

Go Systems Programming

Master Linux and Unix system level programming with Go

Download from finelybook www.finelybook.com

2

Mihalis Tsoukalos

Download from finelybook www.finelybook.com

3

BIRMINGHAM - MUMBAI

Download from finelybook www.finelybook.com

4

Go Systems Programming

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: September 2017

Production reference: 1220917

Published by Packt Publishing Ltd.

Download from finelybook www.finelybook.com

5

Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-564-3

www.packtpub.com

Download from finelybook www.finelybook.com

6

http://www.packtpub.com

Credits
Author

Mihalis Tsoukalos

Copy Editor

Tom Jacob

Reviewer

Chris "mac" McEniry

Proofreader

Safis Editing

Acquisition Editor

Frank Pohlmann

Indexer

Tejal Daruwale Soni

Project Editor

Radhika Atitkar

Graphics

Kirk D'Penha

Content Development Editor

Monika Sangwan

Production Coordinator

Arvindkumar Gupta

Technical Editor

Download from finelybook www.finelybook.com

7

Anupam Tiwari

 

Download from finelybook www.finelybook.com

8

About the Author
Mihalis Tsoukalos is a Unix administrator, programmer, DBA, and
mathematician, who enjoys writing technical books and articles and learning
new things. He has written more than 250 technical articles for many
magazines including Sys Admin, MacTech, Linux User and Developer,
USENIX ;login:, Linux Format, and Linux Journal. His research interests
include databases, operating systems, Statistics, and machine learning.

You can reach him at http://www.mtsoukalos.eu/ and @mactsouk.

Mihalis is also a photographer (http://www.highiso.net/).

He is also the technical editor for MongoDB in Action, Second Edition,
published by Manning.

I would like to thank all the magazines that I have written articles for
because they gave me the opportunity to improve my technical writing skills
and finally write my first book!
I would also like to thank Agisilaos Ziotopoulos for telling me during a Skype
call that after writing so many magazine articles, I should write a book!
Lastly, I would like to thank the people at Packt Publishing for helping me
write this book, including Frank Pohlmann, my technical reviewer; Chris
McEniry, for his really good comments; and especially my editor, Radhika
Atitkar for answering all my questions and encouraging me during the whole
process.
For all potential writers everywhere: if you wish to become a writer, start
writing!

Download from finelybook www.finelybook.com

9

http://www.mtsoukalos.eu/
http://www.highiso.net/

About the Reviewer
Chris "mac" McEniry has been a practicing systems administrator and
engineer for over twenty years. He regularly presents, writes tools, and works
on improving how we maintain systems.

Download from finelybook www.finelybook.com

10

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktP
ub.com. Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the eBook
version at www.PacktPub.com and as a print book customer, you are entitled to
a discount on the eBook copy.

Get in touch with us at service@packtpub.com for more details. At www.PacktPub.
com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full
access to all Packt books and video courses, as well as industry-leading tools
to help you plan your personal development and advance your career.

Download from finelybook www.finelybook.com

11

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Download from finelybook www.finelybook.com

12

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on
this book's Amazon page at https://www.amazon.com/dp/1787125645.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

Download from finelybook www.finelybook.com

13

https://www.amazon.com/dp/1787125645

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Getting Started with Go and Unix Systems Programming
The structure of the book
What is systems programming?

Learning systems programming
About Go

Getting ready for Go
Two useful Go tools

Advantages and disadvantages of Go
The various states of a Unix process
Exercises
Summary

2. Writing Programs in Go
Compiling Go code

Checking the size of the executable file
Go environment variables
Using command-line arguments

Finding the sum of the command-line arguments
User input and output

Getting user input
Printing output

Go functions
Naming the return values of a Go function
Anonymous functions

Download from finelybook www.finelybook.com

14

Illustrating Go functions
The defer keyword
Using pointer variables in functions

Go data structures
Arrays
Slices
Maps

Converting an array into a map
Structures

Interfaces
Creating random numbers
Exercises
Summary

3. Advanced Go Features
Error handling in Go

Functions can return error variables
About error logging
The addCLA.go program revisited

Pattern matching and regular expressions
Printing all the values from a given column of a line
Creating summaries
Finding the number of occurrences
Find and replace

Reflection
Calling C code from Go
Unsafe code

Comparing Go to other programming languages
Analysing software

Using the strace(1) command-line utility
The DTrace utility

Disabling System Integrity Protection on macOS
Unreachable code
Avoiding common Go mistakes
Exercises
Summary

4. Go Packages, Algorithms, and Data Structures
About algorithms

The Big O notation

Download from finelybook www.finelybook.com

15

Sorting algorithms
The sort.Slice() function

Linked lists in Go
Trees in Go
Developing a hash table in Go
About Go packages

Using standard Go packages
Creating your own packages

Private variables and functions
The init() function

Using your own Go packages
Using external Go packages

The go clean command
Garbage collection
Your environment
Go gets updated frequently!
Exercises
Summary

5. Files and Directories
Useful Go packages
Command-line arguments revisited!

The flag package
Dealing with directories

About symbolic links
Implementing the pwd(1) command
Developing the which(1) utility in Go

Printing the permission bits of a file or directory
Dealing with files in Go

Deleting a file
Renaming and moving files

Developing find(1) in Go
Traversing a directory tree

Visiting directories only!
The first version of find(1)

Adding some command-line options
Excluding filenames from the find output
Excluding a file extension from the find output

Using regular expressions
Creating a copy of a directory structure

Download from finelybook www.finelybook.com

16

Exercises
Summary

6. File Input and Output
About file input and output

Byte slices
About binary files

Useful I/O packages in Go
The io package
The bufio package

File I/O operations
Writing to files using fmt.Fprintf()

About io.Writer and io.Reader
Finding out the third column of a line

Copying files in Go
There is more than one way to copy a file!
Copying text files
Using io.Copy
Reading a file all at once!
An even better file copy program
Benchmarking file copying operations

Developing wc(1) in Go
Counting words
The wc.go code!

Comparing the performance of wc.go and wc(1)
Reading a text file character by character

Doing some file editing!
Interprocess communication
Sparse files in Go
Reading and writing data records
File locking in Go
A simplified Go version of the dd utility
Exercises
Summary

7. Working with System Files
Which files are considered system files?
Logging in Go
Putting data at the end of a file

Altering existing data

Download from finelybook www.finelybook.com

17

About log files
About logging
Logging facilities
Logging levels
The syslog Go package
Processing log files
File permissions revisited

Changing file permissions
Finding other kinds of information about files

More pattern matching examples
A simple pattern matching example
An advanced example of pattern matching
Renaming multiple files using regular expressions

Searching files revisited
Finding the user ID of a user
Finding all the groups a user belongs to
Finding files that belong or do not belong to a given user
Finding files based on their permissions

Date and time operations
Playing with dates and times
Reformatting the times in a log file

Rotating log files
Creating good random passwords
Another Go update
Exercises
Summary

8. Processes and Signals
About Unix processes and signals
Process management

About Unix signals
Unix signals in Go
The kill(1) command

A simple signal handler in Go
Handling three different signals!
Catching every signal that can be handled
Rotating log files revisited!

Improving file copying
Plotting data

Download from finelybook www.finelybook.com

18

Unix pipes in Go
Reading from standard input
Sending data to standard output
Implementing cat(1) in Go
The plotIP.go utility revisited

Unix sockets in Go
RPC in Go
Programming a Unix shell in Go
Yet another minor Go update
Exercises
Summary

9. Goroutines - Basic Features
About goroutines

Concurrency and parallelism
The sync Go packages

A simple example
Creating multiple goroutines

Waiting for goroutines to finish their jobs
Creating a dynamic number of goroutines

About channels
Writing to a channel
Reading from a channel
Explaining h1s.go

Pipelines
A better version of wc.go

Calculating totals
Doing some benchmarking

Exercises
Summary

10. Goroutines - Advanced Features
The Go scheduler
The sync Go package
The select keyword
Signal channels
Buffered channels
About timeouts

An alternative way to implement timeouts
Channels of channels

Download from finelybook www.finelybook.com

19

Nil channels
Shared memory

Using sync.Mutex
Using sync.RWMutex

The dWC.go utility revisited
Using a buffered channel
Using shared memory
More benchmarking

Detecting race conditions
About GOMAXPROCS
Exercises
Summary

11. Writing Web Applications in Go
What is a web application?
About the net/http Go package
Developing web clients

Fetching a single URL
Setting a timeout

Developing better web clients
A small web server

The http.ServeMux type
Using http.ServeMux

The html/template package
About JSON

Saving JSON data
Parsing JSON data
Using Marshal() and Unmarshal()

Using MongoDB
Basic MongoDB administration
Using the MongoDB Go driver
Creating a Go application that displays MongoDB data
Creating an application that displays MySQL data

A handy command-line utility
Exercises
Summary

12. Network Programming
About network programming

About TCP/IP

Download from finelybook www.finelybook.com

20

About TCP
The TCP handshake!

About UDP and IP
About Wireshark and tshark
About the netcat utility

The net Go standard package
Unix sockets revisited

A Unix socket server
A Unix socket client

Performing DNS lookups
Using an IP address as input
Using a host name as input
Getting NS records for a domain

Developing a simple TCP server
Developing a simple TCP client

Using other functions for the TCP server
Using alternative functions for the TCP client

Developing a simple UDP server
Developing a simple UDP client
A concurrent TCP server
Remote procedure call (RPC)

An RPC server
An RPC client

Exercises
Summary

Download from finelybook www.finelybook.com

21

Preface
Go Systems Programming is a book that will help you develop systems
software using Go, which is a systems programming language that started as
an internal Google project before becoming popular. What makes Go really
popular is that it keeps the developer happy by being easy to write, easy to
read, easy to understand, and by having a compiler that is there to help you.
This book does not cover every possible aspect and feature of the Go
programming language: only the ones that are related to systems
programming. Should you wish to learn more about the Go programming
language, you should wait from my next book, Mastering Go, which will be
ready in 2018!

The book you are about to read is an honest book in the sense that it will
present working Go code without overlooking its potential faults, its
restrictions, and its logical gaffes, which will allow you to improve it on your
own and create a better version of it in the future. What you will not be able
to improve is the fundamental information that will be presented, which is the
basis of the way Unix systems work. I will consider the book to be successful
if it helps you understand what systems programming is about, why it is
important, and how you can start developing systems software in Go. I will
be equally happy if Go becomes your favorite programming language!

Download from finelybook www.finelybook.com

22

What this book covers
Chapter 1, Getting started with Go and Unix Systems Programming, starts by
defining what systems programming is before talking about the advantages
and the disadvantages of Go, the features of Go version 1.8, two handy Go
tools named gofmt and godoc, as well as the various states of Unix processes.

Chapter 2, Writing Programs in Go, helps you learn how to compile Go code
and how to use the environment variables that Go supports, and understand
how Go reads the command line arguments of a program. Then, we will talk
about getting user input and output, which are fundamental tasks, show you
how to define functions in Go, where the defer keyword is mentioned for the
first time in this book and continue by discussing the data structures that Go
offers using handy code examples. In the remaining sections of the chapter,
we will discuss Go interfaces and random number generation. I am sure that
you are going to enjoy this chapter!

Chapter 3, Advanced Go Features, goes deeper and starts talking about some
advanced Go features, including error handling, which is critical when
developing systems software and error logging. Then it introduces you to
pattern matching and regular expressions, Go Reflection, and talks about
unsafe code. After that, it compares Go to other programming languages and
presents two utilities, named dtrace(1) and strace(1), that allow you to see
what happens behind the scenes when you execute a program. Lastly, it talks
about how you can use the go tool to detect unreachable code and how to
avoid some common Go mistakes.

Chapter 4, Go Packages, Algorithms, and Data Structures, talks about
algorithms and sorting in Go and about the sort.Slice() function, which
requires Go version 1.8 or newer. Then it shows Go implementations of a
linked list, a binary tree and a hash table. After that, it discusses Go packages
and teaches you how to create and use your own Go packages. The last part
of the chapter discusses Garbage collection in Go.

Chapter 5, Files and Directories, is the first chapter of this book that deals with

Download from finelybook www.finelybook.com

23

a systems programming topic, which is the handling of files, symbolic links,
and directories. In this chapter, you will find Go implementations of the core
functionality of Unix tools such as which(1), pwd(1), and find(1), but first you
will learn how to use the flag package in order to parse the command-line
arguments and options of a Go program. Additionally, you will learn how to
delete, rename, and move files as well as how to traverse directory structures
the Go way. The last part of this chapter implements a utility that creates a
copy of all the directories of a directory structure!

Chapter 6, File Input and Output, shows you how to read the contents of a file,
how to change them, and how to write your own data to files! In this chapter,
you will learn about the io package, the io.Writer and io.Reader interfaces, and
the bufio package that is used for buffered input and output. You will also
create Go versions of the cp(1), wc(1), and dd(1) utilities. Lastly, you will learn
about sparse files, how to create sparse files in Go, how to read and write
records from files, and how to lock files in Go.

Chapter 7, Working with System Files, teaches you how to deal with Unix
system files, which includes writing data to Unix log files, appending data to
existing files, and altering the data of text files. In this chapter, you will also
learn about the log and log/syslog standard Go packages, about Unix file
permissions, and take your pattern matching and regular expressions
knowledge even further using practical examples. You will also learn about
finding the user ID of a user as well as the Unix groups a user belongs to.
Lastly, you will discover how to work with dates and times in Go using the
time package and how to create and rotate log files on your own.

Chapter 8, Processes and Signals, begins by discussing the handling of Unix
signals in Go with the help of the os/signal package by presenting three Go
programs. Then it shows a Go program that can rotate its log files using
signals and signal handling and another Go program that uses signals to
present the progress of a file copy operation. This chapter will also teach you
how to plot data in Go and how to implement Unix pipes in Go. Then it will
implement the cat(1) utility in Go before briefly presenting the Go code of a
Unix socket client. The last section of the chapter quickly discusses how you
can program a Unix shell in Go.

Chapter 9, Goroutines - Basic Features, discusses a very important Go topic,

Download from finelybook www.finelybook.com

24

which is goroutines, by talking about how you can create goroutines and how
you can synchronize them and wait for them to finish before ending a
program. Then it talks about channels and pipelines, which help goroutines
communicate and exchange data in a safe way. The last part of the chapter
presents a version of the wc(1) utility that is implemented using goroutines.
However, as goroutines is a big subject, the next chapter will continue talking
about them.

Chapter 10, Goroutines - Advanced Features, talks about more advanced topics
related to goroutines and channels, including buffered channels, signal
channels, nil channels, channels of channels, timeouts, and the select
keyword. Then it discusses issues related to shared memory and mutexes
before presenting two more Go versions of the wc(1) utility that use channels
and shared memory. Lastly, this chapter will talk about race conditions and
the GOMAXPROCS environment variable.

Chapter 11, Writing Web Applications in Go, talks about developing web
applications and web servers and clients in Go. Additionally, it talks about
communicating with MongoDB and MySQL databases using Go code. Then,
it illustrates how to use the html/template package, which is part of the Go
standard library and allows you to generate HTML output using Go HTML
template files. Lastly, it talks about reading and writing JSON data before
presenting a utility that reads a number of web pages and returns the number
of times a given keyword was found in those web pages.

Chapter 12, Network Programming, discusses topics related to TCP/IP and its
protocols using the net Go standard package. It shows you how to create TCP
and UDP clients and servers, how to perform various types of DNS lookups,
and how to use Wireshark to inspect network traffic. Additionally, it talks
about developing RPC clients and servers in Go as well as developing a Unix
socket server and a Unix socket client.

As you will see, at the end of each chapter there are some exercises for you to
do in order to gain more information about important Go packages and write
your own Go programs. Please, try to do all the exercises of this book.

Download from finelybook www.finelybook.com

25

What you need for this book
This book requires a computer running a Unix variant with a relatively recent
Go version, which includes any machine running Mac OS X, macOS, or
Linux.

Apple used to call its operating system as Mac OS X followed by the version
number; however, after Mac OS X 10.11 (El Capitan), Apple changed that,
and Mac OS X 10.12 is now called macOS 10.12 (Sierra) - in this book, the
terms Mac OS X and macOS are used interchangeably. Additionally, there is
a big chance that by the time you read this book, the latest version of macOS
will be macOS 10.13 (High Sierra). You can learn more about the various
versions of macOS by visiting https://en.wikipedia.org/wiki/MacOS.

All of the Go code in this book has been tested with Go 1.8.x running on a
iMac using macOS 10.12 Sierra and with Go version 1.3.3 running on a
Debian Linux machine. Most of the code can run on both Go versions
without any code changes. However, when newer Go features are used, the
code will fail to compile with Go 1.3.3: the book states the Go programs that
will not compile with Go version 1.3.3 or require Go version 1.8 or newer.

Please note that at the time of writing this text, the latest Go version is 1.9.
Given the way Go works, you will be able to compile all the Go code of this
book in newer Go versions without any changes.

Download from finelybook www.finelybook.com

26

https://en.wikipedia.org/wiki/MacOS

Who this book is for
This book is for Unix users, power Unix users, Unix system administrators,
and Unix system developers that use Go on one or more Unix variants and
want to start developing systems software using the Go programming
language.

Although this book might not be the best choice for people that do not feel
comfortable with the Unix operating system or for people who have no
previous programming experience, amateur programmers will find lots of
practical information about Unix that might inspire them to start developing
their own system utilities.

Download from finelybook www.finelybook.com

27

Conventions
In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning. Code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles are shown as follows: "This is because the main()
function is where the program execution begins."

A block of code is set as follows:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

Any command-line input or output is written as follows:

$ go run hw.go
Hello World!

New terms and important words are shown in bold.

Download from finelybook www.finelybook.com

28

Warnings or important notes appear like this.

Tips and tricks appear like this.

Download from finelybook www.finelybook.com

29

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of. To send
us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
see our author guide at www.packtpub.com/authors.

Download from finelybook www.finelybook.com

30

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Download from finelybook www.finelybook.com

31

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit htt
p://www.packtpub.com/support and register to have the files emailed directly to
you. You can download the code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
ktPublishing/Go-Systems-Programming. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Download from finelybook www.finelybook.com

32

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Go-Systems-Programming
https://github.com/PacktPublishing/

Downloading the color images of
this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://
www.packtpub.com/sites/default/files/downloads/GoSystemsProgramming_ColorImages.p
df.

Download from finelybook www.finelybook.com

33

https://www.packtpub.com/sites/default/files/downloads/GoSystemsProgramming_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a
mistake in the text or the code-we would be grateful if you could report this
to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of existing
errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/support and enter the name of
the book in the search field. The required information will appear under the
Errata section.

Download from finelybook www.finelybook.com

34

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the internet, please provide us with the location address or website name
immediately so that we can pursue a remedy. Please contact us at
copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you
valuable content.

Download from finelybook www.finelybook.com

35

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Download from finelybook www.finelybook.com

36

Getting Started with Go and Unix
Systems Programming
An operating system is the kind of software that allows you to communicate
with the hardware, which means that you cannot use your hardware without
an operating system. Unix is an operating system with many variants that
have many things in common including their programming interface.

The Unix operating system was mainly programmed in C and not entirely in
the assembly language, which makes it portable to other computer
architectures without having to rewrite everything from scratch. It is
important to understand that even if you are developing a Go program on a
Unix machine, at the end of the day, your code will be translated to C
functions and system calls because this is the only way to directly
communicate with the Unix kernel. The main benefits you get from writing
Go code instead of C code are smaller programs with less silly bugs. You will
learn more about this in Chapter 3, Advanced Go Features.

As this book will use Go, you will need to have a version of Go installed on
your Unix machine. The good news is that there is a port of the Go
programming language for almost all modern Unix systems including
macOS, Linux, and FreeBSD. There is also a Windows port of Go, but this
book will not deal with Microsoft Windows.

Although there is a good chance that your Unix variant has a package for Go,
you can also get Go from https://golang.org/dl/.

In this chapter, you will learn the following topics:

Systems programming
The advantages and disadvantages of Go
The states of a Unix process
Two Go tools: gofmt and godoc
The features of the latest Go version (1.8)

Download from finelybook www.finelybook.com

37

https://golang.org/dl/

The structure of the book
This book has three parts. The first part, which includes this chapter, is about
Go and the Go features that can be handy when developing systems software:
this does not mean that you should use all of them when developing your
programs. The second part is all about programming with files, directories,
and processes, which is the most common type of systems software. The third
part explores goroutines, web applications, and network programming in Go,
which is the most advanced type of systems software. The good thing is that
you do not need to read the third part of the book right away.

Download from finelybook www.finelybook.com

38

What is systems programming?
Systems programming is a special area of programming on Unix machines.
Note that systems programming is not limited to Unix machines: it is just that
this book deals with the Unix operating system only. Most commands that
have to do with system administration tasks, such as disk formatting, network
interface configuration, module loading, and kernel performance tracking, are
implemented using the techniques of systems programming. Additionally, the
/etc directory, which can be found on all Unix systems, contains plain text
files that deal with the configuration of a Unix machine and its services and
are also manipulated using systems software.

You can group the various areas of systems software and related system calls
in the following sets:

File I/O: This area deals with file reading and writing operations, which
is the most important task of an operating system. File input and output
must be fast and efficient, and above all, reliable.
Advanced file I/O: Apart from the basic input and output system calls,
there are also more advanced ways to read or write to a file including
asynchronous I/O and non-blocking I/O.
System files and configuration: This group of system software includes
functions that allow you to handle system files, such as /etc/passwd, and
get system specific information, such as system time and DNS
configuration.
Files and directories: This cluster includes functions and system calls
that allow the programmer to create and delete directories and get
information such as the owner and the permissions of a file or a
directory.
Process control: This group of software allows you to create and
interact with Unix processes.
Threads: When a process has multiple threads, it can perform multiple
tasks. However, threads must be created, terminated, and synchronized,
which is the purpose of this collection of functions and system calls.
Server processes: This set includes techniques that allow you to

Download from finelybook www.finelybook.com

39

develop server processes, which are processes that get executed in the
background without the need for an active terminal. Go is not that good
at writing server processes in the traditional Unix way: but let me
explain this a little more. Unix servers such as Apache use fork(2) to
create one or more child processes (this process is called forking and
refers to cloning the parent process into a child process) and continue
executing the same executable from the same point, and most
importantly, sharing memory. Although Go does not offer an equivalent
to the fork(2) function, this is not an issue because you can use
goroutines to cover most of the uses of fork(2).
Interprocess communication: This set of functions allows processes
that run on the same Unix machine to communicate with each other
using features such as pipes, FIFOs, message queues, semaphores, and
shared memory.
Signal processing: Signals offer processes a way of handling
asynchronous events, which can be very handy. Almost all server
processes have extra code that allows them to handle Unix signals using
the system calls of this group.
Network programming: This is the art of developing applications that
work over computer networks with the help of TCP/IP and is not
systems programming per se. However, most TCP/IP servers and clients
are dealing with system resources, users, files, and directories. So, most
of the time, you cannot create network applications without doing some
kind of systems programming.

The challenging thing with systems programming is that you cannot afford to
have an incomplete program; you can either have a fully working, secure
program that can be used on a production system or nothing at all. This
mainly happens because you cannot trust end users and hackers. The key
difficulty in systems programming is the fact that an erroneous system call
can make your Unix machine misbehave or, even worse, crash!

Most security issues on Unix systems usually come from wrongly
implemented systems software because bugs in systems software can
compromise the security of an entire system. The worst part is that this can
happen many years after using a certain piece of software.

Download from finelybook www.finelybook.com

40

When writing systems software, you should take good care of
both error messages and warnings because they are the friends
that help you understand what is going on and why your
program did not behave as expected. Putting it simply, there is
a big difference between the File not found and Not enough
permissions to read file error messages.

Back when Unix was first introduced, the only way to write systems software
was using C; nowadays, you can program systems software using
programming languages including Go, which will be the subject of this book.

You should understand that the two main benefits you get from using a
programming language other than C for developing systems software are as
follows:

Using a modern programming language along with its tools
Simplicity, as you usually have to write, debug, and maintain less code

Apart from Go, other good candidates for developing system tools are
Python, Perl, Rust, and Ruby.

Download from finelybook www.finelybook.com

41

Learning systems programming
The only way you can learn systems programming is by developing your own
utilities using this book as a reference and a tutorial. At first, you will make a
large amount of ridiculous mistakes, but as you get better, you will make a
smaller amount of much more clever and hard to debug mistakes! However,
it is fine to try new things when learning. In fact, it is necessary to try new
things and fail because this means that you are really learning something
new. Just make sure that you do not use a production web server for learning
systems programming.

If you have difficulties finding out what to develop, you can start by creating
your own versions of some of the existing Unix command line utilities such
as ls(1), mkdir(1), ln(1), wc(1), and which(1). You do not have to create a fully
featured version of each one of them with support for all command-line
options; what is important is to develop a stable and secure version that
implements the main functionality and works without problems.

The best book that can teach you Unix systems programming in
C is Advanced Unix Programming in the Unix Environment by
W. Richard Stevens. Its third edition is available now, but all its
editions are useful and contain a plethora of valuable details.

Download from finelybook www.finelybook.com

42

About Go
Go is a modern generic purpose open source programming language that was
officially announced at the end of 2009. It began as an internal Google
project and has been inspired by many other programming languages
including C, Pascal, Alef, and Oberon. Its spiritual fathers are Robert
Griesemer, Ken Thomson, and Rob Pike, who designed Go as a language for
professional programmers who want to build reliable and robust software.
Apart from its syntax and standard functions, Go comes with a pretty rich
standard library.

At the time of writing this book, the latest stable Go version is 1.8, which
includes some handy new features including the following: feel free to skip
this if you have not used Go before:

New conversion rules exist that allow you to easily convert between
types that are almost equal provided that some criteria are met. You can
fix the import paths of the golang.org/x/net/name form to just the name of
the Go source file using the go tool command without having to open the
source files yourselves.
The operation of the tool is stricter in some cases and looser in cases that
used to generate false positives.
There is now a default value for GOPATH Environment Variables when
GOPATH is undefined. For Unix systems, the default value is
$HOME/go.
There are various improvements to the Go runtime that speed up Go.
There is a sort.slice() function that allows you to sort a slice by
providing a comparator callback instead of implementing sort.Interface.
There is now a Shutdown method to http.Server.
There exist various small changes to the database/sql package that give
the developer more control over queries.
You can create bugs using the go bug command.

Download from finelybook www.finelybook.com

43

Getting ready for Go
You can easily find your version of Go using this command:

$ go version
go version go1.7.5 darwin/amd64

The previous output is from a macOS machine hence the darwin string. A
Linux machine would give the following kind of output:

$ go version
go version go1.3.3 linux/amd64

You will learn more about go tool, which you will use all the time, in the next
chapters.

As I can imagine, you must be impatient to see some Go code; so here is the
Go version of the famous Hello World program:

package main

import "fmt"

// This is a demonstrative comment!
func main() {
 fmt.Println("Hello World!")
}

If you are familiar with C or C++, you will find Go code pretty easy to
understand. Each file that contains Go code begins with a package declaration
followed by the needed import declarations. The package declaration shows
the package that this file belongs to. Note that semicolons are not required for
successfully terminating a Go statement unless you want to put two or more
Go statements in the same line.

In Chapter 2, Writing Programs in Go, you will find out how to compile and
execute Go code. For now, it is enough to remember that Go source files are
stored using the .go file extension: your task is to choose a descriptive
filename.

Download from finelybook www.finelybook.com

44

When searching for Go-related information, use Golang or golang
as the keyword for the Go programming language because the
word Go can be found almost everywhere in the English
language and it will not help your search!

Download from finelybook www.finelybook.com

45

Two useful Go tools
The Go distribution comes with a plethora of tools that can make your life as
a programmer easier. The two most useful of them are gofmt and godoc.

Note that go tool itself can also invoke various tools: you can
see a list of them by executing go tool.

The gofmt utility formats Go programs in a given way, which is really
important when different people are going to work with the same code for a
big project. You can find more information about gofmt at https://golang.org/cmd/
gofmt/.

The following is a poorly formatted version of the hw.go program that is hard
to read and understand:

$ cat unglyHW.go
package main

import
 "fmt"

// This is a demonstrative comment!
 func main() {
 fmt.Println("Hello World!")

}

Processing the previous code, which is saved as unglyHW.go with gofmt,
generates the following easy to read and comprehend output:

$ gofmt unglyHW.go
package main

import "fmt"

// This is a demonstrative comment!
func main() {
 fmt.Println("Hello World!")

}

Download from finelybook www.finelybook.com

46

https://golang.org/cmd/gofmt/

Remembering that the gofmt utility does not automatically save the generated
output is important, which means that you should either use the -w option
followed by a valid filename or redirect the output of gofmt to a new file.

The godoc utility allows you to see the documentation of existing Go packages
and functions. You can find more information about godoc at http://godoc.org/gol
ang.org/x/tools/cmd/godoc.

You are going to use godoc a lot as it is a great tool for learning
the details of Go functions.

The following screenshot shows the output of the godoc command generated
on a Terminal when asked for information about the Println() function of the
fmt package:

Download from finelybook www.finelybook.com

47

http://godoc.org/golang.org/x/tools/cmd/godoc

The output of the godoc command

Another handy feature of godoc is that it can start its own web server and
allow you to see its documentation using a web browser:

$ godoc -http=:8080

The following screenshot shows the kind of output you get on a web browser
after visiting http://localhost:8080/pkg/ while the previous command is
running. You can use any port number you want, provided that it is not
already in use:

Download from finelybook www.finelybook.com

48

Using the godoc utility from your web browser

The most important tool for a programmer is the editor they use for writing
the source code. When I am on a Mac, I typically use the TextMate editor,
but when I am on a different Unix machine, I prefer vi. Choosing an editor is
not an easy task because you are going to spend a lot of time with it.
However, any text editor will do the job as long as it does not put any control
characters inside the source code files. The following screenshot shows the
TextMate editor in action:

Download from finelybook www.finelybook.com

49

The TextMate editor showing the look of a some Go code

Download from finelybook www.finelybook.com

50

Advantages and disadvantages of
Go
Go is not perfect but it has some very interesting features. The list of the Go
strong features includes the following:

Go code is easy to read and easy to understand.
Go wants happy developers because a happy developer writes better
code!
The Go compiler prints practical warning and error messages that help
you solve the actual problem. Putting it simply, the Go compiler is there
to help you, not to make your life difficult!
Go code is portable.
Go is a modern programming language.
Go has support for procedural, concurrent, and distributed programming.
Go supports Garbage Collection (GC) so you do not have to deal with
memory allocation and deallocation. However, GC might slow down
your programs a little.
Go does not have a preprocessor and does high-speed compilation.
Consequently, Go can be used as a scripting language.
Go can build web applications. Building a web application in C is
simply not very efficient unless you use a nonstandard external library.
Additionally, Go provides programmers with a simple web server for
testing purposes.
The standard Go library offers many packages that simplify the work of
the programmer. Additionally, the methods found in the standard Go
library are tested and debugged in advance, which means that most of
the time they contain no bugs.
Go uses static linking by default, which means that the produced binary
files can be easily transferred to other machines with the same OS.
Consequently, the developer does not need to worry about libraries,
dependencies, and different library versions.
You will not need a GUI for developing, debugging, and testing Go
applications as Go can be used from the command line.

Download from finelybook www.finelybook.com

51

Go supports Unicode. This means that you do not need any extra code to
print characters from multiple human languages.
Go keeps concepts orthogonal because a few orthogonal features work
better than many overlapping ones.

The list of Go disadvantages includes the following:

Well, Go is not C, which means that you or your team should learn a
new programming language to develop systems software.
Go does not have direct support for object-oriented programming, which
can be a problem for programmers that are used to writing code in an
object-oriented manner. Nevertheless, you can use composition in Go to
mimic inheritance.
Back when Unix was first introduced, C was the only programming
language for writing systems software. Nowadays, you can also use
Rust, C++, and Swift for writing systems software, which means that not
everybody will be using Go.
C is still faster than any other programming language for systems
programming mainly because Unix is written in C.

Despite the advantages or the disadvantages of a programming
language, you have the final word on whether you like it or not.
The important thing is that you choose a programming
language that you like and can do the job you want! Personally,
I do not like C++ despite the fact that it is a very capable
programming language and I have written an FTP client in
C++! Additionally, I never liked Java. There is no right or
wrong thing in personal tastes so do not feel guilty about your
choices.

Download from finelybook www.finelybook.com

52

The various states of a Unix process
Strictly speaking, a process is an execution environment that contains
instructions, user-data and system-data parts, and other kinds of resources
that are obtained during runtime. A program is a file that contains instructions
and data, which are used for initializing the instruction and user-data parts of
a process.

Back when the Unix operating system was first introduced, computers had
single CPUs without multiple cores and a small amount of RAM. However,
Unix was a multiuser and multitasking operating system. In order to actually
be a multiuser and do multitasking, it had to be able to run each individual
process sporadically, which means that a process should have multiple states.
The following figure shows the possible states of a process as well as the
right path to go from one state to another:

The states of a Unix process

There are three categories of processes: user processes, Kernel processes, and
Daemon processes:

Download from finelybook www.finelybook.com

53

User processes run in user space and usually have no special access
rights
Kernel processes are being executed in kernel space only and can fully
access all kernel data structures
Daemon processes are programs that can be found in the user space and
run in the background without the need for a Terminal

Realizing that you cannot control the state of a process is really important, as
this is the job of the scheduler of the operating system that runs in the kernel.
Putting it simply, you cannot tell when the state of a process is going to
change or when the process is going to go into the running state, so your code
cannot count on any such assumptions!

The C way for creating new processes involves the calling of the
fork() system call. The return value of fork() allows the
programmer to differentiate between the parent and child
processes. However, Go does not support a similar
functionality.

Download from finelybook www.finelybook.com

54

Exercises
1. Visit the Go website: https://golang.org/.
2. Install Go on your system and find out its version.
3. Type the code of the Hello World program on your own and save it to a

file.
4. If you are on a Mac, download TextMate from http://macromates.com/.
5. If you are on a Mac, download the TextWrangler editor from http://www.b

arebones.com/products/TextWrangler/ and try it.
6. Try to learn vi or Emacs on your own if you are not already familiar

with another Unix text editor.
7. Look at any Go code you can find and try to make small changes to it.

Download from finelybook www.finelybook.com

55

https://golang.org/
http://macromates.com/
http://www.barebones.com/products/TextWrangler/

Summary
In this chapter, you learned how to get Go on your computer, the features of
the latest Go version, the advantages and disadvantages of Go, and the gofmt
and godoc Go tools, as well as some important things about the Unix operating
system.

The next chapter will not only tell you how to compile your Go code but it
will also discuss other important Go topics such as reading and using
command-line arguments, environment variables, writing functions, data
structures, interfaces, getting user input, and printing output.

Download from finelybook www.finelybook.com

56

Writing Programs in Go
This chapter will talk about many essential, interesting, and handy Go topics
that will help you be more productive. I think it would be a good idea to start
this chapter by compiling and running the Go code of the hw.go program from
the previous chapter. Then, you will learn how to deal with the environment
variables that can be used by Go, how to process the command-line
arguments of a Go program, and how to print the output on the screen and get
input from the user. Finally, you will see how to define functions in Go, learn
about the extremely important defer keyword, look at the data structures that
come with Go, and learn what Go interfaces are before checking out code that
generates random numbers.

Therefore, in this chapter, you will become familiar with many Go concepts,
including the following:

Compiling your Go programs
Go environment variables
Using the command-line arguments given to a Go program
Getting user input and printing the output on your screen
Go functions and the defer keyword
Go data structures and interfaces
Creating random numbers

Download from finelybook www.finelybook.com

57

Compiling Go code
Go does not care about the name of the source file of an autonomous program
as long as the package name is main and there is a main() function in it. This is
because the main() function is where the program execution begins. This also
means that you cannot have multiple main() functions in the files of a single
project.

There exist two ways to run a Go program:

The first one, go run, just executes the Go code without generating any
new files, only some temporary ones that are deleted afterward
The second way, go build, compiles the code, generates an executable
file, and waits for you to run the executable file

This book is written on an Apple Mac OS Sierra system using the Homebrew
(https://brew.sh/) version of Go. However, you should have no difficulties
compiling and running the presented Go code on most Linux and FreeBSD
systems, provided that you have a relatively recent version of Go.

So, the first way is as follows:

$ go run hw.go
Hello World!

The aforementioned way allows Go to be used as a scripting language. The
following is the second way:

$ go build hw.go
$ file hw
hw: Mach-O 64-bit executable x86_64

The generated executable file is named after the name of the Go source file,
which is much better than a.out, which is the default filename of the
executable files generated by the C compiler.

If there is an error in your code, such as a misspelled Go package name when
calling a Go function, you will get the following kind of error message:

Download from finelybook www.finelybook.com

58

https://brew.sh/

$ go run hw.go
command-line-arguments
./hw.go:3: imported and not used: "fmt"
./hw.go:7: undefined: mt in mt.Println

If you accidentally misspell the main() function, you will get the following
error message because the execution of an autonomous Go program begins
from the main() function:

$ go run hw.go
command-line-arguments
runtime.main_main f: relocation target main.main not defined
runtime.main_main f: undefined: "main.main"

Lastly, I want to show you an error message that will give you a good idea
about a formatting rule of Go:

$ cat hw.gocat
package main

import "fmt"

func main()
{
 fmt.Println("Hello World!")
}
$ go run hw.go
command-line-arguments
./hw.go:6: syntax error: unexpected semicolon or newline before {

The previous error message shows us that Go prefers putting curly braces in a
certain way, which is not the case with most programming languages such as
Perl, C, and C++. This might look frustrating at first, but it saves you from
one extra line of code and makes your programs more readable. Note that the
preceding code uses the Allman formatting style, which Go does not accept.

The official explanation for this error is that Go requires the use of
semicolons as statement terminators in many contexts, and the compiler
automatically inserts the required semicolons when it thinks they are
necessary, which in this case is at the end of a non-blank line. Therefore,
putting the opening brace ({) on its own line will make the Go compiler to put
a semicolon at the end of the previous line, which produces the error
message.

Download from finelybook www.finelybook.com

59

If you think that the gofmt tool can save you from similar errors, you will be
disappointed:

$ gofmt hw.go
hw.go:6:1: expected declaration, found '{'

The Go compiler has another rule, as you can see in the following output:

$ go run afile.go
command-line-arguments
./afile.go:4: imported and not used: "net"

This means that you should not import packages without actually using them
in your programs. Although this could have been a harmless warning
message, your Go program will not get compiled. Bear in mind that similar
warnings and error messages are a good indication that you are missing
something, and you should try to correct them. You will create a higher
quality of code if you treat warnings and errors the same.

Download from finelybook www.finelybook.com

60

Checking the size of the executable
file
So, after successfully compiling hw.go, you might want to check the size of
the generated executable file:

$ ls -l hw
-rwxr-xr-x 1 mtsouk staff 1628192 Feb 9 22:29 hw
$ file hw
hw: Mach-O 64-bit executable x86_64

Compiling the same Go program on a Linux machine will create the
following file:

$ go versiongo
go version go1.3.3 linux/amd64
$ go build hw.go
$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1823712 Feb 18 17:35 hw
$ file hw
hw: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

To get a better sense of how big the Go executable is, consider
that the executable for the same program written in C is about
8432 bytes!

So, you might ask why such a huge executable file for such a small program?
The main reason is that Go executable files are statically build, which means
that they require no external libraries to run. The use of the strip(1) command
can make the generated executable files a little smaller, but do not expect
miracles:

$ strip hw
$ ls -l hw
-rwxr-xr-x 1 mtsouk staff 1540096 Feb 18 17:41 hw

The previous process has nothing to do with Go itself because strip(1) is a
Unix command that removes or modifies the symbol table of files and
therefore reduces their size. Go can perform the work of the strip(1)

Download from finelybook www.finelybook.com

61

command on its own and create smaller executable files, but this method does
not always work:

$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1823712 Feb 18 17:35 hw
$ CGO_ENABLED=0 go build -ldflags "-s" -a hw.go
$ ls -l hw
-rwxr-xr-x 1 mtsouk mtsouk 1328032 Feb 18 17:44 hw
$ file hw
hw: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped

The preceding output is from a Linux machine; when the same compilation
command is used on a macOS machine, it will make no difference to the size
of the executable file.

Download from finelybook www.finelybook.com

62

Go environment variables
The go tool can use many Unix shell environment variables dedicated to Go,
including GOROOT, GOHOME, GOBIN, and GOPATH. The most important Go
environment variable is GOPATH, which specifies the location of your
workspace. Usually, this is the only environment variable that you will need
to define when developing Go code; it is to do with the way the files of a
project will be organized. This means that each project will be organized into
three main directories, named src, pkg, and bin. However, many people,
including me, prefer not to use GOPATH and manually organize their project
files.

So, if you are a big fan of shell variables, you can put all these kinds of
definitions in either .bashrc or .profile, which means that these environment
variables will be active every time you log in to your Unix machine. If you
are not using the Bash shell, which is the default Linux and macOS shell,
then you might need to use another start up file. Check out the documentation
of your favorite Unix shell to find out which file to use.

The upcoming screenshot shows part of the output of the following
command, which displays all the environment variables used by Go:

$ go help environment

Download from finelybook www.finelybook.com

63

The output of the "go help environment" command

You can find additional information about a particular environment variable
by executing the next command and replacing NAME with the environment
variable that interests you:

$ go env NAME

All these environment variables have nothing to do with the actual Go code
or the execution of the program, but they might affect the development
environment; therefore, if you happen to see any strange behavior while
trying to compile a Go program, check the environment variables you are

Download from finelybook www.finelybook.com

64

using.

Download from finelybook www.finelybook.com

65

Using command-line arguments
Command-line arguments allow your programs to get input, such as the
names of the files you want to process, without having to write a different
version of the program. Hence, you cannot create any useful systems
software if you're unable to process the command-line arguments passed to it.

So here is a naive Go program, named cla.go, that prints all its command-line
arguments, including the name of the executable file:

package main

import "fmt"
import "os"

func main() {
 arguments := os.Args
 for i := 0; i < len(arguments); i++ {
 fmt.Println(arguments[i])
 }
}

As you can see, Go needs an extra package named os in order to read the
command-line arguments of a program that are stored in the os.Args array. In
case you do not like having multiple import statements, you can rewrite the
two import statements as follows, which I find much easier to read:

import (
 "fmt"
 "os"
)

The gofmt utility puts package names in alphabetical order when
you are importing all your packages using a single import
block.

The Go code of cla.go is simple as it stores all the command-line arguments
in an array and uses a for loop for printing them. As you will see in
forthcoming chapters, the os package can do many more things. If you are
familiar with C, you should know that in C, command-line arguments are
automatically passed to programs, and you do not need to include any extra

Download from finelybook www.finelybook.com

66

header files in order to read them. Go uses a different approach that gives you
more control but requires slightly more code.

Executing cla.go after building it first will create the following kind of
output:

$./cla 1 2 three
./cla
1
2
three

Download from finelybook www.finelybook.com

67

Finding the sum of the command-
line arguments
Now, let us try something different and tricky: you are going to try to find the
summary of the command-line arguments given to your Go program.
Therefore, you are going to consider the command-line arguments as
numbers. Although the main idea remains the same, the implementation is
totally different because you will have to convert your command-line
arguments into numbers. The name of the Go program will be addCLA.go, and
it can be split into two parts.

The first part is the preamble of the program:

package main

import (
 "fmt"
 "os"
 "strconv"
)

You need the fmt package for printing your output and the os package for
reading the command-line arguments. As command-line arguments are stored
as strings, you will also need the srtconv package for converting them into
integers.

The second part is the implementation of the main() function:

func main() {
 arguments := os.Args
 sum := 0
 for i := 1; i < len(arguments); i++ {
 temp, _ := strconv.Atoi(arguments[i])
 sum = sum + temp
 }
 fmt.Println("Sum:", sum)
}

The strconv.Atoi() function returns two values: the first one is an integer
number, provided that the conversion was successful, and the second one is

Download from finelybook www.finelybook.com

68

an error variable.

Note that most Go functions return an error variable, which
should always be examined, especially on production software.

If you do not use the strconv.Atoi() function, then you will have two
problems:

The first one is that the program will try to perform additions, which are
mathematical operations, using strings
The second one is that you will not be able to tell whether a command-
line argument is a valid integer number or not, which can be done by
examining the return value of strconv.Atoi()

So, strconv.Atoi() not only does the desired job, but it also tells us whether a
given argument is a valid integer or not, which is equally important because it
allows us to process inappropriate arguments differently.

The other crucial Go code found in addCLA.go is the one that ignores the value
of the error variable from the strconv.Atoi() function using pattern matching.
The _ character means "match everything" in Go pattern matching terms, but
do not save it in any variable.

Go has support for four different sizes of signed and unsigned
integers, named int8, int16, int32, int64, uint8, uint16, uint32,
and uint64, respectively. However, Go also has int and uint,
which are the most efficient signed and unsigned integers for
your current platform. Therefore, when in doubt, use either int
or uint.

Executing addCLA.go with the right kind of command-line arguments creates
the following output:

$ go run addCLA.go 1 2 -1 -3
Sum: -1
$ go run addCLA.go
Sum: 0

The good thing is that addCLA.go does not crash if it gets no arguments,

Download from finelybook www.finelybook.com

69

without you taking care of it. Nevertheless, it would be more interesting to
see how the program handles erroneous input because you can never assume
that you are going to get the right type of input:

$ go run addCLA.go !
Sum: 0
$ go run addCLA.go ! -@
Sum: 0
$ go run addCLA.go ! -@ 1 2
Sum: 3

As you can see, if the program gets the wrong type of input, it does not crash
and does not include the erroneous input in its calculations. What is a major
issue here is that addCLA.go does not print any warning message to let the user
know that some of their input was ignored. This kind of dangerous code
creates unstable executables that might generate security issues when given
the wrong kind of input. So, the general advice here is that you should never
expect or rely on the Go compiler, or any other compiler or program, to take
care of such things because this is your job.

Chapter 3, Advanced Go Features, will talk about error handling in Go in more
detail and will present a better and safer version of the previous program. For
now, we should all be happy that we can prove that our program does not
crash with any kind of input.

Although this is not a perfect situation, it is not that bad if you
know that your program does not work as expected for some
given kinds of input. The bad thing is when the developer has no
idea that there exist certain kinds of input that can make a
program fail, because you cannot correct what you do not
believe or recognize is wrong.

Although processing command-line arguments looks easy, it might get pretty
complex if your command-line utility supports a large number of options and
parameters. Chapter 5, Files and Directories, will talk more about processing
command-line options, arguments, and parameters using the flag standard Go
package.

Download from finelybook www.finelybook.com

70

User input and output
According to the Unix philosophy, when a program finishes its job
successfully, it generates no output. However, for a number of reasons, not
all programs finish successfully and they need to inform the user about their
issues by printing appropriate messages. Additionally, some system tools
need to get input from the user in order to decide how to handle a situation
that might come up.

The hero of Go user input and output is the fmt package, and this section is
going to show you how to perform these two tasks by starting with the
simplest one.

The best place to learn more about the fmt package is its
documentation page, which can be found at https://golang.org/pkg/f
mt/.

Download from finelybook www.finelybook.com

71

https://golang.org/pkg/fmt/

Getting user input
Apart from using command-line arguments to get user input, which is the
preferred approach in systems programming, there exist ways to ask the user
for input.

Two such examples are the rm(1) and mv(1) commands when used with the -i
option:

$ touch aFile
$ rm -i aFile
remove aFile? y
$ touch aFile
$ touch ../aFile
$ mv -i ../aFile .
overwrite ./aFile? (y/n [n]) y

So, this section will show you how to mimic the previous behavior in your
Go code by making your program understand the -i parameter without
actually implementing the functionality of either rm(1) or mv(1).

The simplest function for getting user input is called fmt.Scanln() and reads an
entire line. Other functions for getting user input include fmt.Scan(),
fmt.Scanf(), fmt.Sscanf(), fmt.Sscanln(), and fmt.Sscan().

However, there exists a more advanced way to get input from the user in Go;
it involves the use of the bufio package. Nevertheless, using the bufio package
to get a simple response from a user is a bit of an overkill.

The Go code of parameter.go is as follows:

package main

import (
 "fmt"
 "os"
 "strings"
)

func main() {
 arguments := os.Args
 minusI := false

Download from finelybook www.finelybook.com

72

 for i := 0; i < len(arguments); i++ {
 if strings.Compare(arguments[i], "-i") == 0 {
 minusI = true
 break
 }
 }

 if minusI {
 fmt.Println("Got the -i parameter!")
 fmt.Print("y/n: ")
 var answer string
 fmt.Scanln(&answer)
 fmt.Println("You entered:", answer)
 } else {
 fmt.Println("The -i parameter is not set")
 }
}

The presented code is not particularly clever. It just visits all command-line
arguments using a for loop and checks whether the current argument is equal
to the -i string. Once it finds a match with the help of the strings.Compare()
function, it changes the value of the minusI variable from false to true. Then,
as it does not need to look any further, it exits the for loop using a break
statement. In case the -i parameter is given, the block with the if statement
asks the user to enter y or n using the fmt.Scanln() function.

Note that the fmt.Scanln() function uses a pointer to the answer variable. Since
Go passes its variables by value, we have to use a pointer reference here in
order to save the user input to the answer variable. Generally speaking,
functions that read data from the user tend to work this way.

Executing parameter.go creates the following kind of output:

$ go run parameter.go
The -i parameter is not set
$ go run parameter.go -i
Got the -i parameter!
y/n: y
You entered: y

Download from finelybook www.finelybook.com

73

Printing output
The simplest way to print something in Go is using the fmt.Println() and
fmt.Printf() functions. The fmt.Printf() function has many similarities with
the C printf(3) function. You can also use the fmt.Print() function instead of
fmt.Println().

The main difference between fmt.Print() and fmt.Println() is that the latter
automatically prints a newline character each time you call it. The biggest
difference between fmt.Println() and fmt.Printf() is that the latter requires a
format specifier for everything it will print, just like the C printf(3) function.
This means that you have better control over what you are doing, but you
have to write more code. Go calls these specifiers verbs, and you can find out
more about supported verbs at https://golang.org/pkg/fmt/.

Download from finelybook www.finelybook.com

74

https://golang.org/pkg/fmt/

Go functions
Functions are an important element of every programming language because
they allow you to break big programs into smaller and more manageable
parts, but they must be as independent of each other as possible and must do
one job and only one job. So, if you find yourself writing functions that do
multiple things, you may want to consider writing multiple functions instead.
However, Go will not refuse to compile functions that are long, complicated,
or do multiple things.

A safe indication that you need to create a new function is when you find
yourself using the same Go code multiple times in your program. Similarly, a
safe indication that you need to put some of your functions in a module is
when you find yourself using the same functions all the time in most of your
programs.

The single most popular Go function is main(), which can be found in every
autonomous Go program. If you look at the definition of the main() function,
you'll soon realize that function declarations in Go start with the func
keyword.

As a rule of thumb, you must try to write functions that are less
than 20-30 lines of Go code. A good side effect of having
smaller functions is that they can be optimized more easily
because you can clearly find out where the bottleneck is.

Download from finelybook www.finelybook.com

75

Naming the return values of a Go
function
Unlike C, Go allows you to name the return values of a Go function.
Additionally, when such a function has a return statement without any
arguments, the function automatically returns the current value of each
named return value. Note that such functions return their values in the order
they were declared in the definition of the function.

Naming return values is a very handy Go feature that can save
you from various types of bugs, so use it.

My personal advice is this: name the return values of your functions unless
there is a very good reason not to do so.

Download from finelybook www.finelybook.com

76

Anonymous functions
Anonymous functions can be defined in line, without the need for a name,
and they are usually used for implementing things that require a small
amount of code. In Go, a function can return an anonymous function or take
an anonymous function as one of its arguments. Additionally, anonymous
functions can be attached to Go variables.

It is considered a good practice for anonymous functions to
have a small implementation and local usage. If an anonymous
function does not have local utilization, then you might need to
consider making it a regular function.

When an anonymous function is suitable for a job, then it is extremely
convenient and makes your life easier; just do not use too many anonymous
functions in your programs without a good reason.

Download from finelybook www.finelybook.com

77

Illustrating Go functions
This subsection will present examples of the previous types of functions
using the Go code of the functions.go program. The first part of the program
contains the expected preamble and the implementation of the unnamedMinMax()
function:

package main

import (
 "fmt"
)

func unnamedMinMax(x, y int) (int, int) {
 if x > y {
 min := y
 max := x
 return min, max
 } else {
 min := x
 max := y
 return min, max
 }
}

The unnamedMinMax() function is a regular function that gets two integer
numbers as input, named x and y, respectively. It returns two integer numbers
as output using a return statement.

The next part of functions.go defines another function but this time with
named returned values, which are called min and max:

func minMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return min, max
}

The next function is an improved version of minMax() because you do not have
to explicitly define the return variables of the return statement:

Download from finelybook www.finelybook.com

78

func namedMinMax(x, y int) (min, max int) {
 if x > y {
 min = y
 max = x
 } else {
 min = x
 max = y
 }
 return
}

However, you can easily discover which values will be returned by looking at
the definition of the namedMinMax() function. The namedMinMax() function will
return the current values of min and max, in that order.

The next function shows how to sort two integers without having to use a
temporary variable:

func sort(x, y int) (int, int) {
 if x > y {
 return x, y
 } else {
 return y, x
 }
}

The previous code also shows how handy it is that Go functions can return
more than one value. The last part of functions.go contains the main() function;
this could be explained in two parts.

The first part is to do with anonymous functions:

 func main() {
 y := 4
 square := func(s int) int {
 return s * s
 }
 fmt.Println("The square of", y, "is", square(y))

 square = func(s int) int {
 return s + s
 }
 fmt.Println("The square of", y, "is", square(y))

Here, you define two anonymous functions: the first one calculates the square
of the given integer whereas the second doubles the given integer number.
What is important here is that both of them are assigned to the same variable,
which is a totally wrong and is a dangerous practice. Therefore, improper use

Download from finelybook www.finelybook.com

79

of anonymous functions can create nasty bugs, so take extra care and do not
assign the same variable to different anonymous functions.

Note that even if a function is assigned to a variable, it is still considered an
anonymous function.

The second part of main() uses some of the defined functions:

 fmt.Println(minMax(15, 6))
 fmt.Println(namedMinMax(15, 6))
 min, max := namedMinMax(12, -1)
 fmt.Println(min, max)
}

What is interesting here is that you can get the two returned values of the
namedMinMax() function using two variables, all in one statement.

Executing functions.go generates the following output:

$ go run functions.go
The square of 4 is 16
The square of 4 is 8
6 15
6 15
-1 12

The next section shows more examples of anonymous functions combined
with the defer keyword.

Download from finelybook www.finelybook.com

80

The defer keyword
The defer keyword defers the execution of a function until the surrounding
function returns, and is widely used in file I/O operations. This is because it
saves you from having to remember when to close an open file.

The file with the Go code that illustrates the use of defer is called defer.go and
has four main parts.

The first part is the expected preamble as well as the definition of the a1()
function:

package main

import (
 "fmt"
)

func a1() {
 for i := 0; i < 3; i++ {
 defer fmt.Print(i, " ")
 }
}

In the previous example, the defer keyword is used with a simple fmt.Print()
statement.

The second part is the definition of the a2() function:

func a2() {
 for i := 0; i < 3; i++ {
 defer func() { fmt.Print(i, " ") }()
 }
}

After the defer keyword, there is an anonymous function that is not attached
to a variable, which means that after the termination of the for loop, the
anonymous function will automatically disappear. The presented anonymous
function takes no arguments but uses the i local variable in the fmt.Print()
statement.

Download from finelybook www.finelybook.com

81

The next part defines the a3() function and has the following Go code:

func a3() {
 for i := 0; i < 3; i++ {
 defer func(n int) { fmt.Print(n, " ") }(i)
 }
}

This time, the anonymous function requires an integer parameter that is
named n and takes its value from the i variable.

The last part of defer.go is the implementation of the main() function:

func main() {
 a1()
 fmt.Println()
 a2()
 fmt.Println()
 a3()
 fmt.Println()
}

Executing defer.go will print the following, which might surprise you at first:

$ go run defer.go
2 1 0
3 3 3
2 1 0

So, now it is time to explain the output of defer.go by examining the way a1(),
a2(), and a3() execute their code. The first line of output verifies that deferred
functions are executed in Last In First Out (LIFO) order after the return of
the surrounding function. The for loop in a1() defers a single function call
that uses the current value of the i variable. As a result, all numbers are
printed in reverse order because the last used value of i is 2. The a2() function
is a tricky one because due to defer, the function body is evaluated after the
for loop ends while it is still referencing the local i variable, which at that
time was equal to 3 for all evaluations of the body. As a result, a2() prints the
number 3 three times. Put simply, you have three function calls that use the
last value of a variable because this is what is passed to the function.
However, this is not the case with the a3() function because the current value
of i is passed as an argument to the deferred function, due to the (i) code at
the end of the a3() function definition. So, each time the deferred function is
executed, it has a different i value to process.

Download from finelybook www.finelybook.com

82

As using defer can be complicated, you should write your own
examples and try to guess their output before executing the
actual Go code to make sure that your program behaves as
expected. Try to be able to tell when the function arguments are
evaluated and when the function body is actually executed.

You will see the defer keyword in action again in Chapter 6, File Input and
Output.

Download from finelybook www.finelybook.com

83

Using pointer variables in functions
Pointers are memory addresses that offer improved speed in exchange for
difficult-to-debug code and nasty bugs. C programmers know more about
this. The use of pointer variables in Go functions is illustrated inside the
pointers.go file, which can be divided into two main parts. The first part
contains the definition of two functions and one new structure named complex:

func withPointer(x *int) {
 *x = *x * *x
}

type complex struct {
 x, y int
}

func newComplex(x, y int) *complex {
 return &complex{x, y}
}

The second part illustrates the use of the previous definitions in the main()
function:

func main() {
 x := -2
 withPointer(&x)
 fmt.Println(x)

 w := newComplex(4, -5)
 fmt.Println(*w)
 fmt.Println(w)
}

As the withPointer() function uses a pointer variable, you do not need to
return any values because any changes to the variable you pass to the
function are automatically stored in the passed variable. Note that you need to
put & in front of the variable name to pass it as a pointer instead of as a value.
The complex structure has two members, named x and y, which are both integer
variables.

On the other hand, the newComplex() function returns a pointer to a complex
structure, previously defined in pointers.go, which needs to be stored in a

Download from finelybook www.finelybook.com

84

variable. In order to print the contents of a complex variable returned by the
newComplex() function, you will need to put a * character in front of it.

Executing pointers.go generates the following output:

$ go run pointers.go
4
{4 -5}
&{4 -5}

I do not recommend the use of pointers to amateur
programmers outside of what is required by the libraries you
use because they might cause problems. However, as you get
more experienced, you might want to experiment with pointers
and decide whether you want to use them or not depending on
the problem you are trying to solve.

Download from finelybook www.finelybook.com

85

Go data structures
Go comes with many handy data structures that can help you store your
own data, including arrays, slices, and maps. The most important task that
you should be able to perform on any data structure is accessing all of its
elements in some way. The second important task is having direct access to a
specific element once you know its index or key. The last two equally
important tasks are inserting elements and deleting elements from data
structures. Once you know how to perform these four tasks, you will have
complete control over the data structure.

Download from finelybook www.finelybook.com

86

Arrays
Arrays are the most popular data structure due to their speed and are
supported by almost all programming languages. You can declare an array in
Go as follows:

myArray := [4]int{1, 2, 4, -4}

Should you wish to declare an array with two or three dimensions, you can
use the following notation:

twoD := [3][3]int{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
threeD := [2][2][2]int{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}

The index of the first element of each dimension of an array is 0, the index of
the second element of each dimension is 1, and so on. Accessing, assigning,
or printing a single element from one of the previous three arrays can also be
done easily:

myArray[0]
twoD[1][2] = 15
threeD[0][1][1] = -1

The most common way to access all the elements of an array is by finding its
size using the len() function and then using a for loop. However, there exist
cooler ways to visit all the elements of an array that involve the use of the
range keyword inside a for loop and allow you to bypass the use of the len()
function, which is pretty handy when you have to deal with arrays with two
or more dimensions.

All of the code in this subsection is saved as arrays.go, and you should watch
it on your own. Running arrays.go creates the following output:

$ go run arrays.go
1 2 4 -4
0 2 -2 6 7 8
1 2 3 4 5 15 7 8 9
[[1 2] [3 -1]] [[5 6] [7 8]]

Download from finelybook www.finelybook.com

87

Now let's try to break things by trying to access some strange array elements,
such as an element with an index number that does not exist or an element
with a negative index number, using the following Go program that is named
breakMe.go:

package main

import "fmt"

func main() {
 myArray := [4]int{1, 2, 4, -4}
 threeD := [2][2][2]int{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}
 fmt.Println("myArray[-1]:", myArray[-1])
 fmt.Println("myArray[10]:", myArray[10])
 fmt.Println("threeD[-1][20][0]:", threeD[-1][20][0])
}

Executing breakMe.go will generate the following output:

$ go run breakMe.go
command-line-arguments
./breakMe.go:8: invalid array index -1 (index must be non-negative)
./breakMe.go:9: invalid array index 10 (out of bounds for 4-element array)
./breakMe.go:10: invalid array index -1 (index must be non-negative)
./breakMe.go:10: invalid array index 20 (out of bounds for 2-element array)

Go considers compiler issues that can be detected as compiler errors because
this helps the development workflow, which is the reason for printing all the
out of bounds array access errors of breakMe.go.

Trying to break things is an extremely educational process that
you should attempt all the time. Put simply, knowing when
something does not work is equally useful to knowing when it
works.

Despite their simplicity, Go arrays have many and severe shortcomings:

First, once you define an array, you cannot change its size, which means
that Go arrays are not dynamic. Put simply, if you want to include an
additional element to an existing array that has no space, you will need
to create a bigger array and copy all the elements from the old array to
the new one.
Second, when you pass an array to a function, you actually pass a copy
of the array, which means that any changes you make to an array inside

Download from finelybook www.finelybook.com

88

a function will be lost after the function finishes.
Last, passing a large array to a function can be pretty slow, mostly
because Go has to create a second copy of the array. The solution to all
these problems is to use slices instead.

Download from finelybook www.finelybook.com

89

Slices
You'll not find the concept of slice in many programming languages, despite
the fact that it is both smart and handy. A slice has many similarities with an
array, and it allows you to overcome the shortcomings of an array.

Slices have a capacity and length property, which are not always the same.
The length of a slice is the same as the length of an array with the same
number of elements and can be found using the len() function. The capacity
of a slice is the current room that has been allocated for this particular slice
and can be found with the cap() function. As slices are dynamic in size, if a
slice runs out of room, Go automatically doubles its current length to make
room for more elements.

