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Preface

Rachel Schutt

Data science is an emerging field in industry, and as yet, it is not well-
defined as an academic subject. This book represents an ongoing in‐
vestigation into the central question: “What is data science?” It’s based
on a class called “Introduction to Data Science,” which I designed and
taught at Columbia University for the first time in the Fall of 2012.

In order to understand this book and its origins, it might help you to
understand a little bit about me and what my motivations were for
creating the class.

Motivation
In short, I created a course that I wish had existed when I was in college,
but that was the 1990s, and we weren’t in the midst of a data explosion,
so the class couldn’t have existed back then. I was a math major as an
undergraduate, and the track I was on was theoretical and proof-
oriented. While I am glad I took this path, and feel it trained me for
rigorous problem-solving, I would have also liked to have been ex‐
posed then to ways those skills could be put to use to solve real-world
problems.

I took a wandering path between college and a PhD program in sta‐
tistics, struggling to find my field and place—a place where I could put
my love of finding patterns and solving puzzles to good use. I bring
this up because many students feel they need to know what they are
“going to do with their lives” now, and when I was a student, I couldn’t
plan to work in data science as it wasn’t even yet a field. My advice to
students (and anyone else who cares to listen): you don’t need to figure
it all out now. It’s OK to take a wandering path. Who knows what you

xiii
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might find? After I got my PhD, I worked at Google for a few years
around the same time that “data science” and “data scientist” were be‐
coming terms in Silicon Valley.

The world is opening up with possibilities for people who are quan‐
titatively minded and interested in putting their brains to work to solve
the world’s problems. I consider it my goal to help these students to
become critical thinkers, creative solvers of problems (even those that
have not yet been identified), and curious question askers. While I
myself may never build a mathematical model that is a piece of the
cure for cancer, or identifies the underlying mystery of autism, or that
prevents terrorist attacks, I like to think that I’m doing my part by
teaching students who might one day do these things. And by writing
this book, I’m expanding my reach to an even wider audience of data
scientists who I hope will be inspired by this book, or learn tools in it,
to make the world better and not worse.

Building models and working with data is not value-neutral. You
choose the problems you will work on, you make assumptions in those
models, you choose metrics, and you design the algorithms.

The solutions to all the world’s problems may not lie in data and tech‐
nology—and in fact, the mark of a good data scientist is someone who
can identify problems that can be solved with data and is well-versed
in the tools of modeling and code. But I do believe that interdiscipli‐
nary teams of people that include a data-savvy, quantitatively minded,
coding-literate problem-solver (let’s call that person a “data scientist”)
could go a long way.

Origins of the Class
I proposed the class in March 2012. At the time, there were three pri‐
mary reasons. The first will take the longest to explain.

Reason 1: I wanted to give students an education in what it’s like to be
a data scientist in industry and give them some of the skills data sci‐
entists have.

I was working on the Google+ data science team with an interdisci‐
plinary team of PhDs. There was me (a statistician), a social scientist,
an engineer, a physicist, and a computer scientist. We were part of a
larger team that included talented data engineers who built the data
pipelines, infrastructure, and dashboards, as well as built the experi‐
mental infrastructure (A/B testing). Our team had a flat structure.
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Together our skills were powerful, and we were able to do amazing
things with massive datasets, including predictive modeling, proto‐
typing algorithms, and unearthing patterns in the data that had huge
impact on the product.

We provided leadership with insights for making data-driven deci‐
sions, while also developing new methodologies and novel ways to
understand causality. Our ability to do this was dependent on top-
notch engineering and infrastructure. We each brought a solid mix of
skills to the team, which together included coding, software engineer‐
ing, statistics, mathematics, machine learning, communication, visu‐
alization, exploratory data analysis (EDA), data sense, and intuition,
as well as expertise in social networks and the social space.

To be clear, no one of us excelled at all those things, but together we
did; we recognized the value of all those skills, and that’s why we
thrived. What we had in common was integrity and a genuine interest
in solving interesting problems, always with a healthy blend of skep‐
ticism as well as a sense of excitement over scientific discovery. We
cared about what we were doing and loved unearthing patterns in the
data.

I live in New York and wanted to bring my experience at Google back
to students at Columbia University because I believe this is stuff they
need to know, and because I enjoy teaching. I wanted to teach them
what I had learned on the job. And I recognized that there was an
emerging data scientist community in the New York tech scene, and I
wanted students to hear from them as well.

One aspect of the class was that we had guest lectures by data scientists
currently working in industry and academia, each of whom had a dif‐
ferent mix of skills. We heard a diversity of perspectives, which con‐
tributed to a holistic understanding of data science.

Reason 2: Data science has the potential to be a deep and profound
research discipline impacting all aspects of our lives. Columbia Uni‐
versity and Mayor Bloomberg announced the Institute for Data
Sciences and Engineering in July 2012. This course created an oppor‐
tunity to develop the theory of data science and to formalize it as a
legitimate science.

Reason 3: I kept hearing from data scientists in industry that you can’t
teach data science in a classroom or university setting, and I took that
on as a challenge. I thought of my classroom as an incubator of data
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science teams. The students I had were very impressive and are turning
into top-notch data scientists. They’ve contributed a chapter to this
book, in fact.

Origins of the Book
The class would not have become a book if I hadn’t met Cathy O’Neil,
a mathematician-turned-data scientist and prominent and out-
spoken blogger on mathbabe.org, where her “About” section states that
she hopes to someday have a better answer to the question, “What can
a nonacademic mathematician do that makes the world a better
place?” Cathy and I met around the time I proposed the course and
she was working as a data scientist at a startup. She was encouraging
and supportive of my efforts to create the class, and offered to come
and blog it. Given that I’m a fairly private person, I initially did not
feel comfortable with this idea. But Cathy convinced me by pointing
out that this was an opportunity to put ideas about data science into
the public realm as a voice running counter to the marketing and hype
that is going on around data science.

Cathy attended every class and sat in the front row asking questions,
and was also a guest lecturer (see Chapter 6). As well as documenting
the class on her blog, she made valuable intellectual contributions to
the course content, including reminding us of the ethical components
of modeling. She encouraged me to blog as well, and so in parallel to
her documenting the class, I maintained a blog to communicate with
my students directly, as well as capture the experience of teaching data
science in the hopes it would be useful to other professors. All Cathy’s
blog entries for the course, and some of mine, became the raw material
for this book. We’ve added additional material and revised and edited
and made it much more robust than the blogs, so now it’s a full-fledged
book.

What to Expect from This Book
In this book, we want to both describe and prescribe. We want to
describe the current state of data science by observing a set of top-notch
thinkers describe their jobs and what it’s like to “do data science.” We
also want to prescribe what data science could be as an academic
discipline.
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Don’t expect a machine learning textbook. Instead, expect full im‐
mersion into the multifaceted aspects of data science from multiple
points of view. This is a survey of the existing landscape of data
science—an attempt to map this emerging field—and as a result, there
is more breadth in some cases than depth.

This book is written with the hope that it will find itself into the hands
of someone—you?—who will make even more of it than what it is,
and go on to solve important problems.

After the class was over, I heard it characterized as a holistic, humanist
approach to data science—we did not just focus on the tools, math,
models, algorithms, and code, but on the human side as well. I like
this definition of humanist: “a person having a strong interest in or
concern for human welfare, values, and dignity.” Being humanist in
the context of data science means recognizing the role your own
humanity plays in building models and algorithms, thinking about
qualities you have as a human that a computer does not have (which
includes the ability to make ethical decisions), and thinking about the
humans whose lives you are impacting when you unleash a model onto
the world.

How This Book Is Organized
This book is organized in the same order as the class. We’ll begin with
some introductory material on the central question, “What is data
science?” and introduce the data science process as an organizing
principle. In Chapters 2 and 3, we’ll begin with an overview of statis‐
tical modeling and machine learning algorithms as a foundation for
the rest of the book. Then in Chapters 4–6 and 8 we’ll get into specific
examples of models and algorithms in context. In Chapter 7 we’ll hear
about how to extract meaning from data and create features to incor‐
porate into the models. Chapters 9 and 10 involve two of the areas not
traditionally taught (but this is changing) in academia: data visuali‐
zation and social networks. We’ll switch gears from prediction to cau‐
sality in Chapters 11 and 12. Chapters 13 and 14 will be about data
preparation and engineering. Chapter 15 lets us hear from the students
who took the class about what it was like to learn data science, and
then we will end by telling you in Chapter 16 about what we hope for
the future of data science.
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How to Read This Book
Generally speaking, this book will make more sense if you read it
straight through in a linear fashion because many of the concepts build
on one another. It’s also possible that you will need to read this book
with supplemental material if you have holes in your probability and
statistics background, or you’ve never coded before. We’ve tried to give
suggestions throughout the book for additional reading. We hope that
when you don’t understand something in the book, perhaps because
of gaps in your background, or inadequate explanation on our part,
that you will take this moment of confusion as an opportunity to in‐
vestigate the concepts further.

How Code Is Used in This Book
This isn’t a how-to manual, so code is used to provide examples, but
in many cases, it might require you to implement it yourself and play
around with it to truly understand it.

Who This Book Is For
Because of the media coverage around data science and the charac‐
terization of data scientists as “rock stars,” you may feel like it’s im‐
possible for you to enter into this realm. If you’re the type of person
who loves to solve puzzles and find patterns, whether or not you con‐
sider yourself a quant, then data science is for you.

This book is meant for people coming from a wide variety of back‐
grounds. We hope and expect that different people will get different
things out of it depending on their strengths and weaknesses.

• Experienced data scientists will perhaps come to see and under‐
stand themselves and what they do in a new light.

• Statisticians may gain an appreciation of the relationship between
data science and statistics. Or they may continue to maintain the
attitude, “that’s just statistics,” in which case we’d like to see that
argument clearly articulated.

• Quants, math, physics, or other science PhDs who are thinking
about transitioning to data science or building up their data sci‐
ence skills will gain perspective on what that would require or
mean.
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• Students and those new to data science will be getting thrown into
the deep end, so if you don’t understand everything all the time,
don’t worry; that’s part of the process.

• Those who have never coded in R or Python before will want to
have a manual for learning R or Python. We recommend The Art
of R Programming by Norman Matloff (No Starch Press). Students
who took the course also benefitted from the expert instruction
of lab instructor, Jared Lander, whose book R for Everyone: Ad‐
vanced Analytics and Graphics (Addison-Wesley) is scheduled to
come out in November 2013. It’s also possible to do all the exer‐
cises using packages in Python.

• For those who have never coded at all before, the same advice
holds. You might also want to consider picking up Learning
Python by Mark Lutz and David Ascher (O’Reilly) or Wes McKin‐
ney’s Python for Data Analysis (also O’Reilly) as well.

Prerequisites
We assume prerequisites of linear algebra, some probability and sta‐
tistics, and some experience coding in any language. Even so, we will
try to make the book as self-contained as possible, keeping in mind
that it’s up to you to do supplemental reading if you’re missing some
of that background. We’ll try to point out places throughout the
book where supplemental reading might help you gain a deeper
understanding.

Supplemental Reading
This book is an overview of the landscape of a new emerging field with
roots in many other disciplines: statistical inference, algorithms,
statistical modeling, machine learning, experimental design, optimi‐
zation, probability, artificial intelligence, data visualization, and ex‐
ploratory data analysis. The challenge in writing this book has been
that each of these disciplines corresponds to several academic courses
or books in their own right. There may be times when gaps in the
reader’s prior knowledge require supplemental reading.
Math

• Linear Algebra and Its Applications by Gilbert Strang (Cen‐
gage Learning)
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• Convex Optimization by Stephen Boyd and Lieven Venden‐
berghe (Cambridge University Press)

• A First Course in Probability (Pearson) and Introduction to
Probability Models (Academic Press) by Sheldon Ross

Coding
• R in a Nutshell by Joseph Adler (O’Reilly)
• Learning Python by Mark Lutz and David Ascher (O’Reilly)
• R for Everyone: Advanced Analytics and Graphics by Jared

Lander (Addison-Wesley)
• The Art of R Programming: A Tour of Statistical Software

Design by Norman Matloff (No Starch Press)
• Python for Data Analysis by Wes McKinney (O’Reilly)

Data Analysis and Statistical Inference
• Statistical Inference by George Casella and Roger L. Berger

(Cengage Learning)
• Bayesian Data Analysis by Andrew Gelman, et al. (Chapman

& Hall)
• Data Analysis Using Regression and Multilevel/Hierarchical

Models by Andrew Gelman and Jennifer Hill (Cambridge
University Press)

• Advanced Data Analysis from an Elementary Point of View
by Cosma Shalizi (under contract with Cambridge University
Press)

• The Elements of Statistical Learning: Data Mining, Inference
and Prediction by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman (Springer)

Artificial Intelligence and Machine Learning
• Pattern Recognition and Machine Learning by Christopher

Bishop (Springer)
• Bayesian Reasoning and Machine Learning by David Barber

(Cambridge University Press)
• Programming Collective Intelligence by Toby Segaran

(O’Reilly)
• Artificial Intelligence: A Modern Approach by Stuart Russell

and Peter Norvig (Prentice Hall)
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• Foundations of Machine Learning by Mehryar Mohri, Afshin
Rostamizadeh, and Ameet Talwalkar (MIT Press)

• Introduction to Machine Learning (Adaptive Computation
and Machine Learning) by Ethem Alpaydim (MIT Press)

Experimental Design
• Field Experiments by Alan S. Gerber and Donald P. Green

(Norton)
• Statistics for Experimenters: Design, Innovation, and Discov‐

ery by George E. P. Box, et al. (Wiley-Interscience)

Visualization
• The Elements of Graphing Data by William Cleveland

(Hobart Press)
• Visualize This: The FlowingData Guide to Design, Visualiza‐

tion, and Statistics by Nathan Yau (Wiley)

About the Contributors
The course would not have been a success without the many guest
lecturers that came to speak to the class. While I gave some of the
lectures, a large majority were given by guests from startups and tech
companies, as well as professors from Columbia University. Most
chapters in this book are based on those lectures. While generally
speaking the contributors did not write the book, they contributed
many of the ideas and content of the book, reviewed their chapters and
offered feedback, and we’re grateful to them. The class and book would
not have existed without them. I invited them to speak in the class
because I hold them up as role models for aspiring data scientists.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.
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Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (datasets, exercises, etc.) is available for down‐
load at https://github.com/oreillymedia/doing_data_science.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not re‐
quire permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Doing
Data Science by Rachel Schutt and Cathy O’Neil (O’Reilly). Copyright
2014 Rachel Schutt and Cathy O’Neil, 978-1-449-35865-5.”
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If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library
that delivers expert content in both book and video
form from the world’s leading authors in technol‐
ogy and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of product mixes and pricing pro‐
grams for organizations, government agencies, and individuals. Sub‐
scribers have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and doz‐
ens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://oreil.ly/
doing_data_science.
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To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction: What Is
Data Science?

Over the past few years, there’s been a lot of hype in the media about
“data science” and “Big Data.” A reasonable first reaction to all of this
might be some combination of skepticism and confusion; indeed we,
Cathy and Rachel, had that exact reaction.

And we let ourselves indulge in our bewilderment for a while, first
separately, and then, once we met, together over many Wednesday
morning breakfasts. But we couldn’t get rid of a nagging feeling that
there was something real there, perhaps something deep and profound
representing a paradigm shift in our culture around data. Perhaps, we
considered, it’s even a paradigm shift that plays to our strengths. In‐
stead of ignoring it, we decided to explore it more.

But before we go into that, let’s first delve into what struck us as con‐
fusing and vague—perhaps you’ve had similar inclinations. After that
we’ll explain what made us get past our own concerns, to the point
where Rachel created a course on data science at Columbia University,
Cathy blogged the course, and you’re now reading a book based on it.

Big Data and Data Science Hype
Let’s get this out of the way right off the bat, because many of you are
likely skeptical of data science already for many of the reasons we were.
We want to address this up front to let you know: we’re right there with
you. If you’re a skeptic too, it probably means you have something
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useful to contribute to making data science into a more legitimate field
that has the power to have a positive impact on society.

So, what is eyebrow-raising about Big Data and data science? Let’s
count the ways:

1. There’s a lack of definitions around the most basic terminology.
What is “Big Data” anyway? What does “data science” mean? What
is the relationship between Big Data and data science? Is data sci‐
ence the science of Big Data? Is data science only the stuff going
on in companies like Google and Facebook and tech companies?
Why do many people refer to Big Data as crossing disciplines (as‐
tronomy, finance, tech, etc.) and to data science as only taking
place in tech? Just how big is big? Or is it just a relative term? These
terms are so ambiguous, they’re well-nigh meaningless.

2. There’s a distinct lack of respect for the researchers in academia
and industry labs who have been working on this kind of stuff for
years, and whose work is based on decades (in some cases, cen‐
turies) of work by statisticians, computer scientists, mathemati‐
cians, engineers, and scientists of all types. From the way the
media describes it, machine learning algorithms were just inven‐
ted last week and data was never “big” until Google came along.
This is simply not the case. Many of the methods and techniques
we’re using—and the challenges we’re facing now—are part of the
evolution of everything that’s come before. This doesn’t mean that
there’s not new and exciting stuff going on, but we think it’s im‐
portant to show some basic respect for everything that came
before.

3. The hype is crazy—people throw around tired phrases straight
out of the height of the pre-financial crisis era like “Masters of the
Universe” to describe data scientists, and that doesn’t bode well.
In general, hype masks reality and increases the noise-to-signal
ratio. The longer the hype goes on, the more many of us will get
turned off by it, and the harder it will be to see what’s good un‐
derneath it all, if anything.

4. Statisticians already feel that they are studying and working on
the “Science of Data.” That’s their bread and butter. Maybe you,
dear reader, are not a statisitican and don’t care, but imagine that
for the statistician, this feels a little bit like how identity theft might
feel for you. Although we will make the case that data science is
not just a rebranding of statistics or machine learning but rather
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a field unto itself, the media often describes data science in a way
that makes it sound like as if it’s simply statistics or machine
learning in the context of the tech industry.

5. People have said to us, “Anything that has to call itself a science
isn’t.” Although there might be truth in there, that doesn’t mean
that the term “data science” itself represents nothing, but of course
what it represents may not be science but more of a craft.

Getting Past the Hype
Rachel’s experience going from getting a PhD in statistics to working
at Google is a great example to illustrate why we thought, in spite of
the aforementioned reasons to be dubious, there might be some meat
in the data science sandwich. In her words:

It was clear to me pretty quickly that the stuff I was working on at
Google was different than anything I had learned at school when I
got my PhD in statistics. This is not to say that my degree was useless;
far from it—what I’d learned in school provided a framework and
way of thinking that I relied on daily, and much of the actual content
provided a solid theoretical and practical foundation necessary to do
my work.
But there were also many skills I had to acquire on the job at Google
that I hadn’t learned in school. Of course, my experience is specific
to me in the sense that I had a statistics background and picked up
more computation, coding, and visualization skills, as well as domain
expertise while at Google. Another person coming in as a computer
scientist or a social scientist or a physicist would have different gaps
and would fill them in accordingly. But what is important here is that,
as individuals, we each had different strengths and gaps, yet we were
able to solve problems by putting ourselves together into a data team
well-suited to solve the data problems that came our way.

Here’s a reasonable response you might have to this story. It’s a general
truism that, whenever you go from school to a real job, you realize
there’s a gap between what you learned in school and what you do on
the job. In other words, you were simply facing the difference between
academic statistics and industry statistics.

We have a couple replies to this:

• Sure, there’s is a difference between industry and academia. But
does it really have to be that way? Why do many courses in school
have to be so intrinsically out of touch with reality?
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• Even so, the gap doesn’t represent simply a difference between
industry statistics and academic statistics. The general experience
of data scientists is that, at their job, they have access to a larger
body of knowledge and methodology, as well as a process, which
we now define as the data science process (details in Chapter 2),
that has foundations in both statistics and computer science.

Around all the hype, in other words, there is a ring of truth: this is
something new. But at the same time, it’s a fragile, nascent idea at real
risk of being rejected prematurely. For one thing, it’s being paraded
around as a magic bullet, raising unrealistic expectations that will
surely be disappointed.

Rachel gave herself the task of understanding the cultural phenom‐
enon of data science and how others were experiencing it. She started
meeting with people at Google, at startups and tech companies, and
at universities, mostly from within statistics departments.

From those meetings she started to form a clearer picture of the new
thing that’s emerging. She ultimately decided to continue the investi‐
gation by giving a course at Columbia called “Introduction to Data
Science,” which Cathy covered on her blog. We figured that by the end
of the semester, we, and hopefully the students, would know what all
this actually meant. And now, with this book, we hope to do the same
for many more people.

Why Now?
We have massive amounts of data about many aspects of our lives, and,
simultaneously, an abundance of inexpensive computing power.
Shopping, communicating, reading news, listening to music, search‐
ing for information, expressing our opinions—all this is being tracked
online, as most people know.

What people might not know is that the “datafication” of our offline
behavior has started as well, mirroring the online data collection rev‐
olution (more on this later). Put the two together, and there’s a lot to
learn about our behavior and, by extension, who we are as a species.

It’s not just Internet data, though—it’s finance, the medical industry,
pharmaceuticals, bioinformatics, social welfare, government, educa‐
tion, retail, and the list goes on. There is a growing influence of data
in most sectors and most industries. In some cases, the amount of data
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collected might be enough to be considered “big” (more on this in the
next chapter); in other cases, it’s not.

But it’s not only the massiveness that makes all this new data interesting
(or poses challenges). It’s that the data itself, often in real time, becomes
the building blocks of data products. On the Internet, this means
Amazon recommendation systems, friend recommendations on Face‐
book, film and music recommendations, and so on. In finance, this
means credit ratings, trading algorithms, and models. In education,
this is starting to mean dynamic personalized learning and assess‐
ments coming out of places like Knewton and Khan Academy. In gov‐
ernment, this means policies based on data.

We’re witnessing the beginning of a massive, culturally saturated feed‐
back loop where our behavior changes the product and the product
changes our behavior. Technology makes this possible: infrastructure
for large-scale data processing, increased memory, and bandwidth, as
well as a cultural acceptance of technology in the fabric of our lives.
This wasn’t true a decade ago.

Considering the impact of this feedback loop, we should start thinking
seriously about how it’s being conducted, along with the ethical and
technical responsibilities for the people responsible for the process.
One goal of this book is a first stab at that conversation.

Datafication
In the May/June 2013 issue of Foreign Affairs, Kenneth Neil Cukier
and Viktor Mayer-Schoenberger wrote an article called “The Rise of
Big Data”. In it they discuss the concept of datafication, and their ex‐
ample is how we quantify friendships with “likes”: it’s the way
everything we do, online or otherwise, ends up recorded for later ex‐
amination in someone’s data storage units. Or maybe multiple storage
units, and maybe also for sale.

They define datafication as a process of “taking all aspects of life and
turning them into data.” As examples, they mention that “Google’s
augmented-reality glasses datafy the gaze. Twitter datafies stray
thoughts. LinkedIn datafies professional networks.”

Datafication is an interesting concept and led us to consider its im‐
portance with respect to people’s intentions about sharing their own
data. We are being datafied, or rather our actions are, and when we
“like” someone or something online, we are intending to be datafied,
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or at least we should expect to be. But when we merely browse the
Web, we are unintentionally, or at least passively, being datafied
through cookies that we might or might not be aware of. And when
we walk around in a store, or even on the street, we are being datafied
in a completely unintentional way, via sensors, cameras, or Google
glasses.

This spectrum of intentionality ranges from us gleefully taking part in
a social media experiment we are proud of, to all-out surveillance and
stalking. But it’s all datafication. Our intentions may run the gamut,
but the results don’t.

They follow up their definition in the article with a line that speaks
volumes about their perspective:

Once we datafy things, we can transform their purpose and turn the
information into new forms of value.

Here’s an important question that we will come back to throughout
the book: who is “we” in that case? What kinds of value do they refer
to? Mostly, given their examples, the “we” is the modelers and entre‐
preneurs making money from getting people to buy stuff, and the
“value” translates into something like increased efficiency through
automation.

If we want to think bigger, if we want our “we” to refer to people in
general, we’ll be swimming against the tide.

The Current Landscape (with a Little History)
So, what is data science? Is it new, or is it just statistics or analytics
rebranded? Is it real, or is it pure hype? And if it’s new and if it’s real,
what does that mean?

This is an ongoing discussion, but one way to understand what’s going
on in this industry is to look online and see what current discussions
are taking place. This doesn’t necessarily tell us what data science is,
but it at least tells us what other people think it is, or how they’re
perceiving it. For example, on Quora there’s a discussion from 2010
about “What is Data Science?” and here’s Metamarket CEO Mike
Driscoll’s answer:
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Data science, as it’s practiced, is a blend of Red-Bull-fueled hacking
and espresso-inspired statistics.
But data science is not merely hacking—because when hackers finish
debugging their Bash one-liners and Pig scripts, few of them care
about non-Euclidean distance metrics.
And data science is not merely statistics, because when statisticians
finish theorizing the perfect model, few could read a tab-delimited
file into R if their job depended on it.
Data science is the civil engineering of data. Its acolytes possess a
practical knowledge of tools and materials, coupled with a theoretical
understanding of what’s possible.

Driscoll then refers to Drew Conway’s Venn diagram of data science
from 2010, shown in Figure 1-1.

Figure 1-1. Drew Conway’s Venn diagram of data science

He also mentions the sexy skills of data geeks from Nathan Yau’s 2009
post, “Rise of the Data Scientist”, which include:

• Statistics (traditional analysis you’re used to thinking about)
• Data munging (parsing, scraping, and formatting data)
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• Visualization (graphs, tools, etc.)

But wait, is data science just a bag of tricks? Or is it the logical extension
of other fields like statistics and machine learning?

For one argument, see Cosma Shalizi’s posts here and here, and Cathy’s
posts here and here, which constitute an ongoing discussion of the
difference between a statistician and a data scientist. Cosma basically
argues that any statistics department worth its salt does all the stuff in
the descriptions of data science that he sees, and therefore data science
is just a rebranding and unwelcome takeover of statistics.

For a slightly different perspective, see ASA President Nancy Geller’s
2011 Amstat News article, “Don’t shun the ‘S’ word”, in which she
defends statistics:

We need to tell people that Statisticians are the ones who make sense
of the data deluge occurring in science, engineering, and medicine;
that statistics provides methods for data analysis in all fields, from art
history to zoology; that it is exciting to be a Statistician in the 21st
century because of the many challenges brought about by the data
explosion in all of these fields.

Though we get her point—the phrase “art history to zoology” is sup‐
posed to represent the concept of A to Z—she’s kind of shooting herself
in the foot with these examples because they don’t correspond to the
high-tech world where much of the data explosion is coming from.
Much of the development of the field is happening in industry, not
academia. That is, there are people with the job title data scientist in
companies, but no professors of data science in academia. (Though
this may be changing.)

Not long ago, DJ Patil described how he and Jeff Hammerbacher—
then at LinkedIn and Facebook, respectively—coined the term “data
scientist” in 2008. So that is when “data scientist” emerged as a job title.
(Wikipedia finally gained an entry on data science in 2012.)

It makes sense to us that once the skill set required to thrive at Google
—working with a team on problems that required a hybrid skill set of
stats and computer science paired with personal characteristics in‐
cluding curiosity and persistence—spread to other Silicon Valley tech
companies, it required a new job title. Once it became a pattern, it
deserved a name. And once it got a name, everyone and their mother
wanted to be one. It got even worse when Harvard Business Review
declared data scientist to be the “Sexiest Job of the 21st Century”.
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The Role of the Social Scientist in Data Science
Both LinkedIn and Facebook are social network companies. Often‐
times a description or definition of data scientist includes hybrid sta‐
tistician, software engineer, and social scientist. This made sense in
the context of companies where the product was a social product and
still makes sense when we’re dealing with human or user behavior.
But if you think about Drew Conway’s Venn diagram, data science
problems cross disciplines—that’s what the substantive expertise is
referring to.

In other words, it depends on the context of the problems you’re try‐
ing to solve. If they’re social science-y problems like friend recom‐
mendations or people you know or user segmentation, then by all
means, bring on the social scientist! Social scientists also do tend to
be good question askers and have other good investigative qualities,
so a social scientist who also has the quantitative and programming
chops makes a great data scientist.

But it’s almost a “historical” (historical is in quotes because 2008 isn’t
that long ago) artifact to limit your conception of a data scientist to
someone who works only with online user behavior data. There’s an‐
other emerging field out there called computational social sciences,
which could be thought of as a subset of data science.

But we can go back even further. In 2001, William Cleveland wrote a
position paper about data science called “Data Science: An action plan
to expand the field of statistics.”

So data science existed before data scientists? Is this semantics, or does
it make sense?

This all begs a few questions: can you define data science by what data
scientists do? Who gets to define the field, anyway? There’s lots of buzz
and hype—does the media get to define it, or should we rely on the
practitioners, the self-appointed data scientists? Or is there some ac‐
tual authority? Let’s leave these as open questions for now, though we
will return to them throughout the book.

Data Science Jobs
Columbia just decided to start an Institute for Data Sciences and En‐
gineering with Bloomberg’s help. There are 465 job openings in New
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York City alone for data scientists last time we checked. That’s a lot.
So even if data science isn’t a real field, it has real jobs.

And here’s one thing we noticed about most of the job descriptions:
they ask data scientists to be experts in computer science, statistics,
communication, data visualization, and to have extensive domain ex‐
pertise. Nobody is an expert in everything, which is why it makes more
sense to create teams of people who have different profiles and differ‐
ent expertise—together, as a team, they can specialize in all those
things. We’ll talk about this more after we look at the composite set of
skills in demand for today’s data scientists.

A Data Science Profile
In the class, Rachel handed out index cards and asked everyone to
profile themselves (on a relative rather than absolute scale) with re‐
spect to their skill levels in the following domains:

• Computer science
• Math
• Statistics
• Machine learning
• Domain expertise
• Communication and presentation skills
• Data visualization

As an example, Figure 1-2 shows Rachel’s data science profile.
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Figure 1-2. Rachel’s data science profile, which she created to illus‐
trate trying to visualize oneself as a data scientist; she wanted stu‐
dents and guest lecturers to “riff” on this—to add buckets or remove
skills, use a different scale or visualization method, and think about
the drawbacks of self-reporting

We taped the index cards to the blackboard and got to see how every‐
one else thought of themselves. There was quite a bit of variation,
which is cool—lots of people in the class were coming from social
sciences, for example.

Where is your data science profile at the moment, and where would
you like it to be in a few months, or years?

As we mentioned earlier, a data science team works best when different
skills (profiles) are represented across different people, because no‐
body is good at everything. It makes us wonder if it might be more
worthwhile to define a “data science team”—as shown in Figure 1-3—
than to define a data scientist.
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Figure 1-3. Data science team profiles can be constructed from data
scientist profiles; there should be alignment between the data science
team profile and the profile of the data problems they try to solve
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Thought Experiment: Meta-Definition
Every class had at least one thought experiment that the students
discussed in groups. Most of the thought experiments were very open-
ended, and the intention was to provoke discussion about a wide va‐
riety of topics related to data science. For the first class, the initial
thought experiment was: can we use data science to define data science?

The class broke into small groups to think about and discuss this
question. Here are a few interesting things that emerged from those
conversations:
Start with a text-mining model.

We could do a Google search for “data science” and perform a text-
mining model. But that would depend on us being a usagist rather
than a prescriptionist with respect to language. A usagist would let
the masses define data science (where “the masses” refers to what‐
ever Google’s search engine finds). Would it be better to be a pre‐
scriptionist and refer to an authority such as the Oxford English
Dictionary? Unfortunately, the OED probably doesn’t have an en‐
try yet, and we don’t have time to wait for it. Let’s agree that there’s
a spectrum, that one authority doesn’t feel right, and that “the
masses” doesn’t either.

So what about a clustering algorithm?
How about we look at practitioners of data science and see how
they describe what they do (maybe in a word cloud for starters)?
Then we can look at how people who claim to be other things like
statisticians or physicists or economists describe what they do.
From there, we can try to use a clustering algorithm (which we’ll
use in Chapter 3) or some other model and see if, when it gets as
input “the stuff someone does,” it gives a good prediction on what
field that person is in.

Just for comparison, check out what Harlan Harris recently did related
to the field of data science: he took a survey and used clustering to
define subfields of data science, which gave rise to Figure 1-4.
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Figure 1-4. Harlan Harris’s clustering and visualization of subfields of
data science from Analyzing the Analyzers (O’Reilly) by Harlan Har‐
ris, Sean Murphy, and Marck Vaisman based on a survey of several
hundred data science practitioners in mid-2012

OK, So What Is a Data Scientist, Really?
Perhaps the most concrete approach is to define data science is by its
usage—e.g., what data scientists get paid to do. With that as motiva‐
tion, we’ll describe what data scientists do. And we’ll cheat a bit by
talking first about data scientists in academia.

In Academia
The reality is that currently, no one calls themselves a data scientist in
academia, except to take on a secondary title for the sake of being a
part of a “data science institute” at a university, or for applying for a
grant that supplies money for data science research.
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Instead, let’s ask a related question: who in academia plans to become
a data scientist? There were 60 students in the Intro to Data Science
class at Columbia. When Rachel proposed the course, she assumed
the makeup of the students would mainly be statisticians, applied
mathematicians, and computer scientists. Actually, though, it ended
up being those people plus sociologists, journalists, political scientists,
biomedical informatics students, students from NYC government
agencies and nonprofits related to social welfare, someone from the
architecture school, others from environmental engineering, pure
mathematicians, business marketing students, and students who al‐
ready worked as data scientists. They were all interested in figuring
out ways to solve important problems, often of social value, with data.

For the term “data science” to catch on in academia at the level of the
faculty, and as a primary title, the research area needs to be more for‐
mally defined. Note there is already a rich set of problems that could
translate into many PhD theses.

Here’s a stab at what this could look like: an academic data scientist is
a scientist, trained in anything from social science to biology, who
works with large amounts of data, and must grapple with computa‐
tional problems posed by the structure, size, messiness, and the
complexity and nature of the data, while simultaneously solving a real-
world problem.

The case for articulating it like this is as follows: across academic dis‐
ciplines, the computational and deep data problems have major com‐
monalities. If researchers across departments join forces, they can
solve multiple real-world problems from different domains.

In Industry
What do data scientists look like in industry? It depends on the level
of seniority and whether you’re talking about the Internet/online in‐
dustry in particular. The role of data scientist need not be exclusive to
the tech world, but that’s where the term originated; so for the purposes
of the conversation, let us say what it means there.

A chief data scientist should be setting the data strategy of the com‐
pany, which involves a variety of things: setting everything up from
the engineering and infrastructure for collecting data and logging, to
privacy concerns, to deciding what data will be user-facing, how data
is going to be used to make decisions, and how it’s going to be built
back into the product. She should manage a team of engineers,
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scientists, and analysts and should communicate with leadership
across the company, including the CEO, CTO, and product leadership.
She’ll also be concerned with patenting innovative solutions and set‐
ting research goals.

More generally, a data scientist is someone who knows how to extract
meaning from and interpret data, which requires both tools and meth‐
ods from statistics and machine learning, as well as being human. She
spends a lot of time in the process of collecting, cleaning, and munging
data, because data is never clean. This process requires persistence,
statistics, and software engineering skills—skills that are also neces‐
sary for understanding biases in the data, and for debugging logging
output from code.

Once she gets the data into shape, a crucial part is exploratory data
analysis, which combines visualization and data sense. She’ll find pat‐
terns, build models, and algorithms—some with the intention of un‐
derstanding product usage and the overall health of the product, and
others to serve as prototypes that ultimately get baked back into the
product. She may design experiments, and she is a critical part of data-
driven decision making. She’ll communicate with team members, en‐
gineers, and leadership in clear language and with data visualizations
so that even if her colleagues are not immersed in the data themselves,
they will understand the implications.

That’s the high-level picture, and this book is about helping you un‐
derstand the vast majority of it. We’re done with talking about data
science; let’s go ahead and do some!
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CHAPTER 2

Statistical Inference, Exploratory
Data Analysis, and the Data

Science Process

We begin this chapter with a discussion of statistical inference and
statistical thinking. Next we explore what we feel every data scientist
should do once they’ve gotten data in hand for any data-related project:
exploratory data analysis (EDA).

From there, we move into looking at what we’re defining as the data
science process in a little more detail. We’ll end with a thought ex‐
periment and a case study.

Statistical Thinking in the Age of Big Data
Big Data is a vague term, used loosely, if often, these days. But put
simply, the catchall phrase means three things. First, it is a bundle of
technologies. Second, it is a potential revolution in measurement.
And third, it is a point of view, or philosophy, about how decisions
will be—and perhaps should be—made in the future.

— Steve Lohr
 The New York Times

When you’re developing your skill set as a data scientist, certain foun‐
dational pieces need to be in place first—statistics, linear algebra, some
programming. Even once you have those pieces, part of the challenge
is that you will be developing several skill sets in parallel simultane‐
ously—data preparation and munging, modeling, coding, visualiza‐
tion, and communication—that are interdependent. As we progress
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through the book, these threads will be intertwined. That said, we need
to start somewhere, and will begin by getting grounded in statistical
inference.

We expect the readers of this book to have diverse backgrounds. For
example, some of you might already be awesome software engineers
who can build data pipelines and code with the best of them but don’t
know much about statistics; others might be marketing analysts who
don’t really know how to code at all yet; and others might be curious,
smart people who want to know what this data science thing is all
about.

So while we’re asking that readers already have certain prerequisites
down, we can’t come to your house and look at your transcript to make
sure you actually have taken a statistics course, or have read a statistics
book before. And even if you have taken Introduction to Statistics—a
course we know from many awkward cocktail party conversations that
99% of people dreaded and wish they’d never had to take—this likely
gave you no flavor for the depth and beauty of statistical inference.

But even if it did, and maybe you’re a PhD-level statistician, it’s always
helpful to go back to fundamentals and remind ourselves of what stat‐
istical inference and thinking is all about. And further still, in the age
of Big Data, classical statistics methods need to be revisited and re-
imagined in new contexts.

Statistical Inference
The world we live in is complex, random, and uncertain. At the same
time, it’s one big data-generating machine.

As we commute to work on subways and in cars, as our blood moves
through our bodies, as we’re shopping, emailing, procrastinating at
work by browsing the Internet and watching the stock market, as we’re
building things, eating things, talking to our friends and family about
things, while factories are producing products, this all at least poten‐
tially produces data.

Imagine spending 24 hours looking out the window, and for every
minute, counting and recording the number of people who pass by.
Or gathering up everyone who lives within a mile of your house and
making them tell you how many email messages they receive every
day for the next year. Imagine heading over to your local hospital and
rummaging around in the blood samples looking for patterns in the
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DNA. That all sounded creepy, but it wasn’t supposed to. The point
here is that the processes in our lives are actually data-generating
processes.

We’d like ways to describe, understand, and make sense of these pro‐
cesses, in part because as scientists we just want to understand the
world better, but many times, understanding these processes is part of
the solution to problems we’re trying to solve.

Data represents the traces of the real-world processes, and exactly
which traces we gather are decided by our data collection or sampling
method. You, the data scientist, the observer, are turning the world
into data, and this is an utterly subjective, not objective, process.

After separating the process from the data collection, we can see clearly
that there are two sources of randomness and uncertainty. Namely, the
randomness and uncertainty underlying the process itself, and the
uncertainty associated with your underlying data collection methods.

Once you have all this data, you have somehow captured the world,
or certain traces of the world. But you can’t go walking around with a
huge Excel spreadsheet or database of millions of transactions and
look at it and, with a snap of a finger, understand the world and process
that generated it.

So you need a new idea, and that’s to simplify those captured traces
into something more comprehensible, to something that somehow
captures it all in a much more concise way, and that something could
be mathematical models or functions of the data, known as statistical
estimators.

This overall process of going from the world to the data, and then from
the data back to the world, is the field of statistical inference.

More precisely, statistical inference is the discipline that concerns itself
with the development of procedures, methods, and theorems that al‐
low us to extract meaning and information from data that has been
generated by stochastic (random) processes.

Populations and Samples
Let’s get some terminology and concepts in place to make sure we’re
all talking about the same thing.

In classical statistical literature, a distinction is made between the
population and the sample. The word population immediately makes
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us think of the entire US population of 300 million people, or the entire
world’s population of 7 billion people. But put that image out of your
head, because in statistical inference population isn’t used to simply
describe only people. It could be any set of objects or units, such as
tweets or photographs or stars.

If we could measure the characteristics or extract characteristics of all
those objects, we’d have a complete set of observations, and the con‐
vention is to use N to represent the total number of observations in
the population.

Suppose your population was all emails sent last year by employees at
a huge corporation, BigCorp. Then a single observation could be a list
of things: the sender’s name, the list of recipients, date sent, text of
email, number of characters in the email, number of sentences in the
email, number of verbs in the email, and the length of time until first
reply.

When we take a sample, we take a subset of the units of size n in order
to examine the observations to draw conclusions and make inferences
about the population. There are different ways you might go about
getting this subset of data, and you want to be aware of this sampling
mechanism because it can introduce biases into the data, and distort
it, so that the subset is not a “mini-me” shrunk-down version of the
population. Once that happens, any conclusions you draw will simply
be wrong and distorted.

In the BigCorp email example, you could make a list of all the em‐
ployees and select 1/10th of those people at random and take all the
email they ever sent, and that would be your sample. Alternatively, you
could sample 1/10th of all email sent each day at random, and that
would be your sample. Both these methods are reasonable, and both
methods yield the same sample size. But if you took them and counted
how many email messages each person sent, and used that to estimate
the underlying distribution of emails sent by all indiviuals at BigCorp,
you might get entirely different answers.

So if even getting a basic thing down like counting can get distorted
when you’re using a reasonable-sounding sampling method, imagine
what can happen to more complicated algorithms and models if you
haven’t taken into account the process that got the data into your
hands.
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Populations and Samples of Big Data
But, wait! In the age of Big Data, where we can record all users’ actions
all the time, don’t we observe everything? Is there really still this notion
of population and sample? If we had all the email in the first place,
why would we need to take a sample?

With these questions, we’ve gotten to the heart of the matter. There
are multiple aspects of this that need to be addressed.
Sampling solves some engineering challenges

In the current popular discussion of Big Data, the focus on en‐
terprise solutions such as Hadoop to handle engineering and
computational challenges caused by too much data overlooks
sampling as a legitimate solution. At Google, for example, soft‐
ware engineers, data scientists, and statisticians sample all the
time.

How much data you need at hand really depends on what your goal
is: for analysis or inference purposes, you typically don’t need to store
all the data all the time. On the other hand, for serving purposes you
might: in order to render the correct information in a UI for a user,
you need to have all the information for that particular user, for
example.
Bias

Even if we have access to all of Facebook’s or Google’s or Twitter’s
data corpus, any inferences we make from that data should not be
extended to draw conclusions about humans beyond those sets of
users, or even those users for any particular day.

Kate Crawford, a principal scientist at Microsoft Research, describes
in her Strata talk, “Hidden Biases of Big Data,” how if you analyzed
tweets immediately before and after Hurricane Sandy, you would think
that most people were supermarket shopping pre-Sandy and partying
post-Sandy. However, most of those tweets came from New Yorkers.
First of all, they’re heavier Twitter users than, say, the coastal New
Jerseyans, and second of all, the coastal New Jerseyans were worrying
about other stuff like their house falling down and didn’t have time to
tweet.

In other words, you would think that Hurricane Sandy wasn’t all that
bad if you used tweet data to understand it. The only conclusion you
can actually draw is that this is what Hurricane Sandy was like for the
subset of Twitter users (who themselves are not representative of the
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general US population), whose situation was not so bad that they didn’t
have time to tweet.

Note, too, that in this case, if you didn’t have context and know about
Hurricane Sandy, you wouldn’t know enough to interpret this data
properly.
Sampling

Let’s rethink what the population and the sample are in various
contexts.

In statistics we often model the relationship between a population and
a sample with an underlying mathematical process. So we make sim‐
plifying assumptions about the underlying truth, the mathematical
structure, and shape of the underlying generative process that created
the data. We observe only one particular realization of that generative
process, which is that sample.

So if we think of all the emails at BigCorp as the population, and if we
randomly sample from that population by reading some but not all
emails, then that sampling process would create one particular sample.
However, if we resampled we’d get a different set of observations.

The uncertainty created by such a sampling process has a name: the
sampling distribution. But like that 2010 movie Inception with Leo‐
nardo DiCaprio, where he’s in a dream within a dream within a dream,
it’s possible to instead think of the complete corpus of emails at Big‐
Corp as not the population but as a sample.

This set of emails (and here is where we’re getting philosophical, but
that’s what this is all about) could actually be only one single realization
from some larger super-population, and if the Great Coin Tosser in the
sky had spun again that day, a different set of emails would have been
observed.

In this interpretation, we treat this set of emails as a sample that we
are using to make inferences about the underlying generative process
that is the email writing habits of all the employees at BigCorp.
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New kinds of data
Gone are the days when data is just a bunch of numbers and cat‐
egorical variables. A strong data scientist needs to be versatile and
comfortable with dealing a variety of types of data, including:

• Traditional: numerical, categorical, or binary
• Text: emails, tweets, New York Times articles (see Chapter 4

or Chapter 7)
• Records: user-level data, timestamped event data, json-

formatted log files (see Chapter 6 or Chapter 8)
• Geo-based location data: briefly touched on in this chapter

with NYC housing data
• Network (see Chapter 10)
• Sensor data (not covered in this book)
• Images (not covered in this book)

These new kinds of data require us to think more carefully about what
sampling means in these contexts.

For example, with the firehose of real-time streaming data, if you an‐
alyze a Facebook user-level dataset for a week of activity that you ag‐
gregated from timestamped event logs, will any conclusions you draw
from this dataset be relevant next week or next year?

How do you sample from a network and preserve the complex network
structure?

Many of these questions represent open research questions for the
statistical and computer science communities. This is the frontier!
Given that some of these are open research problems, in practice, data
scientists do the best they can, and often are inventing novel methods
as part of their jobs.
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Terminology: Big Data
We’ve been throwing around “Big Data” quite a lot already and are
guilty of barely defining it beyond raising some big questions in the
previous chapter.

A few ways to think about Big Data:

“Big” is a moving target. Constructing a threshold for Big Data such
as 1 petabyte is meaningless because it makes it sound absolute. Only
when the size becomes a challenge is it worth referring to it as “Big.”
So it’s a relative term referring to when the size of the data outstrips
the state-of-the-art current computational solutions (in terms of
memory, storage, complexity, and processing speed) available to han‐
dle it. So in the 1970s this meant something different than it does
today.

“Big” is when you can’t fit it on one machine. Different individuals
and companies have different computational resources available to
them, so for a single scientist data is big if she can’t fit it on one machine
because she has to learn a whole new host of tools and methods once
that happens.

Big Data is a cultural phenomenon. It describes how much data is
part of our lives, precipitated by accelerated advances in technology.

The 4 Vs: Volume, variety, velocity, and value. Many people are cir‐
culating this as a way to characterize Big Data. Take from it what you
will.

Big Data Can Mean Big Assumptions
In Chapter 1, we mentioned the Cukier and Mayer-Schoenberger ar‐
ticle “The Rise of Big Data.” In it, they argue that the Big Data revo‐
lution consists of three things:

• Collecting and using a lot of data rather than small samples
• Accepting messiness in your data
• Giving up on knowing the causes

They describe these steps in a rather grand fashion by claiming that
Big Data doesn’t need to understand cause given that the data is so
enormous. It doesn’t need to worry about sampling error because it is
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literally keeping track of the truth. The way the article frames this is by
claiming that the new approach of Big Data is letting “N=ALL.”

Can N=ALL?
Here’s the thing: it’s pretty much never all. And we are very often
missing the very things we should care about most.

So, for example, as this InfoWorld post explains, Internet surveillance
will never really work, because the very clever and tech-savvy criminals
that we most want to catch are the very ones we will never be able to
catch, because they’re always a step ahead.

An example from that very article—election night polls—is in itself a
great counter-example: even if we poll absolutely everyone who leaves
the polling stations, we still don’t count people who decided not to vote
in the first place. And those might be the very people we’d need to talk
to to understand our country’s voting problems.

Indeed, we’d argue that the assumption we make that N=ALL is one
of the biggest problems we face in the age of Big Data. It is, above all,
a way of excluding the voices of people who don’t have the time, energy,
or access to cast their vote in all sorts of informal, possibly unan‐
nounced, elections.

Those people, busy working two jobs and spending time waiting for
buses, become invisible when we tally up the votes without them. To
you this might just mean that the recommendations you receive on
Netflix don’t seem very good because most of the people who bother
to rate things on Netflix are young and might have different tastes than
you, which skews the recommendation engine toward them. But there
are plenty of much more insidious consequences stemming from this
basic idea.

Data is not objective
Another way in which the assumption that N=ALL can matter is that
it often gets translated into the idea that data is objective. It is wrong
to believe either that data is objective or that “data speaks,” and beware
of people who say otherwise.

We were recently reminded of it in a terrifying way by this New York
Times article on Big Data and recruiter hiring practices. At one point,
a data scientist is quoted as saying, “Let’s put everything in and let the
data speak for itself.”
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If you read the whole article, you’ll learn that this algorithm tries to
find “diamond in the rough” types of people to hire. A worthy effort,
but one that you have to think through.

Say you decided to compare women and men with the exact same
qualifications that have been hired in the past, but then, looking into
what happened next you learn that those women have tended to leave
more often, get promoted less often, and give more negative feedback
on their environments when compared to the men.

Your model might be likely to hire the man over the woman next time
the two similar candidates showed up, rather than looking into the
possibility that the company doesn’t treat female employees well.

In other words, ignoring causation can be a flaw, rather than a feature.
Models that ignore causation can add to historical problems instead
of addressing them (we’ll explore this more in Chapter 11). And data
doesn’t speak for itself. Data is just a quantitative, pale echo of the
events of our society.

n = 1
At the other end of the spectrum from N=ALL, we have n = 1, by which
we mean a sample size of 1. In the old days a sample size of 1 would
be ridiculous; you would never want to draw inferences about an en‐
tire population by looking at a single individual. And don’t worry,
that’s still ridiculous. But the concept of n = 1 takes on new meaning
in the age of Big Data, where for a single person, we actually can record
tons of information about them, and in fact we might even sample
from all the events or actions they took (for example, phone calls or
keystrokes) in order to make inferences about them. This is what user-
level modeling is about.

Modeling
In the next chapter, we’ll look at how we build models from the data
we collect, but first we want to discuss what we even mean by this term.

Rachel had a recent phone conversation with someone about a mod‐
eling workshop, and several minutes into it she realized the word
“model” meant completely different things to them. He was using it
to mean data models—the representation one is choosing to store one’s
data, which is the realm of database managers—whereas she was
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talking about statistical models, which is what much of this book is
about. One of Andrew Gelman’s blog posts on modeling was recently
tweeted by people in the fashion industry, but that’s a different issue.

Even if you’ve used the terms statistical model or mathematical model
for years, is it even clear to yourself and to the people you’re talking to
what you mean? What makes a model a model? Also, while we’re asking
fundamental questions like this, what’s the difference between a stat‐
istical model and a machine learning algorithm?

Before we dive deeply into that, let’s add a bit of context with this
deliberately provocative Wired magazine piece, “The End of Theory:
The Data Deluge Makes the Scientific Method Obsolete,” published in
2008 by Chris Anderson, then editor-in-chief.

Anderson equates massive amounts of data to complete information
and argues no models are necessary and “correlation is enough”; e.g.,
that in the context of massive amounts of data, “they [Google] don’t
have to settle for models at all.”

Really? We don’t think so, and we don’t think you’ll think so either by
the end of the book. But the sentiment is similar to the Cukier and
Mayer-Schoenberger article we just discussed about N=ALL, so you
might already be getting a sense of the profound confusion we’re wit‐
nessing all around us.

To their credit, it’s the press that’s currently raising awareness of these
questions and issues, and someone has to do it. Even so, it’s hard to
take when the opinion makers are people who don’t actually work with
data. Think critically about whether you buy what Anderson is saying;
where you agree, disagree, or where you need more information to
form an opinion.

Given that this is how the popular press is currently describing and
influencing public perception of data science and modeling, it’s in‐
cumbent upon us as data scientists to be aware of it and to chime in
with informed comments.

With that context, then, what do we mean when we say models? And
how do we use them as data scientists? To get at these questions, let’s
dive in.

What is a model?
Humans try to understand the world around them by representing it
in different ways. Architects capture attributes of buildings through
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blueprints and three-dimensional, scaled-down versions. Molecular
biologists capture protein structure with three-dimensional visuali‐
zations of the connections between amino acids. Statisticians and data
scientists capture the uncertainty and randomness of data-generating
processes with mathematical functions that express the shape and
structure of the data itself.

A model is our attempt to understand and represent the nature of
reality through a particular lens, be it architectural, biological, or
mathematical.

A model is an artificial construction where all extraneous detail has
been removed or abstracted. Attention must always be paid to these
abstracted details after a model has been analyzed to see what might
have been overlooked.

In the case of proteins, a model of the protein backbone with side-
chains by itself is removed from the laws of quantum mechanics that
govern the behavior of the electrons, which ultimately dictate the
structure and actions of proteins. In the case of a statistical model, we
may have mistakenly excluded key variables, included irrelevant ones,
or assumed a mathematical structure divorced from reality.

Statistical modeling
Before you get too involved with the data and start coding, it’s useful
to draw a picture of what you think the underlying process might be
with your model. What comes first? What influences what? What
causes what? What’s a test of that?

But different people think in different ways. Some prefer to express
these kinds of relationships in terms of math. The mathematical ex‐
pressions will be general enough that they have to include parameters,
but the values of these parameters are not yet known.

In mathematical expressions, the convention is to use Greek letters for
parameters and Latin letters for data. So, for example, if you have two
columns of data, x and y, and you think there’s a linear relationship,
you’d write down y = β0 + β1x. You don’t know what β0 and β1 are in
terms of actual numbers yet, so they’re the parameters.

Other people prefer pictures and will first draw a diagram of data flow,
possibly with arrows, showing how things affect other things or what
happens over time. This gives them an abstract picture of the rela‐
tionships before choosing equations to express them.
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But how do you build a model?
How do you have any clue whatsoever what functional form the data
should take? Truth is, it’s part art and part science. And sadly, this is
where you’ll find the least guidance in textbooks, in spite of the fact
that it’s the key to the whole thing. After all, this is the part of the
modeling process where you have to make a lot of assumptions about
the underlying structure of reality, and we should have standards as
to how we make those choices and how we explain them. But we don’t
have global standards, so we make them up as we go along, and hope‐
fully in a thoughtful way.

We’re admitting this here: where to start is not obvious. If it were, we’d
know the meaning of life. However, we will do our best to demonstrate
for you throughout the book how it’s done.

One place to start is exploratory data analysis (EDA), which we will
cover in a later section. This entails making plots and building intu‐
ition for your particular dataset. EDA helps out a lot, as well as trial
and error and iteration.

To be honest, until you’ve done it a lot, it seems very mysterious. The
best thing to do is start simply and then build in complexity. Do the
dumbest thing you can think of first. It’s probably not that dumb.

For example, you can (and should) plot histograms and look at scat‐
terplots to start getting a feel for the data. Then you just try writing
something down, even if it’s wrong first (it will probably be wrong first,
but that doesn’t matter).

So try writing down a linear function (more on that in the next chap‐
ter). When you write it down, you force yourself to think: does this
make any sense? If not, why? What would make more sense? You start
simply and keep building it up in complexity, making assumptions,
and writing your assumptions down. You can use full-blown sentences
if it helps—e.g., “I assume that my users naturally cluster into about
five groups because when I hear the sales rep talk about them, she has
about five different types of people she talks about”—then taking your
words and trying to express them as equations and code.

Remember, it’s always good to start simply. There is a trade-off in
modeling between simple and accurate. Simple models may be easier
to interpret and understand. Oftentimes the crude, simple model gets
you 90% of the way there and only takes a few hours to build and fit,
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whereas getting a more complex model might take months and only
get you to 92%.

You’ll start building up your arsenal of potential models throughout
this book. Some of the building blocks of these models are probability
distributions.

Probability distributions
Probability distributions are the foundation of statistical models.
When we get to linear regression and Naive Bayes, you will see how
this happens in practice. One can take multiple semesters of courses
on probability theory, and so it’s a tall challenge to condense it down
for you in a small section.

Back in the day, before computers, scientists observed real-world phe‐
nomenon, took measurements, and noticed that certain mathematical
shapes kept reappearing. The classical example is the height of hu‐
mans, following a normal distribution—a bell-shaped curve, also
called a Gaussian distribution, named after Gauss.

Other common shapes have been named after their observers as well
(e.g., the Poisson distribution and the Weibull distribution), while
other shapes such as Gamma distributions or exponential distribu‐
tions are named after associated mathematical objects.

Natural processes tend to generate measurements whose empirical
shape could be approximated by mathematical functions with a few
parameters that could be estimated from the data.

Not all processes generate data that looks like a named distribution,
but many do. We can use these functions as building blocks of our
models. It’s beyond the scope of the book to go into each of the dis‐
tributions in detail, but we provide them in Figure 2-1 as an illustration
of the various common shapes, and to remind you that they only have
names because someone observed them enough times to think they
deserved names. There is actually an infinite number of possible dis‐
tributions.

They are to be interpreted as assigning a probability to a subset of
possible outcomes, and have corresponding functions. For example,
the normal distribution is written as:
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N x μ,σ ∼
1

σ 2π
e

− x −μ 2

2σ2

The parameter μ is the mean and median and controls where the dis‐
tribution is centered (because this is a symmetric distribution), and
the parameter σ controls how spread out the distribution is. This is
the general functional form, but for specific real-world phenomenon,
these parameters have actual numbers as values, which we can estimate
from the data.

Figure 2-1. A bunch of continuous density functions (aka probability
distributions)
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A random variable denoted by x or y can be assumed to have a cor‐
responding probability distribution, p x , which maps x to a positive
real number. In order to be a probability density function, we’re re‐
stricted to the set of functions such that if we integrate p x  to get the
area under the curve, it is 1, so it can be interpreted as probability.

For example, let x be the amount of time until the next bus arrives
(measured in seconds). x is a random variable because there is varia‐
tion and uncertainty in the amount of time until the next bus.

Suppose we know (for the sake of argument) that the time until the
next bus has a probability density function of p x = 2e−2x. If we want
to know the likelihood of the next bus arriving in between 12 and 13
minutes, then we find the area under the curve between 12 and 13 by
∫12

13 2e−2x.

How do we know this is the right distribution to use? Well, there are
two possible ways: we can conduct an experiment where we show up
at the bus stop at a random time, measure how much time until the
next bus, and repeat this experiment over and over again. Then we
look at the measurements, plot them, and approximate the function
as discussed. Or, because we are familiar with the fact that “waiting
time” is a common enough real-world phenomenon that a distribution
called the exponential distribution has been invented to describe it, we
know that it takes the form p x = λe−λx.

In addition to denoting distributions of single random variables with
functions of one variable, we use multivariate functions called joint
distributions to do the same thing for more than one random variable.
So in the case of two random variables, for example, we could denote
our distribution by a function p x, y , and it would take values in the
plane and give us nonnegative values. In keeping with its interpreta‐
tion as a probability, its (double) integral over the whole plane would
be 1.

We also have what is called a conditional distribution, p x y , which
is to be interpreted as the density function of x given a particular value
of y.

When we’re working with data, conditioning corresponds to subset‐
ting. So for example, suppose we have a set of user-level data for
Amazon.com that lists for each user the amount of money spent last
month on Amazon, whether the user is male or female, and how many
items they looked at before adding the first item to the shopping cart.

32 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

www.it-ebooks.info

http://www.it-ebooks.info/


If we consider X to be the random variable that represents the amount
of money spent, then we can look at the distribution of money spent
across all users, and represent it as p X .

We can then take the subset of users who looked at more than five
items before buying anything, and look at the distribution of money
spent among these users. Let Y  be the random variable that represents
number of items looked at, then p X Y > 5  would be the correspond‐
ing conditional distribution. Note a conditional distribution has the
same properties as a regular distribution in that when we integrate it,
it sums to 1 and has to take nonnegative values.

When we observe data points, i.e., x1, y1 , x2, y2 , . . . , xn, yn , we are
observing realizations of a pair of random variables. When we have
an entire dataset with n rows and k columns, we are observing n
realizations of the joint distribution of those k random variables.

For further reading on probability distributions, we recommend Shel‐
don Ross’ book, A First Course in Probability (Pearson).

Fitting a model
Fitting a model means that you estimate the parameters of the model
using the observed data. You are using your data as evidence to help
approximate the real-world mathematical process that generated the
data. Fitting the model often involves optimization methods and al‐
gorithms, such as maximum likelihood estimation, to help get the
parameters.

In fact, when you estimate the parameters, they are actually estima‐
tors, meaning they themselves are functions of the data. Once you fit
the model, you actually can write it as y = 7.2+4.5x, for example,
which means that your best guess is that this equation or functional
form expresses the relationship between your two variables, based on
your assumption that the data followed a linear pattern.

Fitting the model is when you start actually coding: your code will read
in the data, and you’ll specify the functional form that you wrote down
on the piece of paper. Then R or Python will use built-in optimization
methods to give you the most likely values of the parameters given the
data.

As you gain sophistication, or if this is one of your areas of expertise,
you’ll dig around in the optimization methods yourself. Initially you
should have an understanding that optimization is taking place and
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how it works, but you don’t have to code this part yourself—it underlies
the R or Python functions.

Overfitting
Throughout the book you will be cautioned repeatedly about overfit‐
ting, possibly to the point you will have nightmares about it. Overfit‐
ting is the term used to mean that you used a dataset to estimate the
parameters of your model, but your model isn’t that good at capturing
reality beyond your sampled data.

You might know this because you have tried to use it to predict labels
for another set of data that you didn’t use to fit the model, and it doesn’t
do a good job, as measured by an evaluation metric such as accuracy.

Exploratory Data Analysis
“Exploratory data analysis” is an attitude, a state of flexibility, a will‐
ingness to look for those things that we believe are not there, as well
as those we believe to be there.

— John Tukey

Earlier we mentioned exploratory data analysis (EDA) as the first step
toward building a model. EDA is often relegated to chapter 1 (by which
we mean the “easiest” and lowest level) of standard introductory sta‐
tistics textbooks and then forgotten about for the rest of the book.

It’s traditionally presented as a bunch of histograms and stem-and-leaf
plots. They teach that stuff to kids in fifth grade so it seems trivial,
right? No wonder no one thinks much of it.

But EDA is a critical part of the data science process, and also repre‐
sents a philosophy or way of doing statistics practiced by a strain of
statisticians coming from the Bell Labs tradition.

John Tukey, a mathematician at Bell Labs, developed exploratory data
analysis in contrast to confirmatory data analysis, which concerns it‐
self with modeling and hypotheses as described in the previous section.
In EDA, there is no hypothesis and there is no model. The “explora‐
tory” aspect means that your understanding of the problem you are
solving, or might solve, is changing as you go.
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Historical Perspective: Bell Labs
Bell Labs is a research lab going back to the 1920s that has made
innovations in physics, computer science, statistics, and math, pro‐
ducing languages like C++, and many Nobel Prize winners as well.
There was a very successful and productive statistics group there, and
among its many notable members was John Tukey, a mathematician
who worked on a lot of statistical problems. He is considered the
father of EDA and R (which started as the S language at Bell Labs; R
is the open source version), and he was interested in trying to visualize
high-dimensional data.

We think of Bell Labs as one of the places where data science was
“born” because of the collaboration between disciplines, and the mas‐
sive amounts of complex data available to people working there. It
was a virtual playground for statisticians and computer scientists,
much like Google is today.

In fact, in 2001, Bill Cleveland wrote “Data Science: An Action Plan
for expanding the technical areas of the field of statistics,” which de‐
scribed multidisciplinary investigation, models, and methods for data
(traditional applied stats), computing with data (hardware, software,
algorithms, coding), pedagogy, tool evaluation (staying on top of cur‐
rent trends in technology), and theory (the math behind the data).

You can read more about Bell Labs in the book The Idea Factory by
Jon Gertner (Penguin Books).

The basic tools of EDA are plots, graphs and summary statistics. Gen‐
erally speaking, it’s a method of systematically going through the data,
plotting distributions of all variables (using box plots), plotting time
series of data, transforming variables, looking at all pairwise relation‐
ships between variables using scatterplot matrices, and generating
summary statistics for all of them. At the very least that would mean
computing their mean, minimum, maximum, the upper and lower
quartiles, and identifying outliers.

But as much as EDA is a set of tools, it’s also a mindset. And that
mindset is about your relationship with the data. You want to under‐
stand the data—gain intuition, understand the shape of it, and try to
connect your understanding of the process that generated the data to
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the data itself. EDA happens between you and the data and isn’t about
proving anything to anyone else yet.

Philosophy of Exploratory Data Analysis
Long before worrying about how to convince others, you first have
to understand what’s happening yourself.

— Andrew Gelman

While at Google, Rachel was fortunate to work alongside two former
Bell Labs/AT&T statisticians—Daryl Pregibon and Diane Lambert,
who also work in this vein of applied statistics—and learned from them
to make EDA a part of her best practices.

Yes, even with very large Google-scale data, they did EDA. In the con‐
text of data in an Internet/engineering company, EDA is done for some
of the same reasons it’s done with smaller datasets, but there are ad‐
ditional reasons to do it with data that has been generated from logs.

There are important reasons anyone working with data should do
EDA. Namely, to gain intuition about the data; to make comparisons
between distributions; for sanity checking (making sure the data is on
the scale you expect, in the format you thought it should be); to find
out where data is missing or if there are outliers; and to summarize
the data.

In the context of data generated from logs, EDA also helps with de‐
bugging the logging process. For example, “patterns” you find in the
data could actually be something wrong in the logging process that
needs to be fixed. If you never go to the trouble of debugging, you’ll
continue to think your patterns are real. The engineers we’ve worked
with are always grateful for help in this area.

In the end, EDA helps you make sure the product is performing as
intended.

Although there’s lots of visualization involved in EDA, we distinguish
between EDA and data visualization in that EDA is done toward the
beginning of analysis, and data visualization (which we’ll get to in
Chapter 9), as it’s used in our vernacular, is done toward the end to
communicate one’s findings. With EDA, the graphics are solely done
for you to understand what’s going on.

