A
T llllson Wistsy Sipmotino Sesins

o M\ o
N
CONTINUOUS

DELIVERY

Jez HUMBLE
DAviD FARLEY

Foreword by Martin Fowler

http://www.it-ebooks.info/

Praise for Continuous Delivery

“If you need to deploy software more frequently, this book is for you. Applying it will help you reduce
risk, eliminate tedious work, and increase confidence. I’ll be using the principles and practices here
on all my current projects.”

—Kent Beck, Three Rivers Institute

“Whether or not your software development team already understands that continuous integration
is every bit as necessary as source code control, this is required reading. This book is unique in tying
the whole development and delivery process together, providing a philosophy and principles, not
just techniques and tools. The authors make topics from test automation to automated deployment
accessible to a wide audience. Everyone on a development team, including programmers, testers,
system administrators, DBAs, and managers, needs to read this book.”

—Lisa Crispin, co-author of Agile Testing

“For many organizations Continuous Delivery isn’t just a deployment methodology, it’s critical to
doing business. This book shows you how to make Continuous Delivery an effective reality in your
environment.”

— James Turnbull, author of Pulling Strings with Puppet

“A clear, precise, well-written book that gives readers an idea of what to expect for the release process.
The authors give a step-by-step account of expectations and hurdles for software deployment. This
book is a necessity for any software engineer’s library.”

— Leyna Cotran, Institute for Software Research, University of California, Irvine

“Humble and Farley illustrates what makes fast-growing web applications successful. Continuous
deployment and delivery has gone from controversial to commonplace and this book covers it excel-
lently. It’s truly the intersection of development and operations on many levels, and these guys
nailed it.”

—John Allspaw, VP Technical Operations, Etsy.com and author of
The Art of Capacity Planning and Web Operations

“If you are in the business of building and delivering a software-based service, you would be well
served to internalize the concepts that are so clearly explained in Continuous Delivery. But going
beyond just the concepts, Humble and Farley provide an excellent playbook for rapidly and reliably
delivering change.”

— Damon Edwards, President of DTO Solutions and co-editor of dev2ops.org

“I believe that anyone who deals with software releases would be able to pick up this book, go to
any chapter and quickly get valuable information; or read the book from cover to cover and be able
to streamline their build and deploy process in a way that makes sense for their organization. In my
opinion, this is an essential handbook for building, deploying, testing, and releasing software.”

—Sarah Edrie, Director of Quality Engineering, Harvard Business School

“Continuous Delivery is the logical next step after Continuous Integration for any modern software
team. This book takes the admittedly ambitous goal of constantly delivering valuable software to
customers, and makes it achievable through a set of clear, effective principles and practices.”

—Rob Sanheim, Principal at Relevance, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous
Delivery

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous
Delivery

Jez Humble and David Farley

vvAddison-Wesley

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris ¢ Madrid

Cape Town e Sydney ® Tokyo e Singapore ® Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data:

Humble, Jez.

Continuous delivery : reliable software releases through build, test, and deployment automation

/ Jez Humble, David Farley.
p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-60191-9 (hardback : alk. paper) 1. Computer software--Development.
2. Computer software--Reliability. 3. Computer software--Testing. 1. Farley, David, 1959-
IL. Title.

QA76.76.D47H843 2010

005.1--dc22

2010022186

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-321-60191-9

ISBN-10: 0-321-60191-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing August 2010

www.it-ebooks.info

http://www.it-ebooks.info/

This book is dedicated to my dad, who has always given me his unconditional
love and support.

—Jez

This book is dedicated to my dad, who always showed me the right direction.

—Dave

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

FOTEWOTd . ceviiieeiiiiiinineninnininneesesenesessesessnesssssessssnessssssssssasssesasssssasasesens xXxi

PrefaCe . cevvveereerererereereeessnereseessarsesnessanesssessnsassaesoseessnsssseessasssssessassssasssnsans xxiii

ACKNOWIEAZMENLS . ceccvveeerreeeecreeecreeeecireeessseeessseeesseeessssesssssessssesssasssnnnes XXXi

About the AUthOTsS . ..coceiiiiiieieiieieceeeeeeeeeec st see e ees xxxiii

Part I: FOundationsccccceeieieiiniinninnienetieieesceeseessceeseeseaeesseeseasessasens 1

Chapter 1: The Problem of Delivering Softwareccccceeveevienieenrucnanes 3

INErOAUCHION .« teiieviiiiieeeite ettt et ettt e et e e vee e e raeesebeeenseeenes 3

Some Common Release Antipatternscoccceeevveeercveerniveerneeennnnes 4

Antipattern: Deploying Software Manuallycccceeeeeeeiiiniinanannannns 5
Antipattern: Deploying to a Production-like Environment Only after

Development Is COMPIELE ..ceveeevruuieeiieeiiiiieeeeeeeiiiiieeseeereiieeeeeesssannns 7

Antipattern: Manual Configuration Management of Production

Environmentsooeeeuuvveiiuniiiiiniiiiiiiieiiiinieii e 9

10

11

14

17

Empowering Teamscccccueveiuniiiiiniiiiuniiiiiniiiiiiiineiinineeinsennnnenes 17

Reducing Errors . ceeeeeeeeeeueeeereeiieiieeseeetteneeeseeetnnnesseeneennessseesnnnnnns 18

Lowering Sress . oveeeuuveveiuniriiuuiiiiiiiniiiiniiiiireiinecinn e eees 20

Deployment Flexibilityccoeeeeeeeeeerereuuuuiiiiieeeesseseasseseseeeeeeeneeennes 21

Practice MaRes Perfectueeeeeeeeuuueeeseeeruueenereeennnieesseesennnssssseesnnnnes 22

iX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

The Release Candidatecccveeeecieeeiiieeeiieeecieeeeee e 22
Prificiple€idcSottands Relivnential Release......uuviveueeiieeeiueeeseenivenns 24
Breareat R &fomabley Ralibig Process. for. Releasing Software....uuuveees. 23
Keep Everything in Version CORtrolcceeeeeeeuuieerreeieeneereeeeennnnnns 26
Buliid-@rts|iyddt. More Frequently,. and Bring. the Pain.Forward........ 28
Done Means Releasedccocuuuuuuuuuumiiiiiiiiiiiiniiiiiiiiieieciininnn 27
EvertybodysIirRizspoaiéne for.the Delivery. Process...vvviiviiesisininnnes 28
SUMMATY © ittt ettt et e e e sree e e s s eee e e e s meeees 29
Chapter 2: Configuration Managementccceeeceeeceeeessseeeesseessssaeeans 31
INErOAUCTION . teviiiiiiieieiite ettt erte et e e e e e saae e sbreesabaeenes 31
Using Version COontrolcceeeeceeeeviieeesieeesieeeseesesaeesssessssseeens 32
KbepkAbs RagellpHyaothinghn. Version.Control.....uiimieim, 33
Use Meaningful Commit MeSSAZES . ..cuuvueerreeeeruuaerereerueneeseeeeennnnnns 37
Managing Dependenciesceevvervveereeriieereerieenieesseesseesseesssenns 38
Managing External LiDrariesceeieeeeeeueeeeseeevnnneeeseereenaeseeeeennnnnns 38
Managing COMPONENES . ccceueveevuirirniiiiiiniriiiiiiriiiireiireeiaseraneenes 39
Managing Software Configurationc.ccevveerveervveeseessvesseenseenns 39
Configuration and FIexibilitycccceeeeeeeieiiiiiieeieieeieieeeeeeeeenennnnen. 40
Types Of CONfIGUIATION .« vvvvueuurerereerrreraarereeeeeereeeeeeeseeesmssmsssssssnnnnes 41
Managing Application CONfIGUIALION . .eueeeeeuneneeeeeeeaaeaaeaaeeeeeeeeeeeeee 43
Mtagispind fovifimgignipgiiss iapiGionfignsation. e, 49
Tools to Manage ERVIFONMENLESceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenennnnnnes 53
Managing the Change Processcooeeeeevuueeeiieeeeiiiiineeiiieneeeneeees 53
SUMMATY ettt eree e e e e e e e e e 54
Chapter 3: Continuous INtEZrationcceereersreeereessresseessressaesseassassoses 55
INErOAUCHION .« terevieieiieeeiie e et e ctee et tee e et e e s e e e e srae e eereeenaeeenes 55
Implementing Continuous INtegrationcccceeceveeeevveeerveeesiveeenns 56
What You Need Before You StArt . ceceeeeeuueeeeeeeeeneeeeeeereeneeseeeeennnenns 56

A Basic Continuous Integration SYSteMmeeeveuuiveeunireinniiiiinnieennnens 57

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Prerequisites for Continuous Integrationccececeeeevueeerveeeecveennns 59
Check In Regularlycccoveeeuuueeeeriiiiiieiieeeiiiieeeneettieeeeeeeeeneeeeees 59
Keeptehe Gotihrohdrkest ProwessaSbdbiTest. Suite....ovvvvvsiisssisssissssenes 60
Managing Your Development WOrRSPACE . ceceevevueneeereereenaenereennnnnns. 62

Using Continuous Integration Softwarecccceceveeeevieeiiciereeseeennns 63
Basic ODerationee.eeeueeeeeeenereneeenenererenereneeenssrnesenssesssenssenssenns 63
Bells and Whistles . ccccccooeveeeeiieiiiiiiiiiuuiececceeeee e eeeeeeeeeeeeeee 63

Essential PractiCesceccvuieriiiieeeiieesiieeeciieeesieeeeceeeessseesseneeesveeenns 66
Don’t Check In on a Broken Buildeueeeeuenuiivvvieiiiiiniininiiinennens 66

Always Run All Commit Tests Locally before Committing, or Get Your 66

CI Server 10 Do It fOr YOU cuuuuueeeiieiiiiiieeeseeiiiiieeeeeetniieeeseeeesnnieseseesnns
Wait for Commit Tests to Pass before Moving Oncccueueeereeeeennnnnn. 67
Never Go Home on a Broken Buildccouvevivuuieeiiiiiiuniieniiennnnnnnn, 68
KimwayB Be BixspgrbdftodRReerr tinghe . Previous . Revision.....vueesesieinns 39
Don’t Comment Out Failing Testseuuuuuuuurereeeeeeeeeaeraeeeeeeeeeeeeeeeees 70
Take Responsibility for All Breakages That Result from Your Changes . 70
Test-Driven DevelOpmentceeeveeeuuueeeseeeeennieeeseeernneeeeeeeeensssesens 71
Suggested PractiCes . ..ccovieeveeeeirieeeiieeeiieeecieeeireeesreeesseeesseeesnnes 71
Faslivg o Brltifoindisdbilé BpdisBlopehest Practicas. .o 73
Didtwibmgade Bedldhfor. Warnings and .Cade.Style Breaches........coevevnne. 73
The IMPACE 071 PYOCESS + cevvvuneeeeeeevuuieeereeiuuniieseseersnnseseseessnsessseeeenns 75
Centralized Continuous INtegrationeeeeeeeeeeeeeeeeeeeeeeeeeeeenennnnnnns 76
Technical ISSUEScccuuuuuuuuuemuuniiiiiieieeieieieeeeeeeeeeeeetetteneeeeeeeseaaaaaaes 76
Alternative APProacheseeueeeeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerenennnnnnes 77
Distributed Version Control SyStemsccccverveervveesvessvesseennnenns 79
SUMMATY + ettt ettt e e e e e e e e 82
Chapter 4: Implementing a Testing Strategycccccererrrereesrercssressssaeasene 83
INErOAUCHION .« teieevieeiieeeitee ettt e tee et e e e e e eae e e naeeenaeeenes 83
TYPES Of TESES « veruverreerieeriieriienteerteeseeesseesaeessseesseeesseessesssassnsenns 84

BustnasksEgcagi st Tthab ISuilupp the PeaJokimhogun droPesscess. .. 89

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Technology-Facing Tests That Critique the Projectcceeeeeeneennn... 91
TSt DOUDIES . eeeeeeeeveeeeiiiiiiiiiettteeeee ettt ee e e e e e e 91
Real-Life Situations and Strategiesccceevueerivieeecrreersieeseeeeennnes 92
NEL PFOJECES « vuviueviiiiiiiiiiiiriiriitieiieriieiesisenssasessnssnesnssessosennes 92
MiAPTOJECE « ittt eeeeeeeeeeeeee 94
Legacy SyStems . c.vvveuuiieiuniiiiiniiiiiiiiiiiniiecie et era e e 95
Integration Testingecceuvieeniiiuiiiuiiiiniiiniiiiiiiiiiiieceetc et eans 96
PrOCESS .« ceveeeieiiiieieeeeiettteee ettt e e e e e s e e e e e e e e e e s e e 99
Managing Defect BACRIOZS . cocevvuuueereieiiiieeeieiiiiieeeieeieeieeeeeeeennneens 100
SUIMIMATY + teeeeetett ettt et e e e e e e eeree et e e e e e e ese e sannnee 101
Part II: The Deployment Pipelingcccovererveererreerccseeeecrnnesssnescsnessssnescnne 103
Chapter 5: Anatomy of the Deployment Pipelineccceevveerueecreeeruencnns 105
INErOAUCHION .« tevcevieieiieeeiiee et e tee e et e e tee e e e e e e srae e esre e e neeeenes 105
What Is a Deployment Pipeline?ccocvevveevieenierseneeensieeneennnees 106
A Basic Deployment Pipelinecocceeeuuuieeereeieenieeeeeeeeenneeeseeeennnnnnns 111
Deployment Pipeline Practicesoccveeveerveereerieenieerseesseesseesseenns 113
Only Build Your Binaries ONCeceeeeueeereeeeeunieeereeevnnneeseeeenennnenseees 113
Dupkey Toet SHorer Wep loyBazers Environingnit... umiiisissseiessssnenes 113
Deploy into a Copy of Productione.eeeeeeeeeueeeereeeeeneeneeeeennnnnns 117
Th#A8pEBansbtsigeLipRlimpatails, tbtopghathaRipeline Tnstautly. .ovenes 129
Commit Stage Best PrACHICES . cevevuueireeniriinereiiiieiiieeeieieretneesennenes 121
The Automated Acceptance Test Gateoeeveveeecreeeeseeeeiveeesieeennns 122
Subkepmenredl Astc djtagres Test. Best. Practices....cuueieiveeeireeeesiseesivsessnnns 124
Manual TeSHING . ccceeeeeeeeiiieieiieiiieieieiteeeeeeeeeeee e e e e e e eeeeeeeeeeeeee 128
Nonfunctional Testingcceeeeeeveeevevereuuuussisesessasassseseseeseeeeseeenne 128
Preparing to Release . .occoiveviieeeiieiiiieceiee et ceceee et eeevee e 128
Automating Deployment and Releasecceeeeeeeeeeeeeveeevenennnnnnnnn. 129
Backing Out CHANGES . weeueeeereeeerneereeeiiiiieeeeeeetnneeeseereennseseseeennnnnns 131
Butilding 01 SUCCESS « ceveeeeeeeeeeeiiiiiiiiittteiceeseeeeeeseeeeeeeeeeeeeeeeeeeneee 132
Implementing a Deployment Pipelineccceevveervverrnieennveennneeennns 133
Meadetiatgrigone Balild SnddveplayGieentBnp aelW alking. Skeleton. ... 133

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Automating the Unit Tests and Code Analysiscccceeveveeeuenunennnnnne. 135
Automating Acceprance TeSES . cc.cuuveveeuneiriuniireiniiieienereiiiereineeeeanes 136
Evolving Your Pipelineccccccocuuuuuuuuuumuuiiieeeeeeeeeneaeeeeeeeeeeeeeeeeeee 136
MELTICS .+ teriiieiiiiiietttee ettt ettt e e e e s 137
SUMMATY ettt e e e e e e s 140
Chapter 6: Build and Deployment SCriptingcceeeveeeeeeevecsesereessneacnes 143
INErOAUCTION .« teveeieiieiieeeiiee ettt et e e te e e e tee e s sveesevaeesaaeeenaeeenns 143
An Overview of Build ToOIs . .ecccvvveiiiieeiiiecieeceeeee e, 144
MUARE « et eetteee e eetteee e e e e et e e s e eeaaa e e s e e tean s e e e eneananns 146
ATIE + ettt ettt et et et e e e e e s e e e e e eennns 147
NAnt and MSBUIlA . ccccoueneeeeneiiiiieeieiiiiieeeee et seeveeee e e eeeeaaees 148
MAVETL ettt et et e e e e e e enas 149
RARE « oottt ettt st e e ettt s e it e e e e e e e e e e e eeas 150
BUIIAT « coeeeeeeeeeeee ettt e et s e et e e e e e e e 151
PSARE « e e ettt se s e e e s e s e s e e e e e eeneeeneee 151
Project Layout P 157
Deployment SCripting . c...cceceveeervieeeriiieenieeensieenseeessiueessseeessveeenns 160
Deploying and Testing Layerseeeeeeeeeeueeeeeeeuuneeeseeeeenseseeeeennnnnns 162
Testing Your Environment’s Configurationeeeeeeeeveeveveenenennnnns 163
Tips and TTICKS . weeeecieiieiieeiieeecee ettt e e ere e seaeeenes 164
Always Use Relative Pathsceeeiieieuuuieeeieeiiniiieseieesninieesesesnnnnnnns 164
Eliminate Manual SEPS . ..cceeeeeeeuueereeeeeenieeereeeiiieeereeteenieseeeenennnnns 165
Bt 1 15E ¢ SoidwilideNinandi B i BoGlot Wi bias FaomofoY.our Build. v 166
QobdtrkinsYmd Bpphication with. [ntegrated Smoke . Tests...uveiiiiiiiees 167
SUIMIMATY + ceeiiiiiieeeee ettt e e et e e s e s e sereeeeeeeeeesesssannnnnnes 168

www.it-ebooks.info

http://www.it-ebooks.info/

v CONTENTS CONTENTS

Chapter 7: The COMMIt STAZE vcecvurererreeeerreererreeeesseneessaeescseesssseessssessenns 169
INELOAUCHION ¢ weevieiieiteieeierteteete ettt ettt ettt see e 169
Commit Stage Principles and Practicesccccevvveerevveerniieeensueennnne 170

Provide Fast, Useful FeedDackcuuuuuuuuuiiiieeeeieanaaeaaieeeeeeeeeeeeenee 171
What Should Break the Commit SIAZe? . .ccevveeeevuneereeeerueneereeeeennnnnns 172
Tend the Commit Stage Carefullyccccoeeeeeeeiieiieieiieieieeeeeeeeenennnnnne. 172
Give Developers OWNErship . cceeeveeeeuueeereeeeienieeereeeiiiieesereneenseeesees 173
Use a Build Master for Very Large Teamscccceeeeeeeeereeeeeeeeeeenennns 174
The Results of the Commit Stage . vveeevervreereerieeniierseenieeseenienns 174
The Artifact REDOSIEOTY . vevevvruueeeereeeuunieeserereenneseseeernsnsseeeseennssnssans 175
Commit Test Suite Principles and Practicesccceevveeeveeeenveeennee. 177
Avoid the User INTErfaceeeuuueeeeeeeeeunieeereeiiinieeseeeernnnseeseeeeennnnnns 178
Use Dependency INjectioneeeeeeeeeeeeeeeeunieieeeeeeeeaeaaaseeeeeeeeeeeneenes 179
Avoid the Databaseeeeueeueuvvviviveiiiiiiiiiiiiiiiiiiiiiiiiineneeenennane. 179
Avoid Asynchrony in Unit TeSES . ..ceeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeenenennnnnnes 180
Using Test DOubIes . cococeeeeeeeeeeveuvueuiuiiiiiisisissssssseseesesesseseseeseseenes 180
Minimizing State i1 TeStS . ocveeuuvvriiniiiiiiniiiiiniiiiiiiiieiiineci e 183
FARING TitNe . eceeeeeeeeeeeeeeeeeeeeeeeieieeeteeeeeaeiissssssssssssssesseseeaesessnnes 184
Bruste FOTCE . wuvvivuniiiiniiiiiniiiiiiiiiiiiiciiinccii et 185
SUIMIMATY + tevereiiiiiiieteeee e e e e eeseiirrteeeeeeeeesesssssssnsrraeaeeeeessssnssssnsnns 185

Chapter 8: Automated Acceptance TeStingcccceecveereeresveereeeseeeraenenee 187
INtrodUCION .« cuveeriieriierieeeeeee ettt 187
Why Is Automated Acceptance Testing Essential?cccceeveuneene. 188

Bastong dgrims Miaitithihable. Acceptance.Lest.Suites....ccvvevvrsrvneneness 190
Creating Acceptance TestS . cooevveeerrrerieererriiiieeeeneireeeeenreeeeeeieeees 193
The Role of Analysts and Testers . .ccceeeeeeeeeeereeeeeeeeeeeeveeeeeeesenennnnnnes 193
Analysis 01 [Terative PrOJECES . weueeeereeeeunieeereereeneerereetnnneeseeeeennnnnns 193
Thed AgplicatiCritbyiives Looegettable. Specifications.......eeuueeeevveeeseeenns 198
How to Express Your Acceptance Criteriacoceueeveeeneeeeennireennnene. 200
Imipleni¥initugy AodeptPaceerbeDs coupling. the Tests frow.the GLII....... 204
State in Acceprance TESLS . c..cvveuuireruiriiuniiiiiiiireiiiiretieeeeieseenneaenes 204
MawagsBoArytactrsyBnanplstlmionyiand Testinng....cuvvverseesssnessssessenes 208
Using Test DOUDIES .ccceeeeeeeevvereueiiiiiiieieieeeeeeeeseeeeeeeeeeeesesesesesmmsnnes 210

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS v

The Acceptance Test StaAZE . .uveeeeervereiireeeirieeecieeeceeeeeaeeeraeeeseee e 213
Keeping Acceptance Tests GTeen . .cueeveeenevveuniriinireieninrienncreennesenes 214
Deployment TeSES . ceeeeeeeeeeeeeeeeeieiiiiitetieeeeeeeeeeeae e e e e eeeeeeeeeeeeeees 217

Acceptance Test Performanceoocceeeeevvieeneerseenieesseensiesseenieenns 218
Refactor Common TasRS . we.eeeeeeeeeuuieeeseeeiuiieeeeeeeinieeseeeeeaneseseeeenns 219
Share Expensive ReSOUTCES . ceceevveveeeveruuuuuuuiiiieeeeaeesaaasaseeeeeeeeeeeeeenes 219
Parallel Testing . .ccccooeeveeeieeieieiiiiiiiiuuereniirereeeeeeseeeeeeeeeeeeeeennes 220
Using Compute Grids . .uuuuveeeeieeeuuuieeseeeeinunieeseessusiiessseessmssessssssenns 220

SUMMATLY « eviiiiiiiiiiiiete ettt st 222

Chapter 9: Testing Nonfunctional Requirementscceecveeeeeeervecsneeenes 225

INrOdUCHION « ceeeeriieeiieeiee ettt et 225

Managing Nonfunctional Requirementsccccoveeeevveeerveeenveennns 226
Analyzing Nonfunctional Requirementseuueeeeeeeevenneeeseeeeennnnnns 227

Programming for Capacityeeecveeeecveeeeceeeesieeeseeeesaeeesseeesseeenns 228

Measuring Capacity . .ccceeeeveeeereereeeerieirireeeeeeieeeeeseereeeeeseeeeeeeeenne 231

Thel6iagsheinyd Besting kink FohmeeRe Defined.for.Capacity. Testsi........ 234

Automating Capacity TeSting . cccccveerreevreeerreriieeeresiieeeesesrreeeennnns 238
Capacity Testing via the User INTerfaceeueueeeereeeeunneerereneennnennnans 240
Rasing dingdidedanienscajorinbembridse on.Public APL.....coovvvuveinnenn, 241

AdUuige Capacity TeestStibshe Daployifiests Pipeling.....ccvvvvveevveennenn. 244

Additional Benefits of a Capacity Test Systemccccceeerveeeeveenns 247

SUMMATY « ettt e e e e e e s 248

Chapter 10: Deploying and Releasing Applicationscccceeereeeeeraeenene 249

INtrodUCtiON . ceveeeueeriiierieriieeeeeee ettt 249

Creating a Release Strategyccceveeeeirvieeeeieeniieeceieeenieeeeeeee e 250
The Release Plamceeieeeuuuieeeiiiiiiiieeseeeiiieeeeseeevnseeeseessannseeaans 251
Releasing ProdUCES . .oceeueueeeereeeeuneereeeiiiiieeeseeteineesseetennneseeeennnnnnns 252

Deploying and Promoting Your Applicationccceeeeeevveeeevnenns 253
The First DeplOymentcuuuuueeeereeiuunieereeeiienieeeseeeenneeseseneennnesssens 253
RrodeditingY 6iomBelomgéoProcess.and. Promating. Builds.....covvvvreieneness 25%
OFChestrationcuuvuvuueeemuuiiiiiiiiiiiiiieneiieteeeeeeeetttietissaseesasasaaae 258
Deployments to Staging ENVITONIMENLS ..eueueeueuunueieieeeeieeaeaeeaeaeeeeaaeees 258

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Rolling Back Deployments and Zero-Downtime Releases 259
Reittirld Buvkity Reelepseging the.Rrevious.(Good. Version .. 260
Blue-Green Deploymentsccceeeeeeeeeeuuuenuuuieeeeeeeeeaeneneeeeeeeeeneeeeeee 261
Canary Releasingeeeeeeeeuueeeereeiinieeneeeiteieeeseeeinneeseseneenneesaees 263

Emergency FixXes . ..ottt 265

Continuous Deploymentceccveereerieeriierreenieeneessieesieesieeseenns 266

TipScamidhbrishsR eleasing. User-lustalled SOftiiare. ..covveeeeveseiveeeiruennnne 240

270
The People Who Do the Deployment Should Be Involved in Creating
the Deployment PrOCESSeeeeeeeeeriiiiiiiiiiiiiiiiiiiiiiiireeeseineeeeenens
Log Deployment ACHIVITIES . ..cuuuuueeereeeevuuieeeeeeesuiieeeseessaneesesesennnnnns 271
Don’t Delete the Old Files, Move Themvvvvevevviiiiiiiiiiiiiicninnnnns 271

Part III: The Dehvery ECOSYSIEIM « couiieceniriuiiiciinnaciiestsacsseestssacessesassssens 275
Chapter 11: Managing Infrastructure and Environmentscccceeeueeenes 277
INtrOdUCHION « cuveeiieiiieiieeeeee ettt 277
Understanding the Needs of the Operations Teamcccceeeuveennee 279
Documentation and AUAIHING . «....eeeeeeeeeneeereeiiiieeeeeeteineeseeeenenneees 280

Alerts for Abnormal EVEntsceceueuuuuemuuuieeieeeeeeeeeeeeeeeeeeeeneneeees 281

IT Service Continuity Planmningeeeeeueeeeeeeeeeeseeeseeeeeeeeeeenenennns 282
Madelihg Tech MivgaghegOpérasactvon Is. Fawsiliar. With........c.ve... 283
Wioktireg lfrlgaAgeeskot i Hasty IfMIEI Y UCHUTE . vuvvrvveeeessiieresssssnsnseneneees 283
Managing Server Provisioning and Configurationcccccceceeeueene 288
Provisioning Serversc.ccevevveuiiiiiuiiiiiiiiiiiiiiiiii s 288
Ongoing Management Of SETUErsuuueeereeeeeeneeereeeeunneeneeeevenneseeens 290
Managing the Configuration of Middlewarecccccouveevreeeennnennee 295
Managing COnfigurationeeeeeveveeeueuunssssssssssseesesesssseseeseseeees 296
Research the Productcceeeeeeeeeeeuuuuuumiieeeeieeeeaeeeeeeeeeeeeeeeeeeeee 298
Examine How Your Middleware Handles Stateccceevuuuueveeeeeen... 298

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Look for a Configuration APIceeeuuuueuieeieeeeeeeeeaenaeaeeeeeeeeeeeeeeee 299
Use a Better Technology . coueeeuuuueeeeieiiiuiieeiieeiiiiieeeeeetieneeseeeeennnenes 299
Managing Infrastructure SErvicescccveervvereeieeesveeeesvieeesveeesseeeenns 300
Multihomed SYSEEIS . couuuueeeeieeiiiiieeeeeeiiiiieeeeeeetiieeeseeraaneeeesesenennnns 301
VirtualiZation . ..coeceeeeeeeseenieeeeneeeee ettt 303
Managing Virtual ERvirORmMEntseeeeeeeeeueeeereeeeeeeseeeseseeeeeeeeeneeeeens 305
CldtighioPaspible hEestivgiudith & Dopdbfingito Bipelitse. . covvereiverersersesenes 318
Infrastructure in the Cloudccooeeeeeeuuunuiiiiieeeeeeereaeeeeeeeeeeeeeeeeeeene 313
Platforms in the Cloudcocveevuuuieeieeiiiiieeeeeeiiiieeeeeeteeeeseeeennnnenns 314
One Size Doesn’t Have t0 Fit All . cccouuueeiiiiiiiiieeiieiiiiieeeeeeeeiiieeeeens 315
Criticisms of Cloud COMPULING . ceveevveneereeeirinieeereeiiiiieeeeeereenieeanees 316
Monitoring Infrastructure and Applicationscceeeeeerveeeeveennns 317
COllecting Data . cecceuuuueeereeeeeneeeeeeeiiiieereeetteneeeseeetnnneseseneennesssaes 318
LOGGING « vviiiiiiiiiiiiiiiiiiiiiiin ittt s e 320
Creating Dashboardsueenennnnnnes 321
Behavior-Driven MONIEOTING « «euuueereeeveeneeeseeernnneesseeseennaeseseeennnnnns 323
SUMMATY « ittt et e e e e e e e 323
Chapter 12: Managing Datacoevuivienieniininiinenininncicncncnenenens 325
INELOAUCHION « weeuvteiieiieieeierteie ettt ettt see e 325
Database SCriPLingeeeevveerrvieeeriieiriiieeeireeesteeeseeeesieeesreessseeenns 326
Initializing Databasesccceeeeeeeeeeeuunenuuiieieeeeeeeseaeaaneeeeeeeaeneeeneee 327
Incremental Changecccceevveerriieiniiieiniieeeieeeeee e sreessvee e 327
Versioning Your Databaseeeueueueuuuueeeieeeeeereieaeeeaeeeeeeeeeeeeneeeee 328
Managing Orchestrated Changescoueueeeeeeeevuueeereereeneeseeeennnnnnns 329
Rolling Back Databases and Zero-Downtime Releases 331
Rolling Back without LoSing DAteuueeeeeeeeeeeseeeeeeeeeeeeeeenenennns 331
Mddeaginglitestgphitation. Deployment from . .Database. Migration......... 335
Faking the Database for Unit TeSIS . weuuuueueuurereeeeeeeraaaeeseeeeeeeeenenennee 335
Vestdgidgtidie Coupling.betiween Tests and.Dat@.......covvevvsssvvnnsnnenes 338
Setup and Tear DOWN . c...cceeeeeeeeeeeeeeereneneiierseeeeeeseaesaseseeeeeeeeeeenene 337
Coberent Test SCENATIOS . weuuuuuuueureeeeieiiiiiiiieeieieeeeieiieiiieeeeeeeeenaaaaaes 337
Data Management and the Deployment Pipelinecccccvveeunnennee 338
Data in Commit Stage TeSES c..cuueireunireiunereiueiriiiiieetieretneeeeeneeennns 338