As slices are passed by reference to functions, any modifications you make to
a slice inside a function will not be lost after the function ends. Additionally,
passing a big slice to a function is significantly faster than passing the same
array because Go will not have to make a copy of the slice; it will just pass
the memory address of the slice variable.

The code of this subsection is saved in slices.go, and it can be separated into
three main parts.

The first part is the preamble as well as the definition of two functions that
get slice as input:

package main

import (
 "fmt"
)

func change(x []int) {
 x[3] = -2
}

func printSlice(x []int) {
 for _, number := range x {

 fmt.Printf("%d ", number)

Download from finelybook www.finelybook.com

90

 }
 fmt.Println()
}

Note that when you use range over a slice, you get a pair of values in its
iteration. The first one is the index number and the second one is the value of
the element. When you are only interested in the stored element, you can
ignore the index number as it happens with the printSlice() function.

The change() function just changes the fourth element of the input slice,
whereas printSlice() is a utility function that prints the contents of its slice
input variable. Here, you can also see the use of the fmt.Printf() function for
printing an integer number.

The second part creates a new slice named aSlice and makes a change to it
with the help of the change() function you saw in the first part:

func main() {
 aSlice := []int{-1, 4, 5, 0, 7, 9}
 fmt.Printf("Before change: ")
 printSlice(aSlice)
 change(aSlice)
 fmt.Printf("After change: ")
 printSlice(aSlice)

Although the way you define a populated slice has some similarities with the
way you define an array, the biggest difference is that you do not have to
declare the number of elements your slice will have.

The last part illustrates the capacity property of a Go slice as well as the
make() function:

 fmt.Printf("Before. Cap: %d, length: %d\n", cap(aSlice), len(aSlice))
 aSlice = append(aSlice, -100)
 fmt.Printf("After. Cap: %d, length: %d\n", cap(aSlice), len(aSlice))
 printSlice(aSlice)
 anotherSlice := make([]int, 4)
 fmt.Printf("A new slice with 4 elements: ")
 printSlice(anotherSlice)
}

The make() function automatically initializes the elements of a slice to the zero
value for that type, which can be verified by the output of the printSlice
(anotherSlice) statement. Note that you need to specify the number of

Download from finelybook www.finelybook.com

91

elements of a slice when you create it with the make() function.

Executing slices.go generates the following output:

$ go run slices.go
Before change: -1 4 5 0 7 9
After change: -1 4 5 -2 7 9
Before. Cap: 6, length: 6
After. Cap: 12, length: 7
-1 4 5 -2 7 9 -100
A new slice with 4 elements: 0 0 0 0

As you can see from the third line of the output, the capacity and the length
of a slice were the same at the time of its definition. However, after adding a
new element to the slice using append(), its length goes from 6 to 7 but its
capacity doubles and goes from 6 to 12. The main advantage you get from
doubling the capacity of a slice is better performance because Go will not
have to allocate memory space all the time.

You can create a slice from the elements of an existing array,
and you can copy an existing slice to another one using the
copy() function. Both operations have some tricky points, and
you should experiment with them.

Chapter 6, File Input and Output, will talk about a special type of slice, named
byte slice, that can be used in file I/O operations.

Download from finelybook www.finelybook.com

92

Maps
The Map data type in Go is equivalent to the well-known hash table found in
other programming languages. The main advantage of maps is that they can
use almost any data type as their index, which in this case is called a key. For
a data type to be used as a key, it must be comparable.

So, let's take a look at an example Go program, named maps.go, which we will
use for illustrative purposes. The first part of maps.go contains the preamble
Go code you would expect:

package main

import (
 "fmt"
)

func main() {

Then, you can define a new empty map that has strings as its keys and integer
numbers as values, as follows:

 aMap := make(map[string]int)

Post this, you can add new key and value pairs to the aMap map, as follows:

 aMap["Mon"] = 0
 aMap["Tue"] = 1
 aMap["Wed"] = 2
 aMap["Thu"] = 3
 aMap["Fri"] = 4
 aMap["Sat"] = 5
 aMap["Sun"] = 6

Then, you can get the value of an existing key:

 fmt.Printf("Sunday is the %dth day of the week.\n", aMap["Sun"])

However, the single most important operation you can perform on an existing
map is illustrated in the following Go code:

Download from finelybook www.finelybook.com

93

 _, ok := aMap["Tuesday"]
 if ok {
 fmt.Printf("The Tuesday key exists!\n")
 } else {
 fmt.Printf("The Tuesday key does not exist!\n")
 }

What the aforementioned Go code does is use the error-handling capabilities
of Go in order to verify that a key of a map already exists before you try to
get its value. This is the proper and safe way of trying to get the value of a map
key because asking for a value for which there is no key will result in
returning zero. This gives you no way of determining whether the result was
zero because the key you requested was not there or because the element with
the corresponding key actually had the zero value.

The following Go code shows how you can iterate over all the keys of an
existing map:

 count := 0
 for key, _ := range aMap {
 count++
 fmt.Printf("%s ", key)
 }
 fmt.Printf("\n")
 fmt.Printf("The aMap has %d elements\n", count)

If you have no interest in visiting the keys and the values of a map and you
just want to count its pairs, then you can use the next, much simpler variation
of the previous for loop:

 count = 0
 delete(aMap, "Fri")
 for _, _ = range aMap {
 count++
 }
 fmt.Printf("The aMap has now %d elements\n", count)

The last part of the main() function contains the following Go code that
illustrates an alternative way of defining and initializing a map at the same
time:

 anotherMap := map[string]int{
 "One": 1,
 "Two": 2,
 "Three": 3,
 "Four": 4,
 }

Download from finelybook www.finelybook.com

94

 anotherMap["Five"] = 5
 count = 0
 for _, _ = range anotherMap {
 count++
 }
 fmt.Printf("anotherMap has %d elements\n", count)
}

However, apart from the different initialization, all the other map operations
work exactly the same. Executing maps.go generates the following output:

$ go run maps.go
Sunday is the 6th day of the week.
The Tuesday key does not exist!
Wed Thu Fri Sat Sun Mon Tue
The aMap has 7 elements
The aMap has now 6 elements
anotherMap has 5 elements

Maps are a very handy data structure, and there is a big chance that you are
going to need them when developing systems software.

Download from finelybook www.finelybook.com

95

Converting an array into a map
This subsection will perform a practical operation, which is converting an
array into a map without knowing the size of array in advance. The Go code
of array2map.go can be divided into three main parts. The first part is the
standard Go code that includes the required packages and the beginning of
the main() function:

package main

import (
 "fmt"
 "strconv"
)

func main() {

The second part, which implements the core functionality, is as follows:

anArray := [4]int{1, -2, 14, 0}
aMap := make(map[string]int)

length := len(anArray)
for i := 0; i < length; i++ {
 fmt.Printf("%s ", strconv.Itoa(i))
 aMap[strconv.Itoa(i)] = anArray[i]
}

You first define the array variable and the map variable you will use. The for
loop is used for visiting all the array elements and adding them to map. The
strconv.Itoa() function converts the index number of array into a string.

Bear in mind that if you know that all the keys of a map will be
consecutive positive integer numbers, you might consider using
an array or a slice instead of a map. In fact, even if the keys are
not consecutive, arrays and slices are cheaper data structures
than maps, so you might end up with a sparse matrix.

The last part, which is just for printing the contents of the generated map,
uses the expected range form of the for loop:

Download from finelybook www.finelybook.com

96

for key, value := range aMap {
 fmt.Printf("%s: %d\n", key, value)
 }
}

As you can easily guess, developing the inverse operation is not always
possible because map is a richer data structure than array. However, the price
you pay for a more powerful data structure is time because array operations
are usually faster.

Download from finelybook www.finelybook.com

97

Structures
Although arrays, slices, and maps are all very useful, they cannot hold
multiple values in the same place. When you need to group various types of
variables and create a new handy type, you can use a structure--the various
elements of a structure are called fields.

The code of this subsection is saved as dataStructures.go and can be divided
into three parts. The first part contains the preamble and the definition of a
new structure named message:

package main

import (
 "fmt"
 "reflect"
)

func main() {

 type message struct {
 X int
 Y int
 Label string
 }

The message structure has three fields, named X, Y, and Label. Note that
structures are usually defined at the beginning of a program and outside the
main() function.

The second part uses the message structure to define two new message
variables, named p1 and p2. Then, it uses reflection to get information about
the p1 and p2 variables of the message structure:

 p1 := message{23, 12, "A Message"}
 p2 := message{}
 p2.Label = "Message 2"

 s1 := reflect.ValueOf(&p1).Elem()
 s2 := reflect.ValueOf(&p2).Elem()
 fmt.Println("S2= ", s2)

The last part shows how to print all the fields of a structure without knowing

Download from finelybook www.finelybook.com

98

their names using a for loop and the Type() function:

 typeOfT := s1.Type()
 fmt.Println("P1=", p1)
 fmt.Println("P2=", p2)

 for i := 0; i < s1.NumField(); i++ {
 f := s1.Field(i)

 fmt.Printf("%d: %s ", i, typeOfT.Field(i).Name)
 fmt.Printf("%s = %v\n", f.Type(), f.Interface())
 }

}

Running dataStructures.go will generate the following kind of output:

$ go run dataStructures.go
S2= {0 0 Message 2}
P1= {23 12 A Message}
P2= {0 0 Message 2}
0: X int = 23
1: Y int = 12
2: Label string = A Message

If the name of a field of a struct definition begins with a lowercase letter (x
instead of X), the previous program will fail with the following error message:

panic: reflect.Value.Interface: cannot return value obtained from unexported field or method

This happens because lowercase fields do not get exported; therefore, they
cannot be used by the reflect.Value.Interface() method. You will learn more
about reflection in the next chapter.

Download from finelybook www.finelybook.com

99

Interfaces
Interfaces are an advanced Go feature, which means that you might not want
to use them in your programs if you are not feeling very comfortable with
Go. However, interfaces can be very practical when developing big Go
programs, which is the main reason for talking about interfaces in this book.

But first, I will talk about methods, which are functions with a special
receiver argument. You declare methods as ordinary functions with an
additional parameter that appears just before the function name. This
particular parameter connects the function to the type of that extra parameter.
As a result, that parameter is called the receiver of the method. You will see
such functions in a while.

Put simply, interfaces are abstract types that define a set of functions that
need to be implemented so that a type can be considered an instance of the
interface. When this happens, we say that the type satisfies this interface. So,
an interface is two things--a set of methods and a type--and it is used for
defining the behavior of a type.

Let's describe the main advantage of interfaces with an
example. Imagine that you have a type named ATYPE and an
interface for the ATYPE type. Any function that accepts an
ATYPE variable can accept any other variable that implements
the interface of ATYPE.

The Go code of interfaces.go can be divided into three parts. The first part is
as follows:

package main

import (
 "fmt"
)

type coordinates interface {
 xaxis() int
 yaxis() int
}

Download from finelybook www.finelybook.com

100

type point2D struct {
 X int
 Y int
}

In this part, you define an interface called coordinates and a new structure
called point2D. The interface has two functions, named xaxis() and yaxis().
The definition of the coordinates interface says that if you want to convert to
the coordinates interface, you will have to implement these two functions.

It is important to notice that the interface does not state any
other specific types apart from the interface itself. On the other
hand, the two functions of the interface should state the types of
their return values.

The second part has the following Go code:

func (s point2D) xaxis() int {
 return s.X
}

func (s point2D) yaxis() int {
 return s.Y
}

func findCoordinates(a coordinates) {
 fmt.Println("X:", a.xaxis(), "Y:", a.yaxis())
}

type coordinate int

func (s coordinate) xaxis() int {
 return int(s)
}

func (s coordinate) yaxis() int {
 return 0
}

In the second part, you first implement the two functions of the coordinates
interface for the point2D type. Then you develop a function named
findCoordinates() that accepts a variable that implements the coordinates
interface. The findCoordinates() function just prints the two coordinates of a
point using a simple fmt.Println() function call. Then, you define a new type
named coordinate that is used for points that belong to the x-axis. Last, you
implement the coordinates interface for the coordinate type.

Download from finelybook www.finelybook.com

101

At the time of writing the code for interfaces.go, I believed that the
coordinates and coordinate names were fine. After writing the previous
paragraph, I realized that the coordinate type could have been renamed to
xpoint for better readability. I left the names coordinates and coordinate to
point out that everybody makes mistakes and that the variable and type
names you are using must be chosen wisely.

The last part has the following Go code:

func main() {

 x := point2D{X: -1, Y: 12}
 fmt.Println(x)
 findCoordinates(x)

 y := coordinate(10)
 findCoordinates(y)
}

In this part, you first create a point2D variable and print its coordinates using
the findCoordinates() function, then you create a coordinate variable named y
that holds a single coordinate value. Lastly, you print the y variable using the
same findCoordinates() function used for printing a point2D variable.

Although Go is not an object-oriented programming language, I will use
some object-oriented terminology here. So, in object-oriented terminology,
this means that both point2D and coordinate types are coordinate objects.
However, none of them are only a coordinate object.

Executing interfaces.go creates the following output:

$ go run interfaces.go
{-1 12}
X: -1 Y: 12
X: 10 Y: 0

I believe that Go interfaces are not necessary when developing systems
software, but they are a handy Go feature that can make the development of a
systems application more readable and simpler, so do not hesitate to use
them.

Download from finelybook www.finelybook.com

102

Creating random numbers
As a practical programming example, this section will talk about creating
random numbers in Go. Random numbers have many uses, including the
generation of good passwords as well as the creation of files with random
data that can be used for testing other applications. However, bear in mind
that usually programming languages generate pseudorandom numbers that
approximate the properties of a true random number generator.

Go uses the math/rand package for generating random numbers and needs a
seed to start producing random numbers. The seed is used for initializing the
entire process and is extremely important because if you always start with the
same seed, you will always get the same sequence of random numbers.

The random.go program has three main parts. The first part is the preamble of
the program:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "strconv"
 "time"
)

The second part is the definition of the random() function that returns a random
number each time it is called, using the rand.Intn() Go function:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

The two parameters of the random() function define the lower and upper limits
of the generated random number. The last part of random.go is the
implementation of the main() function that is mainly used for calling the
random() function:

func main() {

Download from finelybook www.finelybook.com

103

 MIN := 0
 MAX := 0
 TOTAL := 0
 if len(os.Args) > 3 {
 MIN, _ = strconv.Atoi(os.Args[1])
 MAX, _ = strconv.Atoi(os.Args[2])
 TOTAL, _ = strconv.Atoi(os.Args[3])
 } else {
 fmt.Println("Usage:", os.Args[0], "MIX MAX TOTAL")
 os.Exit(-1)
 }

 rand.Seed(time.Now().Unix())
 for i := 0; i < TOTAL; i++ {
 myrand := random(MIN, MAX)
 fmt.Print(myrand)
 fmt.Print(" ")
 }
 fmt.Println()
}

A big part of the main() function involves dealing with the reading of
command-line arguments as integer numbers and printing a descriptive error
message in case you did not get the correct number of command-line
arguments. This is the standard practice that we will follow in this book. The
random.go program uses the Unix epoch time as the seed for the random
number generator by calling the time.Now().Unix() function. The important
thing to remember is that you do not have to call rand.Seed() multiple times.
Lastly, random.go does not examine the error variable returned by
strconv.Atoi() to save book space, not because it is not necessary.

Executing random.go generates the following kind of output:

$ go run random.go 12 32 20
29 27 20 23 22 28 13 16 22 26 12 29 22 30 15 19 26 24 20 29

Should you wish to generate more secure random numbers in Go, you should
use the crypto/rand package, which implements a cryptographically secure
pseudorandom number generator. You can find more information about the
crypto/rand package by visiting its documentation page at https://golang.org/pkg/c
rypto/rand/.

If you are really into random numbers, then the definitive reference to the
theory of random numbers is the second volume of The Art of Computer
Programming by Donald Knuth.

Download from finelybook www.finelybook.com

104

https://golang.org/pkg/crypto/rand/

Exercises
1. Browse the Go documentation site: https://golang.org/doc/.
2. Write a Go program that keeps reading integers until you give the

number 0 as input, then it prints the minimum and maximum integer in
the input.

3. Write the same Go program as before, but this time, you will get your
input using command-line arguments. Which version do you think is
better? Why?

4. Write a Go program that supports two command-line options (-i and -k)
in random order using if statements. Now change your program to
support three command-line arguments. As you will see, the complexity
of the latter program is just too much to handle using if statements.

5. If the indices of a map were natural numbers, are there any cases that it
would be wise and efficient to use a map instead of an array?

6. Try to put the functionality of array2map.go into a separate function.
7. Try to develop your own random number generator in Go that will still

use the current time as a seed but not the math/rand package.
8. Learn how to create a slice from an existing array. What happens when

you make changes to the slice?
9. Use the copy() function to make a copy of an existing slice. What

happens when the destination slice is smaller than the source slice?
What happens when the destination slice is bigger than the source slice?

10. Try to write an interface for supporting points in 3D space. Then, use
this interface to support points that reside on the x-axis.

Download from finelybook www.finelybook.com

105

https://golang.org/doc/

Summary
You learned many things in this chapter, including getting user input and
processing command-line arguments. You familiarized yourself with the
basic Go structures and you created a Go program that generates random
numbers. Try to do the offered exercises and do not get discouraged if you
fail in some of them.

The next chapter will talk about many advanced Go features, including error
handling, pattern matching, regular expressions, reflection, unsafe code,
calling C code from Go, and the strace(1) command-line utility. I will
compare Go with other programming languages and give you practical advice
in order to avoid some common Go pitfalls.

Download from finelybook www.finelybook.com

106

Advanced Go Features
In the previous chapter, you learned how to compile Go code, how to get
input from the user and print the output on the screen, how to create your
own Go functions, the data structures that Go supports, and how to process
command-line arguments.

This chapter will discuss many fascinating things, so you better prepare
yourselves for lots of interesting and practical Go code that will help you
perform many different yet really important tasks, starting with error
handling and ending with how to avoid some common Go mistakes. If you
are familiar with Go, you can skip what you already know, but please do not
skip the proposed exercises.

So, this chapter will talk about some advanced Go features, including:

Error handling
Error logging
Pattern matching and regular expressions
Reflection
How to use the strace(1) and dtrace(1) tools to watch the system calls of
Go executable files
How to detect unreachable Go code
How to avoid various common Go mistakes

Download from finelybook www.finelybook.com

107

Error handling in Go
Errors happen all the time, so it is our job to both catch and handle them,
especially when writing code that deals with sensitive system information
and files. The good news is that Go has a special data type called error that
helps signify erroneous states; if an error variable has a nil value, then there
is no error situation.

As you saw in the addCLA.go program that was developed in the previous
chapter, you can ignore the error variable that is returned by most Go
functions using the _ character:

temp, _ := strconv.Atoi(arguments[i])

However, this is not considered good practice and should be avoided,
especially on systems software and other kinds of critical software, such as
server processes.

As you will see in Chapter 6, File Input and Output, even End of File (EOF)
is a type of error that is returned when there is nothing left to read from a file.
As EOF is defined in the io package, you can handle it as follows:

if err == io.EOF {

 // Do something
}

However, the most important task to learn is how to develop functions that
return error variables and how to handle them, which is explained next.

Download from finelybook www.finelybook.com

108

Functions can return error
variables
Go functions can return error variables, which means that an error condition
can be handled inside a function, outside of a function, or both inside and
outside the function; the latter situation does not happen very often. So, this
subsection will develop a function that returns error messages. The relevant
Go code can be found in funErr.go and will be presented in three parts.

The first part contains the following Go code:

package main

import (
 "errors"
 "fmt"
 "log"
)

func division(x, y int) (int, error, error) {
 if y == 0 {
 return 0, nil, errors.New("Cannot divide by zero!")
 }
 if x%y != 0 {
 remainder := errors.New("There is a remainder!")
 return x / y, remainder, nil
 } else {
 return x / y, nil, nil
 }

}

Apart from the expected preamble, the preceding code defines a new function
named division(), which returns an integer and two error variables. If you
remember from your Math classes, when you divide two integer numbers, the
division operation is not always perfect, which means that you might get a
remainder that is not zero. The errors.New() function from the errors Go
package that you see in funErr.go creates a new error variable, using the
provided string as the error message.

The second part of funErr.go has the following Go code:

Download from finelybook www.finelybook.com

109

func main() {
 result, rem, err := division(2, 2)
 if err != nil {
 log.Fatal(err)
 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }

It is a very common Go practice to compare an error variable with nil to
quickly find out whether there is an error condition or not.

The last part of funErr.go is as follows:

 result, rem, err = division(12, 5)
 if err != nil {
 log.Fatal(err)
 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }

 result, rem, err = division(2, 0)
 if err != nil {
 log.Fatal(err)
 } else {
 fmt.Println("The result is", result)
 }

 if rem != nil {
 fmt.Println(rem)
 }
}

This part showcases two erroneous conditions. The first one is an integer
division that has a remainder, whereas the second one is an invalid division
because you cannot divide a number by zero. As the name log.Fatal()
implies, this logging function should be used for critical errors only because
when called, it automatically terminates your program. However, as you will
see in the next subsection, there exist other, more gentle, ways to log your
error messages.

Executing funErr.go generates the next output:

Download from finelybook www.finelybook.com

110

$ go run funErr.go
The result is 1
The result is 2
There is a remainder!
2017/03/07 07:39:19 Cannot divide by zero!
exit status 1

The last line is automatically generated by the log.Fatal() function, just
before terminating the program. It is important to understand that any Go
code after the call to log.Fatal() will not be executed.

Download from finelybook www.finelybook.com

111

About error logging
Go offers functions that can help you log your error messages in various
ways. You already saw log.Fatal() in funErr.go, which is a somewhat cruel
way to deal with simple errors. Put simply, you should have a very good
reason to use log.Fatal() in your code. Generally speaking, log.Fatal() should
be used instead of the os.Exit() function because it allows you to print an
error message and exit your program using just one function call.

Go offers additional error logging functions in the log standard package that
behave more gently depending on the situation, which includes log.Printf(),
log.Print(), log.Println(), log.Fatalf(), log.Fatalln(), log.Panic(),
log.Panicln(), and log.Panicf(). Please note that logging functions can be
handy for debugging purposes so do not underestimate their power.

The logging.go program illustrates two of the mentioned logging functions
using the following Go code:

package main

import (
 "log"
)

func main() {
 x := 1
 log.Printf("log.Print() function: %d", x)
 x = x + 1
 log.Printf("log.Print() function: %d", x)
 x = x + 1
 log.Panicf("log.Panicf() function: %d", x)
 x = x + 1
 log.Printf("log.Print() function: %d", x)
}

As you can see, logging.go does not need the fmt package because it has its
own functions for printing the output. Executing logging.go will produce the
following output:

$ go run logging.go
2017/03/10 16:51:56 log.Print() function: 1
2017/03/10 16:51:56 log.Print() function: 2

Download from finelybook www.finelybook.com

112

2017/03/10 16:51:56 log.Panicf() function: 3
panic: log.Panicf() function: 3

goroutine 1 [running]:
log.Panicf(0x10b78d0, 0x19, 0xc42003df48, 0x1, 0x1)
 /usr/local/Cellar/go/1.8/libexec/src/log/log.go:329 +0xda
main.main()
 /Users/mtsouk/ch3/code/logging.go:14 +0x1af
exit status 2

Although the log.Printf() function works in the same way as fmt.Printf(), it
automatically prints the date and time the log message was printed, just like
the log.Fatal() function did in funErr.go. Additionally, the log.Panicf()
function works in a similar way to log.Fatal()--they both terminate the
current program. However, log.Panicf() prints some additional information,
useful for debugging purposes.

Go also offers the log/syslog package that is a simple interface to the system
log service running on your Unix machine. Chapter 7, Working with System
Files, will talk more about the log/syslog package.

Download from finelybook www.finelybook.com

113

The addCLA.go program revisited
This subsection will present an improved version of the addCLA.go program we
developed in the previous chapter, to make it able to handle any kind of user
input. The new program will be called addCLAImproved.go, but instead of
presenting its full Go code, you will only see the differences between
addCLAImproved.go and addCLA.go using the diff(1) command-line utility:

$ diff addCLAImproved.go addCLA.go
13,18c13,14
< temp, err := strconv.Atoi(arguments[i])
< if err == nil {
< sum = sum + temp
< } else {
< fmt.Println("Ignoring", arguments[i])
< }

> temp, _ := strconv.Atoi(arguments[i])
> sum = sum + temp

What this output basically tells us is that the last two lines of code, which can
be found in addCLA.go and begin with the > character, were replaced by the
lines of code that begin with the < character in addCLAImproved.go. The
remaining code of both files is exactly the same.

The diff(1) utility compares text files line by line and is a handy
way of spotting code differences between different versions of
the same file.

Executing addCLAImproved.go will generate the following kind of output:

$ go run addCLAImproved.go
Sum: 0
$ go run addCLAImproved.go 1 2 -3
Sum: 0
$ go run addCLAImproved.go 1 a 2 b 3.2 @
Ignoring a
Ignoring b
Ignoring 3.2
Ignoring @
Sum: 3

So, the new and improved version works as expected, behaves reliably, and

Download from finelybook www.finelybook.com

114

allows us to differentiate between valid and invalid input.

Download from finelybook www.finelybook.com

115

Pattern matching and regular
expressions
Pattern matching, which plays a key role in Go, is a technique for searching
a string for a set of characters based on a specific search pattern that is based
on regular expressions. If pattern matching is successful, it allows you to
extract the desired data from the string or replace or delete it. Grammar is a
set of production rules for strings in a formal language. The production rules
describe how to create strings from the alphabet of the language that are valid
according to the syntax of the language. Grammar does not describe the
meaning of a string or what can be done with it in whatever context, only its
form. What is important is to realize that grammar is at the heart of regular
expressions because without it, you cannot define or use a regular expression.

Regular expressions and pattern matching are not a panacea,
so you should not try to solve every problem using regular
expressions since they are not suitable for every kind of problem
you may come up against. Furthermore, they might introduce
unnecessary complexity to your software.

The Go package responsible for the pattern matching capabilities of Go is
called regexp, which you can see in action in regExp.go. The code of regExp.go
will be presented in four parts.

The first part is the expected preamble:

package main

import (
 "fmt"
 "regexp"
)

The second part is as follows:

func main() {
match, _ := regexp.MatchString("Mihalis", "Mihalis Tsoukalos")

Download from finelybook www.finelybook.com

116

 fmt.Println(match)
 match, _ = regexp.MatchString("Tsoukalos", "Mihalis tsoukalos")
 fmt.Println(match)

Both calls to regexp.MatchString() try to find a static string, which is the first
parameter, in a given string, which is the second parameter.

The third part contains a single, yet crucial, line of Go code:

 parse, err := regexp.Compile("[Mm]ihalis")

The regexp.Compile() function reads the provided regular expression and tries
to parse it. If the parsing of the regular expressing is successful, then
regexp.Compile() returns a value of the regexp.Regexp variable type that you can
use afterward. The [Mm] expression in the regexp.Compile() function means that
what you are looking for can begin with an uppercase M or a lowercase m.
Both [and] are special characters that are not part of the regular expression.
So, the provided grammar is naive and only matches the words Mihalis and
mihalis.

The last part uses the previous regular expression that is stored in the parse
variable:

 if err != nil {
 fmt.Printf("Error compiling RE: %s\n", err)
 } else {
 fmt.Println(parse.MatchString("Mihalis Tsoukalos"))
 fmt.Println(parse.MatchString("mihalis Tsoukalos"))
 fmt.Println(parse.MatchString("M ihalis Tsoukalos"))
 fmt.Println(parse.ReplaceAllString("mihalis Mihalis", "MIHALIS"))
 }
}

Running regExp.go generates the next output:

$ go run regExp.go
true
false
true
true
false
MIHALIS MIHALIS

So, the first call to regexp.MatchString() was a match, but the second was not
because pattern matching is case-sensitive and Tsoukalos does not match

Download from finelybook www.finelybook.com

117

tsoukalos. The parse.ReplaceAllString() function at the end searches the string
that is given as an input ("mihalis Mihalis") and replaces each match with the
string that is given as its second parameter ("MIHALIS").

The rest of this section will present various examples using static text
because you do not know how to read text files yet. However, as the static
text will be stored in an array and processed line by line, the presented code
can be easily modified to support getting your input from external text files.

Download from finelybook www.finelybook.com

118

Printing all the values from a given
column of a line
This is a very common scenario, as you often will need to get all the data
from a given column of a structured text file in order to analyze it afterward.
The code of readColumn.go, which prints values in the third column, will be
presented in two parts.

The first part is as follows:

package main

import (
 "fmt"
 "strings"
)

func main() {
 var s [3]string
 s[0] = "1 2 3"
 s[1] = "11 12 13 14 15 16"
 s[2] = "-1 2 -3 -4 -5 6"

Here, you import the required Go packages and define a string with three
lines using an array with three elements.

The second part contains the following Go code:

 column := 2

 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
}

First, you define the column that interests you. Then, you start iterating over
the strings stored in the array. This is similar to reading a text file line by line.
The Go code inside the for loop splits the fields of the input line, stores them
in the data array, verifies that the value from the desired column is present,

Download from finelybook www.finelybook.com

119

and prints it on your screen. All of the hard work is done by the handy
strings.Fields() function that splits a string based on whitespace characters,
as defined in unicode.IsSpace(), and returns a slice of strings. Although
readColumn.go does not use the regexp.Compile() function, the logic behind its
implementation with the use of strings.Fields() is still based on the principles
of regular expressions.

An important thing to remember is that you should never trust
your data. Put simply, always verify that the data you expect to
grab is there.

Executing readColumn.go will generate the following kind of output:

$ go run readColumn.go
2
12
2

Chapter 6, File Input and Output, will show an improved version of
readColumn.go that you can use as a starting point in case you want to modify
the rest of the examples shown.

Download from finelybook www.finelybook.com

120

Creating summaries
In this section, we will develop a program that adds all the values of a given
column of text with multiple lines. To make things even more interesting, the
column number will be given as a parameter in the program. The main
difference between the program of this subsection and readColumn.go from the
previous subsection is that you will need to convert each value into an integer
number.

The name of the program that will be developed is summary.go and can be
divided into three parts.

The first part is this:

package main

import (
 "fmt"
 "os"
 "strconv"
 "strings"
)

func main() {
 var s [3]string
 s[0] = "1 b 3"
 s[1] = "11 a 1 14 1 1"
 s[2] = "-1 2 -3 -4 -5"

The second part has the following Go code:

 arguments := os.Args
 column, err := strconv.Atoi(arguments[1])
 if err != nil {
 fmt.Println("Error reading argument")
 os.Exit(-1)
 }
 if column == 0 {
 fmt.Println("Invalid column")
 os.Exit(1)
 }

The previous code reads the index of the column that interests you. If you
want to make summary.go even better, you can check for negative values in the

Download from finelybook www.finelybook.com

121

column variable and print the appropriate error message.

The last part of summary.go is as follows:

 sum := 0
 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 if len(data) >= column {
 temp, err := strconv.Atoi(data[column-1])
 if err == nil {
 sum = sum + temp
 } else {
 fmt.Printf("Invalid argument: %s\n", data[column-1])
 }
 } else {
 fmt.Println("Invalid column!")
 }
 }
 fmt.Printf("Sum: %d\n", sum)
}

As you can see, most of the Go code in summary.go is about dealing with
exceptions and potential errors. The core functionality of summary.go is
implemented in a few lines of Go code.

Executing summary.go will give you the following output:

$ go run summary.go 0
Invalid column
exit status 1
$ go run summary.go 2
Invalid argument: b
Invalid argument: a
Sum: 2
$ go run summary.go 1
Sum: 11

Download from finelybook www.finelybook.com

122

Finding the number of occurrences
A very common programming problem is finding out the number of times an
IP address appears in a log file. So, the example in this subsection will show
you how to do this using a handy map structure. The occurrences.go program
will be presented in three parts.

The first part is as follows:

package main

import (
 "fmt"
 "strings"
)

func main() {

 var s [3]string
 s[0] = "1 b 3 1 a a b"
 s[1] = "11 a 1 1 1 1 a a"
 s[2] = "-1 b 1 -4 a 1"

The second part is as follows:

 counts := make(map[string]int)

 for i := 0; i < len(s); i++ {
 data := strings.Fields(s[i])
 for _, word := range data {
 _, ok := counts[word]
 if ok {
 counts[word] = counts[word] + 1
 } else {
 counts[word] = 1
 }
 }
 }

Here, we use the knowledge from the previous chapter to create a map named
counts and populate it with the desired data using two for loops.

The last part is pretty small as it just prints the contents of the counts map:

 for key, _ := range counts {

Download from finelybook www.finelybook.com

123

 fmt.Printf("%s -> %d \n", key, counts[key])
 }
}

Executing occurrences.go and using the sort(1) command-line utility to sort
the output of occurrences.go will generate the following kind of output:

$ go run occurrences.go | sort -n -r -t\ -k3,3
1 -> 8
a -> 6
b -> 3
3 -> 1
11 -> 1
-4 -> 1
-1 -> 1

As you can see, traditional Unix tools are still useful.

Download from finelybook www.finelybook.com

124

Find and replace
The example in this subsection will search the provided text for two
variations of a given string and replace it with another string. The program
will be named findReplace.go and will actually use Go regular expressions.
The main reason for using the regexp.Compile() function, in this case, is that it
greatly simplifies things and allows you to access your text only once.

The first part of the findReplace.go program is as follows:

package main

import (
 "fmt"
 "os"
 "regexp"
)

The next part is as follows:

func main() {

 var s [3]string
 s[0] = "1 b 3"
 s[1] = "11 a B 14 1 1"
 s[2] = "b 2 -3 B -5"

 parse, err := regexp.Compile("[bB]")

 if err != nil {
 fmt.Printf("Error compiling RE: %s\n", err)
 os.Exit(-1)
 }

The previous Go code will find every occurrence of an uppercase B or a
lowercase b ([bB]). Note that there is also regexp.MustCompile() that works like
regexp.Compile(). However, regexp.MustCompile() does not return an error
variable; it just panics if the given expression is erroneous and cannot be
parsed. As a result, regexp.Compile() is a better choice.

The last part is as follows:

Download from finelybook www.finelybook.com

125

 for i := 0; i < len(s); i++ {
 temp := parse.ReplaceAllString(s[i], "C")
 fmt.Println(temp)
 }
}

Here you replace each match with an uppercase C using
parse.ReplaceAllString().

Executing findReplace.go generates the expected output:

$ go run findReplace.go
1 C 3
11 a C 14 1 1
C 2 -3 C -5

The awk(1) and sed(1) command-line tools can do most of the
previous tasks more easily, but sed(1) and awk(1) are not
general-purpose programming languages.

Download from finelybook www.finelybook.com

126

Reflection
Reflection is an advanced Go feature that allows you to dynamically learn the
type of an arbitrary object as well as information about its structure. You
should recall that the dataStructures.go program from Chapter 2, Writing
Programs in Go, used reflection to find out the fields of a data structure as
well as the type of each fields. All of this happened with the help of the
reflect Go package and the reflect.TypeOf() function that returns a Type
variable.

Reflection is illustrated in the reflection.go Go program that will be presented
in four parts.

The first one is the preamble of the Go program and has the following code:

package main

import (
 "fmt"
 "reflect"
)

The second part is as follows:

func main() {

 type t1 int
 type t2 int

 x1 := t1(1)
 x2 := t2(1)
 x3 := 1

Here, you create two new types, named t1 and t2, that are both int and three
variables, named x1, x2, and x3.

The third part has the following Go code:

 st1 := reflect.ValueOf(&x1).Elem()
 st2 := reflect.ValueOf(&x2).Elem()
 st3 := reflect.ValueOf(&x3).Elem()

Download from finelybook www.finelybook.com

127

 typeOfX1 := st1.Type()
 typeOfX2 := st2.Type()
 typeOfX3 := st3.Type()

 fmt.Printf("X1 Type: %s\n", typeOfX1)
 fmt.Printf("X2 Type: %s\n", typeOfX2)
 fmt.Printf("X3 Type: %s\n", typeOfX3)

Here, you find the type of the x1, x2, and x3 variables using reflect.ValueOf()
and Type().

The last part of reflection.go deals with a struct variable:

 type aStructure struct {
 X uint
 Y float64
 Text string
 }

 x4 := aStructure{123, 3.14, "A Structure"}
 st4 := reflect.ValueOf(&x4).Elem()
 typeOfX4 := st4.Type()

 fmt.Printf("X4 Type: %s\n", typeOfX4)
 fmt.Printf("The fields of %s are:\n", typeOfX4)

 for i := 0; i < st4.NumField(); i++ {
 fmt.Printf("%d: Field name: %s ", i, typeOfX4.Field(i).Name)
 fmt.Printf("Type: %s ", st4.Field(i).Type())
 fmt.Printf("and Value: %v\n", st4.Field(i).Interface())
 }
}

There exist some laws that govern reflection in Go, but talking
about them is beyond the scope of this book. What you should
remember is that your programs can examine their own
structure using reflection, which is a very powerful capability.

Executing reflection.go prints the following output:

$ go run reflection.go
X1 Type: main.t1
X2 Type: main.t2
X3 Type: int
X4 Type: main.aStructure
The fields of main.aStructure are:
0: Field name: X Type: uint and Value: 123
1: Field name: Y Type: float64 and Value: 3.14
2: Field name: Text Type: string and Value: A Structure

The first two lines of the output show that Go does not consider the types t1

Download from finelybook www.finelybook.com

128

and t2 as equal, even though both t1 and t2 are aliases of the int type.

Old habits die hard!

Despite the fact that Go tries to be a safe programming language, sometimes
it is forced to forget about safety and allows the programmer to do whatever
he/she wants.

Download from finelybook www.finelybook.com

129

Calling C code from Go
Go allows you to call C code because there are times when the only way to
perform some tasks, such as communicating with a hardware device or a
database server, is by using C. Nevertheless, if you find yourself using this
capability many times in the same project, you might need to reconsider your
approach and your choice of programming language.

Talking more about this capability in Go is beyond the scope of this book.
What you should remember is that most likely, you will never need to call C
code from your Go program. Nevertheless, should you wish to explore this
Go feature, you can start by visiting the documentation of the cgo tool at https:/
/golang.org/cmd/cgo/ as well as by looking at the code found at https://github.com/
golang/go/blob/master/misc/cgo/gmp/gmp.go.

Download from finelybook www.finelybook.com

130

https://golang.org/cmd/cgo/
https://github.com/golang/go/blob/master/misc/cgo/gmp/gmp.go

Unsafe code
Unsafe code is Go code that bypasses the type safety and memory security of
Go and requires the use of the unsafe package. You will most likely never
need to use unsafe code in your Go programs but if for some strange reason
you ever need to, it will probably have to do with pointers.

Using unsafe code can be dangerous for your programs, so only
use it when it is absolutely necessary. If you are not completely
sure that you need it, then do not use it.

The example code in this subsection is saved as unsafe.go and will be
presented in two parts.

The first part is as follows:

package main

import (
 "fmt"
 "unsafe"
)

func main() {
 var value int64 = 5

 var p1 = &value
 var p2 = (*int32)(unsafe.Pointer(p1))

You first create a new int64 variable that is named value. Then, you create a
pointer to it named p1. Next, you create another pointer that points to p1.
However, the p2 pointer that points to p1 is a pointer to an int32 integer,
despite the fact that p1 points to an int64 variable. Although this is not
permitted by Go rules, the unsafe.Pointer() function makes this possible.

The second part is as follows:

 fmt.Println("*p1: ", *p1)
 fmt.Println("*p2: ", *p2)
 *p1 = 312121321321213212

Download from finelybook www.finelybook.com

131

 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
 *p1 = 31212132
 fmt.Println(value)
 fmt.Println("*p2: ", *p2)
}

Executing unsafe.go will create the following output:

$ go run unsafe.go
*p1: 5
*p2: 5
312121321321213212
*p2: 606940444
31212132
*p2: 31212132

The output shows how dangerous an unsafe pointer can be. When the value
of the value variable fits into an int32 memory space (5 and 31212132), then p2
works fine and shows the correct result. However, when the value variable
holds a value (312121321321213212) that does not fit into an int32 memory
space, then p2 shows an erroneous result (606940444), without giving you a
warning or an error message.

Download from finelybook www.finelybook.com

132

Comparing Go to other
programming languages
Go is not perfect, but neither are the rest of the programming languages. This
section will briefly discuss other programming languages and compare them
to Go in order to give you a better understanding of the choices you have. So,
the list of programming languages that can be compared to Go includes:

C: C is the most popular programming language for developing systems
software because the portable part of each Unix operating system is
written in C. However, it has some critical drawbacks, including the fact
that C pointers, which are great and fast, can lead to difficult-to-detect
bugs and memory leaks. Additionally, C does not offer garbage
collection; back when C was created, garbage collection was a luxury
that had the ability slow down computers. However, nowadays
computers are pretty fast and garbage collection does not slow things
down anymore. Moreover, C programs require more code for
developing a given task than other systems programming languages.
Lastly, C is an old programming language that does not support modern
programming paradigms, such as object-oriented and functional
programming.
C++: As previously mention, I do not like C++ anymore. If you think
that you should use C++, then you may want to consider using C
instead. However, the main advantage of C++ over Go is that if needed,
C++ can be used as if it were C. However, neither C nor C++ have good
support for concurrent programming.
Rust: Rust is a new systems programming language that tries to avoid
unpleasant bugs caused by unsafe code. Currently, the syntax of Rust is
changing too fast, but this will end in the near feature. If for some reason
you do not like Go, you should try Rust.
Swift: In its current status, Swift is more suitable for developing systems
software for macOS systems. However, I am sure that in the near
feature, Swift will be more popular on Linux machines, so you should
keep an eye on it.

Download from finelybook www.finelybook.com

133

Python: Python is a scripting language, which is its main disadvantage.
This is because usually, you do not want to make the source of your
systems software available to everyone.
Perl: What was said about Python can be also said about Perl. However,
both programming languages have a plethora of modules that will make
your life a lot easier and your code a lot smaller.

If you ask my opinion, I think that Go is a modern, portable, mature, and safe
programming language for writing systems software. You should try Go
before looking for any alternatives. However, if you are a Go programmer
and want to try something else, I suggest that you pick Rust or Swift. Yet, if
you need to write reliable concurrent programs, Go should be your first
choice.

If you cannot choose between Go and Rust, then just try C.
Learning the basics of systems programming is more important
than the programming language you select.

Despite their disadvantages, bear in mind that all scripting programming
languages are perfect for writing prototypes and have the advantage that they
allow you to create graphical interfaces for your software. Still, delivering
systems software in a scripting language is rarely accepted, unless there is a
really good reason to do so.

Download from finelybook www.finelybook.com

134

Analysing software
There are times that a program fails for some unknown reason or does not
perform well, and you want to find out why without having to rewrite your
code and add a plethora of debugging statements. So, this section will talk
about strace(1) and dtrace(1) , which allow you to see what is going on
behind the scenes when you execute a program on a Unix machine. Although
both tools can work with the go run command, you will get less unrelated
output if you first create an executable file using go build and use this file.
This mainly occurs because go run makes temporary files before actually
running your Go code, and you want to debug the actual program, not the
compiler used to build the program.

Remember that although dtrace(1) is more powerful than strace(1) and has its
own programming language, strace(1) is more versatile for watching the
system calls a program makes.

Download from finelybook www.finelybook.com

135

Using the strace(1) command-line
utility
The strace(1) command-line utility allows you to trace system calls and
signals. As strace(1) is not available on Mac machines, this section will use a
Linux machine to showcase strace(1). However, as you will see in a later,
macOS machines have the dtrace(1) command-line utility that can do many
more things.

The number after the name of a program refers to the section of
the manual its page belongs to. Although most of the names can
be found only once, which means that putting the section
number is not necessary, there are names that can be located in
multiple sections because they have multiple meanings, such as
crontab(1) and crontab(5). Therefore, if you try to retrieve such a
page without specifically stating the section number, you will
get the entry in the section of the manual that has the smallest
section number.

To get a good sense of the output generated by strace(1), look at the
following figure where strace(1) is used to examine the executable of
addCLAImproved.go:

Download from finelybook www.finelybook.com

136

Using the strace(1) command on a Linux machine

The really interesting part of the strace(1) output is the following line, which
cannot be seen in the preceding figure:

$ strace ./addCLAImproved 1 2 2>&1 | grep write
write(1, "Sum: 3\n", 7Sum: 3

We used the grep(1) command-line utility to extract the lines that contain the
C system call that interests us, which in this case is write(2). This is because
we already know that write(2) is used for printing output. So, you learned that
in this case, a single write(2) C system call is used for printing all of the

Download from finelybook www.finelybook.com

137

output on the screen; its first parameter is the file descriptor, and its second
parameter is the text you want to print.

Note that you might want to use strace(1) with the -f option in order to also
trace any child processes that might get created during the execution of a
program.

Bear in mind that there exist two more variations of write(2),
named pwrite(2) and writev(2), which offer the same core
functionality as write(2) but in a slightly different way.

The following variation of the previous command requires more calls to
write(2) because it generates more output:

$ strace ./addCLAImproved 1 a b 2>&1 | grep write
write(1, "Ignoring a\n", 11Ignoring a
write(1, "Ignoring b\n", 11Ignoring b
write(1, "Sum: 1\n", 7Sum: 1

Unix uses file descriptors, which are positive integer values, as
an internal representation for accessing all its files. By default,
all Unix systems support three special and standard filenames:
/dev/stdin, /dev/stdout, and /dev/stderr. They can also be
accessed using file descriptors 0, 1, and 2, respectively. These
three file descriptors are also called standard input, standard
output, and standard error, respectively. Additionally, the file
descriptor 0 can be accessed as /dev/fd/0 on a Mac machine
and as /dev/pts/0 on a Debian Linux machine because
everything in Unix is a file.

So, the reason for needing to put 2>&1 at the end of the command is to redirect
all of the output, from standard error (file descriptor 2) to standard output
(file descriptor 1), in order to be able to search it using the grep(1) command,
which searches standard output only. Note that there exist many variations of
grep(1), including zegrep(1), fgrep(1), and fgrep(1), that might work faster
when they have to deal with large or huge text files.

What you can see here is that even if you are writing in Go, the generated
executable uses C system calls and functions because apart from using
machine language, C is the only way to communicate with the Unix kernel.

Download from finelybook www.finelybook.com

138

The DTrace utility
Although debugging utilities, such as strace(1) and truss(1), which work on
FreeBSD, can trace system calls produced by a process, they can be slow and
therefore not appropriate for solving performance problems on busy Unix
systems. Another tool named dtrace(1), which uses the DTrace facility,
allows you to see what happens behind the scenes on a system-wide basis
without the need to modify or recompile anything. It also allows you to work
on production systems and watch running programs or server processes
dynamically without introducing a big overhead.

This subsection will use the dtruss(1) command-line utility, which is just a
dtrace(1) script, that shows the system calls of a process. The output that
dtruss(1) generates when examining the addCLAImproved.go executable on a
macOS machine looks similar to the one that you can see in the following
screenshot:

Download from finelybook www.finelybook.com

139

Using the dtruss(1) command on a macOS machine

Once again, the following part of the output verifies that at the end of the day,
everything on Unix machines is translated into C system calls and functions
because this is the only way to communicate with the Unix kernel. You can
display all the calls to the write(2) system call as follows:

$ sudo dtruss -c ./addCLAImproved 2000 2>&1 | grep write

However, this time you are going to get lots of output because the macOS
executable uses write(2) multiple times instead of just once to print the same
output.

Download from finelybook www.finelybook.com

140

Starting to realize that not all Unix systems work the same way,
despite their numerous similarities, is marvelous. But this also
means that you should not make any assumptions about the way
a Unix system works behind the scenes.

What is really interesting is the last part of the output of the following
command:

$ sudo dtruss -c ./addCLAImproved 2000
CALL COUNT
__pthread_sigmask 1
exit 1
getpid 1
ioctl 1
issetugid 1
read 1
thread_selfid 1
ulock_wake 1
bsdthread_register 2
close 2
csops 2
open 2
select 2
sysctl 3
mmap 7
mprotect 8
stat64 41
write 83

The reason you get this output is the -c option that tells dtruss(1) to count all
system calls and print a summary of them, which in this case shows that
write(2) has been called 83 times and stat64(2) 41 times.

The dtrace(1) utility is much more powerful than strace(1) and
has its own programming language but is more difficult to
learn. Additionally, even though there is a Linux version of
dtrace(1), strace(1) is more mature on Linux systems and does
the job of tracing system calls in a simpler way.

You can learn more about the dtrace(1) utility by reading DTrace: Dynamic
Tracing in Oracle Solaris, Mac OS X, and FreeBSD by Brendan Gregg and
Jim Mauro and by visiting http://dtrace.org/.

Download from finelybook www.finelybook.com

141

http://dtrace.org/

Disabling System Integrity
Protection on macOS
There is a big chance that you will have trouble running dtrace(1) and
dtruss(1) on your Mac OS X machine the first time you try them and get the
following error message:

$ sudo dtruss ./addCLAImproved 1 2 2>&1 | grep -i write
dtrace: error on enabled probe ID 2132 (ID 156: syscall::write:return): invalid kernel access in action #12 at DIF offset 92

In this case you might need to disable the DTrace restrictions but still keep
System Integrity Protection active for everything else. You can learn more
about System Integrity Protection by visiting https://support.apple.com/en-us/HT20
4899.

Download from finelybook www.finelybook.com

142

https://support.apple.com/en-us/HT204899

Unreachable code
Unreachable code is code that can never be executed and is a logical kind of
error. As the Go compiler itself cannot catch such logical errors, you will
need to use the go tool vet command to help.

You should not confuse unreachable code with code that never
gets executed intentionally, such as the code of a function that is
not needed and is therefore not called in a program.

The example code in this section is saved as cannotReach.go and can be divided
into two parts.

The first part has the following Go code:

package main

import (
 "fmt"
)

func x() int {

 return -1
 fmt.Println("Exiting x()")
 return -1
}

func y() int {
 return -1
 fmt.Println("Exiting y()")
 return -1
}

The second part is as follows:

func main() {
 fmt.Println(x())
 fmt.Println("Exiting program...")
}

As you can see, the unreachable code is in the first part. Both x() and y()

Download from finelybook www.finelybook.com

143

functions have unreachable code because their return statements were put at
the wrong place. However, we are not done yet because we will have to let
the go tool vet tool discover the unreachable code. The process is simple and
includes the execution of the following command:

$ go tool vet cannotReach.go
cannotReach.go:9: unreachable code
cannotReach.go:14: unreachable code

Additionally, you can see that go tool vet detects unreachable code even if
the surrounding function is not going to be executed at all, as happens with
y().

Download from finelybook www.finelybook.com

144

Avoiding common Go mistakes
This section will briefly talk about some common Go mistakes so that you
can avoid them in your programs:

If you have an error in a Go function, either log it or return it; do not do
both unless you have a really good reason to do so.
Go interfaces define behaviors, not data and data structures.
Use the io.Reader and io.Writer interfaces because they make your code
more extensible.
Make sure that you pass a pointer to a variable to a function only when
needed. The rest of the time, just pass the value of the variable.
Error variables are not strings; they are error values.
If you are afraid of making mistakes, you will most likely end up doing
nothing useful. So experiment as much as you can.

The following are general pieces of advice that can be applied in every
programming language:

Test your Go code and functions in small and autonomous Go programs
to make sure that they behave the way you think they should
If you do not really know a Go feature, test it before using it for the first
time, especially if you are developing a systems utility
Do not test systems software on production machines
When you deploy your systems software on a production machine, do it
when the production machine is not busy and make sure that you have a
backup plan

Download from finelybook www.finelybook.com

145

Exercises
1. Find and visit the documentation page of the log package.
2. Use strace(1) to examine hw.go from the previous chapter.
3. If you are on a Mac, try to examine the hw.go executable using dtruss(1).
4. Write a program that gets input from the user and examine its executable

file using either strace(1) or dtruss(1).

5. Visit the website of Rust at https://www.rust-lang.org/.
6. Visit the website of Swift at https://swift.org/.
7. Visit the documentation page of the io package at https://golang.org/pkg/io/.
8. Use the diff(1) command-line utility on your own in order to learn how

to interpret its output better.
9. Visit and read the main page of write(2).

10. Visit the main page of grep(1).
11. Play with reflection on your own by examining your own structures.
12. Write an improved version of occurrences.go that will only display

frequencies that are above a known numeric threshold, which will be
given as a command-line argument.

Download from finelybook www.finelybook.com

146

https://www.rust-lang.org/
https://swift.org/
https://golang.org/pkg/io/

Summary
This chapter taught you some advanced Go features, including error
handling, pattern matching and regular expressions, reflection, and unsafe
code. Also, it talked about the strace(1) and dtrace(1) tools.

The next chapter will cover many interesting things, including the use of the
new sort.slice() Go function, which is available in the latest Go version
(1.8), as well as the big O notation, sorting algorithms, Go packages, and
garbage collection.

Download from finelybook www.finelybook.com

147

Go Packages, Algorithms, and Data
Structures
The main topics of this chapter will be Go packages, algorithms, and data
structures. If you combine all of these, you will end up with a complete
program because Go programs come in packages that contain algorithms that
deal with data structures. These packages include both the ones that come
with Go and the ones that you create on your own in order to manipulate your
data.

Hence, in this chapter, you will learn about the following:

The Big O notation
Two sorting algorithms
The sort.Slice() function
Linked lists
Trees
Creating your own hash table data structure in Go
Go packages
Garbage collection (GC) in Go

Download from finelybook www.finelybook.com

148

About algorithms
Knowing about algorithms and the way they work will definitely help you
when you have to manipulate lots of data. Additionally, if you choose to use
the wrong algorithm for a given job, you might slow down the entire process
and make your software unusable.

Traditional Unix command-line utilities such as awk(1), sed(1), vi(1), tar(1),
and cp(1) are great examples of how good algorithms can help, and these
utilities can work with files that are much bigger than the memory of a
machine. This was extremely important in the early Unix days because the
total amount of RAM on a Unix machine then was about 64K or even less!

Download from finelybook www.finelybook.com

149

The Big O notation
The Big O notation is used for describing the complexity of an algorithm,
which is directly related to its performance. The efficiency of an algorithm is
judged by its computation complexity, which mainly has to do with the
number of times the algorithm needs to access its input data to do its job.
Usually, you would want to know about the worst-case scenario and the
average situation.

So, an O(n) algorithm, where n is the size of the input, is considered better
than an O(n2) algorithm, which is better than an O(n3) algorithm. However,
the worst algorithms are the ones with an O(n!) running time because this
makes them almost unusable for inputs with more than 300 elements. Note
that the Big O notation is more about estimating and not about giving an
exact value. Therefore, it is largely used as a comparative value and not an
absolute value.

Also, most Go lookup operations in built-in types, such as finding the value
of a map key or accessing an array element, have a constant time, which is
represented by O(1). This means that built-in types are generally faster than
custom types and that you should usually prefer them unless you want full
control over what is going on behind the scenes. Additionally, not all data
structures are created equal. Generally speaking, array operations are faster
than map operations, whereas maps are more versatile than arrays!

Download from finelybook www.finelybook.com

150

Sorting algorithms
The most common category of algorithm has to deal with sorting data, that is,
placing it in a given order. The two most famous sorting algorithms are the
following:

Quicksort: This is considered one of the fastest sorting algorithms. The
average time that quicksort takes to sort its data is O (n log n), but this
can grow up to O(n2) in the worst-case scenario, which mainly has to do
with the way the data is presented for processing.
Bubble sort: This algorithm is pretty easy to implement with an O(n2)
average complexity. If you want to start learning about sorting, start
with bubble sort before looking into the more difficult to develop
algorithms.

Although every algorithm has its disadvantages, if you do not
have lots of data, the algorithm is not really important as long
as it does the job.

What you should remember is, the way Go implements sorting internally
cannot be controlled by the developer and it can change in the future; so, if
you want to have full control over sorting, you should write your own
implementation.

Download from finelybook www.finelybook.com

151

The sort.Slice() function
This section will illustrate the use of the sort.Slice() function that first came
with Go version 1.8. The use of the function will be illustrated in sortSlice.go,
which will be presented in three parts.

The first part is the expected preamble of the program and the definition of a
new structure type, given as follows:

package main

import (
 "fmt"
 "sort"
)

type aStructure struct {
 person string
 height int
 weight int
}

As you might expect, you have to import the sort package to be able to use its
Slice() function.

The second part contains the definition of a slice, which has four elements:

func main() {

 mySlice := make([]aStructure, 0)
 a := aStructure{"Mihalis", 180, 90}

 mySlice = append(mySlice, a)
 a = aStructure{"Dimitris", 180, 95}
 mySlice = append(mySlice, a)
 a = aStructure{"Marietta", 155, 45}
 mySlice = append(mySlice, a)
 a = aStructure{"Bill", 134, 40}
 mySlice = append(mySlice, a)

Therefore, in the first part, you declared a slice of structure that will be sorted
in two ways in the rest of the program, which contains the following code:

 fmt.Println("0:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {

Download from finelybook www.finelybook.com

152

 return mySlice[i].weight <mySlice[j].weight
 })
 fmt.Println("<:", mySlice)
 sort.Slice(mySlice, func(i, j int) bool {
 return mySlice[i].weight >mySlice[j].weight
 })
 fmt.Println(">:", mySlice)
}

This code contains all the magic: you only have to define the way you want
to sort your slice and the rest is done by Go. The sort.Slice() function takes
the anonymous sorting function as one of its arguments; the other argument is
the name of the slice variable you want to sort. Note that the sorted slice is
saved in the slice variable.

Executing sortSlice.go will generate the following output:

$ go run sortSlice.go
0: [{Mihalis 180 90} {Dimitris 180 95} {Marietta 155 45} {Bill 134 40}]
<: [{Bill 134 40} {Marietta 155 45} {Mihalis 180 90} {Dimitris 180 95}]
>: [{Dimitris 180 95} {Mihalis 180 90} {Marietta 155 45} {Bill 134 40}]

As you can see, you can easily sort in ascending or descending order by just
changing a single character in the Go code!

Also, if your Go version does not support sort.Slice(), you will get an error
message similar to the following:

$ go version
go version go1.3.3 linux/amd64
$ go run sortSlice.go
command-line-arguments
./sortSlice.go:27: undefined: sort.Slice
./sortSlice.go:31: undefined: sort.Slice

Download from finelybook www.finelybook.com

153

Linked lists in Go
A linked list is a structure with a finite set of elements where each element
uses at least two memory locations: one for storing the data and the other for
a pointer that links the current element to the next one in the sequence of
elements that make the linked list. The biggest advantages of linked lists are
that they are easy to understand and implement, and generic enough to be
used in many different situations and model many different kinds of data.

The first element of a linked list is called the head, whereas the last element
of a list is often called the tail. The first thing you should do when defining a
linked list is to keep the head of the list in a separate variable because the
head is the only thing that you need to access the entire linked list.

Note that if you lose the pointer to the first node of a single
linked list, there is no possible way to find it again.

The following figure shows the graphical representation of a linked list and a
doubly linked list. Doubly linked lists are more flexible, but require more
housekeeping:

The graphical representation of a linked list and a doubly linked list

So, in this section, we will present a simple implementation of a linked list in

Download from finelybook www.finelybook.com

154

Go saved in linkedList.go.

When creating your own data structures, the single most
important element is the definition of the node, which is usually
implemented using a structure.

The code of linkedList.go will be presented in four parts.

The first part is as follows:

package main

import (
 "fmt"
)

The second part contains the following Go code:

type Node struct {
 Value int
 Next *Node
}

func addNode(t *Node, v int) int {
 if root == nil {
 t = &Node{v, nil}
 root = t
 return 0
 }

 if v == t.Value {
 fmt.Println("Node already exists:", v)
 return -1
 }

 if t.Next == nil {
 t.Next = &Node{v, nil}
 return -2
 }

 return addNode(t.Next, v)

}

Here, you define the structure that will hold each element of the list and a
function that allows you to add a new node to the list. In order to avoid
duplicate entries, you should check whether a value already exists in the list
or not. Note that addNode() is a recursive function because it calls itself and

Download from finelybook www.finelybook.com

155

that this approach might be a little slower and require more memory than
iterating.

The third part of the code is the traverse() function:

func traverse(t *Node) {
 if t == nil {
 fmt.Println("-> Empty list!")
 return
 }

 for t != nil {

 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
}

The for loop implements the iterative approach for visiting all the nodes in a
linked list.

The last part is as follows:

var root = new(Node)
func main() {
 fmt.Println(root)
 root = nil
 traverse(root)
 addNode(root, 1)
 addNode(root, 1)
 traverse(root)
 addNode(root, 10)
 addNode(root, 5)
 addNode(root, 0)
 addNode(root, 0)
 traverse(root)
 addNode(root, 100)
 traverse(root)
}

For the first time in this book, you see the use of a global variable that is not a
constant. Global variables can be accessed and changed from anywhere in a
program, which makes their use both practical and dangerous for that reason.
The reason for using a global variable, which is named root, to hold the root
of the linked list is to show whether the linked list is empty or not. This
happens because integer values in Go are initialized as 0; so new(Node) is in

Download from finelybook www.finelybook.com

156

fact {0 <nil>}, which makes it impossible to tell whether the head of the list is
nil or not without passing an extra variable to each function that manipulates
the linked list.

Executing linkedList.go will generate the following output:

$ go run linkedList.go
&{0 <nil>}
-> Empty list!
Node already exists: 1
1 ->
Node already exists: 0
1 -> 10 -> 5 -> 0 ->
1 -> 10 -> 5 -> 0 -> 100 ->

Download from finelybook www.finelybook.com

157

Trees in Go
A graph is a finite and nonempty set of vertices and edges. A directed
graph is a graph whose edges have a direction associated with them. A
directed acyclic graph is a directed graph with no cycles in it. A tree is a
directed acyclic graph that satisfies three more principles: firstly, it has a root
node: the entry point to the tree; secondly, every vertex, except the root, has
one and only one entry point; and thirdly, there is a path that connects the
root with each vertex and belongs to the tree.

As a result, the root is the first node of the tree. Each node can be connected
to one or more nodes depending on the tree type. If each node leads to one
and only one other node, then the tree is a linked list!

The most commonly used type of tree is called a binary tree because each
node can have up to two children. The following figure shows a graphical
representation of a binary tree's data structure:

Download from finelybook www.finelybook.com

158

A binary tree

The presented code will only show you how to create a binary tree and how
to traverse it in order to print all of its elements as proof that Go can be used
for creating a tree data structure. Therefore, it will not implement the full
functionality of a binary tree, which also includes deleting a tree node and
balancing a tree.

The code of tree.go will be presented in three parts.