With EDA, you can also use the understanding you get to inform and
improve the development of algorithms. For example, suppose you

36 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

www.it-ebooks.info

http://www.it-ebooks.info/


are trying to develop a ranking algorithm that ranks content that you
are showing to users. To do this you might want to develop a notion
of “popular.”

Before you decide how to quantify popularity (which could be, for
example, highest frequency of clicks, or the post with the most number
of comments, or comments above some threshold, or some weighted
average of many metrics), you need to understand how the data is
behaving, and the best way to do that is looking at it and getting your
hands dirty.

Plotting data and making comparisons can get you extremely far, and
is far better to do than getting a dataset and immediately running a
regression just because you know how. It’s been a disservice to analysts
and data scientists that EDA has not been enforced as a critical part of
the process of working with data. Take this opportunity to make it part
of your process!

Here are some references to help you understand best practices and
historical context:

1. Exploratory Data Analysis by John Tukey (Pearson)
2. The Visual Display of Quantitative Information by Edward Tufte

(Graphics Press)
3. The Elements of Graphing Data by William S. Cleveland (Hobart

Press)
4. Statistical Graphics for Visualizing Multivariate Data by William

G. Jacoby (Sage)
5. “Exploratory Data Analysis for Complex Models” by Andrew

Gelman (American Statistical Association)
6. The Future of Data Analysis by John Tukey. Annals of Mathemat‐

ical Statistics, Volume 33, Number 1 (1962), 1-67.
7. Data Analysis, Exploratory by David Brillinger [8-page excerpt

from International Encyclopedia of Political Science (Sage)]

Exercise: EDA
There are 31 datasets named nyt1.csv, nyt2.csv,…,nyt31.csv, which you
can find here: https://github.com/oreillymedia/doing_data_science.
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Each one represents one (simulated) day’s worth of ads shown and
clicks recorded on the New York Times home page in May 2012. Each
row represents a single user. There are five columns: age, gender
(0=female, 1=male), number impressions, number clicks, and logged-
in.

You’ll be using R to handle these data. It’s a programming language
designed specifically for data analysis, and it’s pretty intuitive to start
using. You can download it here. Once you have it installed, you can
load a single file into R with this command:

data1 <- read.csv(url("http://stat.columbia.edu/~rachel/
                       datasets/nyt1.csv"))

Once you have the data loaded, it’s time for some EDA:

1. Create a new variable, age_group, that categorizes users as "<18",
"18-24", "25-34", "35-44", "45-54", "55-64", and "65+".

2. For a single day:

• Plot the distributions of number impressions and click-
through-rate (CTR=# clicks/# impressions) for these six age
categories.

• Define a new variable to segment or categorize users based on
their click behavior.

• Explore the data and make visual and quantitative comparisons
across user segments/demographics (<18-year-old males ver‐
sus < 18-year-old females or logged-in versus not, for example).

• Create metrics/measurements/statistics that summarize the da‐
ta. Examples of potential metrics include CTR, quantiles, mean,
median, variance, and max, and these can be calculated across
the various user segments. Be selective. Think about what will
be important to track over time—what will compress the data,
but still capture user behavior.

3. Now extend your analysis across days. Visualize some metrics and
distributions over time.

4. Describe and interpret any patterns you find.

Sample code
Here we’ll give you the beginning of a sample solution for this exercise.
The reality is that we can’t teach you about data science and teach you
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how to code all in the same book. Learning to code in a new language
requires a lot of trial and error as well as going online and searching
on Google or stackoverflow.

Chances are, if you’re trying to figure out how to plot something or
build a model in R, other people have tried as well, so rather than
banging your head against the wall, look online. [Ed note: There might
also be some books available to help you out on this front as well.] We
suggest not looking at this code until you’ve struggled along a bit:

# Author: Maura Fitzgerald
data1 <- read.csv(url("http://stat.columbia.edu/~rachel/
                       datasets/nyt1.csv"))

# categorize
head(data1)
data1$agecat <-cut(data1$Age,c(-Inf,0,18,24,34,44,54,64,Inf))

# view
summary(data1)

# brackets
install.packages("doBy")
library("doBy")
siterange <- function(x){c(length(x), min(x), mean(x), max(x))}
summaryBy(Age~agecat, data =data1, FUN=siterange)

# so only signed in users have ages and genders
summaryBy(Gender+Signed_In+Impressions+Clicks~agecat,
          data =data1)

# plot
install.packages("ggplot2")
library(ggplot2)
ggplot(data1, aes(x=Impressions, fill=agecat))
       +geom_histogram(binwidth=1)
ggplot(data1, aes(x=agecat, y=Impressions, fill=agecat))
       +geom_boxplot()

# create click thru rate
# we don't care about clicks if there are no impressions
# if there are clicks with no imps my assumptions about
# this data are wrong
data1$hasimps <-cut(data1$Impressions,c(-Inf,0,Inf))
summaryBy(Clicks~hasimps, data =data1, FUN=siterange)
ggplot(subset(data1, Impressions>0), aes(x=Clicks/Impressions,
       colour=agecat)) + geom_density()
ggplot(subset(data1, Clicks>0), aes(x=Clicks/Impressions,
       colour=agecat)) + geom_density()
ggplot(subset(data1, Clicks>0), aes(x=agecat, y=Clicks,
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      fill=agecat)) + geom_boxplot()
ggplot(subset(data1, Clicks>0), aes(x=Clicks, colour=agecat))
      + geom_density()

# create categories
data1$scode[data1$Impressions==0] <- "NoImps"
data1$scode[data1$Impressions >0] <- "Imps"
data1$scode[data1$Clicks >0] <- "Clicks"

# Convert the column to a factor
data1$scode <- factor(data1$scode)
head(data1)

#look at levels
clen <- function(x){c(length(x))}
etable<-summaryBy(Impressions~scode+Gender+agecat,
                  data = data1, FUN=clen)

Hint for doing the rest: don’t read all the datasets into memory. Once
you’ve perfected your code for one day, read the datasets in one at a
time, process them, output any relevant metrics and variables, and
store them in a dataframe; then remove the dataset before reading in
the next one. This is to get you thinking about how to handle data
sharded across multiple machines.

On Coding
In a May 2013 op-ed piece, “How to be a Woman Programmer,” Ellen
Ullman describes quite well what it takes to be a programmer (setting
aside for now the woman part):

“The first requirement for programming is a passion for the work, a
deep need to probe the mysterious space between human thoughts
and what a machine can understand; between human desires and how
machines might satisfy them.

The second requirement is a high tolerance for failure. Programming
is the art of algorithm design and the craft of debugging errant code.
In the words of the great John Backus, inventor of the Fortran pro‐
gramming language: You need the willingness to fail all the time. You
have to generate many ideas and then you have to work very hard only
to discover that they don’t work. And you keep doing that over and over
until you find one that does work.”
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The Data Science Process
Let’s put it all together into what we define as the data science process.
The more examples you see of people doing data science, the more
you’ll find that they fit into the general framework shown in
Figure 2-2. As we go through the book, we’ll revisit stages of this pro‐
cess and examples of it in different ways.

Figure 2-2. The data science process

First we have the Real World. Inside the Real World are lots of people
busy at various activities. Some people are using Google+, others are
competing in the Olympics; there are spammers sending spam, and
there are people getting their blood drawn. Say we have data on one
of these things.

Specifically, we’ll start with raw data—logs, Olympics records, Enron
employee emails, or recorded genetic material (note there are lots of
aspects to these activities already lost even when we have that raw
data). We want to process this to make it clean for analysis. So we build
and use pipelines of data munging: joining, scraping, wrangling, or
whatever you want to call it. To do this we use tools such as Python,
shell scripts, R, or SQL, or all of the above.

Eventually we get the data down to a nice format, like something with
columns:

name | event | year | gender | event time
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This is where you typically start in a standard statistics class,
with a clean, orderly dataset. But it’s not where you typically
start in the real world.

Once we have this clean dataset, we should be doing some kind of
EDA. In the course of doing EDA, we may realize that it isn’t actually
clean because of duplicates, missing values, absurd outliers, and data
that wasn’t actually logged or incorrectly logged. If that’s the case, we
may have to go back to collect more data, or spend more time cleaning
the dataset.

Next, we design our model to use some algorithm like k-nearest
neighbor (k-NN), linear regression, Naive Bayes, or something else.
The model we choose depends on the type of problem we’re trying to
solve, of course, which could be a classification problem, a prediction
problem, or a basic description problem.

We then can interpret, visualize, report, or communicate our results.
This could take the form of reporting the results up to our boss or
coworkers, or publishing a paper in a journal and going out and giving
academic talks about it.

Alternatively, our goal may be to build or prototype a “data product”;
e.g., a spam classifier, or a search ranking algorithm, or a recommen‐
dation system. Now the key here that makes data science special and
distinct from statistics is that this data product then gets incorporated
back into the real world, and users interact with that product, and that
generates more data, which creates a feedback loop.

This is very different from predicting the weather, say, where your
model doesn’t influence the outcome at all. For example, you might
predict it will rain next week, and unless you have some powers we
don’t know about, you’re not going to cause it to rain. But if you instead
build a recommendation system that generates evidence that “lots of
people love this book,” say, then you will know that you caused that
feedback loop.

Take this loop into account in any analysis you do by adjusting for any
biases your model caused. Your models are not just predicting the
future, but causing it!

A data product that is productionized and that users interact with is
at one extreme and the weather is at the other, but regardless of the
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type of data you work with and the “data product” that gets built on
top of it—be it public policy determined by a statistical model, health
insurance, or election polls that get widely reported and perhaps in‐
fluence viewer opinions—you should consider the extent to which
your model is influencing the very phenomenon that you are trying
to observe and understand.

A Data Scientist’s Role in This Process
This model so far seems to suggest this will all magically happen
without human intervention. By “human” here, we mean “data scien‐
tist.” Someone has to make the decisions about what data to collect,
and why. That person needs to be formulating questions and hypoth‐
eses and making a plan for how the problem will be attacked. And that
someone is the data scientist or our beloved data science team.

Let’s revise or at least add an overlay to make clear that the data scientist
needs to be involved in this process throughout, meaning they are
involved in the actual coding as well as in the higher-level process, as
shown in Figure 2-3.

Figure 2-3. The data scientist is involved in every part of this process
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Connection to the Scientific Method
We can think of the data science process as an extension of or variation
of the scientific method:

• Ask a question.
• Do background research.
• Construct a hypothesis.
• Test your hypothesis by doing an experiment.
• Analyze your data and draw a conclusion.
• Communicate your results.

In both the data science process and the scientific method, not every
problem requires one to go through all the steps, but almost all prob‐
lems can be solved with some combination of the stages. For example,
if your end goal is a data visualization (which itself could be thought
of as a data product), it’s possible you might not do any machine
learning or statistical modeling, but you’d want to get all the way to a
clean dataset, do some exploratory analysis, and then create the
visualization.

Thought Experiment: How Would You
Simulate Chaos?
Most data problems start out with a certain amount of dirty data, ill-
defined questions, and urgency. As data scientists we are, in a sense,
attempting to create order from chaos. The class took a break from the
lecture to discuss how they’d simulate chaos. Here are some ideas from
the discussion:

• A Lorenzian water wheel, which is a Ferris wheel-type contraption
with equally spaced buckets of water that rotate around in a circle.
Now imagine water being dripped into the system at the very top.
Each bucket has a leak, so some water escapes into whatever buck‐
et is directly below the drip. Depending on the rate of the water
coming in, this system exhibits a chaotic process that depends on
molecular-level interactions of water molecules on the sides of the
buckets. Read more about it in this associated Wikipedia article.

44 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

www.it-ebooks.info

http://goo.gl/SjcJ64
http://www.it-ebooks.info/


• Many systems can exhibit inherent chaos. Philippe M. Binder and
Roderick V. Jensen have written a paper entitled “Simulating cha‐
otic behavior with finite-state machines”, which is about digital
computer simulations of chaos.

• An interdisciplinary program involving M.I.T., Harvard, and
Tufts involved teaching a technique that was entitled “Simulating
chaos to teach order”. They simulated an emergency on the border
between Chad and Sudan’s troubled Darfur region, with students
acting as members of Doctors Without Borders, International
Medical Corps, and other humanitarian agencies.

• See also Joel Gascoigne’s related essay, “Creating order from chaos
in a startup”.

Instructor Notes

1. Being a data scientist in an organization is often a chaotic expe‐
rience, and it’s the data scientist’s job to try to create order from
that chaos. So I wanted to simulate that chaotic experience for
my students throughout the semester. But I also wanted them to
know that things were going to be slightly chaotic for a peda‐
gogical reason, and not due to my ineptitude!

2. I wanted to draw out different interpretations of the word “chaos”
as a means to think about the importance of vocabulary, and the
difficulties caused in communication when people either don’t
know what a word means, or have different ideas of what the
word means. Data scientists might be communicating with do‐
main experts who don’t really understand what “logistic regres‐
sion” means, say, but will pretend to know because they don’t
want to appear stupid, or because they think they ought to know,
and therefore don’t ask. But then the whole conversation is not
really a successful communication if the two people talking don’t
really understand what they’re talking about. Similarly, the data
scientists ought to be asking questions to make sure they under‐
stand the terminology the domain expert is using (be it an as‐
trophysicist, a social networking expert, or a climatologist).
There’s nothing wrong with not knowing what a word means,
but there is something wrong with not asking! You will likely find
that asking clarifying questions about vocabulary gets you even
more insight into the underlying data problem.
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3. Simulation is a useful technique in data science. It can be useful
practice to simulate fake datasets from a model to understand the
generative process better, for example, and also to debug code.

Case Study: RealDirect
Doug Perlson, the CEO of RealDirect, has a background in real estate
law, startups, and online advertising. His goal with RealDirect is to use
all the data he can access about real estate to improve the way people
sell and buy houses.

Normally, people sell their homes about once every seven years, and
they do so with the help of professional brokers and current data. But
there’s a problem both with the broker system and the data quality.
RealDirect addresses both of them.

First, the brokers. They are typically “free agents” operating on their
own—think of them as home sales consultants. This means that they
guard their data aggressively, and the really good ones have lots of
experience. But in the grand scheme of things, that really means they
have only slightly more data than the inexperienced brokers.

RealDirect is addressing this problem by hiring a team of licensed real-
estate agents who work together and pool their knowledge. To
accomplish this, it built an interface for sellers, giving them useful data-
driven tips on how to sell their house. It also uses interaction data to
give real-time recommendations on what to do next.

The team of brokers also become data experts, learning to use
information-collecting tools to keep tabs on new and relevant data or
to access publicly available information. For example, you can now get
data on co-op (a certain kind of apartment in NYC) sales, but that’s a
relatively recent change.

One problem with publicly available data is that it’s old news—there’s
a three-month lag between a sale and when the data about that sale is
available. RealDirect is working on real-time feeds on things like when
people start searching for a home, what the initial offer is, the time
between offer and close, and how people search for a home online.

Ultimately, good information helps both the buyer and the seller. At
least if they’re honest.
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How Does RealDirect Make Money?
First, it offers a subscription to sellers—about $395 a month—to access
the selling tools. Second, it allows sellers to use RealDirect’s agents at
a reduced commission, typically 2% of the sale instead of the usual
2.5% or 3%. This is where the magic of data pooling comes in: it allows
RealDirect to take a smaller commission because it’s more optimized,
and therefore gets more volume.

The site itself is best thought of as a platform for buyers and sellers to
manage their sale or purchase process. There are statuses for each
person on site: active, offer made, offer rejected, showing, in contract,
etc. Based on your status, different actions are suggested by the
software.

There are some challenges they have to deal with as well, of course.
First off, there’s a law in New York that says you can’t show all the
current housing listings unless those listings reside behind a registra‐
tion wall, so RealDirect requires registration. On the one hand, this is
an obstacle for buyers, but serious buyers are likely willing to do it.
Moreover, places that don’t require registration, like Zillow, aren’t true
competitors to RealDirect because they are merely showing listings
without providing any additional service. Doug pointed out that you
also need to register to use Pinterest, and it has tons of users in spite
of this.

RealDirect comprises licensed brokers in various established realtor
associations, but even so it has had its share of hate mail from realtors
who don’t appreciate its approach to cutting commission costs. In this
sense, RealDirect is breaking directly into a guild. On the other hand,
if a realtor refused to show houses because they are being sold on
RealDirect, the potential buyers would see those listings elsewhere and
complain. So the traditional brokers have little choice but to deal with
RealDirect even if they don’t like it. In other words, the listings them‐
selves are sufficiently transparent so that the traditional brokers can’t
get away with keeping their buyers away from these houses.

Doug talked about key issues that a buyer might care about—nearby
parks, subway, and schools, as well as the comparison of prices per
square foot of apartments sold in the same building or block. This is
the kind of data they want to increasingly cover as part of the service
of RealDirect.
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Exercise: RealDirect Data Strategy
You have been hired as chief data scientist at realdirect.com, and report
directly to the CEO. The company (hypothetically) does not yet have
its data plan in place. It’s looking to you to come up with a data strategy.
Here are a couple ways you could begin to approach this problem:

1. Explore its existing website, thinking about how buyers and sellers
would navigate through it, and how the website is structured/
organized. Try to understand the existing business model, and
think about how analysis of RealDirect user-behavior data could
be used to inform decision-making and product development.
Come up with a list of research questions you think could be an‐
swered by data:

• What data would you advise the engineers log and what would
your ideal datasets look like?

• How would data be used for reporting and monitoring product
usage?

• How would data be built back into the product/website?

2. Because there is no data yet for you to analyze (typical in a start-
up when its still building its product), you should get some aux‐
iliary data to help gain intuition about this market. For example,
go to https://github.com/oreillymedia/doing_data_science. Click
on Rolling Sales Update (after the fifth paragraph).
You can use any or all of the datasets here—start with Manhattan
August, 2012–August 2013.

• First challenge: load in and clean up the data. Next, conduct
exploratory data analysis in order to find out where there are
outliers or missing values, decide how you will treat them, make
sure the dates are formatted correctly, make sure values you
think are numerical are being treated as such, etc.

• Once the data is in good shape, conduct exploratory data anal‐
ysis to visualize and make comparisons (i) across neighbor‐
hoods, and (ii) across time. If you have time, start looking for
meaningful patterns in this dataset.

3. Summarize your findings in a brief report aimed at the CEO.
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4. Being the “data scientist” often involves speaking to people who
aren’t also data scientists, so it would be ideal to have a set of com‐
munication strategies for getting to the information you need
about the data. Can you think of any other people you should talk
to?

5. Most of you are not “domain experts” in real estate or online
businesses.

• Does stepping out of your comfort zone and figuring out how
you would go about “collecting data” in a different setting give
you insight into how you do it in your own field?

• Sometimes “domain experts” have their own set of vocabulary.
Did Doug use vocabulary specific to his domain that you didn’t
understand (“comps,” “open houses,” “CPC”)? Sometimes if you
don’t understand vocabulary that an expert is using, it can pre‐
vent you from understanding the problem. It’s good to get in
the habit of asking questions because eventually you will get to
something you do understand. This involves persistence and is
a habit to cultivate.

6. Doug mentioned the company didn’t necessarily have a data strat‐
egy. There is no industry standard for creating one. As you work
through this assignment, think about whether there is a set of best
practices you would recommend with respect to developing a data
strategy for an online business, or in your own domain.

Sample R code
Here’s some sample R code that takes the Brooklyn housing data in
the preceding exercise, and cleans and explores it a bit. (The exercise
asks you to do this for Manhattan.)

# Author: Benjamin Reddy

require(gdata)
bk <- read.xls("rollingsales_brooklyn.xls",pattern="BOROUGH")
head(bk)
summary(bk)

bk$SALE.PRICE.N <- as.numeric(gsub("[^[:digit:]]","",
                              bk$SALE.PRICE))
count(is.na(bk$SALE.PRICE.N))

names(bk) <- tolower(names(bk))
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## clean/format the data with regular expressions
bk$gross.sqft <- as.numeric(gsub("[^[:digit:]]","",
                            bk$gross.square.feet))
bk$land.sqft <- as.numeric(gsub("[^[:digit:]]","",
                           bk$land.square.feet))

bk$sale.date <- as.Date(bk$sale.date)
bk$year.built <- as.numeric(as.character(bk$year.built))

## do a bit of exploration to make sure there's not anything
## weird going on with sale prices
attach(bk)

hist(sale.price.n)
hist(sale.price.n[sale.price.n>0])
hist(gross.sqft[sale.price.n==0])

detach(bk)

## keep only the actual sales
bk.sale <- bk[bk$sale.price.n!=0,]

plot(bk.sale$gross.sqft,bk.sale$sale.price.n)
plot(log(bk.sale$gross.sqft),log(bk.sale$sale.price.n))

## for now, let's look at 1-, 2-, and 3-family homes
bk.homes <- bk.sale[which(grepl("FAMILY",
            bk.sale$building.class.category)),]
plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))

bk.homes[which(bk.homes$sale.price.n<100000),]
    [order(bk.homes[which(bk.homes$sale.price.n<100000),]
    $sale.price.n),]

## remove outliers that seem like they weren't actual sales
bk.homes$outliers <- (log(bk.homes$sale.price.n) <=5) + 0
bk.homes <- bk.homes[which(bk.homes$outliers==0),]

plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))
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CHAPTER 3

Algorithms

In the previous chapter we discussed in general how models are used
in data science. In this chapter, we’re going to be diving into
algorithms.

An algorithm is a procedure or set of steps or rules to accomplish a
task. Algorithms are one of the fundamental concepts in, or building
blocks of, computer science: the basis of the design of elegant and
efficient code, data preparation and processing, and software engi‐
neering.

Some of the basic types of tasks that algorithms can solve are sorting,
searching, and graph-based computational problems. Although a giv‐
en task such as sorting a list of objects could be handled by multiple
possible algorithms, there is some notion of “best” as measured by
efficiency and computational time, which matters especially when
you’re dealing with massive amounts of data and building consumer-
facing products.

Efficient algorithms that work sequentially or in parallel are the basis
of pipelines to process and prepare data. With respect to data science,
there are at least three classes of algorithms one should be aware of:

1. Data munging, preparation, and processing algorithms, such as
sorting, MapReduce, or Pregel.
We would characterize these types of algorithms as data engi‐
neering, and while we devote a chapter to this, it’s not the emphasis
of this book. This is not to say that you won’t be doing data wran‐
gling and munging—just that we don’t emphasize the algorithmic
aspect of it.
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2. Optimization algorithms for parameter estimation, including
Stochastic Gradient Descent, Newton’s Method, and Least
Squares. We mention these types of algorithms throughout the
book, and they underlie many R functions.

3. Machine learning algorithms are a large part of this book, and we
discuss these more next.

Machine Learning Algorithms
Machine learning algorithms are largely used to predict, classify, or
cluster.

Wait! Back in the previous chapter, didn’t we already say modeling
could be used to predict or classify? Yes. Here’s where some lines have
been drawn that can make things a bit confusing, and it’s worth un‐
derstanding who drew those lines.

Statistical modeling came out of statistics departments, and machine
learning algorithms came out of computer science departments. Cer‐
tain methods and techniques are considered to be part of both, and
you’ll see that we often use the words somewhat interchangeably.

You’ll find some of the methods in this book, such as linear regression,
in machine learning books as well as intro to statistics books. It’s not
necessarily useful to argue over who the rightful owner is of these
methods, but it’s worth pointing out here that it can get a little vague
or ambiguous about what the actual difference is.

In general, machine learning algorithms that are the basis of artificial
intelligence (AI) such as image recognition, speech recognition, rec‐
ommendation systems, ranking and personalization of content—
often the basis of data products—are not usually part of a core statistics
curriculum or department. They aren’t generally designed to infer the
underlying generative process (e.g., to model something), but rather to
predict or classify with the most accuracy.

These differences in methods reflect in cultural differences in the ap‐
proaches of machine learners and statisticians that Rachel observed at
Google, and at industry conferences. Of course, data scientists can and
should use both approaches.
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There are some broad generalizations to consider:
Interpreting parameters

Statisticians think of the parameters in their linear regression
models as having real-world interpretations, and typically want
to be able to find meaning in behavior or describe the real-world
phenomenon corresponding to those parameters. Whereas a soft‐
ware engineer or computer scientist might be wanting to build
their linear regression algorithm into production-level code, and
the predictive model is what is known as a black box algorithm,
they don’t generally focus on the interpretation of the parameters.
If they do, it is with the goal of handtuning them in order to op‐
timize predictive power.

Confidence intervals
Statisticians provide confidence intervals and posterior distribu‐
tions for parameters and estimators, and are interested in captur‐
ing the variability or uncertainty of the parameters. Many
machine learning algorithms, such as k-means or k-nearest neigh‐
bors (which we cover a bit later in this chapter), don’t have a notion
of confidence intervals or uncertainty.

The role of explicit assumptions
Statistical models make explicit assumptions about data-
generating processes and distributions, and you use the data to
estimate parameters. Nonparametric solutions, like we’ll see later
in this chapter, don’t make any assumptions about probability
distributions, or they are implicit.

We say the following lovingly and with respect: statisticians have chos‐
en to spend their lives investigating uncertainty, and they’re never
100% confident about anything. Software engineers like to build
things. They want to build models that predict the best they can, but
there are no concerns about uncertainty—just build it! At companies
like Facebook or Google, the philosophy is to build and iterate often.
If something breaks, it can be fixed. A data scientist who somehow
manages to find a balance between the statistical and computer science
approaches, and to find value in both these ways of being, can thrive.
Data scientists are the multicultural statistician-computer scientist
hybrid, so we’re not tied to any one way of thinking over another; they
both have value. We’ll sum up our take on this with guest speaker Josh
Wills’ (Chapter 13) well-tweeted quote:
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Data scientist (noun): Person who is better at statistics than any soft‐
ware engineer and better at software engineering than any statistician.

— Josh Wills

Three Basic Algorithms
Many business or real-world problems that can be solved with data
can be thought of as classification and prediction problems when we
express them mathematically. Happily, a whole host of models and
algorithms can be used to classify and predict.

Your real challenge as a data scientist, once you’ve become familiar
with how to implement them, is understanding which ones to use
depending on the context of the problem and the underlying assump‐
tions. This partially comes with experience—you start seeing enough
problems that you start thinking, “Ah, this is a classification problem
with a binary outcome” or, “This is a classification problem, but oddly
I don’t even have any labels” and you know what to do. (In the first
case, you could use logistic regression or Naive Bayes, and in the sec‐
ond you could start with k-means—more on all these shortly!)

Initially, though, when you hear about these methods in isolation, it
takes some effort on your part as a student or learner to think, “In the
real world, how do I know that this algorithm is the solution to the
problem I’m trying to solve?”

It’s a real mistake to be the type of person walking around with a ham‐
mer looking for a nail to bang: “I know linear regression, so I’m going
to try to solve every problem I encounter with it.” Don’t do that. In‐
stead, try to understand the context of the problem, and the attributes
it has as a problem. Think of those in mathematical terms, and then
think about the algorithms you know and how they map to this type
of problem.

If you’re not sure, it’s good to talk it through with someone who does.
So ask a coworker, head to a meetup group, or start one in your area!
Also, maintain the attitude that it’s not obvious what to do and that’s
what makes it a problem, and so you’re going to approach it circum‐
spectly and methodically. You don’t have to be the know-it-all in the
room who says, “Well, obviously we should use linear regression with
a penalty function for regularization,” even if that seems to you the
right approach.

54 | Chapter 3: Algorithms

www.it-ebooks.info

http://www.it-ebooks.info/


We’re saying all this because one of the unfortunate aspects of text‐
books is they often give you a bunch of techniques and then problems
that tell you which method to use that solves the problem (e.g., use
linear regression to predict height from weight). Yes, implementing
and understanding linear regression the first few times is not obvious,
so you need practice with that, but it needs to be addressed that the
real challenge once you have mastery over technique is knowing when
to use linear regression in the first place.

We’re not going to give a comprehensive overview of all possible ma‐
chine learning algorithms, because that would make this a machine
learning book, and there are already plenty of those.

Having said that, in this chapter we’ll introduce three basic algorithms
now and introduce others throughout the book in context. By the end
of the book, you should feel more confident about your ability to learn
new algorithms so that you can pick them up along the way as prob‐
lems require them.

We’ll also do our best to demonstrate the thought processes of data
scientists who had to figure out which algorithm to use in context and
why, but it’s also upon you as a student and learner to force yourself to
think about what the attributes of the problem were that made a given
algorithm the right algorithm to use.

With that said, we still need to give you some basic tools to use, so we’ll
start with linear regression, k-nearest neighbors (k-NN), and k-means.
In addition to what was just said about trying to understand the at‐
tributes of problems that could use these as solutions, look at these
three algorithms from the perspective of: what patterns can we as hu‐
mans see in the data with our eyes that we’d like to be able to automate
with a machine, especially taking into account that as the data gets
more complex, we can’t see these patterns?

Linear Regression
One of the most common statistical methods is linear regression. At
its most basic, it’s used when you want to express the mathematical
relationship between two variables or attributes. When you use it, you
are making the assumption that there is a linear relationship between
an outcome variable (sometimes also called the response variable, de‐
pendent variable, or label) and a predictor (sometimes also called an
independent variable, explanatory variable, or feature); or between
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one variable and several other variables, in which case you’re modeling
the relationship as having a linear structure.

WTF. So Is It an Algorithm or a Model?
While we tried to make a distinction between the two earlier, we admit
the colloquial use of the words “model” and “algorithm” gets confus‐
ing because the two words seem to be used interchangeably when
their actual definitions are not the same thing at all. In the purest
sense, an algorithm is a set of rules or steps to follow to accomplish
some task, and a model is an attempt to describe or capture the world.
These two seem obviously different, so it seems the distinction should
should be obvious. Unfortunately, it isn’t. For example, regression can
be described as a statistical model as well as a machine learning al‐
gorithm. You’ll waste your time trying to get people to discuss this
with any precision.

In some ways this is a historical artifact of statistics and computer
science communities developing methods and techniques in parallel
and using different words for the same methods. The consequence of
this is that the distinction between machine learning and statistical
modeling is muddy. Some methods (for example, k-means, discussed
in the next section) we might call an algorithm because it’s a series of
computational steps used to cluster or classify objects—on the other
hand, k-means can be reinterpreted as a special case of a Gaussian
mixture model. The net result is that colloquially, people use the terms
algorithm and model interchangeably when it comes to a lot of these
methods, so try not to let it worry you. (Though it bothers us, too.)

Assuming that there is a linear relationship between an outcome vari‐
able and a predictor is a big assumption, but it’s also the simplest one
you can make—linear functions are more basic than nonlinear ones
in a mathematical sense—so in that sense it’s a good starting point.

In some cases, it makes sense that changes in one variable correlate
linearly with changes in another variable. For example, it makes sense
that the more umbrellas you sell, the more money you make. In those
cases you can feel good about the linearity assumption. Other times,
it’s harder to justify the assumption of linearity except locally: in the
spirit of calculus, everything can be approximated by line segments as
long as functions are continuous.
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Let’s back up. Why would you even want to build a linear model in the
first place? You might want to use this relationship to predict future
outcomes, or you might want to understand or describe the relation‐
ship to get a grasp on the situation. Let’s say you’re studying the rela‐
tionship between a company’s sales and how much that company
spends on advertising, or the number of friends someone has on a
social networking site and the time that person spends on that site
daily. These are all numerical outcomes, which mean linear regression
would be a wise choice, at least for a first pass at your problem.

One entry point for thinking about linear regression is to think about
deterministic lines first. We learned back in grade school that we could
describe a line with a slope and an intercept, y = f x = β0 + β1 *x. But
the setting there was always deterministic.

Even for the most mathematically sophisticated among us, if you ha‐
ven’t done it before, it’s a new mindset to start thinking about stochastic
functions. We still have the same components: points listed out ex‐
plicitly in a table (or as tuples), and functions represented in equation
form or plotted on a graph. So let’s build up to linear regression starting
from a deterministic function.

Example 1. Overly simplistic example to start. Suppose you run a
social networking site that charges a monthly subscription fee of $25,
and that this is your only source of revenue. Each month you collect
data and count your number of users and total revenue. You’ve done
this daily over the course of two years, recording it all in a spreadsheet.
You could express this data as a series of points. Here are the first four:

S = x, y = 1,25 , 10,250 , 100,2500 , 200,5000

If you showed this to someone else who didn’t even know how much
you charged or anything about your business model (what kind of
friend wasn’t paying attention to your business model?!), they might
notice that there’s a clear relationship enjoyed by all of these points,
namely y = 25x. They likely could do this in their head, in which case
they figured out that:

• There’s a linear pattern.
• The coefficient relating x and y is 25.
• It seems deterministic.
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You can even plot it as in Figure 3-1 to verify they were right (even
though you knew they were because you made the business model in
the first place). It’s a line!

Figure 3-1. An obvious linear pattern

Example 2. Looking at data at the user level. Say you have a dataset
keyed by user (meaning each row contains data for a single user), and
the columns represent user behavior on a social networking site over
a period of a week. Let’s say you feel comfortable that the data is clean
at this stage and that you have on the order of hundreds of thousands
of users. The names of the columns are total_num_friends,
total_new_friends_this_week, num_visits, time_spent, num‐
ber_apps_downloaded, number_ads_shown, gender, age, and so on.
During the course of your exploratory data analysis, you’ve randomly
sampled 100 users to keep it simple, and you plot pairs of these vari‐
ables, for example, x = total_new_friends and y = time_spent (in sec‐
onds). The business context might be that eventually you want to be
able to promise advertisers who bid for space on your website in ad‐
vance a certain number of users, so you want to be able to forecast
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number of users several days or weeks in advance. But for now, you
are simply trying to build intuition and understand your dataset.

You eyeball the first few rows and see:

7 276

3 43

4 82

6 136

10 417

9 269

Now, your brain can’t figure out what’s going on by just looking at them
(and your friend’s brain probably can’t, either). They’re in no obvious
particular order, and there are a lot of them. So you try to plot it as in
Figure 3-2.

Figure 3-2. Looking kind of linear
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It looks like there’s kind of a linear relationship here, and it makes sense;
the more new friends you have, the more time you might spend on the
site. But how can you figure out how to describe that relationship?
Let’s also point out that there is no perfectly deterministic relationship
between number of new friends and time spent on the site, but it makes
sense that there is an association between these two variables.

Start by writing something down
There are two things you want to capture in the model. The first is the
trend and the second is the variation. We’ll start first with the trend.

First, let’s start by assuming there actually is a relationship and that it’s
linear. It’s the best you can do at this point.

There are many lines that look more or less like they might work, as
shown in Figure 3-3.

Figure 3-3. Which line is the best fit?
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So how do you pick which one?

Because you’re assuming a linear relationship, start your model by
assuming the functional form to be:

y = β0 + β1x

Now your job is to find the best choices for β0 and β1 using the ob‐
served data to estimate them: x1, y1 , x2, y2 , . . . xn, yn .

Writing this with matrix notation results in this:

y = x · β

There you go: you’ve written down your model. Now the rest is fitting
the model.

Fitting the model
So, how do you calculate β? The intuition behind linear regression is
that you want to find the line that minimizes the distance between all
the points and the line.

Many lines look approximately correct, but your goal is to find the
optimal one. Optimal could mean different things, but let’s start with
optimal to mean the line that, on average, is closest to all the points.
But what does closest mean here?

Look at Figure 3-4. Linear regression seeks to find the line that mini‐
mizes the sum of the squares of the vertical distances between the
approximated or predicted yis and the observed yis. You do this be‐
cause you want to minimize your prediction errors. This method is
called least squares estimation.
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Figure 3-4. The line closest to all the points

To find this line, you’ll define the “residual sum of squares” (RSS),
denoted RSS β ,  to be:

RSS β = ∑i yi − βxi
2

where i ranges over the various data points. It is the sum of all the
squared vertical distances between the observed points and any given
line. Note this is a function of β and you want to optimize with respect
to β to find the optimal line.

To minimize RSS β = y − βx t y − βx ,  differentiate it with respect to
β and set it equal to zero, then solve for β .  This results in:

β = xt x −1xt y
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Here the little “hat” symbol on top of the β is there to indicate that it’s
the estimator for β. You don’t know the true value of β; all you have is
the observed data, which you plug into the estimator to get an estimate.

To actually fit this, to get the βs, all you need is one line of R code where
you’ve got a column of y’s and a (single) column of x’s:

model <- lm(y ~ x)

So for the example where the first few rows of the data were:

x y

7 276

3 43

4 82

6 136

10 417

9 269

The R code for this would be:

> model <- lm (y~x)
> model

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x
     -32.08        45.92

> coefs <- coef(model)
> plot(x, y, pch=20,col="red", xlab="Number new friends",
  ylab="Time spent (seconds)")
> abline(coefs[1],coefs[2])

And the estimated line is y = −32.08+45.92x, which you’re welcome
to round to y = −32+46x, and the corresponding plot looks like the
lefthand side of Figure 3-5.
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Figure 3-5. On the left is the fitted line. We can see that for any fixed
value, say 5, the values for y vary. For people with 5 new friends, we
display their time spent in the plot on the right.

But it’s up to you, the data scientist, whether you think you’d actually
want to use this linear model to describe the relationship or predict
new outcomes. If a new x-value of 5 came in, meaning the user had
five new friends, how confident are you in the output value of –32.08
+ 45.92*5 = 195.7 seconds?

In order to get at this question of confidence, you need to extend your
model. You know there’s variation among time spent on the site by
people with five new friends, meaning you certainly wouldn’t make
the claim that everyone with five new friends is guaranteed to spend
195.7 seconds on the site. So while you’ve so far modeled the trend,
you haven’t yet modeled the variation.

Extending beyond least squares
Now that you have a simple linear regression model down (one output,
one predictor) using least squares estimation to estimate your βs, you
can build upon that model in three primary ways, described in the
upcoming sections:

1. Adding in modeling assumptions about the errors
2. Adding in more predictors
3. Transforming the predictors

Adding in modeling assumptions about the errors.   If you use your model
to predict y for a given value of x, your prediction is deterministic and
doesn’t capture the variablility in the observed data. See on the
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righthand side of Figure 3-5 that for a fixed value of x = 5, there is
variability among the time spent on the site. You want to capture this
variability in your model, so you extend your model to:

y = β0 + β1x +ϵ

where the new term ϵ is referred to as noise, which is the stuff that you
haven’t accounted for by the relationships you’ve figured out so far. It’s
also called the error term—ϵ represents the actual error, the difference
between the observations and the true regression line, which you’ll
never know and can only estimate with your βs.

One often makes the modeling assumption that the noise is normally
distributed, which is denoted:

ϵ∼N 0,σ2

Note this is sometimes not a reasonable assumption. If you
are dealing with a known fat-tailed distribution, and if your
linear model is picking up only a small part of the value of
the variable y, then the error terms are likely also fat-tailed.
This is the most common situation in financial modeling.
That’s not to say we don’t use linear regression in finance,
though. We just don’t attach the “noise is normal” assumption
to it.

With the preceding assumption on the distribution of noise, this mod‐
el is saying that, for any given value of x, the conditional distribution
of y given x is p y x ∼N β0 + β1x,σ2 .

So, for example, among the set of people who had five new friends this
week, the amount of the time they spent on the website had a normal
distribution with a mean of β0 + β1 *5 and a variance of σ2, and you’re
going to estimate your parameters β0,β1,σ from the data.

How do you fit this model? How do you get the parameters β0,β1,σ
from the data?
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Turns out that no matter how the ϵs are distributed, the least
squares estimates that you already derived are the optimal
estimators for βs because they have the property of being un‐
biased and of being the minimum variance estimators. If you
want to know more about these properties and see a proof
for this, we refer you to any good book on statistical inference
(for example, Statistical Inference by Casella and Berger).

So what can you do with your observed data to estimate the variance
of the errors? Now that you have the estimated line, you can see how
far away the observed data points are from the line itself, and you can
treat these differences, also known as observed errors or residuals ,as
observations themselves, or estimates of the actual errors, the ϵs.
Define ei = yi − yi = yi − β0 + β1xi  for i = 1, . . . ,n.

Then you estimate the variance (σ2) of ϵ, as:

∑ i ei
2

n−2

Why are we dividing by n–2? A natural question. Dividing
by n–2, rather than just n, produces an unbiased estimator.
The 2 corresponds to the number of model parameters. Here
again, Casella and Berger’s book is an excellent resource for
more background information.

This is called the mean squared error and captures how much the pre‐
dicted value varies from the observed. Mean squared error is a useful
quantity for any prediction problem. In regression in particular, it’s
also an estimator for your variance, but it can’t always be used or in‐
terpreted that way. It appears in the evaluation metrics in the following
section.

Evaluation metrics

We asked earlier how confident you would be in these estimates and
in your model. You have a couple values in the output of the R function
that help you get at the issue of how confident you can be in the esti‐
mates: p-values and R-squared. Going back to our model in R, if we
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type in summary(model), which is the name we gave to this model, the
output would be:

summary (model)
Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q  Median      3Q     Max
-121.17  -52.63   -9.72   41.54  356.27

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -32.083     16.623   -1.93   0.0565 .
x             45.918      2.141   21.45   <2e-16 ***
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 77.47 on 98 degrees of freedom
Multiple R-squared: 0.8244,    Adjusted R-squared: 0.8226
F-statistic:   460 on 1 and 98 DF,  p-value: < 2.2e-16

R-squared

R2 = 1−
∑i yi − yi

2

∑i yi − y 2 . This can be interpreted as the proportion of

variance explained by our model. Note that mean squared error
is in there getting divided by total error, which is the proportion
of variance unexplained by our model and we calculate 1 minus
that.

p-values
Looking at the output, the estimated βs are in the column marked
Estimate. To see the p-values, look at Pr > t . We can interpret
the values in this column as follows: We are making a null hy‐
pothesis that the βs are zero. For any given β, the p-value captures
the probability of observing the data that we observed, and ob‐
taining the test-statistic that we obtained under the null hypothe‐
sis. This means that if we have a low p-value, it is highly unlikely
to observe such a test-statistic under the null hypothesis, and the
coefficient is highly likely to be nonzero and therefore significant.

Cross-validation
Another approach to evaluating the model is as follows. Divide
our data up into a training set and a test set: 80% in the training
and 20% in the test. Fit the model on the training set, then look at
the mean squared error on the test set and compare it to that on
the training set. Make this comparison across sample size as well.
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If the mean squared errors are approximately the same, then our
model generalizes well and we’re not in danger of overfitting. See
Figure 3-6 to see what this might look like. This approach is highly
recommended.

Figure 3-6. Comparing mean squared error in training and test set,
taken from a slide of Professor Nando de Freitas; here, the ground
truth is known because it came from a dataset with data simulated
from a known distribution

Other models for error terms

The mean squared error is an example of what is called a loss func‐
tion. This is the standard one to use in linear regression because it gives
us a pretty nice measure of closeness of fit. It has the additional de‐
sirable property that by assuming that εs are normally distributed, we
can rely on the maximum likelihood principle. There are other loss
functions such as one that relies on absolute value rather than squar‐
ing. It’s also possible to build custom loss functions specific to your
particular problem or context, but for now, you’re safe with using mean
square error.
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Adding other predictors.   What we just looked at was simple linear re‐
gression—one outcome or dependent variable and one predictor. But
we can extend this model by building in other predictors, which is
called multiple linear regression:

y = β0 + β1x1 + β2x2 + β3x3 +ϵ .

All the math that we did before holds because we had expressed it in
matrix notation, so it was already generalized to give the appropriate
estimators for the β. In the example we gave of predicting time spent
on the website, the other predictors could be the user’s age and gender,
for example. We’ll explore feature selection more in Chapter 7, which
means figuring out which additional predictors you’d want to put in
your model. The R code will just be:

model <- lm(y ~ x_1 + x_2 + x_3)

Or to add in interactions between variables:

model <- lm(y ~ x_1 + x_2 + x_3 + x2_*x_3)

One key here is to make scatterplots of y against each of the predictors
as well as between the predictors, and histograms of y x for various
values of each of the predictors to help build intuition. As with simple
linear regression, you can use the same methods to evaluate your
model as described earlier: looking at R2, p-values, and using training
and testing sets.

Transformations.   Going back to one x predicting one y, why did we
assume a linear relationship? Instead, maybe, a better model would be
a polynomial relationship like this:

y = β0 + β1x + β2x2 + β3x3

Wait, but isn’t this linear regression? Last time we checked, polyno‐
mials weren’t linear. To think of it as linear, you transform or create
new variables—for example, z = x2—and build a regression model
based on z. Other common transformations are to take the log or to
pick a threshold and turn it into a binary predictor instead.

If you look at the plot of time spent versus number friends, the shape
looks a little bit curvy. You could potentially explore this further
by building up a model and checking to see whether this yields an
improvement.

Three Basic Algorithms | 69

www.it-ebooks.info

http://www.it-ebooks.info/


What you’re facing here, though, is one of the biggest challenges for a
modeler: you never know the truth. It’s possible that the true model is
quadratic, but you’re assuming linearity or vice versa. You do your best
to evaluate the model as discussed earlier, but you’ll never really know
if you’re right. More and more data can sometimes help in this regard
as well.

Review
Let’s review the assumptions we made when we built and fit our model:

• Linearity
• Error terms normally distributed with mean 0
• Error terms independent of each other
• Error terms have constant variance across values of x
• The predictors we’re using are the right predictors

When and why do we perform linear regression? Mostly for two
reasons:

• If we want to predict one variable knowing others
• If we want to explain or understand the relationship between two

or more things

Exercise
To help understand and explore new concepts, you can simulate fake
datasets in R. The advantage of this is that you “play God” because you
actually know the underlying truth, and you get to see how good your
model is at recovering the truth.

Once you’ve better understood what’s going on with your fake dataset,
you can then transfer your understanding to a real one. We’ll show
you how to simulate a fake dataset here, then we’ll give you some ideas
for how to explore it further:

# Simulating fake data
x_1 <- rnorm(1000,5,7) # from a normal distribution simulate
                       # 1000 values with a mean of 5 and
                       #  standard deviation of 7
hist(x_1, col="grey") # plot p(x)
true_error <- rnorm(1000,0,2)
true_beta_0 <- 1.1
true_beta_1 <- -8.2
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y <- true_beta_0 + true_beta_1*x_1 + true_error
hist(y) # plot p(y)
plot(x_1,y, pch=20,col="red") # plot p(x,y)

1. Build a regression model and see that it recovers the true values
of the βs.

2. Simulate another fake variable x2 that has a Gamma distribution
with parameters you pick. Now make the truth be that y is a linear
combination of both x1 and x2. Fit a model that only depends on
x1. Fit a model that only depends on x2. Fit a model that uses both.
Vary the sample size and make a plot of mean square error of the
training set and of the test set versus sample size.

3. Create a new variable, z, that is equal to x1
2. Include this as one of

the predictors in your model. See what happens when you fit a
model that depends on x1 only and then also on z. Vary the sample
size and make a plot of mean square error of the training set and
of the test set versus sample size.

4. Play around more by (a) changing parameter values (the true βs),
(b) changing the distribution of the true error, and (c) including
more predictors in the model with other kinds of probability dis‐
tributions. (rnorm() means randomly generate values from a nor‐
mal distribution. rbinom() does the same for binomial. So look
up these functions online and try to find more.)

5. Create scatterplots of all pairs of variables and histograms of single
variables.

k-Nearest Neighbors (k-NN)
K-NN is an algorithm that can be used when you have a bunch of
objects that have been classified or labeled in some way, and other
similar objects that haven’t gotten classified or labeled yet, and you
want a way to automatically label them.

The objects could be data scientists who have been classified as “sexy”
or “not sexy”; or people who have been labeled as “high credit” or “low
credit”; or restaurants that have been labeled “five star,” “four star,”
“three star,” “two star,” “one star,” or if they really suck, “zero stars.”
More seriously, it could be patients who have been classified as “high
cancer risk” or “low cancer risk.”
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Take a second and think whether or not linear regression would work
to solve problems of this type.

OK, so the answer is: it depends. When you use linear regression, the
output is a continuous variable. Here the output of your algorithm is
going to be a categorical label, so linear regression wouldn’t solve the
problem as it’s described.

However, it’s not impossible to solve it with linear regression plus the
concept of a “threshold.” For example, if you’re trying to predict peo‐
ple’s credit scores from their ages and incomes, and then picked a
threshold such as 700 such that if your prediction for a given person
whose age and income you observed was above 700, you’d label their
predicted credit as “high,” or toss them into a bin labeled “high.”
Otherwise, you’d throw them into the bin labeled “low.” With more
thresholds, you could also have more fine-grained categories like “very
low,” “low,” “medium,” “high,” and “very high.”

In order to do it this way, with linear regression you’d have establish
the bins as ranges of a continuous outcome. But not everything is on
a continuous scale like a credit score. For example, what if your labels
are “likely Democrat,” “likely Republican,” and “likely independent”?
What do you do now?

The intution behind k-NN is to consider the most similar other items
defined in terms of their attributes, look at their labels, and give the
unassigned item the majority vote. If there’s a tie, you randomly select
among the labels that have tied for first.

So, for example, if you had a bunch of movies that were labeled
“thumbs up” or “thumbs down,” and you had a movie called “Data
Gone Wild” that hadn’t been rated yet—you could look at its attributes:
length of movie, genre, number of sex scenes, number of Oscar-
winning actors in it, and budget. You could then find other movies
with similar attributes, look at their ratings, and then give “Data Gone
Wild” a rating without ever having to watch it.

To automate it, two decisions must be made: first, how do you define
similarity or closeness? Once you define it, for a given unrated item,
you can say how similar all the labeled items are to it, and you can take
the most similar items and call them neighbors, who each have a “vote.”

This brings you to the second decision: how many neighbors should
you look at or “let vote”? This value is k, which ultimately you’ll choose
as the data scientist, and we’ll tell you how.
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Make sense? Let’s try it out with a more realistic example.

Example with credit scores
Say you have the age, income, and a credit category of high or low for
a bunch of people and you want to use the age and income to predict
the credit label of “high” or “low” for a new person.

For example, here are the first few rows of a dataset, with income rep‐
resented in thousands:

age income credit
69      3    low
66     57    low
49     79    low
49     17    low
58     26   high
44     71   high

You can plot people as points on the plane and label people with an
empty circle if they have low credit ratings, as shown in Figure 3-7.

Figure 3-7. Credit rating as a function of age and income
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What if a new guy comes in who is 57 years old and who makes
$37,000? What’s his likely credit rating label? Look at Figure 3-8. Based
on the other people near him, what credit score label do you think he
should be given? Let’s use k-NN to do it automatically.

Figure 3-8. What about that guy?

Here’s an overview of the process:

1. Decide on your similarity or distance metric.
2. Split the original labeled dataset into training and test data.
3. Pick an evaluation metric. (Misclassification rate is a good one.

We’ll explain this more in a bit.)
4. Run k-NN a few times, changing k and checking the evaluation

measure.
5. Optimize k by picking the one with the best evaluation measure.
6. Once you’ve chosen k, use the same training set and now create a

new test set with the people’s ages and incomes that you have no
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labels for, and want to predict. In this case, your new test set only
has one lonely row, for the 57-year-old.

Similarity or distance metrics
Definitions of “closeness” and similarity vary depending on the con‐
text: closeness in social networks could be defined as the number of
overlapping friends, for example.

For the sake of our problem of what a neighbor is, we can use Euclidean
distance on the plane if the variables are on the same scale. And that
can sometimes be a big IF.

Caution: Modeling Danger Ahead!
The scalings question is a really big deal, and if you do it wrong, your
model could just suck.

Let’s consider an example: Say you measure age in years, income in
dollars, and credit rating as credit scores normally are given—some‐
thing like SAT scores. Then two people would be represented by trip‐
lets such as 25,54000,700  and 35,76000,730 . In particular, their
“distance” would be completely dominated by the difference in their
salaries.

On the other hand, if you instead measured salary in thousands of
dollars, they’d be represented by the triplets 25,54,700  and
35,76,730 , which would give all three variables similar kinds of in‐

fluence.

Ultimately the way you scale your variables, or equivalently in this
situation the way you define your concept of distance, has a potentially
enormous effect on the output. In statistics it is called your “prior.”

Euclidean distance is a good go-to distance metric for attributes that
are real-valued and can be plotted on a plane or in multidimensional
space. Some others are:
Cosine Similarity

Also can be used between two real-valued vectors, x  and y , and
will yield a value between –1 (exact opposite) and 1 (exactly the
same) with 0 in between meaning independent. Recall the defi‐
nition cos x , y = x · y

x y
.
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Jaccard Distance or Similarity
This gives the distance between a set of objects—for example, a
list of Cathy’s friends A = Kahn,Mark,Laura, . . .  and a list of
Rachel’s friends B = Mladen,Kahn,Mark, . . . —and says how
similar those two sets are: J A,B = A⋂B

A⋃B .

Mahalanobis Distance
Also can be used between two real-valued vectors and has the
advantage over Euclidean distance that it takes into account cor‐

relation and is scale-invariant. d x , y = x − y T S−1 x − y ,
where S is the covariance matrix.

Hamming Distance
Can be used to find the distance between two strings or pairs of
words or DNA sequences of the same length. The distance be‐
tween olive and ocean is 4 because aside from the “o” the other 4
letters are different. The distance between shoe and hose is 3 be‐
cause aside from the “e” the other 3 letters are different. You just
go through each position and check whether the letters the same
in that position, and if not, increment your count by 1.

Manhattan
This is also a distance between two real-valued k-dimensional
vectors. The image to have in mind is that of a taxi having to travel
the city streets of Manhattan, which is laid out in a grid-like fash‐
ion (you can’t cut diagonally across buildings). The distance is
therefore defined as d x , y = ∑i

k xi − yi , where i is the ith ele‐
ment of each of the vectors.

There are many more distance metrics available to you depending on
your type of data. We start with a Google search when we’re not sure
where to start.

What if your attributes are a mixture of kinds of data? This happens
in the case of the movie ratings example: some were numerical at‐
tributes, such as budget and number of actors, and one was categorical,
genre. But you can always define your own custom distance metric.

For example, you can say if movies are the same genre, that will con‐
tribute “0” to their distance. But if they’re of a different genre, that will
contribute “10,” where you picked the value 10 based on the fact that
this was on the same scale as budget (millions of dollars), which is in
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the range of 0 and 100. You could do the same with number of actors.
You could play around with the 10; maybe 50 is better.

You’ll want to justify why you’re making these choices. The justifica‐
tion could be that you tried different values and when you tested the
algorithm, this gave the best evaluation metric. Essentially this 10 is
either a second tuning parameter that you’ve introduced into the al‐
gorithm on top of the k, or a prior you’ve put on the model, depending
on your point of view and how it’s used.

Training and test sets
For any machine learning algorithm, the general approach is to have
a training phase, during which you create a model and “train it”; and
then you have a testing phase, where you use new data to test how good
the model is.

For k-NN, the training phase is straightforward: it’s just reading in
your data with the “high” or “low” credit data points marked. In testing,
you pretend you don’t know the true label and see how good you are
at guessing using the k-NN algorithm.

To do this, you’ll need to save some clean data from the overall data
for the testing phase. Usually you want to save randomly selected data,
let’s say 20%.

Your R console might look like this:

> head(data)
  age income credit
1  69      3    low
2  66     57    low
3  49     79    low
4  49     17    low
5  58     26   high
6  44     71   high

n.points <- 1000 # number of rows in the dataset
sampling.rate <- 0.8

# we need the number of points in the test set to calculate
# the misclassification rate
num.test.set.labels <- n.points * (1 - sampling.rate)

# randomly sample which rows will go in the training set
training <- sample(1:n.points, sampling.rate * n.points,
                   replace=FALSE)
train <- subset(data[training, ], select = c(Age, Income))
# define the training set to be those rows
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# the other rows are going into the test set
testing <- setdiff(1:n.points, training)
# define the test set to be the other rows
test <- subset(data[testing, ], select = c(Age, Income))

cl <- data$Credit[training]
# this is the subset of labels for the training set
true.labels <- data$Credit[testing]
# subset of labels for the test set, we're withholding these

Pick an evaluation metric
How do you evaluate whether your model did a good job?

This isn’t easy or universal—you may decide you want to penalize cer‐
tain kinds of misclassification more than others. False negatives may
be way worse than false positives. Coming up with the evaluation
metric could be something you work on with a domain expert.

For example, if you were using a classification algorithm to predict
whether someone had cancer or not, you would want to minimize false
negatives (misdiagnosing someone as not having cancer when they
actually do), so you could work with a doctor to tune your evaluation
metric.

Note you want to be careful because if you really wanted to have no
false negatives, you could just tell everyone they have cancer. So it’s a
trade-off between sensitivity and specificity, where sensitivity is here
defined as the probability of correctly diagnosing an ill patient as ill;
specificity is here defined as the probability of correctly diagnosing a
well patient as well.

Other Terms for Sensitivity and Specificity
Sensitivity is also called the true positive rate or recall and
varies based on what academic field you come from, but they
all mean the same thing. And specificity is also called the true
negative rate. There is also the false positive rate and the false
negative rate, and these don’t get other special names.

Another evaluation metric you could use is precision, defined in
Chapter 5. The fact that some of the same formulas have different
names is due to the fact that different academic disciplines have de‐
veloped these ideas separately. So precision and recall are the quantities
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used in the field of information retrieval. Note that precision is not the
same thing as specificity.

Finally, we have accuracy, which is the ratio of the number of correct
labels to the total number of labels, and the misclassification rate,
which is just 1–accuracy. Minimizing the misclassification rate then
just amounts to maximizing accuracy.

Putting it all together
Now that you have a distance measure and an evaluation metric, you’re
ready to roll.

For each person in your test set, you’ll pretend you don’t know his
label. Look at the labels of his three nearest neighbors, say, and use the
label of the majority vote to label him. You’ll label all the members of
the test set and then use the misclassification rate to see how well you
did. All this is done automatically in R, with just this single line of R
code:

knn (train, test, cl, k=3)

Choosing k
How do you choose k? This is a parameter you have control over. You
might need to understand your data pretty well to get a good guess,
and then you can try a few different k’s and see how your evaluation
changes. So you’ll run k-nn a few times, changing k, and checking the
evaluation metric each time.

Binary Classes
When you have binary classes like “high credit” or “low
credit,” picking k to be an odd number can be a good idea
because there will always be a majority vote, no ties. If there
is a tie, the algorithm just randomly picks.

# we'll loop through and see what the misclassification rate
# is for different values of k
for (k in 1:20) {
   print(k)
   predicted.labels <- knn(train, test, cl, k)
   # We're using the R function knn()
   num.incorrect.labels <- sum(predicted.labels != true.labels)
   misclassification.rate <- num.incorrect.labels /
                             num.test.set.labels
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   print(misclassification.rate)
}

Here’s the output in the form (k, misclassification rate):

k  misclassification.rate
1, 0.28
2, 0.315
3, 0.26
4, 0.255
5, 0.23
6, 0.26
7, 0.25
8, 0.25
9, 0.235
10, 0.24

So let’s go with k = 5 because it has the lowest misclassification rate,
and now you can apply it to your guy who is 57 with a $37,000 salary.
In the R console, it looks like:

> test <- c(57,37)
> knn(train,test,cl, k = 5)
[1] low

The output by majority vote is a low credit score when k = 5.

Test Set in k-NN
Notice we used the function knn() twice and used it in dif‐
ferent ways. In the first way, the test set was some data we
were using to evaluate how good the model was. In the second
way, the “test” set was actually a new data point that we
wanted a prediction for. We could also have given it many
rows of people who we wanted predictions for. But notice
that R doesn’t know the difference whether what you’re
putting in for the test set is truly a “test” set where you know
the real labels, or a test set where you don’t know and want
predictions.

What are the modeling assumptions?
In the previous chapter we discussed modeling and modeling as‐
sumptions. So what were the modeling assumptions here?

The k-NN algorithm is an example of a nonparametric approach. You
had no modeling assumptions about the underlying data-generating
distributions, and you weren’t attempting to estimate any parameters.
But you still made some assumptions, which were:
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• Data is in some feature space where a notion of “distance” makes
sense.

• Training data has been labeled or classified into two or more
classes.

• You pick the number of neighbors to use, k.
• You’re assuming that the observed features and the labels are

somehow associated. They may not be, but ultimately your eval‐
uation metric will help you determine how good the algorithm is
at labeling. You might want to add more features and check how
that alters the evaluation metric. You’d then be tuning both which
features you were using and k. But as always, you’re in danger here
of overfitting.

Both linear regression and k-NN are examples of “supervised learn‐
ing,” where you’ve observed both x and y, and you want to know the
function that brings x to y. Next up, we’ll look at an algorithm you can
use when you don’t know what the right answer is.

k-means
So far we’ve only seen supervised learning, where we know beforehand
what label (aka the “right answer”) is and we’re trying to get our model
to be as accurate as possible, defined by our chosen evaluation metric.

k-means is the first unsupervised learning technique we’ll look into,
where the goal of the algorithm is to determine the definition of the
right answer by finding clusters of data for you.

Let’s say you have some kind of data at the user level, e.g., Google+
data, survey data, medical data, or SAT scores.

Start by adding structure to your data. Namely, assume each row of
your dataset corresponds to a user as follows:

age gender income state household size

Your goal is to segment the users. This process is known by various
names: besides being called segmenting, you could say that you’re go‐
ing to stratify, group, or cluster the data. They all mean finding similar
types of users and bunching them together.

Why would you want to do this? Here are a few examples:
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• You might want to give different users different experiences. Mar‐
keting often does this; for example, to offer toner to people who
are known to own printers.

• You might have a model that works better for specific groups. Or
you might have different models for different groups.

• Hierarchical modeling in statistics does something like this; for
example, to separately model geographical effects from household
effects in survey results.

To see why an algorithm like this might be useful, let’s first try to con‐
struct something by hand. That might mean you’d bucket users using
handmade thresholds.

So for an attribute like age, you’d create bins: 20–24, 25–30, etc. The
same technique could be used for other attributes like income. States
or cities are in some sense their own buckets, but you might want fewer
buckets, depending on your model and the number of data points. In
that case, you could bucket the buckets and think of “East Coast” and
“Midwest” or something like that.

Say you’ve done that for each attribute. You may have 10 age buckets,
2 gender buckets, and so on, which would result in 10 × 2 × 50 × 10 ×
3 = 30,000 possible bins, which is big.

Imagine this data existing in a five-dimensional space where each axis
corresponds to one attribute. So there’s a gender axis, an income axis,
and so on. You can also label the various possible buckets along the
corresponding axes, and if you did so, the resulting grid would consist
of every possible bin—a bin for each possible combination of at‐
tributes.

Each user would then live in one of those 30,000 five-dimensional cells.
But wait, it’s highly unlikely you’d want to build a different marketing
campaign for each bin. So you’d have to bin the bins…

Now you likely see the utility of having an algorithm to do this for you,
especially if you could choose beforehand how many bins you want.
That’s exactly what k-means is: a clustering algorithm where k is the
number of bins.

2D version
Let’s back up to a simpler example than the five-dimensional one we
just discussed. Let’s say you have users where you know how many ads
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have been shown to each user (the number of impressions) and how
many times each has clicked on an ad (number of clicks).

Figure 3-9 shows a simplistic picture that illustrates what this might
look like.

Figure 3-9. Clustering in two dimensions; look at the panels in the left
column from top to bottom, and then the right column from top to
bottom

Visually you can see in the top-left that the data naturally falls into
clusters. This may be easy for you to do with your eyes when it’s only
in two dimensions and there aren’t that many points, but when you
get to higher dimensions and more data, you need an algorithm to
help with this pattern-finding process. k-means algorithm looks for
clusters in d dimensions, where d is the number of features for each
data point.
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Here’s how the algorithm illustrated in Figure 3-9 works:

1. Initially, you randomly pick k centroids (or points that will be the
center of your clusters) in d-space. Try to make them near the data
but different from one another.

2. Then assign each data point to the closest centroid.
3. Move the centroids to the average location of the data points

(which correspond to users in this example) assigned to it.
4. Repeat the preceding two steps until the assignments don’t change,

or change very little.

It’s up to you to interpret if there’s a natural way to describe these
groups once the algorithm’s done. Sometimes you’ll need to jiggle
around k a few times before you get natural groupings.

This is an example of unsupervised learning because the labels are not
known and are instead discovered by the algorithm.

k-means has some known issues:

• Choosing k is more an art than a science, although there are
bounds: 1 ≤ k ≤ n, where n is number of data points.

• There are convergence issues—the solution can fail to exist, if the
algorithm falls into a loop, for example, and keeps going back and
forth between two possible solutions, or in other words, there isn’t
a single unique solution.

• Interpretability can be a problem—sometimes the answer isn’t at
all useful. Indeed that’s often the biggest problem.

In spite of these issues, it’s pretty fast (compared to other clustering
algorithms), and there are broad applications in marketing, computer
vision (partitioning an image), or as a starting point for other models.

In practice, this is just one line of code in R:

kmeans(x, centers, iter.max = 10, nstart = 1,
       algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
                     "MacQueen"))

Your dataset needs to be a matrix, x, each column of which is one of
your features. You specify k by selecting centers. It defaults to a certain
number of iterations, which is an argument you can change. You can
also select the specific algorithm it uses to discover the clusters.
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Historical Perspective: k-means
Wait, didn’t we just describe the algorithm? It turns out there’s more
than one way to go after k-means clustering.

The standard k-means algorithm is attributed to separate work by
Hugo Steinhaus and Stuart Lloyd in 1957, but it wasn’t called “k-
means” then. The first person to use that term was James MacQueen
in 1967. It wasn’t published outside Bell Labs until 1982.

Newer versions of the algorithm are Hartigan-Wong and Lloyd and
Forgy, named for their inventors and developed throughout the ’60s
and ’70s. The algorithm we described is the default, Hartigan-Wong.
It’s fine to use the default.

As history keeps marching on, it’s worth checking out the more recent
k-means++ developed in 2007 by David Arthur and Sergei Vassilvit‐
skii (now at Google), which helps avoid convergence issues with
k-means by optimizing the initial seeds.

Exercise: Basic Machine Learning Algorithms
Continue with the NYC (Manhattan) Housing dataset you worked
with in the preceding chapter: http://abt.cm/1g3A12P.

• Analyze sales using regression with any predictors you feel are
relevant. Justify why regression was appropriate to use.

• Visualize the coefficients and fitted model.
• Predict the neighborhood using a k-NN classifier. Be sure to with‐

hold a subset of the data for testing. Find the variables and the k
that give you the lowest prediction error.