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Data in Acceptance Tests . ..c.ceuvvereuuiiiiuniriiiniiiiiniiriiinineeinnreennenenes 339
Data in Capacity TestS . ..eeevveeeuuuiieiiiiiiiniiinieiiiiienieetiie e 341
Data in Other Test SEAZES . ceveeeeeereeeeuuureieeeeeeeeeeeeseeeeeeeeeaeeeeeeees 342
SUMMATLY « eviiiiiiiiiiinictct e 343
Chapter 13: Managing Components and Dependenciescccceeeueenne 345
INtrodUCHION .« ceveeriieriiereereeeeee ettt 345
Keeping Your Application Releasableccceeeviieiviiiniiinecieens 346
Midee Nl Thongisriaérgenthllyls Finished.....uuveeieiiiiiieisiiinnneneneeees 349
Branch by ADSIFACHON . w.uceeeveeeenneeneieiiiiieeeeeeetineeeseeeeennseseseeennnnnns 349
DEPENAENCIES « veerurervieriiiiiieiieete et estesteesieessseeseessseessessaessenns 351
Dependency Helloooueuuneeeeieeiiiiieeneieiiiiieeeseeetineesseennnnnseseeeeennnnnns 352
Managing LiDTArieseeeeeeeeeeeeeeeeeeeemeneiiseseeeeeeesaaeseseaeeeeeeeseeeeeee 354
COIMPONEILS . teveeeuurreerrerrreeeeeeireeeeeeerteeeesssreeeesssnseeeessssseeessssseees 356
Pipalitor9 itidowp Guedebase into. COMPOREHLS v vuvieieiiiissesssssssrenssesees 366
The Integration PiDelifeceeeveeeeuneeereeeeeenieeeneeeenieeneeeneennsesaeees 361
Managing Dependency Graphsccceeeeieeeciieecieeesiee e 363
Building Dependency Graphseeeeeeueeuuuieieieeeeeseseaeeeseeeeeeeeenenennns 363
Pipelining Dependency Graphs . ..cceeeeeeeeueeeeeeeevuuieeereeeeeneeseeeeennnnnns 365
When Should We Trigger Builds?uuuvveieeeeeeneieneeeeeeeeeeeeeeeenenene 369
Cautions OPLIMESI « ccuvevniriniiiiiiiiiiiiiiitetcetee et et eee et seaaes 370
Circular Dependencieseeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeueeeeesensnnnnnnns 372
Managing Binariescceeeeeeiiiiiiiiiiiieeiieeeee e 373
How an Artifact Repository Should Workccceeeeeeeeeeeeeiniiinenenennens 373
374

How Your Deployment Pipeline Should Interact with the Artifact

ReEDOSTEOTY cevniieniiiiiiiiiiiiiiiiiii sttt et
Managing Dependencies with Mavencccocveecveeeccieesiieeeeieeens 375
Maven Dependency Refactorings . ..c.oeeeueueeeseeeeuuneeereereennseseeeeennnnnns 377
SUMIMATY + ceeetete ettt e e et e e et et e e e e e e e e e sanenee 379
Chapter 14: Advanced Version Controlcceceeeceercrnerccseercsseessssaeanene 381
INErOAUCHION .« teiieviieeiieeeitee et tee e et e et e e ree e e rae e eeae e e sreeenns 381
A Brief History of Revision Controlc.ccceevverveeniersieensienneennenns 382
[O VA TP PP PR PP PPNt 382
SUDVETSION « cevvviiiiiiieiiieiettieeeeee ettt e e e e eee e 383
Commercial Version Control SyStemsc.coeeveeeeeeeeeeeeeeeeeeevenennnnnne. 385
Switch Off Pessimistic LOCRING «ocevevvevveeereuueuiiiiiieeeeeeaaaaaaaeeeeeeeeeneens 386

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Branching and Mergingcccceeeveeeceeieiieeeciee et 388
DY e < 7 PPN 389
Dlﬁrnimbed, Vwemn @tdl&@lt&y&@aﬂl&tegraﬂon 398
Wdzwddpwémteméﬁfﬁsedzwe&mm@mtml SYSEEIL 1evvsiiiresiesirsrrensneeens 300
Static and Dynamic VIewscocueeuveeememmiiiiieiiisininiineneeeeeenenennns 403
Continuous Integration with Stream-Based Version Control Systems ... 403
Develop on Mainlineoocveecveereersierniieniieenienieeneesseeseesseesneens 405
Bravichihgr(Relphse Changes. without. Branching.....c.eeeeverevveeesvenennns 408
Branch by Featureccoveeiiiiciiieecieeeee et 410
Branch by Team . ..ooccveiiiiiiiiiiiiiieiiteetecete e 412
SUMMATY « ittt 415
Chapter 15: Managing Continuous Deliveryc.ccecveverveeerersceseenscnnns 417
INErOAUCHION .« ceveiiieeiieeeiiee et ctee et e e tee e e e e e rae e ereeeenaeeenns 417
A Maturity Model for Configuration and Release Management419
How to Use the Maturity Modelccouuueeeieiiunuieeereeieeniieeeeeennnnnnns 419
Project Lifecycle . woovviiniiiniiniiiieeieeteeie ettt 421
TAENTIfICAION + cevveeeieeiiiiieeeeeeitieee e e eetteeeeeeeetaaeeeseereenaeseseeennnnnns 422
INceprlion . ..c..oeevuniviniiiniiiiiiiiiiiiiiii 423
INItIATION o covvvvniiiiiiiiiiiiiiiiiiiiiii 424
Develop and Releasecoeeeeeeeeeeuuuuuunuuiiieeeeeeeeeaeeeeeeeeeeeeeneeeeeee 425
OPETALION « cevvvrneiiiiniiriiiieritietetiee ettt sttt s et e staasstannesetasessannenes 428

A Risk Management Processccceeevueeeereeeesieeeseeeesiueesssessssseenns 429
Risk Management 101 . c..cceeveeeenueerrreieeneeeeeeitiieeereeteeneseeeennnnenes 429
Risk Management Timelinecouueeeereeeuuueeeereeiennieeseeeeennieseseeennns 430
How to Do a Risk-Management EXErciSeccceeeeeeeeererereeeeeeeeenenennne 431
Common Delivery Problems—Their Symptoms and Causes.. 432
Infrequent or Buggy Deploymentsueeueuuueeeeeeeeeeeeeeneeeeeeeeeeeeeeeenee 433
Poor Application QUAlITY . ceceeeeeeeeereeeiienieeereeeiiiieeereeteeneeseeeeennnenns 434
Poorly Managed Continuous Integration Processcceeeeeeeeeeeeeeeeens 435

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS CONTENTS

Poor Configuration Managemente.uueeeeeeeeeereeereeeeeeeeeeeeeneneee 436
Compliance and Auditingccecceervverreerieerreenieeneenseesreeseeeeenns 436
Automation over DOCUMENIAtionccuuvveevuvviinniriiunireiinnneennnenenns 437

Enforcing Traceabilitycceeeeeeeeeeveremeuuuiiieeeessasaaaseseseeeeeeenesennes 438

WOTRING i1 SilOS « ceveeeeeuieeeeeiiiiieeeeeetiiieeeeeetetiseeeseereanneeseeeeennnnnns 439

Change Managementuuuueeeeeeeeeeeeeseseseeeeeeeeeeeeseeemeeesssessnnnnnnes 440

SUMMATY ettt e e e e e e e e 442
BibliOGraphy . ..ceccveerverereecreerereeeraeroneessaeseeessansessessansessessnsassasssnsassasssssassansss 443
INAEX ceiireiiiiiiiieiiintiientiniestsse et ssatestesstssae st s st ssbsestsasssbesstsssesstssssssaes 445

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword by Martin Fowler

In the late 90s, I paid a visit to Kent Beck, then working in Switzerland for an
insurance company. He showed me around his project, and one of the interesting
aspects of his highly disciplined team was the fact that they deployed their soft-
ware into production every night. This regular deployment gave them many ad-
vantages: Written software wasn’t waiting uselessly until it was deployed, they
could respond quickly to problems and opportunities, and the rapid turnaround
led to a much deeper relationship between them, their business customer, and
their final customers.

In the last decade I've worked at ThoughtWorks, and a common theme of our
projects has been reducing the cycle time between an idea and usable software.
I see plenty of project stories, and almost all involve a determined shortening of
that cycle. While we don’t usually do daily deliveries into production, it’s now
common to see teams doing bi-weekly releases.

Dave and Jez have been part of that sea change, actively involved in projects
that have built a culture of frequent, reliable deliveries. They and our colleagues
have taken organizations that struggled to deploy software once a year into the
world of Continuous Delivery, where releasing becomes routine.

The foundation for the approach, at least for the development team, is Contin-
uous Integration (CI). CI keeps the entire development team in sync, removing
the delays due to integration issues. A couple of years ago, Paul Duvall wrote a
book on Cl in this series. But Cl is just the first step. Software that’s been success-
fully integrated into a mainline code stream still isn’t software that’s out in pro-
duction doing its job. Dave and Jez’s book pick up the story from CI to deal with
that “last mile,” describing how to build the deployment pipeline that turns
integrated code into production software.

This kind of delivery thinking has long been a forgotten corner of software
development, falling into a hole between developers and operations teams. So
it’s no surprise that the techniques in this book rest upon bringing these teams
together —a harbinger of the nascent but growing DevOps movement. This process
also involves testers, as testing is a key element of ensuring error-free releases.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD

Threading through all this is a high degree of automation, so things can be done
quickly and without error.

Getting all this working takes effort, but benefits are profound. Long, high-
intensity releases become a thing of the past. Customers of software see ideas
rapidly turn into working code that they can use every day. Perhaps most
importantly, we remove one of the biggest sources of baleful stress in software
development. Nobody likes those tense weekends trying to get a system upgrade
released before Monday dawns.

It seems to me that a book that can show you how to deliver your software
frequently and without the usual stresses is a no-brainer to read. For your team’s
sake, I hope you agree.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Introduction

Yesterday your boss asked you to demonstrate the great new features of your
system to a customer, but you can’t show them anything. All your developers
are halfway through developing new features and none of them can run the ap-
plication right now. You have code, it compiles, and all the unit tests pass on
your continuous integration server, but it takes a couple of days to release the
new version into the publicly accessible UAT environment. Isn’t it unreasonable
to expect the demo at such short notice?

You have a critical bug in production. It is losing money for your business
every day. You know what the fix is: A one-liner in a library that is used in all
three layers of your three-tier system, and a corresponding change to one database
table. But the last time you released a new version of your software to production
it took a weekend of working until 3 A.M., and the person who did the deployment
quit in disgust shortly afterward. You know the next release is going to overrun
the weekend, which means the application will be down for a period during the
business week. If only the business understood our problems.

These problems, although all too common, are not an inevitable outcome of
the software development process: They are an indication that something is
wrong. Software release should be a fast, repeatable process. These days, many
companies are putting out multiple releases in a day. This is possible even with
large projects with complex codebases. In this book, we will show you how this
is done.

Mary and Tom Poppendieck asked, “How long would it take your organization
to deploy a change that involves just one single line of code? Do you do this on
a repeatable, reliable basis?”! The time from deciding that you need to make a
change to having it in production is known as the cycle time, and it is a vital
metric for any project.

1. Implementing Lean Software Development, p. 59.
XXiii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

In many organizations, cycle time is measured in weeks or months, and the
release process is certainly not repeatable or reliable. It is manual and often re-
quires a team of people to deploy the software even into a testing or staging en-
vironment, let alone into production. However, we have come across equally
complex projects which started out like this but where, after extensive reengineer-
ing, teams were able to achieve a cycle time of hours or even minutes for a critical
fix. This was possible because a fully automated, repeatable, reliable process was
created for taking changes through the various stages of the build, deploy, test,
and release process. Automation is the key. It allows all of the common tasks
involved in the creation and deployment of software to be performed by
developers, testers, and operations personnel, at the push of a button.

This book describes how to revolutionize software delivery by making the path
from idea to realized business value—the cycle time—shorter and safer.

Software delivers no revenue until it is in the hands of its users. This is obvious,
but in most organizations the release of software into production is a manually
intensive, error-prone, and risky process. While a cycle time measured in months
is common, many companies do much worse than this: Release cycles of more
than a year are not unknown. For large companies every week of delay between
having an idea and releasing the code that implements it can represent millions
of dollars in opportunity costs—and yet these are often the ones with the longest
cycle times.

Despite all this, the mechanisms and processes that allow for low-risk delivery
of software have not become part of the fabric in most of today’s software
development projects.

Our aim is to make the delivery of software from the hands of developers into
production a reliable, predictable, visible, and largely automated process with
well-understood, quantifiable risks. Using the approach that we describe in this
book, it is possible to go from having an idea to delivering working code that
implements it into production in a matter of minutes or hours, while at the same
time improving the quality of the software thus delivered.

The vast majority of the cost associated with delivering successful software is
incurred after the first release. This is the cost of support, maintenance, adding
new features, and fixing defects. This is especially true of software delivered via
iterative processes, where the first release contains the minimum amount of
functionality providing value to the customer. Hence the title of this book,
Continuous Delivery, which is taken from the first principle of the Agile Mani-
festo: “Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software” [bibNpO]. This reflects the reality: For successful
software, the first release is just the beginning of the delivery process.

All the techniques we describe in this book reduce the time and risks associated
with delivering new versions of your software to users. They do this by increasing
feedback and improving collaboration between the development, testing, and
operations personnel responsible for delivery. These techniques ensure that when
you need to modify applications, either to fix bugs or deliver new features, the

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

time between making modifications and having the results deployed and in use
is as low as possible, problems are found early when they are easy to fix, and
associated risks are well understood.

Who Is This Book for, and What Does It Cover?

One of the major aims of this book is to improve collaboration between the
people responsible for delivering software. In particular, we have in mind devel-
opers, testers, systems and database administrators, and managers.

We cover topics from traditional configuration management, source code
control, release planning, auditing, compliance, and integration to the automation
of your building, testing, and deployment processes. We also describe techniques
such as automated acceptance testing, dependency management, database migra-
tion, and the creation and management of testing and production environments.

Many people involved in creating software consider these activities secondary
to writing code. However, in our experience they take up a great deal of time
and effort, and are critical to successful software delivery. When the risks sur-
rounding these activities are not managed adequately, they can end up costing a
lot of money, often more than the cost of building the software in the first place.
This book provides the information that you need to understand these risks and,
more importantly, describes strategies to mitigate them.

This is an ambitious aim, and of course we can’t cover all these topics in detail
in one book. Indeed we run the risk of alienating each of our target audiences:
developers, by failing to treat topics such as architecture, behavior-driven devel-
opment, and refactoring in depth; testers, by not spending sufficient time on ex-
ploratory testing and test management strategies; operations personnel, by not
paying due attention to capacity planning, database migration, and production
monitoring.

However, books exist that address each of these topics in detail. What we
think is lacking in the literature is a book that discusses how all the moving parts
fit together: configuration management, automated testing, continuous integration
and deployment, data management, environment management, and release
management. One of the things that the lean software development movement
teaches is that it is important to optimize the whole. In order to do this, a holistic
approach is necessary that ties together every part of the delivery process and
everybody involved in it. Only when you have control over the progression of
every change from introduction to release can you begin to optimize and improve
the quality and speed of software delivery.

Our aim is to present a holistic approach, as well as the principles involved in
this approach. We will provide you with the information that you will need to
decide how to apply these practices in your own projects. We do not believe that
there is a “one size fits all” approach to any aspect of software development, let
alone a subject area as large as the configuration management and operational
control of an enterprise system. However, the fundamentals that we describe in

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

this book are widely applicable to all sorts of different software projects—big,
small, highly technical or short sprints to early value.

As you begin to put these principles into practice, you will discover the areas
where more detail is required for your particular situation. There is a bibliography
at the end of this book, as well as pointers to other resources online where you
can find more information on each of the topics that we cover.

This book consists of three parts. The first part presents the principles behind
continuous delivery and the practices necessary to support it. Part two describes
the central paradigm of the book—a pattern we call the deployment pipeline.
The third part goes into more detail on the ecosystem that supports the deploy-
ment pipeline—techniques to enable incremental development; advanced version
control patterns; infrastructure, environment and data management; and
governance.

Many of these techniques may appear to apply only to large-scale applications.
While it is true that much of our experience is with large applications, we believe
that even the smallest projects can benefit from a thorough grounding in these
techniques, for the simple reason that projects grow. The decisions that you make
when starting a small project will have an inevitable impact on its evolution, and
by starting off in the right way, you will save yourself (or those who come after
you) a great deal of pain further down the line.

Your authors share a background in lean and iterative software development
philosophies. By this we mean that we aim to deliver valuable, working software
to users rapidly and iteratively, working continuously to remove waste from the
delivery process. Many of the principles and techniques that we describe were
first developed in the context of large agile projects. However, the techniques
that we present in this book are of general applicability. Much of our focus is
on improving collaboration through better visibility and faster feedback. This
will have a positive impact on every project, whether or not it uses iterative
software development processes.

We have tried to ensure that chapters and even sections can be read in isolation.
At the very least, we hope that anything you need to know, as well as references
to further information, are clearly sign-posted and accessible so that you can use
this book as a reference.

We should mention that we don’t aim for academic rigor in our treatment of
the subjects covered. There are plenty of more theoretical books on the market,
many of which provide interesting reading and insights. In particular, we will
not spend much time on standards, concentrating instead on battle-tested skills
and techniques every person working on a software project will find useful, and
explaining them clearly and simply so that they can be used every day in the real
world. Where appropriate, we will provide some war stories illustrating these
techniques to help place them in context.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Conspectus

We recognize that not everyone will want to read this book from end to end. We
have written it so that once you have covered the introduction, you can attack
it in several different ways. This has involved a certain amount of repetition,
but hopefully not at a level that becomes tedious if you do decide to read it
cover-to-cover.

This book consists of three parts. The first part, Chapters 1 to 4, takes you
through the basic principles of regular, repeatable, low-risk releases and the
practices that support them. Part two, Chapters 5 through 10, describe the de-
ployment pipeline. From Chapter 11 we dive into the ecosystem that supports
continuous delivery.

We recommend that everybody read Chapter 1. We believe that people who
are new to the process of releasing software, even experienced developers, will
find plenty of material challenging their view of what it means to do professional
software development. The rest of the book can be dipped into either at your
leisure—or when in a panic.

Part I— Foundations

Part I describes the prerequisites for understanding the deployment pipeline. Each
chapter builds upon the last.

Chapter 1, “The Problem of Delivering Software,” starts by describing some
common antipatterns that we see in many software development teams, and
moves on to describe our goal and how to realize it. We conclude by setting out
the principles of software delivery upon which the rest of the book is based.

Chapter 2, “Configuration Management,” sets out how to manage everything
required to build, deploy, test, and release your application, from source code
and build scripts to your environment and application configuration.

Chapter 3, “Continuous Integration,” covers the practice of building and
running automated tests against every change you make to your application so
you can ensure that your software is always in a working state.

Chapter 4, “Implementing a Testing Strategy,” introduces the various kinds
of manual and automated testing that form an integral part of every project, and
discusses how to decide which strategy is appropriate for your project.

Part II—The Deployment Pipeline

The second part of the book covers the deployment pipeline in detail, including
how to implement the various stages in the pipeline.

Chapter 5, “Anatomy of the Deployment Pipeline,” discusses the pattern that
forms the core of this book—an automated process for taking every change from
check-in to release. We also discuss how to implement pipelines at both the team
and organizational levels.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Chapter 6, “Build and Deployment Scripting,” discusses scripting technologies
that can be used for creating automated build and deployment processes, and
the best practices for using them.

Chapter 7, “The Commit Stage,” covers the first stage of the pipeline, a set of
automated processes that should be triggered the moment any change is introduced
into your application. We also discuss how to create a fast, effective commit test
suite.

Chapter 8, “Automated Acceptance Testing,” presents automated acceptance
testing, from analysis to implementation. We discuss why acceptance tests are
essential to continuous delivery, and how to create a cost-effective acceptance
test suite that will protect your application’s valuable functionality.

Chapter 9, “Testing Nonfunctional Requirements,” discusses nonfunctional
requirements, with an emphasis on capacity testing. We describe how to create
capacity tests, and how to set up a capacity testing environment.

Chapter 10, “Deploying and Releasing Applications,” covers what happens
after automated testing: push-button promotion of release candidates to manual
testing environments, UAT, staging, and finally release, taking in essential topics
such as continuous deployment, roll backs, and zero-downtime releases.

Part III— The Delivery Ecosystem

The final part of the book discusses crosscutting practices and techniques that
support the deployment pipeline.

Chapter 11, “Managing Infrastructure and Environments,” covers the auto-
mated creation, management, and monitoring of environments, including the use
of virtualization and cloud computing.

Chapter 12, “Managing Data,” shows how to create and migrate testing and
production data through the lifecycle of your application.

Chapter 13, “Managing Components and Dependencies,” starts with a discus-
sion of how to keep your application in a releasable state at all times without
branching. We then describe how to organize your application as a collection of
components, and how to manage building and testing them.

Chapter 14, “Advanced Version Control,” gives an overview of the most
popular tools, and goes into detail on the various patterns for using version
control.

Chapter 15, “Managing Continuous Delivery,” sets out approaches to risk
management and compliance, and provides a maturity model for configuration
and release management. Along the way, we discuss the value of continuous
delivery to the business, and the lifecycle of iterative projects that deliver
incrementally.

>

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Web Links in This Book

Rather than putting in complete links to external websites, we have shortened
them and put in the key in this format: [bibNp@]. You can go to the link in one
of two ways. Either use bit.ly, in which case the url for the example key would
be http://bit.ly/bibNp0. Alternatively, you can use a url shortening service
we’ve installed at http://continuousdelivery.com/go/ which uses the same keys—so
the url for the example key is http://continuousdelivery.com/go/bibNp@. The
idea is that if for some reason bit.ly goes under, the links are preserved. If
the web pages change address, we’ll try to keep the shortening service at
http://continuousdelivery.com/go/ up-to-date, so try that if the links don’t work
at bit.ly.

About the Cover

All books in Martin Fowler’s Signature Series have a bridge on the cover. We’d
originally planned to use a photo of the Iron Bridge, but it had already been
chosen for another book in the series. So instead, we chose another British bridge:
the Forth Railway Bridge, captured here in a stunning photo by Stewart Hardy.

The Forth Railway Bridge was the first bridge in the UK constructed using
steel, manufactured using the new Siemens-Martin open-hearth process, and de-
livered from two steel works in Scotland and one in Wales. The steel was delivered
in the form of manufactured tubular trusses—the first time a bridge in the UK
used mass-produced parts. Unlike earlier bridges, the designers, Sir John Fowler,
Sir Benjamin Baker, and Allan Stewart, made calculations for incidence of erection
stresses, provisions for reducing future maintenance costs, and calculations for
wind pressures and the effect of temperature stresses on the structure —much like
the functional and nonfunctional requirements we make in software. They also
supervised the construction of the bridge to ensure these requirements were met.

The bridge’s construction involved more than 4,600 workers, of whom tragi-
cally around one hundred died and hundreds more were crippled. However, the
end result is one of the marvels of the industrial revolution: At the time of com-
pletion in 1890 it was the longest bridge in the world, and at the start of the 21st
century it remains the world’s second longest cantilever bridge. Like a long-lived
software project, the bridge needs constant maintenance. This was planned for
as part of the design, with ancillary works for the bridge including not only a
maintenance workshop and yard but a railway “colony” of some fifty houses at
Dalmeny Station. The remaining working life of the bridge is estimated at over
100 years.

www.it-ebooks.info

http://continuousdelivery.com/go/
http://continuousdelivery.com/go/
http://www.it-ebooks.info/

PREFACE

Colophon

This book was written directly in DocBook. Dave edited the text in TextMate,
and Jez used Aquamacs Emacs. The diagrams were created with OmniGraffle.
Dave and Jez were usually not in the same part of the world, and collaborated
by having everything checked in to Subversion. We also employed continuous
integration, using a CruiseControl.rb server that ran dblatex to produce a PDF
of the book every time one of us committed a change.

A month before the book went to print, Dmitry Kirsanov and Alina Kirsanova
started the production work, collaborating with the authors through their
Subversion repository, email, and a shared Google Docs table for coordination.
Dmitry worked on copyediting of the DocBook source in XEmacs, and Alina
did everything else: typesetting the pages using a custom XSLT stylesheet and an
XSL-FO formatter, compiling and editing the Index from the author’s indexing
tags in the source, and final proofreading of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Many people have contributed to this book. In particular, we’d like to thank our
reviewers: David Clack, Leyna Cotran, Lisa Crispin, Sarah Edrie, Damon Ed-
wards, Martin Fowler, James Kovacs, Bob Maksimchuk, Elliotte Rusty Harold,
Rob Sanheim, and Chris Smith. We’d also like to extend special thanks to our
editorial and production team at Addison-Wesley: Chris Guzikowski, Raina
Chrobak, Susan Zahn, Kristy Hart, and Andy Beaster. Dmitry Kirsanov and
Alina Kirsanova did a fantastic job of copyediting and proofreading the book,
and typesetting it using their fully automated system.

Many of our colleagues have been instrumental in developing the ideas in this
book, including (in no particular order) Chris Read, Sam Newman, Dan North,
Dan Worthington-Bodart, Manish Kumar, Kraig Parkinson, Julian Simpson,
Paul Julius, Marco Jansen, Jeffrey Fredrick, Ajey Gore, Chris Turner, Paul
Hammant, Hu Kai, Qiao Yandong, Qiao Liang, Derek Yang, Julias Shaw,
Deepthi, Mark Chang, Dante Briones, Li Guanglei, Erik Doernenburg, Kraig
Parkinson, Ram Narayanan, Mark Rickmeier, Chris Stevenson, Jay Flowers,
Jason Sankey, Daniel Ostermeier, Rolf Russell, Jon Tirsen, Timothy Reaves, Ben
Wyeth, Tim Harding, Tim Brown, Pavan Kadambi Sudarshan, Stephen Foreshew,
Yogi Kulkarni, David Rice, Chad Wathington, Jonny LeRoy, and Chris
Briesemeister.

Jez would like to thank his wife, Rani, for being the most loving partner he
could wish for, and for cheering him up when he was grumpy during the writing
of this book. He also thanks his daughter, Amrita, for her babbling, cuddles,
and big gummy smiles. He is also profoundly grateful to his colleagues at
ThoughtWorks for making it such an inspiring place to work, and to Cyndi
Mitchell and Martin Fowler for their support of this book. Finally, a big shout
out to Jeffrey Fredrick and Paul Julius for creating CITCON, and to the people
he met there for many great conversations.

Dave would like to thank his wife Kate, and children Tom and Ben, for their
unfailing support at every point, in this project and in many others. He would
also like to make a special mention of ThoughtWorks, who, although no longer
his employer, provided an environment of enlightenment and encouragement for

XXXI1

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

the people that worked there, thus fostering a creative approach to finding solu-
tions, many of which populate the pages of this book. In addition, he would like
to thank his current employer, LMAX, with a special mention for Martin
Thompson, for their support, trust, and willing adoption of the techniques
described in this book in an intensely challenging technical environment of
world-class high-performance computing.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Jez Humble has been fascinated by computers and electronics since getting his
first ZX Spectrum at age 11, and spent several years hacking on Acorn machines
in 6502 and ARM assembler and BASIC until he was old enough to get a proper
job. He got into IT in 2000, just in time for the dot-com bust. Since then he has
worked as a developer, system administrator, trainer, consultant, manager, and
speaker. He has worked with a variety of platforms and technologies, consulting
for nonprofits, telecoms, financial services, and online retail companies. Since
2004 he has worked for ThoughtWorks and ThoughtWorks Studios in Beijing,
Bangalore, London, and San Francisco. He holds a BA in Physics and Philosophy
from Oxford University and an MMus in Ethnomusicology from the School of
Oriental and African Studies, University of London. He is presently living in San
Francisco with his wife and daughter.

Dave Farley has been having fun with computers for nearly 30 years. Over
that period he has worked on most types of software—from firmware, through
tinkering with operating systems and device drivers, to writing games and com-
mercial applications of all shapes and sizes. He started working in large-scale
distributed systems about twenty years ago, doing research into the development
of loose-coupled, message-based systems—a forerunner of SOA. He has a wide
range of experience leading the development of complex software in teams, both
large and small, in the UK and USA. Dave was an early adopter of agile develop-
ment techniques, employing iterative development, continuous integration, and
significant levels of automated testing on commercial projects from the early
1990s. He honed his approach to agile development during his four-and-a-half-
year stint at ThoughtWorks where he was a technical principal working on some
of their biggest and most challenging projects. Dave is currently working for the
London Multi-Asset Exchange (LMAX), an organization that is building one of
the highest-performance financial exchanges in the world, where they rely upon
all of the major techniques described in this book.