The first part is the expected preamble as well as the definition of the node, as
given here:

package main

import (
 "fmt"
 "math/rand"
 "time"
)
type Tree struct {
 Left *Tree
 Value int
 Right *Tree
}

The second part contains functions that allow you to traverse a tree in order
to print all of its elements, create a tree with randomly generated numbers,
and insert a node into it:

func traverse(t *Tree) {
 if t == nil {
 return
 }
 traverse(t.Left)
 fmt.Print(t.Value, " ")
 traverse(t.Right)
}

func create(n int) *Tree {
 var t *Tree
 rand.Seed(time.Now().Unix())
 for i := 0; i< 2*n; i++ {
 temp := rand.Intn(n)
 t = insert(t, temp)
 }
 return t
}

Download from finelybook www.finelybook.com

159

func insert(t *Tree, v int) *Tree {
 if t == nil {
 return&Tree{nil, v, nil}
 }
 if v == t.Value {
 return t
 }
 if v <t.Value {
 t.Left = insert(t.Left, v)
 return t
 }
 t.Right = insert(t.Right, v)
 return t
}

The second if statement of insert() checks whether a value already exists in
the tree, in order to not add it again. The third if statement identifies whether
the new element will be on the left or right-hand side of the current node.

The last part is the implementation of the main() function:

func main() {
 tree := create(30)
 traverse(tree)
 fmt.Println()
 fmt.Println("The value of the root of the tree is", tree.Value)
}

Executing tree.go will generate the following output:

$ go run tree.go
0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29
The value of the root of the tree is 16

Please note that as the values of the nodes of the tree are
generated randomly, the output of the program will be different
each time you run it. If you want to get the same elements all the
time, then use a constant for the seed value in the create()
function.

Download from finelybook www.finelybook.com

160

Developing a hash table in Go
Strictly speaking, a hash table is a data structure that stores one or more key
and value pairs and uses the hashFunction of the key to compute an index into
an array of buckets or slots, from which the correct value can be retrieved.
Ideally, the hashFunction should assign each key to a unique bucket, provided
that you have the required number of buckets.

A good hashFunction must be able to produce a uniform distribution of hash
values because it is inefficient to have unused buckets or big differences in
the cardinalities of the buckets. Additionally, the hashFunction should work
consistently and output the same hash value for identical keys because
otherwise it would be impossible to find the information you want! If you
think that hash tables are not that useful, handy, or clever, you should
consider the following: when a hash table has n keys and k buckets, its search
speed goes from O (n) for a linear search to O (n/k)! Although the
improvement might look small, you should realize that for a hash array with
only 20 slots, the search time would be reduced by 20 times! This makes hash
tables good for applications such as dictionaries or any other analogous
application where you have to search lots of data. Although using lots of
buckets increases the complexity and the memory usage of your program,
there are times when it is worth it.

The following figure shows the graphical representation of a simple hash
table with 10 buckets. It is not difficult to understand that the hashFunction is
the modulo operator:

Download from finelybook www.finelybook.com

161

A simple hash table

Although the presented version of a hash table uses numbers because they are
a little easier to implement and understand, you can use any data type you
want as long as you can find an appropriate hashFunction to process your
input. The source code of hash.go will be presented in three parts.

The first one is the following:

package main

import (
 "fmt"
)

type Node struct {
 Value int
 Next *Node
}

type HashTablestruct {
 Table map[int]*Node

 Size int
}

Download from finelybook www.finelybook.com

162

The Node struct definition is taken from the implementation of the linked list
you saw earlier. The reason for using a map for the Table variable instead of a
slice is that the index of a slice can only be a natural number, whereas the key
of a map can be anything.

The second part contains the following Go code:

func hashFunction(i, size int) int {
 return (i % size)
}

func insert(hash *HashTable, value int) int {
 index := hashFunction(value, hash.Size)
 element := Node{Value: value, Next: hash.Table[index]}
 hash.Table[index] = &element
 return index
}

func traverse(hash *HashTable) {
 for k := range hash.Table {
 if hash.Table[k] != nil {
 t := hash.Table[k]
 for t != nil {
 fmt.Printf("%d -> ", t.Value)
 t = t.Next
 }
 fmt.Println()
 }
 }
}

Note here that the traverse() function is using the Go code from linkedList.go
in order to traverse the elements of each bucket in the hash table.
Additionally, note that the insert function does not check whether or not a
value already exists in the hash table in order to save book space, but this is
not usually the case. Also, for reasons of speed and simplicity, new elements
are inserted at the beginning of each list.

The last part contains the implementation of the main() function:

func main() {
 table := make(map[int]*Node, 10)
 hash := &HashTable{Table: table, Size: 10}
 fmt.Println("Number of spaces:", hash.Size)
 for i := 0; i< 95; i++ {
 insert(hash, i)
 }
 traverse(hash)
}

Download from finelybook www.finelybook.com

163

Executing hash.go will generate the following output, which proves that the
hash table is working as expected:

$ go run hash.go
Number of spaces: 10
89 -> 79 -> 69 -> 59 -> 49 -> 39 -> 29 -> 19 -> 9 ->
86 -> 76 -> 66 -> 56 -> 46 -> 36 -> 26 -> 16 -> 6 ->
92 -> 82 -> 72 -> 62 -> 52 -> 42 -> 32 -> 22 -> 12 -> 2 ->
94 -> 84 -> 74 -> 64 -> 54 -> 44 -> 34 -> 24 -> 14 -> 4 ->
85 -> 75 -> 65 -> 55 -> 45 -> 35 -> 25 -> 15 -> 5 ->
87 -> 77 -> 67 -> 57 -> 47 -> 37 -> 27 -> 17 -> 7 ->
88 -> 78 -> 68 -> 58 -> 48 -> 38 -> 28 -> 18 -> 8 ->
90 -> 80 -> 70 -> 60 -> 50 -> 40 -> 30 -> 20 -> 10 -> 0 ->
91 -> 81 -> 71 -> 61 -> 51 -> 41 -> 31 -> 21 -> 11 -> 1 ->
93 -> 83 -> 73 -> 63 -> 53 -> 43 -> 33 -> 23 -> 13 -> 3 ->

If you execute hash.go multiple times, you will see that the order the lines are
printed in will vary. This happens because the output of range hash.Table
found in the traverse() function cannot be predicted, which happens because
Go has an unspecified return order for hashes.

Download from finelybook www.finelybook.com

164

About Go packages
Packages are for grouping related functions and constants so that you can
transfer them easily and use them in your own Go programs. As a result,
apart from the main package, packages are not autonomous programs.

There exist many useful Go packages that come with each Go distribution
including the following:

The net package: This supports portable TCP and UDP connections
The http package: This is a part of the net package and offers HTTP
server and client implementations
The math package: This provides mathematical functions and constants
The io package: This deals with primitive input and output operations
The os package: This gives you a portable interface to the operating
system functionality
The time package: This allows you to work with times and dates

For the full list of standard Go packages refer to https://golang.org/pkg/. I
strongly advise you to look into all the packages that come with Go before
you start developing your own functions and packages because there is a
realistic chance that the functionality you are looking for is already available
in a standard Go package.

Download from finelybook www.finelybook.com

165

https://golang.org/pkg/

Using standard Go packages
You probably already know how to use the standard Go packages. However,
what you may not be aware of is the fact that some packages have a structure.
So, for example, the net package has several sub directories, named http, mail,
rpc, smtp, textproto, and url, which should be imported as net/http, net/mail,
net/rpc, net/smtp, net/textproto, and net/url, respectively. Go groups packages
when this makes sense, but these packages could have also been isolated
packages if they were grouped for distribution instead of functionality.

You can find information about a Go standard package with the
help of the godoc utility. So, if you are looking for information
about the net package, you should execute godoc net.

Download from finelybook www.finelybook.com

166

Creating your own packages
Packages make the design, implementation, and maintenance of large
software systems easier and simpler. Moreover, they allow multiple
programmers to work on the same project without any overlapping. So, if you
find yourselves using the same functions all the time, you should seriously
consider including them in your own Go packages.

The source code of a Go package, which can contain multiple files, can be
found within a single directory, which is named after the package with the
exception of the main package, which can have any name.

The Go code of the aSimplePackage.go file, which will be developed in this
section, will be presented in two parts.

The first part is the following:

package aSimplePackage

import (
 "fmt"
)

There is nothing special here; you just have to define the name of the package
and include the necessary import statements because a package can depend
on other packages.

The second part contains the following Go code:

const Pi = "3.14159"

func Add(x, y int) int {
 return x + y
}

func Println(x int) {
 fmt.Println(x)
}

So, the aSimplePackage package offers two functions and one constant.

Download from finelybook www.finelybook.com

167

After you finish writing the code of aSimplePackage.go, you should execute the
following commands in order to be able to use the package in other Go
programs or packages:

$ mkdir ~/go
$ mkdir ~/go/src
$ mkdir ~/go/src/aSimplePackage
$ export GOPATH=~/go
$ vi ~/go/src/aSimplePackage/aSimplePackage.go
$ go install aSimplePackage

You should perform all these actions for every Go package you
create, apart from the first two mkdir commands, which should
only be executed once.

As you can see, each package needs its own directory inside ~/go/src. After
executing the aforementioned commands, the go tool will automatically
generate an ar(1) archive of the Go package you have just compiled in the pkg
directory:

$ ls -lR ~/go
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 pkg
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 src

/Users/mtsouk/go/pkg:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 darwin_amd64

/Users/mtsouk/go/pkg/darwin_amd64:
total 8
-rw-r--r-- 1 mtsouk staff 2918 Apr 4 22:35 aSimplePackage.a

/Users/mtsouk/go/src:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 aSimplePackage

/Users/mtsouk/go/src/aSimplePackage:
total 8
-rw-r--r-- 1 mtsouk staff 148 Apr 4 22:30 aSimplePackage.go

Although you are now ready to use the aSimplePackage package, you cannot see
the functionality of the package without having an autonomous program.

Download from finelybook www.finelybook.com

168

Private variables and functions
Private variables and functions are different from public ones in that they can
be used and called only internally in a package. Controlling which functions
and variables are public or not is also known as encapsulation.

Go follows a simple rule which states that functions, variables, types, and so
on that begin with an uppercase letter are public, whereas functions,
variables, types, and so on that begin with a lowercase letter are private.
However, this rule does not affect package names.

You should understand now why the fmt.Printf() function is
named as it is, instead of fmt.printf().

To illustrate this, we will make some changes to the aSimplePackage.go module
and add one private variable and one private function. The name of the new
separate package will be anotherPackage.go. You can see the changes made to
it using the diff(1) command-line utility:

$ diff aSimplePackage.go anotherPackage.go
1c1
<packageaSimplePackage

>packageanotherPackage
7a8
>const version = "1.1"
15a17,20
>
>func Version() {
> fmt.Println("The version of the package is", version)
> }

Download from finelybook www.finelybook.com

169

The init() function
Every Go package can have a function named init() that is automatically
executed at the beginning of the execution. So, let's add the following init()
function to the code of the anotherPackage.go package:

func init() {
 fmt.Println("The init function of anotherPackage")
}

The current implementation of the init() function is naive and does nothing
special. However, there are times when you want to perform important
initializations before you start using a package such as opening database and
network connections: in these relatively rare cases the init() function is
invaluable.

Download from finelybook www.finelybook.com

170

Using your own Go packages
This subsection will show you how to use the aSimplePackage and
anotherPackage packages in your own Go programs by presenting two small
Go programs named usePackage.go and privateFail.go.

In order to use the aSimplePackage package that resides under the GOPATH
directory from another Go program, you will need to write the following Go
code:

package main

import (
 "aSimplePackage"
 "fmt"
)

func main() {
 temp := aSimplePackage.Add(5, 10)
 fmt.Println(temp)

 fmt.Println(aSimplePackage.Pi)
}

First of all, if aSimplePackage is not already compiled and located at the
expected location, the compilation process will fail with an error message
similar to the following:

$ go run usePackage.go
usePackage.go:4:2: cannot find package "aSimplePackage" in any of:
 /usr/local/Cellar/go/1.8/libexec/src/aSimplePackage (from $GOROOT)
 /Users/mtsouk/go/src/aSimplePackage (from $GOPATH)

However, if aSimplePackage is available, usePackage.go will be executed just
fine:

$ go run usePackage.go
15
3.14159

Now, let's see the Go code of the other small program that uses
anotherPackage:

Download from finelybook www.finelybook.com

171

package main

import (
 "anotherPackage"
 "fmt"
)

func main() {
 anotherPackage.Version()
 fmt.Println(anotherPackage.version)
 fmt.Println(anotherPackage.Pi)
}

If you try to call a private function or use a private variable from
anotherPackage, your Go program privateFail.go will fail to run with the
following error message:

$ go run privateFail.go
command-line-arguments
./privateFail.go:10: cannot refer to unexported name anotherPackage.version
./privateFail.go:10: undefined: anotherPackage.version

I really like showing error messages because most books try to
hide them as if they were not there. When I was learning Go, it
took me about 3 hours of debugging until I found that the
reason for an error message I could not explain was the name
of a variable!

However, if you remove the call to the private variable from privateFail.go,
the program will be executed without errors. Additionally, you will see that
the init() function actually gets executed automatically:

$ go run privateFail.go
The init function of anotherPackage
The version of the package is 1.1
3.14159

Download from finelybook www.finelybook.com

172

Using external Go packages
Sometimes packages are available on the internet and you would prefer to use
them by specifying their internet address. One such example is the Go MySQL
driver that can be found at github.com/go-sql-driver/mysql.

Look at the following Go code, which is saved as useMySQL.go:

package main

import (
 "fmt"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 fmt.Println("Using the MySQL Go driver!")
}

The use of _ as the package identifier will make the compiler ignore the fact
that the package is not being used: the only sensible reason for bypassing the
compiler is when you have an init function in your unused package that you
want to be executed. The other sensible reason is for illustrating a Go
concept!

If you try to execute useMySQL.go, the compilation process will fail:

$ go run useMySQL.go
useMySQL.go:5:2: cannot find package "github.com/go-sql-driver/mysql" in any of:
 /usr/local/Cellar/go/1.8/libexec/src/github.com/go-sql-driver/mysql (from $GOROOT)
 /Users/mtsouk/go/src/github.com/go-sql-driver/mysql (from $GOPATH)

In order to compile useMySQL.go, you should first perform the following steps:

$ go get github.com/go-sql-driver/mysql
$ go run useMySQL.go
Using the MySQL Go driver!

After successfully downloading the required package, the contents of the ~/go
directory verify that the desired Go package has been downloaded:

$ ls -lR ~/go

Download from finelybook www.finelybook.com

173

total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 pkg
drwxr-xr-x 5 mtsouk staff 170 Apr 6 21:32 src

/Users/mtsouk/go/pkg:
total 0
drwxr-xr-x 5 mtsouk staff 170 Apr 6 21:32 darwin_amd64

/Users/mtsouk/go/pkg/darwin_amd64:
total 24
-rw-r--r-- 1 mtsouk staff 2918 Apr 4 23:07 aSimplePackage.a
-rw-r--r-- 1 mtsouk staff 6102 Apr 4 22:50 anotherPackage.a
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 github.com

/Users/mtsouk/go/pkg/darwin_amd64/github.com:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 go-sql-driver

/Users/mtsouk/go/pkg/darwin_amd64/github.com/go-sql-driver:
total 728
-rw-r--r-- 1 mtsouk staff 372694 Apr 6 21:32 mysql.a

/Users/mtsouk/go/src:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:35 aSimplePackage
drwxr-xr-x 3 mtsouk staff 102 Apr 4 22:50 anotherPackage
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 github.com

/Users/mtsouk/go/src/aSimplePackage:
total 8
-rw-r--r-- 1 mtsouk staff 148 Apr 4 22:30 aSimplePackage.go

/Users/mtsouk/go/src/anotherPackage:
total 8
-rw-r--r--@ 1 mtsouk staff 313 Apr 4 22:50 anotherPackage.go

/Users/mtsouk/go/src/github.com:
total 0
drwxr-xr-x 3 mtsouk staff 102 Apr 6 21:32 go-sql-driver

/Users/mtsouk/go/src/github.com/go-sql-driver:
total 0
drwxr-xr-x 35 mtsouk staff 1190 Apr 6 21:32 mysql

/Users/mtsouk/go/src/github.com/go-sql-driver/mysql:
total 584
-rw-r--r-- 1 mtsouk staff 2066 Apr 6 21:32 AUTHORS
-rw-r--r-- 1 mtsouk staff 5581 Apr 6 21:32 CHANGELOG.md
-rw-r--r-- 1 mtsouk staff 1091 Apr 6 21:32 CONTRIBUTING.md
-rw-r--r-- 1 mtsouk staff 16726 Apr 6 21:32 LICENSE
-rw-r--r-- 1 mtsouk staff 18610 Apr 6 21:32 README.md
-rw-r--r-- 1 mtsouk staff 470 Apr 6 21:32 appengine.go
-rw-r--r-- 1 mtsouk staff 4965 Apr 6 21:32 benchmark_test.go
-rw-r--r-- 1 mtsouk staff 3339 Apr 6 21:32 buffer.go
-rw-r--r-- 1 mtsouk staff 8405 Apr 6 21:32 collations.go
-rw-r--r-- 1 mtsouk staff 8525 Apr 6 21:32 connection.go
-rw-r--r-- 1 mtsouk staff 1831 Apr 6 21:32 connection_test.go

Download from finelybook www.finelybook.com

174

-rw-r--r-- 1 mtsouk staff 3111 Apr 6 21:32 const.go
-rw-r--r-- 1 mtsouk staff 5036 Apr 6 21:32 driver.go
-rw-r--r-- 1 mtsouk staff 4246 Apr 6 21:32 driver_go18_test.go
-rw-r--r-- 1 mtsouk staff 47090 Apr 6 21:32 driver_test.go
-rw-r--r-- 1 mtsouk staff 13046 Apr 6 21:32 dsn.go
-rw-r--r-- 1 mtsouk staff 7872 Apr 6 21:32 dsn_test.go
-rw-r--r-- 1 mtsouk staff 3798 Apr 6 21:32 errors.go
-rw-r--r-- 1 mtsouk staff 989 Apr 6 21:32 errors_test.go
-rw-r--r-- 1 mtsouk staff 4571 Apr 6 21:32 infile.go
-rw-r--r-- 1 mtsouk staff 31362 Apr 6 21:32 packets.go
-rw-r--r-- 1 mtsouk staff 6453 Apr 6 21:32 packets_test.go
-rw-r--r-- 1 mtsouk staff 600 Apr 6 21:32 result.go
-rw-r--r-- 1 mtsouk staff 3698 Apr 6 21:32 rows.go
-rw-r--r-- 1 mtsouk staff 3609 Apr 6 21:32 statement.go
-rw-r--r-- 1 mtsouk staff 729 Apr 6 21:32 transaction.go
-rw-r--r-- 1 mtsouk staff 17924 Apr 6 21:32 utils.go
-rw-r--r-- 1 mtsouk staff 5784 Apr 6 21:32 utils_test.go

Download from finelybook www.finelybook.com

175

The go clean command
There will be times when you are developing a big Go program that uses lots
of nonstandard Go packages and you want to start the compilation process
from the beginning. Go allows you to clean up the files of a package in order
to recreate it later. The following command cleans up a package without
affecting the code of the package:

$ go clean -x -i aSimplePackage
cd /Users/mtsouk/go/src/aSimplePackage
rm -f aSimplePackage.test aSimplePackage.test.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/aSimplePackage.a

Similarly, you can also clean up a package that you have downloaded from
the internet, which also requires the use of its full path:

$ go clean -x -i github.com/go-sql-driver/mysql
cd /Users/mtsouk/go/src/github.com/go-sql-driver/mysql
rm -f mysql.test mysql.test.exe appengine appengine.exe
rm -f /Users/mtsouk/go/pkg/darwin_amd64/github.com/go-sql-driver/mysql.a

Please note that the go clean command is also particularly
useful when you want to transfer your projects to another
machine without including unnecessary files.

Download from finelybook www.finelybook.com

176

Garbage collection
In this section, we will briefly talk about how Go deals with GC, which tries
to free unused memory efficiently. The Go code of garbageCol.go can be
presented in two parts.

The first part is as follows:

package main

import (
 "fmt"
 "runtime"
 "time"
)

func printStats(mem runtime.MemStats) {
 runtime.ReadMemStats(&mem)
 fmt.Println("mem.Alloc:", mem.Alloc)
 fmt.Println("mem.TotalAlloc:", mem.TotalAlloc)
 fmt.Println("mem.HeapAlloc:", mem.HeapAlloc)
 fmt.Println("mem.NumGC:", mem.NumGC)
 fmt.Println("-----")
}

Every time you want to read the latest memory statistics, you should make a
call to the runtime.ReadMemStats() function.

The second part, which contains the implementation of the main() function,
has the following Go code:

func main() {
 var memruntime.MemStats
 printStats(mem)

 for i := 0; i< 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {
 fmt.Println("Operation failed!")
 }
 }
 printStats(mem)

 for i := 0; i< 10; i++ {
 s := make([]byte, 100000000)
 if s == nil {

Download from finelybook www.finelybook.com

177

 fmt.Println("Operation failed!")
 }
 time.Sleep(5 * time.Second)
 }
 printStats(mem)

}

Here, you try to obtain large amounts of memory in order to trigger the use of
the garbage collector.

Executing garbageCol.go generates the following output:

$ go run garbageCol.go
mem.Alloc: 53944
mem.TotalAlloc: 53944
mem.HeapAlloc: 53944
mem.NumGC: 0

mem.Alloc: 100071680
mem.TotalAlloc: 1000146400
mem.HeapAlloc: 100071680
mem.NumGC: 10

mem.Alloc: 66152
mem.TotalAlloc: 2000230496
mem.HeapAlloc: 66152
mem.NumGC: 20

So, the output presents information about properties related to the memory
used by the garbageCol.go program. If you want to get an even more detailed
output, you can execute garbageCol.go, as shown here:

$ GODEBUG=gctrace=1 go run garbageCol.go

This version of the command will give you information in the following
format:

gc 11 @0.101s 0%: 0.003+0.083+0.020 ms clock, 0.030+0.059/0.033/0.006+0.16 mscpu, 95->95->0 MB, 96 MB goal, 8 P

The 95->95->0 MB part contains information about the various heap sizes that
also show how well or how badly the garbage collector is doing. The first
value is the heap size when the GC starts, whereas the middle value shows
the heap size when the GC ends. The third value is the size of the live heap.

Download from finelybook www.finelybook.com

178

Your environment
In this section, we will show how to find out things about your environment
using the runtime package: this can be useful when you have to take certain
actions depending on the OS and the Go version you are using.

The use of the runtime package for finding out about your environment is
straightforward and is illustrated in runTime.go:

package main

import (
 "fmt"
 "runtime"
)

func main() {
 fmt.Print("You are using ", runtime.Compiler, " ")
 fmt.Println("on a", runtime.GOARCH, "machine")
 fmt.Println("with Go version", runtime.Version())
 fmt.Println("Number of Goroutines:", runtime.NumGoroutine())
}

As long as you know what you want to call from the runtime package, you
can get the information you desire. The last fmt.Println() command here
displays information about goroutines: you will learn more about goroutines
in Chapter 9, Goroutines - Basic Features.

Executing runTime.go on a macOS machine generates the following output:

$ go run runTime.go
You are using gc on a amd64 machine
with Go version go1.8
Number of Goroutines: 1

Executing runTime.go on a Linux machine that uses an older Go version gives
the following:

$ go run runTime.go
You are using gc on a amd64 machine
with Go version go1.3.3
Number of Goroutines: 4

Download from finelybook www.finelybook.com

179

Go gets updated frequently!
As I came to the end of writing this chapter, Go was updated a little. So, I
decided to include this information in this book in order to give a better sense
of how often Go gets updated:

$ date
Sat Apr 8 09:16:46 EEST 2017
$ go version
go version go1.8.1 darwin/amd64

Download from finelybook www.finelybook.com

180

Exercises
1. Visit the documentation of the runtime package.
2. Create your own structure, make a slice and use the sort.Slice() to sort

the elements of the slice you created.
3. Implement the quicksort algorithm in Go and sort some randomly-

generated numeric data.
4. Implement a doubly linked list.
5. The implementation of tree.go is far from complete! Try to implement a

function that checks whether a value can be found in the tree and
another function that allows you to delete a tree node.

6. Similarly, the implementation of the linkedList.go file is also incomplete.
Try to implement a function for deleting a node and another one for
inserting a node somewhere inside the linked list.

7. Once again, the hash table implementation of hash.go is incomplete as it
allows duplicate entries. So, implement a function that searches the hash
table for a key before inserting it.

Download from finelybook www.finelybook.com

181

Summary
In this chapter, you learned many things related to algorithms and data
structures. You also learned how to use existing Go packages and how to
develop your own Go packages. This chapter also talked about garbage
collection in Go and how to find information about your environment.

In the next chapter, we will start talking about systems programming and
present even more Go code. More precisely, Chapter 5, Files and Directories,
will talk about how to work with files and directories in Go, how to
painlessly traverse directory structures, and how to process command-line
arguments using the flag package. But more importantly, we will start
developing Go versions of various Unix command-line utilities.

Download from finelybook www.finelybook.com

182

Files and Directories
In the previous chapter, we talked about many important topics including
developing and using Go packages, Go data structures, algorithms, and GC.
However, until now, we have not developed any actual system utility. This
will change very soon because starting from this really important chapter, we
will begin developing real system utilities in Go by learning how to use Go,
to work with the various types of files and directories of a filesystem.

You should always have in mind that Unix considers everything a file
including symbolic links, directories, network devices, network sockets,
entire hard drives, printers, and plain text files. The purpose of this chapter is
to illustrate how the Go standard library allows us to understand if a path
exists or not, as well as how to search directory structures to detect the kind
of files we want. Additionally, this chapter will prove, using Go code as
evidence, that many traditional Unix command-line utilities that work with
files and directories do not have a difficult implementation.

In this chapter, you will learn the following topics:

The Go packages that will help you manipulate directories and file
Processing command-line arguments and options easily using the flag
package
Developing a version of the which(1) command-line utility in Go
Developing a version of the pwd(1) command-line utility in Go
Deleting and renaming files and directories
Traversing directory trees easily
Writing a version of the find(1) utility in Go
Duplicating a directory structure in another place

Download from finelybook www.finelybook.com

183

Useful Go packages
The single most important package that allows you to manipulate files and
directories as entities is the os package, which we will use extensively in this
chapter. If you consider files as boxes with contents, the os package allows
you to move them, put them into the wastebasket, change their names, visit
them, and decide which ones you want to use, whereas the io package, which
will be presented in the next chapter, allows you to manipulate the contents
of a box without worrying too much about the box itself!

The flag package, which you will see in a while, lets you define and process
your own flags and manipulate the command-line arguments of a Go
program.

The filepath package is extremely handy as it includes the filepath.Walk()
function that allows you to traverse entire directory structures in an easy way.

Download from finelybook www.finelybook.com

184

Command-line arguments revisited!
As we saw in Chapter 2, Writing Programs in Go, you cannot work efficiently
with multiple command-line arguments and options using if statements. The
solution to this problem is to use the flag package, which will be explained
here.

Remembering that the flag package is a standard Go package
and that you do not have to search for the functionality of a flag
elsewhere is extremely important.

Download from finelybook www.finelybook.com

185

The flag package
The flag package does the dirty work of parsing command-line arguments
and options for us; so, there is no need for writing complicated and
perplexing Go code. Additionally, it supports various types of parameters,
including strings, integers, and Boolean, which saves you time as you do not
have to perform any data type conversions.

The usingFlag.go program illustrates the use of the flag Go package and will
be presented in three parts. The first part has the following Go code:

package main

import (
 "flag"
 "fmt"
)

The second part, which has the most important Go code of the program, is as
follows:

func main() {
 minusO := flag.Bool("o", false, "o")
 minusC := flag.Bool("c", false, "c")
 minusK := flag.Int("k", 0, "an int")

 flag.Parse()

In this part, you can see how you can define the flags that interest you. Here,
you defined -o, -c, and -k. Although the first two are Boolean flags, the -k flag
requires an integer value, which can be given as -k=123.

The last part comes with the following Go code:

 fmt.Println("-o:", *minusO)
 fmt.Println("-c:", *minusC)
 fmt.Println("-K:", *minusK)

 for index, val := range flag.Args() {
 fmt.Println(index, ":", val)
 }
}

Download from finelybook www.finelybook.com

186

In this part, you can see how you can read the value of an option, which also
allows you to tell whether an option has been set or not. Additionally,
flag.Args() allows you to access the unused command-line arguments of the
program.

The use and the output of usingFlag.go are showcased in the following output:

$ go run usingFlag.go
-o: false
-c: false
-K: 0
$ go run usingFlag.go -o a b
-o: true
-c: false
-K: 0
0 : a
1 : b

However, if you forget to type the value of a command-line option (-k) or the
provided value is of the wrong type, you will get the following messages and
the program will terminate:

$./usingFlag -k
flag needs an argument: -k
Usage of ./usingFlag:
 -c c
 -k int
 an int
 -o o

$./usingFlag -k=abc
invalid value "abc" for flag -k: strconv.ParseInt: parsing "abc": invalid syntax
Usage of ./usingFlag:
 -c c
 -k int
 an int
 -o o

If you do not want your program to exit when there is a parse error, you can
use the ErrorHandling type provided by the flag package, which allows you to
change the way flag.Parse() behaves on errors with the help of the
NewFlagSet() function. However, in systems programming, you usually want
your utility to exit when there is an error in one or more command-line
options.

Download from finelybook www.finelybook.com

187

Dealing with directories
Directories allow you to create a structure and store your files in a way that is
easy for you to organize and search for them. In reality, directories are entries
on a filesystem that contain lists of other files and directories. This happens
with the help of inodes, which are data structures that hold information about
files and directories.

As you can see in the following figure, directories are implemented as lists of
names assigned to inodes. As a result, a directory contains an entry for itself,
its parent directory, and each of its children, which among other things can be
regular files or other directories:

What you should remember is that an inode holds metadata
about a file, not the actual data of a file.

A graphical representation of inodes

Download from finelybook www.finelybook.com

188

About symbolic links
Symbolic links are pointers to files or directories, which are resolved at the
time of access. Symbolic links, which are also called soft links, are not equal
to the file or the directory they are pointing to and are allowed to point to
nowhere, which can sometimes complicate things.

The following Go code, saved in symbLink.go and presented in two parts,
allows you to check whether a path or file is a symbolic link or not. The first
part is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }
 filename := arguments[1]

Nothing special is happening here: you just need to make sure that you get
one command-line argument in order to have something to test. The second
part is the following Go code:

 fileinfo, err := os.Lstat(fil /etcename)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 if fileinfo.Mode()&os.ModeSymlink != 0 {
 fmt.Println(filename, "is a symbolic link")
 realpath, err := filepath.EvalSymlinks(filename)
 if err == nil {
 fmt.Println("Path:", realpath)
 }
 }

}

Download from finelybook www.finelybook.com

189

The aforementioned code of symbLink.go is more cryptic than usual because it
uses lower-level functions. The technique for finding out whether a path is a
real path or not involves the use of the os.Lstat() function that gives you
information about a file or directory and the use of the Mode() function on the
return value of the os.Lstat() call in order to compare the outcome with the
os.ModeSymlink constant, which is the symbolic link bit.

Additionally, there exists the filepath.EvalSymlinks() function that allows you
to evaluate any symbolic links that exist and return the true path of a file or
directory, which is also used in symbLink.go. This might make you think that
we are using lots of Go code for such a simple task, which is partially true,
but when you are developing systems software, you are obliged to consider
all possibilities and be cautious.

Executing symbLink.go, which only takes one command-line argument,
generates the following output:

$ go run symbLink.go /etc
/etc is a symbolic link
Path: /private/etc

You will also see some of the aforementioned Go code as a part of bigger
programs in the rest of this chapter.

Download from finelybook www.finelybook.com

190

Implementing the pwd(1) command
When I start thinking about how to implement a program, so many ideas
come to my mind that sometimes it becomes too difficult to decide what to
do! The key here is to do something instead of waiting because as you write
code, you will be able to tell whether the approach you are taking is good or
not, and whether you should try another approach or not.

The pwd(1) command-line utility is pretty simplistic, yet it does a pretty good
job. If you write lots of shell scripts, you should already know about pwd(1)
because it is pretty handy when you want to get the full path of a file or a
directory that resides in the same directory as the script that is being
executed.

The Go code of pwd.go will be presented in two parts and will only support the
-P command-line option, which resolves all symbolic links and prints the
physical current working directory. The first part of pwd.go is as follows:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 arguments := os.Args

 pwd, err := os.Getwd()
 if err == nil {
 fmt.Println(pwd)
 } else {
 fmt.Println("Error:", err)
 }

The second part is as follows:

 if len(arguments) == 1 {
 return
 }

 if arguments[1] != "-P" {

Download from finelybook www.finelybook.com

191

 return
 }

 fileinfo, err := os.Lstat(pwd)
 if fileinfo.Mode()&os.ModeSymlink != 0 {
 realpath, err := filepath.EvalSymlinks(pwd)
 if err == nil {
 fmt.Println(realpath)
 }
 }
}

Note that if the current directory can be described by multiple paths, which
can happen if you are using symbolic links, os.Getwd() can return any one of
them. Additionally, you need to reuse some of the Go code found in
symbLink.go to discover the physical current working directory in case the -P
option is given and you are dealing with a directory that is a symbolic link.
Also, the reason for not using the flag package in pwd.go is that I find the code
much simpler the way it is.

Executing pwd.go will generate the following output:

$ go run pwd.go
/Users/mtsouk/Desktop/goBook/ch/ch5/code

On macOS machines, the /tmp directory is a symbolic link, which can help us
verify that pwd.go works as expected:

$ go run pwd.go
/tmp
$ go run pwd.go -P
/tmp
/private/tmp

Download from finelybook www.finelybook.com

192

Developing the which(1) utility in
Go
The which(1) utility searches the value of the PATH environment variable in
order to find out if an executable file can be found in one of the directories of
the PATH variable. The following output shows the way the which(1) utility
works:

$ echo $PATH
/home/mtsouk/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
$ which ls
/home/mtsouk/bin/ls
code$ which -a ls
/home/mtsouk/bin/ls
/bin/ls

Our implementation of the Unix utility will support the two command-line
options supported by the macOS version of which(1), which are -a and -s with
the help of the flag package: the Linux version of which(1) does not support
the -s option. The -a option lists all the instances of the executable instead of
just the first one while the -s returns 0 if the executable was found and 1
otherwise: this is not the same as printing 0 or 1 using the fmt package.

In order to check the return value of a Unix command-line utility in the shell,
you should do the following:

$ which -s ls
$ echo $?
0

Note that go run prints out nonzero exit codes.

The Go code for which(1) will be saved in which.go and will be presented in
four parts. The first part of which.go has the following Go code:

package main

Download from finelybook www.finelybook.com

193

import (
 "flag"
 "fmt"
 "os"
 "strings"
)

The strings package is needed in order to split the contents of the PATH
variable after you read it. The second part of which.go deals with the use of the
flag package:

func main() {
 minusA := flag.Bool("a", false, "a")
 minusS := flag.Bool("s", false, "s")

 flag.Parse()
 flags := flag.Args()
 if len(flags) == 0 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }
 file := flags[0]
 fountIt := false

One very important part of which.go is the part that reads the PATH shell
environment variable in order to split it and use it, which is presented in the
third part here:

 path := os.Getenv("PATH")
 pathSlice := strings.Split(path, ":")
 for _, directory := range pathSlice {
 fullPath := directory + "/" + file

The last statement here constructs the full path of the file we are searching
for, as if it existed in each separate directory of the PATH variable because if
you have the full path of a file, you do not have to search for it!

The last part of which.go is as follows:

 fileInfo, err := os.Stat(fullPath)
 if err == nil {
 mode := fileInfo.Mode()
 if mode.IsRegular() {
 if mode&0111 != 0 {
 fountIt = true
 if *minusS == true {
 os.Exit(0)
 }
 if *minusA == true {

Download from finelybook www.finelybook.com

194

 fmt.Println(fullPath)
 } else {
 fmt.Println(fullPath)
 os.Exit(0)
 }
 }
 }
 }
 }
 if fountIt == false {
 os.Exit(1)
 }
}

Here, the call to os.Stat() tells whether the file we are looking for actually
exists or not. In case of success, the mode.IsRegular() function checks whether
the file is a regular file or not because we are not looking for directories or
symbolic links. However, we are not done yet! The which.go program
performs a test to find out whether the file that was found is indeed an
executable file: if it is not an executable file, it will not get printed. So, the if
mode&0111 != 0 statement verifies that the file is actually an executable file
using a binary operation.

Next, if the -s flag is set to *minusS == true, then the -a flag does not really
matter because the program will terminate as soon as it finds a match.

As you can see, there are lots of tests involved in which.go, which is not rare
for systems software. Nevertheless, you should always examine all
possibilities in order to avoid surprises later. The good thing is that most of
these tests will be used later on in the Go implementation of the find(1)
utility: it is good practice to test some features by writing small programs
before putting them all together into bigger programs because by doing so,
you learn the technique better and you can detect silly bugs more easily.

Executing which.go will produce the following output:

$ go run which.go ls
/home/mtsouk/bin/ls
$ go run which.go -s ls
$ echo $?
0
$ go run which.go -s ls123123
exit status 1
$ echo $?

Download from finelybook www.finelybook.com

195

1
$ go run which.go -a ls
/home/mtsouk/bin/ls
/bin/ls

Download from finelybook www.finelybook.com

196

Printing the permission bits of a file
or directory
With the help of the ls(1) command, you can find out the permissions of a
file:

$ ls -l /bin/ls
-rwxr-xr-x 1 root wheel 38624 Mar 23 01:57 /bin/ls

In this subsection, we will look at how to print the permissions of a file or
directory using Go: the Go code will be saved in permissions.go and will be
presented in two parts. The first part is as follows:

package main

import (
 "fmt"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }

 file := arguments[1]

The second part contains the important Go code:

 info, err := os.Stat(file)
 if err != nil {
 fmt.Println("Error:", err)
 os.Exit(1)
 }
 mode := info.Mode()
 fmt.Print(file, ": ", mode, "\n")
}

Once again, most of the Go code is for dealing with the command-line
argument and making sure that you have one! The Go code that does the
actual job is mainly the call to the os.Stat() function, which returns a FileInfo

Download from finelybook www.finelybook.com

197

structure that describes the file or directory examined by os.Stat(). From the
FileInfo structure, you can discover the permissions of a file by calling the
Mode() function.

Executing permissions.go produces the following output:

$ go run permissions.go /bin/ls
/bin/ls: -rwxr-xr-x
$ go run permissions.go /usr
/usr: drwxr-xr-x
$ go run permissions.go /us
Error: stat /us: no such file or directory
exit status 1

Download from finelybook www.finelybook.com

198

Dealing with files in Go
An extremely important task of an operating system is working with files
because all data is stored in files. In this section, we will show you how to
delete and rename files, and in the next section, Developing find(1) in Go, we
will teach you how to search directory structures in order to find the files you
want.

Download from finelybook www.finelybook.com

199

Deleting a file
In this section, we will illustrate how to delete files and directories using the
os.Remove() Go function.

When testing programs that delete files and directories be extra
careful and use common sense!

The rm.go file is a Go implementation of the rm(1) tool that illustrates how you
can delete files in Go. Although the core functionality of rm(1) is there, the
options of rm(1) are missing: it would be a good exercise to try to implement
some of them. Just pay extra attention when implementing the -f and -R
options.

The Go code of rm.go is as follows:

package main
import (
 "fmt"
 "os"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(1)
 }

 file := arguments[1]
 err := os.Remove(file)
 if err != nil {
 fmt.Println(err)
 return
 }
}

If rm.go is executed without any problems, it will create no output according
to the Unix philosophy. So, what is interesting here is watching the error
messages you can get when the file you are trying to delete does not exist:
both when you do not have the necessary permissions to delete it and when a

Download from finelybook www.finelybook.com

200

directory is not empty:

$ go run rm.go 123
remove 123: no such file or directory
$ ls -l /tmp/AlTest1.err
-rw-r--r-- 1 root wheel 1278 Apr 17 20:13 /tmp/AlTest1.err
$ go run rm.go /tmp/AlTest1.err
remove /tmp/AlTest1.err: permission denied
$ go run rm.go test
remove test: directory not empty

Download from finelybook www.finelybook.com

201

Renaming and moving files
In this subsection, we will show you how to rename and move a file using Go
code: the Go code will be saved as rename.go. Although the same code can be
used for renaming or moving directories, rename.go is only allowed to work
with files.

When performing things that cannot be easily undone, such as overwriting a
file, you should be extra careful and maybe inform the user that the
destination file already exists in order to avoid unpleasant surprises. Although
the default operation of the traditional mv(1) utility will automatically
overwrite the destination file if it exists, I do not think that this is very safe.
Therefore, rename.go will not overwrite destination files by default.

When developing systems software, you have to deal with all the
details or the details will reveal themselves as bugs when least
expected! Extensive testing will allow you to find the details you
missed and correct them.

The code of rename.go will be presented in four parts. The first part includes
the expected preamble as well as the Go code for dealing with the setup of
the flag package:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

func main() {
 minusOverwrite := flag.Bool("overwrite", false, "overwrite")

 flag.Parse()
 flags := flag.Args()

 if len(flags) < 2 {
 fmt.Println("Please provide two arguments!")
 os.Exit(1)
 }

Download from finelybook www.finelybook.com

202

The second part has the following Go code:

 source := flags[0]
 destination := flags[1]
 fileInfo, err := os.Stat(source)
 if err == nil {
 mode := fileInfo.Mode()
 if mode.IsRegular() == false {
 fmt.Println("Sorry, we only support regular files as source!")
 os.Exit(1)
 }
 } else {
 fmt.Println("Error reading:", source)
 os.Exit(1)
 }

This part makes sure the source file exists, is a regular file, and is not a
directory or something else like a network socket or a pipe. Once again, the
trick with os.Stat() you saw in which.go is used here.

The third part of rename.go is as follows:

 newDestination := destination
 destInfo, err := os.Stat(destination)
 if err == nil {
 mode := destInfo.Mode()
 if mode.IsDir() {
 justTheName := filepath.Base(source)
 newDestination = destination + "/" + justTheName
 }
 }

There is another tricky point here; you will need to consider the case where
the source is a plain file and the destination is a directory, which is
implemented with the help of the newDestination variable.

Another special case that you should consider is when the source file is given
in a format that contains an absolute or relative path in it like ./aDir/aFile. In
this case, when the destination is a directory, you should get the basename of
the path, which is what follows the last / character and in this case is aFile,
and add it to the destination directory in order to correctly construct the
newDestination variable. This happens with the help of the filepath.Base()
function, which returns the last element of a path.

Finally, the last part of rename.go has the following Go code:

Download from finelybook www.finelybook.com

203

 destination = newDestination
 destInfo, err = os.Stat(destination)
 if err == nil {
 if *minusOverwrite == false {
 fmt.Println("Destination file already exists!")
 os.Exit(1)
 }
 }

 err = os.Rename(source, destination)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

The most important Go code of rename.go has to do with recognizing whether
the destination file exists or not. Once again, this is implemented with the
support of the os.Stat() function. If os.Stat() returns an error message, this
means that the destination file does not exist; so, you are free to call
os.Rename(). If os.Stat() returns nil, this means that the os.Stat() call was
successful and that the destination file exists. In this case, you should check
the value of the overwrite flag to see if you are allowed to overwrite the
destination file or not.

When everything is OK, you are free to call os.Rename() and perform the
desired task!

If rename.go is executed correctly, it will create no output. However, if there
are problems, rename.go will generate some output:

$ touch newFILE
$./rename newFILE regExpFind.go
Destination file already exists!
$./rename -overwrite newFILE regExpFind.go
$

Download from finelybook www.finelybook.com

204

Developing find(1) in Go
This section will teach you the necessary things that you need to know in
order to develop a simplified version of the find(1) command-line utility in
Go. The developed version will not support all the command-line options
supported by find(1), but it will have enough options to be truly useful.

What you will see in the following subsections is the entire process in small
steps. So, the first subsection will show you the Go way for visiting all files
and directories in a given directory tree.

Download from finelybook www.finelybook.com

205

Traversing a directory tree
The most important task that find(1) needs to support is being able to visit all
files and sub directories starting from a given directory. So, this section will
implement this task in Go. The Go code of traverse.go will be presented in
three parts. The first part is the expected preamble:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

The second part is about implementing a function named walkFunction() that
will be used as an argument to a Go function named filepath.Walk():

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Stat(path)
 if err != nil {
 return err
 }

 fmt.Println(path)
 return nil
}

Once again, the os.Stat() function is used because a successful os.Stat()
function call means that we are dealing with something (file, directory, pipe,
and so on) that actually exists!

Do not forget that between the time filepath.Walk() is called and
the time walkFunction() is called and executed, many things can
happen in an active and busy filesystem, which is the main
reason for calling os.Stat().

The last part of the code is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Not enough arguments!")

Download from finelybook www.finelybook.com

206

 os.Exit(1)
 }

 Path := arguments[1]
 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

All the dirty jobs here are automatically done by the filepath.Walk() function
with the help of the walkFunction() function that was defined previously. The
filepath.Walk() function takes two parameters: the path of a directory and the
walk function it will use.

Executing traverse.go will generate the following kind of output:

$ go run traverse.go ~/code/C/cUNL
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/cUNL/gpp
/home/mtsouk/code/C/cUNL/gpp.c
/home/mtsouk/code/C/cUNL/sizeofint
/home/mtsouk/code/C/cUNL/sizeofint.c
/home/mtsouk/code/C/cUNL/speed
/home/mtsouk/code/C/cUNL/speed.c
/home/mtsouk/code/C/cUNL/swap
/home/mtsouk/code/C/cUNL/swap.c

As you can see, the code of traverse.go is pretty naive, as among other things,
it cannot differentiate between directories, files, and symbolic links.
However, it does the pretty tedious job of visiting every file and directory
under a given directory tree, which is the basic functionality of the find(1)
utility.

Download from finelybook www.finelybook.com

207

Visiting directories only!
Although it is good to be able to visit everything, there are times when you
want to visit only directories and not files. So, in this subsection, we will
modify traverse.go in order to still visit everything but only print the directory
names. The name of the new program will be traverseDir.go. The only part of
traverse.go that needs to change is the definition of the walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsDir() {
 fmt.Println(path)
 }
 return nil
}

As you can see, here you need to use the information returned by the
os.Stat() function call in order to check whether you are dealing with a
directory or not. If you have a directory, then you print its path and you are
done.

Executing traverseDir.go will generate the following output:

$ go run traverseDir.go ~/code
/home/mtsouk/code
/home/mtsouk/code/C
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/example
/home/mtsouk/code/C/sysProg
/home/mtsouk/code/C/system
/home/mtsouk/code/Haskell
/home/mtsouk/code/aLink
/home/mtsouk/code/perl
/home/mtsouk/code/python

Download from finelybook www.finelybook.com

208

The first version of find(1)
The Go code in this section is saved as find.go and will be presented in three
parts. As you will see, find.go uses a large amount of the code found in
traverse.go, which is the main benefit you get when you are developing a
program step by step.

The first part of find.go is the expected preamble:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

As we already know that we will improve find.go in the near future, the flag
package is used here even if this is the first version of find.go and it does not
have any flags!

The second part of the Go code contains the implementation of the
walkFunction():

func walkFunction(path string, info os.FileInfo, err error) error {

 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsDir() || mode.IsRegular() {
 fmt.Println(path)
 }
 return nil
}

From the implementation of the walkFunction() you can easily understand that
find.go only prints regular files and directories, and nothing else. Is this a
problem? Not, if this is what you want. Generally speaking, this is not good.
Nevertheless, having a first version of something that works despite some

Download from finelybook www.finelybook.com

209

restrictions is a good starting point! The next version, which will be named
improvedFind.go, will improve find.go by adding various command-line options
to it.

The last part of find.go contains the code that implements the main() function:

func main() {
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing find.go will create the following output:

$ go run find.go ~/code/C/cUNL
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/cUNL/gpp
/home/mtsouk/code/C/cUNL/gpp.c
/home/mtsouk/code/C/cUNL/sizeofint
/home/mtsouk/code/C/cUNL/sizeofint.c
/home/mtsouk/code/C/cUNL/speed
/home/mtsouk/code/C/cUNL/speed.c
/home/mtsouk/code/C/cUNL/swap
/home/mtsouk/code/C/cUNL/swap.c

Download from finelybook www.finelybook.com

210

Adding some command-line options
This subsection will try to improve the Go version of find(1) that you created
earlier. Keep in mind that this is the process used for developing real
programs because you do not implement every possible command-line option
in the first version of a program.

The Go code of the new version is going to be saved as improvedFind.go.
Among other things, the new version will be able to ignore symbolic links:
symbolic links will only be printed when improvedFind.go is used with the
appropriate command-line option. To do this, we will use some of the Go
code of symbLink.go.

The improvedFind.go program is a real system tool that you can
use on your own Unix machines.

The supported flags will be the following:

-s: This is for printing socket files
-p: This is for printing pipes
-sl: This is for printing symbolic links
-d: This is for printing directories
-f: This is for printing files

As you will see, most of the new Go code is for supporting the flags added to
the program. Additionally, by default, improvedFind.go prints every type of file
or directory, and you are allowed to combine any of the preceding flags in
order to print the types of files you want.

Apart from the various changes in the implementation of the main() function
in order to support all these flags, most of the remaining changes will take
place in the code of the walkFunction() function. Additionally, the
walkFunction() function will be defined inside the main() function, which
happens in order to avoid the use of global variables.

Download from finelybook www.finelybook.com

211

The first part of improvedFind.go is as follows:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
)

func main() {

 minusS := flag.Bool("s", false, "Sockets")
 minusP := flag.Bool("p", false, "Pipes")
 minusSL := flag.Bool("sl", false, "Symbolic Links")
 minusD := flag.Bool("d", false, "Directories")
 minusF := flag.Bool("f", false, "Files")

 flag.Parse()
 flags := flag.Args()

 printAll := false
 if *minusS && *minusP && *minusSL && *minusD && *minusF {
 printAll = true
 }

 if !(*minusS || *minusP || *minusSL || *minusD || *minusF) {
 printAll = true
 }

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]

So, if all the flags are unset, the program will print everything, which is
handled by the first if statement. Similarly, if all the flags are set, the
program will also print everything. So, a new Boolean variable named
printAll is needed.

The second part of improvedFind.go has the following Go code, which is
mainly the definition of the walkFunction variable, which in reality is a
function:

 walkFunction := func(path string, info os.FileInfo, err error) error {
 fileInfo, err := os.Stat(path)
 if err != nil {
 return err
 }

Download from finelybook www.finelybook.com

212

 if printAll {
 fmt.Println(path)
 return nil
 }

 mode := fileInfo.Mode()
 if mode.IsRegular() && *minusF {
 fmt.Println(path)
 return nil
 }

 if mode.IsDir() && *minusD {
 fmt.Println(path)
 return nil
 }

 fileInfo, _ = os.Lstat(path)

 if fileInfo.Mode()&os.ModeSymlink != 0 {
 if *minusSL {
 fmt.Println(path)
 return nil
 }
 }

 if fileInfo.Mode()&os.ModeNamedPipe != 0 {
 if *minusP {
 fmt.Println(path)
 return nil
 }
 }

 if fileInfo.Mode()&os.ModeSocket != 0 {
 if *minusS {
 fmt.Println(path)
 return nil
 }
 }

 return nil
 }

Here, the good thing is that once you find a match and print a file, you do not
have to visit the rest of the if statements, which is the main reason for putting
the minusF check first and the minusD check second. The call to os.Lstat() is
used to find out whether we are dealing with a symbolic link or not. This
happens because os.Stat() follows symbolic links and returns information
about the file the link references, whereas os.Lstat() does not do so: the same
occurs with stat(2) and lstat(2).

Download from finelybook www.finelybook.com

213

You should be pretty familiar with the last part of improvedFind.go:

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing improvedFind.go generates the following output, which is an
enriched version of the output of find.go:

$ go run improvedFind.go -d ~/code/C
/home/mtsouk/code/C
/home/mtsouk/code/C/cUNL
/home/mtsouk/code/C/example
/home/mtsouk/code/C/sysProg
/home/mtsouk/code/C/system
$ go run improvedFind.go -sl ~/code
/home/mtsouk/code/aLink

Download from finelybook www.finelybook.com

214

Excluding filenames from the find
output
There are times when you do not need to display everything from the output
of find(1). So, in this subsection, you will learn a technique that allows you to
manually exclude files from the output of improvedFind.go based on their
filenames.

Note that this version of the program will not support regular
expressions and will only exclude filenames that are an exact
match.

So, the improved version of improvedFind.go will be named excludeFind.go. The
output of the diff(1) utility can reveal the code differences between
improvedFind.go and excludeFind.go:

$ diff excludeFind.go improvedFind.go
10,19d9
< func excludeNames(name string, exclude string) bool {`
< if exclude == "" {
< return false
< }
< if filepath.Base(name) == exclude {
< return true
< }
< return false
< }
<
27d16
< minusX := flag.String("x", "", "Files")
54,57d42
< if excludeNames(path, *minusX) {
< return nil
< }
<

The most significant change is the introduction of a new Go function, named
excludeNames(), that deals with filename exclusion and the addition of the -x
flag, which is used for setting the filename you want to exclude from the
output. All the job is done by the file path. The Base() function finds the last
part of a path, even if the path is not a file but a directory, and compares it

Download from finelybook www.finelybook.com

215

against the value of the -x flag.

Note that a more appropriate name for the excludeNames() function could have
been isExcluded() or something similar because the -x option accepts a single
value.

Executing excludeFind.go with and without the -x flag will prove that the new
Go code actually works:

$ go run excludeFind.go -x=dT.py ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python
$ go run excludeFind.go ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dT.py
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python

Download from finelybook www.finelybook.com

216

Excluding a file extension from the
find output
A file extension is the part of a filename after the last dot (.) character. So,
the file extension of the image.png file is png, which applies to both files and
directories.

Once again, you will need a separate command-line option followed by the
file extension you want to exclude in order to implement this functionality:
the new flag will be named -ext. This version of the find(1) utility will be
based on the code of excludeFind.go and will be named finalFind.go. Some of
you might say that a more appropriate name for this option would have been
-xext and you would be right about that!

Once again, the diff(1) utility will help us spot the code differences between
excludeFind.go and finalFind.go: the new functionality is implemented in a Go
function named excludeExtensions(), which makes things easier to understand:

$ diff finalFind.go excludeFind.go
8d7
< "strings"
21,34d19
< func excludeExtensions(name string, extension string) bool {
< if extension == "" {
< return false
< }
< basename := filepath.Base(name)
< s := strings.Split(basename, ".")
< length := len(s)
< basenameExtension := s[length-1]
< if basenameExtension == extension {
< return true
< }
< return false
< }
<
43d27
< minusEXT := flag.String("ext", "", "Extensions")
74,77d57
< if excludeExtensions(path, *minusEXT) {
< return nil
< }
<

Download from finelybook www.finelybook.com

217

As we are looking for the string after the last dot in the path, we use
strings.Split() to split the path based on the dot characters it contains. Then,
we take the last part of the return value of strings.Split() and we compare it
against the extension that was given with the -ext flag. Therefore, nothing
special here, just some string manipulation code. Once again, a more
appropriate name for excludeExtensions() would have been
isExcludedExtension().

Executing finalFind.go will generate the following output:

$ go run finalFind.go -ext=py ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python
$ go run finalFind.go ~/code/python
/home/mtsouk/code/python
/home/mtsouk/code/python/dT.py
/home/mtsouk/code/python/dataFile.txt
/home/mtsouk/code/python/python

Download from finelybook www.finelybook.com

218

Using regular expressions
This section will illustrate how to add support for regular expressions in
finalFind.go: the name of the last version of the tool will be regExpFind.go. The
new flag will be called -re and it will require a string value: anything that
matches this string value will be included in the output unless it is excluded
by another command-line option. Additionally, due to the flexibility that
flags offer, we do not need to delete any of the previous options in order to
add another one!

Once again, the diff(1) command will tell us the code differences between
regExpFind.go and finalFind.go:

$ diff regExpFind.go finalFind.go
8d7
< "regexp"
36,44d34
< func regularExpression(path, regExp string) bool {
< if regExp == "" {
< return true
< }
< r, _ := regexp.Compile(regExp)
< matched := r.MatchString(path)
< return matched
< }
<
54d43
< minusRE := flag.String("re", "", "Regular Expression")
71a61
>
75,78d64
< if regularExpression(path, *minusRE) == false {
< return nil
< }
<

In Chapter 7, Working with System Files, we ;will talk more about pattern
matching and regular expressions in Go: for now, it is enough to understand
that regexp.Compile() creates a regular expression and MatchString() tries to do
the matching in the regularExpression() function.

Executing regExpFind.go will generate the following output:

Download from finelybook www.finelybook.com

219

$ go run regExpFind.go -re=anotherPackage /Users/mtsouk/go
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage
/Users/mtsouk/go/src/anotherPackage/anotherPackage.go
$ go run regExpFind.go -ext=go -re=anotherPackage /Users/mtsouk/go
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage

The previous output can be verified by using the following command:

$ go run regExpFind.go /Users/mtsouk/go | grep anotherPackage
/Users/mtsouk/go/pkg/darwin_amd64/anotherPackage.a
/Users/mtsouk/go/src/anotherPackage
/Users/mtsouk/go/src/anotherPackage/anotherPackage.go

Download from finelybook www.finelybook.com

220

Creating a copy of a directory
structure
Armed with the knowledge you gained in the previous sections, we will now
develop a Go program that creates a copy of a directory structure in another
directory: this means that any files in the input directory will not be copied to
the destination directory, only the directories will be copied. This can be
handy when you want to save useful files from a directory structure
somewhere else while keeping the same directory structure or when you want
to take a backup of a filesystem manually.

As you are only interested in directories, the code of cpStructure.go is based
on the code of traverseDir.go you saw earlier in this chapter: once again, a
small program that was developed for learning purposes helps you implement
a bigger program! Additionally, the test option will show what the program
will do without actually creating any directories.

The code of cpStructure.go will be presented in four parts. The first one is as
follows:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
 "strings"
)

There is nothing special here, just the expected preamble. The second part is
as follows:

func main() {
 minusTEST := flag.Bool("test", false, "Test run!")

 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 || len(flags) == 1 {

Download from finelybook www.finelybook.com

221

 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }

 Path := flags[0]
 NewPath := flags[1]

 permissions := os.ModePerm
 _, err := os.Stat(NewPath)
 if os.IsNotExist(err) {
 os.MkdirAll(NewPath, permissions)
 } else {
 fmt.Println(NewPath, "already exists - quitting...")
 os.Exit(1)
 }

The cpStructure.go program demands that the destination directory does not
exist in advance in order to avoid unnecessary surprises and errors
afterwards.

The third part contains the code of the walkFunction variable:

 walkFunction := func(currentPath string, info os.FileInfo, err error) error {
 fileInfo, _ := os.Lstat(currentPath)
 if fileInfo.Mode()&os.ModeSymlink != 0 {
 fmt.Println("Skipping", currentPath)
 return nil
 }

 fileInfo, err = os.Stat(currentPath)
 if err != nil {
 fmt.Println("*", err)
 return err
 }

 mode := fileInfo.Mode()
 if mode.IsDir() {
 tempPath := strings.Replace(currentPath, Path, "", 1)
 pathToCreate := NewPath + "/" + filepath.Base(Path) + tempPath

 if *minusTEST {
 fmt.Println(":", pathToCreate)
 return nil
 }

 _, err := os.Stat(pathToCreate)
 if os.IsNotExist(err) {
 os.MkdirAll(pathToCreate, permissions)
 } else {
 fmt.Println("Did not create", pathToCreate, ":", err)
 }
 }
 return nil
 }

Download from finelybook www.finelybook.com

222

Here, the first if statement makes sure that we will deal with symbolic links
because symbolic links can be dangerous and create problems: always try to
treat special situations in order to avoid problems and nasty bugs.

The os.IsNotExist() function allows you to make sure that the directory you
are trying to create is not already there. So, if the directory is not there, you
create it using ;os.MkdirAll(). The os.MkdirAll() function creates a directory
path including all the necessary parents, which makes things simpler for the
developer.

Nevertheless, the trickiest part that the code of the walkFunction variable has to
deal with is removing the unnecessary parts of the source path and
constructing the new path correctly. The strings.Replace() function used in the
program replaces the occurrences of its second argument (Path) that can be
found in the first argument (currentPath) with its third argument ("") as many
times as its last argument (1). If the last argument is a negative number,
which is not the case here, then there will be no limit to the number of
replacements. In this case, it removes the value of the Path variable, which is
the source directory, from the currentPath variable, which is the directory that
is being examined.

The last part of the program is as follows:

 err = filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
}

Executing cpStructure.go will generate the following output:

$ go run cpStructure.go ~/code /tmp/newCode
Skipping /home/mtsouk/code/aLink
$ ls -l /home/mtsouk/code/aLink
lrwxrwxrwx 1 mtsouk mtsouk 14 Apr 21 18:10 /home/mtsouk/code/aLink -> /usr/local/bin

The following figure shows a graphical representation of the source and
destination directory structures used in the aforementioned example:

Download from finelybook www.finelybook.com

223

A graphical representation of two directory structures with their files

Download from finelybook www.finelybook.com

224

Exercises
1. Read the documentation page of the os package at https://golang.org/pkg/os/.
2. Visit https://golang.org/pkg/path/filepath/ to learn more about the

filepath.Walk() function.
3. Change the code of rm.go in order to support multiple command-line

arguments, and then try to implement the -v command-line option of the
rm(1) utility.

4. Make the necessary changes to the Go code of which.go in order to
support multiple command-line arguments.

5. Start implementing a version of the ls(1) utility in Go. Do not try to
support every ls(1) option at once.

6. Change the code of traverseDir.go in order to print regular files only.
7. Check the manual page of find(1) and try to add support for some of its

options in regExpFind.go.

Download from finelybook www.finelybook.com

225

https://golang.org/pkg/os/
https://golang.org/pkg/path/filepath/

Summary
In this chapter, we talked about many things including the use of the flag
standard package, Go functions that allow you to work with directories and
files, and traverse directory structures, and we developed Go versions of
various Unix command-line utilities including pwd(1), which(1), rm(1), and
find(1).

In the next chapter, we will continue talking about file operations, but this
time you will learn how to read files and write to files in Go: as you will see
there are many ways to do this. Although this gives you versatility, it also
demands that you should be able to choose the right technique to do your job
as efficiently as possible! So, you will start by learning more about the io
package as well as the bufio package and by the end of the chapter, you will
have Go versions of the wc(1) and dd(1) utilities!

Download from finelybook www.finelybook.com

226

File Input and Output
In the previous chapter, we talked about manipulating files and directories as
entities without looking at their contents. However, in this chapter, we will
take a different approach and look into the contents of files: you might
consider this chapter one of the most important chapters in this book because
file input and file output are primary tasks of any operating system.

The main purpose of this chapter is to teach how the Go standard library
permits us to open files, read their contents, process them if we like, create
new files, and put the desired data into them. There are two main ways to
read and write files: using the io package and using the functions of the bufio
package. However, both packages work in a comparative way.