• Report and visualize your findings.
• Describe any decisions that could be made or actions that could

be taken from this analysis.

Solutions
In the preceding chapter, we showed how explore and clean this da‐
taset, so you’ll want to do that first before you build your regression
model. Following are two pieces of R code. The first shows how you
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might go about building your regression models, and the second
shows how you might clean and prepare your data and then build a
k-NN classifier.

Sample R code: Linear regression on the housing dataset
Author: Ben Reddy

model1 <- lm(log(sale.price.n) ~ log(gross.sqft),data=bk.homes)
## what's going on here?

bk.homes[which(bk.homes$gross.sqft==0),]

bk.homes <- bk.homes[which(bk.homes$gross.sqft>0 &
            bk.homes$land.sqft>0),]
model1 <- lm(log(sale.price.n) ~ log(gross.sqft),data=bk.homes)
summary(model1)

plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))
abline(model1,col="red",lwd=2)
plot(resid(model1))

model2 <- lm(log(sale.price.n) ~ log(gross.sqft) +
  log(land.sqft) + factor(neighborhood),data=bk.homes)
summary(model2)
plot(resid(model2))

## leave out intercept for ease of interpretability
model2a <- lm(log(sale.price.n) ~ 0 + log(gross.sqft) +
  log(land.sqft) + factor(neighborhood),data=bk.homes)
summary(model2a)
plot(resid(model2a))

## add building type
model3 <- lm(log(sale.price.n) ~ log(gross.sqft) +
  log(land.sqft) + factor(neighborhood) +
  factor(building.class.category),data=bk.homes)
summary(model3)
plot(resid(model3))

## interact neighborhood and building type
model4 <- lm(log(sale.price.n) ~ log(gross.sqft) +
  log(land.sqft) +  factor(neighborhood)*
  factor(building.class.category),data=bk.homes)
summary(model4)
plot(resid(model4))

Sample R code: K-NN on the housing dataset
Author: Ben Reddy
require(gdata)
require(geoPlot)
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require(class)

setwd("~/Documents/Teaching/Stat 4242 Fall 2012/Homework 2")

mt <- read.xls("rollingsales_manhattan.xls",
  pattern="BOROUGH",stringsAsFactors=FALSE)
head(mt)
summary(mt)

names(mt) <- tolower(names(mt))

mt$sale.price.n <- as.numeric(gsub("[^[:digit:]]","",
                              mt$sale.price))
sum(is.na(mt$sale.price.n))
sum(mt$sale.price.n==0)

names(mt) <- tolower(names(mt))

## clean/format the data with regular expressions
mt$gross.sqft <- as.numeric(gsub("[^[:digit:]]","",
                            mt$gross.square.feet))
mt$land.sqft <- as.numeric(gsub("[^[:digit:]]","",
                           mt$land.square.feet))

mt$sale.date <- as.Date(mt$sale.date)
mt$year.built <- as.numeric(as.character(mt$year.built))
mt$zip.code <- as.character(mt$zip.code)

## - standardize data (set year built start to 0; land and 
gross sq ft; sale price (exclude $0 and possibly others); possi
bly tax block; outside dataset for coords of tax block/lot?)
min_price <- 10000
mt <- mt[which(mt$sale.price.n>=min_price),]

n_obs <- dim(mt)[1]

mt$address.noapt <- gsub("[,][[:print:]]*","",
                    gsub("[ ]+"," ",trim(mt$address)))

mt_add <- unique(data.frame(mt$address.noapt,mt$zip.code,
                 stringsAsFactors=FALSE))
names(mt_add) <- c("address.noapt","zip.code")
mt_add <- mt_add[order(mt_add$address.noapt),]

#find duplicate addresses with different zip codes
dup <- duplicated(mt_add$address.noapt)
# remove them
dup_add <- mt_add[mt_add$dup,1]
mt_add <- mt_add[(mt_add$address.noapt != dup_add[1] &
          mt_add$address.noapt != dup_add[2]),]
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n_add <- dim(mt_add)[1]

# sample 500 addresses so we don't run over our Google Maps 
API daily limit (and so we're not waiting forever)
n_sample <- 500
add_sample <- mt_add[sample.int(n_add,size=n_sample),]

# first, try a query with the addresses we have
query_list <- addrListLookup(data.frame(1:n_sample,
  add_sample$address.noapt,rep("NEW YORK",times=n_sample),
  rep("NY",times=n_sample),add_sample$zip.code,
  rep("US",times=n_sample)))[,1:4]

query_list$matched <- (query_list$latitude != 0)

unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

# try changing EAST/WEST to E/W
query_list[unmatched_inds,1:4] <- addrListLookup
  (data.frame(1:unmatched,gsub(" WEST "," W ",
  gsub(" EAST "," E ",add_sample[unmatched_inds,1])),
  rep("NEW YORK",times=unmatched), rep("NY",times=unmatched),
  add_sample[unmatched_inds,2],rep("US",times=unmatched)))[,
1:4]

query_list$matched <- (query_list$latitude != 0)
unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

# try changing STREET/AVENUE to ST/AVE
query_list[unmatched_inds,1:4] <- addrListLookup
  (data.frame(1:unmatched,gsub(" WEST "," W ",
  gsub(" EAST "," E ",gsub(" STREET"," ST",
  gsub(" AVENUE"," AVE",add_sample[unmatched_inds,1])))),
  rep("NEW YORK",times=unmatched), rep("NY",times=unmatched),
  add_sample[unmatched_inds,2],rep("US",times=unmatched)))[,
1:4]

query_list$matched <- (query_list$latitude != 0)
unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

## have to be satisfied for now
add_sample <- cbind(add_sample,query_list$latitude,
  query_list$longitude)
names(add_sample)[3:4] <- c("latitude","longitude")

add_sample <- add_sample[add_sample$latitude!=0,]

add_use <- merge(mt,add_sample)
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add_use <- add_use[!is.na(add_use$latitude),]

# map coordinates
map_coords <- add_use[,c(2,4,26,27)]
table(map_coords$neighborhood)
map_coords$neighborhood <- as.factor(map_coords$neighborhood)

geoPlot(map_coords,zoom=12,color=map_coords$neighborhood)

## - knn function
## - there are more efficient ways of doing this,
## but oh well...

map_coords$class <- as.numeric(map_coords$neighborhood)
n_cases <- dim(map_coords)[1]
split <- 0.8

train_inds <- sample.int(n_cases,floor(split*n_cases))
test_inds <- (1:n_cases)[-train_inds]

k_max <- 10
knn_pred <- matrix(NA,ncol=k_max,nrow=length(test_inds))
knn_test_error <- rep(NA,times=k_max)

for (i in 1:k_max) {
    knn_pred[,i] <- knn(map_coords[train_inds,3:4],
  map_coords[test_inds,3:4],cl=map_coords[train_inds,5],k=i)
    knn_test_error[i] <- sum(knn_pred[,i]!=
      map_coords[test_inds,5])/length(test_inds)
}

plot(1:k_max,knn_test_error)

Modeling and Algorithms at Scale
The data you’ve been dealing with so far in this chapter has been pretty
small on the Big Data spectrum. What happens to these models and
algorithms when you have to scale up to massive datasets?

In some cases, it’s entirely appropriate to sample and work with a
smaller dataset, or to run the same model across multiple sharded
datasets. (Sharding is where the data is broken up into pieces and
divided among diffrent machines, and then you look at the empirical
distribution of the estimators across models.) In other words, there
are statistical solutions to these engineering challenges.

However, in some cases we want to fit these models at scale, and the
challenge of scaling up models generally translates to the challenge of

Exercise: Basic Machine Learning Algorithms | 89

www.it-ebooks.info

http://www.it-ebooks.info/


creating parallelized versions or approximations of the optimization
methods. Linear regression at scale, for example, relies on matrix in‐
versions or approximations of matrix inversions.

Optimization with Big Data calls for new approaches and theory—
this is the frontier! From a 2013 talk by Peter Richtarik from the Uni‐
versity of Edinburugh: “In the Big Data domain classical approaches
that rely on optimization methods with multiple iterations are not
applicable as the computational cost of even a single iteration is often
too excessive; these methods were developed in the past when prob‐
lems of huge sizes were rare to find. We thus need new methods which
would be simple, gentle with data handling and memory require‐
ments, and scalable. Our ability to solve truly huge scale problems
goes hand in hand with our ability to utilize modern parallel com‐
puting architectures such as multicore processors, graphical process‐
ing units, and computer clusters.”

Much of this is outside the scope of the book, but a data scientist needs
to be aware of these issues, and some of this is discussed in Chapter 14.

Summing It All Up
We’ve now introduced you to three algorithms that are the basis for
the solutions to many real-world problems. If you understand these
three, you’re already in good shape. If you don’t, don’t worry, it takes
a while to sink in.

Regression is the basis of many forecasting and classification or pre‐
diction models in a variety of contexts. We showed you how you can
predict a continuous outcome variable with one or more predictors.
We’ll revisit it again in Chapter 5, where we’ll learn logistic regression,
which can be used for classification of binary outcomes; and in Chap‐
ter 6, where we see it in the context of time series modeling. We’ll also
build up your feature selection skills in Chapter 7.

k-NN and k-means are two examples of clustering algorithms, where
we want to group together similar objects. Here the notions of distance
and evaluation measures became important, and we saw there is some
subjectivity involved in picking these. We’ll explore clustering algo‐
rithms including Naive Bayes in the next chapter, and in the context
of social networks (Chapter 10). As we’ll see, graph clustering is an
interesting area of research. Other examples of clustering algorithms
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not explored in this book are hierarchical clustering and model-based
clustering.

For further reading and a more advanced treatment of this material,
we recommend the standard classic Hastie and Tibshirani book, Ele‐
ments of Statistical Learning (Springer). For an in-depth exploration
of building regression models in a Bayesian context, we highly rec‐
ommend Andrew Gelman and Jennifer Hill’s Data Analysis using Re‐
gression and Multilevel/Hierarchical Models.

Thought Experiment: Automated Statistician
Rachel attended a workshop in Big Data Mining at Imperial College
London in May 2013. One of the speakers, Professor Zoubin Ghah‐
ramani from Cambridge University, said that one of his long-term
research projects was to build an “automated statistician.” What do
you think that means? What do you think would go into building one?

Does the idea scare you? Should it?
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CHAPTER 4

Spam Filters, Naive Bayes,
and Wrangling

The contributor for this chapter is Jake Hofman. Jake is at Microsoft
Research after recently leaving Yahoo! Research. He got a PhD in
physics at Columbia and regularly teaches a fantastic course on data-
driven modeling at Columbia, as well as a newer course in computa‐
tional social science.

As with our other presenters, we first took a look at Jake’s data science
profile. It turns out he is an expert on a category that he added to the
data science profile called “data wrangling.” He confessed that he
doesn’t know if he spends so much time on it because he’s good at it
or because he’s bad at it. (He’s good at it.)

Thought Experiment: Learning by Example
Let’s start by looking at a bunch of text shown in Figure 4-1, whose
rows seem to contain the subject and first line of an email in an inbox.

You may notice that several of the rows of text look like spam.

How did you figure this out? Can you write code to automate the spam
filter that your brain represents?
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Figure 4-1. Suspiciously spammy

Rachel’s class had a few ideas about what things might be clear signs
of spam:

• Any email is spam if it contains Viagra references. That’s a good
rule to start with, but as you’ve likely seen in your own email,
people figured out this spam filter rule and got around it by mod‐
ifying the spelling. (It’s sad that spammers are so smart and aren’t
working on more important projects than selling lots of Viagra…)

• Maybe something about the length of the subject gives it away as
spam, or perhaps excessive use of exclamation points or other
punctuation. But some words like “Yahoo!” are authentic, so you
don’t want to make your rule too simplistic.

And here are a few suggestions regarding code you could write to
identify spam:

• Try a probabilistic model. In other words, should you not have
simple rules, but have many rules of thumb that aggregate together
to provide the probability of a given email being spam? This is a
great idea.

• What about k-nearest neighbors or linear regression? You learned
about these techniques in the previous chapter, but do they apply
to this kind of problem? (Hint: the answer is “No.”)

In this chapter, we’ll use Naive Bayes to solve this problem, which is
in some sense in between the two. But first…
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Why Won’t Linear Regression Work for Filtering Spam?
Because we’re already familiar with linear regression and that’s a tool
in our toolbelt, let’s start by talking through what we’d need to do in
order to try to use linear regression. We already know that’s not what
we’re going to use, but let’s talk it through to get to why. Imagine a
dataset or matrix where each row represents a different email message
(it could be keyed by email_id). Now let’s make each word in the email
a feature—this means that we create a column called “Viagra,” for ex‐
ample, and then for any message that has the word Viagra in it at least
once, we put a 1 in; otherwise we assign a 0. Alternatively, we could
put the number of times the word appears. Then each column repre‐
sents the appearance of a different word.

Thinking back to the previous chapter, in order to use liner regression,
we need to have a training set of emails where the messages have
already been labeled with some outcome variable. In this case, the
outcomes are either spam or not. We could do this by having human
evaluators label messages “spam,” which is a reasonable, albeit time-
intensive, solution. Another way to do it would be to take an existing
spam filter such as Gmail’s spam filter and use those labels. (Now of
course if you already had a Gmail spam filter, it’s hard to understand
why you might also want to build another spam filter in the first place,
but let’s just say you do.) Once you build a model, email messages
would come in without a label, and you’d use your model to predict
the labels.

The first thing to consider is that your target is binary (0 if not spam,
1 if spam)—you wouldn’t get a 0 or a 1 using linear regression; you’d
get a number. Strictly speaking, this option really isn’t ideal; linear
regression is aimed at modeling a continuous output and this is binary.

This issue is basically a nonstarter. We should use a model appropriate
for the data. But if we wanted to fit it in R, in theory it could still work.
R doesn’t check for us whether the model is appropriate or not. We
could go for it, fit a linear model, and then use that to predict and then
choose a critical value so that above that predicted value we call it “1”
and below we call it “0.”

But if we went ahead and tried, it still wouldn’t work because there are
too many variables compared to observations! We have on the order
of 10,000 emails with on the order of 100,000 words. This won’t work.
Technically, this corresponds to the fact that the matrix in the equation
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for linear regression is not invertible—in fact, it’s not even close.
Moreover, maybe we can’t even store it because it’s so huge.

Maybe we could limit it to the top 10,000 words? Then we could at
least have an invertible matrix. Even so, that’s too many variables versus
observations to feel good about it. With carefully chosen feature se‐
lection and domain expertise, we could limit it to 100 words and that
could be enough! But again, we’d still have the issue that linear re‐
gression is not the appropriate model for a binary outcome.

Aside: State of the Art for Spam Filters
In the last five years, people have started using stochastic
gradient methods to avoid the noninvertible (overfitting)
matrix problem. Switching to logistic regression with sto‐
chastic gradient methods helped a lot, and can account for
correlations between words. Even so, Naive Bayes is pretty
impressively good considering how simple it is.

How About k-nearest Neighbors?
We’re going to get to Naive Bayes shortly, we promise, but let’s take a
minute to think about trying to use k-nearest neighbors (k-NN) to
create a spam filter. We would still need to choose features, probably
corresponding to words, and we’d likely define the value of those fea‐
tures to be 0 or 1, depending on whether the word is present or not.
Then, we’d need to define when two emails are “near” each other based
on which words they both contain.

Again, with 10,000 emails and 100,000 words, we’ll encounter a prob‐
lem, different from the noninvertible matrix problem. Namely, the
space we’d be working in has too many dimensions. Yes, computing
distances in a 100,000-dimensional space requires lots of computa‐
tional work. But that’s not the real problem.

The real problem is even more basic: even our nearest neighbors are
really far away. This is called “the curse of dimensionality,” and it makes
k-NN a poor algorithm in this case.
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Aside: Digit Recognition
Say you want an algorithm to recognize pictures of hand-written dig‐
its as shown in Figure 4-2. In this case, k-NN works well.

Figure 4-2. Handwritten digits

To set it up, you take your underlying representation apart pixel by
pixel—say in a 16x16 grid of pixels—and measure how bright each
pixel is. Unwrap the 16x16 grid and put it into a 256-dimensional
space, which has a natural archimedean metric. That is to say, the
distance between two different points on this space is the square root
of the sum of the squares of the differences between their entries. In
other words, it’s the length of the vector going from one point to the
other or vice versa. Then you apply the k-NN algorithm.

If you vary the number of neighbors, it changes the shape of the
boundary, and you can tune k to prevent overfitting. If you’re careful,
you can get 97% accuracy with a sufficiently large dataset.

Moreover, the result can be viewed in a “confusion matrix.” A confu‐
sion matrix is used when you are trying to classify objects into k bins,
and is a k ×k matrix corresponding to actual label versus predicted
label, and the i, j th element of the matrix is a count of the number
of items that were actually labeled i that were predicted to have label
j. From a confusion matrix, you can get accuracy, the proportion of
total predictions that were correct. In the previous chapter, we dis‐
cussed the misclassification rate. Notice that accuracy = 1 - misclas‐
sification rate.
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Naive Bayes
So are we at a loss now that two methods we’re familiar with, linear
regression and k-NN, won’t work for the spam filter problem? No!
Naive Bayes is another classification method at our disposal that scales
well and has nice intuitive appeal.

Bayes Law
Let’s start with an even simpler example than the spam filter to get a
feel for how Naive Bayes works. Let’s say we’re testing for a rare disease,
where 1% of the population is infected. We have a highly sensitive and
specific test, which is not quite perfect:

• 99% of sick patients test positive.
• 99% of healthy patients test negative.

Given that a patient tests positive, what is the probability that the pa‐
tient is actually sick?

A naive approach to answering this question is this: Imagine we have
100 × 100 = 10,000 perfectly representative people. That would mean
that 100 are sick, and 9,900 are healthy. Moreover, after giving all of
them the test we’d get 99 sick people testing sick, but 99 healthy people
testing sick as well. If you test positive, in other words, you’re equally
likely to be healthy or sick; the answer is 50%. A tree diagram of this
approach is shown in Figure 4-3.

Figure 4-3. Tree diagram to build intuition

Let’s do it again using fancy notation so we’ll feel smart.
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Recall from your basic statistics course that, given events x and y,
there’s a relationship between the probabilities of either event (denoted
p x  and p y ), the joint probabilities (both happen, which is denoted
p x, y ), and conditional probabilities (event x happens given y hap‐
pens, denoted p x y ) as follows:

p y x p x = p x, y = p x y p y

Using that, we solve for p y x  (assuming p x ≠ 0) to get what is called
Bayes’ Law:

p y x = p x y p y
p x

The denominator term, p x ,  is often implicitly computed and can
thus be treated as a “normalization constant.” In our current situation,
set y to refer to the event “I am sick,” or “sick” for shorthand; and set
x to refer to the event “the test is positive,” or “+” for shorthand. Then
we actually know, or at least can compute, every term:

p sick + = p + sick p sick
p +

= 0.99 ·0.01
0.99 ·0.01+0.01 ·0.99 = 0.50 = 50%

A Spam Filter for Individual Words
So how do we use Bayes’ Law to create a good spam filter? Think about
it this way: if the word “Viagra” appears, this adds to the probability
that the email is spam. But it’s not conclusive, yet. We need to see what
else is in the email.

Let’s first focus on just one word at a time, which we generically call
“word.” Then, applying Bayes’ Law, we have:

p spam word = p word spam p spam
p word

The righthand side of this equation is computable using enough pre-
labeled data. If we refer to nonspam as “ham” then we only need com‐
pute p(word|spam), p(word|ham), p(spam), and p(ham) = 1-p(spam),
because we can work out the denominator using the formula we used
earlier in our medical test example, namely:
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p word = p word spam p spam + p word ham p ham

In other words, we’ve boiled it down to a counting exercise: p spam
counts spam emails versus all emails, p word spam  counts the prev‐
alence of those spam emails that contain “word,” and p word ham
counts the prevalence of the ham emails that contain “word.”

To do this yourself, go online and download Enron emails. Let’s build
a spam filter on that dataset. This really this means we’re building a
new spam filter on top of the spam filter that existed for the employees
of Enron. We’ll use their definition of spam to train our spam filter.
(This does mean that if the spammers have learned anything since
2001, we’re out of luck.)

We could write a quick-and-dirty shell script in bash that runs this,
which Jake did. It downloads and unzips the file and creates a folder;
each text file is an email; spam and ham go in separate folders.

Let’s look at some basic statistics on a random Enron employee’s email.
We can count 1,500 spam versus 3,672 ham, so we already know
p spam  and p ham . Using command-line tools, we can also count
the number of instances of the word “meeting” in the spam folder:

grep -il meeting enron1/spam/*.txt | wc -l

This gives 16. Do the same for his ham folder, and we get 153. We can
now compute the chance that an email is spam only knowing it con‐
tains the word “meeting”:

p spam = 1500 / 1500+3672 = .29

p ham = .71

p meeting spam = 16 / 1500 = .0106

p meeting ham = 153 / 3672 = .0416

p spam meeting = p meeting spam * p spam / p meeting =
.0106* .29 / .0106* .29+ .0416* .71 = 0.09 = 9%

Take note that we didn’t need a fancy programming environment to
get this done.
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Next, we can try:

• “money”: 80% chance of being spam
• “viagra”: 100% chance
• “enron”: 0% chance

This illustrates that the model, as it stands, is overfitting; we are getting
overconfident because of biased data. Is it really a slam-dunk that any
email containing the word “Viagra” is spam? It’s of course possible to
write a nonspam email with the word “Viagra,” as well as a spam email
with the word “Enron.”

A Spam Filter That Combines Words: Naive Bayes
Next, let’s do it for all the words. Each email can be represented by a
binary vector, whose jth entry is 1 or 0 depending on whether the jth
word appears. Note this is a huge-ass vector, considering how many
words we have, and we’d probably want to represent it with the indices
of the words that actually show up.

The model’s output is the probability that we’d see a given word vector
given that we know it’s spam (or that it’s ham). Denote the email vector
to be x and the various entries x j, where the j indexes the words. For
now we can denote “is spam” by c, and we have the following model
for p x c ,  i.e., the probability that the email’s vector looks like this
considering it’s spam:

p x c = ∏ j θ jc
x j 1−θ jc

1−x j

The θ here is the probability that an individual word is present in a
spam email. We saw how to compute that in the previous section via
counting, and so we can assume we’ve separately and parallel-ly com‐
puted that for every word.

We are modeling the words independently (also known as “independ‐
ent trials”), which is why we take the product on the righthand side of
the preceding formula and don’t count how many times they are
present. That’s why this is called “naive,” because we know that there
are actually certain words that tend to appear together, and we’re ig‐
noring this.
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So back to the equation, it’s a standard trick when we’re dealing with
a product of probabilities to take the log of both sides to get a sum‐
mation instead:

log p x c = ∑
j

x jlog θ j / 1−θ j + ∑
j

log 1−θ j

It’s helpful to take the log because multiplying together tiny
numbers can give us numerical problems.

The term log θ j / 1−θ j  doesn’t depend on a given email, just the
word, so let’s rename it w j and assume we’ve computed it once and
stored it. Same with the quantity ∑ j log 1−θ j = w0. Now we have:

log p x c = ∑
j

x jw j +w0

The weights that vary by email are the x js. We need to compute them
separately for each email, but that shouldn’t be too hard.

We can put together what we know to compute p x c ,  and then use
Bayes’ Law to get an estimate of p c x ,  which is what we actually want
—the other terms in Bayes’ Law are easier than this and don’t require
separate calculations per email. We can also get away with not com‐
puting all the terms if we only care whether it’s more likely to be spam
or to be ham. Then only the varying term needs to be computed.

You may notice that this ends up looking like a linear regression, but
instead of computing the coefficients w j by inverting a huge matrix,
the weights come from the Naive Bayes’ algorithm.

This algorithm works pretty well, and it’s “cheap” to train if we have a
prelabeled dataset to train on. Given a ton of emails, we’re more or less
just counting the words in spam and nonspam emails. If we get more
training data, we can easily increment our counts to improve our filter.
In practice, there’s a global model, which we personalize to individuals.
Moreover, there are lots of hardcoded, cheap rules before an email gets
put into a fancy and slow model.

Here are some references for more about Bayes’ Law:
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• “Idiot’s Bayes - not so stupid after all?” (The whole paper is about
why it doesn’t suck, which is related to redundancies in language.)

• “Naive Bayes at Forty: The Independence Assumption in Infor‐
mation”

• “Spam Filtering with Naive Bayes - Which Naive Bayes?”

Fancy It Up: Laplace Smoothing
Remember the θ j from the previous section? That referred to the
probability of seeing a given word (indexed by j) in a spam email. If
you think about it, this is just a ratio of counts: θ j = n jc / nc,  where n jc
denotes the number of times that word appears in a spam email and
nc  denotes the number of times that word appears in any email.

Laplace Smoothing refers to the idea of replacing our straight-up es‐
timate of θ j with something a bit fancier:

θ jc = n jc +α / nc + β

We might fix α = 1 and β = 10,  for example, to prevent the possibility
of getting 0 or 1 for a probability, which we saw earlier happening with
“viagra.” Does this seem totally ad hoc? Well, if we want to get fancy,
we can see this as equivalent to having a prior and performing a max‐
imal likelihood estimate. Let’s get fancy! If we denote by ML the max‐
imal likelihood estimate, and by D the dataset, then we have:

θML = argmaxθ p D θ

In other words, the vector of values θ j = n jc / nc  is the answer to the
question: for what value of θ were the data D most probable? If we
assume independent trials again, as we did in our first attempt at Naive
Bayes, then we want to choose the θ j to separately maximize the fol‐
lowing quantity for each j:

log θ j
n jc 1−θ j

nc−n jc

If we take the derivative, and set it to zero, we get:
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θ j = n jc / nc

In other words, just what we had before. So what we’ve found is that
the maximal likelihood estimate recovers your result, as long as we
assume independence.

Now let’s add a prior. For this discussion we can suppress the j from
the notation for clarity, but keep in mind that we are fixing the jth
word to work on. Denote by MAP the maximum a posteriori
likelihood:

θMAP = argmax p θ D

This similarly answers the question: given the data I saw, which pa‐
rameter θ is the most likely?

Here we will apply the spirit of Bayes’s Law to transform θMAP  to get
something that is, up to a constant, equivalent to p D θ · p θ . The
term p θ  is referred to as the “prior,” and we have to make an as‐
sumption about its form to make this useful. If we make the assump‐
tion that the probability distribution of θ is of the form θα 1−θ β,  for
some α and β,  then we recover the Laplace Smoothed result.

Is That a Reasonable Assumption?
Recall that θ is the chance that a word is in spam if that word is in
some email. On the one hand, as long as both α > 0 and β > 0,  this
distribution vanishes at both 0 and 1. This is reasonable: you want
very few words to be expected to never appear in spam or to always
appear in spam.

On the other hand, when α and β are large, the shape of the distri‐
bution is bunched in the middle, which reflects the prior that most
words are equally likely to appear in spam or outside spam. That
doesn’t seem true either.

A compromise would have α and β be positive but small, like 1/5. That
would keep your spam filter from being too overzealous without hav‐
ing the wrong idea. Of course, you could relax this prior as you have
more and better data; in general, strong priors are only needed when
you don’t have sufficient data.
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Comparing Naive Bayes to k-NN
Sometimes α and β are called “pseudocounts.” Another common name
is “hyperparameters.” They’re fancy but also simple. It’s up to you, the
data scientist, to set the values of these two hyperparameters in the
numerator and denominator for smoothing, and it gives you two
knobs to tune. By contrast, k-NN has one knob, namely k, the number
of neighbors. Naive Bayes is a linear classifier, while k-NN is not. The
curse of dimensionality and large feature sets are a problem for k-NN,
while Naive Bayes performs well. k-NN requires no training (just load
in the dataset), whereas Naive Bayes does. Both are examples of su‐
pervised learning (the data comes labeled).

Sample Code in bash
#!/bin/bash
#
# file: enron_naive_bayes.sh
#
# description: trains a simple one-word naive bayes spam
# filter using enron email data
#
# usage: ./enron_naive_bayes.sh <word>
#
# requirements:
#   wget
#
# author: jake hofman (gmail: jhofman)
#

# how to use the code
if [ $# -eq 1 ]
    then
    word=$1
else
    echo "usage: enron_naive_bayes.sh <word>"
    exit
fi

# if the file doesn't exist, download from the web
if ! [ -e enron1.tar.gz ]
    then
    wget 'http://www.aueb.gr/users/ion/data/
    enron-spam/preprocessed/enron1.tar.gz'
fi

# if the directory doesn't exist, uncompress the .tar.gz
if ! [ -d enron1 ]
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    then
    tar zxvf enron1.tar.gz
fi

# change into enron1
cd enron1

# get counts of total spam, ham, and overall msgs
Nspam=`ls -l spam/*.txt | wc -l`
Nham=`ls -l ham/*.txt | wc -l`
Ntot=$Nspam+$Nham

echo $Nspam spam examples
echo $Nham ham examples

# get counts containing word in spam and ham classes
Nword_spam=`grep -il $word spam/*.txt | wc -l`
Nword_ham=`grep -il $word ham/*.txt | wc -l`

echo $Nword_spam "spam examples containing $word"
echo $Nword_ham "ham examples containing $word"

# calculate probabilities using bash calculator "bc"
Pspam=`echo "scale=4; $Nspam / ($Nspam+$Nham)" | bc`
Pham=`echo "scale=4; 1-$Pspam" | bc`
echo
echo "estimated P(spam) =" $Pspam
echo "estimated P(ham) =" $Pham

Pword_spam=`echo "scale=4; $Nword_spam / $Nspam" | bc`
Pword_ham=`echo "scale=4; $Nword_ham / $Nham" | bc`
echo "estimated P($word|spam) =" $Pword_spam
echo "estimated P($word|ham) =" $Pword_ham

Pspam_word=`echo "scale=4; $Pword_spam*$Pspam" | bc`
Pham_word=`echo "scale=4; $Pword_ham*$Pham" | bc`
Pword=`echo "scale=4; $Pspam_word+$Pham_word" | bc`
Pspam_word=`echo "scale=4; $Pspam_word / $Pword" | bc`
echo
echo "P(spam|$word) =" $Pspam_word

# return original directory
cd ..

Scraping the Web: APIs and Other Tools
As a data scientist, you’re not always just handed some data and asked
to go figure something out based on it. Often, you have to actually
figure out how to go get some data you need to ask a question, solve
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a problem, do some research, etc. One way you can do this is with an
API. For the sake of this discussion, an API (application programming
interface) is something websites provide to developers so they can
download data from the website easily and in standard format. (APIs
are used for much more than this, but for your purpose this is how
you’d typically interact with one.) Usually the developer has to register
and receive a “key,” which is something like a password. For example,
the New York Times has an API here.

Warning about APIs
Always check the terms and services of a website’s API before
scraping. Additionally, some websites limit what data you
have access to through their APIs or how often you can ask
for data without paying for it.

When you go this route, you often get back weird formats, sometimes
in JSON, but there’s no standardization to this standardization; i.e.,
different websites give you different “standard” formats.

One way to get beyond this is to use Yahoo’s YQL language, which
allows you to go to the Yahoo! Developer Network and write SQL-like
queries that interact with many of the APIs on common sites like this:

select * from flickr.photos.search where text="Cat"
and api_key="lksdjflskjdfsldkfj" limit 10

The output is standard, and you only have to parse this in Python once.

But what if you want data when there’s no API available?

In this case you might want to use something like the Firebug extension
for Firefox. You can “inspect the element” on any web page, and Fire‐
bug allows you to grab the field inside the HTML. In fact, it gives you
access to the full HTML document so you can interact and edit. In this
way you can see the HTML as a map of the page and Firebug as a kind
of tour guide.

After locating the stuff you want inside the HTML, you can use curl,
wget, grep, awk, perl, etc., to write a quick-and-dirty shell script to
grab what you want, especially for a one-off grab. If you want to be
more systematic, you can also do this using Python or R.

Other parsing tools you might want to look into include:
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lynx and lynx --dump
Good if you pine for the 1970s. Oh wait, 1992. Whatever.

Beautiful Soup
Robust but kind of slow.

Mechanize (or here)
Super cool as well, but it doesn’t parse JavaScript.

PostScript
Image classification.

Thought Experiment: Image Recognition
How do you determine if an image is a landscape or a headshot?

Start with collecting data. You either need to get someone to label
these things, which is a lot of work, or you can grab lots of pictures
from flickr and ask for photos that have already been tagged.

Represent each image with a binned RGB (red, green, blue) intensity
histogram. In other words, for each pixel, and for each of red, green,
and blue, which are the basic colors in pixels, you measure the inten‐
sity, which is a number between 0 and 255. Represent each image with
a binned RGB (red, green, blue) intensity histogram. In other words,
for each pixel, and for each of red, green, and blue, which are the basic
colors in pixels, you measure the intensity, which is a number between
0 and 255.

Then draw three histograms, one for each basic color, showing how
many pixels had which intensity. It’s better to do a binned histogram,
so have counts of the number of pixels of intensity 0-51, etc. In the
end, for each picture, you have 15 numbers, corresponding to 3 colors
and 5 bins per color. We are assuming here that every picture has the
same number of pixels.

Finally, use k-NN to decide how much “blue” makes a landscape ver‐
sus a headshot. You can tune the hyperparameters, which in this case
are the number of bins as well as k.
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Jake’s Exercise: Naive Bayes for Article
Classification
This problem looks at an application of Naive Bayes for multiclass text
classification. First, you will use the New York Times Developer API
to fetch recent articles from several sections of the Times. Then, using
the simple Bernoulli model for word presence, you will implement a
classifier which, given the text of an article from the New York
Times, predicts the section to which the article belongs.

First, register for a New York Times Developer API key and request
access to the Article Search API. After reviewing the API documen‐
tation, write code to download the 2,000 most recent articles for each
of the Arts, Business, Obituaries, Sports, and World sections. (Hint:
Use the nytd_section_facet facet to specify article sections.) The de‐
veloper console may be useful for quickly exploring the API. Your code
should save articles from each section to a separate file in a tab-
delimited format, where the first column is the article URL, the second
is the article title, and the third is the body returned by the API.

Next, implement code to train a simple Bernoulli Naive Bayes model
using these articles. You can consider documents to belong to one of
C categories, where the label of the ith document is encoded as
yi∈0,1,2, . . .C—for example, Arts = 0, Business = 1, etc.—and docu‐
ments are represented by the sparse binary matrix X, where Xi j = 1
indicates that the ith document contains the jth word in our dictio‐
nary.

You train by counting words and documents within classes to estimate
θ jc and θc:

θ jc =
n jc +α−1

nc +α+ β−2

θc =
nc
n

where n jc is the number of documents of class c containing the jth
word, nc is the number of documents of class c, n is the total number
of documents, and the user-selected hyperparameters α and β are
pseudocounts that “smooth” the parameter estimates. Given these es‐
timates and the words in a document x, you calculate the log-odds for
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each class (relative to the base class c = 0) by simply adding the class-
specific weights of the words that appear to the corresponding bias
term:

log p y = c x
p y = 0 x

= ∑
j

w jcx j +w0c

where

w jc = log
θ jc 1− θ j0

θ j0 1− θ jc

w0c = ∑
j

log
1− θ jc

1− θ j0
+ log

θc

θ0

Your code should read the title and body text for each article, remove
unwanted characters (e.g., punctuation), and tokenize the article con‐
tents into words, filtering out stop words (given in the stopwords file).
The training phase of your code should use these parsed document
features to estimate the weights w, taking the hyperparameters α and
β as input. The prediction phase should then accept these weights as
inputs, along with the features for new examples, and output posterior
probabilities for each class.

Evaluate performance on a randomized 50/50 train/test split of the
data, including accuracy and runtime. Comment on the effects of
changing α and β. Present your results in a (5×5) confusion table
showing counts for the actual and predicted sections, where each
document is assigned to its most probable section. For each section,
report the top 10 most informative words. Also present and comment
on the top 10 “most difficult to classify” articles in the test set.

Briefly discuss how you expect the learned classifier to generalize to
other contexts, e.g., articles from other sources or time periods.

Sample R Code for Dealing with the NYT API
# author: Jared Lander
#
# hard coded call to API
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theCall <- "http://api.nytimes.com/svc/search/v1/
article?format=json&query=nytd_section_facet:
[Sports]&fields=url,title,body&rank=newest&offset=0
&api-key=Your_Key_Here"

# we need the rjson, plyr, and RTextTools packages
require(plyr)
require(rjson)
require(RTextTools)

## first let's look at an individual call
res1 <- fromJSON(file=theCall)
# how long is the result
length(res1$results)
# look at the first item
res1$results[[1]]
# the first item's title
res1$results[[1]]$title
# the first item converted to a data.frame, Viewed in the data 
viewer
View(as.data.frame(res1$results[[1]]))

# convert the call results into a data.frame, should be 10 
rows by 3 columns
resList1 <- ldply(res1$results, as.data.frame)
View(resList1)

## now let's build this for multiple calls
# build a string where we will substitute the section for the 
first %s and offset for the second %s
theCall <- "http://api.nytimes.com/svc/search/v1/
article?format=json&query=nytd_section_facet:
[%s]&fields=url,title,body&rank=newest&offset=%s
&api-key=Your_Key_Here"
# create an empty list to hold 3 result sets
resultsSports <- vector("list", 3)
## loop through 0, 1 and 2 to call the API for each value
for(i in 0:2)
{
    # first build the query string replacing the first %s with
    Sport and the second %s with the current value of i
    tempCall <- sprintf(theCall, "Sports", i)
    # make the query and get the json response
    tempJson <- fromJSON(file=tempCall)
    # convert the json into a 10x3 data.frame and
    save it to the list
    resultsSports[[i + 1]] <- ldply(tempJson$results,
    as.data.frame)
}
# convert the list into a data.frame
resultsDFSports <- ldply(resultsSports)
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# make a new column indicating this comes from Sports
resultsDFSports$Section <- "Sports"

## repeat that whole business for arts
## ideally you would do this in a more eloquent manner, but 
this is just for illustration
resultsArts <- vector("list", 3)
for(i in 0:2)
{
    tempCall <- sprintf(theCall, "Arts", i)
    tempJson <- fromJSON(file=tempCall)
    resultsArts[[i + 1]] <- ldply(tempJson$results,
    as.data.frame)
}
resultsDFArts <- ldply(resultsArts)
resultsDFArts$Section <- "Arts"

# combine them both into one data.frame
resultBig <- rbind(resultsDFArts, resultsDFSports)
dim(resultBig)
View(resultBig)

## now time for tokenizing
# create the document-term matrix in english, removing numbers 
and stop words and stemming words
doc_matrix <- create_matrix(resultBig$body, language="english",
removeNumbers=TRUE, removeStopwords=TRUE, stemWords=TRUE)
doc_matrix
View(as.matrix(doc_matrix))

# create a training and testing set
theOrder <- sample(60)
container <- create_container(matrix=doc_matrix,
labels=resultBig$Section, trainSize=theOrder[1:40],
testSize=theOrder[41:60], virgin=FALSE)

Historical Context: Natural Language Processing
The example in this chapter where the raw data is text is just
the tip of the iceberg of a whole field of research in computer
science called natural language processing (NLP). The types
of problems that can be solved with NLP include machine
translation, where given text in one language, the algorithm
can translate the text to another language; semantic analysis;
part of speech tagging; and document classification (of which
spam filtering is an example). Research in these areas dates
back to the 1950s.
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CHAPTER 5

Logistic Regression

The contributor for this chapter is Brian Dalessandro. Brian works at
Media6Degrees as a VP of data science, and he’s active in the research
community. He’s also served as cochair of the KDD competition. M6D
(also known as Media 6 Degrees) is a startup in New York City in the
online advertising space. Figure 5-1 shows Brian’s data science profile
—his y-axis is scaled from Clown to Rockstar.

Figure 5-1. Brian’s data science profile

Brian came to talk to the class about logistic regression and evaluation,
but he started out with two thought experiments.
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Thought Experiments
1. How would data science differ if we had a “grand unified theory

of everything”? Take this to mean a symbolic explanation of how
the world works. This one question raises a bunch of other
questions:

• Would we even need data science if we had such a theory?
• Is it even theoretically possible to have such a theory? Do such

theories lie only in the realm of, say, physics, where we can an‐
ticipate the exact return of a comet we see once a century?

• What’s the critical difference between physics and data science
that makes such a theory implausible?

• Is it just accuracy? Or more generally, how much we imagine
can be explained? Is it because we predict human behavior,
which can be affected by our predictions, creating a feedback
loop?
It might be useful to think of the sciences as a continuum, where
physics is all the way on the right, and as you go left, you get
more chaotic—you’re adding randomness (and salary). And
where is economics on this spectrum? Marketing? Finance?
If we could model this data science stuff like we already know
how to model physics, we’d actually know when people will click
on what ad, just as we know where the Mars Rover will land.
That said, there’s general consensus that the real world isn’t as
well-understood, nor do we expect it to be in the future.

2. In what sense does data science deserve the word “science” in its
name?
Never underestimate the power of creativity—people often have
a vision they can describe but no method as to how to get there.
As the data scientist, you have to turn that vision into a mathe‐
matical model within certain operational constraints. You need to
state a well-defined problem, argue for a metric, and optimize for
it as well. You also have to make sure you’ve actually answered the
original question.
There is art in data science—it’s in translating human problems
into the mathematical context of data science and back.
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But we always have more than one way of doing this translation
—more than one possible model, more than one associated met‐
ric, and possibly more than one optimization. So the science in
data science is—given raw data, constraints, and a problem state‐
ment—how to navigate through that maze and make the best
choices. Every design choice you make can be formulated as an
hypothesis, against which you will use rigorous testing and ex‐
perimentation to either validate or refute.
This process, whereby one formulates a well-defined hypothesis
and then tests it, might rise to the level of a science in certain cases.
Specifically, the scientific method is adopted in data science as
follows:

• You hold on to your existing best performer.
• Once you have a new idea to prototype, set up an experiment

wherein the two best models compete.
• Rinse and repeat (while not overfitting).

Classifiers
This section focuses on the process of choosing a classifier. Classifi‐
cation involves mapping your data points into a finite set of labels or
the probability of a given label or labels. We’ve already seen some ex‐
amples of classification algorithms, such as Naive Bayes and k-nearest
neighbors (k-NN), in the previous chapters. Table 5-1 shows a few
examples of when you’d want to use classification:

Table 5-1. Classifier example questions and answers
“Will someone click on this ad?” 0 or 1 (no or yes)

“What number is this (image recognition)?” 0, 1, 2, etc.

“What is this news article about?” “Sports”

“Is this spam?” 0 or 1

“Is this pill good for headaches?” 0 or 1

From now on we’ll talk about binary classification only (0 or 1).

In this chapter, we’re talking about logistic regression, but there’s other
classification algorithms available, including decision trees (which
we’ll cover in Chapter 7), random forests (Chapter 7), and support
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vector machines and neural networks (which we aren’t covering in this
book).

The big picture is that given data, a real-world classification problem,
and constraints, you need to determine:

1. Which classifier to use
2. Which optimization method to employ
3. Which loss function to minimize
4. Which features to take from the data
5. Which evaluation metric to use

Let’s talk about the first one: how do you know which classifier to
choose? One possibility is to try them all, and choose the best per‐
former. This is fine if you have no constraints, or if you ignore con‐
straints. But usually constraints are a big deal—you might have tons
of data, or not much time, or both. This is something people don’t talk
about enough. Let’s look at some constraints that are common across
most algorithms.

Runtime
Say you need to update 500 models a day. That is the case at M6D,
where their models end up being bidding decisions. In that case, they
start to care about various speed issues. First, how long it takes to
update a model, and second, how long it takes to use a model to actually
make a decision if you have it. This second kind of consideration is
usually more important and is called runtime.

Some algorithms are slow at runtime. For example, consider k-NN:
given a new data point in some large-dimensional space, you actually
have to find the k closest data points to it. In particular, you need to
have all of your data points in memory.

Linear models, by contrast, are very fast, both to update and to use at
runtime. As we’ll see in Chapter 6, you can keep running estimates of
the constituent parts and just update with new data, which is fast and
doesn’t require holding old data in memory. Once you have a linear
model, it’s just a matter of storing the coefficient vector in a runtime
machine and doing a single dot product against the user’s feature vec‐
tor to get an answer.
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You
One underappreciated constraint of being a data scientist is your own
understanding of the algorithm. Ask yourself carefully, do you un‐
derstand it for real? Really? It’s OK to admit it if you don’t.

You don’t have to be a master of every algorithm to be a good data
scientist. The truth is, getting the best fit of an algorithm often requires
intimate knowledge of said algorithm. Sometimes you need to tweak
an algorithm to make it fit your data. A common mistake for people
not completely familiar with an algorithm is to overfit when they think
they’re tweaking.

Interpretability
You often need to be able to interpret your model for the sake of the
business. Decision trees are very easy to interpret. Random forests, on
the other hand, are not, even though they are almost the same thing.
They can take exponentially longer to explain in full. If you don’t have
15 years to spend understanding a result, you may be willing to give
up some accuracy in order to have it be easier to understand.

For example, by law, credit card companies have to be able to explain
their denial-of-credit decisions, so decision trees make more sense
than random forests. You might not have a law about it where you
work, but it still might make good sense for your business to have a
simpler way to explain the model’s decision.

Scalability
How about scalability? In general, there are three things you have to
keep in mind when considering scalability:

1. Learning time: How much time does it take to train the model?
2. Scoring time: How much time does it take to give a new user a

score once the model is in production?
3. Model storage: How much memory does the production model

use up?

Here’s a useful paper to look at when comparing models: An Empirical
Comparison of Supervised Learning Algorithms, from which we’ve
learned:
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• Simpler models are more interpretable but aren’t as good
performers.

• The question of which algorithm works best is problem-
dependent.

• It’s also constraint-dependent.

M6D Logistic Regression Case Study
Brian and his team have three core problems as data scientists at M6D:

1. Feature engineering: Figuring out which features to use and how
to use them.

2. User-level conversion prediction: Forecasting when someone will
click.

3. Bidding: How much it is worth to show a given ad to a given user?

This case study focuses on the second problem. M6D uses logistic
regression for this problem because it’s highly scalable and works great
for binary outcomes like clicks.

Click Models
At M6D, they need to match clients, which represent advertising com‐
panies, to individual users. Generally speaking, the advertising com‐
panies want to target ads to users based on a user’s likelihood to click.
Let’s discuss what kind of data they have available first, and then how
you’d build a model using that data.

M6D keeps track of the websites users have visited, but the data sci‐
entists don’t look at the contents of the page. Instead they take the
associated URL and hash it into some random string. They thus ac‐
cumulate information about users, which they stash in a vector. As an
example, consider the user “u” during some chosen time period:

u = < &ltfxyz, 123, sdqwe, 13ms&gtg >

This means “u” visited four sites and the URLs that “u” visited are
hashed to those strings. After collecting information like this for all
the users, they build a giant matrix whose columns correspond to sites
and whose rows correspond to users, and a given entry is “1” if that
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user went to that site. Note it’s a sparse matrix, because most people
don’t go to all that many sites.

To make this a classification problem, they need to have classes they
are trying to predict. Let’s say in this case, they want to predict whether
a given user will click on a shoe ad or not. So there’s two classes: “users
who clicked on the shoe ad” and “users who did not click on the shoe
ad.” In the training dataset, then, in addition to the sparse matrix de‐
scribed, they’ll also have a variable, or column, of labels. They label
the behavior “clicked on a shoe ad” as “1,” say, and “didn’t click” as “0.”
Once they fit the classifier to the dataset, for any new user, the classifier
will predict whether he will click or not (the label) based on the pre‐
dictors (the user’s browsing history captured in the URL matrix).

Now it’s your turn: your goal is to build and train the model from a
training set. Recall that in Chapter 3 you learned about spam classifi‐
ers, where the features are words. But you didn’t particularly care about
the meaning of the words. They might as well be strings. Once you’ve
labeled as described earlier, this looks just like spam classification be‐
cause you have a binary outcome with a large sparse binary matrix
capturing the predictors. You can now rely on well-established algo‐
rithms developed for spam detection.

You’ve reduced your current problem to a previously solved problem!
In the previous chapter, we showed how to solve this with Naive Bayes,
but here we’ll focus on using logistic regression as the model.

The output of a logistic regression model is the probability of a given
click in this context. Likewise, the spam filters really judge the proba‐
bility of a given email being spam. You can use these probabilities
directly or you could find a threshold so that if the probability is above
that threshhold (say, 0.75), you predict a click (i.e., you show an ad),
and below it you decide it’s not worth it to show the ad. The point being
here that unlike with linear regression—which does its best to predict
the actual value—the aim of logistic regression isn’t to predict the ac‐
tual value (0 or 1). Its job is to output a probability.

Although technically it’s possible to implement a linear model such as
linear regression on such a dataset (i.e., R will let you do it and won’t
break or tell you that you shouldn’t do it), one of the problems with a
linear model like linear regression is that it would give predictions
below 0 and above 1, so these aren’t directly interpretable as proba‐
bilities.
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The Underlying Math
So far we’ve seen that the beauty of logistic regression is it outputs
values bounded by 0 and 1; hence they can be directly interpreted as
probabilities. Let’s get into the math behind it a bit. You want a function
that takes the data and transforms it into a single value bounded inside
the closed interval 0,1 . For an example of a function bounded be‐
tween 0 and 1, consider the inverse-logit function shown in Figure 5-2.

P t = logit−1 t ≡ 1
1+e−t = et

1+et

Figure 5-2. The inverse-logit function

Logit Versus Inverse-logit
The logit function takes x values in the range 0,1  and transforms
them to y values along the entire real line:

logit p = log p
1− p = log p − log 1− p

The inverse-logit does the reverse, and takes x values along the real
line and tranforms them to y values in the range 0,1 .

Note when t is large, e−t  is tiny so the denominator is close to 1 and
the overall value is close to 1. Similarly when t is small, e−t  is large so
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the denominator is large, which makes the function close to zero. So
that’s the inverse-logit function, which you’ll use to begin deriving a
logistic regression model. In order to model the data, you need to work
with a slightly more general function that expresses the relationship
between the data and a probability of a click. Start by defining:

P ci xi = logit−1 α+ βτxi
ci * 1− logit−1 α+ βτxi

1−ci

Here ci is the labels or classes (clicked or not), and xi is the vector of
features for user i. Observe that ci can only be 1 or 0, which means that
if ci = 1, the second term cancels out and you have:

P ci = 1 xi = 1

1+e− α+βτxi
= logit−1 α+ βτxi

And similarly, if ci = 0, the first term cancels out and you have:

P ci = 0 xi = 1− logit−1 α+ βτxi

To make this a linear model in the outcomes ci, take the log of the odds
ratio:

log P ci = 1 xi / 1−P ci = 1 xi = α+ βτxi .

Which can also be written as:

logit P ci = 1 xi = α+ βτxi .

If it feels to you that we went in a bit of a circle here (this last equation
was also implied by earlier equations), it’s because we did. The purpose
of this was to show you how to go back and forth between the prob‐
abilities and the linearity.

So the logit of the probability that user i clicks on the shoe ad is being
modeled as a linear function of the features, which were the URLs that
user i visited. This model is called the logistic regression model.

The parameter α is what we call the base rate, or the unconditional
probability of “1” or “click” knowing nothing more about a given user’s
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feature vector xi. In the case of measuring the likelihood of an average
user clicking on an ad, the base rate would correspond to the click-
through rate, i.e., the tendency over all users to click on ads. This is
typically on the order of 1%.

If you had no information about your specific situation except the base
rate, the average prediction would be given by just α:

P ci = 1 = 1
1+e−α

The variable β defines the slope of the logit function. Note that in
general it’s a vector that is as long as the number of features you are
using for each data point. The vector β determines the extent to which
certain features are markers for increased or decreased likelihood to
click on an ad.

Estimating α and β
Your immediate modeling goal is to use the training data to find the
best choices for α and β .  In general you want to solve this with max‐
imum likelihood estimation and use a convex optimization algorithm
because the likelihood function is convex; you can’t just use derivatives
and vector calculus like you did with linear regression because it’s a
complicated function of your data, and in particular there is no closed-
form solution.

Denote by Θ the pair α,β .  The likelihood function L is defined by:

L Θ X1,X2,⋯,Xn = P X Θ = P X1 Θ ·⋯ ·P Xn Θ

where you are assuming the data points Xi are independent, where
i = 1, . . . ,n represent your n users. This independence assumption cor‐
responds to saying that the click behavior of any given user doesn’t
affect the click behavior of all the other users—in this case, “click be‐
havior” means “probability of clicking.” It’s a relatively safe assumption
at a given point in time, but not forever. (Remember the independence
assumption is what allows you to express the likelihood function as
the product of the densities for each of the n observations.)

You then search for the parameters that maximize the likelihood, hav‐
ing observed your data:
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ΘMLE = argmaxΘ ∏1
n P Xi Θ .

Setting pi = 1 / 1+e− α+βt xi , the probability of a single observation,
P Xi Θ  is:

pi
ci · 1− pi

1−ci

So putting it all together, you have:

ΘMLE = argmaxΘ ∏1
n pi

ci · 1− pi
1−ci

Now, how do you maximize the likelihood?

Well, when you faced this situation with linear regression, you took
the derivative of the likelihood with respect to α and β, set that equal
to zero, and solved. But if you try that in this case, it’s not possible to
get a closed-form solution. The key is that the values that maximize
the likelihood will also maximize the log likelihood, which is equiva‐
lent to minimizing the negative log likelihood. So you transform the
problem to find the minimum of the negative log likelihood.

Now you have to decide which optimization method to use. As it turns
out, under reasonable conditions, both of the optimization methods
we describe below will converge to a global maximum when they con‐
verge at all. The “reasonable condition” is that the variables are not
linearly dependent, and in particular guarantees that the Hessian ma‐
trix will be positive definite.

More on Maximum Likelihood Estimation
We realize that we went through that a bit fast, so if you want
more details with respect to maximum likelihood estimation,
we suggest looking in Statistical Inference by Casella and
Berger, or if it’s linear algebra in general you want more de‐
tails on, check out Gilbert Strang’s Linear Algebra and Its
Applications.
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Newton’s Method
You can use numerical techniques to find your global maximum by
following the reasoning underlying Newton’s method from calculus;
namely, that you can pretty well approximate a function with the first
few terms of its Taylor Series.

Specifically, given a step size γ, you compute a local gradient ▽Θ,
which corresponds to the first derivative, and a Hessian matrix H,
which corresponds to the second derivative. You put them together
and each step of the algorithm looks something like this:

Θn+1 = Θn −γH−1 · ▽Θ .

Newton’s method uses the curvature of log-likelihood to choose an
appropriate step direction. Note that this calculation involves invert‐
ing the k ×k Hessian matrix, which is bad when there’s lots of features,
as in 10,000 or something. Typically you don’t have that many features,
but it’s not impossible.

In practice you’d never actually invert the Hessian—instead you’d
solve an equation of the form Ax = y, which is much more computa‐
tionally stable than finding A−1.

Stochastic Gradient Descent
Another possible method to maximize your likelihood (or minimize
your negative log likelihood) is called Stochastic Gradient Descent. It
approximates a gradient using a single observation at a time. The al‐
gorithm updates the current best-fit parameters each time it sees a new
data point. The good news is that there’s no big matrix inversion, and
it works well with both huge data and sparse features; it’s a big deal in
Mahout and Vowpal Wabbit, two open source projects to enable large-
scale machine learning across a variety of algorithms. The bad news
is it’s not such a great optimizer and it’s very dependent on step size.

Implementation
In practice you don’t have to code up the iterative reweighted least
squares or stochastic gradient optimization method yourself; this is
implemented in R or in any package that implements logistic regres‐
sion. So suppose you had a dataset that had the following first five
rows:
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click url_1  url_2  url_3  url_4  url_5
1      0       0     0      1      0
1      0       1     1      0      1
0      1       0     0      1      0
1      0       0     0      0      0
1      1       0     1      0      1

Call this matrix “train,” and then the command line in R would be:

fit <- glm(click ~ url_1 + url_2 + url_3 + url_4 + url_5,
           data = train, family = binomial(logit))

Evaluation
Let’s go back to the big picture from earlier in the chapter where we
told you that you have many choices you need to make when con‐
fronted with a classification problem. One of the choices is how you’re
going to evaluate your model. We discussed this already in Chapter 3
with respect to linear regression and k-NN, as well as in the previous
chapter with respect to Naive Bayes. We generally use different eval‐
uation metrics for different kinds of models, and in different contexts.
Even logistic regression can be applied in multiple contexts, and de‐
pending on the context, you may want to evaluate it in different ways.

First, consider the context of using logistic regression as a ranking
model—meaning you are trying to determine the order in which you
show ads or items to a user based on the probability they would click.
You could use logistic regression to estimate probabilities, and then
rank-order the ads or items in decreasing order of likelihood to click
based on your model. If you wanted to know how good your model
was at discovering relative rank (notice in this case, you could care less
about the absolute scores), you’d look to one of:
Area under the receiver operating curve (AUC)

In signal detection theory, a receiver operating characteristic
curve, or ROC curve, is defined as a plot of the true positive rate
against the false positive rate for a binary classification problem
as you change a threshold. In particular, if you took your training
set and ranked the items according to their probabilities and var‐
ied the threshold (from ∞ to −∞) that determined whether to
classify the item as 1 or 0 , and kept plotting the true positive rate
versus the false positive rate, you’d get the ROC curve. The area
under that curve, referred to as the AUC, is a way to measure the
success of a classifier or to compare two classifiers. Here’s a nice
paper on it by Tom Fawcett, “Introduction to ROC Analysis”.
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Area under the cumulative lift curve
An alternative is the area under the cumulative lift curve, which
is frequently used in direct marketing and captures how many
times it is better to use a model versus not using the model (i.e.,
just selecting at random).

We’ll see more of both of these in Chapter 13.

Warning: Feedback Loop!
If you want to productionize logistic regression to rank ads or items
based on clicks and impressions, then let’s think about what that
means in terms of the data getting generated. So let’s say you put an
ad for hair gel above an ad for deodorant, and then more people click
on the ad for hair gel—is it because you put it on top or because more
people want hair gel? How can you feed that data into future iterations
of your algorithm given that you potentially caused the clicks yourself
and it has nothing to do with the ad quality? One solution is to always
be logging the position or rank that you showed the ads, and then use
that as one of the predictors in your algorithm. So you would then
model the probability of a click as a function of position, vertical,
brand, or whatever other features you want. You could then use the
parameter estimated for position and use that going forward as a
“position normalizer.” There’s a whole division at Google called Ads
Quality devoted to problems such as these, so one little paragraph
can’t do justice to all the nuances of it.

Second, now suppose instead that you’re using logistic regression for
the purposes of classification. Remember that although the observed
output was a binary outcome (1,0), the output of a logistic model is a
probability. In order to use this for classification purposes, for any
given unlabeled item, you would get its predicted probability of a click.
Then to minimize the misclassification rate, if the predicted proba‐
bility is > 0.5 that the label is 1 (click), you would label the item a 1
(click), and otherwise 0. You have several options for how you’d then
evaluate the quality of the model, some of which we already discussed
in Chapters 3 and 4, but we’ll tell you about them again here so you
see their pervasiveness:
Lift

How much more people are buying or clicking because of a model
(once we’ve introduced it into production).

126 | Chapter 5: Logistic Regression

www.it-ebooks.info

http://mrvar.fdv.uni-lj.si/pub/mz/mz3.1/vuk.pdf
http://www.it-ebooks.info/


Accuracy
How often the correct outcome is being predicted, as discussed in
Chapters 3 and 4.

Precision
This is the (number of true positives)/(number of true positives
+ number of false positives).

Recall
This is the (number of true positives)/(number of true positives
+ number of false negatives).

F-score
We didn’t tell you about this one yet. It essentially combines pre‐
cision and recall into a single score. It’s the harmonic mean of
precision and recall, so (2 × precision × recall)/(precision + recall).
There are generalizations of this that are essentially changing how
much you weight one or the other.

Finally, for density estimation, where we need to know an actual prob‐
ability rather than a relative score, we’d look to:
Mean squared error

We discussed with respect to linear regression. As a reminder, this
is the average squared distance between the predicted and actual
values.

Root squared error
The square root of mean squared error.

Mean absolute error
This is a variation on mean squared error and is simply the average
of the absolute value of the difference between the predicted and
actual values.

In general, it’s hard to compare lift curves, but you can compare AUC
(area under the receiver operator curve)—they are “base rate invari‐
ant.” In other words, if you bring the click-through rate from 1% to
2%, that’s 100% lift; but if you bring it from 4% to 7%, that’s less lift
but more effect. AUC does a better job in such a situation when you
want to compare.

Density estimation tests tell you how well are you fitting for condi‐
tional probability. In advertising, this may arise if you have a situation
where each ad impression costs $c and for each conversion you receive
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$q .  You will want to target every conversion that has a positive ex‐
pected value, i.e., whenever:

P Conversion X · $q > $c

But to do this you need to make sure the probability estimate on the
left is accurate, which in this case means something like the mean
squared error of the estimator is small. Note a model can give you good
relative rankings—it gets the order right—but bad estimates of the
probability.

Think about it this way: it could say to rank items in order 1, 2, and 3
and estimate the probabilities as .7, .5, and .3. It might be that the true
probabilities are .03, .02, and .01, so our estimates are totally off, but
the ranking was correct.

Using A/B Testing for Evaluation
When we build models and optimize them with respect to some eval‐
uation metric such as accuracy or mean squared error, the estimation
method itself is built to optimize parameters with respect to these
metrics. In some contexts, the metrics we might want to optimize for
are something else altogether, such as revenue. So we might try to
build an algorithm that optimizes for accuracy, when our real goal is
to make money. The model itself may not directly capture this. So a
way to capture it is to run A/B tests (or statistical experiments) where
we divert some set of users to one version of the algorithm and another
set of users to another version of the algorithm, and check the dif‐
ference in performance of metrics we care about, such as revenue or
revenue per user, or something like that. We’ll discuss A/B testing
more in Chapter 11.

Media 6 Degrees Exercise
Media 6 Degrees kindly provided a dataset that is perfect for exploring
logistic regression models, and evaluating how good the models are.
Follow along by implementing the following R code. The dataset can
be found at https://github.com/oreillymedia/doing_data_science. 
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Sample R Code
# Author: Brian Dalessandro
# Read in data, look at the variables and create a training 
and test set
file <- "binary_class_dataset.txt"
set <- read.table(file, header = TRUE, sep = "\t",
                  row.names = "client_id")
names(set)

split <- .65
set["rand"] <- runif(nrow(set))
train <- set[(set$rand <= split), ]
test <- set[(set$rand > split), ]
set$Y <- set$Y_BUY

##########################################################
###########             R FUNCTIONS             ##########
##########################################################

library(mgcv)

# GAM Smoothed plot
plotrel <- function(x, y, b, title) {
    # Produce a GAM smoothed representation of the data
    g <- gam(as.formula("y ~ x"), family = "binomial",
             data = set)
    xs <- seq(min(x), max(x), length = 200)
    p <- predict(g, newdata = data.frame(x = xs),
                 type = "response")

    # Now get empirical estimates (and discretize if
    non discrete)
    if (length(unique(x)) > b) {
        div <- floor(max(x) / b)
        x_b <- floor(x / div) * div
        c <- table(x_b, y)
    }
    else { c <- table(x, y) }
    pact <- c[ , 2]/(c[ , 1]+c[, 2])
    cnt <- c[ , 1]+c[ , 2]
    xd <- as.integer(rownames(c))
    plot(xs, p, type="l", main=title,
         ylab = "P(Conversion | Ad, X)", xlab="X")
         points(xd, pact, type="p", col="red")
    rug(x+runif(length(x)))
}

library(plyr)
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# wMAE plot and calculation
getmae <- function(p, y, b, title, doplot) {
    # Normalize to interval [0,1]
    max_p <- max(p)
    p_norm <- p / max_p
    # break up to b bins and rescale
    bin <- max_p * floor(p_norm * b) / b
    d <- data.frame(bin, p, y)
    t <- table(bin)
    summ <- ddply(d, .(bin), summarise, mean_p = mean(p),
                  mean_y = mean(y))
    fin <- data.frame(bin = summ$bin, mean_p = summ$mean_p,
                      mean_y = summ$mean_y, t)
    # Get wMAE
    num = 0
    den = 0
    for (i in c(1:nrow(fin))) {
        num <- num + fin$Freq[i] * abs(fin$mean_p[i] -
                                   fin$mean_y[i])
        den <- den + fin$Freq[i]
    }
    wmae <- num / den
    if (doplot == 1) {
        plot(summ$bin, summ$mean_p, type = "p",
             main = paste(title," MAE =", wmae),
             col = "blue", ylab = "P(C | AD, X)",
             xlab = "P(C | AD, X)")
        points(summ$bin, summ$mean_y, type = "p", col = "red")
        rug(p)
    }
    return(wmae)
}

library(ROCR)
get_auc <- function(ind, y) {
    pred <- prediction(ind, y)
    perf <- performance(pred, 'auc', fpr.stop = 1)
    auc <- as.numeric(substr(slot(perf, "y.values"), 1, 8),
                      double)
    return(auc)
}

# Get X-Validated performance metrics for a given feature set

getxval <- function(vars, data, folds, mae_bins) {
    # assign each observation to a fold
    data["fold"] <- floor(runif(nrow(data)) * folds) + 1
    auc <- c()
    wmae <- c()
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    fold <- c()
    # make a formula object
    f = as.formula(paste("Y", "~", paste(vars,
                   collapse = "+")))
    for (i in c(1:folds)) {
        train <- data[(data$fold != i), ]
        test <- data[(data$fold == i), ]
        mod_x <- glm(f, data=train, family = binomial(logit))
        p <- predict(mod_x, newdata = test, type = "response")
        # Get wMAE
        wmae <- c(wmae, getmae(p, test$Y, mae_bins,
                  "dummy", 0))
        fold <- c(fold, i)
        auc <- c(auc, get_auc(p, test$Y))
    }
    return(data.frame(fold, wmae, auc))
}

###############################################################
##########           MAIN: MODELS AND PLOTS          ##########
###############################################################
# Now build a model on all variables and look at coefficients 
and model fit
vlist <- c("AT_BUY_BOOLEAN", "AT_FREQ_BUY", 
"AT_FREQ_LAST24_BUY",
    "AT_FREQ_LAST24_SV", "AT_FREQ_SV", "EXPECTED_TIME_BUY",
    "EXPECTED_TIME_SV", "LAST_BUY", "LAST_SV", "num_checkins")
f = as.formula(paste("Y_BUY", "~" , paste(vlist,
               collapse = "+")))
fit <- glm(f, data = train, family = binomial(logit))
summary(fit)

# Get performance metrics on each variable

vlist <- c("AT_BUY_BOOLEAN", "AT_FREQ_BUY", 
"AT_FREQ_LAST24_BUY",
    "AT_FREQ_LAST24_SV", "AT_FREQ_SV", "EXPECTED_TIME_BUY",
    "EXPECTED_TIME_SV", "LAST_BUY", "LAST_SV", "num_checkins")

# Create empty vectors to store the performance/evaluation met
rics
auc_mu <- c()
auc_sig <- c()
mae_mu <- c()
mae_sig <- c()

for (i in c(1:length(vlist))) {
    a <- getxval(c(vlist[i]), set, 10, 100)
    auc_mu <- c(auc_mu, mean(a$auc))
    auc_sig <- c(auc_sig, sd(a$auc))
    mae_mu <- c(mae_mu, mean(a$wmae))
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    mae_sig <- c(mae_sig, sd(a$wmae))
}

univar <- data.frame(vlist, auc_mu, auc_sig, mae_mu, mae_sig)

# Get MAE plot on single variable -
use holdout group for evaluation
set <- read.table(file, header = TRUE, sep = "\t",
                  row.names="client_id")
names(set)

split<-.65
set["rand"] <- runif(nrow(set))
train <- set[(set$rand <= split), ]
test <- set[(set$rand > split), ]
set$Y <- set$Y_BUY

fit <- glm(Y_BUY ~ num_checkins, data = train,
           family = binomial(logit))
y <- test$Y_BUY
p <- predict(fit, newdata = test, type = "response")

getmae(p,y,50,"num_checkins",1)

# Greedy Forward Selection
rvars <- c("LAST_SV", "AT_FREQ_SV", "AT_FREQ_BUY",
    "AT_BUY_BOOLEAN", "LAST_BUY", "AT_FREQ_LAST24_SV",
    "EXPECTED_TIME_SV", "num_checkins",
    "EXPECTED_TIME_BUY", "AT_FREQ_LAST24_BUY")
# Create empty vectors
auc_mu <- c()
auc_sig <- c()
mae_mu <- c()
mae_sig <- c()

for (i in c(1:length(rvars))) {
    vars <- rvars[1:i]
    vars
    a <- getxval(vars, set, 10, 100)
    auc_mu <- c(auc_mu, mean(a$auc))
    auc_sig <- c(auc_sig, sd(a$auc))
    mae_mu <- c(mae_mu, mean(a$wmae))
    mae_sig <- c(mae_sig, sd(a$wmae))
}
kvar<-data.frame(auc_mu, auc_sig, mae_mu, mae_sig)

# Plot 3 AUC Curves
y <- test$Y_BUY

fit <- glm(Y_BUY~LAST_SV, data=train,
           family = binomial(logit))
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p1 <- predict(fit, newdata=test, type="response")
fit <- glm(Y_BUY~LAST_BUY, data=train,
           family = binomial(logit))
p2 <- predict(fit, newdata=test, type="response")
fit <- glm(Y_BUY~num_checkins, data=train,
           family = binomial(logit))
p3 <- predict(fit, newdata=test,type="response")

pred <- prediction(p1,y)
perf1 <- performance(pred,'tpr','fpr')
pred <- prediction(p2,y)
perf2 <- performance(pred,'tpr','fpr')
pred <- prediction(p3,y)
perf3 <- performance(pred,'tpr','fpr')

plot(perf1, color="blue", main="LAST_SV (blue),
     LAST_BUY (red), num_checkins (green)")
plot(perf2, col="red", add=TRUE)
plot(perf3, col="green", add=TRUE)
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CHAPTER 6

Time Stamps and Financial
Modeling

In this chapter, we have two contributors, Kyle Teague from GetGlue,
and someone you are a bit more familiar with by now: Cathy O’Neil.
Before Cathy dives into her talk about the main topics for this chapter
—times series, financial modeling, and fancypants regression—we’ll
hear from Kyle Teague from GetGlue about how they think about
building a recommendation system. (We’ll also hear more on this topic
in Chapter 7.) We then lay some of the groundwork for thinking about
timestamped data, which will segue into Cathy’s talk.