XXXiil

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Foundations

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The Problem of Delivering
Software

Introduction

The most important problem that we face as software professionals is this: If
somebody thinks of a good idea, how do we deliver it to users as quickly as
possible? This book shows how to solve this problem.

We focus on the build, deploy, test, and release process, about which relatively
little has been written. This is not because we think that software development
approaches are not important; rather, that without a focus on the other aspects
of the software lifecycle —aspects that are all too commonly treated as peripheral
to the overall problem—it is impossible to achieve reliable, rapid, low-risk soft-
ware releases that get the fruits of our labors into the hands of our users in an
efficient manner.

There are many software development methodologies, but they focus primarily
on requirement management and its impact on the development effort. There
are many excellent books that cover in detail different approaches to software
design, development, and testing; but these, too, cover only a fragment of the
value stream that delivers value to the people and organizations that sponsor our
efforts.

What happens once requirements are identified, solutions designed, developed,
and tested? How are these activities joined together and coordinated to make
the process as efficient and reliable as we can make it? How do we enable
developers, testers, build and operations personnel to work together effectively?

This book describes an effective pattern for getting software from development
to release. We describe techniques and best practices that help to implement this
pattern and show how this approach interfaces with other aspects of software
delivery.

The pattern that is central to this book is the deployment pipeline. A deploy-
ment pipeline is, in essence, an automated implementation of your application’s
build, deploy, test, and release process. Every organization will have differences
in the implementation of their deployment pipelines, depending on their value

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

stream for releasing software, but the principles that govern them do not vary.
An example of a deployment pipeline is given in Figure 1.1.

Commit stage .
Compile Automated Automated Mg%z:\::::;'sng
Unit test | acceptance [capacity | | Release
) . . Exploratory
Analysis testing testing .
P testing
Build installers

Figure 1.1 The deployment pipeline

The way the deployment pipeline works, in a paragraph, is as follows. Every
change that is made to an application’s configuration, source code, environment,
or data, triggers the creation of a new instance of the pipeline. One of the first
steps in the pipeline is to create binaries and installers. The rest of the pipeline
runs a series of tests on the binaries to prove that they can be released. Each test
that the release candidate passes gives us more confidence that this particular
combination of binary code, configuration information, environment, and data
will work. If the release candidate passes all the tests, it can be released.

The deployment pipeline has its foundations in the process of continuous
integration and is in essence the principle of continuous integration taken to its
logical conclusion.

The aim of the deployment pipeline is threefold. First, it makes every part of
the process of building, deploying, testing, and releasing software visible to
everybody involved, aiding collaboration. Second, it improves feedback so that
problems are identified, and so resolved, as early in the process as possible. Finally,
it enables teams to deploy and release any version of their software to any
environment at will through a fully automated process.

Some Common Release Antipatterns

The day of a software release tends to be a tense one. Why should this be the
case? For most projects, it is the degree of risk associated with the process that
makes release a scary time.

In many software projects, release is a manually intensive process. The environ-
ments that host the software are often crafted individually, usually by an opera-
tions or IS team. Third-party software that the application relies on is installed.
The software artifacts of the application itself are copied to the production host
environments. Configuration information is copied or created through the admin
consoles of web servers, applications servers, or other third-party components
of the system. Reference data is copied, and finally the application is started,
piece by piece if it is a distributed or service-oriented application.

The reason for the nervousness should be clear: There is quite a lot to go wrong
in this process. If any step is not perfectly executed, the application won’t run

www.it-ebooks.info

http://www.it-ebooks.info/

SoME COMMON RELEASE ANTIPATTERNS

properly. At this point it may not be at all clear where the error is, or which step
went wrong.
The rest of this book discusses how to avoid these risks—how to reduce the
stress on release days, and how to ensure that each release is predictably reliable.
Before that, let’s be clear about the kinds of process failures that we are trying
to avoid. Here are a few common antipatterns that prevent a reliable release
process, but nevertheless are so common as to be the norm in our industry.

Antipattern: Deploying Software Manually

Most modern applications of any size are complex to deploy, involving many
moving parts. Many organizations release software manually. By this we mean
that the steps required to deploy such an application are treated as separate and
atomic, each performed by an individual or team. Judgments must be made
within these steps, leaving them prone to human error. Even if this is not the
case, differences in the ordering and timing of these steps can lead to different
outcomes. These differences are rarely good.
The signs of this antipattern are:

e The production of extensive, detailed documentation that describes the
steps to be taken and the ways in which the steps may go wrong

e Reliance on manual testing to confirm that the application is running
correctly

e Frequent calls to the development team to explain why a deployment is
going wrong on a release day

e Frequent corrections to the release process during the course of a release

* Environments in a cluster that differ in their configuration, for example
application servers with different connection pool settings, filesystems with
different layouts, etc.

* Releases that take more than a few minutes to perform

® Releases that are unpredictable in their outcome, that often have to be
rolled back or run into unforeseen problems

e Sitting bleary-eyed in front of a monitor at 2 A.M. the day after the release
day, trying to figure out how to make it work

Instead . . .

Over time, deployments should tend towards being fully automated. There should
be two tasks for a human being to perform to deploy software into a development,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

test, or production environment: to pick the version and environment and to
press the “deploy” button. Releasing packaged software should involve a single
automated process that creates the installer.

We discuss automation a lot in the course of this book, and we know that
some people aren’t totally sold on the idea. Let us explain why we see automated
deployment as an indispensable goal.

When deployments aren’t fully automated, errors will occur every time they
are performed. The only question is whether or not the errors are significant.
Even with excellent deployment tests, bugs can be hard to track down.

When the deployment process is not automated, it is not repeatable or
reliable, leading to time wasted on debugging deployment errors.

A manual deployment process has to be documented. Maintaining the
documentation is a complex and time-consuming task involving collabora-
tion between several people, so the documentation is generally incomplete
or out-of-date at any given time. A set of automated deployment scripts
serves as documentation, and it will always be up-to-date and complete,
or the deployment will not work.

Automated deployments encourage collaboration, because everything is
explicit in a script. Documentation has to make assumptions about the
level of knowledge of the reader and in reality is usually written as an aide-
memoire for the person performing the deployment, making it opaque to
others.

A corollary of the above: Manual deployments depend on the deployment
expert. If he or she is on vacation or quits work, you are in trouble.

Performing manual deployments is boring and repetitive and yet needs
significant degree of expertise. Asking experts to do boring and repetitive,
and yet technically demanding tasks is the most certain way of ensuring
human error that we can think of, short of sleep deprivation, or inebriation.
Automating deployments frees your expensive, highly skilled, overworked
staff to work on higher-value activities.

The only way to test a manual deployment process is to do it. This is often
time-consuming and expensive. An automated deployment process is cheap
and easy to test.

We have heard it said that a manual process is more auditable than an
automated one. We are completely baffled by this statement. With a manual
process, there is no guarantee that the documentation has been followed.
Only an automated process is fully auditable. What is more auditable than
a working deployment script?

www.it-ebooks.info

http://www.it-ebooks.info/

SoME COMMON RELEASE ANTIPATTERNS

The automated deployment process must be used by everybody, and it should
be the only way in which the software is ever deployed. This discipline ensures
that the deployment script will work when it is needed. One of the principles that
we describe in this book is to use the same script to deploy to every environment.
If you use the same script to deploy to every environment, then the deployment-
to-production path will have been tested hundreds or even thousands of times
before it is needed on release day. If any problems occur upon release, you can
be certain they are problems with environment-specific configuration, not your
scripts.

We are certain that, occasionally, manually intensive releases work smoothly.
We may well have been unlucky in having mostly seen the bad ones. However,
if this is not recognized as a potentially error-prone step in the process of software
production, why is it attended by such ceremony? Why all the process and docu-
mentation? Why are the teams of people brought in during weekends? Why have
people waiting on standby in case things go less than well?

Antipattern: Deploying to a Production-like Environment Only
after Development Is Complete

In this pattern, the first time the software is deployed to a production-like envi-
ronment (for example, staging) is once most of the development work is done—at
least, “done” as defined by the development team.

The pattern looks a bit like this.

e If testers have been involved in the process up to this point, they have tested
the system on development machines.

® Releasing into staging is the first time that operations people interact with
the new release. In some organizations, separate operations teams are used
to deploy the software into staging and production. In this case, the first
time an operations person sees the software is the day it is released into
production.

¢ Either a production-like environment is expensive enough that access to it
is strictly controlled, or it is not in place on time, or nobody bothered to
create one.

¢ The development team assembles the correct installers, configuration files,
database migrations, and deployment documentation to pass to the people
who perform the actual deployment—all of it untested in an environment
that looks like production or staging.

e There is little, if any, collaboration between the development team and the
people who actually perform deployments to create this collateral.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

When the deployment to staging occurs, a team is assembled to perform it.
Sometimes this team has all the necessary skills, but often in very large organiza-
tions the responsibilities for deployment are divided between several groups.
DBAs, middleware teams, web teams, and others all take a hand in deploying
the latest version of the application. Since the various steps have never been
tested in staging, they often have errors. The documentation misses important
steps. The documentation and scripts make assumptions about the version
or configuration of the target environment that are wrong, causing the
deployment to fail. The deployment team has to guess at the intentions of
the development team.

Often the poor collaboration that causes so many problems in deployment to
staging is shored up with ad-hoc telephone calls, emails, and quick fixes. A very
disciplined team will incorporate all of this communication into the deployment
plan—but it is rare for this process to be effective. As pressure increases, the
defined process for collaboration between the development and deployment teams
is subverted, in order to get the deployment done within the time allocated to
the deployment team.

In the process of performing the deployment, it is not uncommon to find that
incorrect assumptions about the production environment have been baked into
the design of the system. For example, one application we had a hand in deploying
used the filesystem to cache data. This worked fine on a developer workstation,
but less well in a clustered environment. Solving problems like this one can take
a long time, and the application cannot be said to have been deployed until they
are resolved.

Once the application is deployed into staging, it is common for new bugs to
be found. Unfortunately, there is often no time to fix them all because the deadline
is fast approaching and, at this stage of the project, deferring the release date is
unacceptable. So the most critical bugs are hurriedly patched up, and a list of
known defects is stored by the project manager for safekeeping, to be deprioritized
when work begins on the next release.

Sometimes it can be even worse than this. Here are a few things that can
exacerbate the problems associated with a release.

® When working on a new application, the first deployment to staging is
likely to be the most troublesome.

e The longer the release cycle, the longer the development team has to make
incorrect assumptions before the deployment occurs, and the longer it will
take to fix them.

¢ In large organizations where the delivery process is divided between different
groups such as development, DBA, operations, testing, etc., the cost of
coordination between these silos can be enormous, sometimes stalling the
release process in ticketing hell. In this scenario, developers, testers, and
operations personnel are constantly raising tickets (or sending emails) to

www.it-ebooks.info

http://www.it-ebooks.info/

SoME COMMON RELEASE ANTIPATTERNS

each other to perform any given deployment—and worse, to resolve
problems that arise during deployment.

® The bigger the difference between development and production environ-
ments, the less realistic are the assumptions that have to be made during
development. This can be difficult to quantify, but it’s a good bet that
if you’re developing on a Windows machine and deploying to a Solaris
cluster, you are in for some surprises.

e If your application is installed by users or contains components that are,
you may not have much control over their environments, especially outside
of a corporate setting. In this case, a great deal of extra testing will be
required.

Instead . ..

The remedy is to integrate the testing, deployment, and release activities into the
development process. Make them a normal and ongoing part of development so
that by the time you are ready to release your system into production there is
little to no risk, because you have rehearsed it on many different occasions in a
progressively more production-like sequence of test environments. Make sure
everybody involved in the software delivery process, from the build and release
team to testers to developers, work together from the start of the project.

We are test addicts, and the extensive use of continuous integration and con-
tinuous deployment, as a means of testing both our software and our deployment
process, is a cornerstone of the approach that we describe.

Antipattern: Manual Configuration Management of Production
Environments

Many organizations manage the configuration of their production environments
through a team of operations people. If a change is needed, such as a change to
database connection setting or an increase in the number of threads in a thread
pool on an application server, then it is carried out manually on the production
servers. If a record is kept of such a change, it is probably an entry in a change
management database.

Signs of this antipattern are:

e Having deployed successfully many times to staging, the deployment into
production fails.

e Different members of a cluster behave differently —for example, one node
sustaining less load or taking longer to process requests than another.

® The operations team take a long time to prepare an environment for a
release.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

® You cannot step back to an earlier configuration of your system, which
may include operating system, application server, web server, RDBMS, or
other infrastructural settings.

e Servers in clusters have, unintentionally, different versions of operating
systems, third-party infrastructure, libraries, or patch levels.

e Configuration of the system is carried out by modifying the configuration
directly on production systems.

Instead . ..

All aspects of each of your testing, staging, and production environments,
specifically the configuration of any third-party elements of your system, should
be applied from version control through an automated process.

One of the key practices that we describe in this book is configuration manage-
ment, part of which means being able to repeatably re-create every piece of in-
frastructure used by your application. That means operating systems, patch levels,
OS configuration, your application stack, its configuration, infrastructure
configuration, and so forth should all be managed. You should be able to re-
create your production environment exactly, preferably in an automated fashion.
Virtualization can help you get started with this.

You should know exactly what is in production. That means that every change
made to production should be recorded and auditable. Often, deployments fail
because somebody patched the production environment last time they deployed,
but the change was not recorded. Indeed it should not be possible to make
manual changes to testing, staging, and production environments. The only way
to make changes to these environments should be through an automated process.

Applications often depend on other applications. It should be possible to see
at a glance exactly what the currently released version of every piece of software is.

While releases can be exhilarating, they can also be exhausting and depressing.
Almost every release involves last-minute changes, such as fixing the database
login details or updating the URL for an external service. There should be a way
of introducing such changes so that they are both recorded and tested. Again,
automation is essential. Changes should be made in version control and then
propagated to production through an automated process.

It should be possible to use the same automated process to roll back to a
previous version of production if the deployment goes wrong.

Can We Do Better?

You bet, and the goal of this book is to describe how. The principles, practices,
and techniques we describe are aimed at making releases boring, even in complex
“enterprise” environments. Software release can—and should—be a low-risk,
frequent, cheap, rapid, and predictable process. These practices have been
developed over the last few years, and we have seen them make a huge difference

www.it-ebooks.info

http://www.it-ebooks.info/

How Do WE AcHIEVE OUR GOAL? v

in many projects. All of the practices in this book have been tested in large enter-
prise projects with distributed teams as well as in small development groups. We
know that they work, and we know that they scale to large projects.

The Power of Automated Deployment

One of our clients used to have a large team of people dedicated to each release.
The team worked together for seven days, including the entire weekend, to get
the application into production. Their success rate was poor, with many releases
introducing errors or requiring high levels of intervention on the day of release as
well as, often, patches and fixes on subsequent days to correct errors introduced
with the release or caused by human errors in configuring the new software.

We helped them to implement a sophisticated automated build, deploy, test, and
release system and to introduce the development practices and techniques nec-
essary to support it. The last release we saw took seven seconds to deploy the
application into production. No one noticed anything had happened, except of
course that the new behaviors that the release implemented suddenly became
available. Had the successful deployment of the system behind this major website
failed for any reason, we could have backed out the change in the same amount
of time.

Our goal is to describe the use of deployment pipelines, combined with high
levels of automation of both testing and deployment and comprehensive
configuration management to deliver push-button software releases. That is,
push-button software releases to any deployment target—development, test, or
production.

Along the way we will describe the pattern itself and the techniques that
you will need to adopt to make it work. We will provide advice on different
approaches to solving some of the problems that you will face. We have found
that the advantages of such an approach vastly outweigh the costs of achieving it.

None of this is outside the reach of any project team. It does not require rigid
process, significant documentation, or lots of people. By the end of this chapter,
we hope that you will understand the principles behind this approach.

How Do We Achieve Our Goal?

As we said, our goal as software professionals is to deliver useful, working
software to users as quickly as possible.

Speed is essential because there is an opportunity cost associated with not de-
livering software. You can only start to get a return on your investment once
your software is released. So, one of our two overriding goals in this book is to
find ways to reduce cycle time, the time it takes from deciding to make a change,
whether a bugfix or a feature, to having it available to users.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

Delivering fast is also important because it allows you to verify whether your
features and bugfixes really are useful. The decision maker behind the creation
of an application, who we’ll call the customer, makes hypotheses about which
features and bugfixes will be useful to users. However, until they are in the hands
of users who vote by choosing to use the software, they remain hypotheses. It is
therefore vital to minimize cycle time so that an effective feedback loop can be
established.

An important part of usefulness is quality. Our software should be fit for its
purpose. Quality does not equal perfection—as Voltaire said, “The perfect is the
enemy of the good,” —but our goal should always be to deliver software of
sufficient quality to bring value to its users. So while it is important to deliver
our software as quickly as possible, it is essential to maintain an appropriate
level of quality.

So, to slightly refine our goal, we want to find ways to deliver high-quality,
valuable software in an efficient, fast, and reliable manner.

We, and our fellow practitioners, have discovered that in order to achieve these
goals—low cycle time and high quality —we need to make frequent, automated
releases of our software. Why is this?

* Automated. If the build, deploy, test, and release process is not automated,
it is not repeatable. Every time it is done, it will be different, because of
changes in the software, the configuration of the system, the environments,
and the release process. Since the steps are manual, they are error-prone,
and there is no way to review exactly what was done. This means there is
no way to gain control over the release process, and hence to ensure high
quality. Releasing software is too often an art; it should be an engineering
discipline.

* Frequent. If releases are frequent, the delta between releases will be
small. This significantly reduces the risk associated with releasing and
makes it much easier to roll back. Frequent releases also lead to faster
feedback—indeed, they require it. Much of this book concentrates on
getting feedback on changes to your application and its associated
configuration (including its environment, deployment process, and data)
as quickly as possible.

Feedback is essential to frequent, automated releases. There are three criteria

for feedback to be useful.

¢ Any change, of whatever kind, needs to trigger the feedback process.
e The feedback must be delivered as soon as possible.

e The delivery team must receive feedback and then act on it.

www.it-ebooks.info

http://www.it-ebooks.info/

How Do WE AcHIEVE OUR GOAL?

Let’s examine these three criteria in detail and consider how we can
achieve them.

Every Change Should Trigger the Feedback Process

A working software application can be usefully decomposed into four components:
executable code, configuration, host environment, and data. If any of them
changes, it can lead to a change in the behavior of the application. Therefore we
need to keep all four of these components under control and ensure that a change
in any one of them is verified.

Executable code changes when a change is made to the source code. Every
time a change is made to the source code, the resulting binary must be built and
tested. In order to gain control over this process, building and testing the binary
should be automated. The practice of building and testing your application on
every check-in is known as continuous integration; we describe it in detail in
Chapter 3.

This executable code should be the same executable code that is deployed into
every environment, whether it is a testing environment or a production environ-
ment. If your system uses a compiled language, you should ensure that the binary
output of your build process—the executable code—is reused everywhere it is
needed and never rebuilt.

Anything that changes between environments should be captured as configura-
tion information. Any change to an application’s configuration, in whichever
environment, should be tested. If the software is to be installed by the users,
the possible configuration options should be tested across a representative range
of example systems. Configuration management is discussed in Chapter 2.

If the environments the application is to be deployed into change, the whole
system should be tested with the changes to the environment. This includes
changes in the operating system configuration, the software stack that supports
the application, the network configuration, and any infrastructure and external
systems. Chapter 11 deals with managing infrastructure and environments, in-
cluding automation of the creation and maintenance of testing and production
environments.

Finally, if the structure of the data changes, this change must also be tested.
We discuss data management in Chapter 12.

What is the feedback process? It involves testing every change in a fully auto-
mated fashion, as far as possible. The tests will vary depending on the system,
but they will usually include at least the following checks.

e The process of creating the executable code must work. This verifies that
the syntax of your source code is valid.

e The software’s unit tests must pass. This checks that your application’s
code behaves as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

e The software should fulfill certain quality criteria such as test coverage and
other technology-specific metrics.

e The software’s functional acceptance tests must pass. This checks that your
application conforms to its business acceptance criteria—that it delivers
the business value that was intended.

® The software’s nonfunctional tests must pass. This checks that the applica-
tion performs sufficiently well in terms of capacity, availability, security,
and so on to meet its users’ needs.

¢ The software must go through exploratory testing and a demonstration to
the customer and a selection of users. This is typically done from a manual
testing environment. In this part of the process, the product owner might
decide that there are missing features, or we might find bugs that require
fixing and automated tests that need creating to prevent regressions.

The environments these tests run in must be as similar as possible to production,
to verify that any changes to our environments have not affected the application’s
ability to work.

The Feedback Must Be Received as Soon as Possible

The key to fast feedback is automation. With fully automated processes, your
only constraint is the amount of hardware that you are able to throw at the
problem. If you have manual processes, you are dependent on people to get
the job done. People take longer, they introduce errors, and they are not auditable.
Moreover, performing manual build, test, and deployment processes is boring
and repetitive—far from the best use of people. People are expensive and
valuable, and they should be focused on producing software that delights its
users and then delivering those delights as fast as possible—not on boring, error-
prone tasks like regression testing, virtual server provisioning, and deployment,
which are best done by machines.

However, implementing a deployment pipeline is resource-intensive, especially
once you have a comprehensive automated test suite. One of its key objectives
is to optimize for human resource usage: We want to free people to do the
interesting work and leave repetition to machines.

We can characterize the tests in the commit stage of the pipeline (Figure 1.1)
as follows.

e They run fast.

e They are as comprehensive as possible—that is to say, they cover more than
75% or so of the codebase, so that when they pass, we have a good level
of confidence that the application works.

www.it-ebooks.info

http://www.it-ebooks.info/

How Do WE AcHIEVE OUR GOAL?

e If any of them fails, it means our application has a critical fault and should
not be released under any circumstances. That means that a test to check
the color of a Ul element should not be included in this set of tests.

® They are as environment-neutral as possible —that is, the environment does
not have to be an exact replica of production, which means it can be simpler
and cheaper.

On the other hand, the tests in the later stages have the following general
characteristics.

e They run more slowly and therefore are candidates for parallelization.

* Some of them may fail, and we may still choose to release the application
under some circumstances (perhaps there is a critical fix in the release
candidate that causes the performance to drop below a predefined
threshold —but we might make the decision to release anyway).

¢ They should run on an environment that is as similar as possible to produc-
tion, so in addition to the direct focus of the test they also test the
deployment process and any changes to the production environment.

This organization of the testing process means that we have a high level of
confidence in the software after the first set of tests, which run fastest on the
cheapest hardware. If these tests fail, the release candidate does not progress to
later stages. This ensures optimal use of resources. There is much more on
pipelining in Chapter 5, “Anatomy of the Deployment Pipeline,” and the later
Chapters 7, 8, and 9 which describe the commit testing stage, automated
acceptance testing, and testing nonfunctional requirements.

One of the fundamentals of our approach is the need for fast feedback. Ensuring
fast feedback on changes requires us to pay attention to the process of developing
software—in particular, to how we use version control and how we organize our
code. Developers should commit changes to their version control system frequent-
ly, and split code into separate components as a way of managing large or dis-
tributed teams. Branching should, in most circumstances, be avoided. We discuss
incremental delivery and the use of components in Chapter 13, “Managing
Components and Dependencies,” and branching and merging in Chapter 14,
“Advanced Version Control.”

The Delivery Team Must Receive Feedback and Then Act on It

It is essential that everybody involved in the process of delivering software is in-
volved in the feedback process. That includes developers, testers, operations staff,
database administrators, infrastructure specialists, and managers. If people in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

these roles do not work together on a day-to-day basis (although we recommend
that teams should be cross-functional), it is essential that they meet frequently
and work to improve the process of delivering software. A process based on
continuous improvement is essential to the rapid delivery of quality software.
Iterative processes help establish a regular heartbeat for this kind of activity —at
least once per iteration a retrospective meeting is held where everybody discusses
how to improve the delivery process for the next iteration.

Being able to react to feedback also means broadcasting information. Using
big, visible dashboards (which need not be electronic) and other notification
mechanisms is central to ensuring that feedback is, indeed, fed-back and makes
the final step into someone’s head. Dashboards should be ubiquitous, and certainly
at least one should be present in each team room.

Finally, feedback is no good unless it is acted upon. This requires discipline
and planning. When something needs doing, it is the responsibility of the whole
team to stop what they are doing and decide on a course of action. Only once
this is done should the team carry on with their work.

Does This Process Scale?

One common objection we hear is that the process we describe is idealistic. It
may work in small teams, these detractors say, but it can’t possibly work in my
huge, distributed project!

We have worked on many large projects over the years in several different in-
dustries. We have also been lucky enough to work alongside colleagues with a
vast range of experiences. All the techniques and principles that we describe in
this book have been proven in real projects in all kinds of organizations, both
large and small, in all kinds of situations. Experiencing the same problems over
and over again in such projects is what drove us to write this book.

Readers will notice that much of this book is inspired by the philosophy and
ideas of the lean movement. The goals of lean manufacturing are to ensure the
rapid delivery of high-quality products, focusing on the removal of waste and
the reduction of cost. Lean manufacturing has resulted in huge cost and resource
savings, much higher-quality products, and faster time-to-market in several in-
dustries. This philosophy is starting to become mainstream in the field of software
development too, and it informs much of what we discuss in this book. Lean is
certainly not limited in its application to small systems. It was created and applied
to huge organizations, and even whole economies.

Both the theory and the practice are as relevant to large teams as they are to
small, and our experience has been that they work. However, we don’t ask you
to believe what we say. Try it yourself and find out. Keep what works, discard
what doesn’t, and write about your experiences so that other people can benefit.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT ARE THE BENEFITS?

What Are the Benefits?

The principal benefit of the approach that we describe in the preceding section
is that it creates a release process that is repeatable, reliable, and predictable,
which in turn generates large reductions in cycle time, and hence gets features
and bugfixes to users fast. The cost savings alone are worth not just the cover
price of this book, but also the investment in time that the establishment and
maintenance of such a release system entails.

Beyond that there are many other benefits, some of which we would have
predicted beforehand, while others were more like pleasant surprises when we
observed them.

Empowering Teams

One of the key principles of the deployment pipeline is that it is a pull system —it
allows testers, operations or support personnel to self-service the version of the
application they want into the environment of their choice. In our experience, a
major contributor to cycle time is people involved in the delivery process waiting
to get a “good build” of the application. Often getting a good build requires
endless emails being sent, tickets being raised, or other inefficient forms of com-
munication. When the teams involved in delivery are distributed, this becomes
a major source of inefficiency. With a deployment pipeline implementation, this
problem is completely removed —everybody should have the ability to see which
builds are available to be deployed into the environments they care about and
be able to perform a deployment at the push of a button.

What we often see as a result of this is several different versions in play in
various environments, as different members of the team go about their work.
The ability to easily deploy any version of the software into any environment
has many advantages.

e Testers can select older versions of an application to verify changes in
behavior in newer versions.

e Support staff can deploy a released version of the application into an
environment to reproduce a defect.

® Operations staff can select a known good build to deploy to production as
part of a disaster recovery exercise.

® Releases can be performed at the push of a button.

The flexibility that our deployment tools offer to them changes the way that
they work —for the better. Overall, team members are more in control of their

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

work, and so the quality of their work improves, which makes the quality of the
application improve. They collaborate more effectively, are less reactive, and can
work more efficiently because they don’t spend so much time waiting for good
builds to be pushed to them.

Reducing Errors

Errors can creep into software from all sorts of places. The people who commis-
sion the software in the first place can ask for the wrong thing. The analysts who
capture the requirements can misunderstand, the developers can write buggy
code. The errors we are talking about here, though, are specifically those intro-
duced into production by poor configuration management. We will describe what
we mean by configuration management in more detail in Chapter 2. For now,
think of the things that have to be just right to make a typical application
work —the right version of the code, sure, but also the correct version of the
database schema, the correct configuration for load-balancers, the correct URL
to that web service that you use to look up prices, and so forth. When we talk
about configuration management, we mean the processes and mechanisms that
allow you to identify and control that complete set of information, every last bit
and byte.

What a Difference a Byte Makes

A few years ago, Dave was working on a large-scale point of sale system for a
well-known retailer. This was in the early days of our thinking about automating
the deployment process, so while some aspects of it were quite well automated
others were not. A very nasty bug cropped up in production. We were suddenly
getting an explosion of error traces in our logs under some unknown, hard to de-
termine combination of circumstances. We couldn’t reproduce the problem in any
of our test environments. We tried all sorts of things: load testing in our performance
environment, trying to simulate what looked like our production pathological
case—but we just couldn’t reproduce the problem. Finally, after a lot more investi-
gation than described here, we decided to audit everything we could think of that
could possibly be different between the two systems. We eventually found that a
single binary library that our application depended upon, belonging to the applica-
tion server software we were using, was different in the production environment
and test environments. We changed the version of the binary in production, and
the problem vanished.

The point of this story is not that we weren’t diligent, or weren’t cautious enough,
or even that we were really smart because we thought to audit the system. The
real point is that software can be immensely fragile. This was a fairly big system
with tens of thousands of classes, thousands of libraries, and many integration
points with external systems. Yet a serious error was introduced into production
by a few bytes of difference between versions of a third-party binary file.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT ARE THE BENEFITS?

Of the many gigabytes of information that collectively comprise a modern
software system, no human being—or team of human beings—is going to be able
to spot a change on the scale of the example described in the preceding sidebar
without machine assistance. Instead of waiting until the problem occurs, why
not employ the machine assistance to prevent it happening in the first place?