This chapter will tell you about the following:

Opening files for writing and reading
Using the io package for file input and output
Using the io.Writer and io.Reader interfaces
Using the bufio package for buffered input and output
Copying files in Go
Implementing a version of the wc(1) utility in Go
Developing a version of the dd(1) command in Go
Creating sparse files
The importance of byte slices in file input and output: byte slices were
first mentioned in Chapter 2, Writing Programs in Go
Storing structured data in files and reading them afterwards
Converting tabs into space characters and vice versa

This chapter will not talk about appending data to an existing file: you will
have to wait until Chapter 7, Working with System Files, to learn more about
putting data at the end of a file without destroying its existing data.

Download from finelybook www.finelybook.com

227

About file input and output
File input and output includes everything that has to do with reading the data
of a file and writing the desired data to a file. There is not a single operating
system that does not offer support for files and therefore for file input and
output.

As this chapter is pretty big, I will stop talking and start showing you
practical Go code that will make things clearer. So, the first thing that you
will learn in this chapter is byte slices, which are very important in
applications that are concerned with file input and output.

Download from finelybook www.finelybook.com

228

Byte slices
Byte slices are a kind of slices used for file reading and writing. Putting it
simply, they are slices of bytes used as a buffer during file reading and
writing operations. This section will present a small Go example where a byte
slice is used for writing to a file and reading from a file. As you will see byte
slices all over this chapter, make sure that you understand the presented
example. The related Go code is saved as byteSlice.go and will be presented
in three parts.

The first part is as follows:

package main

import (
 "fmt"
 "io/ioutil"
 "os"
)

The second part of byteSlice.go is as follows:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }
 filename := os.Args[1]

 aByteSlice := []byte("Mihalis Tsoukalos!\n")
 ioutil.WriteFile(filename, aByteSlice, 0644)

Here, you use the aByteSlice byte slice to save some text into a file that is
identified by the filename variable. The last part of byteSlice.go is the
following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 defer f.Close()

 anotherByteSlice := make([]byte, 100)

Download from finelybook www.finelybook.com

229

 n, err := f.Read(anotherByteSlice)
 fmt.Printf("Read %d bytes: %s", n, anotherByteSlice)

}

Here, you define another byte slice named anotherByteSlice with 100 places
that will be used for reading from the file you created previously. Note that %s
used in fmt.Printf() forces anotherByteSlice to be printed as a string: using
Println() would have produced a totally different output.

Note that as the file is smaller, the f.Read() call will put less
data into anotherByteSlice.

The size of anotherByteSlice denotes the maximum amount of data that can be
stored into it after a single call to Read() or after any other similar operation
that reads data from a file.

Executing byteSlice.go will generate the following output:

$ go run byteSlice.go usingByteSlices
Read 19 bytes: Mihalis Tsoukalos!

Checking the size of the usingByteSlices file will verify that the right amount
of data was written to it:

$ wc usingByteSlices
 1 2 19 usingByteSlices

Download from finelybook www.finelybook.com

230

About binary files
There is no difference between reading and writing binary and plain text files
in Go. So, when processing a file, Go makes no assumptions about its format.
However, Go offers a package named binary that allows you to make
translations between different encodings such as little endian and big
endian.

The readBinary.go file briefly illustrates how to convert an integer number to a
little endian number and to a big endian number, which might be useful when
the files you want to process contain certain kinds of data; this mainly
happens when we are dealing with raw devices and raw packet manipulation:
remember everything is a file! The source code of readBinary.go will be
presented in two parts.

The first part is as follows:

package main

import (
 "bytes"
 "encoding/binary"
 "fmt"
 "os"
 "strconv"
)

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide an integer")
 os.Exit(1)
 }
 aNumber, _ := strconv.ParseInt(os.Args[1], 10, 64)

There is nothing special in this part of the program. The second part is the
following:

 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.LittleEndian, aNumber)
 if err != nil {
 fmt.Println("Little Endian:", err)
 }

Download from finelybook www.finelybook.com

231

 fmt.Printf("%d is %x in Little Endian\n", aNumber, buf)
 buf.Reset()
 err = binary.Write(buf, binary.BigEndian, aNumber)

 if err != nil {
 fmt.Println("Big Endian:", err)
 }
 fmt.Printf("And %x in Big Endian\n", buf)
}

The second part contains all the important Go code: the conversions happen
with the help of the binary.Write() method and the proper write parameter
(binary.LittleEndian or binary.BigEndian). The bytes.Buffer variable is used for
the io.Reader and io.Writer interfaces of the program. Lastly, the buf.Reset()
statement resets the buffer in order to be used afterwards for storing the big
endian.

Executing readBinary.go will generate the following output:

$ go run readBinary.go 1
1 is 0100000000000000 in Little Endian
And 0000000000000001 in Big Endian

You can find more information about the binary package by visiting its
documentation page at https://golang.org/pkg/encoding/binary/.

Download from finelybook www.finelybook.com

232

https://golang.org/pkg/encoding/binary/

Useful I/O packages in Go
The io package is for performing primitive file I/O operations, whereas the
bufio package is for executing buffered I/O.

In buffered I/O, the operating system uses an intermediate
buffer during file read and write operations in order to reduce
the number of filesystem calls. As a result, buffered input and
output is faster and more efficient.

Additionally, you can use some of the functions of the fmt package to write
text to a file. Note that the flag package will be also used in this chapter as
well as in all the forthcoming ones where the developed utilities need to
support command-line flags.

Download from finelybook www.finelybook.com

233

The io package
The io package offers functions that allow you to write to or read from files.
Its use will be illustrated in the usingIO.go file, which will be presented in
three parts. What the program does is read 8 bytes from a file and write them
in a standard output.

The first part is the preamble of the Go program:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 defer f.Close()

The program also uses the handy defer command that defers the execution of
a function until the surrounding function returns. As a result, defer is used
very frequently in file I/O operations because it saves you from having to
remember to execute the Close() call after you are done working with a file or
when you leave a function in any number of locations using a return
statement or os.Exit().

The last part of the program is the following:

 buf := make([]byte, 8)

Download from finelybook www.finelybook.com

234

 if _, err := io.ReadFull(f, buf); err != nil {
 if err == io.EOF {
 err = io.ErrUnexpectedEOF
 }
 }
 io.WriteString(os.Stdout, string(buf))
 fmt.Println()
}

The io.ReadFull() function here reads from the reader of an open file and puts
the data into a byte slice that has 8 places. You can also see here the use of
the io.WriteString() function for printing data to a standard output (os.Stdout)
that is also a file. However, this is not a very common practice as you can
simply use fmt.Println() instead.

Executing usingIO.go generates the following output:

$ go run usingIO.go usingByteSlices
Mihalis

Download from finelybook www.finelybook.com

235

The bufio package
The functions of the bufio package allow you to perform buffered file
operations, which means that although its operations look similar to the ones
found in io, they work in a slightly different way.

What bufio actually does is to wrap an io.Reader or io.Writer object into a new
value that implements the required interface while providing buffering to the
new value. One of the handy features of the bufio package is that it allows
you to read a text file line by line, word by word, and character by character
without too much effort.

Once again, an example will try to clarify things: the name of the Go file that
showcases the use of bufio is bufIO.go and will be presented in four parts.

The first part is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "os"
)

The second part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]

Here, you just try to get the name of the file that you are going to use.

The third part of bufIO.go has the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)

Download from finelybook www.finelybook.com

236

 os.Exit(1)
 }
 defer f.Close()

 scanner := bufio.NewScanner(f)

The default behavior of bufio.NewScanner is to read its input line by line, which
means that each time you call the Scan() method that reads the next token, a
new line will be returned. The last part is where you actually call the Scan()
method in order to read the full contents of the file:

 for scanner.Scan() {
 line := scanner.Text()

 if scanner.Err() != nil {
 fmt.Printf("error reading file %s", err)
 os.Exit(1)
 }
 fmt.Println(line)
 }
}

The Text() method returns the latest token from the Scan() method as a string,
which in this case will be a line. However, if you ever get strange results
while trying to read a file line by line, it will most likely be the way your file
ends a line, which is usually the case with text files coming from Windows
machines.

Executing bufIO.go and feeding wc(1) with its output can help you verify that
bufIO.go works as expected:

$ go run bufIO.go inputFile | wc
 11 12 62
$ wc inputFile
 11 12 62 inputFile

Download from finelybook www.finelybook.com

237

File I/O operations
Now that you know the basics of the io and bufio packages, it is time to learn
more detailed information about their usage and how they can help you work
with files. But first, we will talk about the fmt.Fprintf() function.

Download from finelybook www.finelybook.com

238

Writing to files using fmt.Fprintf()
The use of the fmt.Fprintf() function allows you to write formatted text to
files in a way that is similar to the way the fmt.Printf() function works. Note
that fmt.Fprintf() can write to any io.Writer interface and that our files will
satisfy the io.Writer interface.

The Go code that illustrates the use of fmt.Fprintf() can be found in fmtF.go,
which will be presented in three parts. The first part is the expected preamble:

package main

import (
 "fmt"
 "os"
)

The second part has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]
 destination, err := os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }
 defer destination.Close()

Note that the os.Create() function will truncate the file if it already exists.

The last part is the following:

 fmt.Fprintf(destination, "[%s]: ", filename)
 fmt.Fprintf(destination, "Using fmt.Fprintf in %s\n", filename)
}

Here, you write the desired text data to the file that is identified by the
destination variable using fmt.Fprintf() as if you were using the fmt.Printf()

Download from finelybook www.finelybook.com

239

method.

Executing fmtF.go will generate the following output:

$ go run fmtF.go test
$ cat test
[test]: Using fmt.Fprintf in test

In other words, you can create plain text files using fmt.Fprintf().

Download from finelybook www.finelybook.com

240

About io.Writer and io.Reader
Both io.Writer and io.Reader are interfaces that embed the io.Write() and
io.Read() methods, respectively. The use of io.Writer and io.Reader will be
illustrated in readerWriter.go, which will be presented in four parts. The
program computes the characters of its input file and writes the number of
characters to another file: if you are dealing with Unicode characters that take
more than one byte per character, you might consider that the program is
reading bytes. The output filename has the name of the original file plus the
.Count extension.

The first part is the following:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is the following:

func countChars(r io.Reader) int {
 buf := make([]byte, 16)
 total := 0
 for {
 n, err := r.Read(buf)
 if err != nil && err != io.EOF {
 return 0
 }
 if err == io.EOF {
 break
 }
 total = total + n
 }
 return total
}

Once again, a byte slice is used during reading. The break statement allows
you to exit the for loop. The third part is the following code:

func writeNumberOfChars(w io.Writer, x int) {
 fmt.Fprintf(w, "%d\n", x)

Download from finelybook www.finelybook.com

241

}

Here you can see how you can write a number to a file using fmt.Fprintf(): I
did not manage to do the same using a byte slice! Additionally, note that the
presented code writes text to a file using an io.Writer variable (w).

The last part of readerWriter.go has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide a filename")
 os.Exit(1)
 }

 filename := os.Args[1]
 _, err := os.Stat(filename)

 if err != nil {
 fmt.Printf("Error on file %s: %s\n", filename, err)
 os.Exit(1)
 }

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println("Cannot open file:", err)
 os.Exit(-1)
 }
 defer f.Close()

 chars := countChars(f)
 filename = filename + ".Count"
 f, err = os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }
 defer f.Close()
 writeNumberOfChars(f, chars)
}

The execution of readerWriter.go generates no output; so, it is up to you to
check its correctness, which in this case happens with the help of wc(1):

$ go run readerWriter.go /tmp/swtag.log
$ wc /tmp/swtag.log
 119 635 7780 /tmp/swtag.log
$ cat /tmp/swtag.log.Count
7780

Download from finelybook www.finelybook.com

242

Finding out the third column of a
line
Now that you know how to read a file, it is time to present a modified version
of the readColumn.go program you saw in Chapter 3, Advanced Go Features. The
new version is also named readColumn.go, but has two major improvements.
The first is that you can provide the desired column as a command-line
argument and the second is that it can read multiple files if it gets multiple
command-line arguments.

The readColumn.go file will be presented in three parts. The first part of
readColumn.go is the following:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "strings"
)

The next part of readColumn.go contains the following Go code:

func main() {
 minusCOL := flag.Int("COL", 1, "Column")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: readColumn <file1> [<file2> [... <fileN]]\n")
 os.Exit(1)
 }

 column := *minusCOL

 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

Download from finelybook www.finelybook.com

243

As you will understand from the definition of the minusCOL variable, if the user
does not use this flag, the program will print the contents of the first column
of each file it reads.

The last part of readColumn.go is as follows:

 for _, filename := range flags {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 continue
 }
 defer f.Close()

 r := bufio.NewReader(f)

 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

 data := strings.Fields(line)
 if len(data) >= column {
 fmt.Println((data[column-1]))
 }
 }
 }
}

The preceding code does not do anything that you have not seen before. The
for loop is used for processing all command-line arguments. However, if a
file fails to open for some reason, the program will not stop its execution, but
it will continue processing the rest of the files if they exist. However, the
program expects that its input files end in a newline and you might see
strange results if an input file ends differently.

Executing readColumn.go generates the following output, which is abbreviated
in order to save some book space:

$ go run readColumn.go -COL=3 pF.data isThereAFile up.data
 pF.data
 isThereAFile
error opening file open isThereAFile: no such file or directory

Download from finelybook www.finelybook.com

244

 up.data
0.05
0.05
0.05
0.05
0.05
0.05

In this case, there is no file named isThereAFile and the pF.data file does not
have a third column. However, the program did its best and printed what it
could!

Download from finelybook www.finelybook.com

245

Copying files in Go
Every operating system allows you to copy files because this is a very
important and necessary operation. This section will show you how to copy
files in Go now that you know how to read files!

Download from finelybook www.finelybook.com

246

There is more than one way to copy
a file!
Most programming languages offer more than one way to create a copy of a
file and Go is no exception. It is up to the developer to decide which
approach to implement.

The there is more than one way to do it rule applies to almost
everything implemented in this book, but file copying is the most
characteristic example of this rule because you can copy a file
by reading it line by line, byte by byte, or all at once! However,
this rule does not apply to the way Go likes to format its code!

Download from finelybook www.finelybook.com

247

Copying text files
There is no point in treating the copying of text files in a special way unless
you want to inspect or modify their contents. As a result, the three techniques
presented here will not differentiate between plain text and binary file
copying.

Chapter 7, Working with System Files, will talk about file permissions because
there are times that you want to create new files with the file permissions you
choose.

Download from finelybook www.finelybook.com

248

Using io.Copy
This subsection will present a technique for copying files that uses the
io.Copy() function. What is special about the io.Copy() function is the fact that
is does not give you any flexibility in the process. The name of the program
will be notGoodCP.go and will be presented in three parts. Note that a more
appropriate filename for notGoodCP.go would have been copyEntireFileAtOnce.go
or copyByReadingInputFileAllAtOnce.go!

The first part of the Go code of notGoodCP.go is the following:

package main

import (
 "fmt"
 "io"
 "os"
)

The second part is as follows:

func Copy(src, dst string) (int64, error) {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return 0, err
 }

 if !sourceFileStat.Mode().IsRegular() {
 return 0, fmt.Errorf("%s is not a regular file", src)
 }

 source, err := os.Open(src)
 if err != nil {
 return 0, err
 }
 defer source.Close()

 destination, err := os.Create(dst)
 if err != nil {
 return 0, err
 }
 defer destination.Close()
 nBytes, err := io.Copy(destination, source)
 return nBytes, err

}

Download from finelybook www.finelybook.com

249

Here we define our own function that uses io.Copy() to make a copy of a file.
The Copy() function checks whether the source file is a regular file before
trying to copy it, which makes perfect sense.

The last part is the implementation of the main() function:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Please provide two command line arguments!")
 os.Exit(1)
 }

 sourceFile := os.Args[1]
 destinationFile := os.Args[2]
 nBytes, err := Copy(sourceFile, destinationFile)

 if err != nil {
 fmt.Printf("The copy operation failed %q\n", err)
 } else {
 fmt.Printf("Copied %d bytes!\n", nBytes)
 }
}

The best tool for testing whether a file is an exact copy of
another file is the diff(1) utility, which also works with binary
files. You can learn more about diff(1) by reading its main
page.

Executing notGoodCP.go will generate the following results:

$ go run notGoodCP.go testFile aCopy
Copied 871 bytes!
$ diff aCopy testFile
$ wc testFile aCopy
 51 127 871 testFile
 51 127 871 aCopy
 102 254 1742 total

Download from finelybook www.finelybook.com

250

Reading a file all at once!
The technique in this section will use the ioutil.WriteFile() and
ioutil.ReadFile() functions. Note that ioutil.ReadFile() does not implement
the io.Reader interface and therefore is a little restrictive.

The Go code for this section is named readAll.go and will be presented in
three parts.

The first part has the following Go code:

package main

import (
 "fmt"
 "io/ioutil"
 "os"
)

The second part is the following:

func main() {
 if len(os.Args) != 3 {
 fmt.Println("Please provide two command line arguments!")
 os.Exit(1)
 }

 sourceFile := os.Args[1]
 destinationFile := os.Args[2]

The last part is as follows:

 input, err := ioutil.ReadFile(sourceFile)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 err = ioutil.WriteFile(destinationFile, input, 0644)
 if err != nil {
 fmt.Println("Error creating the new file", destinationFile)
 fmt.Println(err)
 os.Exit(1)
 }
}

Download from finelybook www.finelybook.com

251

Note that the ioutil.ReadFile() function reads the entire file, which might not
be efficient when you want to copy huge files. Similarly, the
ioutil.WriteFile() function writes all the given data to a file that is identified
by its first argument.

The execution of readAll.go generates the following output:

$ go run readAll.go testFile aCopy
$ diff aCopy testFile
$ ls -l testFile aCopy
-rw-r--r-- 1 mtsouk staff 871 May 3 21:07 aCopy
-rw-r--r--@ 1 mtsouk staff 871 May 3 21:04 testFile
$ go run readAll.go doesNotExist aCopy
open doesNotExist: no such file or directory
exit status 1

Download from finelybook www.finelybook.com

252

An even better file copy program
This section will present a program that uses a more traditional approach,
where a buffer is used for reading and copying to the new file.

Although traditional Unix command-line utilities are silent
when there are no errors, it is not bad to print some kind of
information, such as the number of bytes read, in your own
tools. However, the right thing to do is to follow the Unix way.

There exist two main reasons that make cp.go better than notGoodCP.go. The
first is that the developer has more control over the process in exchange for
having to write more Go code and the second is that cp.go allows you to
define the size of the buffer, which is the most important parameter in the
copy operation.

The code of cp.go will be presented in five parts. The first part is the expected
preamble along with a global variable that holds the size of the read buffer:

package main

import (
 "fmt"
 "io"
 "os"
 "path/filepath"
 "strconv"
)

var BUFFERSIZE int64

The second part is the following:

func Copy(src, dst string, BUFFERSIZE int64) error {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return err
 }

 if !sourceFileStat.Mode().IsRegular() {
 return fmt.Errorf("%s is not a regular file.", src)

Download from finelybook www.finelybook.com

253

 }

 source, err := os.Open(src)
 if err != nil {
 return err
 }
 defer source.Close()

As you can see here, the size of the buffer is given to the Copy() function as an
argument. The other two command-line arguments are the input filename and
the output filename.

The third part has the remaining Go code of the Copy() function:

 _, err = os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }

 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()

 if err != nil {
 panic(err)
 }

 buf := make([]byte, BUFFERSIZE)
 for {
 n, err := source.Read(buf)
 if err != nil && err != io.EOF {
 return err
 }
 if n == 0 {
 break
 }

 if _, err := destination.Write(buf[:n]); err != nil {
 return err
 }
 }
 return err
}

There is nothing special here: you just keep calling source, Read() until you
reach the end of the input file. Each time you read something, you call
destination. Write() to save it to the output file. The buf[:n] notation allows
you to read the first n characters from the buf slice.

Download from finelybook www.finelybook.com

254

The fourth part contains the following Go code:

func main() {
 if len(os.Args) != 4 {
 fmt.Printf("usage: %s source destination BUFFERSIZE\n",
filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 source := os.Args[1]
 destination := os.Args[2]
 BUFFERSIZE, _ = strconv.ParseInt(os.Args[3], 10, 64)

The filepath.Base() is used for getting the name of the executable file.

The last part is the following:

 fmt.Printf("Copying %s to %s\n", source, destination)
 err := Copy(source, destination, BUFFERSIZE)
 if err != nil {
 fmt.Printf("File copying failed: %q\n", err)
 }
}

Executing cp.go will generate the following output:

$ go run cp.go inputFile aCopy 2048
Copying inputFile to aCopy
$ diff inputFile aCopy

If there is a problem with the copy operation, you will get a descriptive error
message.

So, if the program cannot find the input file, it will print the following:

$ go run cp.go A /tmp/myCP 1024
Copying A to /tmp/myCP
File copying failed: "stat A: no such file or directory"

If the program cannot read the input file, you will get the following message:

$ go run cp.go inputFile /tmp/myCP 1024
Copying inputFile to /tmp/myCP
File copying failed: "open inputFile: permission denied"

If the program cannot create the output file, it will print the following error
message:

Download from finelybook www.finelybook.com

255

$ go run cp.go inputFile /usr/myCP 1024
Copying inputFile to /usr/myCP
File copying failed: "open /usr/myCP: operation not permitted"

If the destination file already exists, you will get the following output:

$ go run cp.go inputFile outputFile 1024
Copying inputFile to outputFile
File copying failed: "File outputFile already exists."

Download from finelybook www.finelybook.com

256

Benchmarking file copying
operations
The size of the buffer you use in file operations is really important and affects
the performance of your system tools, especially when you are dealing with
very big files.

Although developing reliable software should be your main
concern, you should not forget to make your systems software
fast and efficient!

So, this section will try to see how the size of the buffer affects the file
copying operations by executing cp.go with various buffer sizes and
comparing its performance with readAll.go, notGoodCP.go as well as cp(1).

In the old Unix days when the amount of RAM on Unix machines was too
small, using a large buffer was not recommended. However, nowadays, using
a buffer with a size of 100 MB is not considered bad practice, especially when
you know in advance that you are going to copy lots of big files such as the
data files of a database server.

We will use three files with different sizes in our testing: these three files will
be generated using the dd(1) utility, as shown here:

$dd if=/dev/urandom of=100MB count=100000 bs=1024
100000+0 records in
100000+0 records out
102400000 bytes transferred in 6.800277 secs (15058210 bytes/sec)
$ dd if=/dev/urandom of=1GB count=1000000 bs=1024
1000000+0 records in
1000000+0 records out
1024000000 bytes transferred in 68.887482 secs (14864820 bytes/sec)
$ dd if=/dev/urandom of=5GB count=5000000 bs=1024
5000000+0 records in
5000000+0 records out
5120000000 bytes transferred in 339.357738 secs (15087324 bytes/sec)
$ ls -l 100MB 1GB 5GB
-rw-r--r-- 1 mtsouk staff 102400000 May 4 10:30 100MB
-rw-r--r-- 1 mtsouk staff 1024000000 May 4 10:32 1GB
-rw-r--r-- 1 mtsouk staff 5120000000 May 4 10:38 5GB

Download from finelybook www.finelybook.com

257

The first file is 100 MB, the second is 1 GB, and the third is 5 GB in size.

Now, it is time for the actual testing using the time(1) utility. First, we will
test the performance of notGoodCP.go and readAll.go:

$ time ./notGoodCP 100MB copy
Copied 102400000 bytes!

real 0m0.153s
user 0m0.003s
sys 0m0.084s
$ time ./notGoodCP 1GB copy
Copied 1024000000 bytes!

real 0m1.461s
user 0m0.029s
sys 0m0.833s
$ time ./notGoodCP 5GB copy
Copied 5120000000 bytes!

real 0m12.193s
user 0m0.161s
sys 0m5.251s
$ time ./readAll 100MB copy

real 0m0.249s
user 0m0.003s
sys 0m0.138s
$ time ./readAll 1GB copy

real 0m3.117s
user 0m0.639s
sys 0m1.644s
$ time ./readAll 5GB copy

real 0m28.918s
user 0m8.106s
sys 0m21.364s

Now, you will see the results from the cp.go program using four different
buffer sizes, 16, 1024, 1048576, and 1073741824. First, let's copy the 100 MB file:

$ time ./cp 100MB copy 16
Copying 100MB to copy

real 0m13.240s
user 0m2.699s
sys 0m10.530s
$ time ./cp 100MB copy 1024
Copying 100MB to copy

real 0m0.386s
user 0m0.053s

Download from finelybook www.finelybook.com

258

sys 0m0.303s
$ time ./cp 100MB copy 1048576
Copying 100MB to copy

real 0m0.135s
user 0m0.001s
sys 0m0.075s
$ time ./cp 100MB copy 1073741824
Copying 100MB to copy

real 0m0.390s
user 0m0.011s
sys 0m0.136s

Then, we will copy the 1 GB file:

$ time ./cp 1GB copy 16
Copying 1GB to copy

real 2m10.054s
user 0m26.497s
sys 1m43.411s
$ time ./cp 1GB copy 1024
Copying 1GB to copy

real 0m3.520s
user 0m0.533s
sys 0m2.944s
$ time ./cp 1GB copy 1048576
Copying 1GB to copy

real 0m1.431s
user 0m0.006s
sys 0m0.749s
$ time ./cp 1GB copy 1073741824
Copying 1GB to copy

real 0m2.033s
user 0m0.012s
sys 0m1.310s

Next, we will copy the 5 GB file:

$ time ./cp 5GB copy 16
Copying 5GB to copy

real 10m41.551s
user 2m11.695s
sys 8m29.248s
$ time ./cp 5GB copy 1024
Copying 5GB to copy

real 0m16.558s
user 0m2.415s
sys 0m13.597s

Download from finelybook www.finelybook.com

259

$ time ./cp 5GB copy 1048576
Copying 5GB to copy

real 0m7.172s
user 0m0.028s
sys 0m3.734s
$ time ./cp 5GB copy 1073741824
Copying 5GB to copy

real 0m8.612s
user 0m0.011s
sys 0m4.536s

Finally, let's present the results from the cp(1) utility that comes with macOS
Sierra:

$ time cp 100MB copy

real 0m0.274s
user 0m0.002s
sys 0m0.105s
$ time cp 1GB copy

real 0m2.735s
user 0m0.003s
sys 0m1.014s
$ time cp 5GB copy

real 0m12.199s
user 0m0.012s
sys 0m5.050s

The following figure shows a graph with the values of the real fields from the
output of the time(1) utility for all the aforementioned results:

Download from finelybook www.finelybook.com

260

Benchmarking results for the various copy utilities

As you can see from the results, the cp(1) utility does a pretty good job.
However, cp.go is more versatile because it allows you to define the size of
the buffer. On the other hand, if you use cp.go with a small buffer size (16
bytes), then the entire process will be totally ruined! Additionally, it is
interesting that readAll.go does a pretty decent job with relatively small files
and it is slow only when copying the 5 GB file, which is not bad for such a
small program: you can consider readAll.go as a quick and dirty solution!

Download from finelybook www.finelybook.com

261

Developing wc(1) in Go
The principal idea behind the code of the wc.go program is that you can read a
text file line by line until there is nothing left to read. For each line you read,
you find out the number of characters and the number of words it has. As you
need to read your input line by line, the use of bufio is preferred instead of the
plain io because it simplifies the code. However, trying to implement wc.go on
your own using io would be a very educational exercise.

But first, you will see that the wc(1) utility generates the following output:

$ wc wc.go cp.go
 68 160 1231 wc.go
 45 112 755 cp.go
 113 272 1986 total

So, if wc(1) has to process more than one file, it automatically generates
summary information.

In Chapter 9, Goroutines - Basic Features, you will learn how to create a
version of wc.go using Go routines. However, the core functionality of both
versions will be exactly the same!

Download from finelybook www.finelybook.com

262

Counting words
The trickiest part of the code implementation is word counting, which is
implemented using regular expressions:

r := regexp.MustCompile("[^\\s]+")
for range r.FindAllString(line, -1) {
numberOfWords++
}

Here, the provided regular expression separates the words of a line based on
whitespace characters in order to count them afterwards!

Download from finelybook www.finelybook.com

263

The wc.go code!
After this little introduction, it is time to see the Go code of wc.go, which will
be presented in five parts. The first part is the expected preamble:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
)

The second part is the implementation of the countLines() function, which
includes the core functionality of the program. Note that the name
countLines() may have been a poor choice as countLines() also counts the
words and the characters of a file:

func countLines(filename string) (int, int, int) {
 var err error
 var numberOfLines int
 var numberOfCharacters int
 var numberOfWords int
 numberOfLines = 0

 numberOfCharacters = 0
 numberOfWords = 0

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break

Download from finelybook www.finelybook.com

264

 }

 numberOfLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 numberOfWords++
 }
 numberOfCharacters += len(line)
 }

 return numberOfLines, numberOfWords, numberOfCharacters
}

Lots of interesting things exist here. First of all, you can see the Go code
presented in the previous section for counting the words of each line.
Counting lines is easy because each time the bufio reader reads a new line, the
value of the numberOfLines variable is increased by one. The ReadString()
function tells the program to read until the first occurrence of '\n' in the
input: multiple calls to ReadString() mean that you are reading a file line by
line.

Next, you can see that the countLines() function returns three integer values.
Lastly, counting characters is implemented with the help of the len() function
that returns the number of characters in a given string, which in this case is
the line that was read. The for loop terminates when you get the io.EOF error
message, which signifies that there is nothing left to read from the input file.

The third part of wc.go starts with the beginning of the implementation of the
main() function, which also includes the configuration of the flag package:

func main() {
 minusC := flag.Bool("c", false, "Characters")
 minusW := flag.Bool("w", false, "Words")
 minusL := flag.Bool("l", false, "Lines")

 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: wc <file1> [<file2> [... <fileN]]\n")
 os.Exit(1)
 }

 totalLines := 0
 totalWords := 0
 totalCharacters := 0
 printAll := false

Download from finelybook www.finelybook.com

265

 for _, filename := range flag.Args() {

The last for statement is for processing all the input files given to the
program. The wc.go program supports three flags: the -c flag is for printing the
character count, the -w flag is for printing the word count, and the -l flag is
for printing the line count.

The fourth part is the following:

 numberOfLines, numberOfWords, numberOfCharacters := countLines(filename)

 totalLines = totalLines + numberOfLines
 totalWords = totalWords + numberOfWords
 totalCharacters = totalCharacters + numberOfCharacters

 if (*minusC && *minusW && *minusL) || (!*minusC && !*minusW && !*minusL) {
 fmt.Printf("%d", numberOfLines)
 fmt.Printf("\t%d", numberOfWords)
 fmt.Printf("\t%d", numberOfCharacters)
 fmt.Printf("\t%s\n", filename)
 printAll = true
 continue
 }

 if *minusL {
 fmt.Printf("%d", numberOfLines)
 }

 if *minusW {
 fmt.Printf("\t%d", numberOfWords)
 }

 if *minusC {
 fmt.Printf("\t%d", numberOfCharacters)
 }

 fmt.Printf("\t%s\n", filename)
 }

This part deals with printing the information on a per file basis depending on
the command-line flags. As you can see, most of the Go code here is for
handling the output according to the command-line flags.

The last part is the following:

 if (len(flags) != 1) && printAll {
 fmt.Printf("%d", totalLines)
 fmt.Printf("\t%d", totalWords)
 fmt.Printf("\t%d", totalCharacters)
 fmt.Println("\ttotal")

Download from finelybook www.finelybook.com

266

return
 }

 if (len(flags) != 1) && *minusL {
 fmt.Printf("%d", totalLines)
 }

 if (len(flags) != 1) && *minusW {
 fmt.Printf("\t%d", totalWords)
 }

 if (len(flags) != 1) && *minusC {
 fmt.Printf("\t%d", totalCharacters)
 }

 if len(flags) != 1 {
 fmt.Printf("\ttotal\n")
 }
}

This is where you print the total number of lines, words, and characters read
according to the flags of the program. Once again, most of the Go code here
is for modifying the output according to the command-line flags.

Executing wc.go will generate the following output:

$ go build wc.go
$ ls -l wc
-rwxr-xr-x 1 mtsouk staff 2264384 Apr 29 21:10 wc
$./wc wc.go sparse.go notGoodCP.go
120 280 2319 wc.go
44 98 697 sparse.go
27 61 418 notGoodCP.go
191 439 3434 total
$./wc -l wc.go sparse.go
120 wc.go
44 sparse.go
164 total
$./wc -w -l wc.go sparse.go
120 280 wc.go
44 98 sparse.go
164 378 total

There is a subtle point here: using Go source files as command-line
arguments to the go run wc.go command will fail. This will happen because
the compiler will try to compile the Go source files instead of treating them
as command-line arguments to the go run wc.go command. The following
output proves this:

$ go run wc.go sparse.go
command-line-arguments

Download from finelybook www.finelybook.com

267

./sparse.go:11: main redeclared in this block
 previous declaration at ./wc.go:49
$ go run wc.go wc.go
package main: case-insensitive file name collision:
"wc.go" and "wc.go"
$ go run wc.go cp.go sparse.go
command-line-arguments
./cp.go:35: main redeclared in this block
 previous declaration at ./wc.go:49
./sparse.go:11: main redeclared in this block
 previous declaration at ./cp.go:35

Additionally, trying to execute wc.go on a Linux system with Go version 1.3.3
will fail with the following error message:

$ go version
go version go1.3.3 linux/amd64
$ go run wc.go
command-line-arguments
./wc.go:40: syntax error: unexpected range, expecting {
./wc.go:46: non-declaration statement outside function body
./wc.go:47: syntax error: unexpected }

Download from finelybook www.finelybook.com

268

Comparing the performance of
wc.go and wc(1)
In this subsection, we will compare the performance of our version of wc(1)
with the wc(1) version that comes with macOS Sierra 10.12.6. First, we will
execute wc.go:

$ file wc
wc: Mach-O 64-bit executable x86_64
$ time ./wc *.data
672320 3361604 9413057 connections.data
269123 807369 4157790 diskSpace.data
672040 1344080 8376070 memory.data
1344533 2689066 5378132 pageFaults.data
269465 792715 4068250 uptime.data
3227481 8994834 31393299 total

real 0m17.467s
user 0m22.164s
sys 0m3.885s

Then, we will execute the macOS version of wc(1) to process the same files:

$ file `which wc`
/usr/bin/wc: Mach-O 64-bit executable x86_64
$ time wc *.data
672320 3361604 9413057 connections.data
269123 807369 4157790 diskSpace.data
672040 1344080 8376070 memory.data
1344533 2689066 5378132 pageFaults.data
269465 792715 4068250 uptime.data
3227481 8994834 31393299 total

real 0m0.086s
user 0m0.076s
sys 0m0.007s

Let's look at the good news here first; the two utilities generated exactly the
same output, which means that our Go version of wc(1) works great and can
process big text files!

Now, the bad news; wc.go is slow! It took wc(1) less than a second to process
all five files, whereas it took wc.go nearly 18 seconds to perform the same

Download from finelybook www.finelybook.com

269

task!

The general idea when developing software of any kind, on any
platform, using any programming language, is that you should
try to have a working version of it, which does not contain any
bugs before trying to optimize it and not the other way round!

Download from finelybook www.finelybook.com

270

Reading a text file character by
character
Although reading a text file character by character is not needed for the
development of the wc(1) utility, it would be good to know how to implement
it in Go. The name of the file will be charByChar.go and will be presented in
four parts.

The first part is the following Go code:

package main

import (
 "bufio"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

Although charByChar.go does not have many lines of Go code, it needs lots of
Go standard packages, which is a naive indication that the task it implements
is not trivial. The second part is as follows:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(1)
 }
 input := arguments[1]

The third part is the following:

 buf, err := ioutil.ReadFile(input)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

The last part has the following Go code:

Download from finelybook www.finelybook.com

271

 in := string(buf)
 s := bufio.NewScanner(strings.NewReader(in))
 s.Split(bufio.ScanRunes)

 for s.Scan() {
 fmt.Print(s.Text())
 }
}

Here, ScanRunes is a split function that returns each character (rune) as a token.
Then, the call to Scan() allows us to process each character one by one. There
also exist ScanWords and ScanLines for getting words and lines, respectively. If
you use fmt.Println(s.Text()) as the last statement in the program instead of
fmt.Print(s.Text()), then each character will be printed on its own line and the
task of the program will be more obvious.

Executing charByChar.go generates the following output:

$ go run charByChar.go test
package main
...

The wc(1) command can verify the correctness of the Go code of charByChar.go
by comparing the input file with the output generated by charByChar.go:

$ go run charByChar.go test | wc
 32 54 439
$ wc test
 32 54 439 test

Download from finelybook www.finelybook.com

272

Doing some file editing!
This section will present a Go program that converts tab characters to space
characters in files and vice versa! This is the job that is usually done by a text
editor, but it is good to know how to perform it on your own.

The code will be saved in tabSpace.go and will be presented in four parts.

Note that tabSpace.go reads text files line by line, but you can
also develop a version that reads text file character by
character.

In the current implementation, all the work is done with the help of regular
expressions, pattern matching, and search and replace operations.

The first part is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "strings"
)

The second part contains the following Go code:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("Usage: %s [-t|-s] filename!\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 convertTabs := false
 convertSpaces := false
 newLine := ""

 option := os.Args[1]
 filename := os.Args[2]
 if option == "-t" {
 convertTabs = true
 } else if option == "-s" {

Download from finelybook www.finelybook.com

273

 convertSpaces = true
 } else {
 fmt.Println("Unknown option!")
 os.Exit(1)
 }

The third part contains the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 os.Exit(1)
 }

The last part is the following:

 if convertTabs == true {
 newLine = strings.Replace(line, "\t", " ", -1)
 } else if convertSpaces == true {
 newLine = strings.Replace(line, " ", "\t", -1)
 }

 fmt.Print(newLine)
 }
}

This part is where the magic happens using the appropriate strings.Replace()
call. In its current implementation, each tab is replaced by four space
characters and vice versa, but you can change that by modifying the Go code.

Once again, a big part of tabSpace.go relates to error handling because many
strange things can happen when you try to open a file for reading!

According to the Unix philosophy, the output of tabSpace.go will be printed on
the screen and will not be saved in a new text file. Using tabSpace.go with
wc(1) can prove its correctness:

Download from finelybook www.finelybook.com

274

$ go run tabSpace.go -t cp.go > convert
$ wc convert cp.go
 76 192 1517 convert
 76 192 1286 cp.go
 152 384 2803 total
$ go run tabSpace.go -s convert | wc
 76 192 1286

Download from finelybook www.finelybook.com

275

Interprocess communication
Interprocess communication (IPC), putting it simply, is allowing Unix
processes to talk to each other. Various techniques exist that allow processes
and programs to talk to each other. The single most popular technique used in
Unix systems is the pipe, which exists since the early Unix days. Chapter 8,
Processes and Signals, will talk more about implementing Unix pipes in Go.
Another form of IPC is Unix domain sockets, which will also be discussed in
Chapter 8, Processes and Signals.

Chapter 12, Network Programming, will talk about another form of
Interprocess communication, which is network sockets. Shared memory also
exists, but Go is against the use of shared memory as a means of
communication. Chapter 9, Goroutines - Basic Features, and Chapter 10,
Goroutines - Advanced Features, will show various techniques that allow
goroutines to communicate with others and share and exchange data.

Download from finelybook www.finelybook.com

276

Sparse files in Go
Large files that are created with the os.Seek() function may have holes in
them and occupy fewer disk blocks than files with the same size, but without
holes in them; such files are called sparse files. This section will develop a
program that creates sparse files.

The Go code of sparse.go will be presented in three parts. The first part is the
following:

package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"
 "strconv"
)

The second part of sparse.go has the following Go code:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("usage: %s SIZE filename\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 SIZE, _ := strconv.ParseInt(os.Args[1], 10, 64)
 filename := os.Args[2]

 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

The strconv.ParseInt() function is used for converting the command-line
argument that defines the size of the sparse file from its string value to its
integer value. Additionally, the os.Stat() call makes sure that you will not
accidentally overwrite an existing file.

The last part is where the action takes place:

Download from finelybook www.finelybook.com

277

 fd, err := os.Create(filename)
 if err != nil {
 log.Fatal("Failed to create output")
 }

 _, err = fd.Seek(SIZE-1, 0)
 if err != nil {
 fmt.Println(err)
 log.Fatal("Failed to seek")
 }

 _, err = fd.Write([]byte{0})
 if err != nil {
 fmt.Println(err)
 log.Fatal("Write operation failed")
 }

 err = fd.Close()
 if err != nil {
 fmt.Println(err)
 log.Fatal("Failed to close file")
 }
}

First, you try to create the desired sparse file using os.Create(). Then, you call
fd.Seek() in order to make the file bigger without adding actual data. Lastly,
you write a byte to it using fd.Write(). As you do not have anything more to
do with the file, you call fd.Close() and you are done.

Executing sparse.go generates the following output:

$ go run sparse.go 1000 test
$ go run sparse.go 1000 test
File test already exists.
exit status 1

How can you tell whether a file is a sparse file or not? You will learn this in a
while, but first, let's create some files:

$ go run sparse.go 100000 testSparse
$ dd if=/dev/urandom bs=1 count=100000 of=noSparseDD
100000+0 records in
100000+0 records out
100000 bytes (100 kB) copied, 0.152511 s, 656 kB/s
$ dd if=/dev/urandom seek=100000 bs=1 count=0 of=sparseDD
0+0 records in
0+0 records out
0 bytes (0 B) copied, 0.000159399 s, 0.0 kB/s
$ ls -l noSparseDD sparseDD testSparse
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 noSparseDD
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 sparseDD
-rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:40 testSparse

Download from finelybook www.finelybook.com

278

Note that some Unix variants will not create sparse files: the
first such Unix variant that comes to mind is macOS that uses
the HFS filesystem. Therefore, for better results, you can
execute all these commands on a Linux machine.

So, how can you tell if any of these three files is a sparse file or not? The -s
flag of the ls(1) utility shows the number of filesystem blocks actually used
by a file. So, the output of the ls -ls command allows you to detect if you are
dealing with a sparse file or not:

$ ls -ls noSparseDD sparseDD testSparse
104 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 noSparseDD
 0 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:43 sparseDD
 8 -rw-r--r-- 1 mtsouk mtsouk 100000 Apr 29 21:40 testSparse

Now look at the first column of the output. The noSparseDD file, which was
generated using the dd(1) utility, is not a sparse file. The sparseDD file is a
sparse file generated using the dd(1) utility. Lastly, the testSparse is also a
sparse file that was created using sparse.go.

Download from finelybook www.finelybook.com

279

Reading and writing data records
This section will teach you how to deal with writing and reading data records.
What differentiates a record from other kinds of text data is that a record has
a given structure with a specific number of fields: think of it as a row from a
table in a relational database. Actually, records can be very useful for storing
data in tables in case you want to develop your own database server in Go!

The Go code of records.go will save data in the CSV format and will be
presented in four parts. The first part contains the following Go code:

package main

import (
 "encoding/csv"
 "fmt"
 "os"
)

So, this is where you have to declare that you are going to read or write data
in the CSV format. The second part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Need just one filename!")
 os.Exit(-1)
 }

 filename := os.Args[1]
 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

The third part of the program is as follows:

 output, err := os.Create(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 defer output.Close()

 inputData := [][]string{{"M", "T", "I."}, {"D", "T", "I."},

Download from finelybook www.finelybook.com

280

{"M", "T", "D."}, {"V", "T", "D."}, {"A", "T", "D."}}
 writer := csv.NewWriter(output)
 for _, record := range inputData {
 err := writer.Write(record)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 }
 writer.Flush()

You should be familiar with the operations in this part; the biggest difference
from what you have seen so far in this chapter is that the writer is from the
csv package.

The last part of records.go has the following Go code:

 f, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 return
 }
 defer f.Close()

 reader := csv.NewReader(f)
 reader.FieldsPerRecord = -1
 allRecords, err := reader.ReadAll()
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

 for _, rec := range allRecords {
 fmt.Printf("%s:%s:%s\n", rec[0], rec[1], rec[2])
 }
}

The reader reads the entire file at once to make the whole operation faster.
However, if you are dealing with huge data files, you might need to read
smaller parts of the file each time until you have read the complete file. The
used reader is from the csv package.

Executing records.go will create the following output:

$ go run records.go recordsDataFile
M:T:I.
D:T:I.
M:T:D.
V:T:D.
A:T:D.

Download from finelybook www.finelybook.com

281

$ ls -l recordsDataFile
-rw-r--r-- 1 mtsouk staff 35 May 2 19:20 recordsDataFile

The CSV file, which is named recordsDataFile, contains the following data:

$ cat recordsDataFile
M,T,I.
D,T,I.
M,T,D.
V,T,D.
A,T,D.

Download from finelybook www.finelybook.com

282

File locking in Go
There are times that you do not want any other child of the same process to
change a file or even access it because you are changing its data and you do
not want the other processes to read incomplete or inconsistent data.
Although you will learn more about file locking and go routines in Chapter 9,
Goroutines - Basic Features and Chapter 10, Goroutines - Advanced Features,
this chapter will present a small Go example without a detailed explanation in
order to give you an idea about how things work: you should wait until Chapte
r 9, Goroutines - Basic Features and Chapter 10, Goroutines - Advanced
Features, to learn more.

The presented technique will use Mutex, which is a general synchronization
mechanism. The Mutex lock will allow us to lock a file from within the same
Go process. As a result, this technique has nothing to do with the use of the
flock(2) system call.

Various techniques exist for file locking. One of them is by
creating an additional file that signifies that another program
or process is using a given resource. The presented technique is
more suitable for programs that use multiple go routines.

The file locking technique for writing will be illustrated in fileLocking.go,
which will be presented in four parts. The first part is the following:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "sync"
 "time"
)

var mu sync.Mutex

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

Download from finelybook www.finelybook.com

283

The second part is the following:

func writeDataToFile(i int, file *os.File, w *sync.WaitGroup) {
 mu.Lock()
 time.Sleep(time.Duration(random(10, 1000)) * time.Millisecond)
 fmt.Fprintf(file, "From %d, writing %d\n", i, 2*i)
 fmt.Printf("Wrote from %d\n", i)
 w.Done()
mu.Unlock()
}

The locking of the file is done using the mu.Lock() statement and the unlocking
of the file with the mu.Unlock() statement.

The third part is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Println("Please provide one command line argument!")
 os.Exit(-1)
 }

 filename := os.Args[1]
 number := 3

 file, err := os.OpenFile(filename, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

The last part is the following Go code:

 var w *sync.WaitGroup = new(sync.WaitGroup)
 w.Add(number)

 for r := 0; r < number; r++ {
 go writeDataToFile(r, file, w)
 }

 w.Wait()
}

Executing fileLocking.go will create the following output:

$ go run fileLocking.go 123
Wrote from 0
Wrote from 2
Wrote from 1
$ cat /tmp/swtag.log
From 0, writing 0

Download from finelybook www.finelybook.com

284

From 2, writing 4
From 1, writing 2

The correct version of fileLocking.go has a call to mu.Unlock() at the end of the
writeDataToFile() function, which allows all goroutines to use the file. If you
remove that call to mu.Unlock() from the writeDataToFile() function, and
execute fileLocking.go, you will get the following output:

$ go run fileLocking.go 123
Wrote from 2
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc42001024c)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:47 +0x34
sync.(*WaitGroup).Wait(0xc420010240)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/waitgroup.go:131 +0x7a
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:47 +0x172

goroutine 5 [semacquire]:
sync.runtime_SemacquireMutex(0x112dcbc)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:62 +0x34
sync.(*Mutex).Lock(0x112dcb8)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/mutex.go:87 +0x9d
main.writeDataToFile(0x0, 0xc42000c028, 0xc420010240)
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:18 +0x3f
created by main.main
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:44 +0x151

goroutine 6 [semacquire]:
sync.runtime_SemacquireMutex(0x112dcbc)
 /usr/local/Cellar/go/1.8.1/libexec/src/runtime/sema.go:62 +0x34
sync.(*Mutex).Lock(0x112dcb8)
 /usr/local/Cellar/go/1.8.1/libexec/src/sync/mutex.go:87 +0x9d
main.writeDataToFile(0x1, 0xc42000c028, 0xc420010240)
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:18 +0x3f
created by main.main
 /Users/mtsouk/Desktop/goBook/ch/ch6/code/fileLocking.go:44 +0x151
exit status 2
$ cat 123
From 2, writing 4

The reason for getting this output is that apart from the first goroutine that
will be able to execute the mu.Lock() statement, the rest of them cannot get
Mutex. Therefore, they cannot write to the file, which means that they will
never finish their jobs and wait forever, which is the reason that Go is
generating the aforementioned error messages.

If you do not completely understand this example, you should wait until Chapt

Download from finelybook www.finelybook.com

285

er 9, Goroutines - Basic Features and Chapter 10, Goroutines - Advanced
Features.

Download from finelybook www.finelybook.com

286

A simplified Go version of the dd
utility
The dd(1) tool can do many things, but this section will implement a small
part of its functionality. Our version of dd(1) will include support for two
command-line flags: one for specifying the block size in bytes (-bs) and the
other for specifying the total number of blocks that will be written (-count).
Multiplying these two values will give you the size of the generated file in
bytes.

The Go code is saved as ddGo.go and will be presented to you in four parts.
The first part is the expected preamble:

package main

import (
 "flag"
 "fmt"
 "math/rand"
 "os"
 "time"
)

The second part contains the Go code of two functions:

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

func createBytes(buf *[]byte, count int) {
 if count == 0 {
 return
 }
 for i := 0; i < count; i++ {
 intByte := byte(random(0, 9))
 *buf = append(*buf, intByte)
 }
}

The first function is for getting random numbers and the second one is for
creating a byte slice with the desired size filled with random numbers.

Download from finelybook www.finelybook.com

287

The third part of ddGo.go is the following:

func main() {
 minusBS := flag.Int("bs", 0, "Block Size")
 minusCOUNT := flag.Int("count", 0, "Counter")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Println("Not enough arguments!")
 os.Exit(-1)
 }

 if *minusBS < 0 || *minusCOUNT < 0 {
 fmt.Println("Count or/and Byte Size < 0!")
 os.Exit(-1)
 }

 filename := flags[0]
 rand.Seed(time.Now().Unix())

 _, err := os.Stat(filename)
 if err == nil {
 fmt.Printf("File %s already exists.\n", filename)
 os.Exit(1)
 }

 destination, err := os.Create(filename)
 if err != nil {
 fmt.Println("os.Create:", err)
 os.Exit(1)
 }

Here, you mainly deal with the command-line arguments of the program.

The last part is the following:

 buf := make([]byte, *minusBS)
 buf = nil
 for i := 0; i < *minusCOUNT; i++ {
 createBytes(&buf, *minusBS)
 if _, err := destination.Write(buf); err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 buf = nil
 }
}

The reason for emptying the buf byte slice each time you want to call
createBytes() is that you do not want the buf byte slice to get bigger and bigger
each time you call the createBytes() function. This happens because the

Download from finelybook www.finelybook.com

288

append() function adds data at the end of a slice without touching the existing
data.

In the first version of ddGo.go that I wrote, I forgot to empty the
buf byte slice before each call to createBytes(). Consequently,
the generated files were bigger than expected! It took me a
while and a couple of fmt.Println(buf) statements to find out the
reason for this unforeseen behavior!

The execution of ddGo.go will generate the files you want quite fast:

$ time go run ddGo.go -bs=10000 -count=5000 test3

real 0m1.655s
user 0m1.576s
sys 0m0.104s
$ ls -l test3
-rw-r--r-- 1 mtsouk staff 50000000 May 6 15:27 test3

Additionally, the use of random numbers makes the generated files of the
same size different from each other:

$ go run ddGo.go -bs=100 -count=50 test1
$ go run ddGo.go -bs=100 -count=50 test2
$ ls -l test1 test2
-rw-r--r-- 1 mtsouk staff 5000 May 6 15:26 test1
-rw-r--r-- 1 mtsouk staff 5000 May 6 15:26 test2
$ diff test1 test2
Binary files test1 and test2 differ

Download from finelybook www.finelybook.com

289

Exercises
1. Visit the documentation page of the bufio package that can be found at ht

tps://golang.org/pkg/bufio/.
2. Visit the documentation of the io package at https://golang.org/pkg/io/.
3. Try to make wc.go faster.
4. Implement the functionality of tabSpace.go, but try to read your input text

files character by character instead of line by line.
5. Change the code of tabSpace.go in order to be able to get the number of

spaces that will replace a tab as a command-line argument.
6. Learn more information about the little endian and the big endian

representations.

Download from finelybook www.finelybook.com

290

https://golang.org/pkg/bufio/
https://golang.org/pkg/io/

Summary
In this chapter, we talked about file input and output in Go. Among other
things, we developed Go versions of the wc(1), dd(1), and cp(1) Unix
command-line utilities while learning more about the io and bufio packages of
the Go standard library, which allow you to read from and write to files.

In the next chapter, we will talk about another important subject, which is the
Go way of working with the system files of a Unix machine. Additionally,
you will learn how to read and change the Unix file permissions as well as
how to find the owner and the group of a file. Also, we will talk about log
files and how you can use pattern matching to acquire the information you
want from log files.

Download from finelybook www.finelybook.com

291

Working with System Files
In the previous chapter, we talked about file input and output in Go, and
created Go versions of the wc(1), dd(1), and cp(1) utilities.

While the main subject of this chapter is Unix system files and log files, you
will also learn many other things, including pattern matching, file
permissions, working with users and groups, and dealing with dates and times
in Go. For all these subjects, you will see handy Go codes that will explain
the presented techniques, and these can be used in your own Go programs
without requiring too many changes.

So, this chapter will talk about the following topics:

Appending data to an existing file
Reading a file and altering each one of its lines
Regular expressions and pattern matching in Go
Sending information to Unix log files
Working with dates and times in Go
Working with Unix file permissions
Working with user IDs and group IDs
Learning more information about files and directories
Processing log files and extracting useful information from them
Generating difficult to guess passwords using random numbers

Download from finelybook www.finelybook.com

292

Which files are considered system
files?
Each Unix operation system contains files that are responsible for the
configuration of the system as well as its various services. Most of these files
are located in the /etc directory. I also like to consider log files as system
files, although some people might disagree. Usually, most system log files
can be found inside /var/log. However, the log files of the Apache and the
nginx web server can be found elsewhere, depending on their configuration.

Download from finelybook www.finelybook.com

293

Logging in Go
The log package provides a general way to log information on your Unix
machine, whereas the log/syslog Go package allows you to send information
to the system logging service using the logging level and the logging facility
you want. Also, the time package can help you work with dates and times.

Download from finelybook www.finelybook.com

294

Putting data at the end of a file
As discussed in Chapter 6, File Input and Output, in this chapter, we will talk
about opening a file for writing without destroying its existing data.

The Go program that will illustrate the technique, appendData.go, will accept
two command-line arguments: the message you want to append and the name
of the file that will store the text. This program will be presented in three
parts.

The first part of appendData.go contains the following Go code:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

As expected, the first part of the program contains the Go packages that will
be used in the program.

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s message filename\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }
 message := arguments[1]
 filename := arguments[2]

 f, err := os.OpenFile(filename,
os.O_RDWR|os.O_APPEND|os.O_CREATE, 0660)

The desired task is done by the os.O_APPEND flag of the os.OpenFile() function
that tells Go to write at the end of the file. Additionally, the os.O_CREATE flag
will make os.OpenFile() to create the file if it does not exist, which is pretty
handy because it saves you from having to write Go code that tests whether
the file is already there or not.

Download from finelybook www.finelybook.com

295

The last part of the program is the following:

 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 defer f.Close()

 fmt.Fprintf(f, "%s\n", message)
}

The fmt.Fprintf() function is used here in order to write the message to the
file as plain text. As you can see, appendData.go is a relatively small Go
program that does not contain any surprises.

Executing appendData.go will create no output, but it will do its job, as you can
see from the output of the cat(1) utility before and after the execution of
appendData.go:

$ cat test
[test]: test
: test
$ go run appendData.go test test
$ cat test
[test]: test
: test
test

Download from finelybook www.finelybook.com

296

Altering existing data
This section will teach you how to modify the contents of a file. The program
that will be developed does a pretty convenient job: it adds a line number in
front of each line of a text file. This means that you will need to read the
input file line by line, keep a variable that will hold the line number value,
and save it using the original name. Additionally, the initial value of the
variable that holds the line number value can be defined when you start the
program. The name of the Go program will be insertLineNumber.go, and it will
be presented in four parts.

First, you will see the expected preamble:

package main

import (
 "flag"
 "fmt"
 "io/ioutil"
 "os"
 "strings"
)

The second part is mainly the configuration of the flag package:

func main() {
 minusINIT := flag.Int("init", 1, "Initial Value")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: insertLineNumber <files>\n")
 os.Exit(1)
 }

 lineNumber := *minusINIT
 for _, filename := range flags {
 fmt.Println("Processing:", filename)

The lineNumber variable is initiated by the value of the minusINIT flag.
Additionally, the utility can process multiple files using a for loop.

The third part of the program is the following:

Download from finelybook www.finelybook.com

297

 input, err := ioutil.ReadFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 lines := strings.Split(string(input), "\n")

As you can see, insertLineNumber.go reads its input file all at once using
ioutil.ReadFile(), which might not be so efficient when processing huge text
files. However, with today's computers, this should not be a problem. A
better approach would be to read the input file line by line, write each altered
line to a temporary file, and then replace the original file with the temporary
one.

The last part of the utility is the following:

 for i, line := range lines {
 lines[i] = fmt.Sprintf("%d: %s ", lineNumber, line)
 lineNumber = lineNumber + 1
 }

 lines[len(lines)-1] = ""
 output := strings.Join(lines, "\n")
 err = ioutil.WriteFile(filename, []byte(output), 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 }
 fmt.Println("Processed", lineNumber-*minusINIT, "lines!")
}

As the range loop will introduce an extra line at the end of the file, you have
to delete the last line in the lines slice using the lines[len(lines)-1] = ""
statement, which means that the program assumes that all the files it
processes end with a new line. If your text files do not do that, then you
might want to change the code of insertLineNumber.go or add a new line at the
end of your text files.

The running of insertLineNumber.go generates no visible output apart from the
filename of each file it processes and the total number of processed lines.
However, you can see the results of its execution by looking at the contents
of the files you processed:

$ cat test

Download from finelybook www.finelybook.com

298

a

b
$ go run insertLineNumber.go -init=10 test
Processing: test
Processed 4 lines!
$ cat test
10: a
11:
12: b

If you try to process the same input file multiple times, as in the following
example, an interesting thing will happen:

$ cat test
a

b
$ go run insertLineNumber.go -init=10 test test test
Processing: test
Processing: test
Processing: test
Processed 12 lines!
$ cat test
18: 14: 10: a
19: 15: 11:
20: 16: 12: b

Download from finelybook www.finelybook.com

299

About log files
This part will teach you how to send information from a Go program to the
logging service and therefore to system log files. Despite the obvious fact that
it is good to keep information stored, log files are necessary for server
processes because there is no other way for a server process to send
information to the outside world, as it has no Terminal to send any output.

Log files are important and you should not underestimate the
value of the information stored in them. Log files should be the
first place to look for help when strange things start happening
on a Unix machine.

Generally speaking, using a log file is better than displaying the output on the
screen for two reasons: first, the output does not get lost, as it is stored on a
file, and second, you can search and process log files using Unix tools, such
as grep(1), awk(1), and sed(1), which cannot be done when messages are
printed on a Terminal window.

Download from finelybook www.finelybook.com

300

About logging
All Unix machines have a separate server process for logging log files. On
macOS machines, the name of the process is syslogd(8). On the other hand,
most Linux machines use rsyslogd(8), which is an improved and more reliable
version of syslogd(8), which was the original Unix system utility for message
logging.

However, despite the Unix variant you are using, or the name of the server
process used for logging, logging works the same way on every Unix
machine and therefore does not affect the Go code that you will write.

The best way to watch one or more log files is with the help of
the tail(1) utility, followed by the -f flag and the name of the
log file you want to watch. The -f flag tells tail(1) to wait for
additional data. You will need to terminate such a tail(1)
command by pressing Ctrl + C.

Download from finelybook www.finelybook.com

301

Logging facilities
A logging facility is like a category used for logging information. The value
of the logging facility part can be any one of auth, authpriv, cron, daemon,
kern, lpr, mail, mark, news, syslog, user, UUCP, local0, local1, local2,
local3, local4, local5, local6, and local7; this is defined inside
/etc/syslog.conf, /etc/rsyslog.conf, or another appropriate file depending on
the server process used for system logging on your Unix machine. This
means that if a logging facility is not defined and therefore handled, the log
messages you send to it might get lost.

Download from finelybook www.finelybook.com

302

Logging levels
A logging level or priority is a value that specifies the severity of the log
entry. There exist various logging levels including debug, info, notice,
warning, err, crit, alert, and emerg, in reverse order of severity.

Look at the /etc/rsyslog.conf file of a Linux machine to learn more about how
to control logging facilities and logging levels.

Download from finelybook www.finelybook.com

303

The syslog Go package
This subsection will present a Go program that works on all Unix machines
and sends data to the logging service in various ways. The name of the
program is useSyslog.go, and it will be presented in four parts.

First, you will see the expected preamble:

package main

import (
 "fmt"
 "log"
 "log/syslog"
 "os"
 "path/filepath"
)

You have to use the log package for logging and the log/syslog package for
defining the logging facility and the logging level of your program.

The second part is the following:

func main() {
 programName := filepath.Base(os.Args[0])
 sysLog, e := syslog.New(syslog.LOG_INFO|syslog.LOG_LOCAL7, programName)
 if e != nil {
 log.Fatal(e)
 }
 sysLog.Crit("Crit: Logging in Go!")

The syslog.New() function call, which returns a writer, tells your program
where to direct all log messages. The good thing is that you already know
how to use a writer!

Note that the developer should define both the priority and the
facility that a program uses.

However, even with a defined priority and facility, the log/syslog package
allows you to send direct log messages to other priorities using functions

Download from finelybook www.finelybook.com

304

such as sysLog.Crit().

The third part of the program is the following:

 sysLog, e = syslog.New(syslog.LOG_ALERT|syslog.LOG_LOCAL7, "Some program!")
 if e != nil {
 log.Fatal(sysLog)
 }
sysLog.Emerg("Emerg: Logging in Go!")

This part shows that you can call syslog.New() multiple times in the same
program. Once again, calling the Emerg() function allows you to bypass what
was defined by the syslog.New() function.

The last part is the following:

 fmt.Fprintf(sysLog, "log.Print: Logging in Go!")
}

This is the only call that uses the logging priority and the logging facility that
were defined by syslog.New(), by directly writing to the sysLog writer.

