Rising	 Life	 Expectancy:	 A	 Global	 History
(Cambridge:	Cambridge	University	Press,	2001).

3.	J.	Bradford	DeLong,	“Estimating	World	GDP,	One	Million	B.C.—
Present,”	 May	 24,	 1998,
http://econ161.berkeley.edu/TCEH/1998_Draft/World_GDP/Estimating_World_GDP.xhtml,
and	 http://futurist.typepad.com/my_weblog/2007/07/economic-
growth.xhtml.	 See	 also	 Peter	 H.	 Diamandis	 and	 Steven	 Kotler,
Abundance:	The	Future	Is	Better	Than	You	Think	(New	York:	Free
Press,	2012).

4.	Martine	Rothblatt,	Transgender	 to	 Transhuman	 (privately	 printed,
2011).	She	explains	how	a	similarly	rapid	trajectory	of	acceptance	is
most	likely	to	occur	for	“transhumans,”	for	example,	nonbiological
but	convincingly	conscious	minds	as	discussed	in	chapter	9.

5.	The	following	excerpt	from	The	Singularity	Is	Near,	chapter	3	(pp.
133–35),	by	Ray	Kurzweil	(New	York:	Viking,	2005),	discusses	the
limits	of	computation	based	on	the	laws	of	physics:

The	 ultimate	 limits	 of	 computers	 are	 profoundly	 high.	 Building
on	 work	 by	 University	 of	 California	 at	 Berkeley	 Professor	 Hans
Bremermann	 and	 nanotechnology	 theorist	 Robert	 Freitas,	 MIT
Professor	 Seth	 Lloyd	 has	 estimated	 the	 maximum	 computational
capacity,	 according	 to	 the	 known	 laws	 of	 physics,	 of	 a	 computer
weighing	one	kilogram	and	occupying	one	liter	of	volume—about	the
size	 and	 weight	 of	 a	 small	 laptop	 computer—what	 he	 calls	 the
“ultimate	laptop.”

[Note:	 Seth	 Lloyd,	 “Ultimate	 Physical	 Limits	 to	 Computation,”
Nature	406	(2000):	1047–54.

[Early	work	on	 the	 limits	of	 computation	were	done	by	Hans	 J.
Bremermann	 in	 1962:	 Hans	 J.	 Bremermann,	 “Optimization	 Through
Evolution	 and	Recombination,”	 in	M.	C.	Yovits,	C.	T.	 Jacobi,	C.	D.



Goldstein,	 eds.,	 Self-Organizing	 Systems	 (Washington,	 D.C.:	 Spartan
Books,	1962),	pp.	93–106.

[In	 1984	 Robert	 A.	 Freitas	 Jr.	 built	 on	 Bremermann’s	 work	 in
Robert	 A.	 Freitas	 Jr.,	 “Xenopsychology,”	 Analog	 104	 (April	 1984):
41–53,
http://www.rfreitas.com/Astro/Xenopsychology.htm#SentienceQuotient.]

The	 potential	 amount	 of	 computation	 rises	 with	 the	 available
energy.	We	can	understand	the	link	between	energy	and	computational
capacity	as	 follows.	The	energy	 in	a	quantity	of	matter	 is	 the	energy
associated	 with	 each	 atom	 (and	 subatomic	 particle).	 So	 the	 more
atoms,	the	more	energy.	As	discussed	above,	each	atom	can	potentially
be	used	 for	 computation.	So	 the	more	 atoms,	 the	more	 computation.
The	 energy	of	 each	 atom	or	 particle	 grows	with	 the	 frequency	of	 its
movement:	 the	 more	 movement,	 the	 more	 energy.	 The	 same
relationship	exists	for	potential	computation:	the	higher	the	frequency
of	movement,	the	more	computation	each	component	(which	can	be	an
atom)	can	perform.	(We	see	this	in	contemporary	chips:	the	higher	the
frequency	of	the	chip,	the	greater	its	computational	speed.)