Kyle Teague and GetGlue
We got to hear from Kyle Teague, a VP of data science and engineering
at GetGlue. Kyle’s background is in electrical engineering. He consid‐
ers the time he spent doing signal processing in research labs as super
valuable, and he’s been programming since he was a kid. He develops
in Python.

GetGlue is a New York-based startup whose primary goal is to address
the problem of content discovery within the movie and TV space. The
usual model for finding out what’s on TV is the 1950’s TV Guide
schedule; that’s still how many of us find things to watch. Given that
there are thousands of channels, it’s getting increasingly difficult to
find out what’s good on TV.

GetGlue wants to change this model, by giving people personalized
TV recommendations and personalized guides. Specifically, users
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“check in” to TV shows, which means they can tell other people they’re
watching a show, thereby creating a timestamped data point. They can
also perform other actions such as liking or commenting on the show.

We store information in triplets of data of the form {user, action,
item}, where the item is a TV show (or a movie). One way to visualize
this stored data is by drawing a bipartite graph as shown in Figure 6-1.

Figure 6-1. Bipartite graph with users and items (shows) as nodes

We’ll go into graphs in later chapters, but for now you should know
that the dots are called “nodes” and the lines are called “edges.” This
specific kind of graph, called a bipartite graph, is characterized by there
being two kinds of nodes, in this case corresponding to “users” and
“items.” All the edges go between a user and an item, specifically if the
user in question has acted in some way on the show in question. There
are never edges between different users or different shows. The graph
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in Figure 6-1 might display when certain users have “liked” certain TV
shows.

GetGlue enhances the graph as follows: it finds ways to create edges
between users and between shows, albeit with different kinds of edges.
So, for example, users can follow one another or be friends on GetGlue,
which produces directed edges; i.e., edges going from one node to an‐
other with a direction, usually denoted by an arrow. Similarly, using
the set of preferences, GetGlue can learn that two people have similar
tastes and they can be connected that way as well, which would prob‐
ably not be directed.

GetGlue also hires human evaluators to make connections or direc‐
tional edges between shows. So, for example, True Blood and Buffy the
Vampire Slayer might be similar for some reason, and so the humans
create a “similarity” edge in the graph between them. There are nu‐
ances around the edge being directional; they may draw an arrow
pointing from Buffy to True Blood but not vice versa, for example, so
their notion of “similar” or “close” captures both content and popu‐
larity. Pandora is purported to do something like this, too.

Another important aspect, especially in the fast-paced TV space, is
time. The user checked in or liked a show at a specific time, so the data
that logs an action needs to have a timestamp as well: {user, action,
item, timestamp}. Timestamps are helpful to see how influence pro‐
pogates in the graph we’ve constructed, or how the graph evolves over
time.

Timestamps
Timestamped event data is a common data type in the age of Big Data.
In fact, it’s one of the causes of Big Data. The fact that computers can
record all the actions a user takes means that a single user can generate
thousands of data points alone in a day. When people visit a website
or use an app, or interact with computers and phones, their actions
can be logged, and the exact time and nature of their interaction re‐
corded. When a new product or feature is built, engineers working on
it write code to capture the events that occur as people navigate and
use the product—that capturing is part of the product.

For example, imagine a user visits the New York Times home page.
The website captures which news stories are rendered for that user,

Timestamps | 137

www.it-ebooks.info

http://www.pandora.com/
http://www.it-ebooks.info/


and which stories were clicked on. This generates event logs. Each
record is an event that took place between a user and the app or website.

Here’s an example of raw data point from GetGlue:

{"userId": "rachelschutt", "numCheckins": "1",
"modelName": "movies", "title": "Collaborator",
"source": "http://getglue.com/stickers/tribeca_film/
collaborator_coming_soon", "numReplies": "0",
"app": "GetGlue", "lastCheckin": "true",
"timestamp": "2012-05-18T14:15:40Z",
"director": "martin donovan", "verb": "watching",
"key": "rachelschutt/2012-05-18T14:15:40Z",
"others": "97", "displayName": "Rachel Schutt",
"lastModified": "2012-05-18T14:15:43Z",
"objectKey": "movies/collaborator/martin_donovan",
"action": "watching"}

If we extract four fields: {"userid":"rachelschutt", "action":
"watching", "title":"Collaborator", timestamp:"2012-05-

18T14:15:40Z" }, we can think of it as being in the order we just
discussed, namely {user, verb, object, timestamp}.

Exploratory Data Analysis (EDA)
As we described in Chapter 2, it’s best to start your analysis with EDA
so you can gain intuition for the data before building models with it.
Let’s delve deep into an example of EDA you can do with user data,
stream-of-consciousness style. This is an illustration of a larger tech‐
nique, and things we do here can be modified to other types of data,
but you also might need to do something else entirely depending on
circumstances.

The very first thing you should look into when dealing with user data
is individual user plots over time. Make sure the data makes sense to
you by investigating the narrative the data indicates from the perspec‐
tive of one person.

To do this, take a random sample of users: start with something small
like 100 users. Yes, maybe your dataset has millions of users, but to
start out, you need to gain intuition. Looking at millions of data points
is too much for you as a human. But just by looking at 100, you’ll start
to understand the data, and see if it’s clean. Of course, this kind of
sample size is not large enough if you were to start making inferences
about the entire set of data.
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You might do this by finding usernames and grepping or searching for
100 random choices, one at a time. For each user, create a plot like the
one in Figure 6-2.

Figure 6-2. An example of a way to visually display user-level data
over time

Now try to construct a narrative from that plot. For example, we could
say that user 1 comes the same time each day, whereas user 2 started
out active in this time period but then came less and less frequently.
User 3 needs a longer time horizon for us to understand his or her
behavior, whereas user 4 looks “normal,” whatever that means.

Let’s pose questions from that narrative:

• What is the typical or average user doing?
• What does variation around that look like?
• How would we classify users into different segments based on

their behavior with respect to time?
• How would we quantify the differences between these users?
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Think abstractly about a certain typical question from data munging
discipline. Say we have some raw data where each data point is an
event, but we want to have data stored in rows where each row consists
of a user followed by a bunch of timestamps corresponding to actions
that user performed. How would we get the data to that point? Note
that different users will have a different number of timestamps.

Make this reasoning explicit: how would we write the code to create a
plot like the one just shown? How would we go about tackling the data
munging exercise?

Suppose a user can take multiple actions: “thumbs_up,” or
“thumbs_down,” “like,” and “comment.” How can we plot those events?
How can we modify our metrics? How can we encode the user data
with these different actions? Figure 6-3 provides an example for the
first question where we color code actions thumbs up and thumbs
down, denoted thumbs_up and thumbs_down.

Figure 6-3. Use color to include more information about user actions
in a visual display

In this toy example, we see that all the users did the same thing at the
same time toward the right end of the plots. Wait, is this a real event
or a bug in the system? How do we check that? Is there a large co-
occurence of some action across users? Is “black” more common than
“red”? Maybe some users like to always thumb things up, another
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group always like to thumb things down, and some third group of
users are a mix. What’s the definition of a “mix”?

Now that we’ve started to get some sense of variation across users, we
can think about how we might want to aggregate users. We might make
the x-axis refer to time, and the y-axis refer to counts, as shown in
Figure 6-4.

Figure 6-4. Aggregating user actions into counts

We’re no longer working with 100 individual users, but we’re still
making choices, and those choices will impact our perception and
understanding of the dataset.

For example, are we counting the number of unique users or the overall
number of user logins? Because some users log in multiple times, this
can have a huge impact. Are we counting the number of actions or the
number of users who did a given action at least once during the given
time segment?

What is our time horizon? Are we counting per second, minute, hour,
8-hour segments, day, or week? Why did we choose that? Is the signal
overwhelmed by seasonality, or are we searching for seasonality?
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Are our users in different time zones? If user 1 and user 2 are in New
York and London, respectively, then it’s 7 a.m. in NYC when it’s noon
in London. If we count that as 7 a.m. and say “30,000 users did this
action in the morning,” then it’s misleading, because it’s not morning
in London. How are we going to treat this? We could shift the data into
buckets so it’s 7 a.m. for the user, not 7 a.m. in New York, but then we
encounter other problems. This is a decision we have to make and
justify, and it could go either way depending on circumstances.

Timestamps Are Tricky
We’re not gonna lie, timestamps are one of the hardest things
to get right about modeling, especially around time changes.
That’s why it’s sometimes easiest to convert all timestamps
into seconds since the beginning of epoch time.

Maybe we want to make different plots for different action types, or
maybe we will bin actions into broader categories to take a good look
at them and gain perspective.

Metrics and New Variables or Features
The intuition we gained from EDA can now help us construct metrics.
For example, we can measure users by keeping tabs on the frequencies
or counts of their actions, the time to first event, or simple binary
variables such as “did action at least once,” and so on. If we want to
compare users, we can construct similarity or difference metrics. We
might want to aggregate by user by counting or having a cumulative
sum of counts or money spent, or we might aggregate by action by
having cumulative or average number of users doing that action once
or more than once.

This is by no means a comprehensive list. Metrics can be any function
of the data, as long as we have a purpose and reason for creating them
and interpreting them.

What’s Next?
We want to start moving toward modeling, algorithms, and analysis,
incorporating the intuition we built from the EDA into our models
and algorithms. Our next steps depend on the context, but here are
some examples of what we could do.
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We might be interested in time series modeling, which includes auto-
regression. We’ll talk about this more in the next section on financial
modeling, but generally speaking we work with time series when we
are trying to predict events that are super time-sensitive, like markets,
or somewhat predictable based on what already happened, such as
how much money gets invested in pension funds per month.

We might start clustering, as we discussed in Chapter 3. In order to do
this, we’d need to define the closeness of users with each other.

Maybe we’ll want to build a monitor that could automatically detect
common behavior patterns. Of course we’d first have to define what a
common behavior pattern is and what would make things uncommon.

We might try our hands at change-point detection, which is to say the
ability to identify when some big event has taken place. What kind of
behavior in our system should trigger an alarm? Or, we might try to
establish causality. This can be very hard if we haven’t set up an ex‐
periment. Finally, we might want to train a recommendation system.

Historical Perspective: What’s New About This?
Timestamped data itself is not new, and time series analysis is a well-
established field (see, for example, Time Series Analysis by James D.
Hamilton). Historically, the available datasets were fairly small and
events were recorded once a day, or even reported at aggregate levels.
Some examples of timestamped datasets that have existed for a while
even at a granular level are stock prices in finance, credit card trans‐
actions, phone call records, or books checked out of the library.

Even so, there are a couple things that make this new, or at least the
scale of it new. First, it’s now easy to measure human behavior
throughout the day because many of us now carry around devices that
can be and are used for measurement purposes and to record actions.
Next, timestamps are accurate, so we’re not relying on the user to self-
report, which is famously unreliable. Finally, computing power makes
it possible to store large amounts of data and process it fairly quickly.

Cathy O’Neil
Next Cathy O’Neil spoke. You’re already familiar with her, but let’s
check out her data science profile in Figure 6-5.
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Figure 6-5. Cathy’s data science profile

Her most obvious weakness is in CS. Although she programs in Python
pretty proficiently, and can scrape and parse data, prototype models,
and use matplotlib to draw pretty pictures, she is no Java map-reducer
and bows down to those people who are. She’s also completely un‐
trained in data visualization, but knows enough to get by and give
presentations that people understand.

Thought Experiment
What do you lose when you think of your training set as a big pile of
data and ignore the timestamps?

The big point here is that you can’t tease out cause and effect if you
don’t have any sense of time.

What if we amend the question to allow the collection of relative time
differentials, so “time since user last logged in” or “time since last click”
or “time since last insulin injection,” but not absolute timestamps?

In that case you still have major problems. For example, you’d ignore
trends altogether, as well as seasonality, if you don’t order your data
over time. So for the insulin example, you might note that 15 minutes
after your insulin injection your blood sugar goes down consistently,
but you might not notice an overall trend of your rising blood sugar
over the past few months if your dataset for the past few months has
no absolute timestamp on it. Without putting this data in order, you’d
miss the pattern shown in Figure 6-6.
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Figure 6-6. Without keeping track of timestamps, we can’t see time-
based patterns; here, we see a seasonal pattern in a time series

This idea, of keeping track of trends and seasonalities, is very impor‐
tant in financial data, and essential to keep track of if you want to make
money, considering how small the signals are.

Financial Modeling
Before the term data scientist existed, there were quants working in
finance. There are many overlapping aspects of the job of the quant
and the job of the data scientist, and of course some that are very
different. For example, as we will see in this chapter, quants are sin‐
gularly obsessed with timestamps, and don’t care much about why
things work, just if they do.

Of course there’s a limit to what can be covered in just one chapter,
but this is meant to give a taste of the kind of approach common in
financial modeling.
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In-Sample, Out-of-Sample, and Causality
We need to establish a strict concept of in-sample and out-of-sample
data. Note the out-of-sample data is not meant as testing data—that
all happens inside in-sample data. Rather, out-of-sample data is meant
to be the data you use after finalizing your model so that you have some
idea how the model will perform in production.

We should even restrict the number of times one does out-of-sample
analysis on a given dataset because, like it or not, we learn stuff about
that data every time, and we will subconsciously overfit to it even in
different contexts, with different models.

Next, we need to be careful to always perform causal modeling (note
this differs from what statisticians mean by causality). Namely, never
use information in the future to predict something now. Or, put differ‐
ently, we only use information from the past up and to the present
moment to predict the future. This is incredibly important in financial
modeling. Note it’s not enough to use data about the present if it isn’t
actually available and accessible at the present moment. So this means
we have to be very careful with timestamps of availability as well as
timestamps of reference. This is huge when we’re talking about lagged
government data.

Similarly, when we have a set of training data, we don’t know the “best-
fit coefficients” for that training data until after the last timestamp on
all the data. As we move forward in time from the first timestamp to
the last, we expect to get different sets of coefficients as more events
happen.

One consequence of this is that, instead of getting one set of “best-fit”
coefficients, we actually get an evolution of each coefficient. This is
helpful because it gives us a sense of how stable those coefficients are.
In particular, if one coefficient has changed sign 10 times over the
training set, then we might well expect a good estimate for it is zero,
not the so-called “best fit” at the end of the data. Of course, depending
on the variable, we might think of a legitimate reason for it to actually
change sign over time.

The in-sample data should, generally speaking, come before the out-
of-sample data to avoid causality problems as shown in Figure 6-7.
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Figure 6-7. In-sample should come before out-of-sample data in a
time series dataset

One final point on causal modeling and in-sample versus out-of-
sample. It is consistent with production code, because we are always
acting—in the training and in the out-of-sample simulation—as if
we’re running our model in production and we’re seeing how it per‐
forms. Of course we fit our model in sample, so we expect it to perform
better there than in production.

Another way to say this is that, once we have a model in production,
we will have to make decisions about the future based only on what
we know now (that’s the definition of causal) and we will want to update
our model whenever we gather new data. So our coefficients of our
model are living organisms that continuously evolve. Just as they
should—after all, we’re modeling reality, and things really change over
time.

Preparing Financial Data
We often “prepare” the data before putting it into a model. Typically
the way we prepare it has to do with the mean or the variance of the
data, or sometimes the data after some transformation like the log (and
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then the mean or the variance of that transformed data). This ends up
being a submodel of our model.

Transforming Your Data
Outside of the context of financial data, preparing and transforming
data is also a big part of the process. You have a number of possible
techniques to choose from to transform your data to better “behave”:

• Normalize the data by subtracting the mean and dividing by the
standard deviation.

• Alternatively normalize or scale by dividing by the maximum
value.

• Take the log of the data.
• Bucket into five evenly spaced buckets; or five evenly distributed

buckets (or a number other than five), and create a categorical
variable from that.

• Choose a meaningful threshold and transform the data into a
new binary variable with value 1, if a data point is greater than
or equal to the threshold, and 0 if less than the threshold.

Once we have estimates of our mean y and variance σ y
2 , we can nor‐

malize the next data point with these estimates just like we do to get
from a Gaussian or normal distribution to the standard normal dis‐
tribution with mean = 0 and standard deviation = 1:

y ↦
y − y
σ y

Of course we may have other things to keep track of as well to prepare
our data, and we might run other submodels of our model. For ex‐
ample, we may choose to consider only the “new” part of something,
which is equivalent to trying to predict something like yt − yt−1 instead
of yt .  Or, we may train a submodel to figure out what part of yt−1
predicts yt ,  such as a submodel that is a univariate regression or
something.

There are lots of choices here, which will always depend on the situa‐
tion and the goal you happen to have. Keep in mind, though, that it’s
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all causal, so you have to be careful when you train your overall model
how to introduce your next data point and make sure the steps are all
in order of time, and that you’re never ever cheating and looking ahead
in time at data that hasn’t happened yet.

In particular, and it happens all the time, one can’t normalize by the
mean calculuated over the training set. Instead, have a running esti‐
mate of the mean, which you know at a given moment, and normalize
with respect to that.

To see why this is so dangerous, imagine a market crash in the middle
of your training set. The mean and variance of your returns are heavily
affected by such an event, and doing something as innocuous as a
mean estimate translates into anticipating the crash before it happens.
Such acausal interference tends to help the model, and could likely
make a bad model look good (or, what is more likely, make a model
that is pure noise look good).

Log Returns
In finance, we consider returns on a daily basis. In other words, we
care about how much the stock (or future, or index) changes from day
to day. This might mean we measure movement from opening on
Monday to opening on Tuesday, but the standard approach is to care
about closing prices on subsequent trading days.

We typically don’t consider percent returns, but rather log returns: if
Ft  denotes a close on day t,  then the log return that day is defined as
log Ft / Ft−1 ,  whereas the percent return would be computed as
100 Ft / Ft−1 −1 . To simplify the discussion, we’ll compare log re‐
turns to scaled percent returns, which is the same as percent returns
except without the factor of 100. The reasoning is not changed by this
difference in scalar.

There are a few different reasons we use log returns instead of per‐
centage returns. For example, log returns are additive but scaled per‐
cent returns aren’t. In other words, the five-day log return is the sum
of the five one-day log returns. This is often computationally handy.

By the same token, log returns are symmetric with respect to gains and
losses, whereas percent returns are biased in favor of gains. So, for
example, if our stock goes down by 50%, or has a –0.5 scaled percent
gain, and then goes up by 200%, so has a 2.0 scaled percent gain, we
are where we started. But working in the same scenarios with log
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returns, we’d see first a log return of log 0.5 = −0.301 followed by a
log return of log 2.0 = 0.301.

Even so, the two kinds of returns are close to each other for smallish
returns, so if we work with short time horizons, like daily or shorter,
it doesn’t make a huge difference. This can be proven easily: setting
x = Ft / Ft−1,  the scaled percent return is x −1 and the log return is
log x ,  which has the following Taylor expansion:

log x = ∑
n

x −1 n

n = x −1 + x −1 2 / 2+⋯

In other words, the first term of the Taylor expansion agrees with the
percent return. So as long as the second term is small compared to the
first, which is usually true for daily returns, we get a pretty good ap‐
proximation of percent returns using log returns.

Here’s a picture of how closely these two functions behave, keeping in
mind that when x = 1, there’s no change in price whatsoever, as shown
in Figure 6-8.

Figure 6-8. Comparing log and scaled percent returns
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Example: The S&P Index
Let’s work out a toy example. If you start with S&P closing levels as
shown in Figure 6-9, then you get the log returns illustrated in
Figure 6-10.

Figure 6-9. S&P closing levels shown over time

Figure 6-10. The log of the S&P returns shown over time
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What’s that mess? It’s crazy volatility caused by the financial crisis. We
sometimes (not always) want to account for that volatility by normal‐
izing with respect to it (described earlier). Once we do that we get
something like Figure 6-11, which is clearly better behaved.

Figure 6-11. The volatility normalized log of the S&P closing returns
shown over time

Working out a Volatility Measurement
Once we have our returns defined, we can keep a running estimate of
how much we have seen it change recently, which is usually measured
as a sample standard deviation, and is called a volatility estimate.

A critical decision in measuring the volatility is in choosing a lookback
window, which is a length of time in the past we will take our infor‐
mation from. The longer the lookback window is, the more informa‐
tion we have to go by for our estimate. However, the shorter our look‐
back window, the more quickly our volatility estimate responds to new
information. Sometimes you can think about it like this: if a pretty big
market event occurs, how long does it take for the market to “forget
about it”? That’s pretty vague, but it can give one an intuition on the
appropriate length of a lookback window. So, for example, it’s defi‐
nitely more than a week, sometimes less than four months. It also
depends on how big the event is, of course.
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Next we need to decide how we are using the past few days’ worth of
data. The simplest approach is to take a strictly rolling window, which
means we weight each of the previous n days equally and a given day’s
return is counted for those n days and then drops off the back of a
window. The bad news about this easy approach is that a big return
will be counted as big until that last moment, and it will completely
disappear. This doesn’t jive with the ways people forget about things
—they usually let information gradually fade from their memories.

For this reason we instead have a continuous lookback window, where
we exponentially downweight the older data and we have a concept of
the “half-life” of the data. This works out to saying that we scale the
impact of the past returns depending on how far back in the past they
are, and for each day they get multiplied by some number less than 1
(called the decay). For example, if we take the number to be 0.97, then
for five days ago we are multiplying the impact of that return by the
scalar 0.975. Then we will divide by the sum of the weights, and overall
we are taking the weighted average of returns where the weights are
just powers of something like 0.97. The “half-life” in this model can
be inferred from the number 0.97 using these formulas as -ln(2)/
ln(0.97) = 23.

Now that we have figured out how much we want to weight each pre‐
vious day’s return, we calculate the variance as simply the weighted
sum of the squares of the previous returns. Then we take the square
root at the end to estimate the volatility.

Note we’ve just given you a formula that involves all of the previous
returns. It’s potentially an infinite calculation, albeit with exponentially
decaying weights. But there’s a cool trick: to actually compute this we
only need to keep one running total of the sum so far, and combine it
with the new squared return. So we can update our “vol” (as those in
the know call volatility) estimate with one thing in memory and one
easy weighted average.

First, we are dividing by the sum of the weights, but the weights are
powers of some number s, so it’s a geometric sum and in the limit, the
sum is given by 1 / 1− s .
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Exponential Downweighting
This technique is called exponential downweighting, a con‐
venient way of compressing the data into a single value that
can be updated without having to save the entire dataset.

Next, assume we have the current variance estimate as:

Vold = 1− s · ∑i ri
2si

and we have a new return r0 to add to the series. Then it’s not hard to
show we just want:

Vnew = s ·Vold + 1− s · r0
2

Note that we said we would use the sample standard deviation, but the
formula for that normally involves removing the mean before taking
the sum of squares. Here we ignore the mean, mostly because we are
typically taking daily volatility, where the mean (which is hard to an‐
ticipate in any case!) is a much smaller factor than the noise, so we can
treat it essentially as zero. If we were to measure volatility on a longer
time scale such as quarters or years, then we would probably not ignore
the mean.

It really matters which downweighting factor you use, as
shown in Figure 6-12.

Indeed, we can game a measurement of risk (and people do) by choos‐
ing the downweighting factor that minimizes our risk.
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Figure 6-12. Volatility in the S&P with different decay factors

Exponential Downweighting
We’ve already seen an example of exponential downweighting in the
case of keeping a running estimate of the volatility of the returns of
the S&P.

The general formula for downweighting some additive running esti‐
mate E is simple enough. We weight recent data more than older data,
and we assign the downweighting of older data a name s and treat it
like a parameter. It is called the decay. In its simplest form we get:

Et = s ·Et−1 + 1− s ·et

where et  is the new term.
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Additive Estimates
We need each of our estimates to be additive (which is why
we have a running variance estimate rather than a running
standard deviation estimate). If what we’re after is a weighted
average, say, then we will need to have a running estimate of
both numerator and denominator.

If we want to be really careful about smoothness at the beginning
(which is more important if we have a few hundred data points or
fewer), then we’ll actually vary the parameter s, via its reciprocal, which
we can think of as a kind of half-life. We start with a half-life of 1 and
grow it up to the asymptotic “true” half-life N = 1 / s. Thus, when we’re
given a vector v of values et  indexed by days t, we do something like
this:

true_N = N
this_N_est = 1.0
this_E = 0.0
for e_t in v:
    this_E = this_E * (1-1/this_N_est) + e_t * (1/this_N_est)
    this_N_est = this_N_est*(1-1/true_N) + N * (1/true_N)

The Financial Modeling Feedback Loop
One thing any quantitative person or data scientist needs to under‐
stand about financial modeling is that there’s a feedback loop. If you
find a way to make money, it eventually goes away—sometimes people
refer to this as the fact that the market “learns over time.”

One way to see this is that, in the end, your model comes down to
knowing some price (say) is going to go up in the future, so you buy
it before it goes up, you wait, and then you sell it at a profit. But if you
think about it, your buying it has actually changed the process, through
your market impact, and decreased the signal you were anticipating.
Of course, if you only buy one share in anticipation of the increase,
your impact is minimal. But if your algorithm works really well, you
tend to bet more and more, having a larger and larger impact. Indeed,
why would you not bet more? You wouldn’t. After a while you’d learn
the optimal amount you can bet and still make good money, and that
optimal amount is large enough to have a big impact on the market.

That’s how the market learns—it’s a combination of a bunch of algo‐
rithms anticipating things and making them go away.
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The consequence of this learning over time is that the existing signals
are very weak. Things that were obvious (in hindsight) with the naked
eye in the 1970s are no longer available, because they’re all understood
and pre-anticipated by the market participants (although new ones
might pop into existence).

The bottom line is that, nowadays, we are happy with a 3% correlation
for models that have a horizon of 1 day (a “horizon” for your model is
how long you expect your prediction to be good). This means not
much signal, and lots of noise! Even so, you can still make money if
you have such an edge and if your trading costs are sufficiently small.

In particular, lots of the machine learning “metrics of success” for
models, such as measurements of precision or accuracy, are not very
relevant in this context.

So instead of measuring accuracy, we generally draw a picture to assess
models as shown in Figure 6-13, namely of the (cumulative) PnL of
the model. PnL stands for Profit and Loss and is the day-over-day
change (difference, not ratio), or today’s value minus yesterday’s value.

Figure 6-13. A graph of the cumulative PnLs of two theoretical models
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This generalizes to any model as well—you plot the cumulative sum
of the product of demeaned forecast and demeaned realized. (A de‐
meaned value is one where the mean’s been subtracted.) In other
words, you see if your model consistently does better than the “stu‐
pidest” model of assuming everything is average.

If you plot this and you drift up and to the right, you’re good. If it’s too
jaggedy, that means your model is taking big bets and isn’t stable.

Why Regression?
So now we know that in financial modeling, the signal is weak. If you
imagine there’s some complicated underlying relationship between
your information and the thing you’re trying to predict, get over
knowing what that is—there’s too much noise to find it. Instead, think
of the function as possibly complicated, but continuous, and imagine
you’ve written it out as a Taylor Series. Then you can’t possibly expect
to get your hands on anything but the linear terms.

Don’t think about using logistic regression, either, because you’d need
to be ignoring size, which matters in finance—it matters if a stock went
up 2% instead of 0.01%. But logistic regression forces you to have an
on/off switch, which would be possible but would lose a lot of infor‐
mation. Considering the fact that we are always in a low-information
environment, this is a bad idea.

Note that although we’re claiming you probably want to use linear
regression in a noisy environment, the actual terms themselves don’t
have to be linear in the information you have. You can always take
products of various terms as x’s in your regression. but you’re still
fitting a linear model in nonlinear terms.

Adding Priors
One interpretation of priors is that they can be thought of as opinions
that are mathematically formulated and incorporated into our models.
In fact, we’ve already encountered a common prior in the form of
downweighting old data. The prior can be described as “new data is
more important than old data.”

Besides that one, we may also decide to consider something like “co‐
efficients vary smoothly.” This is relevant when we decide, say, to use
a bunch of old values of some time series to help predict the next one,
giving us a model like:
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y = Ft = α0 +α1Ft−1 +α2Ft−2 +ϵ

which is just the example where we take the last two values of the time
series F to predict the next one. We could use more than two values,
of course. If we used lots of lagged values, then we could strengthen
our prior in order to make up for the fact that we’ve introduced so
many degrees of freedom. In effect, priors reduce degrees of freedom.

The way we’d place the prior about the relationship between coeffi‐
cients (in this case consecutive lagged data points) is by adding a matrix
to our covariance matrix when we perform linear regression. See more
about this here.

A Baby Model
Say we drew a plot in a time series and found that we have strong but
fading autocorrelation up to the first 40 lags or so as shown in
Figure 6-14.

Figure 6-14. Looking at auto-correlation out to 100 lags

We can calculate autocorrelation when we have time series data. We
create a second time series that is the same vector of data shifted by a
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day (or some fixed time period), and then calculate the correlation
between the two vectors.

If we want to predict the next value, we’d want to use the signal that
already exists just by knowing the last 40 values. On the other hand,
we don’t want to do a linear regression with 40 coefficients because
that would be way too many degrees of freedom. It’s a perfect place for
a prior.

A good way to think about priors is by adding a term to the function
we are seeking to minimize, which measures the extent to which we
have a good fit. This is called the “penalty function,” and when we have
no prior at all, it’s simply the sum of the squares of the error:

F β = ∑i yi −xiβ 2 = y −xβ τ y −xβ

If we want to minimize F, which we do, then we take its derivative with
respect to the vector of coefficients β, set it equal to zero, and solve for
β—there’s a unique solution, namely:

β = xτx −1xτ y

If we now add a standard prior in the form of a penalty term for large
coefficients, then we have:

F1 β = 1
N ∑i yi −xiβ 2 + ∑ j λ2β j

2 = 1
N y −xβ τ y −xβ + λIβ τ λIβ

This can also be solved using calculus, and we solve for beta to get:

β1 = xτx + N · λ2I −1xτ y

In other words, adding the penalty term for large coefficients translates
into adding a scalar multiple of the identity matrix to the covariance
matrix in the closed form solution to β .

If we now want to add another penalty term that represents a “coeffi‐
cients vary smoothly” prior, we can think of this as requiring that
adjacent coefficients should be not too different from each other, which
can be expressed in the following penalty function with a new param‐
eter μ as follows:
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F2 β = 1
N ∑

i
yi −xiβ 2 + ∑

j
λ2β j

2 + ∑
j

μ2 β j − β j+1
2

= 1
N y −xβ τ y −xβ + λ2βτ β+μ2 Iβ− Mβ τ Iβ− Mβ

where M is the matrix that contains zeros everywhere except on the
lower off-diagonals, where it contains 1’s. Then Mβ is the vector that
results from shifting the coefficients of β by one and replacing the last
coefficient by 0. The matrix M is called a shift operator and the differ‐
ence I − M can be thought of as a discrete derivative operator (see here
for more information on discrete calculus).

Because this is the most complicated version, let’s look at this in detail.
Remembering our vector calculus, the derivative of the scalar function
F2 β  with respect to the vector β is a vector, and satisfies a bunch of
the properties that happen at the scalar level, including the fact that
it’s both additive and linear and that:

∂uτ ·u
∂β = 2 ∂uτ

∂β u

Putting the preceding rules to use, we have:

∂F2 β
∂β = 1

N
∂ y −xβ τ y −xβ /

∂β + λ2 · ∂βτ β
∂β +μ2 · ∂ I − M β τ I − M β

∂β

= −2
N xτ y −xβ +2λ2 · β+2μ2 I − M τ I − M β

Setting this to 0 and solving for β gives us:

β2 = xτx + N · λ2I + N ·μ2 · I − M τ I − M −1xτ y

In other words, we have yet another matrix added to our covariance
matrix, which expresses our prior that coefficients vary smoothly. Note
that the symmetric matrix I − M τ I − M  has 1’s along its sub- and
super-diagonal, but also has 2’s along its diagonal. In other words, we
need to adjust our λ as we adjust our μ because there is an interaction
between these terms.
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Priors and Higher Derivatives
If you want to, you can add a prior about the second derivative
(or other higher derivatives) as well, by squaring the deriva‐
tive operator I − M  (or taking higher powers of it).

So what’s the model? Well, remember we will choose an exponential
downweighting term γ for our data, and we will keep a running esti‐
mate of both xτx and xτ y as was explained previously. The hyper‐
parameters of our model are then γ,  λ,  and μ. We usually have a sense
of how large γ should be based on the market, and the other two pa‐
rameters depend on each other and on the data itself. This is where it
becomes an art—you want to optimize to some extent on these choices,
without going overboard and overfitting.

Exercise: GetGlue and Timestamped Event
Data
GetGlue kindly provided a dataset for us to explore their data, which
contains timestamped events of users checking in and rating TV shows
and movies.

The raw data is on a per-user basis, from 2007 to 2012, and only shows
ratings and check-ins for TV shows and movies. It’s less than 3% of
their total data, and even so it’s big, namely 11 GB once it’s uncom‐
pressed.

Here’s some R code to look at the first 10 rows in R:

#
# author: Jared Lander
#
require(rjson)
require(plyr)

# the location of the data
dataPath <- "http://getglue-data.s3.amazonaws.com/
             getglue_sample.tar.gz"

# build a connection that can decompress the file
theCon <- gzcon(url(dataPath))

# read 10 lines of the data
n.rows <- 10
theLines <- readLines(theCon, n=n.rows)
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# check its structure
str(theLines)
# notice the first element is different than the rest
theLines[1]

# use fromJSON on each element of the vector, except the first
theRead <- lapply(theLines[-1], fromJSON)

# turn it all into a data.frame
theData <- ldply(theRead, as.data.frame)

# see how we did
View(theData)

Start with these steps:

1. Load in 1,000 rows of data and spend time looking at it with your
eyes. For this entire assignment, work with these 1,000 rows until
your code is in good shape. Then you can extend to 100,000 or 1
million rows.

2. Aggregate and count data. Find answers to the following
questions:

• How many unique actions can a user take? And how many ac‐
tions of each type are in this dataset?

• How many unique users are in this dataset?
• What are the 10 most popular movies?
• How many events in this dataset occurred in 2011?

3. Propose five new questions that you think are interesting and
worth investigating.

4. Investigate/answer your questions.
5. Visualize. Come up with one visualization that you think captures

something interesting about this dataset.

Exercise: Financial Data
Here’s an exercise to help you explore the concepts in this chapter:

1. Get the Data: Go to Yahoo! Finance and download daily data from
a stock that has at least eight years of data, making sure it goes
from earlier to later. If you don’t know how to do it, Google it.
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2. Create the time series of daily log returns of the stock price.
3. Just for comparison, do the same for volume data (i.e., create the

time series of daily log changes in volume).
4. Next, try to set up a linear regression model that uses the past two

returns to predict the next return. Run it and see if you can make
any money with it. Try it for both stock returns and volumes.
Bonus points if you: do a causal model, normalize for volatility
(standard deviation), or put in an exponential decay for old data.

5. Draw the cumulative P&L (forecast × realized) graphs and see if
they drift up.
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CHAPTER 7

Extracting Meaning from Data

How do companies extract meaning from the data they have?

In this chapter we hear from two people with very different approaches
to that question—namely, William Cukierski from Kaggle and David
Huffaker from Google.

William Cukierski
Will went to Cornell for a BA in physics and to Rutgers to get his PhD
in biomedical engineering. He focused on cancer research, studying
pathology images. While working on writing his dissertation, he got
more and more involved in Kaggle competitions (more about Kaggle
in a bit), finishing very near the top in multiple competitions, and now
works for Kaggle.

After giving us some background in data science competitions and
crowdsourcing, Will will explain how his company works for the par‐
ticipants in the platform as well as for the larger community.

Will will then focus on feature extraction and feature selection. Quickly,
feature extraction refers to taking the raw dump of data you have and
curating it more carefully, to avoid the “garbage in, garbage out” sce‐
nario you get if you just feed raw data into an algorithm without
enough forethought. Feature selection is the process of constructing
a subset of the data or functions of the data to be the predictors or
variables for your models and algorithms.
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Background: Data Science Competitions
There is a history in the machine learning community of data science
competitions—where individuals or teams compete over a period of
several weeks or months to design a prediction algorithm. What it
predicts depends on the particular dataset, but some examples include
whether or not a given person will get in a car crash, or like a particular
film. A training set is provided, an evaluation metric determined up
front, and some set of rules is provided about, for example, how often
competitors can submit their predictions, whether or not teams can
merge into larger teams, and so on.

Examples of machine learning competitions include the annual
Knowledge Discovery and Data Mining (KDD) competition, the one-
time million-dollar Netflix prize (a competition that lasted two years),
and, as we’ll learn a little later, Kaggle itself.

Some remarks about data science competitions are warranted. First,
data science competitions are part of the data science ecosystem—one
of the cultural forces at play in the current data science landscape, and
so aspiring data scientists ought to be aware of them.

Second, creating these competitions puts one in a position to codify
data science, or define its scope. By thinking about the challenges that
they’ve issued, it provides a set of examples for us to explore the central
question of this book: what is data science? This is not to say that we
will unquestionably accept such a definition, but we can at least use it
as a starting point: what attributes of the existing competitions capture
data science, and what aspects of data science are missing?

Finally, competitors in the the various competitions get ranked, and
so one metric of a “top” data scientist could be their standings in these
competitions. But notice that many top data scientists, especially
women, and including the authors of this book, don’t compete. In fact,
there are few women at the top, and we think this phenomenon needs
to be explicitly thought through when we expect top ranking to act as
a proxy for data science talent.
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Data Science Competitions Cut Out All the Messy Stuff
Competitions might be seen as formulaic, dry, and synthetic
compared to what you’ve encountered in normal life. Com‐
petitions cut out the messy stuff before you start building
models—asking good questions, collecting and cleaning the
data, etc.—as well as what happens once you have your mod‐
el, including visualization and communication. The team of
Kaggle data scientists actually spends a lot of time creating
the dataset and evaluation metrics, and figuring out what
questions to ask, so the question is: while they’re doing data
science, are the contestants?

Background: Crowdsourcing
There are two kinds of crowdsourcing models. First, we have the dis‐
tributive crowdsourcing model, like Wikipedia, which is for relatively
simplistic but large-scale contributions. On Wikipedia, the online en‐
cyclopedia, anyone in the world can contribute to the content, and
there is a system of regulation and quality control set up by volunteers.
The net effect is a fairly high-quality compendium of all of human
knowledge (more or less).

Then, there’s the singular, focused, difficult problems that Kaggle,
DARPA, InnoCentive, and other companies specialize in. These com‐
panies issue a challenge to the public, but generally only a set of people
with highly specialized skills compete. There is usually a cash prize,
and glory or the respect of your community, associated with winning.

Crowdsourcing projects have historically had a number of issues that
can impact their usefulness. A couple aspects impact the likelihood
that people will participate. First off, many lack an evaluation metric.
How do you decide who wins? In some cases, the evaluation method
isn’t always objective. There might be a subjective measure, where the
judges decide your design is bad or they just have different taste. This
leads to a high barrier to entry, because people don’t trust the evalua‐
tion criterion. Additionally, one doesn’t get recognition until after
they’ve won or at least ranked highly. This leads to high sunk costs for
the participants, which people know about in advance—this can be‐
come yet another barrier to entry.
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Organizational factors can also hinder success. A competition that is
not run well conflates participants with mechanical turks: in other
words, they assume the competitors to be somewhat mindless and give
bad questions and poor prizes. This precedent is just bad for everyone
in that it demoralizes data scientists and doesn’t help businesses answer
more essential questions that get the most from their data. Another
common problem is when the competitions don’t chunk the work into
bite-sized pieces. Either the question is too big to tackle or too small
to be interesting.

Learning from these mistakes, we expect a good competition to have
a feasible, interesting question, with an evaluation metric that is trans‐
parent and objective. The problem is given, the dataset is given, and
the metric of success is given. Moreover, the prizes are established up
front.

Let’s get a bit of historical context for crowdsourcing, since it is not a
new idea. Here are a few examples:

• In 1714, the British Royal Navy couldn’t measure longitude, and
put out a prize worth $6 million in today’s dollars to get help. John
Harrison, an unknown cabinetmaker, figured out how to make a
clock to solve the problem.

• In 2002, the TV network Fox issued a prize for the next pop solo
artist, which resulted in the television show American Idol, where
contestants compete in an elimination-round style singing com‐
petition.

• There’s also the X-prize company, which offers “incentivized prize
competitions…to bring about radical breakthroughs for the ben‐
efits of humanity, thereby inspiring the formation of new indus‐
tries and the revitalization of markets.” A total of $10 million was
offered for the Ansari X-prize, a space competition, and $100
million was invested by contestants trying to solve it. Note this
shows that it’s not always such an efficient process overall—but
on the other hand, it could very well be efficient for the people
offering the prize if it gets solved.
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Terminology: Crowdsourcing and Mechanical Turks
These are a couple of terms that have started creeping into the ver‐
nacular over the past few years.

Although crowdsourcing—the concept of using many people to solve
a problem independently—is not new, the term was only fairly re‐
cently coined in 2006. The basic idea is a that a challenge is issued and
contestants compete to find the best solution. The Wisdom of Crowds
was a book written by James Suriowiecki (Anchor, 2004) with the
central thesis that, on average, crowds of people will make better de‐
cisions than experts, a related phenomenon. It is only under certain
conditions (independence of the individuals rather than group-think
where a group of people talking to each other can influence each other
into wildly incorrect solutions), where groups of people can arrive at
the correct solution. And only certain problems are well-suited to this
approach.

Amazon Mechanical Turk is an online crowdsourcing service where
humans are given tasks. For example, there might be a set of images
that need to be labeled as “happy” or “sad.” These labels could then
be used as the basis of a training set for a supervised learning problem.
An algorithm could then be trained on these human-labeled images
to automatically label new images. So the central idea of Mechanical
Turk is to have humans do fairly routine tasks to help machines, with
the goal of the machines then automating tasks to help the humans!
Any researcher with a task they need automated can use Amazon
Mechanical Turk as long as they provide compensation for the hu‐
mans. And any human can sign up and be part of the crowdsourcing
service, although there are some quality control issues—if the re‐
searcher realizes the human is just labeling every other image as
“happy” and not actually looking at the images, then the human won’t
be used anymore for labeling.

Mechanical Turk is an example of artificial artificial intelligence (yes,
double up on the “artificial”), in that the humans are helping the ma‐
chines helping the humans.
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The Kaggle Model
Being a data scientist is when you learn more and more about more
and more, until you know nothing about everything.

— Will Cukierski

Kaggle is a company whose tagline is, “We’re making data science a
sport.” Kaggle forms relationships with companies and with data
scientists. For a fee, Kaggle hosts competitions for businesses that es‐
sentially want to crowdsource (or leverage the wider data science
community) to solve their data problems. Kaggle provides the infra‐
structure and attracts the data science talent.

They also have in house a bunch of top-notch data scientists, including
Will himself. The companies are their paying customers, and they
provide datasets and data problems that they want solved. Kaggle
crowdsources these problems with data scientists around the world.
Anyone can enter. Let’s first describe the Kaggle experience for a data
scientist and then discuss the customers.

A Single Contestant
In Kaggle competitions, you are given a training set, and also a test set
where the ys are hidden, but the xs are given, so you just use your
model to get your predicted xs for the test set and upload them into
the Kaggle system to see your evaluation score. This way you don’t
share your actual code with Kaggle unless you win the prize (and Kag‐
gle doesn’t have to worry about which version of Python you’re run‐
ning). Note that even giving out just the xs is real information—in
particular it tells you, for example, what sizes of xs your algorithm
should optimize for. Also for the purposes of the competition, there
is a third hold-out set that contestants never have access to. You don’t
see the xs or the ys—that is used to determine the competition winner
when the competition closes.

On Kaggle, the participants are encouraged to submit their models up
to five times a day during the competitions, which last a few weeks. As
contestants submit their predictions, the Kaggle leaderboard updates
immediately to display the contestant’s current evaluation metric on
the hold-out test set. With a sufficient number of competitors doing
this, we see a “leapfrogging” between them as shown in Figure 7-1,
where one ekes out a 5% advantage, giving others incentive to work

170 | Chapter 7: Extracting Meaning from Data

www.it-ebooks.info

http://www.it-ebooks.info/


harder. It also establishes a band of accuracy around a problem that
you generally don’t have—in other words, given no other information,
with nobody else working on the problem you’re working on, you don’t
know if your 75% accurate model is the best possible.

Figure 7-1. Chris Mulligan, a student in Rachel’s class, created this
leapfrogging visualization to capture the competition in real time as it
progressed throughout the semester

This leapfrogging effect is good and bad. It encourages people to
squeeze out better performing models, possibly at the risk of overfit‐
ting, but it also tends to make models much more complicated as they
get better. One reason you don’t want competitions lasting too long is
that, after a while, the only way to inch up performance is to make
things ridiculously complicated. For example, the original Netflix
Prize lasted two years and the final winning model was too compli‐
cated for them to actually put into production.
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Their Customers
So why would companies pay to work with Kaggle? The hole that
Kaggle is filling is the following: there’s a mismatch between those who
need analysis and those with skills. Even though companies desper‐
ately need analysis, they tend to hoard data; this is the biggest obstacle
for success for those companies that even host a Kaggle competition.
Many companies don’t host competitions at all, for similar reasons.
Kaggle’s innovation is that it convinces businesses to share proprietary
data with the benefit that their large data problems will be solved for
them by crowdsourcing Kaggle’s tens of thousands of data scientists
around the world.

Kaggle’s contests have produced some good results so far. Allstate, the
auto insurance company—which has a good actuarial team already—
challenged their data science competitors to improve their actuarial
model that, given attributes of drivers, approximates the probability
of a car crash. The 202 competitors improved Allstate’s model by 271%
under normalized Gini coefficient (see http://www.kaggle.com/solu
tions/casestudies/allstate for more). Another example includes a com‐
pany where the prize for competitors was $1,000, and it benefited the
company on the order of $100,000.

Is This Fair?
Is it fair to the data scientists already working at the companies that
engage with Kaggle? Some of them might lose their job, for example,
if the result of the competition is better than the internal model. Is it
fair to get people to basically work for free and ultimately benefit a
for-profit company? Does it result in data scientists losing their fair
market price? Kaggle charges a fee for hosting competitions, and it
offers well-defined prizes, so a given data scientist can always choose
to not compete. Is that enough?

This seems like it could be a great opportunity for companies, but
only while the data scientists of the world haven’t realized their value
and have extra time on their hands. As soon as they price their skills
better they might think twice about working for (almost) free, unless
it’s for a cause they actually believe in.

When Facebook was recently hiring data scientists, they hosted a Kag‐
gle competition, where the prize was an interview. There were 422
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competitors. We think it’s convenient for Facebook to have interview‐
ees for data science positions in such a posture of gratitude for the
mere interview. Cathy thinks this distracts data scientists from asking
hard questions about what the data policies are and the underlying
ethics of the company.

Kaggle’s Essay Scoring Competition
Part of the final exam for the Columbia class was an essay grading
contest. The students had to build it, train it, and test it, just like any
other Kaggle competition, and group work was encouraged. The de‐
tails of the essay contest are discussed below, and you access the data
at https://inclass.kaggle.com.

You are provided access to hand-scored essays so that you can build,
train, and test an automatic essay scoring engine. Your success de‐
pends upon how closely you can deliver scores to those of human
expert graders.

For this competition, there are five essay sets. Each of the sets of essays
was generated from a single prompt. Selected essays range from an
average length of 150 to 550 words per response. Some of the essays
are dependent upon source information and others are not. All re‐
sponses were written by students ranging in grade levels 7 to 10. All
essays were hand graded and were double-scored. Each of the datasets
has its own unique characteristics. The variability is intended to test
the limits of your scoring engine’s capabilities. The data has these
columns:
id

A unique identifier for each individual student essay set

1-5
An id for each set of essays

essay
The ascii text of a student’s response

rater1
Rater 1’s grade

rater2
Rater 2’s grade

grade
Resolved score between the raters
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Thought Experiment: What Are the Ethical
Implications of a Robo-Grader?
Will asked students to consider whether they would want their essays
automatically graded by an underlying computer algorithm, and what
the ethical implications of automated grading would be. Here are some
of their thoughts.
Human graders aren’t always fair.

In the case of doctors, there have been studies where a given doctor
is shown the same slide two months apart and gives different di‐
agnoses. We aren’t consistent ourselves, even if we think we are.
Let’s keep that in mind when we talk about the “fairness” of using
machine learning algorithms in tricky situations. Machine learn‐
ing has been used to research cancer, where the stakes are much
higher, although there’s probably less effort in gaming them.

Are machines making things more structured, and is this inhibiting
creativity?

Some might argue that people want things to be standardized. (It
also depends on how much you really care about your grade.) It
gives us a consistency that we like. People don’t want artistic cars,
for example; they want safe cars. Even so, is it wise to move from
the human to the machine version of same thing for any given
thing? Is there a universal answer or is it a case-by-case kind of
question?

Is the goal of a test to write a good essay or to do well in a standar‐
dized test?

If the latter, you may as well consider a test like a screening: you
follow the instructions, and you get a grade depending on how
well you follow instructions. Also, the real profit center for stand‐
ardized testing is, arguably, to sell books to tell you how to take
the tests. How does that translate here? One possible way it could
translate would be to have algorithms that game the grader algo‐
rithms, by building essays that are graded well but are not written
by hand. Then we could see education as turning into a war of
machines, between the algorithms the students have and the al‐
gorithms the teachers have. We’d probably bet on the students in
this war.
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Domain Expertise Versus Machine Learning Algorithms
This is a false dichotomy. It isn’t either/or. You need both to solve data
science problems. However, Kaggle’s president Jeremy Howard pissed
some domain experts off in a December 2012 New Scientist magazine
interview with Peter Aldhous, “Specialist Knowledge is Useless and
Unhelpful.” Here’s an excerpt:

PA: What separates the winners from the also-rans?

JH: The difference between the good participants and the bad is the
information they feed to the algorithms. You have to decide what to
abstract from the data. Winners of Kaggle competitions tend to be
curious and creative people. They come up with a dozen totally new
ways to think about the problem. The nice thing about algorithms
like the random forest is that you can chuck as many crazy ideas at
them as you like, and the algorithms figure out which ones work.

PA: That sounds very different from the traditional approach to
building predictive models. How have experts reacted?

JH: The messages are uncomfortable for a lot of people. It’s contro‐
versial because we’re telling them: “Your decades of specialist
knowledge are not only useless, they’re actually unhelpful; your so‐
phisticated techniques are worse than generic methods.” It’s difficult
for people who are used to that old type of science. They spend so
much time discussing whether an idea makes sense. They check the
visualizations and noodle over it. That is all actively unhelpful.

PA: Is there any role for expert knowledge?

JH: Some kinds of experts are required early on, for when you’re trying
to work out what problem you’re trying to solve. The expertise you
need is strategy expertise in answering these questions.

PA: Can you see any downsides to the data-driven, black-box ap‐
proach that dominates on Kaggle?

JH: Some people take the view that you don’t end up with a richer
understanding of the problem. But that’s just not true: The algorithms
tell you what’s important and what’s not. You might ask why those
things are important, but I think that’s less interesting. You end up
with a predictive model that works. There’s not too much to argue
about there.
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Feature Selection
The idea of feature selection is identifying the subset of data or trans‐
formed data that you want to put into your model.

Prior to working at Kaggle, Will placed highly in competitions (which
is how he got the job), so he knows firsthand what it takes to build
effective predictive models. Feature selection is not only useful for
winning competitions—it’s an important part of building statistical
models and algorithms in general. Just because you have data doesn’t
mean it all has to go into the model.

For example, it’s possible you have many redundancies or correlated
variables in your raw data, and so you don’t want to include all those
variables in your model. Similarly you might want to construct new
variables by transforming the variables with a logarithm, say, or turn‐
ing a continuous variable into a binary variable, before feeding them
into the model.

Terminology: Features, Explanatory Variables, Predictors
Different branches of academia use different terms to de‐
scribe the same thing. Statisticians say “explanatory vari‐
ables” or “dependent variables” or “predictors” when they’re
describing the subset of data that is the input to a model.
Computer scientists say “features.”

Feature extraction and selection are the most important but under‐
rated steps of machine learning. Better features are better than better
algorithms.

— Will Cukierski
We don’t have better algorithms, we just have more data.

—Peter Norvig
 Director of Research for
Google

Is it possible, Will muses, that Norvig really wanted to say we have
better features? You see, more data is sometimes just more data (ex‐
ample: I can record dice rolls until the cows come home, but after a
while I’m not getting any value add because my features will converge),
but for the more interesting problems that Google faces, the feature
landscape is complex/rich/nonlinear enough to benefit from collect‐
ing the data that supports those features.
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Why? We are getting bigger and bigger datasets, but that’s not always
helpful. If the number of features is larger than the number of obser‐
vations, or if we have a sparsity problem, then large isn’t necessarily
good. And if the huge data just makes it hard to manipulate because
of computational reasons (e.g., it can’t all fit on one computer, so the
data needs to be sharded across multiple machines) without improving
our signal, then that’s a net negative.

To improve the performance of your predictive models, you want to
improve your feature selection process.

Example: User Retention
Let’s give an example for you to keep in mind before we dig into some
possible methods. Suppose you have an app that you designed, let’s
call it Chasing Dragons (shown in Figure 7-2), and users pay a monthly
subscription fee to use it. The more users you have, the more money
you make. Suppose you realize that only 10% of new users ever come
back after the first month. So you have two options to increase your
revenue: find a way to increase the retention rate of existing users, or
acquire new users. Generally it costs less to keep an existing customer
around than to market and advertise to new users. But setting aside
that particular cost-benefit analysis of acquistion or retention, let’s
choose to focus on your user retention situation by building a model
that predicts whether or not a new user will come back next month
based on their behavior this month. You could build such a model in
order to understand your retention situation, but let’s focus instead on
building an algorithm that is highly accurate at predicting. You might
want to use this model to give a free month to users who you predict
need the extra incentive to stick around, for example.

A good, crude, simple model you could start out with would be logistic
regression, which you first saw back in Chapter 4. This would give you
the probability the user returns their second month conditional on
their activities in the first month. (There is a rich set of statistical lit‐
erature called Survival Analysis that could also work well, but that’s
not necessary in this case—the modeling part isn’t want we want to
focus on here, it’s the data.) You record each user’s behavior for the
first 30 days after sign-up. You could log every action the user took
with timestamps: user clicked the button that said “level 6” at 5:22 a.m.,
user slew a dragon at 5:23 a.m., user got 22 points at 5:24 a.m., user
was shown an ad for deodorant at 5:25 a.m. This would be the data
collection phase. Any action the user could take gets recorded.
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Figure 7-2. Chasing Dragons, the app designed by you

Notice that some users might have thousands of such actions, and
other users might have only a few. These would all be stored in time‐
stamped event logs. You’d then need to process these logs down to a
dataset with rows and columns, where each row was a user and each
column was a feature. At this point, you shouldn’t be selective; you’re
in the feature generation phase. So your data science team (game de‐
signers, software engineers, statisticians, and marketing folks) might
sit down and brainstorm features. Here are some examples:

• Number of days the user visited in the first month
• Amount of time until second visit
• Number of points on day j for j = 1, . . . ,30 (this would be 30 sep‐

arate features)
• Total number of points in first month (sum of the other features)
• Did user fill out Chasing Dragons profile (binary 1 or 0)
• Age and gender of user
• Screen size of device

Use your imagination and come up with as many features as possible.
Notice there are redundancies and correlations between these features;
that’s OK.
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Feature Generation or Feature Extraction
This process we just went through of brainstorming a list of features
for Chasing Dragons is the process of feature generation or feature
extraction. This process is as much of an art as a science. It’s good to
have a domain expert around for this process, but it’s also good to use
your imagination.

In today’s technology environment, we’re in a position where we can
generate tons of features through logging. Contrast this with other
contexts like surveys, for example—you’re lucky if you can get a sur‐
vey respondent to answer 20 questions, let alone hundreds.

But how many of these features are just noise? In this environment,
when you can capture a lot of data, not all of it might be actually useful
information.

Keep in mind that ultimately you’re limited in the features you have
access to in two ways: whether or not it’s possible to even capture the
information, and whether or not it even occurs to you at all to try to
capture it. You can think of information as falling into the following
buckets:
Relevant and useful, but it’s impossible to capture it.

You should keep in mind that there’s a lot of information that
you’re not capturing about users—how much free time do they
actually have? What other apps have they downloaded? Are they
unemployed? Do they suffer from insomnia? Do they have an
addictive personality? Do they have nightmares about dragons?
Some of this information might be more predictive of whether
or not they return next month. There’s not much you can do
about this, except that it’s possible that some of the data you are
able to capture serves as a proxy by being highly correlated with
these unobserved pieces of information: e.g., if they play the game
every night at 3 a.m., they might suffer from insomnia, or they
might work the night shift.

Relevant and useful, possible to log it, and you did.
Thankfully it occurred to you to log it during your brainstorming
session. It’s great that you chose to log it, but just because you
chose to log it doesn’t mean you know that it’s relevant or useful,
so that’s what you’d like your feature selection process to discover.
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Relevant and useful, possible to log it, but you didn’t.
It could be that you didn’t think to record whether users uploaded
a photo of themselves to their profile, and this action is highly
predictive of their likelihood to return. You’re human, so some‐
times you’ll end up leaving out really important stuff, but this
shows that your own imagination is a constraint in feature se‐
lection. One of the key ways to avoid missing useful features is
by doing usability studies (which will be discussed by David
Huffaker later on this chapter), to help you think through the
user experience and what aspects of it you’d like to capture.

Not relevant or useful, but you don’t know that and log it.
This is what feature selection is all about—you’ve logged it, but
you don’t actually need it and you’d like to be able to know that.

Not relevant or useful, and you either can’t capture it or it didn’t oc‐
cur to you.

That’s OK! It’s not taking up space, and you don’t need it.

So let’s get back to the logistic regression for your game retention pre‐
diction. Let ci = 1 if user i returns to use Chasing Dragons any time in
the subsequent month. Again this is crude—you could choose the
subsequent week or subsequent two months. It doesn’t matter. You just
first want to get a working model, and then you can refine it.

Ultimately you want your logistic regression to be of the form:

logit P ci = 1 xi = α+ βτ ·xi

So what should you do? Throw all the hundreds of features you created
into one big logistic regression? You could. It’s not a terrible thing to
do, but if you want to scale up or put this model into production, and
get the highest predictive power you can from the data, then let’s talk
about how you might refine this list of features.

Will found this famous paper by Isabelle Guyon published in 2003
entitled “An Introduction to Variable and Feature Selection” to be a
useful resource. The paper focuses mainly on constructing and se‐
lecting subsets of features that are useful to build a good predictor. This
contrasts with the problem of finding or ranking all potentially rele‐
vant variables. In it she studies three categories of feature selection
methods: filters, wrappers, and embedded methods. Keep the Chasing
Dragons prediction example in mind as you read on.
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Filters
Filters order possible features with respect to a ranking based on a
metric or statistic, such as correlation with the outcome variable. This
is sometimes good on a first pass over the space of features, because
they then take account of the predictive power of individual features.
However, the problem with filters is that you get correlated features.
In other words, the filter doesn’t care about redundancy. And by treat‐
ing the features as independent, you’re not taking into account possible
interactions.

This isn’t always bad and it isn’t always good, as Isabelle Guyon ex‐
plains. On the one hand, two redundant features can be more powerful
when they are both used; and on the other hand, something that ap‐
pears useless alone could actually help when combined with another
possibly useless-looking feature that an interaction would capture.

Here’s an example of a filter: for each feature, run a linear regression
with only that feature as a predictor. Each time, note either the p-value
or R-squared, and rank order according to the lowest p-value or high‐
est R-squared (more on these two in “Selection criterion” on page 182).

Wrappers
Wrapper feature selection tries to find subsets of features, of some fixed
size, that will do the trick. However, as anyone who has studied com‐
binations and permutations knows, the number of possible size k sub‐
sets of n things, called n

k , grows exponentially. So there’s a nasty
opportunity for overfitting by doing this.

There are two aspects to wrappers that you need to consider: 1) se‐
lecting an algorithm to use to select features and 2) deciding on a
selection criterion or filter to decide that your set of features is “good.”

Selecting an algorithm
Let’s first talk about a set of algorithms that fall under the category of
stepwise regression, a method for feature selection that involves select‐
ing features according to some selection criterion by either adding or
subtracting features to a regression model in a systematic way. There
are three primary methods of stepwise regression: forward selection,
backward elimination, and a combined approach (forward and
backward).
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Forward selection
In forward selection you start with a regression model with no
features, and gradually add one feature at a time according to
which feature improves the model the most based on a selection
criterion. This looks like this: build all possible regression models
with a single predictor. Pick the best. Now try all possible models
that include that best predictor and a second predictor. Pick the
best of those. You keep adding one feature at a time, and you stop
when your selection criterion no longer improves, but instead gets
worse.

Backward elimination
In backward elimination you start with a regression model that
includes all the features, and you gradually remove one feature at
a time according to the feature whose removal makes the biggest
improvement in the selection criterion. You stop removing fea‐
tures when removing the feature makes the selection criterion get
worse.

Combined approach
Most subset methods are capturing some flavor of minimum-
redundancy-maximum-relevance. So, for example, you could
have a greedy algorithm that starts with the best feature, takes a
few more highly ranked, removes the worst, and so on. This a
hybrid approach with a filter method.

Selection criterion
There are a number of selection criteria you could choose from. As a
data scientist you have to select which selection criterion to use. Yes!
You need a selection criterion to select the selection criterion.

Part of what we wish to impart to you is that in practice, despite the
theoretical properties of these various criteria, the choice you make is
somewhat arbitrary. One way to deal with this is to try different se‐
lection criteria and see how robust your choice of model is. Different
selection criterion might produce wildly different models, and it’s part
of your job to decide what to optimize for and why:
R-squared

Given by the formula R2 = 1−
∑i yi − yi

2

∑i yi − y 2 , it can be interpreted as the

proportion of variance explained by your model.
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p-values
In the context of regression where you’re trying to estimate coef‐
ficients (the βs), to think in terms of p-values, you make an as‐
sumption of there being a null hypothesis that the βs are zero. For
any given β, the p-value captures the probability of observing the
data that you observed, and obtaining the test-statistic (in this case
the estimated β) that you got under the null hypothesis. Specifi‐
cally, if you have a low p-value, it is highly unlikely that you would
observe such a test-statistic if the null hypothesis actually held.
This translates to meaning that (with some confidence) the coef‐
ficient is highly likely to be non-zero.

