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Praise for Domain-Driven Design 
"This book belongs on the shelf of every thoughtful software developer." 

—Kent Beck 

"Eric Evans has written a fantastic book on how you can make the design of your 
software match your mental model of the problem domain you are addressing. 

"His book is very compatible with XP. It is not about drawing pictures of a domain; 
it is about how you think of it, the language you use to talk about it, and how you 
organize your software to reflect your improving understanding of it. Eric thinks that 
learning about your problem domain is as likely to happen at the end of your project 
as at the beginning, and so refactoring is a big part of his technique. 

"The book is a fun read. Eric has lots of interesting stories, and he has a way with 
words. I see this book as essential reading for software developers—it is a future 
classic." 

—Ralph Johnson, author of Design Patterns 

"If you don't think you are getting value from your investment in object-oriented 
programming, this book will tell you what you've forgotten to do." 

—Ward Cunningham 

"What Eric has managed to capture is a part of the design process that experienced 
object designers have always used, but that we have been singularly unsuccessful as 
a group in conveying to the rest of the industry. We've given away bits and pieces of 
this knowledge . . . but we've never organized and systematized the principles of 
building domain logic. This book is important." 

—Kyle Brown, author of Enterprise Java Programming with IBM WebSphere 

"Eric Evans convincingly argues for the importance of domain modeling as the 
central focus of development and provides a solid framework and set of techniques 



for accomplishing it. This is timeless wisdom, and will hold up long after the 
methodologies dujour have gone out of fashion." 

—Dave Collins, author of Designing Object-Oriented User Interfaces 

"Eric weaves real-world experience modeling—and building—business applications 
into a practical, useful book. Written from the perspective of a trusted practitioner, 
Eric's descriptions of ubiquitous language, the benefits of sharing models with users, 
object life-cycle management, logical and physical application structuring, and the 
process and results of deep refactoring are major contributions to our field." 

—Luke Hohmann, author of Beyond Software Architecture 
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Foreword 
There are many things that make software development complex. But the heart of this complexity 
is the essential intricacy of the problem domain itself. If you're trying to add automation to 
complicated human enterprise, then your software cannot dodge this complexity—all it can do is 
control it. 

The key to controlling complexity is a good domain model, a model that goes beyond a surface 
vision of a domain by introducing an underlying structure, which gives the software developers the 
leverage they need. A good domain model can be incredibly valuable, but it's not something that's 
easy to make. Few people can do it well, and it's very hard to teach. 

Eric Evans is one of those few who can create domain models well. I discovered this by working 
with him—one of those wonderful times when you find a client who's more skilled than you are. 
Our collaboration was short but enormous fun. Since then we've stayed in touch, and I've watched 
this book gestate slowly. 

It's been well worth the wait. 

This book has evolved into one that satisfies a huge ambition: To describe and build a vocabulary 
about the very art of domain modeling. To provide a frame of reference through which we can 
explain this activity as well as teach this hard-to-learn skill. It's a book that's given me many new 
ideas as it has taken shape, and I'd be astonished if even old hands at conceptual modeling don't get 
a raft of new ideas from reading this book. 

Eric also cements many of the things that we've learned over the years. First, in domain modeling, 
you shouldn't separate the concepts from the implementation. An effective domain modeler can not 
only use a whiteboard with an accountant, but also write Java with a programmer. Partly this is 
true because you cannot build a useful conceptual model without considering implementation 
issues. But the primary reason why concepts and implementation belong together is this: The 
greatest value of a domain model is that it provides a ubiquitous language that ties domain experts 
and technologists together. 

Another lesson you'll learn from this book is that domain models aren't first modeled and then 
implemented. Like many people, I've come to reject the phased thinking of "design, then build." 
But the lesson of Eric's experience is that the really powerful domain models evolve over time, and 
even the most experienced modelers find that they gain their best ideas after the initial releases of a 

file:///E|/books/0-321-12521-5/pref02.htm?xmlid=0-321-12521-5/gloss01#gloss01entry42


system. 

I think, and hope, that this will be an enormously influential book. One that will add structure and 
cohesion to a very slippery field while it teaches a lot of people how to use a valuable tool. 
Domain models can have big consequences in controlling software development—in whatever 
language or environment they are implemented. 

One final yet important thought. One of things I most respect about this book is that Eric is not 
afraid to talk about the times when he hasn't been successful. Most authors like to maintain an air 
of disinterested omnipotence. Eric makes it clear that like most of us, he's tasted both success and 
disappointment. The important thing is that he can learn from both—and more important for us is 
that he can pass on his lessons. 

Martin Fowler 
April 2003 
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Preface 
Leading software designers have recognized domain modeling and design as critical topics for at 
least 20 years, yet surprisingly little has been written about what needs to be done or how to do it. 
Although it has never been formulated clearly, a philosophy has emerged as an undercurrent in the 
object community, a philosophy I call domain-driven design . 

I have spent the past decade developing complex systems in several business and technical 
domains. In my work, I have tried best practices in design and development process as they have 
emerged from the leaders in object-oriented development. Some of my projects were very 
successful; a few failed. A feature common to the successes was a rich domain model that evolved 
through iterations of design and became part of the fabric of the project. 

This book provides a framework for making design decisions and a technical vocabulary for 
discussing domain design. It is a synthesis of widely accepted best practices along with my own 
insights and experiences. Software development teams facing complex domains can use this 
framework to approach domain-driven design systematically. 
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Preface 

Contrasting Three Projects 

Three projects stand out in my memory as vivid examples of how dramatically domain design 
practice can affect development results. Although all three projects delivered useful software, only 
one achieved its ambitious objectives and produced complex software that continued to evolve to 
meet the ongoing needs of the organization. 

I watched one project get out of the gate fast, by delivering a useful, simple Web-based trading 
system. Developers were flying by the seat of their pants, but this didn't hinder them because 
simple software can be written with little attention to design. As a result of this initial success, 
expectations for future development were sky-high. That is when I was asked to work on the 
second version. When I took a close look, I saw that they lacked a domain model, or even a 
common language on the project, and were saddled with an unstructured design. The project 
leaders did not agree with my assessment, and I declined the job. A year later, the team found itself 
bogged down and unable to deliver a second version. Although their use of technology was not 
exemplary, it was the business logic that over-came them. Their first release had ossified 
prematurely into a high-maintenance legacy. 

Lifting this ceiling on complexity calls for a more serious approach to the design of domain logic. 
Early in my career, I was fortunate to end up on a project that did emphasize domain design. This 
project, in a domain at least as complex as the first one, also started with a modest initial success, 
delivering a simple application for institutional traders. But in this case, the initial delivery was 
followed up with successive accelerations of development. Each iteration opened exciting new 
options for integrating and elaborating the functionality of the previous release. The team was able 
to respond to the needs of the traders with flexibility and expanding capability. This upward 
trajectory was directly attributable to an incisive domain model, repeatedly refined and expressed 
in code. As the team gained new insight into the domain, the model deepened. The quality of 
communication improved not only among developers but also between developers and domain 
experts, and the design—far from imposing an ever-heavier maintenance burden—became easier 
to modify and extend. 

Unfortunately, projects don't arrive at such a virtuous cycle just by taking models seriously. One 
project from my past started with lofty aspirations to build a global enterprise system based on a 
domain model, but after years of disappointment, it lowered its sights and settled into 
conventionality. The team had good tools and a good understanding of the business, and it gave 
careful attention to modeling. But a poorly chosen separation of developer roles disconnected 



modeling from implementation, so that the design did not reflect the deep analysis that was going 
on. In any case, the design of detailed business objects was not rigorous enough to support 
combining them in elaborate applications. Repeated iteration produced no improvement in the 
code, due to uneven skill levels among developers, who had no awareness of the informal body of 
style and technique for creating model-based objects that also function as practical, running 
software. As months rolled by, development work became mired in complexity and the team lost 
its cohesive vision of the system. After years of effort, the project did produce modest, useful 
software, but the team had given up its early ambitions along with the model focus. 
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Preface 

The Challenge of Complexity 

Many things can put a project off course: bureaucracy, unclear objectives, and lack of resources, to 
name a few. But it is the approach to design that largely determines how complex software can 
become. When complexity gets out of hand, developers can no longer understand the software well 
enough to change or extend it easily and safely. On the other hand, a good design can create 
opportunities to exploit those complex features. 

Some design factors are technological. A great deal of effort has gone into the design of networks, 
databases, and other technical dimensions of software. Many books have been written about how 
to solve these problems. Legions of developers have cultivated their skills and followed each 
technical advancement. 

Yet the most significant complexity of many applications is not technical. It is in the domain itself, 
the activity or business of the user. When this domain complexity is not handled in the design, it 
won't matter that the infrastructural technology is well conceived. A successful design must 
systematically deal with this central aspect of the software. 

The premise of this book is twofold: 

1.  For most software projects, the primary focus should be on the domain and domain logic. 

2.  Complex domain designs should be based on a model. 

Domain-driven design is both a way of thinking and a set of priorities, aimed at accelerating 
software projects that have to deal with complicated domains. To accomplish that goal, this book 
presents an extensive set of design practices, techniques, and principles. 
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Preface 

Design Versus Development Process 

Design books. Process books. They seldom even reference each other. Each topic is complex in its 
own right. This is a design book, but I believe that design and process are inextricable. Design 
concepts must be implemented successfully or else they will dry up into academic discussion. 

When people learn design techniques, they feel excited by the possibilities. Then the messy 
realities of a real project descend on them. They can't fit the new design ideas with the technology 
they must use. Or they don't know when to let go of a particular design aspect in the interest of 
time and when to dig in their heels and find a clean solution. Developers can and do talk with each 
other abstractly about the application of design principles, but it is more natural to talk about how 
real things get done. So, although this is a design book, I'm going to barge right across that 
artificial boundary into process when I need to. This will help put design principles in context. 

This book is not tied to a particular methodology, but it is oriented toward the new family of 
"Agile development processes." Specifically, it assumes that a couple of practices are in place on 
the project. These two practices are prerequisites for applying the approach in this book. 

1.  Development is iterative . Iterative development has been advocated and practiced for 
decades, and it is a cornerstone of Agile development methods. There are many good 
discussions in the literature of Agile development and Extreme Programming (or XP), 
among them, Surviving Object-Oriented Projects ( Cockburn 1998 ) and Extreme 
Programming Explained ( Beck 1999 ). 

2.  Developers and domain experts have a close relationship . Domain-driven design crunches 
a huge amount of knowledge into a model that reflects deep insight into the domain and a 
focus on the key concepts. This is a collaboration between those who know the domain and 
those who know how to build software. Because development is iterative, this collaboration 
must continue throughout the project's life. 

Extreme Programming, conceived by Kent Beck, Ward Cunningham, and others (see Extreme 
Programming Explained [ Beck 2000 ]), is the most prominent of the Agile processes and the one I 
have worked with most. Throughout this book, to make explanations concrete, I will use XP as the 
basis for discussion of the interaction of design and process. The principles illustrated are easily 
adapted to other Agile processes. 
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In recent years there has been a rebellion against elaborate development methodologies that burden 
projects with useless, static documents and obsessive upfront planning and design. Instead, the 
Agile processes, such as XP, emphasize the ability to cope with change and uncertainty. 

Extreme Programming recognizes the importance of design decisions, but it strongly resists 
upfront design. Instead, it puts an admirable effort into communication and improving the project's 
ability to change course rapidly. With that ability to react, developers can use the "simplest thing 
that could work" at any stage of a project and then continuously refactor, making many small 
design improvements, ultimately arriving at a design that fits the customer's true needs. 

This minimalism has been a muchneeded antidote to some of the excesses of design enthusiasts. 
Projects have been bogged down by cumbersome documents that provided little value. They have 
suffered from "analysis paralysis," with team members so afraid of an imperfect design that they 
made no progress at all. Something had to change. 

Unfortunately, some of these process ideas can be misinter-preted. Each person has a different 
definition of "simplest." Continuous refactoring is a series of small redesigns; developers without 
solid design principles will produce a code base that is hard to understand or change—the opposite 
of agility. And although fear of unanticipated requirements often leads to overengineering, the 
attempt to avoid overengineering can develop into another fear: a fear of doing any deep design 
thinking at all. 

In fact, XP works best for developers with a sharp design sense. The XP process assumes that you 
can improve a design by refactoring, and that you will do this often and rapidly. But past design 
choices make refactoring itself either easier or harder. The XP process attempts to increase team 
communication, but model and design choices clarify or confuse communication. 

This book intertwines design and development practice and illustrates how domain-driven design 
and Agile development reinforce each other. A sophisticated approach to domain modeling within 
the context of an Agile development process will accelerate development. The interrelationship of 
process with domain development makes this approach more practical than any treatment of "pure" 
design in a vacuum. 
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Preface 

The Structure of This Book 

The book is divided into four major sections: 

Part I : Putting the Domain Model to Work presents the basic goals of domain-
driven development; these goals motivate the practices in later sections. Because 
there are so many approaches to software development, Part I defines terms and 
gives an overview of the implications of using the domain model to drive 
communication and design. 

Part II : The Building Blocks of a Model-Driven Design condenses a core of best 
practices in object-oriented domain modeling into a set of basic building blocks. 
This section focuses on bridging the gap between models and practical, running 
software. Sharing these standard patterns brings order to the design. Team members 
more easily understand each other's work. Using standard patterns also contributes 
terminology to a common language, which all team members can use to discuss 
model and design decisions. 

But the main point of this section is to focus on the kinds of decisions that keep the 
model and implementation aligned with each other, each reinforcing the other's 
effectiveness. This alignment requires attention to the detail of individual elements. 
Careful crafting at this small scale gives developers a steady foundation from which 
to apply the modeling approaches of Parts III and IV . 

Part III : Refactoring Toward Deeper Insight goes beyond the building blocks to the 
challenge of assembling them into practical models that provide the payoff. Rather 
than jumping directly into esoteric design principles, this section emphasizes the 
discovery process. Valuable models do not emerge immediately; they require a deep 
understanding of the domain. That understanding comes from diving in, 
implementing an initial design based on a probably naive model, and then 
transforming it again and again. Each time the team gains insight, the model is 
transformed to reveal that richer knowledge, and the code is refactored to reflect the 
deeper model and make its potential available to the application. Then, once in a 
while, this onion peeling leads to an opportunity to break through to a much deeper 
model, attended by a rush of profound design changes. 
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Exploration is inherently openended, but it does not have to be random. Part III 
delves into modeling principles that can guide choices along the way, and techniques 
that help direct the search. 

Part IV : Strategic Design deals with situations that arise in complex systems, larger 
organizations, and interactions with external systems and legacy systems. This 
section explores a triad of principles that apply to the system as a whole: context, 
distillation, and large-scale structure. Strategic design decisions are made by teams, 
or even among teams. Strategic design enables the goals of Part I to be realized on a 
larger scale, for a big system or an application that fits into a sprawling, enterprise-
wide network. 

Throughout the book, discussions are illustrated not with over-simplified, "toy" problems, but with 
realistic examples adapted from actual projects. 

Much of the book is written as a set of "patterns." Readers should be able to understand the 
material without concern about this device, but those who are interested in the style and format of 
the patterns may want to read the appendix. 

Supplemental materials can be found at http://domaindrivendesign.org , including additional 
example code and community discussion. 
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Preface 

Who Should Read This Book 

This book is written primarily for developers of object-oriented software. Most members of a 
software project team can benefit from some parts of the book. It will make the most sense to 
people who are currently involved with a project, trying to do some of these things as they go 
through, and to people who already have deep experience with such projects. 

Some knowledge of object-oriented modeling is necessary to benefit from this book. The examples 
include UML diagrams and Java code, so the ability to read those languages at a basic level is 
important, but it is unnecessary to have mastered the details of either. Knowledge of Extreme 
Programming will add perspective to the discussions of development process, but the material 
should be understandable to those without background knowledge. 

For intermediate software developers—readers who already know something of object-oriented 
design and may have read one or two software design books—this book will fill in gaps and 
provide perspective on how object modeling fits into real life on a software project. The book will 
help intermediate developers learn to apply sophisticated modeling and design skills to practical 
problems. 

Advanced or expert software developers will be interested in the book's comprehensive framework 
for dealing with the domain. This systematic approach to design will help technical leaders guide 
their teams down this path. Also, the coherent terminology used through-out the book will help 
advanced developers communicate with their peers. 

This book is a narrative, and it can be read from beginning to end, or from the beginning of any 
chapter. Readers of various backgrounds may wish to take different paths through the book, but I 
do recommend that all readers start with the introduction to Part I , as well as Chapter 1 . Beyond 
that, the core is probably Chapters 2 , 3 , 9 , and 14 . A skimmer who already has some grasp of a 
topic should be able to pick up the main points by reading headings and bold text. A very 
advanced reader may want to skim Parts I and II and will probably be most interested in Parts III 
and IV . 

In addition to this core readership, analysts and relatively technical project managers will also 
benefit from reading the book. Analysts can draw on the connection between model and design to 
make more effective contributions in the context of an Agile project. Analysts may also use some 
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of the principles of strategic design to better focus and organize their work. 

Project managers should be interested in the emphasis on making a team more effective and more 
focused on designing software meaningful to business experts and users. And because strategic 
design decisions are interrelated with team organization and work styles, these design decisions 
necessarily involve the leadership of the project and have a major impact on the project's 
trajectory. 
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Preface 

A Domain-Driven Team 

Although an individual developer who understands domain-driven design will gain valuable 
design techniques and perspective, the biggest gains come when a team joins together to apply a 
domain-driven design approach and to move the domain model to the project's center of discourse. 
By doing so, the team members will share a language that enriches their communication and keeps 
it connected to the software. They will produce a lucid implementation in step with a model, 
giving leverage to application development. They will share a map of how the design work of 
different teams relates, and they will systematically focus attention on the features that are most 
distinctive and valuable to the organization. 

Domain-driven design is a difficult technical challenge that can pay off big, opening opportunities 
just when most software projects begin to ossify into legacy. 
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Part I: Putting the Domain Model to Work 

 

This eighteenth-century Chinese map represents the whole world. In the center and 
taking up most of the space is China, surrounded by perfunctory representations of 
other countries. This was a model of the world appropriate to that society, which had 
intentionally turned inward. The worldview that the map represents must not have 
been helpful in dealing with foreigners. Certainly it would not serve modern China 
at all. Maps are models, and every model represents some aspect of reality or an idea 
that is of interest. A model is a simplification. It is an interpretation of reality that 
abstracts the aspects relevant to solving the problem at hand and ignores extraneous 
detail. 



Every software program relates to some activity or interest of its user. That subject 
area to which the user applies the program is the domain of the software. Some 
domains involve the physical world: The domain of an airline-booking program 
involves real people getting on real aircraft. Some domains are intangible: The 
domain of an accounting program is money and finance. Software domains usually 
have little to do with computers, though there are exceptions: The domain of a 
source-code control system is software development itself. 

To create software that is valuably involved in users' activities, a development team 
must bring to bear a body of knowledge related to those activities. The breadth of 
knowledge required can be daunting. The volume and complexity of information can 
be overwhelming. Models are tools for grappling with this overload. A model is a 
selectively simplified and consciously structured form of knowledge. An appropriate 
model makes sense of information and focuses it on a problem. 

A domain model is not a particular diagram; it is the idea that the diagram is 
intended to convey. It is not just the knowledge in a domain expert's head; it is a 
rigorously organized and selective abstraction of that knowledge . A diagram can 
represent and communicate a model, as can carefully written code, as can an English 
sentence. 

Domain modeling is not a matter of making as "realistic" a model as possible. Even 
in a domain of tangible real-world things, our model is an artificial creation. Nor is it 
just the construction of a software mechanism that gives the necessary results. It is 
more like moviemaking, loosely representing reality to a particular purpose. Even a 
documentary film does not show unedited real life. Just as a moviemaker selects 
aspects of experience and presents them in an idiosyncratic way to tell a story or 
make a point, a domain modeler chooses a particular model for its utility. 

The Utility of a Model in Domain-Driven Design 

In domain-driven design, three basic uses determine the choice of a model. 

1.  The model and the heart of the design shape each other . It is the intimate 
link between the model and the implementation that makes the model 
relevant and ensures that the analysis that went into it applies to the final 
product, a running program. This binding of model and implementation also 
helps during maintenance and continuing development, because the code can 
be interpreted based on understanding the model. (See Chapter 3 .) 

2.  The model is the backbone of a language used by all team members . Because 

file:///E|/books/0-321-12521-5/part01.htm?xmlid=0-321-12521-5/gloss01#gloss01entry16
file:///E|/books/0-321-12521-5/part01.htm?xmlid=0-321-12521-5/ch03#ch03


of the binding of model and implementation, developers can talk about the 
program in this language. They can communicate with domain experts 
without translation. And because the language is based on the model, our 
natural linguistic abilities can be turned to refining the model itself. (See 
Chapter 2 .) 

3.  The model is distilled knowledge . The model is the team's agreed-upon way 
of structuring domain knowledge and distinguishing the elements of most 
interest. A model captures how we choose to think about the domain as we 
select terms, break down concepts, and relate them. The shared language 
allows developers and domain experts to collaborate effectively as they 
wrestle information into this form. The binding of model and implementation 
makes experience with early versions of the software applicable as feed-back 
into the modeling process. (See Chapter 1 .) 

The next three chapters set out to examine the meaning and value of each of these 
contributions in turn, and the ways they are intertwined. Using a model in these 
ways can support the development of software with rich functionality that would 
otherwise take a massive investment of ad hoc development. 

The Heart of Software 

The heart of software is its ability to solve domain-related problems for its user. All 
other features, vital though they may be, support this basic purpose. When the 
domain is complex, this is a difficult task, calling for the concentrated effort of 
talented and skilled people. Developers have to steep themselves in the domain to 
build up knowledge of the business. They must hone their modeling skills and 
master domain design. 

Yet these are not the priorities on most software projects. Most talented developers 
do not have much interest in learning about the specific domain in which they are 
working, much less making a major commitment to expand their domain-modeling 
skills. Technical people enjoy quantifiable problems that exercise their technical 
skills. Domain work is messy and demands a lot of complicated new knowledge that 
doesn't seem to add to a computer scientist's capabilities. 

Instead, the technical talent goes to work on elaborate frame-works, trying to solve 
domain problems with technology. Learning about and modeling the domain is left 
to others. Complexity in the heart of software has to be tackled head-on. To do 
otherwise is to risk irrelevance. 

In a TV talk show interview, comedian John Cleese told a story of an event during 
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the filming of Monty Python and the Holy Grail . They had been shooting a 
particular scene over and over, but somehow it wasn't funny. Finally, he took a 
break and consulted with fellow comedian Michael Palin (the other actor in the 
scene), and they came up with a slight variation. They shot one more take, and it 
turned out funny, so they called it a day. 

The next morning, Cleese was looking at the rough cut the film editor had put 
together of the previous day's work. Coming to the scene they had struggled with, 
Cleese found that it wasn't funny; one of the earlier takes had been used. 

He asked the film editor why he hadn't used the last take, as directed. "Couldn't use 
it. Someone walked in-shot," the editor replied. Cleese watched the scene again, and 
then again. Still he could see nothing wrong. Finally, the editor stopped the film and 
pointed out a coat sleeve that was visible for a moment at the edge of the picture. 

The film editor was focused on the precise execution of his own specialty. He was 
concerned that other film editors who saw the movie would judge his work based on 
its technical perfection. In the process, the heart of the scene had been lost ("The 
Late Late Show with Craig Kilborn," CBS, September 2001). 

Fortunately, the funny scene was restored by a director who understood comedy. In 
just the same way, leaders within a team who understand the centrality of the 
domain can put their software project back on course when development of a model 
that reflects deep understanding gets lost in the shuffle. 

This book will show that domain development holds opportunities to cultivate very 
sophisticated design skills. The messiness of most software domains is actually an 
interesting technical challenge. In fact, in many scientific disciplines, "complexity" 
is one of the most exciting current topics, as researchers attempt to tackle the 
messiness of the real world. A software developer has that same prospect when 
facing a complicated domain that has never been formalized. Creating a lucid model 
that cuts through that complexity is exciting. 

There are systematic ways of thinking that developers can employ to search for 
insight and produce effective models. There are design techniques that can bring 
order to a sprawling software application. Cultivation of these skills makes a 
developer much more valuable, even in an initially unfamiliar domain. 
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Part I:  Putting the Domain Model to Work 

Chapter One. Crunching Knowledge 
A few years ago, I set out to design a specialized software tool for printed-circuit board (PCB) 
design. One catch: I didn't know anything about electronic hardware. I had access to some PCB 
designers, of course, but they typically got my head spinning in three minutes. How was I going to 
understand enough to write this software? I certainly wasn't going to become an electrical engineer 
before the delivery deadline! 

We tried having the PCB designers tell me exactly what the software should do. Bad idea. They 
were great circuit designers, but their software ideas usually involved reading in an ASCII file, 
sorting it, writing it back out with some annotation, and producing a report. This was clearly not 
going to lead to the leap forward in productivity that they were looking for. 

The first few meetings were discouraging, but there was a glimmer of hope in the reports they 
asked for. They always involved "nets" and various details about them. A net, in this domain, is 
essentially a wire conductor that can connect any number of components on a PCB and carry an 
electrical signal to everything it is connected to. We had the first element of the domain model. 

Figure 1.1. 

 

I started drawing diagrams for them as we discussed the things they wanted the software to do. I 
used an informal variant of object interaction diagrams to walk through scenarios. 

Figure 1.2. 
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PCB Expert 1: The components wouldn't have to be chips. 

Developer (Me): So I should just call them "components"? 

Expert 1: We call them "component instances." There could be many of the same component. 

Expert 2: The "net" box looks just like a component instance. 

Expert 1: He's not using our notation. Everything is a box for them, I guess. 

Developer: Sorry to say, yes. I guess I'd better explain this notation a little more. 

They constantly corrected me, and as they did I started to learn. We ironed out collisions and 
ambiguities in their terminology and differences between their technical opinions, and they 
learned. They began to explain things more precisely and consistently, and we started to develop a 
model together. 

Expert 1: It isn't enough to say a signal arrives at a ref-des, we have to know the pin. 

Developer: Ref-des? 

Expert 2: Same thing as a component instance. Ref-des is what it's called in a particular tool we 
use. 

Expert 1: Anyhow, a net connects a particular pin of one instance to a particular pin of another. 



Developer: Are you saying that a pin belongs to only one component instance and connects to 
only one net? 

Expert 1: Yes, that's right. 

Expert 2: Also, every net has a topology, an arrangement that determines the way the elements of 
the net connect. 

Developer: OK, how about this? 

Figure 1.3. 

 

To focus our exploration, we limited ourselves, for a while, to studying one particular feature. A 
"probe simulation" would trace the propagation of a signal to detect likely sites of certain kinds of 
problems in the design. 

Developer: I understand how the signal gets carried by the Net to all the Pins attached, but how 
does it go any further than that? Does the Topology have something to do with it? 

Expert 2: No. The component pushes the signal through. 

Developer: We certainly can't model the internal behavior of a chip. That's way too complicated. 

Expert 2: We don't have to. We can use a simplification. Just a list of pushes through the 
component from certain Pins to certain others. 



Developer: Something like this? 

[With considerable trial-and-error, together we sketched out a scenario.] 

Figure 1.4. 

 

Developer: But what exactly do you need to know from this computation? 

Expert 2: We'd be looking for long signal delays—say, any signal path that was more than two or 
three hops. It's a rule of thumb. If the path is too long, the signal may not arrive during the clock 
cycle. 

Developer: More than three hops.... So we need to calculate the path lengths. And what counts as 
a hop? 

Expert 2: Each time the signal goes over a Net , that's one hop. 

Developer: So we could pass the number of hops along, and a Net could increment it, like this. 

Figure 1.5. 



 

Developer: The only part that isn't clear to me is where the "pushes" come from. Do we store that 
data for every Component Instance ? 

Expert 2: The pushes would be the same for all the instances of a component. 

Developer: So the type of component determines the pushes. They'll be the same for every 
instance? 

Figure 1.6. 

 



Expert 2: I'm not sure exactly what some of this means, but I would imagine storing push-
throughs for each component would look something like that. 

Developer: Sorry, I got a little too detailed there. I was just thinking it through. . . . So, now, 
where does the Topology come into it? 

Expert 1: That's not used for the probe simulation. 

Developer: Then I'm going to drop it out for now, OK? We can bring it back when we get to those 
features. 

And so it went (with much more stumbling than is shown here). Brainstorming and refining; 
questioning and explaining. The model developed along with my understanding of the domain and 
their understanding of how the model would play into the solution. A class diagram representing 
that early model looks something like this. 

Figure 1.7. 

 

After a couple more part-time days of this, I felt I understood enough to attempt some code. I 
wrote a very simple prototype, driven by an automated test framework. I avoided all infrastructure. 
There was no persistence, and no user interface (UI). This allowed me to concentrate on the 
behavior. I was able to demonstrate a simple probe simulation in just a few more days. Although it 
used dummy data and wrote raw text to the console, it was nonetheless doing the actual 
computation of path lengths using Java objects. Those Java objects reflected a model shared by the 
domain experts and myself. 



The concreteness of this prototype made clearer to the domain experts what the model meant and 
how it related to the functioning software. From that point, our model discussions became more 
interactive, as they could see how I incorporated my newly acquired knowledge into the model and 
then into the software. And they had concrete feedback from the prototype to evaluate their own 
thoughts. 

Embedded in that model, which naturally became much more complicated than the one shown 
here, was knowledge about the domain of PCB relevant to the problems we were solving. It 
consolidated many synonyms and slight variations in descriptions. It excluded hundreds of facts 
that the engineers understood but that were not directly relevant, such as the actual digital features 
of the components. A software specialist like me could look at the diagrams and in minutes start to 
get a grip on what the software was about. He or she would have a framework to organize new 
information and learn faster, to make better guesses about what was important and what was not, 
and to communicate better with the PCB engineers. 

As the engineers described new features they needed, I made them walk me through scenarios of 
how the objects interacted. When the model objects couldn't carry us through an important 
scenario, we brainstormed new ones or changed old ones, crunching their knowledge. We refined 
the model; the code coevolved. A few months later the PCB engineers had a rich tool that 
exceeded their expectations. 
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Chapter One.  Crunching Knowledge 

Ingredients of Effective Modeling 

Certain things we did led to the success I just described. 

1.  Binding the model and the implementation . That crude prototype forged the essential link 
early, and it was maintained through all subsequent iterations. 

2.  Cultivating a language based on the model . At first, the engineers had to explain 
elementary PCB issues to me, and I had to explain what a class diagram meant. But as the 
project proceeded, any of us could take terms straight out of the model, organize them into 
sentences consistent with the structure of the model, and be un-ambiguously understood 
without translation. 

3.  Developing a knowledge-rich model . The objects had behavior and enforced rules. The 
model wasn't just a data schema; it was integral to solving a complex problem. It captured 
knowledge of various kinds. 

4.  Distilling the model . Important concepts were added to the model as it became more 
complete, but equally important, concepts were dropped when they didn't prove useful or 
central. When an unneeded concept was tied to one that was needed, a new model was 
found that distinguished the essential concept so that the other could be dropped. 

5.  Brainstorming and experimenting . The language, combined with sketches and a 
brainstorming attitude, turned our discussions into laboratories of the model, in which 
hundreds of experimental variations could be exercised, tried, and judged. As the team went 
through scenarios, the spoken expressions themselves provided a quick viability test of a 
proposed model, as the ear could quickly detect either the clarity and ease or the 
awkwardness of expression. 

It is the creativity of brainstorming and massive experimentation, leveraged through a model-based 
language and disciplined by the feedback loop through implementation, that makes it possible to 
find a knowledge-rich model and distill it. This kind of knowledge crunching turns the knowledge 
of the team into valuable models. 
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Chapter One.  Crunching Knowledge 

Knowledge Crunching 

Financial analysts crunch numbers. They sift through reams of detailed figures, combining and 
recombining them looking for the underlying meaning, searching for a simple presentation that 
brings out what is really important—an understanding that can be the basis of a financial decision. 

Effective domain modelers are knowledge crunchers. They take a torrent of information and probe 
for the relevant trickle. They try one organizing idea after another, searching for the simple view 
that makes sense of the mass. Many models are tried and rejected or transformed. Success comes 
in an emerging set of abstract concepts that makes sense of all the detail. This distillation is a 
rigorous expression of the particular knowledge that has been found most relevant. 

Knowledge crunching is not a solitary activity. A team of developers and domain experts 
collaborate, typically led by developers. Together they draw in information and crunch it into a 
useful form. The raw material comes from the minds of domain experts, from users of existing 
systems, from the prior experience of the technical team with a related legacy system or another 
project in the same domain. It comes in the form of documents written for the project or used in 
the business, and lots and lots of talk. Early versions or prototypes feed experience back into the 
team and change interpretations. 

In the old waterfall method, the business experts talk to the analysts, and analysts digest and 
abstract and pass the result along to the programmers, who code the software. This approach fails 
because it completely lacks feedback. The analysts have full responsibility for creating the model, 
based only on input from the business experts. They have no opportunity to learn from the 
programmers or gain experience with early versions of software. Knowledge trickles in one 
direction, but does not accumulate. 

Other projects use an iterative process, but they fail to build up knowledge because they don't 
abstract. Developers get the experts to describe a desired feature and then they go build it. They 
show the experts the result and ask what to do next. If the programmers practice refactoring, they 
can keep the software clean enough to continue extending it, but if programmers are not interested 
in the domain, they learn only what the application should do, not the principles behind it. Useful 
software can be built that way, but the project will never arrive at a point where powerful new 
features unfold as corollaries to older features. 



Good programmers will naturally start to abstract and develop a model that can do more work. But 
when this happens only in a technical setting, without collaboration with domain experts, the 
concepts are naive. That shallowness of knowledge produces software that does a basic job but 
lacks a deep connection to the domain expert's way of thinking. 

The interaction between team members changes as all members crunch the model together. The 
constant refinement of the domain model forces the developers to learn the important principles of 
the business they are assisting, rather than to produce functions mechanically. The domain experts 
often refine their own understanding by being forced to distill what they know to essentials, and 
they come to understand the conceptual rigor that software projects require. 

All this makes the team members more competent knowledge crunchers. They winnow out the 
extraneous. They recast the model into an ever more useful form. Because analysts and 
programmers are feeding into it, it is cleanly organized and abstracted, so it can provide leverage 
for the implementation. Because the domain experts are feeding into it, the model reflects deep 
knowledge of the business. The abstractions are true business principles. 

As the model improves, it becomes a tool for organizing the information that continues to flow 
through the project. The model focuses requirements analysis. It intimately interacts with 
programming and design. And in a virtuous cycle, it deepens team members' in-sight into the 
domain, letting them see more clearly and leading to further refinement of the model. These 
models are never perfect; they evolve. They must be practical and useful in making sense of the 
domain. They must be rigorous enough to make the application simple to implement and 
understand. 
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Chapter One.  Crunching Knowledge 

Continuous Learning 

When we set out to write software, we never know enough. Knowledge on the project is 
fragmented, scattered among many people and documents, and it's mixed with other information 
so that we don't even know which bits of knowledge we really need. Domains that seem less 
technically daunting can be deceiving: we don't realize how much we don't know. This ignorance 
leads us to make false assumptions. 

Meanwhile, all projects leak knowledge. People who have learned something move on. 
Reorganization scatters the team, and the knowledge is fragmented again. Crucial subsystems are 
out-sourced in such a way that code is delivered but knowledge isn't. And with typical design 
approaches, the code and documents don't express this hard-earned knowledge in a usable form, so 
when the oral tradition is interrupted for any reason, the knowledge is lost. 

Highly productive teams grow their knowledge consciously, practicing continuous learning ( 
Kerievsky 2003 ). For developers, this means improving technical knowledge, along with general 
domain-modeling skills (such as those in this book). But it also includes serious learning about the 
specific domain they are working in. 

These self-educated team members form a stable core of people to focus on the development tasks 
that involve the most critical areas. (For more on this, see Chapter 15 .) The accumulated 
knowledge in the minds of this core team makes them more effective knowledge crunchers. 

At this point, stop and ask yourself a question. Did you learn something about the PCB design 
process? Although this example has been a superficial treatment of that domain, there should be 
some learning when a domain model is discussed. I learned an enormous amount. I did not learn 
how to be a PCB engineer. That was not the goal. I learned to talk to PCB experts, understand the 
major concepts relevant to the application, and sanity-check what we were building. 

In fact, our team eventually discovered that the probe simulation was a low priority for 
development, and the feature was eventually dropped altogether. With it went the parts of the 
model that captured understanding of pushing signals through components and counting hops. The 
core of the application turned out to lie else-where, and the model changed to bring those aspects 
onto center stage. The domain experts had learned more and had clarified the goal of the 
application. ( Chapter 15 discusses these issues in depth.) 
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Even so, the early work was essential. Key model elements were retained, but more important, that 
work set in motion the process of knowledge crunching that made all subsequent work effective: 
the knowledge gained by team members, developers, and domain experts alike; the beginnings of a 
shared language; and the closing of a feedback loop through implementation. A voyage of 
discovery has to start somewhere. 
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Chapter One.  Crunching Knowledge 

Knowledge-Rich Design 

The kind of knowledge captured in a model such as the PCB example goes beyond "find the 
nouns." Business activities and rules are as central to a domain as are the entities involved; any 
domain will have various categories of concepts. Knowledge crunching yields models that reflect 
this kind of insight. In parallel with model changes, developers refactor the implementation to 
express the model, giving the application use of that knowledge. 

It is with this move beyond entities and values that knowledge crunching can get intense, because 
there may be actual inconsistency among business rules. Domain experts are usually not aware of 
how complex their mental processes are as, in the course of their work, they navigate all these 
rules, reconcile contradictions, and fill in gaps with common sense. Software can't do this. It is 
through knowledge crunching in close collaboration with software experts that the rules are 
clarified, fleshed out, reconciled, or placed out of scope. 

Example 
Extracting a Hidden Concept 

Let's start with a very simple domain model that could be the basis of an application for booking 
cargos onto a voyage of a ship. 

Figure 1.8. 

 

We can state that the booking application's responsibility is to associate each Cargo with a 
Voyage , recording and tracking that relationship. So far so good. Somewhere in the application 
code there could be a method like this: 



public int makeBooking(Cargo cargo, Voyage voyage) {
int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;
}

Because there are always last-minute cancellations, standard practice in the shipping industry is to 
accept more cargo than a particular vessel can carry on a voyage. This is called "overbooking." 
Sometimes a simple percentage of capacity is used, such as booking 110 percent of capacity. In 
other cases complex rules are applied, favoring major customers or certain kinds of cargo. 

This is a basic strategy in the shipping domain that would be known to any businessperson in the 
shipping industry, but it might not be understood by all technical people on a software team. 

The requirements document contains this line: 

Allow 10% overbooking. 

The class diagram and code now look like this: 

Figure 1.9. 

 

public int makeBooking(Cargo cargo, Voyage voyage) {

double maxBooking = voyage.capacity() * 1.1;

if ((voyage.bookedCargoSize() + cargo.size()) > maxBooking)



return –1;

int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;
}

Now an important business rule is hidden as a guard clause in an application method. Later, in 
Chapter 4 , we'll look at the principle of LAYERED ARCHITECTURE , which would guide us to 
move the over-booking rule into a domain object, but for now let's concentrate on how we could 
make this knowledge more explicit and accessible to everyone on the project. This will bring us to 
a similar solution. 

1.  As written, it is unlikely that any business expert could read this code to verify the rule, 
even with the guidance of a developer. 

2.  It would be difficult for a technical, non-businessperson to connect the requirement text 
with the code. 

If the rule were more complex, that much more would be at stake. 

We can change the design to better capture this knowledge. The overbooking rule is a policy. 
Policy is another name for the design pattern known as STRATEGY ( Gamma et al. 1995 ). It is 
usually motivated by the need to substitute different rules, which is not needed here, as far as we 
know. But the concept we are trying to capture does fit the meaning of a policy, which is an 
equally important motivation in domain-driven design. (See Chapter 12 , "Relating Design Patterns 
to the Model.") 

Figure 1.10. 
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The code is now: 

public int makeBooking(Cargo cargo, Voyage voyage) {

if (!overbookingPolicy.isAllowed(cargo, voyage)) return –1;

int confirmation = orderConfirmationSequence.next();
voyage.addCargo(cargo, confirmation);
return confirmation;
}

The new Overbooking Policy class contains this method: 

public boolean isAllowed(Cargo cargo, Voyage voyage) {
return (cargo.size() + voyage.bookedCargoSize()) <=
(voyage.capacity() * 1.1);
}

It will be clear to all that overbooking is a distinct policy, and the implementation of that rule is 
explicit and separate. 

Now, I am not recommending that such an elaborate design be applied to every detail of the 



domain. Chapter 15 , "Distillation," goes into depth on how to focus on the important and 
minimize or separate everything else. This example is meant to show that a domain model and 
corresponding design can be used to secure and share knowledge. The more explicit design has 
these advantages: 

1.  In order to bring the design to this stage, the programmers and everyone else involved will 
have come to understand the nature of overbooking as a distinct and important business 
rule, not just an obscure calculation. 

2.  Programmers can show business experts technical artifacts, even code, that should be 
intelligible to domain experts (with guidance), thereby closing the feedback loop. 
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Chapter One.  Crunching Knowledge 

Deep Models 

Useful models seldom lie on the surface. As we come to understand the domain and the needs of 
the application, we usually discard superficial model elements that seemed important in the 
beginning, or we shift their perspective. Subtle abstractions emerge that would not have occurred 
to us at the outset but that pierce to the heart of the matter. 

The preceding example is loosely based on one of the projects that I'll be drawing on for several 
examples throughout the book: a container shipping system. The examples in this book will be 
kept accessible to non-shipping experts. But on a real project, where continuous learning prepares 
the team members, models of utility and clarity often call for sophistication both in the domain and 
in modeling technique. 

On that project, because a shipment begins with the act of booking cargo, we developed a model 
that allowed us to describe the cargo, its itinerary, and so on. This was all necessary and useful, yet 
the domain experts felt dissatisfied. There was a way they looked at their business that we were 
missing. 

Eventually, after months of knowledge crunching, we realized that the handling of cargo, the 
physical loading and unloading, the movements from place to place, was largely carried out by 
subcontractors or by operational people in the company. In the view of our shipping experts, there 
was a series of transfers of responsibility between parties. A process governed that transfer of legal 
and practical responsibility, from the shipper to some local carrier, from one carrier to another, and 
finally to the consignee. Often, the cargo would sit in a warehouse while important steps were 
being taken. At other times, the cargo would move through complex physical steps that were not 
relevant to the shipping company's business decisions. Rather than the logistics of the itinerary, 
what came to the fore were legal documents such as the bill of lading, and processes leading to the 
release of payments. 

This deeper view of the shipping business did not lead to the removal of the Itinerary object, but 
the model changed profoundly. Our view of shipping changed from moving containers from place 
to place, to transferring responsibility for cargo from entity to entity. Features for handling these 
transfers of responsibility were no longer awkwardly attached to loading operations, but were 
supported by a model that came out of an understanding of the significant relationship between 
those operations and those responsibilities. 

file:///E|/books/0-321-12521-5/20061533.htm


Knowledge crunching is an exploration, and you can't know where you will end up. 
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Part I:  Putting the Domain Model to Work 

Chapter Two. Communication and the Use of 
Language 
A domain model can be the core of a common language for a software project. The model is a set 
of concepts built up in the heads of people on the project, with terms and relationships that reflect 
domain insight. These terms and interrelationships provide the semantics of a language that is 
tailored to the domain while being precise enough for technical development. This is a crucial cord 
that weaves the model into development activity and binds it with the code. 

This model-based communication is not limited to diagrams in Unified Modeling Language 
(UML). To make most effective use of a model, it needs to pervade every medium of 
communication. It increases the utility of written text documents, as well as the informal diagrams 
and casual conversation reemphasized in Agile processes. It improves communication through the 
code itself and through the tests for that code. 

The use of language on a project is subtle but all-important. . . . 
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Chapter Two.  Communication and the Use of Language 

Ubiquitous Language 

For first you write a sentence, 
And then you chop it small; 
Then mix the bits, and sort them out 
Just as they chance to fall: 
The order of the phrases makes 
No difference at all. 

— Lewis Carroll, "Poeta Fit, Non Nascitur" 

To create a supple, knowledge-rich design calls for a versatile, shared team language, and a lively 
experimentation with language that seldom happens on software projects. 

   

Domain experts have limited understanding of the technical jargon of software development, but 
they use the jargon of their field—probably in various flavors. Developers, on the other hand, may 
understand and discuss the system in descriptive, functional terms, devoid of the meaning carried 
by the experts' language. Or developers may create abstractions that support their design but are 
not understood by the domain experts. Developers working on different parts of the problem work 
out their own design concepts and ways of describing the domain. 

Across this linguistic divide, the domain experts vaguely describe what they want. Developers, 
struggling to understand a domain new to them, vaguely understand. A few members of the team 
manage to become bilingual, but they become bottlenecks of information flow, and their 
translations are inexact. 

On a project without a common language, developers have to translate for domain experts. Domain 
experts translate between developers and still other domain experts. Developers even translate for 
each other. Translation muddles model concepts, which leads to destructive refactoring of code. 
The indirectness of communication conceals the formation of schisms—different team members 
use terms differently but don't realize it. This leads to unreliable software that doesn't fit together 
(see Chapter 14 ). The effort of translation prevents the interplay of knowledge and ideas that lead 
to deep model insights. 
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A project faces serious problems when its language is fractured. Domain experts use their 
jargon while technical team members have their own language tuned for discussing the 
domain in terms of design. 

The terminology of day-to-day discussions is disconnected from the terminology embedded 
in the code (ultimately the most important product of a software project). And even the same 
person uses different language in speech and in writing, so that the most incisive expressions 
of the domain often emerge in a transient form that is never captured in the code or even in 
writing. 

Translation blunts communication and makes knowledge crunching anemic. 

Yet none of these dialects can be a common language because none serves all needs. 

The overhead cost of all the translation, plus the risk of misunderstanding, is just too high. A 
project needs a common language that is more robust than the lowest common denominator. With 
a conscious effort by the team, the domain model can provide the backbone for that common 
language, while connecting team communication to the software implementation. That language 
can be ubiquitous in the team's work. 

The vocabulary of that UBIQUITOUS LANGUAGE includes the names of classes and prominent 
operations. The LANGUAGE includes terms to discuss rules that have been made explicit in the 
model. It is supplemented with terms from high-level organizing principles imposed on the model 
(such as CONTEXT MAPS and large-scale structures, which will be discussed in Chapters 14 and 16 
). Finally, this language is enriched with the names of patterns the team commonly applies to the 
domain model. 

The model relationships become the combinatory rules all languages have. The meanings of words 
and phrases echo the semantics of the model. 

The model-based language should be used among developers to describe not only artifacts in the 
system, but tasks and functionality. This same model should supply the language for the 
developers and domain experts to communicate with each other, and for the domain experts to 
communicate among themselves about requirements, development planning, and features. The 
more pervasively the language is used, the more smoothly understanding will flow. 

At least, this is where we need to go. But initially the model may simply not be good enough to fill 
these roles. It may lack the semantic richness of the specialized jargons of the field. But those 
jargons can't be used unadulterated because they contain ambiguities and contradictions. It may 
lack the more subtle and active features the developers have created in the code, either because 
they do not think of those as part of a model, or because the coding style is procedural and only 
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implicitly carries those concepts of the domain. 

But although the sequence seems circular, the knowledge crunching process that can produce a 
more useful kind of model depends on the team's commitment to model-based language. Persistent 
use of the UBIQUITOUS LANGUAGE will force the model's weaknesses into the open. The team will 
experiment and find alternatives to awkward terms or combinations. As gaps are found in the 
language, new words will enter the discussion. These changes to the language will be recognized 
as changes in the domain model and will lead the team to update class diagrams and rename 
classes and methods in the code, or even change behavior, when the meaning of a term changes. 

Committed to using this language in the context of implementation, the developers will point out 
imprecision or contradictions, engaging the domain experts in discovering workable alternatives. 

Of course, domain experts will speak outside the scope of the UBIQUITOUS LANGUAGE , to explain 
and give broader context. But within the scope the model addresses, they should use LANGUAGE 
and raise concerns when they find it awkward or incomplete—or wrong. By using the model-based 
language pervasively and not being satisfied until it flows, we approach a model that is complete 
and comprehensible, made up of simple elements that combine to express complex ideas. 

Therefore: 

Use the model as the backbone of a language. Commit the team to exercising that language 
relentlessly in all communication within the team and in the code. Use the same language in 
diagrams, writing, and especially speech. 

Iron out difficulties by experimenting with alternative expressions, which reflect alternative 
models. Then refactor the code, renaming classes, methods, and modules to conform to the 
new model. Resolve confusion over terms in conversation, in just the way we come to agree 
on the meaning of ordinary words. 

Recognize that a change in the UBIQUITOUS LANGUAGE is a change to the model. 

Domain experts should object to terms or structures that are awkward or inadequate to 
convey domain understanding; developers should watch for ambiguity or inconsistency that 
will trip up design. 

With a UBIQUITOUS LANGUAGE , the model is not just a design artifact. It becomes integral to 
everything the developers and domain experts do together. The LANGUAGE carries knowledge in a 
dynamic form. Discussion in the LANGUAGE brings to life the meaning behind the diagrams and 
code. 



   

This discussion of UBIQUITOUS LANGUAGE assumes that there is just one model in play. Chapter 
14 , "Maintaining Model Integrity," deals with the coexistence of different models (and 
LANGUAGES ) and how to keep a model from splintering. 

The UBIQUITOUS LANGUAGE is the primary carrier of the aspects of design that don't appear in 
code—large-scale structures that organize the whole system (see Chapter 16 ), BOUNDED 
CONTEXTS that define the relationships of different systems and models (see Chapter 14 ), and 
other patterns applied to the model and design. 

Example 
Working Out a Cargo Router 

The following two dialogs have subtle, but important, differences. In each scenario, watch for how 
much the speakers talk about what the software means to the business versus how it works 
technically. Are the user and developer speaking the same language? Is that language rich enough 
to carry the discussion of what the application must do? 

Scenario 1: Minimal Abstraction of the Domain 

Figure 2.1. 
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User: So when we change the customs clearance point, we need to redo the whole routing plan. 

Developer: Right. We'll delete all the rows in the shipment table with that cargo id, then we'll pass 
the origin, destination, and the new customs clearance point into the Routing Service, and it will 
re-populate the table. We'll have to have a Boolean in the Cargo so we'll know there is data in the 
shipment table. 

User: Delete the rows? OK, whatever. Anyway, if we didn't have a customs clearance point at all 
before, we'll have to do the same thing. 

Developer: Sure, anytime you change the origin, destination, or customs clearance point (or enter 
one for the first time), we'll check to see if we have shipment data and then we'll delete it and then 
let the Routing Service regenerate it. 

User: Of course, if the old customs clearance just happened to be the right one, we wouldn't want 
to do that. 

Developer: Oh, no problem. It's easier to just make the Routing Service redo the loads and 
unloads every time. 

User: Yes, but it's extra work for us to make all the supporting plans for a new itinerary, so we 
don't want to reroute unless the change necessitates it. 

Developer: Ugh. Well, then, if you are entering a customs clearance point for the first time, we'll 
have to query the table to find the old derived customs clearance point, and then compare it to the 
new one. Then we'll know if we need to redo it. 

User: You won't have to worry about this on origin or destination, since the itinerary would 
always change then. 

Developer: Good. We won't. 

Scenario 2: Domain Model Enriched to Support Discussion 

Figure 2.2. 



 

User: So when we change the customs clearance point, we need to redo the whole routing plan. 

Developer: Right. When you change any of the attributes in the Route Specification , we'll delete 
the old Itinerary and ask the Routing Service to generate a new one based on the new Route 
Specification . 

User: If we hadn't specified a customs clearance point at all before, we'll have to do that at the 
same time. 

Developer: Sure, anytime you change anything in the Route Spec , we'll regenerate the Itinerary 
. That includes entering something for the first time. 

User: Of course, if the old customs clearance just happened to be the right one, we wouldn't want 
to do that. 

Developer: Oh, no problem. It's easier to just make the Routing Service redo the Itinerary every 
time. 

User: Yes, but it's extra work for us to make all the supporting plans for a new Itinerary , so we 
don't want to reroute unless the change necessitates it. 

Developer: Oh. Then we'll have to add some functionality to the Route Specification . Then, 
whenever you change anything in the Spec , we'll see if the Itinerary still satisfies the 
Specification . If it doesn't, we'll have the Routing Service regenerate the Itinerary . 



User: You won't have to worry about this on origin or destination, since the Itinerary would 
always change then. 

Developer: Fine, but it will be simpler for us to just do the comparison every time. The Itinerary 
will only be generated when the Route Specification is no longer satisfied. 

The second dialog conveys more of the intent of the domain expert. The user employed the word 
"itinerary" in both dialogs, but in the second it was an object the two could discuss precisely, 
concretely. They discussed the "route specification" explicitly, instead of describing it each time in 
terms of attributes and procedures. 

These two dialogs were deliberately constructed to closely parallel each other. Realistically, the 
first would have been more verbose, bloated with explanations of application features and 
miscommunications. The domain-model-based terminology of the second design makes the second 
dialog more concise. 
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Chapter Two.  Communication and the Use of Language 

Modeling Out Loud 

The detachment of speech from other forms of communication is a particularly great loss because 
we humans have a genius for spoken language. Unfortunately, when people speak, they usually 
don't use the language of the domain model. 

That statement may not ring true for you initially, and indeed there are exceptions. But the next 
time you attend a requirements or design discussion, really listen. You'll hear descriptions of 
features in business jargon or layman's versions of the jargon. You'll hear talk about technical 
artifacts and concrete functionality. Sure, you'll hear terms from the domain model; obvious nouns 
in the common language from the business jargon will typically be coded as objects, and so those 
terms will tend to be mentioned. But do you hear phrases that could even remotely be described in 
terms of relationships and interactions in your current domain model? 

One of the best ways to refine a model is to explore with speech, trying out loud various constructs 
from possible model variations. Rough edges are easy to hear. 

"If we give the Routing Service an origin, destination, and arrival time, it can look 
up the stops the cargo will have to make and, well . . . stick them in the database." ( 
vague and technical ) 

"The origin, destination, and so on . . . it all feeds into the Routing Service , and we 
get back an Itinerary that has everything we need in it." ( more complete, but 
verbose ) 

"A Routing Service finds an Itinerary that satisfies a Route Specification ." ( 
concise ) 

It is vital that we play around with words and phrases, harnessing our linguistic abilities to the 
modeling effort, just as it is vital to engage our visual/spatial reasoning by sketching diagrams. Just 
as we employ our analytical abilities with methodical analysis and design, and that mysterious 
"feel" of the code. These ways of thinking complement each other, and it takes all of them to find 
useful models and designs. Of all of these, experimenting with language is most often overlooked. 
( Part III of this book will delve into this discovery process and show this interplay in several 
dialogs.) 
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In fact, our brains seem to be somewhat specialized for dealing with complexity in spoken 
language (one good treatment for laymen, like myself, is The Language Instinct , by Steven Pinker 
[ Pinker 1994 ]). For example, when people of different language backgrounds come together for 
commerce, if they don't have a common language they invent one, called a pidgin . The pidgin is 
not as comprehensive as the speakers' original languages, but it is suited to the task at hand. When 
people are talking, they naturally discover differences in interpretation and the meaning of their 
words, and they naturally resolve those differences. They find rough spots in the language and 
smooth them out. 

Once I took an intensive Spanish class in college. The rule in the classroom was that not a word of 
English could be spoken. At first, it was frustrating. It felt very unnatural, and required a lot of self-
discipline. But eventually my classmates and I broke through to a level of fluency that we could 
never have reached through exercises on paper. 

As we use the UBIQUITOUS LANGUAGE of the domain model in discussions—especially 
discussions in which developers and domain experts hash out scenarios and requirements—we 
become more fluent in the language and teach each other its nuances. We naturally come to share 
the language that we speak in a way that never happens with diagrams and documents. 

Bringing about a UBIQUITOUS LANGUAGE on a software project is easier said than done, and we 
have to fully employ our natural talents to pull it off. Just as humans' visual and spatial capabilities 
let us convey and process information rapidly in graphical overviews, we can exploit our innate 
talent for grammatical, meaningful language to drive model development. 

Therefore, as an addendum to the UBIQUITOUS LANGUAGE pattern: 

Play with the model as you talk about the system. Describe scenarios out loud using the 
elements and interactions of the model, combining concepts in ways allowed by the model. 
Find easier ways to say what you need to say, and then take those new ideas back down to the 
diagrams and code. 
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Chapter Two.  Communication and the Use of Language 

One Team, One Language 

Technical people often feel the need to "shield" the business experts from the domain model. They 
say: 

"Too abstract for them." 

"They don't understand objects." 

"We have to collect requirements in their terminology." 

These are just a few of the reasons I've heard for having two languages on the team. Forget them. 

Of course there are technical components of the design that may not concern the domain experts, 
but the core of the model had better interest them. Too abstract? Then how do you know the 
abstractions are sound? Do you understand the domain as deeply as they do? Sometimes specific 
requirements are collected from lower-level users, and a subset of the more concrete terminology 
may be needed for them, but a domain expert is assumed to be capable of thinking somewhat 
deeply about his or her field. If sophisticated domain experts don't understand the model, there is 
something wrong with the model. 

Now at the beginning, when the users are discussing future capabilities of the system that haven't 
been modeled yet, there is no model for them to use. But as soon as they begin to work through 
these new ideas with the developers, the process of groping toward a shared model begins. It may 
start out awkward and incomplete, but it will gradually get refined. As the new language evolves, 
the domain experts must make the extra effort to adopt it, and to retrofit any old documents that 
are still important. 

When domain experts use this LANGUAGE in discussions with developers or among themselves, 
they quickly discover areas where the model is inadequate for their needs or seems wrong to them. 
The domain experts (with the help of the developers) will also find areas where the precision of the 
model-based language exposes contradictions or vagueness in their thinking. 

The developers and domain experts can informally test the model by walking through scenarios, 
using the model objects step-by-step. Almost every discussion is an opportunity for the developers 



and user experts to play with the model together, deepening each other's understanding and 
refining concepts as they go. 

The domain experts can use the language of the model in writing use cases, and can work even 
more directly with the model by specifying acceptance tests. 

Objections are sometimes raised to the idea of using the language of the model to collect 
requirements. After all, shouldn't requirements be independent of the design that fulfills them? 
This overlooks the reality that all language is based on some model. The meanings of words are 
slippery things. The domain model will typically derive from the domain experts' own jargon but 
will have been "cleaned up," to have sharper, narrower definitions. Of course, the domain experts 
should object if these definitions diverge from the meanings accepted in the field. In an Agile 
process, requirements evolve as a project goes along because hardly ever does the knowledge exist 
up front to specify an application adequately. Part of this evolution should be the reframing of the 
requirements in the refined UBIQUITOUS LANGUAGE . 

Multiplicity of languages is often necessary, but the linguistic division should never be between 
the domain experts and the developers. ( Chapter 12 , "Maintaining Model Integrity," deals with 
the coexistence of models on the same project.) 

Of course, developers do use technical terminology that a domain expert wouldn't understand. 
Developers have an extensive jargon that they need to discuss the technical aspects of a system. 
Almost certainly, the users will also have specialized jargon that goes well beyond the narrow 
scope of the application and the understanding of the developers. But these are extensions to the 
language. These dialects should not contain alternative vocabularies for the same domain that 
reflect distinct models. 

Figure 2.3. U BIQUITOUS LANGUAGE is cultivated in the intersection of jargons. 
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With a UBIQUITOUS LANGUAGE , conversations among developers, discussions among domain 
experts, and expressions in the code itself are all based on the same language, derived from a 
shared domain model. 

 

      

Top 

  

file:///E|/books/0-321-12521-5/20061533.htm


      

Chapter Two.  Communication and the Use of Language 

Documents and Diagrams 

Whenever I'm in a meeting discussing a software design, I can hardly function without drawing on 
a whiteboard or sketchpad. A good part of what I draw is UML diagrams, mostly class diagrams or 
object-interactions. 

Some people are naturally visual, and diagrams help people grasp certain kinds of information. 
UML diagrams are pretty good at communicating relationships between objects, and they are fair 
at showing interactions. But they do not convey the conceptual definitions of those objects. In a 
meeting, I would flesh out those meanings in speech as I sketched the diagram, or they would 
emerge in a dialog with other participants. 

Simple, informal UML diagrams can anchor a discussion. Sketch a diagram of three to five objects 
central to the issue at hand, and everyone can stay focused. Everyone will share a view of the 
relationships between the objects and, significantly, the objects' names. The spoken discussion can 
be more effective with this aid. A diagram can be changed as people try different thought 
experiments, and the sketch will take on some of the fluidity of spoken words, a true part of the 
discussion. After all, UML stands for Unified Modeling Language . 

The trouble comes when people feel compelled to convey the whole model or design through 
UML. A lot of object model diagrams are too complete and, simultaneously, leave too much out. 
They are too complete because people feel they have to put all the objects that they are going to 
code into a modeling tool. With all that detail, no one can see the forest for the trees. 

Yet in spite of all that detail, the attributes and relationships are only half the story of an object 
model. The behavior of those objects and the constraints on them are not so easily illustrated. 
Object interaction diagrams can illustrate some tricky hotspots in the design, but the bulk of the 
interactions can't be shown that way. It is just too much work, both to create the diagrams and to 
read them. And an interaction diagram can still only imply the purpose behind the model. To 
include constraints and assertions, UML falls back on text, placed in little brackets, inserted into 
the diagram. 

The behavioral responsibilities of an object can be hinted at through operation names, and they can 
be implicitly demonstrated with object interaction (or sequence) diagrams, but they cannot be 
stated . So, this task falls to supplemental text or conversation. In other words, a UML diagram 



cannot convey two of the most important aspects of a model: the meaning of the concepts it 
represents, and what the objects are meant to do. This needn't trouble us, though, because careful 
use of English (or Spanish, or whatever) can fill this role pretty well. 

Nor is UML a very satisfying programming language. Every attempt I've seen to use the code-
generation capabilities of the modeling tools has been counterproductive. If you are constrained by 
the capabilities of UML, you will often have to leave out the most crucial part of the model 
because it is some rule that doesn't fit into a box-and-line diagram. And, of course, a code 
generator cannot make use of those textual annotations. If you do use some technology that allows 
executable programs to be written in a UML-like diagramming language, then the UML diagram is 
reduced to merely another way to view the program itself, and the very meaning of "model" is lost. 
If you use UML as your implementation language, you will still need other means of 
communicating the uncluttered model. 

Diagrams are a means of communication and explanation, and they facilitate brainstorming. They 
serve these ends best if they are minimal. Comprehensive diagrams of the entire object model fail 
to communicate or explain; they overwhelm the reader with detail and they lack meaning. This 
leads us away from the all-encompassing object model diagram, or even the all-encompassing 
database repository of UML. It leads us toward simplified diagrams of conceptually important 
parts of the object model that are essential to understanding the design. The diagrams in this book 
are typical of those I use on projects. They simplify, they explain, and they even incorporate a bit 
of nonstandard notation when it clarifies their point. They show design constraints, but they are not 
design specifications in every detail. They represent the skeletons of ideas. 

The vital detail about the design is captured in the code . A well-written implementation should be 
transparent, revealing the model underlying it. (Making sure that this happens is the subject of the 
next chapter and much of the rest of this book.) Supplemental diagrams and documents can guide 
people's attention to the central points. Natural language discussion can fill in the nuances of 
meaning. This is why I prefer to turn things inside out from the way a typical UML diagram 
handles them. Rather than a diagram annotated with text, I write a text document illustrated with 
selective and simplified diagrams. 

Always remember that the model is not the diagram . The diagram's purpose is to help 
communicate and explain the model. The code can serve as a repository of the details of the 
design. Well-written Java is as expressive as UML in its way. Carefully selected and constructed 
diagrams can serve to focus attention and aid navigation if they are not obscured by a compulsion 
to represent the model or design completely. 

Written Design Documents 

Spoken communication supplements the code's rigor and detail with meaning. But although talking 
is critical to connecting everyone to the model, a group of any size will probably need the stability 



and share-ability of some written documents. But making written documents that actually help the 
team produce good software is a challenge. 

Once a document takes on a persistent form, it often loses its connection with the flow of the 
project. It is left behind by the evolution of the code, or by the evolution of the language of the 
project. 

Many approaches can work. A few specific documents will be suggested much later, in Part IV of 
this book, which address particular needs, but I make no attempt to prescribe a set of documents a 
project should use. Instead, I will offer two general guidelines for evaluating a document. 

Documents Should Complement Code and Speech 

Each Agile process has its own philosophy about documents. Extreme Programming advocates 
using no extra design documents at all and letting the code speak for itself. Running code doesn't 
lie, as any other document might. The behavior of running code is unambiguous. 

Extreme Programming concentrates exclusively on the active elements of a program and 
executable tests. Even comments added to the code do not affect program behavior, so they always 
fall out of sync with the active code and its driving model. External documents and diagrams do 
not affect the behavior of the program, so they fall out of sync. On the other hand, spoken 
communication and ephemeral diagrams on whiteboards do not linger to create confusion. This 
dependence on the code as communication medium motivates developers to keep the code clean 
and transparent. 

But code as a design document does have its limits. It can over-whelm the reader with detail. 
Although its behavior is unambiguous, that doesn't mean it is obvious. And the meaning behind a 
behavior can be hard to convey. In other words, documenting exclusively through code has some 
of the same basic problems as using comprehensive UML diagrams. Of course, massive spoken 
communication within the team gives context and guidance around the code, but it is ephemeral 
and localized. And developers are not the only people who need to understand the model. 

A document shouldn't try to do what the code already does well . The code already supplies the 
detail. It is an exact specification of program behavior. 

Other documents need to illuminate meaning, to give insight into large-scale structures, and to 
focus attention on core elements. Documents can clarify design intent when the programming 
language does not support a straightforward implementation of a concept. Written documents 
should complement the code and the talking. 

Documents Should Work for a Living and Stay Current 
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When I document a model in writing, I diagram small, carefully selected subsets of the model and 
surround them with text. I define the classes and their responsibilities in words and frame them in a 
context of meaning as only a natural language can. But the diagram shows some of the choices that 
have been made in formalizing and paring down the concepts into an object model. These 
diagrams can be somewhat casual—even hand-drawn. In addition to saving labor, hand-drawn 
diagrams have the advantage of feeling casual and temporary. These are good things to 
communicate because they are generally true of our model ideas. 

The greatest value of a design document is to explain the concepts of the model, help in navigating 
the detail of the code, and perhaps give some insight into the model's intended style of use. 
Depending on the philosophy of the team, the whole design document could be as simple as a set 
of sketches posted on the walls, or it could be substantial. 

A document must be involved in project activities . The easiest way to judge this is to observe the 
document's interaction with the UBIQUITOUS LANGUAGE . Is the document written in the language 
people speak on the project (now)? Is it written in the language embedded in the code? 

Listen to the UBIQUITOUS LANGUAGE and how it is changing. If the terms explained in a design 
document don't start showing up in conversations and code, the document is not fulfilling its 
purpose. Maybe the document is too big or complicated. Maybe it is not focused on a sufficiently 
important topic. People are either not reading it or not finding it compelling. If it is having no 
impact on the UBIQUITOUS LANGUAGE , something is wrong. 

Conversely, you may hear the UBIQUITOUS LANGUAGE changing naturally while a document is 
being left behind. Evidently the document does not seem relevant to people or does not seem 
important enough to update. It could safely be archived as history, but left active it could create 
confusion and hurt the project. And if a document isn't playing an important role, keeping it up to 
date through sheer will and discipline wastes effort. 

The UBIQUITOUS LANGUAGE allows other documents, such as requirements specifications, to be 
more concise and less ambiguous. As the domain model comes to reflect the most relevant 
knowledge of the business, application requirements become scenarios within that model, and the 
UBIQUITOUS LANGUAGE can be used to describe such a scenario in terms that directly connect to 
the MODEL-DRIVEN DESIGN (see Chapter 3 ). As a result, specifications can be written more 
simply, because they do not have to convey the business knowledge that lies behind the model. 

By keeping documents minimal and focusing them on complementing code and conversation, 
documents can stay connected to the project. Let the UBIQUITOUS LANGUAGE and its evolution be 
your guide to choosing documents that live and get woven into the project's activity. 

Executable Bedrock 
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Now let's examine the choice of the XP community and some others, to rely almost exclusively on 
the executable code and its tests. Much of this book discusses ways to make the code convey 
meaning through a MODEL-DRIVEN DESIGN (see Chapter 3 ). Well-written code can be very 
communicative, but the message it communicates is not guaranteed to be accurate. Oh, the reality 
of the behavior caused by a section of code is inescapable. But a method name can be ambiguous, 
misleading, or out of date compared to the internals of the method. The assertions in a test are 
rigorous, but the story told by variable names and the organization of the code is not. Good 
programming style keeps this connection as direct as possible, but it is still an exercise in self-
discipline. It takes fastidiousness to write code that doesn't just do the right thing but also says the 
right thing. 

Elimination of those discrepancies is a major selling point of approaches such as declarative design 
(discussed in Chapter 10 ), in which a statement of the purpose of a program element determines 
its actual behavior in the program. The drive to generate programs from UML is partly motivated 
by this, though it generally hasn't worked out well so far. 

Still, while even code can mislead, it is closer to the ground than other documents. Aligning the 
behavior, intent, and message of code using current standard technology requires discipline and a 
certain way of thinking about design (discussed at length in Part III ). To communicate effectively, 
the code must be based on the same language used to write the requirements—the same language 
that the developers speak with each other and with domain experts. 
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Chapter Two.  Communication and the Use of Language 

Explanatory Models 

The thrust of this book is that one model should underlie implementation, design, and team 
communication. Having separate models for these separate purposes poses a hazard. 

Models can also be valuable as education aids to teach about the domain. The model that drives the 
design is one view of the domain, but it may aid learning to have other views, used only as 
educational tools, to communicate general knowledge of the domain. For this purpose, people can 
use pictures or words that convey other kinds of models unrelated to software design. 

One particular reason that other models are needed is scope. The technical model that drives the 
software development process must be strictly pared down to the necessary minimum to fulfill its 
functions. An explanatory model can include aspects of the domain that provide context that 
clarifies the more narrowly scoped model. 

Explanatory models offer the freedom to create much more communicative styles tailored to a 
particular topic. Visual metaphors used by the domain experts in a field often present clearer 
explanations, educating developers and harmonizing experts. Explanatory models also present the 
domain in a way that is simply different, and multiple, diverse explanations help people learn. 

There is no need for explanatory models to be object models, and it is generally best if they are 
not. It is actually helpful to avoid UML in these models, to avoid any false impression of 
correspondence with the software design. Even though the explanatory model and the model that 
drives design do often correspond, the similarities will seldom be exact. To avoid confusion, 
everyone must be conscious of the distinction. 

Example 
Shipping Operations and Routes 

Consider an application that tracks cargos for a shipping company. The model includes a detailed 
view of how port operations and vessel voyages are assembled into an operational plan for a cargo 
(a "route"). But to the uninitiated, a class diagram may not be very illuminating. 

Figure 2.4. A class diagram for a shipping route 
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In such a case, an explanatory model can help team members understand what the class diagram 
actually means. Here is another way of looking at the same concepts: 

Each line in Figure 2.5 represents either a port operation (loading or unloading the cargo), or cargo 
sitting in storage on the ground, or cargo sitting on a ship en route. This does not correspond in 
detail with the class diagram, but it reinforces key points from the domain. 

Figure 2.5. An explanatory model for a shipping route 



 

This sort of diagram, along with natural language explanations of the model it represents, can help 
developers and domain experts alike understand the more rigorous software model diagrams. 
Together they are easier to understand than either view alone. 
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Part I:  Putting the Domain Model to Work 

Chapter Three. Binding Model and Implementation 
The first thing I saw as I walked through the door was a complete class diagram printed on large 
sheets of paper that covered a large wall. It was my first day on a project in which smart people 
had spent months carefully researching and developing a detailed model of the domain. The 
typical object in the model had intricate associations with three or four other objects, and this web 
of associations had few natural borders. In this respect, the analysts had been true to the nature of 
the domain. 

As overwhelming as the wall-size diagram was, the model did capture some knowledge. After a 
moderate amount of study, I learned quite a bit (though that learning was hard to direct—much 
like randomly browsing the Web). I was more troubled to find that my study gave no insight into 
the application's code and design. 

When the developers had begun implementing the application, they had quickly discovered that 
the tangle of associations, although navigable by a human analyst, didn't translate into storable, 
retrievable units that could be manipulated with transactional integrity. Mind you, this project was 
using an object database, so the developers didn't even have to face the challenges of mapping 
objects into relational tables. At a fundamental level, the model did not provide a guide to 
implementation. 

Because the model was "correct," the result of extensive collaboration between technical analysts 
and business experts, the developers reached the conclusion that conceptually based objects could 
not be the foundation of their design. So they proceeded to develop an ad hoc design. Their design 
did use a few of the same class names and attributes for data storage, but it was not based on the 
existing, or any, model. 

The project had a domain model, but what good is a model on paper unless it directly aids the 
development of running software? 

A few years later, I saw the same end result come from a completely different process. This project 
was to replace an existing C++ application with a new design implemented in Java. The old 
application had been hacked together without any regard for object modeling. The design of the 
old application, if there was one, had accreted as one capability after another had been laid on top 
of the existing code, without any noticeable generalization or abstraction. 



The eerie thing was that the end products of the two processes were very similar! Both had 
functionality, but were bloated, very hard to understand, and eventually unmaintainable. Though 
the implementations had, in places, a kind of directness, you couldn't gain much insight about the 
purpose of the system by reading the code. Neither process took any advantage of the object 
paradigm available in their development environment, except as fancy data structures. 

Models come in many varieties and serve many roles, even those restricted to the context of a 
software development project. Domain-driven design calls for a model that doesn't just aid early 
analysis but is the very foundation of the design. This approach has some important implications 
for the code. What is less obvious is that domain-driven design requires a different approach to 
modeling. . . . 
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Chapter Three.  Binding Model and Implementation 

Model-Driven Design 

The astrolabe, used to compute star positions, is a mechanical implementation of a model of the 

sky . 

 

Tightly relating the code to an underlying model gives the code meaning and makes the model 
relevant. 
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A Medieval Sky Computer 
Ancient Greek astronomers devised the astrolabe, which was perfected by medieval 
Islamic scientists. A rotating web (called a rete ) represented the positions of the fixed 
stars on the celestial sphere. Interchangeable plates engraved with a local spherical 
coordinate system represented the views from different latitudes. Rotating the rete 
against the plate enabled a calculation of celestial positions for any time and day of the 
year. Conversely, given a stellar or solar position, the time could be calculated. The 
astrolabe was a mechanical implementation of an object-oriented model of the sky. 

   

Projects that have no domain model at all, but just write code to fulfill one function after another, 
gain few of the advantages of knowledge crunching and communication discussed in the previous 
two chapters. A complex domain will swamp them. 

On the other hand, many complex projects do attempt some sort of domain model, but they don't 
maintain a tight connection between the model and the code. The model they develop, possibly 
useful as an exploratory tool at the outset, becomes increasingly irrelevant and even misleading. 
All the care lavished on the model provides little reassurance that the design is correct, because the 
two are different. 

This connection can break down in many ways, but the detachment is often a conscious choice. 
Many design methodologies advocate an analysis model , quite distinct from the design and 
usually developed by different people. It is called an analysis model because it is the product of 
analyzing the business domain to organize its concepts without any consideration of the part it will 
play in a software system. An analysis model is meant as a tool for understanding only; mixing in 
implementation concerns is thought to muddy the waters. Later, a design is created that may have 
only a loose correspondence to the analysis model. The analysis model is not created with design 
issues in mind, and therefore it is likely to be quite impractical for those needs. 

Some knowledge crunching happens during such an analysis, but most of it is lost when coding 
begins, when the developers are forced to come up with new abstractions for the design. Then 
there is no guarantee that the insights gained by the analysts and embedded in the model will be 
retained or rediscovered. At this point, maintaining any mapping between the design and the 
loosely connected model is not cost-effective. 

The pure analysis model even falls short of its primary goal of understanding the domain, because 
crucial discoveries always emerge during the design/implementation effort. Very specific, 
unanticipated problems always arise. An up-front model will go into depth about some irrelevant 



subjects, while it overlooks some important subjects. Other subjects will be represented in ways 
that are not useful to the application. The result is that pure analysis models get abandoned soon 
after coding starts, and most of the ground has to be covered again. But the second time around, if 
the developers perceive analysis to be a separate process, modeling happens in a less disciplined 
way. If the managers perceive analysis to be a separate process, the development team may not be 
given adequate access to domain experts. 

Whatever the cause, software that lacks a concept at the foundation of its design is, at best, a 
mechanism that does useful things without explaining its actions. 

If the design, or some central part of it, does not map to the domain model, that model is of 
little value, and the correctness of the software is suspect. At the same time, complex 
mappings between models and design functions are difficult to understand and, in practice, 
impossible to maintain as the design changes. A deadly divide opens between analysis and 
design so that insight gained in each of those activities does not feed into the other. 

An analysis must capture fundamental concepts from the domain in a comprehensible, expressive 
way. The design has to specify a set of components that can be constructed with the programming 
tools in use on the project that will perform efficiently in the target deployment environment and 
will correctly solve the problems posed for the application. 

M ODEL-DRIVEN DESIGN discards the dichotomy of analysis model and design to search out a 
single model that serves both purposes. Setting aside purely technical issues, each object in the 
design plays a conceptual role described in the model. This requires us to be more demanding of 
the chosen model, since it must fulfill two quite different objectives. 

There are always many ways of abstracting a domain, and there are always many designs that can 
solve an application problem. This is what makes it practical to bind the model and design. This 
binding mustn't come at the cost of a weakened analysis, fatally compromised by technical 
considerations. Nor can we accept clumsy designs, reflecting domain ideas but eschewing software 
design principles. This approach demands a model that works well as both analysis and design. 
When a model doesn't seem to be practical for implementation, we must search for a new one. 
When a model doesn't faithfully express the key concepts of the domain, we must search for a new 
one. The modeling and design process then becomes a single iterative loop. 

The imperative to relate the domain model closely to the design adds one more criterion for 
choosing the more useful models out of the universe of possible models. It calls for hard thinking 
and usually takes multiple iterations and a lot of refactoring, but it makes the model relevant . 

Therefore: 

Design a portion of the software system to reflect the domain model in a very literal way, so 



that mapping is obvious. Revisit the model and modify it to be implemented more naturally 
in software, even as you seek to make it reflect deeper insight into the domain. Demand a 
single model that serves both purposes well, in addition to supporting a robust UBIQUITOUS 
LANGUAGE . 

Draw from the model the terminology used in the design and the basic assignment of 
responsibilities. The code becomes an expression of the model, so a change to the code may 
be a change to the model. Its effect must ripple through the rest of the project's activities 
accordingly. 

To tie the implementation slavishly to a model usually requires software development tools 
and languages that support a modeling paradigm, such as object-oriented programming. 

Sometimes there will be different models for different subsystems (see Chapter 14 ), but only one 
model should apply to a particular part of the system, throughout all aspects of the development 
effort, from the code to requirements analysis. 

The single model reduces the chances of error, because the design is now a direct outgrowth of the 
carefully considered model. The design, and even the code itself, has the communicativeness of a 
model. 

   

Developing a single model that captures the problem and provides a practical design is easier said 
than done. You can't just take any model and turn it into a workable design. The model has to be 
carefully crafted to make for a practical implementation. Design and implementation techniques 
have to be employed that allow code to express a model effectively (see Part II ). Knowledge 
crunchers explore model options and refine them into practical software elements. Development 
becomes an iterative process of refining the model, the design, and the code as a single activity 
(see Part III ). 
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Chapter Three.  Binding Model and Implementation 

Modeling Paradigms and Tool Support 

To make a MODEL-DRIVEN DESIGN pay off, the correspondence must be literal, exact within bounds of human error. To make 
such a close correspondence of model and design possible, it is almost essential to work within a modeling paradigm 
supported by software tools that allow you to create direct analogs to the concepts in the model. 

Figure 3.1. 

 

Object-oriented programming is powerful because it is based on a modeling paradigm, and it provides implementations of the 
model constructs. As far as the programmer is concerned, objects really exist in memory, they have associations with other 
objects, they are organized into classes, and they provide behavior available by messaging. Although many developers benefit 
from just applying the technical capabilities of objects to organize program code, the real breakthrough of object design comes 
when the code expresses the concepts of a model. Java and many other tools allow the creation of objects and relationships 
directly analogous to conceptual object models. 

Although it has never reached the mass usage that object-oriented languages have, the Prolog language is a natural fit for 
MODEL-DRIVEN DESIGN . In this case, the paradigm is logic, and the model is a set of logical rules and facts they operate on. 

M ODEL-DRIVEN DESIGN has limited applicability using languages such as C, because there is no modeling paradigm that 
corresponds to a purely procedural language. Those languages are procedural in the sense that the programmer tells the 
computer a series of steps to follow. Although the programmer may be thinking about the concepts of the domain, the program 
itself is a series of technical manipulations of data. The result may be useful, but the program doesn't capture much of the 
meaning. Procedural languages often support complex data types that begin to correspond to more natural conceptions of the 
domain, but these complex types are only organized data, and they don't capture the active aspects of the domain. The result is 
that software written in procedural languages has complicated functions linked together based on anticipated paths of 
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execution, rather than by conceptual connections in the domain model. 

Before I ever heard of object-oriented programming, I wrote fortran programs to solve mathematical models, which is just the 
sort of domain in which fortran excels. Mathematical functions are the main conceptual component of such a model and can 
be cleanly expressed in fortran. Even so, there is no way to capture higher level meaning beyond the functions. Most non-
mathematical domains don't lend themselves to MODEL-DRIVEN DESIGN in procedural languages because the domains are not 
conceptualized as math functions or as steps in a procedure. 

Object-oriented design, the paradigm that currently dominates the majority of ambitious projects, is the approach used 
primarily in this book. 

Example 
From Procedural to M ODEL- D RIVEN 

As discussed in Chapter 1 , a printed circuit board (PCB) can be viewed as a collection of electrical conductors (called nets ) 
connecting the pins of various components. There are often tens of thousands of nets. Special software, called a PCB layout 
tool, finds a physical arrangement for all the nets so that they don't cross or interfere with each other. It does this by 
optimizing their paths while satisfying an enormous number of constraints placed by the human designers that restrict the way 
they can be laid out. Although PCB layout tools are very sophisticated, they still have some shortcomings. 

One problem is that each of these thousands of nets has its own set of layout rules. PCB engineers see many nets as belonging 
to natural groupings that should share the same rules. For example, some nets form buses . 

Figure 3.2. An explanatory diagram of buses and nets 

 

By lumping nets into a bus, perhaps 8 or 16 or 256 at a time, the engineer cuts the job down to a more manageable size, 
improving productivity and reducing errors. The trouble is, the layout tool has no such concept as a bus. Rules have to be 
assigned to tens of thousands of nets, one net at a time. 

A Mechanistic Design 

Desperate engineers worked around this limitation in the layout tool by writing scripts that parse the layout tool's data files 
and insert rules directly into the file, applying them to an entire bus at a time. 
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The layout tool stores each circuit connection in a net list file, which looks something like this: 

Net Name    Component.Pin
--------    -------------
Xyz0        A.0, B.0
Xyz1        A.1, B.1
Xyz2        A.2, B.2
. . .

It stores the layout rules in a file format something like this: 

Net Name    Rule Type        Parameters
--------    ---------        ----------
Xyz1        min_linewidth    5
Xyz1        max_delay        15
Xyz2        min_linewidth    5
Xyz2        max_delay        15
. . .

The engineers carefully use a naming convention for the nets so that an alphabetical sort of the data file will place the nets of a 
bus together in a sorted file. Then their script can parse the file and modify each net based on its bus. Actual code to parse, 
manipulate, and write the files is just too verbose and opaque to serve this example, so I'll just list the steps in the procedure. 

1. Sort net list file by net name.
2. Read each line in file, seeking first one that starts with bus name pattern.
3. For each line with matching name, parse line to get net name.
4. Append net name with rule text to rules file.
5. Repeat from 3 until left of line no longer matches bus name.

So the input of a bus rule such as this: 

Bus Name    Rule Type        Parameters
--------    ---------        ----------
Xyz         max_vias         3

would result in adding net rules to the file like these: 

Net Name    Rule Type        Parameters
--------    ---------        ----------
. . .
Xyz0        max_vias         3
Xyz1        max_vias         3
Xyz2        max_vias         3
. . .

I imagine that the person who first wrote such a script had only this simple need, and if this were the only requirement, a script 
like this would make a lot of sense. But in practice, there are now dozens of scripts. They could, of course, be refactored to 



share sorting and string matching functions, and if the language supported function calls to encapsulate the details, the scripts 
could begin to read almost like the summary steps above. But still, they are just file manipulations. A different file format (and 
there are several) would require starting from scratch, even though the concept of grouping buses and applying rules to them is 
the same. If you wanted richer functionality or interactivity, you would have to pay for every inch. 