So	there	 is	a	direct	proportional	relationship	between	the	energy
of	 an	 object	 and	 its	 potential	 to	 perform	 computation.	 The	 potential
energy	 in	 a	 kilogram	 of	 matter	 is	 very	 large,	 as	 we	 know	 from
Einstein’s	equation	E	=	mc2.	The	speed	of	light	squared	is	a	very	large
number:	approximately	1017	meter2/second2.	The	potential	of	matter	to
compute	is	also	governed	by	a	very	small	number,	Planck’s	constant:
6.6	×	10−34	joule-seconds	(a	joule	is	a	measure	of	energy).	This	is	the
smallest	 scale	 at	 which	 we	 can	 apply	 energy	 for	 computation.	 We
obtain	 the	 theoretical	 limit	 of	 an	 object	 to	 perform	 computation	 by
dividing	the	total	energy	(the	average	energy	of	each	atom	or	particle
times	the	number	of	such	particles)	by	Planck’s	constant.

Lloyd	shows	how	the	potential	computing	capacity	of	a	kilogram
of	matter	 equals	pi	 times	 energy	divided	by	Planck’s	 constant.	Since
the	 energy	 is	 such	a	 large	number	 and	Planck’s	 constant	 is	 so	 small,
this	 equation	 generates	 an	 extremely	 large	 number:	 about	 5	 ×	 1050
operations	per	second.

[Note:	π	×	maximum	energy	(1017	kg	×	meter2/second2)	/	(6.6	×
10–34)	joule-seconds)	=	~	5	×	1050	operations/second.]

If	 we	 relate	 that	 figure	 to	 the	 most	 conservative	 estimate	 of
human	 brain	 capacity	 (1019	 cps	 and	 1010	 humans),	 it	 represents	 the



equivalent	of	about	5	billion	trillion	human	civilizations.
[Note:	5	×	1050	 cps	 is	 equivalent	 to	 5	×	 1021	 (5	billion	 trillion)

human	civilizations	(each	requiring	1029	cps).]
If	we	use	the	figure	of	1016	cps	that	I	believe	will	be	sufficient	for

functional	emulation	of	human	intelligence,	the	ultimate	laptop	would
function	 at	 the	 equivalent	 brain	 power	 of	 5	 trillion	 trillion	 human
civilizations.

[Note:	Ten	billion	(1010)	humans	at	1016	cps	each	is	1026	cps	for
human	civilization.	So	5	×	1050	cps	is	equivalent	to	5	×	1024	(5	trillion
trillion)	human	civilizations.]

Such	a	laptop	could	perform	the	equivalent	of	all	human	thought
over	 the	 last	 ten	 thousand	 years	 (that	 is,	 ten	 billion	 human	 brains
operating	 for	 ten	 thousand	 years)	 in	 one	 ten-thousandth	 of	 a
nanosecond.

[Note:	 This	 estimate	 makes	 the	 conservative	 assumption	 that
we’ve	had	ten	billion	humans	for	the	past	ten	thousand	years,	which	is
obviously	 not	 the	 case.	 The	 actual	 number	 of	 humans	 has	 been
increasing	gradually	over	 the	past	 to	 reach	about	6.1	billion	 in	2000.
There	 are	 3	 ×	 107	 seconds	 in	 a	 year,	 and	 3	 ×	 1011	 seconds	 in	 ten
thousand	 years.	 So,	 using	 the	 estimate	 of	 1026	 cps	 for	 human
civilization,	 human	 thought	 over	 ten	 thousand	 years	 is	 equivalent	 to
certainly	 no	 more	 than	 3	 ×	 1037	 calculations.	 The	 ultimate	 laptop
performs	 5	 ×	 1050	 calculations	 in	 one	 second.	 So	 simulating	 ten
thousand	years	of	ten	billion	humans’	thoughts	would	take	it	about	10–
13	seconds,	which	is	one	ten-thousandth	of	a	nanosecond.]