AIC (Akaike Infomation Criterion)
Given by the formula 2k −2ln L , where k is the number of pa‐
rameters in the model and ln L  is the “maximized value of the
log likelihood.” The goal is to minimize AIC.

BIC (Bayesian Information Criterion)
Given by the formula k* ln n −2ln L , where k is the number of
parameters in the model, n is the number of observations (data
points, or users), and ln L  is the maximized value of the log like‐
lihood. The goal is to minimize BIC.

Entropy
This will be discussed more in “Embedded Methods: Decision
Trees” on page 184.

In practice
As mentioned, stepwise regression is exploring a large space of all
possible models, and so there is the danger of overfitting—it will often
fit much better in-sample than it does on new out-of-sample data.

You don’t have to retrain models at each step of these approaches,
because there are fancy ways to see how your objective function (aka
selection criterion) changes as you change the subset of features you
are trying out. These are called “finite differences” and rely essentially
on Taylor Series expansions of the objective function.

One last word: if you have a domain expert on hand, don’t go into the
machine learning rabbit hole of feature selection unless you’ve tapped
into your expert completely!
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Embedded Methods: Decision Trees
Decision trees have an intuitive appeal because outside the context of
data science in our every day lives, we can think of breaking big
decisions down into a series of questions. See the decision tree in
Figure 7-3 about a college student facing the very important decision
of how to spend their time.

Figure 7-3. Decision tree for college student, aka the party tree (taken
with permission from Stephen Marsland’s book, Machine Learning:
An Algorithmic Perspective [Chapman and Hall/CRC])

This decision is actually dependent on a bunch of factors: whether or
not there are any parties or deadlines, how lazy the student is feeling,
and what they care about most (parties). The interpretability of deci‐
sion trees is one of the best features about them.

In the context of a data problem, a decision tree is a classification
algorithm. For the Chasing Dragons example, you want to classify
users as “Yes, going to come back next month” or “No, not going to
come back next month.” This isn’t really a decision in the colloquial
sense, so don’t let that throw you. You know that the class of any given
user is dependent on many factors (number of dragons the user slew,
their age, how many hours they already played the game). And you
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want to break it down based on the data you’ve collected. But how do
you construct decision trees from data and what mathematical prop‐
erties can you expect them to have?

Ultimately you want a tree that is something like Figure 7-4.

Figure 7-4. Decision tree for Chasing Dragons

But you want this tree to be based on data and not just what you feel
like. Choosing a feature to pick at each step is like playing the game 20
Questions really well. You take whatever the most informative thing is
first. Let’s formalize that—we need a notion of “informative.”

For the sake of this discussion, assume we break compound questions
into multiple yes-or-no questions, and we denote the answers by “0”
or “1.” Given a random variable X,  we denote by p X = 1  and p X = 0
the probability that X is true or false, respectively.
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Entropy
To quantify what is the most “informative” feature, we define entro‐
py–effectively a measure for how mixed up something is—for X as
follows:

H X = − p X = 1 log2 p X = 1 − p X = 0 log2 p X = 0

Note when p X = 1 = 0 or p X = 0 = 0, the entropy vanishes, consis‐
tent with the fact that:

lim t 0 t · log t = 0

In particular, if either option has probability zero, the entropy is 0.
Moreover, because p X = 1 = 1− p X = 0 , the entropy is symmetric
about 0.5 and maximized at 0.5, which we can easily confirm using a
bit of calculus. Figure 7-5 shows a picture of that.

Figure 7-5. Entropy

Mathematically, we kind of get this. But what does it mean in words,
and why are we calling it entropy? Earlier, we said that entropy is a
measurement of how mixed up something is.

So, for example, if X denotes the event of a baby being born a boy, we’d
expect it to be true or false with probability close to 1/2, which corre‐
sponds to high entropy, i.e., the bag of babies from which we are se‐
lecting a baby is highly mixed.
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But if X denotes the event of a rainfall in a desert, then it’s low entropy.
In other words, the bag of day-long weather events is not highly mixed
in deserts.

Using this concept of entropy, we will be thinking of X as the target of
our model. So, X could be the event that someone buys something on
our site. We’d like to know which attribute of the user will tell us the
most information about this event X. We will define the information
gain, denoted IG X,a , for a given attribute a, as the entropy we lose
if we know the value of that attribute:

IG X,a = H X −H X a

To compute this we need to define H X a . We can do this in two steps.
For any actual value a0 of the attribute a we can compute the specific
conditional entropy H X a = a0  as you might expect:

H X a = a0 = − p X = 1 a = a0 log2 p X = 1 a = a0 −

p X = 0 a = a0 log2 p X = 0 a = a0

and then we can put it all together, for all possible values of a, to get
the conditional entropy H X a :

H X a = ∑ai p a = ai ·H X a = ai

In words, the conditional entropy asks: how mixed is our bag really if
we know the value of attribute a? And then information gain can be
described as: how much information do we learn about X (or how
much entropy do we lose) once we know a?

Going back to how we use the concept of entropy to build decision
trees: it helps us decide what feature to split our tree on, or in other
words, what’s the most informative question to ask?

The Decision Tree Algorithm
You build your decision tree iteratively, starting at the root. You need
an algorithm to decide which attribute to split on; e.g., which node
should be the next one to identify. You choose that attribute in order
to maximize information gain, because you’re getting the most bang
for your buck that way. You keep going until all the points at the end
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are in the same class or you end up with no features left. In this case,
you take the majority vote.

Often people “prune the tree” afterwards to avoid overfitting. This just
means cutting it off below a certain depth. After all, by design, the
algorithm gets weaker and weaker as you build the tree, and it’s well
known that if you build the entire tree, it’s often less accurate (with
new data) than if you prune it.

This is an example of an embedded feature selection algorithm. (Why
embedded?) You don’t need to use a filter here because the information
gain method is doing your feature selection for you.

Suppose you have your Chasing Dragons dataset. Your outcome vari‐
able is Return: a binary variable that captures whether or not the user
returns next month, and you have tons of predictors. You can use the
R library rpart and the function rpart, and the code would look like
this:

# Classification Tree with rpart
library(rpart)

# grow tree
model1 <- rpart(Return ~ profile + num_dragons +
num_friends_invited + gender + age +
num_days, method="class", data=chasingdragons)

printcp(model1) # display the results
plotcp(model1) # visualize cross-validation results
summary(model1) # detailed summary of thresholds picked to 
transform to binary

# plot tree
plot(model1, uniform=TRUE,
       main="Classification Tree for Chasing Dragons")
text(model1, use.n=TRUE, all=TRUE, cex=.8)

Handling Continuous Variables in Decision Trees
Packages that already implement decision trees can handle continuous
variables for you. So you can provide continuous features, and it will
determine an optimal threshold for turning the continuous variable
into a binary predictor. But if you are building a decision tree algorithm
yourself, then in the case of continuous variables, you need to deter‐
mine the correct threshold of a value so that it can be thought of as a
binary variable. So you could partition a user’s number of dragon slays
into “less than 10” and “at least 10,” and you’d be getting back to the
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binary variable case. In this case, it takes some extra work to decide
on the information gain because it depends on the threshold as well
as the feature.

In fact, you could think of the decision of where the threshold should
live as a separate submodel. It’s possible to optimize to this choice by
maximizing the entropy on individual attributes, but that’s not clearly
the best way to deal with continuous variables. Indeed, this kind of
question can be as complicated as feature selection itself—instead of
a single threshold, you might want to create bins of the value of your
attribute, for example. What to do? It will always depend on the
situation.

Surviving the Titanic
For fun, Will pointed us to this decision tree for surviving on the
Titanic on the BigML website. The original data is from the Encyclo‐
pedia Titanica–source code and data are available there. Figure 7-6
provides just a snapshot of it, but if you go to the site, it is interactive.

Figure 7-6. Surviving the Titanic
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Random Forests
Let’s turn to another algorithm for feature selection. Random forests
generalize decision trees with bagging, otherwise known as bootstrap
aggregating. We will explain bagging in more detail later, but the effect
of using it is to make your models more accurate and more robust, but
at the cost of interpretability—random forests are notoriously difficult
to understand. They’re conversely easy to specify, with two hyper‐
parameters: you just need to specify the number of trees you want in
your forest, say N, as well as the number of features to randomly select
for each tree, say F.

Before we get into the weeds of the random forest algorithm, let’s re‐
view bootstrapping. A bootstrap sample is a sample with replacement,
which means we might sample the same data point more than once.
We usually take to the sample size to be 80% of the size of the entire
(training) dataset, but of course this parameter can be adjusted de‐
pending on circumstances. This is technically a third hyperparameter
of our random forest algorithm.

Now to the algorithm. To construct a random forest, you construct N
decision trees as follows:

1. For each tree, take a bootstrap sample of your data, and for each
node you randomly select F features, say 5 out of the 100 total
features.

2. Then you use your entropy-information-gain engine as described
in the previous section to decide which among those features you
will split your tree on at each stage.

Note that you could decide beforehand how deep the tree should get,
or you could prune your trees after the fact, but you typically don’t
prune the trees in random forests, because a great feature of random
forests is that they can incorporate idiosyncratic noise.

The code for this would look like:

# Author: Jared Lander
#
# we will be using the diamonds data from ggplot
require(ggplot2)

# load and view the diamonds data
data(diamonds)
head(diamonds)
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# plot a histogram with a line marking $12,000
ggplot(diamonds) + geom_histogram(aes(x=price)) +
geom_vline(xintercept=12000)

# build a TRUE/FALSE variable indicating if the price is above 
our threshold
diamonds$Expensive <- ifelse(diamonds$price >= 12000, 1, 0)
head(diamonds)

# get rid of the price column
diamonds$price <- NULL

## glmnet
require(glmnet)
# build the predictor matrix, we are leaving out the last
column which is our response
x <- model.matrix(~., diamonds[, -ncol(diamonds)])
# build the response vector
y <- as.matrix(diamonds$Expensive)
# run the glmnet
system.time(modGlmnet <- glmnet(x=x, y=y, family="binomial"))
# plot the coefficient path
plot(modGlmnet, label=TRUE)

# this illustrates that setting a seed allows you to recreate 
random results, run them both a few times
set.seed(48872)
sample(1:10)

## decision tree
require(rpart)
# fir a simple decision tree
modTree <- rpart(Expensive ~ ., data=diamonds)
# plot the splits
plot(modTree)
text(modTree)

## bagging (or bootstrap aggregating)
require(boot)
mean(diamonds$carat)
sd(diamonds$carat)
# function for bootstrapping the mean
boot.mean <- function(x, i)
{
    mean(x[i])
}
# allows us to find the variability of the mean
boot(data=diamonds$carat, statistic=boot.mean, R=120)
require(adabag)
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modBag <- bagging(formula=Species ~ ., iris, mfinal=10)

## boosting
require(mboost)
system.time(modglmBoost <- glmboost(as.factor(Expensive) ~ .,
            data=diamonds, family=Binomial(link="logit")))
summary(modglmBoost)
?blackboost

## random forests
require(randomForest)
system.time(modForest <- randomForest(Species ~ ., data=iris,
            importance=TRUE, proximity=TRUE))

Criticisms of Feature Selection
Let’s address a common criticism of feature selection. Namely, it’s no
better than data dredging. If we just take whatever answer we get that
correlates with our target, however far afield it is, then we could end
up thinking that Bangladeshi butter production predicts the S&P.
Generally we’d like to first curate the candidate features at least to
some extent. Of course, the more observations we have, the less we
need to be concerned with spurious signals.

There’s a well-known bias-variance tradeoff: a model is “high bias” if
it’s is too simple (the features aren’t encoding enough information).
In this case, lots more data doesn’t improve our model. On the other
hand, if our model is too complicated, then “high variance” leads to
overfitting. In this case we want to reduce the number of features we
are using.

User Retention: Interpretability Versus Predictive
Power
So let’s say you built the decision tree, and that it predicts quite well.
But should you interpret it? Can you try to find meaning in it?

It could be that it basically tells you “the more the user plays in the first
month, the more likely the user is to come back next month,” which
is kind of useless, and this kind of thing happens when you’re doing
analysis. It feels circular–of course the more they like the app now, the
more likely they are to come back. But it could also be that it tells you
that showing them ads in the first five minutes decreases their chances
of coming back, but it’s OK to show ads after the first hour, and this

192 | Chapter 7: Extracting Meaning from Data

www.it-ebooks.info

http://nerdsonwallstreet.typepad.com/my_weblog/files/dataminejune_2000.pdf
http://en.wikipedia.org/wiki/Supervised_learning#Bias-variance_tradeoff
http://www.it-ebooks.info/


would give you some insight: don’t show ads in the first five minutes!
Now to study this more, you really would want to do some A/B testing
(see Chapter 11), but this initial model and feature selection would
help you prioritize the types of tests you might want to run.

It’s also worth noting that features that have to do with the user’s be‐
havior (user played 10 times this month) are qualitatively different
than features that have to do with your behavior (you showed 10 ads,
and you changed the dragon to be red instead of green). There’s a
causation/correlation issue here. If there’s a correlation of getting a
high number of points in the first month with returning to play next
month, does that mean if you just give users a high number of points
this month without them playing at all, they’ll come back? No! It’s not
the number of points that caused them to come back, it’s that they’re
really into playing the game (a confounding factor), which correlates
with both their coming back and their getting a high number of points.
You therefore would want to do feature selection with all variables, but
then focus on the ones you can do something about (e.g., show fewer
ads) conditional on user attributes.

David Huffaker: Google’s Hybrid Approach to
Social Research
David’s focus is on the effective marriages of both qualitative and
quantitative research, and of big and little data. Large amounts of big
quantitative data can be more effectively extracted if you take the time
to think on a small scale carefully first, and then leverage what you
learned on the small scale to the larger scale. And vice versa, you might
find patterns in the large dataset that you want to investigate by digging
in deeper by doing intensive usability studies with a handful of people,
to add more color to the phenomenon you are seeing, or verify inter‐
pretations by connecting your exploratory data analysis on the large
dataset with relevant academic literature.

David was one of Rachel’s colleagues at Google. They had a successful
collaboration—starting with complementary skill sets, an explosion
of goodness ensued when they were put together to work on Google+
(Google’s social layer) with a bunch of other people, especially software
engineers and computer scientists. David brings a social scientist per‐
spective to the analysis of social networks. He’s strong in quantitative
methods for understanding and analyzing online social behavior. He
got a PhD in media, technology, and society from Northwestern
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University. David spoke about Google’s approach to social research to
encourage the class to think in ways that connect the qualitative to the
quantitative, and the small-scale to the large-scale.

Google does a good job of putting people together. They blur the lines
between research and development. They even wrote about it in this
July 2012 position paper: Google’s Hybrid Approach to Research.
Their researchers are embedded on product teams. The work is iter‐
ative, and the engineers on the team strive to have near-production
code from day 1 of a project. They leverage engineering infrastructure
to deploy experiments to their mass user base and to rapidly deploy a
prototype at scale. Considering the scale of Google’s user base, redesign
as they scale up is not a viable option. They instead do experiments
with smaller groups of users.

Moving from Descriptive to Predictive
David suggested that as data scientists, we consider how to move into
an experimental design so as to move to a causal claim between vari‐
ables rather than a descriptive relationship. In other words, our goal
is to move from the descriptive to the predictive.

As an example, he talked about the genesis of the “circle of friends”
feature of Google+. Google knows people want to selectively share;
users might send pictures to their family, whereas they’d probably be
more likely to send inside jokes to their friends. Google came up with
the idea of circles, but it wasn’t clear if people would use them. How
can Google answer the question of whether people will use circles to
organize their social network? It’s important to know what motivates
users when they decide to share.

Google took a mixed-method approach, which means they used mul‐
tiple methods to triangulate on findings and insights. Some of their
methods were small and qualitative, some of them larger and quanti‐
tative.

Given a random sample of 100,000 users, they set out to determine the
popular names and categories of names given to circles. They identi‐
fied 168 active users who filled out surveys and they had longer in‐
terviews with 12. The depth of these interviews was weighed against
selection bias inherent in finding people that are willing to be inter‐
viewed.
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They found that the majority were engaging in selective sharing, that
most people used circles, and that the circle names were most often
work-related or school-related, and that they had elements of a strong-
link (“epic bros”) or a weak-link (“acquaintances from PTA”).

They asked the survey participants why they share content. The an‐
swers primarily came in three categories. First, the desire to share
about oneself: personal experiences, opinions, etc. Second, discourse:
people want to participate in a conversation. Third, evangelism: people
like to spread information.

Next they asked participants why they choose their audiences. Again,
three categories: first, privacy—many people were public or private by
default. Second, relevance: they wanted to share only with those who
may be interested, and they don’t want to pollute other people’s data
stream. Third, distribution: some people just want to maximize their
potential audience.

The takeaway from this study was that people do enjoy selectively
sharing content, depending on context and the audience. So Google
has to think about designing features for the product around content,
context, and audience. They want to not just keep these findings in
mind for design, but also when they do data science at scale.

Thought Experiment: Large-Scale Network Analysis
We’ll dig more into network analysis in Chapter 10 with John Kelly.
But for now, think about how you might take the findings from the
Google+ usability studies and explore selectively sharing content on
a massive scale using data. You can use large data and look at con‐
nections between actors like a graph. For Google+, the users are the
nodes and the edges (directed) are “in the same circle.” Think about
what data you would want to log, and then how you might test some
of the hypotheses generated from speaking with the small group of
engaged users.

As data scientists, it can be helpful to think of different structures and
representations of data, and once you start thinking in terms of net‐
works, you can see them everywhere.
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Other examples of networks:

• The nodes are users in Second Life, and the edges correspond to
interactions between users. Note there is more than one possible
way for players to interact in this game, leading to potentially
different kinds of edges.

• The nodes are websites, the (directed) edges are links.
• Nodes are theorems, directed edges are dependencies.

Social at Google
As you may have noticed, “social” is a layer across all of Google. Search
now incorporates this layer: if you search for something you might see
that your friend “+1”ed it. This is called a social annotation. It turns
out that people care more about annotation when it comes from
someone with domain expertise rather than someone you’re very close
to. So you might care more about the opinion of a wine expert at work
than the opinion of your mom when it comes to purchasing wine.

Note that sounds obvious but if you started the other way around,
asking who you’d trust, you might start with your mom. In other
words, “close ties”–even if you can determine those—are not the best
feature to rank annotations. But that begs the question, what is? Typ‐
ically in a situation like this, data scientists might use click-through
rate, or how long it takes to click.

In general you need to always keep in mind a quantitative metric of
success. This defines success for you, so you have to be careful.

Privacy
Human-facing technology has thorny issues of privacy, which makes
stuff hard. Google conducted a survey of how people felt uneasy about
content. They asked, how does it affect your engagement? What is the
nature of your privacy concerns?

Turns out there’s a strong correlation between privacy concern and
low engagement, which isn’t surprising. It’s also related to how well
you understand what information is being shared, and the question
of when you post something, where it goes, and how much control
you have over it. When you are confronted with a huge pile of com‐
plicated settings, you tend to start feeling passive.
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The survey results found broad categories of concern as follows:
Identity theft

• Financial loss

Digital world
• Access to personal data
• Really private stuff I searched on
• Unwanted spam
• Provocative photo (oh *&!$ my boss saw that)
• Unwanted solicitation
• Unwanted ad targeting

Physical world
• Offline threats/harassment
• Harm to my family
• Stalkers
• Employment risks

Thought Experiment: What Is the Best Way to Decrease
Concern and Increase Understanding and Control?
So given users’ understandable concerns about privacy, students in
Rachel’s class brainstormed some potential solutions that Google
could implement (or that anyone dealing with user-level data could
consider).

Possibilities:

• You could write and post a manifesto of your data policy. Google
tried that, but it turns out nobody likes to read manifestos.

• You could educate users on your policies a la the Netflix feature
“because you liked this, we think you might like this.” But it’s not
always so easy to explain things in complicated models.

• You could simply get rid of all stored data after a year. But you’d
still need to explain that you do that.

Maybe we could rephrase the question: how do you design privacy
settings to make it easier for people? In particular, how do you make
it transparent? Here are some ideas along those lines:
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• Make a picture or graph of where data is going.
• Give people a privacy switchboard.
• Provide access to quick settings.
• Make the settings you show people categorized by “things you

don’t have a choice about” versus “things you do” for the sake of
clarity.

• Best of all, you could make reasonable default setting so people
don’t have to worry about it.

David left us with these words of wisdom: as you move forward and
have access to Big Data, you really should complement them with
qualitative approaches. Use mixed methods to come to a better un‐
derstanding of what’s going on. Qualitative surveys can really help.
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CHAPTER 8

Recommendation Engines:
Building a User-Facing Data

Product at Scale

Recommendation engines, also called recommendation systems, are
the quintessential data product and are a good starting point when
you’re explaining to non–data scientists what you do or what data sci‐
ence really is. This is because many people have interacted with rec‐
ommendation systems when they’ve been suggested books on Ama‐
zon.com or gotten recommended movies on Netflix. Beyond that,
however, they likely have not thought much about the engineering and
algorithms underlying those recommendations, nor the fact that their
behavior when they buy a book or rate a movie is generating data that
then feeds back into the recommendation engine and leads to (hope‐
fully) improved recommendations for themselves and other people.

Aside from being a clear example of a product that literally uses data
as its fuel, another reason we call recommendation systems
“quintessential” is that building a solid recommendation system end-
to-end requires an understanding of linear algebra and an ability to
code; it also illustrates the challenges that Big Data poses when dealing
with a problem that makes intuitive sense, but that can get complicated
when implementing its solution at scale.

In this chapter, Matt Gattis walks us through what it took for him to
build a recommendation system for Hunch.com—including why he
made certain decisions, and how he thought about trade-offs between
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various algorithms when building a large-scale engineering system
and infrastructure that powers a user-facing product.

Matt graduated from MIT in CS, worked at SiteAdvisor, and co-
founded Hunch as its CTO. Hunch is a website that gives you recom‐
mendations of any kind. When they started out, it worked like this:
they’d ask people a bunch of questions (people seem to love answering
questions), and then someone could ask the engine questions like,
“What cell phone should I buy?” or, “Where should I go on a trip?”
and it would give them advice. They use machine learning to give
better and better advice. Matt’s role there was doing the R&D for the
underlying recommendation engine.

At first, they focused on trying to make the questions as fun as possible.
Then, of course, they saw things needing to be asked that would be
extremely informative as well, so they added those. Then they found
that they could ask merely 20 questions and then predict the rest of
them with 80% accuracy. They were questions that you might imagine
and some that are surprising, like whether people were competitive
versus uncompetitive, introverted versus extroverted, thinking versus
perceiving, etc.—not unlike MBTI.

Eventually Hunch expanded into more of an API model where they
crawl the Web for data rather than asking people direct questions. The
service can also be used by third parties to personalize content for a
given site—a nice business proposition that led to eBay acquiring
Hunch.com.

Matt has been building code since he was a kid, so he considers soft‐
ware engineering to be his strong suit. Hunch requires cross-domain
experience so he doesn’t consider himself a domain expert in any fo‐
cused way, except for recommendation systems themselves.

The best quote Matt gave us was this: “Forming a data team is kind of
like planning a heist.” He means that you need people with all sorts of
skills, and that one person probably can’t do everything by herself.
(Think Ocean’s Eleven, but sexier.)

A Real-World Recommendation Engine
Recommendation engines are used all the time—what movie would
you like, knowing other movies you liked? What book would you like,
keeping in mind past purchases? What kind of vacation are you likely
to embark on, considering past trips?
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There are plenty of different ways to go about building such a model,
but they have very similar feels if not implementation. We’re going to
show you how to do one relatively simple but compete version in this
chapter.

To set up a recommendation engine, suppose you have users, which
form a set U ; and you have items to recommend, which form a set
V . As Kyle Teague told us in Chapter 6, you can denote this as a bi‐
partite graph (shown again in Figure 8-1) if each user and each item
has a node to represent it—there are lines from a user to an item if that
user has expressed an opinion about that item. Note they might not
always love that item, so the edges could have weights: they could be
positive, negative, or on a continuous scale (or discontinuous, but
many-valued like a star system). The implications of this choice can
be heavy but we won’t delve too deep here—for us they are numeric
ratings.

Figure 8-1. Bipartite graph with users and items (television shows) as
nodes

Next up, you have training data in the form of some preferences—you
know some of the opinions of some of the users on some of the items.
From those training data, you want to predict other preferences for
your users. That’s essentially the output for a recommendation engine.

You may also have metadata on users (i.e., they are male or female,
etc.) or on items (the color of the product). For example, users come
to your website and set up accounts, so you may know each user’s
gender, age, and preferences for up to three items.
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You represent a given user as a vector of features, sometimes including
only metadata—sometimes including only preferences (which would
lead to a sparse vector because you don’t know all the user’s opinions)
—and sometimes including both, depending on what you’re doing
with the vector. Also, you can sometimes bundle all the user vectors 
together to get a big user matrix, which we call U , through abuse of
notation.

Nearest Neighbor Algorithm Review
Let’s review the nearest neighbor algorithm (discussed in Chapter 3):
if you want to predict whether user A likes something, you look at a
user B closest to user A who has an opinion, then you assume A’s opin‐
ion is the same as B’s. In other words, once you’ve identified a similar
user, you’d then find something that user A hadn’t rated (which you’d
assume meant he hadn’t ever seen that movie or bought that item), but
that user B had rated and liked and use that as your recommendation
for user A.

As discussed in Chapter 3, to implement this you need a metric so you
can measure distance. One example when the opinions are binary:
Jaccard distance, i.e., 1–(the number of things they both like divided
by the number of things either of them likes). Other examples include
cosine similarity or Euclidean distance.

Which Metric Is Best?
You might get a different answer depending on which metric
you choose. But that’s a good thing. Try out lots of different
distance functions and see how your results change and think
about why.

Some Problems with Nearest Neighbors
So you could use nearest neighbors; it makes some intuitive sense that
you’d want to recommend items to people by finding similar people
and using those people’s opinions to generate ideas and recommen‐
dations. But there are a number of problems nearest neighbors poses.
Let’s go through them:
Curse of dimensionality

There are too many dimensions, so the closest neighbors are too
far away from each other to realistically be considered “close.”
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Overfitting
Overfitting is also a problem. So one guy is closest, but that could
be pure noise. How do you adjust for that? One idea is to use k-
NN, with, say, k=5 rather than k=1, which increases the noise.

Correlated features
There are tons of features, moreover, that are highly correlated
with each other. For example, you might imagine that as you get
older you become more conservative. But then counting both age
and politics would mean you’re double counting a single feature
in some sense. This would lead to bad performance, because you’re
using redundant information and essentially placing double the
weight on some variables. It’s preferable to build in an under‐
standing of the correlation and project onto smaller dimensional
space.

Relative importance of features
Some features are more informative than others. Weighting fea‐
tures may therefore be helpful: maybe your age has nothing to do
with your preference for item 1. You’d probably use something
like covariances to choose your weights.

Sparseness
If your vector (or matrix, if you put together the vectors) is too
sparse, or you have lots of missing data, then most things are un‐
known, and the Jaccard distance means nothing because there’s
no overlap.

Measurement errors
There’s measurement error (also called reporting error): people
may lie.

Computational complexity
There’s a calculation cost—computational complexity.

Sensitivity of distance metrics
Euclidean distance also has a scaling problem: distances in age
outweigh distances for other features if they’re reported as 0 (for
don’t like) or 1 (for like). Essentially this means that raw euclidean
distance doesn’t make much sense. Also, old and young people
might think one thing but middle-aged people something else. We
seem to be assuming a linear relationship, but it may not exist.
Should you be binning by age group instead, for example?
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Preferences change over time
User preferences may also change over time, which falls outside
the model. For example, at eBay, they might be buying a printer,
which makes them only want ink for a short time.

Cost to update
It’s also expensive to update the model as you add more data.

The biggest issues are the first two on the list, namely overfitting and
the curse of dimensionality problem. How should you deal with them?
Let’s think back to a method you’re already familiar with—linear re‐
gression—and build up from there.

Beyond Nearest Neighbor: Machine Learning
Classification
We’ll first walk through a simplification of the actual machine learning
algorithm for this—namely we’ll build a separate linear regression
model for each item. With each model, we could then predict for a
given user, knowing their attributes, whether they would like the item
corresponding to that model. So one model might be for predicting
whether you like Mad Men and another model might be for predicting
whether you would like Bob Dylan.

Denote by f i, j user i’s stated preference for item j if you have it (or
user i’s attribute, if item j is a metadata item like age or is_logged_in).
This is a subtle point but can get a bit confusing if you don’t internalize
this: you are treating metadata here also as if it’s an “item.” We men‐
tioned this before, but it’s OK if you didn’t get it—hopefully it will click
more now. When we said we could predict what you might like, we’re
also saying we could use this to predict your attribute; i.e., if we didn’t
know if you were a male/female because that was missing data or we
had never asked you, we might be able to predict that.

To let this idea settle even more, assume we have three numeric at‐
tributes for each user, so we have f i,1, f i,2,  and f i,3 .  Then to guess user
i’s preference on a new item (we temporarily denote this estimate by
pi) we can look for the best choice of βk so that:

pi = β1 f 1,i + β2 f 2,i + β3 f 3,i +ϵ
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The good news: You know how to estimate the coefficients by linear
algebra, optimization, and statistical inference: specifically, linear
regression.

The bad news: This model only works for one item, and to be complete,
you’d need to build as many models as you have items. Moreover,
you’re not using other items’ information at all to create the model for
a given item, so you’re not leveraging other pieces of information.

But wait, there’s more good news: This solves the “weighting of the
features” problem we discussed earlier, because linear regression co‐
efficients are weights.

Crap, more bad news: overfitting is still a problem, and it comes in the
form of having huge coefficients when you don’t have enough data
(i.e., not enough opinions on given items).

Let’s make more rigorous the preceding argument that huge
coefficients imply overfitting, or maybe even just a bad mod‐
el. For example, if two of your variables are exactly the same,
or are nearly the same, then the coefficients on one can be
100,000 and the other can be –100,000 and really they add
nothing to the model. In general you should always have
some prior on what a reasonable size would be for your co‐
efficients, which you do by normalizing all of your variables
and imagining what an “important” effect would translate to
in terms of size of coefficients—anything much larger than
that (in an absolute value) would be suspect.

To solve the overfitting problem, you impose a Bayesian prior that
these weights shouldn’t be too far out of whack—this is done by adding
a penalty term for large coefficients. In fact, this ends up being equiv‐
alent to adding a prior matrix to the covariance matrix. That solution
depends on a single parameter, which is traditionally called λ .

But that begs the question: how do you choose λ? You could do it
experimentally: use some data as your training set, evaluate how well
you did using particular values of λ, and adjust. That’s kind of what
happens in real life, although note that it’s not exactly consistent with
the idea of estimating what a reasonable size would be for your coef‐
ficient.

A Real-World Recommendation Engine | 205

www.it-ebooks.info

http://mathbabe.org/2013/02/24/the-overburdened-prior/
http://mathbabe.org/2013/02/24/the-overburdened-prior/
http://www.it-ebooks.info/


You can’t use this penalty term for large coefficients and as‐
sume the “weighting of the features” problem is still solved,
because in fact you’d be penalizing some coefficients way
more than others if they start out on different scales. The
easiest way to get around this is to normalize your variables
before entering them into the model, similar to how we did
it in Chapter 6. If you have some reason to think certain
variables should have larger coefficients, then you can nor‐
malize different variables with different means and variances.
At the end of the day, the way you normalize is again equiv‐
alent to imposing a prior.

A final problem with this prior stuff: although the problem will have
a unique solution (as in the penalty will have a unique minimum) if
you make λ large enough, by that time you may not be solving the
problem you care about. Think about it: if you make λ absolutely huge,
then the coefficients will all go to zero and you’ll have no model at all.

The Dimensionality Problem
OK, so we’ve tackled the overfitting problem, so now let’s think about
overdimensionality—i.e., the idea that you might have tens of thou‐
sands of items. We typically use both Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA) to tackle this, and
we’ll show you how shortly.

To understand how this works before we dive into the math, let’s think
about how we reduce dimensions and create “latent features” inter‐
nally every day. For example, people invent concepts like “coolness,”
but we can’t directly measure how cool someone is. Other people ex‐
hibit different patterns of behavior, which we internally map or reduce
to our one dimension of “coolness.” So coolness is an example of a
latent feature in that it’s unobserved and not measurable directly, and
we could think of it as reducing dimensions because perhaps it’s a
combination of many “features” we’ve observed about the person and
implictly weighted in our mind.

Two things are happening here: the dimensionality is reduced into a
single feature and the latent aspect of that feature.

But in this algorithm, we don’t decide which latent factors to care
about. Instead we let the machines do the work of figuring out what
the important latent features are. “Important” in this context means
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they explain the variance in the answers to the various questions—in
other words, they model the answers efficiently.

Our goal is to build a model that has a representation in a low dimen‐
sional subspace that gathers “taste information” to generate recom‐
mendations. So we’re saying here that taste is latent but can be ap‐
proximated by putting together all the observed information we do
have about the user.

Also consider that most of the time, the rating questions are binary
(yes/no). To deal with this, Hunch created a separate variable for every
question. They also found that comparison questions may be better at
revealing preferences.

Time to Brush Up on Your Linear Algebra if You
Haven’t Already

A lot of the rest of this chapter likely won’t make sense (and we want
it to make sense to you!) if you don’t know linear algebra and under‐
stand the terminology and geometric interpretation of words like
rank (hint: the linear algebra definition of that word has nothing to
do with ranking algorithms), orthogonal, transpose, base, span, and
matrix decomposition. Thinking about data in matrices as points in
space, and what it would mean to transform that space or take sub‐
spaces can give you insights into your models, why they’re breaking,
or how to make your code more efficient. This isn’t just a mathemat‐
ical exercise for the sake of it—although there is elegance and beauty
in it—it can be the difference between a star-up that fails and a start-
up that gets acquired by eBay. We recommend Khan Academy’s ex‐
cellent free online introduction to linear algebra if you need to brush
up your linear algebra skills.

Singular Value Decomposition (SVD)
Hopefully we’ve given you some intuition about what we’re going to
do. So let’s get into the math now starting with singular value decom‐
position. Given an m×n matrix X of rank k,  it is a theorem from linear
algebra that we can always compose it into the product of three ma‐
trices as follows:

X = USVτ
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where U  is m×k, S is k ×k, and V  is k ×n, the columns of U  and V  are
pairwise orthogonal, and S is diagonal. Note the standard statement
of SVD is slightly more involved and has U and V both square unitary
matrices, and has the middle “diagonal” matrix a rectangular. We’ll be
using this form, because we’re going to be taking approximations to
X of increasingly smaller rank. You can find the proof of the existence
of this form as a step in the proof of existence of the general form here.

Let’s apply the preceding matrix decomposition to our situation. X is
our original dataset, which has users’ ratings of items. We have m users,
n items, and k would be the rank of X,  and consequently would also
be an upper bound on the number d of latent variables we decide to
care about—note we choose d whereas m,n,  and k are defined through
our training dataset. So just like in k-NN, where k is a tuning parameter
(different k entirely—not trying to confuse you!), in this case, d is the
tuning parameter.

Each row of U  corresponds to a user, whereas V  has a row for each
item. The values along the diagonal of the square matrix S are called
the “singular values.” They measure the importance of each latent
variable—the most important latent variable has the biggest singular
value.

Important Properties of SVD
Because the columns of U  and V  are orthogonal to each other, you
can order the columns by singular values via a base change operation.
That way, if you put the columns in decreasing order of their corre‐
sponding singular values (which you do), then the dimensions are
ordered by importance from highest to lowest. You can take lower rank
approximation of X by throwing away part of S .  In other words, re‐
place S by a submatrix taken from the upper-left corner of S .

Of course, if you cut off part of S you’d have to simultaneously cut off
part of U  and part of V ,  but this is OK because you’re cutting off the
least important vectors. This is essentially how you choose the number
of latent variables d—you no longer have the original matrix X any‐
more, only an approximation of it, because d is typically much smaller
than k, but it’s still pretty close to X .  This is what people mean when
they talk about “compression,” if you’ve ever heard that term thrown
around. There is often an important interpretation to the values in the
matrices U  and V . For example, you can see, by using SVD, that the
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“most important” latent feature is often something like whether some‐
one is a man or a woman.

How would you actually use this for recommendation? You’d take X,
fill in all of the empty cells with the average rating for that item (you
don’t want to fill it in with 0 because that might mean something in
the rating system, and SVD can’t handle missing values), and then
compute the SVD. Now that you’ve decomposed it this way, it means
that you’ve captured latent features that you can use to compare users
if you want to. But that’s not what you want—you want a prediction.
If you multiply out the U , S, and Vτ  together, you get an approximation
to X—or a prediction, X—so you can predict a rating by simply look‐
ing up the entry for the appropriate user/item pair in the matrix X.

Going back to our original list of issues with nearest neighbors in
“Some Problems with Nearest Neighbors” on page 202, we want to
avoid the problem of missing data, but that is not fixed by the pre‐
ceding SVD approach, nor is the computational complexity problem.
In fact, SVD is extremely computationally expensive. So let’s see how
we can improve on that.

Principal Component Analysis (PCA)
Let’s look at another approach for predicting preferences. With this
approach, you’re still looking for U  and V  as before, but you don’t need
S anymore, so you’re just searching for U  and V  such that:

X≡U ·Vτ

Your optimization problem is that you want to minimize the discrep‐
ency between the actual X and your approximation to X via U  and V
measured via the squared error:

argmin∑i, j xi, j −ui ·v j
2

Here you denote by ui the row of U  corresponding to user i,  and sim‐
ilarly you denote by v j the row of V  corresponding to item j .  As usual,
items can include metadata information (so the age vectors of all the
users will be a row in V).
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Then the dot product ui ·v j is the predicted preference of user i for item
j,  and you want that to be as close as possible to the actual preference
xi, j.

So, you want to find the best choices of U  and V  that minimize the
squared differences between prediction and observation on every‐
thing you actually know, and the idea is that if it’s really good on stuff
you know, it will also be good on stuff you’re guessing. This should
sound familiar to you—it’s mean squared error, like we used for linear
regression.

Now you get to choose a parameter, namely the number d defined as
how may latent features you want to use. The matrix U  will have a row
for each user and a column for each latent feature, and the matrix V
will have a row for each item and a column for each latent feature.

How do you choose d? It’s typically about 100, because it’s more than
20 (as we told you, through the course of developing the product, we
found that we had a pretty good grasp on someone if we ask them 20
questions) and it’s as much as you care to add before it’s computa‐
tionally too much work.

The resulting latent features are the basis of a well-defined
subspace of the total n-dimensional space of potential latent
variables. There’s no reason to think this solution is unique
if there are a bunch of missing values in your “answer” matrix.
But that doesn’t necessarily matter, because you’re just look‐
ing for a solution.

Theorem: The resulting latent features will be uncorrelated
We already discussed that correlation was an issue with k-NN, and
who wants to have redundant information going into their model? So
a nice aspect of these latent features is that they’re uncorrelated. Here’s
a sketch of the proof:

Say we’ve found matrices U  and V  with a fixed product U ·V = X such
that the squared error term is minimized. The next step is to find the
best U  and V  such that their entries are small—actually we’re mini‐
mizing the sum of the squares of the entries of U  and V .  But we can
modify U  with any invertible d ×d matrix G as long as we modify V
by its inverse: U ·V = U ·G · G−1 ·V = X .
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Assume for now we only modify with determinant 1 matrices G;  i.e.,
we restrict ourselves to volume-preserving transformations. If we ig‐
nore for now the size of the entries of V  and concentrate only on the
size of the entries of U ,  we are minimizing the surface area of a d-
dimensional parallelepiped in n space (specifically, the one generated
by the columns of U) where the volume is fixed. This is achieved by
making the sides of the parallelepiped mutually orthogonal, which is
the same as saying the latent features will be uncorrelated.

But don’t forget, we’ve ignored V! However, it turns out that V ’s rows
will also be mutually orthogonal when we force U ’s columns to be.
This is not hard to see if you keep in mind X has its SVD as discussed
previously. In fact, the SVD and this form U ·V  have a lot in common,
and some people just call this an SVD algorithm, even though it’s not
quite.

Now we allow modifications with nontrivial determinant—so, for ex‐
ample, let G be some scaled version of the identity matrix. Then if we
do a bit of calculus, it turns out that the best choice of scalar (i.e., to
minimize the sum of the squares of the entries of U  and of V) is in fact
the geometric mean of those two quantities, which is cool. In other
words, we’re minimizing the arithmetic mean of them with a single
parameter (the scalar) and the answer is the geometric mean.

So that’s the proof. Believe us?

Alternating Least Squares
But how do you do this? How do you actually find U  and V? In reality,
as you will see next, you’re not first minimizing the squared error and
then minimizing the size of the entries of the matrices U  and V .  You’re
actually doing both at the same time.

So your goal is to find U  and V  by solving the optimization problem
described earlier. This optimization doesn’t have a nice closed formula
like ordinary least squares with one set of coefficients. Instead, you
need an iterative algorithm like gradient descent. As long as your
problem is convex you’ll converge OK (i.e., you won’t find yourself at
a local, but not global, maximum), and you can force your problem to
be convex using regularization.

Here’s the algorithm:

• Pick a random V .
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• Optimize U  while V  is fixed.
• Optimize V  while U  is fixed.
• Keep doing the preceding two steps until you’re not changing very

much at all. To be precise, you choose an ϵ and if your coefficients
are each changing by less than ϵ, then you declare your algorithm
“converged.”

Theorem with no proof: The preceding algorithm will converge if your prior
is large enough
If you enlarge your prior, you make the optimization easier because
you’re artificially creating a more convex function—on the other hand,
if your prior is huge, then all your coefficients will be zero anyway, so
that doesn’t really get you anywhere. So actually you might not want
to enlarge your prior. Optimizing your prior is philosophically
screwed because how is it a prior if you’re back-fitting it to do what
you want it to do? Plus you’re mixing metaphors here to some extent
by searching for a close approximation of X at the same time you are
minimizing coefficients. The more you care about coefficients, the less
you care about X. But in actuality, you only want to care about X.

Fix V and Update U
The way you do this optimization is user by user. So for user i,  you
want to find:

argminui ∑ j∈Pi pi, j −ui *v j
2

where v j is fixed. In other words, you just care about this user for now.

But wait a minute, this is the same as linear least squares, and has a
closed form solution! In other words, set:

ui = V*,i
τ V*,i

−1V*,i
τ P*i,

where V*,i is the subset of V  for which you have preferences coming
from user i .  Taking the inverse is easy because it’s d ×d,  which is small.
And there aren’t that many preferences per user, so solving this many
times is really not that hard. Overall you’ve got a doable update for
U .
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When you fix U  and optimize V , it’s analogous—you only ever have
to consider the users that rated that movie, which may be pretty large
for popular movies but on average isn’t; but even so, you’re only ever
inverting a d ×d matrix.

Another cool thing: because each user is only dependent on their item’s
preferences, you can parallelize this update of U  or V .  You can run it
on as many different machines as you want to make it fast.

Last Thoughts on These Algorithms
There are lots of different versions of this approach, but we hope we
gave you a flavor for the trade-offs between these methods and how
they can be used to make predictions. Sometimes you need to extend
a method to make it work in your particular case.

For example, you can add new users, or new data, and keep optimizing
U  and V . You can choose which users you think need more updating
to save computing time. Or if they have enough ratings, you can decide
not to update the rest of them.

As with any machine learning model, you should perform cross-
validation for this model—leave out a bit and see how you did, which
we’ve discussed throughout the book. This is a way of testing overfit‐
ting problems.

Thought Experiment: Filter Bubbles
What are the implications of using error minimization to predict pref‐
erences? How does presentation of recommendations affect the feed‐
back collected?

For example, can you end up in local maxima with rich-get-richer
effects? In other words, does showing certain items at the beginning
give them an unfair advantage over other things? And so do certain
things just get popular or not based on luck?

How do you correct for this?
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Exercise: Build Your Own Recommendation
System
In Chapter 6, we did some exploratory data analysis on the GetGlue
dataset. Now’s your opportunity to build a recommendation system
with that dataset. The following code isn’t for GetGlue, but it is Matt’s
code to illustrate implementing a recommendation system on a rela‐
tively small dataset. Your challenge is to adjust it to work with the
GetGlue data.

Sample Code in Python
import math,numpy

pu = [[(0,0,1),(0,1,22),(0,2,1),(0,3,1),(0,5,0)],[(1,0,1),
(1,1,32),(1,2,0),(1,3,0),(1,4,1),(1,5,0)],[(2,0,0),(2,1,18),
(2,2,1),(2,3,1),(2,4,0),(2,5,1)],[(3,0,1),(3,1,40),(3,2,1),
(3,3,0),(3,4,0),(3,5,1)],[(4,0,0),(4,1,40),(4,2,0),(4,4,1),
(4,5,0)],[(5,0,0),(5,1,25),(5,2,1),(5,3,1),(5,4,1)]]

pv = [[(0,0,1),(0,1,1),(0,2,0),(0,3,1),(0,4,0),(0,5,0)],
[(1,0,22),(1,1,32),(1,2,18),(1,3,40),(1,4,40),(1,5,25)],
[(2,0,1),(2,1,0),(2,2,1),(2,3,1),(2,4,0),(2,5,1)],[(3,0,1),
(3,1,0),(3,2,1),(3,3,0),(3,5,1)],[(4,1,1),(4,2,0),(4,3,0),
(4,4,1),(4,5,1)],[(5,0,0),(5,1,0),(5,2,1),(5,3,1),(5,4,0)]]

V = numpy.mat([[ 0.15968384,  0.9441198 ,  0.83651085],
               [ 0.73573009,  0.24906915,  0.85338239],
               [ 0.25605814,  0.6990532 ,  0.50900407],
               [ 0.2405843 ,  0.31848888,  0.60233653],
               [ 0.24237479,  0.15293281,  0.22240255],
               [ 0.03943766,  0.19287528,  0.95094265]])

print V

U = numpy.mat(numpy.zeros([6,3]))
L = 0.03

for iter in xrange(5):

    print "\n----- ITER %s -----"%(iter+1)

    print "U"
    urs = []
    for uset in pu:
        vo = []
        pvo = []
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        for i,j,p in uset:
            vor = []
            for k in xrange(3):
                vor.append(V[j,k])
            vo.append(vor)
            pvo.append(p)
        vo = numpy.mat(vo)
        ur = numpy.linalg.inv(vo.T*vo +
            L*numpy.mat(numpy.eye(3))) *
            vo.T * numpy.mat(pvo).T
        urs.append(ur.T)
    U = numpy.vstack(urs)
    print U

    print "V"
    vrs = []
    for vset in pv:
        uo = []
        puo = []
        for j,i,p in vset:
            uor = []
            for k in xrange(3):
                uor.append(U[i,k])
            uo.append(uor)
            puo.append(p)
        uo = numpy.mat(uo)
        vr = numpy.linalg.inv(uo.T*uo + L*numpy.mat(num
py.eye(3))) * uo.T * numpy.mat(puo).T
        vrs.append(vr.T)
    V = numpy.vstack(vrs)
    print V

    err = 0.
    n = 0.
    for uset in pu:
        for i,j,p in uset:
            err += (p - (U[i]*V[j].T)[0,0])**2
            n += 1
    print math.sqrt(err/n)

print
print U*V.T
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CHAPTER 9

Data Visualization and
Fraud Detection

There are two contributors for this chapter, Mark Hansen, a professor
at Columbia University, and Ian Wong, an inference scientist at Square.
(That’s where he was in November 2012 when he came to the class. He
now works at Prismatic.) These two speakers and sections don’t share
a single cohesive theme between them, although both will discuss data
visualization…and both have lived in California! More seriously, both
are thoughtful people (like all our contributors) who have thought
deeply about themes and questions such as what makes good code, the
nature of programming languages as a form of expression, and the
central question of this book: what is data science?

Data Visualization History
First up is Mark Hansen, who recently came from UCLA via a sab‐
batical at the New York Times R & D Lab to Columbia University with
a joint appointment in journalism and statistics, where he heads the
Brown Institute for Media Innovation. He has a PhD in statistics from
Berkeley, and worked at Bell Labs (there’s Bell Labs again!) for several
years prior to his appointment at UCLA, where he held an appoint‐
ment in statistics, with courtesy appointments in electrical engineering
and design/media art. He is a renowned data visualization expert and
also an energetic and generous speaker. We were lucky to have him on
a night where he’d been drinking an XXL latte from Starbucks (we
refuse to use their made-up terminology) to highlight his natural ef‐
fervescence.
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Mark will walk us through a series of influences and provide historical
context for his data visualization projects, which he will tell us more
about at the end. Mark’s projects are genuine works of art—installa‐
tions appearing in museums and public spaces. Rachel invited him
because his work and philosophy is inspiring and something to aspire
to. He has set his own course, defined his own field, exploded bound‐
aries, and constantly challenges the status quo. He’s been doing data
visualization since before data visualization was cool, or to put it
another way, we consider him to be one of the fathers of data visuali‐
zation. For the practical purposes of becoming better at data visuali‐
zation yourself, we’ll give you some ideas and directions at the end of
the chapter.

Gabriel Tarde
Mark started by telling us a bit about Gabriel Tarde, who was a soci‐
ologist who believed that the social sciences had the capacity to pro‐
duce vastly more data than the physical sciences.

As Tarde saw it, the physical sciences observe from a distance: they
typically model or incorporate models that talk about an aggregate in
some way—for example, a biologist might talk about the function of
the aggregate of our cells. What Tarde pointed out was that this is a
deficiency; it’s basically brought on by a lack of information. According
to Tarde, we should instead be tracking every cell.

In the social realm we can do the analog of this, if we replace cells with
people. We can collect a huge amount of information about individ‐
uals, especially if they offer it up themselves through Facebook.

But wait, are we not missing the forest for the trees when we do this?
In other words, if we focus on the microlevel, we might miss the larger
cultural significance of social interaction. Bruno Latour, a contempo‐
rary French sociologist, weighs in with his take on Tarde in Tarde’s
Idea of Quantification:

But the whole is now nothing more than a provisional visualization
which can be modified and reversed at will, by moving back to the
individual components, and then looking for yet other tools to re‐
group the same elements into alternative assemblages.

— Bruno Latour

In 1903, Tarde even foresaw the emergence of Facebook, as a sort of
“daily press”:
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If statistics continues to progress as it has done for several years, if
the information which it gives us continues to gain in accuracy, in
dispatch, in bulk, and in regularity, a time may come when upon the
accomplishment of every social event a figure will at once issue
forth automatically, so to speak, to take its place on the statistical
registers that will be continuously communicated to the public and
spread abroad pictorially by the daily press. Then, at every step, at
every glance cast upon poster or newspaper, we shall be assailed, as
it were, with statistical facts, with precise and condensed knowledge
of all the peculiarities of actual social conditions, of commercial
gains or losses, of the rise or falling off of certain political parties,
of the progress or decay of a certain doctrine, etc., in exactly the
same way as we are assailed when we open our eyes by the vibrations
of the ether which tell us of the approach or withdrawal of such and
such a so-called body and of many other things of a similar nature.

— Tarde

Mark then laid down the theme of his lecture:
Change the instruments and you will change the entire social theory
that goes with them.

— Bruno Latour

Kind of like that famous physics cat, Mark (and Tarde) want us to
newly consider both the way the structure of society changes as we
observe it, and ways of thinking about the relationship of the individ‐
ual to the aggregate.

In other words, the past nature of data collection methods forced one
to consider aggregate statistics that one can reasonably estimate by
subsample—means, for example. But now that one can actually get
one’s hands on all data and work with all data, one no longer should
focus only on the kinds of statistics that make sense in the aggregate,
but also one’s own individually designed statistics—say, coming from
graph-like interactions—that are now possible due to finer control.
Don’t let the dogma that resulted from past restrictions guide your
thinking when those restrictions no longer hold.

Mark’s Thought Experiment
As data become more personal, as we collect more data about indi‐
viduals, what new methods or tools do we need to express the funda‐
mental relationship between ourselves and our communities, our
communities and our country, our country and the world?
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Could we ever be satisfied with poll results or presidential approval
ratings when we can see the complete trajectory of public opinions,
both individuated and interacting?

To which we add: would we actually want to live in a culture where
such information is so finely tracked and available?

What Is Data Science, Redux?
Mark reexamined the question that Rachel posed and attempted to
answer in the first chapter, as he is keen on reexamining everything.
He started the conversation with this undated quote from our own
John Tukey:

The best thing about being a statistician is that you get to play in
everyone’s backyard.

— John Tukey

Let’s think about that again—is it so great? Is it even reasonable? In
some sense, to think of us as playing in other people’s yards, with their
toys, is to draw a line between “traditional data fields” and “everything
else.”

It’s maybe even implying that all our magic comes from the traditional
data fields (math, stats, CS), and we’re some kind of super humans
because we’re uber-nerds. That’s a convenient way to look at it from
the perspective of our egos, of course, but it’s perhaps too narrow and
arrogant.

And it begs the question: what is “traditional” and what is “everything
else,” anyway?

In Mark’s opinion, “everything else” should include fields from social
science and physical science to education, design, journalism, and
media art. There’s more to our practice than being technologists, and
we need to realize that technology itself emerges out of the natural
needs of a discipline. For example, geographic information systems
(GIS) emerged from geographers, and text data mining emerged from
digital humanities.

In other words, it’s not math people ruling the world, but rather do‐
main practices being informed by techniques growing organically
from those fields. When data intersects their practice, each practice is
learning differently; their concerns are unique to that practice.
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Responsible data science integrates those lessons, and it’s not a purely
mathematical integration. It could be a way of describing events, for
example. Specifically, we’re saying that it’s not necessarily a quantifia‐
ble thing.

Bottom-line: it’s possible that the language of data science has some‐
thing to do with social science just as it has something to do with math.

You might not be surprised to hear that, when Mark told us about his
profile as a data scientist, the term he coined was “expansionist.”

Processing
Mark then described the programming language called Processing in
the context of a programming class he gave to artists and designers.
He used it as an example of what is different when a designer, versus
an engineer, takes up looking at data or starts to code. A good language
is inherently structured or designed to be expressive of the desired
tasks and ways of thinking of the people using it.

One approach to understanding this difference is by way of another
thought experiment. Namely, what is the use case for a language for
artists? Contrast this with what a language such as R needs to capture
for statisticians or data scientists (randomness, distributions, vectors,
and data, for example).

In a language for artists, you’d want to be able to specify shapes, to
faithfully render whatever visual thing you had in mind, to sketch,
possibly in 3D, to animate, to interact, and most importantly, to
publish.

Processing is Java-based, with a simple “publish” button, for example.
The language is adapted to the practice of artists. Mark mentioned that
teaching designers to code meant, for him, stepping back and talking
about iteration, if statements, and so on—in other words, stuff that
seemed obvious to him but is not obvious to someone who is an artist.
He needed to unpack his assumptions, which is what’s fun about
teaching to the uninitiated.

Franco Moretti
Mark moved on to discussing close versus distant reading of texts. He
mentioned Franco Moretti, a literary scholar from Stanford.
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Franco thinks about “distant reading,” which means trying to get a
sense of what someone’s talking about without reading line by line.
This leads to PCA-esque thinking, a kind of dimension reduction of
novels (recall we studied dimension reduction techniques in Chap‐
ter 8).

Mark holds this up as a cool example of how ideally, data science in‐
tegrates the ways that experts in various fields already figure stuff out.
In other words, we don’t just go into their backyards and play; maybe
instead we go in and watch them play, and then formalize and inform
their process with our own bells and whistles. In this way they can
teach us new games, games that actually expand our fundamental
conceptions of data and the approaches we need to analyze them.

A Sample of Data Visualization Projects
Here are some of Mark’s favorite visualization projects, and for each
one he asks us: is this your idea of data visualization? What’s data?

Figure 9-1 is a projection onto a power plant’s steam cloud. The size
of the green projection corresponds to the amount of energy the city
is using.

Figure 9-1. Nuage Vert by Helen Evans and Heiko Hansen
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In One Tree (Figure 9-2) the artist cloned trees and planted the ge‐
netically identical seeds in several areas. It displays, among other
things, the environmental conditions in each area where they are
planted.

Figure 9-2. One Tree by Natalie Jeremijenko

A Sample of Data Visualization Projects | 223

www.it-ebooks.info

http://boingboing.net/2003/05/16/natalie-jeremijenkos.html
http://www.it-ebooks.info/


Figure 9-3 shows Dusty Relief, in which the building collects pollution
around it, displayed as dust.

Figure 9-3. Dusty Relief from New Territories
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Project Reveal (Figure 9-4) is a kind of magic mirror that wirelessly
connects using facial recognition technology and gives you informa‐
tion about yourself. According to Mark, as you stand at the mirror in
the morning, you get that “come-to-Jesus moment.”

Figure 9-4. Project Reveal from the New York Times R & D lab

The SIDL is headed by Laura Kurgan, and in this piece shown in
Figure 9-5, she flipped Google’s crime statistics. She went into the
prison population data, and for every incarcerated person, she looked
at their home address, measuring per home how much money the state
was spending to keep the people who lived there in prison. She dis‐
covered that some blocks were spending $1,000,000 to keep people in
prison. The moral of this project is: just because you can put something
on the map, doesn’t mean you should. It doesn’t mean there’s a new
story. Sometimes you need to dig deeper and flip it over to get a new
story.
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Figure 9-5. Million Dollar Blocks from Spatial Information Design
Lab (SIDL)

Mark’s Data Visualization Projects
Now that we know some of Mark’s influences and philosophy, let’s look
at some of his projects to see how he puts them into practice.

New York Times Lobby: Moveable Type
Mark walked us through a project he did with Ben Rubin—a media
artist and Mark’s collaborator of many years—for the New York Times
on commission. (Mark later went to the New York Times R & D Lab
on sabbatical.) Figure 9-6 shows it installed in the lobby of the Times’
midtown Manhattan headquarters at 8th Avenue and 42nd Street.
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Figure 9-6. Moveable Type, the New York Times lobby, by Ben Rubin
and Mark Hansen

It consists of 560 text displays—two walls with 280 displays on each—
and they cycle through various scenes that each have a theme and an
underlying data science model.

In one there are waves upon waves of digital ticker-tape–like scenes
that leave behind clusters of text, and where each cluster represents a
different story from the paper. The text for a given story highlights
phrases that make a given story different from others in an
information-theory sense.

In another scene, the numbers coming out of stories are highlighted,
so you might see “18 gorillas” on a given display. In a third scene,
crossword puzzles play themselves accompanied by sounds of pencils
writing on paper.

Figure 9-7 shows an example of a display box, which are designed to
convey a retro vibe. Each box has an embedded Linux processor run‐
ning Python, and a sound card that makes various sounds—clicking,
typing, waves—depending on what scene is playing.
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Figure 9-7. Display box for Moveable Type

The data is collected via text from New York Times articles, blogs, and
search engine activity. Every sentence is parsed using Stanford natural
language processing techniques, which diagram sentences.
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Altogether there are about 15 scenes so far, and it’s written in code so
one can keep adding to it. Here’s a YouTube interview with Mark and
Ben about the exhibit.

Project Cascade: Lives on a Screen
Mark next told us about Cascade, which was a joint work with Jer
Thorp—data artist-in-residence at the New York Times —in partner‐
ship with bit.ly. Cascade came about from thinking about how people
share New York Times links on Twitter.

The idea was to collect enough data so that you could see people
browse, encode the link in bitly, tweet that encoded link, see other
people click on that tweet, watch bitly decode the link, and then see
those people browse the New York Times. Figure 9-8 shows the visu‐
alization of that entire process, much like Tarde suggested we should
do.

Figure 9-8. Project Cascade by Jer Thorp and Mark Hansen

There were of course data decisions to be made: a loose matching of
tweets and clicks through time, for example. If 17 different tweets
provided the same URL, they couldn’t know which tweet/link some‐
one clicked on, so they guessed (the guess actually involves probabil‐
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istic matching on timestamps so at least it’s an educated guess). They
used the Twitter map of who follows who—if someone you follow
tweets about something before you do, then it counts as a retweet.

Here’s a video about Project Cascade from the New York Times.

This was done two years ago, and Twitter has gotten a lot
bigger since then.

Cronkite Plaza
Next Mark told us about something he was working on with both Jer
and Ben. It’s also news-related, but it entailed projecting something on
the outside of a building rather than in the lobby; specifically, the
communications building at UT Austin, in Cronkite Plaza, pictured
in Figure 9-9.

Figure 9-9. And That’s The Way It Is, by Jer Thorp, Mark Hansen,
and Ben Rubin
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It’s visible every evening at Cronkite Plaza, with scenes projected onto
the building via six different projectors. The majority of the projected
text is sourced from Walter Cronkite’s news broadcasts, but they also
used local closed-captioned news sources. One scene extracted the
questions asked during local news—things like “How did she react?”
or “What type of dog would you get?”

eBay Transactions and Books
Again working jointly with Jer Thorp, Mark investigated a day’s worth
of eBay’s transactions that went through Paypal and, for whatever rea‐
son, two years of book sales. How do you visualize this? Take a look at
their data art-visualization-installation commissioned by eBay for the
2012 ZERO1 Biennial in Figure 9-10 and at the yummy underlying
data in Figure 9-11.

Figure 9-10. Before Us is the Salesman’s House (2012), by Jer Thorp
and Mark Hansen
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Figure 9-11. The underlying data for the eBay installation

Here’s their ingenious approach: They started with the text of Death
of a Salesman by Arthur Miller. They used a mechanical turk mecha‐
nism (we discussed what this means in Chapter 7) to locate objects in
the text that you can buy on eBay.

When an object is found it moves it to a special bin, e.g., “chair” or
“flute” or “table.” When it has a few collected buyable objects, it then
takes the objects and sees where they are all for sale on the day’s worth
of transactions, and looks at details on outliers and such. After exam‐
ining the sales, the code will find a zip code in some quiet place like
Montana.
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Then it flips over to the book sales data, looks at all the books bought
or sold in that zip code, picks a book (which is also on Project Guten‐
berg), and begins to read that book and collect “buyable” objects from
it. And it keeps going. Here’s a video showing the process.

Public Theater Shakespeare Machine
The last piece Mark showed us is a joint work with Rubin and Thorp,
installed in the lobby of the Public Theater, shown in Figure 9-12. The
piece is an oval structure with 37 bladed LED displays installed above
the theater’s bar.

There’s one blade for each of Shakespeare’s plays. Longer plays are in
the long end of the oval—you see Hamlet when you come in.

Figure 9-12. Shakespeare Machine, by Mark, Jer, and Ben

The data input is the text of each play. Each scene does something
different—for example, it might collect noun phrases that have some‐
thing to do with the body from each play, so the “Hamlet” blade will
only show a body phrase from Hamlet. In another scene, various kinds
of combinations or linguistic constructs are mined, such as three-word
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phrases like “high and might” or “good and gracious” or compound-
word phrases like “devilish-holy,” “heart-sore,” or “hard-favoured.”

Note here that the digital humanities, through the MONK Project,
offered intense XML descriptions of the plays. Every single word is
given hooha, and there’s something on the order of 150 different parts
of speech.

As Mark said, it’s Shakespeare, so it stays awesome no matter what you
do. But they’re also successively considering words as symbols, or as
thematic, or as parts of speech.

So then let’s revisit the question Mark asked before showing us all these
visualizations: what’s data? It’s all data.

Here’s one last piece of advice from Mark on how one acquires data.
Be a good investigator: a small polite voice which asks for data usually
gets it.

Goals of These Exhibits
These exhibits are meant to be graceful and artistic, but they should
also teach something or tell a story. At the same time, we don’t want
to be overly didactic. The aim is to exist in between art and informa‐
tion. It’s a funny place: increasingly we see a flattening effect when tools
are digitized and made available, so that statisticians can code like a
designer—we can make things that look like design, but is it truly
design—and similarly designers can make something that looks like
data or statistics, but is it really?

Data Science and Risk
Next we had a visitor from San Francisco—Ian Wong, who came to
tell us about doing data science on the topic of risk. Ian is an inference
scientist at Square, and he previously dropped out of the electrical
engineering PhD program at Stanford where he did research in ma‐
chine learning. (He picked up a couple master’s degrees in statistics
and electrical engineering along the way.) Since coming to speak to
the class, he left Square and now works at Prismatic, a customized
newsfeed.

Ian started with three takeaways:
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Doing machine learning != writing R scripts
Machine learning (ML) is founded in math, expressed in code,
and assembled into software. You need to develop good software
engineering practices, and learn to write readable and reusable
code. Write code for the reader and not the writer, as production
code is reread and built upon many more times by other people
than by you.

Data visualization != producing a nice plot
Visualizations should be pervasive and embedded in the environ‐
ment of a good company. They’re integrated in products and pro‐
cesses. They should enable action.

ML and data visualization together augment human intelligence
We have limited cognitive abilities as human beings. But by lev‐
eraging data, we can build ourselves exoskeletons that enable us
to comprehend and navigate the information world.

About Square
Square was founded in 2009 by Jack Dorsey and Jim McKelvey. The
company grew from 50 employees in 2011 to over 500 in 2013.

The mission of the company is to make commerce easy for everyone.
As Square’s founders see it, transactions are needlessly complicated. It
takes too much for a merchant to figure out how to accept payments.
For that matter, it’s too complicated for buyers to pay as well. The
question they set out to answer is “how do we make transactions simple
and easy?”

Here’s how they do it. Merchants can sign up with Square, download
the Square Register app, and receive a credit card reader in the mail.
They can then plug the reader into the phone, open the app, and take
payments. The little plastic square enables small merchants (any size
really) to acept credit card transactions. Local hipster coffee shops
seem to have been early adopters if Portland and San Francisco are
any indication. On the consumer’s side, they don’t have to do anything
special, just hand over their credit cards. They won’t experience any‐
thing unusual, although they do sign on the iPad rather than on a slip
of paper.

It’s even possible to buy things hands-free using the Square. When the
buyer chooses to pay through Square Wallet on their phones, the
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buyer’s name will appear on the merchant’s Register app and all the
merchant has to do is to tap on the name.