What the script writers were trying to do was to supplement the tool's domain model with the concept of "bus." Their 
implementation infers the bus's existence through sorts and string matches, but it does not explicitly deal with the concept. 

A Model-Driven Design 

The preceding discussion has already described the concepts the domain experts use to think about their problems. Now we 
need to organize those concepts explicitly into a model we can base software on. 

Figure 3.3. A class diagram oriented toward efficient assignment of layout rules 

 

With these objects implemented in an object-oriented language, the core functionality becomes almost trivial. 

The assignRule() method can be implemented on Abstract Net. The assignedRules() method on Net takes its 
own rules and its Bus 's rules. 

abstract class AbstractNet {
private Set rules;

void assignRule(LayoutRule rule) {
rules.add(rule);
}

Set assignedRules() {
return rules;
}
}

class Net extends AbstractNet {
private Bus bus;



Set assignedRules() {
Set result = new HashSet();
result.addAll(super.assignedRules());
result.addAll(bus.assignedRules());
return result;
}
}

Of course, there would be a great deal of supporting code, but this covers the basic functionality of the script. 

The application requires import/export logic, which we'll encapsulate into some simple services. 

Service Responsibility 

Net List import Reads Net List file, creates instance of Net for each entry 

Net Rule export Given a collection of Nets, writes all attached rules into the Rules File 

We'll also need a few utilities: 

Class Responsibility 

Net Repository Provides access to Nets by name 

Inferred Bus Factory Given a collection of Nets, uses naming conventions to infer Buses, creates instances 

Bus Repository Provides access to Buses by name 

Now, starting the application is a matter of initializing the repositories with imported data: 

Collection nets = NetListImportService.read(aFile);
NetRepository.addAll(nets);
Collection buses = InferredBusFactory.groupIntoBuses(nets);
BusRepository.addAll(buses);

Each of the services and repositories can be unit-tested. Even more important, the core domain logic can be tested. Here is a 
unit test of the most central behavior (using the JUnit test framework): 

public void testBusRuleAssignment() {
Net a0 = new Net("a0");
Net a1 = new Net("a1");
Bus a = new Bus("a"); //Bus is not conceptually dependent
a.addNet(a0);         //on name-based recognition, and so



a.addNet(a1);         //its tests should not be either.

NetRule minWidth4 = NetRule.create(MIN_WIDTH, 4);
a.assignRule(minWidth4);

assertTrue(a0.assignedRules().contains(minWidth4));
assertEquals(minWidth4, a0.getRule(MIN_WIDTH));
assertEquals(minWidth4, a1.getRule(MIN_WIDTH));
}

An interactive user interface could present a list of buses, allowing the user to assign rules to each, or it could read from a file 
of rules for backward compatibility. A façade makes access simple for either interface. Its implementation echoes the test: 

public void assignBusRule(String busName, String ruleType,
double parameter){
Bus bus = BusRepository.getByName(busName);
bus.assignRule(NetRule.create(ruleType, parameter));
}

Finishing: 

NetRuleExport.write(aFileName, NetRepository.allNets());

(The service asks each Net for assignedRules() , and then writes them fully expanded.) 

Of course, if there were only one operation (as in the example), the script-based approach might be just as practical. But in 
reality, there were 20 or more. The MODEL-DRIVEN DESIGN scales easily and can include constraints on combining rules and 
other enhancements. 

The second design also accommodates testing. Its components have well-defined interfaces that can be unit-tested. The only 
way to test the script is to do an end-to-end file-in/file-out comparison. 

Keep in mind that such a design does not emerge in a single step. It would take several iterations of refactoring and knowledge 
crunching to distill the important concepts of the domain into a simple, incisive model. 

       

Top 

  

file:///E|/books/0-321-12521-5/20061533.htm


      

Chapter Three.  Binding Model and Implementation 

Letting the Bones Show: Why Models Matter to Users 

In theory, perhaps, you could present a user with any view of a system, regardless of what lies 
beneath. But in practice, a mismatch causes confusion at best—bugs at worst. Consider a very 
simple example of how users are misled by superimposed models of bookmarks for Web sites in 
current releases of Microsoft Internet Explorer. [1] 

[1] Brian Marick mentioned this example to me. 

A user of Internet Explorer thinks of "Favorites" as a list of names of Web sites that persist from 
session to session. But the implementation treats a Favorite as a file containing a URL, and whose 
filename is put in the Favorites list. That's a problem if the Web page title contains characters that 
are illegal in Windows filenames. Suppose a user tries to store a Favorite and types the following 
name for it: "Laziness: The Secret to Happiness". An error message will say: "A filename cannot 
contain any of the following characters: \/ : * ? " < > |". What filename? On the other hand, if the 
Web page title already contains an illegal character, Internet Explorer will just quietly strip it out. 
The loss of data may be benign in this case, but not what the user would have expected. Quietly 
changing data is completely unacceptable in most applications. 

M ODEL-DRIVEN DESIGN calls for working with only one model (within any single context, as will 
be discussed in Chapter 14 ). Most of the advice and examples go to the problems of having 
separate analysis models and design models, but here we have a problem arising from a different 
pair of models: the user model and the design/implementation model. 

Of course, an unadorned view of the domain model would definitely not be convenient for the user 
in most cases. But trying to create in the UI an illusion of a model other than the domain model 
will cause confusion unless the illusion is perfect. If Web Favorites are actually just a collection of 
shortcut files, then expose this fact to the user and eliminate the confusing alternative model. Not 
only will the feature be less confusing, but the user can then leverage what he knows about the file 
system to deal with Web Favorites. He can reorganize them with the File Explorer, for example, 
rather than use awkward tools built into the Web browser. Informed users would be more able to 
exploit the flexibility of storing Web shortcuts anywhere in the file system. Just by removing the 
misleading extra model, the power of the application would increase and become clearer. Why 
make the user learn a new model when the programmers felt the old model was good enough? 
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Alternatively, store the Favorites in a different way, say in a data file, so that they can be subject to 
their own rules. Those rules would presumably be the naming rules that apply to Web pages. That 
would again provide a single model. This one tells the user that everything he knows about naming 
Web sites applies to Favorites. 

When a design is based on a model that reflects the basic concerns of the users and domain 
experts, the bones of the design can be revealed to the user to a greater extent than with other 
design approaches. Revealing the model gives the user more access to the potential of the software 
and yields consistent, predictable behavior. 
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Chapter Three.  Binding Model and Implementation 

Hands-On Modelers 

Manufacturing is a popular metaphor for software development. One inference from this metaphor: 
highly skilled engineers design; less skilled laborers assemble the products. This metaphor has 
messed up a lot of projects for one simple reason—software development is all design. All teams 
have specialized roles for members, but overseparation of responsibility for analysis, modeling, 
design, and programming interferes with MODEL-DRIVEN DESIGN . 

On one project, my job was to coordinate different application teams and help develop the domain 
model that would drive the design. But the management thought that modelers should be 
modeling, and that coding was a waste of those skills, so I was in effect forbidden to program or 
work on details with programmers. 

Things seemed to be OK for a while. Working with domain experts and the development leads of 
the different teams, we crunched knowledge and refined a nice core model. But that model was 
never put to work, for two reasons. 

First, some of the model's intent was lost in the handoff. The overall effect of a model can be very 
sensitive to details (as will be discussed in Parts II and III ), and those details don't always come 
across in a UML diagram or a general discussion. If I could have rolled up my sleeves and worked 
with the other developers directly, providing some code to follow as examples, and providing 
some close support, the team could have taken up the abstractions of the model and run with them. 

The other problem was the indirectness of feedback from the interaction of the model with the 
implementation and the technology. For example, certain aspects of the model turned out to be 
wildly in-efficient on our technology platform, but the full implications didn't trickle back to me 
for months. Relatively minor changes could have fixed the problem, but by then it didn't matter. 
The developers were well on their way to writing software that did work—without the model, 
which had been reduced to a mere data structure, wherever it was still used at all. The developers 
had thrown the baby out with the bathwater, but what choice did they have? They could no longer 
risk being saddled with the dictates of the architect in the ivory tower. 

The initial circumstances of this project were about as favorable to a hands-off modeler as they 
ever are. I already had extensive hands-on experience with most of the technology used on the 
project. I had even led a small development team on the same project before my role changed, so I 
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was familiar with the project's development process and programming environment. Even those 
factors were not enough to make me effective, given the separation of modeler from 
implementation. 

If the people who write the code do not feel responsible for the model, or don't understand 
how to make the model work for an application, then the model has nothing to do with the 
software. If developers don't realize that changing code changes the model, then their 
refactoring will weaken the model rather than strengthen it. Meanwhile, when a modeler is 
separated from the implementation process, he or she never acquires, or quickly loses, a feel 
for the constraints of implementation. The basic constraint of MODEL-DRIVEN DESIGN —that 
the model supports an effective implementation and abstracts key domain knowledge—is 
half-gone, and the resulting models will be impractical. Finally, the knowledge and skills of 
experienced designers won't be transferred to other developers if the division of labor 
prevents the kind of collaboration that conveys the subtleties of coding a MODEL-DRIVEN 
DESIGN . 

The need for HANDS-ON MODELERS does not mean that team members cannot have specialized 
roles. Every Agile process, including Extreme Programming, defines roles for team members, and 
other informal specializations tend to emerge naturally. The problem arises from separating two 
tasks that are coupled in a MODEL-DRIVEN DESIGN , modeling and implementation. 

The effectiveness of an overall design is very sensitive to the quality and consistency of fine-
grained design and implementation decisions. With a MODEL-DRIVEN DESIGN , a portion of the 
code is an expression of the model; changing that code changes the model. Programmers are 
modelers, whether anyone likes it or not. So it is better to set up the project so that the 
programmers do good modeling work. 

Therefore: 

Any technical person contributing to the model must spend some time touching the code, 
whatever primary role he or she plays on the project. Anyone responsible for changing code 
must learn to express a model through the code. Every developer must be involved in some 
level of discussion about the model and have contact with domain experts. Those who 
contribute in different ways must consciously engage those who touch the code in a dynamic 
exchange of model ideas through the UBIQUITOUS LANGUAGE . 

   

The sharp separation of modeling and programming doesn't work, yet large projects still need 
technical leaders who coordinate high-level design and modeling and help work out the most 
difficult or most critical decisions. Part IV , "Strategic Design," deals with such decisions and 
should stimulate ideas for more productive ways to define the roles and responsibilities of high-
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level technical people. 

Domain-driven design puts a model to work to solve problems for an application. Through 
knowledge crunching, a team distills a torrent of chaotic information into a practical model. A 
MODEL-DRIVEN DESIGN intimately connects the model and the implementation. The UBIQUITOUS 
LANGUAGE is the channel for all that information to flow between developers, domain experts, and 
the software. 

The result is software that provides rich functionality based on a fundamental understanding of the 
core domain. 

As mentioned, success with MODEL-DRIVEN DESIGN is sensitive to detailed design decisions, 
which is the subject of the next several chapters. 
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Part II: The Building Blocks of a Model-Driven 
Design 

To keep a software implementation crisp and in lockstep with a model, in spite of messy 
realities, you must apply the best practices of modeling and design. This book is not an 
introduction to object-oriented design, nor does it propose radical design fundamentals. 
Domain-driven design shifts the emphasis of certain conventional ideas. 

Certain kinds of decisions keep the model and implementation aligned with each other, 
each reinforcing the other's effectiveness. This alignment requires attention to the details 
of individual elements. Careful crafting at this small scale gives developers a steady 
platform from which to apply the modeling approaches of Parts III and IV . 

The design style in this book largely follows the principle of "responsibility-driven 
design," put forward in Wirfs-Brock et al. 1990 and updated in Wirfs-Brock 2003 . It 
also draws heavily (especially in Part III ) on the ideas of "design by contract" described 
in Meyer 1988 . It is consistent with the general background of other widely held best 
practices of object-oriented design, which are described in such books as Larman 1998 . 

As a project hits bumps, large or small, developers may find themselves in situations that 
make those principles seem inapplicable. To make the domain-driven design process 
resilient, developers need to understand how the well-known fundamentals support 
MODEL-DRIVEN DESIGN , so they can compromise without derailing. 

The material in the following three chapters is organized as a "pattern language" (see 
Appendix A ), which will show how subtle model distinctions and design decisions 
affect the domain-driven design process. 

The diagram on the top of the next page is a navigation map . It shows the patterns that 
will be presented in this section and a few of the ways they relate to each other. 

Sharing these standard patterns brings order to the design and makes it easier for team 
members to understand each other's work. Using standard patterns also adds to the 
UBIQUITOUS LANGUAGE , which all team members can use to discuss model and design 
decisions. 
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Developing a good domain model is an art. But the practical design and implementation 
of a model's individual elements can be relatively systematic. Isolating the domain 
design from the mass of other concerns in the software system will greatly clarify the 
design's connection to the model. Defining model elements according to certain 
distinctions sharpens their meanings. Following proven patterns for individual elements 
helps produce a model that is practical to implement. 

A navigation map of the language of MODEL-DRIVEN DESIGN 

 

Elaborate models can cut through complexity only if care is taken with the 
fundamentals, resulting in detailed elements that the team can confidently combine. 
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Part II:  The Building Blocks of a Model-Driven Design 

Chapter Four. Isolating the Domain 
The part of the software that specifically solves problems from the domain usually constitutes only 
a small portion of the entire software system, although its importance is disproportionate to its 
size. To apply our best thinking, we need to be able to look at the elements of our model and see 
them as a system. We must not be forced to pick them out of a much larger mix of objects, like 
trying to identify constellations in the night sky. We need to decouple the domain objects from 
other functions of the system, so we can avoid confusing the domain concepts with other concepts 
related only to software technology or losing sight of the domain altogether in the mass of the 
system. 

Sophisticated techniques for this isolation have emerged. This is well-trodden ground, but it is so 
critical to the successful application of domain-modeling principles that it must be reviewed 
briefly, from a domain-driven point of view. . . . 
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Chapter Four.  Isolating the Domain 

Layered Architecture 

 

For a shipping application to support the simple user act of selecting a cargo's destination from a 
list of cities, there must be program code that (1) draws a widget on the screen, (2) queries the 
database for all the possible cities, (3) interprets the user's input and validates it, (4) associates the 
selected city with the cargo, and (5) commits the change to the database. All of this code is part of 
the same program, but only a little of it is related to the business of shipping. 

Software programs involve design and code to carry out many different kinds of tasks. They accept 
user input, carry out business logic, access databases, communicate over networks, display 
information to users, and so on. So the code involved in each program function can be substantial. 



In an object-oriented program, UI , database, and other support code often gets written 
directly into the business objects. Additional business logic is embedded in the behavior of UI 
widgets and data-base scripts. This happens because it is the easiest way to make things 
work, in the short run. 

When the domain-related code is diffused through such a large amount of other code, it 
becomes extremely difficult to see and to reason about. Superficial changes to the UI can 
actually change business logic. To change a business rule may require meticulous tracing of 
UI code, database code, or other program elements. Implementing coherent, model-driven 
objects becomes impractical. Automated testing is awkward. With all the technologies and 
logic involved in each activity, a program must be kept very simple or it becomes impossible 
to understand. 

Creating programs that can handle very complex tasks calls for separation of concerns, allowing 
concentration on different parts of the design in isolation. At the same time, the intricate 
interactions within the system must be maintained in spite of the separation. 

There are all sorts of ways a software system might be divided, but through experience and 
convention, the industry has converged on LAYERED ARCHITECTURES , and specifically a few 
fairly standard layers. The metaphor of layering is so widely used that it feels intuitive to most 
developers. Many good discussions of layering are available in the literature, sometimes in the 
format of a pattern (as in Buschmann et al. 1996 , pp. 31–51). The essential principle is that any 
element of a layer depends only on other elements in the same layer or on elements of the layers 
"beneath" it. Communication upward must pass through some indirect mechanism, which I'll 
discuss a little later. 

The value of layers is that each specializes in a particular aspect of a computer program. This 
specialization allows more cohesive designs of each aspect, and it makes these designs much easier 
to interpret. Of course, it is vital to choose layers that isolate the most important cohesive design 
aspects. Again, experience and convention have led to some convergence. Although there are 
many variations, most successful architectures use some version of these four conceptual layers: 

User Interface (or Presentation Layer) Responsible for showing information to the user and 
interpreting the user's commands. The external actor 
might sometimes be another computer system rather 
than a human user. 
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Application Layer Defines the jobs the software is supposed to do and 
directs the expressive domain objects to work out 
problems. The tasks this layer is responsible for are 
meaningful to the business or necessary for interaction 
with the application layers of other systems. 

This layer is kept thin. It does not contain business 
rules or knowledge, but only coordinates tasks and 
delegates work to collaborations of domain objects in 
the next layer down. It does not have state reflecting 
the business situation, but it can have state that reflects 
the progress of a task for the user or the program. 

Domain Layer (or Model Layer) Responsible for representing concepts of the business, 
information about the business situation, and business 
rules. State that reflects the business situation is 
controlled and used here, even though the technical 
details of storing it are delegated to the infrastructure. 
This layer is the heart of business software. 

Infrastructure Layer Provides generic technical capabilities that support the 
higher layers: message sending for the application, 
persistence for the domain, drawing widgets for the 
UI, and so on. The infrastructure layer may also 
support the pattern of interactions between the four 
layers through an architectural framework. 

Some projects don't make a sharp distinction between the user interface and application layers. 
Others have multiple infrastructure layers. But it is the crucial separation of the domain layer that 
enables MODEL-DRIVEN DESIGN . 

Therefore: 

Partition a complex program into layers. Develop a design within each layer that is cohesive 
and that depends only on the layers below. Follow standard architectural patterns to provide 
loose coupling to the layers above. Concentrate all the code related to the domain model in 
one layer and isolate it from the user interface, application, and infrastructure code. The 
domain objects, free of the responsibility of displaying themselves, storing themselves, 
managing application tasks, and so forth, can be focused on expressing the domain model. 
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This allows a model to evolve to be rich enough and clear enough to capture essential 
business knowledge and put it to work. 

Separating the domain layer from the infrastructure and user interface layers allows a much cleaner 
design of each layer. Isolated layers are much less expensive to maintain, because they tend to 
evolve at different rates and respond to different needs. The separation also helps with deployment 
in a distributed system, by allowing different layers to be placed flexibly in different servers or 
clients, in order to minimize communication overhead and improve performance (Fowler 1996). 

Example 
Partitioning Online Banking Functionality into Layers 

An application provides various capabilities for maintaining bank accounts. One feature is funds 
transfer, in which the user enters or chooses two account numbers and an amount of money and 
then initiates a transfer. 

To make this example manageable, I've omitted major technical features, most notably security. 
The domain design is also oversimplified. (Realistic complexity would only increase the need for 
layered architecture.) Furthermore, the particular infrastructure implied here is meant to be simple 
and obvious to make the example clear—it is not a suggested design. The responsibilities of the 
remaining functionality would be layered as shown in Figure 4.1 . 

Figure 4.1. Objects carry out responsibilities consistent with their layer and are 
more coupled to other objects in their layer. 



 

Note that the domain layer, not the application layer , is responsible for fundamental business 
rules—in this case, the rule is "Every credit has a matching debit." 

The application also makes no assumptions about the source of the transfer request. The program 
presumably includes a UI with entry fields for account numbers and amounts and with buttons for 
commands. But that user interface could be replaced by a wire request in XML without affecting 
the application layer or any of the lower layers. This decoupling is important not because projects 
frequently need to replace user interfaces with wire requests but because a clean separation of 
concerns keeps the design of each layer easy to understand and maintain. 

In fact, Figure 4.1 itself mildly illustrates the problem of not isolating the domain. Because 
everything from the request to transaction control had to be included, the domain layer had to be 
dumbed down to keep the overall interaction simple enough to follow. If we were focused on the 
design of the isolated domain layer, we would have space on the page and in our heads for a model 
that better represented the domain's rules, perhaps including ledgers, credit and debit objects, or 
monetary transaction objects. 

Relating the Layers 

So far the discussion has focused on the separation of layers and the way in which that partitioning 



improves the design of each aspect of the program, particularly the domain layer. But of course, 
the layers have to be connected. To do this without losing the benefit of the separation is the 
motivation behind a number of patterns. 

Layers are meant to be loosely coupled, with design dependencies in only one direction. Upper 
layers can use or manipulate elements of lower ones straightforwardly by calling their public 
interfaces, holding references to them (at least temporarily), and generally using conventional 
means of interaction. But when an object of a lower level needs to communicate upward (beyond 
answering a direct query), we need another mechanism, drawing on architectural patterns for 
relating layers such as callbacks or OBSERVERS ( Gamma et al. 1995 ). 

The grandfather of patterns for connecting the UI to the application and domain layers is MODEL-
VIEW-CONTROLLER (MVC). It was pioneered in the Smalltalk world back in the 1970s and has 
inspired many of the UI architectures that followed. Fowler (2002) discusses this pattern and 
several useful variations on the theme. Larman (1998) explores these concerns in the MODEL-VIEW 
SEPARATION PATTERN , and his APPLICATION COORDINATOR is one approach to connecting the 
application layer. 

There are other styles of connecting the UI and the application. For our purposes, all approaches 
are fine as long as they maintain the isolation of the domain layer, allowing domain objects to be 
designed without simultaneously thinking about the user interface that might interact with them. 

The infrastructure layer usually does not initiate action in the domain layer. Being "below" the 
domain layer, it should have no specific knowledge of the domain it is serving. Indeed, such 
technical capabilities are most often offered as SERVICES . For example, if an application needs to 
send an e-mail, some message-sending interface can be located in the infrastructure layer and the 
application layer elements can request the transmission of the message. This decoupling gives 
some extra versatility. The message-sending interface might be connected to an e-mail sender, a 
fax sender, or whatever else is available. But the main benefit is simplifying the application layer, 
keeping it narrowly focused on its job: knowing when to send a message, but not burdened with 
how . 

The application and domain layers call on the SERVICES provided by the infrastructure layer. 
When the scope of a SERVICE has been well chosen and its interface well designed, the caller can 
remain loosely coupled and uncomplicated by the elaborate behavior the SERVICE interface 
encapsulates. 

But not all infrastructure comes in the form of SERVICES callable from the higher layers. Some 
technical components are designed to directly support the basic functions of other layers (such as 
providing an abstract base class for all domain objects) and provide the mechanisms for them to 
relate (such as implementations of MVC and the like). Such an "architectural framework" has 
much more impact on the design of the other parts of the program. 
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Architectural Frameworks 

When infrastructure is provided in the form of SERVICES called on through interfaces, it is fairly 
intuitive how the layering works and how to keep the layers loosely coupled. But some technical 
problems call for more intrusive forms of infrastructure. Frameworks that integrate many 
infrastructure needs often require the other layers to be implemented in very particular ways, for 
example as a subclass of a framework class or with structured method signatures. (It may seem 
counterintuitive for a subclass to be in a layer higher than that of the parent class, but keep in mind 
which class reflects more knowledge of the other.) The best architectural frameworks solve 
complex technical problems while allowing the domain developer to concentrate on expressing a 
model. But frameworks can easily get in the way, either by making too many assumptions that 
constrain domain design choices or by making the implementation so heavyweight that 
development slows down. 

Some form of architectural framework usually is needed (though sometimes teams choose 
frameworks that don't serve them well). When applying a framework, the team needs to focus on 
its goal: building an implementation that expresses a domain model and uses it to solve important 
problems. The team must seek ways of employing the framework to those ends, even if it means 
not using all of the framework's features. For example, early J2EE applications often implemented 
all domain objects as "entity beans." This approach bogged down both performance and the pace 
of development. Instead, current best practice is to use the J2EE framework for larger grain 
objects, implementing most business logic with generic Java objects. A lot of the downside of 
frameworks can be avoided by applying them selectively to solve difficult problems without 
looking for a one-size-fits-all solution. Judiciously applying only the most valuable of framework 
features reduces the coupling of the implementation and the framework, allowing more flexibility 
in later design decisions. More important, given how very complicated many of the current 
frameworks are to use, this minimalism helps keep the business objects readable and expressive. 

Architectural frameworks and other tools will continue to evolve. Newer frameworks will 
automate or prefabricate more and more of the technical aspects of an application. If this is done 
right, application developers will increasingly concentrate their time on modeling the core business 
problems, greatly improving productivity and quality. But as we move in this direction, we must 
guard against our enthusiasm for technical solutions; elaborate frameworks can also straitjacket 
application developers. 
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Chapter Four.  Isolating the Domain 

The Domain Layer Is Where the Model Lives 

L AYERED ARCHITECTURE is used in most systems today, under various layering schemes. Many 
styles of development can also benefit from layering. However, domain-driven design requires 
only one particular layer to exist. 

The domain model is a set of concepts. The "domain layer" is the manifestation of that model and 
all directly related design elements. The design and implementation of business logic constitute the 
domain layer. In a MODEL-DRIVEN DESIGN , the software constructs of the domain layer mirror the 
model concepts. 

It is not practical to achieve that correspondence when the domain logic is mixed with other 
concerns of the program. Isolating the domain implementation is a prerequisite for domain-driven 
design. 
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Chapter Four.  Isolating the Domain 

The Smart UI "Anti-Pattern" 

. . . That sums up the widely accepted LAYERED ARCHITECTURE pattern for object applications. 
But this separation of UI, application, and domain is so often attempted and so seldom 
accomplished that its negation deserves a discussion in its own right. 

Many software projects do take and should continue to take a much less sophisticated design 
approach that I call the SMART UI. But SMART UI is an alternate, mutually exclusive fork in the 
road, incompatible with the approach of domain-driven design. If that road is taken, most of what 
is in this book is not applicable. My interest is in the situations where the SMART UI does not 
apply, which is why I call it, with tongue in cheek, an "anti-pattern." Discussing it here provides a 
useful contrast and will help clarify the circumstances that justify the more difficult path taken in 
the rest of the book. 

   

A project needs to deliver simple functionality, dominated by data entry and display, with few 
business rules. Staff is not composed of advanced object modelers. 

If an unsophisticated team with a simple project decides to try a MODEL-DRIVEN DESIGN 
with LAYERED ARCHITECTURE , it will face a difficult learning curve. Team members will 
have to master complex new technologies and stumble through the process of learning object 
modeling (which is challenging, even with the help of this book!). The overhead of managing 
infrastructure and layers makes very simple tasks take longer. Simple projects come with 
short time lines and modest expectations. Long before the team completes the assigned task, 
much less demonstrates the exciting possibilities of its approach, the project will have been 
canceled. 

Even if the team is given more time, the team members are likely to fail to master the 
techniques without expert help. And in the end, if they do surmount these challenges, they 
will have produced a simple system. Rich capabilities were never requested. 

A more experienced team would not face the same trade-offs. Seasoned developers could flatten 
the learning curve and compress the time needed to manage the layers. Domain-driven design pays 
off best for ambitious projects, and it does require strong skills. Not all projects are ambitious. Not 



all project teams can muster those skills. 

Therefore, when circumstances warrant: 

Put all the business logic into the user interface. Chop the application into small functions 
and implement them as separate user interfaces, embedding the business rules into them. Use 
a relational database as a shared repository of the data. Use the most automated UI building 
and visual programming tools available. 

Heresy! The gospel (as advocated everywhere, including else-where in this book) is that domain 
and UI should be separate. In fact, it is difficult to apply any of the methods discussed later in this 
book without that separation, and so this SMART UI can be considered an "anti-pattern" in the 
context of domain-driven design. Yet it is a legitimate pattern in some other contexts. In truth, 
there are advantages to the SMART UI, and there are situations where it works best—which 
partially accounts for why it is so common. Considering it here helps us understand why we need 
to separate application from domain and, importantly, when we might not want to. 

Advantages 

●     Productivity is high and immediate for simple applications. 

●     Less capable developers can work this way with little training. 

●     Even deficiencies in requirements analysis can be overcome by releasing a prototype to 
users and then quickly changing the product to fit their requests. 

●     Applications are decoupled from each other, so that delivery schedules of small modules 
can be planned relatively accurately. Expanding the system with additional, simple 
behavior can be easy. 

●     Relational databases work well and provide integration at the data level. 

●     4GL tools work well. 

●     When applications are handed off, maintenance programmers will be able to quickly redo 
portions they can't figure out, because the effects of the changes should be localized to each 
particular UI. 

Disadvantages 

●     Integration of applications is difficult except through the database. 



●     There is no reuse of behavior and no abstraction of the business problem. Business rules 
have to be duplicated in each operation to which they apply. 

●     Rapid prototyping and iteration reach a natural limit because the lack of abstraction limits 
refactoring options. 

●     Complexity buries you quickly, so the growth path is strictly toward additional simple 
applications. There is no graceful path to richer behavior. 

If this pattern is applied consciously, a team can avoid taking on a great deal of overhead required 
by other approaches. It is a common mistake to undertake a sophisticated design approach that the 
team isn't committed to carrying all the way through. Another common, costly mistake is to build a 
complex infrastructure and use industrial-strength tools for a project that doesn't need them. 

Most flexible languages (such as Java) are overkill for these applications and will cost dearly. A 
4GL-style tool is the way to go. 

Remember, one of the consequences of this pattern is that you can't migrate to another design 
approach except by replacing entire applications. Just using a general-purpose language such as 
Java won't really put you in a position to later abandon the SMART UI, so if you've chosen that 
path, you should choose development tools geared to it. Don't bother hedging your bet. Just using a 
flexible language doesn't create a flexible system, but it may well produce an expensive one. 

By the same token, a team committed to a MODEL-DRIVEN DESIGN needs to design that way from 
the outset. Of course, even experienced project teams with big ambitions have to start with simple 
functionality and work their way up through successive iterations. But those first tentative steps 
will be MODEL-DRIVEN with an isolated domain layer, or the project will most likely be stuck with 
a SMART UI. The SMART UI is discussed only to clarify why and when a pattern such as LAYERED 
ARCHITECTURE is needed in order to isolate a domain layer. 

   

There are other solutions in between SMART UI and LAYERED ARCHITECTURE . For example, 
Fowler (2002) describes the TRANSACTION SCRIPT , which separates UI from application but does 
not provide for an object model. The bottom line is this: If the architecture isolates the domain-
related code in a way that allows a cohesive domain design loosely coupled to the rest of the 
system, then that architecture can probably support domain-driven design. 

Other development styles have their place, but you must accept varying limits on complexity and 
flexibility. Failing to decouple the domain design can really be disastrous in certain settings. If you 
have a complex application and are committing to MODEL-DRIVEN DESIGN , bite the bullet, get the 



necessary experts, and avoid the SMART UI. 
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Chapter Four.  Isolating the Domain 

Other Kinds of Isolation 

Unfortunately, there are influences other than infrastructure and user interfaces that can corrupt 
your delicate domain model. You must deal with other domain components that are not fully 
integrated into your model. You have to cope with other development teams who use different 
models of the same domain. These and other factors can blur your model and rob it of its utility. 
Chapter 14 , "Maintaining Model Integrity," deals with this topic, introducing such patterns as 
BOUNDED CONTEXT and ANTICORRUPTION LAYER . A really complicated domain model can 
become unwieldy all by itself. Chapter 15 , "Distillation," discusses how to make distinctions 
within the domain layer that can unencumber the essential concepts of the domain from peripheral 
detail. 

But all that comes later. Next, we'll look at the nuts and bolts of co-evolving an effective domain 
model and an expressive implementation. After all, the best part of isolating the domain is getting 
all that other stuff out of the way so that we can really focus on the domain design. 
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Part II:  The Building Blocks of a Model-Driven Design 

Chapter Five. A Model Expressed in Software 
To compromise in implementation without losing the punch of a MODEL-DRIVEN DESIGN requires 
a reframing of the basics. Connecting model and implementation has to be done at the detail level. 
This chapter focuses on those individual model elements, getting them in shape to support the 
activities in later chapters. 

This discussion will start with the issues of designing and streamlining associations. Associations 
between objects are simple to conceive and to draw, but implementing them is a potential 
quagmire. Associations illustrate how crucial detailed implementation decisions are to the viability 
of a MODEL-DRIVEN DESIGN . 

Turning to the objects themselves, but continuing to scrutinize the relationship between detailed 
model choices and implementation concerns, we'll focus on making distinctions among the three 
patterns of model elements that express the model: ENTITIES , VALUE OBJECTS , and SERVICES . 

Defining objects that capture concepts of the domain seems very intuitive on the surface, but 
serious challenges are lurking in the shades of meaning. Certain distinctions have emerged that 
clarify the meaning of model elements and tie into a body of design practices for carving out 
specific kinds of objects. 

Does an object represent something with continuity and identity—something that is tracked 
through different states or even across different implementations? Or is it an attribute that 
describes the state of something else? This is the basic distinction between an ENTITY and a 
VALUE OBJECT . Defining objects that clearly follow one pattern or the other makes the objects 
less ambiguous and lays out the path toward specific choices for robust design. 

Then there are those aspects of the domain that are more clearly expressed as actions or operations, 
rather than as objects. Although it is a slight departure from object-oriented modeling tradition, it 
is often best to express these as SERVICES , rather than forcing responsibility for an operation onto 
some ENTITY or VALUE OBJECT . A SERVICE is something that is done for a client on request. In 
the technical layers of the software, there are many SERVICES . They emerge in the domain also, 
when some activity is modeled that corresponds to something the software must do, but does not 
correspond with state. 
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There are inevitable situations in which the purity of the object model must be compromised, such 
as for storage in a relational database. This chapter will lay out some guidelines for staying on 
course when you are forced to deal with these messy realities. 

Finally, a discussion of MODULES will drive home the point that every design decision should be 
motivated by some insight into the domain. The ideas of high cohesion and low coupling, often 
thought of as technical metrics, can be applied to the concepts themselves. In a MODEL-DRIVEN 
DESIGN , MODULES are part of the model, and they should reflect concepts in the domain. 

This chapter brings together all of these building blocks, which embody the model in software. 
These ideas are conventional, and the modeling and design biases that follow from them have been 
written about before. But framing them in this context will help developers create detailed 
components that will serve the priorities of domaindriven design when tackling the larger model 
and design issues. Also, a sense of the basic principles will help developers stay on course through 
the inevitable compromises. 
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Chapter Five.  A Model Expressed in Software 

Associations 

The interaction between modeling and implementation is particularly tricky with the associations 
between objects. 

For every traversable association in the model, there is a mechanism in the software with the same 
properties. 

A model that shows an association between a customer and a sales representative corresponds to 
two things. On one hand, it abstracts a relationship developers deemed relevant between two real 
people. On the other hand, it corresponds to an object pointer between two Java objects, or an 
encapsulation of a database lookup, or some comparable implementation. 

For example, a one-to-many association might be implemented as a collection in an instance 
variable. But the design is not necessarily so direct. There may be no collection; an accessor 
method may query a database to find the appropriate records and instantiate objects based on them. 
Both of these designs would reflect the same model. The design has to specify a particular 
traversal mechanism whose behavior is consistent with the association in the model. 

In real life, there are lots of many-to-many associations, and a great number are naturally 
bidirectional. The same tends to be true of early forms of a model as we brainstorm and explore the 
domain. But these general associations complicate implementation and maintenance. Furthermore, 
they communicate very little about the nature of the relationship. 

There are at least three ways of making associations more tractable. 

1.  Imposing a traversal direction 

2.  Adding a qualifier, effectively reducing multiplicity 

3.  Eliminating nonessential associations 

It is important to constrain relationships as much as possible. A bidirectional association means 
that both objects can be understood only together. When application requirements do not call for 
traversal in both directions, adding a traversal direction reduces interdependence and simplifies the 



design. Understanding the domain may reveal a natural directional bias. 

The United States has had many presidents, as have many other countries. This is a bidirectional, 
one-to-many relationship. Yet we seldom would start out with the name "George Washington" and 
ask, "Of which country was he president?" Pragmatically, we can reduce the relationship to a 
unidirectional association, traversable from country to president. This refinement actually reflects 
insight into the domain, as well as making a more practical design. It captures the understanding 
that one direction of the association is much more meaningful and important than the other. It 
keeps the "Person" class independent of the far less fundamental concept of "President." 

Figure 5.1. Some traversal directions reflect a natural bias in the domain. 

 

Very often, deeper understanding leads to a "qualified" relationship. Looking deeper into 
presidents, we realize that (except in a civil war, perhaps) a country has only one president at a 
time. This qualifier reduces the multiplicity to one-to-one, and explicitly embeds an important rule 
into the model. Who was president of the United States in 1790? George Washington. 

Figure 5.2. Constrained associations communicate more knowledge and are more 
practical designs. 



 

Constraining the traversal direction of a many-to-many association effectively reduces its 
implementation to one-to-many—a much easier design. 

Consistently constraining associations in ways that reflect the bias of the domain not only makes 
those associations more communicative and simpler to implement, it also gives significance to the 
remaining bidirectional associations. When the bidirectionality of a relationship is a semantic 
characteristic of the domain, when it's needed for application functionality, the retention of both 
traversal directions conveys that. 

Of course, the ultimate simplification is to eliminate an association altogether, if it is not essential 
to the job at hand or the fundamental meaning of the model objects. 

Example 
Associations in a Brokerage Account 

Figure 5.3. 



 

One Java implementation of Brokerage Account in this model would be 

public class BrokerageAccount {
String accountNumber;
Customer customer;
Set investments;
// Constructors, etc. omitted

public Customer getCustomer() {
return customer;
}
public Set getInvestments() {
return investments;
}
}

But if we need to fetch the data from a relational database, another implementation, equally 
consistent with the model, would be the following: 

Table: BROKERAGE_ACCOUNT 



ACCOUNT_NUMBER CUSTOMER_SS_NUMBER 

    

    

Table: CUSTOMER 

SS_NUMBER NAME 

    

    

Table: INVESTMENT 

ACCOUNT_NUMBER STOCK_SYMBOL AMOUNT 

      

      

public class BrokerageAccount {
String accountNumber;
String customerSocialSecurityNumber;

// Omit constructors, etc.

public Customer getCustomer() {
String sqlQuery =
"SELECT * FROM CUSTOMER WHERE" +
"SS_NUMBER='"+customerSocialSecurityNumber+"'";
return QueryService.findSingleCustomerFor(sqlQuery);
}
public Set getInvestments() {
String sqlQuery =
"SELECT * FROM INVESTMENT WHERE" +
"BROKERAGE_ACCOUNT='"+accountNumber+"'";
return QueryService.findInvestmentsFor(sqlQuery);



}
}

( Note: The QueryService, a utility for fetching rows from the database and creating objects, is 
simple for explaining examples, but it's not necessarily a good design for a real project.) 

Let's refine the model by qualifying the association between Brokerage Account and Investment 
, reducing its multiplicity. This says there can be only one investment per stock. 

Figure 5.4. 

 

This wouldn't be true of all business situations (for example, if the lots need to be tracked), but 
whatever the particular rules, as constraints on associations are discovered they should be included 
in the model and implementation. They make the model more precise and the implementation 
easier to maintain. 

The Java implementation could become: 

public class BrokerageAccount {



String accountNumber;
Customer customer;
Map investments;

// Omitting constructors, etc.

public Customer getCustomer() {
return customer;
}
public Investment getInvestment(String stockSymbol) {
return (Investment)investments.get(stockSymbol);
}
}

And an SQL-based implementation would be: 

public class BrokerageAccount {
String accountNumber;
String customerSocialSecurityNumber;

//Omitting constructors, etc.
public Customer getCustomer() {
String sqlQuery = "SELECT * FROM CUSTOMER WHERE SS_NUMBER='"
+ customerSocialSecurityNumber + "'";
return QueryService.findSingleCustomerFor(sqlQuery);
}
public Investment getInvestment(String stockSymbol) {
String sqlQuery = "SELECT * FROM INVESTMENT "
+ "WHERE BROKERAGE_ACCOUNT='" + accountNumber + "'"
+ "AND STOCK_SYMBOL='" + stockSymbol +"'";
return QueryService.findInvestmentFor(sqlQuery);

}
}

Carefully distilling and constraining the model's associations will take you a long way toward a 
MODEL-DRIVEN DESIGN . Now let's turn to the objects themselves. Certain distinctions clarify the 
model while making for a more practical implementation. . . . 
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Chapter Five.  A Model Expressed in Software 

Entities (a.k.a. Reference Objects) 

 

Many objects are not fundamentally defined by their attributes, but rather by a thread of continuity 
and identity. 

   

A landlady sued me, claiming major damages to her property. The papers I was served described 
an apartment with holes in the walls, stains on the carpet, and a noxious liquid in the sink that gave 
off caustic fumes that had made the kitchen wallpaper peel. The court documents named me as the 
tenant responsible for the damages, identifying me by name and by my then-current address. This 
was confusing to me, because I had never even visited that ruined place. 

After a moment, I realized that it must be a case of mistaken identity. I called the plaintiff and told 
her this, but she didn't believe me. The former tenant had been eluding her for months. How could 
I prove that I was not the same person who had cost her so much money? I was the only Eric 
Evans in the phone book. 

Well, the phone book turned out to be my salvation. Because I had been living in the same 



apartment for two years, I asked her if she still had the previous year's book. After she found it and 
verified that my listing was the same (right next to my namesake's listing), she realized that I was 
not the person she wanted to sue, apologized, and promised to drop the case. 

Computers are not that resourceful. A case of mistaken identity in a software system leads to data 
corruption and program errors. 

There are special technical challenges here, which I'll discuss in a bit, but first let's look at the 
fundamental issue: Many things are defined by their identity, and not by any attribute. In our 
typical conception, a person (to continue with the nontechnical example) has an identity that 
stretches from birth to death and even beyond. That person's physical attributes transform and 
ultimately disappear. The name may change. Financial relationships come and go. There is not a 
single attribute of a person that cannot change; yet the identity persists. Am I the same person I 
was at age five? This kind of metaphysical question is important in the search for effective domain 
models. Slightly rephrased: Does the user of the application care if I am the same person I was at 
age five? 

In a software system for tracking accounts due, that modest "customer" object may have a more 
colorful side. It accumulates status by prompt payment or is turned over to a bill-collection agency 
for failure to pay. It may lead a double life in another system altogether when the sales force 
extracts customer data into its contact management software. In any case, it is unceremoniously 
squashed flat to be stored in a database table. When new business stops flowing from that source, 
the customer object will be retired to an archive, a shadow of its former self. 

Each of these forms of the customer is a different implementation based on a different 
programming language and technology. But when a phone call comes in with an order, it is 
important to know: Is this the customer who has the delinquent account? Is this the customer that 
Jack (a particular sales representative) has been working with for weeks? Is this a completely new 
customer? 

A conceptual identity has to be matched between multiple implementations of the objects, its 
stored forms, and real-world actors such as the phone caller. Attributes may not match. A sales 
representative may have entered an address update into the contact software, which is just being 
propagated to accounts due. Two customer contacts may have the same name. In distributed 
software, multiple users could be entering data from different sources, causing update transactions 
to propagate through the system to be reconciled in different databases asynchronously. 

Object modeling tends to lead us to focus on the attributes of an object, but the fundamental 
concept of an ENTITY is an abstract continuity threading through a life cycle and even passing 
through multiple forms. 

Some objects are not defined primarily by their attributes. They represent a thread of 



identity that runs through time and often across distinct representations. Sometimes such an 
object must be matched with another object even though attributes differ. An object must be 
distinguished from other objects even though they might have the same attributes. Mistaken 
identity can lead to data corruption. 

An object defined primarily by its identity is called an ENTITY . [1] E NTITIES have special 
modeling and design considerations. They have life cycles that can radically change their form and 
content, but a thread of continuity must be maintained. Their identities must be defined so that they 
can be effectively tracked. Their class definitions, responsibilities, attributes, and associations 
should revolve around who they are, rather than the particular attributes they carry. Even for 
ENTITIES that don't transform so radically or have such complicated life cycles, placing them in the 
semantic category leads to more lucid models and more robust implementations. 

[1] A model ENTITY is not the same thing as a Java "entity bean." Entity beans were meant 
as a framework for implementing ENTITIES , more or less, but it hasn't worked out that 
way. Most ENTITIES are implemented as ordinary objects. Regardless of how they are 
implemented, ENTITIES are a fundamental distinction in a domain model. 

Of course, most " ENTITIES " in a software system are not people or entities in the usual sense of 
the word. An ENTITY is anything that has continuity through a life cycle and distinctions 
independent of attributes that are important to the application's user. It could be a person, a city, a 
car, a lottery ticket, or a bank transaction. 

On the other hand, not all objects in the model are ENTITIES , with meaningful identities. This 
issue is confused by the fact that object-oriented languages build "identity" operations into every 
object (for example, the " == " operator in Java). These operations determine if two references 
point to the same object by comparing their location in memory or by some other mechanism. In 
this sense, every object instance has identity. In the domain of, say, creating a Java runtime 
environment or a technical framework for caching remote objects locally, every object instance 
may indeed be an ENTITY . But this identity mechanism means very little in other application 
domains. Identity is a subtle and meaningful attribute of ENTITIES , which can't be turned over to 
the automatic features of the language. 

Consider transactions in a banking application. Two deposits of the same amount to the same 
account on the same day are still distinct transactions, so they have identity and are ENTITIES . On 
the other hand, the amount attributes of those two transactions are probably instances of some 
money object. These values have no identity, since there is no usefulness in distinguishing them. In 
fact, two objects can have the same identity without having the same attributes or even, 
necessarily, being of the same class. When the bank customer is reconciling the transactions of the 
bank statement with the transactions of the check registry, the task is, specifically, to match 
transactions that have the same identity, even though they were recorded by different people on 
different dates (the bank clearing date being later than the date on the check). The purpose of the 



check number is to serve as a unique identifier for this purpose, whether the problem is being 
handled by a computer program or by hand. Deposits and cash withdrawals, which don't have an 
identifying number, can be trickier, but the same principle applies: each transaction is an ENTITY , 
which appears in at least two forms. 

It is common for identity to be significant outside a particular software system, as is the case with 
the banking transactions and the apartment tenants. But sometimes the identity is important only in 
the context of the system, such as the identity of a computer process. 

Therefore: 

When an object is distinguished by its identity, rather than its attributes, make this primary 
to its definition in the model. Keep the class definition simple and focused on life cycle 
continuity and identity. Define a means of distinguishing each object regardless of its form or 
history. Be alert to requirements that call for matching objects by attributes. Define an 
operation that is guaranteed to produce a unique result for each object, possibly by attaching 
a symbol that is guaranteed unique. This means of identification may come from the outside, 
or it may be an arbitrary identifier created by and for the system, but it must correspond to 
the identity distinctions in the model. The model must define what it means to be the same 
thing. 

Identity is not intrinsic to a thing in the world; it is a meaning superimposed because it is useful. In 
fact, the same real-world thing might or might not be represented as an ENTITY in a domain model. 

An application for booking seats in a stadium might treat seats and attendees as ENTITIES . In the 
case of assigned seating, in which each ticket has a seat number on it, the seat is an ENTITY . Its 
identifier is the seat number, which is unique within the stadium. The seat may have many other 
attributes, such as its location, whether the view is obstructed, and the price, but only the seat 
number, or a unique row and position, is used to identify and distinguish seats. 

On the other hand, if the event is "general admission," meaning that ticket holders sit wherever 
they find an empty seat, there is no need to distinguish individual seats. Only the total number of 
seats is important. Although the seat numbers are still engraved on the physical seats, there is no 
need for the software to track them. In fact, it would be erroneous for the model to associate 
specific seat numbers with tickets, because there is no such constraint at a general admission event. 
In such a case, seats are not ENTITIES , and no identifier is needed. 

   

Modeling E NTITIES 



It is natural to think about the attributes when modeling an object, and it is quite important to think 
about its behavior. But the most basic responsibility of ENTITIES is to establish continuity so that 
behavior can be clear and predictable. They do this best if they are kept spare. Rather than focusing 
on the attributes or even the behavior, strip the ENTITY object's definition down to the most 
intrinsic characteristics, particularly those that identify it or are commonly used to find or match it. 
Add only behavior that is essential to the concept and attributes that are required by that behavior. 
Beyond that, look to remove behavior and attributes into other objects associated with the core 
ENTITY . Some of these will be other ENTITIES . Some will be VALUE OBJECTS , which is the next 
pattern in this chapter. Beyond identity issues, ENTITIES tend to fulfill their responsibilities by 
coordinating the operations of objects they own. 

The customerID is the one and only identifier of the Customer ENTITY in Figure 5.5 , but the 
phone number and address would often be used to find or match a Customer . The name does not 
define a person's identity, but it is often used as part of the means of determining it. In this 
example, the phone and address attributes moved into Customer , but on a real project, that choice 
would depend on how the domain's customers are typically matched or distinguished. For 
example, if a Customer has many contact phone numbers for different purposes, then the phone 
number is not associated with identity and should stay with the Sales Contact . 

Figure 5.5. Attributes associated with identity stay with the ENTITY . 

 

Designing the Identity Operation 

Each ENTITY must have an operational way of establishing its identity with another 
object—distinguishable even from another object with the same descriptive attributes. An 
identifying attribute must be guaranteed to be unique within the system however that system is 
defined—even if distributed, even when objects are archived. 



As mentioned earlier, object-oriented languages have "identity" operations that determine if two 
references point to the same object by comparing the objects' locations in memory. This kind of 
identity tracking is too fragile for our purposes. In most technologies for persistent storage of 
objects, every time an object is retrieved from a database, a new instance is created, and so the 
initial identity is lost. Every time an object is transmitted across a network, a new instance is 
created on the destination, and once again the identity is lost. The problem can be even worse 
when multiple versions of the same object exist in the system, such as when updates propagate 
through a distributed database. 

Even with frameworks that simplify these technical problems, the fundamental issue exists: How 
do you know that two objects represent the same conceptual ENTITY ? The definition of identity 
emerges from the model. Defining identity demands understanding of the domain. 

Sometimes certain data attributes, or combinations of attributes, can be guaranteed or simply 
constrained to be unique within the system. This approach provides a unique key for the ENTITY . 
Daily newspapers, for example, might be identified by the name of the newspaper, the city, and the 
date of publication. (But watch out for extra editions and name changes!) 

When there is no true unique key made up of the attributes of an object, another common solution 
is to attach to each instance a symbol (such as a number or a string) that is unique within the class. 
Once this ID symbol is created and stored as an attribute of the ENTITY , it is designated 
immutable. It must never change, even if the development system is unable to directly enforce this 
rule. For example, the ID attribute is preserved as the object gets flattened into a database and 
reconstructed. Sometimes a technical framework helps with this process, but otherwise it just takes 
engineering discipline. 

Often the ID is generated automatically by the system. The generation algorithm must guarantee 
uniqueness within the system, which can be a challenge with concurrent processing and in 
distributed systems. Generating such an ID may require techniques that are beyond the scope of 
this book. The goal here is to point out when the considerations arise, so that developers are aware 
they have a problem to solve and know how to narrow down their concerns to the critical areas. 
The key is to recognize that identity concerns hinge on specific aspects of the model. Often, the 
means of identification demand a careful study of the domain, as well. 

When the ID is automatically generated, the user may never need to see it. The ID may be needed 
only internally, such as in a contact management application that lets the user find records by a 
person's name. The program needs to be able to distinguish two contacts with exactly the same 
name in a simple, unambiguous way. The unique, internal IDs let the system do just that. After 
retrieving the two distinct items, the system will show two separate contacts to the user, but the 
IDs may not be shown. The user will distinguish them on the basis of their company, their 
location, and so on. 



Finally, there are cases in which a generated ID is of interest to the user. When I ship a package 
through a parcel delivery service, I'm given a tracking number, generated by the shipping 
company's software, which I can use to identify and follow up on my package. When I book airline 
tickets or reserve a hotel, I'm given confirmation numbers that are unique identifiers for the 
transaction. 

In some cases, the uniqueness of the ID must apply beyond the computer system's boundaries. For 
example, if medical records are being exchanged between two hospitals that have separate 
computer systems, ideally each system will use the same patient ID, but this is difficult if they 
generate their own symbol. Such systems often use an identifier issued by some other institution, 
typically a government agency. In the United States, the Social Security number is often used by 
hospitals as an identifier for a person. Such methods are not foolproof. Not everyone has a Social 
Security number (children and nonresidents of the United States, especially), and many people 
object to its use, for privacy reasons. 

In less formal situations (say, video rental), telephone numbers are used as identifiers. But a 
telephone can be shared. The number can change. An old number can even be reassigned to a 
different person. 

For these reasons, specially assigned identifiers are often used (such as frequent flier numbers), 
and other attributes, such as phone numbers and Social Security numbers, are used to match and 
verify. In any case, when the application requires an external ID, the users of the system become 
responsible for supplying IDs that are unique, and the system must give them adequate tools to 
handle exceptions that arise. 

Given all these technical problems, it is easy to lose sight of the underlying conceptual problem: 
What does it mean for two objects to be the same thing? It is easy enough to stamp each object 
with an ID, or to write an operation that compares two instances, but if these IDs or operations 
don't correspond to some meaningful distinction in the domain, they just confuse matters more. 
This is why identity-assigning operations often involve human input. Checkbook reconciliation 
software, for instance, may offer likely matches, but the user is expected to make the final 
determination. 
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Chapter Five.  A Model Expressed in Software 

Value Objects 

 

Many objects have no conceptual identity. These objects describe some characteristic of a thing. 

   

When a child is drawing, he cares about the color of the marker he chooses, and he may care about 
the sharpness of the tip. But if there are two markers of the same color and shape, he probably 
won't care which one he uses. If a marker is lost and replaced by another of the same color from a 
new pack, he can resume his work unconcerned about the switch. 

Ask the child about the various drawings on the refrigerator, and he will quickly distinguish those 
he made from those his sister made. He and his sister have useful identities, as do their completed 
drawings. But imagine how complicated it would be if he had to track which lines in a drawing 
were made by each marker. Drawing would no longer be child's play. 



Because the most conspicuous objects in a model are usually ENTITIES , and because it is so 
important to track each ENTITY 's identity, it is natural to consider assigning an identity to all 
domain objects. Indeed, some frameworks assign a unique ID to every object. 

The system has to cope with all that tracking, and many possible performance optimizations are 
ruled out. Analytical effort is required to define meaningful identities and work out foolproof ways 
to track objects across distributed systems or in database storage. Equally important, taking on 
artificial identities is misleading. It muddles the model, forcing all objects into the same mold. 

Tracking the identity of ENTITIES is essential, but attaching identity to other objects can hurt 
system performance, add analytical work, and muddle the model by making all objects look 
the same. 

Software design is a constant battle with complexity. We must make distinctions so that 
special handling is applied only where necessary. 

However, if we think of this category of object as just the absence of identity, we haven't 
added much to our toolbox or vocabulary. In fact, these objects have characteristics of their 
own and their own significance to the model. These are the objects that describe things. 

An object that represents a descriptive aspect of the domain with no conceptual identity is called a 
VALUE OBJECT . V ALUE OBJECTS are instantiated to represent elements of the design that we care 
about only for what they are, not who or which they are. 

Is "Address" a V ALUE O BJECT ? Who's 
Asking? 

In software for a mail-order company, an address is needed to confirm the credit card, 
and to address the parcel. But if a roommate also orders from the same company, it is 
not important to realize they are in the same location. Address is a VALUE OBJECT . 

In software for the postal service, intended to organize delivery routes, the country 
could be formed into a hierarchy of regions, cities, postal zones, and blocks, terminating 
in individual addresses. These address objects would derive their zip code from their 
parent in the hierarchy, and if the postal service decided to reassign postal zones, all the 
addresses within would go along for the ride. Here, Address is an ENTITY . 

In software for an electric utility company, an address corresponds to a destination for 
the company's lines and service. If roommates each called to order electrical service, the 
company would need to realize it. Address is an ENTITY . Alternatively, the model 
could associate utility service with a "dwelling," an ENTITY with an attribute of address. 



Then Address would be a VALUE OBJECT . 

Colors are an example of VALUE OBJECTS that are provided in the base libraries of many modern 
development systems; so are strings and numbers. (You don't care which "4" you have or which 
"Q".) These basic examples are simple, but VALUE OBJECTS are not necessarily simple. For 
example, a color-mixing program might have a rich model in which enhanced color objects could 
be combined to produce other colors. These colors could have complex algorithms for 
collaborating to derive the new resulting VALUE OBJECT . 

A VALUE OBJECT can be an assemblage of other objects. In software for designing house plans, an 
object could be created for each window style. This "window style" could be incorporated into a 
"window" object, along with height and width, as well as rules governing how these attributes can 
be changed and combined. These windows are intricate VALUE OBJECTS made up of other VALUE 
OBJECTS . They in turn would be incorporated into larger elements of a plan, such as "wall" 
objects. 

V ALUE OBJECTS can even reference ENTITIES . For example, if I ask an online map service for a 
scenic driving route from San Francisco to Los Angeles, it might derive a Route object linking 
L.A. and San Francisco via the Pacific Coast Highway. That Route object would be a VALUE , 
even though the three objects it references (two cities and a highway) are all ENTITIES . 

V ALUE OBJECTS are often passed as parameters in messages between objects. They are frequently 
transient, created for an operation and then discarded. V ALUE OBJECTS are used as attributes of 
ENTITIES (and other VALUES ). A person may be modeled as an ENTITY with an identity, but that 
person's name is a VALUE . 

When you care only about the attributes of an element of the model, classify it as a VALUE 
OBJECT . Make it express the meaning of the attributes it conveys and give it related 
functionality. Treat the VALUE OBJECT as immutable. Don't give it any identity and avoid 
the design complexities necessary to maintain ENTITIES . 

The attributes that make up a VALUE OBJECT should form a conceptual whole. [2] For example, 
street, city, and postal code shouldn't be separate attributes of a Person object. They are part of a 
single, whole address, which makes a simpler Person, and a more coherent VALUE OBJECT . 

[2] The WHOLE VALUE pattern, by Ward Cunningham. 

Figure 5.6. A VALUE OBJECT can give information about an ENTITY . It should be 
conceptually whole. 



 

   

Designing V ALUE O BJECTS 

We don't care which instance we have of a VALUE OBJECT . This lack of constraints gives us 
design freedom we can use to simplify the design or optimize performance. This involves making 
choices about copying, sharing, and immutability. 

If two people have the same name, that does not make them the same person, or make them 
interchangeable. But the object representing the name is interchangeable, because only the spelling 
of the name matters. A Name object can be copied from the first Person object to the second. 

In fact, the two Person objects might not need their own name instances. The same Name object 
could be shared between the two Person objects (each with a pointer to the same name instance) 
with no change in their behavior or identity. That is, their behavior will be correct until some 
change is made to the name of one person. Then the other person's name would change also! To 
protect against this, in order for an object to be shared safely, it must be immutable : it cannot be 
changed except by full replacement. 

The same issues arise when an object passes one of its attributes to another object as an argument 
or return value. Anything could happen to the wandering object while it is out of control of its 
owner. The VALUE could be changed in a way that corrupts the owner, by violating the owner's 
invariants. This problem is avoided either by making the passed object immutable, or by passing a 
copy. 
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Creating extra options for performance tuning can be important because VALUE OBJECTS tend to 
be numerous. The example of the house design software hints at this. If each electrical outlet is a 
separate VALUE OBJECT , there might be a hundred of them in a single version of a single house 
plan. But if all outlets are considered interchangeable, we could share just one instance of an outlet 
and point to it a hundred times (an example of FLYWEIGHT [ Gamma et al. 1995 ]). In large 
systems, this kind of effect can be multiplied by thousands, and such an optimization can make the 
difference between a usable system and one that slows to a crawl, choked on millions of redundant 
objects. This is just one example of an optimization trick that is not available for ENTITIES . 

The economy of copying versus sharing depends on the implementation environment. Although 
copies may clog the system with huge numbers of objects, sharing can slow down a distributed 
system. When a copy is passed between two machines, a single message is sent and the copy lives 
independently on the receiving machine. But if a single instance is being shared, only a reference 
is passed, requiring a message back to the object for each interaction. 

Sharing is best restricted to those cases in which it is most valuable and least troublesome: 

●     When saving space or object count in the database is critical 

●     When communication overhead is low (such as in a centralized server) 

●     When the shared object is strictly immutable 

Immutability of an attribute or an object can be declared in some languages and environments but 
not in others. Such features help communicate the design decision, but they are not essential. Many 
of the distinctions we are making in the model cannot be explicitly declared in the implementation 
with most current tools and programming languages. You can't declare ENTITIES , for example, 
and then have an identity operation automatically enforced. But the lack of direct language support 
for a conceptual distinction does not mean that the distinction is not useful. It just means that more 
discipline is needed to maintain the rules that will be only implicit in the implementation. This can 
be reinforced with naming conventions, selective documentation, and lots of discussion . 

As long as a VALUE OBJECT is immutable, change management is simple—there isn't any change 
except full replacement. Immutable objects can be freely shared, as in the electrical outlet example. 
If garbage collection is reliable, deletion is just a matter of dropping all references to the object. 
When a VALUE OBJECT is designated immutable in the design, developers are free to make 
decisions about issues such as copying and sharing on a purely technical basis, secure in the 
knowledge that the application does not rely on particular instances of the objects. 
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Special Cases: When to Allow Mutability 
Immutability is a great simplifier in an implementation, making sharing and reference 
passing safe. It is also consistent with the meaning of a value. If the value of an attribute 
changes, you use a different VALUE OBJECT , rather than modifying the existing one. 
Even so, there are cases when performance considerations will favor allowing a VALUE 
OBJECT to be mutable. These factors would weigh in favor of a mutable 
implementation: 

●     If the VALUE changes frequently 

●     If object creation or deletion is expensive 

●     If replacement (rather than modification) will disturb clustering (as discussed in 
the previous example) 

●     If there is not much sharing of VALUES , or if such sharing is forgone to improve 
clustering or for some other technical reason 

Just to reiterate: If a VALUE 's implementation is to be mutable, then it must not be 
shared. Whether you will be sharing or not, design VALUE OBJECTS as immutable when 
you can. 

Defining VALUE OBJECTS and designating them as immutable is a case of following a general rule: 
Avoiding unnecessary constraints in a model leaves developers free to do purely technical 
performance tuning. Explicitly defining the essential constraints lets developers tweak the design 
while keeping safe from changing meaningful behavior. Such design tweaks are often very specific 
to the technology in use on a particular project. 

Example 
Tuning a Database with V ALUE O BJECTS 

Databases, at the lowest level, have to place data in a physical location on a disk, and it takes time 
for physical parts to move around and read that data. Sophisticated databases attempt to cluster 
these physical addresses so that related data can be fetched from the disk in a single physical 
operation. 

If an object is referenced by many other objects, some of those objects will not be located nearby 
(on the same page), requiring an additional physical operation to get the data. By making a copy, 
rather than sharing a reference to the same instance, a VALUE OBJECT that is acting as an attribute 



of many ENTITIES can be stored on the same page as each ENTITY that uses it. This technique of 
storing multiple copies of the same data is called denormalization and is often used when access 
time is more critical than storage space or simplicity of maintenance. 

In a relational database, you might want to put a particular VALUE in the table of the ENTITY that 
owns it, rather than creating an association to a separate table. In a distributed system, holding a 
reference to a VALUE OBJECT on another server will probably make for slow responses to 
messages; instead, a copy of the whole object should be passed to the other server. We can freely 
make these copies because we are dealing with VALUE OBJECTS . 

Designing Associations That Involve V ALUE O BJECTS 

Most of the earlier discussion of associations applies to ENTITIES and VALUE OBJECTS alike. The 
fewer and simpler the associations in the model, the better. 

But, while bidirectional associations between ENTITIES may be hard to maintain, bidirectional 
associations between two VALUE OBJECTS just make no sense. Without identity, it is meaningless 
to say that an object points back to the same VALUE OBJECT that points to it. The most you could 
say is that it points to an object that is equal to the one pointing to it, but you would have to 
enforce that invariant somewhere. And although you could do so, and set up pointers going both 
ways, it is hard to think of examples where such an arrangement would be useful. Try to 
completely eliminate bidirectional associations between VALUE OBJECTS . If in the end such 
associations seem necessary in your model, rethink the decision to declare the object a VALUE 
OBJECT in the first place. Maybe it has an identity that hasn't been explicitly recognized yet. 

E NTITIES and VALUE OBJECTS are the main elements of conventional object models, but 
pragmatic designers have come to use one element, SERVICES . . . . 
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Chapter Five.  A Model Expressed in Software 

Services 

 

Sometimes, it just isn't a thing. 

In some cases, the clearest and most pragmatic design includes operations that do not conceptually 
belong to any object. Rather than force the issue, we can follow the natural contours of the 
problem space and include SERVICES explicitly in the model. 

   

There are important domain operations that can't find a natural home in an ENTITY or VALUE 
OBJECT . Some of these are intrinsically activities or actions, not things, but since our modeling 
paradigm is objects, we try to fit them into objects anyway. 

Now, the more common mistake is to give up too easily on fitting the behavior into an appropriate 
object, gradually slipping toward procedural programming. But when we force an operation into 
an object that doesn't fit the object's definition, the object loses its conceptual clarity and becomes 
hard to understand or refactor. Complex operations can easily swamp a simple object, obscuring its 



role. And because these operations often draw together many domain objects, coordinating them 
and putting them into action, the added responsibility will create dependencies on all those objects, 
tangling concepts that could be understood independently. 

Sometimes services masquerade as model objects, appearing as objects with no meaning beyond 
doing some operation. These "doers" end up with names ending in "Manager" and the like. They 
have no state of their own nor any meaning in the domain beyond the operation they host. Still, at 
least this solution gives these distinct behaviors a home without messing up a real model object. 

Some concepts from the domain aren't natural to model as objects. Forcing the required 
domain functionality to be the responsibility of an ENTITY or VALUE either distorts the 
definition of a model-based object or adds meaningless artificial objects. 

A SERVICE is an operation offered as an interface that stands alone in the model, without 
encapsulating state, as ENTITIES and VALUE OBJECTS do. S ERVICES are a common pattern in 
technical frameworks, but they can also apply in the domain layer. 

The name service emphasizes the relationship with other objects. Unlike ENTITIES and VALUE 
OBJECTS , it is defined purely in terms of what it can do for a client. A SERVICE tends to be named 
for an activity, rather than an entity—a verb rather than a noun. A SERVICE can still have an 
abstract, intentional definition; it just has a different flavor than the definition of an object. A 
SERVICE should still have a defined responsibility, and that responsibility and the interface 
fulfilling it should be defined as part of the domain model. Operation names should come from the 
UBIQUITOUS LANGUAGE or be introduced into it. Parameters and results should be domain 
objects. 

S ERVICES should be used judiciously and not allowed to strip the ENTITIES and VALUE OBJECTS 
of all their behavior. But when an operation is actually an important domain concept, a SERVICE 
forms a natural part of a MODEL-DRIVEN DESIGN . Declared in the model as a SERVICE, rather 
than as a phony object that doesn't actually represent anything, the standalone operation will not 
mislead anyone. 

A good SERVICE has three characteristics. 

1.  The operation relates to a domain concept that is not a natural part of an ENTITY or VALUE 
OBJECT . 

2.  The interface is defined in terms of other elements of the domain model. 

3.  The operation is stateless. 



Statelessness here means that any client can use any instance of a particular SERVICE without 
regard to the instance's individual history. The execution of a SERVICE will use information that is 
accessible globally, and may even change that global information (that is, it may have side effects). 
But the SERVICE does not hold state of its own that affects its own behavior, as most domain 
objects do. 

When a significant process or transformation in the domain is not a natural responsibility of 
an ENTITY or VALUE OBJECT , add an operation to the model as a standalone interface 
declared as a SERVICE . Define the interface in terms of the language of the model and make 
sure the operation name is part of the UBIQUITOUS LANGUAGE . Make the SERVICE stateless. 

   

S ERVICES and the Isolated Domain Layer 

This pattern is focused on those SERVICES that have an important meaning in the domain in their 
own right, but of course SERVICES are not used only in the domain layer. It takes care to 
distinguish SERVICES that belong to the domain layer from those of other layers, and to factor 
responsibilities to keep that distinction sharp. 

Most SERVICES discussed in the literature are purely technical and belong in the infrastructure 
layer. Domain and application SERVICES collaborate with these infrastructure SERVICES . For 
example, a bank might have an application that sends an e-mail to a customer when an account 
balance falls below a specific threshold. The interface that encapsulates the e-mail system, and 
perhaps alternate means of notification, is a SERVICE in the infrastructure layer. 

It can be harder to distinguish application SERVICES from domain SERVICES . The application 
layer is responsible for ordering the notification. The domain layer is responsible for determining 
if a threshold was met—though this task probably does not call for a SERVICE , because it would 
fit the responsibility of an "account" object. That banking application could be responsible for 
funds transfers. If a SERVICE were devised to make appropriate debits and credits for a funds 
transfer, that capability would belong in the domain layer. Funds transfer has a meaning in the 
banking domain language, and it involves fundamental business logic. Technical SERVICES should 
lack any business meaning at all. 

Many domain or application SERVICES are built on top of the populations of ENTITIES and 
VALUES , behaving like scripts that organize the potential of the domain to actually get something 
done. E NTITIES and VALUE OBJECTS are often too fine-grained to provide a convenient access to 
the capabilities of the domain layer. Here we encounter a very fine line between the domain layer 
and the application layer. For example, if the banking application can convert and export our 
transactions into a spreadsheet file for us to analyze, that export is an application SERVICE . There 
is no meaning of "file formats" in the domain of banking, and there are no business rules involved. 



On the other hand, a feature that can transfer funds from one account to another is a domain 
SERVICE because it embeds significant business rules (crediting and debiting the appropriate 
accounts, for example) and because a "funds transfer" is a meaningful banking term. In this case, 
the SERVICE does not do much on its own; it would ask the two Account objects to do most of the 
work. But to put the "transfer" operation on the Account object would be awkward, because the 
operation involves two accounts and some global rules. 

We might like to create a Funds Transfer object to represent the two entries plus the rules and 
history around the transfer. But we are still left with calls to SERVICES in the interbank networks. 
What's more, in most development systems, it is awkward to make a direct interface between a 
domain object and external resources. We can dress up such external SERVICES with a FACADE 
that takes inputs in terms of the model, perhaps returning a Funds Transfer object as its result. But 
whatever intermediaries we might have, and even though they don't belong to us, those SERVICES 
are carrying out the domain responsibility of funds transfer. 

Partitioning Services into Layers 

Application Funds Transfer App Service 

●     Digests input (such as an XML request). 

●     Sends message to domain service for fulfillment. 

●     Listens for confirmation. 

●     Decides to send notification using infrastructure service. 

Domain Funds Transfer Domain Service 

●     Interacts with necessary Account and Ledger objects, making appropriate 
debits and credits. 

●     Supplies confirmation of result (transfer allowed or not, and so on). 



Infrastructure Send Notification Service 

●     Sends e-mails, letters, and other communications as directed by the 
application. 

Granularity 

Although this pattern discussion has emphasized the expressiveness of modeling a concept as a 
SERVICE , the pattern is also valuable as a means of controlling granularity in the interfaces of the 
domain layer, as well as decoupling clients from the ENTITIES and VALUE OBJECTS . 

Medium-grained, stateless SERVICES can be easier to reuse in large systems because they 
encapsulate significant functionality behind a simple interface. Also, fine-grained objects can lead 
to inefficient messaging in a distributed system. 

As previously discussed, fine-grained domain objects can contribute to knowledge leaks from the 
domain into the application layer, where the domain object's behavior is coordinated. The 
complexity of a highly detailed interaction ends up being handled in the application layer, allowing 
domain knowledge to creep into the application or user interface code, where it is lost from the 
domain layer. The judicious introduction of domain services can help maintain the bright line 
between layers. 

This pattern favors interface simplicity over client control and versatility. It provides a medium 
grain of functionality very useful in packaging components of large or distributed systems. And 
sometimes a SERVICE is the most natural way to express a domain concept. 

Access to S ERVICES 

Distributed system architectures, such as J2EE and CORBA, provide special publishing 
mechanisms for SERVICES , with conventions for their use, and they add distribution and access 
capabilities. But such frameworks are not always in use on a project, and even when they are, they 
are likely to be overkill when the motivation is just a logical separation of concerns. 

The means of providing access to a SERVICE is not as important as the design decision to carve off 
specific responsibilities. A "doer" object may be satisfactory as an implementation of a SERVICE 's 
interface. A simple SINGLETON ( Gamma et al. 1995 ) can be written easily to provide access. 
Coding conventions can make it clear that these objects are just delivery mechanisms for SERVICE 
interfaces, and not meaningful domain objects. Elaborate architectures should be used only when 
there is a real need to distribute the system or otherwise draw on the framework's capabilities. 
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Chapter Five.  A Model Expressed in Software 

Modules (a.k.a. Packages) 

M ODULES are an old, established design element. There are technical considerations, but 
cognitive overload is the primary motivation for modularity. M ODULES give people two views of 
the model: They can look at detail within a MODULE without being overwhelmed by the whole, or 
they can look at relationships between MODULES in views that exclude interior detail. 

The MODULES in the domain layer should emerge as a meaningful part of the model, telling the 
story of the domain on a larger scale. 

   

Everyone uses MODULES , but few treat them as a full-fledged part of the model. Code gets 
broken down into all sorts of categories, from aspects of the technical architecture to 
developers' work assignments. Even developers who refactor a lot tend to content themselves 
with MODULES conceived early in the project. 

It is a truism that there should be low coupling between MODULES and high cohesion within 
them. Explanations of coupling and cohesion tend to make them sound like technical metrics, 
to be judged mechanically based on the distributions of associations and interactions. Yet it 
isn't just code being divided into MODULES , but concepts. There is a limit to how many 
things a person can think about at once (hence low coupling). Incoherent fragments of ideas 
are as hard to understand as an undifferentiated soup of ideas (hence high cohesion). 

Low coupling and high cohesion are general design principles that apply as much to individual 
objects as to MODULES , but they are particularly important at this larger grain of modeling and 
design. These terms have been around for a long time; one patterns-style explanation can be found 
in Larman 1998 . 

Whenever two model elements are separated into different modules, the relationships between 
them become less direct than they were, which increases the overhead of understanding their place 
in the design. Low coupling between MODULES minimizes this cost, and makes it possible to 
analyze the contents of one MODULE with a minimum of reference to others that interact. 

At the same time, the elements of a good model have synergy, and well-chosen MODULES bring 
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together elements of the model with particularly rich conceptual relationships. This high cohesion 
of objects with related responsibilities allows modeling and design work to concentrate within a 
single MODULE , a scale of complexity a human mind can easily handle. 

M ODULES and the smaller elements should coevolve, but typically they do not. M ODULES are 
chosen to organize an early form of the objects. After that, the objects tend to change in ways that 
keep them in the bounds of the existing MODULE definition. Refactoring MODULES is more work 
and more disruptive than refactoring classes, and probably can't be as frequent. But just as model 
objects tend to start out naive and concrete and then gradually transform to reveal deeper insight, 
MODULES can become subtle and abstract. Letting the MODULES reflect changing understanding of 
the domain will also allow more freedom for the objects within them to evolve. 

Like everything else in a domain-driven design, MODULES are a communications mechanism . The 
meaning of the objects being partitioned needs to drive the choice of MODULES . When you place 
some classes together in a MODULE , you are telling the next developer who looks at your design 
to think about them together. If your model is telling a story, the MODULES are chapters. The name 
of the MODULE conveys its meaning. These names enter the UBIQUITOUS LANGUAGE . "Now let's 
talk about the 'customer' module," you might say to a business expert, and the context is set for 
your conversation. 

Therefore: 

Choose MODULES that tell the story of the system and contain a cohesive set of concepts. This 
often yields low coupling between MODULES , but if it doesn't, look for a way to change the 
model to disentangle the concepts, or search for an overlooked concept that might be the 
basis of a MODULE that would bring the elements together in a meaningful way. Seek low 
coupling in the sense of concepts that can be understood and reasoned about independently 
of each other. Refine the model until it partitions according to highlevel domain concepts and 
the corresponding code is decoupled as well. 

Give the MODULES names that become part of the UBIQUITOUS LANGUAGE . MODULES and 
their names should reflect insight into the domain. 

Looking at conceptual relationships is not an alternative to technical measures. They are different 
levels of the same issue, and both have to be accomplished. But model-focused thinking produces 
a deeper solution, rather than an incidental one. And when there has to be a trade-off, it is best to 
go with the conceptual clarity, even if it means more references between MODULES or occasional 
ripple effects when changes are made to a MODULE . Developers can handle these problems if they 
understand the story the model is telling them. 

   



Agile M ODULES 

M ODULES need to coevolve with the rest of the model. This means refactoring MODULES right 
along with the model and code. But this refactoring often doesn't happen. Changing MODULES 
tends to require widespread updates to the code. Such changes can be disruptive to team 
communication and can even throw a monkey wrench into development tools, such as source code 
control systems. As a result, MODULE structures and names often reflect much earlier forms of the 
model than the classes do. 

Inevitable early mistakes in MODULE choices lead to high coupling, which makes it hard to 
refactor. The lack of refactoring just keeps increasing the inertia. It can only be overcome by biting 
the bullet and reorganizing MODULES based on experience of where the trouble spots lie. 

Some development tools and programming systems exacerbate the problem. Whatever 
development technology the implementation will be based on, we need to look for ways of 
minimizing the work of refactoring MODULES , and minimizing clutter in communicating to other 
developers. 

Example 
Package Coding Conventions in Java 

In Java, imports (dependencies) must be declared in some individual class. A modeler probably 
thinks of packages as depending on other packages, but this can't be stated in Java. Common 
coding conventions encourage the import of specific classes, resulting in code like this: 

ClassA1
import packageB.ClassB1;
import packageB.ClassB2;
import packageB.ClassB3;
import packageC.ClassC1;
import packageC.ClassC2;
import packageC.ClassC3;
. . .

In Java, unfortunately, there is no escape from importing into individual classes, but you can at 
least import entire packages at a time, reflecting the intention that packages are highly cohesive 
units while simultaneously reducing the effort of changing package names. 

ClassA1
import packageB.*;



import packageC.*;
. . .

True, this technique means mixing two scales (classes depend on packages), but it communicates 
more than the previous voluminous list of classes—it conveys the intent to create a dependency on 
particular MODULES . 

If an individual class really does depend on a specific class in another package, and the local 
MODULE doesn't seem to have a conceptual dependency on the other MODULE , then maybe a class 
should be moved, or the MODULES themselves should be reconsidered. 

The Pitfalls of Infrastructure-Driven Packaging 

Strong forces on our packaging decisions come from technical frameworks. Some of these are 
helpful, while others need to be resisted. 

An example of a very useful framework standard is the enforcement of LAYERED ARCHITECTURE 
by placing infrastructure and user interface code into separate groups of packages, leaving the 
domain layer physically separated into its own set of packages. 

On the other hand, tiered architectures can fragment the implementation of the model objects. 
Some frameworks create tiers by spreading the responsibilities of a single domain object across 
multiple objects and then placing those objects in separate packages. For example, with J2EE a 
common practice is to place data and data access into an "entity bean" while placing associated 
business logic into a "session bean." In addition to the increased implementation complexity of 
each component, the separation immediately robs an object model of cohesion. One of the most 
fundamental concepts of objects is to encapsulate data with the logic that operates on that data. 
This kind of tiered implementation is not fatal, because both components can be viewed as 
together constituting the implementation of a single model element, but to make matters worse, the 
entity and session beans are often separated into different packages. At that point, viewing the 
various objects and mentally fitting them back together as a single conceptual ENTITY is just too 
much effort. We lose the connection between the model and design. Best practice is to use EJBs at 
a larger grain than ENTITY objects, reducing the downside of separating tiers. But fine-grain 
objects are often split into tiers also. 

For example, I encountered these problems on a rather intelligently run project in which each 
conceptual object was actually broken into four tiers. Each division had a good rationale. The first 
tier was a data persistence layer, handling mapping and access to the relational database. Then 
came a layer that handled behavior intrinsic to the object in all situations. Next was a layer for 
superimposing application-specific functionality. The fourth tier was meant as a public interface, 
decoupled from all the implementation below. This scheme was a bit too complicated, but the 
layers were well defined and there was some tidiness to the separation of concerns. We could have 



lived with mentally connecting all the physical objects making up one conceptual object. The 
separation of aspects even helped at times. In particular, having the persistence code moved out 
removed a lot of clutter. 

But on top of all this, the framework required each tier to be in a separate set of packages, named 
according to a convention that identified the tier. This took up all the mental room for partitioning. 
As a result, domain developers tended to avoid making too many MODULES (each of which was 
multiplied by four) and hardly ever changed one, because the effort of refactoring a MODULE was 
prohibitive. Worse, hunting down all the data and behavior that defined a single conceptual class 
was so difficult (combined with the indirectness of the layering) that developers didn't have much 
mental space left to think about models. The application was delivered, but with an anemic domain 
model that basically fulfilled the database access requirements of the application, with behavior 
supplied by a few SERVICES . The leverage that should have derived from MODEL-DRIVEN DESIGN 
was limited because the code did not transparently reveal the model and allow a developer to work 
with it. 

This kind of framework design is attempting to address two legitimate issues. One is the logical 
division of concerns: One object has responsibility for database access, another for business logic, 
and so on. Such divisions make it easier to understand the functioning of each tier (on a technical 
level) and make it easier to switch out layers. The trouble is that the cost to application 
development is not recognized. This is not a book on framework design, so I won't go into 
alternative solutions to that problem, but they do exist. And even if there were no options, it would 
be better to trade off these benefits for a more cohesive domain layer. 

The other motivation for these packaging schemes is the distribution of tiers. This could be a 
strong argument if the code actually got deployed on different servers. Usually it does not. The 
flexibility is sought just in case it is needed. On a project that hopes to get leverage from MODEL-
DRIVEN DESIGN , this sacrifice is too great unless it solves an immediate and pressing problem. 

Elaborate technically driven packaging schemes impose two costs. 

●     If the framework's partitioning conventions pull apart the elements implementing the 
conceptual objects, the code no longer reveals the model. 

●     There is only so much partitioning a mind can stitch back together, and if the framework 
uses it all up, the domain developers lose their ability to chunk the model into meaningful 
pieces. 

It is best to keep things simple. Choose a minimum of technical partitioning rules that are essential 
to the technical environment or actually aid development. For example, decoupling complicated 
data persistence code from the behavioral aspects of the objects may make refactoring easier. 



Unless there is a real intention to distribute code on different servers, keep all the code that 
implements a single conceptual object in the same MODULE , if not the same object. 

We could have come to the same conclusion by drawing on the old standard, "high cohesion/low 
coupling." The connections between an "object" implementing the business logic and the one 
responsible for database access are so extensive that the coupling is very high. 

There are other pitfalls where framework design or just conventions of a company or project can 
undermine MODEL-DRIVEN DESIGN by obscuring the natural cohesion of the domain objects, but 
the bottom line is the same. The restrictions, or just the large number of required packages, rules 
out the use of other packaging schemes that are tailored to the needs of the domain model. 

Use packaging to separate the domain layer from other code. Otherwise, leave as much 
freedom as possible to the domain developers to package the domain objects in ways that 
support their model and design choices. 

One exception arises when code is generated based on a declarative design (discussed in Chapter 
10 ). In that case, the developers do not need to read the code, and it is better to put it into a 
separate package so that it is out of the way, not cluttering up the design elements developers 
actually have to work with. 

Modularity becomes more critical as the design gets bigger and more complex. This section 
presents the basic considerations. Much of Part IV , "Strategic Design," provides approaches to 
packaging and breaking down big models and designs, and ways to give people focal points to 
guide understanding. 

Each concept from the domain model should be reflected in an element of implementation. The 
ENTITIES , VALUE OBJECTS , and their associations, along with a few domain SERVICES and the 
organizing MODULES , are points of direct correspondence between the implementation and the 
model. The objects, pointers, and retrieval mechanisms in the implementation must map to model 
elements straightforwardly, obviously. If they do not, clean up the code, go back and change the 
model, or both. 

Resist the temptation to add anything to the domain objects that does not closely relate to the 
concepts they represent. These design elements have their job to do: they express the model. There 
are other domain-related responsibilities that must be carried out and other data that must be 
managed in order to make the system work, but they don't belong in these objects. In Chapter 6 , I 
will discuss some supporting objects that fulfill the technical responsibilities of the domain layer, 
such as defining database searches and encapsulating complex object creation. 

The four patterns in this chapter provide the building blocks for an object model. But MODEL-

file:///E|/books/0-321-12521-5/ch05lev1sec5.htm?xmlid=0-321-12521-5/ch10#ch10
file:///E|/books/0-321-12521-5/ch05lev1sec5.htm?xmlid=0-321-12521-5/ch10#ch10
file:///E|/books/0-321-12521-5/ch05lev1sec5.htm?xmlid=0-321-12521-5/part04#part04
file:///E|/books/0-321-12521-5/ch05lev1sec5.htm?xmlid=0-321-12521-5/ch06#ch06


DRIVEN DESIGN does not necessarily mean forcing everything into an object mold. There are also 
other model paradigms supported by tools, such as rules engines. Projects have to make pragmatic 
trade-offs between them. These other tools and techniques are means to the end of a MODEL-
DRIVEN DESIGN , not alternatives to it. 
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Chapter Five.  A Model Expressed in Software 

Modeling Paradigms 

M ODEL-DRIVEN DESIGN calls for an implementation technology in tune with the particular 
modeling paradigm being applied. Many such paradigms have been experimented with, but only a 
few have been widely used in practice. At present, the dominant paradigm is object-oriented 
design, and most complex projects these days set out to use objects. This predominance has come 
about for a variety of reasons: some factors are intrinsic to objects, some are circumstantial, and 
others derive from the advantages that come from wide usage itself. 