By actively managing everything that can change in version control—such
as configuration files, scripts to create databases and their schemas, build
scripts, test harnesses, even development environments and operating system
configurations—we allow computers to do what they are good at: ensure that
every last bit and byte is in the place that we expect it to be, at least up until the
point when our code starts running.

The Cost of Manual Configuration Management

Another project we worked on had a large number of dedicated test environments.
Each ran a popular EJB application server. This application was developed as an
agile project and had good automated test coverage. The local build was well
managed, so it was comparatively easy for a developer to get the code running
quickly locally so that they could develop it. However, this was before we had
started being more careful about the automation of our application’s deployment.
Each test environment was configured manually, using the console-based tools
of the application server vendor. Even though a copy of the configuration files that
the developers used to configure their local installations was kept under version
control, the configuration of each test environment was not. Each was different
from its siblings. They had properties in different orders, some were missing, some
were set to different values, some had different names, some had properties that
didn’t occur on any of the others. No two test environments were the same, and
they were all different from the production environments. It was incredibly hard to
determine which properties were essential, which were redundant, which should
be common between environments, and which should be unique. As a result, that
project employed a team of five people responsible for managing the configuration
of these different environments.

In our experience, this dependence on manual configuration management is
common. In many organizations that we have worked with, this is true of both
their production systems and their test environments. Sometimes it may not
matter that server A has its connection pool limited to 100 while server B has its
pool set to 120. At other times it matters a lot.

Which configuration differences matter and which do not is not something
that you want to discover by accident during your busiest trading period. This
kind of configuration information defines the environment in which code runs
and frequently, in effect, specifies new paths through the code. Changes to such
configuration information need to be considered, and the environment in which
the code runs needs to be as well defined and controlled as the behavior of the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

code itself. If we have access to the configuration of your database, application
server, or web server, we guarantee that we can make your application fail faster
than if you give us access to a compiler and your source code.

When such configuration parameters are manually defined and managed, they
suffer from the human propensity for making mistakes in repetitive tasks. A
simple typo in just the wrong place can stop an application in its tracks. Worse
than that, programming languages have syntax checks and perhaps unit tests
to verify that there are no typos. There are rarely checks of any kind applied to
configuration information, particularly if that configuration information is typed
directly into some console.

The simple act of adding your configuration information to your version control
system is an enormous step forward. At its simplest, the version control system
will alert you to the fact that you have changed the configuration inadvertently.
This eliminates at least one very common source of errors.

Once all of your configuration information is stored in a version control system,
the next obvious step is to eliminate the middleman and get the computer to apply
the configuration rather than to type it back in. Some technologies are more
amenable to this than others, but you, and often the infrastructure vendors, will
be surprised how far you can take this if you think carefully about the configura-
tion of even the most intractable third-party systems. We will discuss the details
of this later in Chapter 4, and at length in Chapter 11.

Lowering Stress

Of the obvious benefits, the most pleasant is the reduction in stress in all parties
that are associated with a release. Most people who have ever come anywhere
near a software project that is approaching its release date will be aware that
these are indeed stressful events. That in itself can be a source of problems in our
experience. We have seen sensible, conservative, quality-conscious project man-
agers asking their developers, “Can’t you just modify the code?” or otherwise
sane database administrators entering data into tables in databases for applications
that they don’t know. On both occasions, and many others like them, the change
was in direct response to the pressure to “just get something working.”

Don’t get us wrong, we have been there too. We are not even suggesting that
this is always the wrong response: If you have just released some code into pro-
duction that is causing your organization to bleed money, almost anything that
stops the bleed may be justified.

Our point here is different. Both examples of quick hacks to get the newly
deployed production system running weren’t being driven by such immediate
commercial imperatives, but rather by the more subtle pressure to release on the
day that was planned. The problem here is that releases into production are big
events. As long as this is true they will be surrounded with a lot of ceremony and
nervousness.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT ARE THE BENEFITS?

For a moment, imagine that your upcoming release could be performed with
the push of a button. Imagine that it could be performed within a few minutes,
or even a few seconds, and that if the worst came to the worst, you could back
out the release in the same few minutes or seconds. Imagine that you released
frequently, so the delta between what is currently in production and the new re-
lease is small. If that were true, then the risk of release would be greatly dimin-
ished, and the unpleasant feeling that you are betting your career on its success
significantly reduced.

For a small set of projects, this ideal may not be practically achievable. How-
ever, in most projects it certainly is, albeit with some degree of effort. The key
to reducing stress is to have the kind of automated deployment process that we
have described, to perform it frequently, and to have a good story when it comes
to your ability to back changes out should the worst happen. The first time you
do automation, it will be painful —but it will become easier, and the benefits to
the project and to yourself are almost incalculably large.

Deployment Flexibility

It should be a simple task to start your application in a new environment—ideally
just a matter of commissioning the machines or virtual images and creating some
configuration information that describes the environment’s unique properties.
Then you should be able to use your automated deployment process to prepare
the new environment for deployment and deploy the chosen version of your
application to it.

Running Enterprise Software on a Laptop

We were working on a project recently that had its business case invalidated by
an unexpected change in government legislation. The project was intended to
create the core enterprise system for a new business. The business was to be
distributed across international boundaries, and the software was designed to run
on a large heterogeneous collection of expensive computers. Naturally everyone
was somewhat deflated by the news that the project’s raison d’étre had just
vanished out of the window.

There was one small high point for us though. The organization for whom we were
developing the software did a downsizing analysis. “What is the minimum hardware
footprint of the new system, how could we limit our capital costs?” they asked.
“Well, it runs on this laptop,” we answered. They were surprised, since this was a
sophisticated multiuser system. “How do you know it works?” they asked after
thinking it through. “Well, we can run all of the acceptance tests like this . . . ,”and
we showed them. “What load would it have to take?” we asked them. They told us
the load, we made a single-line change to the scaling parameters for our
performance tests and ran them. We showed that the laptop was too slow, but not
by all that much. A single decently configured server would meet their needs, and

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

when it was made available it would be a matter of a few minutes to get the
application up and running on it.

This kind of deployment flexibility isn’t only a function of the kind of automated
deployment techniques that we describe in this book; the application was pretty
well designed too. However, our ability to place the software wherever it was
needed, on demand, gave us and our clients great confidence in our ability to
manage any release at any point. As releases become less fraught, it is easier
to consider things like the agile ideal of a release at the end of each iteration. Even
if that isn’t appropriate for a particular project, it means that we get our
weekends back.

Practice Makes Perfect

In projects we work on, we try to achieve a dedicated development environment
for each developer or pair of developers. However, even in projects that don’t
take it that far, any team that uses continuous integration or iterative, incremental
development techniques will need to deploy the application frequently.

The best strategy to adopt is to use the same deployment approach whatever
the deployment target. There should not be a special QA deployment strategy,
or a special acceptance test, or production deployment strategy. In this way every
time the application is deployed, we are confirming that our deployment mecha-
nism is working correctly. In essence, the final deployment into production is
being rehearsed every single time the software is deployed to any target.

There is one special case where some variation is permissible: the development
environment. It makes sense that the developers will need to build binaries rather
than take pre-prepared binaries built elsewhere, so this constraint can be relaxed
for those deployments. Even on developer workstations, though, we try as much
as possible to deploy and manage things in the same way.

The Release Candidate

What is a release candidate? A change to your code may or may not be releasable.
If you were to look at a change and ask, “Should we release this change?” then
the answer could only be a guess. It is the build, deployment, and test process
that we apply to that change that validates whether the change can be released.
This process gives us increasing confidence that the change is safe to release. We
take that small change —whether it is new functionality, a bugfix, or a retuning
of the system to achieve some change in performance—and verify whether or
not we can release the system with that change with a high level of confidence.
In order to reduce the risk further, we want to perform this validation in the
shortest possible time.

www.it-ebooks.info

http://www.it-ebooks.info/

THE RELEASE CANDIDATE

While any change may lead to an artifact that can be released to users, they
don’t start off that way. Every change must be evaluated for its fitness. If the re-
sulting product is found to be free of defects, and it meets the acceptance criteria
set out by the customer, then it can be released.

Most approaches to releasing software identify release candidates at the end
of the process. This makes some sense when there is work associated with the
tracking. At the time of writing, the Wikipedia entry describing development
stages shows “release candidate” as a distinct step in the process (Figure 1.2).
We see things a little differently.

Release

candidate ™ Gold

Pre-alpha | Alpha > Beta >

Figure 1.2 Traditional view of release candidates

Traditional approaches to software development delay the nomination of a
release candidate until several lengthy and expensive steps have been taken to
ensure that the software is of sufficient quality and functionally complete. How-
ever, in an environment where build and deployment automation is aggressively
pursued along with comprehensive automated testing, there is no need to spend
time and money on lengthy and manually intensive testing at the end of the
project. At this stage the quality of the application is usually significantly higher,
so manual testing is only an affirmation of the functional completeness.

Indeed, delaying testing until after the development process is, in our experience,
a sure-fire way to decrease the quality of your application. Defects are best dis-
covered and fixed at the point where they are introduced. When they are discov-
ered later, they are always more expensive to fix. The developers have forgotten
what they were doing at the time when they introduced the defect, and the
functionality may have changed in the meantime. Leaving testing until the end
normally means that there is no time to actually fix the bugs, or that only a small
proportion of them can be fixed. So we want to find and fix them at the earliest
possible opportunity, preferably before they are checked in to the code.

Every Check-in Leads to a Potential Release

Every change that a developer makes to a codebase is intended to add value in
some manner. Every change committed to version control is supposed to enhance
the system that we are working on. How do we know if that is true? The only
way in which we can tell is through exercising the software to see if it achieves
the value that we had expected. Most projects defer this part of the process until

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

later in the life of the feature under development. This means that as far as any-
body knows, the system is broken until it is found to be working when it is tested
or used. If it is found to be broken at this point, it usually takes a significant
amount of work to get the system running as it should. This phase is usually de-
scribed as integration and is often the most unpredictable and unmanageable
part of the development process. Since it is so painful, teams defer it, integrating
infrequently, which only makes it worse.

In software, when something is painful, the way to reduce the pain is to do it
more frequently, not less. So instead of integrating infrequently, we should inte-
grate frequently; in fact, we should integrate as a result of every single change to
the system. This practice of continuous integration takes the idea of integrating
frequently to its logical extreme. In doing so, it creates a paradigm shift in the
software development process. Continuous integration detects any change that
breaks the system or does not fulfill the customer’s acceptance criteria at the time
it is introduced into the system. Teams then fix the problem as soon as it occurs
(this is the first rule of continuous integration). When this practice is followed,
then the software is always in a working state. If your tests are sufficiently com-
prehensive and you are running tests on a sufficiently production-like environment,
then the software is in fact always in a releasable state.

Every change is, in effect, a release candidate. Every time a change is committed
to version control, the expectation is that it will pass all of its tests, produce
working code, and can be released into production. This is the starting assump-
tion. The job of a continuous integration system is to disprove this assumption,
to show that a particular release candidate is not fit to make it into production.

Principles of Software Delivery

The ideas behind this book were informed by a large number of projects that the
authors have worked on over a period of many years. As we commenced the
activity of synthesizing our thoughts and capturing them in these pages, we noticed
that the same principles came up over and over again. We’ve enumerated them
here. Some of what we say is subject to interpretation or caveats; the principles
below are not. These are the things that we can’t imagine doing without if we
want our delivery process to be effective.

Create a Repeatable, Reliable Process for Releasing Software

This principle is really a statement of our aim in writing this book: Releasing
software should be easy. It should be easy because you have tested every single
part of the release process hundreds of times before. It should be as simple as
pressing a button. The repeatability and reliability derive from two principles:
automate almost everything, and keep everything you need to build, deploy, test,
and release your application in version control.

www.it-ebooks.info

http://www.it-ebooks.info/

PRINCIPLES OF SOFTWARE DELIVERY

Deploying software ultimately involves three things:

* Provisioning and managing the environment in which your application will
run (hardware configuration, software, infrastructure, and external services).

¢ Installing the correct version of your application into it.

e Configuring your application, including any data or state it requires.

The deployment of your application can be implemented using a fully
automated process from version control. Application configuration can also be
a fully automated process, with the necessary scripts and state kept in version
control or databases. Clearly, hardware cannot be kept in version control; but,
particularly with the advent of cheap virtualization technology and tools like
Puppet, the provisioning process can also be fully automated.

The rest of this book essentially describes strategies for realizing this principle.

Automate Almost Everything

There are some things it is impossible to automate. Exploratory testing relies on
experienced testers. Demonstrations of working software to representatives of
your user community cannot be performed by computers. Approvals for compli-
ance purposes by definition require human intervention. However, the list of
things that cannot be automated is much smaller than many people think. In
general, your build process should be automated up to the point where it needs
specific human direction or decision making. This is also true of your deployment
process and, in fact, your entire software release process. Acceptance tests can
be automated. Database upgrades and downgrades can be automated too. Even
network and firewall configuration can be automated. You should automate as
much as you possibly can.

Your authors can honestly say that they haven’t found a build or deployment
process that couldn’t be automated with sufficient work and ingenuity.

Most development teams don’t automate their release process because it seems
such a daunting task. It’s easier just to do things manually. Perhaps that is true
the first time they perform a step in the process, but it is certainly not true by the
time they perform that step for the tenth time, and is probably not true by the
time they have done it three or four times.

Automation is a prerequisite for the deployment pipeline, because it is only
through automation that we can guarantee that people will get what they need
at the push of a button. However, you don’t need to automate everything at
once. You should start by looking at that part of your build, deploy, test, and
release process that is currently the bottleneck. You can, and should, automate
gradually over time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

Keep Everything in Version Control

Everything you need to build, deploy, test, and release your application should
be kept in some form of versioned storage. This includes requirement documents,
test scripts, automated test cases, network configuration scripts, deployment
scripts, database creation, upgrade, downgrade, and initialization scripts, appli-
cation stack configuration scripts, libraries, toolchains, technical documentation,
and so on. All of this stuff should be version-controlled, and the relevant version
should be identifiable for any given build. That is, these change sets should have
a single identifier, such as a build number or a version control change set number,
that references every piece.

It should be possible for a new team member to sit down at a new workstation,
check out the project’s revision control repository, and run a single command to
build and deploy the application to any accessible environment, including the
local development workstation.

It should also be possible to see which build of your various applications is
deployed into each of your environments, and which versions in version control
these builds came from.

If It Hurts, Do It More Frequently, and Bring the Pain Forward

This is the most general principle on our list, and could perhaps best be described
as a heuristic. But it is perhaps the most useful heuristic we know of in the context
of delivering software, and it informs everything we say. Integration is often a
very painful process. If this is true on your project, integrate every time somebody
checks in, and do it from the start of the project. If testing is a painful process
that occurs just before release, don’t do it at the end. Instead, do it continually
from the beginning of the project.

If releasing software is painful, aim to release it every time somebody checks
in a change that passes all the automated tests. If you can’t release it to real users
upon every change, release it to a production-like environment upon every
check-in. If creating application documentation is painful, do it as you develop
new features instead of leaving it to the end. Make documentation for a feature
part of the definition of done, and automate the process as far as possible.

Depending on your current level of expertise, it could take a serious amount
of effort to reach this goal, and of course you still have to deliver software in the
meantime. Aim for intermediate goals, such as an internal release every few weeks
or, if you’re already doing that, every week. Gradually work to approach the
ideal —even small steps will deliver great benefits.

Extreme programming is essentially the result of applying this heuristic to the
software development process. Much of the advice in this book comes from our
experience of applying the same principle to the process of releasing software.

www.it-ebooks.info

http://www.it-ebooks.info/

PRINCIPLES OF SOFTWARE DELIVERY

Build Quality In

This principle and the last one we mention in this section —continuous improve-
ment—are shamelessly stolen from the lean movement. “Build quality in” was
the motto of W. Edwards Deming who was, among his other distinctions, one
of the pioneers of the lean movement. The earlier you catch defects, the cheaper
they are to fix. Defects are fixed most cheaply if they are never checked in to
version control in the first place.

The techniques that we describe in this book, such as continuous integration,
comprehensive automated testing, and automated deployment, are designed to
catch defects as early in the delivery process as possible (an application of the
principle “Bring the pain forward”). The next step is to fix them. A fire alarm is
useless if everybody ignores it. Delivery teams must be disciplined about fixing
defects as soon as they are found.

There are two other corollaries of “Build quality in.” Firstly, testing is not a
phase, and certainly not one to begin after the development phase. If testing is
left to the end, it will be too late. There will be no time to fix the defects. Secondly,
testing is also not the domain, purely or even principally, of testers. Everybody
on the delivery team is responsible for the quality of the application all the time.

Done Means Released

How often have you heard a developer say a story or feature is “done”? Perhaps
you have heard a project manager asking that developer if it is “done done”?
What does “done” mean? Really, a feature is only done when it is delivering
value to users. This is part of the motivation behind the practice of continuous
deployment (see Chapter 10, “Deploying and Releasing Applications”).

For some agile delivery teams, “done” means released into production. This
is the ideal situation for a software development project. However, it is not always
practical to use this as a measure of done. The initial release of a software system
can take a while before it is in a state where real external users are getting benefit
from it. So we will dial back to the next best option and say that a functionality
is “done” once it has been successfully showcased, that is, demonstrated to,
and tried by, representatives of the user community, from a production-like
environment.

There is no “80% done.” Things are either done, or they are not. It is possible
to estimate the work remaining before something is done—but those will only
ever be estimates. Using an estimate to determine the total amount of remaining
work leads to recriminations and finger-pointing when those quoting the
percentage turn out, as they invariably do, to be wrong.

This principle has an interesting corollary: It is not in the power of one person
to get something done. It requires a number of people on a delivery team to work
together to get anything done. That’s why it’s so important for everybody —testers,
build and operations personnel, support teams, developers—to work together

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER T THE PROBLEM OF DELIVERING SOFTWARE

from the beginning. It’s also why the whole delivery team is responsible for
delivering—a principle so important that it gets a section of its own . . .

Everybody Is Responsible for the Delivery Process

Ideally, everybody within an organization is aligned with its goals, and people
work together to help each to meet them. Ultimately the team succeeds or fails
as a team, not as individuals. However, in too many projects the reality is that
developers throw their work over the wall to testers. Then testers throw work
over the wall to the operations team at release time. When something goes wrong,
people spend as much time blaming one another as they do fixing the defects that
inevitably arise from such a siloed approach.

If you are working in a small organization or in a relatively independent de-
partment, you may have complete control over the resources that you need to
release software. If so, fantastic. If not, realizing this principle may require hard
work over a long period of time to break down the barriers between the silos
that isolate people in different roles.

Start by getting everybody involved in the delivery process together from the
start of a new project, and ensure that they have an opportunity to communicate
on a frequent regular basis. Once the barriers are down, this communication
should occur continuously, but you may need to move towards that goal incre-
mentally. Initiate a system where everyone can see, at a glance, the status of the
application, its health, its various builds, which tests they have passed, and the
state of the environments they can be deployed to. This system should also make
it possible for people to perform the actions that they need to do their job, such
as deployment to environments under their control.

This is one of the central principles of the DevOps movement. The DevOps
movement is focused on the same goal we set out in this book: encouraging
greater collaboration between everyone involved in software delivery in order to
release valuable software faster and more reliably [aNgvoV].

Continuous Improvement

It is worth emphasizing that the first release of an application is just the first stage
in its life. All applications evolve, and more releases will follow. It is important
that your delivery process also evolves with it.

The whole team should regularly gather together and hold a retrospective on
the delivery process. This means that the team should reflect on what has gone
well and what has gone badly, and discuss ideas on how to improve things.
Somebody should be nominated to own each idea and ensure that it is acted upon.
Then, the next time that the team gathers, they should report back on what
happened. This is known as the Deming cycle: plan, do, study, act.

It is essential that everybody in the organization is involved in this process.
Allowing feedback to happen only within silos and not across them is a

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY

recipe for disaster: It leads to local optimization at the expense of general
optimization—and, ultimately, finger-pointing.

Summary

Traditionally, the point of software release has been a time fraught with stress.
At the same time, when compared to the disciplines associated with creation and
management of code, it is treated as an unverified, manual process that relies on
ad-hoc configuration management techniques for crucial aspects of the configu-
ration of the system. In our view, the stress associated with software releases and
their manual, error-prone nature are related factors.

By adopting the techniques of automated build, test, and deployment, we gain
many benefits. We gain the ability to verify changes, to make the process repro-
ducible across a range of environments, and to largely eliminate the opportunity
for errors to creep into production. We gain the ability to deploy changes, and
so bring business benefits more quickly, because the release process itself is no
longer a hurdle. Implementing an automated system encourages us to implement
other good practices, such as behavior-driven development and comprehensive
configuration management.

We also gain the ability to spend more weekends with our families and friends
and to live our lives with less stress, while at the same time being more productive.
What is not to like about that? Life is too short to spend our weekends in server
rooms deploying applications.

The automation of the development, test, and release processes has a profound
impact on the speed, quality, and cost of releasing software. One of the authors
works on a complex distributed system. Release into production for this system,
including data migration in large-scale databases, takes between 5 and 20 minutes
depending on the scale of the data migration associated with a particular release.
Moving the data takes a long time. A closely related, and comparable, system of
which we are aware takes 30 days for the same part of the process.

The rest of this book will be more concrete in the advice that we offer and the
recommendations that we make, but we wanted this chapter to give you an ideal,
but nevertheless realistic, view of the scope of this book—from twenty thousand
feet. The projects that we have referred to here are all real projects, and while
we may have disguised them a little to protect the guilty, we have tried very hard
not to exaggerate any technical detail or the value of any technique.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Configuration Management

Introduction

Configuration management is a term that is widely used, often as a synonym for
version control. It is worth setting the context for this chapter with our own
informal definition:

Configuration management refers to the process by which all artifacts relevant to
your project, and the relationships between them, are stored, retrieved, uniquely

identified, and modified.

Your configuration management strategy will determine how you manage all
of the changes that happen within your project. It thus records the evolution of
your systems and applications. It will also govern how your team collaborates—a
vital but sometimes overlooked consequence of any configuration management
strategy.

Although version control systems are the most obvious tool in configuration
management, the decision to use one (and every team should use one, no matter
how small) is just the first step in developing a configuration management strategy.

Ultimately, if you have a good configuration management strategy, you should
be able to answer “yes” to all of the following questions:

e Can I exactly reproduce any of my environments, including the version of
the operating system, its patch level, the network configuration, the software
stack, the applications deployed into it, and their configuration?

e Can I easily make an incremental change to any of these individual items
and deploy the change to any, and all, of my environments?

* CanIeasily see each change that occurred to a particular environment and
trace it back to see exactly what the change was, who made it, and when
they made it?

* Can I satisfy all of the compliance regulations that I am subject to?

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

e Is it easy for every member of the team to get the information they need,
and to make the changes they need to make? Or does the strategy get in
the way of efficient delivery, leading to increased cycle time and reduced

feedback?

The last point is important, as we all too often encounter configuration man-
agement strategies which address the first four points but put all kinds of barriers
in the way of collaboration between teams. This is unnecessary —with sufficient
care, this last constraint does not need to be antithetical to the others. We don’t
tell you how to answer all of these questions in this chapter, although we do
address them all through the course of this book. In this chapter, we divide the
problem into three:

1. Getting the prerequisites in place to manage your application’s build, deploy,
test, and release process. We tackle this in two parts: getting everything into
version control and managing dependencies.

2. Managing an application’s configuration.

Configuration management of whole environments— the software, hardware,
and infrastructure that an application depends upon; the principles behind
environment management, from operating systems to application servers,
databases, and other commercial off-the-shelf (COTS) software.

Using Version Control

Version control systems, also known as source control, source code management
systems, or revision control systems, are a mechanism for keeping multiple ver-
sions of your files, so that when you modify a file you can still access the previous
revisions. They are also a mechanism through which people involved in software
delivery collaborate.

The first popular version control system was a proprietary UNIX tool called
SCCS (Source Code Control System) which dates back to the 1970s. This was
superseded by RCS, the Revision Control System, and later CVS, Concurrent
Versions System. All three of these systems are still in use today, although with
an increasingly small market share. Nowadays there is a wealth of better version
control systems, both open source and proprietary, designed for a variety of dif-
ferent environments. In particular, we believe that there are few circumstances
in which the open source tools—Subversion, Mercurial, or Git—would not satisfy
most teams’ requirements. We will spend much more time exploring version
control systems and patterns for using them, including branching and merging,
in Chapter 14, “Advanced Version Control.”

In essence, the aim of a version control system is twofold: First, it retains, and
provides access to, every version of every file that has ever been stored in it. Such
systems also provide a way for metadata—that is, information that describes the

www.it-ebooks.info

http://www.it-ebooks.info/

UsING VERSION CONTROL

data stored—to be attached to single files or collections of files. Second, it allows
teams that may be distributed across space and time to collaborate.

Why would you want to do this? There are a few reasons, but ultimately it’s
about being able to answer these questions:

e What constitutes a particular version of your software? How can you re-
produce a particular state of the software’s binaries and configuration that
existed in the production environment?

¢ What was done when, by whom, and for what reason? Not only is this
useful to know when things go wrong, but it also tells the story of your
application.

These are the fundamentals of version control. Most projects use version con-
trol. If yours doesn’t yet, read the next few sections, then put this book aside and
add it immediately. The following few sections are our advice on how to make
the most effective use of version control.

Keep Absolutely Everything in Version Control

One reason that we use the term version control in preference to source control
is that version control isn’t just for source code. Every single artifact related to
the creation of your software should be under version control. Developers should
use it for source code, of course, but also for tests, database scripts, build and
deployment scripts, documentation, libraries and configuration files for your
application, your compiler and collection of tools, and so on—so that a new
member of your team can start working from scratch.

It is also important to store all the information required to re-create the testing
and production environments that your application runs on. This should include
configuration information for your application’s software stack and the operating
systems that comprise the environment, DNS zone files, firewall configuration,
and so forth. At the bare minimum, you need everything required to re-create
your application’s binaries and the environments in which they run.

The objective is to have everything that can possibly change at any point in
the life of the project stored in a controlled manner. This allows you to recover
an exact snapshot of the state of the entire system, from development environment
to production environment, at any point in the project’s history. It is even helpful
to keep the configuration files for the development team’s development environ-
ments in version control since it makes it easy for everyone on the team to use
the same settings. Analysts should store requirements documents. Testers should
keep their test scripts and procedures in version control. Project managers
should save their release plans, progress charts, and risk logs here. In short, every
member of the team should store any document or file related to the project in
version control.

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER 2 CONFIGURATION MANAGEMENT

Check Everything In

Many years ago one of the authors worked on a project that was being developed
by three different teams operating from three different locations. The subsystems
that each team was working on communicated with one another using a proprietary
message protocol via IBM MQSeries. This was before we started using continuous
integration as a guard against issues with configuration management.

We had been rigorous in our use of version control for our source code. We had
learned that lesson even earlier in our careers. However, our version control had
stopped at the source code.

When the time came, close to the first release of the project, to integrate the three
separate subsystems, we discovered that one of the teams was using a different
version of the functional specification describing the message protocol. In fact,
the document that they had implemented was six months out-of-date. Naturally,
there was a lot of late-night work as we tried to fix the problems this caused and
keep the project on schedule.

Had we simply checked the document into our version control system, we would
not have had the problem, or the late nights! Had we used continuous integration,
the project would have finished significantly earlier.

We really can’t emphasize enough how important good configuration manage-
ment is. It enables everything else in this book. If you don’t have absolutely every
source artifact of your project in version control, you won’t enjoy any of the
benefits that we discuss in this book. All of the practices that we discuss to reduce
your software’s cycle time and increase its quality, from continuous integration
and automated testing to push-button deployments, depend on having everything
related to your project in a version control repository.

In addition to storing source code and configuration information, many projects
also store binary images of their application servers, compilers, virtual machines,
and other parts of their toolchain in version control. This is fantastically useful,
speeding up the creation of new environments and, even more importantly, en-
suring that base configurations are completely defined, and so known to be good.
Simply checking everything you need out of the version control repository assures
a stable platform for development, test, or even production environments. You
can then store whole environments, including base operating systems with
configuration baselines applied, as virtual images for an even higher level of
assurance and deployment simplicity.

This strategy offers the ultimate in control and assured behavior. There is no
way for a system under such rigorous configuration management to have errors
added at a later stage in the process. This level of configuration management
ensures that, provided you keep the repository intact, you will always be able to
retrieve a working version of the software. This safeguards you even when the

www.it-ebooks.info

http://www.it-ebooks.info/

UsING VERSION CONTROL

compilers, programming languages, or other tools associated with the project
have fallen into the bit-bucket of obscurity.

One thing that we don’t recommend that you keep in version control is the
binary output of your application’s compilation. This is for a few reasons. First,
they are big, and unlike compilers, they proliferate rapidly (we create new binaries
for every check-in that compiles and passes the automated commit tests). Second,
if you have an automated build system, you should be able to re-create them
easily from source by rerunning the build script. Please note: We don’t recommend
recompilation as a normal part of your build process. However, the combination
of your build system and source code is all that should be required to re-create
an instance of your application in an emergency. Finally, storing the binary output
of the build breaks the idea of being able to identify a single version of your
repository for each application version because there may be two commits for
the same version, one for source code and another for the binaries. This may
seem obscure, but it becomes extremely important when creating deployment
pipelines—one of the central topics of this book.

Version Control: The Freedom to Delete

A corollary of having every version of every file in version control is that it allows
you to be aggressive about deleting things that you don’t think you need. With
version control, you can answer the question “Should we delete this file?” with a
“Yes!” without risk; if you make the wrong decision, it is simple to fix by retrieving
the file from an earlier configuration set.

This freedom to delete is in itself a significant step forward in the maintainability
of a large configuration set. Consistency and organization are key to keeping a
large team working efficiently. The ability to weed out old ideas and implementations
frees the team to try new things and to improve the code.

Check In Regularly to Trunk

There is a tension at the heart of working with version control. On one hand, to
gain access to many of its benefits, such as the ability to step back to a recent,
known-good version of your artifacts, it is important to check in frequently.