Square wants to make it easy for sellers to sign up for their service and
to accept payments. Of course, it’s also possible that somebody may
sign up and try to abuse the service. They are, therefore, very careful
at Square to avoid losing money on sellers with fraudulent intentions
or bad business models.

The Risk Challenge
In building a frictionless experience for buyers and sellers, Square also
has to watch out for the subset of users who abuse the service. Suspi‐
cious or unwanted activity, such as fraud, not only undermines cus‐
tomer trust, but is illegal and impacts the company’s bottom line. So
creating a robust and highly efficient risk management system is core
to the payment company’s growth.

But how does Square detect bad behavior efficiently? Ian explained
that they do this by investing in machine learning with a healthy dose
of visualization.

Detecting suspicious activity using machine learning
Let’s start by asking: what’s suspicious? If we see lots of micro trans‐
actions occurring, say, or if we see a sudden, high frequency of trans‐
actions, or an inconsistent frequency of transactions, that might raise
our eyebrows.

Here’s an example. Say John has a food truck, and a few weeks after he
opens, he starts to pass $1,000 transactions through Square. (One
possibility: John might be the kind of idiot that puts gold leaf on ham‐
burgers.) On the one hand, if we let money go through, Square is on
the spot in case it’s a bad charge. Technically the fraudster—who in
this case is probably John—would be liable, but our experience is that
usually fraudsters are insolvent, so it ends up on Square to foot the bill.

On the other hand, if Square stops payment on what turns out to be a
real payment, it’s bad customer service. After all, what if John is inno‐
cent and Square denies the charge? He will probably be pissed at Square
—and he may even try to publicly sully Square’s reputation—but in
any case, the trust is lost with him after that.

This example crystallizes the important challenges Square faces: false
positives erode customer trust, false negatives cost Square money.
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To be clear, there are actually two kinds of fraud to worry about: seller-
side fraud and buyer-side fraud. For the purpose of this discussion,
we’ll focus on seller-side fraud, as was the case in the story with John.

Because Square processes millions of dollars worth of sales per day,
they need to gauge the plausibility of charges systematically and au‐
tomatically. They need to assess the risk level of every event and entity
in the system.

So what do they do? Before diving in, Ian sketched out part of their
data schema, shown in Figures 9-13, 9-14, and 9-15.

Figure 9-13. Payment schema

Figure 9-14. Seller schema

Figure 9-15. Settlement schema

Data Science and Risk | 237

www.it-ebooks.info

http://www.it-ebooks.info/


There are three types of data represented here:

• Payment data, where we can assume the fields are transaction_id,
seller_id, buyer_id, amount, success (0 or 1), and timestamp.

• Seller data, where we can assume the fields are seller_id,
sign_up_date, business_name, business_type, and business_lo‐
cation.

• Settlement data, where we can assume the fields are settlement_id,
state, and timestamp.

It’s important to note that Square settles with its customers a full day
after the initial transaction, so their process doesn’t have to make a
decision within microseconds. They’d like to do it quickly of course,
but in certain cases, there is time for a phone call to check on things.

Here’s the process shown in Figure 9-16: given a bunch (as in millions)
of payment events and their associated date (as shown in the data
schema earlier), they throw each through the risk models, and then
send some iffy-looking ones on to a “manual review.” An ops team will
then review the cases on an individual basis. Specifically, anything that
looks rejectable gets sent to ops, who follow up with the merchants.
All approved transactions are settled (yielding an entry in the settle
ment table).

Figure 9-16. Risk engine

Given the preceding process, let’s focus on how they set up the risk
models. You can think of the model as a function from payments to
labels (e.g., good or bad). Putting it that way, it kind of sounds like a
straightforward supervised learning problem. And although this
problem shares some properties with that, it’s certainly not that simple
—they don’t reject a payment and then merely stand pat with that label,
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because, as we discussed, they send it on to an ops team to assess it
independently. So in actuality they have a pretty complicated set of
labels, including when a charge is initially rejected but later decide it’s
OK, or it’s initially accepted but on further consideration might have
been bad, or it’s confirmed to have been bad, or confirmed to have been
OK, and the list goes on.

Technically we would call this a semi-supervised learning problem,
straddling the worlds of supervised and unsupervised learning. But
it’s useful to note that the “label churn” settles down after a few months
when the vast majority of chargebacks have been received, so they
could treat the problem as strictly supervised learning if you go far
enough back in time. So while they can’t trust the labels on recent data,
for the purpose of this discussion, Ian will describe the easier case of
solving the supervised part.

Now that we’ve set the stage for the problem, Ian moved on to de‐
scribing the supervised learning recipe as typically taught in school:

• Get data.
• Derive features.
• Train model.
• Estimate performance.
• Publish model!

But transferring this recipe to the real-world setting is not so simple.
In fact, it’s not even clear that the order is correct. Ian advocates think‐
ing about the objective first and foremost, which means bringing per‐
formance estimation to the top of the list.

The Trouble with Performance Estimation
So let’s do that: focus on performance estimation. Right away Ian
identifies three areas where we can run into trouble.

Defining the error metric
How do we measure whether our learning problem is being modeled
well? Let’s remind ourselves of the various possibilities using the truth
table in Table 9-1.
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Table 9-1. Actual versus predicted table, also called the Confusion
Matrix

Actual = True Actual = False

Predicted = True TP (true positive) FP (false positive)

Predicted = False FP (false positive) FN (false negative)

The most straightforward performance metric is Accuracy, which is
defined using the preceding notation as the ratio:

Accuracy = TP +TN
TP +TN +FP +FN

Another way of thinking about accuracy is that it’s the probability that
your model gets the right answer. Given that there are very few positive
examples of fraud—at least compared with the overall number of
transactions—accuracy is not a good metric of success, because the
“everything looks good” model, or equivalently the “nothing looks
fraudulent” model, is dumb but has good accuracy.

Instead, we can estimate performance using Precision and Recall. Pre‐
cision is defined as the ratio:

Precision = TP
TP +FP

or the probability that a transaction branded “fraudulent” is actually
fraudulent.

Recall is defined as the ratio:

Recall = TP
TP +FN

or the probability that a truly fraudulent transaction is caught by the
model.

The decision of which of these metrics to optimize for depends on the
costs of uncaught bad transactions, which are easy to measure, versus
overly zealous caught transactions, which are much harder to measure.
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Defining the labels
Labels are what Ian considered to be the “neglected” half of the data.
In undergrad statistics education and in data mining competitions, the
availability of labels is often taken for granted. But in reality, labels are
tough to define and capture, while at the same time they are vitally
important. It’s not related to just the objective function; it is the
objective.

In Square’s setting, defining the label means being precise about:

• What counts as a suspicious activity?
• What is the right level of granularity? An event or an entity (or

both)?
• Can we capture the label reliably? What other systems do we need

to integrate with to get this data?

Lastly, Ian briefly mentioned that label noise can acutely affect pre‐
diction problems with high class imbalance (e.g., very few positive
samples).

Challenges in features and learning
Ian says that features codify your domain knowledge. Once a machine
learning pipeline is up and running, most of the modeling energy
should be spent trying to figure out better ways to describe the domain
(i.e., coming up with new features). But you have to be aware of when
these features can actually be learned.

More precisely, when you are faced with a class imbalanced problem,
you have to be careful about overfitting. The sample size required to
learn a feature is proportional to the population of interest (which, in
this case, is the “fraud” class).

For example, it can get tricky dealing with categorical variables with
many levels. While you may have a zip code for every seller, you don’t
have enough information in knowing the zip code alone because so
few fraudulant sellers share zip codes. In this case, you want to do some
clever binning of the zip codes. In some cases, Ian and his team create
a submodel within a model just to reduce the dimension of certain
features.

There’s a second data sparsity issue, which is the cold start problem
with new sellers. You don’t know the same information for all of your
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sellers, especially for new sellers. But if you are too conservative, you
risk starting off on the wrong foot with new customers.

Finally, and this is typical for predictive algorithms, you need to tweak
your algorithm to fit the problem setting, which in this case is akin to
finding a needle in a haystack. For example, you need to consider
whether features interact linearly or nonlinearly, and how to adjust
model training to account for class imbalance: should you adjust the
weights for each class? How about the sampling scheme in an ensemble
learner?

You also have to be aware of adversarial behavior, which is a way of
saying that someone is actually scheming against you. Here’s an ex‐
ample from ecommerce: if a malicious buyer figures out that you are
doing fraud detection by address resolution via exact string matching,
then he can simply sign up with 10 new accounts, each with a slight
misspelling of same address. You now need to know how to resolve
these variants of addresses, and anticipate the escalation of adverserial
behavior. Because models degrade over time as people learn to game
them, you need to continually track performance and retrain your
models.

What’s the Label?
Here’s another example of the trickiness of labels. At DataEDGE, a
conference held annually at UC Berkeley’s School of Information, in
a conversation between Michael Chui of the McKinsey Global Insti‐
tute, and Itamar Rosenn—Facebook’s first data scientist (hired in
2007)—Itamar described the difficulties in defining an “engaged user.”
What’s the definition of engaged? If you want to predict whether or
not a user is engaged, then you need some notion of engaged if you’re
going to label users as engaged or not. There is no one obvious defi‐
nition, and, in fact, a multitude of definitions might work depending
on the context—there is no ground truth! Some definitions of en‐
gagement could depend on the frequency or rhythm with which a
user comes to a site, or how much they create or consume content.
It’s a semi-supervised learning problem where you’re simultaneously
trying to define the labels as well as predict them.
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Model Building Tips
Here are a few good guidelines to building good production models:
Models are not black boxes

You can’t build a good model by assuming that the algorithm will
take care of everything. For instance, you need to know why you
are misclassifying certain people, so you’ll need to roll up your
sleeves and dig into your model to look at what happened. You
essentially form a narrative around the mistakes.

Develop the ability to perform rapid model iterations
Think of this like experiments you’d do in a science lab. If you’re
not sure whether to try A or B, then try both. Of course there’s a
limit to this, but most of the time people err on the “not doing it
enough” side of things.

Models and packages are not a magic potion
When you hear someone say, “So which models or packages do
you use?” then you’ve run into someone who doesn’t get it.

Ian notices that the starting point of a lot of machine learning discus‐
sions revolves around what algorithm or package people use. For in‐
stance, if you’re in R, people get caught up on whether you’re using
randomForst, gbm, glmnet, caret, ggplot2, or rocr; or in scikit-
learn (Python), whether you’re using the RandomForestClassifier
or RidgeClassifier. But that’s losing sight of the forest.

Code readability and reusability
So if it’s not about the models, what is it really about then? It’s about
your ability to use and reuse these packages, to be able to swap any
and all of these models with ease. Ian encourages people to concentrate
on readability, reusability, correctness, structure, and hygiene of these
code bases.

And if you ever dig deep and implement an algorithm yourself, try
your best to produce understandable and extendable code. If you’re
coding a random forest algorithm and you’ve hardcoded the number
of trees, you’re backing yourself (and anyone else who uses that algo‐
rithm) into a corner. Put a parameter there so people can reuse it. Make
it tweakable. Favor composition. And write tests, for pity’s sake. Clean
code and clarity of thought go together.
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At Square they try to maintain reusability and readability by struc‐
turing code in different folders with distinct, reusable components that
provide semantics around the different parts of building a machine
learning model:
Model

The learning algorithms

Signal
Data ingestion and feature computation

Error
Performance estimation

Experiment
Scripts for exploratory data analysis and experiments

Test
Test all the things

They only write scripts in the experiments folder where they either tie
together components from model, signal, and error, or conduct ex‐
ploratory data analysis. Each time they write a script, it’s more than
just a piece of code waiting to rot. It’s an experiment that is revisited
over and over again to generate insight.

What does such a discipline give you? Every time you run an experi‐
ment, you should incrementally increase your knowledge. If that’s not
happening, the experiment is not useful. This discipline helps you
make sure you don’t do the same work again. Without it you can’t even
figure out the things you or someone else has already attempted. Ian
further claims that “If you don’t write production code, then you’re
not productive.”

For more on what every project directory should contain, see Project
Template by John Myles White. For those students who are using R
for their classes, Ian suggests exploring and actively reading Github’s
repository of R code. He says to try writing your own R package, and
make sure to read Hadley Wickham’s devtools wiki. Also, he says that
developing an aesthetic sense for code is analogous to acquiring the
taste for beautiful proofs; it’s done through rigorous practice and feed‐
back from peers and mentors.

For extra credit, Ian suggests that you contrast the implementations
of the caret package with scikit-learn. Which one is more extendable
and reusable? Why?
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Get a pair!
Learning how to code well is challenging. And it’s even harder to go
about it alone. Imagine trying to learn Spanish (or your favorite lan‐
guage) and not being able to practice with another person.

Find a partner or a team who will be willing to pair program and
conduct rigorous code reviews. At Square, every single piece of code
is reviewed by at least another pair of eyes. This is an important prac‐
tice not only for error checking purposes, but also to ensure shared
ownership of the code and a high standard of code quality.

Here’s something to try once you find a programming buddy. Identify
a common problem. Set up a workstation with one monitor and two
sets of keyboard and mouse. Think of it as teaming up to solve the
problem: you’ll first discuss the overall strategy of solving the problem,
and then move on to actually implementing the solution. The two of
you will take turns being the “driver” or the “observer.” The driver
writes the code, while the observer reviews the code and strategizes
the plan of attack. While the driver is busy typing, the observer should
constantly be asking “do I understand this code?” and “how can this
code be clearer?” When confusion arises, take the time to figure out
the misunderstandings (or even lack of understanding) together. Be
open to learn and to teach. You’ll pick up nuggets of knowledge quick‐
ly, from editor shortcuts to coherent code organization.

The driver and observer roles should switch periodically throughout
the day. If done right, you’ll feel exhausted after several hours. Practice
to improve pairing endurance.

And when you don’t get to pair program, develop the habit to check
in code using git. Learn about git workflows, and give each other
constructive critiques on pull requests. Think of it as peer review in
academia.

Productionizing machine learning models
Here are some of the toughest problems in doing real-world machine
learning:

1. How is a model “productionized”?
2. How are features computed in real time to support these models?
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3. How do we make sure that “what we see is what we get”? That is,
minimizing the discrepency between offline and online perfor‐
mance.

In most classes and in ML competitions, predictive models are pitted
against a static set of hold-out data that fits in memory, and the models
are allowed to take as long as they need to run. Under these lax con‐
straints, modelers are happy to take the data, do an O(n^3) operation
to get features, and run it through the model. Complex feature engi‐
neering is often celebrated for pedagogical reasons. Examples:

• High-dimensionality? Don’t worry, we’ll just do an SVD, save off
the transformation matrices, and multiply them with the hold-out
data.

• Transforming arrival rate data? Hold on, let me first fit a Poisson
model across the historical data and hold-out set.

• Time series? Let’s throw in some Fourier coefficients.

Unfortunately, real life strips away this affordance of time and space.
Predictive models are pitted against an ever-growing set of online data.
In many cases, they are expected to yield predictions within millisec‐
onds after being handed a datum. All that hard work put into building
the model won’t matter unless the model can handle the traffic.

Keep in mind that many models boil down to a dot product of features
with weights (GLM, SVM), or a series of conjuctive statements with
thresholds that can be expressed as array lookups or a series of if-else
statements against the features (decision trees). So the hard part re‐
duces to feature computation.

There are various approaches to computing features. Depending on
model complexity, latency, and volume requirements, features are
computed in either batch or real time. Models may choose to consume
just batch features, just real-time features, or both. In some cases, a
real-time model makes use of real-time features plus the output of
models trained in batch.

Frameworks such as MapReduce are often used to compute features
in batch. But with a more stringent latency requirement, Ian and the
machine learning team at Square are working on a real-time feature
computation system.
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An important design goal of such a system is to ensure that historical
and online features are computed in the same way. In other words,
there should not be systematic differences between the online features
and the historical features. Modelers should have confidence that the
online performance of the models should match the expected
performance.

Data Visualization at Square
Next Ian talked about ways in which the Risk team at Square uses
visualization:

• Enable efficient transaction review.
• Reveal patterns for individual customers and across customer

segments.
• Measure business health.
• Provide ambient analytics.

He described a workflow tool to review users, which shows features of
the seller, including the history of sales and geographical information,
reviews, contact info, and more. Think mission control. This workflow
tool is a type of data visualization. The operation team tasked with
reviewing suspicious activity has limited time to do their work, so
developers and data scientists must collaborate with the ops team to
figure out ways to best represent the data. What they’re trying to do
with these visualizations is to augment the intelligence of the opera‐
tions team, to build them an exoskeleton for identifying patterns of
suspicious activity. Ian believes that this is where a lot of interesting
development will emerge—the seamless combination of machine
learning and data visualization.

Visualizations across customer segments are often displayed in various
TVs in the office (affectionately known as “information radiators” in
the Square community). These visualizations aren’t necessarily trying
to predict fraud per se, but rather provide a way of keeping an eye on
things to look for trends and patterns over time.

This relates to the concept of “ambient analytics,” which is to provide
an environment for constant and passive ingestion of data so you can
develop a visceral feel for it. After all, it is via the process of becoming
very familiar with our data that we sometimes learn what kind of pat‐
terns are unusual or which signals deserve their own model or
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monitor. The Square risk team has put in a lot of effort to develop
custom and generalizable dashboards.

In addition to the raw transactions, there are risk metrics that Ian keeps
a close eye on. So, for example, he monitors the “clear rates” and “freeze
rates” per day, as well as how many events needed to be reviewed. Using
his fancy viz system he can get down to which analysts froze the most
today, how long each account took to review, and what attributes in‐
dicate a long review process.

In general, people at Square are big believers in visualizing business
metrics—sign-ups, activations, active users—in dashboards. They be‐
lieve the transparency leads to more accountability and engagement.
They run a kind of constant EKG of their business as part of ambient
analytics. The risk team, in particular, are strong believers in “What
gets measured gets managed.”

Ian ended with his data scientist profile and a few words of advice. He
thinks plot(skill_level ~ attributes | ian) should be shown
via a log-y scale, because it doesn’t take very long to be OK at something
but it takes lots of time to get from good to great. He believes that
productivity should also be measured in log-scale, and his argument
is that leading software contributors crank out packages at a much
higher rate than other people.

And as parting advice, Ian encourages you to:

• Play with real data.
• Build math, stats, and computer science foundations in school.
• Get an internship.
• Be literate, not just in statistics.
• Stay curious!

Ian’s Thought Experiment
Suppose you know about every single transaction in the world as it
occurs. How would you use that data?
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Data Visualization for the Rest of Us
Not all of us can create data visualizations considered to be works of
art worthy of museums, but it’s worth building up one’s ability to use
data visualization to communicate and tell stories, and convey the
meaning embedded in the data. Just as data science is more than a set
of tools, so is data visualization, but in order to become a master, one
must first be able to master the technique. Following are some tutorials
and books that we have found useful in building up our data visuali‐
zation skills:

• There’s a nice orientation to the building blocks of data visuali‐
zation by Michael Dubokov at http://www.targetprocess.com/arti
cles/visual-encoding.html.

• Nathan Yau, who was Mark Hansen’s PhD student at UCLA, has
a collection of tutorials on creating visualizations in R at http://
flowingdata.com/. Nathan Yau also has two books: Visualize This:
The Flowing Data Guide to Design, Visualization, and Statistics
(Wiley); and Data Points: Visualization That Means Something
(Wiley).

• Scott Murray, code artist, has a series of tutorials to get up to speed
on d3 at http://alignedleft.com/tutorials/d3/. These have been de‐
veloped into a book, Interactive Data Visualization (O’Reilly).

• Hadley Wickham, who developed the R package ggplot2 based on
Wilkinson’s Grammar of Graphics, has a corresponding book:
ggplot2: Elegant Graphics for Data Analysis (Use R!) (Springer).

• Classic books on data visualization include several books (The
Visual Display of Quantitative Information [Graphics Pr], for ex‐
ample) by Edward Tufte (a statistician widely regarded as one of
the fathers of data visualization; we know we already said that
about Mark Hansen—they’re different generations) with an em‐
phasis less on the tools, and more on the principles of good design.
Also William Cleveland (who we mentioned back in Chapter 1
because of his proposal to expand the field of statistics into data
science), has two books: Elements of Graphing Data (Hobart
Press) and Visualizing Data (Hobart Press).

• Newer books by O’Reilly include the R Graphics Cookbook, Beau‐
tiful Data, and Beautiful Visualization.
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• We’d be remiss not to mention that art schools have graphic design
departments and books devoted to design principles. An educa‐
tion in data visualization that doesn’t take these into account, as
well as the principles of journalism and storytelling, and only fo‐
cuses on tools and statistics is only giving you half the picture. Not
to mention the psychology of human perception.

• This talk, “Describing Dynamic Visualizations” by Bret Victor
comes highly recommended by Jeff Heer, a Stanford professor
who created d3 with Michael Bostock (who used to work at
Square, and now works for the New York Times). Jeff described
this talk as presenting an alternative view of data visualization.

• Collaborate with an artist or graphic designer!

Data Visualization Exercise
The students in the course, like you readers, had a wide variety of
backgrounds and levels with respect to data visualization, so Rachel
suggested those who felt like beginners go pick out two of Nathan Yau’s
tutorials and do them, and then reflect on whether it helped or not
and what they wanted to do next to improve their visualization skills.

More advanced students in the class were given the option to partic‐
ipate in the Hubway Data Visualization challenge. Hubway is Boston’s
bike-sharing program, and they released a dataset and held a compe‐
tition to visualize it. The dataset is still available, so why not give it a
try? Two students in Rachel’s class, Eurry Kim and Kaz Sakamoto, won
“best data narrative” in the competition; Rachel is very proud of them.
Viewed through the lenses of a romantic relationship, their visual diary
(shown in Figure 9-17) displays an inventory of their Boston residents’
first 500,000 trips together.

250 | Chapter 9: Data Visualization and Fraud Detection

www.it-ebooks.info

http://vimeo.com/66085662
http://stanford.io/18PcgGo
http://hubwaydatachallenge.org/
http://www.it-ebooks.info/


Figure 9-17. This is a visualization by Eurry Kim and Kaz Sakamoto
of the Hubway shared-bike program and its adoption by the fine peo‐
ple of the Boston metro area
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CHAPTER 10

Social Networks and
Data Journalism

In this chapter we’ll explore two topics that have started to become
especially hot over the past 5 to 10 years: social networks and data
journalism. Social networks (not necessarily just online ones) have
been studied by sociology departments for decades, as has their coun‐
terpart in computer science, math, and statistics departments: graph
theory. However, with the emergence of online social networks such
as Facebook, LinkedIn, Twitter, and Google+, we now have a new rich
source of data, which opens many research problems both from a so‐
cial science and quantitative/technical point of view.

We’ll hear first about how one company, Morningside Analytics, vis‐
ualizes and finds meaning in social network data, as well as some of
the underlying theory of social networks. From there, we look at con‐
structing stories that can be told from social network data, which is a
form of data journalism. Thinking of the data scientist profiles—and
in this case, gene expression is an appropriate analogy—the mix of
math, stats, communication, visualization, and programming re‐
quired to do either data science or data journalism is slightly different,
but the fundamental skills are the same. At the heart of both is the
ability to ask good questions, to answer them with data, and to com‐
municate one’s findings. To that end, we’ll hear briefly about data
journalism from the perspective of Jon Bruner, an editor at O’Reilly.
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Social Network Analysis at Morning Analytics
The first contributor for this chapter is John Kelly from Morningside
Analytics, who came to talk to us about network analysis.

Kelly has four diplomas from Columbia, starting with a BA in 1990
from Columbia College, followed by a master’s, MPhil, and PhD in
Columbia’s School of Journalism, where he focused on network soci‐
ology and statistics in political science. He also spent a couple of terms
at Stanford learning survey design and game theory and other quanty
stuff. He did his master’s thesis work with Marc Smith from Micro‐
soft; the topic was how political discussions evolve as networks. After
college and before grad school, Kelly was an artist, using computers
to do sound design. He spent three years as the director of digital media
atColumbia School of the Arts. He’s also a programmer: Kelly taught
himself Perl and Python when he spent a year in Vietnam with his
wife.

Kelly sees math, statistics, and computer science (including machine
learning) as tools he needs to use and be good at in order to do what
he really wants to do. Like a chef in a kitchen, he needs good pots and
pans and sharp knives, but the meal is the real product.

And what is he serving up in his kitchen? Kelly wants to understand
how people come together, and when they do, what their impact is on
politics and public policy. His company, Morningside Analytics, has
clients like think tanks and political organizations. They typically want
to know how social media affects and creates politics.

Communication and presentations are how he makes money—visu‐
alizations are integral to both domain expertise and communications
—so his expertise lies in visualization combined with drawing con‐
clusions from those visualizations. After all, Morningside Analytics
doesn’t get paid to just discover interesting stuff, but rather to help
people use it.

Case-Attribute Data versus Social Network Data
Kelly doesn’t model data in the standard way through case-attribute
data. Case-attribute refers to how you normally see people feed models
with various “cases,” which can refer to people or events—each of
which have various “attributes,” which can refer to age, or operating
system, or search histories.
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Modeling with case-attribute data started in the 1930s with early mar‐
ket research, and it was soon being applied to marketing as well as
politics.

Kelly points out that there’s been a huge bias toward modeling with
case-attribute data. One explanation for this bias is that it’s easy to store
case-attribute data in databases, or because it’s easy to collect this kind
of data. In any case, Kelly thinks it’s missing the point of the many of
the questions we are trying to answer.

He mentioned Paul Lazarsfeld and Elihu Katz, two trailblazing soci‐
ologists who came here from Europe and developed the field of social
network analysis, an approach based not only on individual people but
also the relationships between them.

To get an idea of why network analysis is sometimes superior to case-
attribute data analysis, think about the following example. The federal
government spent money to poll people in Afghanistan. The idea was
to see what citizens want in order to anticipate what’s going to happen
in the future. But, as Kelly points out, what’ll happen isn’t a simple
function of what individuals think; instead, it’s a question of who has
the power and what they think.

Similarly, imagine going back in time and conducting a scientific poll
of the citizenry of Europe in 1750 to determine the future politics. If
you knew what you were doing you’d be looking at who was marrying
whom among the royalty.

In some sense, the current focus on case-attribute data is a problem of
looking for something “under the streetlamp”—a kind of observatio‐
nal bias wherein people are used to doing things a certain (often easier)
way so they keep doing it that way, even when it doesn’t answer the
questions they care about.

Kelly claims that the world is a network much more than it’s a bunch
of cases with attributes. If you only understand how individuals be‐
have, how do you tie things together?

Social Network Analysis
Social network analysis comes from two places: graph theory, where
Euler solved the Seven Bridges of Konigsberg problem, and sociome‐
try, started by Jacob Moreno in the 1970s, a time when early computers
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were getting good at making large-scale computations on large
datasets.

Social network analysis was germinated by Harrison White, professor
emeritus at Columbia, contemporaneously with Columbia sociologist
Robert Merton. Their idea was that people’s actions have to be related
to their attributes, but to really understand them you also need to look
at the networks (aka systems) that enable them to do something.

How do we bring that idea to our models? Kelly wants us to consider
what he calls the micro versus macro, or individual versus systemic
divide: how do we bridge this divide? Or rather, how does this divide
get bridged in various contexts?

In the US, for example, we have formal mechanisms for bridging those
micro/macro divides, namely markets in the case of the “buying stuff ”
divide, and elections in the case of political divides. But much of the
world doesn’t have those formal mechanisms, although they often have
a fictive shadow of those things. For the most part, we need to know
enough about the actual social network to know who has the power
and influence to bring about change.

Terminology from Social Networks
The basic units of a network are called actors or nodes. They can be
people, or websites, or whatever “things” you are considering, and are
often indicated as a single dot in a visualization. The relationships
between the actors are referred to as relational ties or edges. For ex‐
ample, an instance of liking someone or being friends would be indi‐
cated by an edge. We refer to pairs of actors as dyads, and triplets of
actors as triads. For example, if we have an edge between node A and
node B, and an edge between node B and node C, then triadic closure
would be the existence of an edge between node A and node C.

We sometimes consider subgroups, also called subnetworks, which
consist of a subset of the whole set of actors, along with their relational
ties. Of course this means we also consider the group itself, which
means the entirety of a “network.” Note that this is a relatively easy
concept in the case of, say, the Twitter network, but it’s very hard in
the case of “liberals.”

We refer to a relation generally as a way of having relational ties be‐
tween actors. For example, liking another person is a relation, but so
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is living with someone. A social network is the collection of some set
of actors and relations.

There are actually a few different types of social networks. For exam‐
ple, the simplest case is that you have a bunch of actors connected by
ties. This is a construct you’d use to display a Facebook graph—any
two people are either friends or aren’t, and any two people can theo‐
retically be friends.

In bipartite graphs the connections only exist between two formally
separate classes of objects. So you might have people on the one hand
and companies on the other, and you might connect a person to a
company if she is on the board of that company. Or you could have
people and the things they’re possibly interested in, and connect them
if they really are.

Finally, there are ego networks, which is typically formed as “the part
of the network surrounding a single person.” For example, it could be
“the subnetwork of my friends on Facebook,” who may also know one
another in certain cases. Studies have shown that people with higher
socioeconomic status have more complicated ego networks, and you
can infer someone’s level of social status by looking at their ego
network.

Centrality Measures
The first question people often ask when given a social network is:
who’s important here?

Of course, there are different ways to be important, and the different
definitions that attempt to capture something like importance lead to
various centrality measures. We introduce here some of the commonly
used examples.

First, there’s the notion of degree. This counts how many people are
connected to you. So in Facebook parlance, this is the number of
friends you have.

Next, we have the concept of closeness: in words, if you are “close” to
everyone, you should have a high closeness score.

To be more precise, we need the notion of distance between nodes in
a connected graph, which in the case of a friend network means
everyone is connected with everyone else through some chain of mu‐
tual friends. The distance between nodes x and y, denoted by d x, y ,
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is simply defined as the length of the shortest path between the two
nodes. Now that you have this notation, you can define the closeness
of node x as the sum:

C x = ∑2−d x,y

where the sum is over all nodes y distinct from x.

Next, there’s the centrality measure called betweenness, which meas‐
ures the extent to which people in your network know each other
through you, or more precisely whether the shortest paths between
them go through you. The idea here is that if you have a high betwe‐
enness score, then information probably flows through you.

To make this precise, for any two nodes x and y in the same connected
part of a network, define σx,y  to be the number of shortest paths between
node x and node y, and define σx,y v  to be the number of shortest paths
between node x and node y that go through a third node v. Then the
betweenness score of v is defined as the sum:

B v = ∑ σx,y v
σx,y

where the sum is over all distinct pairs of nodes x and y that are distinct
from v.

The final centrality measure, which we will go into in detail in “Rep‐
resentations of Networks and Eigenvalue Centrality” on page 264 after
we introduce the concept of an incidence matrix, is called eigenvector
centrality. In words, a person who is popular with the popular kids has
high eigenvector centrality. Google’s PageRank is an example of such
a centrality measure.

The Industry of Centrality Measures
It’s important to issue a caveat on blindly applying the preceding cen‐
trality measures. Namely, the “measurement people” form an industry
in which everyone tries to sell themselves as the authority. But expe‐
rience tells us that each has their weaknesses and strengths. The main
thing is to know you’re looking at the right network or subnetwork.

For example, if you’re looking for a highly influential blogger in the
Muslim Brotherhood, and you write down the top 100 bloggers in
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some large graph of bloggers, and start on the top of the list, and go
down the list looking for a Muslim Brotherhood blogger, it won’t work:
you’ll find someone who is both influential in the large network and
who blogs for the Muslim Brotherhood, but they won’t be influential
with the Muslim Brotherhood, but rather with transnational elites in
the larger network. In other words, you have to keep in mind the local
neighborhood of the graph.

Another problem with centrality measures: experience dictates that
different contexts require different tools. Something might work with
blogs, but when you work with Twitter data, you’ll need to get out
something entirely different.

One reason is the different data, but another is the different ways peo‐
ple game centrality measures. For example, with Twitter, people create
5,000 Twitter bots that all follow one another and some strategically
selected other (real) people to make them look influential by some
measure (probably eigenvector centrality). But of course this isn’t ac‐
curate; it’s just someone gaming the measures.

Some network packages exist already and can compute the various
centrality measures mentioned previously. For example, see NetworkX
or igraph if you use Python, or statnet for R, or NodeXL, if you prefer
Excel, and finally keep an eye out for a forthcoming C package from
Jure Leskovec at Stanford. 

Thought Experiment
You’re part of an elite, well-funded think tank in DC. You can hire
people and you have $10 million to spend. Your job is to empirically
predict the future political situation of Egypt. What kinds of political
parties will there be? What is the country of Egypt going to look like
in 5, 10, or 20 years? You have access to exactly two of the following
datasets for all Egyptians: the Facebook or Twitter network, a complete
record of who went to school with who, the text or phone records of
everyone, everyone’s addresses, or the network data on members of
all formal political organizations and private companies.

Before you decide, keep in mind that things change over time—people
might migrate off of Facebook, or political discussions might need to
go underground if blogging is too public. Also, Facebook alone gives
a lot of information, but sometimes people will try to be stealthy—
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maybe the very people you are most interested in keeping tabs on.
Phone records might be a better representation for that reason.

If you think this scenario is ambitious, you should know it’s already
being done. For example, Siemens from Germany sold Iran software
to monitor their national mobile networks. In fact, governments are,
generally speaking, putting more energy into loading the field with
their allies, and less with shutting down the field: Pakistan hires Amer‐
icans to do their pro-Pakistan blogging, and Russians help Syrians.

One last point: you should consider changing the standard direction
of your thinking. A lot of the time people ask, what can we learn from
this or that data source? Instead, think about it the other way around:
what would it mean to predict politics in a society? And what kind of
data do you need to know to do that?

In other words, figure out the questions first, and then look for the
data to help answer them.

Morningside Analytics
Kelly showed us a network map of 14 of the world’s largest blogo‐
spheres. To understand the pictures, you imagine there’s a force, like
a wind, which sends the nodes (blogs) out to the edge, but then there’s
a counteracting force, namely the links between blogs, which attach
them together. Figure 10-1 shows an example of the Arabic blogo‐
sphere.

The different colors represent countries and clusters of blogs. The size
of each dot is centrality through degree, i.e., the number of links to
other blogs in the network. The physical structure of the blogosphere
can give us insight.

If we analyze text using natural language processing (NLP), thinking
of the blog posts as a pile of text or a river of text, then we see the micro
or macro picture only—we lose the most important story. What’s
missing there is social network analysis (SNA), which helps us map
and analyze the patterns of interaction. The 12 different international
blogospheres, for example, look different. We can infer that different
societies have different interests, which give rise to different patterns.

But why are they different? After all, they’re representations of some
higher dimensional thing projected onto two dimensions. Couldn’t it
be just that they’re drawn differently? Yes, but we can do lots of text
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Figure 10-1. Example of the Arabic blogosphere

analysis that convinces us these pictures really are showing us some‐
thing. We put an effort into interpreting the content qualitatively.

So, for example, in the French blogosphere, we see a cluster that dis‐
cusses gourmet cooking. In Germany we see various clusters discus‐
sing politics and lots of crazy hobbies. In English blogs we see two big
clusters [Cathy/mathbabe interjects: gay porn and straight porn?].
They turn out to be conservative versus liberal blogs.

In Russia, their blogging networks tend to force people to stay within
the networks, which is why we see very well-defined, partitioned
clusters.

The proximity clustering is done using the Fruchterman-Reingold al‐
gorithm, where being in the same neighborhood means your neigh‐
bors are connected to other neighbors, so really it reflects a collective
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phenomenon of influence. Then we interpret the segments.
Figure 10-2 shows an example of English language blogs.

Figure 10-2. English language blogs

How Visualizations Help Us Find Schools of Fish
Social media companies are each built around the fact that they either
have the data or they have a toolkit—a patented sentiment engine or
something, a machine that goes ping. Keep in mind, though, that social
media is heavily a product of organizations that pay to move the needle
—that is, that game the machine that goes ping. To believe what you
see, you need to keep ahead of the game, which means you need to
decipher that game to see how it works. That means you need to
visualize.

Example: if you are thinking about elections, look at people’s blogs
within “moms” or “sports fans.” This is more informative than looking
at partisan blogs where you already know the answer.

Here’s another example: Kelly walked us through an analysis, after
binning the blogosphere into its segments, of various types of links to
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partisan videos like MLK’s “I Have a Dream” speech, and a video from
the Romney campaign. In the case of the MLK speech, you see that it
gets posted in spurts around the election cycle events all over the blo‐
gosphere, but in the case of the Romney campaign video, you see a
concerted effort by conservative bloggers to post the video in unison.

That is to say, if you were just looking at a histogram of links—a pure
count—it might look as if the Romney video had gone viral, but if you
look at it through the lens of the understood segmentation of the blo‐
gosphere, it’s clearly a planned operation to game the “virality”
measures.

Kelly also works with the Berkman Center for Internet and Society at
Harvard. He analyzed the Iranian blogosphere in 2008 and again in
2011, and he found much the same in terms of clustering—young anti-
government democrats, poetry (an important part of Iranian culture),
and conservative pro-regime clusters dominated in both years.

However, only 15% of the blogs are the same from 2008 to 2011.

So, whereas people are often concerned about individuals (the case-
attribute model), the individual fish are less important than the schools
of fish. By doing social network analysis, we are looking for the schools,
because that way we learn about the salient interests of the society and
how those interests are stable over time.

The moral of this story is that we need to focus on meso-level patterns,
not micro- or macro-level patterns.

More Background on Social Network Analysis
from a Statistical Point of View
One way to start with SNA is to think about a network itself as a ran‐
dom object, much like a random number or random variable. The
network can be conceived of as the result of a random process or as
coming from an underlying probability distribution. You can in fact
imagine a sample of networks, in which case you can ask questions
like: What characterizes networks that might conceivably be Twitter-
like? Could a given network reflect real-world friendships? What
would it even mean to say yes or no to this question?

These are some of the basic questions in the discipline of social net‐
work analysis, which has emerged from academic fields such as math,
statistics, computer science, physics, and sociology, with far-ranging
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applications in even more fields including fMRI research, epidemiol‐
ogy, and studies of online social networks such as Facebook or
Google+.

Representations of Networks and Eigenvalue Centrality
In some networks, the edges between nodes are directed: I can follow
you on Twitter when you don’t follow me, so there will be an edge from
me to you. But other networks have only symmetric edges: we either
know each other or don’t. These latter types of networks are called
undirected.

An undirected network with N nodes can be represented by an N × N
matrix comprised of 1s and 0s, where the (i, j)th element in the matrix
is a 1 if and only if nodes i and j are connected. This matrix is known
as an adjacency matrix, or incidence matrix. Note that we can actually
define this for directed networks too, but for undirected networks, the
matrix is always symmetric.

Alternatively, a network can be represented by a list of lists: for each
node i, we list the nodes to which node i is connected. This is known
as an incidence list, and note that it doesn’t depend on the network
being undirected. Representing the network this way saves storage
space—the nodes can have attributes represented as a vector or list.
For example, if the nodes are people, the attributes could be demo‐
graphic information or information about their behavior, habits, or
tastes.

The edges themselves can also have values, or weights/vectors, which
could capture information about the nature of the relationship be‐
tween the nodes they connect. These values could be stored in the
N × N matrix, in place of the 1s and 0s that simply represent the pres‐
ence or not of a relationship.

Now with the idea of an adjacency matrix A in mind, we can finally
define eigenvalue centrality, which we first mentioned in “Centrality
Measures” on page 257. It is compactly defined as the unique vector
solution x to the equation:

Ax = λx

such that
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xi > 0, i = 1⋯N

As it turns out, that last condition is equivalent to choosing the largest
eigenvalue λ. So for an actual algorithm, find the roots of the equation
det A− tI  and order them by size, grabbing the biggest one and calling
it λ. Then solve for x by solving the system of equations:

A− λI x = 0

Now we have x, the vector of eigenvector centrality scores.

Note this doesn’t give us much of a feel for eigenvalue centrality, even
if it gives us a way to compute it. You can get that feel by thinking about
it as the limit of a simple iterative scheme—although it requires proof,
which you can find, for example, here.

Namely, start with a vector whose entries are just the degrees of the
nodes, perhaps scaled so that the sum of the entries is 1. The degrees
themselves aren’t giving us a real understanding of how interconnec‐
ted a given node is, though, so in the next iteration, add the degrees
of all the neighbors of a given node, again scaled. Keep iterating on
this, adding degrees of neighbors one further step out each time. In
the limit as this iterative process goes on forever, we’ll get the eigen‐
value centrality vector.

A First Example of Random Graphs: The Erdos-Renyi
Model
Let’s work out a simple example where a network can be viewed as a
single realization of an underlying stochastic process. Namely, where
the existence of a given edge follows a probability distribution, and all
the edges are considered independently.
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Say we start with N nodes. Then there are D = N
2  pairs of nodes, or

dyads, which can either be connected by an (undirected) edge or not.
Then there are 2D possible observed networks. The simplest under‐
lying distribution one can place on the individual edges is called the
Erdos-Renyi model, which assumes that for every pair of nodes i, j ,
an edge exists between the two nodes with probability p.

The Bernoulli Network
Not all networks with N nodes occur with equal probability under
this model: observing a network with all nodes attached to all other
nodes has probability pD, while observing a network with all nodes
disconnected has probability 1− p D. And of course there are many
other possible networks between these two extremes. The Erdos-
Renyi model is also known as a Bernoulli network. In the mathematics
literature, the Erdos-Renyi model is treated as a mathematical object
with interesting properties that allow for theorems to be proved.

A Second Example of Random Graphs: The Exponential
Random Graph Model
Here’s the bad news: social networks that can be observed in the real
world tend not to resemble Bernoulli networks. For example, friend‐
ship networks or academic collaboration networks commonly exhibit
characteristics such as transitivity (the tendency, when A knows B and
B knows C, that A knows C), clustering (the tendency for more or less
well-defined smallish groups to exist with larger networks), reci‐
procity or mutuality (in a directed network, the tendency for A to
follow B if B follows A), and betweenness (the tendency for there to
exist special people through whom information flows).

Some of these observed properties of real-world networks are pretty
simple to translate into mathematical language. For example, transi‐
tivity can be captured by the number of triangles in a network.

Exponential random graph models (ERGMs) are an approach to cap‐
ture these real-world properties of networks, and they are commonly
used within sociology.

The general approach for ERGMs is to choose pertinent graph statistics
like the number of triangles, the number of edges, and the number of
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2-stars (subgraphs consisting of a node with two spokes—so a node
with degree 3 has three 2-stars associated to it) given the number of
nodes, and have these act as variables zi of your model, and then tweak
the associated coefficients θi to get them tuned to a certain type of
behavior you observe or wish to simulate. If z1 refers to the number
of triangles, then a positive value for θ1 would indicate a tendency
toward a larger number of triangles, for example.

Additional graph statistics that have been introduced include k-stars
(subgraphs consisting of a node with k spokes—so a node with degree
k +1 has k +1 k-stars associated with it), degree, or alternating k-
stars, an aggregation statistics on the number of k-stars for various k.
Let’s give you an idea of what an ERGM might look like formula-wise:

Pr Y = y = 1
κ θ1z1 y +θ2z2 y +θ3z3 y

Here we’re saying that the probability of observing one particular re‐
alization of a random graph or network, Y , is a function of the graph
statistics or properties, which we just described as denoted by zi.

In this framework, a Bernoulli network is a special case of an ERGM,
where we only have one variable corresponding to number of edges.

Inference for ERGMs
Ideally—though in some cases unrealistic in practice—one could ob‐
serve a sample of several networks, Y1, ...,Yn, each represented by their
adjacency matrices, say for a fixed number N of nodes.

Given those networks, we could model them as independent and
identically distributed observations from the same probability model.
We could then make inferences about the parameters of that model.

As a first example, if we fix a Bernoulli network, which is specified by
the probability p of the existence of any given edge, we can calculate
the likelihood of any of our sample networks having come from that
Bernoulli network as

L = ∏i
n pdi 1− p D−di

where di is the number of observed edges in the ith network and D is
the total number of dyads in the network, as earlier. Then we can back
out an estimator for p as follows:
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p =
∑ i=1

n di
nD

In practice in the ERGM literature, only one network is observed,
which is to say we work with a sample size of one. From this one example
we estimate a parameter for the probability model that “generated”
this network. For a Bernoulli network, from even just one network,
we could estimate p as the proportion of edges out of the total number
of dyads, which seems a reasonable estimate.

But for more complicated ERGMs, estimating the parameters from
one observation of the network is tough. If it’s done using something
called a pseudo-likelihood estimation procedure, it sometimes pro‐
duces infinite values (see Mark Handcock’s 2003 paper, “Assessing
Degeneracy of Statistical Models of Social Networks”). If it’s instead
done using something called MCMC methods, it suffers from some‐
thing called inferential degeneracy, where the algorithms converge to
degenerate graphs—graphs that are complete or empty—or the algo‐
rithm does not converge consistently (also covered in Handcock’s
paper).

Further examples of random graphs: latent space models, small-world
networks
Motivated by problems of model degeneracy and instability in expo‐
nential random graph models, researchers introduced latent space
models (see Peter Hoff ’s “Latent Space Approaches to Social Network
Analysis”).

Latent space models attempt to address the following issue: we observe
some reality, but there is some corresponding latent reality that we
cannot observe. So, for example, we may observe connections between
people on Facebook, but we don’t observe where those people live, or
other attributes that make them have a tendency to befriend each other.

Other researchers have proposed small-world networks (see the Watts
and Strogatz model proposed in their 1998 paper), which lie on a
spectrum between completely random and completely regular graphs
and attempt to capture the real-world phenomenon of six degrees of
separation. A criticism of this model is that it produces networks that
are homogeneous in degree, whereas observable real-world networks
tend to be scale-free and inhomogeneous in degree.
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In addition to the models just described, other classes of models in‐
clude Markov random fields, stochastic block models, mixed mem‐
bership models, and stochastic block mixed membership models—
each of which model relational data in various ways, and seek to
include properties that other models do not. (See, for example, the
paper “Mixed Membership Stochastic Block Models” by Edoardo Air‐
oli, et al.)

Here are some textbooks for further reading:

• Networks, Crowds, and Markets (Cambridge University Press) by
David Easley and Jon Kleinberg at Cornell’s computer science de‐
partment.

• Chapter on Mining Social-Network graphs in the book Mining
Massive Datasets (Cambridge University Press) by Anand Ra‐
jaraman, Jeff Ullman, and Jure Leskovec in Stanford’s computer
science department.

• Statistical Analysis of Network Data (Springer) by Eric D. Kolaz‐
cyk at Boston University.

Data Journalism
Our second speaker of the night was Jon Bruner, an editor at O’Reilly
who previously worked as the data editor at Forbes. He is broad in his
skills: he does research and writing on anything that involves data.

A Bit of History on Data Journalism
Data journalism has been around for a while, but until recently,
computer-assisted reporting was a domain of Excel power users. (Even
now, if you know how to write an Excel program, you’re an elite.)

Things started to change recently: more data became available to us
in the form of APIs, new tools, and less expensive computing power
—so almost anyone can analyze pretty large datasets on a laptop. Pro‐
gramming skills are now widely enough held so that you can find
people who are both good writers and good programmers. Many peo‐
ple who are English majors know enough about computers to get by;
or on the flip side, you’ll find computer science majors who can write.

In big publications like the New York Times, the practice of data jour‐
nalism is divided into fields: graphics versus interactive features,
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research, database engineers, crawlers, software developers, and
domain-expert writers. Some people are in charge of raising the right
questions but hand off to others to do the analysis. Charles Duhigg at
the New York Times, for example, studied water quality in New York,
and got a Freedom of Information Act request to the State of New York
—he knew enough to know what would be in that FOIA request and
what questions to ask, but someone else did the actual analysis.

At a smaller organization, things are totally different. Whereas the
New York Times has 1,000 people on its newsroom “floor,” The Econ‐
omist has maybe 130, and Forbes has 70 or 80 people in its newsrooms.
If you work for anything besides a national daily, you end up doing
everything by yourself: you come up with a question, you go get the
data, you do the analysis, then you write it up. (Of course, you can also
help and collaborate with your colleagues when possible.)

Writing Technical Journalism: Advice from an Expert
Jon was a math major in college at the University of Chicago, after
which he took a job writing at Forbes, where he slowly merged back
into quantitative work. For example, he found himself using graph
theoretic tools when covering contributions of billionaires to politi‐
cians.

He explained the term “data journalism” to the class by way of ex‐
plaining his own data scientist profile.

First of all, it involved lots of data visualization, because it’s a fast way
of describing the bottom line of a dataset. Computer science skills are
pretty important in data journalism, too. There are tight deadlines,
and the data journalist has to be good with their tools and with messy
data—because even federal data is messy. One has to be able to handle
arcane formats, and often this means parsing stuff in Python. Jon
himself uses JavaScript, Python, SQL, and MongoDB, among other
tools.

Statistics, Bruno says, informs the way you think about the world. It
inspires you to write things: e.g., the average person on Twitter is a
woman with 250 followers, but the median person has 0 followers—
the data is clearly skewed. That’s an inspiration right there for a story.

Bruno admits to being a novice in the field of machine learning. How‐
ever, he claims domain expertise as critical in data journalism: with
exceptions for people who can specialize in one subject, say at a
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governmental office or a huge daily, for a smaller newspaper you need
to be broad, and you need to acquire a baseline layer of expertise
quickly.

Of course communications and presentations are absolutely huge for
data journalists. Their fundamental skill is translation: taking com‐
plicated stories and deriving meaning that readers will understand.
They also need to anticipate questions, turn them into quantitative
experiments, and answer them persuasively.

Here’s advice from Jon for anyone initiating a data journalism project:
don’t have a strong thesis before you interview the experts. Go in with
a loose idea of what you’re searching for and be willing to change your
mind and pivot if the experts lead you in a new and interesting direc‐
tion. Sounds kind of like exploratory data analysis!
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CHAPTER 11

Causality

Many of the models and examples in the book so far have been focused
on the fundamental problem of prediction. We’ve discussed examples
like in Chapter 8, where your goal was to build a model to predict
whether or not a person would be likely to prefer a certain item—a
movie or a book, for example. There may be thousands of features that
go into the model, and you may use feature selection to narrow those
down, but ultimately the model is getting optimized in order to get
the highest accuracy. When one is optimizing for accuracy, one doesn’t
necessarily worry about the meaning or interpretation of the features,
and especially if there are thousands of features, it’s well-near impos‐
sible to interpret at all.

Additionally, you wouldn’t even want to make the statement that cer‐
tain characteristics caused the person to buy the item. So, for example,
your model for predicting or recommending a book on Amazon could
include a feature “whether or not you’ve read Wes McKinney’s O’Reilly
book Python for Data Analysis.” We wouldn’t say that reading his book
caused you to read this book. It just might be a good predictor, which
would have been discovered and come out as such in the process of
optimizing for accuracy. We wish to emphasize here that it’s not simply
the familiar correlation-causation trade-off you’ve perhaps had drilled
into your head already, but rather that your intent when building such
a model or system was not even to understand causality at all, but
rather to predict. And that if your intent were to build a model that
helps you get at causality, you would go about that in a different way.

A whole different set of real-world problems that actually use the same
statistical methods (logistic regression, linear regression) as part of the

273

www.it-ebooks.info

http://www.it-ebooks.info/


building blocks of the solution are situations where you do want to
understand causality, when you want to be able to say that a certain
type of behavior causes a certain outcome. In these cases your men‐
tality or goal is not to optimize for predictive accuracy, but rather to
be able to isolate causes.

This chapter will explore the topic of causality, and we have two experts
in this area as guest contributors, Ori Stitelman and David Madigan.
Madigan’s bio will be in the next chapter and requires this chapter as
background. We’ll start instead with Ori, who is currently a data sci‐
entist at Wells Fargo. He got his PhD in biostatistics from UC Berkeley
after working at a litigation consulting firm. As part of his job, he
needed to create stories from data for experts to testify at trial, and he
thus developed what he calls “data intuition” from being exposed to
tons of different datasets.

Correlation Doesn’t Imply Causation
One of the biggest statistical challenges, from both a theoretical and
practical perspective, is establishing a causal relationship between two
variables. When does one thing cause another? It’s even trickier than
it sounds.

Let’s say we discover a correlation between ice cream sales and bathing
suit sales, which we display by plotting ice cream sales and bathing suit
sales over time in Figure 11-1.

This demonstrates a close association between these two variables, but
it doesn’t establish causality. Let’s look at this by pretending to know
nothing about the situation. All sorts of explanations might work here.
Do people find themselves irrestistably drawn toward eating ice cream
when they wear bathing suits? Do people change into bathing suits
every time they eat ice cream? Or is there some third thing (like hot
weather) which we haven’t considered that causes both? Causal infer‐
ence is the field that deals with better understanding the conditions
under which association can be interpreted as causality.

Asking Causal Questions
The natural form of a causal question is: What is the effect of x on y?

Some examples are: “What is the effect of advertising on customer be‐
havior?” or “What is the effect of drug on time until viral failure?” or
in the more general case, “What is the effect of treatment on outcome?”
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Figure 11-1. Relationship between ice cream sales and bathing suit
sales

The terms “treated” and “untreated” come from the biosta‐
tistics, medical, and clinical trials realm, where patients are
given a medical treatment, examples of which we will en‐
counter in the next chapter. The terminology has been adop‐
ted by the statistical and social science literature.

It turns out estimating causal parameters is hard. In fact, the effec‐
tiveness of advertising is almost always considered a moot point be‐
cause it’s so hard to measure. People will typically choose metrics of
success that are easy to estimate but don’t measure what they want,
and everyone makes decisions based on them anyway because it’s eas‐
ier. But they have real negative effects. For example, marketers end up
being rewarded for selling stuff to people online who would have
bought something anyway.

Confounders: A Dating Example
Let’s look at an example from the world of online dating involving a
lonely guy named Frank. Say Frank is perusing a dating website and
comes upon a very desirable woman. He wants to convince her to go
out with him on a date, but first he needs to write an email that will
get her interested. What should he write in his email to her? Should
he tell her she is beautiful? How do we test that with data?
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Let’s think about a randomized experiment Frank could run. He could
select a bunch of beautiful women, and half the time, randomly, tell
them they’re beautiful. He could then see the difference in response
rates between the two groups.

For whatever reason, though, Frank doesn’t do this—perhaps he’s too
much of a romantic—which leaves us to try to work out whether saying
a woman is beautiful is a good move for Frank. It’s on us to get Frank
a date.

If we could, we’d understand the future under two alternative realities:
the reality where he sends out the email telling a given woman she’s
beautiful and the reality where he sends an email but doesn’t use the
word beautiful. But only one reality is possible. So how can we pro‐
ceed?

Let’s write down our causal question explicitly: what is the effect of
Frank telling a woman she’s beautiful on him getting a positive
response?

In other words, the “treatment” is Frank’s telling a woman she’s beau‐
tiful over email, and the “outcome” is a positive response in an email,
or possibly no email at all. An email from Frank that doesn’t call the
recipient of the email beautiful would be the control for this study.

There are lots of things we’re not doing here that we might
want to try. For example, we’re not thinking about Frank’s
attributes. Maybe he’s a really weird unattractive guy that no
woman would want to date no matter what he says, which
would make this a tough question to solve. Maybe he can’t
even spell “beautiful.” Conversely, what if he’s gorgeous and/
or famous and it doesn’t matter what he says? Also, most
dating sites allow women to contact men just as easily as men
contact women, so it’s not clear that our definitions of “treat‐
ed” and “untreated” are well-defined. Some women might
ignore their emails but spontaneously email Frank anyway.

OK Cupid’s Attempt
As a first pass at understanding the impact of word choice on response
rates, the online dating site OK Cupid analyzed over 500,000 first
contacts on its site. They looked at keywords and phrases, and how
they affected reply rates, shown in Figure 11-2.
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Figure 11-2. OK Cupid’s attempt to demonstrate that using the word
“beautiful” in an email hurts your chances of getting a response

The y-axis shows the response rate. On average the response rate
across all emails was ~32%. They then took the subset of emails that
included a certain word such as “beautiful” or “awesome,” and looked
at the response rate for those emails. Writing this in terms of condi‐
tional probabilities, we would say they were estimating these:
P(response) = 0.32 vs P(response|"beautiful”) = 0.22.

One important piece of information missing in this plot is
the bucket sizes. How many first contacts contained each of
the words? It doesn’t really change things, except it would
help in making it clear that the horizontal line at 32% is a
weighted average across these various buckets of emails.

They interpreted this graph and created a rule called “Avoid Physical
Compliments.” They discussed this in the blog post “Exactly what to
say on a first message” with the following explanation: “You might
think that words like gorgeous, beautiful, and sexy are nice things to
say to someone, but no one wants to hear them. As we all know, people
normally like compliments, but when they’re used as pick-up lines,
before you’ve even met in person, they inevitably feel… ew. Besides,
when you tell a woman she’s beautiful, chances are you’re not.”
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This isn’t an experiment, but rather an observational study, which we’ll
discuss more later but for now means we collect data as it naturally
occurs in the wild. Is it reasonable to conclude from looking at this
plot that adding “awesome” to an email increases the response rate, or
that “beautiful” decreases the response rate?

Before you answer that, consider the following three things.

First, it could say more about the person who says “beautiful” than the
word itself. Maybe they are otherwise ridiculous and overly sappy?
Second, people may be describing themselves as beautiful, or some
third thing like the world we live in.

These are both important issues when we try to understand
population-wide data such as in the figure, because they address the
question of whether having the word “beautiful” in the body of the
email actually implies what we think it does. But note that both of those
issues, if present, are consistently true for a given dude like Frank try‐
ing to get a date. So if Frank is sappy, he’s theoretically equally sappy
to all the women he writes to, which makes it a consistent experiment,
from his perspective, to decide whether or not to use the word “beau‐
tiful” in his emails.

The third and most important issue to consider, because it does not
stay consistent for a given dude, is that the specific recipients of emails
containing the word “beautiful” might be special: for example, they
might get tons of email, and only respond to a few of them, which
would make it less likely for Frank to get any response at all.

In fact, if the woman in question is beautiful (let’s pretend that’s a well-
defined term), that fact affects two separate things at the same time.
Both whether Frank uses the word “beautiful” or not in his email, and
the outcome, i.e., whether Frank gets a response. For this reason, the
fact that the woman is beautiful qualifies as a confounder; in other
words, a variable that influences or has a causal effect on both the
treatment itself as well as the outcome.

Let’s be honest about what this plot actually shows versus what OK
Cupid was implying it showed. It shows the observed response rate
for emails that contained the given words. It should not be used and
cannot correctly be interpreted as a prescription or suggestion for how
to construct an email to get a response because after adjusting for
confounders, which we’ll discuss later in the chapter, using the word
“beautiful” could be the best thing we could do. We can’t say for sure
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because we don’t have the data, but we’ll describe what data we’d need
and how we’d analyze it to do this study properly. Their advice might
be correct, but the plot they showed does not back up this advice.

The Gold Standard: Randomized Clinical Trials
So what do we do? How do people ever determine causality?

The gold standard for establishing causality is the randomized ex‐
periment. This a setup whereby we randomly assign some group of
people to receive a “treatment” and others to be in the “control” group
—that is, they don’t receive the treatment. We then have some outcome
that we want to measure, and the causal effect is simply the difference
between the treatment and control group in that measurable outcome.
The notion of using experiments to estimate causal effects rests on the
statistical assumption that using randomization to select two groups
has created “identical” populations from a statistical point of view.

Randomization works really well: because we’re flipping coins, all oth‐
er factors that might be confounders (current or former smoker, say)
are more or less removed, because we can guarantee that smokers will
be fairly evenly distributed between the two groups if there are enough
people in the study.

The truly brilliant thing about randomization is that randomization
matches well on the possible confounders we thought of, but will also
give us balance on the 50 million things we didn’t think of.

So, although we can algorithmically find a better split for the ones we
thought of, that quite possibly wouldn’t do as well on the other things.
That’s why we really do it randomly, because it does quite well on things
we think of and things we don’t.

But there’s bad news for randomized clinical trials as well, as we poin‐
ted out earlier. First off, it’s only ethically feasible if there’s something
called clinical equipoise, which means the medical community really
doesn’t know which treatment is better. If we know treating someone
with a drug will be better for them than giving them nothing, we can’t
randomly not give people the drug.

For example, if we want to tease out the relationship between smoking
and heart disease, we can’t randomly assign someone to smoke, be‐
cause it’s known to be dangerous. Similarly, the relationship between
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cocaine and birthweight is fraught with danger, as is the tricky rela‐
tionship between diet and mortality.

The other problem is that they are expensive and cumbersome. It takes
a long time and lots of people to make a randomized clinical trial work.
On the other hand, not doing randomized clinical trials can lead to
mistaken assumptions that are extremely expensive as well.

Sometimes randomized studies are just plain unfeasible. Let’s go back
to our OK Cupid example, where we have a set of observational data
and we have a good reason to believe there are confounders that are
screwing up our understanding of the effect size. As noted, the gold
standard would be to run an experiment, and while the OK Cupid
employees could potentially run an experiment, it would be unwise for
them to do so—randomly sending email to people telling them they
are “beautiful” would violate their agreement with their customers.

In conclusion, when they are possible, randomized clinical trials are
the gold standard for elucidating cause-and-effect relationships. It’s
just that they aren’t always possible.

Average Versus the Individual
Randomized clinical trials measure the effect of a certain drug aver‐
aged across all people. Sometimes they might bucket users to figure
out the average effect on men or women or people of a certain age,
and so on. But in the end, it still has averaged out stuff so that for a
given individual we don’t know what they effect would be on them.
There is a push these days toward personalized medicine with the
availability of genetic data, which means we stop looking at averages
because we want to make inferences about the one. Even when we
were talking about Frank and OK Cupid, there’s a difference between
conducting this study across all men versus Frank alone.

A/B Tests
In software companies, what we described as random experiments are
sometimes referred to as A/B tests. In fact, we found that if we said the
word “experiments” to software engineers, it implied to them “trying
something new” and not necessarily the underlying statistical design
of having users experience different versions of the product in order
to measure the impact of that difference using metrics. The concept is
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intuitive enough and seems simple. In fact, if we set up the infrastruc‐
ture properly, running an experiment can come down to writing a
short configuration file and changing just one parameter—be it a dif‐
ferent color or layout or underlying algorithm—that gives some users
a different experience than others. So, there are aspects of running A/B
tests in a tech company that make it much easier than in a clinical trial.
And there’s much less at stake in terms of the idea that we’re not dealing
with people’s lives. Other convenient things are there aren’t compli‐
ance issues, so with random clinical trials we can’t control whether
someone takes the drug or not, whereas online, we can control what
we show the user. But notice we said if we set up the experimental
infrastructure properly, and that’s a big IF.

It takes a lot of work to set it up well and then to properly analyze the
data. When different teams at a company are all working on new fea‐
tures of a product and all want to try out variations, then if you’re not
careful a single user could end up experiencing multiple changes at
once. For example, the UX team might change the color or size of the
font, or the layout to see if that increases click-through rate. While at
the same time the content ranking team might want to change the
algorithm that chooses what to recommend to users, and the ads team
might be making changes to their bidding system. Suppose the metric
you care about is return rate, and a user starts coming back more, and
you had them in three different treatments but you didn’t know that
because the teams weren’t coordinating with each other. Your team
might assume the treatment is the reason the user is coming back more,
but it might be the combination of all three.

There are various aspects of an experimental infrastructure that you
need to consider, which are described in much more detail in Over‐
lapping Experiment Infrastructure: More, Better, Faster Experimen‐
tation, a 2010 paper by Google employees Diane Tang, et al. See the
following sidebar for an excerpt from this paper.
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From “Overlapping Experiment Infrastructure: More,
Better, Faster Experimentation”

The design goals for our experiment infrastructure are therefore:
more, better, faster.
More

We need scalability to run more experiments simultaneously.
However, we also need flexibility: different experiments need
different configurations and different sizes to be able to measure
statistically significant effects. Some experiments only need to
change a subset of traffic, say Japanese traffic only, and need to
be sized appropriately. Other experiments may change all traffic
and produce a large change in metrics, and so can be run on less
traffic.

Better
Invalid experiments should not be allowed run on live traffic.
Valid but bad experiments (e.g., buggy or unintentionally pro‐
ducing really poor results) should be caught quickly and disabled.
Standardized metrics should be easily available for all experi‐
ments so that experiment comparisons are fair: two experiment‐
ers should use the same filters to remove robot traffic when
calculating a metric such as CTR.

Faster
It should be easy and quick to set up an experiment; easy enough
that a non-engineer can do so without writing any code. Metrics
should be available quickly so that experiments can be evaluated
quickly. Simple iterations should be quick to do. Ideally, the sys‐
tem should not just support experiments, but also controlled
ramp-ups, i.e., gradually ramping up a change to all traffic in a
systematic and well-understood way.

That experimental infrastructure has a large team working on it and
analyzing the results of the experiments on a full-time basis, so this is
nontrivial. To make matters more complicated, now that we’re in an
age of social networks, we can no longer assume that users are inde‐
pendent (which is part of the randomization assumption underlying
experiments). So, for example, Rachel might be in the treatment group
of an experiment Facebook is running (which is impossible because
Rachel isn’t actually on Facebook, but just pretend), which lets Rachel
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post some special magic kind of post, and Cathy might be in the control
group, but she still sees the special magic post, so she actually received
a different version of the treatment, so the experimental design must
take into account the underlying network structure. This is a nontrivial
problem and still an open research area.

Second Best: Observational Studies
While the gold standard is generally understood to be randomized
experiments or A/B testing, they might not always be possible, so we
sometimes go with second best, namely observational studies.

Let’s start with a definition:
An observational study is an empirical study in which the objective
is to elucidate cause-and-effect relationships in which it is not feasible
to use controlled experimentation.

Most data science activity revolves around observational data, al‐
though A/B tests, as you saw earlier, are exceptions to that rule. Most
of the time, the data you have is what you get. You don’t get to replay
a day on the market where Romney won the presidency, for example.

Designed studies are almost always theoretically better tests, as we
know, but there are plenty of examples where it’s unethical to run them.
Observational studies are done in contexts in which you can’t do de‐
signed experiments, in order to elucidate cause-and-effect.

In reality, sometimes you don’t care about cause-and-effect; you just
want to build predictive models. Even so, there are many core issues
in common with the two.

Simpson’s Paradox
There are all kinds of pitfalls with observational studies.