Why the Object Paradigm Predominates 

Many of the reasons teams choose the object paradigm are not technical, or even intrinsic to 
objects. But right out of the gate, object modeling does strike a nice balance of simplicity and 
sophistication. 

If a modeling paradigm is too esoteric, not enough developers will master it, and they will use it 
badly. If the nontechnical members of the team can't grasp at least the rudiments of the paradigm, 
they will not understand the model, and the UBIQUITOUS LANGUAGE will be lost. The 
fundamentals of object-oriented design seem to come naturally to most people. Although some 
developers miss the subtleties of modeling, even nontechnologists can follow a diagram of an 
object model. 

Yet, simple as the concept of object modeling is, it has proven rich enough to capture important 
domain knowledge. And it has been supported from the outset by development tools that allowed a 
model to be expressed in software. 

Today, the object paradigm also has some significant circumstantial advantages deriving from 
maturity and widespread adoption. Without mature infrastructure and tool support, a project can 
get sidetracked into technological R&D, delaying and diverting resources away from application 
development and introducing technical risks. Some technologies don't play well with others, and it 
may not be possible to integrate them with industry-standard solutions, forcing the team to 
reinvent common utilities. But over the years, many of these problems have been solved for 
objects, or made irrelevant by widespread adoption. (Now it falls on other approaches to integrate 
with mainstream object technology.) Most new technologies provide the means to integrate with 
the popular object-oriented platforms. This makes integration easier and even leaves open the 



option of mixing in subsystems based on other modeling paradigms (which we will discuss later in 
this chapter). 

Equally important is the maturity of the developer community and the design culture itself . A 
project that adopts a novel paradigm may be unable to find developers with expertise in the 
technology, or with the experience to create effective models in the chosen paradigm. It may not 
be feasible to educate developers in a reasonable amount of time because the patterns for making 
the most of the paradigm and technology haven't gelled yet. Perhaps the pioneers of the field are 
effective but haven't yet published their insights in an accessible form. 

Objects are already understood by a community of thousands of developers, project managers, and 
all the other specialists involved in project work. 

A story from an object-oriented project of only a decade ago illustrates the risks of working in an 
immature paradigm. In the early 1990s, this project committed itself to several cutting-edge 
technologies, including use of an object-oriented database on a large scale. It was exciting. People 
on the team would proudly tell visitors that we were deploying the biggest database this 
technology had ever supported. When I joined the project, different teams were spinning out object-
oriented designs and storing their objects in the database effortlessly. But gradually the realization 
crept upon us that we were beginning to absorb a significant fraction of the database's 
capacity—with test data! The actual database would be dozens of times larger. The actual 
transaction volume would be dozens of times higher. Was it impossible to use this technology for 
this application? Had we used it improperly? We were out of our depth. 

Fortunately, we were able to bring onto the team one of a handful of people in the world with the 
skills to extricate us from the problem. He named his price and we paid it. There were three 
sources of the problem. First, the off-the-shelf infrastructure provided with the database simply 
didn't scale up to our needs. Second, storage of fine-grained objects turned out to be much more 
costly than we had realized. Third, parts of the object model had such a tangle of 
interdependencies that contention became a problem with a relatively small number of concurrent 
transactions. 

With the help of this hired expert, we enhanced the infrastructure. The team, now aware of the 
impact of fine-grained objects, began to find models that worked better with this technology. All 
of us deepened our thinking about the importance of limiting the web of relationships in a model, 
and we began applying this new understanding to making better models with more decoupling 
between closely interrelated aggregates. 

Several months were lost in this recovery, in addition to the earlier months spent going down a 
failed path. And this had not been the team's first setback resulting from the immaturity of the 
chosen technologies and our own lack of experience with the associated learning curve. Sadly, this 
project eventually retrenched and became quite conservative. To this day they use the exotic 



technologies, but for cautiously scoped applications that probably don't really benefit from them. 

A decade later, object-oriented technology is relatively mature. Most common infrastructure needs 
can be met with off-the-shelf solutions that have been used in the field. Mission-critical tools come 
from major vendors, often multiple vendors, or from stable open-source projects. Many of these 
infrastructure pieces themselves are used widely enough that there is a base of people who already 
understand them, as well as books explaining them, and so forth. The limitations of these 
established technologies are fairly well understood, so that knowledgeable teams are less likely to 
overreach. 

Other interesting modeling paradigms just don't have this maturity. Some are too hard to master 
and will never be used outside small specialties. Others have potential, but the technical 
infrastructure is still patchy or shaky, and few people understand the subtleties of creating good 
models for them. These may come of age, but they are not ready for most projects. 

This is why, for the present, most projects attempting MODEL-DRIVEN DESIGN are wise to use 
object-oriented technology as the core of their system. They will not be locked into an object-only 
system—because objects have become the mainstream of the industry, integration tools are 
available to connect with almost any other technology in current use. 

Yet this doesn't mean that people should restrict themselves to objects forever. Traveling with the 
crowd provides some safety, but it isn't always the way to go. Object models address a large 
number of practical software problems, but there are domains that are not natural to model as 
discrete packets of encapsulated behavior. For example, domains that are intensely mathematical 
or that are dominated by global logical reasoning do not fit well into the object-oriented paradigm. 

Nonobjects in an Object World 

A domain model does not have to be an object model. There are MODEL-DRIVEN DESIGNS 
implemented in Prolog, for example, with a model made up of logical rules and facts. Model 
paradigms have been conceived to address certain ways people like to think about domains. Then 
the models of those domains are shaped by the paradigm. The result is a model that conforms to 
the paradigm so that it can be effectively implemented in the tools that support that modeling style. 

Whatever the dominant model paradigm may be on a project, there are bound to be parts of the 
domain that would be much easier to express in some other paradigm. When there are just a few 
anomalous elements of a domain that otherwise works well in a paradigm, developers can live with 
a few awkward objects in an otherwise consistent model. (Or, on the other extreme, if the greater 
part of the problem domain is more naturally expressed in a particular other paradigm, it may 
make sense to switch paradigms altogether and choose a different implementation platform.) But 
when major parts of the domain seem to belong to different paradigms, it is intellectually 
appealing to model each part in a paradigm that fits, using a mixture of tool sets to support 



implementation. When the interdependence is small, a subsystem in the other paradigm can be 
encapsulated, such as a complex math calculation that simply needs to be called by an object. 
Other times the different aspects are more intertwined, such as when the interaction of the objects 
depends on some mathematical relationships. 

This is what motivates the integration into object systems of such nonobject components as 
business rules engines and workflow engines. Mixing paradigms allows developers to model 
particular concepts in the style that fits best. Furthermore, most systems must use some nonobject 
technical infrastructure, most commonly relational databases. But making a coherent model that 
spans paradigms is hard, and making the supporting tools coexist is complicated. When developers 
can't clearly see a coherent model embodied in the software, MODEL-DRIVEN DESIGN can go out 
the window, even as this mixture increases the need for it. 

Sticking with M ODEL -D RIVEN D ESIGN When Mixing Paradigms 

Rules engines will serve as an example of a technology sometimes mixed into an object-oriented 
application development project. A knowledge-rich domain model probably contains explicit rules, 
yet the object paradigm lacks specific semantics for stating rules and their interactions. Although 
rules can be modeled as objects, and often are successfully, object encapsulation makes it awkward 
to apply global rules that cross the whole system. Rules engine technology is appealing because it 
promises to provide a more natural and declarative way to define rules, effectively allowing the 
rules paradigm to be mixed into the object paradigm. The logic paradigm is well developed and 
powerful, and it seems like a good complement to the strengths and weaknesses of objects. 

But people don't always get what they hope for out of rules engines. Some products just don't work 
very well. Some lack a seamless view that can show the relatedness of model concepts that run 
between the two implementation environments. One common outcome is an application fractured 
in two: a static data storage system using objects, and an ad hoc rules processing application that 
has lost almost all connection with the object model. 

It is important to continue to think in terms of models while working with rules. The team has to 
find a single model that can work with both implementation paradigms. This is not easy, but it 
should be possible if the rules engine allows expressive implementation. Otherwise, the data and 
the rules become unconnected. The rules in the engine end up more like little programs than 
conceptual rules in the domain model. With tight, clear relationships between the rules and the 
objects, the meaning of both pieces is retained. 

Without a seamless environment, it falls on the developers to distill a model made up of clear, 
fundamental concepts to hold the whole design together. 

The most effective tool for holding the parts together is a robust UBIQUITOUS LANGUAGE that 
underlies the whole heterogeneous model. Consistently applying names in the two environments 



and exercising those names in the UBIQUITOUS LANGUAGE can help bridge the gap. 

This is a topic that deserves a book of its own. The goal of this section is merely to show that it 
isn't necessary to give up MODEL-DRIVEN DESIGN , and that it is worth the effort to keep it. 

Although a MODEL-DRIVEN DESIGN does not have to be object oriented, it does depend on having 
an expressive implementation of the model constructs, be they objects, rules, or workflows. If the 
available tool does not facilitate that expressiveness, reconsider the choice of tools. An 
unexpressive implementation negates the advantage of the extra paradigm. 

Here are four rules of thumb for mixing nonobject elements into a predominantly object-oriented 
system: 

●     Don't fight the implementation paradigm . There's always another way to think about a 
domain. Find model concepts that fit the paradigm. 

●     Lean on the ubiquitous language . Even when there is no rigorous connection between 
tools, very consistent use of language can keep parts of the design from diverging. 

●     Don't get hung up on UML . Sometimes the fixation on a tool, such as UML diagramming, 
leads people to distort the model to make it fit what can easily be drawn. For example, 
UML does have some features for representing constraints, but they are not always 
sufficient. Some other style of drawing (perhaps conventional for the other paradigm), or 
simple English descriptions, are better than tortuous adaptation of a drawing style intended 
for a certain view of objects. 

●     Be skeptical . Is the tool really pulling its weight? Just because you have some rules, that 
doesn't necessarily mean you need the overhead of a rules engine. Rules can be expressed 
as objects, perhaps a little less neatly; multiple paradigms complicate matters enormously. 

Before taking on the burden of mixed paradigms, the options within the dominant paradigm should 
be exhausted. Even though some domain concepts don't present themselves as obvious objects, 
they often can be modeled within the paradigm. Chapter 9 will discuss the modeling of 
unconventional types of concepts using object technology 

The relational paradigm is a special case of paradigm mixing. The most common nonobject 
technology, the relational database is also more intimately related to the object model than other 
components, because it acts as the persistent store of the data that makes up the objects themselves. 
Storing object data in relational databases will be discussed in Chapter 6 , along with the many 
other challenges of the object life cycle. 
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Part II:  The Building Blocks of a Model-Driven Design 

Chapter Six. The Life Cycle of a Domain Object 
Every object has a life cycle. An object is born, it likely goes through various states, and it 
eventually dies—being either archived or deleted. Of course, many of these are simple, transient 
objects, created with an easy call to their constructor, used in some computation, and then 
abandoned to the garbage collector. There is no need to complicate such objects. But other objects 
have longer lives, not all of which are spent in active memory. They have complex 
interdependencies with other objects. They go through changes of state to which invariants apply. 
Managing these objects presents challenges that can easily derail an attempt at MODEL-DRIVEN 
DESIGN . 

Figure 6.1. The life cycle of a domain object 

 

The challenges fall into two categories. 



1.  Maintaining integrity throughout the life cycle 

2.  Preventing the model from getting swamped by the complexity of managing the life cycle 

This chapter will address these issues through three patterns. First, AGGREGATES tighten up the 
model itself by defining clear ownership and boundaries, avoiding a chaotic, tangled web of 
objects. This pattern is crucial to maintaining integrity in all phases of the life cycle. 

Next, the focus turns to the beginning of the life cycle, using FACTORIES to create and reconstitute 
complex objects and AGGREGATES , keeping their internal structure encapsulated. Finally, 
REPOSITORIES address the middle and end of the life cycle, providing the means of finding and 
retrieving persistent objects while encapsulating the immense infrastructure involved. 

Although REPOSITORIES and FACTORIES do not themselves come from the domain, they have 
meaningful roles in the domain design. These constructs complete the MODEL-DRIVEN DESIGN by 
giving us accessible handles on the model objects. 

Modeling AGGREGATES and adding FACTORIES and REPOSITORIES to the design gives us the 
ability to manipulate the model objects systematically and in meaningful units throughout their life 
cycle. AGGREGATES mark off the scope within which invariants have to be maintained at every 
stage of the life cycle. F ACTORIES and REPOSITORIES operate on AGGREGATES , encapsulating 
the complexity of specific life cycle transitions. 
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Chapter Six.  The Life Cycle of a Domain Object 

Aggregates 

 

Minimalist design of associations helps simplify traversal and limit the explosion of relationships 
somewhat, but most business domains are so interconnected that we still end up tracing long, deep 
paths through object references. In a way, this tangle reflects the realities of the world, which 
seldom obliges us with sharp boundaries. It is a problem in a software design. 

Say you were deleting a Person object from a database. Along with the person go a name, birth 
date, and job description. But what about the address? There could be other people at the same 
address. If you delete the address, those Person objects will have references to a deleted object. If 



you leave it, you accumulate junk addresses in the database. Automatic garbage collection could 
eliminate the junk addresses, but that technical fix, even if available in your database system, 
ignores a basic modeling issue. 

Even when considering an isolated transaction, the web of relationships in a typical object model 
gives no clear limit to the potential effect of a change. It is not practical to refresh every object in 
the system, just in case there is some dependency. 

The problem is acute in a system with concurrent access to the same objects by multiple clients. 
With many users consulting and updating different objects in the system, we have to prevent 
simultaneous changes to interdependent objects. Getting the scope wrong has serious 
consequences. 

It is difficult to guarantee the consistency of changes to objects in a model with complex 
associations. Invariants need to be maintained that apply to closely related groups of objects, 
not just discrete objects. Yet cautious locking schemes cause multiple users to interfere 
pointlessly with each other and make a system unusable. 

Put another way, how do we know where an object made up of other objects begins and ends? In 
any system with persistent storage of data, there must be a scope for a transaction that changes 
data, and a way of maintaining the consistency of the data (that is, maintaining its invariants). 
Databases allow various locking schemes, and tests can be programmed. But these ad hoc 
solutions divert attention away from the model, and soon you are back to hacking and hoping. 

In fact, finding a balanced solution to these kinds of problems calls for deeper understanding of the 
domain, this time extending to factors such as the frequency of change between the instances of 
certain classes. We need to find a model that leaves high-contention points looser and strict 
invariants tighter. 

Although this problem surfaces as technical difficulties in database transactions, it is rooted in the 
model—in its lack of defined boundaries. A solution driven from the model will make the model 
easier to understand and make the design easier to communicate. As the model is revised, it will 
guide our changes to the implementation. 

Schemes have been developed for defining ownership relationships in the model. The following 
simple but rigorous system, distilled from those concepts, includes a set of rules for implementing 
transactions that modify the objects and their owners. [1] 

[1] David Siegel devised and used this system on projects in the 1990s but has not 
published it. 



First we need an abstraction for encapsulating references within the model. An AGGREGATE is a 
cluster of associated objects that we treat as a unit for the purpose of data changes. Each 
AGGREGATE has a root and a boundary. The boundary defines what is inside the AGGREGATE . 
The root is a single, specific ENTITY contained in the AGGREGATE . The root is the only member 
of the AGGREGATE that outside objects are allowed to hold references to, although objects within 
the boundary may hold references to each other. ENTITIES other than the root have local identity, 
but that identity needs to be distinguishable only within the AGGREGATE , because no outside 
object can ever see it out of the context of the root ENTITY . 

A model of a car might be used in software for an auto repair shop. The car is an ENTITY with 
global identity: we want to distinguish that car from all other cars in the world, even very similar 
ones. We can use the vehicle identification number for this, a unique identifier assigned to each 
new car. We might want to track the rotation history of the tires through the four wheel positions. 
We might want to know the mileage and tread wear of each tire. To know which tire is which, the 
tires must be identified ENTITIES also. But it is very unlikely that we care about the identity of 
those tires outside of the context of that particular car. If we replace the tires and send the old ones 
to a recycling plant, either our software will no longer track them at all, or they will become 
anonymous members of a heap of tires. No one will care about their rotation histories. More to the 
point, even while they are attached to the car, no one will try to query the system to find a 
particular tire and then see which car it is on. They will query the database to find a car and then 
ask it for a transient reference to the tires. Therefore, the car is the root ENTITY of the AGGREGATE 
whose boundary encloses the tires also. On the other hand, engine blocks have serial numbers 
engraved on them and are sometimes tracked independently of the car. In some applications, the 
engine might be the root of its own AGGREGATE . 

Figure 6.2. Local versus global identity and object references 

 

Invariants, which are consistency rules that must be maintained whenever data changes, will 



involve relationships between members of the AGGREGATE . Any rule that spans AGGREGATES 
will not be expected to be up-to-date at all times. Through event processing, batch processing, or 
other update mechanisms, other dependencies can be resolved within some specified time. But the 
invariants applied within an AGGREGATE will be enforced with the completion of each transaction. 

Figure 6.3. A GGREGATE invariants 

 

Now, to translate that conceptual AGGREGATE into the implementation, we need a set of rules to 
apply to all transactions. 

●     The root ENTITY has global identity and is ultimately responsible for checking invariants. 

●     Root ENTITIES have global identity. E NTITIES inside the boundary have local identity, 
unique only within the AGGREGATE . 

●     Nothing outside the AGGREGATE boundary can hold a reference to anything inside, except 
to the root ENTITY . The root ENTITY can hand references to the internal ENTITIES to other 
objects, but those objects can use them only transiently, and they may not hold on to the 
reference. The root may hand a copy of a VALUE OBJECT to another object, and it doesn't 
matter what happens to it, because it's just a VALUE and no longer will have any association 
with the AGGREGATE. 

●     As a corollary to the previous rule, only AGGREGATE roots can be obtained directly with 



database queries. All other objects must be found by traversal of associations. 

●     Objects within the AGGREGATE can hold references to other AGGREGATE roots. 

●     A delete operation must remove everything within the AGGREGATE boundary at once. 
(With garbage collection, this is easy. Because there are no outside references to anything 
but the root, delete the root and everything else will be collected.) 

●     When a change to any object within the AGGREGATE boundary is committed, all invariants 
of the whole AGGREGATE must be satisfied. 

Cluster the ENTITIES and VALUE OBJECTS into AGGREGATES and define boundaries around 
each. Choose one ENTITY to be the root of each AGGREGATE , and control all access to the 
objects inside the boundary through the root. Allow external objects to hold references to the 
root only. Transient references to internal members can be passed out for use within a single 
operation only. Because the root controls access, it cannot be blindsided by changes to the 
internals. This arrangement makes it practical to enforce all invariants for objects in the 
AGGREGATE and for the AGGREGATE as a whole in any state change. 

It can be very helpful to have a technical framework that allows you to declare AGGREGATES and 
then automatically carries out the locking scheme and so forth. Without that assistance, the team 
must have the self-discipline to agree on the AGGREGATES and code consistently with them. 

Example 
Purchase Order Integrity 

Consider the complications possible in a simplified purchase order system. 

Figure 6.4. A model for a purchase order system 



 

This diagram presents a pretty conventional view of a purchase order (PO), broken down into line 
items, with an invariant rule that the sum of the line items can't exceed the limit for the PO as a 
whole. The existing implementation has three interrelated problems. 

1.  Invariant enforcement . When a new line item is added, the PO checks the total and marks 
itself invalid if an item pushes it over the limit. As we'll see, this is not adequate protection. 

2.  Change management . When the PO is deleted or archived, the line items are taken along, 
but the model gives no guidance on where to stop following the relationships. There is also 
confusion about the impact of changing the part price at different times. 

3.  Sharing the database . Multiple users are creating contention problems in the database. 

Multiple users will be entering and updating various POs concurrently, and we have to prevent 
them from messing up each other's work. Let's start with a very simple strategy, in which we lock 
any object a user begins to edit until that user commits the transaction. So, when George is editing 
line item 001, Amanda cannot access it. She can edit any other line item on any other PO 
(including other items in the PO George is working on). 

Figure 6.5. The initial condition of the PO stored in the database 



 

Objects will be read from the database and instantiated in each user's memory space. There they 
can be viewed and edited. Database locks will be requested only when an edit begins. So both 
George and Amanda can work concurrently, as long as they stay away from each other's items. All 
is well . . . until both George and Amanda start working on separate line items in the same PO. 

Figure 6.6. Simultaneous edits in distinct transactions 

 

Everything looks fine to both users and to their software because they ignore changes to other parts 
of the database that happen during the transaction, and neither locked line item is involved in the 
other user's change. 

Figure 6.7. The resulting PO violates the approval limit (broken invariant). 



 

After both users have saved their changes, a PO is stored in the database that violates the invariant 
of the domain model. An important business rule has been broken. And nobody even knows. 

Clearly, locking a single line item isn't an adequate safeguard. If instead we had locked an entire 
PO at a time, the problem would have been prevented. 

Figure 6.8. Locking the entire PO allows the invariant to be enforced. 

 



The program will not allow this transaction to be saved until Amanda has resolved the problem, 
perhaps by raising the limit or by eliminating a guitar. This mechanism prevents the problem, and 
it may be a fine solution if work is mostly spread widely across many POs. But if multiple people 
typically work simultaneously on different line items of a large PO, then this locking will get 
cumbersome. 

Even assuming many small POs, there are other ways to violate the assertion. Consider that "part." 
If someone changed the price of a trombone while Amanda was adding to her order, wouldn't that 
violate the invariant too? 

Let's try locking the part in addition to the entire PO. Here's what happens when George, Amanda, 
and Sam are working on different POs: 

Figure 6.9. Over-cautious locking is interfering with people's work. 

 

The inconvenience is mounting, because there is a lot of contention for the instruments (the 
"parts"). And then: 

Figure 6.10. Deadlock 



 

Those three will be waiting a while. 

At this point we can begin to improve the model by incorporating the following knowledge of the 
business: 

1.  Parts are used in many POs (high contention). 

2.  There are fewer changes to parts than there are to POs. 

3.  Changes to part prices do not necessarily propagate to existing POs. It depends on the time 
of a price change relative to the status of the PO. 

Point 3 is particularly obvious when we consider archived POs that have already been delivered. 
They should, of course, show the prices as of the time they were filled, rather than current prices. 

Figure 6.11. Price is copied into Line Item . A GGREGATE invariant can now be 
enforced. 



 

An implementation consistent with this model would guarantee the invariant relating PO and its 
items, while changes to the price of a part would not have to immediately affect the items that 
reference it. Broader consistency rules could be addressed in other ways. For example, the system 
could present a queue of items with outdated prices to the users each day, so they could update or 
exempt each one. But this is not an invariant that must be enforced at all times. By making the 
dependency of line items on parts looser, we avoid contention and reflect the realities of the 
business better. At the same time, tightening the relationship of the PO and its line items 
guarantees that an important business rule will be followed. 

The AGGREGATE imposes an ownership of the PO and its items that is consistent with business 
practice. The creation and deletion of a PO and items are naturally tied together, while the creation 
and deletion of parts is independent. 

   

AGGREGATES mark off the scope within which invariants have to be maintained at every stage of 
the life cycle. The following patterns, FACTORIES and REPOSITORIES , operate on AGGREGATES , 
encapsulating the complexity of specific life cycle transitions. . . . 
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Chapter Six.  The Life Cycle of a Domain Object 

Factories 

 

When creation of an object, or an entire AGGREGATE , becomes complicated or reveals too much 
of the internal structure, FACTORIES provide encapsulation. 

   

Much of the power of objects rests in the intricate configuration of their internals and their 
associations. An object should be distilled until nothing remains that does not relate to its meaning 
or support its role in interactions. This mid-life cycle responsibility is plenty. Problems arise from 
overloading a complex object with responsibility for its own creation. 



A car engine is an intricate piece of machinery, with dozens of parts collaborating to perform the 
engine's responsibility: to turn a shaft. One could imagine trying to design an engine block that 
could grab on to a set of pistons and insert them into its cylinders, spark plugs that would find their 
sockets and screw themselves in. But it seems unlikely that such a complicated machine would be 
as reliable or as efficient as our typical engines are. Instead, we accept that something else will 
assemble the pieces. Perhaps it will be a human mechanic or perhaps it will be an industrial robot. 
Both the robot and the human are actually more complex than the engine they assemble. The job of 
assembling parts is completely unrelated to the job of spinning a shaft. The assemblers function 
only during the creation of the car—you don't need a robot or a mechanic with you when you're 
driving. Because cars are never assembled and driven at the same time, there is no value in 
combining both of these functions into the same mechanism. Likewise, assembling a complex 
compound object is a job that is best separated from whatever job that object will have to do when 
it is finished. 

But shifting responsibility to the other interested party, the client object in the application, leads to 
even worse problems. The client knows what job needs to be done and relies on the domain objects 
to carry out the necessary computations. If the client is expected to assemble the domain objects it 
needs, it must know something about the internal structure of the object. In order to enforce all the 
invariants that apply to the relationship of parts in the domain object, the client must know some of 
the object's rules. Even calling constructors couples the client to the concrete classes of the objects 
it is building. No change to the implementation of the domain objects can be made without 
changing the client, making refactoring harder. 

A client taking on object creation becomes unnecessarily complicated and blurs its responsibility. 
It breaches the encapsulation of the domain objects and the AGGREGATES being created. Even 
worse, if the client is part of the application layer, then responsibilities have leaked out of the 
domain layer altogether. This tight coupling of the application to the specifics of the 
implementation strips away most of the benefits of abstraction in the domain layer and makes 
continuing changes ever more expensive. 

Creation of an object can be a major operation in itself, but complex assembly operations do 
not fit the responsibility of the created objects. Combining such responsibilities can produce 
ungainly designs that are hard to understand. Making the client direct construction muddies 
the design of the client, breaches encapsulation of the assembled object or AGGREGATE , and 
overly couples the client to the implementation of the created object. 

Complex object creation is a responsibility of the domain layer, yet that task does not belong to the 
objects that express the model. There are some cases in which an object creation and assembly 
corresponds to a milestone significant in the domain, such as "open a bank account." But object 
creation and assembly usually have no meaning in the domain; they are a necessity of the 
implementation. To solve this problem, we have to add constructs to the domain design that are not 



ENTITIES, VALUE OBJECTS , or SERVICES . This is a departure from the previous chapter, and it is 
important to make the point clear: We are adding elements to the design that do not correspond to 
anything in the model, but they are nonetheless part of the domain layer's responsibility. 

Every object-oriented language provides a mechanism for creating objects (constructors in Java 
and C++, instance creation class methods in Smalltalk, for example), but there is a need for more 
abstract construction mechanisms that are decoupled from the other objects. A program element 
whose responsibility is the creation of other objects is called a FACTORY . 

Figure 6.12. Basic interactions with a FACTORY 

 

Just as the interface of an object should encapsulate its implementation, thus allowing a client to 
use the object's behavior without knowing how it works, a FACTORY encapsulates the knowledge 
needed to create a complex object or AGGREGATE . It provides an interface that reflects the goals 
of the client and an abstract view of the created object. 

Therefore: 

Shift the responsibility for creating instances of complex objects and AGGREGATES to a 
separate object, which may itself have no responsibility in the domain model but is still part 
of the domain design. Provide an interface that encapsulates all complex assembly and that 
does not require the client to reference the concrete classes of the objects being instantiated. 
Create entire AGGREGATES as a piece, enforcing their invariants. 

   

There are many ways to design FACTORIES . Several special-purpose creation patterns— 
FACTORY METHOD, ABSTRACT FACTORY , and BUILDER —were thoroughly treated in Gamma et 
al. 1995 . That book mostly explored patterns for the most difficult object construction problems. 
The point here is not to delve deeply into designing FACTORIES , but rather to show the place of 
FACTORIES as important components of a domain design. Proper use of FACTORIES can help keep 
a MODEL-DRIVEN DESIGN on track. 
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The two basic requirements for any good FACTORY are 

1.  Each creation method is atomic and enforces all invariants of the created object or 
AGGREGATE . A FACTORY should only be able to produce an object in a consistent state. 
For an ENTITY, this means the creation of the entire AGGREGATE , with all invariants 
satisfied, but probably with optional elements still to be added. For an immutable VALUE 
OBJECT , this means that all attributes are initialized to their correct final state. If the 
interface makes it possible to request an object that can't be created correctly, then an 
exception should be raised or some other mechanism should be invoked that will ensure 
that no improper return value is possible. 

2.  The FACTORY should be abstracted to the type desired, rather than the concrete class(es) 
created. The sophisticated FACTORY patterns in Gamma et al. 1995 help with this. 

Choosing F ACTORIES and Their Sites 

Generally speaking, you create a factory to build something whose details you want to hide, and 
you place the FACTORY where you want the control to be. These decisions usually revolve around 
AGGREGATES . 

For example, if you needed to add elements inside a preexisting AGGREGATE , you might create a 
FACTORY METHOD on the root of the AGGREGATE . This hides the implementation of the interior 
of the AGGREGATE from any external client, while giving the root responsibility for ensuring the 
integrity of the AGGREGATE as elements are added, as shown in Figure 6.13 on the next page. 

Figure 6.13. A FACTORY METHOD encapsulates expansion of an AGGREGATE . 
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Another example would be to place a FACTORY METHOD on an object that is closely involved in 
spawning another object, although it doesn't own the product once it is created. When the data and 
possibly the rules of one object are very dominant in the creation of an object, this saves pulling 
information out of the spawner to be used elsewhere to create the object. It also communicates the 
special relationship between the spawner and the product. 

In Figure 6.14 , the Trade Order is not part of the same AGGREGATE as the Brokerage Account 
because, for a start, it will go on to interact with the trade execution application, where the 
Brokerage Account would only be in the way. Even so, it seems natural to give the Brokerage 
Account control over the creation of Trade Orders . The Brokerage Account contains 
information that will be embedded in the Trade Order (starting with its own identity), and it 
contains rules that govern what trades are allowed. We might also benefit from hiding the 
implementation of Trade Order . For example, it might be refactored into a hierarchy, with 
separate subclasses for Buy Order and Sell Order . The FACTORY keeps the client from being 
coupled to the concrete classes. 

Figure 6.14. A FACTORY METHOD spawns an ENTITY that is not part of the same 
AGGREGATE . 



 

A FACTORY is very tightly coupled to its product, so a FACTORY should be attached only to an 
object that has a close natural relationship with the product. When there is something we want to 
hide—either the concrete implementation or the sheer complexity of construction—yet there 
doesn't seem to be a natural host, we must create a dedicated FACTORY object or SERVICE . A 
standalone FACTORY usually produces an entire AGGREGATE , handing out a reference to the root, 
and ensuring that the product AGGREGATE'S invariants are enforced. If an object interior to an 
AGGREGATE needs a FACTORY , and the AGGREGATE root is not a reasonable home for it, then go 
ahead and make a standalone FACTORY . But respect the rules limiting access within an 
AGGREGATE , and make sure there are only transient references to the product from outside the 
AGGREGATE. 

Figure 6.15. A standalone FACTORY builds AGGREGATE . 

 

When a Constructor Is All You Need 

I've seen far too much code in which all instances are created by directly calling class constructors, 
or whatever the primitive level of instance creation is for the programming language. The 
introduction of FACTORIES has great advantages, and is generally underused. Yet there are times 
when the directness of a constructor makes it the best choice. F ACTORIES can actually obscure 
simple objects that don't use polymorphism. 

The trade-offs favor a bare, public constructor in the following circumstances. 

●     The class is the type. It is not part of any interesting hierarchy, and it isn't used 
polymorphically by implementing an interface. 



●     The client cares about the implementation, perhaps as a way of choosing a STRATEGY . 

●     All of the attributes of the object are available to the client, so that no object creation gets 
nested inside the constructor exposed to the client. 

●     The construction is not complicated. 

●     A public constructor must follow the same rules as a FACTORY : It must be an atomic 
operation that satisfies all invariants of the created object. 

Avoid calling constructors within constructors of other classes. Constructors should be dead 
simple. Complex assemblies, especially of AGGREGATES , call for FACTORIES . The threshold for 
choosing to use a little FACTORY METHOD isn't high. 

The Java class library offers interesting examples. All collections implement interfaces that 
decouple the client from the concrete implementation. Yet they are all created by direct calls to 
constructors. A FACTORY could have encapsulated the collection hierarchy. The FACTORY 's 
methods could have allowed a client to ask for the features it needed, with the FACTORY selecting 
the appropriate class to instantiate. Code that created collections would be more expressive, and 
new collection classes could be installed without breaking every Java program. 

But there is a case in favor of the concrete constructors. First, the choice of implementation can be 
performance sensitive for many applications, so an application might want control. (Even so, a 
really smart FACTORY could accommodate such factors.) Anyway, there aren't very many 
collection classes, so it isn't that complicated to choose. 

The abstract collection types preserve some value in spite of the lack of a FACTORY because of 
their usage patterns. Collections are very often created in one place and used in another. This 
means that the client that ultimately uses the collection—adding, removing, and retrieving its 
contents—can still talk to the interface and be decoupled from the implementation. The selection 
of a collection class typically falls to the object that owns the collection, or to the owning object's 
FACTORY . 

Designing the Interface 

When designing the method signature of a FACTORY , whether standalone or FACTORY METHOD , 
keep in mind these two points. 

●     Each operation must be atomic . You have to pass in everything needed to create a 
complete product in a single interaction with the FACTORY . You also have to decide what 
will happen if creation fails, in the event that some invariant isn't satisfied. You could throw 



an exception or just return a null. To be consistent, consider adopting a coding standard for 
failures in FACTORIES . 

●     The FACTORY will be coupled to its arguments . If you are not careful in your selection of 
input parameters, you can create a rat's nest of dependencies. The degree of coupling will 
depend on what you do with the argument. If it is simply plugged into the product, you've 
created a modest dependency. If you are picking parts out of the argument to use in the 
construction, the coupling gets tighter. 

The safest parameters are those from a lower design layer. Even within a layer, there tend to be 
natural strata with more basic objects that are used by higher level objects. (Such layering will be 
discussed in different ways in Chapter 10 , "Supple Design," and again in Chapter 16 , "Large-
Scale Structure.") 

Another good choice of parameter is an object that is closely related to the product in the model, so 
that no new dependency is being added. In the earlier example of a Purchase Order Item , the 
FACTORY METHOD takes a Catalog Part as an argument, which is an essential association for the 
Item . This adds a direct dependency between the Purchase Order class and the Part . But these 
three objects form a close conceptual group. The Purchase Order's AGGREGATE already 
referenced the Part , anyway. So giving control to the AGGREGATE root and encapsulating the 
AGGREGATE'S internal structure is a good trade-off. 

Use the abstract type of the arguments, not their concrete classes. The FACTORY is coupled to the 
concrete class of the products; it does not need to be coupled to concrete parameters also. 

Where Does Invariant Logic Go? 

A FACTORY is responsible for ensuring that all invariants are met for the object or AGGREGATE it 
creates; yet you should always think twice before removing the rules applying to an object outside 
that object. The FACTORY can delegate invariant checking to the product, and this is often best. 

But FACTORIES have a special relationship with their products. They already know their product's 
internal structure, and their entire reason for being involves the implementation of their product. 
Under some circumstances, there are advantages to placing invariant logic in the FACTORY and 
reducing clutter in the product. This is especially appealing with AGGREGATE rules (which span 
many objects). It is especially unappealing with FACTORY METHODS attached to other domain 
objects. 

Although in principle invariants apply at the end of every operation, often the transformations 
allowed to the object can never bring them into play. There might be a rule that applies to the 
assignment of the identity attributes of an ENTITY . But after creation that identity is immutable. V 
ALUE OBJECTS are completely immutable. An object doesn't need to carry around logic that will 
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never be applied in its active lifetime. In such cases, the FACTORY is a logical place to put 
invariants, keeping the product simpler. 

E NTITY F ACTORIES Versus V ALUE O BJECT F ACTORIES 

ENTITY FACTORIES differ from VALUE OBJECT FACTORIES in two ways. V ALUE OBJECTS are 
Immutable; the product comes out complete in its final form. So the FACTORY operations have to 
allow for a full description of the product. E NTITY FACTORIES tend to take just the essential 
attributes required to make a valid AGGREGATE . Details can be added later if they are not required 
by an invariant. 

Then there are the issues involved in assigning identity to an ENTITY —irrelevant to a VALUE 
OBJECT . As pointed out in Chapter 5 , an identifier can either be assigned automatically by the 
program or supplied from the outside, typically by the user. If a customer's identity is to be tracked 
by the telephone number, then that telephone number must obviously be passed in as an argument 
to the FACTORY . When the program is assigning an identifier, the FACTORY is a good place to 
control it. Although the actual generation of a unique tracking ID is typically done by a database 
"sequence" or other infrastructure mechanism, the FACTORY knows what to ask for and where to 
put it. 

Reconstituting Stored Objects 

Up to this point, the FACTORY has played its part in the very beginning of an object's life cycle. At 
some point, most objects get stored in databases or transmitted through a network, and few current 
database technologies retain the object character of their contents. Most transmission methods 
flatten an object into an even more limited presentation. Therefore, retrieval requires a potentially 
complex process of reassembling the parts into a live object. 

A FACTORY used for reconstitution is very similar to one used for creation, with two major 
differences. 

1.  An ENTITY FACTORY used for reconstitution does not assign a new tracking ID . To do so 
would lose the continuity with the object's previous incarnation. So identifying attributes 
must be part of the input parameters in a FACTORY reconstituting a stored object. 

2.  A FACTORY reconstituting an object will handle violation of an invariant differently . 
During creation of a new object, a FACTORY should simply balk when an invariant isn't 
met, but a more flexible response may be necessary in reconstitution. If an object already 
exists somewhere in the system (such as in the database), this fact cannot be ignored. Yet 
we also can't ignore the rule violation. There has to be some strategy for repairing such 
inconsistencies, which can make reconstitution more challenging than the creation of new 
objects. 
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Figures 6.16 and 6.17 (on the next page) show two kinds of reconstitution. Object-mapping 
technologies may provide some or all of these services in the case of database reconstitution, 
which is convenient. Whenever there is exposed complexity in reconstituting an object from 
another medium, the FACTORY is a good option. 

Figure 6.16. Reconstituting an ENTITY retrieved from a relational database 

 

Figure 6.17. Reconstituting an ENTITY transmitted as XML 

 



To sum up, the access points for creation of instances must be identified, and their scope must be 
defined explicitly. They may simply be constructors, but often there is a need for a more abstract 
or elaborate instance creation mechanism. This need introduces new constructs into the design: 
FACTORIES . F ACTORIES usually do not express any part of the model, yet they are a part of the 
domain design that helps keep the model-expressing objects sharp. 

A FACTORY encapsulates the life cycle transitions of creation and reconstitution. Another 
transition that exposes technical complexity that can swamp the domain design is the transition to 
and from storage. This transition is the responsibility of another domain design construct, the 
REPOSITORY . 
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Chapter Six.  The Life Cycle of a Domain Object 

Repositories 

 

Associations allow us to find an object based on its relationship to another. But we must have a 
starting point for a traversal to an ENTITY or VALUE in the middle of its life cycle. 

   

To do anything with an object, you have to hold a reference to it. How do you get that reference? 
One way is to create the object, as the creation operation will return a reference to the new object. 



A second way is to traverse an association. You start with an object you already know and ask it 
for an associated object. Any object-oriented program is going to do a lot of this, and these links 
give object models much of their expressive power. But you have to get that first object. 

I actually encountered a project once in which the team was attempting, in an enthusiastic embrace 
of MODEL-DRIVEN DESIGN , to do all object access by creation or traversal! Their objects resided 
in an object database, and they reasoned that existing conceptual relationships would provide all 
necessary associations. They needed only to analyze them enough, making their entire domain 
model cohesive. This self-imposed limitation forced them to create just the kind of endless tangle 
that we have been trying to avert over the last few chapters, with careful implementation of 
ENTITIES and application of AGGREGATES . The team members didn't stick with this strategy long, 
but they never replaced it with another coherent approach. They cobbled together ad hoc solutions 
and became less ambitious. 

Few would even think of this approach, much less be tempted by it, because they store most of 
their objects in relational databases. This storage technology makes it natural to use the third way 
of getting a reference: Execute a query to find the object in a database based on its attributes, or 
find the constituents of an object and then reconstitute it. 

A database search is globally accessible and makes it possible to go directly to any object. There is 
no need for all objects to be interconnected, which allows us to keep the web of objects 
manageable. Whether to provide a traversal or depend on a search becomes a design decision, 
trading off the decoupling of the search against the cohesiveness of the association. Should the 
Customer object hold a collection of all the Orders placed? Or should the Orders be found in the 
database, with a search on the Customer ID field? The right combination of search and association 
makes the design comprehensible. 

Unfortunately, developers don't usually get to think much about such design subtleties, because 
they are swimming in the sea of mechanisms needed to pull off the trick of storing an object and 
bringing it back—and eventually removing it from storage. 

Now from a technical point of view, retrieval of a stored object is really a subset of creation, 
because the data from the database is used to assemble new objects. Indeed, the code that usually 
has to be written makes it hard to forget this reality. But conceptually, this is the middle of the life 
cycle of an ENTITY . A Customer object does not represent a new customer just because we stored 
it in a database and retrieved it. To keep this distinction in mind, I refer to the creation of an 
instance from stored data as reconstitution . 

The goal of domain-driven design is to create better software by focusing on a model of the 
domain rather than the technology. By the time a developer has constructed an SQL query, passed 
it to a query service in the infrastructure layer, obtained a result set of table rows, pulled the 
necessary information out, and passed it to a constructor or FACTORY , the model focus is gone. It 



becomes natural to think of the objects as containers for the data that the queries provide, and the 
whole design shifts toward a data-processing style. The details of the technology vary, but the 
problem remains that the client is dealing with technology, rather than model concepts. 
Infrastructure such as METADATA MAPPING LAYERS (Fowler 2002) help a great deal, by making 
easier the conversion of the query result into objects, but the developer is still thinking about 
technical mechanisms, not the domain. Worse, as client code uses the database directly, developers 
are tempted to bypass model features such as AGGREGATES, or even object encapsulation, instead 
directly taking and manipulating the data they need. More and more domain rules become 
embedded in query code or simply lost. Object databases do eliminate the conversion problem, but 
search mechanisms are usually still mechanistic, and developers are still tempted to grab whatever 
objects they want. 

A client needs a practical means of acquiring references to preexisting domain objects. If the 
infrastructure makes it easy to do so, the developers of the client may add more traversable 
associations, muddling the model. On the other hand, they may use queries to pull the exact 
data they need from the database, or to pull a few specific objects rather than navigating 
from AGGREGATE roots. Domain logic moves into queries and client code, and the ENTITIES 
and VALUE OBJECTS become mere data containers. The sheer technical complexity of 
applying most database access infrastructure quickly swamps the client code, which leads 
developers to dumb down the domain layer, which makes the model irrelevant. 

Drawing on the design principles discussed so far, we can reduce the scope of the object access 
problem somewhat, assuming that we find a method of access that keeps the model focus sharp 
enough to employ those principles. For starters, we need not concern ourselves with transient 
objects. Transients (typically VALUE OBJECTS ) live brief lives, used in the client operation that 
created them and then discarded. We also need no query access for persistent objects that are more 
convenient to find by traversal. For example, the address of a person could be requested from the 
Person object. And most important, any object internal to an AGGREGATE is prohibited from 
access except by traversal from the root . 

Persistent VALUE OBJECTS are usually found by traversal from some ENTITY that acts as the root 
of the AGGREGATE that encapsulates them. In fact, a global search access to a VALUE is often 
meaningless, because finding a VALUE by its properties would be equivalent to creating a new 
instance with those properties. There are exceptions, though. For example, when I am planning 
travel online, I sometimes save a few prospective itineraries and return later to select one to book. 
Those itineraries are VALUES (if there were two made up of the same flights, I would not care 
which was which), but they have been associated with my user name and retrieved for me intact. 
Another case would be an "enumeration," when a type has a strictly limited, predetermined set of 
possible values. Global access to VALUE OBJECTS is much less common than for ENTITIES , 
though, and if you find you need to search the database for a preexisting VALUE , it is worth 
considering the possibility that you've really got an ENTITY whose identity you haven't recognized. 



From this discussion, it is clear that most objects should not be accessed by a global search. It 
would be nice for the design to communicate those that do. 

Now the problem can be restated more precisely. 

A subset of persistent objects must be globally accessible through a search based on object 
attributes. Such access is needed for the roots of AGGREGATES that are not convenient to 
reach by traversal. They are usually ENTITIES , sometimes VALUE OBJECTS with complex 
internal structure, and sometimes enumerated VALUES . Providing access to other objects 
muddies important distinctions. Free database queries can actually breach the encapsulation 
of domain objects and AGGREGATES . Exposure of technical infrastructure and database 
access mechanisms complicates the client and obscures the MODEL-DRIVEN DESIGN. 

There is a raft of techniques for dealing with the technical challenges of database access. Examples 
include encapsulating SQL into QUERY OBJECTS or translating between objects and tables with 
METADATA MAPPING LAYERS (Fowler 2002). FACTORIES can help reconstitute stored objects (as 
discussed later in this chapter). These and many other techniques help keep a lid on complexity. 

But even so, take note of what has been lost. We are no longer thinking about concepts in our 
domain model. Our code will not be communicating about the business; it will be manipulating the 
technology of data retrieval. The REPOSITORY pattern is a simple conceptual framework to 
encapsulate those solutions and bring back our model focus. 

A REPOSITORY represents all objects of a certain type as a conceptual set (usually emulated). It 
acts like a collection, except with more elaborate querying capability. Objects of the appropriate 
type are added and removed, and the machinery behind the REPOSITORY inserts them or deletes 
them from the database. This definition gathers a cohesive set of responsibilities for providing 
access to the roots of AGGREGATES from early life cycle through the end. 

Clients request objects from the REPOSITORY using query methods that select objects based on 
criteria specified by the client, typically the value of certain attributes. The REPOSITORY retrieves 
the requested object, encapsulating the machinery of database queries and metadata mapping. R 
EPOSITORIES can implement a variety of queries that select objects based on whatever criteria the 
client requires. They can also return summary information, such as a count of how many instances 
meet some criteria. They can even return summary calculations, such as the total across all 
matching objects of some numerical attribute. 

Figure 6.18. A REPOSITORY doing a search for a client 



 

A REPOSITORY lifts a huge burden from the client, which can now talk to a simple, intention-
revealing interface, and ask for what it needs in terms of the model. To support all this requires a 
lot of complex technical infrastructure, but the interface is simple and conceptually connected to 
the domain model. 

Therefore: 

For each type of object that needs global access, create an object that can provide the illusion 
of an in-memory collection of all objects of that type. Set up access through a well-known 
global interface. Provide methods to add and remove objects, which will encapsulate the 
actual insertion or removal of data in the data store. Provide methods that select objects 
based on some criteria and return fully instantiated objects or collections of objects whose 
attribute values meet the criteria, thereby encapsulating the actual storage and query 
technology. Provide REPOSITORIES only for AGGREGATE roots that actually need direct 
access. Keep the client focused on the model, delegating all object storage and access to the 
REPOSITORIES . 

   

R EPOSITORIES have many advantages, including the following: 

●     They present clients with a simple model for obtaining persistent objects and managing 
their life cycle. 

●     They decouple application and domain design from persistence technology, multiple 
database strategies, or even multiple data sources. 

●     They communicate design decisions about object access. 

●     They allow easy substitution of a dummy implementation, for use in testing (typically using 
an in-memory collection). 



Querying a R EPOSITORY 

All repositories provide methods that allow a client to request objects matching some criteria, but 
there is a range of options of how to design this interface. 

The easiest REPOSITORY to build has hard-coded queries with specific parameters. These queries 
can be various: retrieving an ENTITY by its identity (provided by almost all REPOSITORIES ); 
requesting a collection of objects with a particular attribute value or a complex combination of 
parameters; selecting objects based on value ranges (such as date ranges); and even performing 
some calculations that fall within the general responsibility of a REPOSITORY (especially drawing 
on operations supported by the underlying database). 

Although most queries return an object or a collection of objects, it also fits within the concept to 
return some types of summary calculations, such as an object count, or a sum of a numerical 
attribute that was intended by the model to be tallied. 

Figure 6.19. Hard-coded queries in a simple REPOSITORY 

 

Hard-coded queries can be built on top of any infrastructure and without a lot of investment, 
because they do just what some client would have had to do anyway. 

On projects with a lot of querying, a REPOSITORY framework can be built that allows more 
flexible queries. This calls for a staff familiar with the necessary technology and is greatly aided by 
a supportive infrastructure. 

One particularly apt approach to generalizing REPOSITORIES through a framework is to use 
SPECIFICATION -based queries. A SPECIFICATION allows a client to describe (that is, specify) what 
it wants without concern for how it will be obtained. In the process, an object that can actually 
carry out the selection is created. This pattern will be discussed in depth in Chapter 9 . 

Figure 6.20. A flexible, declarative SPECIFICATION of search criteria in a 
sophisticated REPOSITORY 
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The SPECIFICATION -based query is elegant and flexible. Depending on the infrastructure 
available, it may be a modest framework or it may be prohibitively difficult. Rob Mee and Edward 
Hieatt discuss more of the technical issues involved in designing such REPOSITORIES in Fowler 
2002. 

Even a REPOSITORY design with flexible queries should allow for the addition of specialized hard-
coded queries. They might be convenience methods that encapsulate an often-used query or a 
query that doesn't return the objects themselves, such as a mathematical summary of selected 
objects. Frameworks that don't allow for such contingencies tend to distort the domain design or 
get bypassed by developers. 

Client Code Ignores R EPOSITORY Implementation; Developers Do Not 

Encapsulation of the persistence technology allows the client to be very simple, completely 
decoupled from the implementation of the REPOSITORY . But as is often the case with 
encapsulation, the developer must understand what is happening under the hood. The performance 
implications can be extreme when REPOSITORIES are used in different ways or work in different 
ways. 

Kyle Brown told me the story of getting called in on a manufacturing application based on 
WebSphere that was being rolled out to production. The system was mysteriously running out of 
memory after a few hours of use. Kyle browsed through the code and found the reason: At one 
point, they were summarizing some information about every item in the plant. The developers had 
done this using a query called "all objects," which instantiated each of the objects and then selected 
the bits they needed. This code had the effect of bringing the entire database into memory at once! 
The problem hadn't shown up in testing because of the small amount of test data. 

This is an obvious nono, but much more subtle oversights can present equally serious problems. 
Developers need to understand the implications of using encapsulated behavior. That does not 
have to mean detailed familiarity with the implementation. Well-designed components can be 



characterized. (This is one of the main points of Chapter 10 , "Supple Design.") 

As was discussed in Chapter 5 , the underlying technology may constrain your modeling choices. 
For example, a relational database can place a practical limit on deep compositional object 
structures. In just the same way, there must be feedback to developers in both directions between 
the use of the REPOSITORY and the implementation of its queries. 

Implementing a R EPOSITORY 

Implementation will vary greatly, depending on the technology being used for persistence and the 
infrastructure you have. The ideal is to hide all the inner workings from the client (although not 
from the developer of the client), so that client code will be the same whether the data is stored in 
an object database, stored in a relational database, or simply held in memory. The REPOSITORY 
will delegate to the appropriate infrastructure services to get the job done. Encapsulating the 
mechanisms of storage, retrieval, and query is the most basic feature of a REPOSITORY 
implementation. 

Figure 6.21. The REPOSITORY encapsulates the underlying data store. 

 

The REPOSITORY concept is adaptable to many situations. The possibilities of implementation are 
so diverse that I can only list some concerns to keep in mind. 

●     Abstract the type . A REPOSITORY "contains" all instances of a specific type, but this does 
not mean that you need one REPOSITORY for each class. The type could be an abstract 
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superclass of a hierarchy (for example, a TradeOrder could be a BuyOrder or a Sell-
Order ). The type could be an interface whose implementers are not even hierarchically 
related. Or it could be a specific concrete class. Keep in mind that you may well face 
constraints imposed by the lack of such polymorphism in your database technology. 

●     Take advantage of the decoupling from the client . You have more freedom to change the 
implementation of a REPOSITORY than you would if the client were calling the mechanisms 
directly. You can take advantage of this to optimize for performance, by varying the query 
technique or by caching objects in memory, freely switching persistence strategies at any 
time. You can facilitate testing of the client code and the domain objects by providing an 
easily manipulated, dummy in-memory strategy. 

●     Leave transaction control to the client . Although the REPOSITORY will insert into and 
delete from the database, it will ordinarily not commit anything. It is tempting to commit 
after saving, for example, but the client presumably has the context to correctly initiate and 
commit units of work. Transaction management will be simpler if the REPOSITORY keeps 
its hands off. 

Typically teams add a framework to the infrastructure layer to support the implementation of 
REPOSITORIES . In addition to the collaboration with the lower level infrastructure components, the 
REPOSITORY superclass might implement some basic queries, especially when a flexible query is 
being implemented. Unfortunately, with a type system such as Java's, this approach would force 
you to type returned objects as "Object," leaving the client to cast them to the REPOSITORY'S 
contained type. But of course, this will have to be done with queries that return collections anyway 
in Java. 

Some additional guidance on implementing REPOSITORIES and some of their supporting technical 
patterns such as QUERY OBJECT can be found in Fowler (2002). 

Working Within Your Frameworks 

Before implementing something like a REPOSITORY , you need to think carefully about the 
infrastructure you are committed to, especially any architectural frameworks. You may find that 
the framework provides services you can use to easily create a REPOSITORY , or you may find that 
the framework fights you all the way. You may discover that the architectural framework has 
already defined an equivalent pattern of getting persistent objects. Or you may discover that it has 
defined a pattern that is not like a REPOSITORY at all. 

For example, your project might be committed to J2EE. Looking for conceptual affinities between 
the framework and the patterns of MODEL-DRIVEN DESIGN (and keeping in mind that an entity 
bean is not the same thing as an ENTITY ), you may have chosen to use entity beans to correspond 
to AGGREGATE roots. The construct within the architectural framework of J2EE that is responsible 



for providing access to these objects is the "EJB Home." Trying to dress up the EJB Home to look 
like a REPOSITORY could lead to other problems. 

In general, don't fight your frameworks. Seek ways to keep the fundamentals of domain-driven 
design and let go of the specifics when the framework is antagonistic. Look for affinities between 
the concepts of domain-driven design and the concepts in the framework. This is assuming that 
you have no choice but to use the framework. Many J2EE projects don't use entity beans at all. If 
you have the freedom, choose frameworks, or parts of frameworks, that are harmonious with the 
style of design you want to use. 

The Relationship with F ACTORIES 

A FACTORY handles the beginning of an object's life; a REPOSITORY helps manage the middle and 
the end. When objects are being held in memory, or stored in an object database, this is 
straightforward. But typically there is at least some object storage in relational databases, files, or 
other, non-object-oriented systems. In such cases, the retrieved data must be reconstituted into 
object form. 

Because the REPOSITORY is, in this case, creating objects based on data, many people consider the 
REPOSITORY to be a FACTORY —indeed it is, from a technical point of view. But it is more useful 
to keep the model in the forefront, and as mentioned before, the reconstitution of a stored object is 
not the creation of a new conceptual object. In this domain-driven view of the design, FACTORIES 
and REPOSITORIES have distinct responsibilities. The FACTORY makes new objects; the 
REPOSITORY finds old objects. The client of a REPOSITORY should be given the illusion that the 
objects are in memory. The object may have to be reconstituted (yes, a new instance may be 
created), but it is the same conceptual object, still in the middle of its life cycle. 

These two views can be reconciled by making the REPOSITORY delegate object creation to a 
FACTORY , which (in theory, though seldom in practice) could also be used to create objects from 
scratch. 

Figure 6.22. A REPOSITORY uses a FACTORY to reconstitute a preexisting object. 



 

This clear separation also helps by unloading all responsibility for persistence from the FACTORIES 
. A FACTORY'S job is to instantiate a potentially complex object from data. If the product is a new 
object, the client will know this and can add it to the REPOSITORY , which will encapsulate the 
storage of the object in the database. 

Figure 6.23. A client uses a REPOSITORY to store a new object. 

 

One other case that drives people to combine FACTORY and REPOSITORY is the desire for "find or 
create" functionality, in which a client can describe an object it wants and, if no such object is 



found, will be given a newly created one. This function should be avoided. It is a minor 
convenience at best. A lot of cases in which it seems useful go away when ENTITIES and VALUE 
OBJECTS are distinguished. A client that wants a VALUE OBJECT can go straight to a FACTORY and 
ask for a new one. Usually, the distinction between a new object and an existing object is 
important in the domain, and a framework that transparently combines them will actually muddle 
the situation. 
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Chapter Six.  The Life Cycle of a Domain Object 

Designing Objects for Relational Databases 

The most common nonobject component of primarily object-oriented software systems is the 
relational database. This reality presents the usual problems of a mixture of paradigms (see 
Chapter 5 ). But the database is more intimately related to the object model than are most other 
components. The database is not just interacting with the objects; it is storing the persistent form of 
the data that makes up the objects themselves. A good deal has been written about the technical 
challenges of mapping objects to relational tables and effectively storing and retrieving them. A 
recent discussion can be found in Fowler 2002. There are reasonably refined tools for creating and 
managing mappings between the two. Apart from the technical concerns, this mismatch can have a 
significant impact on the object model. 

There are three common cases: 

1.  The database is primarily a repository for the objects. 

2.  The database was designed for another system. 

3.  The database is designed for this system but serves in roles other than object store. 

When the database schema is being created specifically as a store for the objects, it is worth 
accepting some model limitations in order to keep the mapping very simple. Without other 
demands on schema design, the database can be structured to make aggregate integrity safer and 
more efficient as updates are made. Technically, the relational table design does not have to reflect 
the domain model. Mapping tools are sophisticated enough to bridge significant differences. The 
trouble is, multiple overlapping models are just too complicated. Many of the same arguments 
presented for MODEL-DRIVEN DESIGN —avoiding separate analysis and design models—apply to 
this mismatch. This does entail some sacrifice in the richness of the object model, and sometimes 
compromises have to be made in the database design (such as selective denormalization), but to do 
otherwise is to risk losing the tight coupling of model and implementation. This approach doesn't 
require a simplistic one-object/one-table mapping. Depending on the power of the mapping tool, 
some aggregation or composition of objects may be possible. But it is crucial that the mappings be 
transparent, easily understandable by inspecting the code or reading entries in the mapping tool. 

●     When the database is being viewed as an object store, don't let the data model and the 

file:///E|/books/0-321-12521-5/20061533.htm
file:///E|/books/0-321-12521-5/ch06lev1sec4.htm?xmlid=0-321-12521-5/ch05#ch05


object model diverge far, regardless of the powers of the mapping tools. Sacrifice some 
richness of object relationships to keep close to the relational model. Compromise some 
formal relational standards, such as normalization, if it helps simplify the object mapping. 

●     Processes outside the object system should not access such an object store. They could 
violate the invariants enforced by the objects. Also, their access will lock in the data model 
so that it is hard to change when the objects are refactored. 

On the other hand, there are many cases in which the data comes from a legacy or external system 
that was never intended as a store of objects. In this situation, there are, in reality, two domain 
models coexisting in the same system. Chapter 14 , "Maintaining Model Integrity," deals with this 
issue in depth. It may make sense to conform to the model implicit in the other system, or it may 
be better to make the model completely distinct. 

Another reason for exceptions is performance. Quirky design changes may have to be introduced 
to solve execution speed problems. 

But for the important common case of a relational database acting as the persistent form of an 
object-oriented domain, simple directness is best. A table row should contain an object, perhaps 
along with subsidiaries in an AGGREGATE . A foreign key in the table should translate to a 
reference to another ENTITY object. The necessity of sometimes deviating from this simple 
directness should not lead to total abandonment of the principle of simple mappings. 

The UBIQUITOUS LANGUAGE can help tie the object and relational components together to a single 
model. The names and associations of elements in the objects should correspond meticulously to 
those of the relational tables. Although the power of some mapping tools may make this seem 
unnecessary, subtle differences in relationships will cause a lot of confusion. 

The tradition of refactoring that has increasingly taken hold in the object world has not really 
affected relational database design much. What's more, serious data migration issues discourage 
frequent change. This may create a drag on the refactoring of the object model, but if the object 
model and the database model start to diverge, transparency can be lost quickly. 

Finally, there are some reasons to go with a schema that is quite distinct from the object model, 
even when the database is being created specifically for your system. The database may also be 
used by other software that will not instantiate objects. The database may require little change, 
even while the behavior of the objects changes or evolves rapidly. Cutting the two loose from each 
other is a seductive path. It is often taken unintentionally, when the team fails to keep the database 
current with the model. If the separation is chosen consciously, it can result in a clean database 
schema—not an awkward one full of compromises conforming to last year's object model. 
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Part II:  The Building Blocks of a Model-Driven Design 

Chapter Seven. Using the Language: An Extended 
Example 
The preceding three chapters introduced a pattern language for honing the fine detail of a model 
and maintaining a tight MODEL-DRIVEN DESIGN . In the earlier examples, the patterns were mostly 
applied one at a time, but on a real project you have to combine them. This chapter presents one 
elaborate example (still drastically simpler than a real project, of course). The example will step 
through a succession of model and design refinements as a hypothetical team deals with 
requirements and implementation issues and develops a MODEL-DRIVEN DESIGN , showing the 
forces that apply and how the patterns of Part II can resolve them. 
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Chapter Seven.  Using the Language: An Extended Example 

Introducing the Cargo Shipping System 

We're developing new software for a cargo shipping company. The initial requirements are three 
basic functions. 

1.  Track key handling of customer cargo 

2.  Book cargo in advance 

3.  Send invoices to customers automatically when the cargo reaches some point in its handling 

In a real project, it would take some time and iteration to get to the clarity of this model. Part III of 
this book will go into the discovery process in depth. But here we'll start with a model that has the 
needed concepts in a reasonable form, and we'll focus on fine-tuning the details to support design. 

Figure 7.1. A class diagram representing a model of the shipping domain 
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This model organizes domain knowledge and provides a language for the team. We can make 
statements like this: 

"Multiple Customers are involved with a Cargo , each playing a different role ." 

"The Cargo delivery goal is specified ." 

"A series of Carrier Movements satisfying the Specification will fulfill the 
delivery goal ." 

Each object in the model has a clear meaning: 

A Handling Event is a discrete action taken with the Cargo , such as loading it onto a ship or 
clearing it through customs. This class would probably be elaborated into a hierarchy of different 
kinds of incidents, such as loading, unloading, or being claimed by the receiver. 

Delivery Specification defines a delivery goal, which at minimum would include a destination and 



an arrival date, but it can be more complex. This class follows the SPECIFICATION pattern (see 
Chapter 9 ). 

This responsibility could have been taken on by the Cargo object, but the abstraction of Delivery 
Specification gives at least three advantages. 

1.  Without Delivery Specification , the Cargo object would be responsible for the detailed 
meaning of all those attributes and associations for specifying the delivery goal. This would 
clutter up Cargo and make it harder to understand or change. 

2.  This abstraction makes it easy and safe to suppress detail when explaining the model as a 
whole. For example, there could be other criteria encapsulated in the Delivery 
Specification , but a diagram at this level of detail would not have to expose it. The 
diagram is telling the reader that there is a SPECIFICATION of delivery, and the details of 
that are not important to think about (and, in fact, could be easily changed later). 

3.  This model is more expressive. Adding Delivery Specification says explicitly that the 
exact means of delivery of the Cargo is undetermined, but that it must accomplish the goal 
set out in the Delivery Specification . 

A role distinguishes the different parts played by Customers in a shipment. One is the "shipper," 
one the "receiver," one the "payer," and so on. Because only one Customer can play a given role 
for a particular Cargo , the association becomes a qualified many-to-one instead of many-to-many. 
Role might be implemented as simply a string, or it could be a class if other behavior is needed. 

Carrier Movement represents one particular trip by a particular Carrier (such as a truck or a 
ship) from one Location to another. Cargoes can ride from place to place by being loaded onto 
Carriers for the duration of one or more Carrier Movements . 

Delivery History reflects what has actually happened to a Cargo , as opposed to the Delivery 
Specification , which describes goals. A Delivery History object can compute the current 
Location of the Cargo by analyzing the last load or unload and the destination of the 
corresponding Carrier Movement . A successful delivery would end with a Delivery History that 
satisfied the goals of the Delivery Specification . 

All the concepts needed to work through the requirements just described are present in this model, 
assuming appropriate mechanisms to persist the objects, find the relevant objects, and so on. Such 
implementation issues are not dealt with in the model, but they must be in the design. 

In order to frame up a solid implementation, this model still needs some clarification and 
tightening. 
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Remember, ordinarily, model refinement, design, and implementation should go hand-in-hand in 
an iterative development process. But in this chapter, for clarity of explanation, we are starting 
with a relatively mature model, and changes will be motivated strictly by the need to connect that 
model with a practical implementation, employing the building block patterns. 

Ordinarily, as the model is being refined to support the design better, is should also be refined to 
reflect new insight into the domain. But in this chapter, for clarity of explanation, changes will be 
strictly motivated by the need to connect with a practical implementation, employing the building 
block patterns. 
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Chapter Seven.  Using the Language: An Extended Example 

Isolating the Domain: Introducing the Applications 

To prevent domain responsibilities from being mixed with those of other parts of the system, let's 
apply LAYERED ARCHITECTURE to mark off a domain layer. 

Without going into deep analysis, we can identify three user-level application functions, which we 
can assign to three application layer classes. 

1.  A Tracking Query that can access past and present handling of a particular Cargo 

2.  A Booking Application that allows a new Cargo to be registered and prepares the system 
for it 

3.  An Incident Logging Application that can record each handling of the Cargo (providing 
the information that is found by the Tracking Query ) 

These application classes are coordinators. They should not work out the answers to the questions 
they ask. That is the domain layer's job. 
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Chapter Seven.  Using the Language: An Extended Example 

Distinguishing E NTITIES and V ALUE Objects 

Considering each object in turn, we'll look for identity that must be tracked or a basic value that is 
represented. First we'll go through the clear-cut cases and then consider the more ambiguous ones. 

Customer 

Let's start with an easy one. A Customer object represents a person or a company, an entity in the 
usual sense of the word. The Customer object clearly has identity that matters to the user, so it is 
an ENTITY in the model. How to track it? Tax ID might be appropriate in some cases, but an 
international company could not use that. This question calls for consultation with a domain 
expert. We discuss the problem with a businessperson in the shipping company, and we discover 
that the company already has a customer database in which each Customer is assigned an ID 
number at first sales contact. This ID is already used throughout the company; using the number in 
our software will establish continuity of identity between those systems. It will initially be a 
manual entry. 

Cargo 

Two identical crates must be distinguishable, so Cargo objects are ENTITIES . In practice, all 
shipping companies assign tracking IDs to each piece of cargo. This ID will be automatically 
generated, visible to the user, and in this case, probably conveyed to the customer at booking time. 

Handling Event and Carrier Movement 

We care about such individual incidents because they allow us to keep track of what is going on. 
They reflect real-world events, which are not usually interchangeable, so they are ENTITIES . Each 
Carrier Movement will be identified by a code obtained from a shipping schedule. 

Another discussion with a domain expert reveals that Handling Events can be uniquely identified 
by the combination of Cargo ID, completion time, and type. For example, the same Cargo cannot 
be both loaded and unloaded at the same time. 

Location 
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Two places with the same name are not the same. Latitude and longitude could provide a unique 
key, but probably not a very practical one, since those measurements are not of interest to most 
purposes of this system, and they would be fairly complicated. More likely, the Location will be 
part of a geographical model of some kind that will relate places according to shipping lanes and 
other domain-specific concerns. So an arbitrary, internal, automatically generated identifier will 
suffice. 

Delivery History 

This is a tricky one. Delivery Histories are not interchangeable, so they are ENTITIES . But a 
Delivery History has a one-to-one relationship with its Cargo , so it doesn't really have an identity 
of its own. Its identity is borrowed from the Cargo that owns it. This will become clearer when we 
model the AGGREGATES . 

Delivery Specification 

Although it represents the goal of a Cargo , this abstraction does not depend on Cargo . It really 
expresses a hypothetical state of some Delivery History . We hope that the Delivery History 
attached to our Cargo will eventually satisfy the Delivery Specification attached to our Cargo . If 
we had two Cargoes going to the same place, they could share the same Delivery Specification , 
but they could not share the same Delivery History , even though the histories start out the same 
(empty). Delivery Specifications are VALUE OBJECTS . 

Role and Other Attributes 

Role says something about the association it qualifies, but it has no history or continuity. It is a 
VALUE OBJECT , and it could be shared among different Cargo / Customer associations. 

Other attributes such as time stamps or names are VALUE OBJECTS . 
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Chapter Seven.  Using the Language: An Extended Example 

Designing Associations in the Shipping Domain 

None of the associations in the original diagram specified a traversal direction, but bidirectional 
associations are problematic in a design. Also, traversal direction often captures insight into the 
domain, deepening the model itself. 

If the Customer has a direct reference to every Cargo it has shipped, it will become cumbersome 
for long-term, repeat Customers . Also, the concept of a Customer is not specific to Cargo . In a 
large system, the Customer may have roles to play with many objects. Best to keep it free of such 
specific responsibilities. If we need the ability to find Cargoes by Customer , this can be done 
through a database query. We'll return to this issue later in this chapter, in the section on 
REPOSITORIES . 

If our application were tracking the inventory of ships, traversal from Carrier Movement to 
Handling Event would be important. But our business needs to track only the Cargo . Making the 
association traversable only from Handling Event to Carrier Movement captures that 
understanding of our business. This also reduces the implementation to a simple object reference, 
because the direction with multiplicity was disallowed. 

The rationale behind the remaining decisions is explained in Figure 7.2 , on the next page. 

Figure 7.2. Traversal direction has been constrained on some associations. 
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There is one circular reference in our model: Cargo knows its Delivery History , which holds a 
series of Handling Events , which in turn point back to the Cargo . Circular references logically 
exist in many domains and are sometimes necessary in design as well, but they are tricky to 
maintain. Implementation choices can help by avoiding holding the same information in two 
places that must be kept synchronized. In this case, we can make a simple but fragile 
implementation (in Java) in an initial prototype, by giving Delivery History a List object 
containing Handling Events . But at some point we'll probably want to drop the collection in 
favor of a database lookup with Cargo as the key. This discussion will be taken up again when 
choosing REPOSITORIES . If the query to see the history is relatively infrequent, this should give 
good performance, simplify maintenance, and reduce the overhead of adding Handling Events . If 
this query is very frequent, then it is better to go ahead and maintain the direct pointer. These 
design trade-offs balance simplicity of implementation against performance. The model is the 
same; it contains the cycle and the bidirectional association. 
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Chapter Seven.  Using the Language: An Extended Example 

A GGREGATE Boundaries 

Customer, Location , and Carrier Movement have their own identities and are shared by many 
Cargoes , so they must be the roots of their own AGGREGATES , which contain their attributes and 
possibly other objects below the level of detail of this discussion. Cargo is also an obvious 
AGGREGATE root, but where to draw the boundary takes some thought. 

The Cargo AGGREGATE could sweep in everything that would not exist but for the particular 
Cargo , which would include the Delivery History , the Delivery Specification , and the 
Handling Events . This fits for Delivery History. No one would look up a Delivery History 
directly without wanting the Cargo itself. With no need for direct global access, and with an 
identity that is really just derived from the Cargo , the Delivery History fits nicely inside Cargo's 
boundary, and it does not need to be a root. The Delivery Specification is a VALUE OBJECT , so 
there are no complications from including it in the Cargo AGGREGATE . 

The Handling Event is another matter. Previously we have considered two possible database 
queries that would search for these: one, to find the Handling Events for a Delivery History as a 
possible alternative to the collection, would be local within the Cargo AGGREGATE ; the other 
would be used to find all the operations to load and prepare for a particular Carrier Movement . 
In the second case, it seems that the activity of handling the Cargo has some meaning even when 
considered apart from the Cargo itself. So the Handling Event should be the root of its own 
AGGREGATE . 

Figure 7.3. A GGREGATE boundaries imposed on the model. (Note: An ENTITY 
outside a drawn boundary is implied to be the root of its own AGGREGATE .) 
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Chapter Seven.  Using the Language: An Extended Example 

Selecting R EPOSITORIES 

There are five ENTITIES in the design that are roots of AGGREGATES , so we can limit our 
consideration to these, since none of the other objects is allowed to have REPOSITORIES . 

To decide which of these candidates should actually have a REPOSITORY , we must go back to the 
application requirements. In order to take a booking through the Booking Application , the user 
needs to select the Customer(s) playing the various roles (shipper, receiver, and so on). So we 
need a Customer Repository . We also need to find a Location to specify as the destination for 
the Cargo , so we create a Location Repository . 

The Activity Logging Application needs to allow the user to look up the Carrier Movement that 
a Cargo is being loaded onto, so we need a Carrier Movement Repository . This user must also 
tell the system which Cargo has been loaded, so we need a Cargo Repository . 

Figure 7.4. R EPOSITORIES give access to selected AGGREGATE roots. 



 

For now there is no Handling Event Repository , because we decided to implement the 
association with Delivery History as a collection in the first iteration, and we have no application 
requirement to find out what has been loaded onto a Carrier Movement . Either of these reasons 
could change; if they did, then we would add a REPOSITORY . 
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Chapter Seven.  Using the Language: An Extended Example 

Walking Through Scenarios 

To cross-check all these decisions, we have to constantly step through scenarios to confirm that we 
can solve application problems effectively. 

Sample Application Feature: Changing the Destination of a Cargo 

Occasionally a Customer calls up and says, "Oh no! We said to send our cargo to Hackensack, but 
we really need it in Hoboken." We are here to serve, so the system is required to provide for this 
change. 

Delivery Specification is a VALUE OBJECT , so it would be simplest to just to throw it away and 
get a new one, then use a setter method on Cargo to replace the old one with the new one. 

Sample Application Feature: Repeat Business 

The users say that repeated bookings from the same Customers tend to be similar, so they want to 
use old Cargoes as prototypes for new ones. The application will allow them to find a Cargo in 
the REPOSITORY and then select a command to create a new Cargo based on the selected one. 
We'll design this using the PROTOTYPE pattern ( Gamma et al. 1995 ). 

Cargo is an ENTITY and is the root of an AGGREGATE . Therefore, it must be copied carefully; we 
need to consider what should happen to each object or attribute enclosed by its AGGREGATE 
boundary. Let's go over each one: 

●     Delivery History: We should create a new, empty one, because the history of the old one 
doesn't apply. This is the usual case with ENTITIES inside the AGGREGATE boundary. 

●     Customer Roles: We should copy the Map (or other collection) that holds the keyed 
references to Customers , including the keys, because they are likely to play the same roles 
in the new shipment. But we have to be careful not to copy the Customer objects 
themselves. We must end up with references to the same Customer objects as the old 
Cargo object referenced, because they are ENTITIES outside the AGGREGATE boundary. 

●     Tracking ID: We must provide a new Tracking ID from the same source as we would 
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when creating a new Cargo from scratch. 

Notice that we have copied everything inside the Cargo AGGREGATE boundary, we have made 
some modifications to the copy, but we have affected nothing outside the AGGREGATE boundary at 
all. 
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Chapter Seven.  Using the Language: An Extended Example 

Object Creation 

F ACTORIES and Constructors for Cargo 

Even if we have a fancy FACTORY for Cargo , or use another Cargo as the FACTORY , as in the 
"Repeat Business" scenario, we still have to have a primitive constructor. We would like the constructor 
to produce an object that fulfills its invariants or at least, in the case of an ENTITY , has its identity 
intact. 

Given these decisions, we might create a FACTORY method on Cargo such as this: 

public Cargo copyPrototype(String newTrackingID)

Or we might make a method on a standalone FACTORY such as this: 

public Cargo newCargo(Cargo prototype, String newTrackingID)

A standalone FACTORY could also encapsulate the process of obtaining a new (automatically generated) 
ID for a new Cargo , in which case it would need only one argument: 

public Cargo newCargo(Cargo prototype)

The result returned from any of these FACTORIES would be the same: a Cargo with an empty Delivery 
History , and a null Delivery Specification . 

The two-way association between Cargo and Delivery History means that neither Cargo nor 
Delivery History is complete without pointing to its counterpart, so they must be created together. 
Remember that Cargo is the root of the AGGREGATE that includes Delivery History . Therefore, we 
can allow Cargo's constructor or FACTORY to create a Delivery History . The Delivery History 
constructor will take a Cargo as an argument. The result would be something like this: 



public Cargo(String id) {
trackingID = id;
deliveryHistory = new DeliveryHistory(this);
customerRoles = new HashMap();
}

The result is a new Cargo with a new Delivery History that points back to the Cargo . The Delivery 
History constructor is used exclusively by its AGGREGATE root, namely Cargo , so that the 
composition of Cargo is encapsulated. 

Adding a Handling Event 

Each time the cargo is handled in the real world, some user will enter a Handling Event using the 
Incident Logging Application . 

Every class must have primitive constructors. Because the Handling Event is an ENTITY , all attributes 
that define its identity must be passed to the constructor. As discussed previously, the Handling Event 
is uniquely identified by the combination of the ID of its Cargo , the completion time, and the event 
type. The only other attribute of Handling Event is the association to a Carrier Movement , which 
some types of Handling Events don't even have. A basic constructor that creates a valid Handling 
Event would be: 

public HandlingEvent(Cargo c, String eventType, Date timeStamp) {
handled = c;
type = eventType;
completionTime = timeStamp;
}

Nonidentifying attributes of an ENTITY can usually be added later. In this case, all attributes of the 
Handling Event are going to be set in the initial transaction and never altered (except possibly for 
correcting a data-entry error), so it could be convenient, and make client code more expressive, to add a 
simple FACTORY METHOD to Handling Event for each event type, taking all the necessary arguments. 
For example, a "loading event" does involve a Carrier Movement : 

public static HandlingEvent newLoading(
Cargo c, CarrierMovement loadedOnto, Date timeStamp) {
HandlingEvent result =
new HandlingEvent(c, LOADING_EVENT, timeStamp);
result.setCarrierMovement(loadedOnto);
return result;



}

The Handling Event in the model is an abstraction that might encapsulate a variety of specialized 
Handling Event classes, ranging from loading and unloading to sealing, storing, and other activities not 
related to Carriers . They might be implemented as multiple subclasses or have complicated 
initialization—or both. By adding FACTORY METHODS to the base class ( Handling Event ) for each 
type, instance creation is abstracted, freeing the client from knowledge of the implementation. The 
FACTORY is responsible for knowing what class was to be instantiated and how it should be initialized. 

Unfortunately, the story isn't quite that simple. The cycle of references, from Cargo to Delivery 
History to History Event and back to Cargo , complicates instance creation. The Delivery History 
holds a collection of Handling Events relevant to its Cargo , and the new object must be added to this 
collection as part of the transaction. If this back-pointer were not created, the objects would be 
inconsistent. 

Figure 7.5. Adding a Handling Event requires inserting it into a Delivery History . 

 

Creation of the back-pointer could be encapsulated in the FACTORY (and kept in the domain layer 
where it belongs), but now we'll look at an alternative design that eliminates this awkward interaction 
altogether. 



      

Top 

  



       

Chapter Seven.  Using the Language: An Extended Example 

Pause for Refactoring: An Alternative Design of the Cargo 
A GGREGATE 

Modeling and design is not a constant forward process. It will grind to a halt unless there is 
frequent refactoring to take advantage of new insights to improve the model and the design. 

By now, there are a couple of cumbersome aspects to this design, although it does work and it does 
reflect the model. Problems that didn't seem important when starting the design are beginning to be 
annoying. Let's go back to one of them and, with the benefit of hindsight, stack the design deck in 
our favor. 

The need to update Delivery History when adding a Handling Event gets the Cargo 
AGGREGATE involved in the transaction. If some other user was modifying Cargo at the same 
time, the Handling Event transaction could fail or be delayed. Entering a Handling Event is an 
operational activity that needs to be quick and simple, so an important application requirement is 
the ability to enter Handling Events without contention. This pushes us to consider a different 
design. 

Replacing the Delivery History's collection of Handling Events with a query would allow 
Handling Events to be added without raising any integrity issues outside its own AGGREGATE . 
This change would enable such transactions to complete without interference. If there are a lot of 
Handling Events being entered and relatively few queries, this design is more efficient. In fact, if 
a relational database is the underlying technology, a query was probably being used under the 
covers anyway to emulate the collection. Using a query rather than a collection would also reduce 
the difficulty of maintaining consistency in the cyclical reference between Cargo and Handling 
Event . 

To take responsibility for the queries, we'll add a REPOSITORY for Handling Events . The 
Handling Event Repository will support a query for the Events related to a certain Cargo . In 
addition, the REPOSITORY can provide queries optimized to answer specific questions efficiently. 
For example, if a frequent access path is the Delivery History finding the last reported load or 
unload, in order to infer the current status of the Cargo , a query could be devised to return just 
that relevant Handling Event . And if we wanted a query to find all Cargoes loaded on a 
particular Carrier Movement , we could easily add it. 
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Figure 7.6. Implementing Delivery History's collection of Handling Events as a 
query makes insertion of Handling Events simple and free of contention with the 

Cargo AGGREGATE . 

 

This leaves the Delivery History with no persistent state. At this point, there is no real need to 
keep it around. We could derive Delivery History itself whenever it is needed to answer some 
question. We can derive this object because, although the ENTITY will be repeatedly recreated, the 
association with the same Cargo object maintains the thread of continuity between incarnations. 

The circular reference is no longer tricky to create and maintain. The Cargo Factory will be 
simplified to no longer attach an empty Delivery History to new instances. Database space can be 
reduced slightly, and the actual number of persistent objects might be reduced considerably, which 
is a limited resource in some object databases. If the common usage pattern is that the user seldom 
queries for the status of a Cargo until it arrives, then a lot of unneeded work will be avoided 
altogether. 

On the other hand, if we are using an object database, traversing an association or an explicit 



collection is probably much faster than a REPOSITORY query. If the access pattern includes 
frequent listing of the full history, rather than the occasional targeted query of last position, the 
performance trade-off might favor the explicit collection. And remember that the added feature 
("What is on this Carrier Movement ?") hasn't been requested yet, and may never be, so we don't 
want to pay much for that option. 

These kinds of alternatives and design trade-offs are everywhere, and I could come up with lots of 
examples just in this little simplified system. But the important point is that these are degrees of 
freedom within the same model. By modeling VALUES , ENTITIES , and their AGGREGATES as we 
have, we have reduced the impact of such design changes. For example, in this case all changes are 
encapsulated within the Cargo's AGGREGATE boundary. It also required the addition of the 
Handling Event Repository , but it did not call for any redesign of the Handling Event itself 
(although some implementation changes might be involved, depending on the details of the 
REPOSITORY framework). 
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Chapter Seven.  Using the Language: An Extended Example 

M ODULES in the Shipping Model 

So far we've been looking at so few objects that modularity is not an issue. Now let's look at a little 
bigger part of a shipping model (though still simplified, of course) to see its organization into 
MODULES that will affect the model. 

Figure 7.7 shows a model neatly partitioned by a hypothetical enthusiastic reader of this book. 
This diagram is a variation on the infrastructure-driven packaging problem raised in Chapter 5 . In 
this case, the objects have been grouped according to the pattern each follows. The result is that 
objects that conceptually have little relationship (low cohesion) are crammed together, and 
associations run willy-nilly between all the MODULES (high coupling). The packages tell a story, 
but it is not the story of shipping; it is the story of what the developer was reading at the time. 

Figure 7.7. These MODULES do not convey domain knowledge. 
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Partitioning by pattern may seem like an obvious error, but it is not really any less sensible than 
separating persistent objects from transient ones or any other methodical scheme that is not 
grounded in the meaning of the objects. 

Instead, we should be looking for the cohesive concepts and focusing on what we want to 



communicate to others on the project. As with smaller scale modeling decisions, there are many 
ways to do it. Figure 7.8 shows a straightforward one. 

Figure 7.8. M ODULES based on broad domain concepts 

 

The MODULE names in Figure 7.8 contribute to the team's language. Our company does shipping 
for customers so that we can bill them. Our sales and marketing people deal with customers , and 
make agreements with them. The operations people do the shipping , getting the cargo to its 
specified destination. The back office takes care of billing , submitting invoices according to the 
pricing in the customer's agreement. That's one story I can tell with this set of MODULES . 

This intuitive breakdown could be refined, certainly, in successive iterations, or even replaced 
entirely, but it is now aiding MODEL-DRIVEN DESIGN and contributing to the UBIQUITOUS 
LANGUAGE . 
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Chapter Seven.  Using the Language: An Extended Example 

Introducing a New Feature: Allocation Checking 

Up to this point, we've been working off the initial requirements and model. Now the first major 
new functions are going to be added. 