Executing useLog.go will generate some output on the screen, but it will also
write data to the appropriate log files. On a macOS Sierra or a Mac OS X
machine, you will see the following:

$ go run useSyslog.go

Broadcast Message from _iconservices@iMac.local
 (no tty) at 18:01 EEST...

Emerg: Logging in Go!
$ grep "Logging in Go" /var/log/* 2>/dev/null
/var/log/system.log:May 19 18:01:31 iMac useSyslog[22608]: Crit: Logging in Go!
/var/log/system.log:May 19 18:01:31 iMac Some program![22608]: Emerg: Logging in Go!
/var/log/system.log:May 19 18:01:31 iMac Some program![22608]: log.Print: Logging in Go!

On a Debian Linux machine, you will see the following results:

$ go run useSyslog.go

Message from syslogd@mail at May 19 18:03:00 ...
Some program![1688]: Emerg: Logging in Go!
$
Broadcast message from systemd-journald@mail (Fri 2017-05-19 18:03:00 EEST):

useSyslog[1688]: Some program![1688]: Emerg: Logging in Go!

Download from finelybook www.finelybook.com

305

$ tail -5 /var/log/syslog
May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in Go!
May 19 18:03:00 mail Some program![1688]: Emerg: Logging in Go!
May 19 18:03:00 mail Some program![1688]: log.Print: Logging in Go!
$ grep "Logging in Go" /var/log/* 2>/dev/null
/var/log/cisco.log:May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in Go!
/var/log/cisco.log:May 19 18:03:00 mail Some program![1688]: Emerg: Logging in Go!
/var/log/cisco.log:May 19 18:03:00 mail Some program![1688]: log.Print: Logging in Go!
/var/log/syslog:May 19 18:03:00 mail useSyslog[1688]: Crit: Logging in Go!
/var/log/syslog:May 19 18:03:00 mail Some program![1688]: Emerg: Logging in Go!
/var/log/syslog:May 19 18:03:00 mail Some program![1688]: log.Print: Logging in Go!

The output from the two machines shows that the Linux machine has a
different syslog configuration, which is the reason that the messages from
useLog.go were also written to /var/log/cisco.log.

However, your main concern should not be whether the log messages will be
written to too many files or not; rather if you will be able to find them or not!

Download from finelybook www.finelybook.com

306

Processing log files
This subsection will process a log file that contains client IP addresses in
order to create a summary of them. The name of the Go file will be
countIP.go, and it will be presented in four parts. Note that countIP.go requires
two parameters: the name of the log file and the field that contains the desired
information. As countIP.go does not check whether the given field contains an
IP address or not, it can also be used for other kinds of data if you remove
some of its code.

First, you will see the expected preamble of the program:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "strings"
)

The second part comes with the following Go code, which is the beginning of
the implementation of the main() function:

func main() {
 minusCOL := flag.Int("COL", 1, "Column")
 flag.Parse()
 flags := flag.Args()

 if len(flags) == 0 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 column := *minusCOL
 if column < 0 {
 fmt.Println("Invalid Column number!")
 os.Exit(1)
 }

The countIP.go utility uses the flag package and can process multiple files.

Download from finelybook www.finelybook.com

307

The third part of the program is the following:

 myIPs := make(map[string]int)
 for _, filename := range flags {
 fmt.Println("\t\t", filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 continue
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 continue
 }

Each input file is read line by line, whereas the myIPs map variable is used for
holding the count of each IP address.

The last part of countIP.go is as follows:

 data := strings.Fields(line)
 ip := data[column-1]
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 }

 _, ok := myIPs[ip]
 if ok {
 myIPs[ip] = myIPs[ip] + 1
 } else {
 myIPs[ip] = 1
 }
 }
 }

 for key, _ := range myIPs {
 fmt.Printf("%s %d\n", key, myIPs[key])
 }
}

Here is where the magic happens: first, you extract the desired field from the
working line. Then, you use the net.ParseIP() function to make sure that you
are dealing with a valid IP address: if you want the program to process other

Download from finelybook www.finelybook.com

308

kinds of data, you should delete the Go code that uses the net.ParseIP()
function. After that, you update the contents of the myIPs map based on
whether the current IP address can be found in the map or not: you saw that
code back in Chapter 2, Writing Programs in Go. Finally, you print the
contents of the myIPs map on the screen, and you are done!

Executing countIP.go generates the following output:

$ go run countIP.go /tmp/log.1 /tmp/log.2
 /tmp/log.1
 /tmp/log.2
164.132.161.85 4
66.102.8.135 17
5.248.196.10 15
180.76.15.10 12
66.249.69.40 142
51.255.65.35 7
95.158.53.56 1
64.183.178.218 31
$ go run countIP.go /tmp/log.1 /tmp/log.2 | wc
 1297 2592 21266

However, it would be better if the output was sorted by the count associated
with each IP address, which you can easily do with the help of the sort(1)
Unix utility:

$ go run countIP.go /tmp/log.1 /tmp/log.2 | sort -rn -k2
45.55.38.245 979
159.203.126.63 976
130.193.51.27 698
5.9.63.149 370
77.121.238.13 340
46.4.116.197 308
51.254.103.60 302
51.255.194.31 277
195.74.244.47 201
61.14.225.57 179
69.30.198.242 152
66.249.69.40 142
2.86.9.124 140
2.86.27.46 127
66.249.69.18 125

If you want the first 10 IP addresses, you can filter the previous output with
the head(1) utility as follows:

$ go run countIP.go /tmp/log.1 /tmp/log.2 | sort -rn -k2 | head
45.55.38.245 979
159.203.126.63 976

Download from finelybook www.finelybook.com

309

130.193.51.27 698
5.9.63.149 370
77.121.238.13 340
46.4.116.197 308
51.254.103.60 302
51.255.194.31 277
195.74.244.47 201
61.14.225.57 179

Download from finelybook www.finelybook.com

310

File permissions revisited
There are times that we need to find detailed information about the Unix
permissions of a file. The filePerm.go Go utility will teach you how to read the
Unix file permissions of a file or a directory and print them as a binary
number, a decimal number, and a string. The program will be presented in
three parts. The first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

The second part is as follows:

func tripletToBinary(triplet string) string {
 if triplet == "rwx" {
 return "111"
 }
 if triplet == "-wx" {
 return "011"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "---" {
 return "000"
 }
 if triplet == "r-x" {
 return "101"
 }
 if triplet == "r--" {
 return "100"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "rw-" {
 return "110"
 }
 if triplet == "-w-" {
 return "010"
 }
 return "unknown"
}

Download from finelybook www.finelybook.com

311

func convertToBinary(permissions string) string {
 binaryPermissions := permissions[1:]
 p1 := binaryPermissions[0:3]
 p2 := binaryPermissions[3:6]
 p3 := binaryPermissions[6:9]
 return tripletToBinary(p1) + tripletToBinary(p2) + tripletToBinary(p3)
}

Here, you implement two functions that will help you convert a string with
nine characters that hold the permissions of a file into a binary number. As an
example, the rwxr-x--- string will be converted to 111101000. The initial string
is extracted from the os.Stat() function call.

The last part contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: %s filename\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 filename := arguments[1]
 info, _ := os.Stat(filename)
 mode := info.Mode()

 fmt.Println(filename, "mode is", mode)
 fmt.Println("As string is", mode.String()[1:10])
 fmt.Println("As binary is", convertToBinary(mode.String()))
}

Executing filePerm.go will generate the following output:

$ go run filePerm.go .
. mode is drwxr-xr-x
As string is rwxr-xr-x
As binary is 111101101
$ go run filePerm.go /tmp/swtag.log
/tmp/swtag.log mode is -rw-rw-rw-
As string is rw-rw-rw-
As binary is 110110110

Download from finelybook www.finelybook.com

312

Changing file permissions
This section will explain how to change the Unix permissions of a file or a
directory to the desired value; however, it will not deal with the sticky bit, the
set user ID bit, or the set group ID bit: not because they are difficult to
implement, but because you usually do not need any of these when dealing
with system files.

The name of the utility will be setFilePerm.go, and it will be presented in four
parts. The new file permissions will be given as a string with nine characters
such as rwxrw-rw-.

The first part of setFilePerm.go contains the expected preamble Go code:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
)

The second part is the implementation of the tripletToBinary() function that
you saw in the previous section:

func tripletToBinary(triplet string) string {
 if triplet == "rwx" {
 return "111"
 }
 if triplet == "-wx" {
 return "011"
 }
 if triplet == "--x" {
 return "001"
 }
 if triplet == "---" {
 return "000"
 }
 if triplet == "r-x" {
 return "101"
 }
 if triplet == "r--" {
 return "100"
 }

Download from finelybook www.finelybook.com

313

 if triplet == "--x" {
 return "001"
 }
 if triplet == "rw-" {
 return "110"
 }
 if triplet == "-w-" {
 return "010"
 }
 return "unknown"
}

The third part contains the following Go code:

func convertToBinary(permissions string) string {
 p1 := permissions[0:3]
 p2 := permissions[3:6]
 p3 := permissions[6:9]

 p1 = tripletToBinary(p1)
 p2 = tripletToBinary(p2)
 p3 = tripletToBinary(p3)

 p1Int, _ := strconv.ParseInt(p1, 2, 64)
 p2Int, _ := strconv.ParseInt(p2, 2, 64)
 p3Int, _ := strconv.ParseInt(p3, 2, 64)

 returnValue := p1Int*100 + p2Int*10 + p3Int
 tempReturnValue := int(returnValue)
 returnString := "0" + strconv.Itoa(tempReturnValue)
 return returnString
}

Here, the name of the function is misleading, as it does not return a binary
number: this is my fault.

The last part contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s filename permissions\n",
filepath.Base(arguments[0]))
 os.Exit(1)
 }

 filename, _ := filepath.EvalSymlinks(arguments[1])
 permissions := arguments[2]
 if len(permissions) != 9 {
 fmt.Println("Permissions should be 9 characters
(rwxrwxrwx):", permissions)
 os.Exit(-1)
 }

Download from finelybook www.finelybook.com

314

 bin := convertToBinary(permissions)
 newPerms, _ := strconv.ParseUint(bin, 0, 32)
 newMode := os.FileMode(newPerms)
 os.Chmod(filename, newMode)
}

Here, you get the return value of convertToBinary() and convert it to an
os.FileMode() variable in order to use it with the os.Chmod() function.

Running setFilePerm.go generates the following results:

$ go run setFilePerm.go /tmp/swtag.log rwxrwxrwx
$ ls -l /tmp/swtag.log
-rwxrwxrwx 1 mtsouk wheel 7066 May 22 19:17 /tmp/swtag.log
$ go run setFilePerm.go /tmp/swtag.log rwxrwx---
$ ls -l /tmp/swtag.log
-rwxrwx--- 1 mtsouk wheel 7066 May 22 19:17 /tmp/swtag.log

Download from finelybook www.finelybook.com

315

Finding other kinds of information
about files
The most important information about a Unix file is its owner and its group,
and this section will teach you how to find both of them using Go code. The
findOG.go utility accepts a list of files as its command-line arguments and
returns the owner and the group of each one of them. Its Go code will be
presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "syscall"
)

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Printf("usage: %s <files>\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }

 for _, filename := range arguments[1:] {
 fileInfo, err := os.Stat(filename)
 if err != nil {
 fmt.Println(err)
 continue
 }

In this part, you make a call to the os.Stat() function to make sure that the file
you want to process exists.

The last part of findOG.go comes with the following Go code:

 fmt.Printf("%+v\n", fileInfo.Sys())

Download from finelybook www.finelybook.com

316

 fmt.Println(fileInfo.Sys().(*syscall.Stat_t).Uid)
 fmt.Println(fileInfo.Sys().(*syscall.Stat_t).Gid)
 }
}

Yes, this is the most cryptic code you have seen so far in this book that uses
the return value of os.Stat() to extract the desired information. Additionally,
it is neither portable, which means that it might not work on your Unix
variant, nor you can be sure that it will continue to work in forthcoming
versions of Go!

Sometimes tasks that look easy might take you more time than
expected. One of these tasks is the findOG.go program. This
mainly happens because Go does not have an easy and portable
way to find out the owner and the group of a file. Hopefully, this
will change in the future.

Executing findOG.go on macOS Sierra or Mac OS X will generate the
following output:

$ go run findOG.go /tmp/swtag.log
&{Dev:16777218 Mode:33206 Nlink:1 Ino:50547755 Uid:501 Gid:0 Rdev:0 Pad_cgo_0:[0 0 0 0] Atimespec:{Sec:1495297106 Nsec:0} Mtimespec:{Sec:1495297106 Nsec:0} Ctimespec:{Sec:1495297106 Nsec:0} Birthtimespec:{Sec:1495044975 Nsec:0} Size:2586 Blocks:8 Blksize:4096 Flags:0 Gen:0 Lspare:0 Qspare:[0 0]}
501
0
$ ls -l /tmp/swtag.log
-rw-rw-rw- 1 mtsouk wheel 2586 May 20 19:18 /tmp/swtag.log
$ grep wheel /etc/group
wheel:*:0:root

Here, you can see that the fileInfo.Sys() call returns a plethora of information
from the file in a somehow puzzling format: the information is analogous to
the information from a C call to stat(2). The first line of output is the
contents of the os.Stat.Sys() call, whereas the second line is the user ID (501)
of the owner of the file and the third line is the group ID (0) of the owner of
the file.

Executing findOG.go on a Debian Linux machine will generate the following
output:

$ go run findOG.go /home/mtsouk/connections.data
&{Dev:2048 Ino:1196167 Nlink:1 Mode:33188 Uid:1000 Gid:1000 X__pad0:0 Rdev:0 Size:9626800 Blksize:4096 Blocks:18840 Atim:{Sec:1412623801 Nsec:0} Mtim:{Sec:1495307521 Nsec:929812185} Ctim:{Sec:1495307521 Nsec:929812185} X__unused:[0 0 0]}
1000
1000
$ ls -l /home/mtsouk/connections.data

Download from finelybook www.finelybook.com

317

-rw-r--r-- 1 mtsouk mtsouk 9626800 May 20 22:12 /home/mtsouk/connections.data
code$ grep ^mtsouk /etc/group
mtsouk:x:1000:

The good news here is that findOG.go worked on both macOS Sierra and
Debian Linux, even though macOS Sierra was using Go version 1.8.1 and
Debian Linux was using Go version 1.3.3!

Most of the presented Go code will be used later in this chapter for the
implementation of the userFiles.go utility.

Download from finelybook www.finelybook.com

318

More pattern matching examples
This section will present regular expressions that match more difficult
patterns than the ones you have seen so far in this book. Just remember that
regular expressions and pattern matching are practical subjects that you
should learn by experimenting and sometimes failing, not by reading about
them.

If you are very careful with regular expressions in Go, you can
easily read or change almost all the system files of a Unix
system that are in plain text format. Just be extra careful when
modifying system files!

Download from finelybook www.finelybook.com

319

A simple pattern matching example
The example of this section will improve the functionality of the countIP.go
utility, by developing a program that automatically detects the field with the
IP address; therefore, it will not require the user to define the field of each log
entry that contains the IP address. To make things simpler, the created
program will only process the first IP address of each line: findIP.go takes a
single command-line argument, which is the name of the log file you want to
process. The program will be presented in four parts.

The first part of findIP.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "net"
 "os"
 "path/filepath"
 "regexp"
)

The second part is where most of the magic happens with the help of a
function:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

The regular expression is pretty complex considering that we just want to
match four decimal numbers in the 0-255 range that are separated by dots,
which mainly shows that regular expressions can be pretty complicated when
you want to be methodical.

But let me explain this to you in more detail. An IP address has four parts
separated by dots. Each one of these parts can have a value between 0 and

Download from finelybook www.finelybook.com

320

255, which means that number 257 is not an acceptable value: this is the main
reason that the regular expression is so complex. The first case is for numbers
between 250 and 255. The second case is for numbers between 200 and 249,
and the third case is for numbers between 100 and 199. The last case is for
catching values between 0 and 99.

The third part of findIP.go is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s logFile\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 filename := os.Args[1]

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s\n", err)
 os.Exit(-1)
 }
 defer f.Close()

 myIPs := make(map[string]int)
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 break
 }

Here, you read the input log file line by line using bufio.NewReader().

The last part has the following Go code, which deals with processing the
matches of the regular expression:

 ip := findIP(line)
 trial := net.ParseIP(ip)
 if trial.To4() == nil {
 continue
 } else {
 _, ok := myIPs[ip]
 if ok {
 myIPs[ip] = myIPs[ip] + 1
 } else {
 myIPs[ip] = 1
 }
 }
 }

Download from finelybook www.finelybook.com

321

 for key, _ := range myIPs {
 fmt.Printf("%s %d\n", key, myIPs[key])
 }
}

As you can see, findIP.go executes an additional checking on the IP that was
found by the function that performed the pattern matching operation, using
net.ParseIP(); this mainly happens because IP addresses are pretty tricky, and
it is considered good practice to double check them! Additionally, this
catches the case where findIP() returns nothing because a valid IP was not
found in the processed line. The last thing the program does before exiting is
to print the contents of the myIPs map.

Consider how many incredible and useful utilities you can
develop with a small amount of Go code: it is really amazing!

Executing findIP.go on a Linux machine in order to process the
/var/log/auth.log log file will create the following output:

$ wc /var/log/auth.log
 1499647 20313719 155224677 /var/log/auth.log
$ go run findIP.go /var/log/auth.log
39.114.101.107 1003
111.224.233.41 10
189.41.147.179 306
55.31.112.181 1
5.141.131.102 10
171.60.251.143 30
218.237.65.48 1
24.16.210.120 8
199.115.116.50 3
139.160.113.181 1

You can sort the previous output by the number of times an IP was found and
display the 10 most popular IP addresses, as shown here:

$ go run findIP.go /var/log/auth.log | sort -nr -k2 | head
218.65.30.156 102533
61.177.172.27 37746
218.65.30.43 34640
109.74.11.18 32870
61.177.172.55 31968
218.65.30.124 31649
59.63.188.3 30970
61.177.172.28 30023
116.31.116.30 29314

Download from finelybook www.finelybook.com

322

61.177.172.14 28615

So, in this case, the findIP.go utility is used for checking the security of your
Linux machine!

Download from finelybook www.finelybook.com

323

An advanced example of pattern
matching
In this section, you will learn how to swap the values of two fields of each
line of a text file, provided they are in the correct format. This mainly
happens in log files or other text files where you want to scan a line for
certain types of data, and if the data is found, you might need to do something
with them: in this case, you will change the place of the two values.

The name of the program will be swapRE.go, and it will be presented in four
parts. Once again, the program will read a text file line by line and try to
match the desired strings before swapping them. The utility will print the
contents of the new file on the screen; it is the responsibility of the user to
save the results to a new file. The format of the log entries that swapRE.go
expects to process are similar to the following:

127.0.0.1 - - [24/May/2017:06:41:11 +0300] "GET /contact HTTP/1.1" 200 6048 "http://www.mtsoukalos.eu/" "Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko" 132953

The entries from the previous line that the program will swap are
[24/May/2017:06:41:11 +0300] and 132953, which are the date and time and the
time it took the browser to get the desired information, respectively; the
program expects to find this at the end of each line. However, the regular
expression also checks that the date and time are in the correct format and
that the last field of each log entry is indeed a number.

As you will see, using regular expressions in Go, can be
perplexing sometimes, mainly because regular expressions are
relatively difficult to build, in general.

The first part of swapRE.go will be the expected preamble:

package main

import (
 "bufio"
 "flag"
 "fmt"

Download from finelybook www.finelybook.com

324

 "io"
 "os"
 "regexp"
)

The second part comes with the following Go code:

func main() {
 flag.Parse()
 if flag.NArg() != 1 {
 fmt.Println("Please provide one log file to process!")
 os.Exit(-1)
 }
 numberOfLines := 0
 numberOfLinesMatched := 0

 filename := flag.Arg(0)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

There is nothing particularly interesting or new here.

The third part is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

Here is the Go code that allows you to process the input file line by line.

The last part of swapRE.go is the following:

 numberOfLines++
 r := regexp.MustCompile(`(.*) (\[\d\d\/(\w+)/\d\d\d\d:\d\d:\d\d:\d\d(.*)\]) (.*) (\d+)`)
 if r.MatchString(line) {
 numberOfLinesMatched++
 match := r.FindStringSubmatch(line)
 fmt.Println(match[1], match[6], match[5], match[2])
 }
 }
 fmt.Println("Line processed:", numberOfLines)
 fmt.Println("Line matched:", numberOfLinesMatched)
}

Download from finelybook www.finelybook.com

325

As you can imagine, complex regular expressions, such as the one presented
here, are built step by step, not all at once. Even in that case, you may still
fail many times in the process because even the tiniest mistake in a complex
regular expression will cause it to not do what you expect: extensive testing is
the key here!

The parentheses used inside a regular expression allow you to reference each
match afterwards and are very handy when you want to process what you
have matched. What you want here is to find a [character, then two digits
that will be the day of the month, then a word, which will be the name of the
month, and then four digits that will be the year. Next, you match anything
else until you find a] character. Then you match all the digits at the end of
each line.

Note that there might exist alternative ways to write the same
regular expression. The general advice here is to write it in a
way that is clear and that you can understand.

Executing swapRE.gowith, a small test log file will generate the following
output:

$ go run swapRE.go /tmp/log.log
127.0.0.1 - - 28787 "GET /taxonomy/term/35/feed HTTP/1.1" 200 2360 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)" [24/May/2017:07:04:48 +0300]
- - 32145 HTTP/1.1" 200 2616 "http://www.mtsoukalos.eu/" "Mozilla/5.0 (compatible; inoreader.com-like FeedFetcher-Google)" [24/May/2017:07:09:24 +0300]
Line processed: 3
Line matched: 2

Download from finelybook www.finelybook.com

326

Renaming multiple files using
regular expressions
The last section on pattern matching and regular expressions will work on
filenames and will allow you to rename multiple files. As you can guess, a
walk function will be used in the program while a regular expression will
match the filenames you want to rename.

When dealing with files, you should be extra careful because
you might accidentally destroy things! Putting it simply, do not
test such utilities on a production server.

The name of the utility will be multipleMV.go, and it will be presented in three
parts. What multipleMV.go will do is insert a string in front of every filename
that is a match to the given regular expression.

The first part is the expected preamble:

package main

import (
 "flag"
 "fmt"
 "os"
 "path/filepath"
 "regexp"
)

var RE string
var renameString string

The two global variables save you from having to use many parameters in
your functions. Additionally, as the signature of the walk() function, presented
in a while, cannot change, it will not be possible to pass them as parameters
to walk(). So, in this case, having two global parameters makes things easier
and simpler.

The second part contains the following Go code:

Download from finelybook www.finelybook.com

327

func walk(path string, f os.FileInfo, err error) error {
 regex, err := regexp.Compile(RE)
 if err != nil {
 fmt.Printf("Error in RE: %s\n", RE)
 return err
 }

 if path == "." {
 return nil
 }
 nameOfFile := filepath.Base(path)
 if regex.MatchString(nameOfFile) {
 newName := filepath.Dir(path) + "/" + renameString + "_" + nameOfFile
 os.Rename(path, newName)
 }
 return nil
}

All the functionality of the program is embedded in the walk() function. After
a successful match, the new filename is stored in the newName variable before
executing the os.Rename() function.

The last part of multipleMV.go is the implementation of the main() function:

func main() {
 flag.Parse()
 if flag.NArg() != 3 {
 fmt.Printf("Usage: %s REGEXP RENAME Path", filepath.Base(os.Args[0]))
 os.Exit(-1)
 }

 RE = flag.Arg(0)
 renameString = flag.Arg(1)
 Path := flag.Arg(2)
 Path, _ = filepath.EvalSymlinks(Path)
 filepath.Walk(Path, walk)
}

Here, there is nothing you have not seen before: the only interesting thing is
the call to filepath.EvalSymlinks() in order to not have to deal with symbolic
links.

Using multipleMV.go is as simple as running the following commands:

$ ls -l /tmp/swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_new_swtag.log

Download from finelybook www.finelybook.com

328

-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_new_swtag.log
$ go run multipleMV.go 'log$' new /tmp
$ ls -l /tmp/new_new_new_swtag.log
-rw-rw-rw- 1 mtsouk wheel 446 May 22 09:18 /tmp/new_new_new_swtag.log

Download from finelybook www.finelybook.com

329

Searching files revisited
This section will teach you how to find files using criteria such as user ID,
group ID, and file permissions. Although this section could have been
included in Chapter 5, Files and Directories, I decided to put it here, because
there are times when you will want to use this kind of information in order to
inform a system administrator that there is something wrong with the system.

Download from finelybook www.finelybook.com

330

Finding the user ID of a user
This subsection will present a program that shows the user ID of a user, given
their username, which is more or less the output of the id -u utility:

$ id -u
33
$ id -u root
0

The fact that there exists a Go package named user, which can be found under
the os package that can help you implement the desired task, should not come
as surprise to you. The name of the program will be userID.go, and it will be
presented in two parts. If you give no command-line arguments to userID.go,
it will print the user ID of the current user; otherwise, it will print the user ID
of the given username.

The first part of userID.go is the following:

package main

import (
 "fmt"
 "os"
 "os/user"
)

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 uid := os.Getuid()
 fmt.Println(uid)
 return
 }

The os.Getuid() function returns the user ID of the current user.

The second part of userID.go comes with the following Go code:

 username := arguments[1]
 u, err := user.Lookup(username)
 if err != nil {
 fmt.Println(err)
 return

Download from finelybook www.finelybook.com

331

 }
 fmt.Println(u.Uid)
}

Given a username, the user.Lookup() function returns a user.User compound
value. We will only use the Uid field of that compound value to find the user
ID of the given username.

Executing userID.go will generate the following output:

$ go run userID.go
501
$ go run userID.go root
0
$ go run userID.go doesNotExist
user: unknown user doesNotExist

Download from finelybook www.finelybook.com

332

Finding all the groups a user
belongs to
Each user can belong to more than one group: this section will show how to
find out the list of groups a user belongs to, given their username.

The name of the utility will be listGroups.go, and it will be presented in four
parts. The first part of listGroups.go is the following:

package main

import (
 "fmt"
 "os"
 "os/user"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 var u *user.User
 var err error
 if len(arguments) == 1 {
 u, err = user.Current()
 if err != nil {
 fmt.Println(err)
 return
 }

The approach that listGroups.go takes when there are no command-line
arguments is similar to the one found in userID.go. However, there is a big
difference, as this time you do not need the user ID of the current user, but
the username of the current user; so you call user.Current(), which returns a
user.User value.

The third part contains the following Go code:

 } else {
 username := arguments[1]
 u, err = user.Lookup(username)
 if err != nil {

Download from finelybook www.finelybook.com

333

 fmt.Println(err)
 return
 }
 }

So, if a command-line argument is given to the program, it is handled by the
previous code with the help of the user.Lookup() function that also returns a
user.User value.

The last part contains the following Go code:

 gids, _ := u.GroupIds()
 for _, gid := range gids {
 group, err := user.LookupGroupId(gid)
 if err != nil {
 fmt.Println(err)
 continue
 }
 fmt.Printf("%s(%s) ", group.Gid, group.Name)
 }
 fmt.Println()
}

Here, you get the list of the group IDs that the user: signified by the u
variable: is a member of, by calling the u.GroupIds() function. Then, you will
need a for loop to iterate over all the list elements and print them. It should be
made clear that this list is stored in u; that is, a user.User value.

Executing listGroups.go will generate the following output:

$ go run listGroups.go
 20(staff) 701(com.apple.sharepoint.group.1) 12(everyone) 61(localaccounts) 79(_appserverusr) 80(admin) 81(_appserveradm) 98(_lpadmin) 33(_appstore) 100(_lpoperator) 204(_developer) 395(com.apple.access_ftp) 398(com.apple.access_screensharing) 399(com.apple.access_ssh)
$ go run listGroups.go www
70(_www) 12(everyone) 61(localaccounts) 701(com.apple.sharepoint.group.1) 100(_lpoperator)

The output of listGroups.go is much more enriched than the output of both the
id -G -n and groups commands:

$ id -G -n
staff com.apple.sharepoint.group.1 everyone localaccounts _appserverusr admin _appserveradm _lpadmin _appstore _lpoperator _developer com.apple.access_ftp com.apple.access_screensharing com.apple.access_ssh
$ groups
staff com.apple.sharepoint.group.1 everyone localaccounts _appserverusr admin _appserveradm _lpadmin _appstore _lpoperator _developer com.apple.access_ftp com.apple.access_screensharing com.apple.access_ssh

Download from finelybook www.finelybook.com

334

Finding files that belong or do not
belong to a given user
This subsection will create a Go program that scans a directory tree and
presents files that belong or do not belong to a given user. The name of the
program will be userFiles.go. In its default mode of operation, userFiles.go
will display all files that belong to a given username; when used with the -no
flag, it will only display the files that do not belong to the given username.

The code of userFiles.go will be presented in four parts.

The first one is the following:

package main

import (
 "flag"
 "fmt"
 "os"
 "os/user"
 "path/filepath"
 "strconv"
 "syscall"
)

var uid int32 = 0
var INCLUDE bool = true

The reason for declaring INCLUDE and uid as global variables is that you want
both of them to be accessible from every point of the program. Additionally,
as the signature of walkFunction() cannot change: only its name can change:
using global variables makes things easier for the developer.

The second part comes with the following Go code:

func userOfFIle(filename string) int32 {
 fileInfo, err := os.Stat(filename)
 if err != nil {
 fmt.Println(err)
 return 1000000
 }

Download from finelybook www.finelybook.com

335

 UID := fileInfo.Sys().(*syscall.Stat_t).Uid
 return int32(UID)
}

The use of a local variable named UID might be a poor choice, given that there
is a global variable named uid! A better name for the global variable would
have been gUID. Note that for an explanation of the way that the call that
returns the UID variable works, you should search for the interfaces and type
conversions in Go, because talking about it is beyond the scope of this book.

The third part contains the following Go code:

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Lstat(path)
 if err != nil {
 return err
 }

 if userOfFIle(path) == uid && INCLUDE {
 fmt.Println(path)
 } else if userOfFIle(path) != uid && !(INCLUDE) {
 fmt.Println(path)
 }

 return err
}

Here you can see the implementation of a walk function that will access
every file and directory in a given directory tree, in order to print the desired
filenames only.

The last part of the utility contains the following Go code:

func main() {
 minusNO := flag.Bool("no", true, "Include")
 minusPATH := flag.String("path", ".", "Path to Search")
 flag.Parse()
 flags := flag.Args()

 INCLUDE = *minusNO
 Path := *minusPATH

 if len(flags) == 0 {
 uid = int32(os.Getuid())
 } else {
 u, err := user.Lookup(flags[0])
 if err != nil {
 fmt.Println(err)
 os.Exit(1)
 }

Download from finelybook www.finelybook.com

336

 temp, err := strconv.ParseInt(u.Uid, 10, 32)
 uid = int32(temp)
 }

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 }
}

Here you deal with the configuration of the flag package before calling the
filepath.Walk() function.

Executing userFiles.go generates the following output:

$ go run userFiles.go -path=/tmp www-data
/tmp/.htaccess
/tmp/update-cache-2a113cac
/tmp/update-extraction-2a113cac

If you do not give any command-line arguments or flags, the userFiles.go
utility will assume that you want to search the current directory for files that
belong to the current user:

$ go run userFiles.go
.
appendData.go
countIP.go

So, in order to find all the files in the /srv/www/www.highiso.net directory that
do not belong to the www-data user, you should execute the following
command:

$ go run userFiles.go -no=false -path=/srv/www/www.highiso.net www-data
/srv/www/www.highiso.net/list.files
/srv/www/www.highiso.net/public_html/wp-content/.htaccess
/srv/www/www.highiso.net/public_html.UnderCon/.htaccess

Download from finelybook www.finelybook.com

337

Finding files based on their
permissions
Now that you know how to find the Unix permissions of a file, you can
improve the regExpFind.go utility from the previous chapter in order to support
searching based on file permissions; however, in order to avoid presenting a
really big Go program here without any practical reason, the presented
program will be autonomous and only support finding files based on their
permissions. The name of the new utility will be findPerm.go, and it will be
presented in four parts. The permissions will be given in the command line as
a string using the format returned by the ls(1) command (rwxr-xr--).

The first part of the utility is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
)

var PERMISSIONS string

The PERMISSIONS variable is made global in order to be accessible from
anywhere in the program, and because the signature of walkFunction() cannot
change.

The second part of findPerm.go contains the following code:

func permissionsOfFIle(filename string) string {
 info, err := os.Stat(filename)
 if err != nil {
 return "-1"
 }
 mode := info.Mode()
 return mode.String()[1:10]
}

The third part is the implementation of walkFunction():

Download from finelybook www.finelybook.com

338

func walkFunction(path string, info os.FileInfo, err error) error {
 _, err = os.Lstat(path)
 if err != nil {
 return err
 }

 if permissionsOfFIle(path) == PERMISSIONS {
 fmt.Println(path)
 }
 return err
}

The last part of findPerm.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 3 {
 fmt.Printf("usage: %s RootDirectory permissions\n",
filepath.Base(arguments[0]))
 os.Exit(1)
 }

 Path := arguments[1]
 Path, _ = filepath.EvalSymlinks(Path)
 PERMISSIONS = arguments[2]

 err := filepath.Walk(Path, walkFunction)
 if err != nil {
 fmt.Println(err)
 }
}

Executing findPerm.go will generate the following output:

$ go run findPerm.go /tmp rw-------
/private/tmp/.adobeLockFile
$ ls -l /private/tmp/.adobeLockFile
-rw------- 1 mtsouk wheel 0 May 19 14:36 /private/tmp/.adobeLockFile

Download from finelybook www.finelybook.com

339

Date and time operations
This section will show you how to work with dates and times in Go. This task
might look insignificant, but it can be very important when you want to
synchronize things such as log entries and error messages. We will start by
illustrating some of the functionality of the time package.

Download from finelybook www.finelybook.com

340

Playing with dates and times
This section will present a small Go program named dateTime.go that shows
how to work with times and dates in Go. The code of dateTime.go will be
presented in three parts. The first part is the following:

package main

import (
 "fmt"
 "time"
)

func main() {

 fmt.Println("Epoch time:", time.Now().Unix())
 t := time.Now()
 fmt.Println(t, t.Format(time.RFC3339))
 fmt.Println(t.Weekday(), t.Day(), t.Month(), t.Year())
 time.Sleep(time.Second)
 t1 := time.Now()
 fmt.Println("Time difference:", t1.Sub(t))

 formatT := t.Format("01 January 2006")
 fmt.Println(formatT)
 loc, _ := time.LoadLocation("Europe/London")
 londonTime := t.In(loc)
 fmt.Println("London:", londonTime)

In this part, you can see how you can change a date from one format to
another, and also, how to find the date and time in a different time zone. The
time.Now() function used at the beginning of the main() function returns the
current time.

The second part is the following:

 myDate := "23 May 2017"
 d, _ := time.Parse("02 January 2006", myDate)
 fmt.Println(d)

 myDate1 := "23 May 2016"
 d1, _ := time.Parse("02 February 2006", myDate1)
 fmt.Println(d1)

The list of constants that can be used for creating your own

Download from finelybook www.finelybook.com

341

parse format can be found at https://golang.org/src/time/format.go.
Go does not define the format of a date or a time in a form like
DDYYYYMM or %D %Y %M as the rest of the programming
languages do, but uses its own approach.

Here, you see how you can read a string and try to convert it to a valid date,
both successfully (d) and unsuccessfully (d1). The problem with the d1
variable is the use of February in the format string: you should have used
January instead.

The last part of dateTime.go comes with the following Go code:

 myDT := "Tuesday 23 May 2017 at 23:36"
 dt, _ := time.Parse("Monday 02 January 2006 at 15:04", myDT)
 fmt.Println(dt)
}

This part also shows how to convert a string into a date and a time, provided
that it is in the expected format.

Executing dateTime.go will generate the following output:

$ go run dateTime.go
Epoch time: 1495572122
2017-05-23 23:42:02.459713551 +0300 EEST 2017-05-23T23:42:02+03:00
Tuesday 23 May 2017
Time difference: 1.001749054s
05 May 2017
London: 2017-05-23 21:42:02.459713551 +0100 BST
2017-05-23 00:00:00 +0000 UTC
0001-01-01 00:00:00 +0000 UTC
2017-05-23 23:36:00 +0000 UTC

Download from finelybook www.finelybook.com

342

https://golang.org/src/time/format.go

Reformatting the times in a log file
This section will show how to implement a program that reads a log file that
contains date and time information, in order to convert the time format found
in each log entry. This operation might be needed when you have log files
from different servers that are in several time zones, and you want to
synchronize their times in order to create reports from their data or store them
into a database to process them some other time.

The name of the presented program will be dateTimeLog.go, and it will be
presented in four parts.

The first part is the following:

package main

import (
 "bufio"
 "flag"
 "fmt"
 "io"
 "os"
 "regexp"
 "strings"
 "time"
)

The second part contains the following Go code:

func main() {
 flag.Parse()
 if flag.NArg() != 1 {
 fmt.Println("Please provide one log file to process!")
 os.Exit(-1)
 }

 filename := flag.Arg(0)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening file %s", err)
 os.Exit(1)
 }
 defer f.Close()

Download from finelybook www.finelybook.com

343

Here, you just configure the flag package and open the input file for reading.

The third part of the program is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 }

Here you read the input file line by line.

The last part is the following:

 r := regexp.MustCompile(`.*\[(\d\d\/\w+/\d\d\d\d:\d\d:\d\d:\d\d.*)\] .*`)
 if r.MatchString(line) {
 match := r.FindStringSubmatch(line)
 d1, err := time.Parse("02/Jan/2006:15:04:05 -0700", match[1])
 if err != nil {
 fmt.Println(err)
 }
 newFormat := d1.Format(time.RFC3339)
 fmt.Print(strings.Replace(line, match[1], newFormat, 1))
 }
 }
}

The general idea here is that once you have a match, you parse the date and
time you found using time.Parse() and then convert it to the desired format
using the time.Format() function. Also, you replace the initial match with the
output of the time.Format() function before you print it using strings.Replace().

Executing dateTimeLog.go will generate the following output:

$ go run dateTimeLog.go /tmp/log.log
127.0.0.1 - - [2017-05-24T07:04:48+03:00] "GET /taxonomy/term/35/feed HTTP/1.1" 200 2360 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)" 28787
- - [2017-05-24T07:09:24+03:00] HTTP/1.1" 200 2616 "http://www.mtsoukalos.eu/" "Mozilla/5.0 (compatible; inoreader.com-like FeedFetcher-Google)" 32145
[2017-05-24T07:38:08+03:00] "GET /tweets?page=181 HTTP/1.1" 200 8605 "-" "Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)" 100531

Download from finelybook www.finelybook.com

344

Rotating log files
Log files tend to get bigger and bigger all the time because data is written to
them all the time; it would be good to have a technique for rotating them.
This section will present such a technique. The name of the Go program will
be rotateLog.go, and it will be presented in three parts. Note that for a process
to rotate a log file, the process must be the one that opened that log file for
writing. Trying to rotate a log that you do not own might create problems on
your Unix machine, and should be avoided!

What you will also see here is another technique where you use your own log
file for storing your log entries, with the help of log.SetOutput(): after a
successful call to log.SetOutput(), each function call to log.Print() will make
the output go to the log file used as the parameter of log.SetOutput().

The first part of rotateLog.go is the following:

package main

import (
 "fmt"
 "log"
 "os"
 "strconv"
 "time"
)

var TOTALWRITES int = 0
var ENTRIESPERLOGFILE int = 100
var WHENTOSTOP int = 230
var openLogFile os.File

Using hard coded variables that define when the program will stop is
considered good practice: this happens because you do not have any other
way to tell rotateLog.go to stop. However, if you use the functionality of the
rotateLog.go utility in a compiled program, then such variables should be
given as command-line arguments, because you should not have to recompile
the program in order to change the way the program behaves!

The second part of rotateLog.go is the following:

Download from finelybook www.finelybook.com

345

func rotateLogFile(filename string) error {
 openLogFile.Close()
 os.Rename(filename, filename+"."+strconv.Itoa(TOTALWRITES))
 err := setUpLogFile(filename)
 return err
}

func setUpLogFile(filename string) error {
 openLogFile, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 if err != nil {
 return err
 }
 log.SetOutput(openLogFile)
 return nil
}

Here, you define the Go function named rotateLogFile() for rotating the
desired log file, which is the most important part of the program. The
setUpLogFile() function helps you restart the log file after you rotate it. What
is also illustrated here is the use of log.SetOutput() to tell the program where
to write the log entries. Note that you should open your log file using
os.OpenFile(), because os.Open() will not work for log.SetOutput(), and
os.Open() does open files for writing!

The last part is the following:

func main() {
 numberOfLogEntries := 0
 filename := "/tmp/myLog.log"
 err := setUpLogFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 for {
 log.Println(numberOfLogEntries, "This is a test log entry")
 numberOfLogEntries++
 TOTALWRITES++
 if numberOfLogEntries > ENTRIESPERLOGFILE {
 rotateLogFile(filename)
 numberOfLogEntries = 0
 }
 if TOTALWRITES > WHENTOSTOP {
 rotateLogFile(filename)
 break
 }
 time.Sleep(time.Second)
 }
 fmt.Println("Wrote", TOTALWRITES, "log entries!")
}

Download from finelybook www.finelybook.com

346

In this part, the main() function keeps writing data to a log file while counting
the number of entries that have been written so far. When the defined number
of entries have been reached (ENTRIESPERLOGFILE), the main() function will call
the rotateLogFile() function, which will do the dirty work for us. On a real
program, you will most likely not need to call time.Sleep() to delay the
execution of the program. For this particular program, time.Sleep() will give
you time to examine your log file using tail -f, should you choose to do so.

Running rotateLog.go will generate the following output on the screen and
inside the /tmp directory:

$ go run rotateLog.go
Wrote 231 log entries!
$ wc /tmp/myLog.log*
 0 0 0 /tmp/myLog.log
 101 909 4839 /tmp/myLog.log.101
 101 909 4839 /tmp/myLog.log.202
 29 261 1382 /tmp/myLog.log.231
 231 2079 11060 total

Chapter 8,Processes and Signals, will present a much better approach on log
rotating that will be based on Unix signals.

Download from finelybook www.finelybook.com

347

Creating good random passwords
This section will illustrate how to create good random passwords in Go, in
order to protect the security of your Unix machines. The main reason for
including it here instead of another chapter is because the presented Go
program will use the /dev/random device, which is a file defined by your Unix
system, for getting the seed of the random number generator.
The name of the Go program will be goodPass.go, and it will require just one
optional parameter, which will be the length of the generated password: the
default size of the generated password will be 10 characters. Additionally, the
program will generate ASCII characters starting from ! up to z. The ASCII
code of the exclamation mark is 33, whereas the ASCII code of small z is
122.

The first part of goodPass.go is the required preamble:

package main

import (
 "encoding/binary"
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"
)

The second part of the program is as follows:

var MAX int = 90
var MIN int = 0
var seedSize int = 10

func random(min, max int) int {
 return rand.Intn(max-min) + min
}

You have already seen the random() function back in Chapter 2, Writing
Programs in Go, so there is nothing particularly interesting here.

The third part of goodPass.go is where the implementation of the main()

Download from finelybook www.finelybook.com

348

function begins:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s length\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 LENGTH, _ := strconv.ParseInt(os.Args[1], 10, 64)
 f, _ := os.Open("/dev/random")
 var seed int64
 binary.Read(f, binary.LittleEndian, &seed)
 rand.Seed(seed)
 f.Close()
 fmt.Println("Seed:", seed)

Here, apart from reading the command-line argument, you also open the
/dev/random device for reading, which happens by calling the binary.Read()
function and storing what you read in the seed variable. The reason for using
binary.Read() is that you need to specify the byte order used
(binary.LittleEndian) and that you need to build an int64 instead of a series of
bytes. This is an example of having to read from a binary file into Go types.

The last part of the program contains the following Go code:

 startChar := "!"
 var i int64
 for i = 0; i < LENGTH; i++ {
 anInt := int(random(MIN, MAX))
 newChar := string(startChar[0] + byte(anInt))
 if newChar == " " {
 i = i - i
 continue
 }
 fmt.Print(newChar)
 }
 fmt.Println()
}

As you can see, Go has a strange way of dealing with ASCII characters
because Go supports Unicode characters by default. However, you can still
convert an integer number into an ASCII character as can be seen in the way
you define the newChar variable.

Executing goodPass.go will generate the following output:

$ go run goodPass.go 1
Seed: -5195038511418503382

Download from finelybook www.finelybook.com

349

b
$ go run goodPass.go 10
Seed: 8492864627151568776
k43Ve`+YD)
$ go run goodPass.go 50
Seed: -4276736612056007162
!=Gy+;XV>6eviuR=ST\u:Mk4Q875Y4YZiZhq&q_4Ih/]''`2:x

Download from finelybook www.finelybook.com

350

Another Go update
As I was writing this chapter, Go got updated. The following output shows
the related information:

$ date
Wed May 24 13:35:36 EEST 2017
$ go version
go version go1.8.2 darwin/amd64

Download from finelybook www.finelybook.com

351

Exercises
1. Find and read the documentation of the time package.
2. Try to change the Go code of userFiles.go in order to support multiple

users.
3. Change the Go code of insertLineNumber.go in order to read the input file

line by line, write each line to a temporary file, and then, replace the
original file with the temporary one. If you do not know how and where
to create a temporary file, you can use a random number generator to get
a temporary filename and the /tmp directory to temporarily save it.

4. Make the necessary changes to multipleMV.go in order to print the files
that are a match to the given regular expression without actually
renaming them.

5. Try to create a regular expression that matches PNG files and use it to
process the contents of a log file.

6. Create a regular expression that catches a date and a time string in order
to print just the date part and delete the time part.

Download from finelybook www.finelybook.com

352

Summary
In this chapter, we talked about many things, including working with log
files, dealing with Unix file permissions, users, and groups, creating regular
expressions, and processing text files.

In the next chapter, we will talk about Unix signals, which allow you to
communicate with a running program from the outside world, in an
asynchronous way. Furthermore, we will tell you how to plot in Go.

f

Download from finelybook www.finelybook.com

353

Processes and Signals
In the previous chapter, we talked about many interesting topics including
working with Unix system files, dealing with dates and times in Go, finding
information about file permissions and users as well as regular expressions
and pattern matching.

The central subject of this chapter is developing Go applications that can
handle the Unix signals that can be caught and handled. Go offers the
os/signal package for dealing with signals, which uses Go channels. Although
channels are fully explored in the next chapter, this will not stop you from
learning how to work with Unix signals in Go programs.

Furthermore, you will learn how to create Go command-line utilities that can
work with Unix pipes, how to draw bar charts in Go, and how to implement a
Go version of the cat(1) utility. So, in this chapter you will learn about the
following topics:

Listing the processes of a Unix machine
Signal handling in Go
The signals that a Unix machine supports as well as how to use the
kill(1) command to send these signals
Making signals do the work you want
Implementing a simple version of the cat(1) utility in Go
Plotting data in Go
Using pipes in order to send the output of one program to another
Converting a big program into two smaller ones that will cooperate with
the help of Unix pipes
Creating a client for a Unix socket

Download from finelybook www.finelybook.com

354

About Unix processes and signals
Strictly speaking, a process is an execution environment that contains
instructions, user-data and system-data parts, and other kinds of resources
that are obtained during runtime, whereas a program is a file that contains
instructions and data, which are used for initializing the instruction and user-
data parts of a process.

Download from finelybook www.finelybook.com

355

Process management
Go is not that good at dealing with processes and process management in
general. Nevertheless, this section will present a small Go program that lists
all the processes of a Unix machine by executing a Unix command and
getting its output. The name of the program will be listProcess.go. It works on
both Linux and macOS systems, and will be presented in three parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "os"
 "os/exec"
 "syscall"
)

The second part of listProcess.go has the following Go code:

func main() {

 PS, err := exec.LookPath("ps")
 if err != nil {
 fmt.Println(err)
 }
fmt.Println(PS)

 command := []string{"ps", "-a", "-x"}
 env := os.Environ()
 err = syscall.Exec(PS, command, env)

As you can see, you first need to get the path of the executable file using
exec.LookPath() to make sure that you are not going to accidentally execute
another binary file and then define the command you want to execute,
including the parameters of the command, using a slice. Next, you will have
to read the Unix environment using os.Environ(). Also, you execute the
desired command using syscall.Exec(), which will automatically print its
output, which is not a very elegant way to execute commands because you
have no control over the task and because you are calling processes at the
lowest level instead of using a higher level library such as os/exec.

Download from finelybook www.finelybook.com

356

The last part of the program is for printing the error message of the previous
code, in case there is one:

 if err != nil {
 fmt.Println(err)
 }
}

Executing listProcess.go will generate the following output: the head(1) utility
is used to get a smaller output:

$ go run listProcess.go | head -3
/bin/ps
 PID TTY TIME CMD
 1 ?? 0:30.72 /sbin/launchd
signal: broken pipe

Download from finelybook www.finelybook.com

357

About Unix signals
Have you ever pressed Ctrl + C in order to stop a program from running? If
yes, then you are already familiar with signals because Ctrl + C sends the
SIGINT signal to the program.

Strictly speaking, Unix signals are software interrupts that can be accessed
either by a name or number and offer a way of handling asynchronous events
such as when a child process exits or a process is told to pause on a Unix
system.

A program cannot handle all signals; some of them are non-catchable and
non-ignorable. The SIGKILL and SIGSTOP signals cannot be caught, blocked, or
ignored. The reason for this is that they provide the kernel and the root user a
way of stopping any process. The SIGKILL signal, which is also known by the
number 9, is usually called in extreme conditions where you need to act fast;
so, it is the only signal that is usually called by number because it is quicker
to do so. The most important thing to remember here is that not all Unix
signals can be handled!

Download from finelybook www.finelybook.com

358

Unix signals in Go
Go provides the os/signal package to programmers to help them handle
incoming signals. However, we will start the discussion about handling by
presenting the kill(1) utility.

Download from finelybook www.finelybook.com

359

The kill(1) command
The kill(1) command is used for either terminating a process or sending a
less cruel signal to it. Keep in mind that the fact that you can send a signal to
a process does not mean that the process can or has code to handle this signal.

By default, kill(1) sends the SIGTERM signal. If you want to find out all the
supported signals of your Unix machine, you should execute the kill -l
command. On a macOS Sierra machine, the output of kill -l is the
following:

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2

If you execute the same command on a Debian Linux machine, you will get a
more enriched output:

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU
23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10
45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15
50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

Download from finelybook www.finelybook.com

360

63) SIGRTMAX-1 64) SIGRTMAX

If you try to kill or send another signal to the process of another user without
having the required permissions, which most likely will happen if you are not
the root user, kill(1) will not do the job and you will get an error message
similar to the following:

$ kill 2908
-bash: kill: (2908) - Operation not permitted

Download from finelybook www.finelybook.com

361

A simple signal handler in Go
This subsection will present a naive Go program that handles only the SIGTERM
and SIGINT signals. The Go code of h1s.go will be presented in three parts; the
first part is the following:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handleSignal(signal os.Signal) {
 fmt.Println("Got", signal)
}

Apart from the preamble of the program, there is also a function named
handleSignal() that will be called when the program receives any of the two
supported signals.

The second part of h1s.go contains the following Go code:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGTERM)
 go func() {
 for {
 sig := <-sigs
 fmt.Println(sig)
 handleSignal(sig)
 }
 }()

The previous code uses a goroutine and a Go channel, which are Go features
that have not been discussed in this book. Unfortunately, you will have to
wait until Chapter 9, Goroutines - Basic Features, to learn more about both of
them. Note that although os.Interrupt and syscall.SIGTERM belong to different
Go packages, they are both signals.

Download from finelybook www.finelybook.com

362

For now, understanding the technique is important; it includes three steps:

1. The definition of a channel, which acts as a way of passing data around,
that is required for the technique (sigs).

2. Calling signal.Notify() in order to define the list of signals you want to
be able to catch.

3. The definition of an anonymous function that runs in a goroutine (go
func()) right after signal.Notify(), which is used for deciding what you
are going to do when you get any of the desired signals.

In this case, the handleSignal() function will be called. The for loop inside the
anonymous function is used to make the program to keep handling all signals
and not stop after receiving its first signal.

The last part of h1s.go is the following:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

This is an endless for loop that delays the ending of the program forever: in
its place you would most likely put the actual code of your program.
Executing h1s.go and sending signals to it from another Terminal will make
h1s.go generate the following output:

$./h1s
......................^Cinterrupt
Got interrupt
^Cinterrupt
Got interrupt
.Hangup: 1

The bad thing here is that h1s.go will stop when it receives the SIGHUP signal
because the default action for SIGHUP when it is not being specifically handled
by a program is to kill the process! The next subsection will show how to
handle three signals in a better way, and the subsection after that will teach
you how to handle all signals that can be handled.

Download from finelybook www.finelybook.com

363

Handling three different signals!
This subsection will teach you how to create a Go application that can handle
three different signals: the name of the program will be h2s.go, and it will
handle the SIGTERM, SIGINT, and SIGHUP signals.

The Go code of h2s.go will be presented in four parts.

The first part of the program contains the expected preamble:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

The second part has the following Go code:

func handleSignal(signal os.Signal) {
 fmt.Println("* Got:", signal)
}

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, os.Interrupt, syscall.SIGTERM, syscall.SIGHUP)

Here, the last statement tells you that the program will only handle the
os.Interrupt, syscall.SIGTERM, and syscall.SIGHUP signals.

The third part of h2s.go is the following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 handleSignal(sig)
 case syscall.SIGTERM:
 handleSignal(sig)
 case syscall.SIGHUP:
 fmt.Println("Got:", sig)

Download from finelybook www.finelybook.com

364

 os.Exit(-1)
 }
 }
 }()

Here, you can see that it is not compulsory to call a separate function when a
given signal is caught; it is also allowed to handle it inside the for loop as it
happens with syscall.SIGHUP. However, I find the use of a named function
better because it makes the Go code easier to read and modify. The good
thing is that Go has a central place for handling all signals, which makes it
easy to find out what is going on with your program.

Additionally, h2s.go specifically handles the SIGHUP signal, although a SIGHUP
signal will still terminate the program; however, this time this is our decision.

Keep in mind that it is considered good practice to make one of
the signal handlers to stop the program because otherwise you
will have to terminate it by issuing a kill -9 command.

The last part of h2s.go is the following:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

Executing h2s.go and sending four signals to it (SIGINT, SIGTERM, SIGHUP, and
SIGKILL) from another shell will generate the following output:

$ go build h2s.go
$./h2s
..* Got: interrupt
* Got: terminated
.Got: hangup
.Killed: 9

The reason for building h2s.go is that it is easier to find the process ID of an
autonomous program: the go run command builds a temporary executable
program behind the scenes, which in this case offers less flexibility. If you
want to improve h2s.go, you can make it call os.Getpid() in order to print its
process ID, which will save you from having to find it on your own.

Download from finelybook www.finelybook.com

365

The program handles three signals before getting a SIGKILL that cannot be
handled and therefore terminates it!

Download from finelybook www.finelybook.com

366

Catching every signal that can be
handled
This subsection will present a simple technique that allows you to catch every
signal that can be handled: once again, you should keep in mind that you
cannot handle all signals! The program will stop once it gets a SIGTERM signal.

The name of the program will be catchAll.go and will be presented in three
parts.

The first part is the following:

package main

import (
 "fmt"
 "os"
 "os/signal"
 "syscall"
 "time"
)

func handleSignal(signal os.Signal) {
 fmt.Println("* Got:", signal)
}

The second part of the program is the following:

func main() {
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)
 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 handleSignal(sig)
 case syscall.SIGTERM:
 handleSignal(sig)
 os.Exit(-1)
 case syscall.SIGUSR1:
 handleSignal(sig)
 default:
 fmt.Println("Ignoring:", sig)
 }

Download from finelybook www.finelybook.com

367

 }
 }()

In this case, all the difference is made by the way you call signal.Notify() in
your code. As you do not define any particular signals, the program will be
able to handle any signal that can be handled. However, the for loop inside
the anonymous function only takes care of three signals while ignoring the
remaining ones! Note that I believe that this is the best way to handle signals
in Go: catch everything while processing only the signals that interest you.
However, some people believe that being explicit about what you handle is a
better approach. There is no right or wrong here.

The catchAll.go program will not terminate when it gets SIGHUP because the
default case of the switch block handles it.

The last part is the expected call to the time.Sleep() function:

 for {
 fmt.Printf(".")
 time.Sleep(10 * time.Second)
 }
}

Executing catchAll.go will create the following output:

$./catchAll
.Ignoring: hangup
.......................................* Got: interrupt
* Got: user defined signal 1
.Ignoring: user defined signal 2
Ignoring: hangup
.* Got: terminated
$

Download from finelybook www.finelybook.com

368

Rotating log files revisited!
As I told you back in Chapter 7, Working with System Files, this chapter will
present you with a technique that will allow you to end the program and
rotate log files in a more conventional way with the help of signals and signal
handling.

The name of the new version of rotateLog.go will be rotateSignals.go and will
be presented in four parts. Moreover, when the utility receives os.Interrupt, it
will rotate the current log file, whereas when it receives syscall.SIGTERM, it
will terminate its execution. Every other signal that can be handled will create
a log entry without any other action.

The first part of the rotateSignals.go is the expected preamble:

package main

import (
 "fmt"
 "log"
 "os"
 "os/signal"
 "strconv"
 "syscall"
 "time"
)

var TOTALWRITES int = 0
var openLogFile os.File

The second part of rotateSignals.go has the following Go code:

func rotateLogFile(filename string) error {
 openLogFile.Close()
 os.Rename(filename, filename+"."+strconv.Itoa(TOTALWRITES))
 err := setUpLogFile(filename)
 return err
}

func setUpLogFile(filename string) error {
 openLogFile, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 if err != nil {
 return err
 }
 log.SetOutput(openLogFile)

Download from finelybook www.finelybook.com

369

 return nil
}

You have just defined two functions here that perform two tasks. The third
part of rotateSignals.go contains the following Go code:

func main() {
 filename := "/tmp/myLog.log"
 err := setUpLogFile(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }

 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

Once again, all signals will be caught. The last part of rotateSignals.go is the
following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case os.Interrupt:
 rotateLogFile(filename)
 TOTALWRITES++
 case syscall.SIGTERM:
 log.Println("Got:", sig)
 openLogFile.Close()
 TOTALWRITES++
 fmt.Println("Wrote", TOTALWRITES, "log entries in total!")
 os.Exit(-1)
 default:
 log.Println("Got:", sig)
 TOTALWRITES++
 }
 }
 }()

 for {
 time.Sleep(10 * time.Second)
 }
}

As you can see, rotateSignals.go records information about the signals it has
received by writing one log entry for each signal. Although presenting the
entire code of rotateSignals.go is good, it would be very educational to see the
output of the diff(1) utility to show the code differences between rotateLog.go
and rotateSignals.go:

Download from finelybook www.finelybook.com

370

$ diff rotateLog.go rotateSignals.go
6a7
> "os/signal"
7a9
> "syscall"
12,13d13
< var ENTRIESPERLOGFILE int = 100
< var WHENTOSTOP int = 230
33d32
< numberOfLogEntries := 0
41,51c40,59
< for {
< log.Println(numberOfLogEntries, "This is a test log entry")
< numberOfLogEntries++
< TOTALWRITES++
< if numberOfLogEntries > ENTRIESPERLOGFILE {
< _ = rotateLogFile(filename)
< numberOfLogEntries = 0
< }
< if TOTALWRITES > WHENTOSTOP {
< _ = rotateLogFile(filename)
< break

> sigs := make(chan os.Signal, 1)
> signal.Notify(sigs)
>
> go func() {
> for {
> sig := <-sigs
> switch sig {
> case os.Interrupt:
> rotateLogFile(filename)
> TOTALWRITES++
> case syscall.SIGTERM:
> log.Println("Got:", sig)
> openLogFile.Close()
> TOTALWRITES++
> fmt.Println("Wrote", TOTALWRITES, "log entries in total!")
> os.Exit(-1)
> default:
> log.Println("Got:", sig)
> TOTALWRITES++
> }
53c61,64
< time.Sleep(time.Second)

> }()
>
> for {
> time.Sleep(10 * time.Second)
55d65
< fmt.Println("Wrote", TOTALWRITES, "log entries!")

The good thing here is that the use of signals in rotateSignals.go makes most
of the global variables used in rotateLog.go unnecessary because you can now

Download from finelybook www.finelybook.com

371

control the utility by sending signals. Additionally, the design and the
structure of rotateSignals.go are simpler than rotateLog.go because you only
have to understand what the anonymous function does.

After executing rotateSignals.go and sending some signals to it, the contents
of /tmp/myLog.log will look like the following:

$ cat /tmp/myLog.log
2017/06/03 14:53:33 Got: user defined signal 1
2017/06/03 14:54:08 Got: user defined signal 1
2017/06/03 14:54:12 Got: user defined signal 2
2017/06/03 14:54:19 Got: terminated

Additionally, you will have the following files inside /tmp:

$ ls -l /tmp/myLog.log*
-rw-r--r-- 1 mtsouk wheel 177 Jun 3 14:54 /tmp/myLog.log
-rw-r--r-- 1 mtsouk wheel 106 Jun 3 13:42 /tmp/myLog.log.0

Download from finelybook www.finelybook.com

372

Improving file copying
The original cp(1) utility prints useful information when it receives a SIGINFO
signal, as shown in the following output:

$ cp FileToCopy /tmp/copy
FileToCopy -> /tmp/copy 26%
FileToCopy -> /tmp/copy 29%
FileToCopy -> /tmp/copy 31%

So, the rest of this section will implement the same functionality to the Go
implementation of the cp(1) command. The Go code in this section will be
based on the cp.go program because it can be very slow when used with a
small buffer size giving us time for testing. The name of the new copy utility
will be cpSignal.go and will be presented in four parts.

The fundamental difference between cpSignal.go and cp.go is that cpSignal.go
should find the size of the input file and keep the number of bytes that have
been written at a given point. Apart from those modifications there is nothing
else that you should worry about because the core functionality of the two
versions, which is copying a file, is exactly the same.

The first part of the program is the following:

package main

import (
 "fmt"
 "io"
 "os"
 "os/signal"
 "path/filepath"
 "strconv"
 "syscall"
)

var BUFFERSIZE int64
var FILESIZE int64
var BYTESWRITTEN int64

In order to make things simpler for the developer, the program introduces two
global variables called FILESIZE and BYTESWRITTEN and these keep the size of the

Download from finelybook www.finelybook.com

373

input file and the number of bytes that have been written, respectively. Both
variables are used by the function that handles the SIGINFO signal.