On the other hand, once you check your changes into version control, they
become public, instantly available to everybody else on the team. Further, if you
are using continuous integration, as we recommend, your changes are not only
visible to the other developers on the team; you have just given birth to a build
that could potentially end up in acceptance testing or even production.

Since checking in is a form of publication, it is important to be sure that your
work, whatever it may be, is ready for the level of publicity that a check-in implies.
This applies to developers in particular who, given the nature of their work, need
to be cautious about the effects of their check-ins. If a developer is in the middle

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

of working on a complex part of the system, they won’t want to commit their
code until it is finished; they want to feel confident that their code is in a good
state and won’t adversely affect other functions of the system.

In some teams, this can lead to days or even weeks between check-ins, which
is problematic. The benefits of version control are enhanced when you commit
regularly. In particular, it is impossible to safely refactor an application unless
everybody commits frequently to mainline—the merges become too complex. If
you commit frequently, your changes are available for other people to see and
interact with, you get a clear indication that your changes haven’t broken the
application, and merges are always small and manageable.

A solution that some people use to resolve this dilemma is to create a separate
branch within the version control system for new functionality. At some point,
when the changes are deemed satisfactory, they will be merged into the main
development branch. This is a bit like a two-stage check-in; in fact, some version
control systems work naturally in this way.

However, we are opposed to this practice (with three exceptions, discussed in
Chapter 14). This is a controversial viewpoint, especially to users of tools like
ClearCase. There are a few problems with this approach.

e It is antithetical to continuous integration, since the creation of a branch
defers the integration of new functionality, and integration problems are
only found when the branch is merged.

e If several developers create branches, the problem increases exponentially,
and the merge process can become absurdly complex.

e Although there are some great tools for automated merging, these don’t
solve semantic conflicts, such as somebody renaming a method in one branch
while somebody else adds a new call to that method in another branch.

e It becomes very hard to refactor the codebase, since branches tend to touch
many files which makes merging even more difficult.

We will discuss the complexities of branching and merging in more detail in
Chapter 14, “Advanced Version Control.”

A much better answer is to develop new features incrementally and to commit
them to the trunk in version control on a regular and frequent basis. This keeps
the software working and integrated at all times. It means that your software is
always tested because your automated tests are run on trunk by the continuous
integration (CI) server every time you check in. It reduces the possibility of large
merge conflicts caused by refactoring, ensures that integration problems are
caught immediately when they are cheap to fix, and results in higher-quality
software. We discuss techniques to avoid branching in more detail in Chapter 13,
“Managing Components and Dependencies.”

To ensure you aren’t going to break the application when you check in, two
practices are useful. One is to run your commit test suite before the check-in.

www.it-ebooks.info

http://www.it-ebooks.info/

UsING VERSION CONTROL

This is a quick-running (less than ten minutes) but relatively comprehensive set
of tests which validate that you haven’t introduced any obvious regressions.
Many continuous integration servers have a feature called pretested commit
which allows you to run these tests on a production-like environment before you
check in.

The second is to introduce changes incrementally. We recommend that you
aim to commit changes to the version control system at the conclusion of each
separate incremental change or refactoring. If you use this technique correctly,
you should be checking in at the very minimum once a day, and more usually
several times a day. This may sound unrealistic if you are not used to doing it,
but we assure you, it leads to a far more efficient software delivery process.

Use Meaningful Commit Messages

Every version control system has the facility to add a description to your commit.
It is easy to omit these messages, and many people get into the bad habit of doing
so. The most important reason to write descriptive commit messages is so that,
when the build breaks, you know who broke the build and why. But this is not
the only reason. Your authors have been caught out by not using sufficiently
descriptive commit messages on several occasions, most often when trying to
debug a complex problem under a tight deadline. The usual scenario runs like this:

You find a bug that is down to a rather obscure line of code.

2. You use your version control system to find out who put in that line of code
and when.

3. That person is off on holiday or has gone home for the night, and left a
commit message that said “fixed obscure bug.”

4. You change the obscure line of code to fix the bug.
Something else breaks.

6. You spend hours trying to get the application working again.

In these situations, a commit message explaining what the person was doing
when they committed that change can save you hours of debugging. The more
this happens, the more you will wish you had used good commit messages. There
is no prize for writing the shortest commit message. A couple of medium-to-long
sentences with an overview of what you were doing will often save you many
times the effort later on.

One style we like is a multiparagraph commit message in which the first
paragraph is a summary and the following paragraphs add more detail. The
first paragraph is what gets shown on line-per-commit displays—think of it as a
newspaper headline, giving the reader enough information to figure out if she is
interested in reading on.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

You should also include a link to the identifier in your project management
tool for the feature or bug you’re working on. On many teams we’ve worked
on, the system administrators locked down their version control systems so that
commits that do not include this information fail.

Managing Dependencies

The most common external dependencies within your application are the third-
party libraries it uses and the relationships between components or modules under
development by other teams within your organization. Libraries are typically
deployed in the form of binary files, are never changed by your application’s de-
velopment team, and are updated very infrequently. Components and modules
are typically under active development by other teams and change quite frequently.

We spend a great deal of time discussing dependencies in Chapter 13,
“Managing Components and Dependencies.” Here, however, we will touch on
some of the key issues of dependency management as it impacts configuration
management.

Managing External Libraries

External libraries usually come in binary form, unless you’re using an interpreted
language. Even with interpreted languages, external libraries are normally installed
globally on your system by a package management system such as Ruby Gems
or Perl modules.

There is some debate as to whether or not to version-control libraries. For
example, Maven, a build tool for Java, allows you to specify the JARs your ap-
plication depends on and downloads them from repositories on the Internet (or
a local cache, if you have one).

This is not always desirable; a new team member may be forced to “download
the Internet” (or at least decently sized chunks of it) in order to get started on a
project. However, it makes the version control check-out much smaller.

We recommend that you keep copies of your external libraries somewhere lo-
cally (in the case of Maven, you should create a repository for your organization
containing approved versions of libraries to use). This is essential if you have to
follow compliance regulations, and it also makes getting started on a project
faster. It also means you always have the ability to reproduce your build. Further-
more, we emphasize that your build system should always specify the exact version
of the external libraries that you use. If you don’t do this, you can’t reproduce
your build. Failure to be absolutely specific also leads to an occasional long
debugging session tracking down strange errors due to people or build systems
using different versions of libraries.

Whether you keep external libraries in version control or not involves some
trade-offs. It makes it much easier to correlate versions of your software with

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING SOFTWARE CONFIGURATION

the versions of the libraries that were used to build them. However, it makes
version control repositories bigger and check-outs longer.

Managing Components

It’s good practice to split all but the smallest applications into components. Doing
so limits the scope of changes to your application, reducing regression bugs. It
also encourages reuse and enables a much more efficient development process
on large projects.

Typically, you would start off with a monolithic build creating binaries or an
installer for your entire application in one step, usually running unit tests at the
same time. Depending on the technology stack you use, a monolithic build is
usually the most efficient way to build small and medium-size applications.

However, if your system grows or you have components that several projects
depend on, you may consider splitting out your components’ builds into separate
pipelines. If you do so, it’s important to have binary dependencies between your
pipelines rather than source dependencies. Recompiling dependencies is not only
less efficient; it also means you’re creating an artifact that is potentially different
from the one that you already tested. Using binary dependencies can make it
hard to track back a breakage to the source code change that caused it, but a
good CI server will help you with this problem.

While modern CI servers do a pretty good job of managing dependencies, they
often do so at the cost of making it harder to reproduce the entire end-to-end
build process for your application on a developer workstation. Ideally, if I have
a few components checked out on my machine it should be relatively straight-
forward to make changes in some of them and run a single command that rebuilds
the necessary bits in the right order, creates the appropriate binaries, and runs
relevant tests. This is, unfortunately, beyond the capability of most build systems,
at least without much clever hackery by build engineers, although tools such as
Ivy and Maven and scripting technologies such as Gradle and Buildr do make
life easier than it used to be.

There is much more on managing components and dependencies in Chapter 13.

Managing Software Configuration

Configuration is one of the three key parts that comprise an application, along
with its binaries and its data. Configuration information can be used to change
the behavior of software at build time, deploy time, and run time. Delivery teams
need to consider carefully what configuration options should be available, how
to manage them throughout the application’s life, and how to ensure that
configuration is managed consistently across components, applications, and
technologies. We believe that you should treat the configuration of your system
in the same way you treat your code: Make it subject to proper management and
testing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

Configuration and Flexibility

If asked, everyone wants flexible software. Why would you not? But flexibility
usually comes at a cost.

Clearly there is a continuum: At one end, there is single-purpose software that
does one job well but has little or no ability to have its behavior modified. At the
other end of the spectrum is a programming language that you can use to write
a game, an application server, or a stock control system —that is flexibility! Most
applications, though, are at neither extreme. Instead, they are designed for a
specific purpose, but within the bounds of that purpose they will usually have
some ways in which their behavior can be modified.

The desire to achieve flexibility may lead to the common antipattern of
“ultimate configurability” which is, all too frequently, stated as a requirement
for software projects. It is at best unhelpful, and at worst, this one requirement
can kill a project.

Any time, you change the behavior of an application you are programming.
The language in which you are programming the changes may be more or less
constrained, but it is programming nevertheless. The more configurability you
intend to offer users, by definition, the fewer constraints you can afford to place
on the configuration of the system, and so the more sophisticated the programming
environment needs to become.

In our experience, it is an enduring myth that configuration information is
somehow less risky to change than source code. Our bet is that, given access to
both, we can stop your system at least as easily by changing the configuration
as by changing the source code. If we change the source code, there are a
variety of ways in which we are protected from ourselves; the compiler
will rule out nonsense, and automated tests should catch most other errors.
On the other hand, most configuration information is free-form and untested.
In most systems there is nothing to prevent us from changing a URI from
“http://www.asciimation.co.nz/” to “this is not a valid URL.” Most systems won’t
catch a change like this until run time—at which point, instead of enjoying the
ASCII version of Star Wars, your users are presented with a nasty exception report
because the URI class can’t parse “this is not a valid URL.”

There are many significant pitfalls on the road to highly configurable software,
but perhaps the worst are the following.

e It frequently leads to analysis paralysis, in which the problem seems so big
and so intractable that the team spends all of their time thinking about how
to solve it and none of their time actually solving anything.

e The system becomes so complex to configure that many of the benefits of
its flexibility are lost, to the extent where the effort involved in its
configuration is comparable to the cost of custom development.

www.it-ebooks.info

http://www.asciimation.co.nz/
http://www.it-ebooks.info/

MANAGING SOFTWARE CONFIGURATION v

The Danger of Ultimate Configurability

We were once approached by a client who had spent three years working with a
vendor of a packaged application in their particular vertical market. This application
was designed to be very flexible and configured to meet the needs of its customers,
albeit by specialists in its configuration.

Our client was concerned that the system was still not close to being ready for
use in production. Our organization implemented a custom-built equivalent in Java
from scratch in eight months.

Configurable software is not always the cheaper solution it appears to be. It's
almost always better to focus on delivering the high-value functionality with little
configuration and then add configuration options later when necessary.

Don’t misunderstand us: Configuration is not inherently evil. But it needs to
be managed carefully and consistently. Modern computer languages have evolved
all sorts of characteristics and techniques to help them reduce errors. In most
cases, these protections do not exist for configuration information, and more
often than not there are not even any tests in place to verify that your software
has been configured correctly in testing and production environments. Deployment
smoke tests, as described in the “Smoke-Test Your Deployments” section on
page 117, are one way to mitigate this problem and should always be used.

Types of Configuration

Configuration information can be injected into your application at several points
in your build, deploy, test, and release process, and it’s usual for it to be included
at more than one point.

® Your build scripts can pull configuration in and incorporate it into your
binaries at build time.

* Your packaging software can inject configuration at packaging time, such
as when creating assemblies, ears, or gems.

* Your deployment scripts or installers can fetch the necessary information
or ask the user for it and pass it to your application at deployment time as
part of the installation process.

® Your application itself can fetch configuration at startup time or run time.

Generally, we consider it bad practice to inject configuration information at
build or packaging time. This follows from the principle that you should be able

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

to deploy the same binaries to every environment so you can ensure that the thing
that you release is the same thing that you tested. The corollary of this is that
anything that changes between deployments needs to be captured as configuration,
and not baked in when the application is compiled or packaged.

Packaging Configuration Information

One serious problem with the J2EE specification is that the configuration has to
be packaged in the war or ear along with the rest of the application. Unless you
use another configuration mechanism instead of that provided by the specification,
this means that you have to create a different war or ear file for every environment
that you deploy to if there are any configuration differences. If you are stuck
with this, you need to find another way to configure your application at deployment
time or run time. We provide some suggestions below.

It is usually important to be able to configure your application at deployment
time so that you can tell it where the services it depends upon (such as database,
messaging servers, or external systems) belong. For example, if the runtime
configuration of your application is stored in a database, you may want to pass
the database’s connection parameters to the application at deployment time so
it can retrieve it when it starts up.

If you control your production environment, you can usually arrange for your
deployment scripts to fetch this configuration and supply it to your application.
In the case of packaged software, the default configuration is normally part of
the package, but there needs to be some way to override it at deployment time
for testing purposes.

Finally, you may need to configure your application at startup time or at run
time. Startup-time configuration can be supplied either in the form of environment
variables or as arguments to the command used to start the system. Alternatively,
you can use the same mechanisms that you use for runtime configuration: registry
settings, a database, configuration files, or an external configuration service
(accessed via SOAP or a REST-style interface, for example).

Whatever mechanism you choose, we strongly recommend that, as far as
practically possible, you should try and supply all configuration information for
all the applications and environments in your organization through the same
mechanism. This isn’t always possible, but when it is, it means that there is a
single source of configuration to change, manage, version-control, and override
(if necessary). In organizations where this practice isn’t followed, we have seen
people regularly spend hours tracking down the source of some particular setting
in one of their environments.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING SOFTWARE CONFIGURATION

Managing Application Configuration

There are three questions to consider when managing your application’s
configuration:

How do you represent your configuration information?
2. How do your deployment scripts access it?

How does it vary between environments, applications, and versions of
applications?

Configuration information is often modeled as a set of name-value strings.!
Sometimes it is useful to use types in your configuration system and to organize
it hierarchically. Windows properties files that contain name-value strings orga-
nized by headings, YAML files popular in the Ruby world, and Java properties
files are relatively simple formats that provide enough flexibility in most cases.
Probably the useful limit of complexity is to store configuration as an XML file.

There are a few obvious choices for where to store your application configura-
tion: a database, a version control system, or a directory or registry. Version
control is probably the easiest—you can just check in your configuration file,
and you get the history of your configuration over time for free. It is worth
keeping a list of the available configuration options for your application in the
same repository as its source code.

Note that the place where you store configuration is not the same as the
mechanism by which your application accesses it. Your application can access its
configuration via a file on its local filesystem, or through more exotic mechanisms
such as a web or directory service, or via a database; more on this in the next
section.

It is often important to keep the actual configuration information specific to
each of your application’s testing and production environments in a repository
separate from your source code. This information generally changes at a different
rate to other version-controlled artifacts. However, if you take this route, you
will have to be careful to track which versions of configuration information match
with which versions of the application. This separation is particularly relevant
for security-related configuration elements, such as passwords and digital
certificates, to which access should be restricted.

1. Technically, configuration information can be thought of as a set of tuples.

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER 2 CONFIGURATION MANAGEMENT

:@E Don’t Check Passwords into Source Control or Hard-Code Them
in Your Application

Operations staff will remove your eyes with a spoon if they catch you doing this.
Don’t give them the pleasure. If you must store your password somewhere other
than the inside of your head, you could try putting them in your home directory in
an encrypted form.

One egregious variation of this technique is to have the password for one layer of
your application stored somewhere in the code or filesystem in the layer that
accesses it. Passwords should always be entered by the user performing the
deployment. There are several acceptable ways to handle authentication for a
multilayer system. You could use certificates, a directory service, or a single
sign-on system.

Databases, directories, and registries are convenient places to store configuration
since they can be accessed remotely. However, make sure to keep the history of
changes to configuration for the purposes of audit and rollback. Either have a
system that automatically takes care of this, or treat version control as your system
of reference for configuration and have a script that loads the appropriate version
into your database or directory on demand.

Accessing Configuration

The most efficient way to manage configuration is to have a central service through
which every application can get the configuration it needs. This is as true for
packaged software as it is for internal corporate applications and software as a
service hosted on the Internet. The main difference between these scenarios is in
when you inject the configuration information—at packaging time for packaged
software, or at deploy time or run time otherwise.

Probably the easiest way for an application to access its configuration is via
the filesystem. This has the advantage of being cross-platform and supported in
every language —although it may not be suitable for sand-boxed runtimes such
as applets. There is also the problem of keeping configuration on filesystems in
sync if, for example, you need to run your application on a cluster.

Another alternative is to fetch configuration from a centralized repository such
as a RDBMS, LDAP, or a web service. An open source tool called ESCAPE
[apvrEr] makes it easy to manage and access configuration information via a
RESTful interface. Applications can perform an HTTP GET which includes the
application and environment name in the URI to fetch their configuration. This
mechanism makes most sense when configuring your application at deployment
time or run time. You pass the environment name to your deployment scripts
(via a property, command-line switch, or environment variable), and then your

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING SOFTWARE CONFIGURATION

scripts fetch the appropriate configuration from the configuration service and
make it available to the application, perhaps as a file on the filesystem.

Whatever the nature of the configuration information store, we recommend
that you insulate the detail of the technology from your application with a simple
facade class providing a

getThisProperty()
getThatProperty()

style of interface, so you can fake it in tests and change the storage mechanism
when you need to.

Modeling Configuration

Each configuration setting can be modeled as a tuple, so the configuration for
an application consists of a set of tuples. However, the set of the tuples available
and their values typically depend on three things:

e The application
e The version of the application

® The environment it runs in (for example, development, UAT, performance,
staging, or production)

So, for example, version 1.0 of your reporting application will have a set of
tuples different from version 2.2, or from version 1.0 of your portfolio manage-
ment application. The values of those tuples will, in turn, vary depending on the
environment they are deployed into. For example, the database server used by
the application in UAT will typically be different from that used in production
and may even vary between developer machines. The same applies to packaged
software or external integration points—an update service used by your applica-
tion will be different when running integration tests from when it is accessed
from a customer’s desktop.

Whatever you use to represent and serve configuration information—XML
files in source control or a RESTful web service—should be able to handle these
various dimensions. Here are some use cases to consider when modeling
configuration information.

¢ Adding a new environment (a new developer workstation perhaps, or a
capacity testing environment). In this case you’d need to be able to specify
a new set of values for applications deployed into this new environment.

e Creating a new version of the application. Often, this will introduce new
configuration settings and get rid of some old ones. You should ensure that
when you deploy this new version to production, it can get its new settings,
but if you have to roll back to an older version it will use the old ones.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

® Promoting a new version of your application from one environment to
another. You should ensure that any new settings are available in the
new environment, but that the appropriate values are set for this new
environment.

® Relocating a database server. You should be able to update, very simply,
every configuration setting that references this database to make it point
to the new one.

* Managing environments using virtualization. You should be able to use
your virtualization management tool to create a new instance of a particular
environment that has all the VMs configured correctly. You may want to
include this information as part of the configuration settings for the
particular version of the application deployed into that environment.

One approach to managing configuration across environments is to make the
expected production configuration the default and to override this default in
other environments as appropriate (ensure you have firewalls in place so that
production systems don’t get hit by mistake). This means that any environment-
specific tailoring is reduced to only those configuration properties that must be
changed for the software to work in that particular environment. This simplifies
the picture of what needs to be configured where. However, it also depends on
whether or not your application’s production configuration is privileged —some
organizations expect the production configuration to be kept in a separate
repository from that of other environments.

Testing System Configuration

In the same way that your application and build scripts need testing, so do your
configuration settings. There are two parts to testing configuration.

The first stage is to ensure that references to external services in your configu-
ration settings are good. You should, as part of your deployment script, ensure
that the messaging bus you are configured to use is actually up and running at
the address configured, and that the mock order fulfillment service your applica-
tion expects to use in the functional testing environment is working. At the very
least, you could ping all external services. Your deployment or installation script
should fail if anything your application depends on is not available —this acts as
a great smoke test for your configuration settings.

The second stage is to actually run some smoke tests once your application is
installed to make sure it is operating as expected. This should involve just a few
tests exercising functionality that depends on the configuration settings being
correct. Ideally, these tests should stop the application and fail the installation
or deployment process if the results are not as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING SOFTWARE CONFIGURATION

Managing Configuration across Applications

The problem of managing configuration is particularly complex in medium and
large organizations where many applications have to be managed together.
Usually in such organizations, legacy applications exist with esoteric configuration
options that are poorly understood. One of the most important tasks is to keep
a catalogue of all the configuration options that each of your applications has,
where they are stored, what their lifecycle is, and how they can be changed.

If possible, such information should be generated automatically from each
application’s code as part of the build process. But where this is not possible, it
should be collected in a wiki or other document management system.

When managing applications that are not entirely user-installed, it is important
to know what the current configuration of each running application is. The goal
is to be able to see each application’s configuration through your operation team’s
production monitoring system, which should also display which version of each
application is deployed in each environment. Tools such as Nagios, OpenNMS,
and HP OpenView all provide services to record such information. Alternatively,
if you manage your building and deployment process in an automated fashion,
your configuration information should always be applied through this process,
and hence be stored in version control or a tool like Escape.

It is especially important to have access to this information on a real-time basis
when your applications depend on each other and deployments must be orches-
trated. Countless hours have been lost by one application having a few configu-
ration options set wrongly and thereby bringing down an entire set of services.
Such problems are extremely hard to diagnose.

Configuration management of every application should be planned as part of
project inception. Consider how other applications in your ecosystem manage
their configuration and use the same method, if possible. Too often, decisions
on how to manage configuration are done on an ad-hoc basis, and as a result
every application packages its configuration in a different place and uses a different
mechanism for accessing it. This makes it unnecessarily hard to determine the
configuration of your environments.

Principles of Managing Application Configuration

Treat your application’s configuration the same way you treat your code. Manage
it properly, and test it. Here is a list of principles to consider when creating an
application configuration system:

* Consider where in your application’s lifecycle it makes sense to inject a
particular piece of configuration—at the point of assembly where you are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

packaging your release candidate, at deployment or installation time, at
startup time, or at run time. Speak to the operations and support team to
work out what their needs are.

e Keep the available configuration options for your application in the same
repository as its source code, but keep the values somewhere else.
Configuration settings have a lifecycle completely different from that of
code, while passwords and other sensitive information should not be checked
in to version control at all.

* Configuration should always be performed by automated processes using
values taken from your configuration repository, so that you can always
identify the configuration of every application in every environment.

* Your configuration system should be able to provide different values to
your application (including its packaging, installation, and deployment
scripts) based on the application, its version, and the environment it is being
deployed into. It should be easy for anyone to see what configuration options
are available for a particular version of an application across all
environments it will be deployed into.

¢ Use clear naming conventions for your configuration options. Avoid obscure
or cryptic names. Try to imagine someone reading the configuration file
without a manual—it should be possible to understand what the
configuration properties are.

* Ensure that your configuration information is modular and encapsulated
so that changes in one place don’t have knock-on effects for other,
apparently unrelated, pieces of configuration.

e Use the DRY (don’t repeat yourself) principle. Define the elements of your
configuration so that each concept has only one representation in the set
of configuration information.

¢ Be minimalist: Keep the configuration information as simple and as focused
as possible. Avoid creating configuration options except where there is a
requirement or where it makes sense to do so.

* Avoid overengineering the configuration system. Keep it as simple as
you can.

* Ensure that you have tests for your configuration that are run at deployment
or installation time. Check that the services your application depends upon
are available, and use smoke tests to assert that any functionality depending
on your configuration settings works as it should.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING YOUR ENVIRONMENTS

Managing Your Environments

No application is an island. Every application depends on hardware, software,
infrastructure, and external systems in order to work. We refer to this, throughout
this book, as your application’s environment. We deal, at some length, with the
topic of environment management in Chapter 11, “Managing Infrastructure and
Environments,” but the topic deserves some discussion in the context of
configuration management, so we will introduce it here.

The principle to bear in mind when managing the environment that your ap-
plication runs in is that the configuration of that environment is as important as
the configuration of the application. If, for example, your application depends
on a messaging bus, the bus needs to be configured correctly or the application
will not work. Your operating system’s configuration is also important. For
example, you may have an application that relies on a large number of file
descriptors being available. If the operating system defaults to a lower limit for
the number of file descriptors, your application won’t work.

The worst approach to managing configuration information is to deal with it
on an ad-hoc basis. This means installing the requisite pieces of software by hand
and editing the relevant configuration files. This is the most common strategy
that we encounter. Although seemingly simple, this strategy has several common
problems that arise in all but the most trivial of systems. The most obvious pitfall
is that if, for any reason, the new configuration doesn’t work, it’s difficult to return
to a known good state with any certainty since there is no record of the previous
configuration. The problem can be summed up as follows:

e The collection of configuration information is very large.

¢ One small change can break the whole application or severely degrade its
performance.

¢ Once it is broken, finding the problem and fixing it takes an indeterminate
amount of time and requires senior personnel.

e It is extremely difficult to precisely reproduce manually configured
environments for testing purposes.

e [tis difficult to maintain such environments without the configuration, and
hence behavior, of different nodes drifting apart.

In The Visible Ops Handbook the authors refer to manually configured envi-
ronments as “works of art.” In order to reduce the cost and risk of managing
environments, it is essential to turn our environments into mass-produced objects
whose creation is repeatable and takes a predictable amount of time. We have

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

been involved in too many projects where poor configuration management has
meant significant expense— paying for teams of people to work on this aspect of
the system alone. It also acts as a continual drag on the productivity of the devel-
opment process, making deployments to test environments, development environ-
ments, and into production much more complex and costly than they need to be.

The key to managing environments is to make their creation a fully automated
process. It should always be cheaper to create a new environment than to repair
an old one. Being able to reproduce your environments is essential for several
reasons.

e It removes the problem of having random pieces of infrastructure around
whose configuration is only understood by somebody who has left the
organization and cannot be reached. When such things stop working,
you can usually assume a significant downtime. This is a large and
unnecessary risk.

* Fixing one of your environments can take many hours. It is always better
to be able to rebuild it in a predictable amount of time so as to get back to
a known good state.

e It is essential to be able to create copies of production environments for
testing purposes. In terms of software configuration, testing environments
should be exact replicas of the production ones, so configuration problems
can be found early.

The kinds of environment configuration information you should be concerned
about are:

e The various operating systems in your environment, including their versions,
patch levels, and configuration settings

e The additional software packages that need to be installed on each environ-
ment to support your application, including their versions and configuration

¢ The networking topology required for your application to work

* Any external services that your application depends upon, including their
versions and configuration

* Any data or other state that is present in them (for example, production
databases)

There are two principles that, as we have found, form the basis of an
effective configuration management strategy: Keep binary files independent

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING YOUR ENVIRONMENTS

from configuration information, and keep all configuration information in one
place. Applying these fundamentals to every part of your system will pave the
way to the point where creating new environments, upgrading parts of your
system, and rolling out new configurations without making your system
unavailable becomes a simple, automated process.

All of these things need to be considered. Although it’s obviously unreasonable
to check your operating system into version control, it’s certainly not
unreasonable to version-control its configuration. A combination of remote in-
stallation systems and environment management tools such as Puppet and
CfEngine make centralized management and configuration of operating systems
straightforward. This topic is covered in detail in Chapter 11, “Managing
Infrastructure and Environments.”

For most applications, it is even more important to apply this principle to the
third-party software stack that they depend on. Good software has installers
that can be run from the command line without any user intervention. It has
configuration that can be managed in version control and does not require
manual intervention. If your third-party software dependencies don’t meet these
criteria, you should find alternatives—these criteria for third-party software se-
lection are of such importance that they should be at the core of every software
evaluation exercise. When evaluating third-party products and services, start by
asking the following questions:

e Can we deploy it?
¢ (Can we version its configuration effectively?

e How will it fit into our automated deployment strategy?

If the answer to any of these questions is in any way negative, there are various
possible responses—we discuss them at greater length in Chapter 11.

An environment that is in a properly deployed state is known as a baseline in
configuration management terminology. Your automated environment provision-
ing system should be able to establish, or reestablish, any given baseline that has
existed in the recent history of your project. Any time you change any aspect of
the host environment of your applications, you should store the change, creating
a new version of the baseline and associating that version of the application with
the new version of the baseline. This ensures that the next time that you
deploy the application or create a new environment, it will include the change.

Essentially, you should treat your environment the same way you treat your
code—changing it incrementally and checking the changes into version control.
Every change should be tested to ensure that it doesn’t break any of the
applications that run in the new version of the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER 2 CONFIGURATION MANAGEMENT

Applying Configuration Management to Infrastructure

We worked on two projects recently that highlighted the differences between an
effective use of configuration management and a less than effective approach.

In the first project, we decided to replace the messaging infrastructure on which
the project was based. We had very effective configuration management, and
good modular design in place. Before we replaced the infrastructure, we attempted
an upgrade to the latest version that the vendor assured us would address most
of our concerns.

Our client, and the vendor, clearly thought that this upgrade was a big deal. They
had been planning it for several months and worrying about the disruptive impact
to the development team. In the event, two members of our team worked to prepare
a new baseline in the manner described in this section. We tested it locally, includ-
ing running our full acceptance test pack on the trial version. Our tests highlighted
a number of problems.

We fixed the most glaring problems, but did not get all of our acceptance tests
passing. However, we had reached a point at which we were confident that the
fixes should be straightforward, and our worst case was that we would have to
revert to our previous baseline image, all safely stored in version control. With the
agreement of the rest of the development team, we committed our changes so
that the whole team could work together on fixing the bugs that the version change
of the messaging infrastructure introduced. This entire process took a single day,
including running all of the automated tests to verify our work. We watched care-
fully for more bugs in manual testing during the subsequent iteration, but there
were none. Our automated test coverage was proven to be sufficiently good.