The sales division of the imaginary shipping company uses other software to manage client 
relationships, sales projections, and so forth. One feature supports yield management by allowing 
the firm to allocate how much cargo of specific types they will attempt to book based on the type 
of goods, the origin and destination, or any other factor they may choose that can be entered as a 
category name. These constitute goals of how much will be sold of each type, so that more 
profitable types of business will not be crowded out by less profitable cargoes, while at the same 
time avoiding underbooking (not fully utilizing their shipping capacity) or excessive overbooking 
(resulting in bumping cargo so often that it hurts customer relationships). 

Now they want this feature to be integrated with the booking system. When a booking comes in, 
they want it checked against these allocations to see if it should be accepted. 

The information needed resides in two places, which will have to be queried by the Booking 
Application so that it can either accept or reject the requested booking. A sketch of the general 
information flows looks something like this. 

Figure 7.9. Our Booking Application must use information from the Sales 
Management System and from our own domain REPOSITORIES . 

 



Connecting the Two Systems 

The Sales Management System was not written with the same model in mind that we are working 
with here. If the Booking Application interacts with it directly, our application will have to 
accommodate the other system's design, which will make it harder to keep a clear MODEL-DRIVEN 
DESIGN and will confuse the UBIQUITOUS LANGUAGE . Instead, let's create another class whose 
job it will be to translate between our model and the language of the Sales Management System . 
It will not be a general translation mechanism. It will expose just the features our application 
needs, and it will reabstract them in terms of our domain model. This class will act as an 
ANTICORRUPTION LAYER (discussed in Chapter 14 ). 

This is an interface to the Sales Management System , so we might first think of calling it 
something like " Sales Management Interface ." But we would be missing an opportunity to use 
language to recast the problem along lines more useful to us. Instead, let's define a SERVICE for 
each of the allocation functions we need to get from the other system. We'll implement the 
SERVICES with a class whose name reflects its responsibility in our system: " Allocation Checker 
." 

If some other integration is needed (for example, using the Sales Management System's customer 
database instead of our own Customer REPOSITORY ), another translator can be created with 
SERVICES fulfilling that responsibility. It might still be useful to have a lower level class like Sales 
Management System Interface to handle the machinery of talking to the other program, but it 
wouldn't be responsible for translation. Also, it would be hidden behind the Allocation Checker , 
so it wouldn't show up in the domain design. 

Enhancing the Model: Segmenting the Business 

Now that we have outlined the interaction of the two systems, what kind of interface are we going 
to supply that can answer the question "How much of this type of Cargo may be booked?" The 
tricky issue is to define what the "type" of a Cargo is, because our domain model does not 
categorize Cargoes yet. In the Sales Management System , Cargo types are just a set of category 
keywords, and we could conform our types to that list. We could pass in a collection of strings as 
an argument. But we would be passing up another opportunity: this time, to reabstract the domain 
of the other system. We need to enrich our domain model to accommodate the knowledge that 
there are categories of cargo. We should brainstorm with a domain expert to work out the new 
concept. 

Sometimes (as will be discussed in Chapter 11 ) an analysis pattern can give us an idea for a 
modeling solution. The book Analysis Patterns (Fowler 1996) describes a pattern that addresses 
this kind of problem: the ENTERPRISE SEGMENT . An ENTERPRISE SEGMENT is a set of 
dimensions that define a way of breaking down a business. These dimensions could include all 
those mentioned already for the shipping business, as well as time dimensions, such as month to 
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date. Using this concept in our model of allocation makes the model more expressive and 
simplifies the interfaces. A class called " Enterprise Segment" will appear in our domain model 
and design as an additional VALUE OBJECT , which will have to be derived for each Cargo . 

Figure 7.10. The Allocation Checker acts as an ANTICORRUPTION LAYER presenting a 
selective interface to the Sales Management System in terms of our domain model. 

 

The Allocation Checker will translate between Enterprise Segments and the category names of 
the external system. The Cargo Repository must also provide a query based on the Enterprise 
Segment . In both cases, collaboration with the Enterprise Segment object can be used to 
perform the operations without breaching the Segment's encapsulation and complicating their own 
implementations. (Notice that the Cargo Repository is answering a query with a count, rather than 
a collection of instances.) 

There are still a few problems with this design. 

1.  We have given the Booking Application the job of applying this rule: "A Cargo is 
accepted if the space allocated for its Enterprise Segment is greater than the quantity 
already booked plus the size of the new Cargo ." Enforcing a business rule is domain 
responsibility and shouldn't be performed in the application layer. 

2.  It isn't clear how the Booking Application derives the Enterprise Segment . 



Both of these responsibilities seem to belong to the Allocation Checker . Changing its interface 
can separate these two SERVICES and make the interaction clear and explicit. 

Figure 7.11. Domain responsibilities shifted from Booking Application to Allocation 
Checker 

 

The only serious constraint imposed by this integration will be that the Sales Management 
System mustn't use dimensions that the Allocation Checker can't turn into Enterprise Segments . 
(Without applying the ENTERPRISE SEGMENT pattern, the same constraint would force the sales 
system to use only dimensions that can be used in a query to the Cargo Repository . This 
approach is feasible, but the sales system spills into other parts of the domain. In this design, the 
Cargo Repository need only be designed to handle Enterprise Segment , and changes in the 
sales system ripple only as far as the Allocation Checker , which was conceived as a FACADE in 
the first place.) 

Performance Tuning 

Although the Allocation Checker's interface is the only part that concerns the rest of the domain 
design, its internal implementation can present opportunities to solve performance problems, if 
they arise. For example, if the Sales Management System is running on another server, perhaps at 
another location, the communications overhead could be significant, and there are two message 
exchanges for each allocation check. There is no alternative to the second message, which invokes 
the Sales Management System to answer the basic question of whether a certain cargo should be 
accepted. But the first message, which derives the Enterprise Segment for a cargo, is based on 
relatively static data and behavior compared to the allocation decisions themselves. One design 
option would be to cache this information so that it could be relocated on the server with the 
Allocation Checker , reducing messaging overhead by half. There is a price for this flexibility. 
The design is more complicated and the duplicated data must now be kept up to date somehow. 
But when performance is critical in a distributed system, flexible deployment can be an important 



design goal. 
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Chapter Seven.  Using the Language: An Extended Example 

A Final Look 

That's it. This integration could have turned our simple, conceptually consistent design into a 
tangled mess, but now, using an ANTICORRUPTION LAYER , a SERVICE , and some ENTERPRISE 
SEGMENTS , we have integrated the functionality of the Sales Management System into our 
booking system cleanly, enriching the domain. 

A final design question: Why not give Cargo the responsibility of deriving the Enterprise 
Segment ? At first glance it seems elegant, if all the data the derivation is based on is in the Cargo 
, to make it a derived attribute of Cargo . Unfortunately, it is not that simple. Enterprise 
Segments are defined arbitrarily to divide along lines useful for business strategy. The same 
ENTITIES could be segmented differently for different purposes. We are deriving the segment for a 
particular Cargo for booking allocation purposes, but it could have a completely different 
Enterprise Segment for tax accounting purposes. Even the allocation Enterprise Segment could 
change if the Sales Management System is reconfigured because of a new sales strategy. So the 
Cargo would have to know about the Allocation Checker , which is well outside its conceptual 
responsibility, and it would be laden with methods for deriving specific types of Enterprise 
Segment . Therefore, the responsibility for deriving this value lies properly with the object that 
knows the rules for segmentation, rather than the object that has the data to which those rules 
apply. Those rules could be split out into a separate " Strategy " object, which could be passed to a 
Cargo to allow it to derive an Enterprise Segment . That solution seems to go beyond the 
requirements we have here, but it would be an option for a later design and shouldn't be a very 
disruptive change. 
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Part III: Refactoring Toward Deeper Insight 
Part II of this book laid a foundation for maintaining the correspondence between 
model and implementation. Using a proven set of basic building blocks along with 
consistent language brings some sanity to the development effort. 

Of course, the real challenge is to actually find an incisive model, one that captures 
subtle concerns of the domain experts and can drive a practical design. Ultimately, 
we hope to develop a model that captures a deep understanding of the domain. This 
should make the software more in tune with the way the domain experts think and 
more responsive to the user's needs. This part of the book will clarify that goal, 
describe the process by which it can be approached, and explain some design 
principles and patterns to apply to make the design accommodate the needs of the 
application as well as the developers themselves. 

Success developing useful models comes down to three points. 

1.  Sophisticated domain models are achievable and worth the trouble. 

2.  They are seldom developed except through an iterative process of 
refactoring, including close involvement of the domain experts with 
developers interested in learning about the domain. 

3.  They may call for sophisticated design skills to implement and to use 
effectively. 

Levels of Refactoring 

Refactoring is the redesign of software in ways that do not change its functionality. 
Rather than making elaborate up-front design decisions, developers take code 
through a continuous series of small, discrete design changes, each leaving existing 
functionality unchanged while making the design more flexible or easier to 
understand. A suite of automated unit tests allows relatively safe experimentation 
with the code. The process frees the developers from the need to look far ahead. 

But nearly all the literature on how to refactor focuses on mechanical changes to the 
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code that make it easier to read or to enhance at a very detailed level. The approach 
of "refactoring to patterns" [1] can give a higher-level target to the refactoring 
process when a developer recognizes an opportunity to apply an established design 
pattern. Still, it is a primarily technical view of the quality of a design. 

[1] Patterns as targets for refactoring were briefly mentioned in Gamma et 
al. ( 1995 ). Joshua Kerievsky has developed refactoring to patterns into a 
more mature and useful form ( Kerievsky 2003 ). 

The refactorings that have the greatest impact on the viability of the system are those 
motivated by new insights into the domain or those that clarify the model's 
expression through the code. This type of refactoring does not in any way replace 
the refactorings to design patterns or the micro-refactorings, which should proceed 
continuously. It superimposes another level: refactoring to a deeper model. 
Executing a refactoring based on domain insight often involves a series of micro-
refactorings, but the motivation is not just the state of the code. Rather, the micro-
refactorings provide convenient units of change toward a more insightful model. The 
goal is that not only can a developer understand what the code does; he or she can 
also understand why it does what it does and can relate that to the ongoing 
communication with the domain experts. 

The catalog in Refactoring (Fowler 1999) covers most of the micro-refactorings that 
come up regularly. Each is motivated primarily by some problem that can be 
observed in the code itself. By contrast, domain models are transformed in such a 
range of ways as new insights emerge that a comprehensive catalog would be 
impossible to compile. 

Modeling is as inherently unstructured as any exploration. Refactoring to deeper 
insight should follow wherever learning and deep thinking lead. Published 
collections of successful models can be helpful, as discussed in Chapter 11 , but we 
shouldn't get sidetracked trying to reduce domain modeling to a cookbook or a 
toolkit. Modeling and design call for creativity. The next six chapters will suggest 
some specific approaches to thinking about improving a domain model, along with 
the design that brings it to life. 

Deep Models 

The traditional way of explaining object analysis involves identifying nouns and 
verbs in the requirements documents and using them as the initial objects and 
methods. This explanation is recognized as an oversimplification that can be useful 
for teaching object modeling to beginners. The truth is, though, that initial models 
usually are naive and superficial, based on shallow knowledge. 
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For example, I once worked on a shipping application for which my initial idea of an 
object model involved ships and containers. Ships moved from place to place. 
Containers were associated and disassociated through load and unload operations. 
That is an accurate description of some physical shipping activities. It does not turn 
out to be a very useful model for shipping business software. 

Eventually, after months working with shipping experts through many iterations, we 
evolved a quite different model. It was less obvious to a layperson, but much more 
relevant to the experts. It was refocused on the business of delivering cargo. 

The ships were still there, but abstracted in the form of a "vessel voyage," a 
particular trip scheduled for a ship, train, or other carrier. The ship itself was 
secondary, and could be substituted at the last minute for maintenance or a slipping 
schedule, while the vessel voyage went on as planned. The shipping container all but 
disappeared from the model. It did emerge in a cargo-handling application in a 
different, very complex form, but in the context of the original application, the 
container was an operational detail. The physical movement of the cargo took a back 
seat to the transfers of legal responsibility for that cargo. Less obvious objects, such 
as the "bill of lading," came to the fore. 

Whenever new object modelers showed up on the project, what was their first 
suggestion? The missing classes: ship and container. They were smart people. They 
just hadn't gone through the processes of discovery. 

A deep model provides a lucid expression of the primary concerns of the domain 
experts and their most relevant knowledge while it sloughs off the superficial aspects 
of the domain. This definition doesn't mention abstraction. A deep model usually has 
abstract elements, but it may well have concrete elements where those cut to the 
heart of the problem. 

Versatility, simplicity, and explanatory power come from a model that is truly in 
tune with the domain. One feature such models almost always have is a simple, 
though possibly abstract, language that the business experts like to use. 

Deep Model/Supple Design 

In a process of constant refactoring, the design itself needs to support change. 
Chapter 10 looks at ways to make a design easy to work with, both for those 
changing it and for those integrating it with other parts of the system. 
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Certain characteristics of a design make it easier to change and use. They are not 
complicated, but they are challenging. "Supple design" and ways to approach it are 
the subjects of Chapter 10 . 

One bit of luck is that the very act of transforming the model and code again and 
again—if each change reflects new understanding—can bring about flexibility at 
just the points where change is most needed, along with easy ways of doing the 
common things. A well-worn glove becomes supple at the points where the fingers 
bend, while other parts are stiff and protective. So although there is a lot of trial and 
error involved in this approach to modeling and design, the changes can actually 
become easier to make, and the repeated changes actually move us toward a supple 
design. 

In addition to facilitating change, a supple design contributes to the refinement of 
the model itself. A MODEL-DRIVEN DESIGN stands on two legs. A deep model 
makes possible an expressive design. At the same time, a design can actually feed 
insight into the model discovery process when it has the flexibility to let a developer 
experiment and the clarity to show a developer what is happening. This half of the 
feedback loop is essential, because the model we are looking for is not just a nice set 
of ideas: it is the foundation of the system. 

The Discovery Process 

To create a design really fitted to the problem at hand, you must first have a model 
that captures the central relevant concepts of the domain. Actively searching for 
these concepts and bringing them into the design is the subject of Chapter 9 , 
"Making Implicit Concepts Explicit." 

Because of the close relationship between model and design, the modeling process 
comes to a halt when the code is hard to refactor. Chapter 10 , "Supple Design," 
discusses how to write software for software developers, not least yourself, so that it 
is productive to extend and change. This effort goes hand in hand with further 
refinements to the model. It often entails more advanced design techniques and more 
rigor in model definitions. 

You will usually depend on creativity and trial and error to find good ways to model 
the concepts you discover, but sometimes someone has laid down a pattern you can 
follow. Chapters 11 and 12 discuss the application of " analysis patterns " and " 
design patterns ." Such patterns are not ready-made solutions, but they feed your 
knowledge crunching process and narrow your search. 
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But I'll start Part III with the most exciting event in domain-driven design. 
Sometimes, when the stage is set with a MODEL-DRIVEN DESIGN and explicit 
concepts, you have a breakthrough. An opportunity opens up to transform your 
software into something more expressive and versatile than you expected. This can 
mean new features or it can just mean the replacement of a big chunk of rigid code 
with a simple, flexible expression of a deeper model. Although such breakthroughs 
don't come along every day, they are so valuable that when they do happen, the 
opportunity needs to be recognized and grasped. 

Chapter 8 tells the true story of a project on which a process of refactoring toward 
deeper insight led to a breakthrough. This experience is not something you can plan 
for. Nonetheless, it provides a good context for thinking about domain refactoring. 
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Part III:  Refactoring Toward Deeper Insight 

Chapter Eight. Breakthrough 

 

The returns from refactoring are not linear. Usually there is a marginal return for a small effort, 
and the small improvements add up. They fight entropy, and they are the frontline protection 
against a fossilized legacy. But some of the most important insights come abruptly and send a 
shock through the project. 

Slowly but surely, the team assimilates knowledge and crunches it into a model. Deep models can 
emerge gradually through a sequence of small refactorings, an object at a time: a tweaked 
association here, a shifted responsibility there. 

Often, though, continuous refactoring prepares the way for something less orderly. Each 



refinement of code and model gives developers a clearer view. This clarity creates the potential for 
a breakthrough of insights. A rush of change leads to a model that corresponds on a deeper level to 
the realities and priorities of the users. Versatility and explanatory power suddenly increase even 
as complexity evaporates. 

This sort of breakthrough is not a technique; it is an event. The challenge lies in recognizing what 
is happening and deciding how to deal with it. To convey what this experience feels like, I'll tell a 
true story of a project I worked on some years ago, and how we arrived at a very valuable deep 
model. 
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Chapter Eight.  Breakthrough 

Story of a Breakthrough 

After a long New York winter of refactoring, we had arrived at a model that captured some of the 
key knowledge of the domain and a design that did some real work for the application. We were 
developing a core part of a large application for managing syndicated loans in an investment bank. 

When Intel wants to build a billion-dollar factory, they need a loan that is too big for any single 
lending company to take on, so the lenders form a syndicate that pools its resources to support a 
facility (see sidebar). An investment bank usually acts as syndicate leader, co-ordinating 
transactions and other services. Our project was to build software to track and support this whole 
process. 

A Decent Model, and Yet . . . 

We were feeling pretty good. Four months before, we had been in deep trouble with a completely 
unworkable, inherited code base, which we had since wrestled into a coherent MODEL-DRIVEN 
DESIGN . 

The model reflected in Figure 8.1 makes the common case very simple. The Loan Investment is a 
derived object that represents a particular investor's contribution to the Loan, proportional to its 
share in the Facility . 

Figure 8.1. A model that assumes lender shares are fixed 

file:///E|/books/0-321-12521-5/20061533.htm


 

What Is a "Facility"? 
A "facility" in this context is not a building. As on most projects, specialized 
terminology from the domain experts entered our vocabulary and became part of the 
UBIQUITOUS LANGUAGE . In the domain of commercial banking, a facility is a 
commitment by a company to lend . Your credit card is a facility that entitles you to 
borrow on demand up to a prearranged limit at a predetermined interest rate. When you 
use the card, you create an outstanding loan, and each additional charge is a drawdown 
against your facility that increases the loan. Finally you pay back the loan principal. 
You may also pay an annual fee. This is a fee for the privilege of having the card (the 
facility) and is independent of your loan. 

But there were some disconcerting signs. We kept stumbling over unexpected requirements that 
complicated the design. A major example was the creeping understanding that the shares in a 
Facility were only a guideline to participation in any particular loan draw-down. When the 
borrower requests its money, the leader of the syndicate calls all members for their shares. 

When called, the investors usually cough up their share, but often they negotiate with other 
members of the syndicate and invest less (or more). We had accommodated this by adding Loan 
Adjustments to the model. 

Figure 8.2. A model incrementally changed to solve problems. Loan Adjustments 
track departures from the share a lender originally agreed to in the Facility . 



 

Refinements of this kind allowed us to keep up as the rules of various transactions became clearer. 
But complexity was increasing, and we did not seem to be converging quickly onto really solid 
functionality. 

Even more troubling were subtle rounding inconsistencies that we had not been able to squash 
with increasingly complex algorithms. True, in a $100 million (MM) deal, no one cares about 
where the extra pennies go, but bankers don't trust software that cannot meticulously account for 
those pennies. We began to suspect that our difficulties were symptomatic of a basic design 
problem. 

The Breakthrough 

Suddenly one week it dawned on us what was wrong. Our model tied together the Facility and 
Loan shares in a way that was not appropriate to the business . This revelation had wide 
repercussions. With the business experts nodding, enthusiastically helping—and, I dare say, 
wondering what took us so long—we hashed out a new model on a whiteboard. Although the 
details hadn't jelled yet, we knew the crucial feature of the new model: shares of the Loan and 
those of the Facility could change independently of each other. With that insight, we walked 
through numerous scenarios using a visualization of the new model that looked something like 
this: 

Figure 8.3. A drawdown distributed based on Facility shares 



 

This diagram says that the borrower has chosen to draw an initial $50MM from the $100MM 
committed under the Facility . The three lenders chip in their shares in exact proportion to the 
Facility shares, resulting in a $50MM Loan divided among the lenders. 

Then, in Figure 8.4 , the borrower draws an additional $30MM, bringing his outstanding Loan to 
$80MM, still under the $100MM limit of the Facility . This time, Company B chooses not to 
participate, letting Company A take an extra share. The shares of the draw-down reflect these 
investment choices. When the drawdown amounts are added to the Loan , the shares of the Loan 
are no longer proportional to the shares of the Facility . This is common. 

Figure 8.4. Lender B opts out of a second drawdown. 

 

Figure 8.5. Principal payments are always distributed proportional to shares in the 
outstanding Loan . 



 

When the borrower pays down the Loan , the money is divided among the lenders according to the 
shares of the Loan , not the Facility . Likewise, interest payments will be divided according to the 
Loan shares. 

Figure 8.6. Fee payments are always distributed proportionally to shares in the 
Facility . 

 

On the other hand, when the borrower pays a fee for the privilege of having the Facility available, 
this money is divided according to the Facility shares, regardless of who actually has lent money. 
The Loan is unchanged by fee payments. There are even scenarios in which lenders trade shares of 
fees separately from their shares of interest, and so on. 

A Deeper Model 



We had two deep insights. First was the realization that our "Investments" and "Loan Investments" 
were just two special cases of a general and fundamental concept: shares. Shares of a facility, 
shares of a loan, shares of a payment distribution . Shares, shares everywhere. Shares of any 
divisible value. 

A few tumultuous days later I had sketched a model of shares, drawing on the language used in the 
discussions with experts and the scenarios we had explored together. 

Figure 8.7. An abstract model of shares 

 

I also sketched a new loan model to go with it. 

Figure 8.8. The Loan model using Share Pie 



 

There were no longer specialized objects for the shares of a Facility or a Loan . They both were 
broken down into the more intuitive " Share Pie. " This generalization allowed the introduction of 
"shares math," vastly simplifying the calculation of shares in any transaction, and making those 
calculations more expressive, concise, and easily combined. 

But most of all, problems went away because the new model removed an inappropriate constraint. 
It freed the Loan's Shares to depart from the proportions of the Facility's Shares , while keeping 
in place the valid constraints on totals, fee distributions, and so on. The Share Pie of the Loan 
could be adjusted directly, so the Loan Adjustment was no longer needed, and a large amount of 
special-case logic was eliminated. 

The Loan Investment had disappeared, and at this point we realized that "loan investment" was 
not a banking term. In fact, the business experts had told us a number of times that they didn't 
understand it. They had deferred to our software knowledge and assumed it was useful to the 
technical design. Actually, we had created it based on our incomplete understanding of the 
domain. 

Suddenly, on the basis of this new way of looking at the domain, we could run through every 
scenario we had ever encountered relatively effortlessly, much more simply than ever before. And 
our model diagrams made perfect sense to the business experts, who had often indicated that the 
diagrams were "too technical" for them. Even just sketching on a whiteboard, we could see that 
our most persistent rounding problems would be pulled out by the roots, allowing us to scrap some 
of the complicated rounding code. 

Our new model worked well. Really, really well. 

And we all felt sick! 

A Sobering Decision 



You might reasonably assume that we would have been elated at this point. We were not. We were 
under a severe deadline; the project was already dangerously behind schedule. Our dominant 
emotion was fear. 

The gospel of refactoring is that you always go in small steps, always keeping everything working. 
But to refactor our code to this new model would require changing a lot of supporting code, and 
there would be few, if any, stable stopping points in between. We could see some small 
improvements we could make, but none that would take us closer to the new concept. We could 
see a sequence of small steps to get there, but parts of the application would be disabled along the 
way. And this was before the age when automated tests were widely used on such projects. We had 
none, so there was bound to be unforeseen breakage. 

And it was going to take effort. We were already exhausted from months of pushing. 

At this point, we had a meeting with our project manager that I will never forget. Our manager was 
an intelligent and bold man. He asked a series of questions: 

Q1: How long would it take to get back to current functionality with the new design? 

A1: About three weeks. 

Q2: Could we solve the problems without it? 

A2: Probably. But no way to be sure. 

Q3: Would we be able to move forward in the next release if we didn't do it now? 

A3: Forward movement would be slow without the change. And the change would be 
much harder once we had an installed base. 

Q4: Did we think it was the right thing to do? 



A4: We knew the political situation was unstable, so we'd cope if we had to. And we were 
tired. But, yes, it was a simpler solution that fit the business much better. In the long 
run it was lower risk. 

He gave us the go-ahead and told us he would handle the heat. I've always had tremendous 
admiration for the courage and trust it took for him to make that decision. 

We busted our butts and got it done in three weeks. It was a big job, but it went surprisingly 
smoothly. 

The Payoff 

The mystifyingly unexpected requirement changes stopped. The rounding logic, though never 
exactly simple, stabilized and made sense. We delivered version one and the way was clear to 
version two. My nervous breakdown was narrowly averted. 

As version two evolved, this Share Pie became the unifying theme of the whole application. 
Technical people and business experts used it to discuss the system. Marketing people used it to 
explain the features to prospective customers. Those prospects and customers immediately grasped 
it and used it to discuss features. It truly became part of the UBIQUITOUS LANGUAGE because it 
got to the heart of what loan syndication is about. 
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Chapter Eight.  Breakthrough 

Opportunities 

When the prospect of a breakthrough to a deeper model presents itself, it is often scary. Such a 
change has higher opportunity and higher risk than most refactorings. And timing may be 
inopportune. 

Much as we might like it to be otherwise, progress isn't a smooth ride. The transition to a really 
deep model is a profound shift in your thinking and demands a major change to the design. On 
many projects the most important progress in model and design come in these breakthroughs. 
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Chapter Eight.  Breakthrough 

Focus on Basics 

Don't become paralyzed trying to bring about a breakthrough. The possibility usually comes after 
many modest refactorings. Most of the time is spent making piecemeal improvements, with model 
insights emerging gradually during each successive refinement. 

To set the stage for a breakthrough, concentrate on knowledge crunching and cultivating a robust 
UBIQUITOUS LANGUAGE . Probe for important domain concepts and make them explicit in the 
model (as discussed in Chapter 9 ). Refine the design to be suppler (see Chapter 10 ). Distill the 
model (see Chapter 15 ). Push on these more predictable levers, which increase clarity—usually a 
precursor of breakthroughs. 

Don't hold back from modest improvements, which gradually deepen the model, even if confined 
within the same general conceptual framework. Don't be paralyzed by looking too far forward. Just 
be watchful for the opportunity. 
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Chapter Eight.  Breakthrough 

Epilogue: A Cascade of New Insights 

That breakthrough got us out of the woods, but it was not the end of the story. The deeper model 
opened unexpected opportunities to make the application richer and the design clearer. 

Just weeks after the release of the Share Pie version of the software, we noticed another awkward 
aspect of the model that was complicating the design. An important ENTITY was missing, its 
absence leaving extra responsibilities to be taken up by other objects. Specifically, there were 
significant rules governing loan drawdowns, fee payments, and so on, and all this logic was 
crammed into various methods on the Facility and Loan . These design problems, which had been 
barely noticeable before the Share Pie breakthrough, became obvious with our clearer field of 
vision. Now we noticed terms popping up in our discussions that were nowhere to be found in the 
model—terms such as "transaction" (meaning a financial transaction)—that we started to realize 
were being implied by all those complicated methods. 

Following a process similar to the one described earlier (although, thankfully, under much less 
time pressure) led to yet another round of insights and a still deeper model. This new model made 
those implicit concepts explicit, as kinds of Transactions , and at the same time simplified the 
Positions (an abstraction including the Facility and Loan ). It became easy to define the diverse 
transactions we had, along with their rules, negotiating procedures, and approval processes, and all 
in relatively self-explanatory code. 

Figure 8.9. Another model break-through that followed several weeks later. 
Constraints on Transactions could be expressed with easy precision. 
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As is often the case after a real breakthrough to a deep model, the clarity and simplicity of the new 
design, combined with the enhanced communication based on the new UBIQUITOUS LANGUAGE , 
had led to yet another modeling breakthrough. 

Our pace of development was accelerating at a stage where most projects are beginning to bog 
down in the mass and complexity of what has already been built. 
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Part III:  Refactoring Toward Deeper Insight 

Chapter Nine. Making Implicit Concepts Explicit 
Deep modeling sounds great, but how do you actually do it? A deep model has power because it 
contains the central concepts and abstractions that can succinctly and flexibly express essential 
knowledge of the users' activities, their problems, and their solutions. The first step is to somehow 
represent the essential concepts of the domain in the model. Refinement comes later, after 
successive iterations of knowledge crunching and refactoring. But this process really gets into gear 
when an important concept is recognized and made explicit in the model and design. 

Many transformations of domain models and the corresponding code happen when 
developers recognize a concept that has been hinted at in discussion or present implicitly in 
the design, and they then represent it explicitly in the model with one or more objects or 
relationships. 

Occasionally, this transformation of a formerly implicit concept into an explicit one is a 
breakthrough that leads to a deep model. More often, though, the breakthrough comes later, after a 
number of important concepts are explicit in the model; after successive refactorings have tweaked 
their responsibilities repeatedly, changed their relationships with other objects, and even changed 
their names a few times. Everything finally snaps into focus. But the process starts with 
recognizing the implied concepts in some form, however crude. 
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Chapter Nine.  Making Implicit Concepts Explicit 

Digging Out Concepts 

Developers have to sensitize themselves to the hints that reveal lurking implicit concepts, and 
sometimes they have to proactively search them out. Most such discoveries come from listening to 
the language of the team, scrutinizing awkwardness in the design and seeming contradictions in 
the statements of experts, mining the literature of the domain, and doing lots and lots of 
experimentation. 

Listen to Language 

You may remember an experience like this: The users have always talked about some item on a 
report. The item is compiled from attributes of various objects and maybe even a direct database 
query. The same data set is assembled in another part of the application in order to present or 
report or derive something. But you have never seen the need for an object. Probably, you have 
never really understood what the users meant by a particular term and had not realized it was 
important. 

Then suddenly a light comes on in your head. The name of the item on that report designates an 
important domain concept. You talk excitedly with your experts about your new insight. Maybe 
they show relief that you finally got it. Maybe they yawn because they've taken it for granted all 
along. Either way, you start to draw model diagrams on the board that fill in for some hand waving 
that you've always done before. The users correct you on the details of how the new model 
connects, but you can tell that there is a change in the quality of the discussion. You and the users 
understand each other more precisely, and demonstrations of model interactions to solve specific 
scenarios have become more natural. The language of the domain model has become more 
powerful. You refactor the code to reflect the new model and find you have a cleaner design. 

Listen to the language the domain experts use. Are there terms that succinctly state 
something complicated? Are they correcting your word choice (perhaps diplomatically)? Do 
the puzzled looks on their faces go away when you use a particular phrase? These are hints 
of a concept that might benefit the model. 

This is not the old "nouns are objects" notion. Hearing a new word produces a lead, which you 
follow up with conversation and knowledge crunching, with the goal of carving out a clean, useful 
concept. When the users or domain experts use vocabulary that is nowhere in the design, that is a 



warning sign. It is a doubly strong warning when both the developers and the domain experts are 
using terms that are not in the design. 

Or perhaps it is better to look at it as an opportunity. The UBIQUITOUS LANGUAGE is made up of 
the vocabulary that pervades speech, documents, model diagrams, and even code. If a term is 
absent from the design, it is an opportunity to improve the model and design by including it. 

Example 
Hearing a Missing Concept in the Shipping Model 

The team had already developed a working application that could book a cargo. They were starting 
to build an "operations support" application that would help juggle the work orders for loading and 
unloading cargos at the origin and destination and at transfers between ships. 

The booking application used a routing engine to plan the trip for a cargo. Each leg of the journey 
was stored in a row of a database table, indicating the ID of the vessel voyage (a particular voyage 
by a particular ship) slated to carry the cargo, the location where it would be loaded, and the 
location where it would be unloaded. 

Figure 9.1. 

 

Let's eavesdrop on a conversation (heavily abbreviated) between the developer and a shipping 



expert. 

Developer: I want to make sure the "cargo bookings" table has all the data that the operations 
application will need. 

Expert: They're going to need the whole itinerary for the Cargo . What information does it have 
now? 

Developer: The cargo ID, the vessel voyage, the loading port, and the unloading port for each leg. 

Expert: What about the date? Operations will need to contract handling work based on the 
expected times. 

Developer: Well, that can be derived from the schedule of the vessel voyage. The table data is 
normalized. 

Expert: Yes, it is normal to need the date. Operations people use these kinds of itineraries to plan 
for upcoming handling work. 

Developer: Yeah . . . OK, they'll definitely have access to the dates. The operations management 
application will be able to provide the whole loading and unloading sequence, with the date of 
each handling operation. The "itinerary," I guess you would say. 

Expert: Good. The itinerary is the main thing they'll need. Actually, you know, the booking 
application has a menu item that will print an itinerary or e-mail it to the customer. Can you use 
that somehow? 

Developer: That's just a report, I think. We won't be able to base the operations application on 
that. 

[ Developer looks thoughtful, then excited. ] 

Developer: So, this itinerary is really the link between booking and operations. 

Expert: Yes, and some customer relations, too. 

Developer: [ Sketching a diagram on the whiteboard. ] So would you say it is something like this? 

Figure 9.2. 



 

Expert: Yes, that looks basically right. For each leg you'd like to see the vessel voyage, the load 
and unload location, and time. 

Developer: So once we create the Leg object, it can derive the times from the vessel voyage 
schedule. We can make the Itinerary object our main point of contact with the operations 
application. And we can rewrite that itinerary report to use this, so we'll get the domain logic back 
into the domain layer. 

Expert: I didn't follow all of that, but you are right that the two main uses for the Itinerary are in 
the report in booking and in the operations application. 

Developer: Hey! We can make the Routing Service interface return an itinerary object instead of 
putting the data in the database table. That way the routing engine doesn't need to know about our 
tables. 

Expert: Huh? 

Developer: I mean, I'll make the routing engine just return an Itinerary . Then it can be saved in 
the database by the booking application when the rest of the booking is saved. 

Expert: You mean it isn't that way now?! 

The developer then went off to talk with the other developers involved in the routing process. They 
hashed out the changes to the model and the implications for the design, calling on the shipping 
experts when needed. They came up with the diagram in Figure 9.3 . 

Figure 9.3. 



 

Next, the developers refactored the code to reflect the new model. They did it in a series of two or 
three refactorings, but in quick succession, within a week, except for simplifying the itinerary 
report in the booking application, which they took care of early the following week. 

The developer had been listening closely enough to the shipping expert to notice how important 
the concept of an "itinerary" was to him. True, all the data was already being collected, and the 
behavior was implicit in the itinerary report, but the explicit Itinerary as part of the model opened 
up opportunities. 

Benefits of refactoring to the explicit Itinerary object: 

1.  Defining the interface of the Routing Service more expressively 

2.  Decoupling the Routing Service from the booking database tables 



3.  Clarifying the relationship between the booking application and the operations support 
application (the sharing of the Itinerary object) 

4.  Reducing duplication, because the Itinerary derives loading/unloading times for both the 
booking report and the operations support application 

5.  Removing domain logic from the booking report and placing it in the isolated domain layer 

6.  Expanding the UBIQUITOUS LANGUAGE , allowing a more precise discussion of the model 
and design between developers and domain experts and among the developers themselves 

Scrutinize Awkwardness 

The concept you need is not always floating on the surface, emerging in conversation or 
documents. You may have to dig and invent. The place to dig is the most awkward part of your 
design. The place where procedures are doing complicated things that are hard to explain. The 
place where every new requirement seems to add complexity. 

Sometimes it can be hard to recognize that there even is a missing concept. You may have objects 
doing all the work but find some of the responsibilities awkward. Or, if you do realize something 
is missing, a model solution may elude you. 

Now you have to actively engage the domain experts in the search. If you are lucky, they may 
enjoy playing with ideas and experimenting with the model. If you are not that lucky, you and your 
fellow developers will have to come up with the ideas, using the domain expert as a validator, 
watching for discomfort or recognition on his or her face. 

Example 
Earning Interest the Hard Way 

The next story is set in a hypothetical financial company that invests in commercial loans and 
other interest-bearing assets. An application that tracks those investments and the earnings from 
them has been evolving incrementally, feature by feature. Each night, one component was to run as 
a batch script, calculating all interest and fees for the day and then recording them appropriately in 
the company's accounting software. 

Figure 9.4. An awkward model 



 

The nightly batch script iterated through each Asset , telling each to 
calculateInterestForDate() on that day's date. The script took the return value (the 
amount earned) and passed this amount, along with the name of a specific ledger, to a SERVICE 
that provided the public interface of the accounting program. That software posted the amount to 
the named ledger. The script went through a similar process to get the day's fees from each Asset , 
posting them to a different ledger. 

A developer had been struggling with the increasing complexity of calculating interest. She started 
to suspect an opportunity for a model better suited to the task. This developer asked her favorite 
domain expert to help her dig into the problem area. 

Developer: Our Interest Calculator is getting out of hand. 

Expert: That is a complicated part. We still have more cases we've been holding back. 

Developer: I know. We can add new interest types by substituting a different Interest Calculator. 
But what we're having the most trouble with right now is all these special cases when they don't 
pay the interest on schedule. 

Expert: Those really aren't special cases. There's a lot of flexibility in when people pay. 

Developer: Back when we factored out the Interest Calculator from the Asset , it helped a lot. 
We may need to break it up more. 

Expert: OK. 

Developer: I was thinking you might have a way of talking about this interest calculation. 

Expert: What do you mean? 



Developer: Well, for example, we're tracking the interest due but un-paid within an accounting 
period. Do you have a name for that? 

Expert: Well, we don't really do it like that. The interest earned and the payment are quite separate 
postings. 

Developer: So you don't need that number? 

Expert: Well, sometimes we might look at it, but it isn't the way we do business. 

Developer: OK, so if the payment and interest are separate, maybe we should model them that 
way. How does this look? [ Sketching on whiteboard ] 

Figure 9.5. 

 

Expert: It makes sense, I guess. But you just moved it from one place to another. 

Developer: Except now the Interest Calculator only keeps track of interest earned, and the 
Payment keeps that number separately. It hasn't simplified it a lot, but does it better reflect your 
business practice? 



Expert: Ah. I see. Could we have interest history, too? Like the Payment History . 

Developer: Yes, that has been requested as a new feature. But that could have been added onto the 
original design. 

Expert: Oh. Well, when I saw interest and Payment History separated like that, I thought you 
were breaking up the interest to organize it more like the Payment History . Do you know 
anything about accrual basis accounting? 

Developer: Please explain. 

Expert: Each day, or whenever the schedule calls for, we have an interest accrual that gets posted 
to a ledger. The payments are posted a different way. This aggregate you have here is a little 
awkward. 

Developer: You're saying that if we keep a list of "accruals," they could be aggregated or . . . 
"posted" as needed. 

Expert: Probably posted on the accrual date, but yes, aggregated any-time. Fees work the same 
way, posted to a different ledger, of course. 

Developer: Actually, the interest calculation would be simpler if it was done just for one day, or 
period. And then we could just hang on to them all. How about this? 

Figure 9.6. 



 

Expert: Sure. It looks good. I'm not sure why this would be easier for you. But basically, what 
makes any asset valuable is what it can accrue in interest, fees, and so on. 

Developer: You said fees work the same way? They . . . what was it . . . post to different ledgers? 

Figure 9.7. 



 

Developer: With this model, we get the interest calculation, or rather, the accrual calculation logic 
that was in the Interest Calculator separated from tracking. And I hadn't noticed until now how 
much duplication there is in the Fee Calculator . Also, now the different kinds of fees can easily 
be added. 

Expert: Yes, the calculation was correct before, but I can see everything now. 

Because the Calculator classes hadn't been directly coupled with other parts of the design, this 
was a fairly easy refactoring. The developer was able to rewrite the unit tests to use the new 
language in a few hours and had the new design working late the next day. She ended up with this. 

Figure 9.8. A deeper model after refactoring 



 

In the refactored application, the nightly batch script tells each Asset to 
calculateAccrualsThroughDate() . The return value is a collection of Accruals , 
each of whose amounts it posts to the indicated ledger. 

The new model has several advantages. The change 

1.  Enriches the UBIQUITOUS LANGUAGE with the term "accrual" 

2.  Decouples accrual from payment 

3.  Moves domain knowledge (such as which ledger to post to) from the script and into the 
domain layer 

4.  Brings fees and interest together in a way that fits the business and eliminates duplication in 
the code 

5.  Provides a straightforward path for adding new variations of fees and interest as Accrual 
Schedules 

This time, the developer had to dig for the new concepts she needed. She could see the 
awkwardness of the interest calculations and made a committed effort to look for a deeper answer. 

She was lucky to have an intelligent and motivated partner in the banking expert. With a more 
passive source of expertise, she would have made more false starts and depended more on other 
developers as brainstorming partners. Progress would have been slower, but still possible. 

Contemplate Contradictions 

Different domain experts see things different ways based on their experience and needs. Even the 



same person provides information that is logically inconsistent after careful analysis. Such pesky 
contradictions, which we encounter all the time when digging into program requirements, can be 
great clues to deeper models. Some are just variations in terminology or are based on 
misunderstanding. But there is a residue where two factual statements by experts seem to 
contradict. 

The astronomer Galileo once posed a paradox. The evidence of the senses clearly indicates that the 
Earth is stationary: people are not being blown off and falling behind. Yet Copernicus had made a 
compelling argument that the Earth was moving around the sun quite rapidly. Reconciling this 
might reveal something profound about how nature works. 

Galileo devised a thought experiment. If a rider dropped a ball from a running horse, where would 
it fall? Of course, the ball would move along with the horse until it hit the ground by the horse's 
feet, just as if the horse were standing still. From this he deduced an early form of the idea of 
inertial frames of reference, solving the paradox and leading to a much more useful model of the 
physics of motion. 

OK. Our contradictions are usually not so interesting, nor the implications so profound. Even so, 
this same pattern of thought often helps pierce the superficial layers of a problem domain into a 
deeper insight. 

It is not practical to reconcile all contradictions, and it may not even be desirable. ( Chapter 14 
delves into how to decide and how to manage the result.) However, even when a contradiction is 
left in place, contemplation of how two statements could both apply to the same external reality 
can be revealing. 

Read the Book 

Don't overlook the obvious when seeking model concepts. In many fields, you can find books that 
explain the fundamental concepts and conventional wisdom. You still have to work with your own 
domain experts to distill the part relevant to your problem and to crunch it into something suited to 
object-oriented software. But you may be able to start with a coherent, deeply considered view. 

Example 
Earning Interest by the Book 

Let's imagine a different scenario for the investment-tracking application discussed in the previous 
example. Just as before, the story starts with the developer realizing that the design is getting 
unwieldy, particularly the Interest Calculator . But in this scenario, the domain expert's primary 
responsibilities lie elsewhere, and he doesn't have much interest in helping the software 
development project. In this scenario, the developer couldn't turn to the expert for a brainstorming 
session to probe for the missing concepts she suspected to be lurking under the surface. 

file:///E|/books/0-321-12521-5/ch09lev1sec1.htm?xmlid=0-321-12521-5/ch14#ch14


Instead, she went to the bookstore. After a little browsing, she found an introductory accounting 
book she liked, and she skimmed it. She discovered a whole system of well-defined concepts. An 
excerpt that particularly fired her thinking: 

Accrual Basis Accounting . This method recognizes income when it is earned, even 
if it is not paid. All expenses also show when they are incurred whether they have 
been paid for or billed to be paid at a later date. Any obligation due, including taxes, 
will be shown as expense. 

— Finance and Accounting: How to Keep Your Books and Manage Your Finances 
Without an MBA, a CPA or a Ph.D., by Suzanne Caplan (Adams Media, 2000) 

The developer no longer needed to reinvent accounting. After some brainstorming with another 
developer, she came up with a model. 

Figure 9.9. A somewhat deeper model based on book learning 

 

She did not have the insight that Assets are income generators, and so the Calculators are still 
there. The knowledge of ledgers is still in the application, rather than the domain layer where it 
probably belongs. But she did separate the issue of payment from the accrual of income, which 
was the most problematic area, and she introduced the word "accrual" into the model and into the 
UBIQUITOUS LANGUAGE . Further refinement could come with later iterations. 

When she did finally have the chance to talk with the domain expert, he was quite surprised. It was 
the first time a programmer had shown a glimmer of interest in what he did. Due to the way his 
responsibilities were assigned, the expert never engaged with her, sitting down to go over the 
model, as happened in the previous scenario. However, because this developer's knowledge 



allowed her to ask better questions, from then on the expert did listen to her carefully, and he made 
a special effort to answer her questions promptly. 

Of course, this is not an either-or proposition. Even with ample support from domain experts, it 
pays to look at the literature to get a grasp of the theory of the field. Most businesses do not have 
models refined to the level of accounting or finance, but in many there have been thinkers in the 
field who have organized and abstracted the common practices of the business. 

Yet another option the developer had was to read something written by another software 
professional with development experience in this domain. For example, Chapter 6 of the book 
Analysis Patterns: Reusable Object Models ( Fowler 1997 ) would have sent her in quite a 
different direction, not necessarily better or worse. Such reading would not have provided an off-
the-shelf solution. It would have given several new starting points for her own experiments, along 
with the distilled experience of people who have traveled the territory. She would have been 
spared reinventing the wheel. Chapter 11 , "Applying Analysis Patterns," will delve further into 
this option. 

Try, Try Again 

The examples I've given don't convey the amount of trial and error involved. I might follow half a 
dozen leads in conversation before finding one that seems clear and useful enough to try out in the 
model. I'll end up replacing that one at least once later, as additional experience and knowledge 
crunching serve up better ideas. A modeler/designer cannot afford to get attached to his own ideas. 

All these changes of direction are not just thrashing. Each change embeds deeper insight into the 
model. Each refactoring leaves the design more supple, easier to change the next time, ready to 
bend in the places that turn out to need to bend. 

There really is no choice, anyway. Experimentation is the way to learn what works and doesn't. 
Trying to avoid missteps in design will result in a lower quality result because it will be based on 
less experience. And it can easily take longer than a series of quick experiments. 
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Chapter Nine.  Making Implicit Concepts Explicit 

How to Model Less Obvious Kinds of Concepts 

The object-oriented paradigm leads us to look for and invent certain kinds of concepts. Things, 
even very abstract ones such as "accruals," are the meat of most object models, along with the 
actions those things take. These are the "nouns and verbs" that introductory object-oriented design 
books talk about. But other important categories of concepts can be made explicit in a model as 
well. 

I'll discuss three such categories that were not obvious to me when I started with objects. My 
designs became sharper with each one of these I learned. 

Explicit Constraints 

Constraints make up a particularly important category of model concepts. They often emerge 
implicitly, and expressing them explicitly can greatly improve a design. 

Sometimes constraints find a natural home in an object or method. A "Bucket" object must 
guarantee the invariant that it does not hold more than its capacity. 

Figure 9.10. 

 



A simple invariant like this can be enforced using case logic in each operation capable of changing 
contents. 

class Bucket {
private float capacity;
private float contents;

public void pourIn(float addedVolume) {
if (contents + addedVolume > capacity) {
contents = capacity;
} else {
contents = contents + addedVolume;
}
}
}

This logic is so simple that the rule is obvious. But you can easily imagine this constraint getting 
lost in a more complicated class. Let's factor it into a separate method, with a name that clearly and 
explicitly expresses the significance of the constraint. 

class Bucket {
private float capacity;
private float contents;
public void pourIn(float addedVolume) {
float volumePresent = contents + addedVolume;
contents = constrainedToCapacity(volumePresent);
}

private float constrainedToCapacity(float volumePlacedIn) {
if (volumePlacedIn > capacity) return capacity;
return volumePlacedIn;
}
}

Both versions of this code enforce the constraint, but the second has a more obvious relationship to 
the model (the basic requirement of MODEL-DRIVEN DESIGN ). This very simple rule was 
understandable in its original form, but when the rules being enforced are more complex, they start 
to overwhelm the object or operation they apply to, as any implicit concept does. Factoring the 
constraint into its own method allows us to give it an intention-revealing name that makes the 
constraint explicit in our design. It is now a named thing we can discuss. This approach also gives 
the constraint room. A more complex rule than this might easily produce a method longer than its 



caller (the pourIn() method, in this case). This way, the caller stays simple and focused on its 
task while the constraint can grow in complexity if need be. 

This separate method gives the constraint some room to grow, but there are lots of cases when a 
constraint just can't fit comfortably in a single method. Or even if the method stays simple, it may 
call on information that the object doesn't need for its primary responsibility. The rule may just 
have no good home in an existing object. 

Here are some warning signs that a constraint is distorting the design of its host object. 

1.  Evaluating a constraint requires data that does not otherwise fit the object's definition. 

2.  Related rules appear in multiple objects, forcing duplication or inheritance between objects 
that are not otherwise a family. 

3.  A lot of design and requirements conversation revolves around the constraints, but in the 
implementation, they are hidden away in procedural code. 

When the constraints are obscuring the object's basic responsibility, or when the constraint is 
prominent in the domain yet not prominent in the model, you can factor it out into an explicit 
object or even model it as a set of objects and relationships. (One in-depth, semiformal treatment 
of this subject can be found in The Object Constraint Language: Precise Modeling with UML [ 
Warmer and Kleppe 1999 ].) 

Example 
Review: Overbooking Policy 

In Chapter 1 , we worked with a common shipping business practice: booking 10 percent more 
cargo than the transports could handle. (Experience has taught shipping firms that this overbooking 
compensates for last-minute cancellations, so their ships will sail nearly full.) 

This constraint on the association between Voyage and Cargo was made explicit, both in the 
diagrams and in the code, by adding a new class that represented the constraint. 

Figure 9.11. The model refactored to make policy explicit 
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To review the code and reasoning in the full example, see page 17. 

Processes as Domain Objects 

Right up front, let's agree that we do not want to make procedures a prominent aspect of our 
model. Objects are meant to encapsulate the procedures and let us think about their goals or 
intentions instead. 

What I am talking about here are processes that exist in the domain, which we have to represent in 
the model. When these emerge, they tend to make for awkward object designs. 

The first example in this chapter described a shipping system that routed cargo. This routing 
process was something with business meaning. A SERVICE is one way of expressing such a 
process explicitly, while still encapsulating the extremely complex algorithms. 

When there is more than one way to carry out a process, another approach is to make the algorithm 
itself, or some key part of it, an object in its own right. The choice between processes becomes a 
choice between these objects, each of which represents a different STRATEGY . ( Chapter 12 will 
look in more detail at the use of STRATEGIES in the domain.) 

The key to distinguishing a process that ought to be made explicit from one that should be hidden 
is simple: Is this something the domain experts talk about, or is it just part of the mechanism of the 
computer program? 

Constraints and processes are two broad categories of model concepts that don't come leaping to 
mind when programming in an object-oriented language, yet they can really sharpen up a design 
once we start thinking about them as model elements. 

Some useful categories of concepts are much narrower. I'll round out this chapter with one much 
more specific, yet quite common. S PECIFICATION provides a concise way of expressing certain 
kinds of rules, extricating them from conditional logic and making them explicit in the model. 

I developed SPECIFICATION in collaboration with Martin Fowler ( Evans and Fowler 1997 ). The 
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simplicity of the concept belies the subtlety in application and implementation, so there is a lot of 
detail in this section. There will be even more discussion in Chapter 10 , where the pattern is 
extended. After reading the initial explanation of the pattern that follows, you may want to skim 
the " Applying and Implementing S PECIFICATIONS " section, until you are actually attempting to 
apply the pattern. 

Specification 

 

In all kinds of applications, Boolean test methods appear that are really parts of little rules. As long 
as they are simple, we handle them with testing methods, such as anIterator.hasNext() 
or anInvoice.isOverdue() . In an Invoice class, the code in isOverdue() is an 
algorithm that evaluates a rule. For example, 

public boolean isOverdue() {
Date currentDate = new Date();
return currentDate.after(dueDate);
}

But not all rules are so simple. On the same Invoice class, another rule, 
anInvoice.isDelinquent() would presumably start with testing if the Invoice is 
overdue, but that would just be the beginning. A policy on grace periods could depend on the 
status of the customer's account. Some delinquent invoices will be ready for a second notice, while 
others will be ready to be sent to a collection agency. The payment history of the customer, 
company policy on different product lines . . . the clarity of Invoice as a request for payment will 
soon be lost in the sheer mass of rule evaluation code. The Invoice will also develop all sorts of 
dependencies on domain classes and subsystems that do not support that basic meaning. 

At this point, in an attempt to save the Invoice class, a developer will often refractor the rule 
evaluation code into the application layer (in this case, a bill collection application). Now the rules 
have been separated from the domain layer altogether, leaving behind a dead data object that does 
not express the rules inherent in the business model. These rules need to stay in the domain layer, 
but they don't fit into the object being evaluated (the Invoice in this case). Not only that, but 
evaluating methods swell with conditional code, which make the rule hard to read. 

Developers working in the logic-programming paradigm would handle this situation differently. 
Such rules would be expressed as predicates . Predicates are functions that evaluate to "true" or 
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"false" and can be combined using operators such as "AND" and "OR" to express more complex 
rules. With predicates, we could declare rules explicitly and use them with the Invoice . If only we 
were in the logic paradigm. 

Seeing this, people have made attempts at implementing logical rules in terms of objects. Some 
such attempts were very sophisticated, others naive. Some were ambitious, others modest. Some 
turned out valuable, some were tossed aside as failed experiments. A few attempts were allowed to 
derail their projects. One thing is clear: As appealing as the idea is, full implementation of logic in 
objects is a major undertaking. (After all, logic programming is a whole modeling and design 
paradigm in its own right.) 

Business rules often do not fit the responsibility of any of the obvious ENTITIES or VALUE 
OBJECTS , and their variety and combinations can overwhelm the basic meaning of the 
domain object. But moving the rules out of the domain layer is even worse, since the domain 
code no longer expresses the model. 

Logic programming provides the concept of separate, combinable, rule objects called 
"predicates," but full implementation of this concept with objects is cumbersome. It is also so 
general that it doesn't communicate intent as much as more specialized designs. 

Fortunately, we don't really need to fully implement logic programming to get a large benefit. 
Most of our rules fall into a few special cases. We can borrow the concept of predicates and create 
specialized objects that evaluate to a Boolean. Those testing methods that get out of hand will 
neatly expand into objects of their own. They are little truth tests that can be factored out into a 
separate VALUE OBJECT . This new object can evaluate another object to see if the predicate is true 
for that object. 

Figure 9.12. 

 

To put it another way, the new object is a specification . A SPECIFICATION states a constraint on 
the state of another object, which may or may not be present. It has multiple uses, but one that 
conveys the most basic concept is that a SPECIFICATION can test any object to see if it satisfies the 



specified criteria. 

Therefore: 

Create explicit predicate-like VALUE OBJECTS for specialized purposes. A SPECIFICATION is 
a predicate that determines if an object does or does not satisfy some criteria. 

Many SPECIFICATIONS are simple, special-purpose tests, as in the delinquent invoice example. In 
cases where the rules are complex, the concept can be extended to allow simple specifications to 
be combined, just as predicates are combined with logical operators. (This technique will be 
discussed in the next chapter.) The fundamental pattern stays the same and provides a path from 
the simpler to more complex models. 

The case of the delinquent invoice can be modeled using a SPECIFICATION that states what it 
means to be delinquent and that can evaluate any Invoice and make the determination. 

Figure 9.13. A more elaborate delinquency rule factored out as a SPECIFICATION 

 

The SPECIFICATION keeps the rule in the domain layer. Because the rule is a full-fledged object, 
the design can be a more explicit reflection of the model. A FACTORY can configure a 
SPECIFICATION using information from other sources, such as the customer's account or the 
corporate policy database. Providing direct access to these sources from the Invoice would couple 
the objects in a way that does not relate to the request for payment (the basic responsibility of 
Invoice ). In this case, the Delinquent Invoice Specification was to be created, used to evaluate 
some Invoices , and then discarded, so a specific evaluation date was built right in—a nice 
simplification. A SPECIFICATION can be given the information it will need to do its job in a simple, 
straightforward way. 

   



The basic concept of SPECIFICATION is very simple and helps us think about a domain modeling 
problem. But a MODEL-DRIVEN DESIGN requires an effective implementation that also expresses 
the concept. To pull that off requires digging a little deeper into how the pattern will be applied. A 
domain pattern is not just a neat idea for a UML diagram; it is a solution to a programming 
problem that retains a MODEL-DRIVEN DESIGN . 

When you apply a pattern appropriately, you can tap into a whole body of thought about how to 
approach a class of domain modeling problem, and you can benefit from years of experience in 
finding effective implementations. There is a lot of detail in the discussion of SPECIFICATION that 
follows: many options for features and approaches to implementation. A pattern is not a cookbook. 
It lets you start from a base of experience to develop your solution, and it gives you some language 
to talk about what you are doing. 

You may want to skim the key concepts when first reading. Later, when you run into the situation, 
you can come back and draw on the experience captured in the detailed discussion. Then you can 
go and figure out a solution to your problem. 

Applying and Implementing S PECIFICATION 

Much of the value of SPECIFICATION is that it unifies application functionality that may seem quite 
different. We might need to specify the state of an object for one or more of these three purposes. 

1.  To validate an object to see if it fulfills some need or is ready for some purpose 

2.  To select an object from a collection (as in the case of querying for overdue invoices) 

3.  To specify the creation of a new object to fit some need 

These three uses—validation, selection, and building to order—are the same on a conceptual level. 
Without a pattern such as SPECIFICATION , the same rule may show up in different guises, and 
possibly contradictory forms. The conceptual unity can be lost. Applying the SPECIFICATION 
pattern allows a consistent model to be used, even when the implementation may have to diverge. 

Validation 

The simplest use of a SPECIFICATION is validation, and it is the use that demonstrates the concept 
most straightforwardly. 

Figure 9.14. A model applying a SPECIFICATION for validation 



 

class DelinquentInvoiceSpecification extends
InvoiceSpecification {
private Date currentDate;
// An instance is used and discarded on a single date

public DelinquentInvoiceSpecification(Date currentDate) {
this.currentDate = currentDate;
}

public boolean isSatisfiedBy(Invoice candidate) {
int gracePeriod =
candidate.customer().getPaymentGracePeriod();
Date firmDeadline =
DateUtility.addDaysToDate(candidate.dueDate(),
gracePeriod);
return currentDate.after(firmDeadline);
}

}

Now, suppose we need to display a red flag whenever a salesperson brings up a customer with 
delinquent bills. We just have to write a method in a client class, something like this. 

public boolean accountIsDelinquent(Customer customer) {
Date today = new Date();
Specification delinquentSpec =
new DelinquentInvoiceSpecification(today);
Iterator it = customer.getInvoices().iterator();
while (it.hasNext()) {



Invoice candidate = (Invoice) it.next();
if (delinquentSpec.isSatisfiedBy(candidate)) return true;
}
return false;
}

Selection (or Querying) 

Validation tests an individual object to see if it meets some criteria, presumably so that the client 
can act on the conclusion. Another common need is to select a subset of a collection of objects 
based on some criteria. The same concept of SPECIFICATION can be applied here, but 
implementation issues are different. 

Suppose there was an application requirement to list all customers with delinquent Invoices. In 
theory, the Delinquent Invoice Specification that we defined before will still serve, but in practice 
its implementation would probably have to change. To demonstrate that the concept is the same, 
let's assume first that the number of Invoices is small, maybe already in memory. In this case, the 
straightforward implementation developed for validation still serves. The Invoice Repository 
could have a generalized method to select Invoices based on a SPECIFICATION : 

public Set selectSatisfying(InvoiceSpecification spec) {

Set results = new HashSet();
Iterator it = invoices.iterator();
while (it.hasNext()) {
Invoice candidate = (Invoice) it.next();
if (spec.isSatisfiedBy(candidate)) results.add(candidate);
}

return results;
}

So a client could obtain a collection of all delinquent Invoices with a single code statement: 

Set delinquentInvoices = invoiceRepository.selectSatisfying(
new DelinquentInvoiceSpecification(currentDate));

That line of code establishes the concept behind the operation. Of course, the Invoice objects 
probably aren't in memory. There may be thousands of them. In a typical business system, the data 
is probably in a relational database. And, as pointed out in earlier chapters, the model focus tends 
to get lost at these intersections with other technologies. 



Relational databases have powerful search capabilities. How can we take advantage of that power 
to solve this problem efficiently while retaining the model of a SPECIFICATION ? M ODEL-DRIVEN 
DESIGN demands that the model stay in lockstep with the implementation, but it allows freedom to 
choose any implementation that faithfully captures the meaning of the model. Lucky for us, SQL is 
a very natural way to write SPECIFICATIONS . 

Here is a simple example, in which the query is encapsulated in the same class as the validation 
rule. A single method is added to the Invoice Specification and is implemented in the Delinquent 
Invoice Specification subclass: 

public String asSQL() {
return
"SELECT * FROM INVOICE, CUSTOMER" +
"  WHERE INVOICE.CUST_ID = CUSTOMER.ID" +
"  AND INVOICE.DUE_DATE + CUSTOMER.GRACE_PERIOD" +
"     < " + SQLUtility.dateAsSQL(currentDate);
}

S PECIFICATIONS mesh smoothly with REPOSITORIES , which are the building-block mechanisms 
for providing query access to domain objects and encapsulating the interface to the database (see 
Figure 9.15 ). 

Figure 9.15. The interaction between REPOSITORY and SPECIFICATION 



 

Now this design has some problems. Most important, the details of the table structure have leaked 
into the DOMAIN LAYER ; they should be isolated in a mapping layer that relates the domain 
objects to the relational tables. Implicitly duplicating that information here could hurt the 
modifiability and maintainability of the Invoice and Customer objects, because any change to 
their mappings now have to be tracked in more than one place. But this example is a simple 
illustration of how to keep the rule in just one place. Some object-relational mapping frameworks 
provide the means to express such a query in terms of the model objects and attributes, generating 
the actual SQL in the infrastructure layer. This would let us have our cake and eat it too. 

When the infrastructure doesn't come to the rescue, we can refactor the SQL out of the expressive 
domain objects by adding a specialized query method to the Invoice Repository . To avoid 
embedding the rule into the REPOSITORY , we have to express the query in a more generic way, 
one that doesn't capture the rule but can be combined or placed in context to work the rule out (in 
this example, by using a double dispatch). 

public class InvoiceRepository {

public Set selectWhereGracePeriodPast(Date aDate){
//This is not a rule, just a specialized query
String sql = whereGracePeriodPast_SQL(aDate);
ResultSet queryResultSet =



SQLDatabaseInterface.instance().executeQuery(sql);
return buildInvoicesFromResultSet(queryResultSet);
}

public String whereGracePeriodPast_SQL(Date aDate) {
return
"SELECT * FROM INVOICE, CUSTOMER" +
"  WHERE INVOICE.CUST_ID = CUSTOMER.ID" +
"  AND INVOICE.DUE_DATE + CUSTOMER.GRACE_PERIOD" +
"     < " + SQLUtility.dateAsSQL(aDate);
}

public Set selectSatisfying(InvoiceSpecification spec) {
return spec.satisfyingElementsFrom(this);
}
}

The asSql() method on Invoice Specification is replaced with 
satisfyingElementsFrom(InvoiceRepository) , which Delinquent Invoice 
Specification implements as: 

public class DelinquentInvoiceSpecification {
// Basic DelinquentInvoiceSpecification code here

public Set satisfyingElementsFrom(
InvoiceRepository repository) {
//Delinquency rule is defined as:
//   "grace period past as of current date"
return repository.selectWhereGracePeriodPast(currentDate);
}
}

This puts the SQL in the REPOSITORY , while the SPECIFICATION controls what query should be 
used. The rules aren't as neatly collected into the SPECIFICATION , but the essential declaration is 
there of what constitutes delinquency (that is, past grace period). 

The REPOSITORY now has a very specialized query that most likely will be used only in this case. 
That is acceptable, but depending on the relative numbers of Invoices that are overdue compared 
to those that are delinquent, an intermediate solution that leaves the REPOSITORY methods more 
generic may still give good performance, while keeping the SPECIFICATION more self-explanatory. 



public class InvoiceRepository {

public Set selectWhereDueDateIsBefore(Date aDate) {
String sql = whereDueDateIsBefore_SQL(aDate);
ResultSet queryResultSet =
SQLDatabaseInterface.instance().executeQuery(sql);
return buildInvoicesFromResultSet(queryResultSet);
}

public String whereDueDateIsBefore_SQL(Date aDate) {
return
"SELECT * FROM INVOICE" +
"  WHERE INVOICE.DUE_DATE" +
"     < " + SQLUtility.dateAsSQL(aDate);
}

public Set selectSatisfying(InvoiceSpecification spec) {
return spec.satisfyingElementsFrom(this);
}
}

public class DelinquentInvoiceSpecification {
//Basic DelinquentInvoiceSpecification code here

public Set satisfyingElementsFrom(
InvoiceRepository repository) {
Collection pastDueInvoices =
repository.selectWhereDueDateIsBefore(currentDate);

Set delinquentInvoices = new HashSet();
Iterator it = pastDueInvoices.iterator();
while (it.hasNext()) {
Invoice anInvoice = (Invoice) it.next();
if (this.isSatisfiedBy(anInvoice))
delinquentInvoices.add(anInvoice);
}
return delinquentInvoices;
}
}

We'll take a performance hit with this code, because we pull out more Invoices and then have to 
select from them in memory. Whether this is an acceptable cost for the better factoring of 
responsibility depends entirely on circumstances. There are many ways to implement the 
interactions between SPECIFICATIONS and REPOSITORIES , to take advantage of the development 



platform, while keeping the basic responsibilities in place. 

Sometimes, to improve performance, or more likely to tighten security, queries may be 
implemented on the server as stored procedures. In that case, the SPECIFICATION could carry only 
the parameters allowed by the stored procedure. For all that, there is no difference in the model 
between these various implementations. The choice of implementation is free except where 
specifically constrained by the model. The price comes in a more cumbersome way of writing and 
maintaining queries. 

This discussion barely scratches the surface of the challenges of combining SPECIFICATIONS with 
databases, and I'll make no attempt to cover all the considerations that may arise. I just want to 
give a taste of the kind of choices that have to be made. Mee and Hieatt discuss a few of the 
technical issues involved in designing REPOSITORIES with SPECIFICATIONS in Fowler 2002. 

Building to Order (Generating) 

When the Pentagon wants a new fighter jet, officials write a specification. This specification may 
require that the jet reach Mach 2, that it have a range of 1800 miles, that it cost no more than $50 
million, and so on. But however detailed it is, the specification is not a design for a plane, much 
less a plane. An aerospace engineering company will take the specification and create one or more 
designs based on it. Competing companies may produce different designs, all of which presumably 
satisfy the original spec. 

Many computer programs generate things, and those things have to be specified. When you place a 
picture into a word-processing document, the text flows around it. You have specified the location 
of the picture, and perhaps the style of text flow. The exact placement of the words on the page is 
then worked out by the word processor in such a way that it meets your specification. 

Although it may not be apparent at first, this is the same concept of a SPECIFICATION that was 
applied to validation and selection. We are specifying criteria for objects that are not yet present. 
The implementation will be quite different, however. This SPECIFICATION is not a filter for 
preexisting objects, as with querying. It is not a test for an existing object, as with validation. This 
time, a whole new object or set of objects will be made or reconfigured to satisfy the 
SPECIFICATION . 

Without using SPECIFICATION , a generator can be written that has procedures or a set of 
instructions that create the needed objects. This code implicitly defines the behavior of the 
generator. 

Instead, an interface of the generator that is defined in terms of a descriptive SPECIFICATION 
explicitly constrains the generator's products. This approach has several advantages. 



●     The generator's implementation is decoupled from its interface. The SPECIFICATION 
declares the requirements for the output but does not define how that result is reached. 

●     The interface communicates its rules explicitly, so developers can know what to expect 
from the generator without understanding all details of its operation. The only way to 
predict the behavior of a procedurally defined generator is to run cases or to understand 
every line of code. 

●     The interface is more flexible, or can be enhanced with more flexibility, because the 
statement of the request is in the hands of the client, while the generator is only obligated to 
fulfill the letter of the SPECIFICATION . 

●     Last, but not least, this kind of interface is easier to test, because the model contains an 
explicit way to define input into the generator that is also a validation of the output . That 
is, the same SPECIFICATION that is passed into the generator's interface to constrain the 
creation process can also be used, in its validation role (if the implementation supports it) to 
confirm that the created object is correct. (This is an example of an ASSERTION , discussed 
in Chapter 10 .) 

Building to order can mean creation of an object from scratch, but it can also be a configuration of 
preexisting objects to satisfy the SPEC . 

Example 
Chemical Warehouse Packer 

There is a warehouse in which various chemicals are stored in stacks of large containers, similar to 
boxcars. Some chemicals are inert and can be stored just about anywhere. Some are volatile and 
have to be stored in specially ventilated containers. Some are explosive and have to be stored in 
specially armored containers. There are also rules about the combinations allowed in a container. 

The goal is to write software that will find an efficient and safe way to put the chemicals in the 
containers. 

Figure 9.16. A model for warehouse storage 
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We could start by writing a procedure to take a chemical and place it in a container, but instead, 
let's start with the validation problem. This will force us to make the rules explicit, and it will give 
us a way to test the final implementation. 

Each chemical will have a container SPECIFICATION : 

Chemical Container Specification 

TNT Armored container 

Sand   

Biological Samples Must not share container with explosives 

Ammonia Ventilated container 

Now, if we write these as Container Specifications , we should be able to take a configuration of 
packed containers and test to see if it meets these constraints. 

Container Features Contents Specification Satisfied? 

Armored 20 lbs. TNT 

500 lbs. sand 
 



  50 lbs. biological samples  

  Ammonia  

A method on Container Specification , isSatisfied() , would have to be implemented to 
check for needed ContainerFeatures . For example, the SPEC attached to an explosive chemical 
would look for the "armored" feature: 

public class ContainerSpecification {
private ContainerFeature requiredFeature;
public ContainerSpecification(ContainerFeature required) {
requiredFeature = required;
}

boolean isSatisfiedBy(Container aContainer){
return aContainer.getFeatures().contains(requiredFeature);
}
}

Here is sample client code to set up an explosive chemical: 

tnt.setContainerSpecification(
new ContainerSpecification(ARMORED));

A method on a Container object, isSafelyPacked(), will confirm that Container has all 
the features specified by the Chemicals it contains: 

boolean isSafelyPacked(){
Iterator it = contents.iterator();
while (it.hasNext()) {
Drum drum = (Drum) it.next();
if (!drum.containerSpecification().isSatisfiedBy(this))
return false;
}
return true;
}



At this point, we could write a monitoring application that would take the inventory database and 
report any unsafe situations. 

Iterator it = containers.iterator();
while (it.hasNext()) {
Container container = (Container) it.next();
if (!container.isSafelyPacked())
unsafeContainers.add(container);
}

This is not the software we've been asked to write. It would be good to let the business people 
know about the opportunity, but we have been charged with designing a packer. What we have is a 
test for a packer. This understanding of the domain and our SPECIFICATION -based model put us in 
a position to define a clear and simple interface for a SERVICE that will take collections of Drums 
and Containers and pack them in compliance with the rules. 

public interface WarehousePacker {
public void pack(Collection containersToFill,
Collection drumsToPack) throws NoAnswerFoundException;

/* ASSERTION: At end of pack(), the ContainerSpecification
of each Drum shall be satisfied by its Container.
If no complete solution can be found, an exception shall
be thrown. */

}

Now the task of designing an optimized constraint solver to fulfill the responsibilities of the 
Packer service has been decoupled from the rest of the application, and those mechanisms will not 
clutter the part of the design that expresses the model. (See "Declarative Style of Design," Chapter 
10 , and COHESIVE MECHANISM , Chapter 15 .) Yet the rules governing packing have not been 
pulled out of the domain objects. 

Example 
A Working Prototype of the Warehouse Packer 

Writing the optimization logic to make the warehouse packing software work is a big job. A small 
team of developers and business experts have split off and have set to work on it, but they haven't 
even begun to code. Meanwhile, another small team is developing the application that will allow 
users to pull inventory from the database, feed it to the Packer , and interpret the results. They are 
trying to design for the anticipated Packer . But all they can do is mock up a UI and work on some 
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database integration code. They can't show the users an interface with meaningful behavior to get 
good feedback. For the same reason, the Packer team is working in a vacuum too. 

With the domain objects and SERVICE interface made in the warehouse packer example, the 
application team realizes they could build a very simple implementation of a Packer that could 
help the development process move along, allowing work to go forward in parallel and closing the 
feedback loop, which only reaches full effect with a working end-to-end system. 

public class Container {
private double capacity;
private Set contents; //Drums

public boolean hasSpaceFor(Drum aDrum) {
return remainingSpace() >= aDrum.getSize();
}

public double remainingSpace() {
double totalContentSize = 0.0;
Iterator it = contents.iterator();
while (it.hasNext()) {
Drum aDrum = (Drum) it.next();
totalContentSize = totalContentSize + aDrum.getSize();
}
return capacity – totalContentSize;
}

public boolean canAccommodate(Drum aDrum) {
return hasSpaceFor(aDrum) &&
aDrum.getContainerSpecification().isSatisfiedBy(this);
}

}

public class PrototypePacker implements WarehousePacker {

public void pack(Collection containers, Collection drums)
throws NoAnswerFoundException {

/* This method fulfills the ASSERTION as written. However,
when an exception is thrown, Containers' contents may
have changed. Rollback must be handled at a higher
level. */



Iterator it = drums.iterator();
while (it.hasNext()) {
Drum drum = (Drum) it.next();
Container container =
findContainerFor(containers, drum);
container.add(drum);
}
}
public Container findContainerFor(
Collection containers, Drum drum)
throws NoAnswerFoundException {
Iterator it = containers.iterator();
while (it.hasNext()) {
Container container = (Container) it.next();
if (container.canAccommodate(drum))
return container;
}
throw new NoAnswerFoundException();
}

}

Granted that this code leaves a lot to be desired. It might pack sand into specialty containers and 
then run out of room before it packs the hazardous chemicals. It certainly doesn't optimize 
revenues. But a lot of optimization problems are never solved perfectly anyway. This 
implementation does follow the rules that have been stated so far. 

Clearing Development Logjams with Working 
Prototypes 

One team has to wait for working code from another in order to move forward. Both 
teams have to wait for full integration to exercise their components or get feedback 
from users. This kind of congestion can often be eased by a MODEL-DRIVEN prototype 
of a key component, even if it does not satisfy all requirements. When implementation 
is decoupled from interface, then having any working implementation at all allows 
flexibility for project work to go in parallel. When the time is right, the prototype can be 
replaced by a more effective implementation. In the meantime, all other parts of the 
system have something to interact with during development. 

Having this prototype lets the application developers move at full speed, including all integrations 



with external systems. The Packer development team also gets feedback as domain experts 
interact with the prototype and firm up their ideas, helping clarify requirements and priorities. The 
Packer team decides to take over the prototype and tweak it to test ideas. 

They also keep the interface up-to-date with their latest design, forcing refactoring of the 
application, and some domain objects, thereby tackling the integration problems early. 

As soon as the sophisticated Packer is ready, integration is a breeze because it has been written to 
a well-characterized interface—the same interface and ASSERTIONS that the application was 
written for when interacting with the prototype. 

It took specialists in optimization algorithms months to get it right. They benefited from the 
feedback they could get from users interacting with the prototype. In the meantime, all other parts 
of the system have something to interact with during development. 

Here we have an example of a "simplest thing that could possibly work" that actually becomes 
possible because of a more sophisticated model. We can have a functioning prototype of a very 
complex component in a couple dozen lines of easily understood code. A less MODEL-DRIVEN 
approach would be harder to understand, would be harder to upgrade (because the Packer would 
be more coupled to the rest of the design), and in this case, would likely take longer to prototype. 

      

Top 

  



       

Part III:  Refactoring Toward Deeper Insight 

Chapter Ten. Supple Design 

 

The ultimate purpose of software is to serve users. But first, that same software has to serve 
developers. This is especially true in a process that emphasizes refactoring. As a program evolves, 
developers will rearrange and rewrite every part. They will integrate the domain objects into the 
application and with new domain objects. Even years later, maintenance programmers will be 
changing and extending the code. People have to work with this stuff. But will they want to? 

When software with complex behavior lacks a good design, it becomes hard to refactor or combine 
elements. Duplication starts to appear as soon as a developer isn't confident of predicting the full 
implications of a computation. Duplication is forced when design elements are monolithic, so that 
the parts cannot be recombined. Classes and methods can be broken down for better reuse, but it 
gets hard to keep track of what all the little parts do. When software doesn't have a clean design, 
developers dread even looking at the existing mess, much less making a change that could 
aggravate the tangle or break something through an unforeseen dependency. In any but the 
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smallest systems, this fragility places a ceiling on the richness of behavior it is feasible to build. It 
stops refactoring and iterative refinement. 

To have a project accelerate as development proceeds—rather than get weighed down by its own 
legacy—demands a design that is a pleasure to work with, inviting to change. A supple design. 

Supple design is the complement to deep modeling. Once you've dug out implicit concepts and 
made them explicit, you have the raw material. Through the iterative cycle, you hammer that 
material into a useful shape, cultivating a model that simply and clearly captures the key concerns, 
and shaping a design that allows a client developer to really put that model to work. Development 
of the design and code leads to insight that refines model concepts. Round and round—we're back 
to the iterative cycle and refactoring toward deeper insight. But what kind of design are you trying 
to arrive at? What kind of experiments should you try along the way? That is what this chapter is 
about. 

A lot of overengineering has been justified in the name of flexibility. But more often than not, 
excessive layers of abstraction and indirection get in the way. Look at the design of software that 
really empowers the people who handle it; you will usually see something simple. Simple is not 
easy. To create elements that can be assembled into elaborate systems and still be understandable, 
a dedication to MODEL-DRIVEN DESIGN has to be joined with a moderately rigorous design style. 
It may well require relatively sophisticated design skill to create or to use . 

Developers play two roles, each of which must be served by the design. The same person might 
well play both roles—even switch back and forth in minutes—but the relationship to the code is 
different nonetheless. One role is the developer of a client, who weaves the domain objects into the 
application code or other domain layer code, utilizing capabilities of the design. A supple design 
reveals a deep underlying model that makes its potential clear. The client developer can flexibly 
use a minimal set of loosely coupled concepts to express a range of scenarios in the domain. 
Design elements fit together in a natural way with a result that is predictable, clearly characterized, 
and robust. 

Equally important, the design must serve the developer working to change it. To be open to 
change, a design must be easy to understand, revealing that same underlying model that the client 
developer is drawing on. It must follow the contours of a deep model of the domain, so most 
changes bend the design at flexible points. The effects of its code must be transparently obvious, 
so the consequences of a change will be easy to anticipate. 

Early versions of a design are usually stiff. Many never acquire any suppleness in the time frame 
or budget of the project. I've never seen a large program that had this quality throughout. But when 
complexity is holding back progress, honing the most crucial, intricate parts to a supple design 
makes the difference between getting sucked down into legacy maintenance and punching through 
the complexity ceiling. 



There is no formula for designing software like this, but I have culled a set of patterns that, in my 
experience, tend to lend suppleness to a design when they fit. These patterns and examples should 
give a feel for what a supple design is like and the kind of thinking that goes into it. 

Figure 10.1. Some patterns that contribute to supple design 
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Chapter Ten.  Supple Design 

Intention-Revealing Interfaces 

In domain-driven design, we want to think about meaningful domain logic. Code that produces the 
effect of a rule without explicitly stating the rule forces us to think of step-by-step software 
procedures. The same applies to a calculation that just results from running some code, but isn't 
explicit. Without a clear connection to the model, it is difficult to understand the effect of the code 
or anticipate the effect of a change. The previous chapter delved into modeling rules and 
calculations explicitly. Implementing such objects requires a lot of understanding of the gritty 
details of the calculation or the fine print of the rule. The beauty of objects is their ability to 
encapsulate all that, so that client code is simple and can be interpreted in terms of higher-level 
concepts. 

But if the interface doesn't tell the client developer what he needs to know in order to use the 
object effectively, he will have to dig into the internals to understand the details anyway. A reader 
of the client code will have to do the same. Then most of the value of the encapsulation is lost. We 
are always fighting cognitive overload: If the client developer's mind is flooded with detail about 
how a component does its job, his mind isn't clear to work out the intricacies of the client design. 
This is true even when the same person is playing both roles, developing and using his own code, 
because even if he doesn't have to learn those details, there is a limit to how many factors he can 
consider at once. 

If a developer must consider the implementation of a component in order to use it, the value 
of encapsulation is lost. If someone other than the original developer must infer the purpose 
of an object or operation based on its implementation, that new developer may infer a 
purpose that the operation or class fulfills only by chance. If that was not the intent, the code 
may work for the moment, but the conceptual basis of the design will have been corrupted, 
and the two developers will be working at cross-purposes. 

To obtain the value of explicitly modeling a concept in the form of a class or method, we must 
give these program elements names that reflect those concepts. The names of classes and methods 
are great opportunities for improving communication between developers, and for improving the 
abstraction of the system. 

Kent Beck wrote of making method names communicate their purpose with an INTENTION-
REVEALING SELECTOR ( Beck 1997 ). All public elements of a design together make up its 
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interface, and the name of each of those elements presents an opportunity to reveal the intention of 
the design. Type names, method names, and argument names all combine to form an INTENTION-
REVEALING INTERFACE . 

Therefore: 

Name classes and operations to describe their effect and purpose, without reference to the 
means by which they do what they promise. This relieves the client developer of the need to 
understand the internals. These names should conform to the UBIQUITOUS LANGUAGE so 
that team members can quickly infer their meaning. Write a test for a behavior before 
creating it, to force your thinking into client developer mode. 

All the tricky mechanism should be encapsulated behind abstract interfaces that speak in terms of 
intentions, rather than means. 

In the public interfaces of the domain, state relationships and rules, but not how they are enforced; 
describe events and actions, but not how they are carried out; formulate the equation but not the 
numerical method to solve it. Pose the question, but don't present the means by which the answer 
shall be found. 

Example 
Refactoring: A Paint-Mixing Application 

A program for paint stores can show a customer the result of mixing standard paints. Here is the 
initial design, which has a single domain class. 

Figure 10.2. 

 



The only way to even guess what the paint(Paint) method does is to read the code. 

public void paint(Paint paint) {
v = v + paint.getV(); //After mixing, volume is summed
// Omitted many lines of complicated color mixing logic
// ending with the assignment of new r, b, and y values.
}

OK, so it looks like this method combines two Paints together, the result having a larger volume 
and a mixed color. 

To shift our perspective, let's write a test for this method. (This code is based on the JUnit test 
framework.) 

public void testPaint() {
// Create a pure yellow paint with volume=100
Paint yellow = new Paint(100.0, 0, 50, 0);
// Create a pure blue paint with volume=100
Paint blue = new Paint(100.0, 0, 0, 50);

// Mix the blue into the yellow
yellow.paint(blue);

// Result should be volume of 200.0 of green paint
assertEquals(200.0, yellow.getV(), 0.01);
assertEquals(25, yellow.getB());
assertEquals(25, yellow.getY());
assertEquals(0, yellow.getR());
}

The passing test is the starting point. It is unsatisfying at this point because the code in the test 
doesn't tell us what it is doing. Let's rewrite the test to reflect the way we would like to use the 
Paint objects if we were writing a client application. Initially, this test will fail. In fact, it won't 
even compile. We are writing it to explore the interface design of the Paint object from the client 
developer's point of view. 

public void testPaint() {
// Start with a pure yellow paint with volume=100
Paint ourPaint = new Paint(100.0, 0, 50, 0);



// Take a pure blue paint with volume=100
Paint blue = new Paint(100.0, 0, 0, 50);

// Mix the blue into the yellow
ourPaint.mixIn(blue);

// Result should be volume of 200.0 of green paint
assertEquals(200.0, ourPaint.getVolume(), 0.01);
assertEquals(25, ourPaint.getBlue());
assertEquals(25, ourPaint.getYellow());
assertEquals(0, ourPaint.getRed());
}

We should take our time to write a test that reflects the way we would like to talk to these objects. 
After that, we refactor the Paint class to make the test pass. 

Figure 10.3. 

 

The new method name may not tell the reader everything about the effect of "mixing in" another 
Paint (for that we'll need ASSERTIONS , coming up in a few pages). But it will clue the reader in 
enough to get started using the class, especially with the example the test provides. And it will 
allow the reader of the client code to interpret the client's intent. In the next few examples in this 
chapter, we'll refactor this class again to make it even clearer. 

   



Entire subdomains can be carved off into separate modules and encapsulated behind INTENTION-
REVEALING INTERFACES . Using such whittling to focus a project and manage the complexity of a 
large system will be discussed more in Chapter 15 , "Distillation," with COHESIVE MECHANISMS 
and GENERIC SUBDOMAINS . 