The second part is as follows:

func Copy(src, dst string, BUFFERSIZE int64) error {
 sourceFileStat, err := os.Stat(src)
 if err != nil {
 return err
 }

 FILESIZE = sourceFileStat.Size()

 if !sourceFileStat.Mode().IsRegular() {
 return fmt.Errorf("%s is not a regular file.", src)
 }

 source, err := os.Open(src)
 if err != nil {
 return err
 }
 defer source.Close()

 _, err = os.Stat(dst)
 if err == nil {
 return fmt.Errorf("File %s already exists.", dst)
 }

 destination, err := os.Create(dst)
 if err != nil {
 return err
 }
 defer destination.Close()

 if err != nil {
 panic(err)
 }

 buf := make([]byte, BUFFERSIZE)
 for {
 n, err := source.Read(buf)
 if err != nil && err != io.EOF {
 return err
 }
 if n == 0 {
 break
 }
 if _, err := destination.Write(buf[:n]); err != nil {
 return err
 }
 BYTESWRITTEN = BYTESWRITTEN + int64(n)
 }
 return err
}

Download from finelybook www.finelybook.com

374

Here, you use the sourceFileStat.Size() function to get the size of the input
file and set the value of the FILESIZE global variable.

The third part is where you define the signal handling:

func progressInfo() {
 progress := float64(BYTESWRITTEN) / float64(FILESIZE) * 100
 fmt.Printf("Progress: %.2f%%\n", progress)
}

func main() {
 if len(os.Args) != 4 {
 fmt.Printf("usage: %s source destination BUFFERSIZE\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 source := os.Args[1]
 destination := os.Args[2]
 BUFFERSIZE, _ = strconv.ParseInt(os.Args[3], 10, 64)
 BYTESWRITTEN = 0

 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs)

Here, you choose to catch all signals. However, the Go code of the
anonymous function will only call progressInfo() after receiving a
syscall.SIGINFO signal.

If you want to have a way of gracefully terminating the program, you might
want to use the SIGINT signal because when capturing all signals, gracefully
terminating a program is no longer possible: you will need to send a SIGKILL
in order to terminate your program, which is a little cruel.

The last part of cpSignal.go is the following:

 go func() {
 for {
 sig := <-sigs
 switch sig {
 case syscall.SIGINFO:
 progressInfo()
 default:
 fmt.Println("Ignored:", sig)
 }
 }
 }()

 fmt.Printf("Copying %s to %s\n", source, destination)
 err := Copy(source, destination, BUFFERSIZE)

Download from finelybook www.finelybook.com

375

 if err != nil {
 fmt.Printf("File copying failed: %q\n", err)
 }
}

Executing cpSignal.go and sending two SIGINFO signals to it will generate the
following output:

$./cpSignal FileToCopy /tmp/copy 2
Copying FileToCopy to /tmp/copy
Ignored: user defined signal 1
Progress: 21.83%
^CIgnored: interrupt
Progress: 29.78%

Download from finelybook www.finelybook.com

376

Plotting data
The utility that will be developed in this section will read multiple log files
and will create a graphical image with as many bars as the number of log files
read. Each bar will represent the number of times a given IP address has been
found in a log file.

However, the Unix philosophy tells us that instead of developing a single
utility, we should make two distinct utilities: one for processing the log files
and creating a report and another for plotting the data generated by the first
utility: the two utilities will communicate using Unix pipes. Although this
section will implement the first approach, you will see the implementation of
the second approach later in The plotIP.go utility revisited section of this
chapter.

The idea for the presented utility came from a tutorial that I
wrote for a magazine where I developed a small Go program
that did some plotting: even small and naive programs can
inspire you to develop bigger things, so do not underestimate
their power.

The name of the utility will be plotIP.go, and it will be presented in seven
parts: the good thing is that plotIP.go will reuse some of the code of countIP.go
and findIP.go. The only thing that plotIP.go does not do is writing text to the
image, so you can only plot the bars without knowing the actual values or the
corresponding log file of a particular bar: you can try to add text capabilities
to the program as an exercise.

Also, plotIP.go will require at least three parameters, which are the width and
height of the image and the name of the log file that will be used: in order to
make plotIP.go smaller, plotIP.go will not use the flag package and assume
that you will give its parameters in the correct order. If you give it more
parameters, it will consider them as log files.

The first part of plotIP.go is the following:

Download from finelybook www.finelybook.com

377

package main

import (
 "bufio"
 "fmt"
 "image"
 "image/color"
 "image/png"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "strconv"
)

var m *image.NRGBA
var x int
var y int
var barWidth int

These global variables related to the dimensions of the image (x and y), the
image as a Go variable (m), and the width of one of its bars (barWidth) that
depends on the size of the image and the number of the bars that will be
plotted. Note that using x and y as variable names instead of something like
IMAGEWIDTH and IMAGEHEIGHT might be a little wrong and dangerous here.

The second part is the following:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

func plotBar(width int, height int, color color.RGBA) {
 xx := 0
 for xx < barWidth {
 yy := 0
 for yy < height {
 m.Set(xx+width, y-yy, color)
 yy = yy + 1
 }
 xx = xx + 1
 }
}

Here, you implement a Go function named plotBar() that does the plotting of
each bar, given its height, its width, and its color of the bar. This function is
the most challenging part of plotIP.go.

Download from finelybook www.finelybook.com

378

The third part has the following Go code:

func getColor(x int) color.RGBA {
 switch {

 case x == 0:
 return color.RGBA{0, 0, 255, 255}
 case x == 1:
 return color.RGBA{255, 0, 0, 255}
 case x == 2:
 return color.RGBA{0, 255, 0, 255}
 case x == 3:
 return color.RGBA{255, 255, 0, 255}
 case x == 4:
 return color.RGBA{255, 0, 255, 255}
 case x == 5:
 return color.RGBA{0, 255, 255, 255}
 case x == 6:
 return color.RGBA{255, 100, 100, 255}
 case x == 7:
 return color.RGBA{100, 100, 255, 255}
 case x == 8:
 return color.RGBA{100, 255, 255, 255}
 case x == 9:
 return color.RGBA{255, 255, 255, 255}
 }
 return color.RGBA{0, 0, 0, 255}
}

This function lets you define the colors that will be present in the output: you
can change them if you want.

The fourth part contains the following Go code:

func main() {
 var data []int
 arguments := os.Args
 if len(arguments) < 4 {
 fmt.Printf("%s X Y IP input\n", filepath.Base(arguments[0]))
 os.Exit(0)
 }

 x, _ = strconv.Atoi(arguments[1])
 y, _ = strconv.Atoi(arguments[2])
 WANTED := arguments[3]
 fmt.Println("Image size:", x, y)

Here, you read the desired IP address, which is saved in the WANTED variable
and you read the dimensions of the generated PNG image.

Download from finelybook www.finelybook.com

379

The fifth part contains the following Go code:

 for _, filename := range arguments[4:] {
 count := 0
 fmt.Println(filename)
 f, err := os.Open(filename)
 if err != nil {
 fmt.Fprintf(os.Stderr, "Error: %s\n", err)
 continue
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 }

if err != nil {
 fmt.Fprintf(os.Stderr, "Error in file: %s\n", err)
 continue
 }
 ip := findIP(line)
 if ip == WANTED {
 count++

 }
 }
 data = append(data, count)
 }

Here, you process the input log files one by one and store the values you
calculate in the data slice. Error messages are printed to os.Stderr: the main
advantage you get from printing error messages to os.Stderr is that you can
easily redirect error messages to a file while using data written to os.Stdout in
a different way.

The sixth part of plotIP.go contains the following Go code:

 fmt.Println("Slice length:", len(data))
 if len(data)*2 > x {
 fmt.Println("Image size (x) too small!")
 os.Exit(-1)
 }

 maxValue := data[0]
 for _, temp := range data {
 if maxValue < temp {
 maxValue = temp
 }

Download from finelybook www.finelybook.com

380

 }

 if maxValue > y {
 fmt.Println("Image size (y) too small!")
 os.Exit(-1)
 }
 fmt.Println("maxValue:", maxValue)
 barHeighPerUnit := int(y / maxValue)
 fmt.Println("barHeighPerUnit:", barHeighPerUnit)
 PNGfile := WANTED + ".png"
 OUTPUT, err := os.OpenFile(PNGfile, os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 m = image.NewNRGBA(image.Rectangle{Min: image.Point{0, 0}, Max: image.Point{x, y}})

Here, you calculate things about the plot and create the output image file
using os.OpenFile(). The PNG file generated by the plotIP.go utility is named
after the given IP address to make things simpler.

The last part of the Go code of plotIP.go is the following:

 i := 0
 barWidth = int(x / len(data))
 fmt.Println("barWidth:", barWidth)
 for _, v := range data {
 c := getColor(v % 10)
 yy := v * barHeighPerUnit
 plotBar(barWidth*i, yy, c)
 fmt.Println("plotBar", barWidth*i, yy)
 i = i + 1
 }
 png.Encode(OUTPUT, m)
}

Here, you read the values of the data slice and create a bar for each one of
them by calling the plotBar() function.

Executing plotIP.go will generate the following output:

$ go run plotIP.go 1300 1500 127.0.0.1 /tmp/log.*
Image size: 1300 1500
/tmp/log.1
/tmp/log.2
/tmp/log.3
Slice length: 3
maxValue: 1500
barHeighPerUnit: 1
barWidth: 433
plotBar 0 1500

Download from finelybook www.finelybook.com

381

plotBar 433 1228
plotBar 866 532
$ ls -l 127.0.0.1.png
-rw-r--r-- 1 mtsouk mtsouk 11023 Jun 5 18:36 127.0.0.1.png

However, apart from the generated text output, what is important is the
produced PNG file that can be seen in the following figure:

The output generated by the plotIP.go utility

If you want to save the error messages to a different file, you can use a
variation of the following command:

$ go run plotIP.go 130 150 127.0.0.1 doNOTExist 2> err

Download from finelybook www.finelybook.com

382

Image size: 130 150
doNOTExist
Slice length: 0
$ cat err
Error: open doNOTExist: no such file or directory
panic: runtime error: index out of range

goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch8/code/plotIP.go:112 +0x12de
exit status 2

The following command discards all error messages by sending them to
/dev/null:

$ go run plotIP.go 1300 1500 127.0.0.1 doNOTExist 2>/dev/null
Image size: 1300 1500
doNOTExist
Slice length: 0

Download from finelybook www.finelybook.com

383

Unix pipes in Go
We first talked about pipes in Chapter 6, File Input and Output. Pipes have two
serious limitations: first, they usually communicate in one direction, and
second, they can only be used between processes that have a common
ancestor.

The general idea behind pipes is that if you do not have a file to process, you
should wait to get your input from standard input. Similarly, if you are not
told to save your output to a file, you should write your output to standard
output, either for the user to see it or for another program to process it. As a
result, pipes can be used for streaming data between two processes without
creating any temporary files.

This section will present some simple utilities written in Go that use Unix
pipes for clarity.

Download from finelybook www.finelybook.com

384

Reading from standard input
The first thing that you need to know in order to develop Go applications that
support Unix pipes is how to read from standard input.

The developed program is named readSTDIN.go and will be presented in three
parts.

The first part of the program is the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "os"
)

The second part of readSTDIN.go has the following Go code:

func main() {
 filename := ""
 var f *os.File
 arguments := os.Args
 if len(arguments) == 1 {
 f = os.Stdin
 } else {
 filename = arguments[1]
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }
 defer f.Close()

Here, you resolve whether you have an actual file to process, which can be
determined by the number of the command-line arguments of your program.
If you do not have a file to process, you will try to read data from os.Stdin.
Make sure that you understand the presented technique because it will be
used many times in this chapter.

The last part of readSTDIN.go is the following:

Download from finelybook www.finelybook.com

385

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(">", scanner.Text())
 }
}

This code is the same whether you are processing an actual file or os.Stdin,
which happens because everything in Unix is a file. Note that the program
output begins with the > character.

Executing readSTDIN.go will generate the following output:

$ cat /tmp/testfile
1
2
$ go run readSTDIN.go /tmp/testFile
> 1
> 2
$ cat /tmp/testFile | go run readSTDIN.go
> 1
> 2
$ go run readSTDIN.go
3
> 3
2
> 2
1
> 1

In the last case, readSTDIN.go echoes each line it reads because the input is read
line by line: the cat(1) utility works the same way.

Download from finelybook www.finelybook.com

386

Sending data to standard output
This subsection will show you how to send data to standard output in a better
way than just using fmt.Println() or any other function from the fmt standard
Go package. The Go program will be named writeSTDOUT.go and will be
presented to you in three parts.

The first part is the following:

package main

import (
 "io"
 "os"
)

The second part of writeSTDOUT.go has the following Go code:

func main() {
 myString := ""
 arguments := os.Args
 if len(arguments) == 1 {
 myString = "You did not give an argument!"
 } else {
 myString = arguments[1]
 }

The last part of writeSTDOUT.go is the following:

 io.WriteString(os.Stdout, myString)
 io.WriteString(os.Stdout, "\n")
}

The only subtle thing is that you need to put your text into a slice before
using io.WriteString() to write data to os.Stdout.

Executing writeSTDOUT.go will generate the following output:

$ go run writeSTDOUT.go 123456
123456
$ go run writeSTDOUT.go
You do not give an argument!

Download from finelybook www.finelybook.com

387

Implementing cat(1) in Go
This subsection will present a Go version of the cat(1) command-line utility.
If you give one or more command-line arguments to cat(1), then cat(1) will
print their contents on the screen. However, if you just type cat(1) on your
Unix shell, then cat(1) will wait for your input, which will be terminated
when you type Ctrl + D.

The name of the Go implementation will be cat.go and will be presented in
three parts.

The first part of cat.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
)

The second part is the following:

func catFile(filename string) error {
 f, err := os.Open(filename)
 if err != nil {
 return err
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 fmt.Println(scanner.Text())
 }
 return nil
}

The catFile() function is called when the cat.go utility has to process real
files. Having a function to do your job makes the design of the program
better.

The last part has the following Go code:

Download from finelybook www.finelybook.com

388

func main() {
 filename := ""
 arguments := os.Args
 if len(arguments) == 1 {
 io.Copy(os.Stdout, os.Stdin)
 os.Exit(0)
 }

 filename = arguments[1]
 err := catFile(filename)
 if err != nil {
 fmt.Println(err)
 }
}

So, if the program has no arguments, then it assumes that it has to read
os.Stdin. In that case, it just echoes each line you give to it. If the program has
arguments, then it processes the first argument as a file using the catFile()
function.

Executing cat.go will generate the following output:

$ go run cat.go /tmp/testFile | go run cat.go
1
2
$ go run cat.go
Mihalis
Mihalis
Tsoukalos
Tsoukalos
$ echo "Mihalis Tsoukalos" | go run cat.go
Mihalis Tsoukalos

Download from finelybook www.finelybook.com

389

The plotIP.go utility revisited
As promised in a previous section of this chapter, this section will create two
separate utilities, which when combined will implement the functionality of
plotIP.go. Personally, I prefer to have two separate utilities and combine them
when needed than having just one utility that does two or more tasks.

The names of the two utilities will be extractData.go and plotData.go. As you
can easily understand, only the second utility would have to be able to get
input from standard input as long as the first utility prints its output on
standard output either using os.Stdout, which is the correct way, or using
fmt.Println(), which usually does the job.

I think that I should now tell you my little secret: I created extractData.go and
plotData.go first and then developed plotIP.go because it is easier to develop
two separate utilities than a bigger one that does everything! Additionally, the
use of two different utilities allows you to filter the output of extractData.go
using standard Unix utilities such as tail(1), sort(1), and head(1), which
means that you can modify your data in different ways without the need for
writing any extra Go code.

Taking two command-line utilities and creating one utility that
implements the functionality of both utilities is easier than
taking one big utility and dividing its functionality into two or
more distinct utilities because the latter usually requires more
variables and more error checking.

The extractData.go utility will be presented in four parts; the first part is the
following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"

Download from finelybook www.finelybook.com

390

 "regexp"
)

The second part of extractData.go has the following Go code:

func findIP(input string) string {
 partIP := "(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])"
 grammar := partIP + "\\." + partIP + "\\." + partIP + "\\." + partIP
 matchMe := regexp.MustCompile(grammar)
 return matchMe.FindString(input)
}

You should be familiar with the findIP() function, which you saw in findIP.go
in Chapter 7, Working with System files.

The third part of extractData.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Printf("%s IP <files>\n", filepath.Base(os.Args[0]))
 os.Exit(-1)
 }

 WANTED := arguments[1]
 for _, filename := range arguments[2:] {
 count := 0
 buf := []byte(filename)
 io.WriteString(os.Stdout, string(buf))
 f, err := os.Open(filename)
 if err != nil {
 fmt.Fprintf(os.Stderr, "Error: %s\n", err)
 continue
 }
 defer f.Close()

The use of the buf variable is redundant here because filename is a string and
io.WriteString() expects a string: it is just my habit to put the value of filename
into a byte slice. You can remove it if you want.

Once again, most of the Go code is from the plotIP.go utility. The last part of
extractData.go is the following:

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Fprintf(os.Stderr, "Error in file: %s\n", err)

Download from finelybook www.finelybook.com

391

 continue
 }

 ip := findIP(line)
 if ip == WANTED {
 count = count + 1
 }
 }
 buf = []byte(strconv.Itoa(count))
 io.WriteString(os.Stdout, " ")
 io.WriteString(os.Stdout, string(buf))
 io.WriteString(os.Stdout, "\n")
 }
}

Here, extractData.go writes its output to standard output (os.Stdout) instead of
using the functions of the fmt package in order to be more compatible with
pipes. The extractData.go utility requires at least two parameters: an IP
address and a log file, but it can process as many log files as you wish.

You might want to move the printing of the filename value from the third part
here in order to have all printing commands at the same place.

Executing extractData.go will generate the following output:

$./extractData 127.0.0.1 access.log{,.1}
access.log 3099
access.log.1 6333

Although extractData.go prints two values in each line, only the second field
will be used by plotData.go. The best way to do that is filter the output of
extractData.go using awk(1):

$./extractData 127.0.0.1 access.log{,.1} | awk '{print $2}'
3099
6333

As you can understand, awk(1) allows you to do many more things with the
generated values.

The plotData.go utility will also be presented in six parts; its first part is the
following:

package main

import (
 "bufio"

Download from finelybook www.finelybook.com

392

 "fmt"
 "image"
 "image/color"
 "image/png"
 "os"
 "path/filepath"
 "strconv"
)

var m *image.NRGBA
var x int
var y int
var barWidth int

Once again, the use of global variables is for avoiding the passing of too
many arguments to some of the functions of the utility.

The second part of plotData.go contains the following Go code:

func plotBar(width int, height int, color color.RGBA) {
 xx := 0
 for xx < barWidth {
 yy := 0
 for yy < height {
 m.Set(xx+width, y-yy, color)
 yy = yy + 1
 }
 xx = xx + 1
 }
}

The third part of plotData.go has the following Go code:

func getColor(x int) color.RGBA {
 switch {
 case x == 0:
 return color.RGBA{0, 0, 255, 255}
 case x == 1:
 return color.RGBA{255, 0, 0, 255}
 case x == 2:
 return color.RGBA{0, 255, 0, 255}
 case x == 3:
 return color.RGBA{255, 255, 0, 255}
 case x == 4:
 return color.RGBA{255, 0, 255, 255}
 case x == 5:
 return color.RGBA{0, 255, 255, 255}
 case x == 6:
 return color.RGBA{255, 100, 100, 255}
 case x == 7:
 return color.RGBA{100, 100, 255, 255}
 case x == 8:
 return color.RGBA{100, 255, 255, 255}

Download from finelybook www.finelybook.com

393

 case x == 9:
 return color.RGBA{255, 255, 255, 255}
 }
 return color.RGBA{0, 0, 0, 255}
}

The fourth part of plotData.go contains the following Go code:

func main() {
 var data []int
 var f *os.File
 arguments := os.Args
 if len(arguments) < 3 {
 fmt.Printf("%s X Y input\n", filepath.Base(arguments[0]))
 os.Exit(0)
 }

 if len(arguments) == 3 {
 f = os.Stdin
 } else {
 filename := arguments[3]
 fTemp, err := os.Open(filename)
 if err != nil {
 fmt.Println(err)
 os.Exit(0)
 }
 f = fTemp
 }
 defer f.Close()

 x, _ = strconv.Atoi(arguments[1])
 y, _ = strconv.Atoi(arguments[2])
 fmt.Println("Image size:", x, y)

The fifth part of plotData.go is the following:

 scanner := bufio.NewScanner(f)
 for scanner.Scan() {
 value, err := strconv.Atoi(scanner.Text())
 if err == nil {
 data = append(data, value)
 } else {
 fmt.Println("Error:", value)
 }
 }

 fmt.Println("Slice length:", len(data))
 if len(data)*2 > x {
 fmt.Println("Image size (x) too small!")
 os.Exit(-1)
 }

 maxValue := data[0]
 for _, temp := range data {
 if maxValue < temp {

Download from finelybook www.finelybook.com

394

 maxValue = temp
 }
 }

 if maxValue > y {
 fmt.Println("Image size (y) too small!")
 os.Exit(-1)
 }
 fmt.Println("maxValue:", maxValue)
 barHeighPerUnit := int(y / maxValue)
 fmt.Println("barHeighPerUnit:", barHeighPerUnit)

The last part of plotData.go is the following:

 PNGfile := arguments[1] + "x" + arguments[2] + ".png"
 OUTPUT, err := os.OpenFile(PNGfile, os.O_CREATE|os.O_WRONLY, 0644)
 if err != nil {
 fmt.Println(err)
 os.Exit(-1)
 }
 m = image.NewNRGBA(image.Rectangle{Min: image.Point{0, 0}, Max: image.Point{x, y}})

 i := 0
 barWidth = int(x / len(data))
 fmt.Println("barWidth:", barWidth)
 for _, v := range data {
 c := getColor(v % 10)
 yy := v * barHeighPerUnit
 plotBar(barWidth*i, yy, c)
 fmt.Println("plotBar", barWidth*i, yy)
 i = i + 1
 }

 png.Encode(OUTPUT, m)
}

Although you can use plotData.go on its own, using the output of
extractData.go as the input to plotData.go is as easy as executing the following
command:

$./extractData.go 127.0.0.1 access.log{,.1} | awk '{print $2}' | ./plotData 6000 6500
Image size: 6000 6500
Slice length: 2
maxValue: 6333
barHeighPerUnit: 1
barWidth: 3000
plotBar 0 3129
plotBar 3000 6333
$ ls -l 6000x6500.png
-rw-r--r-- 1 mtsouk mtsouk 164915 Jun 5 18:25 6000x6500.png

The graphical output from the previous command can be an image like the

Download from finelybook www.finelybook.com

395

one you can see in the following figure:

The output generated by the plotData.go utility

Download from finelybook www.finelybook.com

396

Unix sockets in Go
There exist two kinds of sockets: Unix sockets and network sockets. Network
sockets will be explained in Chapter 12, Network Programming, whereas Unix
sockets will be briefly explained in this section. However, as the presented
Go functions also work with TCP/IP sockets, you will still have to wait till Ch
apter 12, Network Programming, in order to fully understand them as they will
not be explained here. So, this section will just present the Go code of a Unix
socket client, which is a program that uses a Unix socket, which is a special
Unix file, to read and write data. The name of the program will be readUNIX.go
and will be presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "io"
 "net"
 "strconv"
 "time"
)

The second part of readUNIX.go is the following:

func readSocket(r io.Reader) {
 buf := make([]byte, 1024)
 for {
 n, _ := r.Read(buf[:])
 fmt.Print("Read: ", string(buf[0:n]))
 }
}

The last part contains the following Go code:

func main() {
 c, _ := net.Dial("unix", "/tmp/aSocket.sock")
 defer c.Close()

 go readSocket(c)
 n := 0
 for {
 message := []byte("Hi there: " + strconv.Itoa(n) + "\n")

Download from finelybook www.finelybook.com

397

 _, _ = c.Write(message)
 time.Sleep(5 * time.Second)
 n = n + 1
 }
}

The use of readUNIX.go requires the presence of another process that also reads
and writes to the same socket file (/tmp/aSocket.sock).

The generated output depends on the implementation of the other part: in this
case, that output was the following:

$ go run readUNIX.go
Read: Hi there: 0
Read: Hi there: 1

If the socket file cannot be found or if no program is watching it, you will get
the following error message:

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x10cfe77]

goroutine 1 [running]:
main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch8/code/readUNIX.go:21 +0x67
exit status 2

Download from finelybook www.finelybook.com

398

RPC in Go
RPC stands for Remote Procedure Call and is a way of executing function
calls to a remote server and getting the answer back in your clients. Once
again, you will have to wait until Chapter 12, Network Programming, in order
to learn how to develop an RPC server and an RPC client in Go.

Download from finelybook www.finelybook.com

399

Programming a Unix shell in Go
This section will briefly and naively present Go code that can be used as the
foundation for the development of a Unix shell. Apart from the exit
command, the only other command that the program can recognize is the
version command that just prints the version of the program. All other user
input will be echoed on the screen.

The Go code of UNIXshell.go will be presented in three parts. However, before
that I will present to you the first version of the shell, which mainly contains
comments in order to better understand how I usually start the
implementation of a relatively challenging program:

package main

import (
 "fmt"
)

func main() {

 // Present prompt

 // Read a line

 // Get the first word of the line

 // If it is a built-in shell command, execute the command

 // otherwise, echo the command

}

This is more or less the algorithm that I would use as a starting point: the
good thing is that the comments briefly show how the program will operate.
Keep in mind that the algorithm does not depend on the programming
language. After that, it is easier to start implementing things because you
know what you want to do.

So, the first part of the final version of the shell is the following:

package main

Download from finelybook www.finelybook.com

400

import (
 "bufio"
 "fmt"
 "os"
 "strings"
)

var VERSION string = "0.2"

The second part is the following:

func main() {
 scanner := bufio.NewScanner(os.Stdin)
 fmt.Print("> ")
 for scanner.Scan() {

 line := scanner.Text()
 words := strings.Split(line, " ")
 command := words[0]

Here, you just read the input from the user line by line and find out the first
word of the input.

The last part of UNIXshell.go is the following:

 switch command {
 case "exit":
 fmt.Println("Exiting...")
 os.Exit(0)
 case "version":
 fmt.Println(VERSION)
 default:
 fmt.Println(line)
 }

 fmt.Print("> ")
 }
}

The aforementioned Go code checks the command that the user gave and acts
accordingly.

Executing UNIXshell.go and interacting with it will generate the following
output:

$ go run UNIXshell.go
> version
0.2
> ls -l
ls -l

Download from finelybook www.finelybook.com

401

> exit
Exiting...

Should you wish to learn more about creating your own Unix shell in Go, you
can visit https://github.com/elves/elvish.

Download from finelybook www.finelybook.com

402

https://github.com/elves/elvish

Yet another minor Go update
While I was writing this chapter, Go was updated: this is a minor update,
which mainly fixes bugs:

$ date
Thu May 25 06:30:53 EEST 2017
$ go version
go version go1.8.3 darwin/amd64

Download from finelybook www.finelybook.com

403

Exercises
1. Put the plotting functionality of plotIP.go into a Go package and use that

package to rewrite both plotIP.go and plotData.go.
2. Review the Go code of ddGo.go from Chapter 6, File Input and Output, in

order to print information about its progress when receiving a SIGINFO
signal.

3. Change the Go code of cat.go to add support for multiple input files.
4. Change the code of plotData.go in order to print gridlines to the

generated image.
5. Change the code of plotData.go in order to leave a little space between

the bars of the plot.
6. Try to make the UNIXshell.go program a little better by adding new

features to it.

Download from finelybook www.finelybook.com

404

Summary
In this chapter, we talked about many interesting and handy topics, including
signal handling and creating graphical images in Go. Additionally, we taught
you how to add support for Unix pipes in your Go programs.

In the next chapter, we will talk about the most unique feature of Go, which
is goroutines. You will learn what a goroutine is, how to create and
synchronize them as well as how to create channels and pipelines. Have in
mind that many people come to Go in order to learn a modern and safe
programming language, but stay for its goroutines!

Download from finelybook www.finelybook.com

405

Goroutines - Basic Features
In the previous chapter, you learned about Unix signal handling as well as
adding support for pipes and creating graphical images in Go.

The subject of this really important chapter is goroutines. Go uses goroutines
and channels in order to program concurrent applications in its own way
while providing support for traditional concurrency techniques. Everything in
Go is executed using goroutines; when a program starts its execution, its
single goroutine automatically calls the main() function in order to begin the
actual execution of the program.

In this chapter, we will present the easy parts of goroutines using easy to
follow code examples. However, in Chapter 10, Goroutines - Advanced
Features, that is coming next, we will talk about more important and
advanced techniques related to goroutines and channels; so, make sure that
you fully understand this chapter before reading the next one.

Therefore, this chapter will tell you about the following:

Creating goroutines
Synchronizing goroutines
About channels and how to use them
Reading and writing to channels
Creating and using pipelines
Changing the Go code of the wc.go utility from Chapter 6, File Input and
Output, in order to use goroutines in the new implementation
Improving the goroutine version of wc.go even further

Download from finelybook www.finelybook.com

406

About goroutines
A goroutine is the minimum Go entity that can be executed concurrently.
Note that the use of the word minimum is very important here because
goroutines are not autonomous entities. Goroutines live in threads that live in
Unix processes. Putting it simply, processes can be autonomous and exist on
their own, whereas both goroutines and threads cannot. So, in order to create
a goroutine, you will need to have a process with at least one thread. The
good thing is that goroutines are lighter than threads, which are lighter than
processes. Everything in Go is executed using goroutines, which makes
perfect sense since Go is a concurrent programming language by design. As
you have just learned, when a Go program starts its execution, its single
goroutine calls the main() function, which starts the actual program execution.

You can define a new goroutine using the go keyword followed by a function
name or the full definition of an anonymous function. The go keyword starts
the function argument to it in a new goroutine and allows the invoking
function to continue on by itself.

However, as you will see, you cannot control or make any assumptions about
the order your goroutines are going to get executed because this depends on
the scheduler of the operating system as well as the load of the operating
system.

Download from finelybook www.finelybook.com

407

Concurrency and parallelism
A very common misconception is that concurrency and parallelism refer to
the same thing, which is far from true! Parallelism is the simultaneous
execution of multiple things, whereas concurrency is a way of structuring
your components so that they can be independently executed when possible.

Only when you build things concurrently you can safely execute them in
parallel: when and if your operating system and your hardware permit it. The
Erlang programming language did this a long time ago, long before CPUs
had multiple cores and computers had lots of RAM.

In a valid concurrent design, adding concurrent entities makes the whole
system run faster because more things can run in parallel. So, the desired
parallelism comes from a better concurrent expression and implementation of
the problem. The developer is responsible for taking concurrency into
account during the design phase of a system and benefit from a potential
parallel execution of the components of the system. So, the developer should
not think about parallelism, but about breaking things into independent
components that solve the initial problem when combined.

Even if you cannot run your functions in parallel on a Unix machine, a valid
concurrent design will still improve the design and the maintainability of
your programs. In other words, concurrency is better than parallelism!

Download from finelybook www.finelybook.com

408

The sync Go packages
The sync Go package contains functions that can help you synchronize
goroutines; the most important functions of sync are sync.Add, sync.Done, and
sync.Wait. The synchronization of goroutines is a mandatory task for every
programmer.

Note that the synchronization of goroutines has nothing to do with shared
variables and shared state. Shared variables and shared state have to do with
the method you want to use for performing concurrent interactions.

Download from finelybook www.finelybook.com

409

A simple example
In this subsection, we will present a simple program that creates two
goroutines. The name of the sample program will be aGoroutine.go and will be
presented in three parts; the first part is the following:

package main

import (
 "fmt"
 "time"
)

func namedFunction() {
 time.Sleep(10000 * time.Microsecond)
 fmt.Println("Printing from namedFunction!")
}

Apart from the expected package and import statements, you can see the
implementation of a function named namedFunction() that sleeps for a while
before printing a message on the screen.

The second part of aGoroutine.go contains the following Go code:

func main() {
 fmt.Println("Chapter 09 - Goroutines.")
 go namedFunction()

Here, you create a goroutine that executes the namedFunction() function. The
last part of this naive program is the following:

 go func() {
 fmt.Println("An anonymous function!")
 }()

 time.Sleep(10000 * time.Microsecond)
 fmt.Println("Exiting...")
}

Here, you create another goroutine that executes an anonymous function that
contains a single fmt.Println() statement.

As you can see, goroutines that run this way are totally isolated from each

Download from finelybook www.finelybook.com

410

other and cannot exchange any kind of data, which is not always the
operational style that is desired.

If you forget to call the time.Sleep() function in the main() function, or if
time.Sleep() sleeps for a small amount of time, then main() will finish too early
and the two goroutines will not have enough time to start and therefore finish
their jobs; as a result, you will not see all the expected output on your screen!

Executing aGoroutine.go will generate the following output:

$ go run aGoroutine.go
Chapter 09 - Goroutines.
Printing from namedFunction!
Exiting...

Download from finelybook www.finelybook.com

411

Creating multiple goroutines
This subsection will show you how to create many goroutines and the
problems that arise from having to handle more goroutines. The name of the
program will be moreGoroutines.go and will be presented in three parts.

The first part of moreGoroutines.go is the following:

package main

import (
 "fmt"
 "time"
)

The second part of the program has the following Go code:

func main() {
 fmt.Println("Chapter 09 - Goroutines.")

 for i := 0; i < 10; i++ {
 go func(x int) {
 time.Sleep(10)
 fmt.Printf("%d ", x)
 }(i)
 }

This time, the anonymous function takes a parameter named x, which has the
value of the i variable. The for loop that uses the i variable creates ten
goroutines, one by one.

The last part of the program is the following:

 time.Sleep(10000)
 fmt.Println("Exiting...")
}

Once again, if you put a smaller value as the parameter to time.Sleep(), you
will see different results when you execute the program.

Executing moreGoroutines.go will generate a somehow strange output:

$ go run moreGoroutines.go

Download from finelybook www.finelybook.com

412

Chapter 09 - Goroutines.
1 7 Exiting...
2 3

However, the big surprise comes when you execute moreGoroutines.go multiple
times:

$ go run moreGoroutines.go
Chapter 09 - Goroutines.
Exiting...
$ go run moreGoroutines.go
Chapter 09 - Goroutines.
3 1 0 9 2 Exiting...
4 5 6 8 7
$ go run moreGoroutines.go
Chapter 09 - Goroutines.
2 0 1 8 7 3 6 5 Exiting...
4

As you can see, all previous outputs of the program are different from the
first one! So, not only the output is not coordinated and there is not always
enough time for all goroutines to get executed; you cannot be sure about the
order the goroutines will get executed. However, although you cannot do
anything about the latter problem because the order that goroutines get
executed depends on various parameters that the developer cannot control,
the next subsection will teach you how to synchronize goroutines and give
them enough time to finish without having to call time.Sleep().

Download from finelybook www.finelybook.com

413

Waiting for goroutines to finish
their jobs
This subsection will demonstrate to you the correct way to make a calling
function that wait for its goroutines to finish their jobs. The name of the
program will be waitGR.go and will be presented in four parts; the first part is
the following:

package main

import (
 "fmt"
 "sync"
)

There is nothing special here apart from the absence of the time package and
the addition of the sync package.

The second part has the following Go code:

func main() {
 fmt.Println("Waiting for Goroutines!")

 var waitGroup sync.WaitGroup
 waitGroup.Add(10)

Here, you create a new variable with a type of sync.WaitGroup, which waits for
a group of goroutines to finish. The number of goroutines that belong to that
group is defined by one or multiple calls to the sync.Add() function.

Calling sync.Add() before the Go statement in order to prevent
race conditions is important.

Additionally, the sync.Add(10) call tells our program that we will wait for ten
goroutines to finish.

The third part of the program is the following:

Download from finelybook www.finelybook.com

414

 var i int64
 for i = 0; i < 10; i++ {

 go func(x int64) {
 defer waitGroup.Done()
 fmt.Printf("%d ", x)
 }(i)
 }

Here, you create the desired number of goroutines using a for loop, but you
could have used multiple sequential Go statements. When each goroutine
finishes its job, the sync.Done() function is executed: the use of the defer
keyword right after the function definition tells the anonymous function to
automatically call sync.Done() just before it finishes.

The last part of waitGR.go is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

The good thing here is that there is no need to call time.Sleep() because
sync.Wait() does the necessary waiting for us.

Once again, it should be noted here that you should not make any
assumptions about the order the goroutines will get executed in which is also
verified by the following output:

$ go run waitGR.go
Waiting for Goroutines!
9 0 5 6 7 8 2 1 3 4
Exiting...
$ go run waitGR.go
Waiting for Goroutines!
9 0 5 6 7 8 3 1 2 4
Exiting...
$ go run waitGR.go
Waiting for Goroutines!
9 5 6 7 8 1 0 2 3 4
Exiting...

If you call waitGroup.Add() more times than needed, you will get the following
error message when you execute waitGR.go:

Waiting for Goroutines!
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:

Download from finelybook www.finelybook.com

415

sync.runtime_Semacquire(0xc42000e28c)
 /usr/local/Cellar/go/1.8.3/libexec/src/runtime/sema.go:47 +0x34
sync.(*WaitGroup).Wait(0xc42000e280)
 /usr/local/Cellar/go/1.8.3/libexec/src/sync/waitgroup.go:131 +0x7a
main.main()
 /Users/mtsouk/ch/ch9/code/waitGR.go:22 +0x13c
exit status 2
9 0 1 2 6 7 8 3 4 5

This happens because when you tell your program to wait for n+1 goroutines
by calling sync.Add(1) n+1 times, your program cannot have only n goroutines
(or less)! Putting it simply, this will make sync.Wait() to wait indefinitely for
one or more goroutines to call sync.Done() without any luck, which is
obviously a deadlock situation that prevents your program from finishing.

Download from finelybook www.finelybook.com

416

Creating a dynamic number of
goroutines
This time, the number of goroutines that will be created will be given as a
command-line argument: the name of the program will be dynamicGR.go and
will be presented in four parts.

The first part of dynamicGR.go is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
 "sync"
)

The second part of dynamicGR.go contains the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s integer\n",filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 fmt.Printf("Going to create %d goroutines.\n", numGR)
 var waitGroup sync.WaitGroup

 var i int64
 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)

As you can see, the waitGroup.Add(1) statement is called just before you create
a new goroutine.

The third part of the Go code of dynamicGR.go is the following:

 go func(x int64) {
 defer waitGroup.Done()
 fmt.Printf(" %d ", x)
 }(i)

Download from finelybook www.finelybook.com

417

 }

In the preceding part, each simplistic goroutine is created.

The last part of the program is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

Here, you just tell the program to wait for all goroutines to finish using the
waitGroup.Wait() statement.

The execution of dynamicGR.go requires an integer parameter, which is the
number of goroutines you want to create:

$ go run dynamicGR.go 15
Going to create 15 goroutines.
 0 2 4 1 3 5 14 10 8 9 12 11 6 13 7
Exiting...
$ go run dynamicGR.go 15
Going to create 15 goroutines.
 5 3 14 4 10 6 7 11 8 9 12 2 13 1 0
Exiting...
$ go run dynamicGR.go 15
Going to create 15 goroutines.
 4 2 3 6 5 10 9 7 0 12 11 1 14 13 8
Exiting...

As you can imagine, the more goroutines you want to create, the more
diverse outputs you will have because there is no way to control the order
that the goroutines of a program are going to be executed.

Download from finelybook www.finelybook.com

418

About channels
A channel, putting it simply, is a communication mechanism that allows
goroutines to exchange data. However, some rules exist here. First, each
channel allows the exchange of a particular data type, which is also called the
element type of the channel, and second, for a channel to operate properly,
you will need to use some Go code to receive what is sent via the channel.

You should declare a new channel using the chan keyword and you can close
a channel using the close() function. Additionally, as each channel has its
own type, the developer should define it.

Last, a very important detail: when you are using a channel as a function
parameter, you can specify its direction, that is, whether it will be used for
writing or reading. In my opinion, if you know the purpose of a channel in
advance, use this capability because it will make your program more robust
as well as safer: otherwise, just do not define the purpose of the channel
function parameter. As a result, if you declare that a channel function
parameter will be used for reading only and you try to write to it, you will get
an error message that will most likely save you from nasty bugs.

The error message you will get when you try to read from a write channel
will be similar to the following:

command-line-arguments
./writeChannel.go:13: invalid operation: <-c (receive from send-only type chan<- int)

Download from finelybook www.finelybook.com

419

Writing to a channel
In this subsection, you will learn how to write to a channel. The presented
program will be called writeChannel.go and you will see it in three parts.

The first part has the expected preamble:

package main

import (
 "fmt"
 "time"
)

As you can understand, the use of channels does not require any extra Go
packages.

The second part of writeChannel.go is the following:

func writeChannel(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
 close(c)
 fmt.Println(x)
}

Although the writeChannel() function writes to the channel, the data will be
lost because currently nobody reads the channel in the program.

The last part of the program contains the following Go code:

func main() {
 c := make(chan int)
 go writeChannel(c, 10)
 time.Sleep(2 * time.Second)
}

Here, you can see the definition of a channel variable named c with the help
of the chan keyword that is used for the int data.

Executing writeChannel.go will create the following output:

Download from finelybook www.finelybook.com

420

 $ go run writeChannel.go
 10

This is not what you expected to see! The cause of this unpredicted output is
that the second fmt.Println(x) statement was not executed. The reason for this
is pretty simple: the c <- x statement is blocking the execution of the rest of
the writeChannel() function because nobody is reading from the c channel.

Download from finelybook www.finelybook.com

421

Reading from a channel
This subsection will improve the Go code of writeChannel.go by allowing you
to read from a channel. The presented program will be called readChannel.go
and be presented in four parts.

The first part is the following:

package main

import (
 "fmt"
 "time"
)

The second part of readChannel.go has the following Go code:

func writeChannel(c chan<- int, x int) {
 fmt.Println(x)
 c <- x
 close(c)
 fmt.Println(x)
}

Once again, note that if nobody collects the data written to a channel, the
function that sent it will stall while waiting for someone to read its data.
However, in Chapter 10, Goroutines - Advanced Features, you will see a very
pretty solution to this problem.

The third part has the following Go code:

func main() {
 c := make(chan int)
 go writeChannel(c, 10)
 time.Sleep(2 * time.Second)
 fmt.Println("Read:", <-c)
 time.Sleep(2 * time.Second)

Here, the <-c statement in the fmt.Println() function is used for reading a
single value from the channel: the same statement can be used for storing the
value of a channel into a variable. However, if you do not store the value you
read from a channel, it will be lost.

Download from finelybook www.finelybook.com

422

The last part of readChannel.go is the following:

 _, ok := <-c
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }
}

Here, you see a technique that allows you to find out whether the channel that
you want to read from is closed or not. However, if the channel was open, the
presented Go code will discard the read value of the channel because of the
use of the _ character in the assignment.

Executing readChannel.go will create the following output:

$ go run readChannel.go
10
Read: 10
10
Channel is closed!
$ go run readChannel.go
10
10
Read: 10
Channel is closed!

Download from finelybook www.finelybook.com

423

Explaining h1s.go
In Chapter 8, Processes and Signals, you saw how Go handles Unix signals
using many examples including h1s.go. However, now that you understand
more about goroutines and channels, it is time to explain the Go code of
h1s.go a little more.

As you already know that h1s.go uses channels and goroutines, it should be
clear now that the anonymous function that is executed as a goroutine reads
from the sigs channel using an infinite for loop. This means that each time
there is a signal that interests us, the goroutine will read it from the sigs
channel and handle it.

Download from finelybook www.finelybook.com

424

Pipelines
Go programs rarely use a single channel. One very common technique that
uses multiple channels is called a pipeline. So, a pipeline is a method for
connecting goroutines so that the output of a goroutine becomes the input of
another with the help of channels. The benefits of using pipelines are as
follows:

One of the benefits you get from using pipelines is that there is a
constant flow in your program because nobody waits for everything to
be completed in order to start the execution of goroutines and channels
of the program
Additionally, you are using less variables and therefore less memory
space because you do not have to save everything
Last, the use of pipelines simplifies the design of the program and
improves its maintainability

The code of pipelines.go, which works with a pipeline of integers, will be
presented in five parts; the first part is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
)

The second part contains the following Go code:

func genNumbers(min, max int64, out chan<- int64) {

 var i int64
 for i = min; i <= max; i++ {
 out <- i
 }
 close(out)
}

Here, you define a function that takes three arguments: two integers and one

Download from finelybook www.finelybook.com

425

output channel. The output channel will be used for writing data that will be
read in another function: this is how a pipeline is created.

The third part of the program is the following:

func findSquares(out chan<- int64, in <-chan int64) {
 for x := range in {
 out <- x * x
 }
 close(out)
}

This time, the function takes two arguments that are both channels. However,
out is an output channel, whereas in is an input channel used for reading data.

The fourth part contains the definition of another function:

func calcSum(in <-chan int64) {
 var sum int64
 sum = 0
 for x2 := range in {
 sum = sum + x2
 }
 fmt.Printf("The sum of squares is %d\n", sum)
}

The last function of pipelines.go takes just one argument, which is a channel
used for reading data.

The last part of pipelines.go is the implementation of the main() function:

func main() {
 if len(os.Args) != 3 {
 fmt.Printf("usage: %s n1 n2\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 n1, _ := strconv.ParseInt(os.Args[1], 10, 64)
 n2, _ := strconv.ParseInt(os.Args[2], 10, 64)

 if n1 > n2 {
 fmt.Printf("%d should be smaller than %d\n", n1, n2)
 os.Exit(10)
 }

 naturals := make(chan int64)
 squares := make(chan int64)
 go genNumbers(n1, n2, naturals)
 go findSquares(squares, naturals)
 calcSum(squares)
}

Download from finelybook www.finelybook.com

426

Here, the main() function firstly reads its two command-line arguments and
creates the necessary channel variables (naturals and squares). Then, it calls
the functions of the pipeline: note that the last function of the channel is not
being executed as a goroutine.

The following figure shows a graphical representation of the pipeline used in
pipelines.go in order to the way this particular pipeline works:

A graphical representation of the pipeline structure used in pipelines.go

Running pipelines.go generates the following output:

$ go run pipelines.go
usage: pipelines n1 n2
exit status 1
$ go run pipelines.go 3 2
3 should be smaller than 2
exit status 10
$ go run pipelines.go 3 20
The sum of squares is 2865
$ go run pipelines.go 1 20
The sum of squares is 2870
$ go run pipelines.go 20 20
The sum of squares is 400

Download from finelybook www.finelybook.com

427

A better version of wc.go
As we talked about in Chapter 6, File Input and Output, in this chapter, you
will learn how to create a version of wc.go that uses goroutines. The name of
the new utility will be dWC.go and will be presented in four parts. Note that the
current version of dWC.go considers each command-line argument as a file.

The first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "sync"
)

The second part has the following Go code:

func count(filename string) {
 var err error
 var numberOfLines int = 0
 var numberOfCharacters int = 0
 var numberOfWords int = 0

 f, err := os.Open(filename)
 if err != nil {
 fmt.Printf("%s\n", err)
 return
 }
 defer f.Close()

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 numberOfLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {

Download from finelybook www.finelybook.com

428

 numberOfWords++
 }
 numberOfCharacters += len(line)
 }

 fmt.Printf("\t%d\t", numberOfLines)
 fmt.Printf("%d\t", numberOfWords)
 fmt.Printf("%d\t", numberOfCharacters)
 fmt.Printf("%s\n", filename)
}

The count() function does all the processing without returning any
information to the main() function: it just prints the lines, words, and
characters of its input file and exits. Although the current implementation of
the count() function does the desired job, it is not the correct way to design a
program because there is no way to control its output of the program.

The third part of the utility is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

The last part of dWC.go is the following:

 var waitGroup sync.WaitGroup
 for _, filename := range os.Args[1:] {
 waitGroup.Add(1)
 go func(filename string) {
 count(filename)
 defer waitGroup.Done()
 }(filename)
 }
 waitGroup.Wait()
}

As you can see, each input file is being processed by a different goroutine. As
expected, you cannot make any assumptions about the order the input files
will be processed.

Executing dWC.go will generate the following output:

$ go run dWC.go /tmp/swtag.log /tmp/swtag.log doesnotExist
open doesnotExist: no such file or directory
 48 275 3571 /tmp/swtag.log
 48 275 3571 /tmp/swtag.log

Download from finelybook www.finelybook.com

429

Here, you can see that although the doesnotExist filename is the last
command-line argument, it is the first one in the output of dWC.go!

Although dWC.go uses goroutines, there is no cleverness in it because
goroutines run without communicating with each other and without
performing any other tasks. Additionally, the output might get scrambled
because there is no guarantee that the fmt.Printf() statements of the count()
function will not get interrupted.

As a result, the forthcoming section as well as some of the techniques that
will be presented in Chapter 10, Goroutines - Advanced Features, will improve
dWC.go.

Download from finelybook www.finelybook.com

430

Calculating totals
The current version of dWC.go cannot calculate totals, which can be easily
solved by processing the output of dWC.go with awk:

$ go run dWC.go /tmp/swtag.log /tmp/swtag.log | awk '{sum1+=$1; sum2+=$2; sum3+=$3} END {print "\t", sum1, "\t", sum2, "\t", sum3}'
 96 550 7142

Still, this is far from being perfect and elegant!

The main reason that the current version of dWC.go cannot calculate totals is
that its goroutines have no way of communicating with each other. This can
be easily solved with the help of channels and pipelines. The new version of
dWC.go will be called dWCtotal.go and will be presented in five parts.

The first part of dWCtotal.go is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
)

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

Here, a new struct type is defined. The new structure is called File and has
four fields and an additional field for keeping error messages. This is the
correct way for a pipeline to circulate multiple values. One might argue that a
better name for the File structure would have been Counts, Results, FileCounts,
or FileResults.

Download from finelybook www.finelybook.com

431

The second part of the program is the following:

func process(files []string, out chan<- File) {
 for _, filename := range files {
 var fileToProcess File
 fileToProcess.Filename = filename
 fileToProcess.Lines = 0
 fileToProcess.Words = 0
 fileToProcess.Characters = 0
 out <- fileToProcess
 }
 close(out)
}

A better name of the process() function would have been beginProcess() or
processResults(). You can try to make that change on your own throughout the
dWCtotal.go program.

The third part of dWCtotal.go has the following Go code:

func count(in <-chan File, out chan<- File) {
 for y := range in {
 filename := y.Filename
 f, err := os.Open(filename)
 if err != nil {
 y.Error = err
 out <- y
 continue
 }
 defer f.Close()
 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')
 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s", err)
 y.Error = err
 out <- y
 continue
 }
 y.Lines = y.Lines + 1
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 y.Words = y.Words + 1
 }
 y.Characters = y.Characters + len(line)
 }
 out <- y
 }
 close(out)
}

Download from finelybook www.finelybook.com

432

Although the count() function still calculates the counts, it does not print
them. It just sends the counts of lines, words, and characters as well as the
filename to another channel using a struct variable of the File type.

There exists one very important detail here, which is the last statement of the
count() function: in order to properly end a pipeline, you should close all
involved channels, starting from the first one. Otherwise, the execution of the
program will fail with an error message similar to the following one:

fatal error: all goroutines are asleep - deadlock!

However, as far as closing the channels of a pipeline is concerned, you
should also be careful about closing channels too early, especially when there
are splits in a pipeline.

The fourth part of the program contains the following Go code:

func calculate(in <-chan File) {
 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for x := range in {
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 }
 }

 fmt.Printf("\t%d\t", totalLines)
 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

There is nothing special here: the calculate() function does the dirty job of
printing the output of the program.

The last part of dWCtotal.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))

Download from finelybook www.finelybook.com

433

 os.Exit(1)
 }

 files := make(chan File)
 values := make(chan File)

 go process(os.Args[1:], files)
 go count(files, values)
 calculate(values)
}

Since the files channel is only used for passing around filenames, it could
have been a string channel instead of a File channel. However, this way the
code is more consistent.

Now dWCtotal.go automatically generates totals even if it has to process just
one file:

$ go run dWCtotal.go /tmp/swtag.log
 48 275 3571 /tmp/swtag.log
 48 275 3571 total
$ go run dWCtotal.go /tmp/swtag.log /tmp/swtag.log doesNotExist
 48 275 3571 /tmp/swtag.log
 48 275 3571 /tmp/swtag.log
 96 550 7142 total

Note that both dWCtotal.go and dWC.go implement the same core functionality,
which is counting the words, characters, and lines of a file: it is the way the
information is handled that is different because dWCtotal.go uses a pipeline and
not isolated goroutines.

Chapter 10, Goroutines - Advanced Features, will use other techniques to
implement the functionality of dWCtotal.go.

Download from finelybook www.finelybook.com

434

Doing some benchmarking
In this section, we will compare the performance of wc.go from Chapter 6, File
Input and Output, with the performance of wc(1), dWC.go and dWCtotal.go. In
order for the results to be more accurate, all three utilities will process
relatively big files:

$ wc /tmp/*.data
 712804 3564024 9979897 /tmp/connections.data
 285316 855948 4400685 /tmp/diskSpace.data
 712523 1425046 8916670 /tmp/memory.data
 1425500 2851000 5702000 /tmp/pageFaults.data
 285658 840622 4313833 /tmp/uptime.data
 3421801 9536640 33313085 total

So, the time(1) utility will measure the following commands:

$ time wc /tmp/*.data /tmp/*.data
$ time wc /tmp/uptime.data /tmp/pageFaults.data
$ time ./dWC /tmp/*.data /tmp/*.data
$ time ./dWC /tmp/uptime.data /tmp/pageFaults.data
$ time ./dWCtotal /tmp/*.data /tmp/*.data
$ time ./dWCtotal /tmp/uptime.data /tmp/pageFaults.data
$ time ./wc /tmp/uptime.data /tmp/pageFaults.data
$ time ./wc /tmp/*.data /tmp/*.data

The following figure shows a graphical representation of the real field from
the output of the time(1) utility when used to measure the aforementioned
commands:

Download from finelybook www.finelybook.com

435

Plotting the real field of the time(1) utility

The original wc(1) utility is by far the fastest of all. Additionally, dWC.go is
faster than both dWCtotal.go and wc.go. Apart from dWC.go, the remaining two
Go versions have the same performance.

Download from finelybook www.finelybook.com

436

Exercises
1. Create a pipeline that reads text files, finds the number of occurrences of

a given word, and calculates the total number of occurrences of the word
in all files.

2. Try to make dWCtotal.go faster.
3. Create a simple Go program that plays ping pong using channels. You

should define the total number of pings and pongs using a command-line
argument.

Download from finelybook www.finelybook.com

437

Summary
In this chapter, we talked about creating and synchronizing goroutines as well
as about creating and using pipelines and channels to allow goroutines to
communicate with each other. Additionally, we developed two versions of
the wc(1) utility that use goroutines to process their input files.

Make sure that you fully understand the concepts of this chapter before
continuing with the next chapter because in the next chapter, we will talk
about more advanced features related to goroutines and channels including
shared memory, buffered channels, the select keyword, the GOMAXPROCS
environment variable, and signal channels.

Download from finelybook www.finelybook.com

438

Goroutines - Advanced Features
This is the second chapter of this book that deals with goroutines: the most
important feature of the Go programming language: as well as channels that
greatly improve what goroutines can do, and we will continue this from
where we stopped it in Chapter 9, Goroutines - Basic Features.

Thus, you will learn how to use various types of channels, including buffered
channels, signal channels, nil channels, and channels of channels!
Additionally, you will learn how you can utilize shared memory and mutexes
with goroutines as well as how to time out a program when it is taking too
long to finish.

Specifically, this chapter will discuss the following topics:

Buffered channels
The select keyword
Signal channels
Nil channels
Channel of channels
Timing out a program and avoiding waiting forever for it to end
Shared memory and goroutines
Using sync.Mutex in order to guard shared data
Using sync.RWMutex in order to protect your shared data
Changing the code of dWC.go from Chapter 9, Goroutines - Basic Features,
in order to add support for buffered channels and mutexes to it

Download from finelybook www.finelybook.com

439

The Go scheduler
In the previous chapter, we said that the kernel scheduler is responsible for
the order your goroutines will be executed in, which is not completely
accurate. The kernel scheduler is responsible for the execution of the threads
your programs have. The Go runtime has its own scheduler that is responsible
for the execution of the goroutines using a technique known as m:n
scheduling, where m goroutines are executed using n operating system
threads using multiplexing. As the Go scheduler has to deal with the
goroutines of a single program, its operation is much cheaper and faster than
the operation of the kernel scheduler.

Download from finelybook www.finelybook.com

440

The sync Go package
Once again, we will use functions and data types from the sync package in
this chapter. Particularly, you will learn about the usefulness of the sync.Mutex
and sync.RWMutex types and the functions supporting them.

Download from finelybook www.finelybook.com

441

The select keyword
A select statement in Go is like a switch statement for channels and allows a
goroutine to wait on multiple communication operations. Therefore, the main
advantage you get from using the select keyword is that the same function
can deal with multiple channels using a single select statement! Additionally,
you can have nonblocking operations on channels.

The name of the program that will be used for illustrating the select keyword
will be useSelect.go and will be presented in five parts. The useSelect.go
program allows you to generate the number of random you want, which is
defined in the first command-line argument, up to a certain limit, which is the
second command-line argument.

The first part of useSelect.go is the following:

package main

import (
 "fmt"
 "math/rand"
 "os"
 "path/filepath"
 "strconv"
 "time"
)

The second part of useSelect.go is the following:

func createNumber(max int, randomNumberChannel chan<- int, finishedChannel chan bool) {
 for {
 select {
 case randomNumberChannel <- rand.Intn(max):
 case x := <-finishedChannel:
 if x {
 close(finishedChannel)
 close(randomNumberChannel)
 return
 }
 }
 }
}

Download from finelybook www.finelybook.com

442

Here, you can see how the select keyword allows you to listen to and
coordinate two channels (randomNumberChannel and finishedChannel) at the same
time. The select statement waits for a channel to unblock and then executes
on that.

The for loop of the createNumber() function will not end on this own.
Therefore, createNumber() will keep generating random numbers for as long as
the randomNumberChannel branch of the select statement is used. The
createNumber() function will exit when it gets the Boolean value true in the
finishedChannel channel.

A better name for the finishedChannel channel would have been done or even
noMoreData.

The third part of the program contains the following Go code:

func main() {
 rand.Seed(time.Now().Unix())
 randomNumberChannel := make(chan int)
 finishedChannel := make(chan bool)

 if len(os.Args) != 3 {
 fmt.Printf("usage: %s count max\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 n1, _ := strconv.ParseInt(os.Args[1], 10, 64)
 count := int(n1)
 n2, _ := strconv.ParseInt(os.Args[2], 10, 64)
 max := int(n2)

 fmt.Printf("Going to create %d random numbers.\n", count)

There is nothing special here: you just read the command-line arguments
before starting the desired goroutine.

The fourth part of useSelect.go is where you will start the desired goroutine
and create a for loop in order to generate the desired number of random
numbers:

 go createNumber(max, randomNumberChannel, finishedChannel)
 for i := 0; i < count; i++ {
 fmt.Printf("%d ", <-randomNumberChannel)
 }

 finishedChannel <- false

Download from finelybook www.finelybook.com

443

 fmt.Println()
 _, ok := <-randomNumberChannel
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }

Here, you also send a message to finishedChannel and check whether the
randomNumberChannel channel is open or closed after sending the message to
finishedChannel. As you sent false to finishedChannel, the finishedChannel
channel will remain open. Note that a message sent to a closed channel panics,
whereas a message received from a closed channel returns the zero value
immediately.

Note that once you close a channel, you cannot write to this
channel. However, you can still read from that channel!

The last part of useSelect.go has the following Go code:

 finishedChannel <- true
 _, ok = <-randomNumberChannel
 if ok {
 fmt.Println("Channel is open!")
 } else {
 fmt.Println("Channel is closed!")
 }
}

Here, you sent the true value to finishedChannel, so your channels will close
and the createNumber() goroutine will exit.

Running useSelect.go will create the following output:

$ go run useSelect.go 2 100
Going to create 2 random numbers.
19 74
Channel is open!
Channel is closed!

As you will see in the bufChannels.go program that explains buffered channels,
the select statement can also save you from overflowing a buffered channel.

Download from finelybook www.finelybook.com

444

Signal channels
A signal channel is a channel that is used just for signaling. Signal channels
will be illustrated using the signalChannel.go program with a rather unusual
example that will be presented in five parts. The program executes four
goroutines: when the first one is finished, it sends a signal to a signal channel
by closing it, which will unblock the second goroutine. When the second
goroutine finishes its job, it closes another channel that unblocks the
remaining two goroutines. Note that signal channels are not the same as
channels that carry the os.Signal values.

The first part of the program is the following:

package main

import (
 "fmt"
 "time"
)

func A(a, b chan struct{}) {
 <-a
 fmt.Println("A!")
 time.Sleep(time.Second)
 close(b)
}

The A() function is blocked by the channel defined in the a parameter. This
means that until this channel is closed, the A() function cannot continue its
execution. The last statement of the function closes the channel that is stored
in the b variable, which will be used for unblocking other goroutines.

The second part of the program is the implementation of the B() function:

func B(b, c chan struct{}) {
 <-b
 fmt.Println("B!")
 close(c)
}

Similarly, the B() function is blocked by the channel stored in the b argument,
which means that until the b channel is closed, the B() function will be

Download from finelybook www.finelybook.com

445

waiting in its first statement.

The third part of signalChannel.go is the following:

func C(a chan struct{}) {
 <-a
 fmt.Println("C!")
}

Once again, the C() function is blocked by the channel stored in its a
argument.

The fourth part of the program is the following:

func main() {
 x := make(chan struct{})
 y := make(chan struct{})
 z := make(chan struct{})

Defining a signal channel as an empty struct with no fields is a
very common practice because empty structures take no
memory space. In such a case, you could have used a bool
channel instead.

The last part of signalChannel.go has the following Go code:

 go A(x, y)
 go C(z)
 go B(y, z)
 go C(z)

 close(x)
 time.Sleep(2 * time.Second)
}

Here, you start four goroutines. However, until you close the a channel, all of
them will be blocked! Additionally, A() will finish first and unblock B() that
will unblock the two C() goroutines. So, this technique allows you to define
the order of execution of your goroutines.

If you execute signalChannel.go, you will get the following output:

$ go run signalChannel.go
A!
B!

Download from finelybook www.finelybook.com

446

C!
C!

As you can see, the goroutines are being executed in the desired order despite
the A() function taking more time to execute than the others due to the
time.Sleep() function call.

Download from finelybook www.finelybook.com

447

Buffered channels
Buffered channels allow the Go scheduler to put jobs in the queue quickly in
order to be able to serve more requests. Moreover, you can use buffered
channels as semaphores in order to limit throughput. The technique works as
follows: incoming requests are forwarded to a channel, which processes one
request at a time. When the channel is done, it sends a message to the original
caller saying that it is ready to process a new request. So, the capacity of the
buffer of the channel restricts the number of simultaneous requests it can
keep and process: this can be easily implemented using a for loop with a call
to time.Sleep() at its end.