In the second project, we were asked to do some repair work on an ailing legacy
system which had been in production for several years and was slow and error-
prone. It had no automated testing when we arrived and only the most basic
configuration management at the source-code level. One of our tasks was to update
the version of the application server, since the version on which the system was
running was no longer supported by its vendor. For an application in this state,
without a supporting continuous integration system and without any automated
testing, the process went reasonably smoothly. However, it took a small team of
six people two months to get the changes done, tested, and deployed into
production.

As ever with software projects, it is impossible to make direct comparisons. The
technologies in question were quite different, as were the codebases. However,
both involved upgrading a piece of core middleware infrastructure. One took a
team of six two months, and the other took two people half a day.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING YOUR ENVIRONMENTS

Tools to Manage Environments

Puppet and CfEngine are two examples of tools that make it possible to manage
operating system configuration in an automated fashion. Using these tools, you
can declaratively define things such as which users should have access to your
boxes and what software should be installed. These definitions can be stored in
your version control system. Agents running on your systems regularly pull the
latest configuration and update the operating system and the software installed
on it. With systems like these, there is no reason to log into a box to make fixes:
All changes can be initiated through the version control system, so you have a
complete record of every change—when it was made and by whom.

Virtualization can also improve the efficiency of the environment management
process. Instead of creating a new environment from scratch using an automated
process, you can simply take a copy of each box in your environment and store
it as a baseline. Then it is trivial to create new environments—it can be done by
clicking a button. Virtualization has other benefits, such as the ability to consol-
idate hardware and to standardize your hardware platform even if your
applications require heterogeneous environments.

We discuss these tools in more detail in Chapter 11, “Managing Infrastructure
and Environments.”

Managing the Change Process

Finally, it is essential to be able to manage the process of making changes to your
environments. A production environment should be completely locked down. It
should not be possible for anybody to make a change to it without going through
your organization’s change management process. The reason for this is simple:
Even a tiny change could break it. A change must be tested before it goes into
production, and for that it should be scripted and checked into version control.
Then, once the change has been approved, it can be rolled out to the production
environments in an automated fashion.

In this sense, a change to your environment is just like a change to your soft-
ware. It has to go through your build, deploy, test, and release process in exactly
the same way as a change to the application’s code.

In this respect, testing environments should be treated the same as production
environments. The approval process will usually be simpler—it should be in the
hands of the people managing the testing environment—but in all other respects
their configuration management is the same. This is essential because it means
that you are testing the process that you use to manage your production environ-
ments during the more frequent deployments into test environments. It bears

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 CONFIGURATION MANAGEMENT

repeating that your test environments should closely resemble your production
environments in terms of software configuration—that way there should be no
surprises when you deploy to production. This does not imply that test environ-
ments must be clones of expensive production environments; rather, that they
should be managed, deployed to, and configured by the same mechanisms.

Summary

Configuration management is the foundation of everything else in this book. It
is impossible to do continuous integration, release management, and deployment
pipelining without it. It also makes a huge positive impact on collaboration
within delivery teams. As we hope we have made clear, it is not just a question
of choosing and implementing a tool, although that is important; it is also,
crucially, a question of putting good practices into place.

If your configuration management process is sound, you should be able to
answer “yes” to the following questions:

¢ Could you completely re-create your production system, excluding produc-
tion data, from scratch from the version-controlled assets that you store?

* Could you regress to an earlier, known good state of your application?

® Can you be sure that each deployed environment in production, in staging,
and in test is set up in precisely the same way?

If not, then your organization is at risk. In particular, we recommend having
a strategy for storing baselines and controlling changes to:

* Your applications’ source code, build scripts, tests, documentation,
requirements, database scripts, libraries, and configuration files

* Your development, testing, and operations toolchains
e All environments used in development, testing, and production

¢ The entire application stack associated with your applications—both binaries
and configuration

® The configuration associated with every application in every environment
it runs in, across the entire application lifecycle (building, deployment,
testing, operation)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Continuous Integration

Introduction

An extremely strange, but common, feature of many software projects is that for
long periods of time during the development process the application is not in a
working state. In fact, most software developed by large teams spends a significant
proportion of its development time in an unusable state. The reason for this is
easy to understand: Nobody is interested in trying to run the whole application
until it is finished. Developers check in changes and might even run automated
unit tests, but nobody is trying to actually start the application and use it in a
production-like environment.

This is doubly true in projects that use long-lived branches or defer acceptance
testing until the end. Many such projects schedule lengthy integration phases at
the end of development to allow the development team time to get the branches
merged and the application working so it can be acceptance-tested. Even worse,
some projects find that when they get to this phase, their software is not fit for
purpose. These integration periods can take an extremely long time, and worst
of all, nobody has any way to predict how long.

On the other hand, we have seen projects that spend at most a few minutes in
a state where their application is not working with the latest changes. The differ-
ence is the use of continuous integration. Continuous integration requires that
every time somebody commits any change, the entire application is built and a
comprehensive set of automated tests is run against it. Crucially, if the build or
test process fails, the development team stops whatever they are doing and fixes
the problem immediately. The goal of continuous integration is that the software
is in a working state all the time.

Continuous integration was first written about in Kent Beck’s book Extreme
Programming Explained (first published in 1999). As with other Extreme Pro-
gramming practices, the idea behind continuous integration was that, if regular
integration of your codebase is good, why not do it all the time? In the context
of integration, “all the time” means every single time somebody commits any

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

change to the version control system. As one of our colleagues, Mike Roberts,
says, “Continuously is more often than you think” [aEu8Nu].

Continuous integration represents a paradigm shift. Without continuous inte-
gration, your software is broken until somebody proves it works, usually during
a testing or integration stage. With continuous integration, your software is
proven to work (assuming a sufficiently comprehensive set of automated tests)
with every new change—and you know the moment it breaks and can fix it im-
mediately. The teams that use continuous integration effectively are able to deliver
software much faster, and with fewer bugs, than teams that do not. Bugs are
caught much earlier in the delivery process when they are cheaper to fix, providing
significant cost and time savings. Hence we consider it an essential practice for
professional teams, perhaps as important as using version control.

The rest of this chapter describes how to implement continuous integration.
We’ll explain how to solve common problems that occur as your project becomes
more complex, listing effective practices that support continuous integration and
its effects on the design and development process. We’ll also discuss more
advanced topics, including how to do CI with distributed teams.

Continuous integration is dealt with at length in a companion volume to this
one: Paul Duvall’s book Continuous Integration (Addison-Wesley, 2006). If you
want more detail than we provide in this chapter, that is the place to go.

This chapter is mainly aimed at developers. However, it also contains some
information that we think will be useful for project managers who want to know
more about the practice of continuous integration.

Implementing Continuous Integration

The practice of continuous integration relies on certain prerequisites being in
place. We’ll cover these, then look at the tools available. Perhaps most
importantly, continuous integration depends on teams following a few essential
practices, so we’ll spend some time discussing these.

What You Need Before You Start

There are three things that you need before you can start with continuous
integration.

1. Version Control

Everything in your project must be checked in to a single version control reposi-
tory: code, tests, database scripts, build and deployment scripts, and anything
else needed to create, install, run, and test your application. This may sound
obvious, but surprisingly, there are still projects that don’t use any form of version
control. Some people don’t consider their project big enough to warrant the use
of version control. We don’t believe that there is a project small enough to do

www.it-ebooks.info

http://www.it-ebooks.info/

IMPLEMENTING CONTINUOUS INTEGRATION

without it. When we write code on our own, for our own needs on our own
computers, we still use version control. There exist several simple, powerful,
lightweight, and free version control systems.

We describe the choice and use of revision control systems in more detail in
the “Using Version Control” section on page 32 and in Chapter 14, “Advanced
Version Control.”

2. An Automated Build

You must be able to start your build from the command line. You can start off
with a command-line program that tells your IDE to build your software and
then runs your tests, or it can be a complex collection of multistage build scripts
that call one another. Whatever the mechanism, it must be possible for either a
person or a computer to run your build, test, and deployment process in an
automated fashion via the command line.

IDEs and continuous integration tools have become pretty sophisticated these
days, and you can usually build your software and run tests without going any-
where near the command line. However, we think that you should still have build
scripts that can be run via the command line without your IDE. This might seem
controversial, but there are several reasons for this:

® You need to be able to run your build process in an automated way from
your continuous integration environment so that it can be audited when
things go wrong.

® Your build scripts should be treated like your codebase. They should be
tested and constantly refactored so that they are tidy and easy to understand.
It’s impossible to do this with an IDE-generated build process. This gets
more and more important the more complex the project becomes.

¢ It makes understanding, maintaining, and debugging the build easier, and
allows for better collaboration with operations people.

3. Agreement of the Team

Continuous integration is a practice, not a tool. It requires a degree of commitment
and discipline from your development team. You need everyone to check in small
incremental changes frequently to mainline and agree that the highest priority
task on the project is to fix any change that breaks the application. If people
don’t adopt the discipline necessary for it to work, your attempts at continuous
integration will not lead to the improvement in quality that you hope for.

A Basic Continuous Integration System

You don’t need a continuous integration software in order to do continuous
integration—as we say, it is a practice, not a tool. James Shore describes the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

simplest way to get started with continuous integration in an article called
“Continuous Integration on a Dollar a Day” [bA]pjp] using only an unused de-
velopment machine, a rubber chicken, and a bell. It’s worth reading this article
because it demonstrates wonderfully the essentials of CI without any tool except
version control.

In reality, though, CI tools these days are extremely simple to install and get
running. There are several open source options, such as Hudson and the venerable
CruiseControl family (CruiseControl, CruiseControl.NET, and CruiseControl.rb).
Hudson and CruiseControl.rb in particular are extremely straightforward to get
up and running. CruiseControl.rb is very lightweight and can be easily extended
by anyone with some knowledge of Ruby. Hudson has a large pool of plugins
allowing it to integrate with pretty much every tool in the build and deployment
ecosystem.

At the time of writing, two commercial CI servers had free editions designed
for small teams: Go from ThoughtWorks Studios and TeamCity from JetBrains.
Other popular commercial CI servers include Atlassian’s Bamboo and Zutubi’s
Pulse. High-end release management and build acceleration systems which can also
be used for plain and simple CI include UrbanCode’s AntHillPro, ElectricCloud’s
ElectricCommander, and IBM’s BuildForge. There are plenty more systems out
there; for a complete list, go to the CI feature matrix [bHOgH4].

Once you have your CI tool of choice installed, given the preconditions de-
scribed above, it should be possible to get started in just a few minutes by telling
your tool where to find your source control repository, what script to run in order
to compile, if necessary, and run the automated commit tests for your application,
and how to tell you if the last set of changes broke the software.

The first time you run your build on a CI tool, you are likely to discover that
the box you’re running your CI tool on is missing a stack of software and settings.
This is a unique learning opportunity —make a note of everything that you did
to get things working, and put it on your project’s wiki. You should take the
time to check any software or settings that your system depends on into version
control and automate the process of provisioning a new box.

The next step is for everybody to start using the CI server. Here is a simple
process to follow.

Once you’re ready to check in your latest change:

1. Check to see if the build is already running. If so, wait for it to finish. If it
fails, you’ll need to work with the rest of the team to make it green before
you check in.

2. Once it has finished and the tests have passed, update the code in your devel-
opment environment from this version in the version control repository to
get any updates.

3. Run the build script and tests on your development machine to make sure
that everything still works correctly on your computer, or alternatively use
your CI tool’s personal build feature.

www.it-ebooks.info

http://www.it-ebooks.info/

PREREQUISITES FOR CONTINUOUS INTEGRATION v

4. 1If your local build passes, check your code into version control.
Wait for your CI tool to run the build with your changes.

6. 1If it fails, stop what you’re doing and fix the problem immediately on your
development machine—go to step 3.

7. 1If the build passes, rejoice and move on to your next task.

If everybody on the team follows these simple steps every time they commit
any change, you will know that your software works on any box with the same
configuration as the CI box at all times.

Prerequisites for Continuous Integration

Continuous integration won’t fix your build process on its own. In fact, it can
be very painful if you start doing it midproject. For CI to be effective, the
following practices will need to be in place before you start.

Check In Regularly

The most important practice for continuous integration to work properly is fre-
quent check-ins to trunk or mainline. You should be checking in your code at
least a couple of times a day.

Checking in regularly brings lots of other benefits. It makes your changes
smaller and thus less likely to break the build. It means you have a recent known-
good version of the software to revert to when you make a mistake or go down
the wrong path. It helps you to be more disciplined about your refactoring and
stick to small changes that preserve behavior. It helps to ensure that changes al-
tering a lot of files are less likely to conflict with other people’s work. It allows
developers to be more explorative, trying out ideas and discarding them by re-
verting back to the last committed version. It forces you to take regular breaks
and stretch your muscles to help avoid carpal tunnel syndrome or RSI. It also
means that if something catastrophic happens (such as deleting something by
mistake) you haven’t lost too much work.

We mention checking into trunk on purpose. Many projects use branches in
version control to manage large teams. But it is impossible to truly do continuous
integration while using branches because, by definition, if you are working on a
branch, your code is not being integrated with that of other developers. Teams
who use long-lived branches face exactly the same integration problems as we
described at the beginning of this chapter. We can’t recommend using branches
except in very limited circumstances. There is a much more detailed discussion
of these issues in Chapter 14, “Advanced Version Control.”

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

Create a Comprebensive Automated Test Suite

If you don’t have a comprehensive suite of automated tests, a passing build only
means that the application could be compiled and assembled. While for some
teams this is a big step, it’s essential to have some level of automated testing to
provide confidence that your application is actually working. There are many
kinds of automated tests, and we discuss them in more detail in the next chapter.
However, there are three kinds of tests we are interested in running from our
continuous integration build: unit tests, component tests, and acceptance tests.

Unit tests are written to test the behavior of small pieces of your application
in isolation (say, a method, or a function, or the interactions between a small
group of them). They can usually be run without starting the whole application.
They do not hit the database (if your application has one), the filesystem, or the
network. They don’t require your application to be running in a production-like
environment. Unit tests should run very fast—your whole suite, even for a large
application, should be able to run in under ten minutes.

Component tests test the behavior of several components of your application.
Like unit tests, they don’t always require starting the whole application. However,
they may hit the database, the filesystem, or other systems (which may be stubbed
out). Component tests typically take longer to run.

Acceptance tests test that the application meets the acceptance criteria decided
by the business, including both the functionality provided by the application and
its characteristics such as capacity, availability, security, and so on. Acceptance
tests are best written in such a way that they run against the whole application
in a production-like environment. Acceptance tests can take a long time to
run—it’s not unheard of for an acceptance test suite to take more than a day
to run sequentially.

These three sets of tests, combined, should provide an extremely high level of
confidence that any introduced change has not broken existing functionality.

Keep the Build and Test Process Short

If it takes too long to build the code and run the unit tests, you will run into the
following problems:

* People will stop doing a full build and running the tests before they check
in. You will start to get more failing builds.

® The continuous integration process will take so long that multiple commits
will have taken place by the time you can run the build again, so you won’t
know which check-in broke the build.

® People will check in less often because they have to sit around for ages
waiting for the software to build and the tests to run.

www.it-ebooks.info

http://www.it-ebooks.info/

PREREQUISITES FOR CONTINUOUS INTEGRATION

Ideally, the compile and test process that you run prior to check-in and on
your CI server should take no more than a few minutes. We think that ten minutes
is about the limit, five minutes is better, and about ninety seconds is ideal. Ten
minutes will seem like a long time to people used to working on small projects.
It will seem like a very short time to old-timers who have experienced hour-long
compiles. It’s around the amount of time you can devote to making a cup of tea,
a quick chat, checking your email, or stretching your muscles.

This requirement may seem to contradict the previous one—having a compre-
hensive set of automated tests. But there are a number of techniques that you
can use to reduce the build time. The first thing to consider is making your tests
run faster. XUnit-type tools, such as JUnit and NUnit, provide a breakdown of
how long each test took in their output. Find out which tests are performing
slowly, and see if there’s a way to optimize them or get the same coverage and
confidence in your code with less processing. This is a practice that you should
perform regularly.

However, at some point you will need to split your test process into multiple
stages, as described in detail in Chapter 5, “Anatomy of the Deployment Pipeline.”
How do you split them up? Your first action should be creating two stages. One
should compile the software, run your suite of unit tests that test individual
classes making up your application, and create a deployable binary. This stage
is called the commit stage. We go into a great deal of detail about this stage of
your build in Chapter 7.

The second stage should take the binaries from the first stage and run the ac-
ceptance tests, as well as integration tests, and performance tests if you have
them. Modern CI servers make it easy to create staged builds in this way, run
multiple tasks concurrently, and aggregate the results up so you can see the state
of your build at a glance.

The commit stage should be run before checking in, and should run on the CI
server for every check-in. The stage that runs the acceptance tests should be run
once the check-in test suite passes, but can take a longer time. If you find that
the second build takes longer than half an hour or so, you should consider running
this test suite in parallel on a larger multiprocessor box, or perhaps establish a
build grid. Modern CI systems make this simple. It is often useful to incorporate
a simple smoke test suite into your commit stage. This smoke test should
perform a few simple acceptance and integration tests to make sure that the most
commonly used functionality isn’t broken—and report back quickly if it is.

Itis often desirable to group your acceptance tests into functional areas. This allows
you to run collections of tests that focus on particular aspects of the behavior
of your system after making a change in that area. Many unit testing frameworks
allow you to categorize your tests in this way.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

You may get to a stage where your project needs to be split up into several
modules, each of which is functionally independent. This requires some careful
thought in terms of how you organize these subprojects both in revision
control and on your CI server. We’ll deal with this in more detail in Chapter 13,
“Managing Components and Dependencies.”

Managing Your Development Workspace

It is important for developers’ productivity and sanity that their development
environment is carefully managed. Developers should always work from a known-
good starting point when they begin a fresh piece of work. They should be able
to run the build, execute the automated tests, and deploy the application in an
environment under their control. In general, this should be on their own local
machine. Only in exceptional circumstances should you use shared environments
for development. Running the application in a local development environment
should use the same automated processes that are used in the continuous
integration and testing environments and ultimately in production.

The first prerequisite to achieve this is careful configuration management, not
just of source code, but also of test data, database scripts, build scripts, and de-
ployment scripts. All of these must be stored in version control, and the most
recent known-good version of these should be the starting point when coding
begins. In this context, “known-good” means that the revision you are working
from has passed all automated tests on your continuous integration server.

The second step is configuration management of third-party dependencies,
libraries, and components. It is vital that you have the correct versions of all li-
braries or components, which means the same versions that are know to work
with the version of the source code you are working from. There are open source
tools to help manage third-party dependencies, Maven and Ivy being the most
common. However, when working with these tools you need to be careful to
make sure they are configured correctly so you don’t always get the latest available
version of some dependency in your local working copy.

For most projects, the third-party libraries they depend on don’t change very
frequently, so the simplest solution of all is to commit these libraries into your
version control system along with your source code. There is more information
on all this in Chapter 13, “Managing Components and Dependencies.”

The final step is to make sure that the automated tests, including smoke tests,
can be run on developer machines. On a large system this might involve
configuring middleware systems and running in-memory or single-user versions
of databases. This can involve a certain degree of effort, but enabling developers
to run a smoke test against a working system on a developer machine prior to
each check-in can make a huge difference to the quality of your application. In
fact, one sign of a good application architecture is that it allows the application
to be run without much trouble on a development machine.

www.it-ebooks.info

http://www.it-ebooks.info/

UsiNG CONTINUOUS INTEGRATION SOFTWARE

Using Continuous Integration Software

There are many products on the market that can provide the infrastructure for
your automated build and test process. The most basic functionality of continuous
integration software is to poll your version control system to see if any commits
have occurred and, if so, check out the latest version of the software, run your
build script to compile the software, run the tests, and then notify you of the
results.

Basic Operation

At heart, continuous integration server software has two components. The first
is a long-running process which can execute a simple workflow at regular intervals.
The second provides a view of the results of the processes that have been run,
notifies you of the success or failure of your build and test runs, and provides
access to test reports, installers, and so on.

The usual CI workflow polls your revision control system at regular intervals.
If it detects any change, it will check out a copy of your project to a directory on
the server, or to a directory on a build agent. It will then execute the commands
you specify. Typically, these commands build your application and run the
relevant automated tests.

Most CI servers include a web server that shows you a list of builds that have
run (Figure 3.1) and allows you to look at the reports that define the success or
failure of each build. This sequence of build instructions should culminate in the
production and storage of the resulting artifacts such as binaries or installation
packages, so that testers and clients can easily download the latest good version
of the software. Most Cl servers are configurable using a web interface or through
simple scripts.

Bells and Whistles

You can use your CI package’s workflow capabilities to do lots of other things
beyond the basic functionality. For example, you can get the status of the most
recent build sent to an external device. We’ve seen people use red and green lava
lamps to show the status of the last build, or a CI system that sent the status to
a Nabaztag wireless electronic rabbit. One developer we know, with some skill
in electronics, created an extravagant tower of flashing lights and sirens which
would explode into action to indicate the progress of various builds on a complex
project. Another trick is to use text-to-speech to read out the name of the person
who broke the build. Some continuous integration servers can display the status
of the build, along with the avatars of the people who checked in—and this can
be displayed on a big screen.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

[@ Hudson - Microsaft Internet Explover Oe_el
Fie Edt View Favorites Tods Heb ¥

55 | @] http: /ohesuke. sfbay fhudson/

ENABLE AUTO REFRESH

= New Job All | JAX-WE JAME Tange java.net +
Configure Last Last Last
£ . b Success Failure Duration
x| e
£ Reload Config o =
' : u Commagn annotations 4 days (£16) (B:r:;mth- 39 seconds @
Build Queue -
= Q beh & months 10 months o4 acande @
budson (] A (z11) (z2)
iaeb-ni 2
= e Q dtd-parser f;;';’"‘hs N/A 1 minute (£3)]
Build Executor Status)
No. Stat - 28 daye 1 menth ey
‘.I.u Idle — T 0 i (£588) (2587) / minutes @
2 Idie 0 fi (waakly) & daye (253) 135'12")"5 S rinutes @
3 Buildina javanei-maven-repository-daemen =526 | (g
4 huws z
4 Building jawb-ri =3181 ® alassfish (#102) 1 day (=88) 1 hour @
5 | Building glassfish =105 (]] 4 minutes .
ke q hudson (£201) NfA L minute @
g istack-rammans (13;?)"5 &d)a“ 12ceennts ()
0 iapex 3 days (£35) (9_'?4‘3“ 1 minute @
W iava.ws-wml community 4 minutes 10 hours
0 liscussion later (216145) (216125) e @
im - 18 hours
Q 1 =152 N/A 0 seconds @ %
&) & Intemet

Figure 3.1 Screenshot of Hudson, by Kohsuke Kawaguchi

Projects use gadgets like these for the simple reason: They’re a great way to
allow everyone to see the status of the build at a glance. Visibility is one of the
most important benefits of using a CI server. Most CI server software ships with
a widget that you can install on your development machine to show you the
status of the build in the corner of your desktop. Tools like this are especially
useful for teams that are distributed, or at least not working in the same room
together.

The only drawback of such visibility is that if your development team is
working in close quarters with their customers, as should be the case in most
agile projects, build failures—a natural part of the process—may become regarded
as a sign of problems with the quality of the application. The fact is that the re-
verse is true: Every time a build fails, it indicates that a problem has been found
that may otherwise have made it into production. However, this can sometimes
be hard to explain. Having been through this several times, including having
some difficult conversations with clients when the build was broken for a longer
period than any of us liked, we can only recommend that you keep the
high-visibility build monitor and work hard at explaining its very real benefits.
Of course, the best answer of all is to work hard to keep the build green.

www.it-ebooks.info

http://www.it-ebooks.info/

UsiNG CONTINUOUS INTEGRATION SOFTWARE

You can also get your build process to perform analysis of your source code.
Teams commonly determine test coverage, code duplication, adherence to coding
standards, cyclomatic complexity, and other indications of health, and have the
results displayed on the summary page for each build. You can also run programs
to produce graphs of the object model or database schema. This is all about
visibility.

Today’s advanced CI servers can distribute work across a build grid, manage
the builds and dependencies of collections of collaborating components, report
directly into your project management tracking system, and do lots of other
useful things.

Predecessors to Continuous Integration

Back before continuous integration was introduced, many development teams
used a nightly build. It was a common practice at Microsoft for many years. Anyone
who broke the build was required to stay and monitor subsequent builds until the
next person caused a break.

Many projects still have nightly builds. The idea is that a batch process will compile
and integrate the codebase every night when everybody goes home. This is a
step in the right direction, but it isn’t very helpful when the team arrives the next
morning only to find that the code didn’t compile. The next day they make new
changes—but are unable to verify if the system integrates until the next night. So
the build stays red for days and days—until, you guessed it, integration time rolls
around again. In addition, this strategy is less than useful when you have a
geographically dispersed team working on a common codebase from different
time zones.

The next evolutionary step was to add automated testing. The first time we tried
this was many years ago. The testing in question was the most basic smoke test
that simply asserted that the application would run following compilation. This was
a big step in our build process at the time, and we were very pleased with our-
selves. These days, we’'d expect a little more in even the most basic of automated
builds. Unit testing has come a long way, and even a simple unit test suite will
provide a significantly improved level of confidence in the resulting build.

The next level of sophistication which was used in some projects (though we
confess we haven't seen it recently) was a process of “rolling builds” where, instead
of a scheduled batch process to build the software overnight, the build is run
continuously. Each time a build finishes, the latest version is collected from version
control and the process starts all over again. Dave used this to good effect in the
early 1990s; it was much better than overnight builds. The problem with this ap-
proach is that there is no direct link between a particular check-in and the build.
So, while there was a useful feedback loop for the developer, it provided insufficient
traceability back to whatever broke the build to really scale to larger teams.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

Essential Practices

So far, much of what we have described has been related to the automation of
building and deployment. However, that automation exists within an environment
of human processes. Continuous integration is a practice, not a tool, and it de-
pends upon discipline to make it effective. Keeping a continuous integration
system operating, particularly when you are dealing with large and complex
Cl systems, requires a significant degree of discipline from the development team
as a whole.

The objective of our CI system is to ensure that our software is working, in
essence, all of the time. In order to ensure that this is the case, here are the prac-
tices that we enforce on our teams. Later we will discuss practices that are optional
but desirable, but those listed here are mandatory for continuous integration
to work.

Don’t Check In on a Broken Build

The cardinal sin of continuous integration is checking in on a broken build. If
the build breaks, the developers responsible are waiting to fix it. They identify
the cause of the breakage as soon as possible and fix it. If we adopt this strategy,
we will always be in the best position to work out what caused the breakage and
fix it immediately. If one of our colleagues has made a check-in and broken the
build as a result, then to have the best chance of fixing it, they will need a clear
run at the problem. They don’t want us checking in further changes, triggering
new builds, and compounding the failure with more problems.

When this rule is broken, it inevitably takes much longer for the build to be
fixed. People get used to seeing the build broken, and very quickly you get into
a situation where the build stays broken all of the time. This continues until
somebody on the team decides that enough is enough, a Herculean effort ensues
to get the build green, and the process starts all over again. Just after this work
is finished it’s a great time to get everybody together to remind them that following
this principle will ensure a green build, and thus working software, all of the time.

Always Run All Commit Tests Locally before Committing, or Get
Your CI Server to Do It for You

As we have already established, a commit triggers the creation of a release
candidate. It is a kind of publication. Most people will check their work before
publishing it in any form, and a check-in is no different.

We want check-ins to be lightweight enough so we can be happy to check in
regularly every twenty minutes or so, but also formal enough so that we will
briefly pause to think about it before committing. Running the commit tests
locally is a sanity check before committing to the action. It is also a way to ensure
that what we believe to work actually does.

www.it-ebooks.info

http://www.it-ebooks.info/

ESSENTIAL PRACTICES

As developers come to a pause and are ready to commit, they should refresh
their local copy of the project by updating from the version control system. They
should then initiate a local build and run the commit tests. Only when this is
successful is the developer ready to commit the changes to the version control
system.

If you haven’t encountered this approach before, you may be wondering why
we run the commit tests locally before checking in, if the first thing that will
happen on check-in is that the code will be compiled and the commit tests rerun.
There are two reasons for this approach:

1. Other people may have checked in before your last update from version
control, and the combination of your new changes and theirs might cause
tests to fail. If you check out and run the commit tests locally, you will
identify this problem without breaking the build.

2. A common source of errors on check-in is to forget to add some new artifact
to the repository. If you follow this procedure, and your local build passes,
and then your CI management system fails the commit stage, you know that
it is either because someone checked in in the meantime, or because you
forgot to add the new class or configuration file that you have just been
working on into the version control system.

Following this practice ensures the build stays green.

Many modern CI servers offer a feature variously known as pretested commit,
personal build, or preflight build. Using this facility, instead of checking in
yourself, your CI server will take your local changes and run a build with them
on the CI grid. If the build passes, the CI server will check your changes in for
you. If the build fails, it will let you know what went wrong. This is a great way
to follow this practice without having to wait until the commit tests pass to start
working on the next feature or bugfix.

At the time of writing, the CI servers Pulse, TeamCity, and ElectricCommander
all offer this feature. This practice is best combined with a distributed version
control system which lets you store commits locally without pushing them to the
central server. In this way, it is very easy to shelve your changes by creating a
patch and revert back to the version of the code you sent to the CI server if your
personal build fails.

Wait for Commit Tests to Pass before Moving On

The CI system is a shared resource for the team. When a team is using CI effec-
tively, following our advice and checking in frequently, any breakage of the build
is a minor stumbling block for the team and project as a whole.