But in the next two patterns, we'll set out to make the consequences of using a method very 
predictable. Complex logic can be done safely in SIDE-EFFECT-FREE FUNCTIONS . Methods that 
change system state can be characterized with ASSERTIONS . 
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Chapter Ten.  Supple Design 

Side -Effect-Free Functions 

Operations can be broadly divided into two categories, commands and queries. Queries obtain 
information from the system, possibly by simply accessing data in a variable, possibly performing 
a calculation based on that data. Commands (also known as modifiers) are operations that affect 
some change to the systems (for a simple example, by setting a variable). In standard English, the 
term side effect implies an unintended consequence, but in computer science, it means any effect 
on the state of the system. For our purposes, let's narrow that meaning to any change in the state of 
the system that will affect future operations. 

Why was the term side effect adopted and applied to quite intentional changes affected by 
operations? I assume this was based on experience with complex systems. Most operations call on 
other operations, and those called invoke still other operations. As soon as this arbitrarily deep 
nesting is involved, it becomes very hard to anticipate all the consequences of invoking an 
operation. The developer of the client may not have intended the effects of the second-tier and 
third-tier operations—they've become side effects in every sense of the phrase. Elements of a 
complex design interact in other ways that are likely to produce the same unpredictability. The use 
of the term side effect underlines the inevitability of that interaction. 

Interactions of multiple rules or compositions of calculations become extremely difficult to 
predict. The developer calling an operation must understand its implementation and the 
implementation of all its delegations in order to anticipate the result. The usefulness of any 
abstraction of interfaces is limited if the developers are forced to pierce the veil. Without 
safely predictable abstractions, the developers must limit the combinatory explosion, placing 
a low ceiling on the richness of behavior that is feasible to build. 

Operations that return results without producing side effects are called functions . A function can 
be called multiple times and return the same value each time. A function can call on other 
functions without worrying about the depth of nesting. Functions are much easier to test than 
operations that have side effects. For these reasons, functions lower risk. 

Obviously, you can't avoid commands in most software systems, but the problem can be mitigated 
in two ways. First, you can keep the commands and queries strictly segregated in different 
operations. Ensure that the methods that cause changes do not return domain data and are kept as 
simple as possible. Perform all queries and calculations in methods that cause no observable side 
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effects ( Meyer 1988 ). 

Second, there are often alternative models and designs that do not call for an existing object to be 
modified at all. Instead, a new VALUE OBJECT , representing the result of the computation, is 
created and returned. This is a common technique, which will be illustrated in the example that 
follows. A VALUE OBJECT can be created in answer to a query, handed off, and forgotten—unlike 
an ENTITY , whose life cycle is carefully regulated. 

V ALUE OBJECTS are immutable, which implies that, apart from initializers called only during 
creation, all their operations are functions. V ALUE OBJECTS , like functions, are safer to use and 
easier to test. An operation that mixes logic or calculations with state change should be refactored 
into two separate operations (Fowler 1999, p. 279). But by definition, this segregation of side 
effects into simple command methods only applies to ENTITIES . After completing the refactoring 
to separate modification from querying, consider a second refactoring to move the responsibility 
for the complex calculations into a VALUE OBJECT . The side effect often can be completely 
eliminated by deriving a VALUE OBJECT instead of changing existing state, or by moving the entire 
responsibility into a VALUE OBJECT . 

Therefore: 

Place as much of the logic of the program as possible into functions, operations that return 
results with no observable side effects. Strictly segregate commands (methods that result in 
modifications to observable state) into very simple operations that do not return domain 
information. Further control side effects by moving complex logic into VALUE OBJECTS 
when a concept fitting the responsibility presents itself. 

S IDE-EFFECT-FREE FUNCTIONS , especially in immutable VALUE OBJECTS , allow safe 
combination of operations. When a FUNCTION is presented through an INTENTION-REVEALING 
INTERFACE , a developer can use it without understanding the detail of its implementation. 

Example 
Refactoring the Paint-Mixing Application Again 

A program for paint stores can show a customer the result of mixing standard paints. Picking up 
where we left off in the last example, here is the single domain class. 

Figure 10.4. 
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public void mixIn(Paint other) {
volume = volume.plus(other.getVolume());
// Many lines of complicated color-mixing logic
// ending with the assignment of new red, blue,
// and yellow values.
}

Figure 10.5. The side effects of the mixIn() method 

 



A lot is happening in the mixIn() method, but this design does follow the rule of separating 
modification from querying. One concern, which we'll take up later, is that the volume of the paint 
2 object, the argument of the mixIn() method, has been left in limbo. Paint 2's volume is 
unchanged by the operation, which doesn't seem quite logical in the context of this conceptual 
model. This was not a problem for the original developers because, as near as we can tell, they had 
no interest in the paint 2 object after the operation, but it is hard to anticipate the consequences of 
side effects or their absence. We'll return to this question soon in the discussion of ASSERTIONS . 
For now, let's look at color. 

Color is an important concept in this domain. Let's try the experiment of making it an explicit 
object. What should it be called? "Color" comes to mind first, but earlier knowledge crunching had 
already yielded the important insight that color mixing is different for paint than it is for the more 
familiar RGB light display. The name needs to reflect this. 

Figure 10.6. 

 

Factoring out Pigment Color does communicate more than the earlier version, but the 
computation is the same, still in the mixIn() method. When we moved out the color data, we 
should have taken related behavior with it. Before we do, note that Pigment Color is a VALUE 
OBJECT . Therefore, it should be treated as immutable. When we mixed paint, the Paint object 
itself was changed. It was an ENTITY with an ongoing life story. In contrast, a Pigment Color 
representing a particular shade of yellow is always exactly that. Instead, mixing will result in a 
new Pigment Color object representing the new color. 

Figure 10.7. 



 

public class PigmentColor {

public PigmentColor mixedWith(PigmentColor other,
double ratio) {
// Many lines of complicated color-mixing logic
// ending with the creation of a new PigmentColor object
// with appropriate new red, blue, and yellow values.
}
}

public class Paint {

public void mixIn(Paint other) {
volume = volume + other.getVolume();
double ratio = other.getVolume() / volume;
pigmentColor =
pigmentColor.mixedWith(other.pigmentColor(), ratio);
}
}

Figure 10.8. 



 

Now the modification code in Paint is as simple as possible. The new Pigment Color class 
captures knowledge and communicates it explicitly, and it provides a SIDE-EFFECT-FREE 
FUNCTION whose result is easy to understand, easy to test , and safe to use or combine with other 
operations. Because it is so safe, the complex logic of color mixing is truly encapsulated. 
Developers using this class don't have to understand the implementation. 
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Chapter Ten.  Supple Design 

Assertions 

Separating complex computations into SIDE-EFFECT-FREE FUNCTIONS cuts the problem down to 
size, but there is still a residue of commands on the ENTITIES that produce side effects, and anyone 
using them must understand their consequences. A SSERTIONS make side effects explicit and 
easier to deal with. 

   

True, a command containing no complex computations may be fairly easy to interpret by 
inspection. But in a design where larger parts are built of smaller ones, a command may invoke 
other commands. The developer using the high-level command must understand the consequences 
of each underlying command. So much for encapsulation. And because object interfaces do not 
restrict side effects, two subclasses that implement the same interface can have different side 
effects. The developer using them will want to know which is which to anticipate the 
consequences. So much for abstraction and polymorphism. 

When the side effects of operations are only defined implicitly by their implementation, 
designs with a lot of delegation become a tangle of cause and effect. The only way to 
understand a program is to trace execution through branching paths. The value of 
encapsulation is lost. The necessity of tracing concrete execution defeats abstraction. 

We need a way of understanding the meaning of a design element and the consequences of 
executing an operation without delving into its internals. I NTENTION-REVEALING INTERFACES 
carry us part of the way there, but informal suggestions of intentions are not always enough. The 
"design by contract" school goes the next step, making "assertions" about classes and methods that 
the developer guarantees will be true. This style is discussed in detail in Meyer 1988 . Briefly, 
"post-conditions" describe the side effects of an operation, the guaranteed outcome of calling a 
method. "Preconditions" are like the fine print on the contract, the conditions that must be satisfied 
in order for the post-condition guarantee to hold. Class invariants make assertions about the state 
of an object at the end of any operation. Invariants can also be declared for entire AGGREGATES , 
rigorously defining integrity rules. 

All these assertions describe state, not procedures, so they are easier to analyze. Class invariants 
help characterize the meaning of a class, and simplify the client developer's job by making the 
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objects more predictable. If you trust the guarantee of a post-condition, you don't have to worry 
about how a method works. The effects of delegations should already be incorporated into the 
assertions. 

Therefore: 

State post-conditions of operations and invariants of classes and AGGREGATES . If 
ASSERTIONS cannot be coded directly in your programming language, write automated unit 
tests for them. Write them into documentation or diagrams where it fits the style of the 
project's development process. 

Seek models with coherent sets of concepts, which lead a developer to infer the intended 
ASSERTIONS , accelerating the learning curve and reducing the risk of contradictory code. 

Even though many object-oriented languages don't currently support ASSERTIONS directly, 
ASSERTIONS are still a powerful way of thinking about a design. Automated unit tests can partially 
compensate for the lack of language support. Because ASSERTIONS are all in terms of states, rather 
than procedures, they make tests easy to write. The test setup puts the preconditions in place; then, 
after execution, the test checks to see if the post-conditions hold. 

Clearly stated invariants and pre- and post-conditions allow a developer to understand the 
consequences of using an operation or object. Theoretically, any noncontradictory set of assertions 
would work. But humans don't just compile predicates in their heads. They will be extrapolating 
and interpolating the concepts of the model, so it is important to find models that make sense to 
people as well as satisfying the needs of the application. 

Example 
Back to Paint Mixing 

Recall that in the previous example I was concerned about the ambiguity of what happens to the 
argument of the mixIn(Paint) operation on the Paint class. 

Figure 10.9. 



 

The receiver's volume is increased by the amount of the argument's volume. Drawing on our 
general understanding of physical paint, this mixing process should deplete the other paint by the 
same amount, draining it to zero volume, or eliminating it completely. The current implementation 
does not modify the argument, and modifying arguments is a particularly risky kind of side effect 
anyway. 

To start on a solid footing, let's state the post-condition of the mixIn() method as it is : 

After p1.mixIn(p2): 

p1.volume is increased by amount of p2.volume . 

p2.volume is unchanged. 

The trouble is, developers are going to make mistakes, because these properties don't fit the 
concepts we have invited them to think about. The straightforward fix would be change the volume 
of the other paint to zero. Changing an argument is a bad practice, but it would be easy and 
intuitive. We could state an invariant: 

Total volume of paint is unchanged by mixing. 

But wait! While developers were pondering this option, they made a discovery. It turns out that 
there was a compelling reason the original designers made it this way. At the end, the program 
reports the list of unmixed paints that were added . After all, the ultimate purpose of this 
application is to help a user figure out which paints to put into a mixture. 

So, to make the volume model logically consistent would make it unsuitable for its application 
requirements. There seems to be a dilemma. Are we stuck with documenting the weird post-
condition and trying to compensate with good communication? Not everything in this world is 
intuitive, and sometimes that is the best answer. But in this case, the awkwardness seems to point 
to missing concepts. Let's look for a new model. 



We Can See Clearly Now 

As we search for a better model, we have significant advantages over the original designers, 
because of the knowledge crunching and refactoring to deeper insight that has happened in the 
interim. For example, we compute color using a SIDE-EFFECT-FREE FUNCTION on a VALUE 
OBJECT . This means we can repeat the calculation any time we need to. We should take advantage 
of that. 

We seem to be giving Paint two different basic responsibilities. Let's try splitting them. 

Now there is only one command, mixIn() . It just adds an object to a collection, an effect 
apparent from an intuitive understanding of the model. All other operations are SIDE-EFFECT-FREE 
FUNCTIONS . 

A test method confirming one of the ASSERTIONS listed in Figure 10.10 could look something like 
this (using the JUnit test framework): 

public void testMixingVolume {
PigmentColor yellow = new PigmentColor(0, 50, 0);
PigmentColor blue = new PigmentColor(0, 0, 50);

StockPaint paint1 = new StockPaint(1.0, yellow);
StockPaint paint2 = new StockPaint(1.5, blue);
MixedPaint mix = new MixedPaint();

mix.mixIn(paint1);
mix.mixIn(paint2);
assertEquals(2.5, mix.getVolume(), 0.01);
}

Figure 10.10. 



 

This model captures and communicates more of the domain. The invariants and post-conditions 
make common sense, which will make them easier to maintain and use. 

   

The communicativeness of the INTENTION-REVEALING INTERFACES , combined with the 
predictability given by SIDE-EFFECT-FREE FUNCTIONS and ASSERTIONS , should make 



encapsulation and abstraction safe. 

The next ingredient in recombinable elements is effective decomposition. . . . 
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Chapter Ten.  Supple Design 

Conceptual Contours 

Sometimes people chop functionality fine to allow flexible combination. Sometimes they lump it 
large to encapsulate complexity. Sometimes they seek a consistent granularity, making all classes 
and operations to a similar scale. These are oversimplifications that don't work well as general 
rules. But they are motivated by a basic set of problems. 

When elements of a model or design are embedded in a monolithic construct, their 
functionality gets duplicated. The external interface doesn't say everything a client might 
care about. Their meaning is hard to understand, because different concepts are mixed 
together. 

On the other hand, breaking down classes and methods can pointlessly complicate the client, 
forcing client objects to understand how tiny pieces fit together. Worse, a concept can be lost 
completely. Half of a uranium atom is not uranium. And of course, it isn't just grain size that 
counts, but just where the grain runs. 

Cookbook rules don't work. But there is a logical consistency deep in most domains, or else they 
would not be viable in their own sphere. This is not to say that domains are perfectly consistent, 
and certainly the ways people talk about them are not consistent. But there is rhyme and reason 
somewhere, or else modeling would be pointless. Because of this underlying consistency, when we 
find a model that resonates with some part of the domain, it is more likely to be consistent with 
other parts that we discover later. Sometimes the new discovery isn't easy for the model to adapt 
to, in which case we refactor to deeper insight, and hope to conform to the next discovery. 

This is one reason why repeated refactoring eventually leads to suppleness. The CONCEPTUAL 
CONTOURS emerge as the code is adapted to newly understood concepts or requirements. 

The twin fundamentals of high cohesion and low coupling play a role in design at all scales, from 
individual methods up through classes and MODULES to large-scale structures (see Chapter 16 ). 
These two principles apply to concepts as much as to code. To avoid slipping into a mechanistic 
view of them, temper your technical thinking by frequently touching base with your intuition for 
the domain. With each decision, ask yourself, "Is this an expedient based on a particular set of 
relationships in the current model and code, or does it echo some contour of the underlying 
domain?" 
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Find the conceptually meaningful unit of functionality, and the resulting design will be both 
flexible and understandable. For example, if an "addition" of two objects has a coherent meaning 
in the domain, then implement methods at that level. Don't break the add() into two steps. 
Don't proceed to the next step within the same operation. On a slightly larger scale, each object 
should be a single complete concept, a " WHOLE VALUE ." [1] 

[1] The WHOLE VALUE pattern, by Ward Cunningham. 

By the same token, there are areas in any domain where detail isn't interesting to the kind of people 
the software serves. The users of our hypothetical paint mixing application don't add red pigment 
or blue pigment; they combine complete paints, which contain all three pigments. Clumping things 
that don't need to be dissected or rearranged avoids clutter and makes it easier to see the elements 
that really are meant to recombine. If our users' physical equipment allowed individual pigments to 
be added, the domain would be altered, and the individual pigments might be manipulated. A paint 
chemist would need still finer control, which would involve a whole other analysis, probably 
producing a much more detailed model of the makeup of paint than our abstracted pigment color 
that serves paint mixing. But it is simply irrelevant to anyone involved in the paint mixing 
application project. 

Therefore: 

Decompose design elements (operations, interfaces, classes, and AGGREGATES ) into cohesive 
units, taking into consideration your intuition of the important divisions in the domain. 
Observe the axes of change and stability through successive refactorings and look for the 
underlying CONCEPTUAL CONTOURS that explain these shearing patterns. Align the model 
with the consistent aspects of the domain that make it a viable area of knowledge in the first 
place. 

The goal is a simple set of interfaces that combine logically to make sensible statements in the 
UBIQUITOUS LANGUAGE , and without the distraction and maintenance burden of irrelevant 
options. This is typically an outcome of refactoring: it's hard to produce up front. But it may never 
emerge from technically oriented refactoring; it emerges from refactoring toward deeper insight. 

Even when the design follows CONCEPTUAL CONTOURS , there will need to be modifications and 
refactoring. When successive refactoring tends to be localized, not shaking multiple broad 
concepts of the model, it is an indicator of model fit. Encountering a requirement that forces 
extensive changes in the breakdown of the objects and methods is a message: Our understanding 
of the domain needs refinement. It presents an opportunity to deepen the model and make the 
design more supple. 

Example 



The C ONTOURS of Accruals 

In Chapter 9 , a loan tracking system was refactored based on deeper insight into accounting 
concepts: 

Figure 10.11. 

 

The new model contained only one more object than the old one, yet the partitioning of 
responsibility had been greatly changed. 
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Schedules, which had been worked out through case logic in the Calculator classes, were 
exploded into discrete classes for different types of fees and interest. On the other hand, payments 
of fees and interest, previously kept separate, were lumped together. 

Because of the resonance of the newly explicit concepts and the cohesiveness of the Accrual 
Schedule hierarchy, the developer believed that this model better follows some of the domain's 
CONCEPTUAL CONTOURS . 

Figure 10.12. This model accommodates adding new kinds of Accrual Schedules . 

 

The one change the developer could confidently predict was the addition of new Accrual 
Schedules . Those requirements were already waiting in the wings. So in addition to making 
existing functionality clearer and simpler, she chose a model that would make it easy to introduce 
new schedules. But had she found a CONCEPTUAL CONTOUR that will help the domain design 
change and grow as the application and the business evolve? There can be no guarantees about 
how a design will handle unanticipated change, but she thought it had improved the odds. 

An Unanticipated Change 

As the project proceeded, a requirement emerged for detailed rules for handling early and late 
payments. As she studied the problem, the developer was pleased to see that virtually the same 
rules applied to payments on interest and to payments on fees. This meant that the new model 
elements would connect naturally to the single Payment class. 

Figure 10.13. 



 

The old design would have forced duplication between the two Payment History classes. (This 
difficulty might have triggered an insight that the Payment class should be shared, leading by 
another path to a similar model.) This ease of extension did not come because she anticipated the 
change. Nor did it come because she made a design so versatile it could accommodate any 
conceivable change. It happened because in the previous refactoring, the design was aligned with 
underlying concepts of the domain. 

   

I NTENTION-REVEALING INTERFACES allow clients to present objects as units of meaning rather 
than just mechanisms. S IDE-EFFECT-FREE FUNCTIONS and ASSERTIONS make it safe to use those 
units and make complex combinations. The emergence of CONCEPTUAL CONTOURS stabilizes 
parts of the model and also makes the units more intuitive to use and combine. 

We can still run into conceptual overload when interdependencies force us to think about too many 
of these things at a time. . . . 
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Chapter Ten.  Supple Design 

Standalone Classes 

Interdependencies make models and designs hard to understand. They also make them hard to test 
and maintain. And interdependencies pile up easily. 

Every association is, of course, a dependency, and understanding a class requires understanding 
what it is attached to. Those attached things will be attached to still more things, and they have to 
be understood too. The type of every argument of every method is also a dependency. So is every 
return value. 

With one dependency, you have to think about two classes at the same time, and the nature of their 
relationship. With two dependencies, you have to think about each of the three classes, the nature 
of the class's relationship to each of them, and any relationship they might have to each other. If 
they in turn have dependencies, you have to be wary of those also. With three dependencies . . . it 
snowballs. 

Both MODULES and AGGREGATES are aimed at limiting the web of interdependencies. When a 
highly cohesive subdomain is carved out into a MODULE , a set of objects are decoupled from the 
rest of the system, so there are a finite number of interrelated concepts. But even a MODULE can be 
a lot to think about without an almost fanatical commitment to controlling dependencies within it. 

Even within a MODULE , the difficulty of interpreting a design increases wildly as 
dependencies are added. This adds to mental overload, limiting the design complexity a 
developer can handle. Implicit concepts contribute to this load even more than explicit 
references. 

Refined models are distilled until every remaining connection between concepts represents 
something fundamental to the meaning of those concepts. In an important subset, the number of 
dependencies can be reduced to zero, resulting in a class that can be fully understood all by itself, 
along with a few primitives and basic library concepts. 

In every programming environment, a few basics are so pervasive that they are always in mind. 
For example, in Java development, primitives and a few standard libraries provide basics like 
numbers, strings, and collections. Practically speaking, "integers" don't add to the intellectual load. 
Beyond that, every additional concept that has to be held in mind in order to understand an object 



contributes to mental overload. 

Implicit concepts, recognized or unrecognized, count just as much as explicit references. Although 
we can generally ignore dependencies on primitive values such as integers and strings, we can't 
ignore what they represent . For example, in the first paint mixing examples, the Paint object held 
three public integers representing red, yellow, and blue color values. The creation of the Pigment 
Color object did not increase the number of concepts involved or the dependencies. It did make 
the ones that were already there more explicit and easier to understand. On the other hand, the 
Collection size() operation returns an int that is simply a count, the basic meaning of an 
integer, so no new concept is implied. 

Every dependency is suspect until proven basic to the concept behind the object. This scrutiny 
starts with the factoring of the model concepts themselves. Then it requires attention to each 
individual association and operation. Model and design choices can chip away at 
dependencies—often to zero. 

Low coupling is fundamental to object design. When you can, go all the way. Eliminate all 
other concepts from the picture. Then the class will be completely self-contained and can be 
studied and understood alone. Every such self-contained class significantly eases the burden 
of understanding a MODULE . 

Dependencies on other classes within the same module are less harmful than those outside. 
Likewise, when two objects are naturally tightly coupled, multiple operations involving the same 
pair can actually clarify the nature of the relationship. The goal is not to eliminate all 
dependencies, but to eliminate all nonessential ones. If every dependency can't be eliminated, each 
one that is removed frees the developer to concentrate on the remaining conceptual dependencies. 

Try to factor the most intricate computations into STANDALONE CLASSES , perhaps by modeling 
VALUE OBJECTS held by the more connected classes. 

The concept of paint is fundamentally related to the concept of color. But color, even of pigment, 
can be considered without paint. By making these two concepts explicit and distilling the 
relationship, the remaining one-way association says something important, and the Pigment Color 
class, where most of the computational complexity lies, can be studied and tested alone. 

   

Low coupling is a basic way to reduce conceptual overload. A STANDALONE CLASS is an extreme 
of low coupling. 

Eliminating dependencies should not mean dumbing down the model by arbitrarily reducing 



everything to primitives. The final pattern of this chapter, CLOSURE OF OPERATIONS , is an 
example of a technique for reducing dependency while keeping a rich interface. . . . 
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Chapter Ten.  Supple Design 

Closure of Operations 

If we take two real numbers and multiply them together, we get another real number. 
[The real numbers are all the rational numbers and all the irrational numbers.] 
Because this is always true, we say that the real numbers are "closed under the 
operation of multiplication": there is no way to escape the set. When you combine 
any two elements of the set, the result is also included in the set. 

— The Math Forum, Drexel University 

Of course, there will be dependencies, and that isn't a bad thing when the dependency is 
fundamental to the concept. Stripping interfaces down to deal with nothing but primitives can 
impoverish them. But a lot of unnecessary dependencies, and even entire concepts, get introduced 
at interfaces. 

Most interesting objects end up doing things that can't be characterized by primitives alone. 

Another common practice in refined designs is what I call " CLOSURE OF OPERATIONS ." The 
name comes from that most refined of conceptual systems, mathematics. 1 + 1 = 2. The addition 
operation is closed under the set of real numbers. Mathematicians are fanatical about not 
introducing extraneous concepts, and the property of closure provides them a way of defining an 
operation without involving any other concepts. We are so accustomed to the refinement of 
mathematics that it can be hard to grasp how powerful its little tricks are. But this one is used 
extensively in software designs as well. The basic use of XSLT is to transform one XML 
document into another XML document. This sort of XSLT operation is closed under the set of 
XML documents. The property of closure tremendously simplifies the interpretation of an 
operation, and it is easy to think about chaining together or combining closed operations. 

Therefore: 

Where it fits, define an operation whose return type is the same as the type of its 
argument(s). If the implementer has state that is used in the computation, then the 
implementer is effectively an argument of the operation, so the argument(s) and return value 
should be of the same type as the implementer. Such an operation is closed under the set of 
instances of that type. A closed operation provides a high-level interface without introducing 



any dependency on other concepts. 

This pattern is most often applied to the operations of a VALUE OBJECT . Because the life cycle of 
an ENTITY has significance in the domain, you can't just conjure up a new one to answer a 
question. There are operations that are closed under an ENTITY type. You could ask an Employee 
object for its supervisor and get back another Employee . But in general, ENTITIES are not the sort 
of concepts that are likely to be the result of a computation. So, for the most part, this is an 
opportunity to look for in the VALUE OBJECTS . 

An operation can be closed under an abstract type, in which case specific arguments can be of 
different concrete classes. After all, addition is closed under real numbers, which can be either 
rational or irrational. 

As you're experimenting, looking for ways to reduce interdependence and increase cohesion, you 
sometimes get halfway to this pattern. The argument matches the implementer, but the return type 
is different, or the return type matches the receiver and the argument is different. These operations 
are not closed, but they do give some of the advantages of CLOSURE . When the extra type is a 
primitive or basic library class, it frees the mind almost as much as CLOSURE . 

In the earlier example, the Pigment Color mixedWith() operation was closed under Pigment 
Colors , and there are several other examples scattered through the book. Here's an example that 
shows how useful this idea can be, even when true CLOSURE isn't reached. 

Example 
Selecting from Collections 

In Java, if you want to select a subset of elements from a Collection , you request an Iterator . 
Then you iterate through the elements, testing each one, probably accumulating the matches into a 
new Collection . 

Set employees = (some Set of Employee objects);
Set lowPaidEmployees = new HashSet();
Iterator it = employees.iterator();
while (it.hasNext()) {
Employee anEmployee = it.next();
if (anEmployee.salary() < 40000)
lowPaidEmployees.add(anEmployee);
}

Conceptually, I've selected a subset of a set. What do I need with this extra concept, Iterator, and 
all its mechanical complexity? In Smalltalk, I would call the "select" operation on the Collection , 



passing in the test as an argument. The return would be a new Collection containing just the 
elements that passed the test. 

employees := (some Set of Employee objects).
lowPaidEmployees := employees select:
[:anEmployee | anEmployee salary < 40000].

The Smalltalk Collections provide other such FUNCTIONS that return derived Collections , which 
can be of several concrete classes. The operations are not closed, because they take a "block" as an 
argument. But blocks are a basic library type in Smalltalk, so they don't add to the developer's 
mental load. Because the return value matches the implementer, they can be strung together, like a 
series of filters. They are easy to write and easy to read. They do not introduce extraneous concepts 
that are irrelevant to the problem of selecting subsets. 

   

The patterns presented in this chapter illustrate a general style of design and a way of thinking 
about design. Making software obvious, predictable, and communicative makes abstraction and 
encapsulation effective. Models can be factored so that objects are simple to use and understand 
yet still have rich, high-level interfaces. 

These techniques require fairly advanced design skills to apply and sometimes even to write a 
client. The usefulness of a MODEL-DRIVEN DESIGN is sensitive to the quality of the detailed design 
and implementation decisions, and it only takes a few confused developers to derail a project from 
the goal. 

That said, for the team willing to cultivate its modeling and design skills, these patterns and the 
way of thinking they reflect yield software that developers can work and rework to create complex 
software. 
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Chapter Ten.  Supple Design 

Declarative Design 

A SSERTIONS can lead to much better designs, even with our relatively informal way of testing 
them. But there can be no real guarantees in handwritten software. To name just one way of 
evading ASSERTIONS , code could have additional side effects that were not specifically excluded. 
No matter how MODEL-DRIVEN our design is, we still end up writing procedures to produce the 
effect of the conceptual interactions. And we spend so much of our time writing boilerplate code 
that doesn't really add any meaning or behavior. This is tedious and fraught with error, and the 
bulk of it obscures the meaning of our model. (Some languages are better than others, but all 
require us to do a lot of grunt work.) I NTENTION-REVEALING INTERFACES and the other patterns 
in this chapter help, but they can never give conventional object-oriented programs formal rigor. 

These are some of the motivations behind declarative design . This term means many things to 
many people, but usually it indicates a way to write a program, or some part of a program, as a 
kind of executable specification. A very precise description of properties actually controls the 
software. In its various forms, this could be done through a reflection mechanism or at compile 
time through code generation (producing conventional code automatically, based on the 
declaration). This approach allows another developer to take the declaration at face value. It is an 
absolute guarantee. 

Generating a running program from a declaration of model properties is a kind of Holy Grail of 
MODEL-DRIVEN DESIGN , but it does have its pitfalls in practice. For example, here are just two 
particular problems I've encountered more than once. 

●     A declaration language not expressive enough to do everything needed, but a framework 
that makes it very difficult to extend the software beyond the automated portion 

●     Code-generation techniques that cripple the iterative cycle by merging generated code into 
handwritten code in a way that makes regeneration very destructive 

The unintended consequence of many attempts at declarative design is the dumbing-down of the 
model and application, as developers, trapped by the limitations of the framework, enact design 
triage in order to get something delivered. 

Rule-based programming with an inference engine and a rule base is another promising approach 
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to declarative design. Unfortunately, subtle issues can undermine this intention. 

Although a rules-based program is declarative in principle, most systems have "control predicates" 
that were added to allow performance tuning. This control code introduces side effects, so that the 
behavior is no longer dictated completely by the declared rules. Adding, removing, or reordering 
the rules can cause unexpected, incorrect results. Therefore, a logic programmer has to be careful 
to keep the effect of code obvious, just as an object programmer does. 

Many declarative approaches can be corrupted if the developers bypass them intentionally or 
unintentionally. This is likely when the system is difficult to use or overly restrictive. Everyone 
has to follow the rules of the framework in order to get the benefits of a declarative program. 

The greatest value I've seen delivered has been when a narrowly scoped framework automates a 
particularly tedious and error-prone aspect of the design, such as persistence and object-relational 
mapping. The best of these unburden developers of drudge work while leaving them complete 
freedom to design. 

Domain-Specific Languages 

An interesting approach that is sometimes declarative is the domain-specific language. In this 
style, client code is written in a programming language tailored to a particular model of a 
particular domain. For example, a language for shipping systems might include terms such as 
cargo and route , along with syntax for associating them. The program is then compiled, often into 
a conventional object-oriented language, where a library of classes provides implementations for 
the terms in the language. 

In such a language, programs can be extremely expressive, and make the strongest connection with 
the UBIQUITOUS LANGUAGE . This is an exciting concept, but domain-specific languages also 
have their drawbacks in the approaches I've seen based on object-oriented technology. 

To refine the model, a developer needs to be able to modify the language. This may involve 
modifying grammar declarations and other language-interpreting features, as well as modifying 
underlying class libraries. I'm all in favor of learning advanced technology and design concepts, 
but we have to soberly assess the skills of a particular team, as well as the likely skills of future 
maintenance teams. Also, there is value in the seamlessness of an application and a model 
implemented in the same language. Another drawback is that it can be difficult to refactor client 
code to conform to a revised model and its associated domain-specific language. Of course, 
someone may come up with a technical fix for the refactoring problems. 



From the Ground Up 
A different paradigm might handle domain-specific languages better than objects. In the 
Scheme programming language, a representative of the "functional programming" 
family, something very similar is part of standard programming style, so that the 
expressiveness of a domain-specific language can be created without bifurcating the 
system. 

This technique might be most useful for very mature models, perhaps where client code is being 
written by a different team. Generally, such setups lead to the poisonous distinction between 
highly technical framework builders and technically unskilled application builders, but it doesn't 
have to be that way. 

In the scheme programming language, something very similar is part of standard programming 
style, so that the expressiveness of a domain-specific language can be created without bifurcating 
the system. 
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Chapter Ten.  Supple Design 

A Declarative Style of Design 

Once your design has INTENTION-REVEALING INTERFACES , SIDE-EFFECT-FREE FUNCTIONS , and 
ASSERTIONS , you are edging into declarative territory. Many of the benefits of declarative design are 
obtained once you have combinable elements that communicate their meaning, and have characterized or 
obvious effects, or no observable effects at all. 

A supple design can make it possible for the client code to use a declarative style of design. To illustrate, 
the next section will bring together some of the patterns in this chapter to make the SPECIFICATION more 
supple and declarative. 

Extending S PECIFICATIONS in a Declarative Style 

Chapter 9 covered the basic concept of SPECIFICATION , the roles it can play in a program, and some 
sense of what is involved in implementation. Now let's take a look at a few bells and whistles that can be 
very useful in some situations with complicated rules. 

S PECIFICATION is an adaptation of an established formalism, the predicate. Predicates have other useful 
properties that we can draw on, selectively. 

Combining S PECIFICATIONS Using Logical Operators 

When using SPECIFICATIONS , you quickly come across situations in which you would like to combine 
them. As just mentioned, a SPECIFICATION is an example of a predicate, and predicates can be combined 
and modified with the operations "AND," "OR," and "NOT." These logical operations are closed under 
predicates, so SPECIFICATION combinations will exhibit CLOSURE OF OPERATIONS . 

As significant generalized capability is built into SPECIFICATIONS , it becomes very useful to create an 
abstract class or interface that can be used for SPECIFICATIONS of all sorts. This means typing arguments 
as some high-level abstract class. 

public interface Specification {
boolean isSatisfiedBy(Object candidate);
}
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This abstraction calls for a guard clause at the beginning of the method, but otherwise it does not affect 
functionality. For example, the Container Specification (from the example in Chapter 9 , on page 236) 
would be modified this way: 

public class ContainerSpecification

implements Specification

{
private ContainerFeature requiredFeature;

public ContainerSpecification(ContainerFeature required) {
requiredFeature = required;
}

boolean isSatisfiedBy(

Object candidate

){
if (!candidate instanceof Container) return false;

return

(Container)

aContainer.getFeatures().contains(requiredFeature);
}
}

Now, let's extend the Specification interface by adding the three new operations: 

public interface Specification {
boolean isSatisfiedBy(Object candidate);

Specification and(Specification other);
Specification or(Specification other);
Specification not();
}

Recall that some Container Specifications were configured to require ventilated Containers and others 
to require armored Containers . A chemical that is both volatile and explosive would, presumably, need 
both of these SPECIFICATIONS . Easily done, using the new methods. 
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Specification ventilated = new ContainerSpecification(VENTILATED);
Specification armored = new ContainerSpecification(ARMORED);

Specification both = ventilated.and(armored);

The declaration defines a new Specification object with the expected properties. This combination would 
have required a more complicated Container Specification , and would still have been special purpose. 

Suppose we had more than one kind of ventilated Container . It might not matter for some items which 
kind they were packed into. They could be placed in either type. 

Specification ventilatedType1 =
new ContainerSpecification(VENTILATED_TYPE_1);
Specification ventilatedType2 =
new ContainerSpecification(VENTILATED_TYPE_2);

Specification either = ventilatedType1.or(ventilatedType2);

If it was considered wasteful to store sand in specialized containers, we could prohibit it by SPECIFYING a 
"cheap" container with no special features. 

Specification cheap = (ventilated.not()).and(armored.not());

This constraint would have prevented some of the suboptimal behavior of the prototype warehouse 
packer discussed in Chapter 9 . 

The ability to build complex specifications out of simple elements increases the expressiveness of the 
code. The combinations are written in a declarative style. 

Depending on how SPECIFICATIONS are implemented, these operators may be easy or difficult to 
provide. What follows is a very simple implementation, which would be inefficient in some situations 
and quite practical in others. It is meant as an explanatory example . Like any pattern, there are many 
ways to implement it. 

public abstract class AbstractSpecification implements
Specification {
public Specification and(Specification other) {
return new AndSpecification(this, other);
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}
public Specification or(Specification other) {
return new OrSpecification(this, other);
}
public Specification not() {
return new NotSpecification(this);
}
}

public class AndSpecification extends AbstractSpecification {
Specification one;
Specification other;
public AndSpecification(Specification x, Specification y) {
one = x;
other = y;
}
public boolean isSatisfiedBy(Object candidate) {
return one.isSatisfiedBy(candidate) &&
other.isSatisfiedBy(candidate);
}
}

public class OrSpecification extends AbstractSpecification {
Specification one;
Specification other;
public OrSpecification(Specification x, Specification y) {
one = x;
other = y;
}
public boolean isSatisfiedBy(Object candidate) {
return one.isSatisfiedBy(candidate) ||
other.isSatisfiedBy(candidate);
}
}

public class NotSpecification extends AbstractSpecification {
Specification wrapped;

public NotSpecification(Specification x) {
wrapped = x;
}
public boolean isSatisfiedBy(Object candidate) {
return !wrapped.isSatisfiedBy(candidate);
}
}



Figure 10.14. C OMPOSITE design of SPECIFICATION 

 

This code was written to be as easy as possible to read in a book. As I said, there may be situations in 
which this is inefficient. However, other implementation options are possible that would minimize object 
count or boost speed, or perhaps be compatible with idiosyncratic technologies present in some project. 
The important thing is a model that captures the key concepts of the domain, along with 
animplementation that is faithful to that model. That leaves a lot of room to solve performance problems. 

Also, this full generality is not needed in many cases. In particular, AND tends to be used a lot more than 
the others, and it also tends to create less implementation complexity. Don't be afraid to implement only 
AND, if that is all you need. 

Way back in Chapter 2 , in the example dialog on page 30, the developers had apparently not 
implemented the "satisfied by" behavior of their SPECIFICATION . Up to that point, the SPECIFICATION 
had been used only for building to order. Even so, the abstraction was intact, and adding functionality 
was relatively easy. Using a pattern doesn't mean building features you don't need. They can be added 
later, as long as the concepts don't get muddled. 

Example 
One Alternative Implementation of C OMPOSITE S PECIFICATION 

Some implementation environments don't accommodate very fine grained objects very well. I once 
worked on a project with an object database that insisted on giving an object ID to every object and then 
tracking it. Each object had lots of overhead in memory space and performance, and total address space 
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was a limiting factor. I employed SPECIFICATIONS at some important points in the domain design, which 
I think was a good decision. But I used a slightly more elaborate version of the implementation described 
in this chapter, which was definitely a mistake. It resulted in millions of very fine grained objects that 
contributed to bogging the system down. 

Here is an example of an alternative implementation that encodes the composite SPECIFICATION as a 
string or array encoding the logical expression, to be interpreted at runtime. 

(Don't worry if you do not see how you would implement this. The important thing is to realize that there 
are many ways of implementing a SPECIFICATION with logical operators, and so if the simple one is not 
practical in your situation, you have options.) 

S PECIFICATION Stack Content for "Cheap Container" 

Top AndSpecificationOperator (F LY W EIGHT ) 

NotSpecificationOperator (F LY W EIGHT ) 

Armored 

NotSpecificationOperator 

Ventilated 

When you want to test a candidate, you have to interpret this structure, which can be done by popping off 
each element, then evaluating it or popping off the next as required by an operator. You would end up 
with this: 

and(not(armored), not(ventilated))

This design has pros ( + ) and cons ( – ): 

+ Low object count 

+ Efficient use of memory 

– Requires more sophisticated developers 



You have to find an implementation with trade-offs that work for your circumstances. The same pattern 
and model can underlie very different implementations. 

Subsumption 

This final feature is not usually needed and can be difficult to implement, but every now and then it 
solves a really hard problem. It also elucidates the meaning of a SPECIFICATION . 

Consider again the chemical warehouse packer from the example on page 235. Recall that each 
Chemical had a Container Specification, and the Packer SERVICE guaranteed that all these would be 
satisfied when Drums are assigned to Containers . All is well... until someone changes the regulations. 

Every few months a new set of rules is issued, and our users would like to be able to produce a list of the 
chemical types that now have more stringent requirements. 

Of course, we could give a partial answer (and one the users probably also want) by running a validation 
of each Drum in the inventory, with the new SPECIFICATIONS in place, and finding all those that no 
longer meet the SPEC . This would tell the users which Drums in the existing inventory they need to 
move. 

But what they asked for was a list of chemicals whose handling has become more stringent. Perhaps there 
are none in-house right now, or perhaps they just happened to be packed into a more stringent container. 
In either case, the report just described would not list them. 

Let's introduce a new operation for directly comparing two SPECIFICATIONS . 

boolean subsumes(Specification other);

A more stringent SPEC subsumes a less stringent one. It could take its place without any previous 
requirement being neglected. 

Figure 10.15. The SPECIFICATION for a gasoline container has been tightened. 



 

In the language of SPECIFICATION , we would say that the new SPECIFICATION subsumes the old 
SPECIFICATION , because any candidate that would satisfy the new SPEC would also satisfy the old. 

If each of these SPECIFICATIONS is viewed as a predicate, subsumption is equivalent to logical 
implication. Using conventional notation, A  B means that statement A implies statement B , so that if 
A is true, B is also true. 

Let's apply this logic to our container-matching needs. When a SPECIFICATION is being changed, we 
would like to know if the proposed new SPEC meets all the conditions of the old one. 

New Spec  Old Spec 

That is, if the new spec is true, then the old spec is also true. Proving a logical implication in a general 
way is very difficult, but special cases can be easy. For example, particular parameterized SPECS can 
define their own subsumption rule. 

public class MinimumAgeSpecification {
int threshold;

public boolean isSatisfiedBy(Person candidate) {
return candidate.getAge() >= threshold;
}



public boolean subsumes(MinimumAgeSpecification other) {
return threshold >= other.getThreshold();
}
}

A JUnit test might contain this: 

drivingAge = new MinimumAgeSpecification(16);
votingAge = new MinimumAgeSpecification(18);
assertTrue(votingAge.subsumes(drivingAge));

Another practical special case, one suited to address the Container Specification problem, is a 
SPECIFICATION interface combining subsumption with the single logical operator AND. 

public interface Specification {
boolean isSatisfiedBy(Object candidate);
Specification and(Specification other);
boolean subsumes(Specification other);
}

Proving implication with only the AND operator is simple: 

A AND B  A 

or, in a more complicated case: 

A AND B AND C  A AND B 

So if the Composite Specification is able to collect all the leaf SPECIFICATIONS that are "ANDed" 
together, then all we have to do is check that the subsuming SPECIFICATION has all the leaves that the 
subsumed one has, and maybe some extra ones as well—its leaves are a superset of the other SPEC 's set 
of leaves. 

public boolean subsumes(Specification other) {
if (other instanceof CompositeSpecification) {
Collection otherLeaves =
(CompositeSpecification) other.leafSpecifications();
Iterator it = otherLeaves.iterator();
while (it.hasNext()) {



if (!leafSpecifications().contains(it.next()))
return false;
}
} else {
if (!leafSpecifications().contains(other))
return false;
}
return true;
}

This interaction could be enhanced to compare carefully chosen parameterized leaf SPECIFICATIONS and 
some other complications. Unfortunately, when OR and NOT are included, these proofs become much 
more involved. In most situations it is best to avoid such complexity by making a choice, either forgoing 
some of the operators or forgoing subsumption. If both are needed, consider carefully if the benefit is 
great enough to justify the difficulty. 

Socrates on S PECIFICATIONS 

All men are 
mortal. Specification manSpec = new ManSpecification();

Specification mortalSpec = new MortalSpecification();
assert manSpec.subsumes(mortalSpec);

Socrates is a 
man. Man socrates = new Man();

assert manSpec.isSatisfiedBy(socrates);

Therefore, 
Socrates is 
mortal. 

assert mortalSpec.isSatisfiedBy(socrates);
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Chapter Ten.  Supple Design 

Angles of Attack 

This chapter has presented a raft of techniques to clarify the intent of code, to make the consequences of 
using it transparent, and to decouple model elements. Even so, this kind of design is difficult. You can't 
just look at an enormous system and say, "Let's make this supple." You have to choose targets. Here are a 
couple of broad approaches, followed by an extended example showing how the patterns are fit together 
and used to take on a bigger design. 

Carve Off Subdomains 

You just can't tackle the whole design at once. Pick away at it. Some aspects of the system will suggest 
approaches to you, and they can be factored out and worked over. You may see a part of the model that 
can be viewed as specialized math; separate that. Your application enforces complex rules restricting 
state changes; pull this out into a separate model or simple framework that lets you declare the rules. 
With each such step, not only is the new module clean, but also the part left behind is smaller and clearer. 
Part of what's left is written in a declarative style, a declaration in terms of the special math or validation 
framework, or whatever form the subdomain takes. 

It is more useful to make a big impact on one area, making a part of the design really supple, than to 
spread your efforts thin. Chapter 15 discusses in more depth how to choose and manage subdomains. 

Draw on Established Formalisms, When You Can 

Creating a tight conceptual framework from scratch is something you can't do every day. Sometimes you 
discover and refine one of these over the course of the life of a project. But you can often use and adapt 
conceptual systems that are long established in your domain or others, some of which have been refined 
and distilled over centuries. Many business applications involve accounting, for example. Accounting 
defines a well-developed set of ENTITIES and rules that make for an easy adaptation to a deep model and 
a supple design. 

There are many such formalized conceptual frameworks, but my personal favorite is math. It is surprising 
how useful it can be to pull out some twist on basic arithmetic. Many domains include math somewhere. 
Look for it. Dig it out. Specialized math is clean, combinable by clear rules, and people find it easy to 
understand. One example from my past is " Shares Math ," which will end this chapter. 
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Example 
Integrating the Patterns: Shares Math 

Chapter 8 told the story of a model breakthrough on a project to build a syndicated loan system. Now this 
example will go into detail, focusing on just one feature of a design comparable to the one on that project. 

One requirement of that application was that when the borrower makes a principal payment, the money 
is, by default, prorated according to the lenders' shares in the loan. 

Initial Design for Payment Distribution 

As we refactor it, this code will get easier to understand, so don't get stuck on this version. 

Figure 10.16. 

 

public class Loan {
private Map shares;

//Accessors, constructors, and very simple methods are excluded

public Map distributePrincipalPayment(double paymentAmount) {
Map paymentShares = new HashMap();
Map loanShares = getShares();
double total = getAmount();
Iterator it = loanShares.keySet().iterator();
while(it.hasNext()) {
Object owner = it.next();
double initialLoanShareAmount = getShareAmount(owner);
double paymentShareAmount =
initialLoanShareAmount / total * paymentAmount;
Share paymentShare =
new Share(owner, paymentShareAmount);
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paymentShares.put(owner, paymentShare);

double newLoanShareAmount =
initialLoanShareAmount - paymentShareAmount;
Share newLoanShare =
new Share(owner, newLoanShareAmount);
loanShares.put(owner, newLoanShare);
}
return paymentShares;
}

public double getAmount() {
Map loanShares = getShares();
double total = 0.0;
Iterator it = loanShares.keySet().iterator();
while(it.hasNext()) {
Share loanShare = (Share) loanShares.get(it.next());
total = total + loanShare.getAmount();
}
return total;
}
}

Separating Commands and S IDE -E FFECT -F REE F UNCTIONS 

This design already has INTENTION-REVEALING INTERFACES . But the 
distributePaymentPrincipal() method does a dangerous thing: It calculates the shares for 
distribution and also modifies the Loan . Let's refactor to separate the query from the modifier. 

Figure 10.17. 

 

public void applyPrincipalPaymentShares(Map paymentShares) {



Map loanShares = getShares();
Iterator it = paymentShares.keySet().iterator();
while(it.hasNext()) {
Object lender = it.next();
Share paymentShare = (Share) paymentShares.get(lender);
Share loanShare = (Share) loanShares.get(lender);
double newLoanShareAmount = loanShare.getAmount() -
paymentShare.getAmount();
Share newLoanShare = new Share(lender, newLoanShareAmount);
loanShares.put(lender, newLoanShare);
}
}

public Map calculatePrincipalPaymentShares(double paymentAmount) {
Map paymentShares = new HashMap();
Map loanShares = getShares();
double total = getAmount();
Iterator it = loanShares.keySet().iterator();
while(it.hasNext()) {
Object lender = it.next();
Share loanShare = (Share) loanShares.get(lender);
double paymentShareAmount =
loanShare.getAmount() / total * paymentAmount;
Share paymentShare = new Share(lender, paymentShareAmount);
paymentShares.put(lender, paymentShare);
}
return paymentShares;
}

Client code now looks like this: 

Map distribution =
aLoan.calculatePrincipalPaymentShares(paymentAmount);
aLoan.applyPrincipalPaymentShares(distribution);

Not too bad. The FUNCTIONS have encapsulated a lot of complexity behind INTENTION-REVEALING 
INTERFACES . But the code does begin to multiply some when we add applyDrawdown() , 
calculateFeePaymentShares() , and so on. Each extension complicates the code and weighs 
it down. This might be a point where the granularity is too coarse. The conventional approach would be 
to break the calculation methods down into subroutines. That could well be a good step along the way, 
but we ultimately want to see the underlying conceptual boundaries and deepen the model. The elements 
of a design with such a CONCEPT-CONTOURING grain could be combined to produce the needed 
variations. 



Making an Implicit Concept Explicit 

There are enough pointers now to start probing for that new model. The Share objects are passive in this 
implementation, and they are being manipulated in complex, low-level ways. This is because most of the 
rules and calculations about shares don't apply to single shares, but to groups of them. There is a missing 
concept: shares are related to each other as parts making up a whole. Making this concept explicit will let 
us express those rules and calculations more succinctly. 

Figure 10.18. 

 

The Share Pie represents the total distribution of a specific Loan . It is an ENTITY whose identity is local 
within the AGGREGATE of the Loan . The actual distribution calculations can be delegated to the Share 
Pie . 

Figure 10.19. 



 

public class Loan {
private SharePie shares;

//Accessors, constructors, and straightforward methods
//are omitted

public Map calculatePrincipalPaymentDistribution(
double paymentAmount) {
return getShares().prorated(paymentAmount);
}
public void applyPrincipalPayment(Map paymentShares) {
shares.decrease(paymentShares);
}
}

The Loan is simplified, and the Share calculations are centralized in a VALUE OBJECT focused on that 
responsibility. Still, the calculations haven't really become more versatile or easier to use. 

Share Pie Becomes a V ALUE O BJECT : Cascade of Insights 

Often, the hands-on experience of implementing a new design will trigger a new insight into the model 
itself. In this case, the tight coupling of the Loan and Share Pie seems to be obscuring the relationship of 
the Share Pie and the Shares . What would happen if we made Share Pie a VALUE OBJECT ? 

This would mean that increase(Map) and decrease(Map) would not be allowed, because the 
Share Pie would have to be immutable. To change the Share Pie 's value, the whole Pie would have to 



be replaced. So you could have operations such as addShares(Map) that would return a whole new, 
larger Share Pie . 

Let's go all the way to CLOSURE OF OPERATIONS . Instead of "increasing" a Share Pie or adding Shares 
to it, just add two Share Pies together: the result is the new, larger Share Pie . 

We can partially close the prorate() operation over Share Pie just by changing the return type. 
Renaming it to prorated() emphasizes its lack of side effects. "Shares Math" starts to take shape, 
initially with four operations. 

Figure 10.20. 

 

We can make some well-defined ASSERTIONS about our new VALUE OBJECTS , the Share Pies . Each 
method means something. 

[View full width]

public class SharePie {
private Map shares = new HashMap();
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//Accessors and other straightforward methods are omitted

public double getAmount() {
double total = 0.0;
Iterator it = shares.keySet().iterator();
while(it.hasNext()) {

The whole is equal to the sum of its parts.

Share loanShare = getShare(it.next());
total = total + loanShare.getAmount();
}
return total;
}

public SharePie minus(SharePie otherShares) {
SharePie result = new SharePie();
Set owners = new HashSet();
owners.addAll(getOwners());
owners.addAll(otherShares.getOwners());

The difference between two

Pies

is the

difference between each owner's share.

Iterator it = owners.iterator();
while(it.hasNext()) {
Object owner = it.next();
double resultShareAmount = getShareAmount(owner) –
otherShares.getShareAmount(owner);
result.add(owner, resultShareAmount);
}
return result;
}

public SharePie plus(SharePie otherShares) {



The combination of two

Pies

is the

combination of each owner's share.

//Similar to implementation of minus()
}

public SharePie prorated(double amountToProrate) {
SharePie proration = new SharePie();
double basis = getAmount();

An amount can be divided proportionately among all

shareholders.

Iterator it = shares.keySet().iterator();
while(it.hasNext()) {
Object owner = it.next();
Share share = getShare(owner);
double proratedShareAmount =
share.getAmount() / basis * amountToProrate;
proration.add(owner, proratedShareAmount);
}
return proration;
}

}

The Suppleness of the New Design 

At this point, the methods in the all-important Loan class could be as simple as this: 

public class Loan {
private SharePie shares;

//Accessors, constructors, and straightforward methods



//are omitted

public SharePie calculatePrincipalPaymentDistribution(
double paymentAmount) {
return shares.prorated(paymentAmount);
}

public void applyPrincipalPayment(SharePie paymentShares) {
setShares(shares.minus(paymentShares));
}

Each of these short methods states its meaning . Applying a principal payment means that you subtract 
the payment from the loan, share by share. Distributing a principal payment is done by dividing the 
amount pro rata among the shareholders. The design of the Share Pie has allowed us to use a declarative 
style in the Loan code, producing code that begins to read like a conceptual definition of the business 
transaction, rather than a calculation. 

Other transaction types (too complicated to list before) can be declared easily now. For example, loan 
drawdowns are divided among lenders based on their shares of the Facility . The new draw-down is 
added to the outstanding Loan . In our new domain language: 

public class Facility {
private SharePie shares;
. . .
public SharePie calculateDrawdownDefaultDistribution(
double drawdownAmount) {
return shares.prorated(drawdownAmount);
}
}

public class Loan {
. . .
public void applyDrawdown(SharePie drawdownShares) {
setShares(shares.plus(drawdownShares));
}
}

To see the deviation of each lender from its agreed contribution, take the theoretical distribution of the 
outstanding Loan amount and subtract it from the Loan's actual shares: 

SharePie originalAgreement =
aFacility.getShares().prorated(aLoan.getAmount());



SharePie actual = aLoan.getShares();
SharePie deviation = actual.minus(originalAgreement);

Certain characteristics of the Share Pie design make for this easy recombination and communication in 
the code. 

●     Complex logic is encapsulated in specialized VALUE OBJECTS with SIDE-EFFECT-FREE FUNCTIONS 
. Most complex logic has been encapsulated in these immutable objects. Because Share Pies are 
VALUE OBJECTS , the math operations can create new instances, which we can use freely to 
replace outdated instances. 

None of the Share Pie methods causes any change to any existing object. This allows us to use 
plus() , minus() , and pro-rated() freely in intermediate calculations, combining 
them, expecting them to do what their names suggest, and nothing more. It also allows us to build 
analytical features based on the same methods. (Before, they could be called only when an actual 
distribution was made, because the data would change after each call.) 

●     State-modifying operations are simple and characterized with ASSERTIONS . The high-level 
abstractions of Shares Math allow invariants of transactions to be written concisely in a 
declarative style. For example, the deviation is the actual pie minus the Loan amount prorated 
based on the Facility's Share Pie . 

●     Model concepts are decoupled; operations entangle a minimum of other types . Some methods on 
Share Pie exhibit CLOSURE OF OPERATIONS (the methods to add or subtract are closed under 
Share Pies ). Others take simple amounts as arguments or return values; they are not closed, but 
they add little to the conceptual load. The Share Pie interacts closely with only one other class, 
Share . As a result, the Share Pie is self-contained, easily understood, easily tested, and easily 
combined to form declarative transactions. These properties were inherited from the math 
formalism. 

●     Familiar formalism makes the protocol easy to grasp . A wholly original protocol for 
manipulating shares could have been devised based on financial terminology. In principle, it could 
have been made supple. But it would have had two disadvantages. First, it would have to be 
invented, a difficult and uncertain task. Second, it would have to be learned by each person who 
dealt with it. People who see Shares Math recognize a system they already know, and because the 
design has been kept carefully consistent with the rules of arithmetic, those people are not misled. 

Pulling out the part of the problem that corresponded to the formalism of math, we arrived at a supple 
design for Shares that further distills the core Loan and Facility methods. (See Chapter 15 for discussion 
of the CORE DOMAIN .) 

Supple design has a profound effect on the ability of software to cope with change and complexity. As 
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the examples in this chapter have shown, it often hinges on quite detailed modeling and design decisions. 
The impact can go beyond a specific modeling and design problem. Chapter 15 will discuss the strategic 
value of supple design as one of several tools for distilling a domain model to make large and complex 
projects more tractable. 
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Part III:  Refactoring Toward Deeper Insight 

Chapter Eleven. Applying Analysis Patterns 
Deep models and supple designs don't come easily. Progress comes from lots of learning about the 
domain, lots of talking, and lots of trial and error. Sometimes, though, we can get a leg up. 

When an experienced developer looking at a domain problem sees a familiar sort of responsibility 
or a familiar web of relationships, he or she can draw on the memory of how the problem was 
solved before. What models were tried and which worked? What difficulties arose in 
implementation and how were they resolved? The trial and error of that earlier experience is 
suddenly relevant to the new situation. Some of these patterns have been documented and shared, 
allowing the rest of us to draw on the accumulated experience. 

In contrast to the fundamental building block patterns presented in Part II , and the supple design 
principles of Chapter 10 , these patterns are higher level and more specialized, involving the use of 
a few objects to represent some concept. They let us cut through expensive trial and error to start 
with a model that is already expressive and implementable and addresses subtleties that might be 
costly to learn. From that starting point, we refactor and experiment. These are not outofthe-box 
solutions. 

In Analysis Patterns: Reusable Object Models , Martin Fowler defined his patterns this way: 

Analysis patterns are groups of concepts that represent a common construction in 
business modeling. It may be relevant to only one domain or it may span many 
domains. [ Fowler 1997 , p. 8] 

The analysis patterns Fowler presents arose from experience in the field, and so they are practical, 
in the right situation. Such patterns provide someone facing a challenging domain with very 
valuable starting points for their iterative development process. The name emphasizes their 
conceptual nature. Analysis patterns are not technological solutions; they are guides to help you 
work out a model in a particular domain. 

What the name unfortunately does not convey is that there is significant discussion of 
implementation in these patterns, including some code. Fowler understands the pitfalls of analysis 
without thought for practical design. Here is an interesting example where he is looking even 
beyond deployment, to the implications of specific model choices on the long-term maintenance of 
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the system in the field: 

When we build a new [accounting] practice, we create a network of new instances of 
the posting rule. We can do this without any recompilation or rebuilding of the 
system, while it is still up and running. There will be unavoidable occasions when 
we need a new subtype of posting rule, but these will be rare. [p. 151] 

On a mature project, model choices are often informed by experience with the application. 
Multiple implementations of various components will have been tried. Some of these will have 
been carried into production and even will have faced the maintenance phase. Many problems can 
be avoided when such experience is available. Analysis patterns at their best can carry that kind of 
experience from other projects, combining model insights with extensive discussions of design 
directions and implementation consequences. To discuss model ideas out of that context makes 
them harder to apply and risks opening the deadly divide between analysis and design, which is 
antithetical to MODEL-DRIVEN DESIGN . 

The principle and application of analysis patterns can be explained better by example than through 
abstract description. In this chapter, I will give two examples of developers making use of a small, 
representative sample of models from the chapter "Inventory and Accounting" in Fowler 1997 . 
The analysis patterns will be summarized just enough to support the examples. This is obviously 
not an attempt to catalog patterns of this kind or even to fully explain the sample patterns. The 
point is to illustrate their integration into the domain-driven design process. 
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Chapter Eleven.  Applying Analysis Patterns 

Example 
Earning Interest with Accounts 

Chapter 10 showed various possible ways that a developer might search for a deeper model for a 
particular specialty accounting application. Here is yet another scenario. This time, the developers will 
mine Fowler's Analysis Patterns book for useful ideas. 

To review, an application for tracking loans and other interest-bearing assets calculates the interest and 
fees generated and tracks payments from the borrower. A nightly batch process takes those figures and 
passes them to the legacy accounting system, indicating the specific ledger each amount should be 
posted to. The design works, but it is awkward to use, tricky to change, and does not communicate 
well. 

Figure 11.1. The initial class diagram 

 

The developer decides to read Chapter 6 in Analysis Patterns , "Inventory and Accounting." Here is a 
summary of the part she found most relevant. 

Accounting Models in Analysis Patterns 

Business applications of all sorts track accounts, which hold things of value, typically 
money. In a lot of applications, it isn't enough to keep track of the amount in an account. 
It is essential to account for and control each change to that amount. That is the 
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motivation for the most basic of the accounting models. 

Figure 11.2. A basic accounting model 

 

Value can be added by inserting an Entry . Value can be removed by inserting a negative 
Entry. Entries are never removed, so the whole history is retained. The balance is the 
combined effect of all Entries . This balance could be computed on demand or cached, 
an implementation decision that is encapsulated by the Account interface. 

A basic principle of accounting is conservation . Money doesn't appear out of nowhere, 
nor does it disappear without a trace. It is only moved from one Account to another. 

Figure 11.3. A transaction model 

 

This is the well-established concept of double-entry book-keeping : Every credit has a 
matching debit. Of course, like other conservation principles, it applies only to a closed 
system, one that includes all sources and sinks. Many simple applications do not require 
this rigor. 

In his book, Fowler includes more elaborate forms of these models and considerable 



discussion of the trade-offs. 

This reading gives the developer ( Developer 1 ) several new ideas. She shows the chapter to a 
colleague ( Developer 2 ) who has been working on some of the interest calculation logic with her and 
who wrote the nightly batch program. Together, they rough out a change to their model, incorporating 
some of the model elements they've read about. 

Figure 11.4. The new model proposal 

 

Then they pull in their domain expert ( Expert ) for a discussion of their new model ideas. 

Developer 1: With this new model, we make an Entry into the Interest Account for the interest 
earned, rather than just adjusting the interestDueAmount. Then, another Entry for the payment 
balances it out. 

Expert: So now we'd be able to see a history of all the interest accruals as well as the payment history? 
That's something we've been wanting. 

Developer 2: I'm not sure we've used " Transaction " quite right. The definition talks about moving 
money from one Account to another, not two entries that balance each other in the same Account . 

Developer 1: That's a good point. I was also worried that the book seems to make quite a point about 
the transaction being created all at once. The interest payments can be several days late. 

Expert: Those payments aren't necessarily late. There is a lot of flexibility in when they pay. 

Developer 1: So this may be a blind alley. I was thinking we might have identified some implicit 
concepts. Having the Interest Calculator create Entry objects does seem to communicate better. And 



Transaction seemed to neatly tie together the calculated interest with the payment. 

Expert: Why do we need to tie together the accrual to the payment? They are separate postings in the 
accounting system. The balance on the Account is the main thing. Along with the individual Entries, 
we really have what we need. 

Developer 2: You mean you don't track whether they've made the interest payment? 

Expert: Well, of course we do. But it isn't as simple as this one-accrual/one-payment scheme of yours. 

Developer 2: It could actually simplify a lot of things to stop worrying about that connection. 

Developer 1: OK, how about this? [ Takes copy of old class diagram and starts sketching 
modifications ] By the way, you used the word accruals a few times. Could you clarify what it means? 

Expert: Sure. An accrual is just when you account for an expense or income at the time it is incurred, 
never mind when money actually changes hands. So, we accrue interest every day, but at the end of the 
month (for example) we receive a payment against it. 

Developer 1: Yes, we really needed a word like that. OK, how does this look? 

Figure 11.5. Original class diagram, accruals separated from payment 

 

Developer 1: Now we can get rid of all the complications that were in the calculator from relating 
payments, and we've introduced the term accruals , which reveals the intent better. 

Expert: So we're not going to have the Account object? I was looking forward to being able to see 
everything together there, with the accruals and the payments and a balance. 

Developer 1: Really?! Well in that case, maybe this would work. [ Takes other diagram and sketches ] 



Figure 11.6. The account-based diagram, without Transaction 

 

Expert: That actually looks pretty good! 

Developer 2: The batch script will be easy to change to use these new objects. 

Developer 1: It will take a few days to get the new Interest Calculator working. There are quite a few 
tests to change. But the test will read clearer afterward. 

The two developers went off and started refactoring based on the new model. As they got their hands 
on the code, tightening up the design, they had insights that refined the model. 

Entries were subclassed into Payment and Accrual because closer inspection revealed slightly 
different responsibilities in the application for these, and because they were both important domain 
concepts. On the other hand, there was no conceptual or behavioral distinction between Entries based 
on whether they resulted from fees or interest. They simply appeared in the appropriate Account . 

Yet, unfortunately, the developers found they had to give up this last abstraction for the 
implementation. Data was stored in relational tables, and the project standard was to make those tables 
interpretable without running the program. This meant keeping fee entries and interest entries in 
separate tables. The only way for developers to do this, using their particular object-relational mapping 
framework, was to make concrete subclasses ( Fee Payments, Interest Payments , and so on). With 
different infrastructure, they might have avoided this clumsy expansion. 

I threw this twist into this largely fictitious story to represent the rub of reality that we encounter all the 
time. We have to make calculated compromises and then move on without letting it throw us off our 
MODEL-DRIVEN DESIGN . 



Figure 11.7. The class diagram after the implementation 

 

The new design was much easier to analyze and test because the most complex functionality is in SIDE-
EFFECT-FREE FUNCTIONS . The remaining command has simple code (because it calls various 
FUNCTIONS ) and is characterized by ASSERTIONS . 

Sometimes there are parts of our programs that we don't even suspect have the potential to benefit from 
a domain model. They may have started very simply and evolved mechanistically. They seem like 
complicated application code, rather than domain logic. Analysis patterns can be particularly helpful in 
showing us these blind spots. 

In the following example, a developer has a new insight into the black box of the nightly batch, which 
had not been considered domain oriented. 
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Chapter Eleven.  Applying Analysis Patterns 

Example 
Insight into the Nightly Batch 

After a few weeks, the improved Account -based model had started to settle in. As often happens, the 
clarity of the new design made other problems more visible. The developer ( Developer 2 ) who was 
adapting the nightly batch to interact with the new design began to see connections between the 
behavior of the batch and some of the concepts in Analysis Patterns . Here is a summary of some of the 
concepts he found most relevant. 

Posting Rules 

Accounting systems often provide multiple views of the same basic financial 
information. One account might track income while another might track an estimated tax 
on that income. If the system is expected to automatically update the estimated tax 
account, the implementation of those two accounts becomes very intertwined. There are 
systems in which the majority of account entries result from such rules; in such a system, 
the dependency logic gets to be a mess. Even in more modest systems, such cross-
posting can be tricky. The first step toward taming the tangle of dependencies is to make 
these rules explicit by introducing a new object. 

Figure 11.8. The class diagram of the basic posting rule 

 

A posting rule is triggered by a new Entry in its "input" account. It then derives a new 
Entry (based on its own calculation Method ) and inserts the new Entry into its 
"output" Account . In a payroll system, an Entry in a salary Account might trigger a 
Posting Rule that would calculate a 30 percent estimated income tax and insert it as an 
Entry in the tax with-holding Account . 



Executing Posting Rules 

The Posting Rule has established the conceptual dependency between Accounts , but if 
the pattern stopped there, it could be difficult to follow. One of the trickiest parts of 
dependency designs is the timing and control of updates. Fowler discusses three options. 

1.  "Eager firing" is the most obvious, but typically the least practical. Whenever an 
Entry is inserted into an Account , it immediately triggers the Posting Rules and 
all updates are made immediately. 

2.  " Account -based firing" allows processing to be deferred. At some point, a 
message is sent to an Account and it triggers its Posting Rules to process all 
Entries inserted since its last firing. 

3.  Finally, " Posting-Rule -based firing" is initiated by an external agent, which 
tells the Posting Rule to fire. The Posting Rule is responsible for looking up all 
Entries made to its input Accounts since the last time it fired. 

Although firing modes can be mixed in a system, each particular set of rules 
needs to have one clearly defined point of initiation and responsibility for 
identifying input Account Entries . The addition of the three firing modes to the 
UBIQUITOUS LANGUAGE is as important to the success of the pattern as the 
model object definitions themselves. It eliminates ambiguity and guides decision 
making directly to a clearly defined set of choices. These modes identify an easily 
overlooked challenge and provide vocabulary to support clear discussion. 

Developer 2 needed a sounding board to discuss his new ideas. He met up his colleague ( Developer 1 
), the developer who had been primarily responsible for modeling the accruals. 

Developer 2: At some point, the nightly batch started being a place where we swept stuff under the 
rug. There is domain logic implicit in what the script does, and it's been getting more and more 
complicated. For a long time I've wanted to do a model-driven design for the batch, separate out a 
domain layer, and make the script itself a simple layer on top of the domain. But I could never figure 
out what that domain model would be like. It seemed like maybe it was just some procedures that 
didn't really make sense as objects. As I've been reading the section in Analysis Patterns on Posting 
Rules , I've been getting some ideas. Here's what I had in mind. [ Hands over a sketch ] 

Figure 11.9. A shot at using Posting Rules in the batch 
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Developer 1: What is this " Posting Service "? 

Developer 2: That is a FACADE that exposes the accounting application's API and presents it as a 
SERVICE . I actually made that a while back to simplify the batch code, and it also gave me an 
INTENTION-REVEALING INTERFACE for posting to the legacy system. 

Developer 1: Interesting. So, which firing style do you plan to use for these Posting Rules ? 

Developer 2: I hadn't really gotten that far. 

Developer 1: Eager Firing would work for Accruals , since the batch actually tells the Asset to insert 
them, but it wouldn't work for Payments , which get entered during the day. 

Developer 2: I don't think we would want to couple the calculation method that tightly to the batch 
anyway. If we ever decided to trigger interest calculations at a different time, it would mess things up. 
And it just doesn't seem right, conceptually. 

Developer 1: It sounds like Posting-Rule -based firing. The batch tells each Posting Rule to execute, 
and the rule goes and looks for appropriate new Entries and then does its thing. That's pretty much the 
way you've drawn it. 

Developer 2: So then we avoid creating a lot of dependencies on the batch design, and the batch keeps 
control. That sounds right. 

Developer 1: I'm still a little vague on the interaction of these objects with the Accounts and Entries . 



Developer 2: You and me both. The examples in the book create a direct link between the Accounts 
and the Posting Rules . That is kind of logical, but I don't think it will work very well for us. We have 
to instantiate these objects from data each time, so we would have to figure out which rule applies in 
order to associate it. Meanwhile, the Asset object is the one that knows the content of each Account , 
and therefore which rule to apply. Anyway, what about the rest of this? 

Developer 1: I hate to nitpick, but I don't think that we're using " Method " right. I think the concept is 
that the Method computes the amount to be posted—like, say, a 20 percent tax with-holding on 
income. But in our case, that's simple: it's always the full amount being posted. I think the Posting 
Rule itself is supposed to know which Account to post to, which corresponds to our "ledger name." 

Developer 2: Oh. So if the Posting Rule is responsible for knowing the correct ledger name, we 
probably don't need Method at all. 

Actually, this whole business of choosing the right ledger name is getting more and more complicated. 
It is already a combination of the type of income (fee or interest) with the "asset class" (a category the 
business applies to each Asset ). That is one place I'm hoping this new model will help. 

Developer 1: OK, let's focus there. The Posting Rule is responsible for choosing the Ledger based on 
attributes of the Account . For now, we can make it a straightforward way to handle asset class and the 
distinction between interest and fees. In the future, you'll have an OBJECT MODEL you can enhance to 
handle more complex cases. 

Developer 2: I need to think about this some more. Let me mull it over, and reread the patterns, and 
then I'll take another stab at it. Could I talk with you about this again tomorrow afternoon? 

Over the next few days, the two developers worked out a model and refactored the code so that the 
batch simply iterated through the Assets , sending a few self-explanatory messages to each and then 
committing the database transactions. The complexity was shifted into the domain layer, where an 
object model made it both more explicit and more abstract. 

Figure 11.10. The class diagram with Posting Rules 



 

Figure 11.11. Sequence diagram showing rule firing 

 

The developers departed considerably from the details of the models presented in Analysis Patterns, 
yet they felt they had preserved the essence of the concepts. They were a little uncomfortable about 
involving the Asset in the selection of the Posting Rule . They went that way because the Asset had 
the knowledge of the nature of each Account (fee or interest) and was also the natural access point for 
the script. To have associated the rule object directly with the Account would have required a 
collaboration with the Asset object on each instantiation of the objects (each time the batch was run). 
Instead, they let the Asset object look up the two relevant rules through their SINGLETON access and 
pass them the appropriate Account . It seemed to make the code much more direct and so they made a 
pragmatic decision. 

They both felt that conceptually it would have been better to associate Posting Rules only with 
Accounts , while keeping the Asset focused on its job of generating Accruals . They hoped that 



subsequent refactorings and deeper insight would bring them back to this and show them a way to 
make this clean division without losing the obviousness of the code. 
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Chapter Eleven.  Applying Analysis Patterns 

Analysis Patterns Are Knowledge to Draw On 

When you are lucky enough to have an analysis pattern, it hardly ever is the answer to your 
particular needs. Yet it offers valuable leads in your investigation, and it provides cleanly 
abstracted vocabulary. It should also give you guidance about implementation consequences that 
will save you pain down the road. 

All this feeds into the dynamo of knowledge crunching and refactoring toward deeper insight and 
stimulates development. The result often resembles the form documented in the analysis pattern, 
but adapted to circumstances. Sometimes the result doesn't even obviously relate to the analysis 
pattern itself, yet was stimulated by the insights from the pattern. 

There is one kind of change you should avoid. When you use a term from a well-known analysis 
pattern, take care to keep the basic concept it designates intact, however much the superficial form 
might change. There are two reasons for this. First, the pattern may embed understanding that will 
help you avoid problems. Second, and more important, your UBIQUITOUS LANGUAGE is enhanced 
when it includes terms that are widely understood or at least well explained. If your model 
definitions change through the natural evolution of the model, take the trouble to change the names 
too. 

Quite a lot of object models have been written about, some specialized for one kind of application 
in one industry and some quite general. Most of them provide the seed of an idea, but only a few 
have captured the reasoning behind the choices and the consequences that follow, which are the 
most useful parts of an analysis pattern. More of these refined analysis patterns would be valuable, 
to help save us from reinventing the wheel again and again. I'd be surprised ever to see a 
comprehensive catalog, but industry-specific catalogs might arise. And patterns for some domains 
that cross many applications could be widely shared. 

This kind of reapplication of organized knowledge is completely different from attempts to reuse 
code through frameworks or components, except that either could provide the seed of an idea that 
is not obvious. A model, even a generalized framework, is a complete working whole, while an 
analysis is a kit of model fragments. Analysis patterns focus on the most critical and difficult 
decisions and illuminate alternatives and choices. They anticipate downstream consequences that 
are expensive if you have to discover them for yourself. 
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Part III:  Refactoring Toward Deeper Insight 

Chapter Twelve. Relating Design Patterns to the 
Model 
The patterns explored in this book so far are intended specifically for solving problems in a 
domain model in the context of a MODEL-DRIVEN DESIGN . Actually, though, most of the patterns 
published to date are more technical in focus. What is the difference between a design pattern and 
a domain pattern? For starters, the authors of the seminal book, Design Patterns , had this to say: 

Point of view affects one's interpretation of what is and isn't a pattern. One person's 
pattern can be another person's primitive building block. For this book we have 
concentrated on patterns at a certain level of abstraction. Design patterns are not 
about designs such as linked lists and hash tables that can be encoded in classes and 
reused as is. Nor are they complex, domain-specific designs for an entire application 
or subsystem. The design patterns in this book are descriptions of communicating 
objects and classes that are customized to solve a general design problem in a 
particular context. [ Gamma et al. 1995 , p. 3] 

Some, not all, of the patterns in Design Patterns can be used as domain patterns. Doing so requires 
a shift in emphasis. Design Patterns presents a catalog of design elements that have solved 
problems commonly encountered in a variety of contexts. The motivations of these patterns and 
the patterns themselves are presented in purely technical terms. But a subset of these elements can 
be applied in the broader context of domain modeling and design, because they correspond to 
general concepts that emerge in many domains. 

In addition to those in Design Patterns, there have been many other technical design patterns 
presented over the years. Some of them correspond to deep concepts that emerge in domains. It 
would be nice to draw on this work. To make use of such patterns in domain-driven design, we 
have to look at the patterns on two levels simultaneously. On one level, they are technical design 
patterns in the code. On the other level, they are conceptual patterns in the model. 

A sample of specific patterns from Design Patterns will show how a pattern conceived as a design 
pattern can be applied in the domain model, and it will clarify the distinction between a technical 
design pattern and a domain pattern. COMPOSITE and STRATEGY demonstrate how some of the 
classic design patterns can be applied to domain problems by thinking about them in a different 
way. . . . 
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Chapter Twelve.  Relating Design Patterns to the Model 

Strategy (A.K.A.Policy) 

 

Define a family of algorithms, encapsulate each one, and make them 
interchangeable. S TRATEGY lets the algorithm vary independently from clients that 
use it. [ Gamma et al. 1995 ] 

Domain models contain processes that are not technically motivated but actually meaningful 
in the problem domain. When alternative processes must be provided, the complexity of 
choosing the appropriate process combines with the complexity of the multiple processes 
themselves, and things get out of hand. 

When we model processes, we often realize that there is more than one legitimate way of doing 
them. As we start to describe these options, our definition of the process becomes clumsy and 
complicated. The actual behavioral alternatives we are choosing between are obscured as they are 
mixed in with the rest of the behavior. 

We would like to separate this variation from the main concept of the process. Then we would be 
able to see both the main process and the options more clearly. The STRATEGY pattern, already 
well established in the software design community, addresses this very issue, though the focus is 
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technical. Here it is being applied as a concept in a model and reflected in the code implementation 
of that model. There is the same need to decouple the highly variable part of the process from the 
more stable part. 

Therefore: 

Factor the varying part of a process into a separate "strategy" object in the model. Factor 
apart a rule and the behavior it governs. Implement the rule or substitutable process 
following the STRATEGY design pattern. Multiple versions of the strategy object represent 
different ways the process can be done. 

Whereas the conventional view of STRATEGY as a design pattern focuses on the ability to 
substitute different algorithms, its use as a domain pattern focuses on its ability to express a 
concept, usually a process or a policy rule. 

Example 
Route-Finding Policies 

A Route Specification is being passed to a Routing Service , whose job is to construct a detailed 
Itinerary that satisfies the SPECIFICATION . This SERVICE is an optimization engine that can be 
tuned to find either the fastest route or the cheapest one. 

Figure 12.1. A SERVICE interface with options will need conditional logic. 

 

This setup looks OK, but a detailed look at the routing code would reveal conditionals in every 
computation, making the decision between fastest or cheapest appear all over the place. More 
trouble will come when new criteria are added to make more subtle choices between routes. 

One approach is to separate those tuning parameters into STRATEGIES . Then they can be 



represented explicitly, passed into the Routing Service as a parameter. 

The Routing Service now handles all requests in the same, unconditional way, looking for a 
sequence of Legs with a low magnitude, as computed by the Leg Magnitude Policy . 

This design has the advantages that motivate the STRATEGY pattern in Design Patterns . On the 
level of application versatility and flexibility, the behavior of the Routing Service can now be 
controlled and extended by installing an appropriate Leg Magnitude Policy . The STRATEGIES 
illustrated in Figure 12.2 (fastest or cheapest) are only the most obvious ones. Combinations that 
balance speed and cost are likely. There may be other factors altogether, such as a bias toward 
booking cargo on the company's own transports rather than subcontracting to carry them on the 
transports of other shipping companies. These modifications could have been made without 
resorting to STRATEGIES , but the logic would have wound through the internals of the Routing 
Service and bloated its interface. The decoupling does make it clear and easily testable. 

Figure 12.2. Options determined by choice of STRATEGY (POLICY) passed as 
argument 

 

A fundamentally important rule in the domain, the basis of choosing one Leg over another when 
building an Itinerary , is now explicit and distinct. It conveys the knowledge that a specific 
attribute (potentially derived) of an individual leg, boiled down to a single number, is the basis for 
routing. This makes possible a simple statement in the language of the domain that defines the 
Routing Service's behavior: The Routing Service chooses an Itinerary with a minimum total 
magnitude of the Legs based on the chosen STRATEGY . 



Note: This discussion implies that the Routing Service is actually evaluating Legs as it searches 
for an Itinerary . This approach is conceptually straightforward, and it could make a reasonable 
prototype implementation, but it is probably unacceptably inefficient. This application will be 
taken up again in Chapter 14 , "Maintaining Model Integrity," where the same interface will be 
used with a completely different implementation of the Routing Service . 

   

When we use the technical design pattern in the domain layer, we have to add an additional 
motivation, another layer of meaning. When the STRATEGY corresponds to an actual business 
strategy or policy, the pattern becomes more than just a useful implementation technique (though 
that too is valuable as far as it goes). 

The consequences of the design pattern fully apply. For example, in Design Patterns , Gamma et 
al. point out that clients must be aware of different STRATEGIES , which is also a modeling 
concern. A concern purely of implementation is that STRATEGIES can increase the number of 
objects in the application. If that is a problem, the overhead can be reduced by implementing 
STRATEGIES as stateless objects that contexts can share. The extensive discussion of 
implementation approaches in Design Patterns all applies here. This is because we are still using a 
STRATEGY . Our motivations are partially different, which will affect some choices, but the 
experience embedded in the design pattern is at our disposal. 
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Chapter Twelve.  Relating Design Patterns to the Model 

Composite 

 

Compose objects into tree structures to represent part-whole hierarchies. C 
OMPOSITE lets clients treat individual objects and compositions of objects 
uniformly. [ Gamma et al. 1995 ] 

We often encounter, while modeling complex domains, an important object that is composed of 
parts, which are themselves made up of parts, which are made up of parts—occasionally even 
nesting to arbitrary depth. In some domains, each of these levels is conceptually distinct, but in 
other cases, there is a sense in which the parts are the same kind of thing as the whole, only 
smaller. 

When the relatedness of nested containers is not reflected in the model, common behavior 
has to be duplicated at each level of the hierarchy, and nesting is rigid (for example, 
containers can't usually contain other containers at their own level, and the number of levels 
is fixed). Clients must deal with different levels of the hierarchy through different interfaces, 
even though there may be no conceptual difference they care about. Recursion through the 
hierarchy to produce aggregated information is very complicated. 
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When applying any design pattern in the domain, the first concern should be whether the pattern 
idea really is a good fit for the domain concept. It might be convenient to move recursively 
through some associated objects, but is there a true whole-part hierarchy? Have you found an 
abstraction under which all the parts truly are the same conceptual type? If you have, COMPOSITE 
will make those aspects of the model clearer, while allowing you to tap into the carefully thought-
out design and implementation considerations of the design pattern. 

Therefore: 

Define an abstract type that encompasses all members of the COMPOSITE . Methods that 
return information are implemented on containers to return aggregated information about 
their contents. "Leaf" nodes implement those methods based on their own values. Clients 
deal with the abstract type and have no need to distinguish leaves from containers. 

This is a relatively obvious pattern on the structural level, but designers often do not push 
themselves to flesh out the operational level of the pattern. The COMPOSITE offers the same 
behavior at every structural level, and meaningful questions can be asked of small or large parts 
that transparently reflect their makeup. That rigorous symmetry is the key to the power of the 
pattern. 

Example 
Shipment Routes Made of Routes 

A complete cargo shipment route is complicated. First the container must be trucked to a railhead, 
then carried to a port, then transported on a ship to another port, possibly transferred to other ships, 
and finally transported by ground on the other end. 

Figure 12.3. A schematic of a "route" made up of "legs" 



 

An application development team has created an object model to express these arbitrarily long 
strings of legs that assemble into a route. 

Figure 12.4. A class diagram of a Route made up of Legs 



 

Using this model, the developers are able to create Route objects based on booking requests. They 
are able to process the Legs into the operational plan for the step-by-step handling of the cargo. 
Then they discover something. 

The developers had always thought of a route as an arbitrary, un-differentiated string of legs. 

Figure 12.5. The developers' conception of a route 

 

It turns out the domain experts see the route as a sequence of five logical segments. 

Figure 12.6. The business experts' conception of a route 



 

Among other things, these subroutes may be planned at different times by different people, so they 
have to be viewed as distinct. And on closer inspection, the "door legs" are quite different from the 
other legs, involving locally hired trucks or even customer haulage, in contrast to the elaborately 
scheduled rail and ship transports. 

An object model reflecting all these distinctions starts to get complicated. 

Figure 12.7. The elaborated class diagram of Route 

 

Structurally the model isn't so bad, but the uniformity of processing the operational plan is lost, so 



the code, or even a description of behavior, becomes much more complicated. Other complications 
begin to surface, too. Any traversal of a route involves multiple collections of different types of 
objects. 

Enter COMPOSITE . It would be nice, for certain clients, to treat the different levels in this construct 
uniformly, as routes made up of routes. Conceptually this view is sound. Every level of Route is a 
movement of a container from one point to another, all the way down to an individual leg. (See 
Figure 12.8 .) 

Figure 12.8. A class diagram using COMPOSITE 

 

Now, the static class diagram does not tell us as much about how door legs and other segments fit 
together as the previous one did. But the model is more than a static class diagram. We'll convey 
assembly information through other diagrams (see Figure 12.9 ) and through the (now much 
simpler) code. This model captures the deep relatedness of all these different kinds of " Route ." 
Generating the operational plan is simple again, as are other route-traversing operations. 