Buffered channels will be illustrated in bufChannels.go, which will be
presented in four parts.

The first part of the program is the following:

package main

import (
 "fmt"
)

The preamble proves that you do not need any extra packages for supporting
buffered channels in your Go program.

The second part of the program has the following Go code:

func main() {
 numbers := make(chan int, 5)

Here, you create a new channel named numbers with 5 places, which is denoted
by the last parameter of the make statement. This means that you can write five
integers to that channel without having to read any one of them in order to
make space for the others. However, you cannot put six integers on a channel
with five integer places!

The third part of bufChannels.go is the following:

Download from finelybook www.finelybook.com

448

 counter := 10
 for i := 0; i < counter; i++ {
 select {
 case numbers <- i:
 default:
 fmt.Println("Not enough space for", i)
 }
 }

Here, you try to put 10 integers to a buffered channel with 5 places. However,
the use of the select statement allows you to know whether you have enough
space for storing all the integers or not and act accordingly!

The last part of bufChannels.go is the following:

 for i := 0; i < counter*2; i++ {
 select {
 case num := <-numbers:
 fmt.Println(num)
 default:
 fmt.Println("Nothing more to be done!")
 break
 }
 }
}

Here, you also use a select statement while trying to read 20 integers from a
channel. However, as soon as reading from the channel fails, the for loop
exits using a break statement. This happens because when there is nothing left
to read from the numbers channel, the num := <-numbers statement will block,
which makes the case statement to go to the default branch.

As you can see from the code, there is no goroutine in bufChannels.go, which
means that buffered channels can work on their own.

Executing bufChannels.go will generate the following output:

$ go run bufChannels.go
Not enough space for 5
Not enough space for 6
Not enough space for 7
Not enough space for 8
Not enough space for 9
0
1
2
3
4

Download from finelybook www.finelybook.com

449

Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!
Nothing more to be done!

Download from finelybook www.finelybook.com

450

About timeouts
Can you imagine waiting forever for something to perform an action? Neither
can I! So, in this section you will learn how to implement timeouts in Go
with the help of the select statement.

The program with the sample code will be named timeOuts.go and will be
presented in four parts; the first part is the following:

package main

import (
 "fmt"
 "time"
)

The second part of timeOuts.go is the following:

func main() {
 c1 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c1 <- "c1 OK"
 }()

The time.Sleep() statement in the goroutine is used for simulating the time it
will take for the goroutine to do its real job.

The third part of timeOuts.go has the following code:

 select {
 case res := <-c1:
 fmt.Println(res)
 case <-time.After(time.Second * 1):
 fmt.Println("timeout c1")
 }

This time the use of time.After() is required for declaring the time you want
to wait before timing out. The wonderful thing here is that if the time of
time.After() expires without the select statement having received any data
from the c1 channel, the case branch of time.After() will get executed.

Download from finelybook www.finelybook.com

451

The last part of the program will have the following Go code:

 c2 := make(chan string)
 go func() {
 time.Sleep(time.Second * 3)
 c2 <- "c2 OK"
 }()

 select {
 case res := <-c2:
 fmt.Println(res)
 case <-time.After(time.Second * 4):
 fmt.Println("timeout c2")
 }
}

In the previous code, you see an operation that does not time out because it is
completed within the desired time, which means that the first branch of the
select block will get executed instead of the second one that signifies the
timeout.

The execution of timeOuts.go will generate the following output:

$ go run timeOuts.go
timeout c1
c2 OK

Download from finelybook www.finelybook.com

452

An alternative way to implement
timeouts
The technique of this subsection will let you not wait for any stubborn
goroutines to finish their jobs. Therefore, this subsection will show you how
to time out goroutines with the help of the timeoutWait.go program that will be
presented in four parts. Despite the code differences between timeoutWait.go
and timeOuts.go, the general idea is exactly the same.

The first part of timeoutWait.go contains the expected preamble:

package main

import (
 "fmt"
 "sync"
 "time"
)

The second part of timeoutWait.go is the following:

func timeout(w *sync.WaitGroup, t time.Duration) bool {
 temp := make(chan int)
 go func() {
 defer close(temp)
 w.Wait()
 }()

 select {
 case <-temp:
 return false
 case <-time.After(t):
 return true
 }
}

Here, you declare a function that does the entire job. The core of the function
is the select block that works the same way as in timeOuts.go. The anonymous
function of timeout() will successfully end when the w.Wait() statement
returns, which will happen when the appropriate number of sync.Done() calls
have been executed, which means that all goroutines will be finished. In this
case, the first case of the select statement will be executed.

Download from finelybook www.finelybook.com

453

Note that the temp channel is needed in the select block and
nowhere else. Additionally, the element type of the temp channel
could have been anything, including bool.

The third part of timeOuts.go has the following code:

func main() {
 var w sync.WaitGroup
 w.Add(1)

 t := 2 * time.Second
 fmt.Printf("Timeout period is %s\n", t)

 if timeout(&w, t) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }

The last fragment of the program has the following Go code:

 w.Done()
 if timeout(&w, t) {
 fmt.Println("Timed out!")
 } else {
 fmt.Println("OK!")
 }
}

After the anticipated w.Done() call has been executed, the timeout() function
will return true, which will prevent the timeout from happening.

As mentioned at the beginning of this subsection, timeoutWait.go actually
prevents your program from having to wait indefinitely for one or more
goroutines to end.

Executing timeoutWait.go will create the following output:

$ go run timeoutWait.go
Timeout period is 2s
Timed out!
OK!

Download from finelybook www.finelybook.com

454

Channels of channels
In this section, we will talk about creating and using a channel of channels.
Two possible reasons to use such a channel are as follows:

For acknowledging that an operation finished its job
For creating many worker processes that will be controlled by the same
channel variable

The name of the naive program that will be developed in this section is
cOfC.go and will be presented in four parts.

The first part of the program is the following:

package main

import (
 "fmt"
)

var numbers = []int{0, -1, 2, 3, -4, 5, 6, -7, 8, 9, 10}

The second part of the program is the following:

func f1(cc chan chan int, finished chan struct{}) {
 c := make(chan int)
 cc <- c
 defer close(c)

 total := 0
 i := 0
 for {
 select {
 case c <- numbers[i]:
 i = i + 1
 i = i % len(numbers)
 total = total + 1
 case <-finished:
 c <- total
 return
 }
 }
}

The f1() function returns integer numbers that belong to the numbers variable.

Download from finelybook www.finelybook.com

455

When it is about to end, it also returns the number of integers it has sent back
to the caller function using the c <- total statement.

As you cannot use a channel of channels directly, you should first read from
it (cc <- c) and get a channel that you can actually use. The handy thing here
is that although you can close the c channel, the channel of channels (cc) will
be still up and running.

The third part of cOfC.go is the following:

func main() {
 c1 := make(chan chan int)
 f := make(chan struct{})

 go f1(c1, f)
 data := <-c1

In this Go code, you can see that you can declare a channel of channels using
the chan keyword two consecutive times.

The last part of cOfC.go has the following Go code:

 i := 0
 for integer := range data {
 fmt.Printf("%d ", integer)
 i = i + 1
 if i == 100 {
 close(f)
 }
 }
 fmt.Println()
}

Here, you limit the number of integers that will be created by closing the f
channel when you have the number of integers you want.

Executing cOfC.go will generate the following output:

$ go run cOfC.go
0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 -1 2 3 -4 5 6 -7 8 9 10 0 100

A channel of channels is an advanced Go feature that you probably will not
need to use in your system software. However, it is good to know that it
exists.

Download from finelybook www.finelybook.com

456

Nil channels
This section will talk about nil channels, which are a special sort of channel
that will always block. The name of the program will be nilChannel.go and
will be presented in four parts.

The first part of the program contains the expected preamble:

package main

import (
 "fmt"
 "math/rand"
 "time"
)

The second portion contains the implementation of the addIntegers() function:

func addIntegers(c chan int) {
 sum := 0
 t := time.NewTimer(time.Second)

 for {
 select {
 case input := <-c:
 sum = sum + input
 case <-t.C:
 c = nil
 fmt.Println(sum)
 }
 }
}

The addIntegers() function stops after the time defined in the time.NewTimer()
function passes and will go to the relevant branch of the case statement.
There, it makes c a nil channel, which means that the channel will stop
receiving new data and that the function will just wait there.

The third part of nilChannel.go is the following:

func sendIntegers(c chan int) {
 for {
 c <- rand.Intn(100)
 }
}

Download from finelybook www.finelybook.com

457

Here, the sendIntegers() function keeps generating random numbers and sends
them to the c channel as long as the c channel is open. However, here you
also have a goroutine that is never cleaned up.

The last part of the program has the following Go code:

func main() {
 c := make(chan int)
 go addIntegers(c)
 go sendIntegers(c)
 time.Sleep(2 * time.Second)
}

Executing nilChannel.go will generate the following output:

$ go run nilChannel.go
162674704
$ go run nilChannel.go
165021841

Download from finelybook www.finelybook.com

458

Shared memory
Shared memory is the traditional way that threads use for communicating
with each other. Go comes with built-in synchronization features that allow a
single goroutine to own a shared piece of data. This means that other
goroutines must send messages to this single goroutine that owns the shared
data, which prevents the corruption of the data! Such a goroutine is called a
monitor goroutine. In Go terminology, this is sharing by communicating
instead of communicating by sharing.

This technique will be illustrated in the sharedMem.go program, which will be
presented in five parts. The first part of sharedMem.go has the following Go
code:

package main

import (
 "fmt"
 "math/rand"
 "sync"
 "time"
)

The second part is the following:

var readValue = make(chan int)
var writeValue = make(chan int)

func SetValue(newValue int) {
 writeValue <- newValue
}

func ReadValue() int {
 return <-readValue
}

The ReadValue() function is used for reading the shared variable, whereas the
SetValue() function is used for setting the value of the shared variable. Also,
the two channels used in the program need to be global variables in order to
avoid passing them as arguments to all the functions of the program. Note
that these global variables are usually wrapped up in a Go library or a struct
with methods.

Download from finelybook www.finelybook.com

459

The third part of sharedMem.go is the following:

func monitor() {
 var value int
 for {
 select {
 case newValue := <-writeValue:
 value = newValue
 fmt.Printf("%d ", value)
 case readValue <- value:
 }
 }
}

The logic of sharedMem.go can be found in the implementation of the monitor()
function. When you have a read request, the ReadValue() function attempts to
read from the readValue channel. Then, the monitor() function returns the
current value that is kept in the value parameter. Similarly, when you want to
change the stored value, you call SetValue(), which writes to the writeValue
channel that is also handled by the select statement. Once again, the select
block plays a key role because it orchestrates the operations of the monitor()
function.

The fourth portion of the program has the following Go code:

func main() {
 rand.Seed(time.Now().Unix())
 go monitor()
 var waitGroup sync.WaitGroup

 for r := 0; r < 20; r++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 SetValue(rand.Intn(100))
 }()
 }

The last part of the program is the following:

 waitGroup.Wait()
 fmt.Printf("\nLast value: %d\n", ReadValue())
}

Executing sharedMem.go will generate the following output:

$ go run sharedMem.go
33 45 67 93 33 37 23 85 87 23 58 61 9 57 20 61 73 99 42 99

Download from finelybook www.finelybook.com

460

Last value: 99
$ go run sharedMem.go
71 66 58 83 55 30 61 73 94 19 63 97 12 87 59 38 48 81 98 49
Last value: 49

If you want to share more values, you can define a new structure that will
hold the desired variables with the data types you prefer.

Download from finelybook www.finelybook.com

461

Using sync.Mutex
Mutex is an abbreviation for mutual exclusion; the Mutex variables are
mainly used for thread synchronization and for protecting shared data when
multiple writes can occur at the same time. A mutex works like a buffered
channel of capacity 1 that allows at most one goroutine to access a shared
variable at a time. This means that there is no way for two or more goroutines
to try to update that variable simultaneously. Although this is a perfectly
valid technique, the general Go community prefers to use the monitor
goroutine technique presented in the previous section.

In order to use sync.Mutex, you will have to declare a sync.Mutex variable first.
You can lock that variable using the Lock method and release it using the
Unlock method. The sync.Lock() method gives you exclusive access over the
shared variable for a region of code that finishes when you call the Unlock()
method and is called a critical section.

Each critical section of a program cannot be executed without locking it first
using sync.Lock(). However, if a lock has already been taken, everybody
should wait for its release first. Although multiple functions might wait to get
a lock, only one of them will get it when it will be released.

You should try to make critical sections as small as possible; in other words,
do not delay releasing a lock because other goroutines might want to use it.
Additionally, forgetting to unlock Mutex will most likely result in a deadlock.

The name of the Go program with the code for illustrating the use of
sync.Mutex will be mutexSimple.go and will be presented in five chunks.

The first part of mutexSimple.go contains the expected preamble:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"

Download from finelybook www.finelybook.com

462

 "sync"
)

The second part of the program is the following:

var aMutex sync.Mutex
var sharedVariable string = ""

func addDot() {
 aMutex.Lock()
 sharedVariable = sharedVariable + "."
 aMutex.Unlock()
}

Note that a critical section is not always obvious and you
should be very careful when specifying it. Also note that a
critical section cannot be embedded in another critical section
when both critical sections use the same Mutex variable! Putting
it simply, avoid, at almost all costs, spreading mutexes across
functions because that makes really hard to see whether you are
embedding or not!

Here, addDot() adds a dot character at the end of the sharedVariable string.
However, as the string should be altered simultaneously by multiple
goroutines, you use a sync.Mutex variable to protect it. As the critical section
contains just one command, the waiting period for getting access to the mutex
will be fairly small, if not instantaneous. However, in a real-world situation,
the waiting period might be much longer, especially on software such as
database servers where many things happen simultaneously by thousands of
processes: you can simulate that by adding a call to time.Sleep() in the critical
section.

Note that it is the responsibility of the developer to associate a
mutex with one or more shared variables!

The third code segment of mutexSimple.go is the implementation of another
function that uses the mutex:

func read() string {
 aMutex.Lock()
 a := sharedVariable
 aMutex.Unlock()

Download from finelybook www.finelybook.com

463

 return a
}

Although locking the shared variable while reading it is not absolutely
necessary, this kind of locking prevents the shared variable from changing
while you are reading it. This might look like a small issue here but imagine
reading the balance of your bank account instead!

The fourth part is where you define the number of goroutines that you will
start:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("usage: %s n\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 var waitGroup sync.WaitGroup

The final part of mutexSimple.go contains the following Go code:

 var i int64
 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 addDot()
 }()
 }
 waitGroup.Wait()
 fmt.Printf("-> %s\n", read())
 fmt.Printf("Length: %d\n", len(read()))
}

Here, you start the desired number of goroutines. Each goroutine calls the
addDot() function that accesses the shared variable: and you wait for them to
finish before reading the value of the shared variable using the read()
function.

The output you will get from executing mutexSimple.go will be similar to the
following:

$ go run mutexSimple.go 20
->
Length: 20
$ go run mutexSimple.go 30
->

Download from finelybook www.finelybook.com

464

Length: 30

Download from finelybook www.finelybook.com

465

Using sync.RWMutex
Go offers another type of mutex, called sync.RWMutex, that allows multiple
readers to hold the lock but only a single writer - sync.RWMutex is an extension
of sync.Mutex that adds two methods named sync.RLock and sync.RUnlock, which
are used for locking and unlocking for reading purposes. Locking and
unlocking a sync.RWMutex for exclusive writing should be done with Lock() and
Unlock(), respectively.

This means that either one writer can hold the lock or multiple readers: not
both! You will most likely use such a mutex when most of the goroutines
want to read a variable and you do not want goroutines to wait in order to get
an exclusive lock.

In order to demystify sync.RWMutex a little, you should discover that the
sync.RWMutex type is a Go structure currently defined as follows:

type RWMutex struct {
 w Mutex
 writerSem uint32
 readerSem uint32
 readerCount int32
 readerWait int32
}

So, there is nothing to be afraid of here! Now, it is time to see a Go program
that uses sync.RWMutex. The program will be named mutexRW.go and will be
presented in five parts.

The first part of mutexRW.go contains with the expected preamble as well as the
definition of a global variable and a new struct type:

package main

import (
 "fmt"
 "sync"
 "time"
)

var Password = secret{counter: 1, password: "myPassword"}

Download from finelybook www.finelybook.com

466

type secret struct {
 sync.RWMutex
 counter int
 password string
}

The secret structure embeds sync.RWMutex and therefore it can call all the
methods of sync.RWMutex.

The second part of mutexRW.go has the following Go code:

func Change(c *secret, pass string) {
 c.Lock()
 fmt.Println("LChange")
 time.Sleep(20 * time.Second)
 c.counter = c.counter + 1
 c.password = pass
 c.Unlock()
}

This function makes changes to one of its arguments, which means that it
requires an exclusive lock, hence the use of the Lock() and Unlock() functions.

The third part of the sample code is the following:

func Show(c *secret) string {
 fmt.Println("LShow")
 time.Sleep(time.Second)

 c.RLock()
 defer c.RUnlock()
 return c.password
}

func Counts(c secret) int {
 c.RLock()
 defer c.RUnlock()
 return c.counter
}

Here, you can see the definition of two functions that use an sync.RWMutex for
reading. This means that multiple instances of them can get the sync.RWMutex
lock.

The fourth portion of the program is the following:

func main() {

Download from finelybook www.finelybook.com

467

 fmt.Println("Pass:", Show(&Password))
 for i := 0; i < 5; i++ {
 go func() {
 fmt.Println("Go Pass:", Show(&Password))
 }()
 }

Here, you start five goroutines in order to make things more interesting and
random.

The last part of mutexRW.go is the following:

 go func() {
 Change(&Password, "123456")
 }()

 fmt.Println("Pass:", Show(&Password))
 time.Sleep(time.Second)
 fmt.Println("Counter:", Counts(Password))
}

Although shared memory and the use of a mutex are still a valid
approach to concurrent programming, using goroutines and
channels is a more modern way that follows the Go philosophy.
Therefore, if you can solve a problem using channels and
pipelines, you should prefer that way instead of using shared
variables.

Executing mutexRW.go will generate the following output:

$ go run mutexRW.go
LShow
Pass: myPassword
LShow
LShow
LShow
LShow
LShow
LShow
LChange
Go Pass: 123456
Go Pass: 123456
Pass: 123456
Go Pass: 123456
Go Pass: 123456
Go Pass: 123456
Counter: 2

If the implementation of Change() was using a RLock() call as well as a

Download from finelybook www.finelybook.com

468

RUnlock() call, which would have been totally wrong, then the output of the
program would have been the following:

$ go run mutexRW.go
LShow
Pass: myPassword
LShow
LShow
LShow
LShow
LShow
LShow
LChange
Go Pass: myPassword
Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Go Pass: myPassword
Counter: 1

Put simply, you should be fully aware of the locking mechanism you are
using and the way it works. In this case, it is the timing that is deciding what
Counts() will return: the timing depends on the time.Sleep() call of the Change()
function that emulates the processing that will happen in a real function. The
problem is that the use of RLock() and RUnlock() in Change() allows multiple
goroutines to read the shared variable and therefore get the wrong output
from the Counts() function.

Download from finelybook www.finelybook.com

469

The dWC.go utility revisited
In this section, we will change the implementation of the dWC.go utility
developed in the previous chapter.

The first version of the program will use a buffered channel whereas the
second version of the program will use shared memory for keeping the counts
for each file you process.

Download from finelybook www.finelybook.com

470

Using a buffered channel
The name of this implementation will be WCbuffered.go and will be presented
in five parts.

The first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
)

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

The File structure will keep the counts for each input file. The second chunk
of WCbuffered.go has the following Go code:

func monitor(values <-chan File, count int) {
 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for i := 0; i < count; i++ {
 x := <-values
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 } else {
 fmt.Printf("\t%s\n", x.Error)
 }
 }
 fmt.Printf("\t%d\t", totalLines)

Download from finelybook www.finelybook.com

471

 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

The monitor() function collects all the information and prints it. The for loop
inside monitor() makes sure that it will collect the right amount of data.

The third part of the program contains the implementation of the count()
function:

func count(filename string, out chan<- File) {
 var err error
 var nLines int = 0
 var nChars int = 0
 var nWords int = 0

 f, err := os.Open(filename)
 defer f.Close()
 if err != nil {
 newValue := File{
Filename: filename,
Lines: 0,
Characters: 0,
Words: 0,
Error: err }
 out <- newValue
 return
 }

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 nLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 nWords++
 }
 nChars += len(line)
 }
 newValue := File {
Filename: filename,
Lines: nLines,
Characters: nChars,
Words: nWords,
Error: nil }

 out <- newValue

Download from finelybook www.finelybook.com

472

}

When the count() function is done, it sends the information to the buffered
channel, so there is nothing special here.

The fourth portion of WCbuffered.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 values := make(chan File, len(os.Args[1:]))

Here, you create a buffered channel named values with as many places as the
number of files you will process.

The last portion of the utility is the following:

 for _, filename := range os.Args[1:] {
 go func(filename string) {
 count(filename, values)
 }(filename)
 }
 monitor(values, len(os.Args[1:]))
}

Download from finelybook www.finelybook.com

473

Using shared memory
The good thing with shared memory and mutexes is that, in theory, they
usually take a very small amount of the code, which means that the rest of the
code can work concurrently without any other delays. However, only after
you have implemented something can you see what really happens!

The name of this implementation will be WCshared.go and will be presented in
five parts: the first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "io"
 "os"
 "path/filepath"
 "regexp"
 "sync"
)

type File struct {
 Filename string
 Lines int
 Words int
 Characters int
 Error error
}

var aM sync.Mutex
var values = make([]File, 0)

The values slice will be the shared variable of the program whereas the name
of the mutex variable will be aM.

The second chunk of WCshared.go has the following Go code:

func count(filename string) {
 var err error
 var nLines int = 0
 var nChars int = 0
 var nWords int = 0

 f, err := os.Open(filename)
 defer f.Close()

Download from finelybook www.finelybook.com

474

 if err != nil {
 newValue := File{Filename: filename, Lines: 0, Characters: 0, Words: 0, Error: err}
 aM.Lock()
 values = append(values, newValue)
 aM.Unlock()
 return
 }

 r := bufio.NewReader(f)
 for {
 line, err := r.ReadString('\n')

 if err == io.EOF {
 break
 } else if err != nil {
 fmt.Printf("error reading file %s\n", err)
 }
 nLines++
 r := regexp.MustCompile("[^\\s]+")
 for range r.FindAllString(line, -1) {
 nWords++
 }
 nChars += len(line)
 }

 newValue := File{Filename: filename, Lines: nLines, Characters: nChars, Words: nWords, Error: nil}
 aM.Lock()
 values = append(values, newValue)
 aM.Unlock()
}

So, just before the count() function exits, it adds an element to the values slice
using a critical section.

The third part of WCshared.go is the following:

func main() {
 if len(os.Args) == 1 {
 fmt.Printf("usage: %s <file1> [<file2> [... <fileN]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

Here, you just deal with the command-line arguments of the utility.

The fourth part of WCshared.go contains the following Go code:

 var waitGroup sync.WaitGroup
 for _, filename := range os.Args[1:] {
 waitGroup.Add(1)
 go func(filename string) {
 defer waitGroup.Done()

Download from finelybook www.finelybook.com

475

 count(filename)
 }(filename)
 }

 waitGroup.Wait()

Here, you just start the desired number of goroutines and wait for them to
finish their jobs.

The last code slice of the utility is the following:

 var totalWords int = 0
 var totalLines int = 0
 var totalChars int = 0
 for _, x := range values {
 totalWords = totalWords + x.Words
 totalLines = totalLines + x.Lines
 totalChars = totalChars + x.Characters
 if x.Error == nil {
 fmt.Printf("\t%d\t", x.Lines)
 fmt.Printf("%d\t", x.Words)
 fmt.Printf("%d\t", x.Characters)
 fmt.Printf("%s\n", x.Filename)
 }
 }
 fmt.Printf("\t%d\t", totalLines)
 fmt.Printf("%d\t", totalWords)
 fmt.Printf("%d\ttotal\n", totalChars)
}

When all goroutines are done, it is time to process the contents of the shared
variable, calculate totals, and print the desired output. Note that in this case,
there is no shared variable of any kind and therefore there is no need for a
mutex: you just wait to gather all results and print them.

Download from finelybook www.finelybook.com

476

More benchmarking
This section will measure the performance of WCbuffered.go and WCshared.go
using the handy time(1) utility. However, this time, instead of presenting a
graph, I will give you the actual output of the time(1) utility:

$ time go run WCshared.go /tmp/*.data /tmp/*.data
real 0m31.836s
user 0m31.659s
sys 0m0.165s
$ time go run WCbuffered.go /tmp/*.data /tmp/*.data
real 0m31.823s
user 0m31.656s
sys 0m0.171s

As you can see, both utilities performed equally well, or equally badly if you
prefer! However, apart from the speed of a program, what also matters is the
clarity of its design and how easy it is to make code changes to it!
Additionally, the presented way also times the compile times of both utilities,
which might make the results less accurate.

The reason that both programs can easily generate totals is that they both
have a control point. For the WCshared.go utility, the control point is the shared
variable, whereas for WCbuffered.go, the control point is the buffered channel
that collects the desired information inside the monitor() function.

Download from finelybook www.finelybook.com

477

Detecting race conditions
If you use the -race flag when running or building a Go program, you will
turn on the Go race detector, which makes the compiler create a modified
version of the typical executable file. This modified version can record the
accesses to shared variables as well as all synchronization events that take
place, including calls to sync.Mutex, sync.WaitGroup, and so on. After doing
some analysis of the events, the race detector prints a report that can help you
identify potential problems so that you can correct them.

In order to showcase the operation of the race detector, we will use the code
of the rd.go program, which will be presented in four parts. For this particular
program, the data race will happen because two or more goroutines access
the same variable concurrently and at least one of them changes the value of
the variable in some way.

Note that the main() program is also a goroutine in Go!

The first part of the program is the following:

package main

import (
 "fmt"
 "os"
 "path/filepath"
 "strconv"
 "sync"
)

Nothing special here, so if there is a problem with the program, it is not in the
preamble.

The second part of rd.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) != 2 {

Download from finelybook www.finelybook.com

478

 fmt.Printf("usage: %s number\n", filepath.Base(arguments[0]))
 os.Exit(1)
 }
 numGR, _ := strconv.ParseInt(os.Args[1], 10, 64)
 var waitGroup sync.WaitGroup
 var i int64

Once again, there is no problem in this particular code.

The third segment of rd.go has the following Go code:

 for i = 0; i < numGR; i++ {
 waitGroup.Add(1)
 go func() {
 defer waitGroup.Done()
 fmt.Printf("%d ", i)
 }()
 }

This code is very suspicious because you try to print the value of a variable
that keeps changing all the time because of the for loop.

The last part of rd.go is the following:

 waitGroup.Wait()
 fmt.Println("\nExiting...")
}

There is nothing special in the last chunk of code.

Enabling the Go race detector for rd.go will generate the following output:

$ go run -race rd.go 10
==================
WARNING: DATA RACE
Read at 0x00c420074168 by goroutine 6:
 main.main.func1()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:25 +0x6c

Previous write at 0x00c420074168 by main goroutine:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:21 +0x30c

Goroutine 6 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:26 +0x2e2
==================
==================
WARNING: DATA RACE
Read at 0x00c420074168 by goroutine 7:

Download from finelybook www.finelybook.com

479

 main.main.func1()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:25 +0x6c

Previous write at 0x00c420074168 by main goroutine:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:21 +0x30c

Goroutine 7 (running) created at:
 main.main()
 /Users/mtsouk/Desktop/goBook/ch/ch10/code/rd.go:26 +0x2e2
==================
2 3 4 4 5 6 7 8 9 10
Exiting...
Found 2 data race(s)
exit status 66

So, the race detector found two data races. The first one happens when
number 1 was not printed at all and the second when number 4 was printed
two times. Additionally, number 0 was not printed despite being the initial
value of i. Last, you should not get number 10 in the output but you did get it
because the last value of i is indeed 10. Note that the main.main.func1()
notation found in the preceding output means that Go talks about an
anonymous function.

Put simply, what the previous two messages tell you is that there is
something wrong with the i variable because it keeps changing while the
goroutines of the program try to read it. Additionally, you cannot
deterministically tell what will happen first.

Running the same program without the race detector will generate the
following output:

$ go run rd.go 10
10 10 10 10 10 10 10 10 10 10
Exiting...

The problem with rd.go can be found in the anonymous function. As the
anonymous function takes no arguments, it uses the current value of i, which
cannot be determined with any certainty as it depends on the operating
system and the Go scheduler: this is where the race situation happens! So,
have in mind that one of the easiest places to have a race condition is inside a
goroutine spawned from an anonymous function! As a result, if you have to
solve such as situation, start by converting the anonymous function into
regular functions with defined arguments!

Download from finelybook www.finelybook.com

480

Programs that use the race detector are slower and need more RAM than the
same programs without the race detector. Last, if the race detector has
nothing to report, it will generate no output.

Download from finelybook www.finelybook.com

481

About GOMAXPROCS
The GOMAXPROCS environment variable (and Go function) allows you to limit the
number of operating system threads that can execute user-level Go code
simultaneously.

Starting with Go version 1.5, the default value of GOMAXPROCS
should be the number of cores available on your Unix system.

Although using a GOMAXPROCS value that is smaller than the number of the cores
a Unix machine has might affect the performance of a program, specifying a
GOMAXPROCS value that is bigger than the number of the available cores will not
make your program run faster!

The code of goMaxProcs.go allows you to determine the value of the GOMAXPROCS -
it will be presented in two parts.

The first part is the following:

package main

import (
 "fmt"
 "runtime"
)

func getGOMAXPROCS() int {
 return runtime.GOMAXPROCS(0)
}

The second part is the following:

func main() {
 fmt.Printf("GOMAXPROCS: %d\n", getGOMAXPROCS())
}

Executing goMaxProcs.go on an Intel i7 machine with hyper threading support
and the latest Go version gives the following output:

Download from finelybook www.finelybook.com

482

$ go run goMaxProcs.go
GOMAXPROCS: 8

However, if you execute goMaxProcs.go on a Debian Linux machine that runs
an older Go version and has an older processor, it will generate the following
output:

$ go version
go version go1.3.3 linux/amd64
$ go run goMaxProcs.go
GOMAXPROCS: 1

The way to change the value of GOMAXPROCS on the fly is as follows:

$ export GOMAXPROCS=80; go run goMaxProcs.go
GOMAXPROCS: 80

However, putting a value bigger than 256 will not work:

$ export GOMAXPROCS=800; go run goMaxProcs.go
GOMAXPROCS: 256

Last, have in mind that if you are running a concurrent program such as
dWC.go using a single core, the concurrent version of the program might not be
faster than the version of the program without goroutines! In some situations,
this happens because the use of goroutines as well as the various calls to the
sync.Add, sync.Wait, and sync.Done functions slows down the performance of a
program. This can be verified by the following output:

$ export GOMAXPROCS=8; time go run dWC.go /tmp/*.data

real 0m10.826s
user 0m31.542s
sys 0m5.043s
$ export GOMAXPROCS=1; time go run dWC.go /tmp/*.data

real 0m15.362s
user 0m15.253s
sys 0m0.103s
$ time go run wc.go /tmp/*.data

real 0m15.158sexit
user 0m15.023s
sys 0m0.120s

Download from finelybook www.finelybook.com

483

Exercises
1. Read carefully the documentation page of the sync package that can be

found at https://golang.org/pkg/sync/.
2. Try to implement dWC.go using a different shared memory technique than

the one used in this chapter.
3. Implement a struct data type that holds your account balance and make

functions that read the amount of money you have and make changes to
the money. Create an implementation that uses sync.RWMutex and another
one that uses sync.Mutex.

4. What would happen to mutexRW.go if you used Lock() and Unlock()
everywhere instead of RLock() and RUnlock()?

5. Try to implement traverse.go from Chapter 5, Files and Directories using
goroutines.

6. Try to create an implementation of improvedFind.go from Chapter 5, Files
and Directories using goroutines.

Download from finelybook www.finelybook.com

484

https://golang.org/pkg/sync/

Summary
This chapter talked about some advanced Go features related to goroutines,
channels, and concurrent programming. However, the moral of this chapter is
that channels can do many things and can be used in many situations, which
means that the developer must be able to choose the appropriate technique to
implement a task based on their experience.

The subject of the next chapter will be web development in Go and it will
contain very interesting material, including sending and receiving JSON data,
developing web servers and web clients, as well as talking to a MongoDB
database from your Go code.

Download from finelybook www.finelybook.com

485

Writing Web Applications in Go
In the previous chapter, we discussed many advanced topics related to
goroutines and channels as well as shared memory and mutexes.

The main subject of this chapter is the development of web applications in
Go. However, this chapter will also talk about how to interact with two
popular databases in your Go programs. The Go standard library provides
packages that can help you develop web applications using higher level
functions, which means that you can do complex things such as reading web
pages by just calling a couple of Go functions with the right arguments.
Although this kind of programming hides the complexity behind a request
and offers less control over the details, it allows you to develop difficult
applications using fewer lines of code, which also results in having fewer
bugs in your programs.

However, as this book is about systems programming, this chapter will not go
into too much depth: you might consider the presented information as a good
starting point for anyone who wants to learn about web development in Go.

More specifically, this chapter will talk about the following topics:

Creating a Go utility for MySQL database administrators
Administering a MongoDB database
Using the Go MongoDB driver to talk to a MongoDB database
Creating a web server in Go
Creating a web client in Go
The http.ServeMux type
Dealing with JSON data in Go
The net/http package
The html/template Go standard package
Developing a command-line utility that searches web pages for a given
keyword

Download from finelybook www.finelybook.com

486

What is a web application?
A web application is a client-server software application where the client part
runs on a web browser. Web applications include webmail, instant messaging
services, and online stores.

Download from finelybook www.finelybook.com

487

About the net/http Go package
The hero of this chapter will be the net/http package that can help you write
web applications in Go. However, if you are interested in dealing with
TCP/IP connections at a lower level, then you should go to Chapter 12,
Network Programming, which talks about developing TCP/IP applications
using lower level function calls.

The net/http package offers a built-in web server as well as a built-in web
client that are both pretty powerful. The http.Get() method can be used for
making HTTP and HTTPS requests, whereas the http.ListenAndServe()
function can be used for creating naive web servers by specifying the IP
address and the TCP port the server will listen to, as well as the functions that
will handle incoming requests.

Another very convenient package is html/template, which is part of the Go
standard library and allows you to generate an HTML output using Go
HTML template files.

Download from finelybook www.finelybook.com

488

Developing web clients
In this section, you will learn how to develop web clients in Go and how to
time out a web connection that takes too long to finish.

Download from finelybook www.finelybook.com

489

Fetching a single URL
In this subsection, you will learn how to read a single web page with the help
of the http.Get() function, which is going to be demonstrated in the getURL.go
program. The utility will be presented in four parts; the first part of the
program is the expected preamble:

package main

import (
 "fmt"
 "io"
 "net/http"
 "os"
 "path/filepath"
)

Although there is nothing new here, you might find impressive the fact that
you will use Go packages that are related to file input and output operations
even though you are reading data from the internet. The explanation for this
is pretty simple: Go has a uniform interface for reading and writing data
regardless of the medium it is in.

The second part of getURL.go has the following Go code:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL :=os.Args[1]
 data, err := http.Get(URL)

The URL you want to fetch is given as a command-line argument to the
program. Additionally, you can see the call to http.Get(), which does all the
dirty work! What http.Get() returns is a Response variable, which in reality is a
Go structure with various properties and methods.

The third part is the following:

 if err != nil {

Download from finelybook www.finelybook.com

490

 fmt.Println(err)
 os.Exit(100)
 } else {

If there is an error after calling http.Get(), this is the place to check for it.

The fourth part contains the following Go code:

 defer data.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

As you can see, the data of URL is written in standard output using os.Stdout,
which is the preferred way for printing data on the screen. Additionally, the
data is saved in the Body property of the return value of the http.Get() call.
However, not all HTTP requests are simple. If the response streams a video
or something similar, it would make sense to be able to read it one piece at a
time instead of getting all of it in a single data piece. You can do that with
io.Reader and the Body part of the response.

Executing getURL.go will generate the following raw results, which is what a
web browser would have gotten and rendered:

$ go run getURL.go http://www.mtsoukalos.eu/ | head
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<htmlxmlns="http://www.w3.org/1999/xhtml" xml:lang="en" version="XHTML+RDFa 1.0" dir="ltr"
xmlns:content=http://purl.org/rss/1.0/modules/content/
. . .
</script>
</body>
</html>

Generally speaking, although getURL.go does the desired job, the way it works
is not so sophisticated because it gives you no flexibility or a way to be
creative.

Download from finelybook www.finelybook.com

491

Setting a timeout
In this subsection, you will learn how to set a timeout for a http.Get() request.
For reasons of simplicity, it will be based on the Go code of getURL.go. The
name of the program will be timeoutHTTP.go and will be presented in five parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "io"
 "net"
 "net/http"
 "os"
 "path/filepath"
 "time"
)

var timeout = time.Duration(time.Second)

Here, you declare the desired timeout period, which is 1 second, as a global
parameter.

The second part of timeoutHTTP.go has the following Go code:

func Timeout(network, host string) (net.Conn, error) {
 conn, err := net.DialTimeout(network, host, timeout)
 if err != nil {
 return nil, err
 }
 conn.SetDeadline(time.Now().Add(timeout))
 return conn, nil
}

Here, you define two types of timeouts, the first one is defined with
net.DialTimeout() and is for the time it will take your client to connect to the
server. The second one is the read/write timeout, which has to do with the
time you want to wait to get a response from the web server after connecting
to it: this is defined with the call to the conn.SetDeadline() function.

The third part of the presented program is the following:

Download from finelybook www.finelybook.com

492

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL :=os.Args[1]

The fourth portion of the program is the following:

 t := http.Transport{
 Dial: Timeout,
 }

 client := http.Client{
 Transport: &t,
 }
 data, err := client.Get(URL)

Here, you define the desired parameters of the connection using an
http.Transport variable.

The last part of the program contains the following Go code:

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 } else {
 deferdata.Body.Close()
 _, err := io.Copy(os.Stdout, data.Body)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

This part of the program is all about error handling!

Executing timeoutHTTP.go will generate the following output in case of a
timeout:

$ go run timeoutHTTP.go http://localhost:8001
Get http://localhost:8001: read tcp [::1]:58018->[::1]:8001: i/o timeout
exit status 100

The simplest way to deliberately create a timeout during a web connection is
to call the time.Sleep() function in the handler function of a web server.

Download from finelybook www.finelybook.com

493

Developing better web clients
Although getURL.go does the required job pretty quickly and without writing
too much Go code, it is in a way not adaptable or informative. It just prints a
bunch of raw HTML code without any other information and without the
capability of dividing the HTML code into its logical parts. Therefore,
getURL.go needs to be improved!

The name of the new utility will be webClient.go and will be presented to you
in five segments of Go code.

The first part of the utility is the following:

package main

import (
 "fmt"
 "net/http"
 "net/http/httputil"
 "net/url"
 "os"
 "path/filepath"
 "strings"
)

The second part of the Go code from webClient.go is the following:

func main() {
 if len(os.Args) != 2 {
 fmt.Printf("Usage: %s URL\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 URL, err :=url.Parse(os.Args[1])
 if err != nil {
 fmt.Println("Parse:", err)
 os.Exit(100)
 }

The only new thing here is the use of the url.Parse() function that creates a
URL structure from a URL that is given as a string to it.

The third part of webClient.go has the following Go code:

Download from finelybook www.finelybook.com

494

 c := &http.Client{}

 request, err := http.NewRequest("GET", URL.String(), nil)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 httpData, err := c.Do(request)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

In this Go code, you first create an http.Client variable. Then, you construct a
GET HTTP request using http.NewRequest(). Last, you send the HTTP request
using the Do() function, which returns the actual response data saved in the
httpData variable.

The fourth code part of the utility is the following:

 fmt.Println("Status code:", httpData.Status)
 header, _ := httputil.DumpResponse(httpData, false)
 fmt.Print(string(header))

 contentType := httpData.Header.Get("Content-Type")
 characterSet := strings.SplitAfter(contentType, "charset=")
 fmt.Println("Character Set:", characterSet[1])

 if httpData.ContentLength == -1 {
 fmt.Println("ContentLength in unknown!")
 } else {
 fmt.Println("ContentLength:", httpData.ContentLength)
 }

Here, you find the status code of the HTTP request using the Status property.
Then, you do a little digging into the Header part of the response in order to
find the character set of the response. Last, you check the value of the
ContentLength property, which equals -1 for dynamic pages: this means that
you do not know the page size in advance.

The last part of the program has the following Go code:

 length := 0
 var buffer [1024]byte

 r := httpData.Body
 for {

Download from finelybook www.finelybook.com

495

 n, err := r.Read(buffer[0:])
 if err != nil {
 fmt.Println(err)
 break
 }
 length = length + n
 }
 fmt.Println("Response data length:", length)
}

Here, you find the length of the response by reading from the Body reader and
counting its data. If you want to print the contents of the response, this is the
right place to do it.

Executing webClient.go will create the following output:

$ go run webClient.go invalid
Get invalid: unsupported protocol scheme ""
exit status 100
$ go run webClient.go https://www.mtsoukalos.eu/
Get https://www.mtsoukalos.eu/: dial tcp 109.74.193.253:443: getsockopt: connection refused
exit status 100
$ go run webClient.go http://www.mtsoukalos.eu/
Status code: 200 OK
HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 0
Cache-Control: no-cache, must-revalidate
Connection: keep-alive
Content-Language: en
Content-Type: text/html; charset=utf-8
Date: Mon, 10 Jul 2017 07:29:48 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Server: Apache/2.4.10 (Debian) PHP/5.6.30-0+deb8u1 mod_wsgi/4.3.0 Python/2.7.9
Vary: Accept-Encoding
Via: 1.1 varnish-v4
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Generator: Drupal 7 (http://drupal.org)
X-Powered-By: PHP/5.6.30-0+deb8u1
X-Varnish: 6922264

Character Set: utf-8
ContentLength in unknown!
EOF
Response data length: 50176

Download from finelybook www.finelybook.com

496

A small web server
Enough with the web clients: in this section, you will learn how to develop
web servers in Go!

The Go code for the implementation of a naive web server can be found in
webServer.go, and this will be presented in four parts; the first part is the
following:

package main

import (
 "fmt"
 "net/http"
 "os"
)

The second part is where things start to get tricky and strange:

func myHandler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Serving: %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

This is a kind of function that handles HTTP requests: the function takes two
arguments, a http.ResponseWriter variable and a pointer to an http.Request
variable. The first argument will be used for constructing the HTTP response,
whereas the http.Request variable holds the details of the HTTP request that
was received by the server, including the requested URL and the IP address
of the client.

The third part of webServer.go has the following Go code:

func main() {
 PORT := ":8001"
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Using default port number: ", PORT)
 } else {
 PORT = ":" + arguments[1]
 }

Download from finelybook www.finelybook.com

497

Here, you just deal with the port number of the web server: the default port
number is 8001, unless there is a command-line argument.

The last chunk of Go code for webServer.go is the following:

 http.HandleFunc("/", myHandler)
 err := http.ListenAndServe(PORT, nil)
 if err != nil {
 fmt.Println(err)
 os.Exit(10)
 }
}

The http.HandleFunc() call defines the name of the handler function (myHandler)
as well as the URLs that it will support: you can call http.HandleFunc()
multiple times. The current handler supports /URL, which in Go matches all
URLs!

After you are done with the http.HandleFunc() calls, you are ready to call
http.ListenAndServe() and start waiting for incoming connections! If you do
not specify an IP address in the http.ListenAndServe() function call, then the
web server will listen to all configured network interfaces of the machine.

Executing webServer.go will generate no output, unless you try to fetch some
data from it: in this case, it will print logging information on your Terminal,
which will show the server name (localhost) and port number (8001) of the
request, as shown here:

$ go run webServer.go
Using default port number: :8001

Served: localhost:8001
Served: localhost:8001
Served: localhost:8001

The following screenshot shows three outputs of webServer.go on a web
browser:

Download from finelybook www.finelybook.com

498

Using webServer.go

However, if you use a command-line utility such as wget(1) or getURL.go
instead of a web browser, you will get the following output when you try to
connect to the Go web server:

$ go run getURL.go http://localhost:8001/
Serving: /

The biggest advantage you get from custom made web servers is
security because they are really difficult to hack when
developed with security as well as easier customization in mind.

The next subsection will show how to create web servers using http.ServeMux.

Download from finelybook www.finelybook.com

499

The http.ServeMux type
In this subsection, you will learn how to use the http.ServeMux type in order to
improve the way your Go web server will operate. Putting it simply,
http.ServeMux is a HTTP request router.

Download from finelybook www.finelybook.com

500

Using http.ServeMux
The web server implementation of this section will support multiple paths
with the help of http.ServeMux, which will be illustrated in the serveMux.go
program that will be displayed in four parts.

The first part of the program is the following:

package main

import (
 "fmt"
 "net/http"
 "time"
)

The second part of serveMux.go has the following Go code:

func about(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "This is the /about page at %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func cv(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "This is the /CV page at %s\n", r.URL.Path)
 fmt.Printf("Served: %s\n", r.Host)
}

func timeHandler(w http.ResponseWriter, r *http.Request) {
 currentTime := time.Now().Format(time.RFC1123)
 title := currentTime
 Body := "The current time is:"
 fmt.Fprintf(w, "<h1 align=\"center\">%s</h1><h2 align=\"center\">%s</h2>", Body, title)
 fmt.Printf("Served: %s for %s\n", r.URL.Path, r.Host)
}

Here, you have the implementation of three HTTP handler functions. The
first two display a static page, whereas the third one displays the current time,
which is a dynamic text.

The third part of the program is the following:

func home(w http.ResponseWriter, r *http.Request) {
 ifr.URL.Path == "/" {
 fmt.Fprintf(w, "Welcome to my home page!\n")

Download from finelybook www.finelybook.com

501

 } else {
 fmt.Fprintf(w, "Unknown page: %s from %s\n", r.URL.Path, r.Host)
 }
 fmt.Printf("Served: %s for %s\n", r.URL.Path, r.Host)
}

The home() handler function will have to make sure that it is actually serving
/Path, because /Path catches everything!

The last part of serveMux.go contains the following Go code:

func main() {
 m := http.NewServeMux()
 m.HandleFunc("/about", about)
 m.HandleFunc("/CV", cv)
 m.HandleFunc("/time", timeHandler)
 m.HandleFunc("/", home)

 http.ListenAndServe(":8001", m)
}

Here, you define the paths that your web server will support. Note that paths
are case sensitive and that the last path in the preceding code catches
everything. This means that if you put m.HandleFunc("/", home) first, you will
not be able to match anything else. Putting it simply, the order of the
m.HandleFunc() statements matters. Also, note that if you want to support both
/about and /about/, you should have both m.HandleFunc("/about", about) and
m.HandleFunc("/about/", about).

Running serveMux.go will generate the following output:

$ go run serveMux.go
Served: / for localhost:8001
Served: /123 for localhost:8001
Served: localhost:8001
Served: /cv for localhost:8001

The following screenshot shows the various kinds of outputs generated by
serveMux.go on a web browser: note that the browser output is not related to
the preceding output from the go run serveMux.go command:

Download from finelybook www.finelybook.com

502

Using serveMux.go

If you use wget(1) instead of a web browser, you will get the following output:

$ wget -qO- http://localhost:8001/CV
This is the /CV page at /CV
$ wget -qO- http://localhost:8001/cv
Unknown page: /cv from localhost:8001
$ wget -qO- http://localhost:8001/time
<h1 align="center">The current time is:</h1><h2 align="center">Mon, 10 Jul 2017 13:13:27 EEST</h2>
$ wget -qO- http://localhost:8001/time/
Unknown page: /time/ from localhost:8001

Download from finelybook www.finelybook.com

503

So, http.HandleFunc() is the default call in the library that will be used for first
time implementations, whereas the HandleFunc() function of http.NewServeMux()
is for everything else. Putting it simply, it is better to use the
http.NewServeMux() version instead of the default one except in the simplest of
cases.

Download from finelybook www.finelybook.com

504

The html/template package
Templates are mainly used for separating the formatting and data parts of the
output. Note that a Go template can be either a file or string: the general idea
is to use strings for smaller templates and files for bigger ones.

In this section, we will talk about the html/template package by showing an
example, which can be found in the template.go file and will be presented in
six parts. The general idea behind template.go is that you are reading a text file
with records that you want to present in HTML format. Given that the name
of the package is html/template, a better name for the program would have
been genHTML.go or genTemplate.go.

There is also the text/template package, which is more useful for
creating plain text output. However, you cannot import both
text/template and html/template on the same Go program without
taking some extra steps to disambiguate them because the two
packages have the same package name (template). The key
distinction between the two packages is that html/template does
sanitization of the data input for HTML injection, which means
that it is more secure.

The first part of the source file is the following:

package main

import (
 "bufio"
 "fmt"
 "html/template"
 "net/http"
 "os"
 "strings"
)

type Entry struct {
 WebSite string
 WebName string
 Quality string
}

Download from finelybook www.finelybook.com

505

var filename string

The definition of the structure is really important because this is how your
data is going to be passed to the template file.

The second part of template.go has the following Go code:

func dynamicContent(w http.ResponseWriter, r *http.Request) {
 var Data []Entry
 var f *os.File
 if filename == "" {
 f = os.Stdin
 } else {
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }
 defer f.Close()
 scanner := bufio.NewScanner(f)
 myT := template.Must(template.ParseGlob("template.gohtml"))

The template.ParseGlob() function is used for reading the external template
file, which can have any file extension you want. Using the .gohtml extension
might make your life simpler when you are looking for Go template files in
your projects.

Although I personally prefer the .gohtml extension for Go template files, .tpl
is a pretty common extension that is widely used. You can choose whichever
you like.

The third chunk of code from template.go is the following:

 for scanner.Scan() {

 parts := strings.Fields(scanner.Text())
 if len(parts) == 3 {
 temp := Entry{WebSite: parts[0], WebName: parts[1], Quality: parts[2]}
 Data = append(Data, temp)
 }
 }

 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT.ExecuteTemplate(w, "template.gohtml", Data)
}

Download from finelybook www.finelybook.com

506

The third parameter to the ExecuteTemplate() function is the data you want to
process. In this case, you pass a slice of records to it.

The fourth part of the program is the following:

func staticPage(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Serving", r.Host, "for", r.URL.Path)
 myT := template.Must(template.ParseGlob("static.gohtml"))
 myT.ExecuteTemplate(w, "static.gohtml", nil)
}

This function displays a static HTML page, which we are just going to pass
through the template engine with the nil data, which is signified by the third
argument of the ExecuteTemplate() function. If you have the same function
handling different pieces of data, you may end up with cases where there is
nothing to render, but keep it there for common code structure.

The fifth part of template.go contains the following Go code:

func main() {
 arguments := os.Args

 if len(arguments) == 1 {
 filename = ""
 } else {
 filename = arguments[1]
 }

The last chunk of Go code from template.go is where you define the supported
paths and start the web server using port number 8001:

 http.HandleFunc("/static", staticPage)
 http.HandleFunc("/dynamic", dynamicContent)
 http.ListenAndServe(":8001", nil)
}

The contents of the template.gohtml file are as follows:

<!doctype html>
<htmllang="en">
<head>
 <meta charset="UTF-8">
 <title>Using Go HTML Templates</title>
 <style>
 html {
 font-size: 16px;
 }
 table, th, td {

Download from finelybook www.finelybook.com

507

 border: 3px solid gray;
 }
 </style>
</head>
<body>

<h2 alight="center">Presenting Dynamic content!</h2>

<table>
 <thead>
 <tr>
 <th>Web Site</th>
 <th>Quality</th>
 </tr>
 </thead>
 <tbody>
{{ range . }}
<tr>
 <td>{{ .WebName }}</td>
 <td> {{ .Quality }} </td>
</tr>
{{ end }}
 </tbody>
</table>

</body>
</html>

The dot (.) character represents the current data being processed: to put it
simply, the dot (.) character is a variable. The {{ range . }} statement is
equivalent to a for loop that visits all the elements of the input slice, which
are structures in this case. You can access the fields of each structure as
.WebSite, .WebName, and .Quality.

The contents of the static.gohtml file are the following:

<!doctype html>
<htmllang="en">
<head>
 <meta charset="UTF-8">
 <title>A Static HTML Template</title>
</head>
<body>

<H1>Hello there!</H1>

</body>
</html>

If you execute template.go, you will get the following output on the screen:

$ go run template.go /tmp/sites.html

Download from finelybook www.finelybook.com

508

Serving localhost:8001 for /dynamic
Serving localhost:8001 for /static

The following screenshot shows the two outputs of template.go as displayed
on a web browser. The sites.html file has three columns, which are the URL,
the name and the quality and can have multiple lines. The good thing here is
that if you change the contents of the /tmp/sites.html file and reload the web
page, you will see the updated contents!

Using template.go

Download from finelybook www.finelybook.com

509

About JSON
JSON stands for JavaScript Object Notation. This is a text-based format
designed as an easy and light way to pass information between JavaScript
systems.

A simple JSON document has the following format:

{ "name":"Mihalis",

"surname":"Tsoukalos",
"country":"Greece" }

The preceding JSON document has three fields named name, surname, and
country. Each field has a single value.

However, JSON documents can have more complex structures with multiple
depth levels.

Before seeing some code, I think that it would be very useful to talk about the
encoding/json Go package first. The encoding/json package offers the Encode()
and Decode() functions that allow the conversion of a Go object into a JSON
document and vice versa. Additionally, the encoding/json package offers the
Marshal() and Unmarshal() functions that work similarly to Encode() and Decode()
and are based on the Encode() and Decode() methods.

The main difference between Marshal()-Unmarshal() and Encode()-Decode() is
that the former functions work on single objects, whereas the latter functions
can work on multiple objects as well as streams of bytes.

Last, the encoding/json Go package includes two interfaces named Marshaler
and Unmarshaler: each one of them requires the implementation of a single
method, named MarshalJSON() and UnmarshalJSON(), respectively. These two
interfaces allow you to perform custom JSON Marshalling and
Unmarshalling in Go. Unfortunately, those two interfaces will not be
covered in this book.

Download from finelybook www.finelybook.com

510

Saving JSON data
This subsection will teach you how to convert regular data into JSON format
in order to send it over a network connection. The Go code of this subsection
will be saved as writeJSON.go and will be presented in four parts.

The first chunk of Go code is the expected preamble of the program as well
as the definition of two new struct types named Record and Telephone,
respectively:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

Note that only the members of a structure that begin with an
uppercase letter will be in the JSON output because members
that begin with a lowercase letter are considered private: in this
case, all members of Record and Telephone structures are public
and will get exported.

The second part is the definition of a function named saveToJSON():

funcsaveToJSON(filename string, key interface{}) {
 out, err := os.Create(filename)
 if err != nil {
 fmt.Println(err)
 return
 }

 encodeJSON := json.NewEncoder(out)

Download from finelybook www.finelybook.com

511

 err = encodeJSON.Encode(key)
 if err != nil {
 fmt.Println(err)
 return
 }

 out.Close()
}

The saveToJSON() function does all the work for us as it creates a JSON
encoder variable named encodeJSON, which is associated with a filename,
which is where the data is going to be saved. Then, the call to Encode() saves
the data of the record to the associated filename and we are done! As you will
see in the next section, a similar process will help you read a JSON file and
convert it into a Go variable.

The third part of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 os.Exit(100)
 }

 filename := arguments[1]

There is nothing special here: you just get the first command-line argument
of the program.

The last part of the utility is the following:

 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 }}

 saveToJSON(filename, myRecord)
}

Here, we do two things. The first is defining a new Record variable and filling
it with data. The second is the call to saveToJSON() for saving the myRecord
variable in the JSON format to the selected file.

Download from finelybook www.finelybook.com

512

Executing writeJSON.go will generate the following output:

$ go run writeJSON.go /tmp/SavedFile

After that, the contents of /tmp/SavedFile will be the following:

$ cat /tmp/SavedFile
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"1234-567"},{"Mobile":true,"Number":"1234-abcd"},{"Mobile":false,"Number":"abcc-567"}]}

Sending JSON data over a network requires the use of the net Go standard
package that will be discussed in the next chapter.

Download from finelybook www.finelybook.com

513

Parsing JSON data
This subsection will illustrate how to read a JSON record and convert it into
one Go variable that you can use in your own programs. The name of the
presented program will be readJSON.go and will be shown to you in four parts.

The first part of the utility is identical to the first part of the writeJSON.go
utility:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The second part of the Go code is the following:

funcloadFromJSON(filename string, key interface{}) error {
 in, err := os.Open(filename)
 if err != nil {
 return err
 }

 decodeJSON := json.NewDecoder(in)
 err = decodeJSON.Decode(key)
 if err != nil {
 return err
 }
 in.Close()
 return nil
}

Here, you define a new function named loadFromJSON() that is used for

Download from finelybook www.finelybook.com

514

decoding a JSON file according to a data structure that is given as the second
argument to it. You first call the json.NewDecoder() function to create a new
JSON decode variable that is associated with a file, and then you call the
Decode() function for actually decoding the contents of the file.

The third part of readJSON.go has the following Go code:

func main() {
 arguments := os.Args
 iflen(arguments) == 1 {
 fmt.Println("Please provide a filename!")
 os.Exit(100)
 }

 filename := arguments[1]

The last part of the program is the following:

 var myRecord Record
 err := loadFromJSON(filename, &myRecord)
 if err == nil {
 fmt.Println(myRecord)
 } else {
 fmt.Println(err)
 }
}

If you run readJSON.go, you will get the following output:

$ go run readJSON.go /tmp/SavedFile
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

Reading your JSON data from a network will be discussed in the next
chapter, as JSON records do not differ from any other kind of data transferred
over a network.

Download from finelybook www.finelybook.com

515

Using Marshal() and Unmarshal()
In this subsection, you will see how to use Marshal() and Unmarshal() in order
to implement the functionality of readJSON.go and writeJSON.go. The Go code
that illustrates the Marshal() and Unmarshal() functions can be found in
marUnmar.go, and this will be presented in four parts.

The first part of marUnmar.go is the expected preamble:

package main

import (
 "encoding/json"
 "fmt"
 "os"
)

type Record struct {
 Name string
 Surname string
 Tel []Telephone
}

type Telephone struct {
 Mobile bool
 Number string
}

The second part of the program contains the following Go code:

func main() {
 myRecord := Record{
 Name: "Mihalis",
 Surname: "Tsoukalos",
 Tel: []Telephone{Telephone{Mobile: true, Number: "1234-567"},
 Telephone{Mobile: true, Number: "1234-abcd"},
 Telephone{Mobile: false, Number: "abcc-567"},
 }}

This is the same record that is used in the writeJSON.go program. Therefore, so
far there is nothing special.

The third part of marUnmar.go is where the marshalling happens:

 rec, err := json.Marshal(&myRecord)

Download from finelybook www.finelybook.com

516

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Println(string(rec))

Note that json.Marshal() requires a pointer for passing data to it even if the
value is a map, array, or slice.

The last part of the program contains the following Go code that performs the
unmarshalling operation:

 var unRec Record
 err1 := json.Unmarshal(rec, &unRec)
 if err1 != nil {
 fmt.Println(err1)
 os.Exit(100)
 }
 fmt.Println(unRec)
}

As you can see from the code, json.Unmarshal() requires the use of a pointer
for saving the data even if the value is a map, array, or slice.

Executing marUnmar.go will create the following output:

$ go run marUnmar.go
{"Name":"Mihalis","Surname":"Tsoukalos","Tel":[{"Mobile":true,"Number":"1234-567"},{"Mobile":true,"Number":"1234-abcd"},{"Mobile":false,"Number":"abcc-567"}]}
{Mihalis Tsoukalos [{true 1234-567} {true 1234-abcd} {false abcc-567}]}

As you can see, the Marshal() and Unmarshal() functions cannot help you store
your data into a file: you will need to implement that on your own.

Download from finelybook www.finelybook.com

517

Using MongoDB
A relational database is a structured collection of data that is strictly
organized into tables. The dominant language for querying databases is SQL.
NoSQL databases, such as MongoDB, do not use SQL, but various other
query languages and do not have a strict structure in their tables, which are
called collections in the NoSQL terminology.

You can categorize NoSQL databases according to their data model as
Document, Key-Value, Graph, and Column-family. MongoDB is the most
popular document-oriented NoSQL database that is appropriate for use in
web applications.

Document databases were not made for dealing with Microsoft
Word documents, but for storing semistructured data.

Download from finelybook www.finelybook.com

518

Basic MongoDB administration
If you want to use MongoDB on your Go applications, it would be very
practical to know how to perform some basic administrative tasks on a
MongoDB database.

Most of the tasks presented in this section will be performed from the Mongo
shell, which starts by executing the mongo command. If no MongoDB instance
is running on your Unix machine, you will get the following output:

$ mongo
MongoDB shell version v3.4.5
connecting to: mongodb://127.0.0.1:27017
2017-07-06T19:37:38.291+0300 W NETWORK [thread1] Failed to connect to 127.0.0.1:27017, in(checking socket for error after poll), reason: Connection refused
2017-07-06T19:37:38.291+0300 E QUERY [thread1] Error: couldn't connect to server 127.0.0.1:27017, connection attempt failed :
connect@src/mongo/shell/mongo.js:237:13
@(connect):1:6
exception: connect failed

The previous output tells us two things:

The default TCP port number for the MongoDB server process is 27017
The mongo executable tries to connect to the 127.0.0.1 IP address, which
is the IP address of the local machine

In order to execute the following commands, you should start a MongoDB
server instance on your local machine. Once the MongoDB server process is
up and running, executing mongo will create the following output:

$ mongo
MongoDB shell version: 2.4.10
connecting to: test
>

The following commands will show you how to create a new MongoDB
database and a new MongoDB collection, and how to insert some documents
in to that collection:

>use go;
switched to db go
>db.someData.insert({x:0, y:1})

Download from finelybook www.finelybook.com

519

>db.someData.insert({x:1, y:2})
>db.someData.insert({x:2, y:3})
>db.someData.count()
3

Once you try to insert a document into a collection using db.someData.insert(),
the collection (someData) will be automatically created if it does not already
exist. The last command counts the number of records stored into the someData
collection of the current database.

MongoDB will not inform you about any typographical errors
you might have. Putting it simply, if you mistype the name of a
database or a collection, MongoDB will create a totally new
database or a new collection while you are trying to find out
what went wrong! Additionally, if you put more, less, or
different fields on a document and try to save it, MongoDB will
not complain!