For example, look at the graph in Figure 11-3, where you’re finding a
best-fit line to describe whether taking higher doses of the “bad drug”
is correlated to higher probability of a heart attack.
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Figure 11-3. Probability of having a heart attack (also known as MI,
or myocardial infarction) as a function of the size of the dose of a bad
drug

It looks like, from this vantage point, the higher the dose, the fewer
heart attacks the patient has. But there are two clusters, and if you
know more about those two clusters, you find the opposite conclusion,
as you can see in Figure 11-4.

Figure 11-4. Probability of having a heart attack as a function of the
size of the dose of a bad drug and whether or not the patient also took
aspirin

284 | Chapter 11: Causality

www.it-ebooks.info

http://www.it-ebooks.info/


This picture was rigged, so the issue is obvious. But, of course, when
the data is multidimensional, you wouldn’t even always draw such a
simple picture.

In this example, we’d say aspirin-taking is a confounder. We’ll talk
more about this in a bit, but for now we’re saying that the aspirin-
taking or nonaspirin-taking of the people in the study wasn’t randomly
distributed among the people, and it made a huge difference in the
apparent effect of the drug.

Note that, if you think of the original line as a predictive model, it’s
actually still the best model you can obtain knowing nothing more
about the aspirin-taking habits or genders of the patients involved.
The issue here is really that you’re trying to assign causality.

It’s a general problem with regression models on observational data.
You have no idea what’s going on. As Madigan described it, “it’s the
Wild West out there.”

It could be the case that within each group there are males and females,
and if you partition by those, you see that the more drugs they take,
the better again. Because a given person either is male or female, and
either takes aspirin or doesn’t, this kind of thing really matters.

This illustrates the fundamental problem in observational studies: a
trend that appears in different groups of data disappears when these
groups are combined, or vice versa. This is sometimes called Simpson’s
Paradox.

The Rubin Causal Model
The Rubin causal model is a mathematical framework for under‐
standing what information we know and don’t know in observational
studies.

It’s meant to investigate the confusion when someone says something
like, “I got lung cancer because I smoked.” Is that true? If so, you’d have
to be able to support the statement, “If I hadn’t smoked, I wouldn’t
have gotten lung cancer,” but nobody knows that for sure.

Define Zi to be the treatment applied to unit i (0 = control, 1= treat‐
ment), Y i 1  to be the response for unit i if Zi = 1 and Y i 0  to be the
response for unit i if Zi = 0.

Then the unit level causal effect, the thing we care about, is
Y i 1 −Y i 0 , but we only see one of Y i 0  and Y i 1 .
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Example: Zi is 1 if I smoked, 0 if I didn’t (I am the unit). Y i 1  is 1 if I
got cancer and I smoked, and 0 if I smoked and didn’t get cancer.
Similarly Y i 0  is 1 or 0, depending on whether I got cancer while not
smoking. The overall causal effect on me is the difference
Y i 1 −Y i 0 . This is equal to 1 if I really got cancer because I smoked,
it’s 0 if I got cancer (or didn’t) independent of smoking, and it’s –1 if I
avoided cancer by smoking. But I’ll never know my actual value be‐
cause I only know one term out of the two.

On a population level, we do know how to infer that there are quite a
few “1"s among the population, but we will never be able to assign a
given individual that number.

This is sometimes called the fundamental problem of causal inference.

Visualizing Causality
We can represent the concepts of causal modeling using what is called
a causal graph.

Denote by W the set of all potential confounders. Note it’s a big as‐
sumption that we can take account of all of them, and we will soon see
how unreasonable this seems to be in epidemiology research in the
next chapter.

In our example with Frank, we have singled out one thing as a potential
confounder—the woman he’s interested in being beautiful—but if we
thought about it more we might come up with other confounders, such
as whether Frank is himself attractive, or whether he’s desperate, both
of which affect how he writes to women as well as whether they re‐
spond positively to him.

Denote by A the treatment. In our case the treatment is Frank’s using
the word “beautiful” in an introductory email. We usually assume this
to have a binary (0/1) status, so for a given woman Frank writes to,
we’d assign her a “1” if Frank uses the word “beautiful.” Just keep in
mind that if he says it’s beautiful weather, we’d be measuring counting
that as a “1” even though we’re thinking about him calling the woman
beautiful.

Denote by Y  the binary (0/1) outcome. We’d have to make this well-
defined, so, for example, we can make sure Frank asks the women he
writes to for their phone number, and we could define a positive out‐
come, denoted by “1,” as Frank getting the number. We’d need to make
this as precise as possible, so, for example, we’d say it has to happen in
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the OK Cupid platform within a week of Frank’s original email. Note
we’d be giving a “1” to women who ignore his emails but for some
separate reason send him an email with their number. It would also be
hard to check that the number isn’t fake.

The nodes in a causal graph are labeled by these sets of confounders,
treatment, and outcome, and the directed edges, or arrows, indicate
causality. In other words, the node the arrow is coming out of in some
way directly affects the node the arrow is going into.

In our case we have Figure 11-5.

Figure 11-5. Causal graph with one treatment, one confounder, and
one outcome

In the case of the OK Cupid example, the causal graph is the simplest
possible causal graph: one treatment, one confounder, and one out‐
come. But they can get much more complicated.

Definition: The Causal Effect
Let’s say we have a population of 100 people that takes some drug, and
we screen them for cancer. Say 30 of them get cancer, which gives them
a cancer rate of 0.30. We want to ask the question, did the drug cause
the cancer?

To answer that, we’d have to know what would’ve happened if they
hadn’t taken the drug. Let’s play God and stipulate that, had they not
taken the drug, we would have seen 20 get cancer, so a rate of 0.20. We
typically measure the increased risk of cancer as the difference of these
two numbers, and we call it the causal effect. So in this case, we’d say
the causal effect is 10%.
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The causal effect is sometimes defined as the ratio of these
two numbers instead of the difference.

But we don’t have God’s knowledge, so instead we choose another
population to compare this one to, and we see whether they get cancer
or not, while not taking the drug. Say they have a natural cancer rate
of 0.10. Then we would conclude, using them as a proxy, that the in‐
creased cancer rate is the difference between 0.30 and 0.10, so 20%.
This is of course wrong, but the problem is that the two populations
have some underlying differences that we don’t account for.

If these were the “same people,” down to the chemical makeup of each
others’ molecules, this proxy calculation would work perfectly. But of
course they’re not.

So how do we actually select these people? One technique is to use
what is called propensity score matching or modeling. Essentially what
we’re doing here is creating a pseudo-random experiment by creating
a synthetic control group by selecting people who were just as likely
to have been in the treatment group but weren’t. How do we do this?
See the word in that sentence, “likely”? Time to break out the logistic
regression. So there are two stages to doing propensity score modeling.
The first stage is to use logistic regression to model the probability of
each person’s likelihood to have received the treatment; we then might
pair people up so that one person received the treatment and the other
didn’t, but they had been equally likely (or close to equally likely) to
have received it. Then we can proceed as we would if we had a random
experiment on our hands.

For example, if we wanted to measure the effect of smoking on the
probability of lung cancer, we’d have to find people who shared the
same probability of smoking. We’d collect as many covariates of people
as we could (age, whether or not their parents smoked, whether or not
their spouses smoked, weight, diet, exercise, hours a week they work,
blood test results), and we’d use as an outcome whether or not they
smoked. We’d build a logistic regression that predicted the probability
of smoking. We’d then use that model to assign to each person the
probability, which would be called their propensity score, and then
we’d use that to match. Of course we’re banking on the fact that we
figured out and were able to observe all the covariates associated with
likelihood of smoking, which we’re probably not. And that’s the
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inherent difficulty in these methods: we’ll never know if we actually
adjusted for everything we needed to adjust for. However, one of the
nice aspects of them is we’ll see that when we do adjust for confound‐
ers, it can make a big difference in the estimated causal effect.

The details of setting of matching can be slightly more complicated
than just paired matching—there are more complex schemes to try to
create balance in the synthetic treatment and control group. And there
are packages in R that can do it all automatically for you, except you
must specify the model that you want to use for matching in the first
place to generate the propensity scores, and which variable you want
to be the outcome corresponding to the causal effect you are estimat‐
ing.

What kind of data would we need to measure the causal effect in our
dating example? One possibility is to have some third party, a me‐
chanical turk, for example, go through the dating profiles of the wom‐
en that Frank emails and label the ones that are beautiful. That way we
could see to what extent being beautiful is a confounder. This approach
is called stratification and, as we will see in the next chapter, it can
introduce problems as well as fix them.

Three Pieces of Advice
Ori took a moment to give three pieces of parting advice for best prac‐
tices when modeling.

First, when estimating causal parameters, it is crucial to understand
the data-generating methods and distributions, which will in turn in‐
volve gaining some subject matter knowledge. Knowing exactly how
the data was generated will also help you ascertain whether the as‐
sumptions you make are reasonable.

Second, the first step in a data analysis should always be to take a step
back and figure out what you want to know. Write it down carefully,
and then find and use the tools you’ve learned to answer those directly.
Later on be sure and come back to decide how close you came to an‐
swering your original question or questions. Sounds obvious, but
you’d be surprised how often people forget to do this.

Finally, don’t ignore the necessary data intuition when you make use
of algorithms. Just because your method converges, it doesn’t mean
the results are meaningful. Make sure you’ve created a reasonable nar‐
rative and ways to check its validity.
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CHAPTER 12

Epidemiology

The contributor for this chapter is David Madigan, professor and chair
of statistics at Columbia. Madigan has over 100 publications in such
areas as Bayesian statistics, text mining, Monte Carlo methods, phar‐
macovigilance, and probabilistic graphical models.

Madigan’s Background
Madigan went to college at Trinity College Dublin in 1980, and spe‐
cialized in math except for his final year, when he took a bunch of stats
courses, and learned a bunch about computers: Pascal, operating sys‐
tems, compilers, artificial intelligence, database theory, and rudimen‐
tary computing skills. He then worked in industry for six years, at both
an insurance company and a software company, where he specialized
in expert systems.

It was a mainframe environment, and he wrote code to price insurance
policies using what would now be described as scripting languages.
He also learned about graphics by creating a graphic representation of
a water treatment system. He learned about controlling graphics cards
on PCs, but he still didn’t know about data.

Next he got a PhD, also from Trinity College Dublin, and went into
academia, and became a tenured professor at the University of Wash‐
ington. That’s when machine learning and data mining started, which
he fell in love with: he was program chair of the KDD conference,
among other things. He learned C and Java, R, and S+. But he still
wasn’t really working with data yet.
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He claims he was still a typical academic statistician: he had computing
skills but no idea how to work with a large-scale medical database, 50
different tables of data scattered across different databases with dif‐
ferent formats.

In 2000 he worked for AT&T Labs. It was an “extreme academic en‐
vironment,” and he learned perl and did lots of stuff like web scraping.
He also learned awk and basic Unix skills.

He then went to an Internet startup where he and his team built a
system to deliver real-time graphics on consumer activity.

Since then he’s been working in big medical data stuff. He’s testified in
trials related to medical trials (the word “trial” is used here in two
different ways in this sentence), which was eye-opening for him in
terms of explaining what you’ve done: “If you’re gonna explain logistic
regression to a jury, it’s a different kind of a challenge than me standing
here tonight.” He claims that super simple graphics help.

Thought Experiment
We now have detailed, longitudinal medical data on tens of millions
of patients. What can we do with it?

To be more precise, we have tons of phenomenological data: this is
individual, patient-level medical record data. The largest of the data‐
bases has records on 80 million people: every prescription drug, every
condition ever diagnosed, every hospital or doctor’s visit, every lab
result, procedures, all timestamped.

But we still do things like we did in the Middle Ages; the vast majority
of diagnosis and treatment is done in a doctor’s brain. Can we do bet‐
ter? Can we harness these data to do a better job delivering medical
care?

This is a hugely important clinical problem, especially as a healthcare
insurer. Can we intervene to avoid hospitalizations?

So for example, there was a prize offered on Kaggle, called “Improve
Healthcare, Win $3,000,000.” It challenged people to accurately predict
who is going to go to the hospital next year. However, keep in mind
that they’ve coarsened the data for privacy reasons.

There are a lot of sticky ethical issues surrounding this 80 million
person medical record dataset. What nefarious things could we do
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with this data? Instead of helping people stay well, we could use such
models to gouge sick people with huge premiums, or we could drop
sick people from insurance altogether.

This is not a modeling question. It’s a question of what, as a society,
we want to do with our models.

Modern Academic Statistics
It used to be the case, say 20 years ago, according to Madigan, that
academic statisticians would either sit in their offices proving theo‐
rems with no data in sight—they wouldn’t even know how to run a t-
test—or sit around in their offices and dream up a new test, or a new
way of dealing with missing data, or something like that, and then
they’d look around for a dataset to whack with their new method. In
either case, the work of an academic statistician required no domain
expertise.

Nowadays things are different. The top stats journals are more deep
in terms of application areas, the papers involve deep collaborations
with people in social sciences or other applied sciences. Madigan sets
an example by engaging with the medical community.

Madigan went on to make a point about the modern machine learning
community, which he is or was part of: it’s a newish academic field,
with conferences and journals, etc., but from his perspective, it’s char‐
acterized by what statistics was 20 years ago: invent a method, try it
on datasets. In terms of domain expertise engagement, it’s a step back‐
ward instead of forward.

Not to say that statistics are perfect; very few academic statisticians
have serious hacking skills, with Madigan’s colleague Mark Hansen
being an unusual counterexample. In Madigan’s opinion, statisticians
should not be allowed out of school unless they have such skills.

Medical Literature and Observational Studies
As you may not be surprised to hear, medical journals are full of ob‐
servational studies. The results of these studies have a profound effect
on medical practice, on what doctors prescribe, and on what regulators
do.

For example, after reading the paper entitled “Oral bisphosphonates
and risk of cancer of oesophagus, stomach, and colorectum: case-
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control analysis within a UK primary care cohort” (by Jane Green, et
al.), Madigan concluded that we see the potential for the very same
kind of confounding problem as in the earlier example with aspirin.
The conclusion of the paper is that the risk of cancer increased with
10 or more prescriptions of oral bisphosphonates.

It was published on the front page of the New York Times, the study
was done by a group with no apparent conflict of interest, and the
drugs are taken by millions of people. But the results might well be
wrong and, indeed, were contradicted by later studies.

There are thousands of examples of this. It’s a major problem and
people don’t even get that it’s a problem.

Billions upon billions of dollars are spent doing medical studies, and
people’s lives depend on the results and the interpretations. We should
really know if they work.

Stratification Does Not Solve the Confounder
Problem
The field of epidemiology attempts to adjust for potential confound‐
ers. The bad news is that it doesn’t work very well. One reason is that
the methods most commonly used rely heavily on stratification, which
means partitioning the cases into subcases and looking at those. So,
for example, if they think gender is a confounder, they’d adjust for
gender in the estimator—a weighted average is one way of stratifying.

But there’s a problem here, too. Stratification could make the under‐
lying estimates of the causal effects go from good to bad, especially
when the experiment involves small numbers or when the populations
are not truly similar.

For example, say we have the situation shown in Table 12-1. Keep in
mind that we cannot actually “see” the two counterfactual middle col‐
umns.

Table 12-1. Aggregated: Both men and women
Treatment:
Drugged

Treatment:
Counterfactual

Control: Counterfactual Control: No Drug

Y=1 30 20 30 20

Y=0 70 80 70 80

P(Y=1) 0.3 0.2 0.3 0.2
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Here we have 100 people in both the treatment and control groups,
and in both the actual and counterfactual cases, we have a causal effect
of 0.3 – 0.2 = 0.1, or 10%.

But when we split this up by gender, we might introduce a problem,
especially as the numbers get smaller, as seen in Tables 12-2 and 12-3.

Table 12-2. Stratified: Men
Treatment:
Drugged

Treatment:
Counterfactual

Control: Counterfactual Control: No Drug

Y=1 15 2 5 5

Y=0 35 8 65 15

P(Y=1) 0.3 0.2 0.07 0.25

Table 12-3. Stratified: Women
Treatment:
Drugged

Treatment:
Counterfactual

Control: Counterfactual Control: No Drug

Y=1 15 18 25 15

Y=0 35 72 5 65

P(Y=1) 0.3 0.2 0.83 0.1875

Our causal estimate for men is 0.3 – 0.25 = 0.05, and for women is 0.3
– 0.1875 = 0.1125. A headline might proclaim that the drug has side
effects twice as strong for women as for men.

In other words, stratification doesn’t just solve problems. There are no
guarantees your estimates will be better if you stratify. In fact, you
should have very good evidence that stratification helps before you
decide to do it.

What Do People Do About Confounding Things in
Practice?
In spite of the raised objections, experts in this field essentially use
stratification as a major method to working through studies. They deal
with confounding variables, or rather variables they deem potentially
confounding, by stratifying with respect to them or make other sorts
of model-based adjustments, such as propensity score matching, for
example. So if taking aspirin is believed to be a potentially confounding
factor, they adjust or stratify with respect to it.
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For example, with this study, which studied the risk of venous throm‐
boembolism from the use of certain kinds of oral contraceptives, the
researchers chose certain confounders to worry about and concluded
the following:

After adjustment for length of use, users of oral contraceptives were
at least twice the risk of clotting compared with users of other kinds
of oral contraceptives.

This report was featured on ABC, and was a big deal. But wouldn’t you
worry about confounding issues like aspirin here? How do you choose
which confounders to worry about? Or, wouldn’t you worry that the
physicians who are prescribing them act different in different situa‐
tions, leading to different prescriptions? For example, might they give
the newer one to people at higher risk of clotting?

Another study came out about this same question and came to a dif‐
ferent conclusion, using different confounders. The researchers ad‐
justed for a history of clots, which makes sense when you think about
it. Altogether we can view this as an illustration of how, depending on
how one chooses to adjust for things, the outputs can vary wildly. It’s
starting to seem like a hit or miss methodology.

Another example is a study on oral bisphosphonates, where they ad‐
justed for smoking, alcohol, and BMI. How did they choose those
variables? In fact, there are hundreds of examples where two teams
made radically different choices on parallel studies.

Madigan and some coauthors tested this by giving a bunch of epi‐
demiologists the job to design five studies at a high level. There was a
low-level consistency. However, an additional problem is that lumi‐
naries of the field hear this and claim that they know the “right” way
to choose the confounders.

Is There a Better Way?
Madigan and his coauthors examined 50 studies, each of which cor‐
responds to a drug and outcome pair (e.g., antibiotics with GI bleed‐
ing). They ran about 5,000 analyses for every pair—namely, every
epistudy imaginable—and they did this all on nine different databases.

For example, they fixed the drug to be ACE inhibitors and the outcome
to be swelling of the heart. They ran the same analysis on the nine
different standard databases, the smallest of which has records of

296 | Chapter 12: Epidemiology

www.it-ebooks.info

http://goo.gl/3VgRi0
http://www.it-ebooks.info/


4,000,000 patients, and the largest of which has records of 80,000,000
patients.

In this one case, for one database, the drug triples the risk of heart
swelling; but for another database, it seems to have a six-fold increase
of risk. That’s one of the best examples, though, because at least it’s
always bad news, which means it’s consistent.

On the other hand, for 20 of the 50 pairs, you can go from statistically
significant in one direction to the other direction depending on the
database you pick. In other words, you can get whatever you want.
Figure 12-1 shows a picture, where the heart swelling example is at the
top.

Figure 12-1. Self-controlled case series

The choice of database is rarely discussed in published epi‐
demiology papers.

Next they did an even more extensive test, where they essentially tried
everything. In other words, every time there was a decision to be made,
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they did it both ways. The kinds of decisions they tweaked were of the
following types: which database you tested on, the confounders you
accounted for, and the window of time you cared about examining,
which refers to the situation where a patient has a heart attack a week
or a month after discontinuing a treatment and whether that is counted
in the study.

What they saw was that almost all the studies can get either side de‐
pending on the choices.

Let’s get back to oral bisphosphonates. A certain study concluded that
they cause esophageal cancer, but two weeks later, JAMA published a
paper on the same issue that concluded they are not associated with
elevated risk of esophageal cancer. And they were even using the same
database. This is not so surprising now for us.

Research Experiment (Observational Medical
Outcomes Partnership)
To address the issues directly, or at least bring to light the limitations
of current methods and results, Madigan has worked as a principal
investigator on the OMOP research program, making significant
contributions to the project’s methodological work including the de‐
velopment, implementation, and analysis of a variety of statistical
methods applied to various observational databases.

About OMOP, from Its Website
In 2007, recognizing that the increased use of electronic health re‐
cords (EHR) and availability of other large sets of marketplace health
data provided new learning opportunities, Congress directed the
FDA to create a new drug surveillance program to more aggressively
identify potential safety issues. The FDA launched several initiatives
to achieve that goal, including the well-known Sentinel program to
create a nationwide data network.

In partnership with PhRMA and the FDA, the Foundation for the
National Institutes of Health launched the Observational Medical
Outcomes Partnership (OMOP), a public-private partnership. This
interdisciplinary research group has tackled a surprisingly difficult
task that is critical to the research community’s broader aims:
identifying the most reliable methods for analyzing huge volumes of
data drawn from heterogeneous sources.
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Employing a variety of approaches from the fields of epidemiology,
statistics, computer science, and elsewhere, OMOP seeks to answer a
critical challenge: what can medical researchers learn from assessing
these new health databases, could a single approach be applied to
multiple diseases, and could their findings be proven? Success would
mean the opportunity for the medical research community to do
more studies in less time, using fewer resources and achieving more
consistent results. In the end, it would mean a better system for mon‐
itoring drugs, devices, and procedures so that the healthcare com‐
munity can reliably identify risks and opportunities to improve
patient care.

Madigan and his colleagues took 10 large medical databases, consist‐
ing of a mixture of claims from insurance companies and electronic
health records (EHR), covering records of 200 million people in all.
This is Big Data unless you talk to an astronomer.

They mapped the data to a common data model and then they imple‐
mented every method used in observational studies in healthcare. Al‐
together they covered 14 commonly used epidemiology designs adap‐
ted for longitudinal data. They automated everything in sight. More‐
over, there were about 5,000 different “settings” on the 14 methods.

The idea was to see how well the current methods do on predicting
things we actually already know.

To locate things they know, they took 10 old drug classes: ACE inhib‐
itors, beta blockers, warfarin, etc., and 10 outcomes of interest: renal
failure, hospitalization, bleeding, etc.

For some of these, the results are known. So, for example, warfarin is
a blood thinner and definitely causes bleeding. There were nine such
known bad effects.

There were also 44 known “negative” cases, where we are super con‐
fident there’s just no harm in taking these drugs, at least for these
outcomes.

The basic experiment was this: run 5,000 commonly used epidemio‐
logical analyses using all 10 databases. How well do they do at dis‐
criminating between reds and blues? Kind of like a spam filter test,
where one has training emails that are known spam, and one wants to
know how well the model does at detecting spam when it comes
through.
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Each of the models output the same thing: a relative risk (RR) [meas‐
ured by the causal effect estimate we talked about previously] and an
error.

Theirs was an attempt to empirically evaluate how well epidemiology
works, kind of the quantitative version of John Ioannidis’s work.

Why Hasn’t This Been Done Before?
There’s conflict of interest for epidemiology—why would
they want to prove their methods don’t work? Also, it’s ex‐
pensive: it cost 25 million dollars, which of course pales in
comparison to the money being put into these studies.

They bought all the data, made the methods work automatically, and
did a bunch of calculations in the Amazon cloud. The code is open
source. In the second version, they zeroed in on four particular out‐
comes and built the $25,000,000 so-called ROC curve shown in
Figure 12-2.

Figure 12-2. The $25,000,000 ROC curve

To understand this graph, we need to define a threshold, which we can
start with at 2. This means that if the relative risk is estimated to be
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above 2, we call it a “bad effect”; otherwise we call it a “good effect.”
The choice of threshold will, of course, matter.

If it’s high, say 10, then you’ll never see a 10, so everything will be
considered a good effect. Moreover, these are old drugs and wouldn’t
be on the market. This means your sensitivity will be low, and you
won’t find any real problem. That’s bad! You should find, for example,
that warfarin causes bleeding.

There’s of course good news too, with low sensitivity, namely a zero
false-positive rate.

What if you set the threshold really low, at –10? Then everything’s bad,
and you have a 100% sensitivity but very high false-positive rate.

As you vary the threshold from very low to very high, you sweep out
a curve in terms of sensitivity and false-positive rate, and that’s the
curve we see in the figure. There is a threshold (say, 1.8) for which your
false positive rate is 30% and your sensitivity is 50%.

This graph is seriously problematic if you’re the FDA. A 30%
false-positive rate is not within the parameters that the FDA
considers acceptable.

The overall “goodness” of such a curve is usually measured as the area
under the curve (AUC): you want it to be one, and if your curve lies
on diagonal, the area is 0.5. This is tantamount to guessing randomly.
So if your area under the curve is less than 0.5, it means your model
is perverse.

The AUC in the preceding figure is 0.64. Moreover, of the 5,000 anal‐
yses run by the research team (which included David Madigan), this
is the single best analysis.

But note: this is the best if you can only use the same method for ev‐
erything. In that case this is as good as it gets, and it’s not that much
better than guessing.

One the other hand, no epidemiologist would do that. So what they
did next was to specialize the analysis to the database and the out‐
come. And they got better results: for the medicare database, and for
acute kidney injury, their optimal model gives them an AUC of 0.92
as shown in Figure 12-3. They can achieve 80% sensitivity with a 10%
false-positive rate.
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Figure 12-3. Specializing the analysis to the database and the out‐
come with better results

They did this using a cross-validation method. Different databases
have different methods attached to them. One winning method is
called “OS,” which compares within a given patient’s history (so com‐
pares times when the patient was on drugs versus when they weren’t).
This is not widely used now.

The epidemiologists in general don’t believe the results of this study.

If you go to http://elmo.omop.org, you can see the AUC for a given
database and a given method. The data used in this study was current
in mid-2010. To update this, you’d have to get the latest version of the
database, and rerun the analysis. Things might have changed.

Closing Thought Experiment
In the study, 5,000 different analyses were run. Is there a good way of
combining them to do better? How about incorporating weighted
averages or voting methods across different strategies? The code is
publicly available and might make a great PhD thesis.
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CHAPTER 13

Lessons Learned from Data
Competitions: Data Leakage and

Model Evaluation

The contributor for this chapter is Claudia Perlich. Claudia has been
the Chief Scientist at Media 6 Degrees (M6D) for the past few years.
Before that she was in the data analytics group at the IBM center that
developed Watson, the computer that won Jeopardy! (although she
didn’t work on that project). Claudia holds a master’s in computer
science, and got her PhD in information systems at NYU. She now
teaches a class to business students on data science, where she ad‐
dresses how to assess data science work and how to manage data sci‐
entists.

Claudia is also a famously successful data mining competition winner.
She won the KDD Cup in 2003, 2007, 2008, and 2009, the ILP Chal‐
lenge in 2005, the INFORMS Challenge in 2008, and the Kaggle HIV
competition in 2010.

More recently she’s turned toward being a data mining competition
organizer, first for the INFORMS Challenge in 2009, and then for the
Heritage Health Prize in 2011. Claudia claims to be retired from com‐
petition. Fortunately for the class, she provided some great insights
into what can be learned from data competitions. From the many
competitions she’s done, she’s learned quite a bit in particular about
data leakage, and how to evaluate the models she comes up with for
the competitions.
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Claudia’s Data Scientist Profile
Claudia started by asking what people’s reference point might be to
evaluate where they stand with their own data science profile (hers is
shown in Table 13-1. Referring to the data scientist profile from Chap‐
ter 1, she said, “There is one skill that you do not have here and that
is the most important and the hardest to describe: Data.” She knows
some of the world’s best mathematicians, machine language experts,
statisticians, etc. Does she calibrate herself toward what is possible (the
experts) or just relative to the average person in her field, or just an
average person?

Table 13-1. Claudia’s data science profile
passable strong solid comment

Visualization x I can do it but I do not believe in visualization

Computer Science x I have 2 Masters Degrees in CS. I can hack, not
production code.

Math x That was a long time ago

Stats x Little formal training, a lot of stuff picked up on the
way and good intuition

Machine Learning x

Domain You are asking the wrong question…

Presentation x

Data x

The Life of a Chief Data Scientist
Historically, Claudia has spent her time on predictive modeling, in‐
cluding data mining competitions, writing papers for publications and
conferences like KDD and journals, giving talks, writing patents,
teaching, and digging around data (her favorite part). She likes to un‐
derstand something about the world by looking directly at the data.

Claudia’s skill set includes 15 years working with data, where she’s de‐
veloped data intuition by delving into the data generating process, a
crucial piece of the puzzle. She’s given a lot of time and thought to the
evaluation process and developing model intuition.

Claudia’s primary skills are data manipulation using tools like Unix,
sed, awk, Perl, and SQL. She models using various methods, including
logistic regression, k-nearest neighbors, and, importantly, she spends
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a bunch of time setting things up well. She spends about 40% of her
time as “contributor,” which means doing stuff directly with data; 40%
of her time as “ambassador,” which means writing stuff, and giving
talks, mostly external communication to represent M6D; and 20% of
her time in “leadership” of her data group.

On Being a Female Data Scientist
Being a woman works well in the field of data science, where intuition
is useful and is regularly applied. One’s nose gets so well developed by
now that one can smell it when something is wrong, although this is
not the same thing as being able to prove something algorithmically.
Also, people typically remember women, even when women don’t re‐
member them. It has worked in her favor, Claudia says, which she’s
happy to admit. But then again, she is where she is fundamentally
because she’s good.

Being in academia, Claudia has quite a bit of experience with the pro‐
cess of publishing her work in journals and the like. She discussed
whether papers submitted for journals and/or conferences are blind
to gender. For some time, it was typically double-blind, but now it’s
more likely to be one-sided. Moreover, there was a 2003 paper written
by Shawndra Hill and Foster Provost that showed you can guess who
wrote a paper with 40% accuracy just by knowing the citations, and
even more if the author had more publications. Hopefully people don’t
actually use such models when they referee, but in any case, that means
making things “blind” doesn’t necessarily help. More recently the
names are included, and hopefully this doesn’t make things too biased.
Claudia admits to being slightly biased herself toward institutions—
in her experience, certain institutions prepare better work.

Data Mining Competitions
Claudia drew a distinction between different types of data mining
competitions. The first is the “sterile” kind, where you’re given a clean,
prepared data matrix, a standard error measure, and features that are
often anonymized. This is a pure machine learning problem.

Examples of this first kind are KDD Cup 2009 and the Netflix Prize,
and many of the Kaggle competitions. In such competitions, your ap‐
proach would emphasize algorithms and computation. The winner
would probably have heavy machines and huge modeling ensembles.
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KDD Cups
All the KDD Cups, with their tasks and corresponding datasets, can
be found at http://www.kdd.org/kddcup/index.php. Here’s a list:

• KDD Cup 2010: Student performance evaluation
• KDD Cup 2009: Customer relationship prediction
• KDD Cup 2008: Breast cancer
• KDD Cup 2007: Consumer recommendations
• KDD Cup 2006: Pulmonary embolisms detection from image

data
• KDD Cup 2005: Internet user search query categorization
• KDD Cup 2004: Particle physics; plus protein homology

prediction
• KDD Cup 2003: Network mining and usage log analysis
• KDD Cup 2002: BioMed document; plus gene role classification
• KDD Cup 2001: Molecular bioactivity; plus protein locale

prediction
• KDD Cup 2000: Online retailer website clickstream analysis
• KDD Cup 1999: Computer network intrusion detection
• KDD Cup 1998: Direct marketing for profit optimization
• KDD Cup 1997: Direct marketing for lift curve optimization

On the other hand, you have the “real world” kind of data mining
competition, where you’re handed raw data (which is often in lots of
different tables and not easily joined), you set up the model yourself,
and come up with task-specific evaluations. This kind of competition
simulates real life more closely, which goes back to Rachel’s thought
experiment earlier in this book about how to simulate the chaotic ex‐
perience of being a data scientist in the classroom. You need practice
dealing with messiness.

Examples of this second kind are KDD cup 2007, 2008, and 2010. If
you’re in this kind of competition, your approach would involve un‐
derstanding the domain, analyzing the data, and building the model.
The winner might be the person who best understands how to tailor
the model to the actual question.
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Claudia prefers the second kind, because it’s closer to what you do in
real life.

How to Be a Good Modeler
Claudia claims that data and domain understanding are the single
most important skills you need as a data scientist. At the same time,
this can’t really be taught—it can only be cultivated.

A few lessons learned about data mining competitions that Claudia
thinks are overlooked in academics:
Leakage

The contestants’ best friend and the organizer and practitioners’
worst nightmare. There’s always something wrong with the data,
and Claudia has made an artform of figuring out how the people
preparing the competition got lazy or sloppy with the data.

Real-life performance measures
Adapting learning beyond standard modeling evaluation meas‐
ures like mean squared error (MSE), misclassification rate, or area
under the curve (AUC). For example, profit would be an example
of a real-life performance measure.

Feature construction/transformation
Real data is rarely flat (i.e., given to you in a beautiful matrix) and
good, practical solutions for this problem remain a challenge.

Data Leakage
In a KDD 2011 paper that Claudia coauthored called “Leakage in Data
Mining: Formulation, Detection, and Avoidance”, she, Shachar Kauf‐
man, and Saharon Rosset point to another author, Dorian Pyle, who
has written numerous articles and papers on data preparation in data
mining, where he refers to a phenomenon that he calls anachronisms
(something that is out of place in time), and says that “too good to be
true” performance is “a dead giveaway” of its existence. Claudia and
her coauthors call this phenomenon “data leakage” in the context of
predictive modeling. Pyle suggests turning to exploratory data analysis
in order to find and eliminate leakage sources. Claudia and her coau‐
thors sought a rigorous methodology to deal with leakage.

Leakage refers to information or data that helps you predict some‐
thing, and the fact that you are using this information to predict isn’t
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fair. It’s a huge problem in modeling, and not just for competitions.
Oftentimes it’s an artifact of reversing cause and effect. Let’s walk
through a few examples to get a feel for how this might happen.

Market Predictions
There was a competition where you needed to predict S&P in terms
of whether it would go up or go down. The winning entry had an AUC
(area under the ROC curve) of 0.999 out of 1. Because stock markets
are pretty close to random, either someone’s very rich or there’s some‐
thing wrong. (Hint: there’s something wrong.)

In the good old days you could win competitions this way, by finding
the leakage. It’s not clear in this case what the leakage was, and you’d
only know if you started digging into the data and finding some piece
of information in the dataset that was highly predictive of S & P, but
that would not be available to you in real time when predicting S & P.
We bring this example up because the very fact that they had such a
high AUC means that their model must have been relying on leakage,
and it would not work if implemented.

Amazon Case Study: Big Spenders
The target of this competition was to predict customers who will be
likely to spend a lot of money by using historical purchase data. The
data consisted of transaction data in different categories. But a winning
model identified that “Free Shipping = True” was an excellent predic‐
tor of spending a lot. Now notice, you only get offered free shipping
after you’ve spent a certain amount of money, say above $50.

What happened here? The point is that free shipping is an effect of big
spending. But it’s not a good way to model big spending, because in
particular, it doesn’t work for new customers or for the future. Note:
timestamps are weak here. The data that included “Free Shipping =
True” was simultaneous with the sale, which is a no-no. You need to
only use data from beforehand to predict the future. The difficulty is
that this information about free shipping appeared in the collected
data, and so it has to be manually removed, which requires consider‐
ation and understanding the data on the part of the model builder. If
you weren’t thinking about leakage, you could just throw the free
shipping variable into your model and see it predicted well. But, then
when you actually went to implement the model in production, you
wouldn’t know that the person was about to get free shipping.
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A Jewelry Sampling Problem
Again for an online retailer, this time the target was predicting cus‐
tomers who buy jewelry. The data consisted of transactions for dif‐
ferent categories. A very successful model simply noted that if
sum(revenue) = 0, then it predicted jewelry customers very well.

What happened here? The people preparing the data for the compe‐
tition removed jewelry purchases, but only included people who
bought something in the first place. So people who had sum(revenue)
= 0 were people who only bought jewelry. The fact that only people
who bought something got into the dataset is weird: in particular, you
wouldn’t be able to use this on customers before they finished their
purchase. So the model wasn’t being trained on the right data to make
the model useful. This is a sampling problem, and it’s common.

Warning: Sampling Users
As mentioned, in this case it’s weird to only condition the analysis on
the set of people who have already bought something. Do you really
want to condition your analysis on only people who bought some‐
thing or all people who came to your site? More generally with user-
level data, if you’re not careful, you can make fairly simple, but serious
sampling mistakes if you don’t think it through. For example, say
you’re planning to analyze a dataset from one day of user traffic on
your site. If you do this, you are oversampling users who come
frequently.

Think of it this way with a toy example: suppose you have 80 users.
Say that 10 of them come every day, and the others only come once a
week. Suppose they’re spread out evenly over 7 days of the week. So
on any given day you see 20 users. So you pick a day. You look at those
20 users—10 of them are the ones who come every day, the other 10
come once a week. What’s happening is that you’re oversampling the
users who come every day. Their behavior on your site might be totally
different than other users, and they’re representing 50% of your da‐
taset even though they only represent 12.5% of your user base.

IBM Customer Targeting
At IBM, the target was to predict companies that would be willing to
buy “websphere” solutions. The data was transaction data and crawled

Data Leakage | 309

www.it-ebooks.info

http://www.it-ebooks.info/


potential company websites. The winning model showed that if the
term “websphere” appeared on the company’s website, then it was a
great candidate for the product. What happened? Remember, when
considering a potential customer, by definition that company wouldn’t
have bought websphere yet (otherwise IBM wouldn’t be trying to sell
to it); therefore no potential customer would have websphere on its
site, so it’s not a predictor at all. If IBM could go back in time to see a
snapshot of the historical Web as a source of data before the “web‐
sphere” solution product existed, then that data would make sense as
a predictor. But using today’s data unfortunately contains the leaked
information that they ended up buying websphere. You can’t crawl the
historical Web, just today’s Web.

Seem like a silly, obvious mistake not to make? Maybe. But it’s the sort
of thing that happens, and you can’t anticipate this kind of thing until
you start digging into the data and really understand what features and
predictors mean. Just think, if this happened with something “obvi‐
ous,” it means that more careful thought and digging needs to go on
to figure out the less obvious cases. Also, it’s an example of something
maybe we haven’t emphasized enough yet in the book. Doing simple
sanity checking to make sure things are what you think they are can
sometimes get you much further in the end than web scraping and a
big fancy machine learning algorithm. It may not seem cool and sexy,
but it’s smart and good practice. People might not invite you to a meet-
up to talk about it. It may not be publishable research, but at least it’s
legitimate and solid work. (Though then again, because of this stuff,
Claudia won tons of contests and gets invited to meetups all the time.
So we take that back. No, we don’t. The point is, do good work, the rest
will follow. Meetups and fame aren’t goals unto themselves. The pur‐
suit of the truth is.)

Breast Cancer Detection
You’re trying to study who has breast cancer. Take a look at
Figure 13-1. The patient ID, which seems innocent, actually has pre‐
dictive power. What happened?

In Figure 13-1, red means cancerous, green means not; it’s plotted by
patient ID. We see three or four distinct buckets of patient identifiers.
It’s very predictive depending on the bucket. This is probably a con‐
sequence of using multiple databases corresponding to different can‐
cer centers, some of which take on sicker patients—by definition pa‐
tients who get assigned to that center are more likely to be sick.
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Figure 13-1. Patients ordered by patient identifier; red means cancer‐
ous, green means not

This situation led to an interesting discussion in the classroom:
Student: For the purposes of the contest, they should have renum‐
bered the patients and randomized.
Claudia: Would that solve the problem? There could be other things
in common as well.
Another student: The important issue could be to see the extent to
which we can figure out which dataset a given patient came from
based on things besides their ID.
Claudia: Think about this: what do we want these models for in the
first place? How well can you really predict cancer?

Given a new patient, what would you do? If the new patient is in a fifth
bin in terms of patient ID, then you wouldn’t want to use the identifier
model. But if it’s still in this scheme, then maybe that really is the best
approach.

This discussion brings us back to the fundamental problem: we need
to know what the purpose of the model is and how it is going to be
used in order to decide how to build it, and whether it’s working.

Pneumonia Prediction
During an INFORMS competition on pneumonia predictions in hos‐
pital records—where the goal was to predict whether a patient has
pneumonia—a logistic regression that included the number of diag‐
nosis codes as a numeric feature (AUC of 0.80) didn’t do as well as the
one that included it as a categorical feature (0.90). What happened?
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This had to do with how the person prepared the data for the compe‐
tition, as depicted in Figure 13-2.

Figure 13-2. How data preparation was done for the INFORMS
competition

The diagnosis code for pneumonia was 486. So the preparer removed
that (and replaced it with a “–1”) if it showed up in the record (rows
are different patients; columns are different diagnoses; there is a max‐
imum of four diagnoses; “–1” means there’s nothing for that entry).

Moreover, to avoid telling holes in the data, the preparer moved the
other diagnoses to the left if necessary, so that only “–1”s were on the
right.

There are two problems with this:

• If the row has only “–1”s, then you know it started out with only
pneumonia.

• If the row has no “–1”s, you know there’s no pneumonia (unless
there are actually five diagnoses, but that’s less common).

This alone was enough information to win the competition.

Leakage Happens
Winning a competition on leakage is easier than building
good models. But even if you don’t explicitly understand and
game the leakage, your model will do it for you. Either way,
leakage is a huge problem with data mining contests in
general.
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How to Avoid Leakage
The message here is not about how to win predictive modeling com‐
petitions. The reality is that as a data scientist, you’re at risk of pro‐
ducing a data leakage situation any time you prepare, clean your data,
impute missing values, remove outliers, etc. You might be distorting
the data in the process of preparing it to the point that you’ll build a
model that works well on your “clean” dataset, but will totally suck
when applied in the real-world situation where you actually want to
apply it. Claudia gave us some very specific advice to avoid leakage.
First, you need a strict temporal cutoff: remove all information just
prior to the event of interest. For example, stuff you know before a
patient is admitted. There has to be a timestamp on every entry that
corresponds to the time you learned that information, not the time it
occurred. Removing columns and rows from your data is asking for
trouble, specifically in the form of inconsistencies that can be teased
out. The best practice is to start from scratch with clean, raw data after
careful consideration. Finally, you need to know how the data was
created!

Claudia and her coauthors describe in the paper referenced earlier a
suggested methodology for avoiding leakage as a two-stage process of
tagging every observation with legitimacy tags during collection and
then observing what they call a learn-predict separation.

Evaluating Models
How do you know that your model is any good? We’ve gone through
this already in some previous chapters, but it’s always good to hear this
again from a master.

With powerful algorithms searching for patterns of models, there is a
serious danger of overfitting. It’s a difficult concept, but the general
idea is that “if you look hard enough, you’ll find something,” even if it
does not generalize beyond the particular training data.

To avoid overfitting, we cross-validate and cut down on the complexity
of the model to begin with. Here’s a standard picture in Figure 13-3
(although keep in mind we generally work in high dimensional space
and don’t have a pretty picture to look at).
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Figure 13-3. This classic image from Hastie and Tibshirani’s Elements
of Statistical Learning (Springer-Verlag) shows fitting linear regres‐
sion to a binary response, fitting 15-nearest neighbors, and fitting
1-nearest neighbors all on the same dataset

The picture on the left is underfit, in the middle it’s good, and on the
right it’s overfit.

The model you use matters when it concerns overfitting, as shown in
Figure 13-4.

Figure 13-4. The model you use matters!

Looking at Figure 13-4, unpruned decision trees are the overfitting-
est (we just made that word up). This is a well-known problem with
unpruned decision trees, which is why people use pruned decision
trees.
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Accuracy: Meh
One of the model evaluation metrics we’ve discussed in this book is
accuracy as a means to evaluate classification problems, and in par‐
ticular binary classification problems. Claudia dismisses accuracy as
a bad evaluation method. What’s wrong with accuracy? It’s inappro‐
priate for regression obviously, but even for classification, if the vast
majority is of binary outcomes are 1, then a stupid model can be ac‐
curate but not good (“guess it’s always 1”), and a better model might
have lower accuracy.

Probabilities Matter, Not 0s and 1s
Nobody makes decisions on the binary outcomes themselves. You want
to know the probability you’ll get breast cancer; you don’t want to be
told yes or no. It’s much more information to know a probability. Peo‐
ple care about probabilities.

So how does Claudia think evaluation should be handled? She’s a pro‐
ponent of evaluating the ranking and the calibration separately. To
evaluate the ranking, we use the ROC curve and calculate the area
under it, which typically ranges from 0.5 to 1.0. This is independent
of scaling and calibration. Figure 13-5 shows an example of how to
draw an ROC curve.
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Figure 13-5. An example of how to draw an ROC curve

Sometimes to measure rankings, people draw the so-called lift curve
shown in Figure 13-6.

Figure 13-6. The so-called lift curve

The key here is that the lift is calculated with respect to a baseline. You
draw it at a given point, say 10%, by imagining that 10% of people are
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shown ads, and seeing how many people click versus if you randomly
showed 10% of people ads. A lift of 3 means it’s 3 times better.

How do you measure calibration? Are the probabilities accurate? If
the model says probability of 0.57 that I have cancer, how do I know
if it’s really 0.57? We can’t measure this directly. We can only bucket
those predictions and then aggregately compare those in that predic‐
tion bucket (say 0.50–0.55) to the actual results for that bucket.

For example, take a look at Figure 13-7, which shows what you get
when your model is an unpruned decision tree, where the blue dia‐
monds are buckets.

Figure 13-7. A way to measure calibration is to bucket predictions
and plot predicted probability versus empirical probability for each
bucket—here, we do this for an unpruned decision tree

Blue diamonds are buckets of people, say. The x-axis is the empirical,
observed fraction of people in that bucket who have cancer, as an ex‐
ample, and the y-axis is the average predicted value for that set of
people by the unpruned decision tree. This shows that decision trees
don’t generally do well with calibration.

A good model would show buckets right along the x = y curve, but
here we’re seeing that the predictions were much more extreme than
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the actual probabilities. Why does this pattern happen for decision
trees?

Claudia says that this is because trees optimize purity: it seeks out
pockets that have only positives or negatives. Therefore its predictions
are more extreme than reality. This is generally true about decision
trees: they do not generally perform well with respect to calibration.

Logistic regression looks better when you test calibration, which is
typical, as shown in Figure 13-8.

Figure 13-8. Testing calibration for logistic regression

Again, blue diamonds are buckets of people. This shows that logistic
regression does better with respect to calibration.

Choosing an Algorithm
This is not a trivial question and, in particular, tests on smaller datasets
may steer you wrong, because as you increase the sample size, the best
algorithm might vary. Often decision trees perform very well, but only
if there’s enough data.

In general, you need to choose your algorithm depending on the size
and nature of your dataset, and you need to choose your evaluation
method based partly on your data and partly on what you wish to be
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good at. Sum of squared error is the maximum likelihood loss function
if your data can be assumed to be normal, but if you want to estimate
the median, then use absolute errors. If you want to estimate a quantile,
then minimize the weighted absolute error.

We worked on a competition about predicting the number of ratings
a movie will get in the next year, and we assumed Poisson distributions.
In this case, our evaluation method didn’t involve minimizing the sum
of squared errors, but rather something else that we found in the lit‐
erature specific to the Poisson distribution, which depends on the sin‐
gle parameter λ. So sometimes you need to dig around in the literature
to find an evaluation metric that makes sense for your situation.

A Final Example
Let’s put some of this together.

Say you want to raise money for a charity. If you send a letter to every
person in the mailing list, you raise about $9,000. You’d like to save
money and only send money to people who are likely to give—only
about 5% of people generally give. How can you figure out who those
people are?

If you use a (somewhat pruned, as is standard) decision tree, you get
$0 profit: it never finds a leaf with majority positives.

If you use a neural network, you still make only $7,500, even if you
only send a letter in the case where you expect the return to be higher
than the cost.

Let’s break the problem down more. People getting the letter make two
decisions: first, they decide whether or not to give, then they decide
how much to give. You can model those two decisions separately,
using:

E $ person = P response = `yes` person ·
E $ response = `yes`, person

Note that you need the first model to be well-calibrated because you
really care about the number, not just the ranking. So you can try
logistic regression for the first half. For the second part, you train with
special examples where there are donations.
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Altogether, this decomposed model makes a profit of $15,000. The
decomposition made it easier for the model to pick up the signals. Note
that with infinite data, all would have been good, and you wouldn’t
have needed to decompose. But you work with what you got.

Moreover, you are multiplying errors with this approach, which could
be a problem if you have a reason to believe that those errors are
correlated.

Parting Thoughts
According to Claudia, humans are not meant to understand data. Data
is outside of our sensory systems, and there are very few people who
have a near-sensory connection to numbers. We are instead designed
to understand language.

We are also not meant to understand uncertainty: we have all kinds of
biases that prevent this from happening that are well documented.
Hence, modeling people in the future is intrinsically harder than fig‐
uring out how to label things that have already happened.

Even so, we do our best, and this is through careful data generation,
meticulous consideration of what our problem is, making sure we
model it with data close to how it will be used, making sure we are
optimizing to what we actually desire, and doing our homework to
learn which algorithms fit which tasks.
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CHAPTER 14

Data Engineering: MapReduce,
Pregel, and Hadoop

We have two contributors to this chapter, David Crawshaw and Josh
Wills. Rachel worked with both of them at Google on the Google+ data
science team, though the two of them never actually worked together
because Josh Wills left to go to Cloudera and David Crawshaw replaced
him in the role of tech lead. We can call them “data engineers,” although
that term might be as problematic (or potentially overloaded) or am‐
biguous as “data scientist”—but suffice it to say that they’ve both
worked as software engineers and dealt with massive amounts of data.
If we look at the data science process from Chapter 2, Josh and David
were responsible at Google for collecting data (frontend and backend
logging), building the massive data pipelines to store and munge the
data, and building up the engineering infrastructure to support anal‐
ysis, dashboards, analytics, A/B testing, and more broadly, data
science.

In this chapter we’ll hear firsthand from Google engineers about Map‐
Reduce, which was developed at Google, and then open source ver‐
sions were created elsewhere. MapReduce is an algorithm and
framework for dealing with massive amounts of data that has recently
become popular in industry. The goal of this chapter is to clear up
some of the mysteriousness surrounding MapReduce. It’s become such
a buzzword, and many data scientist job openings are advertised as
saying “must know Hadoop” (the open source implementation of
MapReduce). We suspect these ads are written by HR departments
who don’t really understand what MapReduce is good for and the fact
that not all data science problems require MapReduce. But as it’s
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become such a data science term, we want to explain clearly what it is,
and where it came from. You should know what it is, but you may not
have to use it—or you might, depending on your job.

Do You Need to Know MapReduce to Be a Data
Scientist?

A fun game would be to go to a conference, count how many times
people say the word “MapReduce,” then ask them to actually explain
it, and count how many can. We suspect not many can. Even we need
to call in the experts who have spent countless hours working with it
extensively. At Google, Rachel did write code using Sawzall, a pro‐
gramming language that had the MapReduce framework underlying
its logic to process and munge the data to get it into shape for analysis
and prototyping. For that matter, Cathy used an open source version
of Sawzall called Pig when she worked as a data scientist at Intent
Media—specifically, she used Pig in conjunction with Python in the
Mortar Data framework. So we did indirectly use MapReduce, and
we did understand it, but not to the extent these guys did building the
underlying guts of the system.

Another reason to discuss MapReduce is that it illustrates the types of
algorithms used to tackle engineering and infrastructure issues when
we have lots of data. This is the third category of algorithms we brought
up in Chapter 3 (the other two being machine learning algorithms and
optimization algorithms). As a point of comparison, given that algo‐
rithmic thinking may be new to you, we’ll also describe another data
engineering algorithm and framework, Pregel, which enables large-
scale graph computation (it was also developed at Google and open
sourced).

About David Crawshaw
David Crawshaw is a Software Engineer at Google who once acciden‐
tally deleted 10 petabytes of data with a bad shell script. Luckily, he
had a backup. David was trained as a mathematician, worked on Goo‐
gle+ in California with Rachel, and now builds infrastructure for better
understanding search. He recently moved from San Francisco to New
York.
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David came to talk to us about MapReduce and how to deal with too
much data. Before we dive in to that, let’s prime things with a thought
experiment.

Thought Experiment
How do we think about access to medical records and privacy?

On the one hand, there are very serious privacy issues when it comes
to health records—we don’t want just anyone to be able to access
someone’s medical history. On the other hand, certain kinds of access
can save lives.

By some estimates, one or two patients died per week in a certain
smallish town because of the lack of information flow between the
hospital’s emergency room and the nearby mental health clinic. In
other words, if the records had been easier to match, they’d have been
able to save more lives. On the other hand, if it had been easy to match
records, other breaches of confidence might also have occurred. Of
course it’s hard to know exactly how many lives are at stake, but it’s
nontrivial.

This brings up some natural questions: What is the appropriate
amount of privacy in health? Who should have access to your medical
records and under what circumstances?

We can assume we think privacy is a generally good thing. For example,
to be an atheist is punishable by death in some places, so it’s better to
be private about stuff in those conditions. But privacy takes lives too,
as we see from this story of emergency room deaths.

We can look to other examples, as well. There are many egregious
violations happening in law enforcement, where you have large data‐
bases of license plates, say, and people who have access can abuse that
information. Arguably, though, in this case it’s a human problem, not
a technical problem.

It also can be posed as a philosophical problem: to what extent are we
allowed to make decisions on behalf of other people?

There’s also a question of incentives. We might cure cancer faster with
more medical data, but we can’t withhold the cure from people who
didn’t share their data with us.
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And finally, to a given person, it might be considered a security issue.
People generally don’t mind if someone has their data; they mind if
the data can be used against them and/or linked to them personally.

Going back full circle to the technical issue, it’s super hard to make
data truly anonymous. For example, a recent Nature study, “Unique
in the Crowd: the privacy bounds of human mobility” by Yves-
Alexandre de Montjoye, et al., on a dataset of 1.5 million cell-phone
users in Europe showed that just four points of reference were enough
to individually identify 95 percent of the people.

Recently we’ve seen people up in arms about the way the NSA collects
data about its citizens (not to mention non-US citizens). In fact, as this
book was close to going to print, the Edward Snowden leak occurred.
The response has been a very public and loud debate about the right
to privacy with respect to our government. Considering how much
information is bought and sold online about individuals through in‐
formation warehousers and brokers like Acxiom—which leads not
just to marketing but also insurance, job, and loan information—we
might want to consider having that same conversation about our right
to privacy with respect to private companies as well.

MapReduce
Here we get insight into how David, as an engineer, thinks.

He revises the question we’ve asked before in this book: what is Big
Data? It’s a buzzword mostly, but it can be useful. He tried this as a
working definition:

You’re dealing with Big Data when you’re working with data that
doesn’t fit into your computer unit. Note that makes it an evolving
definition: Big Data has been around for a long time. The IRS had taxes
before computers, so by our definition, the data they had didn’t fit on
their (nonexistent) computer unit.

Today, Big Data means working with data that doesn’t fit in one com‐
puter. Even so, the size of Big Data changes rapidly. Computers have
experienced exponential growth for the past 40 years. We have at least
10 years of exponential growth left (and people said the same thing 10
years ago).

Given this, is Big Data going to go away? Can we ignore it?
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David claims we can’t, because although the capacity of a given com‐
puter is growing exponentially, those same computers also make the
data. The rate of new data is also growing exponentially. So there are
actually two exponential curves, and they won’t intersect any time
soon.

Let’s work through an example to show how hard this gets.

Word Frequency Problem
Say you’re told to find the most frequent words in the following list:
red, green, bird, blue, green, red, red.

The easiest approach for this problem is inspection, of course. But now
consider the problem for lists containing 10,000, or 100,000, or 109

words.

The simplest approach is to list the words and then count their prev‐
alence. Figure 14-1 shows an example code snippet from the language
Go, which David loves and is helping to build (do you build a lan‐
guage?) and design at Google.

Figure 14-1. Example code snippet from the language Go

Because counting and sorting are fast, this scales to ~100 million
words. The limit now is computer memory—if you think about it, you
need to get all the words into memory twice: once when you load in
the list of all words, and again when you build a way to associate a
count for each word.

You can modify it slightly so it doesn’t have to have all words loaded
in memory—keep them on the disk and stream them in by using a
channel instead of a list. A channel is something like a stream: you
read in the first 100 items, then process them, then you read in the
next 100 items.

But there’s still a potential problem, because if every word is unique,
and the list is super long, your program will still crash; it will still be
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too big for memory. On the other hand, this will probably work nearly
all the time, because nearly all the time there will be repetition. Real
programming is a messy game.

Hold up, computers nowadays are many-core machines; let’s use them
all! Then the bandwidth will be the problem, so let’s compress the
inputs, too. That helps, and moreover there are better alternatives that
get complex. A heap of hashed values has a bounded size and can be
well-behaved. A heap is something like a partially ordered set, and you
can throw away super small elements to avoid holding everything in
memory. This won’t always work, but it will in most cases.

Are You Keeping Up?
You don’t need to understand all these details, but we want
you to get a flavor for the motivation for why MapReduce is
even necessary.

Now we can deal with on the order of 10 trillion words, using one
computer.

Now say we have 10 computers. This will get us 100 trillion words.
Each computer has 1/10th of the input. Let’s get each computer to
count up its share of the words. Then have each send its counts to one
“controller” machine. The controller adds them up and finds the high‐
est to solve the problem.

We can do this with hashed heaps, too, if we first learn network pro‐
gramming.

Now take a hundred computers. We can process a thousand trillion
words. But then the “fan-in,” where the results are sent to the controller,
will break everything because of bandwidth problem. We need a tree,
where every group of 10 machines sends data to one local controller,
and then they all send back to super controller. This will probably
work.

But… can we do this with 1,000 machines? No. It won’t work. Because
at that scale, one or more computer will fail. If we denote by X the
variable that exhibits whether a given computer is working, so X = 0
means it works and X = 1 means it’s broken, then we can assume:

P X = 0 = 1−ϵ
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But this means, when we have 1,000 computers, the chance that no
computer is broken is

1−ϵ
1000

which is generally pretty small even if ϵ is small. So if ϵ = 0.001 for each
individual computer, then the probability that all 1,000 computers
work is 0.37, less than even odds. This isn’t sufficiently robust.

What to do?

We address this problem by talking about fault tolerance for distribut‐
ed work. This usually involves replicating the input (the default is to
have three copies of everything), and making the different copies
available to different machines, so if one blows, another one will still
have the good data. We might also embed checksums in the data, so
the data itself can be audited for errors, and we will automate moni‐
toring by a controller machine (or maybe more than one?).

In general we need to develop a system that detects errors and restarts
work automatically when it detects them. To add efficiency, when some
machines finish, we should use the excess capacity to rerun work, again
checking for errors.

Q: Wait, I thought we were counting things?! This seems like
some other awful rat’s nest we’ve gotten ourselves into.
A: It’s always like this. You cannot reason about the efficiency
of fault tolerance easily; everything is complicated. And note,
efficiency is just as important as correctness, because a thou‐
sand computers are worth more than your salary.

It’s like this:

• The first 10 computers are easy;
• The first 100 computers are hard; and
• The first 1,000 computers are impossible.

There’s really no hope.

Or at least there wasn’t until about eight years ago. At Google now,
David uses 10,000 computers regularly.
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Enter MapReduce
In 2004 Jeff and Sanjay published their paper “MapReduce: Simplified
Data Processing on Large Clusters” (and here’s another one on the
underlying filesystem).

MapReduce allows us to stop thinking about fault tolerance; it is a
platform that does the fault tolerance work for us. Programming 1,000
computers is now easier than programming 100. It’s a library to do
fancy things.

To use MapReduce, you write two functions: a mapper function, and
then a reducer function. It takes these functions and runs them on
many machines that are local to your stored data. All of the fault tol‐
erance is automatically done for you once you’ve placed the algorithm
into the map/reduce framework.

The mapper takes each data point and produces an ordered pair of the
form (key, value). The framework then sorts the outputs via the “shuf‐
fle,” and in particular finds all the keys that match and puts them to‐
gether in a pile. Then it sends these piles to machines that process them
using the reducer function. The reducer function’s outputs are of the
form (key, new value), where the new value is some aggregate function
of the old values.

So how do we do it for our word counting algorithm? For each word,
just send it to the ordered pair with the key as that word and the value
being the integer 1. So:

red ---> ("red", 1)
blue ---> ("blue", 1)
red ---> ("red", 1)

Then they go into the “shuffle” (via the “fan-in”) and we get a pile of
(“red”, 1)’s, which we can rewrite as (“red”, 1, 1). This gets sent to the
reducer function, which just adds up all the 1’s. We end up with (“red”,
2), (“blue”, 1).

The key point is: one reducer handles all the values for a fixed key.

Got more data? Increase the number of map workers and reduce
workers. In other words, do it on more computers. MapReduce flattens
the complexity of working with many computers. It’s elegant, and
people use it even when they shouldn’t (although, at Google it’s not so
crazy to assume your data could grow by a factor of 100 overnight).
Like all tools, it gets overused.
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Counting was one easy function, but now it’s been split up into two
functions. In general, converting an algorithm into a series of Map‐
Reduce steps is often unintuitive.

For the preceding word count, distribution needs to be uniform. If all
your words are the same, they all go to one machine during the shuffle,
which causes huge problems. Google has solved this using hash buck‐
ets heaps in the mappers in one MapReduce iteration. It’s called
CountSketch, and it is built to handle odd datasets.

At Google there’s a real-time monitor for MapReduce jobs, a box with
shards that correspond to pieces of work on a machine. It indicates
through a bar chart how the various machines are doing. If all the
mappers are running well, you’d see a straight line across. Usually,
however, everything goes wrong in the reduce step due to nonuni‐
formity of the data; e.g., lots of values on one key.

The data preparation and writing the output, which take place behind
the scenes, take a long time, so it’s good to try to do everything in one
iteration. Note we’re assuming a distributed filesystem is already there
—indeed we have to use MapReduce to get data to the distributed
filesystem—once we start using MapReduce, we can’t stop.

Once you get into the optimization process, you find yourself tuning
MapReduce jobs to shave off nanoseconds 10−9 while processing pe‐
tabytes of data. These are order shifts worthy of physicists. This opti‐
mization is almost all done in C++. It’s highly optimized code, and we
try to scrape out every ounce of power we can.

Other Examples of MapReduce
Counting words is the most basic example of MapReduce. Let’s look
at another to start getting more of a feel for it. The key attribute of a
problem that can be solved with MapReduce is that the data can be
distributed among many computers and the algorithm can treat each
of those computers separately, i.e., one computer doesn’t need to know
what’s going on with any other computer.

Here’s another example where you could use MapReduce. Let’s say you
had tons of timestamped event data and logs of users’ actions on a
website. For each user, you might have {user_id, IP_address, zip
code, ad_they_saw, did_they_click}. Suppose you wanted to
count how many unique users saw ads from each zip code and how
many clicked at least once.
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How would you use MapReduce to handle this? You could run Map‐
Reduce keyed by zip code so that a record with a person living in zip
code 90210 who clicked on an ad would get emitted to (90210,{1,1})
if that person saw an ad and clicked, or (90210,{0,1}) if they saw an
ad and didn’t click.

What would this give you? At the reducer stage, this would count the
total number of clicks and impressions by zip code producing output
of the form (90210,{700,15530}), for example. But that’s not what
you asked. You wanted the number of unique users. This would ac‐
tually require two MapReduces.

First use {zip_code,user} as the key and {clicks, impressions} as
the value. Then, for example ({90210,user_5321},{0,1}) or
((90210], user_5321} <- {1,1}. The reducer would emit a table
that per user, per zip code, gave the counts of clicks and impressions.
Your new records would now be {user, zipcode, number_clicks,
number_impressions}.

Then to get the number of unique users from each zip code and how
many clicked at least once, you’d need a second MapReduce job with
zipcode as the key, and for each user emits {1, ifelse(clicks>0)}
as the value.

So that was a second illustration of using MapReduce to count. But
what about something more complicated like using MapReduce to
implement a statistical model such as linear regression. Is that possi‐
ble?

Turns out it is. Here’s a 2006 paper that goes through how the Map‐
Reduce framework could be used to implement a variety of machine
learning algorithms. Algorithms that calculate sufficient statistics or
gradients that depend upon calcuating expected values and summa‐
tions can use the general approach described in this paper, because
these calculations may be batched, and are expressible as a sum over
data points.

What Can’t MapReduce Do?
Sometimes to understand what something is, it can help to understand
what it isn’t. So what can’t MapReduce do? Well, we can think of lots
of things, like give us a massage. But you’d be forgiven for thinking
MapReduce can solve any data problem that comes your way.
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But MapReduce isn’t ideal for, say, iterative algorithms where you take
a just-computed estimation and use it as input to the next stage in the
computation—this is common in various machine learning algo‐
rithms that use steepest descent convergence methods. If you wanted
to use MapReduce, it is of course possible, but it requires firing up
many stages of the engine. Other newer approaches such as Spark
might be better suited, which in this context means more efficient.

Pregel
Just as a point of contrast, another algorithm for processing large-scale
data was developed at Google called Pregel. This is a graph-based
computational algorithm, where you can imagine the data itself has a
graph-based or network-based structure. The computational algo‐
rithm allows nodes to communicate with other nodes that they are
connected to. There are also aggregators that are nodes that have access
to the information that all the nodes have, and can, for example, sum
together or average any information that all the nodes send to them.

The basis of the algorithm is a series of supersteps that alternate be‐
tween nodes sending information to their neighbors and nodes send‐
ing information to the aggregators. The original paper is online if you
want to read more. There’s also an open source version of Pregel called
Giraph.

About Josh Wills
Josh Wills is Cloudera’s director of data science, working with cus‐
tomers and engineers to develop Hadoop-based solutions across a
wide range of industries. More on Cloudera and Hadoop to come.
Prior to joining Cloudera, Josh worked at Google, where he worked
on the ad auction system and then led the development of the analytics
infrastructure used in Google+. He earned his bachelor’s degree in
mathematics from Duke University and his master’s in operations re‐
search from The University of Texas at Austin.

Josh is also known for pithy data science quotes, such as: “I turn data
into awesome” and the one we saw way back in the start of the book:
“data scientist (noun): Person who is better at statistics than any soft‐
ware engineer and better at software engineering than any statistician.”
Also this gem: “I am Forrest Gump, I have a toothbrush, I have a lot
of data and I scrub.”
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Josh primed his topic with a thought experiment first.