Figure 12.9. Instances representing a complete Route 



 

With a route made of other routes, pieced together end to end to get from one place to another, you 
can have route implementations of varying detail. You can chop off the end of a route and splice 
on a new ending, you can have arbitrary nesting of detail, and you can exploit all sorts of possibly 
useful options. 

Of course, we don't yet need such options. And before we needed those route segments and distinct 
door legs, we were doing just fine without COMPOSITE . A design pattern should be applied only 
when it is needed. 
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Chapter Twelve.  Relating Design Patterns to the Model 

Why Not F LYWEIGHT? 

Because I referred to the FLYWEIGHT pattern earlier (in Chapter 5 ), you might have assumed that 
it is an example of a pattern to be applied to domain models. In fact, FLYWEIGHT is a good 
example of a design pattern that has no correspondence to the domain model. 

When a limited set of VALUE OBJECTS is used many times (as in the example of electrical outlets 
in a house plan), it may make sense to implement them as FLYWEIGHTS . This is an 
implementation option available for VALUE OBJECTS and not for ENTITIES . Contrast this with 
COMPOSITE , in which conceptual objects are composed of other conceptual objects. In that case, 
the pattern applies to both model and implementation, which is an essential trait of a domain 
pattern. 

I'm not going to try to compile a list of the design patterns that can be used as domain patterns. 
Although I can't think of an example of using an interpreter as a domain pattern, I'm not prepared 
to say that there is no conception of any domain that would fit. The only requirement is that the 
pattern should say something about the conceptual domain, not just be a technical solution to a 
technical problem. 
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Part III:  Refactoring Toward Deeper Insight 

Chapter Thirteen. Refactoring Toward Deeper Insight 
Refactoring toward deeper insight is a multifaceted process. It will be helpful to stop for a moment 
to pull together the major points. There are three things you have to focus on. 

1.  Live in the domain. 

2.  Keep looking at things a different way. 

3.  Maintain an unbroken dialog with domain experts. 

Seeking insight into the domain creates a broader context for the process of refactoring. 

The classic refactoring scenario involves a developer or two sitting at the keyboard, recognizing 
that some code can be improved, and then changing it on the fly (with unit tests to verify their 
results, of course). This practice should happen all the time, but it isn't the whole story. 

The previous five chapters present an expanded view of refactoring, superimposed on the 
conventional micro-refactoring approach. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

Initiation 

Refactoring toward deeper insight can begin in many ways. It may be a response to a problem in 
the code—some complexity or awkwardness. Rather than apply a standard transformation of the 
code, the developers sense that the root of the problem is in the domain model. Perhaps a concept 
is missing. Maybe some relationship is wrong. 

In a departure from the conventional view of refactoring, this same realization could come when 
the code looks tidy, if the language of the model seems disconnected from the domain experts, or 
if new requirements are not fitting in naturally. Refactoring might result from learning, as a 
developer who has gained deeper understanding sees an opportunity for a more lucid or useful 
model. 

Seeing the trouble spot is often the hardest and most uncertain part. After that, developers can 
systematically seek out the elements of a new model. They can brainstorm with colleagues and 
domain experts. They can draw on systematized knowledge written as analysis patterns or design 
patterns. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

Exploration Teams 

Whatever the source of dissatisfaction, the next step is to seek a refinement that will make the 
model communicate clearly and naturally. This might require only some modest change that is 
immediately evident and can be accomplished in a few hours. In that case, the change resembles 
traditional refactoring. But the search for a new model may well call for more time and the 
involvement of more people. 

The initiators of the change pick a couple of other developers who are good at thinking through 
that kind of problem, who know that area of the domain, or who have strong modeling skills. If 
there are subtleties, they make sure a domain expert is involved. This group of four or five people 
goes to a conference room or a coffee shop and brainstorms for half an hour to an hour and a half. 
They sketch UML diagrams; they try walking through scenarios using the objects. They make sure 
the subject matter expert understands the model and finds it useful. When they find something they 
are happy with, they go back and code it. Or they decide to mull it over for a few days, and they go 
back and work on something else. A couple of days later, the group reconvenes and goes through 
the exercise again. This time they are more confident, having slept on their earlier thoughts, and 
they reach some conclusions. They go back to their computers and code the new design. 

There are a few keys to keeping this process productive. 

●     Self-determination . A small team can be assembled on the fly to explore a design problem. 
The team can operate for a few days and then disband. There is no need for long-term, 
elaborate organizational structures. 

●     Scope and sleep . Two or three short meetings spaced out over a few days should produce a 
design worth trying. Dragging it out doesn't help. If you get stuck, you may be taking on 
too much at once. Pick a smaller aspect of the design and focus on that. 

●     Exercising the UBIQUITOUS LANGUAGE . Involving the other team members—particularly 
the subject matter expert—in the brain-storming session creates an opportunity to exercise 
and refine the UBIQUITOUS LANGUAGE . The end result of the effort is a refinement of that 
LANGUAGE which the original developer(s) will take back and formalize in code. 

Earlier chapters in this book have presented several dialogs in which developers and domain 



experts probe for better models. A full-blown brainstorming session is dynamic, unstructured, and 
in-credibly productive. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

Prior Art 

It isn't always necessary to reinvent the wheel. The process of brain-storming for missing concepts 
and better models has a great capacity to absorb ideas from any source, combine them with local 
knowledge, and continue crunching to find answers to the current situation. 

You can get ideas from books and other sources of knowledge about the domain itself. Although 
the people in the field may not have created a model suitable for running software, they may well 
have organized the concepts and found some useful abstractions. Feeding the knowledge-
crunching process this way leads to richer, quicker results that also will probably seem more 
familiar to domain experts. 

Sometimes you can draw on the experience of others in the form of analysis patterns. This kind of 
input has some of the effect of reading about the domain, but in this case it is geared specifically 
toward software development, and it should be based directly on experience implementing 
software in your domain. Analysis patterns can give you subtle model concepts and help you avoid 
lots of mistakes. But they don't give you a cookbook recipe. They feed the knowledge-crunching 
process. 

As the pieces are fit together, model concerns and design concerns must be dealt with in parallel. 
Again, it doesn't always mean inventing everything from scratch. Design patterns can often be 
employed in the domain layer when they fit both an implementation need and the model concept. 

Likewise, when a common formalism, such as arithmetic or predicate logic, fits some part of a 
domain, you can factor that part out and adapt the rules of the formal system. This provides very 
tight and readily understood models. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

A Design for Developers 

Software isn't just for users. It's also for developers. Developers have to integrate code with other 
parts of the system. In an iterative process, developers change the code again and again. 
Refactoring toward deeper insight both leads to and benefits from a supple design. 

A supple design communicates its intent. The design makes it easy to anticipate the effect of 
running code—and therefore it easy to anticipate the consequences of changing it. A supple design 
helps limit mental overload, primarily by reducing dependencies and side effects. It is based on a 
deep model of the domain that is fine-grained only where most critical to the users. This makes for 
flexibility where change is most common, and simplicity elsewhere. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

Timing 

If you wait until you can make a complete justification for a change, you've waited too long. Your 
project is already incurring heavy costs, and the postponed changes will be harder to make because 
the target code will have been more elaborated and more embedded in other code. 

Continuous refactoring has come to be considered a "best practice," but most project teams are still 
too cautious about it. They see the risk of changing code and the cost of developer time to make a 
change; but what's harder to see is the risk of keeping an awkward design and the cost of working 
around that design. Developers who want to refactor are often asked to justify the decision. 
Although this seems reasonable, it makes an already difficult thing impossibly difficult, and tends 
to squelch refactoring (or drive it underground). Software development is not such a predictable 
process that the benefits of a change or the costs of not making a change can be accurately 
calculated. 

Refactoring toward deeper insight needs to become part of the ongoing exploration of the subject 
matter of the domain, the education of the developers, and the meeting of the minds of developers 
and domain experts. Therefore, refactor when 

●     The design does not express the team's current understanding of the domain; 

●     Important concepts are implicit in the design (and you see a way to make them explicit); or 

●     You see an opportunity to make some important part of the design suppler. 

This aggressive attitude does not justify any change at any time. Don't refactor the day before a 
release. Don't introduce "supple designs" that are just demonstrations of technical virtuosity but 
fail to cut to the core of the domain. Don't introduce a "deeper model" that you couldn't convince a 
domain expert to use, no matter how elegant it seems. Don't be absolute about things, but push 
beyond the comfort zone in the direction of favoring refactoring. 
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Chapter Thirteen.  Refactoring Toward Deeper Insight 

Crisis as Opportunity 

For over a century after Charles Darwin introduced it, the standard model of evolution was that 
species changed gradually, somewhat steadily, over time. Suddenly, in the 1970s, this model was 
displaced by the "punctuated equilibrium" model. In this expanded view of evolution, long periods 
of gradual change or stability are interrupted by relatively short bursts of rapid change. Then things 
settle down into a new equilibrium. Software development has an intentional direction behind it 
that evolution lacks (although it may not be evident on some projects), but nonetheless it follows 
this kind of rhythm. 

Classical descriptions of refactoring sound very steady. Refactoring toward deeper insight usually 
isn't. A period of steady refinement of a model can suddenly bring you to an insight that shakes up 
everything. These breakthroughs don't happen every day, yet a large proportion of the changes that 
lead to a deep model and supple design emerge from them. 

Such a situation often does not look like an opportunity; it seems more like a crisis. Suddenly there 
is some obvious inadequacy in the model. There is a gaping hole in what it can express, or some 
critical area where it is opaque. Maybe it makes statements that are just wrong. 

This means the team has reached a new level of understanding. From their now-elevated 
viewpoint, the old model looks poor. From that viewpoint, they can conceive a far better one. 

Refactoring toward deeper insight is a continuing process. Implicit concepts are recognized and 
made explicit. Parts of the design are made suppler, perhaps taking on a declarative style. 
Development suddenly comes to the brink of a breakthrough and plunges through to a deep 
model—and then steady refinement starts again. 
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Part IV: Strategic Design 
As systems grow too complex to know completely at the level of individual objects, 
we need techniques for manipulating and comprehending large models. This part of 
the book presents principles that enable the modeling process to scale up to very 
complicated domains. Most such decisions must be made at team level or even 
negotiated between teams. These are the decisions where design and politics often 
intersect. 

The goal of the most ambitious enterprise system is a tightly integrated system 
spanning the entire business. Yet the entire business model for almost any such 
organization is too large and complex to manage or even understand as a single unit. 
The system must be broken into smaller parts, in both concept and implementation. 
The challenge is to accomplish this modularity without losing the benefits of 
integration, allowing different parts of the system to interoperate to support the 
coordination of various business operations. A monolithic, all-encompassing domain 
model will be unwieldy and loaded with subtle duplications and contradictions. A 
set of small, distinct subsystems glued together with ad hoc interfaces will lack the 
power to solve enterprise-wide problems and allows consistency problems to arise at 
every integration point. The pitfalls of both extremes can be avoided with a 
systematic, evolving design strategy. 

Even at this scale, domain-driven design does not produce models unconnected to 
the implementation. Every decision must have a direct impact on system 
development, or else it is irrelevant. Strategic design principles must guide design 
decisions to reduce the interdependence of parts and improve clarity without losing 
critical interoperability and synergy. They must focus the model to capture the 
conceptual core of the system, the "vision" of the system. And they must do all this 
without bogging the project down. To help accomplish these goals, Part IV explores 
three broad themes: context, distillation, and large-scale structure. 

Context, the least obvious of the principles, is actually the most fundamental. A 
successful model, large or small, has to be logically consistent throughout, without 
contradictory or overlapping definitions. Enterprise systems sometimes integrate 
subsystems with varying origins or have applications so distinct that very little in the 
domain is viewed in the same light. It may be asking too much to unify the models 
implicit in these disparate parts. By explicitly defining a BOUNDED CONTEXT within 
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which a model applies and then, when necessary, defining its relationship with other 
contexts, the modeler can avoid bastardizing the model. 

Distillation reduces the clutter and focuses attention appropriately. Often a great deal 
of effort is spent on peripheral issues in the domain. The overall domain model 
needs to make prominent the most value-adding and special aspects of your system 
and be structured to give that part as much power as possible. While some 
supporting components are critical, they must be put into their proper perspective. 
This focus not only helps to direct efforts toward vital parts of the system, but it 
keeps the vision of the system from being lost. Strategic distillation can bring clarity 
to a large model. And with a clearer view, the design of the CORE DOMAIN can be 
made more useful. 

Large-scale structure completes the picture. In a very complex model, you may not 
see the forest for the trees. Distillation helps, by focusing the attention on the core 
and presenting the other elements in their supporting roles, but the relationships can 
still be too confusing without an overarching theme, applying some system-wide 
design elements and patterns. I'll give an overview of a few approaches to large-
scale structure and then go into depth on one such pattern, RESPONSIBILITY LAYERS 
, to explore the implications of using such a structure. The specific structures 
discussed are only examples; they are not a comprehensive catalog. New ones 
should be invented as needed, or these should be modified, through a process of 
EVOLVING ORDER . Some such structure can bring a uniformity to the design that 
accelerates development and improves integration. 

These three principles, useful separately but particularly powerful taken together, 
help to produce good designs—even in a sprawling system that no one completely 
understands. Large-scale structure brings consistency to disparate parts to help those 
parts mesh. Structure and distillation make the complex relationships between parts 
comprehensible while keeping the big picture in view. B OUNDED CONTEXTS allow 
work to proceed in different parts without corrupting the model or unintentionally 
fragmenting it. Adding these concepts to the team's UBIQUITOUS LANGUAGE helps 
developers work out their own solutions. 
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Part IV:  Strategic Design 

Chapter Fourteen. Maintaining Model Integrity 
I once worked on a project where several teams were working in parallel on a major new system. 
One day, the team working on the customer-invoicing module was ready to implement an object 
they called Charge , when they discovered that another team had already built one. Diligently, 
they set out to reuse the existing object. They discovered it didn't have an "expense code," so they 
added one. It already had the "posted amount" attribute they needed. They had been planning to 
call it "amount due," but—what's in a name?—they changed it. Adding a few more methods and 
associations, they got something that looked like what they wanted, without disturbing what was 
there. They had to ignore many associations they didn't need, but their application module ran. 

A few days later, mysterious problems surfaced in the bill-payment application module for which 
the Charge had originally been written. Strange Charges appeared that no one remembered 
entering and that didn't make any sense. The program began to crash when some functions were 
used, particularly the month-to-date tax report. Investigation revealed that the crash resulted when 
a function was used that summed up the amount deductible for all the current month's payments. 
The mystery records had no value in the "percent deductible" field, although the validation of the 
data-entry application required it and even put in a default value. 

The problem was that these two groups had different models , but they did not realize it, and there 
were no processes in place to detect it. Each made assumptions about the nature of a charge that 
were useful in their context (billing customers versus paying vendors). When their code was 
combined without resolving these contradictions, the result was unreliable software. 

If only they had been more aware of this reality, they could have consciously decided how to deal 
with it. That might have meant working together to hammer out a common model and then writing 
an automated test suite to prevent future surprises. Or it might simply have meant an agreement to 
develop separate models and keep hands off each other's code. Either way, it starts with an explicit 
agreement on the boundaries within which each model applies. 

What did they do once they knew about the problem? They created separate Customer Charge 
and Supplier Charge classes and defined each according to the needs of the corresponding team. 
The immediate problem having been solved, they went back to doing things just as before. Oh 
well. 



Although we seldom think about it explicitly, the most fundamental requirement of a model is that 
it be internally consistent; that its terms always have the same meaning, and that it contain no 
contradictory rules. The internal consistency of a model, such that each term is unambiguous and 
no rules contradict, is called unification . A model is meaningless unless it is logically consistent. 
In an ideal world, we would have a single model spanning the whole domain of the enterprise. 
This model would be unified, without any contradictory or overlapping definitions of terms. Every 
logical statement about the domain would be consistent. 

But the world of large systems development is not the ideal world. To maintain that level of 
unification in an entire enterprise system is more trouble than it is worth. It is necessary to allow 
multiple models to develop in different parts of the system, but we need to make careful choices 
about which parts of the system will be allowed to diverge and what their relationship to each 
other will be. We need ways of keeping crucial parts of the model tightly unified. None of this 
happens by itself or through good intentions. It happens only through conscious design decisions 
and institution of specific processes. Total unification of the domain model for a large system 
will not be feasible or cost-effective. 

Sometimes people fight this fact. Most people see the price that multiple models exact by limiting 
integration and making communication cumbersome. On top of that, having more than one model 
somehow seems inelegant. This resistance to multiple models sometimes leads to very ambitious 
attempts to unify all the software in a large project under a single model. I know I've been guilty of 
this kind of overreaching. But consider the risks. 

1.  Too many legacy replacements may be attempted at once. 

2.  Large projects may bog down because the coordination over-head exceeds their abilities. 

3.  Applications with specialized requirements may have to use models that don't fully satisfy 
their needs, forcing them to put behavior elsewhere. 

4.  Conversely, attempting to satisfy everyone with a single model may lead to complex 
options that make the model difficult to use. 

What's more, model divergences are as likely to come from political fragmentation and differing 
management priorities as from technical concerns. And the emergence of different models can be a 
result of team organization and development process. So even when no technical factor prevents 
full integration, the project may still face multiple models. 

Given that it isn't feasible to maintain a unified model for an entire enterprise, we don't have to 
leave ourselves at the mercy of events. Through a combination of proactive decisions about what 
should be unified and pragmatic recognition of what is not unified, we can create a clear, shared 
picture of the situation. With that in hand, we can set about making sure that the parts we want to 
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unify stay that way, and the parts that are not unified don't cause confusion or corruption. 

We need a way to mark the boundaries and relationships between different models. We need to 
choose our strategy consciously and then follow our strategy consistently. 

This chapter lays out techniques for recognizing, communicating, and choosing the limits of a 
model and its relationships to others. It all starts with mapping the current terrain of the project. A 
BOUNDED CONTEXT defines the range of applicability of each model, while a CONTEXT MAP 
gives a global overview of the project's contexts and the relationships between them. This 
reduction of ambiguity will, in and of itself, change the way things happen on the project, but it 
isn't necessarily enough. Once we have a CONTEXT BOUNDED , a process of CONTINUOUS 
INTEGRATION will keep the model unified. 

Then, starting from this stable situation, we can start to migrate toward more effective strategies 
for BOUNDING CONTEXTS and relating them, ranging from closely allied contexts with SHARED 
KERNELS to loosely coupled models that go their SEPARATE WAYS . 

Figure 14.1. A navigation map for model integrity patterns 
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Chapter Fourteen.  Maintaining Model Integrity 

Bounded Context 

Cells can exist because their membranes define what is in and out and determine what can pass. 

 

Multiple models coexist on big projects, and this works fine in many cases. Different models apply 
in different contexts. For example, you may have to integrate your new software with an external 
system over which your team has no control. A situation like this is probably clear to everyone as a 
distinct context where the model under development doesn't apply, but other situations can be 
more vague and confusing. In the story that opened this chapter, two teams were working on 
different functionality for the same new system. Were they working on the same model? Their 
intention was to share at least part of what they did, but there was no demarcation to tell them what 
they did or did not share. And they had no process in place to hold a shared model together or 
quickly detect divergences. They realized they had diverged only after their system's behavior 
suddenly became unpredictable. 

Even a single team can end up with multiple models. Communication can lapse, leading to subtly 



conflicting interpretations of the model. Older code often reflects an earlier conception of the 
model that is subtly different from the current model. 

Everyone is aware that the data format of another system is different and calls for a data 
conversion, but this is only the mechanical dimension of the problem. More fundamental is the 
difference in the models implicit in the two systems. When the discrepancy is not with an external 
system, but within the same code base, it is even less likely to be recognized. Yet this happens on 
all large team projects. 

Multiple models are in play on any large project. Yet when code based on distinct models is 
combined, software becomes buggy, unreliable, and difficult to understand. Communication 
among team members becomes confused. It is often unclear in what context a model should 
not be applied. 

Failure to keep things straight is ultimately revealed when the running code doesn't work right, but 
the problem starts in the way teams are organized and the way people interact. Therefore, to clarify 
the context of a model, we have to look at both the project and its end products (code, database 
schemas, and so on). 

A model applies in a context. The context may be a certain part of the code, or the work of a 
particular team. For a model invented in a brainstorming session, the context could be limited to 
that particular conversation. The context of a model used in an example in this book is that 
particular example section and any later discussion of it. The model context is whatever set of 
conditions must apply in order to be able to say that the terms in a model have a specific meaning. 

To begin to solve the problems of multiple models, we need to define explicitly the scope of a 
particular model as a bounded part of a software system within which a single model will apply 
and will be kept as unified as possible. This definition has to be reconciled with the team 
organization. 

Therefore: 

Explicitly define the context within which a model applies. Explicitly set boundaries in terms 
of team organization, usage within specific parts of the application, and physical 
manifestations such as code bases and database schemas. Keep the model strictly consistent 
within these bounds, but don't be distracted or confused by issues outside. 

A BOUNDED CONTEXT delimits the applicability of a particular model so that team members have 
a clear and shared understanding of what has to be consistent and how it relates to other 
CONTEXTS . Within that CONTEXT , work to keep the model logically unified, but do not worry 
about applicability outside those bounds. In other CONTEXTS , other models apply, with 
differences in terminology, in concepts and rules, and in dialects of the UBIQUITOUS LANGUAGE . 



By drawing an explicit boundary, you can keep the model pure, and therefore potent, where it is 
applicable. At the same time, you avoid confusion when shifting your attention to other CONTEXTS 
. Integration across the boundaries necessarily will involve some translation, which you can 
analyze explicitly. 

B OUNDED C ONTEXTS Are Not M ODULES 

The issues are confused sometimes, but these are different patterns with different 
motivations. True, when two sets of objects are recognized as making up different 
models, they are almost always placed in separate MODULES . Doing so does provide 
different name spaces (essential for different CONTEXTS ) and some demarcation. 

But MODULES also organize the elements within one model; they don't necessarily 
communicate an intention to separate CONTEXTS . The separate name spaces that 
MODULES create within a BOUNDED CONTEXT actually make it harder to spot 
accidental model fragmentation. 

Example 
Booking Context 

A shipping company has an internal project to develop a new application for booking cargo. This 
application is to be driven by an object model. What is the BOUNDED CONTEXT within which this 
model applies? To answer this question, we have to look at what is happening on the project. Keep 
in mind, this is a look at the project as it is , not as it ideally should be. 

One project team is working on the booking application itself. They are not expected to modify the 
model objects, but the application they are building has to display and manipulate those objects. 
This team is a consumer of the model. The model is valid within the application (its primary 
consumer), and therefore the booking application is in bounds. 

The completed bookings have to be passed to the legacy cargotracking system. A decision was 
made up front that the new model would depart from that of the legacy, so the legacy 
cargotracking system is outside the boundary. Necessary translation between the new model and 
the legacy is to be the responsibility of the legacy maintenance team. The translation mechanism is 
not driven by the model. It is not in the BOUNDED CONTEXT . (It is part of the boundary itself, 
which will be discussed in CONTEXT MAP .) It is good that translation is out of CONTEXT (not 
based on the model). It would be unrealistic to ask the legacy team to make any real use of the 
model because their primary work is out of CONTEXT . 

The team responsible for the model deals with the whole life cycle of each object, including 



persistence. Because this team has control of the database schema, they've been deliberately 
keeping the object-relational mapping straightforward. In other words, the schema is being driven 
by the model and therefore is in bounds. 

Yet another team is working on a model and application for scheduling the voyages of the cargo 
ships. The scheduling and booking teams were initiated together, and both teams had intended to 
produce a single, unified system. The two teams have casually coordinated with each other, and 
they occasionally share objects, but they are not systematic about it. They are not working in the 
same BOUNDED CONTEXT . This is a risk, because they do not think of themselves as working on 
separate models. To the extent they integrate, there will be problems unless they put in place 
processes to manage the situation. (The SHARED KERNEL , discussed later in this chapter, might be 
a good choice.) The first step, though, is to recognize the situation as it is . They are not in the 
same CONTEXT and should stop trying to share code until some changes are made. 

This BOUNDED CONTEXT is made up of all those aspects of the system that are driven by this 
particular model: the model objects, the database schema that persists the model objects, and the 
booking application. Two teams work primarily in this CONTEXT : the modeling team and the 
application team. Information has to be exchanged with the legacy tracking system, and the legacy 
team has primary responsibility for the translation at this boundary, with cooperation from the 
modeling team. There is no clearly defined relationship between the booking model and the 
voyage schedule model, and defining that relationship should be one of those teams' first actions. 
In the meantime, they should be very careful about sharing code or data. 

So, what has been gained by defining this BOUNDED CONTEXT ? For the teams working in 
CONTEXT : clarity. Those two teams know they must stay consistent with one model. They make 
design decisions in that knowledge and watch for fractures. For the teams outside: freedom. They 
don't have to walk in the gray zone, not using the same model, yet somehow feeling they should. 
But the most concrete gain in this particular case is probably realizing the risk of the informal 
sharing between the booking model team and the voyage schedule team. To avoid problems, they 
really need to decide on the cost/benefit trade-offs of sharing and put in processes to make it work. 
This won't happen unless everyone understands where the bounds of the model contexts are. 

   

Of course, boundaries are special places. The relationships between a BOUNDED CONTEXT and its 
neighbors require care and attention. The CONTEXT MAP charts the territory, giving the big picture 
of the CONTEXTS and their connections, while several patterns define the nature of the various 
relationships between CONTEXTS . And a process of CONTINUOUS INTEGRATION preserves unity 
of the model within a BOUNDED CONTEXT . 

But before proceeding to all that, what does it look like when unification of a model is breaking 
down? How do you recognize conceptual splinters? 



Recognizing Splinters Within a B OUNDED C ONTEXT 

Many symptoms may indicate unrecognized model differences. Some of the most obvious are 
when coded interfaces don't match up. More subtly, unexpected behavior is a likely sign. The 
CONTINUOUS INTEGRATION process with automated tests can help catch these kinds of problems. 
But the early warning is usually a confusion of language. 

Combining elements of distinct models causes two categories of problems: duplicate concepts and 
false cognates . Duplication of concepts means that there are two model elements (and attendant 
implementations) that actually represent the same concept. Every time this information changes, it 
has to be updated in two places with conversions. Every time new knowledge leads to a change in 
one of the objects, the other has to be reanalyzed and changed too. Except the reanalysis doesn't 
happen in reality, so the result is two versions of the same concept that follow different rules and 
even have different data. On top of that, the team members must learn not one but two ways of 
doing the same thing, along with all the ways they are being synchronized. 

False cognates may be slightly less common, but more insidiously harmful. This is the case when 
two people who are using the same term (or implemented object) think they are talking about the 
same thing, but really are not. The example in the beginning of this chapter (two different business 
activities both called Charge ) is typical, but conflicts can be even subtler when the two 
definitions are actually related to the same aspect in the domain, but have been conceptualized in 
slightly different ways. False cognates lead to development teams that step on each other's code, 
databases that have weird contradictions, and confusion in communication within the team. The 
term false cognate is ordinarily applied to natural languages. For example, English speakers 
learning Spanish often misuse the word embarazada . This word does not mean "embarrassed"; it 
means "pregnant." Oops. 

When you detect these problems, your team will have to make a decision. You may want to pull 
the model back together and refine the processes to prevent fragmentation. Or the fragmentation 
may be a result of groups who want to pull the model in different directions for good reasons, and 
you may decide to let them develop independently. Dealing with these issues is the subject of the 
remaining patterns in this chapter. 
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Chapter Fourteen.  Maintaining Model Integrity 

Continuous Integration 

 

Having defined a BOUNDED CONTEXT , we must keep it sound. 

   

When a number of people are working in the same BOUNDED CONTEXT , there is a strong 
tendency for the model to fragment. The bigger the team, the bigger the problem, but as few 
as three or four people can encounter serious problems. Yet breaking down the system into 
ever-smaller CONTEXTS eventually loses a valuable level of integration and coherency. 

Sometimes developers do not fully understand the intent of some object or interaction modeled by 
someone else, and they change it in a way that makes it unusable for its original purpose. 
Sometimes they don't realize that the concepts they are working on are already embodied in 
another part of the model and they duplicate (inexactly) those concepts and behavior. Sometimes 
they are aware of those other expressions but are afraid to tamper with them, for fear of corrupting 
the existing functionality, and so they proceed to duplicate concepts and functionality. 



It is very hard to maintain the level of communication needed to develop a unified system of any 
size. We need ways of increasing communication and reducing complexity. We also need safety 
nets that prevent overcautious behavior, such as developers duplicating functionality because they 
are afraid they will break existing code. 

It is in this environment that Extreme Programming (XP) really comes into its own. Many XP 
practices are aimed at this specific problem of maintaining a coherent design that is being 
constantly changed by many people. XP in its purest form is a nice fit for maintaining model 
integrity within a single BOUNDED CONTEXT . However, whether or not XP is being used, it is 
essential to have some process of CONTINUOUS INTEGRATION . 

C ONTINUOUS INTEGRATION means that all work within the context is being merged and made 
consistent frequently enough that when splinters happen they are caught and corrected quickly. C 
ONTINUOUS INTEGRATION , like everything else in domain-driven design, operates at two levels: 
(1) the integration of model concepts and (2) the integration of the implementation. 

Concepts are integrated by constant communication among team members. The team must 
cultivate a shared understanding of the ever-changing model. Many practices help, but the most 
fundamental is constantly hammering out the UBIQUITOUS LANGUAGE . Meanwhile, the 
implementation artifacts are being integrated by a systematic merge/build/test process that exposes 
model splinters early. Many processes for integration are used, but most of the effective ones share 
these characteristics: 

●     A step-by-step, reproducible merge/build technique; 

●     Automated test suites; and 

●     Rules that set some reasonably small upper limit on the lifetime of unintegrated changes. 

The other side of the coin in effective processes, although it is seldom formally included, is 
conceptual integration. 

●     Constant exercise of the UBIQUITOUS LANGUAGE in discussions of the model and 
application 

Most Agile projects have at least daily merges of each developer's code changes. The frequency 
can be adjusted to the pace of change, as long as any unintegrated change would be merged before 
a significant amount of incompatible work could be done by other team members. 

In a MODEL-DRIVEN DESIGN , the integration of concepts smooths the way for the integration of 



the implementation, while the integration of the implementation proves the validity and 
consistency of the model and exposes splinters. 

Therefore: 

Institute a process of merging all code and other implementation artifacts frequently, with 
automated tests to flag fragmentation quickly. Relentlessly exercise the UBIQUITOUS 
LANGUAGE to hammer out a shared view of the model as the concepts evolve in different 
people's heads . 

Finally, do not make the job any bigger than it has to be. C ONTINUOUS INTEGRATION is essential 
only within a BOUNDED CONTEXT . Design issues involving neighboring CONTEXTS , including 
translation, don't have to be dealt with at the same pace. 

   

C ONTINUOUS INTEGRATION would be applied within any individual BOUNDED CONTEXT that is 
larger than a two-person task. It maintains the integrity of that single model. When multiple 
BOUNDED CONTEXTS coexist, you have to decide on their relationships and design any necessary 
interfaces. . . . 
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Chapter Fourteen.  Maintaining Model Integrity 

Context Map 

 

An individual BOUNDED CONTEXT still does not provide a global view. The context of other 
models may still be vague and in flux. 

   

People on other teams won't be very aware of the CONTEXT bounds and will unknowingly 
make changes that blur the edges or complicate the interconnections. When connections 
must be made between different contexts, they tend to bleed into each other. 

Code reuse between BOUNDED CONTEXTS is a hazard to be avoided. Integration of functionality 
and data must go through a translation. You can reduce confusion by defining the relationship 
between the different contexts and creating a global view of all the model contexts on the project. 

A CONTEXT MAP is in the overlap between project management and software design. The natural 
course of events is for the boundaries to follow the contours of team organization. People who 
work closely will naturally share a model context. People on different teams, or those that don't 
talk, even if they are on the same team, will split off into different contexts. Physical office space 



can have an impact too, as team members on opposite ends of a building—not to mention different 
cities—will probably diverge without extra integration effort. Most project managers intuitively 
recognize these factors and broadly organize teams around subsystems. But the interrelationship 
between team organization and software model and design is still not prominent enough. Both 
managers and team members need a clear view into the ongoing conceptual subdivision of the 
software model and design. 

Therefore: 

Identify each model in play on the project and define its BOUNDED CONTEXT . This includes 
the implicit models of non-object-oriented subsystems. Name each BOUNDED CONTEXT , and 
make the names part of the UBIQUITOUS LANGUAGE . 

Describe the points of contact between the models, outlining explicit translation for any 
communication and highlighting any sharing. 

Map the existing terrain. Take up transformations later. 

Within each BOUNDED CONTEXT , you will have a coherent dialect of the UBIQUITOUS 
LANGUAGE . The names of the BOUNDED CONTEXTS will themselves enter that LANGUAGE so 
that you can speak unambiguously about the model of any part of the design by making your 
CONTEXT clear. 

The MAP does not have to be documented in any particular form. I find diagrams like the ones in 
this chapter to be helpful in visualizing and communicating the map. Others may prefer a more 
textual description or a different graphical representation. In some situaions, discussion among 
teammates may be sufficient. The level of detail can vary according to need. Whatever form the 
MAP takes, it must be shared and understood by everyone on the project. It must provide a clear 
name for each BOUNDED CONTEXT , and it must make the points of contact and their natures clear. 

   

The relationships between BOUNDED CONTEXTS take many forms depending on both design 
issues and project organizational issues. Later, this chapter will lay out various patterns of 
relationships between CONTEXTS that are effective in different situations, and that can provide 
terms to describe the relationships you find in your own MAP . Keeping in mind that the CONTEXT 
MAP always represents the situation as it stands , the relationships you find may not fit these 
patterns initially. If they fall close, you may wish to use the pattern name, but don't force it. Just 
describe the relationships you find. Later you can begin to migrate toward more standardized 
relationships. 



So, what do you do if you've discovered a splinter—a model that is completely entangled but 
contains inconsistencies? Put a dragon on the map and finish describing everything. Then, with an 
accurate global view, address the points of confusion. A minor splinter can be repaired, and 
processes can be put in place to shore it up. If a relationship is vague, you can choose the nearest 
pattern and move toward it. Your first order of business is to arrive at a clear CONTEXT MAP , and 
this may mean fixing real problems you have found. But don't let this necessary repair lead to 
wholesale reorganization. Until you have an unambiguous CONTEXT MAP that places all your work 
into some BOUNDED CONTEXT , with explicit relationships between all connected models, change 
only the outright contradictions. 

Once you have a coherent CONTEXT MAP , you'll see things you want to change. You can make 
considered changes to the organization of teams or to the design. Remember, don't change the map 
until the change in reality is done . 

Example 
Two C ONTEXTS in a Shipping Application 

We return again to the shipping system. One of the application's major features was to be the 
automatic routing of cargos at booking time. The model was something like this: 

Figure 14.2. 

 



The Routing Service is a SERVICE that encapsulates a mechanism behind an INTENTION-
REVEALING INTERFACE made up of SIDEEFFECT-FREE FUNCTIONS . The results of those 
functions are characterized with ASSERTIONS . 

1.  The interface declares that when a Route Specification is passed in, an Itinerary will be 
returned. 

2.  The ASSERTION states that the returned Itinerary will satisfy the Route Specification 
that was passed in. 

Nothing is stated about how this very difficult task is performed. Now let's go behind the curtain to 
see the mechanism. 

Initially on the project on which this example is based, I was too dogmatic about the internals of 
the Routing Service . I wanted the actual routing operation to be done with an extended domain 
model that would represent vessel voyages and directly relate them to the Legs in the Itinerary . 
But the team working on the routing problem pointed out that, to make it perform well and to draw 
on well-established algorithms, the solution needed to be implemented as an optimized network, 
with each leg of a voyage represented as an element in a matrix. They insisted on a distinct model 
of shipping operations for this purpose. 

They were clearly right about the computational demands of the routing process as then designed, 
and so, lacking any better idea, I yielded. In effect, we created two separate BOUNDED CONTEXTS , 
each of which had its own conceptual organization of shipping operations. (See Figure 14.3 .) 

Figure 14.3. Two BOUNDED CONTEXTS formed to allow efficient routing algorithms to 
be applied 



 

Our requirement was to take a Routing Service request, translate it into terms the Network 
Traversal Service could understand, then take the result and translate it into the form a Routing 
Service is expected to give. 

This means it was not necessary to map everything in these two models, but only to be able to 
make two specific translations: 

Route Specification  List of location codes 

List of Node IDs  Itinerary 

To do this, we have to look at the meaning of an element of one model and figure out how to 
express it in terms of the other. 

Starting with the first translation ( Route Specification  List of location codes), we have to 
think about the meaning of the sequence of locations in the list. The first in the list will be the 
beginning of the path, which will then be forced to pass through each location in turn until it 
reaches the last location in the list. So the origin and destination are the first and last in the list, 



with the customs clearance location (if there is one) in the middle. 

Figure 14.4. Translation of a query to the Network Traversal Service 

 

(Mercifully, the two teams used the same location codes, so we don't have to deal with that level of 
translation.) 

Notice that the reverse translation would be ambiguous, because the network traversal input allows 
any number of intermediate points, not just one specifically designated as customs clearance point. 
Fortunately, this is no problem because we don't need to translate in that direction, but it gives a 
glimpse of why some translations are impossible. 

Now, let's translate the result ( List of Node IDs  Itinerary ). We'll assume that we can use a 
REPOSITORY to look up the Node and Shipping Operation objects based on the Node IDs we 
receive. So, how do those Nodes map to Legs ? Based on the operationType-Code , we 
can break the list of Nodes into departure/arrival pairs. Each pair then relates to one Leg . 

Figure 14.5. Translation of a route found by the Network Traversal Service 



 

The attributes for each Node pair would be mapped as follows: 

departureNode.shippingOperation.vesselVoyageId

leg.vesselVoyageId
departureNode.shippingOperation.date

leg.loadDate
departureNode.locationCode

leg.loadLocationCode
arrivalNode.shippingOperation.date

leg.unloadDate
arrivalNode.locationCode

leg.unloadLocationCode

This is the conceptual translation map between these two models. Now we have to implement 
something that can do the translation for us. In a simple case like this, I typically create an object 
for the purpose, and then find or create another object to provide the service to the rest of our 
subsystem. 

Figure 14.6. A two-way translator 



 

This is the one object that both teams have to work together to maintain. The design should make 
it very easy to unit-test, and it would be a particularly good idea for the teams to collaborate on a 
test suite for it. Other than that, they can go their separate ways. 

Figure 14.7. 

 

The Routing Service implementation now becomes a matter of delegating to the Translator and 
the Network Traversal Service. Its single operation would look something like this: 

public Itinerary route(RouteSpecification spec) {
Booking_TransportNetwork_Translator translator =
new Booking_TransportNetwork_Translator();]



List constraintLocations =
translator.convertConstraints(spec);

// Get access to the NetworkTraversalService
List pathNodes =
traversalService.findPath(constraintLocations);

Itinerary result = translator.convert(pathNodes);
return result;
}

Not bad. The BOUNDED CONTEXTS served to keep each of the models relatively clean, let the 
teams work largely independently, and if initial assumptions had been correct, would probably 
have served well. (We'll return to that later in this chapter.) 

The interface between the two contexts is fairly small. The interface of the Routing Service 
insulates the rest of the Booking CONTEXT 's design from events in the route-finding world. The 
interface is easy to test because it is made up of SIDE-EFFECT-FREE FUNCTIONS . One of the 
secrets to comfortable coexistence with other CONTEXTS is to have effective sets of tests for the 
interfaces. "Trust, but verify," said President Reagan when negotiating arms reductions. [1] 

[1] Reagan translated an old Russian saying that summed up the heart of the matter for 
both sides—another metaphor for bridging contexts. 

It should be easy to devise a set of automated tests that would feed Route Specifications into the 
Routing Service and check the returned Itinerary . 

Model contexts always exist, but without conscious attention they may overlap and fluctuate. By 
explicitly defining BOUNDED CONTEXTS and a CONTEXT MAP , your team can begin to direct the 
process of unifying models and connecting distinct ones. 

Testing at the C ONTEXT Boundaries 

Contact points with other BOUNDED CONTEXTS are particularly important to test. Tests help 
compensate for the subtleties of translation and the lower level of communication that typically 
exist at boundaries. They can act as a valuable early warning system, especially reassuring in cases 
where you depend on the details of a model you don't control. 

Organizing and Documenting C ONTEXT M APS 

There are only two important points here: 



1.  The BOUNDED CONTEXTS should have names so that you can talk about them. Those 
names should enter the UBIQUITOUS LANGUAGE of the team. 

2.  Everyone has to know where the boundaries lie, and be able to recognize the CONTEXT of 
any piece of code or any situation. 

The second requirement could be met in many ways depending on the culture of the team. Once 
the BOUNDED CONTEXTS have been defined, it comes naturally to segregate the code of different 
CONTEXTS into different MODULES , which leaves the question of how to keep track of which 
MODULE belongs in which CONTEXT . A naming convention might be used to indicate this, or any 
other mechanism that is easy and avoids confusion. 

Equally important is communicating the conceptual boundaries in such a way that everyone on the 
team understands them the same way. For this communication purpose, I like informal diagrams 
like the ones in the example. More rigorous diagrams or textual lists could be made, showing all 
packages in each CONTEXT , along with the points of contact and the mechanisms responsible for 
connecting and translating. Some teams will be more comfortable with this approach, while others 
will get by fine based on spoken agreement and lots of discussion. 

In any case, working the CONTEXT MAP into discussions is essential if the names are to enter the 
UBIQUITOUS LANGUAGE . Don't say, "George's team's stuff is changing, so we're going to have to 
change our stuff that talks to it." Say instead, "The Transport Network model is changing, so we're 
going to have to change the translator for the Booking context ." 
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Chapter Fourteen.  Maintaining Model Integrity 

Relationships Between B OUNDED C ONTEXTS 

The following patterns cover a range of strategies for relating two models that can be composed to 
encompass an entire enterprise. These patterns serve the dual purpose of providing targets for 
successfully organizing development work, and supplying vocabulary for describing the existing 
organization. 

An existing relationship may, by chance or by design, fall near one of these patterns, in which case 
you can describe it using that term, variations duly noted. Then, with each small design change, the 
relationship can be drawn closer to the chosen pattern. 

On the other hand, you may find that an existing relationship is muddled or overcomplicated. 
Some reorganization might be necessary just to make an unambiguous CONTEXT MAP possible. In 
this situation, or any situation in which you are considering reorganization, these patterns present a 
range of choices that are favored in different circumstances. Prominent variables include the level 
of control you have over the other model, the level and type of cooperation between teams, and the 
degree of integration of features and data. 

The following set of patterns covers some of the most common and important cases, which should 
give you a good idea of how to approach other cases. A crack team working closely on a tightly 
integrated product can deploy a large unified model. The need to serve different user communities 
or a limitation on the coordination abilities of the team might lead to a SHARED KERNEL or 
CUSTOMER/SUPPLIER relationships. Sometimes a good hard look at the requirements reveals that 
integration is not essential and it is best for systems to go their SEPARATE WAYS . And, of course, 
most projects have to integrate to some degree with legacy and external systems, which can lead to 
OPEN HOST SERVICES or ANTICORRUPTION LAYERS . 
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Chapter Fourteen.  Maintaining Model Integrity 

Shared Kernel 

 

When functional integration is limited, the overhead of CONTINUOUS INTEGRATION may be 
deemed too high. This may especially be true when the teams do not have the skill or the political 
organization to maintain continuous integration, or when a single team is simply too big and 
unwieldy. So separate BOUNDED CONTEXTS might be defined and multiple teams formed. 

   

Uncoordinated teams working on closely related applications can go racing forward for a 
while, but what they produce may not fit together. They can end up spending more on 
translation layers and retrofitting than they would have on CONTINUOUS INTEGRATION in 
the first place, meanwhile duplicating effort and losing the benefits of a common 
UBIQUITOUS LANGUAGE . 

On many projects I've seen the infrastructure layer shared among teams that worked largely 
independently. An analogy to this can work well within the domain as well. It may be too much 
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overhead to fully synchronize the entire model and code base, but a carefully selected subset can 
provide much of the benefit for less cost. 

Therefore: 

Designate some subset of the domain model that the two teams agree to share. Of course this 
includes, along with this subset of the model, the subset of code or of the database design 
associated with that part of the model. This explicitly shared stuff has special status, and 
shouldn't be changed without consultation with the other team. 

Integrate a functional system frequently, but somewhat less often than the pace of 
CONTINUOUS INTEGRATION within the teams. At these integrations, run the tests of both 
teams. 

It is a careful balance. The SHARED KERNEL cannot be changed as freely as other parts of the 
design. Decisions involve consultation with another team. Automated test suites must be integrated 
because all tests of both teams must pass when changes are made. Usually, teams make changes on 
separate copies of the KERNEL , integrating with the other team at intervals. (For example, on a 
team that CONTINUOUSLY INTEGRATES daily or better, the KERNEL merger might be weekly.) 
Regardless of when code integration is scheduled, the sooner both teams talk about the changes, 
the better. 

   

The SHARED KERNEL is often the CORE DOMAIN , some set of GENERIC SUBDOMAINS , or both 
(see Chapter 15 ), but it can be any part of the model that is needed by both teams. The goal is to 
reduce duplication (but not to eliminate it, as would be the case if there were just one BOUNDED 
CONTEXT ) and make integration between the two subsystems relatively easy. 
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Chapter Fourteen.  Maintaining Model Integrity 

Customer/Supplier Development Teams 

 

Often one subsystem essentially feeds another; the "downstream" component performs analysis or 
other functions that feed back very little into the "upstream" component, and all dependencies go 
one way. The two subsystems commonly serve very different user communities, who do different 
jobs, where different models may be useful. The tool set may also be different, so that program 
code cannot be shared. 

   

Upstream and downstream subsystems separate naturally into two BOUNDED CONTEXTS . This is 
especially true when the two components require different skills or employ a different tool set for 
implementation. Translation is easier for having to operate in one direction only. But problems can 
emerge, depending on the political relationship of the two teams. 

The freewheeling development of the upstream team can be cramped if the downstream 
team has veto power over changes, or if procedures for requesting changes are too 
cumbersome. The up-stream team may even be inhibited, worried about breaking the 
downstream system. Meanwhile, the downstream team can be helpless, at the mercy of 



upstream priorities. 

Downstream needs things from upstream, but upstream is not responsible for downstream 
deliverables. It takes a lot of extra effort to anticipate what will affect the other team, and human 
nature being what it is, and time pressures being what they are, well . . . . It makes everyone's life 
easier to formalize the relationship between the teams. The process can be organized to balance the 
needs of the two user communities and schedule work on features needed downstream. 

On an Extreme Programming project, there already is a mechanism in place for doing just that: the 
iteration planning process. All we have to do is define the relationship between the two teams in 
terms of the planning process. Representatives of the downstream team can function much like the 
user representatives, joining them in planning sessions, discussing directly with their fellow 
"customers" the trade-offs for the tasks they want. The result is an iteration plan for the supplier 
team that includes tasks the downstream team needs most or defers tasks by agreement, so there is 
no expectation of delivery. 

If a process other than XP is used, whatever analogous method serves to balance the concerns of 
different users can be expanded to include the downstream application's needs. 

Therefore: 

Establish a clear customer/supplier relationship between the two teams. In planning sessions, 
make the downstream team play the customer role to the upstream team. Negotiate and 
budget tasks for downstream requirements so that everyone understands the commitment 
and schedule. 

Jointly develop automated acceptance tests that will validate the interface expected. Add 
these tests to the upstream team's test suite, to be run as part of its continuous integration. 
This testing will free the upstream team to make changes without fear of side effects 
downstream. 

During the iteration, the downstream team members need to be available to the upstream 
developers just as conventional customers are, to answer questions and help resolve problems. 

Automating the acceptance tests is a vital part of this customer relationship. Even on the most 
cooperative project, although the customer can identify and communicate its dependencies, and the 
supplier can diligently try to communicate changes, without tests, surprises will happen. They will 
disrupt the downstream team's work and force the upstream team to take on unscheduled, 
emergency fixes. Instead, have the customer team, in collaboration with the supplier team, develop 
automated acceptance tests that will validate the interface it expects. The upstream team will run 
these tests as part of its standard test suite. Any change to these tests calls for communication with 
the other team, because changing the tests implies changing the interface. 



Customer/supplier relationships also emerge between projects in separate companies, in situations 
where a single customer is very important to the business of the supplier. The tail can wag the dog: 
an influential customer can make demands that are important to the up-stream project's success, 
but those demands can also be disruptive to the upstream project's development. Both parties 
benefit from the formalization of the process of responding to requirements, because the 
cost/benefit trade-offs are even harder to see in external relationships than they are in the internal 
IT situation. 

There are two crucial elements to this pattern. 

1.  The relationship must be that of customer and supplier, with the implication that the 
customer's needs are paramount. Because the downstream team is not the only customer, 
the different customers' demands have to be balanced in negotiation—but they remain 
priorities. This situation is in contrast to the poor-cousin relationship that often emerges, in 
which the downstream team has to come begging to the upstream team for its needs. 

2.  There must be an automated test suite that allows the upstream team to change its code 
without fear of breaking the downstream, and lets the downstream team concentrate on its 
own work without constantly monitoring the upstream team. 

In a relay race, the forward runner can't be looking backward all the time, checking. He or she has 
to be able to trust the baton carrier to make the handoff precisely, or else the team will be 
hopelessly slowed down. 

Example 
Yield Analysis Versus Booking 

Back to our trusty shipping example. A highly specialized team has been set up to analyze all the 
bookings that flow through the firm, to see how to maximize income. Team members might find 
that ships have empty space and might recommend more overbooking. They might find that the 
ships are filling up with bulk freight early, forcing the company to turn away more lucrative 
specialty cargoes. In that case they might recommend reserving space for these types of cargo or 
raising prices on the bulk freight. 

To do this analysis, they use their own complex models. For implementation, they use a data 
warehouse with tools for building analytical models. And they need lots of information from the 
Booking application. 

From the start, it is clear that these are two BOUNDED CONTEXTS , because they use different 
implementation tools and, most important, different domain models. What should the relationship 



between them be? 

A SHARED KERNEL might seem logical, because yield analysis is interested in a subset of the 
Booking's model, and their own model has some overlapping concepts of cargos, prices, and so on. 
But SHARED KERNEL is difficult in a case where different implementation technologies are being 
used. Besides, the modeling needs of the yield analysis team are quite specialized, and they 
continuously play with their models and try alternative ones. They may well be better off 
translating what they need from the Booking CONTEXT into their own. (On the other hand, if they 
can use a SHARED KERNEL , their translation burden will be much lighter. They will still have to 
reimplement the model and translate the data to the new implementation, but if the model is the 
same, the transfer should be simple.) 

The Booking application has no dependency on the yield analysis, because there is no intention of 
automatically adjusting policies. Human specialists will make the decisions and convey them to 
the needed people and systems. So we have an upstream/downstream relationship. What 
downstream needs is this: 

1.  Some data not needed by any booking operation 

2.  Some stability in database schema (or at least reliable notification of change) or an export 
utility 

Fortunately, the project manager of the Booking application development team is motivated to 
help the yield analysis team. This could have been a problem, because the operations department 
that actually does day-to-day booking reports to a different vice president than the people who 
actually do yield analysis. But the upper management cares deeply about yield management and, 
having seen past cooperation problems between the two departments, structured the software 
development project so that the project managers of both teams report to the same person. 

Therefore, all the requirements are in place to apply CUSTOMER/SUPPLIER DEVELOPMENT TEAMS. 

I've seen this scenario evolve in multiple places, where analysis software developers and 
operations software developers had a customer/supplier relationship. When the upstream team 
members thought of their role as serving a customer, things worked out pretty well. It was almost 
always organized informally, and in each case it worked out about as well as the personal 
relationship of the two project managers. 

On one XP project, I saw this relationship formalized in the sense that, for each iteration, 
representatives of the downstream team played the "planning game" in the role of customers, 
huddling with the more conventional customer representatives (of application functionality) to 
negotiate which tasks made it into the iteration plan. This project was at a small company, and so 
the nearest shared boss was not far up the chain. It worked very well. 



   

C USTOMER/SUPPLIER TEAMS are more likely to succeed if the two teams work under the same 
management, so that ultimately they do share goals, or where they are in different companies that 
actually have those roles. When there is nothing to motivate the upstream team, the situation is 
very different. . . . 

      

Top 

  



      

Chapter Fourteen.  Maintaining Model Integrity 

Conformist 

 

When two teams with an upstream/downstream relationship are not effectively being directed from 
the same source, a cooperative pattern such as CUSTOMER/SUPPLIER TEAMS is not going to work. 
Naively trying to apply it will get the downstream team into trouble. This can be the case in a large 
company in which the two teams are far apart in the management hierarchy or where the shared 
supervisor is indifferent to the relationship of the two teams. It also arises between teams in 
different companies when the customer's business is not individually important to the supplier. 
Perhaps the supplier has many small customers, or perhaps the supplier is changing market 
direction and no longer values the old customers. The supplier may just be poorly run. It may have 
gone out of business. Whatever the reason, the reality is that the downstream is on its own. 



When two development teams have an upstream/downstream relationship in which the 
upstream has no motivation to provide for the downstream team's needs, the downstream 
team is helpless. Altruism may motivate upstream developers to make promises, but they are 
unlikely to be fulfilled. Belief in those good intentions leads the downstream team to make 
plans based on features that will never be available. The downstream project will be delayed 
until the team ultimately learns to live with what it is given. An interface tailored to the needs 
of the downstream team is not in the cards. 

In this situation, there are three possible paths. One is to abandon use of the upstream altogether. 
This option should be evaluated realistically, making no assumptions that the upstream will 
accommodate downstream needs. Sometimes we overestimate the value or underestimate the cost 
of such a dependency. If the downstream team decides to cut the strings, they are going their 
SEPARATE WAYS (see the pattern description later in this chapter). 

Sometimes the value of using the upstream software is so great that the dependency has to be 
maintained (or a political decision has been made that the team cannot change). In this case, two 
paths remain open; the choice depends on the quality and style of the up-stream design. If the 
design is very difficult to work with, perhaps for lack of encapsulation, awkward abstractions, or 
modeling in a paradigm the team cannot use, then the downstream team will still need to develop 
its own model. They will have to take full responsibility for a translation layer that is likely to be 
complex. (See ANTICORRUPTION LAYER , later in this chapter.). 

Following Isn't Always Bad 
When using an off-the-shelf component that has a large interface, you should typically 
CONFORM to the model implicit in that component. Because the component and the 
application are clearly different BOUNDED CONTEXTS , based on team organization and 
control, adapters may be needed for minor format changes, but the model should be 
equivalent. Otherwise, you should question the value of having the component. If it is 
good enough to give you value, there is probably knowledge crunched into its design. 
Within its narrow sphere, it may well be much more advanced than your own 
understanding. Your model presumably extends beyond the scope of this component, 
and your own concepts will evolve for those other parts. But where they connect, your 
model is a CONFORMIST , following the lead of the component's model. In effect, you 
could be dragged into a better design. 

When your interface with a component is small, sharing a unified model is less 
essential, and translation is a viable option. But when the interface is large and 
integration is more significant, it usually makes sense to follow the leader. 
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On the other hand, if the quality is not so bad, and the style is reasonably compatible, then it may 
be best to give up on an independent model altogether. This is the circumstance that calls for a 
CONFORMIST . 

Therefore: 

Eliminate the complexity of translation between BOUNDED CONTEXTS by slavishly adhering 
to the model of the upstream team. Although this cramps the style of the downstream 
designers and probably does not yield the ideal model for the application, choosing 
CONFORMITY enormously simplifies integration. Also, you will share a UBIQUITOUS 
LANGUAGE with your supplier team. The supplier is in the driver's seat, so it is good to make 
communication easy for them. Altruism may be sufficient to get them to share information 
with you. 

This decision deepens your dependency on the upstream and limits your application to the 
capabilities of the upstream model— plus purely additive enhancements. It is very unappealing 
emotionally, which is why we choose it less often than we probably should. 

If these trade-offs are not acceptable, but the upstream dependency is indispensable, the second 
option still remains: Insulate yourself as much as possible by creating an ANTICORRUPTION 
LAYER , an aggressive approach to implementing a translation map that will be discussed later. 

   

C ONFORMIST resembles SHARED KERNEL in that both have an overlapping area where the model 
is the same, areas where your model has been extended by addition, and areas where the other 
model does not affect you. The difference between the patterns is in the decision-making and 
development processes. Where the SHARED KERNEL is a collaboration between two teams that 
coordinate tightly, CONFORMIST deals with integration with a team that is not interested in 
collaboration. 

We've been proceeding down a spectrum of cooperation in the integration between BOUNDED 
CONTEXTS , from highly cooperative SHARED KERNELS or CUSTOMER/SUPPLIER DEVELOPER 
TEAMS to the one-sidedness of the CONFORMIST . Now we'll take the final step to an even more 
pessimistic view of the relationship, assuming neither cooperation nor a usable design on the other 
side. . . . 
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Chapter Fourteen.  Maintaining Model Integrity 

Anticorruption Layer 

 

New systems almost always have to be integrated with legacy or other systems, which have their 
own models. Translation layers can be simple, even elegant, when bridging well-designed 
BOUNDED CONTEXTS with cooperative teams. But when the other side of the boundary starts to 
leak through, the translation layer may take on a more defensive tone. 

   

When a new system is being built that must have a large interface with another, the difficulty 
of relating the two models can eventually overwhelm the intent of the new model altogether, 
causing it to be modified to resemble the other system's model, in an ad hoc fashion. The 
models of legacy systems are usually weak, and even the exception that is well developed may 
not fit the needs of the current project. Yet there may be a lot of value in the integration, and 
sometimes it is an absolute requirement. 

The answer is not to avoid all integration with other systems. I've been on projects where people 
enthusiastically set out to replace all the legacy, but this is just too much to take on at once. 
Besides, integrating with existing systems is a valuable form of reuse. On a large project, one 



subsystem will often have to interface with several other, independently developed subsystems. 
These will reflect the problem domain differently. When systems based on different models are 
combined, the need for the new system to adapt to the semantics of the other system can lead to a 
corruption of the new system's own model. Even when the other system is well designed, it is not 
based on the same model as the client. And often the other system is not well designed. 

There are many hurdles in interfacing with an external system. For example, the infrastructure 
layer must provide the means to communicate with another system that might be on a different 
platform or use different protocols. The data types of the other system must be translated into those 
of your system. But often overlooked is the certainty that the other system does not use the same 
conceptual domain model. 

It seems clear enough that errors will result if you take some data from one system and 
misinterpret it in another. You may even corrupt the database. But even so, this problem tends to 
sneak up on us because we think that what we are transporting between systems is primitive data, 
whose meaning is unambiguous and must be the same on both sides. This assumption is usually 
wrong. Subtle yet important differences in meaning arise from the way the data are associated in 
each system. And even if primitive data elements do have exactly the same meaning, it is usually a 
mistake to make the interface to the other system operate at such a low level. A low-level interface 
takes away the power of the other system's model to explain the data and constrain its values and 
relationships, while saddling the new system with the burden of interpreting primitive data that is 
not in terms of its own model. 

We need to provide a translation between the parts that adhere to different models, so that the 
models are not corrupted with undigested elements of foreign models. 

Therefore: 

Create an isolating layer to provide clients with functionality in terms of their own domain 
model. The layer talks to the other system through its existing interface, requiring little or no 
modification to the other system. Internally, the layer translates in both directions as 
necessary between the two models. 

   

This discussion of a mechanism to link two systems might bring to mind issues of transporting the 
data from one program to another or from one server to another. I'll discuss the incorporation of 
the technical communications mechanism shortly. But such details shouldn't be confused with an 
ANTICORRUPTION LAYER , which is not a mechanism for sending messages to another system. 
Rather, it is a mechanism that translates conceptual objects and actions from one model and 
protocol to another. 



An ANTICORRUPTION LAYER can become a complex piece of software in its own right. Next I'll 
outline some of the design considerations for creating one. 

Designing the Interface of the A NTICORRUPTION L AYER 

The public interface of the ANTICORRUPTION LAYER usually appears as a set of SERVICES , 
although occasionally it can take the form of an ENTITY . Building a whole new layer responsible 
for the translation between the semantics of the two systems gives us an opportunity to reabstract 
the other system's behavior and offer its services and information to our system consistently with 
our model. It may not even make sense, in our model, to represent the external system as a single 
component. It may be best to use multiple SERVICES (or occasionally ENTITIES ), each of which 
has a coherent responsibility in terms of our model. 

Implementing the A NTICORRUPTION L AYER 

One way of organizing the design of the ANTICORRUPTION LAYER is as a combination of 
FACADES , ADAPTERS (both from Gamma et al. 1995 ), and translators, along with the 
communication and transport mechanisms usually needed to talk between systems. 

We often have to integrate with systems that have large, complicated, messy interfaces. This is an 
implementation issue, not an issue of conceptual model differences that motivated the use of 
ANTICORRUPTION LAYERS , but it is a problem you'll encounter trying to create them. Translating 
from one model to another (especially if one model is fuzzy) is a hard enough job without 
simultaneously dealing with a subsystem interface that is hard to talk to. Fortunately, that is what 
FACADES are for. 

A FACADE is an alternative interface for a subsystem that simplifies access for the client and 
makes the subsystem easier to use. Because we know exactly what functionality of the other 
system we want to use, we can create a FACADE that facilitates and streamlines access to those 
features and hides the rest. The FACADE does not change the model of the underlying system. It 
should be written strictly in accordance with the other system's model. Otherwise, you will at best 
diffuse responsibility for translation into multiple objects and overload the FACADE and at worst 
end up creating yet another model, one that doesn't belong to the other system or your own 
BOUNDED CONTEXT . The FACADE belongs in the BOUNDED CONTEXT of the other system. It just 
presents a friendlier face specialized for your needs. 

An ADAPTER is a wrapper that allows a client to use a different protocol than that understood by 
the implementer of the behavior. When a client sends a message to an ADAPTER , it is converted to 
a semantically equivalent message and sent on to the "adaptee." The response is converted and 
passed back. I'm using the term adapter a little loosely, because the emphasis in Gamma et al. 
1995 is on making a wrapped object conform to a standard interface that clients expect, whereas 
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we get to choose the adapted interface, and the adaptee is probably not even an object. Our 
emphasis is on translation between two models, but I think this is consistent with the intent of 
ADAPTER . 

For each SERVICE we define, we need an ADAPTER that supports the SERVICE'S interface and 
knows how to make equivalent requests of the other system or its FACADE . 

The remaining element is the translator. The ADAPTER'S job is to know how to make a request. 
The actual conversion of conceptual objects or data is a distinct, complex task that can be placed in 
its own object, making them both much easier to understand. A translator can be a lightweight 
object that is instantiated when needed. It needs no state and does not need to be distributed, 
because it belongs with the ADAPTER(S) it serves. 

Those are the basic elements I use to create an ANTICORRUPTION LAYER . There are a few other 
considerations. 

●     Typically, the system under design (your subsystem) will be initiating action, as implied by 
Figure 14.8 . There are cases, however, when the other subsystem may need to request 
something of your subsystem or notify it of some event. An ANTICORRUPTION LAYER can 
be bidirectional, defining SERVICES on both interfaces with their own ADAPTERS , 
potentially using the same translators with symmetrical translations. Although 
implementing the ANTICORRUPTION LAYER doesn't usually require any change to the other 
subsystem, it might be necessary in order to make the other system call on SERVICES of the 
ANTICORRUPTION LAYER . 

Figure 14.8. The structure of an ANTICORRUPTION LAYER 

 

●     You'll usually need some communications mechanism to connect the two subsystems, and 
they could well be on separate servers. In this case, you have to decide where to place these 
communication links. If you have no access to the other subsystem, you may have to put the 
links between the FACADE and the other subsystem. However, if the FACADE can be 



integrated directly with the other subsystem, then a good option is to put the 
communication link between the ADAPTER and FACADE , because the protocol of the 
FACADE is presumably simpler than what it covers. There also will be cases where the 
entire ANTICORRUPTION LAYER can live with the other subsystem, placing communication 
links or distribution mechanisms between your subsystem and the SERVICES that make up 
the ANTICORRUPTION LAYER 's interface. These are implementation and deployment 
decisions to be made pragmatically. They have no bearing on the conceptual role of the 
ANTICORRUPTION LAYER . 

●     If you do have access to the other subsystem, you may find that a little refactoring over 
there can make your job easier. In particular, try to write more explicit interfaces for the 
functionality you'll be using, starting with automated tests, if possible. 

●     Where integration requirements are extensive, the cost of translation goes way up. It may be 
necessary to make choices in the model of the system under design that keep it closer to the 
external system, in order to make translation easier. Do this very carefully, without 
compromising the integrity of the model. It is only something to do selectively when 
translation difficulty gets out of hand. If this approach seems the most natural solution for 
much of the important part of the problem, consider making your subsystem a 
CONFORMIST pattern, eliminating translation. 

●     If the other subsystem is simple or has a clean interface, you may not need the FACADE . 

●     Functionality can be added to the ANTICORRUPTION LAYER if it is specific to the 
relationship of the two subsystems . An audit trail for use of the external system or trace 
logic for debugging the calls to the other interface are two useful features that come to 
mind. 

Remember, an ANTICORRUPTION LAYER is a means of linking two BOUNDED CONTEXTS . 
Ordinarily, we are thinking of a system created by someone else; we have incomplete 
understanding of the system and little control over it. But that is not the only situation where you 
need a little padding between subsystems. There are even situations in which it makes sense to 
connect two subsystems of your own design with an ANTICORRUPTION LAYER , if they are based 
on different models. Presumably, in such a case, you will have full control over both sides and 
typically can use a simple translation layer. However, if two BOUNDED CONTEXTS have gone 
SEPARATE WAYS yet still have some need of functional integration, an ANTICORRUPTION LAYER 
can reduce the friction between them. 

Example 
The Legacy Booking Application 

In order to have a small, quick first release, we will write a minimal application that can set up a 



shipment and then pass that to the legacy system through a translation layer for booking and 
support operations. Because we built the translation layer specifically to protect our developing 
model from the influence of the legacy design, this translation is an ANTICORRUPTION LAYER . 

Initially, the ANTICORRUPTION LAYER will accept the objects representing a shipment, convert 
them, pass them to the legacy system and request a booking, and then capture the confirmation and 
translate it back into the confirmation object of the new design. This isolation will allow us to 
develop our new application mostly independently of the old one, though we'll have to invest quite 
a bit in translation. 

With each successive release, the new system can either take over more functions of the legacy or 
simply add new value without replacing existing capabilities, depending on later decisions. This 
flexibility, and the ability to continually operate the combined system while making a gradual 
transition, probably makes it worth the expense to build the ANTICORRUPTION LAYER . 

A Cautionary Tale 

To protect their frontiers from raids by neighboring nomadic warrior tribes, the early Chinese built 
the Great Wall. It was not an impenetrable barrier, but it allowed a regulated commerce with 
neighbors while providing an impediment to invasion and other unwanted influence. For two 
thousand years it defined a boundary that helped the Chinese agricultural civilization to define 
itself with less disruption from the chaos outside. 

Although China might not have become so distinct a culture without the Great Wall, the Wall's 
construction was immensely expensive and bankrupted at least one dynasty, probably contributing 
to its fall. The benefits of isolation strategies must be balanced against their costs. There is a time 
to be pragmatic and make measured revisions to the model, so that it can fit more smoothly with 
foreign ones. 

There is overhead involved in any integration, from full-on CONTINUOUS INTEGRATION inside a 
single BOUNDED CONTEXT , through the lesser commitments of SHARED KERNELS or 
CUSTOMER/SUPPLIER DEVELOPER TEAMS , to the one-sidedness of the CONFORMIST and the 
defensive posture of the ANTICORRUPTION LAYER . Integration can be very valuable, but it is 
always expensive. We should be sure it is really needed. . . . 
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Chapter Fourteen.  Maintaining Model Integrity 

Separate Ways 

 

We must ruthlessly scope requirements. Two sets of functionality with no indispensable 
relationship can be cut loose from each other. 

   

Integration is always expensive. Sometimes the benefit is small. 

In addition to the usual expense of coordinating teams, integration forces compromises. The 
simple specialized model that can satisfy a particular need must give way to the more abstract 
model that can handle all situations. Perhaps some completely different technology could provide 
certain features very easily, but it is difficult to integrate. Maybe some team is just so hard to get 
along with that nothing works very well when other teams try to collaborate with them. 

In many circumstances, integration provides no significant benefit. If two functional parts do not 
call upon each other's functionality, or require interactions between objects that are touched by 



both, or share data during their operations, then integration, even through a translation layer, may 
not be necessary. Just because features are related in a use case does not mean they must be 
integrated. 

Therefore: 

Declare a BOUNDED CONTEXT to have no connection to the others at all, allowing developers 
to find simple, specialized solutions within this small scope. 

The features can still be organized in middleware or the UI layer, but there will be no sharing of 
logic, and an absolute minimum of data transfer through translation layers—preferably none. 

Example 
An Insurance Project Slims Down 

One project team had set out to develop new software for insurance claims that would integrate 
into one system everything a customer service agent or a claims adjuster needed. After a year of 
effort, team members were stuck. A combination of analysis paralysis and a major up-front 
investment in infrastructure had found them with nothing to show an increasingly impatient 
management. More seriously, the scope of what they were trying to do was overwhelming them. 

A new project manager forced everyone into a room for a week to form a new plan. First they 
made lists of requirements and tried to estimate their difficulty and assign importance. They 
ruthlessly chopped the difficult and unimportant ones. Then they started to bring order to the 
remaining list. Many smart decisions were made in that room that week, but in the end, only one 
turned out to be important. At some point it was recognized that there were some features for 
which integration provided little added value. For example, adjusters needed access to some 
existing databases, and their current access was very inconvenient. But, although the users needed 
to have this data, none of the other features of the proposed software system would use it . 

Team members proposed various ways of providing easy access. In one case, a key report could be 
exported as HTML and placed on the intranet. In another case, adjusters could be provided with a 
specialized query written using a standard software package. All these functions could be 
integrated by organizing links on an intranet page or by placing buttons on the user's desktop. 

The team launched a set of small projects that attempted no more integration than launching from 
the same menu. Several valuable capabilities were delivered almost overnight. Dropping the 
baggage of these extraneous features left a distilled set of requirements that seemed for a while to 
give hope for delivery of the main application. 

It could have gone that way, but unfortunately the team slipped back into old habits. They 
paralyzed themselves again. In the end, their only legacy turned out to be those small applications 



that had gone their SEPARATE WAYS . 

   

Taking SEPARATE WAYS forecloses some options. Although continuous refactoring can eventually 
undo any decision, it is hard to merge models that have developed in complete isolation. If 
integration turns out to be needed after all, translation layers will be necessary and may be 
complex. Of course, this is something you will face anyway. 

Now, turning back to more cooperative relationships, let's look at ways to scale up integration. . . . 
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Chapter Fourteen.  Maintaining Model Integrity 

Open Host Service 

Typically for each BOUNDED CONTEXT , you will define a translation layer for each component 
outside the CONTEXT with which you have to integrate. Where integration is one-off, this approach 
of inserting a translation layer for each external system avoids corruption of the models with a 
minimum of cost. But when you find your subsystem in high demand, you may need a more 
flexible approach. 

   

When a subsystem has to be integrated with many others, customizing a translator for each 
can bog down the team. There is more and more to maintain, and more and more to worry 
about when changes are made. 

The team may be doing the same thing again and again. If there is any coherence to the subsystem, 
it is probably possible to describe it as a set of SERVICES that cover the common needs of other 
subsystems. 

It is a lot harder to design a protocol clean enough to be understood and used by multiple teams, so 
it pays off only when the subsystem's resources can be described as a cohesive set of SERVICES 
and when there are a significant number of integrations. Under those circumstances, it can make 
the difference between maintenance mode and continuing development. 

Therefore: 

Define a protocol that gives access to your subsystem as a set of SERVICES . Open the 
protocol so that all who need to integrate with you can use it. Enhance and expand the 
protocol to handle new integration requirements, except when a single team has idiosyncratic 
needs. Then, use a one-off translator to augment the protocol for that special case so that the 
shared protocol can stay simple and coherent. 

   

This formalization of communication implies some shared model vocabulary—the basis of the 
SERVICE interfaces. As a result, the other subsystems become coupled to the model of the OPEN 



HOST , and other teams are forced to learn the particular dialect used by the HOST team. In some 
situations, using a well-known PUBLISHED LANGUAGE as the interchange model can reduce 
coupling and ease understanding. . . . 
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Chapter Fourteen.  Maintaining Model Integrity 

Published Language 

The translation between the models of two BOUNDED CONTEXTS requires a common language. 

   

When two domain models must coexist and information must pass between them, the translation process itself can become 
complex and hard to document and understand. If we are building a new system, we will typically believe that our new 
model is the best available, and so we will think in terms of translating directly into it. But sometimes we are enhancing a 
set of older systems and trying to integrate them. Choosing one messy model over the other may be choosing the lesser of 
two evils. 

Another situation: When businesses want to exchange information with one another, how do they do it? Not only is it 
unrealistic to expect one to adopt the domain model of the other, it may be undesirable for both parties. A domain model is 
developed to solve problems for its users; such a model may contain features that needlessly complicate communication 
with another system. Also, if the model underlying one of the applications is used as the communications medium, it 
cannot be changed freely to meet new needs, but must be very stable to support the ongoing communication role. 

Direct translation to and from the existing domain models may not be a good solution. Those models may be overly 
complex or poorly factored. They are probably undocumented. If one is used as a data interchange language, it 
essentially becomes frozen and cannot respond to new development needs. 

The OPEN HOST SERVICE uses a standardized protocol for multiparty integration. It employs a model of the domain for 
interchange between systems, even though that model may not be used internally by those systems. Here we go a step 
further and publish that language, or find one that is already published. By publish I simply mean that the language is 
readily available to the community that might be interested in using it, and is sufficiently documented to allow independent 
interpretations to be compatible. 

Recently, the world of e-commerce has become very excited about a new technology: Extensible Markup Language 
(XML) promises to make interchange of data much easier. A very valuable feature of XML is that, through the document 
type definition (DTD) or through XML schemas, XML allows the formal definition of a specialized domain language into 
which data can be translated. Industry groups have begun to form for the purpose of defining a single standard DTD for 
their industry so that, say, chemical formula information or genetic coding can be communicated between many parties. 
Essentially these groups are creating a shared domain model in the form of a language definition. 

Therefore: 

Use a well-documented shared language that can express the necessary domain information as a common medium 
of communication, translating as necessary into and out of that language. 

The language doesn't have to be created from scratch. Many years ago, I was contracted by a company that had a software 
product written in Smalltalk that used DB2 to store its data. The company wanted the flexibility to distribute the software 
to users without a DB2 license and contracted me to build an interface to Btrieve, a lighter-weight database engine that had 



a free runtime distribution license. Btrieve is not fully relational, but my client was using only a small part of DB2's power 
and was within the lowest common denominator of the two databases. The company's developers had built on top of DB2 
some abstractions that were in terms of the storage of objects. I decided to use this work as the interface for my Btrieve 
component. 

This approach did work. The software smoothly integrated with my client's system. However, the lack of a formal 
specification or documentation of the abstractions of persistent objects in the client's design meant a lot of work for me to 
figure out the requirements of the new component. Also, there wasn't much opportunity to reuse the component to migrate 
some other application from DB2 to Btrieve. And the new software more deeply entrenched the company's model of 
persistence, so that refactoring that model of persistent objects would have been even more difficult. 

A better way might have been to identify the subset of the DB2 interface that the company was using and then support that. 
The interface of DB2 is made up of SQL and a number of proprietary protocols. Although it is very complex, the interface 
is tightly specified and thoroughly documented. The complexity would have been mitigated because only a small subset of 
the interface was being used. If a component had been developed that emulated the necessary subset of the DB2 interface, 
it could have been very effectively documented for developers simply by identifying the subset. The application it was 
integrated into already knew how to talk to DB2, so little additional work would have been needed. Future redesign of the 
persistence layer would have been constrained only to the use of the DB2 subset, just as before the enhancement. 

The DB2 interface is an example of a PUBLISHED LANGUAGE . In this case, the two models are not in the business domain, 
but all the principles apply just the same. Because one of the models in the collaboration is already a PUBLISHED 
LANGUAGE , there is no need to introduce a third language. 

Example 
A P UBLISHED L ANGUAGE for Chemistry 

Innumerable programs are used to catalog, analyze, and manipulate chemical formulas in industry and academia. 
Exchanging data has always been difficult, because almost every program uses a different domain model to represent 
chemical structures. And of course, most of them are written in languages, such as FORTRAN, that do not express the 
domain model very fully anyway. Whenever anyone wanted to share data, they had to unravel the details of the other 
system's database and work out some sort of translation scheme. 

Enter the Chemical Markup Language (CML), a dialect of XML intended as a common interchange language for this 
domain, developed and managed by a group representing academics and industry ( Murray-Rust et al. 1995 ). 

Chemical information is very complex and diverse, and it changes all the time with new discoveries. So they developed a 
language that could describe the basics, such as the chemical formulas of organic and inorganic molecules, protein 
sequences, spectra, or physical quantities. 

Now that the language has been published, tools can be developed that would never have been worth the trouble to write 
before, when they would have only been usable for one database. For example, a Java application, called the JUMBO 
Browser, was developed that creates graphical views of chemical structures stored in CML. So if you put your data in the 
CML format, you'll have access to such visualization tools. 

In fact, CML gained a double advantage by using XML, a sort of "published meta-language." The learning curve of CML 
is flattened by people's familiarity with XML; the implementation is eased by various off-the-shelf tools, such as parsers; 
and documentation is helped by the many books written on all aspects of handling XML. 

Here is a tiny sample of CML. It is only vaguely intelligible to nonspecialists like myself, but the principle is clear. 
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<CML.ARR ID="array3" EL.TYPE=FLOAT NAME="ATOMIC ORBITAL ELECTRON POPULATIONS" 
SIZE=30 GLO

.ENT=CML.THE.AOEPOPS>
1.17947   0.95091   0.97175   1.00000   1.17947   0.95090   0.97174   1.00000
1.17946   0.98215   0.94049   1.00000   1.17946   0.95091   0.97174   1.00000
1.17946   0.95091   0.97174   1.00000   1.17946   0.98215   0.94049   1.00000
0.89789   0.89790   0.89789   0.89789   0.89790   0.89788
</CML.ARR>
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Unifying an Elephant 

It was six men of Indostan 
To learning much inclined, 
Who went to see the Elephant 
(Though all of them were blind), 
That each by observation 
Might satisfy his mind. 

The  First  approached the Elephant, 
And happening to fall 
Against his broad and sturdy side, 
At once began to bawl: 
"God bless me! but the Elephant 
Is very like a wall!" 
                   . . . 

The  Third  approached the animal, 
And happening to take 
The squirming trunk within his hands, 
Thus boldly up and spake: 
"I see," quoth he, "the Elephant 
Is very like a snake." 

The  Fourth  reached out his eager hand, 
And felt about the knee. 
"What most this wondrous beast is like 
Is mighty plain," quoth he; 
"'Tis clear enough the Elephant 
Is very like a tree!" 
                   . . . 

The  Sixth  no sooner had begun 
About the beast to grope, 
Than, seizing on the swinging tail 
That fell within his scope, 



"I see," quoth he, "the Elephant 
Is very like a rope!" 

And so these men of Indostan 
Disputed loud and long, 
Each in his own opinion 
Exceeding stiff and strong, 
Though each was partly in the right, 
And all were in the wrong! 
                 . . . 

— From "The Blind Men and the Elephant," by John Godfrey Saxe (1816–1887), 
based on a story in the Udana , a Hindu text 

Depending on their goals in interacting with the elephant, the various blind men may still be able 
to make progress, even if they don't fully agree on the nature of the elephant. If no integration is 
required, then it doesn't matter that the models are not unified. If they require some integration, 
they may not actually have to agree on what an elephant is, but they will get a lot of value from 
merely recognizing that they don't agree. This way, at least they don't unknowingly talk at cross-
purposes. 

The diagrams in Figure 14.9 are UML representations of the models the blind men have formed of 
the elephant. Having established separate BOUNDED CONTEXTS , the situation is clear enough for 
them to work out a way to communicate with each other about the few aspects they care about in 
common: the location of the elephant, perhaps. 

Figure 14.9. Four contexts: no integration 

 

Figure 14.10. Four contexts: minimal integration 



 

As the blind men want to share more information about the elephant, the value of sharing a single 
BOUNDED CONTEXT goes up. But unifying the disparate models is a challenge. None of them is 
likely to give up his model and adopt one of the others. After all, the man who touched the tail 
knows the elephant is not like a tree, and that model would be meaningless and useless to him. 
Unifying multiple models almost always means creating a new model. 

With some imagination and continued discussion (probably heated), the blind men could 
eventually recognize that they have been describing and modeling different parts of a larger whole. 
For many purposes, a part-whole unification may not require much additional work. At least the 
first stage of integration only requires figuring out how the parts are related. It may be adequate for 
some needs to view an elephant as a wall, held up by tree trunks, with a rope at one end and a 
snake at the other. 

Figure 14.11. One context: crude integration 

 



The unification of the various elephant models is easier than most such mergers. Unfortunately, it 
is the exception when two models purely describe different parts of the whole, although this is 
often one aspect of the difference. Matters are more difficult when two models are looking at the 
same part in a different way. If two men had touched the trunk and one described it as a snake and 
the other described it as a fire hose, they would have had more difficulty. Neither can accept the 
other's model, because it contradicts his own experience. In fact, they need a new abstraction that 
incorporates the "aliveness" of a snake with the water-shooting functionality of a fire hose, but one 
that leaves out the inapt implications of the first models, such as the expectation of possibly 
venomous fangs, or the ability to be detached from the body and rolled up into a compartment in a 
fire truck. 

Even though we have combined the parts into a whole, the resulting model is crude. It is 
incoherent, lacking any sense of following contours of an underlying domain. New insights could 
lead to a deeper model in a process of continuous refinement. New application requirements can 
also force the move to a deeper model. If the elephant starts moving, the "tree" theory is out, and 
our blind modelers may break through to the concept of "legs." 

Figure 14.12. One context: deeper model 

 

This second pass of model integration tends to slough off incidental or incorrect aspects of the 
individual models and creates new concepts—in this case, "animal" with parts "trunk," "leg," 
"body," and "tail"—each of which has its own properties and clear relationships to other parts. 
Successful model unification, to a large extent, hinges on minimalism. An elephant trunk is both 
more and less than a snake, but the "less" is probably more important than the "more." Better to 
lack the water-spewing ability than to have an incorrect poison-fang feature. 

If the goal is simply to find the elephant, then translating between each model's expression of 
location will do. When more integration is needed, the unified model doesn't have to reach full 
maturity in the first version. It may be adequate for some needs to view an elephant as a wall, held 
up by tree trunks, with a rope at one end and a snake at the other. Later, driven by new 
requirements and by improved understanding and communication, the model can be deepened and 



refined. 

Recognizing multiple, clashing domain models is really just facing reality. By explicitly defining a 
context within which each model applies, you can maintain the integrity of each and clearly see the 
implications of any particular interface you want to create between the two. There is no way for 
the blind men to see the whole elephant, but their problem would be manageable if only they 
recognized the incompleteness of their perception. 
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Chapter Fourteen.  Maintaining Model Integrity 

Choosing Your Model Context Strategy 

It is important always to draw the CONTEXT MAP to reflect the current situation at any given time. 
Once that's done, though, you may very well want to change that reality. Now you can begin to 
consciously choose CONTEXT boundaries and relationships. Here are some guidelines. 

Team Decision or Higher 

First, teams have to make decisions about where to define BOUNDED CONTEXTS and what sort of 
relationships to have between them. Teams have to make these decisions, or at least the decisions 
have to be propagated to the entire team and understood by everyone. Infact, such decisions often 
involve agreements beyond your own team. On the merits, decisions about whether to expand or to 
partition BOUNDED CONTEXTS should be based on the cost-benefit trade-off between the value of 
independent team action and the value of direct and rich integration. In practice, political 
relationships between teams often determine how systems are integrated. A technically 
advantageous unification may be impossible because of reporting structure. Management may 
dictate an unwieldy merger. You won't always get what you want, but at least you may be able to 
assess and communicate something of the cost incurred, and take steps to mitigate it. Start with a 
realistic CONTEXT MAP and be pragmatic in choosing transformations. 

Putting Ourselves in Context 

When we are working on a software project, we are interested primarily in the parts of the system 
our team is changing (the "system under design") and secondarily in the systems it will 
communicate with. In a typical case, the system under design is going to get carved into one or two 
BOUNDED CONTEXTS that the main development teams will be working on, perhaps with another 
CONTEXT or two in a supporting role. In addition to that are the relationships between these 
CONTEXTS and the external systems. This is a simple, typical view, to give some rough 
expectation for what you are likely to encounter. 