However, build breakages are a normal and expected part of the process. Our
aim is to find errors and eliminate them as quickly as possible, without expecting
perfection and zero errors.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

At the point of check-in, the developers who made it are responsible for
monitoring the build’s progress. Until their check-in has compiled and passed its
commiit tests, the developers should not start any new task. They shouldn’t go
out for lunch or start a meeting. They should be paying sufficient attention to
the build to know its outcome within a few seconds of the commit stage
completing.

If the commit succeeds, the developers are then, and only then, free to move
on to their next task. If it fails, they are at hand to start determining the nature
of the problem and fixing it—with another check-in or a revert to the previous
version in version control, that is, backing out their changes until they understand
how to make them work.

Never Go Home on a Broken Build

It is 5:30 P.M. on Friday, all your colleagues are walking out of the door, and
you have just committed your changes. The build has broken. You have three
options. You can resign yourself to the fact that you will be leaving late, and try
to fix it. You can revert your changes and return to your check-in attempt next
week. Or you can leave now and leave the build broken.

If you leave the build broken, when you return on Monday your memory of
the changes you made will no longer be fresh, and it will take you significantly
longer to understand the problem and fix it. If you aren’t the first person back
fixing the build on Monday morning, your name will be mud with the rest of the
team when they arrive to find the build broken and their ability to work compro-
mised. If you are taken ill over the weekend, and don’t make it in to work the
next day, expect either several phone calls asking for details of how you messed
up the build and how to fix it, or having your revision unceremoniously dumped
by one of your colleagues. Still, your name will be mud.

The effect of a broken build generally, and specifically a build left broken at
the end of a day’s work, is magnified if you are working in a distributed develop-
ment team with groups in different time zones. In these circumstances, going
home on a broken build is perhaps one of the most effective ways of alienating
your remote colleagues.

Just to be absolutely clear, we are not recommending that you stay late to fix
the build after working hours. Rather, we recommend that you check in regularly
and early enough to give yourself time to deal with problems should they occur.
Alternatively, save your check-in for the next day; many experienced developers
make a point of not checking in less than an hour before the end of work, and
instead leave that to do first thing the next morning. If all else fails, simply revert
your change from source control and leave it in your local working copy. Some
version control systems, including all the distributed ones, make this easier by
allowing you to accumulate check-ins within your local repository without
pushing them to other users.

www.it-ebooks.info

http://www.it-ebooks.info/

ESSENTIAL PRACTICES v

Your authors once worked on what we believe to have been, at the time, the largest
agile project in the world. This was a geographically distributed project working
on a shared codebase. The team as a whole was, at various points in the life of
the project, working simultaneously in San Francisco and Chicago in the USA, in
London, UK, and in Bangalore, India. During any given 24-hour period there were
only about 3 hours when someone, somewhere in the world, was not working on
the code. For the rest of the time, there was a constant stream of changes com-
mitted to the version control system and a constant stream of new builds being
triggered.

Build Discipline on Distributed Projects

If the team in India broke the build and went home, the London team could have
their day’s work dramatically affected. Similarly, if the London team went home on
a broken build, their colleagues in the USA would be swearing under their breath
for the next eight hours.

Rigorous build discipline was essential, to the extent that we had a dedicated build
master who not only maintained the build but also sometimes policed it, ensuring
that whoever broke the build was working to fix it. If not, the build engineer would
revert their check-in.

Always Be Prepared to Revert to the Previous Revision

As we described earlier, while we try hard to be diligent, we all make mistakes,
so we expect that everyone will break the build from time to time. On larger
projects, it is often a daily occurrence, though pretested commits will greatly
alleviate this. In these circumstances, the fixes are normally simple things that
we will recognize immediately and fix by committing a small one-line change.
However, sometimes we get it more wrong than that, and either can’t find where
the problem lies, or just after the check-in fails we realize that we missed
something important about the nature of the change that we have just made.

Whatever our reaction to a failed commit stage, it is important that we get
everything working again quickly. If we can’t fix the problem quickly, for what-
ever reason, we should revert to the previous change-set held in revision control
and remedy the problem in our local environment. After all, one of the reasons
that we want a revision control system in the first place is to allow us precisely
this freedom to revert.

Airplane pilots are taught that every time they land, they should assume that
something will go wrong, so they should be ready to abort the landing attempt
and “go around” to make another try. Use the same mindset when checking in.
Assume that you may break something that will take more than a few minutes,
and know what to do to revert the changes and get back to the known-good
revision in version control. You know that the previous revision was good because
you don’t check in on a broken build.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

Time-Box Fixing before Reverting

Establish a team rule: When the build breaks on check-in, try to fix it for ten
minutes. If, after ten minutes, you aren’t finished with the solution, revert to the
previous version from your version control system. Sometimes, if we are feeling
particularly lenient, we will allow you a little leeway. If you are in the middle of
your local build preparing for the check-in, for example, we will let you finish
that to see if it works. If it works, you can check in and hopefully your fix
will be good; if it fails either locally or following check-in, revert to the last
known-good state.

Experienced developers will often enforce this rule in any case, happily reverting
other people’s builds that are broken for ten minutes or more.

Don’t Comment Out Failing Tests

Once you begin to enforce the previous rule, the result is often that developers
comment out failing tests in order to get their changes checked in. This impulse
is understandable, but wrong. When tests that have been passing for a while begin
to fail, it can be hard to work out why. Has a regression problem really been
found? Perhaps one of the assumptions of the test is no longer valid, or the appli-
cation really has changed the functionality being tested for a valid reason.
Working out which of these conditions is applicable can involve talking to a
whole bunch of people and take time, but it is essential to put in the work to find
out what is going on and either fix the code (if a regression has been found),
modify the test (if one of the assumptions has changed), or delete it (if the
functionality under test no longer exists).

Commenting out tests that fail should always be a last resort, very rarely and
reluctantly used, unless you are disciplined enough to fix it right away. It is OK
to very occasionally comment out a test pending either some serious development
work that needs to be scheduled or some extended discussions with the customer.
However, this can push you down a slippery slope. We’ve seen code where half
the tests were commented out. It’s advisable to track the number of commented
tests and display it on a big, visible chart or screen. You could even fail the build
if the number of commented tests exceeds some threshold, maybe 2% of the total.

Take Responsibility for All Breakages That Result from Your
Changes

If you commit a change and all the tests you wrote pass, but others break, the
build is still broken. Usually this means that you have introduced a regression
bug into the application. It is your responsibility—because you made the
change—to fix all tests that are not passing as a result of your changes. In
the context of CI this seems obvious, but actually it is not common practice
in many projects.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PRACTICES

This practice has several implications. It means that you need to have access
to any code that you can break through your changes, so you can fix it if it breaks.
It means that you can’t afford to have developers own a subset of the code that
only they can work on. To do CI effectively, everybody needs access to the whole
codebase. If for some reasons you are forced into a situation where access to code
cannot be shared with the whole team, you can manage around it through
good collaboration with the people who have the necessary access. However,
this is very much a second-best, and you should work hard to get such restrictions
removed.

Test-Driven Development

Having a comprehensive test suite is essential to continuous integration. While
we deal at length with strategies for automated testing in the next chapter, it is
worth highlighting that the fast feedback, which is the core outcome of continuous
integration, is only possible with excellent unit test coverage (excellent acceptance
test coverage is also essential, but these tests take longer to run). In our experience,
the only way to get excellent unit test coverage is through test-driven development.
While we have tried to avoid being dogmatic about agile development practices
in this book, we think test-driven development is essential to enable the practice
of continuous delivery.

For those not familiar with test-driven development, the idea is that when de-
veloping a new piece of functionality or fixing a bug, developers first create a
test that is an executable specification of the expected behavior of the code to be
written. Not only do these tests drive the application’s design, they then serve
both as regression tests and as documentation of the code and the application’s
expected behavior.

A discussion of test-driven development is beyond the scope of this book. It
is, however, worth noting that as with all such practices it is important to be
both disciplined and pragmatic about test-driven development. We have two
book recommendations for further reading on this topic: Steve Freeman and
Nat Pryce’s Growing Object-Oriented Software, Guided by Tests, and Gerard
Meszaros’ xUnit Test Patterns: Refactoring Test Code.

Suggested Practices

The following practices aren’t required, but we have found them useful, and you
should at least consider using them for your project.
Extreme Programming (XP) Development Practices

Continuous integration is one of the twelve core XP practices described in Kent
Beck’s book, and as such it complements and is complemented by the other XP
practices. Continuous integration can make a huge difference to any team even

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

if they are not using any of the other practices, but it is even more effective in
conjunction with the other practices. In particular, in addition to test-driven
development and shared code ownership, which we described in the previous
section, you should also consider refactoring as a cornerstone of effective software
development.

Refactoring means making a series of small, incremental changes that improve
your code without changing your application’s behavior. CI and test-driven
development enable refactoring by assuring you that your changes don’t alter
the existing behavior of the application. Thus your team becomes free to
make changes which might touch large areas of the code without worrying
that they can break the application. This practice also enables frequent
check-ins—developers check in after each small, incremental change.

Failing a Build for Architectural Breaches

Sometimes there are aspects of the architecture of a system that are too easy
for developers to forget. One technique that we have used is to place some
commit-time tests that prove that breaches of these rules are not taking place.

This technique is really only a tactical one and difficult to describe other than
by example.

Enforcing Remote Calls at Build Time

The best example we can recall was from a project that was implemented as a
collection of distributed services. This was a genuinely distributed system in the
sense that it had significant business logic executed in client systems, and real
business logic executed at the server too—this was because of real business
requirements, not just poor programming.

Our development team deployed all of the code for both the client system and
server system in their development environments. It was too easy for a developer
to make a local call from the client to the server or from the server to the client,
without realizing that if they really want that behavior they have to make a
remote call.

We had organized our code into packages representing a facet of the layering
strategy to help us with deployment. We used this information and some open
source software that would evaluate code dependencies, and used grep to search
the output from the dependency tool to see if there were any dependencies
between packages that broke our rules.

This prevented unnecessary breakages at functional test time and helped
reinforce the architecture of our system—reminding the developers of the
importance of the process boundary between the two systems.

www.it-ebooks.info

http://www.it-ebooks.info/

SUGGESTED PRACTICES

This technique can seem a little heavyweight and is not a replacement for a
clear understanding of the architecture of the system under development within
the development team. However, it can be very useful when there are important
architectural issues to defend—things that could otherwise be difficult to catch
early.

Failing the Build for Slow Tests

As we have said before, CI works best with small, frequent commits. If the
commit tests take a long time to run, it can have a seriously detrimental effect
on the productivity of the team because of the time spent waiting for the build
and test process to complete. This will, in turn, discourage frequent check-ins,
so the team will start to store up their check-ins, making each one more
complex—with more likelihood of merge conflicts and more chance of introducing
errors, and so failing the tests. All this slows everything down even further.

To keep the development team focused on the importance of keeping the tests
fast, you can fail the commit tests if you find an individual test that takes longer
than some specified time. Last time we used this approach we failed the build for
any test that took more than two seconds to run.

We tend to like practices where a small change can have a wider effect. This
is just such a practice. If a developer writes a commit test that takes too long to
run, the build will fail when they get ready to commit their change. This encour-
ages them to think carefully about strategies to make their tests run quickly. If
the tests run quickly, developers will check in more frequently. If the developers
check in more frequently, there is less chance of merge problems, and any problem
that does arise is likely to be small and quick to solve, so developers are more
productive.

There is a caveat though: This practice can be a bit of a two-edged sword. You
need to be wary of creating flaky intermittent tests that fail if your CI environment
is, for some reason, under unusual load. We have found that the most effective
way to use this approach is as a strategy to get a large team focused on a specific
problem, not as something we would employ in every build. If your build becomes
slow, you can use this approach to keep the team focused, for a while, on
speeding things up.

Please note: We are talking about test performance, not performance
testing here. Capacity testing is covered in Chapter 9, “Testing Nonfunctional
Requirements.”

Failing the Build for Warnings and Code Style Breaches

Compiler warnings are usually warning you for good reasons. A strategy that
we have adopted with some success, though it is often referred to as the “code
Nazi” by our development teams, is to fail the build on warnings. This can be a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

bit draconian in some circumstances, but as a way to enforce good practice it is
effective.

You can strengthen this technique as much as you wish by adding checks for
specific or general coding lapses. We have used one of the many open source
code-quality tools with some success:

® Simian is a tool that identifies duplication in most popular languages
(including plain text).

® JDepend for Java, and its commercial .NET cousin NDepend, generate a
wealth of useful (and some less useful) design quality metrics.

e CheckStyle can test for bad coding practices, such as public constructors
in utility classes, nested blocks, and long lines. It can also catch common
sources of bugs and security holes. It can easily be extended. FxCop is its
.NET cousin.

* FindBugs is a Java-based system providing an alternative to CheckStyle,
including a similar set of validations.

As we have said, for some projects failing the build on any warning may sound
too draconian. One approach that we have used to introduce this practice grad-
ually is ratcheting. This means comparing the number of things like warnings or
TODOs with the number in the previous check-in. If the number increases, we
fail the build. Using this approach, you can easily enforce a policy that every
commit should reduce the number of warnings or TODOs at least by one.

CheckStyle: The Nagging Is Worth It after All

On one of our projects where we added a CheckStyle test to our collection of
commit tests, we all got a little bit tired of it nagging us so much. We were a team
of experienced developers and all agreed that it was worth the nagging for a while
to get us all into good habits and start the project on a good footing.

After we had been running for a few weeks, we removed the CheckStyle test. This
sped up our build and got rid of the nagging. Then the team grew a little, and a
few weeks later we started to find more “smells” in the code and found ourselves
spending more time doing simple tidy-up refactorings than we had been before.

Eventually we realized that although it came at a cost, CheckStyle was helping
our team to stay on top of the almost inconsequential things that together add up
to the difference between high-quality code and just code. We turned CheckStyle
back on and had to spend some time correcting all of the little complaints it raised,
but it was worth it and, at least for that project, we learned to stop complaining
about the feeling of being nagged.

www.it-ebooks.info

http://www.it-ebooks.info/

Di1STRIBUTED TEAMS

Distributed Teams

Using continuous integration with distributed teams is, in terms of process and
technology, largely the same as in any other environment. However, the fact that
the team is not sitting together in the same room— perhaps they are even working
in different time zones—does have an impact in some other areas.

The simplest approach from a technical perspective, and the most effective
from a process perspective, is to retain a shared version control system and con-
tinuous integration system. If your project uses deployment pipelines as described
in later chapters, these too should be simply made available on an equal basis to
all members of the team.

When we say that this approach is the most effective, we should emphasize
that it is very considerably so. It is worth working hard to achieve this ideal; all
other approaches described here are second-best to this by a significant margin.

The Impact on Process

For distributed teams within the same time zone, continuous integration is much
the same. You can’t use physical check-in tokens of course—although some CI
servers support virtual ones—and it is a little more impersonal, so a little easier
to cause offense when you remind someone to fix the build. Features such as
personal builds become more useful. On the whole, however, the process is
the same.

For distributed teams in different time zones, there are more issues to deal
with. If the team in San Francisco breaks the build and goes home, this can be a
serious handicap for the team in Beijing who are just starting work as the San
Francisco team are leaving. The process does not change, but the importance of
adhering to it is magnified.

In large projects with distributed teams, tools like VoIP (e.g., Skype) and instant
messaging are of enormous importance to enable the fine-grained communications
necessary to keep things running smoothly. Everyone associated with
development— project managers, analysts, developers, testers—should have access
to, and be accessible to, everyone else on IM and VolIP. It is essential for the
smooth running of the delivery process to fly people back and forth periodically,
so that each local group has personal contact with members from other groups.
This is important to build up trust between team members—often the first thing
to suffer in a distributed team. It is possible to do retrospectives, showcases,
stand-ups, and other regular meetings using videoconferencing. Another great
technique is to have each development team record a short video, using screen
capture software, that talks through the functionality they’ve been working on
that day.

Naturally, this is a much wider topic than just continuous integration. The
point we intend to make is simply to keep the process the same, but be even more
disciplined in its application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

Centralized Continuous Integration

Some more powerful continuous integration servers have facilities such as cen-
trally managed build farms and sophisticated authorization schemes that allow
you to provide continuous integration as a centralized service to large and dis-
tributed teams. These systems make it easy for teams to self-service continuous
integration without having to obtain their own hardware. They also allow oper-
ations teams to consolidate server resources, control the configuration of contin-
uous integration and testing environments to ensure that they are all consistent
and similar to production, and enforce good practices such as managing
configuration of third-party libraries and providing preinstalled tools for gathering
consistent metrics of code coverage and quality. Finally, they allow standard
metrics to be gathered and monitored across projects, providing managers and
delivery teams with the ability to create dashboards to monitor code quality at
a program level.

Virtualization can also work well in conjunction with centralized CI services,
providing the ability to spin up new virtual machines from stored baseline images
at the press of a button. You can use virtualization to make provisioning new
environments a completely automated process, which can be self-serviced by
delivery teams. It also ensures that builds and deployments always run on a
consistent, baseline version of these environments. This has the happy effect of
removing continuous integration environments that are “works of art,” having
accumulated software, libraries, and configuration settings over many months
that bear no relation to what is present in testing and production environments.

Centralized continuous integration can be a win-win situation. However, in
order for this to be the case, it is essential that development teams can easily self-
service new environments, configurations, builds, and deployments in an auto-
mated fashion. If a team has to send several emails and wait days to get a new
CI environment for their latest release branch, they will subvert the process and
go back to using spare boxes under their desks to do their real continuous
integration—or, worse, not do continuous integration at all.

Technical Issues

Depending on the choice of a version control system, it can be quite painful to
share access to version control systems and build and test resources for a globally
distributed team when there are slow links between the teams.

When continuous integration is working well, the whole team is committing
changes regularly. This means that interaction with the version control system
tends to be maintained at a reasonably high level. Although each interaction is
usually relatively small in terms of bytes exchanged, because of the frequency of
commits and updates, poor communication becomes a significant drag on pro-
ductivity. It is worth investing in sufficiently high-bandwidth communications

www.it-ebooks.info

http://www.it-ebooks.info/

Di1STRIBUTED TEAMS

between development centers. It is also worth considering to move to a distributed
version control system such as Git or Mercurial that allows people to check in
even when there is no link to the conventionally designated “master” server.

Distributed Version Control: When Nothing Else Will Work

Some years ago we worked on a project where this was a problem. The
communications infrastructure to our colleagues in India was so slow and unreliable
that on some days they couldn’t check in at all, which would have knock-on effects
for days after. Eventually, we did an analysis of the cost of time lost and found that
the cost to upgrade the communications would be paid for in a matter of days. On
another project, it was simply impossible to get a sufficiently fast and reliable
connection. The team moved from using Subversion, a centralized VCS, to
Mercurial, a distributed VCS, with noticeable productivity benefits.

It makes sense for the version control system to be reasonably close to the
build infrastructure that hosts the running of automated tests. If these tests are
being run after every check-in, that implies a fair amount of interaction between
the systems across the network.

The physical machines that host the version control system, the continuous
integration system, and the various test environments in your deployment pipeline
need to be accessible on an equal basis from every development site. The devel-
opment team in London is going to be at a considerable disadvantage if the version
control system in India stops working because the disk is full, everyone in the
Indian office has gone home for the evening, and they don’t have access to the
system. Provide sysadmin-level access to all of these systems from every location.
Ensure that the teams at each site not only have access but also the knowledge
to manage any problems that may occur on their shift.

Alternative Approaches

If there is some insurmountable problem that prevents spending a little more to
get higher-bandwidth communications established between your development
centers, then it is possible, but not ideal, to have local continuous integration
and test systems, and even local version control systems in extreme circumstances.
As you might expect, we really don’t advise this approach. Do everything you
can to avoid it; it is expensive in terms of time and effort and doesn’t work
nearly as well as shared access.

The easy stuff is the continuous integration system. It is quite possible to
have local continuous integration servers and test environments, even a full-blown
local deployment pipeline. This can be of value when there is a significant amount
of manual testing being undertaken at a site. Of course, these environments need

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

to be managed carefully to ensure they are consistent across regions. The only
caveat is that ideally, binaries or installers should only be built once, and then
shipped to all global locations where they are required. However, this is often
impractical due to the sheer size of most installers. If you have to build binaries
or installers locally, it becomes even more essential to ensure that you manage
the configuration of your toolchain rigorously to ensure exactly the same binaries
are created everywhere. One approach to enforce this is to automatically generate
hashes of your binaries, using mdS or a similar algorithm, and have your CI
server automatically check them against the hashes of the “master” binaries to
ensure there are no differences.

In certain extreme situations, for example if the version control system is remote
and connected via a slow or unreliable link, the value of hosting the continuous
integration system locally is seriously compromised. Our oft-stated objective in
the use of continuous integration is the ability to identify problems at the earliest
opportunity. If the version control system is split, in any manner, we compromise
this ability. In circumstances where we are forced to do so, our goal in splitting
the version control system must be to minimize the time between an error being
introduced and our being able to spot it.

Primarily, there are two options for providing local access to version control
systems for distributed teams: division of the application into components and
the use of version control systems that are either distributed or support
multimaster topologies.

In the component-based approach, both the version control repositories and
the teams are divided either by component or by functional boundary. This ap-
proach is discussed in much more detail in Chapter 13, “Managing Components
and Dependencies.”

Another technique that we have seen is to have team-local repositories and
build systems with a shared global master repository. The functionally separated
teams commit to their local repositories throughout the working day. At a regular
time each day, usually after one of the distributed teams in another time zone
have finished work for the day, one member of the local team takes responsibility
to commit all of the changes for the entire team and takes the pain of merging
a whole collection of changes. Clearly, this is much easier if you’re using a
distributed version control system which is designed for exactly this sort of task.
However, this solution is by no means ideal, and we have seen it fail miserably,
due to the introduction of significant merge conflicts.

In summary, all of the techniques that we describe in this book have been well
proven in distributed teams on many projects. In fact, we would view the use of
CI as one of the two or three most important factors in the ability of geographi-
cally distributed teams to work effectively together. The continuous part of
continuous integration is important; if there really are no other options, there
are some workarounds, but our advice is to spend the money on communications
bandwidth instead—in the medium and long term, it is cheaper.

www.it-ebooks.info

http://www.it-ebooks.info/

Di1STRIBUTED VERSION CONTROL SYSTEMS

Distributed Version Control Systems

The rise of distributed version control systems (DVCSs) is revolutionizing the
way teams cooperate. Where open source projects once emailed patches or
posted them on forums, tools like Git and Mercurial make it incredibly easy to
pull patches back and forth between developers and teams and to branch and
merge work streams. DVCSs allow you to work easily offline, commit changes
locally, and rebase or shelve them before pushing them to other users. The core
characteristic of a DVCS is that every repository contains the entire history of
the project, which means that no repository is privileged except by convention.
Thus, compared to centralized systems, DVCSs have an additional layer of indi-
rection: Changes to your local working copy must be checked in to your local
repository before they can be pushed to other repositories, and updates from
other repositories must be reconciled with your local repository before you can
update your working copy.

DVCSs offer new and powerful ways to collaborate. GitHub, for example,
pioneered a new model of collaboration for open source projects. In the traditional
model, committers acted as gatekeepers to the definitive repository for a project,
accepting or rejecting patches from contributors. Forks of a project only occurred
in extreme circumstances when there were irreconcilable arguments between
committers. In the GitHub model, this is turned on its head. Contributions are
made by first forking the repository of the project you wish to contribute to,
making your changes, and then asking the owners of the original repository to
pull your changes. On active projects, networks of forks rapidly proliferate, each
with various new sets of features. Occasionally these forks diverge. This model
is far more dynamic than the traditional model in which patches languish, ignored,
on mailing list archives. As a result, the pace of development tends to be faster
on GitHub, with a larger cloud of contributors.

However, this model challenges a fundamental assumption of the practice of
CI: That there is a single, canonical version of code (usually called mainline, or
trunk) to which all changes are committed. It is important to point out that you
can use the mainline model of version control, and do CI perfectly happily, using
a DVCS. You simply designate one repository as the master, have your CI server
trigger whenever a change is made to that repository, and have everybody push
all their changes to this repository in order to share them. This is a perfectly
reasonable approach that we have seen used successfully on many projects. It
retains the many benefits of DVCS, such as the ability to commit your changes
very frequently without sharing them (like saving your game), which comes in very
useful while exploring a new idea or performing a complex series of refactorings.
However, there are some patterns of use of DVCS that prevent CI. The GitHub
model, for example, violates the mainline/trunk model of code sharing, and so
prevents true continuous integration.

In GitHub, each user’s set of changes exists in a separate repository, and there
is no way to easily determine which sets from which users will successfully

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

integrate. You could take the approach of creating a repository to watch all the
other repositories and attempt to merge them all together whenever it detects a
change to any of them. However, this will almost always fail at the merge stage,
let alone when running the automated tests. As the number of contributors, and
hence repositories, grows, the problem gets exponentially worse. Nobody will
take any notice of what the CI server says, so CI as a method of communicating
whether the application is currently working (and if not, who and what broke
it) fails.

It is possible to fall back to a simpler model that provides some of the benefits
of continuous integration. In this model, you create a CI build for each repository.
Every time a change is made, you attempt to merge from the designated master
repository and run the build. Figure 3.2 shows CruiseControl.rb building the
main repository for the Rapidsms project along with two forks of it.

CruiseControl.r:

rapidsms - Build Now -

build 2eel85e.1 (1:10) FAILED
2eelRS5e (28 Dec 09) FAILED
51e66b7 (24 Dec 09) FAILED
Ode7a7e (21 Dec 09) FAILED
b6b7fc4 (2 Dec 09)

rapidsms-adammck s
build 9ed7843 (7 Jan) FAILED

99750cl (7 Jan) FAILED

efb6d15 (18 Dec 09) FAILED

42e023f (2 Dec 09) FAILED

e726f60 (30 Nov 09) FAILED

i el :
rapidsms-dimagi i
build 529b30f (5 Jan) took 10 second
ca4a79d (5 Jan) FAILED
14beeb9 (7 Dec 09) FAILED
ecqdldZe (7 Dec 09) FAILED
40bec48.2 (25 Nov 09) FAILED

Figure 3.2 Integrating branches

In order to create this system, a branch pointing to the main project repository
was added to each of CC.rb’s Git repositories using the command git remote
add core git://github.com/rapidsms/rapidsms.git. Every time the build is
triggered, CC.rb attempts to merge and run the build:

git fetch core
git merge --no-commit core/master
[command to run the build]

After the build, CC.rb runs git reset --hard to reset the local repository to
head of the repository it is pointing at. This system does not provide true contin-
uous integration. However, it does tell the maintainers of the forks—and the
maintainer of the main repository—whether their fork could in principle be

www.it-ebooks.info

http://www.it-ebooks.info/

Di1STRIBUTED VERSION CONTROL SYSTEMS

merged with the main repository, and whether the result would be a working
version of the application. Interestingly, Figure 3.2 shows that the main
repository’s build is currently broken, but the Dimagi fork not only merges suc-
cessfully with it, but also fixes the broken tests (and possibly adds some additional
functionality of its own).

At one more step away from continuous integration is what Martin Fowler
calls “promiscuous integration” [bBjxbS]. In this model, contributors pull changes
not just between forks and the central repository, but also between forks. This
pattern is common in larger projects that use GitHub, when some developers are
working on what are effectively long-lived feature branches and pull changes
from other repositories that are forked off the feature branch. Indeed in this
model there need not even be one privileged repository. A particular release of
the software could come from any of the forks, provided it passed all the tests
and was accepted by the project leaders. This model takes the possibilities of
DVCS to their logical conclusion.

These alternatives to continuous integration can create high-quality, working
software. However, this is only possible under the following conditions:

* A small and very experienced team of committers who manage pulling
patches, tend the automated tests, and ensure the quality of the software.

® Regular pulling from forks, so as to avoid large amounts of hard-to-merge
inventory accumulating on them. This condition is especially important if
there is a strict release schedule, because the temptation is to leave merging
till near the release, at which point it becomes extremely painful —the exact
problem that continuous integration is designed to solve.

* A relatively small set of core developers, perhaps supplemented by a larger
community which contributes at a relatively slow pace. This is what makes
the merges tractable.

These conditions hold for most open source projects, and for small teams in
general. However, they very rarely hold for medium or large teams of full-time
developers.

To summarize: In general, distributed version control systems are a great ad-
vance and provide powerful tools for collaboration, whether or not you are
working on a distributed project. DVCSs can be extremely effective as part of a
traditional continuous integration system, in which there is a designated central
repository to which everybody regularly pushes their changes (at least once a
day). They can also be used in other patterns that do not allow for continuous
integration, but may still be effective patterns for delivering software. However,
we caution against using these patterns when the right conditions, listed above,
are not satisfied. Chapter 14, “Advanced Version Control,” contains a full dis-
cussion of these and other patterns and the conditions under which they are
effective.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CONTINUOUS INTEGRATION

Summary

If you were to choose just one of the practices in this book to implement on a
development team, we would suggest that you choose continuous integration.
Time and time again we have seen it make a step change to the productivity of
software development teams.

To implement continuous integration is to create a paradigm shift in your
team. Without CI, your application is broken until you prove otherwise. With
CI, the default state of your application is working, albeit with a level of confi-
dence that depends upon the extent of your automated test coverage. CI creates
a tight feedback loop which allows you to find problems as soon as they are
introduced, when they are cheap to fix.

Implementing CI forces you to follow two other important practices: good
configuration management and the creation and maintenance of an automated
build and test process. For some teams, that will seem like a lot to bite off, but
they can be achieved incrementally. We discussed the steps to good configuration
management in the previous chapter. There is more on build automation in
Chapter 6, “Build and Deployment Scripting.” We cover testing in more detail
in the next chapter.

It should be clear that CI requires good team discipline—but then, any process
requires this. What is different about continuous integration is that you have a
simple indicator of whether or not discipline is being followed: The build stays
green. If you discover that the build is green but there is insufficient discipline,
for example poor unit test coverage, you can easily add checks to your CI system
to enforce better behavior.