Thought Experiment
How would you build a human-powered airplane? What would you
do? How would you form a team?

Maybe you’d run an X prize competition. This is exactly what some
people did, for $50,000, in 1950. It took 10 years for someone to win
it. The story of the winner is useful because it illustrates that sometimes
you are solving the wrong problem.

Namely, the first few teams spent years planning, and then their planes
crashed within seconds. The winning team changed the question to:
how do you build an airplane you can put back together in four hours
after a crash? After quickly iterating through multiple prototypes, they
solved this problem in six months.

On Being a Data Scientist
Josh had some observations about the job of a data scientist. A data
scientist spends all their time doing data cleaning and preparation—
a full 90% of the work is this kind of data engineering. When deciding
between solving problems and finding insights, a data scientist solves
problems. A bit more on that: start with a problem, and make sure you
have something to optimize against. Parallelize everything you do.

It’s good to be smart, but being able to learn fast is even better: run
experiments quickly to learn quickly.

Data Abundance Versus Data Scarcity
Most people think in terms of scarcity. They are trying to be conser‐
vative, so they throw stuff away. Josh keeps everything. He’s a fan of
reproducible research, so he wants to be able to rerun any phase of his
analysis. He keeps everything. This is great for two reasons. First, when
he makes a mistake, he doesn’t have to restart everything. Second,
when he gets new sources of data, it’s easy to integrate them in the
point of the flow where it makes sense.
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Designing Models
Models always turn into crazy Rube Goldberg machines, a hodge-
podge of different models. That’s not necessarily a bad thing, because
if they work, they work. Even if you start with a simple model, you
eventually add a hack to compensate for something. This happens over
and over again; it’s the nature of designing the model.

Mind the gap
The thing you’re optimizing with your model isn’t the same as the thing
you’re optimizing for your business.

Example: friend recommendations on Facebook don’t optimize you
accepting friends, but rather maximizing the time you spend on Face‐
book. Look closely: the suggestions are surprisingly highly populated
by attractive people of the opposite sex.

How does this apply in other contexts? In medicine, they study the
effectiveness of a drug instead of the health of the patients. They typ‐
ically focus on success of surgery rather than well-being of the patient.

Economic Interlude: Hadoop
Let’s go back to MapReduce and Hadoop for a minute. When Josh
graduated in 2001, there were two options for file storage—databases
and filers—which Josh compared on four dimensions: schema, pro‐
cessing, reliability, and cost (shown in Table 14-1).

Table 14-1. Options for file storage back in 2001
Databases Filers

Schema Structured No schemas

Processing Intensive processing done where data is stored No data processing capability

Reliability Somewhat reliable Reliable

Cost Expensive at scale Expensive at scale

Since then we’ve started generating lots more data, mostly from the
Web. It brings up the natural idea of a data economic indicator: return
on byte. How much value can we extract from a byte of data? How
much does it cost to store? If we take the ratio, we want it to be bigger
than one, or else we discard the data.
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Of course, this isn’t the whole story. There’s also a Big Data economic
law, which states that no individual record is particularly valuable, but
having every record is incredibly valuable. So, for example, for a web
index, recommendation system, sensor data, or online advertising,
one has an enormous advantage if one has all the existing data, even
though each data point on its own isn’t worth much.

A Brief Introduction to Hadoop
Back before Google had money, it had crappy hardware. So to handle
all this data, it came up with idea of copying data to multiple servers.
It did this physically at the time, but then automated it. The formal
automation of this process was the genesis of GFS.

There are two core components to Hadoop, which is the open source
version of Google’s GFS and MapReduce. (You can read more about
the origin stories of Hadoop elsewhere. We’ll give you a hint. A small
open source project called Nutch and Yahoo! were involved.) The first
component is the distributed filesystem (HDFS), which is based on
the Google filesystem. The data is stored in large files, with block sizes
of 64 MB to 256 MB. The blocks are replicated to multiple nodes in
the cluster. The master node notices if a node dies. The second com‐
ponent is MapReduce, which David Crawshaw just told us all about.

Also, Hadoop is written in Java, whereas Google stuff is in C++. Writ‐
ing MapReduce in the Java API not pleasant. Sometimes you have to
write lots and lots of MapReduces. However, if you use Hadoop
streaming, you can write in Python, R, or other high-level languages.
It’s easy and convenient for parallelized jobs.

Cloudera
Cloudera was cofounded by Doug Cutting, one of the creators of Ha‐
doop, and Jeff Hammerbacher, who we mentioned back in Chapter 1
because he co-coined the job title “data scientist” when he worked at
Facebook and built the data science team there.

Cloudera is like Red Hat for Hadoop, by which we mean they took an
open source project and built a company around it. It’s done under the
aegis of the Apache Software Foundation. The code is available for
free, but Cloudera packages it together, gives away various distribu‐
tions for free, and waits for people to pay for support and to keep it
up and running.
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Apache Hive is a data warehousing system on top of Hadoop. It uses
a SQL-based query language (includes some MapReduce-specific ex‐
tensions), and it implements common join and aggregation patterns.
This is nice for people who know databases well and are familiar with
stuff like this.

Back to Josh: Workflow
With respect to how Josh would approach building a pipeline using
MapReduce, he thinks of his basic unit of analysis as a record. We’ve
repeatedly mentioned “timestamped event data,” so you could think
of a single one of those as a record, or you could think of transaction
records that we discussed in fraud detection or credit card transac‐
tions. A typical workflow would then be something like:

1. Use Hive (a SQL-like language that runs on Hadoop) to build
records that contain everything you know about an entity (say a
person) (intensive MapReduce stuff).

2. Write Python scripts to process the records over and over again
(faster and iterative, also MapReduce).

3. Update the records when new data arrives.

Note the scripts in phase 2 are typically map-only jobs, which makes
parallelization easy.

Josh prefers standard data formats: text is big and takes up space.
Thrift, Avro, and protocol buffers are more compact, binary formats.
He also encourages you to use the code and metadata repository Git‐
hub. He doesn’t keep large data files in Git.

So How to Get Started with Hadoop?
If you are working at a company that has a Hadoop cluster, it’s likely
that your first experience will be with Apache Hive, which provides a
SQL-style abstraction on top of HDFS and MapReduce. Your first
MapReduce job will probably involve analyzing logs of user behavior
in order to get a better understanding of how customers are using your
company’s products.

If you are exploring Hadoop and MapReduce on your own for building
analytical applications, there are a couple of good places to start. One
option is to build a recommendation engine using Apache Mahout, a
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collection of machine learning libraries and command-line tools that
works with Hadoop. Mahout has a collaborative filtering engine called
Taste that can be used to create recommendations given a CSV file of
user IDs, item IDs, and an optional weight that indicates the strength
of the relationship between the user and the item. Taste uses the same
recommendation algorithms that Netflix and Amazon use for building
recommendations for their users.
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CHAPTER 15

The Students Speak

Every algorithm is editorial.
— Emily Bell (director of the
Tow Center for Digital Jour‐
nalism at Columbia’s Graduate
School of Journalism)

We invited the students who took Introduction to Data Science version
1.0 to contribute a chapter to the book. They chose to use their chapter
to reflect on the course and describe how they experienced it. Con‐
tributors to this chapter are Alexandra Boghosian, Jed Dougherty,
Eurry Kim, Albert Lee, Adam Obeng, and Kaz Sakamoto.

Process Thinking
When you’re learning data science, you can’t start anywhere except the
cutting edge.

An introductory physics class will typically cover mechanics, electric‐
ity, and magnetism, and maybe move on to some more “modern” sub‐
jects like special relativity, presented broadly in order of ascending
difficulty. But this presentation of accumulated and compounded
ideas in an aggregated progression doesn’t give any insight into, say,
how Newton actually came up with a differential calculus. We are not
taught about his process; how he got there. We don’t learn about his
tools or his thoughts. We don’t learn which books he read or whether
he took notes. Did he try to reproduce other people’s proofs? Did he
focus on problems that followed from previous writing? What exactly
made him think, “I just can’t do this without infinitesimals?” Did
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Newton need scratch paper? Or did the ideas emerge somehow fully
formed when he saw an apple drop? These things aren’t taught, but
they have to be learned; this process is what the fledgling scientists will
actually have to do.

Rachel started the first Introduction to Data Science class with a hefty
caveat. Data science is still being defined, in both industry and aca‐
demia. In each subsequent lecture, we learned about substantive prob‐
lems and how people decide what problems to study. Substantively,
the weekly lectures covered the tools and techniques of a data scientist,
but each lecturer had their own style, background, and approach to
each problem. In almost every class, the speaker would say something
like, “I don’t know what you guys have covered so far, but…” The lec‐
tures were discretized in this way, and it was our job to interpolate a
continuous narrative about data science. We had to create our own
meaning from the course, just as data scientists continue to construct
the field to which they belong.

That is not to say that Rachel left us in the dark. On the first day of
class, she proposed a working definition of data science. A data sci‐
entist, she said, was a person whose aptitude was distributed over the
following: mathematics, statistics, computer science, machine learn‐
ing, visualization, communication, and domain expertise. We would
soon find out that this was only a prior in our unfolding Bayesian
understanding. All the students and each lecturer evaluated them‐
selves in terms of this definition, providing at once a diverse picture
of the data science community and a reference point throughout the
course. The lecturers came from academia, finance, established tech
companies, and startups. They were graduate school dropouts, Kaggle
competition winners, and digital artists. Each provided us with a fur‐
ther likelihood ratio. The class itself became sort of an iterative defi‐
nition of data science.

But we didn’t just listen to people talk about their jobs week after week.
We learned the tools of the trade with lots of difficult, head-to-table
homework. Sometimes the assignments required us to implement the
techniques and concepts we had discussed in the lectures. Other times
we had to discover and use skills we didn’t even know existed.
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1. Rachel’s note: it was a graduate-level course. I made sure students were of age and that
there were non-alcoholic options.

What’s more, we were expected to deal with messy real-world data. We
often worked on industry-related problems, and our homework was
to be completed in the form of a clear and thoughtful report—some‐
thing we could pride ourselves in presenting to an industry profes‐
sional. Most importantly we often had little choice but to reach out
beyond our comfort zones to one another to complete assignments.
The social nature of data science was emphasized, and in addition to
the formal groupings for assignments and projects, Rachel would
often take us to the bar across the street along with whoever had pre‐
sented that evening.1 We worked and drank together throughout the
course, learning from one another and building our skills together.

Naive No Longer
Our reckoning came on the third subsection of our second homework
assignment, “Jake’s Exercise: Naive Bayes for Article Classification” on
page 109. It required us to download 2,000 articles from the New York
Times—which only allowed a pull of 20 articles at a time—and train a
simple Naive Bayes classifier to sort them by the section of the news‐
paper in which they appeared. Acquiring the articles was only half the
challenge. While there are packages for many languages that imple‐
ment Naive Bayes, we had to write our own code, with nothing more
than a few equations for guidance. Not that using an existing package
would not have helped us. Unlike them, our version had to include
tunable regularization hyperparameters. It also demanded that we
classify the articles across five categories instead of two. As we were
told, simple Naive Bayes isn’t particularly naive, nor very Bayesian.
Turns out it’s not that simple, either. Still, those of us who stayed in the
class through the pain of spending 40 hours “polishing” 300 lines of
disgustingly hacky R code got the pleasure of seeing our models graze
90% predictive accuracy. We were instantly hooked. Well, maybe it was
the sunk cost. But still, we were hooked. Figure 15-1 shows one stu‐
dent’s solution to the homework.
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Figure 15-1. Part of a student’s solution to a homework assignment

The Kaggle competition that made up half of our final project was a
particular opportunity to go off the beaten track. The final was de‐
signed as a competition between the members of the class to create an
essay-grading algorithm. The homework often simulated the data sci‐
entist’s experience in industry, but Kaggle competitions could be de‐
scribed as the dick-measuring contests of data science. It encouraged
all of the best data science practices we had learned while putting us
in the thick of a quintessential data science activity. One of the present
authors’ solutions ended up including as features (among others) the
number of misspellings, the number of words on the Dale-Chall list
of words a fourth-grader should understand, TF-IDF vectors of the
top 50 words, and the fourth root of the number of words in the essay.
Don’t ask why. The model used both random forest and gradient
boosted models, and implemented stochastic hyperparameter opti‐
mization, training fifty thousand models across thousands of hours
on Amazon EC2 instances. It worked OK.

Helping Hands
In one of the first classes, we met guest lecturer Jake Hofman. Do you
remember seeing your first magic trick? Jake’s lecture? Yeah, it was like
that—as prestidigitatory as any close-up act. By using a combination
of simple Unix utilities and basic data, he built a Naive Bayes spam
classifier before our very eyes. After writing a few math equations on
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the board, he demonstrated some of his “command-line-fu” to parse
the publicly available Enron emails he downloaded live.

In the weekly lectures, we were presented with standing-ovation-
inducing performers. But it was with the help of Jared Lander and Ben
Reddy, who led our supplementary lab sessions, that we stayed afloat
in the fast-paced class. They presented to us the mechanics of data
science. We covered the gamut: statistical concepts ranging from linear
regression to the mechanics behind the random forest algorithm. And
many of us were introduced to new tools: regular expressions, LaTeX,
SQL, R, the shell, git, and Python. We were given the keys to new
sources of data through APIs and web-scraping.

Generally, the computer scientists in the class had to quickly pick up
the basics of theory-based feature selection and using R. Meanwhile,
the social scientists had to understand the mechanics of a database and
the differences between globally and locally scoped variables, and the
finance majors had to learn ethics. We all had our burdens. But as we
all methodically yet mistakenly constructed for loops in R and con‐
sidered the striking inefficiencies of our code, our bags of tricks be‐
came a little heavier. Figure 15-2 shows one of the lessons or pitfalls
of this method:

Figure 15-2. Lesson learned

And as our skills improved, we were increasingly able to focus on the
analysis of the data. Eventually, we didn’t even see the code—just the
ideas behind it.

But how could we figure these things out on our own? Could any one
of us do it all?

It took hours of frustrating errors and climbing learning curves to
appreciate the possibilities of data science. But to actually finish our
homework on time, we had to be willing to learn from the different
backgrounds of the students in the class.

In fact, it became crucial for us to find fellow students with comple‐
mentary skills to complete our assignments. Rachel forced group work
upon us, not by requiring it directly, but by assigning massive yet dis‐
cretizable assignments. It turned out that she meant for us to know
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that practicing data science is inherently a collective endeavor. In the
beginning of the course, Rachel showed us a hub-and-spoke network
diagram. She had brought us all together and so was at the center. The
spokes connected each of us to her. It became her hope that new
friendships/ideas/projects/connections would form during the
course.

It’s perhaps more important in an emergent field than in any other to
be part of a community. For data science in particular, it’s not just useful
to your career—it’s essential to your practice. If you don’t read the
blogs, or follow people on Twitter, or attend meetups, how can you
find out about the latest distributed computing software, or a refuta‐
tion of the statistical approach of a prominent article? The community
is so tight-knit that when Cathy was speaking about MapReduce at a
meetup in April, she was able to refer a question to an audience mem‐
ber, Nick Avteniev—easy and immediate references to the experts of
the field is the norm. Data science’s body of knowledge is changing
and distributed, to the extent that the only way of finding out what
you should know is by looking at what other people know. Having a
bunch of different lecturers kickstarted this process for us. All of them
answered our questions. All gave us their email addresses. Some even
gave us jobs.

Having listened to and conversed with these experts, we formed more
questions. How can we create a time series object in R? Why do we
keep getting errors in our plotting of our confusion matrix? What the
heck is a random forest? Here, we not only looked to our fellow stu‐
dents for answers, but we went to online social communities such as
Stack Overflow, Google Groups, and R bloggers. It turns out that there
is a rich support community out there for budding data scientists like
us trying to make our code run. And we weren’t just getting answers
from others who had run into the same problems before us. No, these
questions were being answered by the pioneers of the methods. People
like Hadley Wickham, Wes McKinney, and Mike Bostock were pro‐
viding support for the packages they themselves wrote. Amazing.

Your Mileage May Vary
It’s not as if there’s some platonic repository of perfect data science
knowledge that you can absorb by osmosis. There are various good
practices from various disciplines, and different vocabularies and in‐
terpretations for the same method (is the regularization parameter a
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prior, or just there for smoothing? Should we choose it on principled
grounds or in order to maximize fit?) There is no institutionalized
knowledge because there are no institutions, and that’s why the struc‐
ture of interactions matters: you can can create your own institutions.
You choose who you are influenced by, as Gabriel Tarde put it (via
Bruno Latour, via Mark Hansen):

When a young farmer, facing the sunset, does not know if he should
believe his school master asserting that the fall of the day is due to the
movement of the earth and not of the sun, or if he should accept as
witness his senses that tell him the opposite, in this case, there is one
imitative ray, which, through his school master, ties him to Galileo.

— Gabriel Tarde

Standing on the shoulders of giants is all well and good, but before
jumping on someone’s back you might want to make sure that they
can take the weight. There is a focus in the business world to use data
science to sell advertisements. You may have access to the best dataset
in the world, but if the people employing you only want you to find
out how to best sell shoes with it, is it really worth it?

As we worked on assignments and compared solutions, it became clear
that the results of our analyses could vary widely based on just a few
decisions. Even if you’ve learned all the steps in the process from
hypothesis-building to results, there are so many ways to do each step
that the number of possible combinations is huge. Even then, it’s not
as simple as piping the output of one command into the next. Algo‐
rithms are editorial, and the decision of which algorithm and variables
to use is even more so.

Claudia Perlich from Media 6 Degrees (M6D) was a winner of the
prestigious KDD Cup in 2003, 2007, 2008, 2009, and now can be seen
on the coordinating side of these competitions. She was generous
enough to share with us the ins and outs of the data science circuit and
the different approaches that you can take when making these editorial
decisions. In one competition to predict hospital treatment outcomes,
she had noticed that patient identifiers had been assigned sequentially,
such that all the patients from particular clinics had sequential num‐
bers. Because different clinics treated patients with different severities
of condition, the patient ID turned out to be a great predictor for the
outcome in question. Obviously, the inclusion of this data leakage was
unintentional. It made the competition trivial. But in the real world,
perhaps it should actually be used in models; after all, the clinic that
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doctors and patients choose should probably be used to predict their
outcomes.

David Madigan emphasized the ethical challenges of editorial deci‐
sions in this emerging domain by showing us how observational stud‐
ies in the pharmaceutical industry often yield vastly different results.
(Another example is the aspirin plot he showed.) He emphasized the
importance of not removing oneself from the real data. It is not enough
to merely tweak models and methods and apply them to datasets.

The academic world has a bit of the same problem as the business
world, but for different reasons. The different bits of data science are
so split between disciplines that by studying them individually it be‐
comes nearly impossible to get a holistic view of how these chunks fit
together, or even that they could fit together. A purely academic ap‐
proach to data science can sterilize and quantize it to the point where
you end up with the following, which is an actual homework problem
from the chapter “Linear Methods for Regression” in The Elements of
Statistical Learning:

Ex. 3.2 Given data on two variables X and Y , consider fitting a cubic
polynomial regression model f X = ∑ j=0

3 β jX j In addition to plot‐
ting the fitted curve, you would like a 95% confidence band about the
curve. Consider the following two approaches:

1. At each point x0, form a 95% confidence interval for the linear
function αT β = ∑ j=0

3 β jx0 j.

2. Form a 95% confidence set for β, which in turn generates confi‐
dence intervals for f x0 .

How do these approaches differ? Which band is likely to be wider?
Conduct a small simulation experiment to compare the two methods.

This is the kind of problem you might be assigned in a more general
machine learning or data mining class. As fledgling data scientists, our
first reaction is now skeptical. At which point in the process of doing
data science would a problem like this even present itself? How much
would we have to have already done to get to this point? Why are we
considering these two variables in particular? How come we’re given
data? Who gave it to us? Who’s paying them? Why are we calculating
95% confidence intervals? Would another performance metric be
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better? Actually, who cares how well we perform on what is, essentially,
our training data?

This is not completely fair to Hastie and his coauthors. They would
probably argue that if students wanted to learn about data scraping
and organization, they should get a different book that covers those
topics—the difference in the problems shows the stark contrast in
approach that this class took from normal academic introductory
courses. The philosophy that was repeatedly pushed on us was that
understanding the statistical tools of data science without the context
of the larger decisions and processes surrounding them strips them of
much of their meaning. Also, you can’t just be told that real data is
messy and a pain to deal with, or that in the real world no one is going
to tell you exactly which regression model to use. These issues—and
the intuition gained from working through them—can only be un‐
derstood through experience.

Bridging Tunnels
As fledgling data scientists, we’re not—with all due respect to Michael
Driscoll—exactly civil engineers. We don’t necessarily have a grand
vision for what we’re doing; there aren’t always blueprints. Data sci‐
entists are adventurers, we know what we’re questing for, we’ve some
tools in the toolkit, and maybe a map, and a couple of friends. When
we get to the castle, our princess might be elsewhere, but what matters
is that along the way we stomped a bunch of Goombas and ate a bunch
of mushrooms, and we’re still spitting hot fire. If science is a series of
pipes, we’re not plumbers. We’re the freaking Mario Brothers.

Some of Our Work
The students improved on the original data science profile from back
in Chapter 1 in Figure 15-3 and created an infographic for the growing
popularity of data science in universities in Figure 15-4, based on in‐
formation available to them at the end of 2012.
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Figure 15-3. The Stars of Data Science (a collaborative effort among
many students including Adam Obeng, Eurry Kim, Christina Gutier‐
rez, Kaz Sakamoto, and Vaibhav Bhandari)

Figure 15-4. A Constellation is Born (Kaz Sakamoto, Eurry Kim and
Vaibhav Bhandari created this as part of a larger class collaboration)
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CHAPTER 16

Next-Generation Data Scientists,
Hubris, and Ethics

We want to wrap up by thinking about what just happened and what
we hope for you going forward.

What Just Happened?
The two main goals of this book were to communicate what it’s like to
be a data scientist and to teach you how to do some of what a data
scientist does.

We’d like to think we accomplished both of these goals.

The various contributors for the chapters brought multiple first-hand
accounts of what it’s like to be a data scientist, which addressed the
first goal. As for the second goal, we are proud of the breadth of topics
we’ve covered, even if we haven’t been able to be as thorough as we’d
like to be.

It’s possible one could do better than we have, so the next sidebar gives
you something to think about.
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Thought Experiment: Teaching Data Science
How would you design a data science textbook?

It’s not a well-defined body of knowledge, and there’s no canonical
corpus. It’s popularized and celebrated in the press and media, but
there’s no “authority” to push back on erroneous or outrageous ac‐
counts. There’s a lot of overlap with various other subjects as well; it
could become redundant with a machine learning textbook, for ex‐
ample.

How does one measure the success and impact of a data science text?
What’s the counterfactual?

Can we set this up as a data science problem? Even better, can we use
a causal modeling approach? This would require finding people who
were more or less like you (dear reader) but didn’t buy this book, and
then use propensity score matching. Or we could run an experiment
and randomly deny people access to the book (hard since Amazon is
pretty open access), and you could get to it other ways. But that’s
neither here nor there, except it might be better than speculating
whether the book made a difference to anyone.

In the industry, they say you can’t learn data science in a university or
from a book, that it has to be “on the job.” But maybe that’s wrong,
and maybe this book has proved that. You tell us.

What Is Data Science (Again)?
We revisited this question again and again throughout the book. It was
the theme of the book, the central question, and the mantra.

Data science could be defined simply as what data scientists do, as we
did earlier when we talked about profiles of data scientists. In fact,
before Rachel taught the data science course at Columbia, she wrote
up a list of all the things data scientists do and didn’t want to show it
to anyone because it was overwhelming and disorganized. That list
became the raw material of the profiles. But after speaking to different
people after the course, she’s found that they actually like looking at
this list, so here it is:
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• Exploratory data analysis
• Visualization (for exploratory data analysis and reporting)
• Dashboards and metrics
• Find business insights
• Data-driven decision making
• Data engineering/Big Data (Mapreduce, Hadoop, Hive, and Pig)
• Get the data themselves
• Build data pipelines (logs→mapreduce→dataset→join with other

data→mapreduce→scrape some data→join)
• Build products instead of describing existing product usage
• Hack
• Patent writing
• Detective work
• Predict future behavior or performance
• Write up findings in reports, presentations, and journals
• Programming (proficiency in R, Python, C, Java, etc.)
• Conditional probability
• Optimization
• Algorithms, statistical models, and machine learning
• Tell and interpret stories
• Ask good questions
• Investigation
• Research
• Make inferences from data
• Build data products
• Find ways to do data processing, munging, and analysis at scale
• Sanity checking
• Data intuition
• Interact with domain experts (or be a domain expert)
• Design and analyze experiments
• Find correlation in data, and try to establish causality

What Is Data Science (Again)? | 349

www.it-ebooks.info

http://www.it-ebooks.info/


But at this point, we’d like to go a bit further than that, to strive for
something a bit more profound.

Let’s define data science beyond a set of best practices used in tech
companies. That’s the definition we started with at the start of the book.
But after going through this exploration, now consider data science to
be beyond tech companies to include all other domains: neuroscience,
health analytics, eDiscovery, computational social sciences, digital hu‐
manities, genomics, policy…to encompass the space of all problems
that could possibly be solved with data using a set of best practices
discussed in this book, some of which were initially established in tech
companies. Data science happens both in industry and in academia,
i.e., where or what domain data science happens in is not the issue—
rather, defining it as a “problem space” with a corresponding “solution
space” in algorithms and code and data is the key.

In that vein, start with this: data science is a set of best practices used
in tech companies, working within a broad space of problems that
could be solved with data, possibly even at times deserving the name
science. Even so, it’s sometimes nothing more than pure hype, which
we need to guard against and avoid adding to.

What Are Next-Gen Data Scientists?
The best minds of my generation are thinking about how to make
people click ads… That sucks.

— Jeff Hammerbacher

Ideally the generation of data scientists-in-training are seeking to do
more than become technically proficient and land a comfy salary in a
nice city—although those things would be nice. We’d like to encourage
the next-gen data scientists to become problem solvers and question
askers, to think deeply about appropriate design and process, and to
use data responsibly and make the world better, not worse. Let’s ex‐
plore those concepts in more detail in the next sections.

Being Problem Solvers
First, let’s discuss the technical skills. Next-gen data scientists should
strive to have a variety of hard skills including coding, statistics, ma‐
chine learning, visualization, communication, and math. Also, a solid
foundation in writing code, and coding practices such as paired
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programming, code reviews, debugging, and version control are in‐
credibly valuable.

It’s never too late to emphasize exploratory data analysis as we de‐
scribed in Chapter 2 and conduct feature selection as Will Cukierski
emphasized. Brian Dalessandro emphasized the infinite models a data
scientist has to choose from—constructed by making choices about
which classifier, features, loss function, optimization method, and
evaluation metric to use. Huffaker discussed the construction of fea‐
tures or metrics: transforming the variables with logs, constructing
binary variables (e.g., the user did this action five times), and aggre‐
gating and counting. As a result of perceived triviality, all this stuff is
often overlooked, when it’s a critical part of data science. It’s what
Dalessandro called the “Art of Data Science.”

Another caution: many people go straight from a dataset to applying
a fancy algorithm. But there’s a huge space of important stuff in be‐
tween. It’s easy to run a piece of code that predicts or classifies, and to
declare victory when the algorithm converges. That’s not the hard part.
The hard part is doing it well and making sure the results are correct
and interpretable.

What Would a Next-Gen Data Scientist Do?
Next-gen data scientists don’t try to impress with complicated
algorithms and models that don’t work. They spend a lot
more time trying to get data into shape than anyone cares to
admit—maybe up to 90% of their time. Finally, they don’t
find religion in tools, methods, or academic departments.
They are versatile and interdisciplinary.

Cultivating Soft Skills
Tons of people can implement k-nearest neighbors, and many do it
badly. In fact, almost everyone starts out doing it badly. What matters
isn’t where you start out, it’s where you go from there. It’s important
that one cultivates good habits and that one remains open to contin‐
uous learning.
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1. Taken from the book Learning and Leading with Habits of Mind, edited by Arthur L.
Costa and Bena Kallick (ACSD).

Some habits of mind that we believe might help solve problems1 are
persistence, thinking about thinking, thinking flexibly, striving for ac‐
curacy, and listening with empathy.

Let’s frame this somewhat differently: in education in traditional set‐
tings, we focus on answers. But what we probably should focus on, or
at least emphasize more strongly, is how students behave when they
don’t know the answer. We need to have qualities that help us find the
answer.

Speaking of this issue, have you ever wondered why people don’t say
“I don’t know” when they don’t know something? This is partly ex‐
plained through an unconscious bias called the Dunning-Kruger
effect.

Basically, people who are bad at something have no idea that they are
bad at it and overestimate their confidence. People who are super good
at something underestimate their mastery of it. Actual competence
may weaken self-confidence. Keep this in mind and try not to over-
or underestimate your abilities—give yourself reality checks by mak‐
ing sure you can code what you speak and by chatting with other data
scientists about approaches.

Thought Experiment Revisited: Teaching Data Science
How would you design a data science class around habits of mind
rather than technical skills? How would you quantify it? How would
you evaluate it? What would students be able to write on their
resumes?

Being Question Askers
People tend to overfit their models. It’s human nature to want your
baby to be awesome, and you could be working on it for months, so
yes, your feelings can become pretty maternal (or paternal).

It’s also human nature to underestimate the bad news and blame other
people for bad news, because from the parent’s perspective, nothing
one’s own baby has done or is capable of is bad, unless someone else
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somehow made them do it. How do we work against this human ten‐
dency?

Ideally, we’d like data scientists to merit the word “scientist,” so they
act as someone who tests hypotheses and welcomes challenges and
alternative theories. That means: shooting holes in our own ideas, ac‐
cepting challenges, and devising tests as scientists rather than defend‐
ing our models using rhetoric or politics. If someone thinks they can
do better, then let them try, and agree on an evaluation method be‐
forehand. Try to make things objective.

Get used to going through a standard list of critical steps: Does it have
to be this way? How can I measure this? What is the appropriate al‐
gorithm and why? How will I evaluate this? Do I really have the skills
to do this? If not, how can I learn them? Who can I work with? Who
can I ask? And possibly the most important: how will it impact the real
world?

Second, get used to asking other people questions. When you ap‐
proach a problem or a person posing a question, start with the as‐
sumption that you’re smart, and don’t assume the person you’re talking
to knows more or less than you do. You’re not trying to prove anything
—you’re trying to find out the truth. Be curious like a child, not wor‐
ried about appearing stupid. Ask for clarification around notation,
terminology, or process: Where did this data come from? How will it
be used? Why is this the right data to use? What data are we ignoring,
and does it have more features? Who is going to do what? How will
we work together?

Finally, there’s a really important issue to keep in mind, namely the
classical statistical concept of causation versus correlation. Don’t make
the mistake of confusing the two. Which is to say, err on the side of
assuming that you’re looking at correlation.

What Would a Next-Gen Data Scientist Do?
Next-gen data scientists remain skeptical—about models
themselves, how they can fail, and the way they’re used or can
be misused. Next gen data scientists understand the implica‐
tions and consequences of the models they’re building. They
think about the feedback loops and potential gaming of their
models.
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Being an Ethical Data Scientist
You all are not just nerds sitting in the corner. You have increasingly
important ethical questions to consider while you work.

We now have tons of data on market and human behavior. As data
scientists, we bring not just a set of machine learning tools, but also
our humanity, to interpret and find meaning in data and make ethical,
data-driven decisions.

Keep in mind that the data generated by user behavior becomes the
building blocks of data products, which simultaneously are used by
users and influence user behavior. We see this in recommendation
systems, ranking algorithms, friend suggestions, etc., and we will see
it increasingly across sectors including education, finance, retail, and
health. Things can go wrong with such feedback loops: keep the fi‐
nancial meltdown in mind as a cautionary example.

Much is made about predicting the future (see Nate Silver), predicting
the present (see Hal Varian), and exploring causal relationships from
observed data (the past; see Sinan Aral).

The next logical concept then is: models and algorithms are not only
capable of predicting the future, but also of causing the future. That’s
what we can look forward to, in the best of cases, and what we should
fear in the worst.

As an introduction to how to approach these issues ethically, let’s start
with Emanuel Derman’s Hippocratic Oath of Modeling, which was
made for financial modeling but fits perfectly into this framework:

• I will remember that I didn’t make the world and that it doesn’t
satisfy my equations.

• Though I will use models boldly to estimate value, I will not be
overly impressed by mathematics.

• I will never sacrifice reality for elegance without explaining why
I have done so. Nor will I give the people who use my model false
comfort about its accuracy. Instead, I will make explicit its as‐
sumptions and oversights.

• I understand that my work may have enormous effects on society
and the economy, many of them beyond my comprehension.
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Something that this oath does not take into consideration, but which
you might have to as a data scientist, is the politics of working in in‐
dustry. Even if you are honestly skeptical of your model, there’s always
the chance that it will be used the wrong way in spite of your warnings.
So the Hippocratic Oath of Modeling is, unfortunately, insufficient in
reality (but it’s a good start!).

What Would a Next-Gen Data Scientist Do?
Next-gen data scientists don’t let money blind them to the
point that their models are used for unethical purposes. They
seek out opportunities to solve problems of social value and
they try to consider the consequences of their models.

Finally, there are ways to do good: volunteer to work on a long-term
project (more than a hackathon weekend) with DataKind.

There are also ways to be transparent: Victoria Stodden is working on
RunMyCode, which is all about making research open source and
replicable.

We want step aside for a moment and let someone else highlight how
important we think ethics—and vanquishing hubris—are to data sci‐
ence. Professor Matthew Jones, from Columbia’s History Department,
attended the course. He is an expert in the history of science, and he
wrote up some of his thoughts based on the course. We’ve included
them here as some very chewy food for thought.

Data & Hubris
In the wake of the 2012 presidential election, data people, those they
love, and especially those who idealize them, exploded in schaden‐
freude about the many errors of the traditional punditocracy.
Computational statistics and data analysis had vanquished prognos‐
tication based on older forms of intuition, gut instinct, long-term
journalistic experience, and the decadent web of Washington insiders.
The apparent success of the Obama team and others using quantita‐
tive prediction revealed that a new age in political analysis has been
cemented. Older forms of “expertise,” now with scare quotes, were
invited to take a long overdue retirement and to permit a new data-
driven political analysis to emerge.
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It’s a compelling tale, with an easy and attractive bifurcation of old
and new forms of knowledge. Yet good data scientists have been far
more reflective about the dangers of throwing away existing domain
knowledge and its experts entirely.

Origin stories add legitimacy to hierarchies of expertise. Data mining
has long had a popular, albeit somewhat apocryphal, origin story: the
surprising discovery, using an association algorithm, that men who
buy diapers tend often to buy beer at the same time in drug stores.
Traditional marketing people, with their quant folk psychologies and
intuitions about business, were heretofore to be vanquished before
what the press probably still called an “electronic brain.” The story
follows a classic template. Probability and statistics from their origins
in the European Enlightenment have long challenged traditional
forms of expertise: the pricing of insurance and annuities using data
rather than reflection of character of the applicant entailed the di‐
minution and disappearance of older experts. In the book that intro‐
duced the much beloved (or dreaded) epsilons and deltas into real
analysis, the great mathematician Augustin-Louis Cauchy blamed
statisticians for the French Revolution: “Let us cultivate the mathe‐
matical sciences with ardor, without wanting to extend them beyond
their domain; and let us not imagine that one can attack history with
formulas, nor give sanction to morality through theories of algebra
or the integral calculus.”

These narratives fit nicely into the celebration of disruption so central
to Silicon Valley libertarianism, Schumpeterian capitalism, and cer‐
tain variants of tech journalism. However powerful in extirpating
rent-seeking forms of political analysis and other disciplines, the di‐
chotomy mistakes utterly the real skills and knowledge that appear
often to give the data sciences the traction they have. The preceding
chapters—dedicated to the means for cultivating the diverse capaci‐
ties of the data scientist—make mincemeat of any facile dichotomy
of the data expert and the traditional expert. Doing data science has
put a tempering of hubris, especially algorithmic hubris, at the center
of its technical training.

Obama’s data team explained that much of their success came from
taking the dangers of hubris rather seriously, indeed, in building a
technical system premised on avoiding the dangers of overestimation,
from the choice and turning of algorithms to the redundancy of the
backend and network systems: “I think the Republicans f**ked up in
the hubris department,” Harper Reed explained to Atlantic writer
Alexis Madrigal. “I know we had the best technology team I’ve ever
worked with, but we didn’t know if it would work. I was incredibly
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confident it would work. I was betting a lot on it. We had time. We
had resources. We had done what we thought would work, and it still
could have broken. Something could have happened.”

Debate over the value of “domain knowledge” has long polarized the
data community. Much of the promise of unsupervised learning, after
all, is overcoming a crippling dependence on our wonted categories
of social and scientific analysis, as seen in one of many celebrations
of the Obama analytics team. Daniel Wagner, the 29-year-old chief
analytics officer, said:

The notion of a campaign looking for groups such as “soccer
moms” or “waitress moms” to convert is outdated. Campaigns can
now pinpoint individual swing voters. White suburban women?
They’re not all the same. The Latino community is very diverse
with very different interests. What the data permits you to do is to
figure out that diversity.

In productive tension with this escape from deadening classifications,
however, the movement to revalidate domain expertise within statis‐
tics seems about as old as formalized data mining.

In a now infamous Wall Street Journal article, Peggy Noonan mocked
the job ad for the Obama analytics department: “It read like politics
as done by Martians.” The campaign was simply insufficiently human,
with its war room both “high-tech and bloodless.” Unmentioned went
that the contemporaneous Romney ads read similarly.

Data science rests on algorithms but does not reduce to those algo‐
rithms. The use of those algorithms rests fundamentally on what so‐
ciologists of science call “tacit knowledge”—practical knowledge not
easily reducible to articulated rules, or perhaps impossible to reduce
to rules at all. Using algorithms well is fundamentally a very human
endeavor—something not particularly algorithmic.

No warning to young data padawans is as central as the many dangers
of overfitting, the taking of noise for signal in a given training set; or,
alternatively, learning too much from a training set to generalize
properly. Avoiding overfitting requires a reflective use of algorithms.
Algorithms are enabling tools requiring us to reflect more, not less.
In 1997 Peter Huber explained, “The problem, as I see it, is not one
of replacing human ingenuity by machine intelligence, but one of
assisting human ingenuity by all conceivable tools of computer sci‐
ence and artificial intelligence, in particular aiding with the improv‐
isation of search tools and with keeping track of the progress of an
analysis.”̄ The word ‘improvisation’ is just right in pointing to mastery
of tools, contextual reasoning, and the virtue of avoiding rote activity.
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The hubris one might have when using an algorithm must be tem‐
pered through a profound familiarity with that algorithm and its par‐
ticular instantiation.

Reflection upon the splendors and miseries of existing models figured
prominently in the Obama campaign’s job ad mocked by Noonan:

• Develop and build statistical/predictive/machine learning mod‐
els to assist in field, digital media, paid media and fundraising
operations

• Assess the performance of previous models and determine when
these models should be updated

• Design and execute experiments to test the applicability and val‐
idity of these models in the field […]

The facile, automatic application of models is simply not at issue here:
criticism and evaluation are. No Martian unfamiliar with territory
could do this: existing data—of all kind—is simply too vital to pass
up.

How to learn to improvise? In other words, what model would be best
for educating the data scientist? Becoming capable of reflective im‐
provisation with algorithms and large data demands the valorization
of the muddling through, the wrangling, the scraping, the munging
of poorly organized, incomplete, likely inconclusive data. The best
fitting model for the training required is not narrow vocational edu‐
cation, but—of all things—the liberal arts in their original meaning.

For centuries, an art, such as mathematics or music, was called “lib‐
eral” just because it wasn’t automatic, mechanical, purely repetitive,
habitual. A liberal arts education is one for free people, in the sense
of people mentally free to reflect upon their tools, actions, and cus‐
toms, people not controlled by those tools, people free, then, to use
or not to use their tools. The point holds for algorithms as much as
literature—regurgitation need not apply in the creation of a data sci‐
entist worth the name. Neither should any determinism about tech‐
nology. No data scientist need ever confuse the possibility of using a
technology with the necessity of using it. In the sparse space of the
infinite things one might do with data, only a few dense (and inter‐
esting) ethical pockets deserve our energy.

— Matthew Jones

358 | Chapter 16: Next-Generation Data Scientists, Hubris, and Ethics

www.it-ebooks.info

http://goo.gl/3KuIuj
http://www.it-ebooks.info/


Career Advice
We’re not short on advice for aspiring next-gen data scientists, espe‐
cially if you’ve gotten all the way to this part of the book.

After all, lots of people ask us whether they should become data sci‐
entists, so we’re pretty used to it. We often start out the advice session
with two questions of our own.

1. What are you optimizing for?
To answer that question, you need to know what you value. For
example, you probably value money, because you need some min‐
imum to live at the standard of living you want to, and you might
even want a lot. This definitely rules out working on lots of cool
projects that would be cool to have in the world but which nobody
wants to pay for (but don’t forget to look for grants for projects
like those!). Maybe you value time with loved ones and friends—
in that case you will want to rule out working at a startup where
everyone works twelve hours a day and sleeps under their desks.
Yes, places like that still totally exist.
You might care about some combination of doing good in the
world, personal fulfillment, and intellectual fulfillment. Be sure to
weigh your options with respect to these individually. They’re
definitely not the same things.
What are your goals? What do you want achieve? Are you inter‐
ested in becoming famous, respected, or somehow specifically
acknowledged? Probably your personal sweet spot is some weigh‐
ted function of all of the above. Do you have any idea what the
weights are?

2. What constraints are you under?
There might be external factors, outside of your control, like you
might need to live in certain areas with your family. Consider also
money and time constaints, whether you need to think about va‐
cation or maternity/paternity leave policies. Also, how easy would
it be to sell yourself? Don’t be painted into a corner, but consider
how to promote the positive aspects of yourself: your education,
your strengths and weaknesses, and the things you can or cannot
change about yourself.

There are many possible solutions that optimize what you value and
take into account the constraints you’re under. From our perspective,
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it’s more about personal fit than what’s the “best job” on the market.
Different people want and need different things from their careers.

On the one hand, remember that whatever you decide to do is not
permanent, so don’t feel too anxious about it. You can always do
something else later—people change jobs all the time. On the other
hand, life is short, so always try to be moving in the right direction—
optimize for what you care about and don’t get stagnant.

Finally, if you feel your way of thinking or perspective is somehow
different than what those around you are thinking, then embrace and
explore that; you might be onto something.
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index@oreilly.com.
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Harvard Business Review, 8
history of, 6–10
industry vs. academia in, 3
LinkedIn and, 9
meta-definition thought experi‐

ment, 13
privacy and, 196
process of, 41–44
RealDirect case study, 46–49
scientific method and, 44
scientists, 10–13
sociology and, 218
teams, 11

Venn diagram of, 7
data science competitions, 166

Kaggle and, 170
data scientists, 10–13

as problem solvers, 350
chief, 304
defining, 11
ethics of, 354–355
female, 305
hubris and, 355–358
in academia, 14
in industry, 15
next generation of, 350–353
questioning as, 352
role of, in data science process, 43
soft skills of, 351

data visualization, 217–250
at Square, 247–248
Before Us is the Salesman’s House

(Thorp/Hansen), 231–233
Cronkite Plaza (Thorp/Rubin/

Hansen), 230
distant reading, 221
fraud and, 236–239
Hansen, Mark, 217–234
history of, 217
Lives on a Screen (Thorp/Hansen),

229
machine learning and, 235
Moveable Type (Rubin/Hansen),

226–229
personal data collection thought

experiment, 219
Processing programming lan‐

guage, 221
risk and, 234–248
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Shakespeare Machine (Rubin/

Hansen), 233
sociology and, 218
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data visualization exercise, 250
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DataEDGE, 242
datafication, 4, 5
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datasets
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keying, 58
sharding, 89
simulating, 70

decay, 153, 155
decision trees

algorithm for, 187
as embedded method, 184
continuous variables in, 188
random forests of, 190–192

degrees, 257
demeaned forecast, 158
demeaned realized, 158
derivatives

priors and, 162
second, 162

Derman, Emanuel, 354
Hippocratic Oath of Modeling,

354
descriptive models, 194
deterministic relationships, 60
diagonal, 208
differential calculus, 337
digit recognition, 97
dimensionality, 96, 202, 206

alternating least squares, 211
optimizing for, 212
principal component analysis and,

209–211
singular value decomposition

(SVD) and, 207–209
dimensions, 96
directed edges, 137
discrete derivative operators, 161
distance metrics (k-NN), 75–77

sensitivity of, 203
distant reading, 221
distribution, 20

conditional, 32
Gaussian, 30
joint, 32
named, 30
normal, 30

distributive crowdsourcing, 167
domain expertise vs. machine learn‐

ing algorithms, 175
Dorsey, Jack, 235
Driscoll, Mike, 6
Duhigg, Charles, 269

Dunning-Kruger effect, 352
dyads, 256, 266

E
eBay, 200, 207
edges, 136, 256
ego networks, 257
Egyptian politics thought experiment,

259
eigenvalue centrality, 264

social networks and, 264
electronic health records (EHR), 298,

299
embedded methods, 180
engaged users, 242
entropy, 183

conditional, 187
feature selection and, 186
specific conditional, 187

epidemiology, 291–302
academic statistics and, 293
confounders in, 294–296
Observational Medical Outcomes

Partnership, 298–302
observational studies and, 293
observational studies, improving

on, 296–298
stratification and, 294–296

Erdos-Renyi model graphs, 265–267
errors, 244

actual, 65
adding assumptions to models for,

64–66
defining metric of, 239
in linear regression models, 64–66
mean absolute, 127
mean squared, 66, 67, 127
measurement, 203
observed, 66
root squared, 127

Essay Scoring Competition (Kaggle),
173

estimators, 33, 63
unbiased, 66

ethical challenges, 344, 354–355
Euclidean distance, 75, 202
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evaluating models, 313–320
accuracy and, 315
algorithms, choosing, 318
probability vs. binary outcomes,

315–318
evaluation metrics

A/B testing for, 128
for k-NN algorithms, 78
for linear regression algorithms,

66–70
exercises

Basic Machine Learning Algo‐
rithm, 85–89

data visualization, 250
financial data, 163
for EDA, 37–40
GetGlue, 162–164
Media 6 Degrees (M6D), 128
Naive Bayes for Article Classifica‐

tion, 109–112
RealDirect data strategy, 48–49
recommendation engine, building,

214
simulating datasets, 70
timestamped event data, 162–164

experiments, 244
explanatory variables, 176
explicit assumptions, 53
exploratory data analysis (EDA), 17,

29, 34–40
code samples for, 38–40
exercise for, 37–40
financial modeling and, 138–142
modeling and, 29
philosophy of, 36–37
tools of, 35

exponential downweighting, 154, 155
formula for, 155

exponential random graph models
(ERGMs), 266
inference for, 267

exponential random graphs, 266

F
F-score, 127
Facebook, 2, 8, 21, 218, 253

data science in, 9

Kaggle and, 172
real-time streaming data, 23

false negative rate, 78
false positive rate, 78
fault tolerance, 327
feature construction, 307
feature extraction, 165, 179
feature generation, 179
feature selection, 165, 176–193

challenges in, 241
criticisms of, 192
decision tree algorithm, 187
decision trees, 184
entropy, 186
filters, 181
random forests and, 190–192
user retention example, 177–180
wrapper, 181–183

feature selection methods, 180
embedded, 180
filters, 180
wrappers, 180

feature transformation, 307
features, 176
feedback loops, 126
feedback loops in financial models,

156–158
filter bubble thought experiment, 213
filters, 180
filters, ordering features with, 181
finalizing models, 146
financial data exercise, 163
financial modeling

autocorrelation, correcting, 159–
162

financial data exercise, 163
GetGlue exercise, 162–164
logistic regression in, 158
priors in, 158
timestamped event data exercise,

162–164
financial models, 145–162

causality and, 146–147
data preparation for, 147–149
exponential downweighting, 155
feedback loop, 156–158
in-sample data, 146–147
log returns and, 149
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out-of-sample data, 146–147
S&P index example, 151
volatility measurements in, 152–

154
finite differences, 183
Firebug extension, 107
Firefox, 107
Flickr, 108
FOIA requests, 269
Foreign Affairs (magazine), 5
forward selection, 182
Fourier coefficients, 246
fraud, data visualization and, 236–239

detecting with machine learning,
236–239

performance estimation, 239–242
freeze rates, 248
Fruchterman-Reingold algorithm, 261
functions, 33

knn(), 80
likelihood, 122
loss, 68
penalty, 160

fundamental problem of causal infer‐
ence, 286

G
garbage in, garbage out scenarios, 165
Gaussian distribution, 30
Gaussian mixture model, 56
Geller, Nancy, 8
Gelman, Andrew, 26
general functional form, 31
generating data, 304
generative processes, 52
geo-based location data, 23
geographic information systems

(GIS), 220
geometric mean, 211
GetGlue, 135–137, 214
GetGlue exercise, 162–164
Giraph, 331
GitHub, 335
Gmail, 95
goodness, 301
Google, 2, 3, 4, 5, 21, 53, 126, 193

Bell Labs and, 35

experimental infrastructures, 281
issues with, 176
machine learning and, 52
MapReduce and, 321
mixed-method approaches and,

194
privacy and, 196
sampling and, 21
skills for, 8
social layer at, 196
social research, approach to, 193–

198
text-mining models and, 13

Google glasses, 6
Google+, 41, 193, 195, 253
graph statistics, 266
graph theory, 255
grouping data, 81
groups, 256
Guyon, Isabelle, 180, 181

H
Hadoop, 21, 333–335

analytical applications, 335
Cloudera and, 334
core components, 334
MapReduce and, 333

Hammerbacher, Jeff, 8, 334
Hamming distance, 76
Hansen, Mark, 217–234
Harris, Harlan, 13
Harvard Business Review

data science in, 8
HDFS, 334
heaps, 326
Hessian matrix, 123, 124
hierarchical modeling, 82
high bias, 192
high class imbalance, 241
Hippocratic Oath of Modeling, 354
Hofman, Jake, 340
Howard, Jeremy, 175
Hubway Data Visualization challenge,

250
Huffaker, David, 193
human powered airplane thought ex‐

periment, 332
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Hunch, 200
hyperparameters, 105

I
IBM, 309
image recognition thought experi‐

ment, 108
images, 23
incidence lists, 264
incidence matrix, 264
independent trials, 101
individual user plots, 138
inference for ERGMs, 267
inferential degeneracy, 268
information gain, 187

maximize, 187
inherent chaos, 45
InnoCentive, 167
inspecting elements, 107
interpretability

as constraint, 117
of logistic regression, 117
predictive power vs., 192

interpretations, 273
interpreting parameters, 53

J
Jaccard distance, 76, 202
Jensen, Roderick V., 45
join distributions, 32

K
k-means algorithm, 55, 56, 81–85

in two dimensions, 82–85
issues with, 84

k-Nearest Neighbors (k-NN), 42, 55,
71–81, 115, 125
computational complexity, 203
correlated features in, 203
cost of, 204
credit score example, 73–75
distance metrics, 75–77
importance of features in, 203
issues with, 202
k, choosing, 79

machine learning classifications
vs., 204–206

measurement errors, 203
Naive Bayes vs., 105
recommendation engines and,

202–204
similarity metrics, 75–77
spam filters and, 96
sparseness, 203
test sets, 77
training sets, 77

Kaggle, 167, 170–173
crowdsourcing and, 167
customer base of, 172
Facebook and, 172
leapfrogging and, 170

Katz, Elihu, 255
KDD competition, 166
Kelly, John, 254
keying datasets, 58
Khan Academy, 5, 207
Knewton, 5
knn() function, 80

L
labels, 81, 119, 242

churn, 239
defining, 241

Lander, Jared, 341
Laplace smoothing, 103
large-scale network analysis thought

experiment, 195
latency, 207
latent features, 206

most important, 209
latent space models, 268
Latour, Bruno, 218
Lazarsfield, Paul, 255
leakage, 307
leapfrogging, 170

issues with, 171
learning by example thought experi‐

ment, 93–97
least important vectors, 208
Least Squares, 52
least-squares estimation, 61
lift, 126
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likelihood function, 122
linear algebra, 207
linear regression algorithms, 30, 42,

55–71
evaluation metrics for, 66–70
models, fitting, 61
multiple, 69
noise and, 64–66
spam filters and, 95
using, 55

linear regression model, 64
linear relationships, 55, 56
LinkedIn, 8, 253

data science in, 9
Lives on a Screen (Thorp/Hansen),

229
log returns vs. percent, 149
logistic regression, 54, 113–128

algorithms, understanding, 117
at runtime, 116
classifiers, 115–118
evaluating, 125–128
implementing, 124
in financial modeling, 158
interpretability of, 117
mathematical basis of, 120–122
Media 6 Degrees (M6D) case

study, 118–128
Media 6 Degrees (M6D) exercise,

128
Newton’s method of, 124
output of, 119
scalability, 117
stochastic gradient descent meth‐

od, 124
thought experiments for, 113–128

logistic regression model, 121
Lorenzian water wheel, 44
loss function, 68
lynx, 107
lynx --dump, 107

M
machine learning, 52, 235

challenges in, 241
data visualization and, 235

detecting suspicious activity, with,
236–239

Google and, 52
models, productionizing, 245

machine learning algorithms, 52, 330
domain expertise vs., 175

machine learning classifications, 204–
206
recommendation engines and,

204–206
Madigan, David, 291, 344
Mahalanobis distance, 76
Mahout, 124
Manhattan distance, 76
MapReduce, 51, 324

analytical applications, 335
common usage of, 329
Google and, 321
Hadoop and, 333
limitations of, 330
using, 322, 328
word frequency problems, 328

mathematical models, 27
matrix decomposition, 207
maximize information gain, 187
maximum likelihood estimation, 33,

123
Mayer-Schoenberger, Viktor, 5
McKelvey, Jim, 235
MCMC methods, 268
mean absolute error, 127
mean squared error, 66, 67, 127, 307
meaning of features, 273
measurement errors, 203
Mechanical Turks, 168

Amazon, 169
crowdsourcing vs., 169

Mechanize, 107
Media 6 Degrees (M6D), 343
Media 6 Degrees (M6D) case study,

118–128
click models for, 118

Media 6 Degrees (M6D) exercise, 128
medical data thought experiment,

292, 302
meta-definition thought experiment,
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Metamarket, 6
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methods, 55
feature selection, 180
MCMC, 268

metrics, 202
Microsoft Research, 21
misclassification rate, 79
mixed-method approaches, 194
modeling, 56

EDA and, 29
hierarchical, 82
skills for, 307
statistical, 52
time series, 143

modeling assumptions
Big Data and, 24–26
in k-NN algorithms, 80

models, 26–34, 244
adding assumptions about errors,

64–66
algorithms vs., 56, 56
at scale, 89
autocorrelation, correcting, 159–

162
building, 29, 243–247
causal, 146
causality and, 146–147
coding for, 243–245
data, 26
defined, 27
descriptive/predictive, 194
designing, 333
developing, 135–164
EDA and, 138–142
evaluating, 313–320
exploratory data analysis (EDA),

34–40
exponential downweighting, 155
feature selection for, 176–193
finalizing, 146
financial, 145–162
fitting, 33, 61
GetGlue and, 135–137
in-sample data, 146–147
latent space, 268
linear regression, 64
logistic regression, 121
mathematical, 27
out-of-sample data, 146–147

overfitting, 34
probabilistic, 94
probability distributions and, 30–

33
productionizing, 245
relying on data leakage, 308
statistical, 26, 28, 30
timestamps and, 137
timestamps in training data

thought experiment, 144
volatility measurements in, 152–

154
MONK project, 234
Moretti, Franco, 221
Morningside Analytics, 253, 260–263
most important latent features, 209
Moveable Type (Rubin/Hansen), 226–

229
multiple linear regression, 69

N
Naive Bayes, 30, 42, 54, 96, 98–102,

115, 125
algorithm, 102
Bayes law, 98
combining words in, 101
k-NN vs., 105
training classifiers, 339
using, 99

Naive Bayes for Article Classification
exercise, 109–112, 339

named distribution, 30
natural language processing (NLP),

112, 260
negative log likelihood, 123
neighbors, 72
Netflix, 25

recommendation engines and, 199
network data, 23
networks

small-world, 268
undirected, 264

New Scientist (magazine), 175
New York Times API, 110
Newton’s method of logistic regres‐
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nodes, 136, 256
pairs of, 258

noise, 65
noise in linear regression models, 64–

66
normal distribution, 30
normalized Gini coefficient, 172
normalizing data, 148
null hypothesis, 67, 183

O
Observational Medical Outcomes

Partnership, 298–302
observational studies, 278, 283–289

causal effect, 287
causality, visualizing, 286–287
improving on, 296–298
in medical literature, 293
Rubin Causal Model, 285
Simpson’s Paradox, 283–285

observations, 20
observed errors, 66
observed features, 81
OK Cupid, 276–279
orthogonal, 207, 208
overfitting models, 34, 203, 205
oversampling, 309
O’Neil, Cathy, 143

P
p-values, 67, 183
Pandora, 137
parallelizing, 332
parameter estimation, 52
parameters, interpreting, 53
parsing tools, 107

Beautiful Soup, 107
lynx, 107
lynx --dump, 107
Mechanize, 107
PostScript, 107

Patil, DJ, 8
patterns, 36
penalty function, 160
percent returns, 149

log vs., 149
scaled, 149

performance estimation, 239–242
Perlich, Claudia, 303–305, 343
Perlson, Doug, 46
personal data collection thought ex‐

periment, 219
Pinterest, 47
polishing, 339
populations, 19

distinctions between samples and,
19

super-, 22
position, 126
position normalize, 126
PostScript, 107
precision, 78, 127, 240
predicted preference, 210
predicting attributes, 204
predictions, 54, 57, 177, 273, 355
predictive models, 194
predictive power, 53

interpretability vs., 192
predictors, 176

adding, 69
Pregel, 51, 331
prescriptionists, 13
Principal Component Analysis

(PCA), 206, 209–211
priors, 212

higher derivatives and, 162
in financial modeling, 158

privacy thought experiment, 197
privacy, data science and, 196
probabilistic models, 94
probability, 30, 119, 315

binary outcomes vs., 315–318
probability distributions, 30–33
problems with channels, 325
process thinking, 337–339
processes

data-generating, 19
generative, 52
real-world, 19

Processing programming language,
221

products, 5
proximity clustering, 261
prtobuf, 335
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pseudo-likelihood estimation proce‐
dure, 268

pseudocounts, 105
purity, 318

Q
Quora, 6

R
R-squared, 67, 182
random forests, 190–192
random graphs, 265–267

Erdos-Renyi model, 265–267
exponential, 266

random variables, 32
ranks, 126, 207
real-life performance measures, 307
real-time streaming data, 23
real-world data, 339
real-world processes, 19
RealDirect, 46

website, 48
RealDirect case study, 46–49
RealDirect data strategy exercise, 48–

49
realizations, 33
recall, 78, 127, 240
receiver operating characteristic

curve, 125
recommendation engines, 199–214

Amazon and, 199
building, exercise, 214
dimensionality, 206
k-Nearest Neighbors (k-NN) and,

202–204
machine learning classifications

and, 204–206
Netflix and, 199
real-world, 200

records, 23
Red Hat, 334
Reddy, Ben, 341
redundancies, 176
regression, stepwise, 181
regular expressions, 341
relational ties, 256
relations, 256

relationships
deterministic, 60
understanding, 57

relative time differentials, 144
residual sum of squares (RSS), 62
residuals, 66
retention, understanding, 177
return, 188
Robo-Graders, ethical implications of

as thought experiment, 174
ROC curve, 125
root squared error, 127
Rube Goldberg machines, 333
Rubin Causal Model, 285
RunMyCode, 355
running estimates, 149

S
S&P index example, 151
samples vs. populations, 19
sampling, 21, 22

distribution, 22
issues with, 309
problems, 309
users, 309

sampling distribution, 22
scaled percent returns, 149
scientific method, 44
scikit-earn, 244
second derivatives, 162
segmentation, 81
semi-supervised learning problems,

239
sensitivity, 78
sensor data, 23
Shakespeare Machine (Rubin/

Hansen), 233
sharding datasets, 89
shards, 329
shift operators, 161
signals, 244
similarity metrics (k-NN), 72, 75–77
Simpson’s Paradox, 283–285
Singular Value Decomposition (SVD),

206
singular value decomposition (SVD),

207–209
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small-world networks, 268
social annotation, 196
social network analysis, 255, 260
social networks, 254–269

analysis of, 255
as school of fish, 262
case attribute data vs., 254
centrality measures, 257–259
eigenvalue centrality and, 264
Morningside Analytics, 260–263
representations of, 264
terminology of, 256

social research, 165–198
extracting meaning from, 165–198
feature selection, 176–193

sociometry, 255
spam classifiers, 119
spam filters, 93–112

combining words in, 101
for individual words, 99–101
k-Nearest Neighbors (k-NN) and,

96
Laplace smoothing, 103
learning by example thought ex‐

periment, 93–97
linear regression algorithms and,

95
Naive Bayes, 98–102

span, 207
sparse vectors, 202
sparseness, 203
specific conditional entropy, 187
specificity, 78
Square, 235

challenges of, 236
data visualization at, 247–248

Square Wallet, 235
statistical inference, 18, 19, 66
statistical models, 26, 30, 52
statistics, 7, 8, 17–34

epidemiology and, 293
graph, 266
journals, 293
modeling, 26–34
populations, 19
samples, 19
statistical inference, 18

stepwise regression, 181
combined approach to, 182
methods of, 181

stochastic gradient descent, 52, 124
stratifications, 289, 294
stratifying data, 81
subgroups, 256
subnetworks, 256
super-populations, 22
supervised learning, 81

k-Nearest Neighbor algorithms,
71–81

linear regression algorithms, 55–
71

supervised learning recipe, 239
Suriowiecki, James, 169
Survival Analysis, 177

T
tacit knowledge, 357
Tarde, Gabriel, 218, 343

Idea of Quantification, 218
Taylor Series, 183
teaching data science thought experi‐

ment, 348
test sets, 77
tests, 244
text data, 23
text-mining models, 13
TF-IDF vectors, 340
thought experiments

access to medical records, 323
automated statistician, 91
chaos simulation, 44
data science as a science, 114–128
Egyptian politics, 259
filter bubble, 213
human powered airplane, 332
image recognition, 108
large-scale network analysis, 195
learning by example, 93–97
medical data, 292, 302
meta-definitions, 13
personal data collection, 219
privacy, concerns/understanding

of, 197
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Robo-Graders, ethical implications
of, 174

teaching data science, 348
timestamps in training data, 144
transaction data, 248
unified theory of data science,

114–128
thresholds, 300
Thrift, 335
time series modeling, 143
timestamped event data exercise, 162–

164
timestamps

absolute, 144
financial modeling and, 137
issues with, 142

timestamps in training data thought
experiment, 144

tolerance, 327
traditional data, 23
traditional data fields, 220
training sets, 77
transaction data thought experiments,

248
transformations, 69
transforming data, 148
transforming features, 307
transitivity, 266
translations, 271
transpose, 207
treated, 275
trees, 318
trends, 60, 64
triadic closures, 256
triads, 256
true negative rate, 78
true positive rate, 78
true regression line, 65
Tukey, John, 34
Twitter, 21, 253, 259

Lives on a Screen (Thorp/Hansen),
229

types of data, 23
geo-based location, 23
images, 23
network, 23
real-time streaming, 23
records, 23

sensor, 23
text, 23
traditional, 23

U
Ullman, Ellen, 40
unbiased estimators, 66
undirected networks, 264
unexplained variance, 67
unit level causal effect, 285
unit subsets, 20
unsupervised learning, 84
untreated, 275
usagists, 13
user retention example, 177–180

interpretability vs.predictive pow‐
er, 192

using MapReduce, 328

V
variables

correlated, 176
random, 32

variance, 67
variation, 60, 64
vectors

least important, 208
TF-IDF, 340

Venn diagram of data science, 7
visualization, 8
visualization radiators, 247
volatility estimates, 152
volatility measurements, 152–154
Vowpal Wabbit, 124

W
web, scraping data from, 106–108
Wikipedia, 167
Wills, Josh, 53, 331
Wong, Ian, 234–248
word frequency problems, 325–329
wrapper feature selection, 181–183

algorithms, selecting, 181
criterion for, 182

wrappers, 180
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X
xml descriptions, 234

Y
Yahoo!

Developer Network, 107

YQL Language, 107
Yau, Nathan, 7, 250

Z
Zillow, 47
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Colophon
The animal on the cover of Doing Data Science is a nine-banded
armadillo (Dasypus novemcinctus), a mammal widespread through‐
out North, Central, and South America. From Latin, novemcinctus
literally translates to “nine-banded” (after the telescoping rings of ar‐
mor around the midsection), though the animal can actually have be‐
tween 7 to 11 bands. The three-banded armadillo native to South
America is the only armadillo that can roll into a ball for protection;
other species have too many plates.

The armadillo’s skin is perhaps its most notable feature. Brownish-gray
and leathery, it is composed of scaly plates called scutes that cover
everything but its underside. The animals also have powerful digging
claws, and are known to create several burrows within their territory,
which they mark with scent glands. Nine-banded armadillos typically
weigh between 5.5 to 14 pounds, and are around the size of a large
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domestic cat. Its diet is largely made up of insects, though it will also
eat fruit, small reptiles, and eggs.

Females almost always have a litter of four—quadruplets of the same
gender, because the zygote splits into four embryos after implantation.
Young armadillos have soft skin when they are born, but it hardens as
they get older. They are able to walk within a few hours of birth.

Nine-banded armadillos are capable of jumping three to four feet in
the air if startled. Though this reaction can scare off natural predators,
it is usually fatal for the armadillo if an approaching car is what has
frightened it, as it will collide with the underside of the vehicle. An‐
other unfortunate connection between humans and nine-banded ar‐
madillos is that they are the only carriers of leprosy—it is not unheard
of for humans to become infected when they eat or handle armadillos.

The cover image is from Shaw’s Zoology, and was reinterpreted in color
by Karen Montgomery. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.
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