We really are part of that primary CONTEXT we are working in, and that is bound to be reflected in 
our CONTEXT MAP . This isn't a problem if we are aware of the bias and are mindful of when we 
step outside the limits of that MAP's applicability. 

Transforming Boundaries 



There are an unlimited variety of situations and an unlimited number of options for drawing the 
boundaries of BOUNDED CONTEXTS . But typically the struggle is to balance some subset of the 
following forces: 

Favoring Larger B OUNDED C ONTEXTS 

●     Flow between user tasks is smoother when more is handled with a unified model. 

●     It is easier to understand one coherent model than two distinct ones plus mappings. 

●     Translation between two models can be difficult (sometimes impossible). 

●     Shared language fosters clear team communication. 

Favoring Smaller B OUNDED C ONTEXTS 

●     Communication overhead between developers is reduced. 

●     C ONTINUOUS INTEGRATION is easier with smaller teams and code bases. 

●     Larger contexts may call for more versatile abstract models, requiring skills that are in short 
supply. 

●     Different models can cater to special needs or encompass the jargon of specialized groups 
of users, along with specialized dialects of the UBIQUITOUS LANGUAGE . 

Deep integration of functionality between different BOUNDED CONTEXTS is impractical. 
Integration is limited to those parts of one model that can be rigorously stated in terms of the other 
model, and even this level of integration may take considerable effort. This makes sense when 
there will be a small interface between two systems. 

Accepting That Which We Cannot Change: Delineating the External 
Systems 

It is best to start with the easiest decisions. Some subsystems will clearly not be in any BOUNDED 
CONTEXT of the system under development. Examples would be major legacy systems that you are 
not immediately replacing and external systems that provide services you'll need. You can identify 
these immediately and prepare to segregate them from your design. 

Here we must be careful about our assumptions. It is convenient to think of each of these systems 



as constituting its own BOUNDED CONTEXT , but most external systems only weakly meet the 
definition. First, a BOUNDED CONTEXT is defined by an intention to unify the model within certain 
boundaries. You may have control of maintenance of the legacy system, in which case you can 
declare the intention, or the legacy team may be well coordinated and be carrying out an informal 
form of CONTINUOUS INTEGRATION , but don't take it for granted. Check into it, and if the 
development is not well integrated, be particularly cautious. It is not unusual to find semantic 
contradictions in different parts of such systems. 

Relationships with the External Systems 

There are three patterns that can apply here. First, to consider SEPARATE WAYS . Yes, you 
wouldn't have included them if you didn't need integration. But be really sure. Would it be 
sufficient to give the user easy access to both systems? Integration is expensive and distracting, so 
unburden your project as much as you can. 

If the integration is really essential, you can choose between two extremes: CONFORMIST or 
ANTICORRUPTION LAYER . It is not fun to be a CONFORMIST . Your creativity and your options 
for new functionality will be limited. In building a major new system, it is unlikely to be practical 
to adhere to the model of a legacy or external system (after all, why are you building a new 
system?). However, sticking with the legacy model may be appropriate in the case of peripheral 
extensions to a large system that will continue to be the dominant system. Examples of this choice 
include the lightweight decision-support tools that are often written in Excel or other simple tools. 
If your application is really an extension to the existing system and your interface with that system 
is going to be large, the translation between CONTEXTS can easily be a bigger job than the 
application functionality itself. And there is still some room for good design work, even though 
you have placed yourself in the BOUNDED CONTEXT of the other system. If there is a discernable 
domain model behind the other system, you can improve your implementation by making that 
model more explicit than it was in the old system, just as long as you strictly conform to the old 
model. If you decide on a CONFORMIST design, you must do it wholeheartedly. You restrict 
yourself to extension only, with no modification of the existing model. 

When the functionality of the system under design is going to be more involved than an extension 
to an existing system, where your interface to the other system is small, or where the other system 
is very badly designed, you'll really want your own BOUNDED CONTEXT , which means building a 
translation layer, or even an ANTICORRUPTION LAYER . 

The System Under Design 

The software your project team is actually building is the system under design . You can declare 
BOUNDED CONTEXTS within this zone and apply CONTINUOUS INTEGRATION within each to keep 
them unified. But how many should you have? What relationships should they have to each other? 
The answers are less cut and dried than with the external systems because we have more freedom 



and control. 

It could be quite simple: a single BOUNDED CONTEXT for the entire system under design. For 
example, this would be a likely choice for a team of fewer than ten people working on highly 
interrelated functionality. 

As the team grows larger, CONTINUOUS INTEGRATION may become difficult (although I have 
seen it maintained for somewhat larger teams). You may look for a SHARED KERNEL and break off 
relatively independent sets of functionality into separate BOUNDED CONTEXTS , each with fewer 
than ten people. If all of the dependencies between two of these go in one direction, you could set 
up CUSTOMER/SUPPLIER DEVELOPMENT TEAMS . 

You may recognize that the mindsets of two groups are so different that their modeling efforts 
constantly clash. It may be that they actually need quite different things from the model, it may be 
just a difference in background knowledge, or it may be a result of the management structure the 
project is embedded in. If the cause of the clash is something you can't change, or don't want to 
change, you may choose to allow the models to go SEPARATE WAYS . Where integration is 
needed, a translation layer can be developed and maintained jointly by the two teams as the single 
point of CONTINUOUS INTEGRATION . This is in contrast with integration with external systems, 
where the ANTICORRUPTION LAYER typically has to accommodate the other system as is and 
without much support from the other side. 

Generally speaking, there is a correspondence of one team per BOUNDED CONTEXT . One team 
can maintain multiple BOUNDED CONTEXTS , but it is hard (though not impossible) for multiple 
teams to work on one together. 

Catering to Special Needs with Distinct Models 

Different groups within the same business have often developed their own specialized 
terminologies, which may have diverged from one another. These local jargons may be very 
precise and tailored to their needs. Changing them (for example, by imposing a standardized, 
enterprise-wide terminology) requires extensive training and analysis to resolve the differences. 
Even then, the new terminology may not serve as well as the finely tuned version they already had. 

You may decide to cater to these special needs in separate BOUNDED CONTEXTS , allowing the 
models to go SEPARATE WAYS , except for CONTINUOUS INTEGRATION of translation layers. 
Different dialects of the UBIQUITOUS LANGUAGE will evolve around these models and the 
specialized jargon they are based on. If the two dialects have a lot of overlap, a SHARED KERNEL 
may provide the needed specialization while minimizing the translation cost. 

Where integration is not needed, or is relatively limited, this allows continued use of customary 
terminology and avoids corruption of the models. It also has its costs and risks. 



●     The loss of shared language will reduce communication. 

●     There is extra overhead in integration. 

●     There will be some duplication of effort, as different models of the same business activities 
and entities evolve. 

But perhaps the biggest risk is that it can become an argument against change and a justification 
for any quirky, parochial model. How much do you need to tailor this individual part of the system 
to meet specialized needs? Most important, how valuable is the particular jargon of this user 
group ? You have to weigh the value of more in-dependent action of teams against the risks of 
translation, keeping an eye out for rationalizing terminology variations that have no value. 

Sometimes a deep model emerges that can unify these distinct languages and satisfy both groups. 
The catch is that deep models emerge later in the life cycle, after a lot of development and 
knowledge crunching, if at all. You can't plan on a deep model; you just have to accept the 
opportunity when it arises, change your strategy, and refactor. 

Keep in mind that, where integration requirements are extensive, the cost of translation goes way 
up. Some coordination of the teams, from the pinpoint modifications of one object that has a 
complicated translation ranging up to a SHARED KERNEL , can make translation easier while still 
not requiring full unification. 

Deployment 

Coordinating the packaging and deployment of complex systems is one of those boring tasks that 
are almost always a lot harder than they look. The choice of BOUNDED CONTEXT strategy has an 
impact on the deployment. For example, when CUSTOMER/SUPPLIER TEAMS deploy new versions, 
they have to coordinate with each other to release versions that have been tested together. Both 
code and data migrations have to work in these combinations. In a distributed system, it may help 
to keep the translation layers between CONTEXTS together within a single process, so that you 
don't have multiple versions coexisting. 

Even deployment of the components of a single BOUNDED CONTEXT can be challenging when 
data migration takes time or when distributed systems can't be updated instantaneously, resulting 
in two versions of the code and data coexisting. 

Many technical considerations come into play depending on the deployment environment and 
technology. But the BOUNDED CONTEXT relationships can point you toward the hot spots. The 
translation interfaces have been marked out. 



The feasibility of a deployment plan should feed back into the drawing of the CONTEXT 
boundaries. When two CONTEXTS are bridged by a translation layer, one CONTEXT can be updated 
just so a new translation layer provides the same interface to the other CONTEXT . A SHARED 
KERNEL imposes a much greater burden of coordination, not just in development but also in 
deployment. S EPARATE WAYS can make life much simpler. 

The Trade-off 

To sum up these guidelines, there is a range of strategies for unifying or integrating models. In 
general terms, you will trade off the benefits of seamless integration of functionality against the 
additional effort of coordination and communication. You trade more independent action against 
smoother communication. More ambitious unification requires control over the design of the 
subsystems involved. 

Figure 14.13. The relative demands of CONTEXT relationship patterns 

 

When Your Project Is Already Under Way 

Most likely, you are not starting a project but are looking to improve a project that is already under 
way. In this case, the first step is to define BOUNDED CONTEXTS according to the way things are 
now . This is crucial. To be effective, the CONTEXT MAP must reflect the true practice of the teams, 



not the ideal organization you might decide on by following the guidelines just described. 

Once you have delineated your true current BOUNDED CONTEXTS and described the relationships 
they currently have, the next step is to tighten up the team's practices around that current 
organization . Improve your CONTINUOUS INTEGRATION within the CONTEXTS . Refactor any 
stray translation code into your ANTICORRUPTION LAYERS . Name the existing BOUNDED 
CONTEXTS and make sure they are in the UBIQUITOUS LANGUAGE of the project. 

Now you are ready to consider changes to the boundaries and relationships themselves. These 
changes will naturally be driven by the same principles I've already described for a new project, 
but they will have to be bitten off in small pieces, chosen pragmatically to give the most value for 
the least effort and disruption. 

The next section discusses how to go about actually making changes to your CONTEXT boundaries 
once you have decided to. 
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Chapter Fourteen.  Maintaining Model Integrity 

Transformations 

Like any other aspect of modeling and design, decisions about BOUNDED CONTEXTS are not 
irrevocable. Inevitably, there will be many cases in which you have to change your initial decision 
about the boundaries and relationships between BOUNDED CONTEXTS . Generally speaking, 
breaking up CONTEXTS is pretty easy, but merging them or changing the relationships between 
them is challenging. I'll describe a few representative changes that are difficult yet important. 
These transformations are usually much too big to be taken in a single refactoring or possibly even 
in a single project iteration. For that reason, I've outlined game plans for making these 
transformations as a series of manageable steps. These are, of course, guidelines that you will have 
to adapt to your particular circumstances and events. 

Merging C ONTEXTS : S EPARATE W AYS  S HARED K ERNEL 

Translation overhead is too high. Duplication is too obvious. There are many motivations for 
merging BOUNDED CONTEXTS . This is hard to do. It's not too late, but it takes some patience. 

Even if your eventual goal is to merge completely to a single CONTEXT with CONTINUOUS 
INTEGRATION , start by moving to a SHARED KERNEL . 

1.  Evaluate the initial situation. Be sure that the two CONTEXTS are indeed internally unified 
before beginning to unify them with each other. 

2.  Set up the process. You'll need to decide how the code will be shared and what the module 
naming conventions will be. There must be at least weekly integration of the SHARED 
KERNEL code. And it must have a test suite. Set this up before developing any shared code. 
(The test suite will be empty, so it should be easy to pass!) 

3.  Choose some small subdomain to start with—something duplicated in both CONTEXTS , but 
not part of the CORE DOMAIN . This first merger is going to establish the process, so it is 
best to use something simple and relatively generic or noncritical. Examine the integrations 
and translations that already exist. Choosing something that is being translated has the 
advantage of starting out with a proven translation, plus you'll be thinning your translation 
layer. 



At this point, you have two models that address the same subdomain. There are basically three 
approaches to merging. You can choose one model and refactor the other CONTEXT to be 
compatible. This decision can be made wholesale, setting the intention of systematically replacing 
one CONTEXT'S model and retaining the coherence of a model that was developed as a unit. Or you 
can choose one piece at a time, presumably ending up with the best of both (but taking care not to 
end up with a jumble). 

The third option is to find a new model, presumably deeper than either of the originals, capable of 
assuming the responsibilities of both. 

4.  Form a group of two to four developers, drawn from both teams, to work out a shared 
model for the subdomain. Regardless of how the model is derived, it must be ironed out in 
detail. This includes the hard work of identifying synonyms and mapping any terms that are 
not already being translated. This joint team outlines a basic set of tests for the model. 

5.  Developers from either team take on the task of implementing the model (or adapting 
existing code to be shared), working out details and making it function. If these developers 
run into problems with the model, they reconvene the team from step 3 and participate in 
any necessary revisions of the concepts. 

6.  Developers of each team take on the task of integrating with the new SHARED KERNEL . 

7.  Remove translations that are no longer needed. 

At this point, you will have a very small SHARED KERNEL , with a process in place to maintain it. 
In subsequent project iterations, repeat steps 3 through 7 to share more. As the processes firm up 
and the teams gain confidence, you can take on more complicated subdomains, multiple ones at 
the same time, or subdomains that are in the CORE DOMAIN . 

A note: As you take on more domain-specific parts of the models, you may encounter cases where 
the two models have conformed to the specialized jargon of different user communities. It is wise 
to defer merging these into the SHARED KERNEL unless a breakthrough to a deep model has 
occurred, providing you with a language capable of superseding both specialized ones. An 
advantage of a SHARED KERNEL is that you can have some of the advantages of CONTINUOUS 
INTEGRATION while retaining some of the advantages of SEPARATE WAYS . 

Those are some guidelines for merging into a SHARED KERNEL . Before going ahead, consider one 
alternative that satisfies some of the needs addressed by this transformation. If one of the two 
models is definitely preferred, consider shifting toward it without integrating. Instead of sharing 
common subdomains, just systematically transfer full responsibility for those subdomains from 
one BOUNDED CONTEXT to the other by refactoring the applications to call on the model of the 
more favored CONTEXT , and making any enhancements that model needs. Without any ongoing 



integration overhead, you have eliminated redundancy. Potentially (but not necessarily), the more 
favored BOUNDED CONTEXT could eventually take over completely, and you'll have created the 
same effect as a merger. In the transition (which can be quite long or indefinite), this will have the 
usual advantages and disadvantages of going SEPARATE WAYS , and you have to weigh them 
against the pros and cons of a SHARED KERNEL . 

Merging C ONTEXTS : S HARED K ERNEL  C ONTINUOUS I NTEGRATION 

If your SHARED KERNEL is expanding, you may be lured by the advantages of full unification of 
the two BOUNDED CONTEXTS . This is not just a matter of resolving the model differences. You 
are going to be changing team structures and ultimately the language people speak. 

Start by preparing the people and the teams. 

1.  Be sure that all the processes needed for CONTINUOUS INTEGRATION (shared code 
ownership, frequent integration, and so on) are in place on each team , separately. 
Harmonize integration procedures on the two teams so that everyone is doing things in the 
same way. 

2.  Start circulating team members between teams. This will create a pool of people who 
understand both models, and will begin to connect the people of the two teams. 

3.  Clarify the distillation of each model individually. (See Chapter 15 .) 

4.  At this point, confidence should be high enough to begin merging the core domain into the 
SHARED KERNEL . This can take several iterations, and sometimes temporary translation 
layers are needed between the newly shared parts and the not-yet-shared parts. Once into 
merging the CORE DOMAIN , it is best to go pretty fast. It is a high-overhead phase, fraught 
with errors, and should be shortened as much as possible, taking priority over most new 
development. But don't take on more than you can handle. 

To merge the CORE models, you have a few choices. You can stick with one model and modify the 
other to be compatible with it, or you can create a new model of the subdomain and adapt both 
contexts to use it. Watch out if the two models have been tailored to address distinct user needs. 
You may need the specialized power of both original models. This calls for developing a deeper 
model that can supersede both original models. Developing a deeper unifying model is very 
difficult, but if you are committed to the full merger of the two CONTEXTS , you no longer have the 
option of multiple dialects. There will be a reward in terms of the clarity of integration of the 
resulting model and code. Be careful that it doesn't come at the cost of your ability to address the 
specialized needs of your users. 
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5.  As the SHARED KERNEL grows, increase the integration frequency to daily and finally to 
CONTINUOUS INTEGRATION . 

6.  As the SHARED KERNEL approaches the point of encompassing all of the two former 
BOUNDED CONTEXTS , you will find yourself with either one large team or two smaller 
teams that have a shared code base that they INTEGRATE CONTINUOUSLY , and that trade 
members back and forth frequently. 

Phasing Out a Legacy System 

All good things must come to an end, even legacy computer software. But it doesn't happen on its 
own. These old systems can be so woven into the business and other systems that extricating them 
can take many years. Fortunately, it doesn't have to be done all at once. 

The possibilities are too various for me to do more than scratch the surface here. But I'll discuss a 
common case: An old system that is used daily in the business has been supplemented recently by 
a handful of more modern systems that communicate with the legacy system through an 
ANTICORRUPTION LAYER . 

One of the first steps should be to decide on a testing strategy. Automated unit tests should be 
written for new functionality in the new systems, but phasing out legacy introduces special testing 
needs. Some organizations run new and old in parallel for some period of time. 

In any given iteration: 

1.  Identify specific functionality of the legacy that could be added to one of the favored 
systems within a single iteration. 

2.  Identify additions that will be required in the ANTICORRUPTION LAYER . 

3.  Implement. 

4.  Deploy. 

Sometimes it will be necessary to spend more than one iteration writing equivalent functionality to 
a unit that can be phased out of the legacy, but still plan the new functions in small, iteration-sized 
units, only waiting multiple iterations for deployment. 

Deployment is another point at which too much variation exists to cover all the bases. It would be 
nice for development if these small, incremental changes could be rolled out to production, but 
usually it is necessary to organize bigger releases. The users must be trained to use the new 



software. A parallel period sometimes must be completed successfully. Many logistical problems 
will have to be worked out. 

Once it is finally running in the field: 

5.  Identify any unnecessary parts of the ANTICORRUPTION LAYER and remove them. 

6.  Consider excising the now-unused modules of the legacy system, though this may not turn 
out to be practical. Ironically, the better designed the legacy system is, the easier it will be 
to phase it out. But badly designed software is hard to dismantle a little at a time. It may be 
possible to just ignore the unused parts until a later time when the remainder has been 
phased out and the whole thing can be switched off. 

Repeat this over and over. The legacy system should become less involved in the business, and 
eventually it will be possible to see the light at the end of the tunnel and finally switch off the old 
system. Meanwhile, the ANTICORRUPTION LAYER will alternately shrink and swell as various 
combinations increase or decrease the interdependence between the systems. All else being equal, 
of course, you should migrate first those functions that lead to smaller ANTICORRUPTION LAYERS 
. But other factors are likely to dominate, and you may have to live with some hairy translations 
during some transitions. 

Open Host Service  Published Language 

You have been integrating with other systems with a series of ad hoc protocols, but the 
maintenance burden is mounting as more systems want access, or perhaps the interaction is 
becoming very difficult to understand. You need to formalize the relationship between the systems 
with a PUBLISHED LANGUAGE . 

1.  If an industry-standard language is available, evaluate it and use it if at all possible. 

2.  If no standard or prepublished language is available, then begin by sharpening up the CORE 
DOMAIN of the system that will serve as the host. (See Chapter 15 .) 

3.  Use the CORE DOMAIN as the basis of an interchange language, using a standard 
interchange paradigm such as XML, if at all possible. 

4.  Publish the new language to all involved in the collaboration (at least). 

5.  If a new system architecture is involved, publish that too. 

6.  Build translation layers for each collaborating system. 
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7.  Switch over. 

At this point, additional collaborators should be able to enter with minimal disruption. 

Remember, the PUBLISHED LANGUAGE must be stable, yet you'll still need the freedom to change 
the host's model as you continue your relentless refactoring. Therefore, do not equate the 
interchange language and the model of the host. Keeping them close together will reduce 
translation overhead, and you may choose to make your host a CONFORMIST . But reserve the right 
to beef up the translation layer and diverge if the cost-benefit trade-off favors that. 

Project leaders should define BOUNDED CONTEXTS based on functional integration requirements 
and relationships of development teams. Once BOUNDED CONTEXTS and a CONTEXT MAP are 
explicitly defined and respected, then logical consistency should be protected. Related 
communication problems will at least be exposed so they can be dealt with. 

However, sometimes model contexts, whether consciously bounded or naturally occurring, are 
misapplied to solve problems other than logical inconsistency within a system. The team may find 
that the model of a large CONTEXT seems too complex to comprehend as a whole, or to analyze 
completely. By choice or by chance, this often leads to breaking down the CONTEXTS into more 
manageable pieces. This fragmentation leads to lost opportunities. Now, it is worth scrutinizing a 
decision to establish a large model in a broad CONTEXT , and if it is not organizationally or 
politically possible to keep together, if it is in reality fragmenting, then redraw the map and define 
boundaries you can keep. But if a large BOUNDED CONTEXT addresses compelling integration 
needs, and if it seems feasible apart from the complexity of the model itself, then breaking up the 
CONTEXT may not be the best answer. 

There are other means of making large models tractable that should be considered before making 
this sacrifice. The next two chapters focus on managing complexity within a big model by 
applying two more broad principles: distillation and large-scale structure. 
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Part IV:  Strategic Design 

Chapter Fifteen. Distillation 

 

These four equations, along with the definitions of their terms and the body of 
mathematics they rest on, express the entirety of classical nineteenth-century 
electromagnetism. 

— James Clerk Maxwell, A Treatise on Electricity and Magnetism , 1873 

How do you focus on your central problem and keep from drowning in a sea of side issues? A 
LAYERED ARCHITECTURE separates domain concepts from the technical logic that makes a 
computer system run, but in a large system, even the isolated domain may be unmanageably 
complex. 

Distillation is the process of separating the components of a mixture to extract the essence in a 
form that makes it more valuable and useful. A model is a distillation of knowledge. With every 
refactoring to deeper insight, we abstract some crucial aspect of domain knowledge and priorities. 
Now, stepping back for a strategic view, this chapter looks at ways to distinguish broad swaths of 
the model and distill the domain model as a whole. 

As with many chemical distillations, the separated by-products are themselves made more valuable 
by the distillation process (as GENERIC SUBDOMAINS and COHERENT MECHANISMS ), but the 
effort is motivated by the desire to extract that one particularly valuable part, the part that 
distinguishes our software and makes it worth building: the " CORE DOMAIN ." 
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Strategic distillation of a domain model does all of the following: 

1.  Aids all team members in grasping the overall design of the system and how it fits together 

2.  Facilitates communication by identifying a core model of manageable size to enter the 
UBIQUITOUS LANGUAGE 

3.  Guides refactoring 

4.  Focuses work on areas of the model with the most value 

5.  Guides outsourcing, use of off-the-shelf components, and decisions about assignments 

This chapter lays out a systematic approach to strategic distillation of the CORE DOMAIN , and it 
explains how to effectively share a view of it within the team and provides the language to talk 
about what we are doing. 

Figure 15.1. A navigation map for strategic distillation 

 

Like a gardener pruning a tree, clearing the way for the growth of the main branches, we are going 
to apply a suite of techniques to hew away distractions in the model and focus our attention on the 
part that matters most. . . . 
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Chapter Fifteen.  Distillation 

Core Domain 

 

In designing a large system, there are so many contributing components, all complicated and 
all absolutely necessary to success, that the essence of the domain model, the real business 
asset, can be obscured and neglected. 

A system that is hard to understand is hard to change. The effect of a change is hard to foresee. A 
developer who wanders outside his or her own area of familiarity gets lost. (This is particularly 
true when bringing new people into a team, but even an established member of the team will 
struggle unless code is very expressive and organized.) This forces people to specialize. When 
developers confine their work to specific modules, it further reduces knowledge transfer. With the 
compartmentalization of work, smooth integration of the system suffers, and flexibility in 
assigning work is lost. Duplication crops up when a developer does not realize that a behavior 
already exists elsewhere, and so the system becomes even more complex. 



Those are some of the consequences of any design that is hard to understand, but there is another, 
equally serious risk from losing the big picture of the domain: 

The harsh reality is that not all parts of the design are going to be equally refined. Priorities 
must be set. To make the domain model an asset, the model's critical core has to be sleek and 
fully leveraged to create application functionality. But scarce, highly skilled developers tend 
to gravitate to technical infrastructure or neatly definable domain problems that can be 
understood without specialized domain knowledge. 

Such parts of the system seem interesting to computer scientists, and are perceived to build 
transferable professional skills and provide better resume material. The specialized core, that part 
of the model that really differentiates the application and makes it a business asset, typically ends 
up being put together by less skilled developers who work with DBAs to create a data schema and 
then code feature-by-feature without drawing on any conceptual power in the model at all. 

Poor design or implementation of this part of the software leads to an application that never does 
compelling things for the users, no matter how well the technical infrastructure works, no matter 
how nice the supporting features are. This insidious problem can take root when a project lacks a 
sharp picture of the overall design and the relative significance of the various parts. 

One of the most successful projects I've joined initially suffered from this syndrome. The goal was 
to develop a very complex syndicated loan system. Most of the strong talent was happily working 
on database mapping layers and messaging interfaces while the business model was in the hands of 
developers new to object technology. 

The single exception, an experienced object developer working on a domain problem, devised a 
way of attaching comments to any of the long-lived domain objects. These comments could be 
organized so that traders could see the rationale they or others recorded for some past decision. He 
also built an elegant user interface that gave intuitive access to the flexible features of the comment 
model. 

These features were useful and well designed. They went into production. 

Unfortunately, they were peripheral. This talented developer modeled his interesting, generic way 
of commenting, implemented it cleanly, and put it into users' hands. Meanwhile an incompetent 
developer was turning the mission-critical "loan" module into an incomprehensible tangle that the 
project very nearly did not recover from. 

The planning process must drive resources to the most crucial points in the model and design. To 
do that, those points must be identified and understood by everyone during planning and 
development. 



Those parts of the model distinctive and central to the purposes of the intended applications make 
up the CORE DOMAIN . The CORE DOMAIN is where the most value should be added in your 
system. 

Therefore: 

Boil the model down. Find the CORE DOMAIN and provide a means of easily distinguishing it 
from the mass of supporting model and code. Bring the most valuable and specialized 
concepts into sharp relief. Make the CORE small. 

Apply top talent to the CORE DOMAIN , and recruit accordingly. Spend the effort in the 
CORE to find a deep model and develop a supple design—sufficient to fulfill the vision of the 
system. Justify investment in any other part by how it supports the distilled CORE. 

Distilling the CORE DOMAIN is not easy, but it does lead to some easy decisions. You'll put a lot of 
effort into making your CORE distinctive, while keeping the rest of the design as generic as is 
practical. If you need to keep some aspect of your design secret as a competitive advantage, it is 
the CORE DOMAIN . There is no need to waste effort concealing the rest. And whenever a choice 
has to be made (due to time limitations) between two desirable refactorings, the one that most 
affects the CORE DOMAIN should be chosen first. 

   

The patterns in this chapter make the CORE DOMAIN easier to see and use and change. 

Choosing the CORE 

We are looking at those parts of the model particular to representing your business domain and 
solving your business problems. 

The CORE DOMAIN you choose depends on your point of view. For example, many applications 
need a generic model of money that could represent various currencies and their exchange rates 
and conversions. On the other hand, an application to support currency trading might need a more 
elaborate model of money, which would be considered part of the CORE . Even in such a case, 
there may be a part of the money model that is very generic. As insight into the domain deepens 
with experience, the distillation process can continue by separating the generic money concepts 
and retaining only the specialized aspects of the model in the CORE DOMAIN . 

In a shipping application, the CORE could be the model of how cargoes are consolidated for 
shipping, how liability is transferred when containers change hands, or how a particular container 
is routed on various transports to reach its destination. In investment banking, the CORE could 



include the models of syndication of assets among assignees and participants. 

One application's CORE DOMAIN is another application's generic supporting component. Still, 
throughout one project, and usually throughout one company, a consistent CORE can be defined. 
Like every other part of the design, the identification of the CORE DOMAIN should evolve through 
iterations. The importance of a particular set of relationships might not be apparent at first. The 
objects that seem obviously central at first may turn out to have supporting roles. 

The discussion in the following sections, particularly GENERIC SUBDOMAINS , will give more 
guidelines for these decisions. 

Who Does the Work? 

The most technically proficient members of project teams seldom have much knowledge of the 
domain. This limits their usefulness and reinforces the tendency to assign them to supporting 
components, sustaining a vicious circle in which lack of knowledge keeps them away from the 
work that would build domain knowledge. 

It is essential to break this cycle by assembling a team matching up a set of strong developers who 
have a long-term commitment and an interest in becoming repositories of domain knowledge with 
one or more domain experts who know the business deeply. Domain design is interesting, 
technically challenging work when approached seriously, and developers can be found who see it 
this way. 

It is usually not practical to hire short-term, outside design expertise for the nuts and bolts of 
creating the CORE DOMAIN , because the team needs to accumulate domain knowledge, and a 
temporary member is a leak in the bucket. On the other hand, an expert in a teaching/mentoring 
role can be very valuable by helping the team build its domain design skills and facilitating the use 
of sophisticated principles that team members probably have not mastered. 

For similar reasons, it is unlikely that the CORE DOMAIN can be purchased. Efforts have been made 
to build industry-specific model frameworks, conspicuous examples being the semiconductor 
industry consortium SEMATECH's CIM framework for semiconductor manufacturing automation, 
and IBM's "San Francisco" frameworks for a wide range of businesses. Although this is a very 
enticing idea, so far the results have not been compelling, except perhaps as PUBLISHED 
LANGUAGES facilitating data interchange (see Chapter 14 ). The book Domain-Specific 
Application Frameworks ( Fayad and Johnson 2000 ) gives an overview of the state of this art. As 
the field advances, more workable frameworks may be available. 

Even so, there is a more fundamental reason for caution: The greatest value of custom software 
comes from the total control of the CORE DOMAIN . A well-designed framework may be able to 
provide high-level abstractions that you can specialize for your use. It may save you from 
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developing the more generic parts and leave you free to concentrate on the CORE . But if it 
constrains you more than that, then there are three likely possibilities. 

1.  You are losing an essential software asset. Back off restrictive frameworks in your CORE 
DOMAIN . 

2.  The area treated by the framework is not as pivotal as you thought. Redraw the boundaries 
of the CORE DOMAIN to the truly distinctive part of the model. 

3.  You don't have special needs in your CORE DOMAIN . Consider a lower-risk solution, such 
as purchasing software to integrate with your applications. 

One way or another, creating distinctive software comes back to a stable team accumulating 
specialized knowledge and crunching it into a rich model. No shortcuts. No magic bullets. 
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Chapter Fifteen.  Distillation 

An Escalation of Distillations 

The various distillation techniques that make up the rest of this chapter can be applied in almost 
any order, but there is a range in how radically they modify the design. 

A simple DOMAIN VISION STATEMENT communicates the basic concepts and their value with a 
minimum investment. The HIGHLIGHTED CORE can improve communication and help guide 
decision making—and still requires little or no modification to the design. 

More aggressive refactoring and repackaging explicitly separate GENERIC SUBDOMAINS , which 
can then be dealt with individually. C OHESIVE MECHANISMS can be encapsulated with versatile, 
communicative, and supple design. Removing these distractions disentangles the CORE . 

Repackaging a SEGREGATED CORE makes the CORE directly visible, even in the code, and 
facilitates future work on the CORE model. 

And most ambitious is the ABSTRACT CORE , which expresses the most fundamental concepts and 
relationships in a pure form (and requires extensive reorganizing and refactoring of the model). 

Each of these techniques requires a successively greater commitment, but a knife gets sharper as 
its blade is ground finer. Successive distillation of a domain model produces an asset that gives the 
project speed, agility, and precision of execution. 

To start, we can boil off the least distinctive aspects of the model. G ENERIC SUBDOMAINS provide 
a contrast to the CORE DOMAIN that clarifies the meaning of each. . . . 
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Chapter Fifteen.  Distillation 

Generic Subdomains 

Some parts of the model add complexity without capturing or communicating specialized 
knowledge. Anything extraneous makes the CORE DOMAIN harder to discern and 
understand. The model clogs up with general principles everyone knows or details that 
belong to specialties which are not your primary focus but play a supporting role. Yet, 
however generic, these other elements are essential to the functioning of the system and the 
full expression of the model. 

There is a part of your model that you would like to take for granted. It is undeniably part of the 
domain model, but it abstracts concepts that would probably be needed for a great many 
businesses. For example, a corporate organization chart is needed in some form by businesses as 
diverse as shipping, banking, or manufacturing. For another example, many applications track 
receivables, expense ledgers, and other financial matters that could all be handled using a generic 
accounting model. 

Often a great deal of effort is spent on peripheral issues in the domain. I personally have witnessed 
two separate projects that have employed their best developers for weeks in redesigning dates and 
times with time zones. While such components must work, they are not the conceptual core of the 
system. 

Even if such a generic model element is deemed critical, the overall domain model needs to make 
prominent the most valueadding and special aspects of your system, and needs to be structured to 
give that part as much power as possible. This is hard to do when the CORE is mixed with all the 
interrelated factors. 

Therefore: 

Identify cohesive subdomains that are not the motivation for your project. Factor out generic 
models of these subdomains and place them in separate MODULES . Leave no trace of your 
specialties in them. 

Once they have been separated, give their continuing development lower priority than the 
CORE DOMAIN , and avoid assigning your core developers to the tasks (because they will gain 
little domain knowledge from them). Also consider off-the-shelf solutions or published 
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models for these GENERIC SUBDOMAINS . 

   

You may have a few extra options when developing these packages. 

Option 1: An Off-the-Shelf Solution 

Sometimes you can buy an implementation or use open source code. 

Advantages 

●     Less code to develop. 

●     Maintenance burden externalized. 

●     Code is probably more mature, used in multiple places, and therefore more bulletproof and 
complete than homegrown code. 

Disadvantages 

●     You still have to spend the time to evaluate it and understand it before using it. 

●     Quality control being what it is in our industry, you can't count on it being correct and 
stable. 

●     It may be overengineered for your purposes; integration could be more work than a 
minimalist homegrown implementation. 

●     Foreign elements don't usually integrate smoothly. There may be a distinct BOUNDED 
CONTEXT . Even if not, it may be difficult to smoothly reference ENTITIES from your other 
packages. 

●     It may introduce platform dependencies, compiler version dependencies, and so on. 

Off-the-shelf subdomain solutions are worth investigating, but they are usually not worth the 
trouble. I've seen success stories in applications with very elaborate workflow requirements that 
used commercially available external workflow systems with API hooks. I've also seen success 
with an error-logging package that was deeply integrated into the application. Sometimes GENERIC 
SUBDOMAIN solutions are packaged in the form of frameworks, which implement a very abstract 
model that can be integrated with and specialized for your application. The more generic the 



subcomponent, and the more distilled its own model, the better the chance that it will be useful. 

Option 2: A Published Design or Model 

Advantages 

●     More mature than a homegrown model and reflects many people's insights 

●     Instant, high-quality documentation 

Disadvantage 

●     May not quite fit your needs or may be overengineered for your needs 

Tom Lehrer (the comedic songwriter from the 1950s and 1960s) said the secret to success in 
mathematics was, "Plagiarize! Plagiarize. Let no one's work evade your eyes. . . . Only be sure 
always to call it please, research ." Good advice in domain modeling, and especially when 
attacking a GENERIC SUBDOMAIN . 

This works best when there is a widely distributed model, such as the ones in Analysis Patterns ( 
Fowler 1996 ). (See Chapter 11 .) 

When the field already has a highly formalized and rigorous model, use it. Accounting and physics 
are two examples that come to mind. Not only are these very robust and streamlined, but they are 
widely understood by people everywhere, reducing your present and future training burden. (See 
Chapter 10 , on using established formalisms.) 

Don't feel compelled to implement all aspects of a published model, if you can identify a 
simplified subset that is self-consistent and satisfies your needs. But in cases where there is a well-
traveled and well-documented—or better yet, formalized—model available, it makes no sense to 
reinvent the wheel. 

Option 3: An Outsourced Implementation 

Advantages 

●     Keeps core team free to work on the CORE DOMAIN , where most knowledge is needed and 
accumulated. 

●     Allows more development to be done without permanently enlarging the team, but without 
dissipating knowledge of the CORE DOMAIN. 
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●     Forces an interface-oriented design, and helps keep the subdomain generic, because the 
specification is being passed outside. 

Disadvantages 

●     Still requires time from the core team, because the interface, coding standards, and any 
other important aspects need to be communicated. 

●     Incurs significant overhead of transferring ownership back inside, because code has to be 
understood. (Still, overhead is less than for specialized subdomains, because a generic 
model presumably requires no special background to understand.) 

●     Code quality can vary. This could be good or bad, depending on the relative caliber of the 
two teams. 

Automated tests can play an important role in outsourcing. The implementers should be required to 
provide unit tests for the code they deliver. A really powerful approach—one that helps ensure a 
degree of quality, clarifies the spec, and smooths reintegration—is to specify or even write 
automated acceptance tests for the outsourced components. Also, "outsourced implementation" can 
be an excellent combination with "published design or model." 

Option 4: An In-House Implementation 

Advantages 

●     Easy integration. 

●     You get just what you want and nothing extra. 

●     Temporary contractors can be assigned. 

Disadvantages 

●     Ongoing maintenance and training burden. 

●     It is easy to underestimate the time and cost of developing such packages. 

Of course, this too combines well with "published design or model." 

G ENERIC SUBDOMAINS are the place to try to apply outside design expertise, because they do not 



require deep understanding of your specialized CORE DOMAIN , and they do not present a major 
opportunity to learn that domain. Confidentiality is of less concern, because little proprietary 
information or business practice will be involved in such modules. A GENERIC SUBDOMAIN 
lessens the training burden for those not committed to deep knowledge of the domain. 

Over time, I believe our ideas of what constitutes the CORE model will narrow, and more and more 
generic models will be available as implemented frameworks, or at least as published models or 
analysis patterns. For now, we still have to develop most of these ourselves, but there is great value 
in partitioning them from the CORE DOMAIN model. 

Example 
A Tale of Two Time Zones 

Twice I've watched as the best developers on a project spent weeks of their time solving the 
problem of storing and converting times with time zones. While I'm always suspicious of such 
activities, sometimes it is necessary, and these two projects provide almost perfect contrast. 

The first was an effort to design scheduling software for cargo shipping. To schedule international 
transports, it is critical to have accurate time calculations, and because all such schedules are 
tracked in local time, it is impossible to coordinate transports without conversions. 

Having clearly established their need for this functionality, the team proceeded with development 
of the CORE DOMAIN and some early iterations of the application using the available time classes 
and some dummy data. As the application began to mature, it was clear that the existing time 
classes were not adequate, and that the problem was very intricate because of the variations 
between the many countries and the complexity of the International Date Line. With their 
requirements by now even clearer, they searched for an off-theshelf solution, but found none. They 
had no option but to build it themselves. 

The task would require research and precision engineering, so the team leaders assigned one of 
their best programmers. But the task did not require any special knowledge of shipping and would 
not cultivate that knowledge, so they chose a programmer who was on the project on a temporary 
contract. 

This programmer did not start from scratch. He researched several existing implementations of 
time zones, most of which did not meet requirements, and decided to adapt the public-domain 
solution from BSD Unix, which had an elaborate database and an implementation in C. He reverse-
engineered the logic and wrote an import routine for the database. 

The problem turned out to be even harder than expected (involving, for example, the import of 
databases of special cases), but the code got written and integrated with the CORE and the product 
was delivered. 



Things went very differently on the other project. An insurance company was developing a new 
claims-processing system, and planned to capture the times of various events (time of car crash, 
time of hail storm, and so on). This data would be recorded in local time, so time zone 
functionality was needed. 

When I arrived, they had assigned a junior, but very smart, developer to the task, although the 
exact requirements of the app were still in play and not even an initial iteration had been 
attempted. He had dutifully set out to build a time zone model a priori . 

Not knowing what would be needed, it was assumed that it should be flexible enough to handle 
anything. The programmer assigned to the task needed help with such a difficult problem, so a 
senior developer was assigned to it also. They wrote complex code, but no specific application was 
using it, so it was never clear that the code worked correctly. 

The project ran aground for various reasons, and the time zone code was never used. But if it had 
been, simply storing local times tagged with the time zone might have been sufficient, even with 
no conversion, because this was primarily reference data and not the basis of computations. Even if 
conversion had turned out to be necessary, all the data was going to be gathered from North 
America, where time zone conversions are relatively simple. 

The main cost of this attention to the time zones was the neglect of the CORE DOMAIN model. If 
the same energy had been placed there, they might have produced a functioning prototype of their 
own application and a first cut at a working domain model. Furthermore, the developers involved, 
who were committed long-term to the project, should have been steeped in the insurance domain, 
building up critical knowledge within the team. 

One thing both projects did right was to cleanly segregate the GENERIC time zone model from the 
CORE DOMAIN . A shippingspecific or insurance-specific model of time zones would have coupled 
the model to this generic supporting model, making the CORE harder to understand (because it 
would contain irrelevant detail about time zones). It would have made the time zone MODULE 
harder to maintain (because the maintainer would have to understand the CORE and its 
interrelationship with time zones). 

Shipping Project's Strategy Insurance Project's Strategy 



Advantages 

●     G ENERIC model decoupled from C 
ORE . 

●     C ORE model mature, so resources 
could be diverted without stunting it. 

●     Knew exactly what they needed. 

●     Critical support functionality for 
international scheduling. 

●     Programmer on short-term contract 
used for GENERIC task. 

Disadvantage 

●     Diverted top programmer from core. 

Advantage 

●     G ENERIC model decoupled from CORE . 

Disadvantages 

●     C ORE model undeveloped, so attention 
to other issues continued this neglect. 

●     Unknown requirements led to attempt at 
full generality, where simpler North 
America-specific conversion might have 
sufficed. 

●     Long-term programmers were assigned 
who could have been repositories of 
domain knowledge. 

We technical people tend to enjoy definable problems like time zone conversion, and we can easily 
justify spending our time on them. But a disciplined look at priorities usually points to the CORE 
DOMAIN . 

Generic Doesn't Mean Reusable 

Note that while I have emphasized the generic quality of these subdomains, I have not mentioned 
the reusability of code. Off-the-shelf solutions may or may not make sense for a particular 
situation, but assuming that you are implementing the code yourself, in-house or outsourced, you 
should specifically not concern yourself with the reusability of that code. This would go against 
the basic motivation of distillation: that you should be applying as much of your effort to the CORE 
DOMAIN as possible and investing in supporting GENERIC SUB-DOMAINS only as necessary. 

Reuse does happen, but not always code reuse. The model reuse is often a better level of reuse, as 
when you use a published design or model. And if you have to create your own model, it may well 
be valuable in a later related project. But while the concept of such a model may be applicable to 
many situations, you do not have to develop the model in its full generality. You can model and 
implement only the part you need for your business. 

Though you should seldom design for reusability, you must be strict about keeping within the 



generic concept. Introducing industry-specific model elements will have two costs. First, it will 
impede future development. Although you need only a small part of the subdomain model now, 
your needs will grow. By introducing anything to the design that is not part of the concept, you 
make it much more difficult to expand the system cleanly without completely rebuilding the older 
part and redesigning the other modules that use it. 

The second, and more important, reason is that those industry-specific concepts belong either in 
the CORE DOMAIN or in their own, more specialized, subdomains, and those specialized models 
are even more valuable than the generic ones. 

Project Risk Management 

Agile processes typically call for managing risk by tackling the riskiest tasks early. XP specifically 
calls for getting an end-to-end system up and running immediately. This initial system often 
proves a technical architecture, and it is tempting to build a peripheral system that handles some 
supporting GENERIC SUBDOMAIN because these are usually easier to analyze. But be careful; this 
can defeat the purpose of risk management. 

Projects face risk from both sides, with some projects having greater technical risks and others 
greater domain modeling risks. The end-to-end system mitigates risk only to the extent that it is an 
embryonic version of the challenging parts of the actual system. It is easy to underestimate the 
domain modeling risk. It can take the form of unforeseen complexity, inadequate access to 
business experts, or gaps in key skills of the developers. 

Therefore, except when the team has proven skills and the domain is very familiar, the first-cut 
system should be based on some part of the CORE DOMAIN , however simple. 

The same principle applies to any process that tries to push high-risk tasks forward: the CORE 
DOMAIN is high risk because it is often unexpectedly difficult and because without it, the project 
cannot succeed. 

Most of the distillation patterns in this chapter show how to change the model and code to distill 
the CORE DOMAIN . However, the next two patterns, DOMAIN VISION STATEMENT and 
HIGHLIGHTED CORE , show how the use of supplemental documents can, with a very minor 
investment, improve communication and awareness of the CORE and focus development effort. . . . 
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Chapter Fifteen.  Distillation 

Domain Vision Statement 

At the beginning of a project, the model usually doesn't even exist, yet the need to focus its 
development is already there. In later stages of development, there is a need for an 
explanation of the value of the system that does not require an in-depth study of the model. 
Also, the critical aspects of the domain model may span multiple BOUNDED CONTEXTS , but 
by definition these distinct models can't be structured to show their common focus. 

Many project teams write "vision statements" for management. The best of these documents lay 
out the specific value the application will bring to the organization. Some mention the creation of 
the domain model as a strategic asset. Usually the vision statement document is abandoned after 
the project gets funding, and it is never used in the actual development process or even read by the 
technical staff. 

A DOMAIN VISION STATEMENT is modeled after such documents, but it focuses on the nature of 
the domain model and how it is valuable to the enterprise. It can be used directly by the 
management and technical staff during all phases of development to guide resource allocation, to 
guide modeling choices, and to educate team members. If the domain model serves many masters, 
this document can show how their interests are balanced. 

Therefore: 

Write a short description (about one page) of the CORE DOMAIN and the value it will bring, 
the "value proposition." Ignore those aspects that do not distinguish this domain model from 
others. Show how the domain model serves and balances diverse interests. Keep it narrow. 
Write this statement early and revise it as you gain new insight. 

A DOMAIN VISION STATEMENT can be used as a guidepost that keeps the development team 
headed in a common direction in the ongoing process of distilling the model and code itself. It can 
be shared with nontechnical team members, management, and even customers (except where it 
contains proprietary information, of course). 
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This is part of a DOMAIN VISION 
STATEMENT 

This, though important, is not part of a 
DOMAIN VISION STATEMENT 

This is part of a DOMAIN VISION 
STATEMENT 

This, though important, is not part of a 
DOMAIN VISION STATEMENT 

Airline Booking System 

The model can represent passenger priorities 
and airline booking strategies and balance these 
based on flexible policies. The model of a 
passenger should reflect the "relationship" the 
airline is striving to develop with repeat 
customers. Therefore, it should represent the 
history of the passenger in useful condensed 
form, participation in special programs, 
affiliation with strategic corporate clients, and 
so on. 

Different roles of different users (such as 
passenger, agent, manager) are represented to 
enrich the model of relationships and to feed 
necessary information to the security 
framework. 

Model should support efficient route/seat search 
and integration with other established flight 
booking systems. 

Airline Booking System 

The UI should be streamlined for expert users 
but accessible to first-time users. 

Access will be offered over the Web, by data 
transfer to other systems, and maybe through 
other UIs, so interface will be designed around 
XML with transformation layers to serve Web 
pages or translate to other systems. 

A colorful animated version of the logo needs 
to be cached on the client machine so that it 
can come up quickly on future visits. 

When customer submits a reservation, make 
visual confirmation within 5 seconds. 

A security framework will authenticate a user's 
identity and then limit access to specific 
features based on privileges assigned to 
defined user roles. 



Semiconductor Factory Automation 

The domain model will represent the status of 
materials and equipment within a wafer fab in 
such a way that necessary audit trails can be 
provided and automated product routing can be 
supported. 

The model will not include the human resources 
required in the process, but must allow selective 
process automation through recipe download. 

The representation of the state of the factory 
should be comprehensible to human managers, 
to give them deeper insight and support better 
decision making. 

Semiconductor Factory Automation 

The software should be Web enabled through a 
servlet, but structured to allow alternative 
interfaces. 

Industry-standard technologies should be used 
whenever possible to avoid in-house 
development and maintenance costs and to 
maximize access to outside expertise. Open 
source solutions are preferred (such as Apache 
Web server). 

The Web server will run on a dedicated server. 
The application will run on a single dedicated 
server. 

   

A DOMAIN VISION STATEMENT gives the team a shared direction. Some bridge between the high-
level STATEMENT and the full detail of the code or model will usually be needed. . . . 
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Chapter Fifteen.  Distillation 

Highlighted Core 

A DOMAIN VISION STATEMENT identifies the CORE DOMAIN in broad terms, but it leaves the 
identification of the specific CORE model elements up to the vagaries of individual interpretation. 
Unless there is an exceptionally high level of communication on the team, the VISION STATEMENT 
alone will have little impact. 

   

Even though team members may know broadly what constitutes the CORE DOMAIN , 
different people won't pick out quite the same elements, and even the same person won't be 
consistent from one day to the next. The mental labor of constantly filtering the model to 
identify the key parts absorbs concentration better spent on design thinking, and it requires 
comprehensive knowledge of the model. The CORE DOMAIN must be made easier to see. 

Significant structural changes to the code are the ideal way of identifying the CORE DOMAIN , 
but they are not always practical in the short term. In fact, such major code changes are 
difficult to undertake without the very view the team is lacking. 

Structural changes in the organization of the model, such as partitioning GENERIC SUBDOMAINS 
and a few others to come later in this chapter, can allow the MODULES to tell the story. But as the 
only means of communicating the CORE DOMAIN , this is too ambitious to shoot for straight away. 

You will probably need a lighter solution to supplement these aggressive techniques. You may 
have constraints that prevent you from physically separating the CORE . Or you may be starting out 
with existing code that does not differentiate the CORE well, but you really need to see the CORE , 
and share that view, to effectively refactor toward better distillation. And even at an advanced 
stage, a few carefully selected diagrams or documents provide mental anchor points and entry 
points for the team. 

These issues arise equally for projects that use elaborate UML models and those (such as XP 
projects) that keep few external documents and use the code as the primary repository of the 
model. An Extreme Programming team might be more minimalist, keeping these supplements 
more casual and more transient (for example, a hand-drawn diagram on the wall for all to see), but 
these techniques can fold nicely into the process. 
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Marking off a privileged part of a model, along with the implementation that embodies it, is a 
reflection on the model, not necessarily part of the model itself. Any technique that makes it easy 
for everyone to know the CORE DOMAIN will do. Two specific techniques can represent this class 
of solutions. 

The Distillation Document 

Often I create a separate document to describe and explain the CORE DOMAIN . It can be as simple 
as a list of the most essential conceptual objects. It can be a set of diagrams focused on those 
objects, showing their most critical relationships. It can walk through the fundamental interactions 
at an abstract level or by example. It can use UML class or sequence diagrams, nonstandard 
diagrams particular to the domain, carefully worded textual explanations, or combinations of these. 
A distillation document is not a complete design document . It is a minimalist entry point that 
delineates and explains the CORE and suggests reasons for closer scrutiny of particular pieces. The 
reader is given a broad view of how the pieces fit and guided to the appropriate part of the code for 
more details. 

Therefore (as one form of HIGHLIGHTED CORE ): 

Write a very brief document (three to seven sparse pages) that describes the CORE DOMAIN 
and the primary interactions among CORE elements. 

All the usual risks of separate documents apply. 

1.  The document may not be maintained. 

2.  The document may not be read. 

3.  By multiplying the information sources, the document may defeat its own purpose of 
cutting through complexity. 

The best way to limit these risks is to be absolutely minimalist. Staying away from mundane detail 
and focusing on the central abstractions and their interactions allows the document to age more 
slowly, because this level of the model is usually more stable. 

Write the document to be understood by the nontechnical members of the team. Use it as a shared 
view that delineates what every-one needs to know, and a guide by which all team members may 
start their exploration of the model and code. 

The Flagged C ORE 



On my first day on a project at a major insurance company, I was given a copy of the "domain 
model," a two-hundred-page document, purchased at great expense from an industry consortium. I 
spent a few days wading through a jumble of class diagrams covering everything from the detailed 
composition of insurance policies to extremely abstract models of relationships between people. 
The quality of the factoring of these models ranged from high-school project to rather good (a few 
even described business rules, at least in the accompanying text). But where to start? Two hundred 
pages. 

The project culture heavily favored abstract framework building, and my predecessors had focused 
on a very abstract model of the relationship of people with each other, with things, and with 
activities or agreements. It was actually a nice analysis of these relationships, and their 
experiments with the model had the quality of an academic research project. But it wasn't getting 
us anywhere near an insurance application. 

My first instinct was to start slashing, finding a small CORE DOMAIN to fall back on, then 
refactoring that and reintroducing other complexities as we went. But the management was 
alarmed by this attitude. The document was invested with great authority. Its production had 
involved experts from across the industry, and in any event they had paid the consortium far more 
than they were paying me, so they were unlikely to weigh my recommendations for radical change 
too heavily. But I knew we had to get a shared picture of our CORE DOMAIN and get everyone's 
efforts focused on that. 

Instead of refactoring, I went through the document and, with the help of a business analyst who 
knew a great deal about the insurance industry in general and the requirements of the application 
we were to build in particular, I identified the handful of sections that presented the essential, 
differentiating concepts we needed to work with. I provided a navigation of the model that clearly 
showed the CORE and its relationship to supporting features. 

A new prototyping effort started from this perspective, and quickly yielded a simplified application 
that demonstrated some of the required functionality. 

Two pounds of recyclable paper was turned into a business asset by a few page tabs and some 
yellow highlighter. 

This technique is not specific to object diagrams on paper. A team that uses UML diagrams 
extensively could use a "stereotype" to identify core elements. A team that uses the code as the 
sole repository of the model might use comments, maybe structured as Java Doc, or might use 
some tool in its development environment. The particular technique doesn't matter, as long as a 
developer can effortlessly see what is in and what is out of the CORE DOMAIN . 

Therefore (as another form of HIGHLIGHTED CORE ): 



Flag the elements of the CORE DOMAIN within the primary repository of the model, without 
particularly trying to elucidate its role. Make it effortless for a developer to know what is in 
or out of the CORE . 

The CORE DOMAIN is now clearly visible to those working with the model, with a fairly small 
effort and low maintenance, at least to the extent that the model is factored fine enough to 
distinguish the contributions of parts. 

The Distillation Document as Process Tool 

Theoretically on an XP project, any pair (two programmers working together) can change any code 
in the system. In practice, some changes have major implications, and call for more consultation 
and coordination. When working in the infrastructure layer, the impact of a change may be clear, 
but it may not be so obvious in the domain layer, as typically organized. 

With the concept of the CORE DOMAIN , this impact can be made clear. Changes to the model of 
the CORE DOMAIN should have a big effect. Changes to widely used generic elements may require 
a lot of code updating, but they still shouldn't create the conceptual shift that CORE changes do. 

Use the distillation document as a guide. When developers realize that the distillation document 
itself requires change to stay in sync with their code or model change, then consultation is called 
for. Either they are fundamentally changing the CORE DOMAIN elements or relationships, or they 
are changing the boundaries of the CORE , including or excluding something different. 
Dissemination of the model change to the whole team is necessary by whatever communication 
channels the team uses, including distribution of a new version of the distillation document. 

If the distillation document outlines the essentials of the CORE DOMAIN , then it serves as a 
practical indicator of the significance of a model change. When a model or code change 
affects the distillation document, it requires consultation with other team members. When 
the change is made, it requires immediate notification of all team members, and the 
dissemination of a new version of the document. Changes outside the CORE or to details not 
included in the distillation document can be integrated without consultation or notification 
and will be encountered by other members in the course of their work. Then the developers 
have the full autonomy that XP suggests. 

   

Although the VISION STATEMENT and HIGHLIGHTED CORE inform and guide, they do not actually 
modify the model or the code itself. Partitioning GENERIC SUBDOMAINS physically removes some 
distracting elements. The next patterns look at ways to structurally change the model and the 
design itself to make the CORE DOMAIN more visible and manageable. . . . 
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Chapter Fifteen.  Distillation 

Cohesive Mechanisms 

Encapsulating mechanisms is a standard principle of object-oriented design. Hiding complex 
algorithms in methods with intention-revealing names separates the "what" from the "how." This 
technique makes a design simpler to understand and use. Yet it runs into natural limits. 

Computations sometimes reach a level of complexity that begins to bloat the design. The 
conceptual "what" is swamped by the mechanistic "how." A large number of methods that 
provide algorithms for resolving the problem obscure the methods that express the problem. 

This proliferation of procedures is a symptom of a problem in the model. Refactoring toward 
deeper insight can yield a model and design whose elements are better suited to solving the 
problem. The first solution to seek is a model that makes the computation mechanism simple. But 
now and then the insight emerges that some part of the mechanism is itself conceptually coherent. 
This conceptual computation will probably not include all of the messy computations you need. 
We are not talking about some kind of catch-all "calculator." But extracting the coherent part 
should make the remaining mechanism easier to understand. 

Therefore: 

Partition a conceptually COHESIVE MECHANISM into a separate lightweight framework. 
Particularly watch for formalisms or well-documented categories of algorithms. Expose the 
capabilities of the framework with an INTENTION-REVEALING INTERFACE . Now the other 
elements of the domain can focus on expressing the problem ("what"), delegating the 
intricacies of the solution ("how") to the framework. 

These separated mechanisms are then placed in their supporting roles, leaving a smaller, more 
expressive CORE DOMAIN that uses the mechanism through the interface in a more declarative 
style. 

Recognizing a standard algorithm or formalism moves some of the complexity of the design into a 
studied set of concepts. With such a guide, we can implement a solution with confidence and little 
trial and error. We can count on other developers knowing about it or at least being able to look it 
up. This is similar to the benefits of a published GENERIC SUBDOMAIN model, but a documented 
algorithm or formal computation may be found more often because this level of computer science 



has been studied more. Still, more often than not you will have to create something new. Make it 
narrowly focused on the computation and avoid mixing in the expressive domain model. There is a 
separation of responsibilities: The model of the CORE DOMAIN or a GENERIC SUBDOMAIN 
formulates a fact, rule, or problem. A COHESIVE MECHANISM resolves the rule or completes the 
computation as specified by the model. 

Example 
A Mechanism in an Organization Chart 

I went through this process on a project that needed a fairly elaborate model of an organization 
chart. This model represented the fact that one person worked for another, and in which branches 
of the organization, and it provided an interface by which relevant questions might be asked and 
answered. Because most of these questions were along the lines of "Who, in this chain of 
command, has authority to approve this?" or "Who, in this department, is capable of handling an 
issue like this?" the team realized that most of the complexity involved traversing specific 
branches of the organizational tree, searching for specific people or relationships. This is exactly 
the kind of problem solved by the well-developed formalism of a graph , a set of nodes connected 
by arcs (called edges ) and the rules and algorithms needed to traverse the graph. 

A subcontractor implemented a graph traversal framework as a COHESIVE MECHANISM . This 
framework used standard graph terminology and algorithms familiar to most computer scientists 
and abundantly documented in textbooks. By no means did he implement a fully general graph. It 
was a subset of that conceptual framework that covered the features needed for our organization 
model. And with an INTENTION-REVEALING INTERFACE , the means by which the answers are 
obtained are not a primary concern. 

Now the organization model could simply state, using standard graph terminology, that each 
person is a node, and that each relationship between people is an edge (arc) connecting those 
nodes. After that, presumably, mechanisms within the graph framework could find the relationship 
between any two people. 

If this mechanism had been incorporated into the domain model, it would have cost us in two 
ways. The model would have been coupled to a particular method of solving the problem, limiting 
future options. More important, the model of an organization would have been greatly complicated 
and muddied. Keeping mechanism and model separate allowed a declarative style of describing 
organizations that was much clearer. And the intricate code for graph manipulation was isolated in 
a purely mechanistic framework, based on proven algorithms, that could be maintained and unit-
tested in isolation. 

Another example of a COHESIVE MECHANISM would be a framework for constructing 
SPECIFICATION objects and supporting the basic comparison and combination operations expected 
of them. By employing such a framework, the CORE DOMAIN and GENERIC SUBDOMAINS can 



declare their SPECIFICATIONS in the clear, easily understood language described in that pattern 
(see Chapter 10 ). The intricate operations involved in carrying out the comparisons and 
combinations can be left to the framework. 

   

G ENERIC S UBDOMAIN Versus C OHESIVE M ECHANISM 

Both GENERIC SUBDOMAINS and COHESIVE MECHANISMS are motivated by the same desire to 
unburden the CORE DOMAIN . The difference is the nature of the responsibility taken on. A 
GENERIC SUBDOMAIN is based on an expressive model that represents some aspect of how the 
team views the domain. In this it is no different than the CORE DOMAIN , just less central, less 
important, less specialized. A COHESIVE MECHANISM does not represent the domain; it solves 
some sticky computational problem posed by the expressive models. 

A model proposes; a COHESIVE MECHANISM disposes. 

In practice, unless you recognize a formalized, published computation, this distinction is usually 
not pure, at least not at first. In successive refactoring it could either be distilled into a purer 
mechanism or be transformed into a GENERIC SUBDOMAIN with some previously unrecognized 
model concepts that would make the mechanism simple. 

When a M ECHANISM Is Part of the C ORE D OMAIN 

You almost always want to remove MECHANISMS from the CORE DOMAIN . The one exception is 
when a MECHANISM is itself proprietary and a key part of the value of the software. This is 
sometimes the case with highly specialized algorithms. For example, if one of the distinguishing 
features of a shipping logistics application were a particularly effective algorithm for working out 
schedules, that MECHANISM could be considered part of the conceptual CORE . I once worked on a 
project at an investment bank in which highly proprietary algorithms for rating risk were definitely 
in the CORE DOMAIN . (In fact, they were held so closely that even most of the CORE developers 
were not allowed to see them.) Of course, these algorithms are probably a particular 
implementation of a set of rules that really predict risk. Deeper analysis might lead to a deeper 
model that would allow those rules to be explicit, with an encapsulated solving mechanism. 

But that would be another incremental improvement in the design, for another day. The decision as 
to whether to go that next step would be based on a cost-benefit analysis: How difficult would it be 
to work out that new design? How difficult is the current design to understand and modify? How 
much easier would it be with a more advanced design, for the type of people who would be 
expected to do the work? And of course, does anyone have any idea what form the new model 
might take? 

file:///E|/books/0-321-12521-5/ch15lev1sec6.htm?xmlid=0-321-12521-5/ch10#ch10


Example 
Full Circle: Organization Chart Reabsorbs Its M ECHANISM 

Actually, a year after we completed the organization model in the previous example, other 
developers redesigned it to eliminate the separation of the graph framework. They felt the 
increased object count and the complication of separating the MECHANISM into a separate package 
were not warranted. Instead, they added node behavior to the parent class of the organizational 
ENTITIES . Still, they retained the declarative public interface of the organization model. They even 
kept the MECHANISM encapsulated, within the organizational ENTITIES . 

These full circles are common, but they do not return to their starting point. The end result is 
usually a deeper model that more clearly differentiates facts, goals, and MECHANISMS . Pragmatic 
refactoring retains the important virtues of the intermediate stages while shedding the unneeded 
complications. 

Distilling to a Declarative Style 

Declarative design and "declarative style" is a topic of Chapter 10 , but that design style deserves 
special mention in this chapter on strategic distillation. The value of distillation is being able to see 
what you are doing: cutting to the essence without being distracted by irrelevant detail. Important 
parts of the CORE DOMAIN may be able to follow a declarative style, when the supporting design 
provides an economical language for expressing the concepts and rules of the CORE while 
encapsulating the means of computing or enforcing them. 

C OHESIVE MECHANISMS are by far most useful when they provide access through an INTENTION-
REVEALING INTERFACE , with conceptually coherent ASSERTIONS and SIDE-EFFECT-FREE 
FUNCTIONS . M ECHANISMS and supple designs allow the CORE DOMAIN to make meaningful 
statements rather than calling obscure functions. But an exceptional payoff comes when part of the 
CORE DOMAIN itself breaks through to a deep model and starts to function as a language that can 
express the most important application scenarios flexibly and concisely. 

A deep model often comes with a corresponding supple design. When a supple design reaches 
maturity, it provides an easily understood set of elements that can be combined unambiguously to 
accomplish complex tasks or express complex information, just as words are combined into 
sentences. At that point, client code takes on a declarative style and can be much more distilled. 

Factoring out GENERIC SUBDOMAINS reduces clutter, and COHESIVE MECHANISMS serve to 
encapsulate complex operations. This leaves behind a more focused model, with fewer distractions 
that add no particular value to the way users conduct their activities. But you are unlikely ever to 
find good homes for everything in the domain model that is not CORE . The SEGREGATED CORE 
takes a direct approach to structurally marking off the CORE DOMAIN .... 
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Chapter Fifteen.  Distillation 

Segregated Core 

Elements in the model may partially serve the CORE DOMAIN and partially play supporting 
roles. CORE elements may be tightly coupled to generic ones. The conceptual cohesion of the 
CORE may not be strong or visible. All this clutter and entanglement chokes the CORE . 
Designers can't clearly see the most important relationships, leading to a weak design. 

By factoring out GENERIC SUBDOMAINS , you clear away some of the obscuring detail from the 
domain, making the CORE more visible. But it is hard work identifying and clarifying all these 
subdomains, and some of them don't seem worth the trouble. Meanwhile, the all-important CORE 
DOMAIN is left entangled with the residue. 

Therefore: 

Refactor the model to separate the CORE concepts from supporting players (including ill-
defined ones) and strengthen the cohesion of the CORE while reducing its coupling to other 
code. Factor all generic or supporting elements into other objects and place them into other 
packages, even if this means refactoring the model in ways that separate highly coupled 
elements. 

This is basically taking the same principles we applied to GENERIC SUBDOMAINS but from the 
other direction. The cohesive subdomains that are central to our application can be identified and 
partitioned into coherent packages of their own. What is done with the undifferentiated mass left 
behind is important, but not as important. It can be left more or less where it was, or placed into 
packages based on prominent classes. Eventually, more and more of the residue can be factored 
into GENERIC SUBDOMAINS , but in the short term any easy solution will do, just so the focus on 
the SEGREGATED CORE is retained. 

   

The steps needed to refactor to SEGREGATED CORE are typically something like these: 

1.  Identify a CORE subdomain (possibly drawing from the distillation document). 

2.  Move related classes to a new MODULE , named for the concept that relates them. 



3.  Refactor code to sever data and functionality that are not directly expressions of the 
concept. Put the removed aspects into (possibly new) classes in other packages. Try to place 
them with conceptually related tasks, but don't waste too much time being perfect. Keep 
focused on scrubbing the CORE subdomain and making the references from it to other 
packages explicit and self-explanatory. 

4.  Refactor the newly SEGREGATED CORE MODULE to make its relationships and interactions 
simpler and more communicative, and to minimize and clarify its relationships with other 
MODULES . (This becomes an ongoing refactoring objective.) 

5.  Repeat with another CORE subdomain until the SEGREGATED CORE is complete. 

The Costs of Creating a S EGREGATED C ORE 

Segregating the CORE will sometimes make relationships with tightly coupled non- CORE classes 
more obscure or even more complicated, but that cost is outweighed by the benefit of clarifying 
the CORE DOMAIN and making it much easier to work on. 

The SEGREGATED CORE will let you enhance the cohesion of that CORE DOMAIN . There are many 
meaningful ways of breaking down a model, and sometimes in the creation of a SEGREGATED 
CORE a nicely cohesive MODULE may be broken, sacrificing that cohesion for the sake of bringing 
out the cohesiveness of the CORE DOMAIN . This is a net gain, because the greatest value-added of 
enterprise software comes from the enterprise-specific aspects of the model. 

The other cost, of course, is that segregating the CORE is a lot of work. It must be acknowledged 
that a decision to go to a SEGREGATED CORE will potentially absorb developers in changes all over 
the system. 

The time to chop out a SEGREGATED CORE is when you have a large BOUNDED CONTEXT that is 
critical to the system, but where the essential part of the model is being obscured by a great deal of 
supporting capability. 

Evolving Team Decision 

As with many strategic design decisions, an entire team must move to a SEGREGATED CORE 
together. This step requires a team decision process and a team disciplined and coordinated enough 
to carry out the decision. The challenge is to constrain everyone to use the same definition of the 
CORE while not freezing that decision. Because the CORE DOMAIN evolves just like every other 
aspect of a design, experience working with a SEGREGATED CORE will lead to new insights into 
what is essential and what is a supporting element. Those insights should feed back into a refined 
definition of the CORE DOMAIN and of the SEGREGATED CORE MODULES . 



This means that new insights must be shared with the team on an ongoing basis, but an individual 
(or programming pair) cannot act on those insights unilaterally. Whatever the process is for joint 
decisions, whether consensus or team leader directive, it must be agile enough to make repeated 
course corrections. Communication must be effective enough to keep everyone together in one 
view of the CORE . 

Example 
Segregating the C ORE of a Cargo Shipping Model 

We start with the model shown in Figure 15.2 as the basis of software for cargo shipping 
coordination. 

Figure 15.2. 

 



Note that this is highly simplified compared to what would likely be needed for a real application. 
A realistic model would be too cumbersome for an example. Therefore, although this example may 
not be complicated enough to drive us to a SEGREGATED CORE , take a leap of imagination to treat 
this model as being too complex to interpret easily and deal with as a whole. 

Now, what is the essence of the shipping model? Usually a good place to start looking is the 
"bottom line." This might lead us to focus on pricing and invoices. But we really need to look at 
the DOMAIN VISION STATEMENT . Here is an excerpt from this one. 

. . . Increase visibility of operations and provide tools to fulfill customer 
requirements faster and more reliably... 

This application is not being designed for the sales department. It is going to be used by the front-
line operators of the company. So let's relegate all money-related issues to (admittedly important) 
supporting roles. Someone has already placed some of these items into a separate package ( Billing 
). We can keep that, and further recognize that it plays a supporting role. 

The focus needs to be on the cargo handling: delivery of the cargo according to customer 
requirements. Extracting the classes most directly involved in these activities produces a 
SEGREGATED CORE in a new package called Delivery , as shown in Figure 15.3 . 

Figure 15.3. Reliable delivery in adherence with customer requirements is the core 
goal of this project. 



 

For the most part, classes have just moved into the new package, but there have been a few 
changes to the model itself. 

First, the Customer Agreement now constrains the Handling Step . This is typical of the insights 
that tend to arise as the team segregates the CORE . As attention is focused on effective, correct 
delivery, it becomes clear that the delivery constraints in the Customer Agreement are 



fundamental and should be explicit in the model. 

The other change is more pragmatic. In the refactored model, the Customer Agreement is 
attached directly to the Cargo , rather than requiring a navigation through the Customer . (It will 
have to be attached when the Cargo is booked, just as the Customer is.) At actual delivery time, 
the Customer is not as relevant to operations as the agreement itself. In the other model, the 
correct Customer had to be found, according to the role it played in the shipment, and then 
queried for its Customer Agreement . This interaction would clog up every story you set out to 
tell about the model. The new association makes the most important scenarios as simple and direct 
as possible. Now it becomes easy to pull the Customer out of the CORE altogether. 

And what about pulling Customer out, anyway? The focus is on fulfilling the Customer's 
requirements, so at first Customer seems to belong in the CORE . Yet the interactions during 
delivery do not usually need to involve the Customer class now that the Customer Agreement is 
available directly. And the basic model of a Customer is pretty generic. 

A strong argument could be made for Leg to remain in the CORE . I tend to be minimalist in the 
CORE , and the Leg has tighter cohesion with Transport Schedule, Routing Service , and 
Location , none of which needed to be in the CORE . But if a lot of the stories I wanted to tell 
about this model involved Legs , I'd move it into the Delivery package and suffer the 
awkwardness of its separation from those other classes. 

In this example, all the class definitions are the same as before, but often distillation requires 
refactoring the classes themselves to separate the generic and domain-specific responsibilities, 
which can then be segregated. 

Now that we have a SEGREGATED CORE , the refactoring is complete. But the Shipping package 
we are left with is just "everything left over after we pulled out the CORE ." We can follow up with 
other refactorings to get more communicative packaging, as shown in Figure 15.4 . 

Figure 15.4. Meaningful MODULES for non- CORE subdomains follow after the 
SEGREGATED CORE is complete. 



 

It might take several refactorings to get to this point; it doesn't have to be done all at once. Here, 
we've ended up with one SEGREGATED CORE package, one GENERIC SUBDOMAIN , and two 
domain-specific packages in supporting roles. Deeper insight might eventually produce a GENERIC 
SUBDOMAIN for Customer , or it might end up more specialized for shipping. 

Recognizing useful, meaningful MODULES is a modeling activity (as discussed in Chapter 5 ). 
Developers and domain experts collaborate in strategic distillation as part of the knowledge 
crunching process. 
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Chapter Fifteen.  Distillation 

Abstract Core 

 

Even the CORE DOMAIN model usually has so much detail that communicating the big picture can 
be difficult. 

   

We usually deal with a large model by breaking it into narrower subdomains that are small enough 
to be grasped and placing them in separate MODULES . This reductive style of packaging often 
works to make a complicated model manageable. But sometimes creating separate MODULES can 
obscure or even complicate the interactions between the subdomains. 

When there is a lot of interaction between subdomains in separate MODULES , either many 
references will have to be created between MODULES , which defeats much of the value of the 



partitioning, or the interaction will have to be made indirect, which makes the model 
obscure. 

Consider slicing horizontally rather than vertically. Polymorphism gives us the power to ignore a 
lot of the detailed variation among instances of an abstract type. If most of the interactions across 
MODULES can be expressed at the level of polymorphic interfaces, it may make sense to refactor 
these types into a special CORE MODULE . 

We are not looking for a technical trick here. This is a valuable technique only when the 
polymorphic interfaces correspond to fundamental concepts in the domain. In that case, separating 
these abstractions decouples the MODULES while distilling a smaller and more cohesive CORE 
DOMAIN . 

Therefore: 

Identify the most fundamental concepts in the model and factor them into distinct classes, 
abstract classes, or interfaces. Design this abstract model so that it expresses most of the 
interaction between significant components. Place this abstract overall model in its own 
MODULE , while the specialized, detailed implementation classes are left in their own 
MODULES defined by subdomain. 

Most of the specialized classes will now reference the ABSTRACT CORE MODULE but not the other 
specialized MODULES . The ABSTRACT CORE gives a succinct view of the main concepts and their 
interactions. 

The process of factoring out the ABSTRACT CORE is not mechanical. For example, if all the classes 
that were frequently referenced across MODULES were automatically moved into a separate 
MODULE , the likely result would be a meaningless mess. Modeling an ABSTRACT CORE requires a 
deep understanding of the key concepts and the roles they play in the major interactions of the 
system. In other words, it is an example of refactoring to deeper insight. And it usually requires 
considerable redesign. 

The ABSTRACT CORE should end up looking a lot like the distillation document (if both were used 
on the same project, and the distillation document had evolved with the application as insight 
deepened). Of course, the ABSTRACT CORE will be written in code, and therefore more rigorous 
and more complete. 
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Chapter Fifteen.  Distillation 

Deep Models Distill 

Distillation does not operate only on the gross level of separating parts of the domain away from 
the CORE . It also means refining those subdomains, especially the CORE DOMAIN , through 
continuously refactoring toward deeper insight, driving toward a deep model and supple design. 
The goal is a design that makes the model obvious, a model that expresses the domain simply. A 
deep model distills the most essential aspects of a domain into simple elements that can be 
combined to solve the important problems of the application. 

Although a breakthrough to a deep model provides value anywhere it happens, it is in the 
CORE DOMAIN that it can change the trajectory of an entire project. 
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Chapter Fifteen.  Distillation 

Choosing Refactoring Targets 

When you encounter a large system that is poorly factored, where do you start? In the XP 
community, the answer tends to be either one of these: 

1.  Just start anywhere, because it all has to be refactored. 

2.  Start wherever it is hurting. I'll refactor what I need to in order to get my specific task done. 

I don't hold with either of these. The first is impractical except in a few projects staffed entirely 
with top programmers. The second tends to pick around the edges, treating symptoms and ignoring 
root causes, shying away from the worst tangles. Eventually the code becomes harder and harder to 
refactor. 

So, if you can't do it all, and you can't be pain-driven, what do you do? 

1.  In a pain-driven refactoring, you look to see if the root involves the CORE DOMAIN or the 
relationship of the CORE to a supporting element. If it does, you bite the bullet and fix that 
first. 

2.  When you have the luxury of refactoring freely, you focus first on better factoring of the 
CORE DOMAIN , on improving the segregation of the CORE , and on purifying supporting 
subdomains to be GENERIC . 

This is how to get the most bang for your refactoring buck. 
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Part IV:  Strategic Design 

Chapter Sixteen. Large-Scale Structure 
Thousands of people worked independently to create the AIDS Quilt. 

 

A small Silicon Valley design firm had been contracted to create a simulator for a satellite 
communications system. Work was progressing well. A MODEL-DRIVEN DESIGN was developing 
that could express and simulate a wide range of network conditions and failures. 
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But the lead developers on the project were uneasy. The problem was inherently complex. Driven 
by the need to clarify the intricate relationships in the model, they had decomposed the design into 
coherent MODULES of manageable size. Now there were a lot of MODULES . Which package 
should a developer look in to find a particular aspect of functionality? Where should a new class be 
placed? What did some of these little packages really mean? How did they all fit together? And 
there was still more to build. 

The developers communicated well with one another and could still figure out what to do from day 
to day, but the project leaders were not content to skirt the edge of comprehensibility. They wanted 
some way of organizing the design so that it could be understood and manipulated as it moved to 
the next level of complexity. 

They brainstormed. There were a lot of possibilities. Alternative packaging schemes were 
proposed. Maybe some document could give an overview of the system, or some new views of the 
class diagram in the modeling tool could guide a developer to the right MODULE . But the project 
leaders weren't satisfied with these gimmicks. 

They could tell a simple story of their simulation, of the way data would be marshaled through an 
infrastructure, its integrity and routing assured by layers of telecommunications technology. Every 
detail of that story was in the model, yet the broad arc of the story could not be seen. 

Some essential concept from the domain was missing. But this time it was not a class or two 
missing from the object model, it was a missing structure for the model as a whole. 

After the developers mulled over the problem for a week or two, the idea began to jell. They would 
impose a structure on the design. The entire simulator would be viewed as a series of layers related 
to aspects of the communications system. The bottom layer would represent the physical 
infrastructure, the basic ability to transmit bits from one node to another. Then there would be a 
packet-routing layer that brought together the concerns of how a particular data stream would be 
directed. Other layers would identify other conceptual levels of the problem. These layers would 
outline their story of the system. 

They set out to refactor the code to conform to the new structure. M ODULES had to be redefined 
so as not to span layers. In some cases, object responsibilities were refactored so that each object 
would clearly belong to one layer. Conversely, throughout this process the definitions of the 
conceptual layers themselves were refined based on the hands-on experience of applying them. 
The layers, MODULES , and objects coevolved until, in the end, the entire design followed the 
contours of this layered structure. 

These layers were not MODULES or any other artifact in the code. They were an overarching set of 
rules that constrained the boundaries and relationships of any particular MODULE or object 
throughout the design, even at interfaces with other systems. 



Imposing this order brought the design back to comfortable intelligibility. People knew roughly 
where to look for a particular function. Individuals working independently could make design 
decisions that were broadly consistent with each other. The complexity ceiling had been lifted. 

Even with a MODULAR breakdown, a large model can be too complicated to grasp. The MODULES 
chunk the design into manageable bites, but there may be many of them. Also, modularity does not 
necessarily bring uniformity to the design. Object to object, package to package, a jumble of 
design decisions may be applied, each defensible but idiosyncratic. 

The strict segregation imposed by BOUNDED CONTEXTS prevents corruption and confusion, but it 
does not, in itself, make it easier to see the system as a whole. 

Distillation does help by focusing attention on the CORE DOMAIN and casting other subdomains in 
their supporting roles. But it is still necessary to understand the supporting elements and their 
relationships to the CORE DOMAIN —and to each other. And while the CORE DOMAIN would 
ideally be so clear and easily understood that no additional guidance would be needed, we are not 
always at that point. 

On a project of any size, people must work somewhat independently on different parts of the 
system. Without any coordination or rules, a confusion of different styles and distinct solutions to 
the same problems arises, making it hard to understand how the parts fit together and impossible to 
see the big picture. Learning about one part of the design will not transfer to other parts, so the 
project will end up with specialists in different MODULES who cannot help each other outside their 
narrow range. C ONTINUOUS INTEGRATION breaks down and the BOUNDED CONTEXT fragments. 

In a large system without any overarching principle that allows elements to be interpreted in 
terms of their role in patterns that span the whole design, developers cannot see the forest for 
the trees . We need to be able to understand the role of an individual part in the whole without 
delving into the details of the whole. 

A "large-scale structure" is a language that lets you discuss and understand the system in broad 
strokes. A set of high-level concepts or rules, or both, establishes a pattern of design for an entire 
system. This organizing principle can guide design as well as aid understanding. It helps 
coordinate independent work because there is a shared concept of the big picture: how the roles of 
various parts shape the whole. 

Devise a pattern of rules or roles and relationships that will span the entire system and that 
allows some understanding of each part's place in the whole—even without detailed 
knowledge of the part's responsibility. 

Structure may be confined to one BOUNDED CONTEXT but will usually span more than one, 



providing the conceptual organization to hold together all the teams and subsystems involved in 
the project. A good structure gives insight into the model and complements distillation. 

You can't represent most large-scale structures in UML, and you don't need to. Most large-scale 
structures shape and explain the model and design but do not appear in it. They provide an extra 
level of communication about the design. In the examples of this chapter, you'll see many informal 
UML diagrams on which I've superimposed information about the large-scale structure. 

When a team is reasonably small and the model is not too complicated, decomposition into well-
named MODULES , a certain amount of distillation, and informal coordination among developers 
can be sufficient to keep the model organized. 

Large-scale structure can save a project, but an ill-fitting structure can severely hinder 
development. This chapter explores patterns for successfully structuring a design at this level. 

Figure 16.1. Some patterns of large-scale structure 
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Chapter Sixteen.  Large-Scale Structure 

Evolving Order 

Many developers have experienced the cost of an unstructured design. To avoid anarchy, projects 
impose architectures that constrain development in various ways. Some technical architectures do 
solve technical problems, such as networking or data persistence, but when architectures start 
venturing into the arena of the application and domain model, they can create problems of their 
own. They often prevent the developers from creating designs and models that work well for the 
specifics of the problem. The most ambitious ones can even take away from application developers 
the familiarity and technical power of the programming language itself. And whether technical or 
domain oriented, architectures that freeze a lot of up-front design decisions can become a 
straitjacket as requirements change and as understanding deepens. 

While some technical architectures (such as J2EE) have become prominent over the years, large-
scale structure in the domain layer has not been explored much. Needs vary widely from one 
application to the next. 

An up-front imposition of a large-scale structure is likely to be costly. As development proceeds, 
you will almost certainly find a more suitable structure, and you may even find that the prescribed 
structure is prohibiting you from taking a design route that would greatly clarify or simplify the 
application. You may be able to use some of the structure, but you're forgoing opportunities. Your 
work slows down as you try workarounds or try to negotiate with the architects. But your 
managers think the architecture is done. It was supposed to make this application easy, so why 
aren't you working on the application instead of dealing with all these architecture problems? The 
managers and architecture teams may even be open to input, but if each change is a heroic battle, it 
is too exhausting. 

Design free-for-alls produce systems no one can make sense of as a whole, and they are very 
difficult to maintain. But architectures can straitjacket a project with up-front design 
assumptions and take too much power away from the developers/designers of particular 
parts of the application. Soon, developers will dumb down the application to fit the structure, 
or they will subvert it and have no structure at all, bringing back the problems of 
uncoordinated development. 

The problem is not the existence of guiding rules, but rather the rigidity and source of those rules. 
If the rules governing the design really fit the circumstances, they will not get in the way but 



actually push development in a helpful direction, as well as provide consistency. 

Therefore: 

Let this conceptual large-scale structure evolve with the application, possibly changing to a 
completely different type of structure along the way. Don't overconstrain the detailed design 
and model decisions that must be made with detailed knowledge. 

Individual parts have natural or useful ways of being organized and expressed that may not apply 
to the whole, so imposing global rules makes these parts less ideal. Choosing to use a large-scale 
structure favors manageability of the model as a whole over optimal structuring of the individual 
parts. Therefore, there will be some compromise between unifying structure and freedom to 
express individual components in the most natural way. This can be mitigated by selecting the 
structure based on actual experience and knowledge of the domain and by avoiding over-
constrictive structures. A really nice fit of structure to domain and requirements actually makes 
detailed modeling and design easier, by helping to quickly eliminate a lot of options. 