Again,	a	 few	caveats	are	 in	order.	Converting	all	of	 the	mass	of
our	 2.2-pound	 laptop	 into	 energy	 is	 essentially	 what	 happens	 in	 a
thermonuclear	 explosion.	 Of	 course,	 we	 don’t	 want	 the	 laptop	 to
explode	but	to	stay	within	its	one-liter	dimension.	So	this	will	require
some	careful	packaging,	 to	say	 the	 least.	By	analyzing	 the	maximum
entropy	 (degrees	 of	 freedom	 represented	 by	 the	 state	 of	 all	 the
particles)	 in	such	a	device,	Lloyd	shows	 that	 such	a	computer	would
have	 a	 theoretical	 memory	 capacity	 of	 1031	 bits.	 It’s	 difficult	 to
imagine	 technologies	 that	 would	 go	 all	 the	 way	 in	 achieving	 these
limits.	But	we	can	readily	envision	technologies	that	come	reasonably
close	 to	doing	 so.	As	 the	University	of	Oklahoma	project	 shows,	we
already	 demonstrated	 the	 ability	 to	 store	 at	 least	 fifty	 bits	 of
information	per	atom	(although	only	on	a	small	number	of	atoms,	so



far).	Storing	1027	bits	of	memory	 in	 the	1025	 atoms	 in	 a	kilogram	of
matter	should	therefore	be	eventually	achievable.

But	because	many	properties	of	each	atom	could	be	exploited	to
store	 information—such	 as	 the	 precise	 position,	 spin,	 and	 quantum
state	of	all	of	its	particles—we	can	probably	do	somewhat	better	than
1027	 bits.	 Neuroscientist	 Anders	 Sandberg	 estimates	 the	 potential
storage	capacity	of	a	hydrogen	atom	at	about	four	million	bits.	These
densities	 have	 not	 yet	 been	 demonstrated,	 however,	 so	we’ll	 use	 the
more	conservative	estimate.

[Note:	 Anders	 Sandberg,	 “The	 Physics	 of	 the	 Information
Processing	 Superobjects:	 Daily	 Life	 Among	 the	 Jupiter	 Brains,”
Journal	 of	 Evolution	 and	 Technology	 5	 (December	 22,	 1999),
http://www.transhumanist.com/volume5/Brains2.pdf.]

As	 discussed	 above,	 1042	 calculations	 per	 second	 could	 be
achieved	 without	 producing	 significant	 heat.	 By	 fully	 deploying
reversible	 computing	 techniques,	 using	 designs	 that	 generate	 low
levels	 of	 errors,	 and	 allowing	 for	 reasonable	 amounts	 of	 energy
dissipation,	 we	 should	 end	 up	 somewhere	 between	 1042	 and	 1050
calculations	per	second.

The	 design	 terrain	 between	 these	 two	 limits	 is	 complex.
Examining	the	technical	 issues	that	arise	as	we	advance	from	1042	 to
1050	 is	 beyond	 the	 scope	 of	 this	 chapter.	 We	 should	 keep	 in	 mind,
however,	 that	 the	 way	 this	 will	 play	 out	 is	 not	 by	 starting	 with	 the
ultimate	 limit	 of	 1050	 and	 working	 backward	 based	 on	 various
practical	considerations.	Rather,	technology	will	continue	to	ramp	up,
always	using	 its	 latest	prowess	 to	progress	 to	 the	next	 level.	So	once
we	 get	 to	 a	 civilization	 with	 1042	 cps	 (for	 every	 2.2	 pounds),	 the
scientists	 and	 engineers	 of	 that	 day	 will	 use	 their	 essentially	 vast
nonbiological	intelligence	to	figure	out	how	to	get	1043,	then	1044,	and
so	 on.	My	 expectation	 is	 that	we	will	 get	 very	 close	 to	 the	 ultimate
limits.

Even	 at	 1042	 cps,	 a	 2.2-pound	 “ultimate	 portable	 computer”
would	be	able	to	perform	the	equivalent	of	all	human	thought	over	the
last	 ten	 thousand	 years	 (assumed	 at	 ten	 billion	 human	 brains	 for	 ten
thousand	years)	in	ten	microseconds.

[Note:	See	note	above.	1042	cps	is	a	factor	of	10–8	less	than	1050
cps,	 so	 one	 ten-thousandth	 of	 a	 nanosecond	 becomes	 10
microseconds.]



If	 we	 examine	 the	 Exponential	 Growth	 of	 Computing	 chart
(chapter	2),	we	 see	 that	 this	 amount	of	 computing	 is	 estimated	 to	be
available	for	one	thousand	dollars	by	2080.
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