You can find the records of a collection using the find() function:

>db.someData.find()
{ "_id" : ObjectId("595e84cd63883cb3fe7f42f3"), "x" : 0, "y" : 1 }
{ "_id" : ObjectId("595e84d263883cb3fe7f42f4"), "x" : 1, "y" : 2 }
{ "_id" : ObjectId("595e84d663883cb3fe7f42f5"), "x" : 2, "y" : 3 }

You can find the list of databases on a running MongoDB instance as
follows:

>show databases;
LXF 0.203125GB
go 0.0625GB
local 0.078125GB

Similarly, you can find the names of the collections stored in the current
MongoDB database as follows:

>db.getCollectionNames()
["someData", "system.indexes"]

You can delete all the records of a MongoDB collection as follows:

>db.someData.remove()
>show collections
someData
system.indexes

Download from finelybook www.finelybook.com

520

Last, you can delete an entire collection, including its records, as follows:

>db.someData.drop()
true
>show collections
system.indexes

The preceding information will get you going for now, but if you want to
learn more about MongoDB, you should visit the documentation site of
MongoDB at https://docs.mongodb.com/.

Download from finelybook www.finelybook.com

521

https://docs.mongodb.com/

Using the MongoDB Go driver
In order to use MongoDB in your Go programs, you should first have the
MongoDB Go driver installed on your Unix machine. The name of the
MongoDB Go driver is mgo and you can learn more information about the
MongoDB Go driver by visiting https://github.com/go-mgo/mgo, https://labix.org/mg
o, and https://docs.mongodb.com/ecosystem/drivers/go/.

As the driver is not part of the standard Go library, you should first download
the required packages using the following two commands:

$ go get labix.org/v2/mgo
$ go get labix.org/v2/mgo/bson

After that, you will be free to use it in your own Go utilities. If you try to
execute the program without having the two packages on your Unix system,
you will get an error message similar to the following:

$ go run testMongo.go
testMongo.go:5:2: cannot find package "labix.org/v2/mgo" in any of:
 /usr/local/Cellar/go/1.8.3/libexec/src/labix.org/v2/mgo (from $GOROOT)
 /Users/mtsouk/go/src/labix.org/v2/mgo (from $GOPATH)
testMongo.go:6:2: cannot find package "labix.org/v2/mgo/bson" in any of:
 /usr/local/Cellar/go/1.8.3/libexec/src/labix.org/v2/mgo/bson (from $GOROOT)
 /Users/mtsouk/go/src/labix.org/v2/mgo/bson (from $GOPATH)

Note that you might need to install Bazaar on your Unix system
in order to execute the two go get commands. You can get more
information about the Bazaar version control system at https://ba
zaar.canonical.com/.

So, you should first try to run a simple Go program that connects to a
MongoDB database, creates a new database and a new collection, and adds
new documents to it in order to make sure that everything works as expected:
the name of the program will be testMongo.go and will be presented in four
parts.

The first part of the program is the following:

package main

Download from finelybook www.finelybook.com

522

https://github.com/go-mgo/mgo
https://labix.org/mgo
https://docs.mongodb.com/ecosystem/drivers/go/
https://bazaar.canonical.com/

import (
 "fmt"
 "labix.org/v2/mgo"
 "labix.org/v2/mgo/bson"
 "os"
 "time"
)

type Record struct {
 Xvalueint
 Yvalueint
}

Here, you see the use of the Go MongoDB driver in the import block.
Additionally, you see the definition of a new Go structure named Record that
will hold the data of each MongoDB document.

The second part of testMongo.go has the following Go code:

func main() {
 mongoDBDialInfo := &mgo.DialInfo{
 Addrs: []string{"127.0.0.1:27017"},
 Timeout: 20 * time.Second,
 }

 session, err := mgo.DialWithInfo(mongoDBDialInfo)
 if err != nil {
 fmt.Printf("DialWithInfo: %s\n", err)
 os.Exit(100)
 }
 session.SetMode(mgo.Monotonic, true)

 collection := session.DB("goDriver").C("someData")

Now the collection variable will be used for dealing with the someData
collection of the goDriver database: a better name for the database would have
been myDB. Note that there was not a goDriver database in the MongoDB
instance before running the Go program; this also means that neither the
someData collection was there.

The third part of the program is the following:

 err = collection.Insert(&Record{1, 0})
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 err = collection.Insert(&Record{-1, 0})

Download from finelybook www.finelybook.com

523

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you insert two documents to the MongoDB database using the Insert()
function.

The last portion of testMongo.go contains the following Go code:

 var recs []Record
 err = collection.Find(bson.M{"yvalue": 0}).All(&recs)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for x, y := range recs {
 fmt.Println(x, y)
 }
 fmt.Println("Found:", len(recs), "results!")
}

As you do not know the number of documents that you will get from the
Find() query, you should use a slice of records for storing them.

Additionally, note that you should put the yvalue field in
lowercase in the Find() function because MongoDB will
automatically convert the fields of the Record structure in
lowercase when you are storing them!

Now, execute testMongo.go, as shown here:

$ go run testMongo.go
0 {1 0}
1 {-1 0}
Found: 2 results!

Note that if you execute testMongo.go multiple times, you will find the same
documents inserted multiple times into the someData collection. However,
MongoDB will not have any problems differentiating between all these
documents because the key of each document is the _id field, which is
automatically inserted by MongoDB each time you insert a new document to
a collection.

Download from finelybook www.finelybook.com

524

After that, connect to your MongoDB instance using the MongoDB shell
command to make sure that everything worked as expected:

$ mongo
MongoDB shell version v3.4.5
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.5
>use goDriver
switched to db goDriver
>show collections
someData
>db.someData.find()
{ "_id" : ObjectId("595f88593fb7048f4846e555"), "xvalue" : 1, "yvalue" : 0 }
{ "_id" : ObjectId("595f88593fb7048f4846e557"), "xvalue" : -1, "yvalue" : 0 }
>

Here, it is important to understand that MongoDB documents are presented in
JSON format, which you already know how to handle in Go.

Also, note that the Go MongoDB driver has many more capabilities than the
ones presented here. Unfortunately, talking more about it is beyond the scope
of this book, but you can learn more by visiting https://github.com/go-mgo/mgo, h
ttps://labix.org/mgo, and https://docs.mongodb.com/ecosystem/drivers/go/.

Download from finelybook www.finelybook.com

525

https://github.com/go-mgo/mgo
https://labix.org/mgo
https://docs.mongodb.com/ecosystem/drivers/go/

Creating a Go application that
displays MongoDB data
The name of the utility will be showMongo.go and it will be presented in three
parts. The utility will connect to a MongoDB instance, read a collection, and
display the documents of the collection as a web page. Note that showMongo.go
is based on the Go code of template.go.

The first part of the web application is the following:

package main

import (
 "fmt"
 "html/template"
 "labix.org/v2/mgo"
 "net/http"
 "os"
 "time"
)

var DatabaseName string
var collectionName string

type Document struct {
 P1 int
 P2 int
 P3 int
 P4 int
 P5 int
}

You should know in advance the structure of the MongoDB
documents that you will retrieve because the field names are
hard coded in the struct type and need to match.

The second part of the program is the following:

func content(w http.ResponseWriter, r *http.Request) {
 var Data []Document
 myT := template.Must(template.ParseGlob("mongoDB.gohtml"))

 mongoDBDialInfo := &mgo.DialInfo{

Download from finelybook www.finelybook.com

526

 Addrs: []string{"127.0.0.1:27017"},
 Timeout: 20 * time.Second,
 }

 session, err := mgo.DialWithInfo(mongoDBDialInfo)
 if err != nil {
 fmt.Printf("DialWithInfo: %s\n", err)
 return
 }
 session.SetMode(mgo.Monotonic, true)
 c := session.DB(DatabaseName).C(collectionName)

 err = c.Find(nil).All(&Data)
 if err != nil {
 fmt.Println(err)
 return
 }

 fmt.Println("Found:", len(Data), "results!")
 myT.ExecuteTemplate(w, "mongoDB.gohtml", Data)
}

As before, you connect to MongoDB using mgo.DialWithInfo() with the
parameters that were defined in the mgo.DialInfo structure.

The last part of the web application is the following:

func main() {
 arguments := os.Args

 iflen(arguments) <= 2 {
 fmt.Println("Please provide a Database and a Collection!")
 os.Exit(100)
 } else {
 DatabaseName = arguments[1]
 collectionName = arguments[2]
 }

 http.HandleFunc("/", content)
 http.ListenAndServe(":8001", nil)
}

The contents of MongoDB.gohtml are similar to the contents of template.gohtml
and will not be presented here. You can refer to The html/template package
section for the contents of template.gohtml.

The execution of showMongo.go will not display the actual data on the screen:
you will need to use a web browser for that:

$ go run showMongo.go goDriver Numbers
Found: 0 results!

Download from finelybook www.finelybook.com

527

Found: 10 results!
Found: 14 results!

The good thing is that if the data of the collections is changed, you will not
need to recompile your Go code in order to see the changes: you will just
need to reload the web page.

The following screenshot shows the output of showMongo.go as displayed on a
web browser:

Using showMongo.go

Note that the Numbers collection contains the following documents:

Download from finelybook www.finelybook.com

528

>db.Numbers.findOne()

{

 "_id" : ObjectId("596530aeaab5252f5c1ab100"),
 "p1" : -10,
 "p2" : -20,
 "p3" : 100,
 "p4" : -1000,
 "p5" : 10000
}

Have in mind that extra data in the MongoDB structure that
does not have corresponding fields in the Go structure is
ignored.

Download from finelybook www.finelybook.com

529

Creating an application that
displays MySQL data
In this subsection, we will present a Go utility that executes a query on a
MySQL table. The name of the new command-line utility will be showMySQL.go
and will be presented in five parts.

Note that showMySQL.go will use the database/sql package that
provides a generic SQL interface to relational databases for
querying the MySQL database.

The presented utility requires two parameters: a username with administrative
privileges and its password.

The first part of showMySQL.go is the following:

package main

import (
 "database/sql"
 "fmt"
 _ "github.com/go-sql-driver/mysql"
 "os"
 "text/template"
)

There is a small change here, as showMySQL.go uses text/template instead of
html/template. Note that the drivers that conform to the database/sql interface
are never really referenced directly in your code, but they still need to be
initialized and imported. The _ character in front of "github.com/go-sql-
driver/mysql" does this by telling Go to ignore the fact that the "github.com/go-
sql-driver/mysql" package is not actually used in the code.

You will also need to download the MySQL Go driver:

$ go get github.com/go-sql-driver/mysql

Download from finelybook www.finelybook.com

530

The second part of the utility has the following Go code:

func main() {
 var username string
 var password string

 arguments := os.Args
 if len(arguments) == 3 {
 username = arguments[1]
 password = arguments[2]
 } else {
 fmt.Println("programName Username Password!")
 os.Exit(100)
 }

The third chunk of Go code from showMySQL.go is the following:

 connectString := username + ":" + password + "@unix(/tmp/mysql.sock)/information_schema"
 db, err := sql.Open("mysql", connectString)

 rows, err := db.Query("SELECT DISTINCT(TABLE_SCHEMA) FROM TABLES;")
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you manually construct the connection string to MySQL. For reasons
of security, a default MySQL installation works with a socket
(/tmp/mysql.sock) instead of a network connection. The name of the database
that will be used is the last part of the connection string (information_schema).

You will most likely have to adjust these parameters for your
own database.

The fourth part of showMySQL.go is the following:

 var DATABASES []string
 for rows.Next() {
 var databaseName string
 err := rows.Scan(&databaseName)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 DATABASES = append(DATABASES, databaseName)
 }
 db.Close()

Download from finelybook www.finelybook.com

531

The Next() function iterates over all the records returned from the select query
and returns them one by one with the help of the for loop.

The last part of the program is the following:

 t := template.Must(template.New("t1").Parse(`
 {{range $k := .}} {{ printf "\tDatabase Name: %s" $k}}
 {{end}}
 `))
 t.Execute(os.Stdout, DATABASES)
 fmt.Println()
}

This time, instead of presenting the data as a web page, you will receive it as
plain text. Additionally, as the text template is small, it is defined in line with
the help of the t variable.

Is the use of the template necessary here? Of course not! But it
is good to learn how to define Go templates without using an
external template file.

Therefore, the output of showMySQL.go will be similar to the following:

$ go run showMySQL.go root 12345

 Database Name: information_schema
 Database Name: mysql
 Database Name: performance_schema
 Database Name: sys

The preceding output shows information about the available databases for the
current MySQL instance, which is a great way to get information about a
MySQL database without having to connect using the MySQL client.

Download from finelybook www.finelybook.com

532

A handy command-line utility
In this section, we will develop a handy command-line utility that reads a
number of web pages, which can be found in a text file or read from standard
input, and returns the number of times a given keyword was found in these
web pages. In order to be faster, the utility will use goroutines to get the
desired data and a monitoring process to gather the data and present it on the
screen. The name of the utility will be findKeyword.go and will be presented in
five parts.

The first part of the utility is the following:

package main

import (
 "bufio"
 "fmt"
 "net/http"
 "net/url"
 "os"
 "regexp"
)

type Data struct {
 URL string
 Keyword string
 Times int
 Error error
}

The Data struct type will be used for passing information between channels.

The second part of findKeyword.go has the following Go code:

func monitor(values <-chan Data, count int) {
 fori := 0; i< count; i++ {
 x := <-values
 if x.Error == nil {
 fmt.Printf("\t%s\t", x.Keyword)
 fmt.Printf("\t%d\t in\t%s\n", x.Times, x.URL)
 } else {
 fmt.Printf("\t%s\n", x.Error)
 }
 }
}

Download from finelybook www.finelybook.com

533

The monitor() function is where all the information is collected and printed on
the screen.

The third part is the following:

func processPage(myUrl, keyword string, out chan<- Data) {
 var err error
 times := 0

 URL, err :=url.Parse(myUrl)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return
 }

 c := &http.Client{}
 request, err := http.NewRequest("GET", URL.String(), nil)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return
 }

 httpData, err := c.Do(request)
 if err != nil {
 out<- Data{URL: myUrl, Keyword: keyword, Times: 0, Error: err}
 return
 }

 bodyHTML := ""

 var buffer [1024]byte
 reader := httpData.Body
 for {
 n, err := reader.Read(buffer[0:])
 if err != nil {
 break
 }
 bodyHTML = bodyHTML + string(buffer[0:n])
 }

 regExpr := keyword

 r := regexp.MustCompile(regExpr)
 matches := r.FindAllString(bodyHTML, -1)
 times = times + len(matches)

 newValue := Data{URL: myUrl, Keyword: keyword, Times: times, Error: nil}
 out<- newValue
}

Here, you can see the implementation of the processPage() function that is

Download from finelybook www.finelybook.com

534

executed in a goroutine. If the Error field of the Data structure is not nil, then
there was an error somewhere.

The reason for using the bodyHTML variable to save the entire contents of a
URL is for not having a keyword split between two consecutive calls to
reader.Read(). After that, a regular expression (r) is used for searching the
bodyHTML variable for the desired keyword.

The fourth part contains the following Go code:

func main() {
 filename := ""
 var f *os.File
 var keyword string

 arguments := os.Args
 iflen(arguments) == 1 {
 fmt.Println("Not enough arguments!")
 os.Exit(-1)
 }

 iflen(arguments) == 2 {
 f = os.Stdin
 keyword = arguments[1]
 } else {
 keyword = arguments[1]
 filename = arguments[2]
 fileHandler, err := os.Open(filename)
 if err != nil {
 fmt.Printf("error opening %s: %s", filename, err)
 os.Exit(1)
 }
 f = fileHandler
 }

 deferf.Close()

As you can see, findKeyword.go expects its input from a text file or from
standard input, which is the common Unix practice: this technique was first
illustrated back in Chapter 8, Processes and Signals, in the Reading from
standard input section.

The last chunk of Go code for findKeyword.go is the following:

 values := make(chan Data, len(os.Args[1:]))

 scanner := bufio.NewScanner(f)
 count := 0
 forscanner.Scan() {

Download from finelybook www.finelybook.com

535

 count = count + 1
 gofunc(URL string) {
 processPage(URL, keyword, values)
 }(scanner.Text())
 }

 monitor(values, count)
}

There is nothing special here: you just start the desired goroutines and the
monitor() function to take care of them.

Executing findKeyword.go will create the following output:

$ go run findKeyword.go Tsoukalos /tmp/sites.html
 Get http://really.doesnotexist.com: dial tcp: lookup really.doesnotexist.com: no such host
 Tsoukalos 8 in http://www.highiso.net/
 Tsoukalos 4 in http://www.mtsoukalos.eu/
 Tsoukalos 3 in https://www.packtpub.com/networking-and-servers/go-systems-programming
 Tsoukalos 0 in http://cnn.com/
 Tsoukalos 0 in http://doesnotexist.com

The funny thing here is that the doesnotexist.com domain does actually exist!

Download from finelybook www.finelybook.com

536

Exercises
1. Download and install MongoDB on your Unix machine.
2. Visit the documentation page of the net/http Go standard package at https

://golang.org/pkg/net/http/.
3. Visit the documentation page of the html/template Go standard package

at https://golang.org/pkg/html/template/.
4. Change the Go code of getURL.go in order to make it able to fetch

multiple web pages.
5. Read the documentation of the encoding/json package that can be found

at https://golang.org/pkg/encoding/json/.
6. Visit the MongoDB site at https://www.mongodb.org/.
7. Learn how to use text/template by developing your own example.
8. Change the Go code of findKeyword.go in order to be able to search

multiple keywords.

Download from finelybook www.finelybook.com

537

https://golang.org/pkg/net/http/
https://golang.org/pkg/html/template/
https://golang.org/pkg/encoding/json/
https://www.mongodb.org/

Summary
In this chapter, we talked about web development in Go including parsing,
marshalling and unmarshalling JSON data, interacting with a MongoDB
database; reading data from a MySQL database; creating web servers in Go;
creating web clients in Go; and using the http.ServeMux type.

In the next chapter, we will talk about network programming in Go, which
includes creating TCP and UDP clients and servers using low level
commands. We will also teach you how to develop an RCP client and an
RCP server in Go. If you love developing TCP/IP applications, then the last
chapter of this book is for you!

Download from finelybook www.finelybook.com

538

Network Programming
In the previous chapter, we talked about developing web applications, talking
to databases, and dealing with JSON data in Go.

The topic of this chapter is the development of Go applications that work
over TCP/IP networks. In addition, you will learn how to create TCP and
UDP clients and servers. The central Go package of this chapter will be the
net package: most of its functions are quite low level and require a good
knowledge of TCP/IP and its family of protocols.

However, have in mind that network programming is a huge theme that
cannot be covered in a single chapter. This chapter will give you the
foundational directions for how to create TCP/IP applications in Go.

More analytically, this chapter will talk about the following topics:

How TCP/IP operates
The net Go standard package
Developing TCP clients and servers
Programing UDP clients and servers
Developing an RPC client
Implementing an RPC server
The Wireshark and tshark(1) network traffic analyzers
Unix sockets
Performing DNS lookups from Go programs

Download from finelybook www.finelybook.com

539

About network programming
Network programming is the development of applications that can operate
over computer networks using TCP/IP, which is the dominant networking
protocol. Therefore, without knowing the way TCP/IP and its protocols work,
you cannot create network applications and develop TCP/IP servers.

The best two advices that I can give to developers of network applications,
are to know the theory behind the task they want to perform and to know that
networks fail all the time for several reasons. The nastiest types of network
failures have to do with malfunctioning or misconfigured DNS servers,
because such problems are challenging to find and difficult to correct.

Download from finelybook www.finelybook.com

540

About TCP/IP
TCP/IP is a family of protocols that help the internet to operate. Its name
comes from its two most well-known protocols: TCP and IP.

Every device that uses TCP/IP must have an IP address, which should be
unique at least to its local network. It also needs a network mask (used for
dividing big IP networks into smaller networks) that is related to its current
network, one or more DNS servers (used for translating an IP address to a
human-memorable format and vice versa) and, if you want to communicate
with devices beyond your local network, the IP address of a device that will
act as the default gateway (a network device that TCP/IP sends a network
packet to when it cannot find where else to send it).

Each TCP/IP service, which in reality is a Unix process, listens to a port
number that is unique to each machine. Note that port numbers 0-1023 are
restricted and can only be used by the root user, so it is better to avoid using
them and choose something else, provided that it is not already in use by a
different process.

Download from finelybook www.finelybook.com

541

About TCP
TCP stands for Transmission Control Protocol. TCP software transmits
data between machines using segments, which are called TCP packets. The
main characteristic of TCP is that it is a reliable protocol, which means that it
attempts to make sure that a packet was delivered. If there is no proof of a
packet delivery, TCP resends that particular packet. Among other things, a
TCP packet can be used for establishing connections, transferring data,
sending acknowledgments, and closing connections.

When a TCP connection is established between two machines, a full duplex
virtual circuit, similar to the telephone call, is created between these two
machines. The two machines constantly communicate to make sure that data
are sent and received correctly. If the connection fails for some reason, the
two machines try to find the problem and report to the relevant application.

TCP assigns a sequence number to each transmitted packet and expects a
positive acknowledgment (ACK) from the receiving TCP stack. If the ACK
is not received within a timeout interval, the data is retransmitted as the
original packet is considered undelivered. The receiving TCP stack uses the
sequence numbers to rearrange the segments when they arrive out of order,
which also eliminates duplicate segments.

The TCP header of each packet includes source port and destination port
fields. These two fields plus the source and destination IP addresses are
combined to uniquely identify each TCP connection. The TCP header also
includes a 6-bit flags field that is used to relay control information between
TCP peers. The possible flags include SYN, FIN, RESET, PUSH, URG, and
ACK. The SYN and ACK flags are used for the initial TCP 3-way
handshake. The RESET flag signifies that the receiver wants to abort the
connection.

Download from finelybook www.finelybook.com

542

The TCP handshake!
When a connection is initiated, the client sends a TCP SYN packet to the
server. The TCP header also includes a sequence number field that has an
arbitrary value in the SYN packet. The server sends back a TCP [SYN, ACK]
packet, which includes the sequence number of the opposite direction and an
acknowledgment of the previous sequence number. Finally, in order to truly
establish the TCP connection, the client sends a TCP ACK packet in order to
acknowledge the sequence number of the server.

Although all these actions take place automatically, it is good to
know what is happening behind the scenes!

Download from finelybook www.finelybook.com

543

About UDP and IP
IP stands for Internet Protocol. The main characteristic of IP is that it is not
a reliable protocol by nature. IP encapsulates the data that travels in a TCP/IP
network because it is responsible for delivering packets from the source host
to the destination host according to the IP addresses. IP has to find an
addressing method to effectively send the packet to its destination. Although
there exist dedicated devices called routers that perform IP routing, every
TCP/IP device has to perform some basic routing.

UDP (short for User Datagram Protocol) is based on IP, which means that
it is also unreliable. Generally speaking, UDP is simpler than TCP mainly
because UDP is not reliable by design. As a result, UDP messages can be
lost, duplicated, or arrive out of order. Furthermore, packets can arrive faster
than the recipient can process them. So, UDP is used when speed is more
important than reliability! An example for this is live video and audio
applications where catching up is way more important than buffering and not
losing any data.

So, when you do not need too many network packets to transfer the desired
information, using a protocol that is based on IP might be more efficient than
using TCP, even if you have to retransmit a network packet, because there is
no traffic overhead from the TCP handshake.

Download from finelybook www.finelybook.com

544

About Wireshark and tshark
Wireshark is a graphical application for analyzing network traffic of almost
any kind. Nevertheless, there are times that you need something lighter that
you can execute remotely without a graphical user interface. In such
situations, you can use tshark, which is the command-line version of
Wireshark.

In order to help you find the network data you really want, Wireshark and
tshark have support for capture filters and display filters.

Capture filters are the filters that are applied during network data capturing;
therefore, they make Wireshark discard network traffic that does not match
the filter. Display filters are the filters that are applied after packet capturing;
therefore, they just hide some network traffic without deleting it: you can
always disable a display filter and get your hidden data back. Generally
speaking, display filters are considered more useful and versatile than capture
filters because, normally, you do not know in advance what you will capture
or want to examine. Nevertheless, applying filters at capture time can save
you time and disk space and that is the main reason for using them.

The following screenshot shows the traffic of a TCP handshake in more
detail as captured by Wireshark. The client IP address is 10.0.2.15 and the
destination IP address is 80.244.178.150. Additionally, a simple display filter
(tcp && !http) makes Wireshark display fewer packets and makes the output
less cluttered and therefore easier to read:

Download from finelybook www.finelybook.com

545

The TCP handshake!

The same information can be seen in text format using tshark(1):

$ tshark -r handshake.pcap -Y '(tcp.flags.syn==1) || (tcp.flags == 0x0010 && tcp.seq==1 && tcp.ack==1)'
 18 5.144264 10.0.2.15 → 80.244.178.150 TCP 74 59897 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=1585402 TSecr=0 WS=128
 19 5.236792 80.244.178.150 → 10.0.2.15 TCP 60 80 → 59897 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
 20 5.236833 10.0.2.15 → 80.244.178.150 TCP 54 59897 → 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0

The -r parameter followed by an existing filename allows you to replay a
previously captured data file on your screen, whereas a more complex display
filter, which is defined after the -Y parameter, does the rest of the job!

You can learn more about Wireshark at https://www.wireshark.org/ and by
looking at its documentation at https://www.wireshark.org/docs/.

Download from finelybook www.finelybook.com

546

https://www.wireshark.org/
https://www.wireshark.org/docs/

About the netcat utility
There are times that you will need to test a TCP/IP client or a TCP/IP server:
the netcat(1) utility can help you with that by playing the role of the client or
server in a TCP or UDP application.

You can use netcat(1) as a client for a TCP service that runs on a machine
with the 192.168.1.123 IP address and listens to port number 1234, as follows:

$ netcat 192.168.1.123 1234

Similarly, you can use netcat(1) as a client for a UDP service that runs on a
Unix machine named amachine.com and listens to port number 2345, as shown
here:

$ netcat -vv -u amachine.com 2345

The -l option tells netcat(1) to listen for incoming connections, which makes
netcat(1) to act as a TCP or UDP server. If you try to use netcat(1) as a server
with a port that is already in use, you will get the following output:

$ netcat -vv -l localhost -p 80
Can't grab 0.0.0.0:80 with bind : Permission denied

Download from finelybook www.finelybook.com

547

The net Go standard package
The most useful Go package for creating TCP/IP applications is the net Go
standard package. The net.Dial() function is used for connecting to a network
as a client, and the net.Listen() function is used for accepting connections as
a server. The first parameter of both functions is the network type, but this is
where the similarities end.

For the net.Dial() function, the network type can be one of tcp, tcp4 (IPv4-
only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-only), ip, ip4
(IPv4-only), ip6 (IPv6-only), Unix, Unixgram, or Unixpacket. For the
net.Listen() function, the first parameter can be one of tcp, tcp4, tcp6, Unix,
or Unixpacket.

The return value of the net.Dial() function is of the net.Conn interface type,
which implements the io.Reader and io.Writer interfaces! This means that you
already know how to access the variables of the net.Conn interface!

So, although the way you create a network connection is different from the
way you create a text file, their access methods are the same because the
net.Conn interface implements the io.Reader and io.Writer interfaces.
Therefore, as network connections are treated as files, you might need to
review Chapter 6, File Input and Output, at this moment.

Download from finelybook www.finelybook.com

548

Unix sockets revisited
Back in Chapter 8, Processes and Signals, we talked a little about Unix sockets
and presented a small Go program that was acting as a Unix socket client.
This section will also create a Unix socket server to make things even clearer.
However, the Go code of the Unix socket client will be also explained here in
more detail and will be enriched with error handling code.

Download from finelybook www.finelybook.com

549

A Unix socket server
The Unix socket server will act as an Echo server, which means that it will
send the received message back to the client. The name of the program will
be socketServer.go and it will be presented to you in four parts.

The first part of socketServer.go is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the Unix socket server is the following:

func echoServer(c net.Conn) {
 for {
 buf := make([]byte, 1024)
 nr, err := c.Read(buf)
 if err != nil {
 return
 }

 data := buf[0:nr]
 fmt.Printf("->: %v\n", string(data))
 _, err = c.Write(data)
 if err != nil {
 fmt.Println(err)
 }
 }
}

This is where the function that serves incoming connections is implemented.

The third portion of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a socket file.")
 os.Exit(100)
 }
 socketFile := arguments[1]

Download from finelybook www.finelybook.com

550

 l, err := net.Listen("unix", socketFile)
 if err != nil {
 fmt.Println(err)
os.Exit(100)
 }

Here, you can see the use of the net.Listen() function with the unix argument
for creating the desired socket file.

Finally, the last part contains the following Go code:

 for {
 fd, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go echoServer(fd)
 }
}

As you can see, each connection is first handled by the Accept() function and
served by its own goroutine.

When socketServer.go serves a client, it generates the following output:

$ go run socketServer.go /tmp/aSocket
->: Hello Server!

If you cannot create the desired socket file, for instance, if it already exists,
you will get an error message similar to the following:

$ go run socketServer.go /tmp/aSocket
listen unix /tmp/aSocket: bind: address already in use
exit status 100

Download from finelybook www.finelybook.com

551

A Unix socket client
The name of the Unix socket client program is socketClient.go and will be
presented in four parts.

The first part of the utility contains the expected preamble:

package main

import (
 "fmt"
 "io"
 "log"
 "net"
 "os"
 "time"
)

There is nothing special here, just the required Go packages. The second
portion contains the definition of a Go function:

func readSocket(r io.Reader) {

 buf := make([]byte, 1024)
 for {
 n, err := r.Read(buf[:])
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println("-> ", string(buf[0:n]))
 }
}

The readSocket() function reads the data from a socket file using Read(). Note
that, although socketClient.go just reads from the socket file, the socket is
bisectional, which means that you can also write to it.

The third part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a socket file.")

Download from finelybook www.finelybook.com

552

 os.Exit(100)
 }
 socketFile := arguments[1]

 c, err := net.Dial("unix", socketFile)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 defer c.Close()

The net.Dial() function with the right first argument allows you to connect to
the socket file before you try to read from it.

The last part of socketClient.go is the following:

 go readSocket(c)
 for {
 _, err := c.Write([]byte("Hello Server!"))
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 time.Sleep(1 * time.Second)
 }
}

In order to use socketClient.go, you must have another program dealing with
the Unix socket file, which, in this case will be socketServer.go. So, if
socketServer.go is already running, you will get the following output from
socketClient.go:

$ go run socketClient.go /tmp/aSocket
->: Hello Server!

If you do not have enough Unix file permissions to read the desired socket
file, then socketClient.go will fail with the following error message:

$ go run socketClient.go /tmp/aSocket
dial unix /tmp/aSocket: connect: permission denied
exit status 100

Similarly, if the socket file you want to read does not exist, socketClient.go
will fail with the following error message:

$ go run socketClient.go /tmp/aSocket
dial unix /tmp/aSocket: connect: no such file or directory
exit status 100

Download from finelybook www.finelybook.com

553

Performing DNS lookups
There exist many types of DNS lookups, but two of them are the most
popular. In the first type, you want to go from an IP address to a domain
name and in the second type you want to go from a domain name to an IP
address.

The following output shows an example of the first type of DNS lookup:

$ host 109.74.193.253
253.193.74.109.in-addr.arpa domain name pointer li140-253.members.linode.com.

The following output shows three examples of the second type of DNS
lookup:

$ host www.mtsoukalos.eu
www.mtsoukalos.eu has address 109.74.193.253
$ host www.highiso.net
www.highiso.net has address 109.74.193.253
$ host -t a cnn.com
cnn.com has address 151.101.1.67
cnn.com has address 151.101.129.67
cnn.com has address 151.101.65.67
cnn.com has address 151.101.193.67

As you just saw in the aforementioned examples, an IP address can serve
many hosts and a host name can have many IP addresses.

The Go standard library provides the net.LookupHost() and net.LookupAddr()
functions that can answer DNS queries for you. However, none of them allow
you to define the DNS server you want to query. While using standard Go
libraries is ideal, there exist external Go libraries that allow you to choose the
DNS server you desire, which is mainly required when troubleshooting DNS
configurations.

Download from finelybook www.finelybook.com

554

Using an IP address as input
The name of the Go utility that will return the hostname of an IP address will
be lookIP.go and will be presented in three parts.

The first part is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an IP address!")
 os.Exit(100)
 }

 IP := arguments[1]
 addr := net.ParseIP(IP)
 if addr == nil {
 fmt.Println("Not a valid IP address!")
 os.Exit(100)
 }

The net.ParseIP() function allows you to verify the validity of the given IP
address and is pretty handy for catching illegal IP addresses such as 288.8.8.8
and 8.288.8.8.

The last part of the utility is the following:

 hosts, err := net.LookupAddr(IP)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, hostname := range hosts {
 fmt.Println(hostname)
 }

Download from finelybook www.finelybook.com

555

}

As you can see, the net.LookupAddr() function returns a string slice with the list
of names that match the given IP address.

Executing lookIP.go will generate the following output:

$ go run lookIP.go 288.8.8.8
Not a valid IP address!
exit status 100
$ go run lookIP.go 8.8.8.8
google-public-dns-a.google.com.

You can validate the output of dnsLookup.go using host(1) or dig(1):

$ host 8.8.8.8
8.8.8.8.in-addr.arpa domain name pointer google-public-dns-a.google.com.

Download from finelybook www.finelybook.com

556

Using a host name as input
The name of this DNS utility will be lookHost.go and will be presented in
three parts. The first part of the lookHost.go utility is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the program has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide an argument!")
 os.Exit(100)
 }

 hostname := arguments[1]
 IPs, err := net.LookupHost(hostname)

Similarly, the net.LookupHost() function also returns a string slice with the
desired information.

The third part of the program has the following code, which is for error
checking and printing the output of net.LookupHost():

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, IP := range IPs {
 fmt.Println(IP)
 }
}

Executing lookHost.go will generate the following output:

$ go run lookHost.go www.google
lookup www.google: no such host

Download from finelybook www.finelybook.com

557

exit status 100
$ go run lookHost.go www.google.com
2a00:1450:4001:81f::2004
172.217.16.164

The first line of the output is the IPv6 address, whereas the second output line
is the IPv4 address of www.google.com.

You can verify the operation of lookHost.go by comparing its output with the
output of the host(1) utility:

$ host www.google.com
www.google.com has address 172.217.16.164
www.google.com has IPv6 address 2a00:1450:4001:81a::2004

Download from finelybook www.finelybook.com

558

Getting NS records for a domain
This subsection will present an additional kind of DNS lookup that returns
the domain name servers for a given domain. This is very handy for
troubleshooting DNS-related problems and finding out the status of a domain.
The presented program will be named lookNS.go and will be presented in three
parts.

The first part of the utility is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part has the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a domain!")
 os.Exit(100)
 }

 domain := arguments[1]

 NSs, err := net.LookupNS(domain)

The net.LookupNS() function does all the work for us by returning a slice of NS
elements.

The last part of the code is mainly for printing the results:

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 for _, NS := range NSs {
 fmt.Println(NS.Host)
 }
}

Download from finelybook www.finelybook.com

559

Executing lookNS.go will generate the following output:

$ go run lookNS.go mtsoukalos.eu
ns5.linode.com.
ns2.linode.com.
ns3.linode.com.
ns1.linode.com.
ns4.linode.com.

The reason that the following query will fail is that www.mtsoukalos.eu is not a
domain but a single host, which means that it has no NS records associated
with it:

$ go run lookNS.go www.mtsoukalos.eu
lookup www.mtsoukalos.eu on 8.8.8.8:53: no such host
exit status 100

You can use the host(1) utility to verify the previous output:

$ host -t ns mtsoukalos.eu
mtsoukalos.eu name server ns5.linode.com.
mtsoukalos.eu name server ns4.linode.com.
mtsoukalos.eu name server ns3.linode.com.
mtsoukalos.eu name server ns1.linode.com.
mtsoukalos.eu name server ns2.linode.com.
$ host -t ns www.mtsoukalos.eu
www.mtsoukalos.eu has no NS record

Download from finelybook www.finelybook.com

560

Developing a simple TCP server
This section will develop a TCP server that implements the Echo service.
The Echo service is usually implemented using the UDP protocol due to its
simplicity, but it can also be implemented with TCP. The Echo service
usually uses port number 7, but our implementation will use other port
numbers:

$ grep echo /etc/services
echo 7/tcp
echo 7/udp

The TCPserver.go file will hold the Go code of this section and will be
presented in six parts. For reasons of simplicity, each connection is handled
inside the main() function without calling a separate function. However, this is
not the recommended practice.

The first part contains the expected preamble:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second part of the TCP server is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide port number")
 os.Exit(100)
 }

The third part of TCPserver.go contains the following Go code:

 PORT := ":" + arguments[1]
 l, err := net.Listen("tcp", PORT)
 if err != nil {

Download from finelybook www.finelybook.com

561

 fmt.Println(err)
 os.Exit(100)
 }
 defer l.Close()

What is important to remember here is that net.Listen() returns a Listener
variable, which is a generic network listener for stream-oriented protocols.
Additionally, the Listen() function can support more formats: check the
documentation of the net package to find more information about that.

The fourth part of the TCP server has the following Go code:

 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Only after a successful call to Accept(), the TCP server can start interacting
with TCP clients. Nonetheless, the current version of TCPserver.go has a very
serious shortcoming: it can only serve a single TCP client, the first one that
will connect to it.

The fifth portion of the TCPserver.go code is the following:

 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Here, you read data from your client using bufio.NewReader().ReadString(). The
aforementioned call allows you to read your input line by line. Additionally,
the for loop allows you to keep reading data from the TCP client for as long
as you wish.

The last part of the Echo TCP server is the following:

 fmt.Print("-> ", string(netData))
 c.Write([]byte(netData))
 if strings.TrimSpace(string(netData)) == "STOP" {
 fmt.Println("Exiting TCP server!")
 return
 }
 }

Download from finelybook www.finelybook.com

562

}

The current version of TCPserver.go stops when it receives the STOP string as
input. Although TCP servers do not usually terminate in that style, this is a
pretty handy way to terminate a TCP server process that will only serve a
single client!

Next, we will test TCPserver.go with netcat(1):

$ go run TCPserver.go 1234
-> Hi!
-> STOP
Exiting TCP server!

The netcat(1) part is the following:

$ nc localhost 1234

Hi!
Hi!
STOP
STOP

Here, the first and third lines are our input, whereas the second and fourth
lines are the responses from the Echo server.

If you try to use an improper port number, TCPserver.go will generate the
following error message and exit:

$ go run TCPserver.go 123456
listen tcp: address 123456: invalid port
exit status 100

Download from finelybook www.finelybook.com

563

Developing a simple TCP client
In this section, we will develop a TCP client named TCPclient.go. The port
number the client will try to connect to as well as the server address will be
given as command-line arguments to the program. The Go code of the TCP
client will be presented in five parts; the first part is the following:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
)

The second part of TCPclient.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide host:port.")
 os.Exit(100)
 }

The third part of TCPclient.go has the following Go code:

 CONNECT := arguments[1]
 c, err := net.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Once again, you use the net.Dial() function to try to connect to the desired
port of the desired TCP server.

The fourth part of the TCP client is the following:

 for {
 reader := bufio.NewReader(os.Stdin)
 fmt.Print(">> ")
 text, _ := reader.ReadString('\n')
 fmt.Fprintf(c, text+"\n")

Download from finelybook www.finelybook.com

564

Here, you read data from the user that you will send to the TCP server using
fmt.Fprintf().

The last part of TCPclient.go is the following:

 message, _ := bufio.NewReader(c).ReadString('\n')
 fmt.Print("->: " + message)
 if strings.TrimSpace(string(text)) == "STOP" {
 fmt.Println("TCP client exiting...")
 return
 }
 }
}

In this part, you get data from the TCP server using
bufio.NewReader().ReadString(). The reason for using the strings.TrimSpace()
function is to remove any spaces and newline characters from the variable
you want to compare with the static string (STOP).

So, now it is time to verify that TCPclient.go works as expected using it to
connect to TCPserver.go:

$ go run TCPclient.go localhost:1024
>> 123
->: 123
>> Hello server!
->: Hello server!
>> STOP
->: STOP
TCP client exiting...

If no process listens to the specified TCP port at the specified host, then you
will get an error message similar to the following:

$ go run TCPclient.go localhost:1024
dial tcp [::1]:1024: getsockopt: connection refused
exit status 100

Download from finelybook www.finelybook.com

565

Using other functions for the TCP
server
In this subsection, we will develop the functionality of TCPserver.go using
some slightly different functions. The name of the new TCP server will be
TCPs.go and will be presented in four parts.

The first part of TCPs.go is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the TCP server is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }

 SERVER := "localhost" + ":" + arguments[1]

So far, there are no differences from the code of TCPserver.go.

The differences start in the third part of TCPs.go, which is the following:

 s, err := net.ResolveTCPAddr("tcp", SERVER)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 l, err := net.ListenTCP("tcp", s)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Download from finelybook www.finelybook.com

566

Here, you use the net.ResolveTCPAddr() and net.ListenTCP() functions. Is this
version better than TCPserver.go? Not really. But the Go code might look a
little clearer and this is a big advantage for some people. Additionally,
net.ListenTCP() returns a TCPListener value that when used with net.AcceptTCP()
instead of net.Accept() will return TCPConn, which offers more methods that
allow you to change more socket options.

The last part of TCPs.go has the following Go code:

 buffer := make([]byte, 1024)

 for {
 conn, err := l.Accept()
 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("> ", string(buffer[0:n]))

 _, err = conn.Write(buffer)

 conn.Close()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 }
}

There is nothing special here. You still use Accept() to get and process client
requests. However, this version uses Read() to get the client data all at once,
which is great when you do not have to process lots of input.

The operation of TCPs.go is the same with the operation of TCPserver.go, so it
will not be shown here.

If you try to create a TCP server using an invalid port number, TCPs.go will
generate an informative error message, as shown here:

$ go run TCPs.go 123456
address 123456: invalid port
exit status 100

Download from finelybook www.finelybook.com

567

Using alternative functions for the
TCP client
Once again, we will implement TCPclient.go using some slightly different
functions that are provided by the net Go standard package. The name of the
new version will be TCPc.go and will be shown in four code segments.

The first part is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second code segment of the program is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a server:port string!")
 os.Exit(100)
 }

 CONNECT := arguments[1]
 myMessage := "Hello from TCP client!\n"

This time, we will send a static message to the TCP server.

The third part of TCPc.go is the following:

 tcpAddr, err := net.ResolveTCPAddr("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 conn, err := net.DialTCP("tcp", nil, tcpAddr)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

Download from finelybook www.finelybook.com

568

In this part, you see the use of net.ResolveTCPAddr() and net.DialTCP(), which is
where the differences between TCPc.go and TCPclient.go exist.

The last part of the TCP client is the following:

 _, err = conn.Write([]byte(myMessage))
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("-> ", myMessage)
 buffer := make([]byte, 1024)

 n, err := conn.Read(buffer)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print(">> ", string(buffer[0:n]))
 conn.Close()
}

You might ask if you can use TCPc.go with TCPserver.go or TCPs.go with
TCPclient.go. The answer is a definitive yes because the implementation and
the function names have nothing to do with the actual TCP/IP operations that
take place.

Download from finelybook www.finelybook.com

569

Developing a simple UDP server
This section will also develop an Echo server. However, this time the Echo
server will use the UDP protocol. The name of the program will be
UDPserver.go and will be presented to you in five parts.

The first part contains the expected preamble:

package main

import (
 "fmt"
 "net"
 "os"
 "strings"
)

The second part is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }
 PORT := ":" + arguments[1]

The third part of UDPserver.go is the following:

 s, err := net.ResolveUDPAddr("udp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 connection, err := net.ListenUDP("udp", s)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

The UDP approach is similar to the TCP approach: you just call functions
with different names.

The fourth part of the program has the following Go code:

Download from finelybook www.finelybook.com

570

 defer connection.Close()
 buffer := make([]byte, 1024)

 for {
 n, addr, err := connection.ReadFromUDP(buffer)
 fmt.Print("-> ", string(buffer[0:n]))
 data := []byte(buffer[0:n])
 _, err = connection.WriteToUDP(data, addr)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

In the UDP case, you use ReadFromUDP() to read from a UDP connection and
WriteToUDP() to write to an UDP connection. Additionally, the UDP
connection does not need to call a function similar to net.Accept().

The last part of the UDP server is the following:

 if strings.TrimSpace(string(data)) == "STOP" {
 fmt.Println("Exiting UDP server!")
 return
 }
 }
}

Once again, we will test UDPserver.go with netcat(1):

$ go run UDPserver.go 1234
-> Hi!
-> Hello!
-> STOP
Exiting UDP server!

Download from finelybook www.finelybook.com

571

Developing a simple UDP client
In this section, we will develop a UDP client, which we will name
UDPclient.go and present in five parts.

As you will see, the code differences between the Go code of UDPclient.go and
TCPc.go are basically the differences in the names of the functions used: the
general idea is exactly the same.

The first part of the UDP client is the following:

package main

import (
 "fmt"
 "net"
 "os"
)

The second part of the utility contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string")
 os.Exit(100)
 }
 CONNECT := arguments[1]

The third part of UDPclient.go has the following Go code:

 s, err := net.ResolveUDPAddr("udp", CONNECT)
 c, err := net.DialUDP("udp", nil, s)

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Printf("The UDP server is %s\n", c.RemoteAddr().String())
 defer c.Close()

Nothing special here: just the use of net.ResolveUDPAddr() and net.DialUDP() to
connect to the UDP server.

Download from finelybook www.finelybook.com

572

The fourth part of the UDP client is the following:

 data := []byte("Hello UDP Echo server!\n")
 _, err = c.Write(data)

 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

This time, you send your data to the UDP server using Write(), although you
will read from the UDP server using ReadFromUDP().

The last part of UDPclient.go is the following:

 buffer := make([]byte, 1024)
 n, _, err := c.ReadFromUDP(buffer)
 fmt.Print("Reply: ", string(buffer[:n]))
}

As we have UDPserver.go and we know that it works, we can test the operation
of UDPclient.go using UDPserver.go:

$ go run UDPclient.go localhost:1234
The UDP server is 127.0.0.1:1234
Reply: Hello UDP Echo server!

If you execute UDPclient.go without a UDP server listening to the desired port,
you will get the following output, which does not clearly state that it could
not connect to an UDP server: it just shows an empty reply:

$ go run UDPclient.go localhost:1024
The UDP server is 127.0.0.1:1024
Reply:

Download from finelybook www.finelybook.com

573

A concurrent TCP server
In this section, you will learn how to develop a concurrent TCP server: each
client connection will be assigned to a new goroutine that will serve the client
request. Note that although TCP clients initially connect to the same port,
they are served using a different port number than the main port number of
the server: this is automatically handled by TCP and is the way TCP works.

Although creating a concurrent UDP server is also a
possibility, it might not be absolutely necessary due to the way
UDP works. However, if you have a really busy UDP service,
then you might consider developing a concurrent UDP server.

The name of the program will be concTCP.go and will be presented in five
parts. The good thing is that once you define a function to handle incoming
connections, all you need is to execute that function as a goroutine, and the
rest will be handled by Go!

The first part of concTCP.go is the following:

package main

import (
 "bufio"
 "fmt"
 "net"
 "os"
 "strings"
 "time"
)

The second part of the concurrent TCP server is the following:

func handleConnection(c net.Conn) {
 for {
 netData, err := bufio.NewReader(c).ReadString('\n')
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 fmt.Print("-> ", string(netData))

Download from finelybook www.finelybook.com

574

 c.Write([]byte(netData))
 if strings.TrimSpace(string(netData)) == "STOP" {
 break
 }
 }
 time.Sleep(3 * time.Second)
 c.Close()
}

Here is the implementation of the function that handles each TCP request.
The time delay at the end of it is used for giving you the necessary time to
connect with another TCP client and prove that concTCP.go can serve multiple
TCP clients.

The third part of the program contains the following Go code:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a port number!")
 os.Exit(100)
 }

 PORT := ":" + arguments[1]

The fourth part of concTCP.go has the following Go code:

 l, err := net.Listen("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 defer l.Close()

So far, there is nothing special in the main() function because although
concTCP.go will handle multiple requests, it only needs a single call to
net.Listen().

The last chunk of Go code is the following:

 for {
 c, err := l.Accept()
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 go handleConnection(c)
 }
}

Download from finelybook www.finelybook.com

575

All the differences in the way concTCP.go processes its requests can be found
in the last lines of Go code. Each time the program accepts a new network
request using Accept(), a new goroutine gets started and concTCP.go is
immediately ready to accept more requests. Note that in order to terminate
concTCP.go, you will have to press Ctrl + C because the STOP keyword is used
for terminating each goroutine of the program.

Executing concTCP.go and connecting to it using various TCP clients, will
generate the following output:

$ go run concTCP.go 1234
-> Hi!
-> Hello!
-> STOP
...

Download from finelybook www.finelybook.com

576

Remote procedure call (RPC)
Remote Procedure Call (RPC) is a client-server mechanism for interprocess
communication. Note that the RPC client and the RPC server communicate
using TCP/IP, which means that they can exist in different machines.

In order to develop the implementation of an RPC client or RPC server, you
will need to follow some steps and call some functions in a given way.
Neither of the two implementations is difficult; you just have to follow
certain steps.

Also, visit the documentation page of the net/rpc Go standard package that
can be found at https://golang.org/pkg/net/rpc/.

Note that the presented RPC example will use TCP for client-
server interaction. However, you can also use HTTP for client-
server communication.

Download from finelybook www.finelybook.com

577

An RPC server
This subsection will present an RPC server named RPCserver.go. As you will
see in the preamble of the RPCserver.go program, the RPC server imports a
package named sharedRPC, which is implemented in the sharedRPC.go file: the
name of the package is arbitrary. Its contents are the following:

package sharedRPC

type MyInts struct {
 A1, A2 uint
 S1, S2 bool
}

type MyInterface interface {

 Add(arguments *MyInts, reply *int) error
 Subtract(arguments *MyInts, reply *int) error
}

So, here you define a new structure that holds the signs and the values of two
unsigned integers and a new interface named MyInterface.

Then, you should install sharedRPC.go, which means that you should execute
the following commands before you try to use the sharedRPC package in your
programs:

$ mkdir ~/go
$ mkdir ~/go/src
$ mkdir ~/go/src/sharedRPC
$ export GOPATH=~/go
$ vi ~/go/src/sharedRPC/sharedRPC.go
$ go install sharedRPC

If you are on a macOS machine (darwin_amd64) and you want to make sure that
everything is OK, you can execute the following two commands:

$ cd ~/go/pkg/darwin_amd64/
$ ls -l sharedRPC.a
-rw-r--r-- 1 mtsouk staff 4698 Jul 27 11:49 sharedRPC.a

What you really must keep in mind is that, at the end of the day, what is

Download from finelybook www.finelybook.com

578

being exchanged between an RPC server and an RPC client are function
names and their arguments. Only the functions defined in the interface of
sharedRPC.go can be used in an RPC interaction: the RPC server will need to
implement the functions of the MyInterface interface. The Go code of
RPCserver.go will be presented in five parts; the first part of the RPC server has
the expected preamble, which also includes the sharedRPC package we made:

package main

import (
 "fmt"
 "net"
 "net/rpc"
 "os"
 "sharedRPC"
)

The second part of RPCserver.go is the following:

type MyInterface int

func (t *MyInterface) Add(arguments *sharedRPC.MyInts, reply *int) error {
 s1 := 1
 s2 := 1

 if arguments.S1 == true {
 s1 = -1
 }

 if arguments.S2 == true {
 s2 = -1
 }

 *reply = s1*int(arguments.A1) + s2*int(arguments.A2)
 return nil
}

Here is the implementation of the first function that will be offered to the
RPC clients: you can have as many functions as you want, provided that they
are included in the interface.

The third part of RPCserver.go has the following Go code:

func (t *MyInterface) Subtract(arguments *sharedRPC.MyInts, reply *int) error {
 s1 := 1
 s2 := 1

 if arguments.S1 == true {
 s1 = -1

Download from finelybook www.finelybook.com

579

 }

 if arguments.S2 == true {
 s2 = -1
 }

 *reply = s1*int(arguments.A1) - s2*int(arguments.A2)
 return nil
}

This is the second function that is offered to the RPC clients by this RPC
server.

The fourth part of RPCserver.go contains the following Go code:

func main() {
 PORT := ":1234"

 myInterface := new(MyInterface)
 rpc.Register(myInterface)

 t, err := net.ResolveTCPAddr("tcp", PORT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 l, err := net.ListenTCP("tcp", t)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

As our RPC server uses TCP, you need to make calls to net.ResolveTCPAddr()
and net.ListenTCP(). However, you will first need to call rpc.Register() in
order to be able to serve the desired interface.

The last part of the program is the following:

 for {
 c, err := l.Accept()
 if err != nil {
 continue
 }
 rpc.ServeConn(c)
 }
}

Here, you accept a new TCP connection using Accept() as usual, but you serve
it using rpc.ServeConn().

Download from finelybook www.finelybook.com

580

You will have to wait for the next section and the development of the RPC
client in order to test the operation of RPCserver.go.

Download from finelybook www.finelybook.com

581

An RPC client
In this section, we will develop an RPC client named RPCclient.go. The Go
code of RPCclient.go will be presented in five parts; the first part is the
following:

package main

import (
 "fmt"
 "net/rpc"
 "os"
 "sharedRPC"
)

Note the use of the sharedRPC package in the RPC client.

The second part of RPCclient.go is the following:

func main() {
 arguments := os.Args
 if len(arguments) == 1 {
 fmt.Println("Please provide a host:port string!")
 os.Exit(100)
 }

 CONNECT := arguments[1]

The third part of the program has the following Go code:

 c, err := rpc.Dial("tcp", CONNECT)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }

 args := sharedRPC.MyInts{17, 18, true, false}
 var reply int

As the MyInts structure is defined in sharedRPC.go, you need to use it as
sharedRPC.MyInts in the RPC client. Moreover, you call rpc.Dial() to connect to
the RPC server instead of net.Dial().

The fourth part of the RPC client contains the following Go code:

Download from finelybook www.finelybook.com

582

 err = c.Call("MyInterface.Add", args, &reply)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Printf("Reply (Add): %d\n", reply)

Here, you use the Call() function to execute the desired function in the RPC
server. The result of the MyInterface.Add() function is stored in the reply
variable, which was previously declared.

The last part of RPCclient.go is the following:

 err = c.Call("MyInterface.Subtract", args, &reply)
 if err != nil {
 fmt.Println(err)
 os.Exit(100)
 }
 fmt.Printf("Reply (Subtract): %d\n", reply)
}

Here, you do the same thing as before for executing the MyInterface.Subtract()
function.

As you can guess, you cannot test the RPC client without having an RCP
server and vice versa: netcat(1) cannot be used for RPC.

First, you will need to start the RPCserver.go process:

$ go run RPCserver.go

Then, you will execute the RPCclient.go program:

$ go run RPCclient.go localhost:1234
Reply (Add): 1
Reply (Subtrack): -35

If the RPCserver.go process is not running and you try to execute RPCclient.go,
you will get the following error message:

$ go run RPCclient.go localhost:1234
dial tcp [::1]:1234: getsockopt: connection refused
exit status 100

Of course, RPC is not for adding integers or natural numbers, but for doing
much more complex operations that you want to control from a central point.

Download from finelybook www.finelybook.com

583

Exercises
1. Read the documentation of the net package in order to find out about its

list of available functions at https://golang.org/pkg/net/.
2. Wireshark is a great tool for analyzing network traffic of any kind: try to

use it more.
3. Change the code of socketClient.go in order to read the input from the

user.
4. Change the code of socketServer.go in order to return a random number

to the client.
5. Change the code of TCPserver.go in order to stop when it receives a given

Unix signal from the user.
6. Change the Go code of concTCP.go in order to keep track of the number of

clients it has served and print that number before exiting.
7. Add a quit() function to RPCserver.go that does what its name implies.
8. Develop your own RPC example.

Download from finelybook www.finelybook.com

584

https://golang.org/pkg/net/

Summary
In this chapter, we introduced you to TCP/IP, and we talked about developing
TCP and UDP servers and clients in Go and about creating RPC clients and
servers.

At this point, there is no next chapter because this is the last chapter of this
book! Congratulations for reading the whole book! You are now ready to
start developing useful Unix command-line utilities in Go; so, go ahead and
start programming your own tools immediately!

Download from finelybook www.finelybook.com

585

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Getting Started with Go and Unix Systems Programming
	The structure of the book
	What is systems programming?
	Learning systems programming

	About Go
	Getting ready for Go

	Two useful Go tools
	Advantages and disadvantages of Go

	The various states of a Unix process
	Exercises
	Summary

	Writing Programs in Go
	Compiling Go code
	Checking the size of the executable file

	Go environment variables
	Using command-line arguments
	Finding the sum of the command-line arguments

	User input and output
	Getting user input
	Printing output

	Go functions
	Naming the return values of a Go function
	Anonymous functions
	Illustrating Go functions
	The defer keyword
	Using pointer variables in functions

	Go data structures
	Arrays
	Slices
	Maps
	Converting an array into a map

	Structures

	Interfaces
	Creating random numbers
	Exercises
	Summary

	Advanced Go Features
	Error handling in Go
	Functions can return error variables
	About error logging
	The addCLA.go program revisited

	Pattern matching and regular expressions
	Printing all the values from a given column of a line
	Creating summaries
	Finding the number of occurrences
	Find and replace

	Reflection
	Calling C code from Go
	Unsafe code

	Comparing Go to other programming languages
	Analysing software
	Using the strace(1) command-line utility
	The DTrace utility
	Disabling System Integrity Protection on macOS

	Unreachable code
	Avoiding common Go mistakes
	Exercises
	Summary

	Go Packages, Algorithms, and Data Structures
	About algorithms
	The Big O notation

	Sorting algorithms
	The sort.Slice() function

	Linked lists in Go
	Trees in Go
	Developing a hash table in Go
	About Go packages
	Using standard Go packages
	Creating your own packages
	Private variables and functions
	The init() function

	Using your own Go packages
	Using external Go packages
	The go clean command

	Garbage collection
	Your environment
	Go gets updated frequently!
	Exercises
	Summary

	Files and Directories
	Useful Go packages
	Command-line arguments revisited!
	The flag package

	Dealing with directories
	About symbolic links
	Implementing the pwd(1) command
	Developing the which(1) utility in Go
	Printing the permission bits of a file or directory

	Dealing with files in Go
	Deleting a file
	Renaming and moving files

	Developing find(1) in Go
	Traversing a directory tree
	Visiting directories only!

	The first version of find(1)
	Adding some command-line options
	Excluding filenames from the find output
	Excluding a file extension from the find output

	Using regular expressions
	Creating a copy of a directory structure

	Exercises
	Summary

	File Input and Output
	About file input and output
	Byte slices
	About binary files

	Useful I/O packages in Go
	The io package
	The bufio package

	File I/O operations
	Writing to files using fmt.Fprintf()
	About io.Writer and io.Reader

	Finding out the third column of a line

	Copying files in Go
	There is more than one way to copy a file!
	Copying text files
	Using io.Copy
	Reading a file all at once!
	An even better file copy program
	Benchmarking file copying operations

	Developing wc(1) in Go
	Counting words
	The wc.go code!
	Comparing the performance of wc.go and wc(1)

	Reading a text file character by character
	Doing some file editing!

	Interprocess communication
	Sparse files in Go
	Reading and writing data records
	File locking in Go
	A simplified Go version of the dd utility
	Exercises
	Summary

	Working with System Files
	Which files are considered system files?
	Logging in Go
	Putting data at the end of a file
	Altering existing data

	About log files
	About logging
	Logging facilities
	Logging levels
	The syslog Go package
	Processing log files
	File permissions revisited
	Changing file permissions
	Finding other kinds of information about files

	More pattern matching examples
	A simple pattern matching example
	An advanced example of pattern matching
	Renaming multiple files using regular expressions

	Searching files revisited
	Finding the user ID of a user
	Finding all the groups a user belongs to
	Finding files that belong or do not belong to a given user
	Finding files based on their permissions

	Date and time operations
	Playing with dates and times
	Reformatting the times in a log file

	Rotating log files
	Creating good random passwords
	Another Go update
	Exercises
	Summary

	Processes and Signals
	About Unix processes and signals
	Process management
	About Unix signals

	Unix signals in Go
	The kill(1) command
	A simple signal handler in Go
	Handling three different signals!
	Catching every signal that can be handled
	Rotating log files revisited!

	Improving file copying
	Plotting data
	Unix pipes in Go
	Reading from standard input
	Sending data to standard output
	Implementing cat(1) in Go
	The plotIP.go utility revisited

	Unix sockets in Go
	RPC in Go
	Programming a Unix shell in Go
	Yet another minor Go update
	Exercises
	Summary

	Goroutines - Basic Features
	About goroutines
	Concurrency and parallelism

	The sync Go packages
	A simple example
	Creating multiple goroutines

	Waiting for goroutines to finish their jobs
	Creating a dynamic number of goroutines

	About channels
	Writing to a channel
	Reading from a channel
	Explaining h1s.go

	Pipelines
	A better version of wc.go
	Calculating totals
	Doing some benchmarking

	Exercises
	Summary

	Goroutines - Advanced Features
	The Go scheduler
	The sync Go package
	The select keyword
	Signal channels
	Buffered channels
	About timeouts
	An alternative way to implement timeouts

	Channels of channels
	Nil channels
	Shared memory
	Using sync.Mutex
	Using sync.RWMutex

	The dWC.go utility revisited
	Using a buffered channel
	Using shared memory
	More benchmarking

	Detecting race conditions
	About GOMAXPROCS
	Exercises
	Summary

	Writing Web Applications in Go
	What is a web application?
	About the net/http Go package
	Developing web clients
	Fetching a single URL
	Setting a timeout

	Developing better web clients

	A small web server
	The http.ServeMux type
	Using http.ServeMux

	The html/template package
	About JSON
	Saving JSON data
	Parsing JSON data
	Using Marshal() and Unmarshal()

	Using MongoDB
	Basic MongoDB administration
	Using the MongoDB Go driver
	Creating a Go application that displays MongoDB data
	Creating an application that displays MySQL data

	A handy command-line utility
	Exercises
	Summary

	Network Programming
	About network programming
	About TCP/IP
	About TCP
	The TCP handshake!

	About UDP and IP
	About Wireshark and tshark
	About the netcat utility

	The net Go standard package
	Unix sockets revisited
	A Unix socket server
	A Unix socket client

	Performing DNS lookups
	Using an IP address as input
	Using a host name as input
	Getting NS records for a domain

	Developing a simple TCP server
	Developing a simple TCP client
	Using other functions for the TCP server
	Using alternative functions for the TCP client

	Developing a simple UDP server
	Developing a simple UDP client
	A concurrent TCP server
	Remote procedure call (RPC)
	An RPC server
	An RPC client

	Exercises
	Summary