The structure can also give shortcuts to design decisions that could, in principle, be found by 
working on the individual object level, but would, in practice, take too long and have inconsistent 
results. Of course, continuous refactoring is still necessary, but this will make it a more 
manageable process and can help make different people come up with consistent solutions. 

A large-scale structure generally needs to be applicable across BOUNDED CONTEXTS . Through 
iteration on a real project, a structure will lose features that tightly bind it to a particular model and 
evolve features that correspond to CONCEPTUAL CONTOURS of the domain. This doesn't mean that 
it will have no assumptions about the model, but it will not impose upon the entire project ideas 
tailored to a particular local situation. It has to leave freedom for development teams in distinct 
CONTEXTS to vary the model in ways that address their local needs. 

Also, large-scale structures must accommodate practical constraints on development. For example, 
designers may have no control over the model of some parts of the system, especially in the case 
of external or legacy subsystems. This could be handled by changing the structure to better fit the 
specific external elements. It could be handled by specifying ways in which the application relates 
to externals. It might be handled by making the structure loose enough to flex around awkward 
realities. 

Unlike the CONTEXT MAP , a large-scale structure is optional. One should be imposed when costs 
and benefits favor it, and when a fitting structure is found. In fact, it is not needed for systems that 
are simple enough to be understood when broken into MODULES . Large-scale structure should 
be applied when a structure can be found that greatly clarifies the system without forcing 
unnatural constraints on model development. Because an ill-fitting structure is worse than 
none, it is best not to shoot for comprehensiveness, but rather to find a minimal set that 



solves the problems that have emerged. Less is more. 

A large-scale structure can be very helpful and still have a few exceptions, but those exceptions 
need to be flagged somehow, so that developers can assume the structure is being followed unless 
otherwise noted. And if those exceptions start to get numerous, the structure needs to be changed 
or discarded. 

   

As mentioned, it is no mean feat to create a structure that gives the necessary freedom to 
developers while still averting chaos. Although a lot of work has been done on technical 
architecture for software systems, little has been published on the structuring of the domain layer. 
Some approaches weaken the object-oriented paradigm, such as those that break down the domain 
by application task or by use case. This whole area is still undeveloped. I've observed a few 
general patterns of large-scale structures that have emerged on various projects. I'll discuss four in 
this chapter. One of these may fit your needs or lead to ideas for a structure tailored to your 
project. 
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Chapter Sixteen.  Large-Scale Structure 

System Metaphor 

Metaphorical thinking is pervasive in software development, especially with models. But the 
Extreme Programming practice of "metaphor" has come to mean a particular way of using a 
metaphor to bring order to the development of a whole system. 

   

Just as a firewall can save a building from a fire raging through neighboring buildings, a software 
"firewall" protects the local network from the dangers of the larger networks outside. This 
metaphor has influenced network architectures and shaped a whole product category. Multiple 
competing firewalls—developed independently, understood to be somewhat interchangeable—are 
available for consumers. Novices to networking readily grasp the concept. This shared 
understanding throughout the industry and among customers is due in no small part to the 
metaphor. 

Yet it is an inexact analogy, and its power cuts both ways. The use of the firewall metaphor has led 
to development of software barriers that are sometimes insufficiently selective and impede 
desirable exchanges, while offering no protection against threats originating within the wall. 
Wireless LANs, for example, are vulnerable. The clarity of the firewall has been a boon, but all 
metaphors carry baggage. [1] 

[1] S YSTEM METAPHOR finally made sense to me when I heard Ward Cunningham use this 
firewall example in a workshop lecture. 

Software designs tend to be very abstract and hard to grasp. Developers and users alike need 
tangible ways to understand the system and share a view of the system as a whole. 

On one level, metaphor runs so deeply in the way we think that it pervades every design. Systems 
have "layers" that "lay on top" of each other. They have "kernels" at their "centers." But sometimes 
a metaphor comes along that can convey the central theme of a whole design and provide a shared 
understanding among all team members. 

When this happens, the system is actually shaped by the metaphor. A developer will make design 
decisions consistent with the system metaphor. This consistency will enable other developers to 



interpret the many parts of a complex system in terms of the same metaphor. The developers and 
experts have a reference point in discussions that may be more concrete than the model itself. 

A SYSTEM METAPHOR is a loose, easily understood, large-scale structure that it is harmonious 
with the object paradigm. Because the SYSTEM METAPHOR is only an analogy to the domain 
anyway, different models can map to it in an approximate way, which allows it to be applied in 
multiple BOUNDED CONTEXTS , helping to coordinate work between them. 

S YSTEM METAPHOR has become a popular approach because it is one of the core practices of 
Extreme Programming (Beck 2000). Unfortunately, few projects have found really useful 
METAPHORS , and people have tried to push the idea into domains where it is counterproductive. A 
persuasive metaphor introduces the risk that the design will take on aspects of the analogy that are 
not desirable for the problem at hand, or that the analogy, while seductive, may not be apt. 

That said, SYSTEM METAPHOR is a well-known form of large-scale structure that is useful on some 
projects, and it nicely illustrates the general concept of a structure. 

Therefore: 

When a concrete analogy to the system emerges that captures the imagination of team 
members and seems to lead thinking in a useful direction, adopt it as a large-scale structure. 
Organize the design around this metaphor and absorb it into the UBIQUITOUS LANGUAGE . 
The SYSTEM METAPHOR should both facilitate communication about the system and guide 
development of it. This increases consistency in different parts of the system, potentially even 
across different BOUNDED CONTEXTS . But because all metaphors are inexact, continually 
reexamine the metaphor for overextension or inaptness, and be ready to drop it if it gets in 
the way. 

   

The "Naive Metaphor" and Why We Don't Need It 

Because a useful metaphor doesn't present itself on most projects, some in the XP community have 
come to talk of the naive metaphor , by which they mean the domain model itself. 

One trouble with this term is that a mature domain model is anything but naive. In fact, "payroll 
processing is like an assembly line" is likely a much more naive view than a model that is the 
product of many iterations of knowledge crunching with domain experts, and that has been proven 
by being tightly woven into the implementation of a working application. 

The term naive metaphor should be retired. 



S YSTEM METAPHORS are not useful on all projects. Large-scale structure in general is not 
essential. In the 12 practices of Extreme Programming, the role of a SYSTEM METAPHOR could be 
fulfilled by a UBIQUITOUS LANGUAGE . Projects should augment that LANGUAGE with SYSTEM 
METAPHORS or other large-scale structures when they find one that fits well. 
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Chapter Sixteen.  Large-Scale Structure 

Responsibility Layers 

Throughout this book, individual objects have been assigned narrow sets of related responsibilities. 
Responsibility-driven design also applies to larger scales. 

   

When each individual object has handcrafted responsibilities, there are no guidelines, no 
uniformity, and no ability to handle large swaths of the domain together. To give coherence 
to a large model, it is useful to impose some structure on the assignment of those 
responsibilities. 

When you gain a deep understanding of a domain, broad patterns start to become visible. Some 
domains have a natural stratification. Certain concepts and activities take place against a 
background of other elements that change independently and at a different rate for different 
reasons. How can we take advantage of this natural structure, make it more visible and useful? 
This stratification suggests layering, one of the most successful architectural design patterns ( 
Buschmann et al. 1996 , among others). 

Layers are partitions of a system in which the members of each partition are aware of and are able 
to use the services of the layers "below," but unaware of and independent of the layers "above." 
When the dependencies of MODULES are drawn, they are often laid out so that a MODULE with 
dependents appears below its dependents. In this way, layers sometimes sort themselves out so that 
none of the objects in the lower levels is conceptually dependent on those in higher layers. 

But this ad hoc layering, while it can make tracing dependencies easier—and sometimes makes 
some intuitive sense—doesn't give much insight into the model or guide modeling decisions. We 
need something more intentional. 

Figure 16.2. Ad hoc layering: What are these packages about? 
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In a model with a natural stratification, conceptual layers can be defined around major 
responsibilities, uniting the two powerful principles of layering and responsibility-driven design. 

These responsibilities must be considerably broader than those typically assigned to individual 
objects, as examples will illustrate shortly. As individual MODULES and AGGREGATES are 
designed, they are factored to keep them within the bounds of one of these major responsibilities. 
This named grouping of responsibilities by itself could enhance the comprehensibility of a 
modularized system, since the responsibilities of MODULES could be more readily interpreted. But 
combining high-level responsibilities with layering gives us an organizing principle for a system. 

The layering pattern that serves best for RESPONSIBILITY LAYERS is the variant called 
RELAXED LAYERED SYSTEM ( Buschmann et al. 1996 , p. 45), which allows 
components of a layer to access any lower layer, not just the one immediately below. 

Therefore: 

Look at the conceptual dependencies in your model and the varying rates and sources of 
change of different parts of your domain. If you identify natural strata in the domain, cast 
them as broad abstract responsibilities. These responsibilities should tell a story of the high-
level purpose and design of your system. Refactor the model so that the responsibilities of 
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each domain object, AGGREGATE , and MODULE fit neatly within the responsibility of one 
layer. 

This is a pretty abstract description, but it will become clear with a few examples. The satellite 
communications simulator whose story opened this chapter layered its responsibility. I have seen 
RESPONSIBILITY LAYERS used to good effect in domains as various as manufacturing control and 
financial management. 

   

The following example explores RESPONSIBILITY LAYERS in detail to give a feel for the discovery 
of a large-scale structure of any sort, and the way it guides and constrains modeling and design. 

Example 
In Depth: Layering a Shipping System 

Let's look at the implications of applying RESPONSIBILITY LAYERS to the cargo shipping 
application discussed in the examples of previous chapters. 

As we rejoin the story, the team has made considerable progress creating a MODEL-DRIVEN 
DESIGN and distilling a CORE DOMAIN . But as the design fleshes out, they are having trouble 
coordinating how all the parts fit together. They are looking for a large-scale structure that can 
bring out the main themes of their system and keep everyone on the same page. 

Here is a look at a representative part of the model. 

Figure 16.3. A basic shipping domain model for routing cargoes 

 

Figure 16.4. Using the model to route a cargo during booking 



 

The team members have been steeped in the domain of shipping for months, and they have noticed 
some natural stratification of its concepts. It is quite reasonable to discuss transport schedules (the 
scheduled voyages of ships and trains) without referring to the cargoes aboard those transports. It 
is harder to talk about tracking a cargo without referring to the transport carrying it. The 
conceptual dependencies are pretty clear. The team can readily distinguish two layers: 
"Operations" and the substrate of those operations, which they dub "Capability." 

"Operational" Responsibilities 

Activities of the company, past, current, and planned, are collected into the Operations layer. The 
most obvious Operations object is Cargo , which is the focus of most of the day-to-day activity of 
the company. The Route Specification is an integral part of Cargo , indicating delivery 
requirements. The Itinerary is the operational delivery plan. Both of these objects are part of the 
Cargo's AGGREGATE , and their life cycles are tied to the time frame of an active delivery. 

"Capability" Responsibilities 

This layer reflects the resources the company draws upon in order to carry out operations. The 
Transit Leg is a classic example. The ships are scheduled to run and have a certain capacity to 
carry cargo, which may or may not be fully utilized. 

True, if we were focused on operating a shipping fleet, Transit Leg would be in the Operations 
layer. But the users of this system aren't worried about that problem. (If the company were 
involved in both those activities and wanted the two coordinated, the development team might 
have to consider a different layering scheme, perhaps with two distinct layers, such as "Transport 
Operations" and "Cargo Operations.") 



A trickier decision is where to place Customer . In some businesses, customers tend to be 
transient: they're interesting while a package is being delivered and then mostly forgotten until 
next time. This quality would make customers only an operational concern for a parcel delivery 
service aimed at individual consumers. But our hypothetical shipping company tends to cultivate 
long-term relationships with customers, and most work comes from repeat business. Given these 
intentions of the business users , the Customer belongs in the potential layer. As you can see, this 
was not a technical decision . It was an attempt to capture and communicate knowledge of the 
domain. 

Because the association between Cargo and Customer can be traversed in only one direction, the 
Cargo REPOSITORY will need a query that finds all Cargoes for a particular Customer . There 
were good reasons to design it that way anyway, but with the imposition of the large-scale 
structure, it is now a requirement. 

Figure 16.5. A query replaces a bidirectional association that violates the layering. 

 

Figure 16.6. A first-pass layered model 



 

While the distinction between Operations and Capability clarifies the picture, order continues to 
evolve. After a few weeks of experimentation, the team zeroes in on another distinction. For the 
most part, both initial layers focus on situations or plans as they are . But the Router (and many 
other elements excluded from this example) isn't part of current operational realities or plans. It 
helps make decisions about changing those plans. The team defines a new layer responsible for 
"Decision Support." 

"Decision Support" Responsibilities 

This layer of the software provides the user with tools for planning and decision making, and it 
could potentially automate some decisions (such as automatically rerouting Cargoes when a 
transport schedule changes). 

The Router is a SERVICE that helps a booking agent choose the best way to send a Cargo . This 
places the Router squarely in Decision Support. 

The references within this model are all consistent with the three layers except for one discordant 
element: the "is preferred" attribute on Transport Leg . This attribute exists because the company 
prefers to use its own ships when it can, or the ships of certain other companies with which it has 
favorable contracts. The "is preferred" attribute is used to bias the Router toward these favored 
transports. This attribute has nothing to do with "Capability." It is a policy that directs decision 
making. To use the new RESPONSIBILITY LAYERS , the model will have to be refactored. 

Figure 16.7. Refactoring the model to conform to the new layering structure 



 

This factoring makes the Route Bias Policy more explicit while making Transport Leg more 
focused on the fundamental concept of transportation capability. A large-scale structure based on a 
deep understanding of the domain will often push the model in directions that clarify its meaning. 

This new model now smoothly fits into the large-scale structure. 

Figure 16.8. The restructured and refactored model 

 



A developer accustomed to the chosen layers can more readily discern the roles and dependencies 
of the parts. The value of the large-scale structure increases as the complexity grows. 

Note that although I'm illustrating this example with a modified UML diagram, the drawing is just 
a way of communicating the layering. UML doesn't include this notation, so this is additional 
information imposed for the sake of the reader. If code is the ultimate design document for your 
project, it would be helpful to have a tool for browsing classes by layer or at least for reporting 
them by layer. 

How Does This Structure Affect Ongoing Design? 

Once a large-scale structure has been adopted, subsequent modeling and design decisions must 
take it into account. To illustrate, suppose that we must add a new feature to this already layered 
design. The domain experts have just told us that routing restrictions apply for certain categories of 
hazardous materials. Certain materials may not be allowed on some transports or in some ports. 
We have to make the Router obey these regulations. 

There are many possible approaches. In the absence of a large-scale structure, one appealing 
design would be to give the responsibility of incorporating these routing rules to the object that 
owns the Route Specification and the Hazardous Material (HazMat) code—namely the Cargo . 

Figure 16.9. A possible design for routing hazardous cargo 

 

Figure 16.10. 



 

The trouble is, this design doesn't fit the large-scale structure. The HazMat Route Policy Service 
is not the problem; it fits neatly into the responsibility of the Decision Support layer. The problem 
is the dependency of Cargo (an Operational object) on HazMat Route Policy Service (a Decision 
Support object). As long as the project is committed to these layers, this model cannot be allowed. 
It would confuse developers who expected the structure to be followed. 

There are always many design possibilities, and we'll just have to choose another one—one that 
follows the rules of the large-scale structure. The HazMat Route Policy Service is all right, but 
we need to move the responsibility for using the policy. Let's try giving the Router the 
responsibility for collecting appropriate policies before searching for a route. This means changing 
the Router interface to include objects that policies might depend on. Here is a possible design. 

Figure 16.11. A design consistent with layering 



 

A typical interaction is shown in Figure 16.12 on the next page. 

Figure 16.12. 



 

Now, this isn't necessarily a better design than the other. They both have pros and cons. But if 
everyone on a project makes decisions in a consistent way, the design as a whole will be much 
more comprehensible, and that is worth some modest trade-offs on detailed design choices. 

If the structure is forcing many awkward design choices, then in keeping with EVOLVING ORDER , 
it should be evaluated and perhaps modified or even discarded. 

Choosing Appropriate Layers 

Finding good RESPONSIBILITY LAYERS , or any large-scale structure, is a matter of understanding 
the problem domain and experimenting. If you allow EVOLVING ORDER , the initial starting point 
is not critical, although a poor choice does add work. The structure may well evolve into 
something unrecognizable. So the guidelines suggested here should be applied when considering 
transformations of the structure as much as when choosing from scratch. 

As layers get switched out, merged, split, and redefined, here are some useful characteristics to 
look for and preserve. 

●     Storytelling . The layers should communicate the basic realities or priorities of the domain. 



Choosing a large-scale structure is less a technical decision than a business modeling 
decision. The layers should bring out the priorities of the business. 

●     Conceptual dependency . The concepts in the "upper" layers should have meaning against 
the backdrop of the "lower" layers, while the lower-layer concepts should be meaningful 
standing alone. 

●     C ONCEPTUAL CONTOURS . If the objects of different layers should have different rates of 
change or different sources of change, the layer accommodates the shearing between them. 

It isn't always necessary to start from scratch in defining layers for each new model. Certain layers 
show up in whole families of related domains. 

For example, in businesses based on exploiting large fixed capital assets, such as factories or cargo 
ships, logistical software can often be organized into a "Potential" layer (another name for the 
"Capability" layer in the example) and an "Operations" layer. 

●     Potential . What can be done? Never mind what we are planning to do. What could we do? 
The resources of the organization, including its people, and the way those resources are 
organized are the core of the Potential layer. Contracts with vendors also define potentials. 
This layer could be recognized in almost any business domain, but it is a prominent part of 
the story in those businesses, such as transportation and manufacturing, that have relatively 
large fixed capital investments that enable the business. Potential includes transient assets 
as well, but a business driven primarily by transient assets might choose layers that 
emphasize this, as discussed later. (This layer was called " Capability " in the example.) 

●     Operation . What is being done? What have we managed to make of those potentials? Like 
the Potential layer, this layer should reflect the reality of the situation, rather than what we 
want it to be. In this layer we are trying to see our own efforts and activities: What we are 
selling, rather than what enables us to sell. It is very typical of Operational objects to 
reference or even be composed of Potential objects, but a Potential object shouldn't 
reference the Operations layer. 

In many, perhaps most, existing systems in domains of this kind, these two layers cover everything 
(although there could be some entirely different and more revealing breakdown). They track the 
current situation and active operational plans and issue reports or documents about it. But tracking 
is not always enough. When projects seek to guide or assist users, or to automate decision making, 
there is an additional set of responsibilities that can be organized into another layer, above 
Operations. 

●     Decision Support . What action should be taken or what policy should be set? This layer is 
for analysis and decision making. It bases its analysis on information from lower layers, 



such as Potential or Operations. Decision Support software may use historical information 
to actively seek opportunities for current and future operations. 

Decision Support systems have conceptual dependencies on other layers such as Operations or 
Potential because decisions aren't made in a vacuum. A lot of projects implement Decision Support 
using data warehouse technology. The layer becomes a distinct BOUNDED CONTEXT , with a 
CUSTOMER/SUPPLIER relationship with the Operations software. In other projects, it is more 
deeply integrated, as in the preceding extended example. And one of the intrinsic advantages of 
layers is that the lower layers can exist without the higher ones. This can facilitate phased 
introductions or higher-level enhancements built on top of older operational systems. 

Another case is software that enforces elaborate business rules or legal requirements, which can 
constitute a RESPONSIBILITY LAYER . 

●     Policy . What are the rules and goals? Rules and goals are mostly passive, but constrain the 
behavior in other layers. Designing these interactions can be subtle. Sometimes a Policy is 
passed in as an argument to a lower level method. Sometimes the STRATEGY pattern is 
applied. Policy works well in conjunction with a Decision Support layer, which provides 
the means to seek the goals set by Policy, constrained by the rules set by Policy. 

Policy layers can be written in the same language as the other layers, but they are sometimes 
implemented using rules engines. This doesn't necessarily place them in a separate BOUNDED 
CONTEXT . In fact, the difficulty of coordinating such different implementation technologies can 
be eased by fastidiously using the same model across both. When rules are written based on a 
different model than the objects they apply to, either the complexity goes way up or the objects get 
dumbed down to keep things manageable. 

Figure 16.13. Conceptual dependencies and shearing points in a factory 
automation system 



 

Many businesses do not base their capability on plant and equipment. In financial services or 
insurance, to name two, the potential is to a large extent determined by current operations. An 
insurance company's ability to take on a new risk by underwriting a new policy agreement is based 
on the diversification of its current business. The Potential layer would probably merge into 
Operations, and a different layering would evolve. 

One area that often comes to the fore in these situations is commitments made to customers. 

●     Commitment . What have we promised? This layer has the nature of Policy, in that it states 
goals that direct future operations, but it has the nature of Operations in that commitments 
emerge and change as a part of ongoing business activity. 

Figure 16.14. Conceptual dependencies and shearing points in an investment 
banking system 



 

The Potential and Commitment layers are not mutually exclusive. A domain in which both are 
prominent, say a transportation company with a lot of custom shipping services, might use both. 
Other layers more specific to those domains might be useful too. Change things. Experiment. But 
it is best to keep the layering system simple; going beyond four or possibly five becomes 
unwieldy. Having too many layers isn't as effective at telling the story, and the problems of 
complexity the large-scale structure was meant to solve will come back in a new form. The large-
scale structure must be ferociously distilled. 

Although these five layers are applicable to a range of enterprise systems, they do not capture the 
salient responsibilities of all domains. In other cases, it would be counterproductive to try to force 
the design into this shape, but there may be a natural set of RESPONSIBILITY LAYERS that do work. 
For a domain completely unrelated to those we've discussed, these layers might have to be 
completely original. Ultimately, you have to use your intuition, start somewhere, and let the 
ORDER EVOLVE . 
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Chapter Sixteen.  Large-Scale Structure 

Knowledge Level 

 

[A KNOWLEDGE LEVEL is] a group of objects that describes how another group 
of objects should behave. [Martin Fowler, "Accountability," www.martinfowler.com 
] 

K NOWLEDGE LEVEL untangles things when we need to let some part of the model itself be plastic 
in the user's hands yet constrained by a broader set of rules. It addresses requirements for software 
with configurable behavior, in which the roles and relationships among ENTITIES must be changed 
at installation or even at runtime. 

In Analysis Patterns ( Fowler 1996 , pp. 24–27), the pattern emerges from a discussion of 
modeling accountability within organizations, and it is later applied to posting rules in accounting. 
Although the pattern appears in several chapters, it doesn't have a chapter of its own because it is 
different from most patterns in the book. Rather than modeling a domain, as the other analysis 
patterns do, KNOWLEDGE LEVEL structures a model. 

To see the problem concretely, consider models of "accountability." Organizations are made up of 
people and smaller organizations, and define the roles they play and the relationships between 
them. The rules governing those roles and relationships vary greatly for different organizations. At 
one company, a "department" might be headed by a "Director" who reports to a "Vice President." 
In another company, a "module" is headed by a "Manager" who reports to a "Senior Manager." 
Then there are "matrix" organizations, in which each person reports to different managers for 
different purposes. 

A typical application would make some assumptions. When those didn't fit, users would start to 
use data-entry fields in a different way than they were intended. Any behavior the application had 
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would misfire, as the semantics were changed by the users. Users would develop workarounds for 
the behavior, or would get the higher level features of the application shut off. They would be 
forced to learn complicated mappings between what they did in their jobs and the way the software 
works. They would never be served well. 

When the system had to be changed or replaced, developers would discover (sooner or later) that 
the meanings of the features were not what they seemed. They might mean very different things in 
different user communities or in different situations. Changing anything without breaking these 
overlaid usages would be daunting. Data migration to a more tailored system would require 
understanding and coding for all those quirks. 

Example 
Employee Payroll and Pension, Part 1 

The HR department of a medium-sized company has a simple program for calculating payroll and 
pension contributions. 

Figure 16.15. The old model, overconstrained for new requirements 

 



Figure 16.16. Some employees represented using the old model 

 

But now, the management has decided that the office administrators should go into the "defined 
benefit" retirement plan. The trouble is that office administrators are paid hourly, and this model 
does not allow mixing. The model will have to change. 

The next model proposal is quite simple: just remove the constraints. 

Figure 16.17. The proposed model, now underconstrained 

 

Figure 16.18. Employees can be associated with the wrong plan. 



 

This model allows each employee to be associated with either kind of retirement plan, so each 
office administrator can be switched. This model is rejected by management because it does not 
reflect company policy. Some administrators could be switched and others not. Or the janitor could 
be switched. Management wants a model that enforces the policy: 

Office administrators are hourly employees with defined-benefit retirement plans. 

This policy suggests that the "job title" field now represents an important domain concept. 
Developers could refactor to make that concept explicit as an " Employee Type ." 

Figure 16.19. The Type object allows requirements to be met. 

 

Figure 16.20. Each Employee Type is assigned a Retirement Plan . 



 

The requirements can be stated in the UBIQUITOUS LANGUAGE as follows: 

An Employee Type is assigned to either Retirement Plan or either payroll. 

Employees are constrained by the Employee Type . 

Access to edit the Employee Type object will be restricted to a "superuser," who will make 
changes only when company policy changes. An ordinary user in the personnel department can 
change Employees or point them at a different Employee Type . 

This model satisfies the requirements. The developers sense an implicit concept or two, but it is 
just a nagging feeling at the moment. They don't have any solid ideas to pursue, so they call it a 
day. 

A static model can cause problems. But problems can be just as bad with a fully flexible system 
that allows any possible relationship to be presented. Such a system would be inconvenient to use 
and wouldn't allow the organization's own rules to be enforced. 

Fully customizing software for each organization is not practical because, even if each 
organization could pay for custom software, the organizational structure will likely change 
frequently. 

So such software must provide options to allow the user to configure it to reflect the current 
structure of the organization. The trouble is that adding such options to the model objects makes 
them unwieldy. The more flexibility you add, the more complex it all becomes. 

In an application in which the roles and relationships between ENTITIES vary in different 
situations, complexity can explode. Neither fully general models nor highly customized ones 
serve the users' needs. Objects end up with references to other types to cover a variety of 
cases, or with attributes that are used in different ways in different situations. Classes that 
have the same data and behavior may multiply just to accommodate different assembly 
rules. 

Nestled into our model is another model that is about our model. A KNOWLEDGE LEVEL separates 



that self-defining aspect of the model and makes its constraints explicit. 

K NOWLEDGE LEVEL is an application to the domain layer of the REFLECTION pattern, used in 
many software architectures and technical infrastructures and described well in Buschmann et al. 
1996 . R EFLECTION accommodates changing needs by making the software "self-aware," and 
making selected aspects of its structure and behavior accessible for adaptation and change. This is 
done by splitting the software into a "base level," which carries the operational responsibility for 
the application, and a "meta level," which represents knowledge of the structure and behavior of 
the software. 

Significantly, the pattern is not called a knowledge "layer." As much as it resembles layering, 
REFLECTION involves mutual dependencies running in both directions. 

Java has some minimal built-in REFLECTION in the form of protocols for interrogating a class for 
its methods and so forth. Such mechanisms allow a program to ask questions about its own design. 
CORBA has somewhat more extensive but similar REFLECTION protocols. Some persistence 
technologies extend the richness of that self-description to support partially automated mapping 
between database tables and objects. There are other technical examples. This pattern can also be 
applied within the domain layer. 

The KNOWLEDGE LEVEL provides two useful distinctions. First, it focuses on the application 
domain, in contrast to familiar applications of REFLECTION . Second, it does not strive for full 
generality. Just as a SPECIFICATION can be more useful than a general predicate, a very specialized 
set of constraints on a set of objects and their relationships can be more useful than a generalized 
framework. The KNOWLEDGE LEVEL is simpler and can communicate the specific intent of the 
designer. 

Fowler Terminology POSA Terminology [2] 

Knowledge Level Meta Level 

Operations Level Base Level 

[2] POSA is short for Pattern-Oriented Software Architecture , by Buschmann et al. 1996 . 

Comparing the terminology of KNOWLEDGE LEVEL and REFLECTION 
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Just to be clear, the reflection tools of the programming language are not for use in implementing 
the KNOWLEDGE LEVEL of a domain model. Those meta-objects describe the structure and 
behavior of the language constructs themselves. Instead, the KNOWLEDGE LEVEL must be built of 
ordinary objects. 

The KNOWLEDGE LEVEL provides two useful distinctions. First, it focuses on the application 
domain, in contrast to familiar uses of REFLECTION . Second, it does not strive for full generality. 
Just as a SPECIFICATION can be more useful than a general predicate, a very specialized set of 
constraints on a set of objects and their relationships can be more useful than a generalized 
framework. The KNOWLEDGE LEVEL is simpler and can communicate the specific intent of the 
designer. 

Therefore: 

Create a distinct set of objects that can be used to describe and constrain the structure and 
behavior of the basic model. Keep these concerns separate as two "levels," one very concrete, 
the other reflecting rules and knowledge that a user or superuser is able to customize. 

Like all powerful ideas, REFLECTION and KNOWLEDGE LEVELS can be intoxicating. This pattern 
should be used sparingly. It can unravel complexity by freeing operations objects from the need to 
be jacks-of-all-trades, but the indirection it introduces does add some of that obscurity back in. If 
the KNOWLEDGE LEVEL becomes complex, the system's behavior becomes hard to understand for 
developers and users alike. The users (or superuser) who configure it will end up needing the skills 
of a programmer—and a meta-level programmer at that. If they make mistakes, the application 
will behave incorrectly. 

Also, the basic problems of data migration don't completely disappear. When a structure in the 
KNOWLEDGE LEVEL is changed, existing operations-level objects have to be dealt with. It may be 
possible for old and new to coexist, but one way or another, careful analysis is needed. 

All of these issues put a major burden on the designer of a KNOWLEDGE LEVEL . The design has to 
be robust enough to handle not only the scenarios presented in development, but also any scenario 
for which a user could configure the software in the future. Applied judiciously, to the points 
where customization is crucial and would otherwise distort the design, KNOWLEDGE LEVELS can 
solve problems that are very hard to handle any other way. 

Example 
Employee Payroll and Pension, Part 2: K NOWLEDGE L EVEL 

Our team members are back, and, refreshed from a night's sleep, one of them has started to close in 
on one of the awkward points. Why were certain objects being secured while others were freely 
edited? The cluster of restricted objects reminded him of the KNOWLEDGE LEVEL pattern, and he 



decided to try it as a way of viewing the model. He found that the existing model could already be 
viewed this way. 

Figure 16.21. Recognizing the KNOWLEDGE LEVEL implicit in the existing model 

 

The restricted edits were in the KNOWLEDGE LEVEL , while the day-to-day edits were in the 
operational level. A nice fit. All the objects above the line described types or longstanding policies. 
The Employee Type effectively imposed behavior on the Employee . 

The developer was sharing his insight with his colleagues when one of the other developers had 
another insight. The clarity of seeing the model organized by KNOWLEDGE LEVEL had let her spot 
what had been bothering her the previous day. Two distinct concepts were being combined in the 
same object. She had heard it in the language used on the previous day but hadn't put her finger on 
it: 

An Employee Type is assigned to either Retirement Plan or either payroll. 

But that was not really a statement in the UBIQUITOUS LANGUAGE . There was no "payroll" in the 
model. They had spoken in the language they wanted , rather than the one they had. The concept of 
payroll was implicit in the model, lumped together with Employee Type . It hadn't been so 
obvious before the KNOWLEDGE LEVEL was separated out, and the very elements in that key 
phrase all appeared in the same level together . . . except one. 

Based on this insight, she refactored again to a model that does support that statement. 

The need for user control of the rules for associating objects drove the team to a model that had an 
implicit KNOWLEDGE LEVEL . 



Figure 16.22. Payroll is now explicit, distinct from Employee Type . 

 

Figure 16.23. Each Employee Type now has a Retirement Plan and a Payroll . 

 

K NOWLEDGE LEVEL was hinted at by the characteristic access restrictions and a "thing-thing" 
type relationship. Once it was in place, the clarity it afforded helped produce another insight that 
disentangled two important domain concepts by factoring out Payroll . 

K NOWLEDGE LEVEL , like other large-scale structures, isn't strictly necessary. The objects will 
still work without it, and the insight that separated Employee Type from Payroll could still have 
been found and used. There may come a time when this structure doesn't seem to be pulling its 
weight and can be dropped. But for now, it seems to tell a useful story about the system and helps 
developers grapple with the model. 



   

At first glance, KNOWLEDGE LEVEL looks like a special case of RESPONSIBILITY LAYERS , 
especially the "policy" layer, but it is not. For one thing, dependencies run in both directions 
between the levels, but with LAYERS , lower layers are independent of upper layers. 

In fact, KNOWLEDGE LEVEL can coexist with most other large-scale structures, providing an 
additional dimension of organization. 
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Chapter Sixteen.  Large-Scale Structure 

Pluggable Component Framework 

Opportunities arise in a very mature model that is deep and distilled. A PLUGGABLE COMPONENT 
FRAMEWORK usually only comes into play after a few applications have already been 
implemented in the same domain. 

   

When a variety of applications have to interoperate, all based on the same abstractions but 
designed independently, translations between multiple BOUNDED CONTEXTS limit 
integration. A SHARED KERNEL is not feasible for teams that do not work closely together. 
Duplication and fragmentation raise costs of development and installation, and 
interoperability becomes very difficult. 

Some successful projects break down their design into components, each with responsibility for 
certain categories of functions. Usually all the components plug into a central hub, which supports 
any protocols they need and knows how to talk to the interfaces they provide. Other patterns of 
connecting components are also possible. The design of these interfaces and the hub that connects 
them must be coordinated, while more independence is possible designing the interiors. 

Several widely used technical frameworks support this pattern, but that is a secondary issue. A 
technical framework is needed only if it solves some essential technical problem such as 
distribution, or sharing a component among different applications. The basic pattern is a 
conceptual organization of responsibilities. It can easily be applied within a single Java program. 

Therefore: 

Distill an ABSTRACT CORE of interfaces and interactions and create a framework that allows 
diverse implementations of those interfaces to be freely substituted. Likewise, allow any 
application to use those components, so long as it operates strictly through the interfaces of 
the ABSTRACT CORE . 

High-level abstractions are identified and shared across the breadth of the system; specialization 
occurs in MODULES . The central hub of the application is an ABSTRACT CORE within a SHARED 
KERNEL . But multiple BOUNDED CONTEXTS can lie behind the encapsulated component 



interfaces, so that this structure can be especially convenient when many components are coming 
from many different sources, or when components are encapsulating preexisting software for 
integration. 

This is not to say that components must have divergent models. Multiple components can be 
developed within a single CONTEXT if the teams CONTINUOUSLY INTEGRATE , or they can define 
another SHARED KERNEL held in common by a closely related set of components. All these 
strategies can coexist easily within a large-scale structure of PLUGGABLE COMPONENTS . Another 
option, in some cases, is to use a PUBLISHED LANGUAGE for the plug-in interface of the hub. 

There are a few downsides to a PLUGGABLE COMPONENT FRAMEWORK . One is that this is a very 
difficult pattern to apply. It requires precision in the design of the interfaces and a deep enough 
model to capture the necessary behavior in the ABSTRACT CORE . Another major downside is that 
applications have limited options. If an application needs a very different approach to the CORE 
DOMAIN , the structure will get in the way. Developers can specialize the model, but they can't 
change the ABSTRACT CORE without changing the protocol of all the diverse components. As a 
result, the process of continuous refinement of the CORE , refactoring toward deeper insight, is 
more or less frozen in its tracks. 

Fayad and Johnson (2000) give a good look at ambitious attempts at PLUGGABLE COMPONENT 
FRAMEWORKS in several domains, including a discussion of SEMATECH CIM. The success of 
such frameworks is a mixed story. Probably the biggest obstacle is the maturity of understanding 
needed to design a useful framework. A PLUGGABLE COMPONENT FRAMEWORK should not be the 
first large-scale structure applied on a project, nor the second. The most successful examples have 
followed after the full development of multiple specialized applications. 

Example 
The SEMATECH CIM Framework 

In a factory producing computer chips, groups (called lots ) of silicon wafers are moved from one 
machine to another through hundreds of steps of processing until the microscopic circuitry being 
printed and etched into them is complete. The factory needs software that can track each individual 
lot, recording the exact processing that has been done to it, and then direct either factory workers 
or automated equipment to take it to the next appropriate machine and apply the next appropriate 
process. Such software is called a manufacturing execution system (MES). 

Hundreds of different machines from dozens of vendors are used, with carefully tailored recipes at 
each step of the way. Developing MES software that could deal with such a complex mix was 
daunting and prohibitively expensive. In response, an industry consortium, SEMATECH, 
developed the CIM Framework. 

The CIM Framework is big and complicated and has many aspects, but two are relevant here. 
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First, the framework defines abstract interfaces for the basic concepts of the semiconductor MES 
domain—in other words, the CORE DOMAIN in the form of an ABSTRACT CORE . These interface 
definitions include both behavior and semantics. 

Figure 16.24. A highly simplified subset of the CIM interfaces, with sample 
implementations 

 

If a vendor produces a new machine, they have to develop a specialized implementation of the 
Process Machine interface. If they adhere to that interface, their machine-control component 
should plug into any application based on the CIM Framework. 

Having defined these interfaces, SEMATECH defined the rules by which they could interact in an 
application. Any application based on the CIM Framework would have to implement a protocol 
that hosted objects implementing some subset of those interfaces. If this protocol were 
implemented, and the application strictly observed the abstract interfaces, then the application 
could count on the promised services of those interfaces, regardless of implementation. The 
combination of those interfaces and the protocol for using them constitutes a tightly restrictive 
large-scale structure. 

Figure 16.25. The user places a lot in the next machine and logs the move into the 
computer. 



 

The framework has very specific infrastructure requirements. It is tightly coupled to CORBA to 
provide persistence, transactions, events, and other technical services. But the interesting thing 
about it is the definition of a PLUGGABLE COMPONENT FRAMEWORK , which allows people to 
develop software independently and smoothly integrate them into immense systems. No one 
knows all the details of such a system, but everyone understands an overview. 

   

How can thousands of people work independently to create a quilt of more than 40,000 panels? 

A few simple rules provide a large-scale structure for the AIDS Memorial Quilt, leaving the details 
to individual contributors. Notice how the rules focus on the overall mission (memorializing 
people who have died of AIDS), the features of a component that make integration practical, and 
the ability to handle the quilt in larger sections (such as folding it). 

Here's How to Create a Panel for the Quilt 

[From the AIDS Memorial Quilt Project Web site, www.aidsquilt.org ] 

Design the panel 

Include the name of the person you are remembering. Feel free to include additional 
information such as the dates of birth and death, and a hometown. . . . [P]lease limit 

http://www.aidsquilt.org/


each panel to one individual . . . . 

Choose your materials 

Remember that the Quilt is folded and unfolded many times, so durability is crucial. 
Since glue deteriorates with time, it is best to sew things to the panel. A medium-
weight, non-stretch fabric such as a cotton duck or poplin works best. 

Your design can be vertical or horizontal, but the finished, hemmed panel must be 3 
feet by 6 feet (90 cm x 180 cm)—no more and no less! When you cut the fabric, leave 
an extra 2–3 inches on each side for a hem. If you can't hem it yourself, we'll do it for 
you. Batting for the panels is not necessary, but backing is recommended. Backing 
helps to keep panels clean when they are laid out on the ground. It also helps retain 
the shape of the fabric. 

Create the panel 

In constructing your panel you might want to use some of the following techniques: 

●     Appliqué: Sew fabric, letters and small mementos onto the background fabric. 
Do not rely on glue—it won't last. 

●     Paint: Brush on textile paint or color-fast dye, or use an indelible ink pen. 
Please don't use "puffy" paint; it's too sticky. 

●     Stencil: Trace your design onto the fabric with a pencil, lift the stencil, then 
use a brush to apply textile paint or indelible markers. 

●     Collage: Make sure that whatever materials you add to the panel won't tear the 
fabric (avoid glass and sequins for this reason), and be sure to avoid very 
bulky objects. 

●     Photos: The best way to include photos or letters is to photocopy them onto 
iron-on transfers, iron them onto 100% cotton fabric and sew that fabric to the 
panel. You may also put the photo in clear plastic vinyl and sew it to the panel 
(off-center so it avoids the fold). 
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Chapter Sixteen.  Large-Scale Structure 

How Restrictive Should a Structure Be? 

The large-scale structure patterns discussed in this chapter range from the very loose SYSTEM 
METAPHOR to the restrictive PLUGGABLE COMPONENT FRAMEWORK . Other structures are 
possible, of course, and even within a general structural pattern, there is a lot of choice about how 
restrictive to make the rules. 

For example, RESPONSIBILITY LAYERS dictate a kind of factoring of model concepts and their 
dependencies, but you could add rules that would specify communication patterns between the 
layers. 

Consider a manufacturing plant where software directs each part to a machine where it is 
processed according to some recipe. The correct process is ordered from a Policy layer and 
executed in an Operations layer. But inevitably there will be mistakes made on the factory floor. 
The actual situation will not be consistent with the rules of the software. Now, an Operations layer 
must reflect the world as it is , which means that when a part is occasionally put in the wrong 
machine, that information must be accepted unconditionally. Somehow, this exceptional condition 
needs to be communicated to a higher layer. A decision-making layer can then use other policies to 
correct the situation, perhaps by rerouting the part to a repair process or by scrapping it. But 
Operations does not know anything about higher layers. The communication has to be done in a 
way that doesn't create two-way dependencies from the lower layers to the higher ones. 

Typically, this signaling would be done through some kind of event mechanism. The Operations 
objects would generate events whenever their state changed. Policy layer objects would listen for 
events of interest from the lower layers. When an event occurred that violated a rule, the rule 
would execute an action (part of the rule's definition) that makes the appropriate response, or it 
might generate an event for the benefit of some still higher layer. 

In the banking example, the values of assets change (Operations), shifting the values of segments 
of a portfolio. When these values exceed portfolio allocation limits (Policy), perhaps a trader is 
alerted, who can buy or sell assets to redress the balance. 

We could figure this out on a case-by-case basis, or we could decide on a consistent pattern for 
everyone to follow in interactions of objects of particular layers. A more restrictive structure 
increases uniformity, making the design easier to interpret. If the structure fits, the rules are likely 
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to push developers toward good designs. Disparate pieces are likely to fit together better. 

On the other hand, the restrictions may take away flexibility that developers need. Very particular 
communication paths might be impractical to apply across BOUNDED CONTEXTS , especially in 
different implementation technologies, in a heterogeneous system. 

So you have to fight the temptation to build frameworks and regiment the implementation of the 
large-scale structure. The most important contribution of the large-scale structure is conceptual 
coherence, and giving insight into the domain. Each structural rule should make development 
easier. 
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Chapter Sixteen.  Large-Scale Structure 

Refactoring Toward a Fitting Structure 

In an era when the industry is shaking off excessive up-front design, some will see large-scale 
structure as a throwback to the bad old days of waterfall architecture. But in fact, the only way a 
useful structure can be found is from a very deep understanding of the domain and the problem, 
and the practical way to that understanding is an iterative development process. 

A team committed to EVOLVING ORDER must fearlessly rethink the large-scale structure 
throughout the project life cycle. The team should not saddle itself with a structure conceived of 
early on, when no one understood the domain or the requirements very well. 

Unfortunately, that evolution means that your final structure will not be available at the start, and 
that means that you will have to refactor to impose it as you go along. This can be expensive and 
difficult, but it is necessary . There are some general ways of controlling the cost and maximizing 
the gain. 

Minimalism 

One key to keeping the cost down is to keep the structure simple and lightweight. Don't attempt to 
be comprehensive. Just address the most serious concerns and leave the rest to be handled on a 
case-by-case basis. 

Early on, it can be helpful to choose a loose structure, such as a SYSTEM METAPHOR or a couple of 
RESPONSIBILITY LAYERS . A minimal, loose structure can nonetheless provide lightweight 
guidelines that will help prevent chaos. 

Communication and Self-Discipline 

The entire team must follow the structure in new development and refactoring. To do this, the 
structure must be understood by the entire team. The terminology and relationships must enter the 
UBIQUITOUS LANGUAGE . 

Large-scale structure can provide a vocabulary for the project to deal with the system broadly, and 
for different people independently to make harmonious decisions. But because most large-scale 
structures are loose conceptual guidelines, the teams must exercise self-discipline. 
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Without consistent adherence by the many people involved, structures have a tendency to decay. 
The relationship of the structure to detailed parts of the model or implementation is not usually 
explicit in the code, and functional tests do not rely on the structure. Plus, the structure tends to be 
abstract, so that consistency of application can be difficult to maintain across a large team (or 
multiple teams). 

The kinds of conversations that take place on most teams are not enough to maintain a consistent 
large-scale structure in a system. It is critical to incorporate it into the UBIQUITOUS LANGUAGE of 
the project, and for everyone to exercise that language relentlessly. 

Restructuring Yields Supple Design 

Second, any change to the structure may lead to a lot of refactoring. The structure is evolving as 
system complexity increases and understanding deepens. Each time the structure changes, the 
entire system has to be changed to adhere to the new order. Obviously that is a lot of work. 

This isn't quite as bad as it sounds. I've observed that a design with a large-scale structure is 
usually much easier to transform than one without. This seems to be true even when changing 
from one kind of structure to another, say from METAPHOR to LAYERS . I can't entirely explain 
this. Part of the answer is that it is easier to rearrange something when you can understand its 
current arrangement, and the preexisting structure makes that easier. Partly it is that the discipline 
that it took to maintain the earlier structure permeates all aspects of the system. But there is 
something more, I think, because it is even easier to change a system that has had two previous 
structures. 

A new leather jacket is stiff and uncomfortable, but after the first day of wear the elbows have 
flexed a few times and are becoming easier to bend. After a few more wearings, the shoulders have 
loosened up, and the jacket is easier to put on. After months of wear, the leather becomes supple 
and is comfortable and easy to move in. So it seems to be with models that are transformed 
repeatedly with sound transformations. Ever-increasing knowledge is embedded into them and the 
principal axes of change have been identified and made flexible, while stable aspects have been 
simplified. The broader CONCEPTUAL CONTOURS of the underlying domain are emerging in the 
model structure. 

Distillation Lightens the Load 

Another crucial force that should be applied to the model is continuous distillation. This reduces 
the difficulty of changing the structure in various ways. First, by removing mechanisms, GENERIC 
SUBDOMAINS , and other support structure from the CORE DOMAIN , there may simply be less to 
restructure. 



If possible, these supporting elements should be defined to fit into the large-scale structure in a 
simple way. For example, in a system of RESPONSIBILITY LAYERS , a GENERIC SUBDOMAIN 
could be defined in such a way that it would fit within a single layer. With PLUGGABLE 
COMPONENTS , a GENERIC SUBDOMAIN could be owned entirely by a single component, or it 
could be a SHARED KERNEL among a set of related components. These supporting elements may 
have to be refactored to find their place in the structure; but they move independently of the CORE 
DOMAIN , and tend to be more narrowly focused, which makes it easier. And ultimately they are 
less critical, so refinement matters less. 

The principles of distillation and refactoring toward deeper insight apply even to the large-scale 
structure itself. For example, the layers may initially be chosen based on a superficial 
understanding of the domain; they are gradually replaced with deeper abstractions that express the 
fundamental responsibilities of the system. This sharpedged clarity lets people see deep into the 
design, which is the goal. It is also part of the means, as it makes manipulation of the system on a 
large scale easier and safer. 
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Part IV:  Strategic Design 

Chapter Seventeen. Bringing the Strategy Together 
The preceding three chapters presented many principles and techniques for domain-driven strategic 
design. In a large, complex system, you may need to bring several of them to bear on the same 
design. How does a large-scale structure coexist with a CONTEXT MAP ? Where do the building 
blocks fit in? What do you do first? Second? Third? How do you go about devising your strategy? 

       

Top 

  

file:///E|/books/0-321-12521-5/20061533.htm
file:///E|/books/0-321-12521-5/20061533.htm


       

Chapter Seventeen.  Bringing the Strategy Together 

Combining Large-Scale Structures and B OUNDED C 
ONTEXTS 

Figure 17.1. 

 

The three basic principles of strategic design (context, distillation, and large-scale structure) are 
not substitutes for each other; they are complementary and interact in many ways. For example, a 
large-scale structure can exist within one BOUNDED CONTEXT, or it can cut across many of them 
and organize the CONTEXT MAP . 
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The previous examples of RESPONSIBILITY LAYERS were confined to one BOUNDED CONTEXT . 
This is the easiest way to explain the idea, and it's a common use of the pattern. In such a simple 
scenario, the meanings of layer names are restricted to that CONTEXT , as are the names of model 
elements or subsystem interfaces that exist within that CONTEXT . 

Figure 17.2. Structuring a model within a single BOUNDED CONTEXT 

 

Such a local structure can be useful in a very complicated but unified model, raising the 
complexity ceiling on how much can be maintained in a single BOUNDED CONTEXT . 

But on many projects, the greater challenge is to understand how disparate parts fit together. They 
may be partitioned into separate CONTEXTS , but what part does each play in the whole integrated 
system and how do the parts relate to each other? Then the large-scale structure can be used to 
organize the CONTEXT MAP . In this case, the terminology of the structure applies to the whole 
project (or at least some clearly bounded part of it). 

Figure 17.3. Structure imposed on the relationships of components of distinct 
BOUNDED CONTEXTS 



 

Suppose you want to adopt RESPONSIBILITY LAYERS , but you have a legacy system whose 
organization is inconsistent with your desired large-scale structure. Do you have to give up your 
LAYERS ? No, but you have to acknowledge the actual place the legacy has within the structure. In 
fact, it may help to characterize the legacy. The SERVICES the legacy provides may in fact be 
confined to only a few LAYERS . To be able to say that the legacy system fits within particular 
RESPONSIBILITY LAYERS concisely describes a key aspect of its scope and role. 

Figure 17.4. A structure that allows some components to span layers 



 

If the legacy subsystem's capabilities are being accessed through a FACADE , you may be able to 
design each SERVICE offered by the FACADE to fit within one layer. 

The interior of the Shipping Coordination application, being a legacy in this example, is presented 
as an undifferentiated mass. But a team on a project with a well-established large-scale structure 
spanning the CONTEXT MAP could choose, within their CONTEXT , to order their model by the 
same familiar LAYERS . 

Figure 17.5. The same structure applied within a CONTEXT and across the CONTEXT 
MAP as a whole 



 

Of course, because each BOUNDED CONTEXT is its own name space, one structure could be used to 
organize the model within one CONTEXT , while another was used in a neighboring CONTEXT , and 
still another organized the CONTEXT MAP . However, going too far down that path can erode the 
value of the large-scale structure as a unifying set of concepts for the project. 

       

Top 

  

file:///E|/books/0-321-12521-5/20061533.htm


       

Chapter Seventeen.  Bringing the Strategy Together 

Combining Large-Scale Structures and Distillation 

The concepts of large-scale structure and distillation also complement each other. The large-scale 
structure can help explain the relationships within the CORE DOMAIN and between GENERIC 
SUBDOMAINS . 

Figure 17.6. M ODULES of the CORE DOMAIN ( in bold ) and GENERIC SUBDOMAINS are 
clarified by the layers. 
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At the same time, the large-scale structure itself may be an important part of the CORE DOMAIN . 
For example, distinguishing the layering of potential, operations, policy, and decision support 
distills an insight that is fundamental to the business problem addressed by the software. This 
insight is especially useful if a project is carved up into many BOUNDED CONTEXTS , so that the 
model objects of the CORE DOMAIN don't have meaning over much of the project. 
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Chapter Seventeen.  Bringing the Strategy Together 

Assessment First 

When you are tackling strategic design on a project, you need to start from a clear assessment of 
the current situation. 

1.  Draw a CONTEXT MAP . Can you draw a consistent one, or are there ambiguous situations? 

2.  Attend to the use of language on the project. Is there a UBIQUITOUS LANGUAGE ? Is it rich 
enough to help development? 

3.  Understand what is important. Is the CORE DOMAIN identified? Is there a DOMAIN VISION 
STATEMENT ? Can you write one? 

4.  Does the technology of the project work for or against a MODEL-DRIVEN DESIGN ? 

5.  Do the developers on the team have the necessary technical skills? 

6.  Are the developers knowledgeable about the domain? Are they interested in the domain? 

You won't find perfect answers, of course. You know less about this project right now than you 
ever will in the future. But these questions give you a solid starting point. By the time you have 
specific initial answers to these questions, you'll have started getting insight into what most 
urgently needs to be done. As time goes along, you can refine the answers—especially the 
CONTEXT MAP, DOMAIN VISION STATEMENT , and any other artifacts you've created—to reflect 
changed situations and new insights. 
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Chapter Seventeen.  Bringing the Strategy Together 

Who Sets the Strategy? 

Traditionally, architecture is handed down, created before application development begins, by a 
team that has more power in the organization than the application development team. But it doesn't 
have to be that way. That way doesn't usually work very well. 

Strategic design, by definition, must apply across the project. There are many ways to organize a 
project, and I don't want to be too prescriptive. However, for any decision-making process to be 
effective, some fundamentals are required. 

First, let's take a quick look at two styles that I've seen provide some value in practice (thus 
ignoring the old "wisdom-from-on-high" style). 

Emergent Structure from Application Development 

A self-disciplined team made up of very good communicators can operate without central 
authority and follow EVOLVING ORDER to arrive at a shared set of principles, so that order grows 
organically, not by fiat. 

This is the typical model for an Extreme Programming team. In theory, the structure may emerge 
completely spontaneously from the insight of any programming pair. More often, having an 
individual or a subset of the team with some oversight responsibility for large-scale structure helps 
keep the structure unified. This approach works well particularly if such an informal leader is a 
hands-on developer—an arbiter and communicator, and not the sole source of ideas. On the 
Extreme Programming teams I have seen, such strategic design leadership seems to have emerged 
spontaneously, often in the person of the coach. Whoever this natural leader is, he or she is still a 
member of the development team. It follows that the development team must have at least a few 
people of the caliber to make design decisions that are going to affect the whole project. 

When a large-scale structure spans multiple teams, closely affiliated teams may begin to 
collaborate informally. In such a situation, each application team still makes the discoveries that 
lead to the idea for a large-scale structure, but then particular options are discussed by the informal 
committee, made up of representatives of the various teams. After assessing the impact of the 
design, participants may decide to adopt it, modify it, or leave it on the table. The teams attempt to 
move together in this loose affiliation. This arrangement can work when there are relatively few 



teams, when they are all committed to coordinating with each other, when their design capabilities 
are comparable, and when their structural needs are similar enough to be met by a single large-
scale structure. 

A Customer Focused Architecture Team 

When a strategy will be shared among several teams, some centralization of decision making does 
seem attractive. The failed model of the ivory tower architect is not the only possibility. An 
architecture team can act as a peer with various application teams, helping to coordinate and 
harmonize their large-scale structures as well as BOUNDED CONTEXT boundaries and other cross-
team technical issues. To be useful in this, they must have a mind set that emphasizes application 
development. 

On an organization chart, this team may look just like the traditional architecture team, but it is 
actually different in every activity. Team members are true collaborators with development, 
discovering patterns along with the developers, experimenting with various teams to reach 
distillations, and getting their hands dirty. 

I have seen this scenario a couple of times, when a project ends up with a lead architect who does 
most of the things on the following list. 
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Chapter Seventeen.  Bringing the Strategy Together 

Six Essentials for Strategic Design Decision Making 

Decisions must reach the entire team 

Obviously, if everyone doesn't know the strategy and follow it, it is irrelevant. This requirement 
leads people to organize around centralized architecture teams with official "authority"—so that 
the same rules will be applied everywhere. Ironically, ivory tower architects are often ignored or 
bypassed. Developers have no choice when the architects' lack of feedback from hands-on attempts 
to apply their own rules to real applications results in impractical schemes. 

On a project with very good communication, a strategic design that emerges from the application 
team may actually reach everyone more effectively. The strategy will be relevant, and it will have 
the authority that attaches to intelligent community decisions. 

Whatever the system, be less concerned with the authority bestowed by management than with the 
actual relationship the developers have with the strategy. 

The decision process must absorb feedback 

Creating an organizing principle, large-scale structure, or distillation of such subtlety requires a 
really deep understanding of the needs of the project and the concepts of the domain. The only 
people who have that depth of knowledge are the members of the application development team. 
This explains why application architectures created by architecture teams are so seldom helpful, 
despite the undeniable talent of many of the architects. 

Unlike technical infrastructure and architectures, strategic design does not itself involve writing a 
lot of code, although it influences all development. What it does require is involvement with the 
application development teams. An experienced architect may be able to listen to ideas coming 
from various teams and facilitate the development of a generalized solution. 

One technical architecture team I worked with actually circulated its own members through the 
various application development teams that were attempting to use its framework. This rotation 
pulled into the architecture team the hands-on experience of the challenges facing the developers, 
while it simultaneously transferred the knowledge of how to apply the subtleties of the framework. 
Strategic design has this same need of a tight feedback loop. 
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The plan must allow for evolution 

Effective software development is a highly dynamic process. When the highest level of decisions 
is set in stone, the team has fewer options when it must respond to change. E VOLVING ORDER 
avoids this trap by emphasizing ongoing change to the large-scale structure in response to 
deepening insight. 

When too many design decisions are preordained, the development team can be hobbled, without 
the flexibility to solve the problems they are charged with. So, while a harmonizing principle can 
be valuable, it must grow and change with the ongoing life of the development project, and it must 
not take too much power away from the application developers, whose job is hard enough as it is. 

With strong feedback, innovations emerge as obstacles are encountered in building applications 
and as unexpected opportunities are discovered. 

Architecture teams must not siphon off all the best and brightest 

Design at this level calls for sophistication that is probably in short supply. Managers tend to move 
the most technically talented developers into architecture teams and infrastructure teams, because 
they want to leverage the skills of these advanced designers. For their part, the developers are 
attracted to the opportunity to have a broader impact or to work on "more interesting" problems. 
And there is prestige attached to being a member of an elite team. 

These forces often leave behind only the least technically sophisticated developers to actually 
build applications. But building good applications takes design skill; this is a setup for failure. 
Even if a strategy team creates a great strategic design, the application team won't have the design 
sophistication to follow it. 

Conversely, such teams almost never include the developer who perhaps has weaker design skills 
but who has the most extensive experience in the domain. Strategic design is not a purely technical 
task; cutting themselves off from developers with deep domain knowledge hobbles the architects' 
efforts further. And domain experts are needed too. 

It is essential to have strong designers on all application teams. It is essential to have domain 
knowledge on any team attempting strategic design. It may simply be necessary to hire more 
advanced designers. It may help to keep architecture teams part-time. I'm sure there are many ways 
that work, but any effective strategy team has to have as a partner an effective application team. 

Strategic design requires minimalism and humility 

Distillation and minimalism are essential to any good design work, but minimalism is even more 



critical for strategic design. Even the slightest ill fit has a terrible potential for getting in the way. 
Separate architecture teams have to be especially careful because they have less feel for the 
obstacles they might be placing in front of application teams. At the same time, the architects' 
enthusiasm for their primary responsibility makes them more likely to get carried away. I've seen 
this phenomenon many times, and I've even done it. One good idea leads to another, and we end 
up with an overbuilt architecture that is counterproductive. 

Instead, we have to discipline ourselves to produce organizing principles and core models that are 
pared down to contain nothing that does not significantly improve the clarity of the design. The 
truth is, almost everything gets in the way of something, so each element had better be worth it. 
Realizing that your best idea is likely to get in somebody's way takes humility. 

Objects are specialists; developers are generalists 

The essence of good object design is to give each object a clear and narrow responsibility and to 
reduce interdependence to an absolute minimum. Sometimes we try to make interactions on teams 
as tidy as they should be in our software. A good project has lots of people sticking their nose in 
other people's business. Developers play with frameworks. Architects write application code. 
Everyone talks to everyone. It is efficiently chaotic. Make the objects into specialists; let the 
developers be generalists. 

Because I've made the distinction between strategic design and other kinds of design to help 
clarify the tasks involved, I must point out that having two kinds of design activity does not mean 
having two kinds of people. Creating a supple design based on a deep model is an advanced design 
activity, but the details are so important that it has to be done by someone working with the code. 
Strategic design emerges out of application design, yet it requires a big-picture view of activity, 
possibly spanning multiple teams. People love to find ways to chop up tasks so that design experts 
don't have to know the business and domain experts don't have to understand technology. There is 
a limit to how much an individual can learn, but overspecialization takes the steam out of domain-
driven design. 

The Same Goes for the Technical Frameworks 

Technical frameworks can greatly accelerate application development, including the domain layer, 
by providing an infrastructure layer that frees the application from implementing basic services, 
and by helping to isolate the domain from other concerns. But there is a risk that an architecture 
can interfere with expressive implementations of the domain model and easy change . This can 
happen even when the framework designers had no intention of venturing into the domain or 
application layers. 

The same biases that limit the downside of strategic design can help with technical architecture. 
Evolution, minimalism, and involvement with the application development team can lead to a 
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continuously refined set of services and rules that genuinely help application development without 
getting in the way. Architectures that don't follow this path will either stifle the creativity of 
application development or will find their architecture circumvented, leaving application 
development, for practical purposes, with no architecture at all. 

There is one particular attitude that will surely ruin a framework. 

Don't write frameworks for dummies 

Team divisions that assume some developers are not smart enough to design are likely to fail 
because they underestimate the difficulty of application development. If those people are not smart 
enough to design, they shouldn't be assigned to develop software. If they are smart enough, then 
the attempts to coddle them will only put up barriers between them and the tools they need. 

This attitude also poisons the relationship between teams. I've ended up on arrogant teams like this 
and found myself apologizing to developers in every conversation, embarrassed by my association. 
(I've never managed to change such a team, I'm afraid.) 

Now, encapsulating irrelevant technical detail is completely different from the kind of 
prepackaging I'm disparaging. A framework can place powerful abstractions and tools in 
developers' hands and free them from drudgery. It is hard to describe the difference in a 
generalized way, but you can tell the difference by asking the framework designers what they 
expect of the person who will be using the tool/framework/components. If the designers seem to 
have a high level of respect for the user of the framework, then they are probably on the right 
track. 

Beware the Master Plan 

A group of architects (the kind who design physical buildings), led by Christopher Alexander, 
were advocates of piecemeal growth in the realm of architecture and city planning. They explained 
very nicely why master plans fail. 

Without a planning process of some kind, there is not a chance in the world that the 
University of Oregon will ever come to possess an order anywhere near as deep and 
harmonious as the order that underlies the University of Cambridge. 

The master plan has been the conventional way of approaching this difficulty. The 
master plan attempts to set down enough guidelines to provide for coherence in the 
environment as a whole—and still leave freedom for individual buildings and open 
spaces to adapt to local needs. 



. . . and all the various parts of this future university will form a coherent whole, 
because they were simply plugged into the slots of the design. 

. . . in practice master plans fail—because they create totalitarian order, not organic 
order. They are too rigid; they cannot easily adapt to the natural and unpredictable 
changes that inevitably arise in the life of a community. As these changes occur . . . 
the master plan becomes obsolete, and is no longer followed. And even to the extent 
that master plans are followed . . . they do not specify enough about connections 
between buildings, human scale, balanced function, etc. to help each local act of 
building and design become well-related to the environment as a whole. 

. . . The attempt to steer such a course is rather like filling in the colors in a child's 
coloring book . . . . At best, the order which results from such a process is banal. 

. . . Thus, as a source of organic order, a master plan is both too precise, and not 
precise enough. The totality is too precise: the details are not precise enough. 

. . . the existence of a master plan alienates the users [because, by definition] the 
members of the community can have little impact on the future shape of their 
community because most of the important decisions have already been made. 

—From The Oregon Experiment , pp. 16–28 ( Alexander et al. 1975 ) 

Alexander and his colleagues advocated instead a set of principles for all community members to 
apply to every act of piecemeal growth, so that "organic order" emerges, well adapted to 
circumstances. 
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Conclusion 

Epilogues 

Although it is very satisfying working on a cutting-edge project and experimenting with interesting 
ideas and tools, for me it is a hollow experience if the software does not find productive use. In 
fact, the true test of success is how the software serves over a period of time. I have been able to 
follow the stories of some of my former projects over the years. 

I'll discuss here five of those, each of which made a serious attempt at domain-driven design, 
though not systematically and not by that name, of course. All of these projects did deliver 
software: some managed to carry through and produce a model-driven design, while one slipped 
off that track. Some of the applications continued to grow and change for many years, while one 
stagnated and one died young. 

The PCB design software described in Chapter 1 was a smash hit among beta users in the field. 
Unfortunately, the start-up company that had initiated the project utterly failed in its marketing 
function and was eventually euthanized. The software is now used by a handful of PCB engineers 
who have old copies they kept from the beta program. Like any orphan software, it will continue to 
work until there is some fatal change to one of the programs with which it is integrated. 

The loan software whose story was told in Chapter 9 thrived and evolved along much the same 
track for three years after the breakthrough I wrote about. At that point, the project was spun off as 
an independent company. In the turmoil of this reorganization, the project manager who had led 
the project from the beginning was ejected, and some of the core developers left with him. The 
new team had a somewhat different design philosophy, not as fully committed to object modeling. 
But they retained a distinct domain layer with complex behavior and continued to value domain 
knowledge on the development team. Seven years after the spin-off, the software continues to be 
enhanced with new features. It is the leading application in its field and serves an increasing 
number of client institutions, as well as being the largest revenue stream for the company. 

A Newly Planted Olive Grove 
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Until the domain-driven approach is more widespread, the interesting software on many projects 
will be built in a short, highly productive interval. Eventually the project will transform into 
something more conventional that may not be able to fully exploit, much less enhance, the power 
of the deep models that were distilled earlier. I could wish for more, but truly those are successes 
that deliver sustained value to users over many years. 

On one project I paired with another developer to write a utility the customer needed to produce its 
core product. The features were fairly complicated and combined in intricate ways. I enjoyed the 
project work and we produced a supple design with an ABSTRACT CORE . When this software was 
handed off, that was the end of involvement for everyone who had initially developed it. Because 
it was such an abrupt transition, I expected that the design features which supported the 
combinable elements might be confusing and might get replaced by more typical case logic. This 
did not initially happen. When we handed off, the package included a thorough test suite and a 
distillation document. The new team members used that document to guide their explorations, and 
as they looked into things, they became excited by the possibilities the design presented. When I 
heard their comments a year later, I realized that the UBIQUITOUS LANGUAGE had sparked across 
to the other team and stayed alive, continuing to evolve. 

Seven Years Later 



 

Then, another year later, I heard a different story. The team had encountered new requirements that 
the developers didn't see any way to accomplish within the inherited design. They had been forced 
to change the design almost beyond recognition. As I probed for more details, I could see that 
aspects of our model would have made solving those problems awkward. It is precisely during 
such moments when a breakthrough to a deeper model is often possible, especially when, as in this 
case, the developers had accumulated deep knowledge and experience in the domain. In fact, they 
had had a rush of new insights and ended up transforming the model and design based on those 
insights. 

They told me this story carefully, diplomatically, expecting, I suppose, that I would be 
disappointed by their discarding of so much of my work. I am not that sentimental about my 
designs. The success of a design is not necessarily marked by its stasis. Take a system people 
depend on, make it opaque, and it will live forever as untouchable legacy. A deep model allows 
clear vision that can yield new insight, while a supple design facilitates ongoing change. The 
model they came up with was deeper, better aligned with the real concerns of the users. Their 
design solved real problems. It is the nature of software to change, and this program has continued 
to evolve in the hands of the team that owns it. 

The shipping examples scattered through the book are loosely based on a project for a major 
international container-shipping company. Early on, the leadership of the project was committed to 
a domain-driven approach, but they never produced a development culture that could fully support 
it. Several teams with widely different levels of design skill and object experience set out to create 
modules, loosely coordinated by informal cooperation between team leaders and by a customer-
focused architecture team. We did develop a reasonably deep model of the CORE DOMAIN , and 
there was a viable UBIQUITOUS LANGUAGE . 



But the company culture fiercely resisted iterative development, and we waited far too long to 
push out a working internal release. Therefore, problems were exposed at a late stage, when they 
were more risky and expensive to fix. At some point, we discovered specific aspects of the model 
were causing performance problems in the database. A natural part of MODEL-DRIVEN DESIGN is 
the feedback from implementation problems to changes in the model, but by that time there was a 
perception that we were too far down the road to change the fundamental model. Instead, changes 
were made to the code to make it more efficient, and its connection to the model was weakened. 
The initial release also exposed scaling limitations in the technical infrastructure that threw a scare 
into management. Expertise was brought in to fix the infrastructure problems, and the project 
bounced back. But the loop was never closed between implementation and domain modeling. 

A few teams delivered fine software with complex capabilities and expressive models. Others 
delivered stiff software that reduced the model to data structures, though even they retained traces 
of the UBIQUITOUS LANGUAGE . Perhaps a CONTEXT MAP would have helped us as much as 
anything, as the relationship between the output of the various teams was haphazard. Yet that 
CORE model carried in the UBIQUITOUS LANGUAGE did help the teams ultimately to glue together 
a system. 

Although reduced in scope, the project replaced several legacy systems. The whole was held 
together by a shared set of concepts, though most of the design was not very supple. It has itself 
largely fossilized into legacy now, years later, but it still serves the global business 24 hours a day. 
Although the more successful teams' influence gradually spread, time runs out eventually, even in 
the richest company. The culture of the project never really absorbed MODEL-DRIVEN DESIGN . 
New development today is on different platforms and is only indirectly influenced by the work we 
did—as the new developers CONFORM to their legacy. 

In some circles, ambitious goals like those the shipping company initially set have been 
discredited. Better, it seems, to make little applications we know how to deliver. Better to stick to 
the lowest common denominator of design to do simple things. This conservative approach has its 
place, and allows for neatly scoped, quick-response projects. But integrated, model-driven systems 
promise value that those patchworks can't. There is a third way. Domain-driven design allows 
piecemeal growth of big systems with rich functionality, by building on a deep model and supple 
design. 

I'll close this list with Evant, a company that develops inventory management software, where I 
played a secondary supporting role and contributed to an already strong design culture. Others 
have written about this project as a poster child of Extreme Programming, but what is not usually 
remarked upon is that the project was intensely domain-driven. Ever deeper models were distilled 
and expressed in ever more supple designs. This project thrived until the "dot com" crash of 2001. 
Then, starved for investment funds, the company contracted, software development went mostly 
dormant, and it seemed that the end was near. But in the summer of 2002, Evant was approached 



by one of the top ten retailers in the world. This potential client liked the product, but it needed 
design changes to allow the application to scale up for an enormous inventory planning operation. 
It was Evant's last chance. 

Although reduced to four developers, the team had assets. They were skilled, with knowledge of 
the domain, and one member had expertise in scaling issues. They had a very effective 
development culture. And they had a code base with a supple design that facilitated change. That 
summer, those four developers made a heroic development effort resulting in the ability to handle 
billions of planning elements and hundreds of users. On the strength of those capabilities, Evant 
won the behemoth client and, soon after, was bought by another company that wanted to leverage 
their software and their proven ability to accommodate new demands. 

The domain-driven design culture (as well as the Extreme Programming culture) survived the 
transition and was revitalized. Today, the model and design continue to evolve, far richer and 
suppler two years later than when I made my contribution. And rather than being assimilated into 
the purchasing company, the members of the Evant team seem to be inspiring the company's 
existing project teams to follow their lead. This story isn't over yet. 

No project will ever employ every technique in this book. Even so, any project committed to 
domain-driven design will be recognizable in a few ways. The defining characteristic is a priority 
on understanding the target domain and incorporating that understanding into the software. 
Everything else flows from that premise. Team members are conscious of the use of language on 
the project and cultivate its refinement. They are hard to satisfy with the quality of the domain 
model, because they keep learning more about the domain. They see continuous refinement as an 
opportunity and an ill-fitting model as a risk. They take design skill seriously because it isn't easy 
to develop production-quality software that clearly reflects the domain model. They stumble over 
obstacles, but they hold on to their principles as they pick themselves up and continue forward. 
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Conclusion 

Looking Forward 

Weather, ecosystems, and biology used to be considered messy, "soft" fields in contrast to physics 
or chemistry. Recently, however, people have recognized that the appearance of "messiness" in 
fact presents a profound technical challenge to discover and understand the order in these very 
complex phenomena. The field called "complexity" is the vanguard of many sciences. Although 
purely technological tasks have generally seemed most interesting and challenging to talented 
software engineers, domain-driven design opens up a new area of challenge that is at least equal. 
Business software does not have to be a bolted-together mess. Wrestling a complex domain into a 
comprehensible software design is an exciting challenge for strong technical people. 

We are nowhere near the era of laypeople creating complex software that works. Armies of 
programmers with rudimentary skills can produce certain kinds of software, but not the kind that 
saves a company in its eleventh hour. What is needed is for tool builders to put their minds to the 
task of extending the power and productivity of talented software developers. What is needed are 
sharper ways of exploring domain models and expressing them in working software. I look 
forward to experimenting with new tools and technologies devised for this purpose. 

But though improved tools will be valuable, we mustn't get distracted by them and lose sight of the 
core fact that creating good software is a learning and thinking activity. Modeling requires 
imagination and self-discipline. Tools that help us think or avoid distraction are good. Efforts to 
automate what must be the product of thought are naive and counterproductive. 

With the tools and technology we already have, we can build systems much more valuable than 
most projects do today. We can write software that is a pleasure to use and a pleasure to work on, 
software that doesn't box us in as it grows but creates new opportunities and continues to add value 
for its owners. 
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Part IV:  Strategic Design 

Appendix The Use of Patterns in This Book 
My first "nice car," which I was given shortly after college, was an eight-year-old Peugeot. 
Sometimes called the "French Mercedes," this car was well crafted, was a pleasure to drive, and 
had been very reliable. But by the time I got it, it was reaching the age when things start to go 
wrong and more maintenance is required. 

Peugeot is an old company, and it has followed its own evolutionary path over many decades. It 
has its own mechanical terminology, and its designs are idiosyncratic; even the breakdown of 
functions into parts is sometimes nonstandard. The result is a car that only Peugeot specialists can 
work on, a potential problem for someone on a grad student income. 

On one typical occasion, I took the car to a local mechanic to investigate a fluid leak. He examined 
the undercarriage and told me that oil was "leaking from a little box about two-thirds of the way 
back that seems to have something to do with distributing braking power between front and rear." 
He then refused to touch the car and advised me to go to the dealership, fifty miles away. Anyone 
can work on a Ford or a Honda; that's why those cars are more convenient and less expensive to 
own, even though they are equally mechanically complex. 

I did love that car, but I will never own a quirky car again. A day came when a particularly 
expensive problem was diagnosed, and I had had enough of Peugeots. I took it to a local charity 
that accepted cars as donations. Then I bought a beat-up old Honda Civic for about what the repair 
would have cost. 

Standard design elements are lacking for domain development, and so every domain model and 
corresponding implementation is quirky and hard to understand. Moreover, every team has to 
reinvent the wheel (or the gear, or the windshield wiper). In the world of object-oriented design, 
everything is an object, a reference, or a message—which, of course, is a useful abstraction. But 
that does not sufficiently constrain the range of domain design choices and does not support an 
economical discussion of a domain model. 

To stop with "Everything is an object" would be like a carpenter or an architect summing up 
houses by saying "Everything is a room." There would be the big room with high-voltage outlets 
and a sink, where you might cook. There would be the small room upstairs, where you might 
sleep. It would take pages to describe an ordinary house. People who build or use houses realize 



that rooms follow patterns, patterns with special names, such as "kitchen." This language enables 
economical discussion of house design. 

Moreover, not all combinations of functions turn out to be practical. Why not a room where you 
bathe and sleep? Wouldn't that be convenient. But long experience has precipitated into custom, 
and we separate our "bedrooms" from our "bathrooms." After all, bathing facilities tend to be 
shared among more people than bedrooms are, and they require maximum privacy, even from the 
others who share the same bedroom. And bathrooms have specialized and expensive infrastructure 
requirements. Bathtubs and toilets typically end up in the same room because both require the 
same infrastructure (water and drainage) and both are used in private. 

Another room that has special infrastructure requirements is that room where you might prepare 
meals, also known as the "kitchen." In contrast to the bathroom, a kitchen has no special privacy 
requirements. Because of its expense, there is typically only one, even in relatively large houses. 
This singularity also facilitates our communal food preparation and eating customs. 

When I say that I want a three-bedroom, two-bath house with an open-plan kitchen, I have packed 
a huge amount of information into a short sentence, and I've avoided a lot of silly mistakes—such 
as putting a toilet next to the refrigerator. 

In every area of design—houses, cars, rowboats, or software—we build on patterns that have been 
found to work in the past, improvising within established themes. Sometimes we have to invent 
something completely new. But by basing standard elements on patterns, we avoid wasting our 
energy on problems with known solutions so that we can focus on our unusual needs. Also, 
building from conventional patterns helps us avoid a design so idiosyncratic that it is difficult to 
communicate. 

Although software domain design is not as mature as other design fields—and in any case may be 
too diverse to accommodate patterns as specific as those used for car parts or rooms—there is 
nonetheless a need to move beyond "Everything is an object" to at least the equivalent of 
distinguishing bolts from springs. 

A form for sharing and standardizing design insight was introduced in the 1970s by a group of 
architects led by Christopher Alexander ( Alexander et al. 1977 ). Their "pattern language" wove 
together tried-and-true design solutions to common problems (much more subtly than my 
"kitchen" example, which has probably caused some readers of Alexander to cringe). The intent 
was that builders and users would communicate in this language, and they would be guided by the 
patterns to produce beautiful buildings that worked well and felt good to the people who used 
them. 

Whatever architects might think of the idea, this pattern language has had a big impact on software 
design. In the 1990s software patterns were applied in many ways with some success, notably in 
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detailed design ( Gamma et al. 1995 ) and technical architectures ( Buschmann et al. 1996 ). More 
recently, patterns have been used to document basic object-oriented design techniques ( Larman 
1998 ) and enterprise architectures (Fowler 2002, Alur et al. 2001 ). The language of patterns is 
now a mainstream technique for organizing software design ideas. 

The pattern names are meant to become terms in the language of the team, and I've used them that 
way in this book. When a pattern name appears in a discussion, it is FORMATTED IN SMALL CAPS 
to call it out. 

Here is how I've formatted patterns in this book. There is some variation around this basic plan, as 
I have favored case-by-case clarity and readability over rigid structure. . . . 
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Appendix The Use of Patterns in This Book 

Pattern Name 

[Illustration of concept. Sometimes a visual metaphor or evocative text.] 

[Context. A brief explanation of how the concept relates to other patterns. In some cases, a brief 
overview of the pattern. 

However, much of the context discussion in this book is in the chapter introductions and other 
narrative segments, rather than within the patterns. 

   ] 

[Problem discussion.] 

Problem summary. 

Discussion of the resolution of problem forces into a solution. 

Therefore: 

Solution summary. 

Consequences. Implementation considerations. Examples. 

   

Resulting context: A brief explanation of how the pattern leads to later patterns. 

[Discussion of implementation challenges. In Alexander's original format, this discussion would 
have been folded into the section describing the resolution of the problem, and I have often 
followed Alexander's organization in this book. But some patterns demand lengthier discussions of 
implementation. To keep the core pattern discussion tight, I have moved such long implementation 
discussions out, after the pattern. 



Also, lengthy examples, particularly those that combine multiple patterns, are often outside the 
patterns.] 
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GLOSSARY 
Here are brief definitions of selected terms, pattern names, and other concepts used in the book. 

AGGREGATE 

A cluster of associated objects that are treated as a unit for the purpose of data changes. 
External references are restricted to one member of the AGGREGATE , designated as the 
root. A set of consistency rules applies within the AGGREGATE'S boundaries. 

analysis pattern 

A group of concepts that represents a common construction in business modeling. It may be 
relevant to only one domain or may span many domains ( Fowler 1997 , p. 8). 

ASSERTION 

A statement of the correct state of a program at some point, independent of how it does it. 
Typically, an ASSERTION specifies the result of an operation or an invariant of a design 
element. 

BOUNDED CONTEXT 

The delimited applicability of a particular model. B OUNDING CONTEXTS gives team 
members a clear and shared understanding of what has to be consistent and what can 
develop independently. 
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client 

A program element that is calling the element under design, using its capabilities. 

cohesion 

Logical agreement and dependence. 

command (a.k.a. modifier ) 

An operation that effects some change to the system (for example, setting a variable). An 
operation that intentionally creates a side effect. 

CONCEPTUAL CONTOUR 

An underlying consistency of the domain itself, which, if reflected in a model, can help the 
design accommodate change more naturally. 

context 

The setting in which a word or statement appears that determines its meaning. 

See also [ BOUNDED CONTEXT ] 

CONTEXT MAP 



A representation of the BOUNDED CONTEXTS involved in a project and the actual 
relationships between them and their models. 

CORE DOMAIN 

The distinctive part of the model, central to the user's goals, that differentiates the 
application and makes it valuable. 

declarative design 

A form of programming in which a precise description of properties actually controls the 
software. An executable specification. 

deep model 

An incisive expression of the primary concerns of the domain experts and their most 
relevant knowledge. A deep model sloughs off superficial aspects of the domain and naive 
interpretations. 

design pattern 

A description of communicating objects and classes that are customized to solve a general 
design problem in a particular context. ( Gamma et al. 1995 , p. 3) 

distillation 

A process of separating the components of a mixture to extract the essence in a form that 
makes it more valuable and useful. In software design, the abstraction of key aspects in a 
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model, or the partitioning of a larger system to bring the CORE DOMAIN to the fore. 

domain 

A sphere of knowledge, influence, or activity. 

domain expert 

A member of a software project whose field is the domain of the application, rather than 
software development. Not just any user of the software, the domain expert has deep 
knowledge of the subject. 

domain layer 

That portion of the design and implementation responsible for domain logic within a 
LAYERED ARCHITECTURE . The domain layer is where the software expression of the 
domain model lives. 

ENTITY 

An object fundamentally defined not by its attributes, but by a thread of continuity and 
identity. 

FACTORY 

A mechanism for encapsulating complex creation logic and abstracting the type of a created 
object for the sake of a client. 



function 

An operation that computes and returns a result without observable side effects. 

immutable 

The property of never changing observable state after creation. 

implicit concept 

A concept that is necessary to understand the meaning of a model or design but is never 
mentioned. 

INTENTION-REVEALING INTERFACE 

A design in which the names of classes, methods, and other elements convey both the 
original developer's purpose in creating them and their value to a client developer. 

invariant 

An ASSERTION about some design element that must be true at all times, except during 
specifically transient situations such as the middle of the execution of a method, or the 
middle of an uncommitted database transaction. 



iteration 

A process in which a program is repeatedly improved in small steps. Also , one of those 
steps. 

large-scale structure 

A set of high-level concepts, rules, or both that establishes a pattern of design for an entire 
system. A language that allows the system to be discussed and understood in broad strokes. 

LAYERED ARCHITECTURE 

A technique for separating the concerns of a software system, isolating a domain layer, 
among other things. 

life cycle 

A sequence of states an object can take on between creation and deletion, typically with 
constraints to ensure integrity when changing from one state to another. May include 
migration of an ENTITY between systems and different BOUNDED CONTEXTS . 

model 

A system of abstractions that describes selected aspects of a domain and can be used to 
solve problems related to that domain. 

MODEL-DRIVEN DESIGN 



A design in which some subset of software elements corresponds closely to elements of a 
model. Also, a process of codeveloping a model and an implementation that stay aligned 
with each other. 

modeling paradigm 

A particular style of carving out concepts in a domain, combined with tools to create 
software analogs of those concepts (for example, object-oriented programming and logic 
programming). 

REPOSITORY 

A mechanism for encapsulating storage, retrieval, and search behavior which emulates a 
collection of objects. 

responsibility 

An obligation to perform a task or know information ( Wirfs-Brock et al. 2003 , p. 3). 

SERVICE 

An operation offered as an interface that stands alone in the model, with no encapsulated 
state. 

side effect 

Any observable change of state resulting from an operation, whether intentional or not, 
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even a deliberate update. 

SIDE-EFFECT-FREE FUNCTION 
See [ function ] 

STANDALONE CLASS 

A class that can be understood and tested without reference to any others, except system 
primitives and basic libraries. 

stateless 

The property of a design element that allows a client to use any of its operations without 
regard to the element's history. A stateless element may use information that is accessible 
globally and may even change that global information (that is, it may have side effects) but 
holds no private state that affects its behavior. 

strategic design 

Modeling and design decisions that apply to large parts of the system. Such decisions affect 
the entire project and have to be decided at team level. 

supple design 

A design that puts the power inherent in a deep model into the hands of a client developer 
to make clear, flexible expressions that give expected results robustly. Equally important, it 
leverages that same deep model to make the design itself easy for the implementer to mold 
and reshape to accommodate new insight. 



UBIQUITOUS LANGUAGE 

A language structured around the domain model and used by all team members to connect 
all the activities of the team with the software. 

unification 

The internal consistency of a model such that each term is unam-biguous and no rules 
contradict. 

VALUE OBJECT 

An object that describes some characteristic or attribute but carries no concept of identity. 

WHOLE VALUE 

An object that models a single, complete concept. 
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