This brings us to our final point. An established CI system is a foundation on
which you can build more infrastructure:

® Big visible displays which aggregate information from your build system
to provide high-quality feedback

e A system of reference for reports and installers for your testing team
* A provider of data on the quality of the application for project managers

* A system that can be extended out to production, using the deployment
pipeline, which provides testers and operations staff with push-button
deployments

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Implementing a Testing
Strategy

Introduction

Too many projects rely solely on manual acceptance testing to verify that a piece
of software conforms to its functional and nonfunctional requirements. Even
where automated tests exist, they are often poorly maintained and out-of-date
and require supplementing with extensive manual testing. This and the related
chapters in Part II of this book aim to help you to plan and implement effective
automated testing systems. We provide strategies for automating tests in com-
monly occurring situations and describe practices that support and enable
automated testing.

One of W. Edwards Deming’s fourteen points is, “Cease dependence on mass
inspection to achieve quality. Improve the process and build quality into the
product in the first place” [9YhQXz]. Testing is a cross-functional activity that
involves the whole team, and should be done continuously from the beginning
of the project. Building quality in means writing automated tests at multiple
levels (unit, component, and acceptance) and running them as part of the deploy-
ment pipeline, which is triggered every time a change is made to your application,
its configuration, or the environment and software stack that it runs on. Manual
testing is also an essential part of building quality in: Showcases, usability testing,
and exploratory testing need to be done continuously throughout the project.
Building quality in also means constantly working to improve your automated
testing strategy.

In our ideal project, testers collaborate with developers and users to write
automated tests from the start of the project. These tests are written before devel-
opers start work on the features that they test. Together, these tests form an ex-
ecutable specification of the behavior of the system, and when they pass, they
demonstrate that the functionality required by the customer has been implemented
completely and correctly. The automated test suite is run by the CI system every
time a change is made to the application —which means the suite also serves as
a set of regression tests.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

These tests do not just test the functional aspects of the system. Capacity, se-
curity, and other nonfunctional requirements are established early on, and auto-
mated test suites are written to enforce them. These automated tests ensure that
any problems that compromise the fulfillment of these requirements are caught
early when the cost of fixing them is low. These tests of the nonfunctional behav-
iors of the system enable developers to refactor and rearchitect on the basis of
empirical evidence: “The recent changes to the search have caused the performance
of the application to degrade—we need to modify the solution to ensure that we
meet our capacity requirements.”

This ideal world is fully achievable in projects that adopt the appropriate dis-
cipline early on. If you need to implement them on a project that has already
been running for some time, things are a little more difficult. Getting to a high
level of automated test coverage will take time and careful planning to ensure
that development can continue while teams learn how to implement automated
testing. Legacy codebases will certainly benefit from many of these techniques,
although it may take a long time until they reach the level of quality of a system
built from the start with automated tests. We discuss ways to apply these
techniques to legacy systems later on in this chapter.

The design of a testing strategy is primarily a process of identifying and prior-
itizing project risks and deciding what actions to take to mitigate them. A good
testing strategy has many positive effects. Testing establishes confidence that the
software is working as it should, which means fewer bugs, reduced support costs,
and improved reputation. Testing also provides a constraint on the development
process which encourages good development practices. A comprehensive auto-
mated test suite even provides the most complete and up-to-date form of applica-
tion documentation, in the form of an executable specification not just of how
the system should work, but also of how it actually does work.

Finally, it’s worth noting that we can only scratch the surface of testing here.
Our intention is to cover the fundamentals of automated testing, providing enough
context for the rest of the book to make sense, and to enable you to implement
a suitable deployment pipeline for your project. In particular, we don’t dive into
the technical details of test implementation, nor do we cover topics such as ex-
ploratory testing in detail. For more detail on testing, we suggest you look at one
of the companion volumes to this book: Lisa Crispin and Janet Gregory’s Agile
Testing (Addison-Wesley, 2009).

Types of Tests

Many kinds of testing exist. Brian Marick came up with Figure 4.1, which is
widely used to model the various types of tests that you should have in place to
ensure the delivery of a high-quality application.

In this diagram, he categorized tests according to whether they are business-
facing or technology-facing, and whether they support the development process
or are used to critique the project.

www.it-ebooks.info

http://www.it-ebooks.info/

TyPES OF TESTS

Business facing

AUTOMATED MANUAL

2| Functional acceptance Shqucase§

£ tests Usability testing o
£ Exploratory testing =
I a
g s
o =
5 Unit tests Nonfunctional acceptance TOD'
g Integration tests tests (capacity, =3
a System tests security, ...)

AUTOMATED MANUAL / AUTOMATED

Technology facing

Figure 4.1 Testing quadrant diagram, due to Brian Marick, based
on ideas that were “in the air” at the time

Business-Facing Tests That Support the Development Process

The tests in this quadrant are more commonly known as functional or acceptance
tests. Acceptance testing ensures that the acceptance criteria for a story are met.
Acceptance tests should be written, and ideally automated, before development
starts on a story. Acceptance tests, like acceptance criteria, can test all kinds
of attributes of the system being built, including functionality, capacity,
usability, security, modifiability, availability, and so on. Acceptance tests that
concern the functionality of the system are known as functional acceptance
tests—nonfunctional acceptance tests fall into the fourth quadrant of the diagram.
For more on the somewhat blurry and often misunderstood distinction
between functional and nonfunctional tests, take a look at our coverage of
technology-facing tests that critique the project, below.

Acceptance tests are critical in an agile environment because they answer the
questions, “How do I know when I am done?” for developers and “Did T get
what I wanted?” for users. When the acceptance tests pass, whatever requirements
or stories they are testing can be said to be complete. Thus, in an ideal world,
customers or users would write acceptance tests, since they define the success
criteria for each requirement. Modern automated functional testing tools, such
as Cucumber, JBehave, Concordion, and Twist, aim to realize this ideal by sepa-
rating the test scripts from the implementation, while providing a mechanism
that makes it simple to keep them synchronized. In this ways, it is possible for
users to write the test scripts, while developers and testers work together on the
code that implements them.

In general, for each story or requirement there is a single canonical path through
the application in terms of the actions that the user will perform. This is known
as the happy path. This is often expressed using the form “Given [a few important
characteristics of the state of the system when testing begins], when [the user
performs some set of actions], then [a few important characteristics of the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

new state of the system] will result.” This is sometimes referred to as the
“given-when-then” model for tests.

However, any use case will, in all but the simplest of systems, allow for varia-
tions in the initial state, the actions to be performed, and the final state of the
application. Sometimes, these variations constitute distinct use cases, which are
then known as alternate paths. In other cases, they should cause error conditions,
resulting in what is called sad paths. There are clearly many possible tests that
can be performed with different values for these variables. Equivalence partitioning
analysis and boundary value analysis will reduce these possibilities to a smaller
set of cases that will completely test the requirement in question. However, even
then you’ll need to use your intuition to pick the most relevant cases.

Acceptance tests should be run when your system is in a production-like mode.
Manual acceptance testing is typically done by putting an application in a user
acceptance testing (UAT) environment which is as similar as possible to production
both in configuration and in terms of the state of the application—although it
might use mock versions of any external services. The tester uses the application’s
standard user interface in order to perform testing. Automated acceptance tests
should similarly be run in a production-like environment, with the test harness
interacting with the application the same way that a user would.

Automating Acceptance Tests

Automated acceptance tests have a number of valuable properties:

® They make the feedback loop faster—developers can run automated tests
to find out if they have completed a particular requirement without having
to go to testers.

® They reduce the workload on testers.

® They free testers to concentrate on exploratory testing and higher-value
activities instead of boring repetitive tasks.

* Your acceptance tests represent a powerful regression test suite. This is
particularly important when writing large applications or working in large
teams where frameworks or many modules are being used and changes to
one part of the application are likely to affect other features.

® By using human-readable test and test suite names, as advocated by
behavior-driven development, it is possible to autogenerate requirements
documentation from your tests. Indeed, tools like Cucumber and Twist are
designed to allow analysts to write requirements as executable test scripts.
The benefit of this approach is that your requirements documentation is
never out-of-date—it can be generated automatically with every build.

www.it-ebooks.info

http://www.it-ebooks.info/

TyPES OF TESTS

The question of regression testing is particularly important. Regression tests
aren’t mentioned on the quadrant diagram because they are a crosscutting cate-
gory. Regression tests represent the entire corpus of your automated tests. They
serve to ensure that when you make a change you don’t break existing function-
ality. They also make it possible to easily refactor code by verifying that you
haven’t changed any behavior when refactoring is done. When writing automated
acceptance tests, you should keep in mind that they will form part of your
regression test suite.

However, automated acceptance tests can be costly to maintain. Done badly,
they can inflict a significant cost on your delivery team. For this reason, some
people recommend against creating large complex suites of automated tests.!
However, by following good practices and using appropriate tools, it is possible
to dramatically reduce the cost of creating and maintaining automated acceptance
tests to the point where the benefits clearly exceed the costs. We discuss these
techniques in more detail in Chapter 8, “Automated Acceptance Testing.”

It’s important to remember that not everything needs to be automated. There
are many aspects of a system that people are genuinely better at testing. Usability,
consistency of look and feel, and so on are difficult things to verify in automated
tests. Exploratory testing is also impossible to do automatically —although, of
course, testers use automation as part of exploratory testing for things like setting
up scenarios and creating test data. In many cases, manual testing can suffice, or
indeed can be superior to automated tests. In general, we tend to limit our auto-
mated acceptance testing to complete coverage of happy path behaviors and only
limited coverage of the most important other parts. This is a safe and efficient
strategy, assuming that you already have a comprehensive set of automated re-
gression tests of other kinds. We generally class comprehensive as greater than
80% code coverage, though the quality of the tests is very important and coverage
alone is a poor metric. Automated test coverage in this context includes unit,
component, and acceptance tests, each of which should cover 80% of the appli-
cation (we don’t subscribe to the naive idea that you can gain 80% coverage
with 60% unit test coverage and 20% acceptance test coverage).

As a good litmus test of your automated acceptance test coverage, consider
the following scenario. Suppose you swap out some part of our system—such
as the persistence layer—and replace it with a different implementation. You
complete the replacement, run your automated acceptance tests, and they pass.
How confident do you feel that your system is really working? A good automated
test suite should give you the confidence necessary to perform refactorings and
even rearchitecting of your application knowing that if the tests pass, your
application’s behavior really hasn’t been affected.

As with every other aspect of software development, each project is different,
and you need to monitor how much time is being spent on repeating manual

1. For example, James Shore [dsyXYv].

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

tests so you can decide when to automate them. A good rule of thumb is to auto-
mate once you have repeated the same test a couple of times, and when you are
confident that you won’t end up spending a lot of time maintaining the test. For
more on when to automate, read Brian Marick’s paper “When Should a Test Be
Automated?” [90NC1y].

Should Acceptance Tests Hit the UI?

Acceptance tests are generally end-to-end tests that run on a real working envi-
ronment that is similar to production. This means that in an ideal world, they would
be run directly against the Ul of the application.

However, most Ul testing tools take a naive approach that couples them tightly to
the Ul, with the result that when the Ul changes even slightly, the tests break. This
results in many false positives—tests that break not due to any problem with the
application’s behavior, but rather because some checkbox has had its name
changed. Keeping the tests in sync with the application can swallow up huge
amounts of time without delivering any value. A good question to ask yourself
every now and again is, “How often do my acceptance tests break due to real
bugs, and how often due to changes in requirements?”

There are several ways to solve this problem. One is to add an abstraction layer
between your tests and your Ul so as to reduce the amount of work required when
the Ul changes. Another is to run acceptance tests against a public API that sits
just below the Ul—the same API that the Ul uses to actually perform actions (it
should go without saying that your Ul must not contain any business logic). This
doesn’t obviate the need for Ul tests, but it means they can be reduced to a small
number of checks of the Ul itself, not the business logic. The bulk of your
acceptance test suite can then run directly against your business logic.

We deal with this topic at more length in Chapter 8, “Automated Acceptance
Testing.”

The most important automated test to write is the main happy path test. Every
story or requirement should have at least one automated happy path acceptance
test. These tests should be used individually by developers as smoke tests to
provide rapid feedback on whether they have broken some bit of functionality
they are working on. They should be the first target for automation.

When you have time to write and automate further tests, it’s hard to choose
between alternate happy paths and sad paths. If your application is reasonably
stable, then alternate paths should be your priority since they represent all the
user-defined scenarios. If your application is buggy and crashes often, strategic
application of sad path testing can help you identify problem areas and fix them,
and automation can ensure that the application remains stable.

www.it-ebooks.info

http://www.it-ebooks.info/

TyPES OF TESTS

Technology-Facing Tests That Support the Development Process

These automated tests are written and maintained exclusively by developers.
There are three kinds of tests that fall into this category: unit tests, component
tests, and deployment tests. Unit tests test a particular piece of the code in isola-
tion. For this reason, they often rely on simulating other parts of the system using
test doubles (see the “Test Doubles” section on page 91). Unit tests should not
involve calling the database, using the filesystem, talking to external systems, or,
in general, interaction between components of a system. This enables them to
run very fast so you can get early feedback on whether changes have broken any
existing functionality. These tests should also cover virtually every code-path
in the system (a bare minimum of 80%). Thus they form a key part of your
regression test suite.

However, this speed comes at the cost of missing those bugs that occur as a
result of interaction between the various pieces of your application. For example,
it is very common for objects (in OO programming) or bits of application data
to have very different lifecycles. It is only by testing larger chunks of your appli-
cation that you will find bugs occurring due to the lifecycles of your data or objects
not being managed correctly.

Component tests test larger clusters of functionality, so that they can catch
problems like these. They are typically slower, since they can require more in-
volved setup and perform more I/O, talking to databases, the filesystem, or other
systems. Sometimes, component tests are known as “integration tests” —but the
term “integration tests” is overloaded, so we won’t use it in this context in
the book.

Deployment tests are performed whenever you deploy your application. They
check that the deployment worked—in other words, that your application is
correctly installed, correctly configured, able to contact any services it requires,
and that it is responding.

Business-Facing Tests That Critique the Project

These manual tests verify that the application will in fact deliver to the users the
value they are expecting. This is not just a matter of verifying that the application
meets its specifications; it is also about checking that the specifications are correct.
We have never worked on, or heard of, a project where the application was
specified perfectly in advance. Inevitably, when users try an application in real
life, they discover that there is room for improvement. They break things because
they manage to perform sets of operations that nobody had tried before. They
complain that the application could be better at helping them with the tasks that
they perform most often. Perhaps they are inspired by the application and iden-
tify new features that will give them even more value. Software development is
a naturally iterative process that thrives on the establishment of effective feedback
loops, and we deceive ourselves if we perceive it any other way.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

A particularly important form of business-facing, project-critique tests are
showcases. Agile teams perform showcases to users at the end of every iteration
to demonstrate the new functionality that they have delivered. Functionality
should also be demonstrated to customers as often as possible during development,
so as to ensure that any misunderstandings or specification problems are caught
as early as possible. Showcases that go well can be both a blessing and a
curse—users love getting their hands on new stuff and playing around with it.
But they invariably have plenty of suggestions for improvement. At this point,
the customer and the project team have to decide how much they want to
change the project’s plan to incorporate these suggestions. Whatever the outcome,
it’s much better to get feedback early rather than at the end of the project
when it’s too late to make changes. Showcasing is the heartbeat of any
project: It is the first time that you can say that a piece of work is really done to
the satisfaction of the people who are, after all, paying the bills.

Exploratory testing is described by James Bach as a form of manual testing in
which “the tester actively controls the design of the tests as those tests are per-
formed and uses information gained while testing to design new and better tests.”2
Exploratory testing is a creative learning process that will not only discover bugs,
but also lead to the creation of new sets of automated tests, and potentially feed
into new requirements for the application.

Usability testing is done to discover how easy it is for users to accomplish their
goals with your software. It is easy to get too close to the problem during devel-
opment, even for nontechnical people working on specifying the application.
Usability testing is therefore the ultimate test that your application is actually
going to deliver value to users. There are several different approaches to usability
testing, from contextual enquiry to sitting users down in front of your application
and filming them performing common tasks. Usability testers gather metrics,
noting how long it takes users to finish their tasks, watching out for people
pressing the wrong buttons, noting how long it takes them to find the right text
field, and getting them to record their level of satisfaction at the end.

Finally, you can give your application to real users using beta testing programs.
Indeed, many websites seem to be perpetually in a beta state. Some of the more
forward-thinking sites (NetFlix, for example) continually release new features
to selected users without them even noticing. Many organizations use canary
releasing (see the “Canary Releasing” section on page 263) where several subtly
different versions of the application are in production simultaneously and their
effectiveness is compared. These organizations gather statistics on how the new
functionality gets used, and retire it if it doesn’t deliver sufficient value. This
provides an evolutionary approach to the adoption of features which is very
effective.

2. “Exploratory Testing Explained” by James Bach [9BRHOz], p. 2.

www.it-ebooks.info

http://www.it-ebooks.info/

TyPES OF TESTS

Technology-Facing Tests That Critique the Project

Acceptance testing comes in two categories: functional tests and nonfunctional
tests. By nonfunctional tests, we mean all the qualities of a system other than its
functionality, such as capacity, availability, security, and so forth. As we mention
above, the distinction between functional and nonfunctional testing is in some
ways bogus, as is the idea that these tests are not business-facing. This may seem
obvious, but many projects do not treat nonfunctional requirements the same
way as other requirements or (worse) do not bother to validate them at all. Al-
though users rarely spend a lot of time specifying capacity and security character-
istics up front, they will certainly be very upset if their credit card details are
stolen or if a website is constantly down due to capacity problems. For this reason,
it has been argued by many people that “nonfunctional requirements” is a bad
name, with alternatives suggested such as cross-functional requirements or system
characteristics. Although we are sympathetic to this position, we have referred
to them throughout this book as nonfunctional characteristics so everybody
knows what we’re talking about. Whatever you call them, nonfunctional accep-
tance criteria should be specified as part of your application’s requirements in
exactly the same way as functional acceptance criteria.

The tests used to check whether these acceptance criteria have been met, and
the tools used to run the tests tend to be quite different from those used to verify
conformance to functional acceptance criteria. These tests often require consid-
erable resources such as special environments to run on and specialized knowledge
to set up and implement, and they often take a long time to run (whether or not
they are automated). Therefore, their implementation tends to be deferred. Even
when they are fully automated, they tend to be run less frequently and further
down the deployment pipeline than the functional acceptance tests.

However, things are changing. The tools used to perform these tests are matur-
ing, and the techniques used to develop them are becoming more mainstream.
Having been caught short many times by bad performance just before release,
we recommend that you set up at least some basic nonfunctional tests towards
the start of any project, no matter how simple or inconsequential. For more
complex or mission-critical projects, you should consider allocating project time
to researching and implementing nonfunctional testing from the start of your
project.

Test Doubles

A key part of automated testing involves replacing part of a system at run time
with a simulated version. In this way, the interactions of the part of the application
under test with the rest of the application can be tightly constrained, so that its
behavior can be determined more easily. Such simulations are often known as
mocks, stubs, dummies, and so forth. We’ll be following the terminology that
Gerard Meszaros uses in his book xUnit Test Patterns, as summarized by

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

Martin Fowler [aobjRH]. Meszaros coined the generic term “test doubles” and
distinguishes further between the various types of test doubles as follows:

* Dummy objects are passed around but never actually used. Usually they
are just used to fill parameter lists.

® Fake objects actually have working implementations, but usually take some
shortcut that makes them not suitable for production. A good example of
this is the in-memory database.

e Stubs provide canned answers to the calls made during the test, usually not
responding at all to anything outside what’s programmed in for the test.

e Spies are stubs that also record some information based on how they were
called. One form of this might be an email service that records how many
messages it was sent.

e Mocks are preprogrammed with expectations that form a specification of
the calls they are expected to receive. They can throw an exception if they
receive a call they don’t expect and are checked during verification to ensure
they got all the calls they were expecting.

Mocks are an especially abused form of test doubles. It’s very easy to misuse
mocks by writing tests that are both pointless and fragile, using them simply to
assert the specific details of the workings of some code rather than its interactions
with collaborators. Such usage is fragile because if the implementation changes,
the test breaks. Examining the distinction between mocks and stubs goes beyond
the scope of this book, but you’ll find more detail in Chapter 8, “Automated
Acceptance Testing.” Probably the most comprehensive paper laying out how
to use mocks correctly is “Mock Roles, Not Objects” [duZRWb]. Martin Fowler
also gives some pointers in his article “Mocks Aren’t Stubs” [dmXRSC].

Real-Life Situations and Strategies

Here are some typical scenarios faced by teams who have decided to automate
their tests.

New Projects

New projects represent a chance to achieve the ideals that we describe in this
book. At this stage, the cost of change is low and, by establishing some relatively
simple ground rules and creating some relatively simple test infrastructure, you
can give a great start to your process of continuous integration. In this situation,
the important thing is to start writing automated acceptance tests from the very
beginning. In order to do this, you’ll need:

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-LIFE SITUATIONS AND STRATEGIES

® To choose a technology platform and testing tools.
e To set up a simple, automated build.

* To work out stories that follow the INVEST principles [ddVMFH] (they
should be Independent, Negotiable, Valuable, Estimable, Small, and
Testable), with acceptance criteria.

You can then implement a strict process:

e Customers, analysts, and testers define acceptance criteria.

e Testers work with developers to automate acceptance tests based on the
acceptance criteria.

* Developers code behavior to fulfill the acceptance criteria.

e If any automated tests fail (whether unit, component, or acceptance tests),
developers make it a priority to fix them.

It is much simpler to adopt this process at the start of a project than decide a
few iterations later that you need acceptance tests. At these later stages, not only
will you have to try and to come up with ways to implement the acceptance tests,
since support for them won’t already exist in your framework—you’ll also have
to convince skeptical developers of the need to follow the process assiduously.
Getting a team addicted to automated testing is simpler to achieve if you start at
the beginning of a project.

However, it is also essential that everybody on the team, including customers
and project managers, are bought in to these benefits. We have seen projects
cancelled because the customer felt that too much time was spent working on
automated acceptance tests. If the customer really would rather sacrifice the
quality of their automated acceptance test suite in order to get it to market
quickly, they are entitled to make that decision—but the consequences should
be made quite clear.

Finally, it is important to make sure that your acceptance criteria are carefully
written so that they express the business value that the story delivers from the
point of view of the user. Blindly automating badly written acceptance criteria
is one of the major causes of unmaintainable acceptance test suites. For each ac-
ceptance criterion you write, it should be possible to write an automated accep-
tance test proving that the value described is delivered to the user. This means
that testers should be involved in writing requirements from the start,
ensuring that a coherent, maintainable automated acceptance test suite is
supported throughout the evolution of the system.

Following the process we describe changes the way developers write code.
Comparing codebases that have been developed using automated acceptance
tests from the beginning with those where acceptance testing has been an

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

afterthought, we almost always see better encapsulation, clearer intent, cleaner
separation of concerns, and more reuse of code in the former case. This really is
a virtuous circle: Testing at the right time leads to better code.

Midproject

Although it’s always pleasant to be starting a project from scratch, the reality is
that we often find ourselves working on a large, resource-starved team developing
a rapidly changing codebase, under pressure to deliver.

The best way to introduce automated testing is to begin with the most common,
important, and high-value use cases of the application. This will require conver-
sations with your customer to clearly identify where the real business value lies,
and then defending this functionality against regressions with tests. Based on
these conversations you should automate happy path tests that cover these
high-value scenarios.

In addition, it is useful to maximize the number of actions that these tests
cover. Make them cover slightly broader scenarios than you would normally
address with story-level acceptance tests. Fill in as many fields as possible and
press as many buttons as possible to satisfy the needs of the test. This approach
gives some broad cover for the functionality being tested in these core behavioral
tests, even though the tests won’t highlight failures or changes in the details of
the system. For example, you will know that the basic behavior of you system is
working, but may miss the fact that some validations are not. This has the bonus
of making manual testing a little more efficient, since you won’t have to test every
single field. You’ll be sure that builds that have passed automated tests will
function correctly and deliver business value even if some aspects of their behavior
aren’t as you would wish.

This strategy means that, since you are only automating the happy path, you
will have to perform a correspondingly larger amount of manual testing to ensure
that you system is working fully as it should. You should find that the manual
tests change rapidly since they’ll be testing new or newly changed functionality.
The moment you discover you are testing the same function manually more than
a couple of times, check and see if that functionality is likely to change. If not,
automate the test. Conversely, if you find you are spending a great deal of time
fixing particular tests, you can assume that the functionality under test is changing.
Again, go and check with the customer and development team if this is the case.
If so, it is usually possible to tell your automated testing framework to ignore
the test, remembering to give as much detail as possible in the ignore comment
so that you know when to get the test working again. If you suspect the test
won’t be used again in its present form, delete it—you can always retrieve it from
version control if you’re wrong.

When you are pressed for time, you won’t be able to spend a great deal of effort
on scripting complex scenarios with a lot of interactions. In this situation it’s

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-LIFE SITUATIONS AND STRATEGIES

better to use a variety of sets of test data in order to ensure coverage. Specify
clearly the objective of your test, find the simplest possible script which fulfills
this objective, and supplement it with as many scenarios as possible in terms
of the state of the application at the beginning of the test. We discuss automating
the loading of test data in Chapter 12, “Managing Data.”

Legacy Systems

Michael Feathers, in his book Working Effectively with Legacy Code, provoca-
tively defined legacy systems as systems that do not have automated tests. This
is a useful and simple (although controversial) definition. Along with this simple
definition comes a simple rule of thumb: Test the code that you change.

The first priority when dealing with such a system is to create an automated
build process if one doesn’t exist, and then create an automated functional test
scaffolding around it. Creating an automated test suite will be easier if documen-
tation, or better still, members of the team who worked on the legacy system are
available. However, this is often not the case.

Often, the sponsors of the project are unwilling to allow the development team
spend time on what seems to them a low-value activity —creating tests for the
behavior of a system that is already in production: “Hasn’t this already been
tested in the past by the QA team?” So it is important to target the high-value
actions of the system. It is easy to explain to the customer the value of creating
a regression test suite to protect these functions of the system.

It is important to sit down with users of the system to identify its high-value
uses. Using the same techniques described in the previous section, create a set of
broad automated tests that cover this core high-value functionality. You shouldn’t
spend too long doing this, since this is a skeleton to protect the legacy functions.
You will be adding new tests incrementally later for the new behavior that you
add. These are essentially smoke tests for your legacy system.

Once these smoke tests are in place, you can begin development on stories. It
is useful at this point to take a layered approach to your automated tests. The
first layer should be very simple and fast-running tests for problems that prevent
you from doing useful testing and development on whatever piece of functional-
ity you’re working on. The second layer tests the critical functionality for a par-
ticular story. As much as possible, new behaviors should be developed and tested
in the same way that we described for a new project. Stories with acceptance
criteria should be created for the new features, and automated tests should be
mandated to represent completion of these stories.

This can sometimes be harder than it sounds. Systems designed to be testable
tend to be more modular and easier to test than those that are not. However,
this should not divert you from the goal.

A particular problem of such legacy systems is that the code is often not too
modular and well structured. Thus it is common for a change in one part of the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

code to adversely affect behavior in another area. One useful strategy in such
circumstances can be to include a careful validation of the state of the application
at the completion of the test. If you have time, you can test the alternate paths
of the story. Finally, you can write more acceptance tests checking for exception
conditions or protecting against common failure modes or undesirable side effects.

It is important to remember that you should only write automated tests where
they will deliver value. You can essentially divide your application into two parts.
There is the code that implements the features of your application, and there is
the support or framework code underneath it. The vast majority of regression
bugs are caused by altering framework code—so if you are only adding features
to your application that do not require changes to the framework and support
code, then there’s little value in writing a comprehensive scaffolding.

The exception to this is when your software has to run in a number of different
environments. In this case, automated tests combined with automated deployment
to production-like environments deliver a great deal of value since you can simply
point your scripts at the environments to be tested and save yourself a lot of effort
on manual testing.

Integration Testing

If your application is conversing with a variety of external systems through a
series of different protocols, or if your application itself consists of a series of
loosely coupled modules with complex interactions between them, then integration
tests become very important. The line between integration testing and component
testing is blurry (not least because integration testing is a somewhat overloaded
term). We use the term integration testing to refer to tests which ensure that each
independent part of your application works correctly with the services it
depends on.

Integration tests can be written in the same way as you write normal acceptance
tests. Normally, integration tests should run in two contexts: firstly with the
system under test running against the real external systems it depends on, or
against their replicas controlled by the service provider, and secondly against a
test harness which you create as part of your codebase.

It is essential to ensure that you don’t hit a real external system unless you are
in production, or you have some way of telling the service that you are sending
it dummy transactions for testing purposes. There are two common ways to ensure
that you can safely test your application without hitting a real external system,
and generally you will need to employ both of them:

® Isolate access to the external system in your testing environment with a
firewall, which you probably want to do in any case early on in your devel-
opment process. This is also a useful technique to test the behavior of your
application when the external service is unavailable.

www.it-ebooks.info

http://www.it-ebooks.info/

REAL-LIFE SITUATIONS AND STRATEGIES

e Have a configuration setting in your application that makes it talk to a
simulated version of the external system.

In an ideal situation, the service provider will have a replica test service that
behaves exactly like the production service, except in terms of its performance
characteristics. You can develop your tests against this. However, in the real
world, you will often need to develop a test harness of your own. This is the
case when:

¢ The external system is under development but the interface has been defined
ahead of time (in these situations, be prepared for the interface to change).

® The external system is developed already but you don’t have a test instance
of that system available for your testing, or the test system is too slow or
buggy to act as a service for regular automated test runs.

® The test system exists, but responses are not deterministic, and so make
validation of tests results impossible for automated tests (for example, a
stock market feed).

® The external system takes the form of another application that is difficult
to install or requires manual intervention via a UL

* You need to write standard automated acceptance tests for functionality

involving external services. These should almost always run against test
doubles.

e The load that your automated continuous integration system imposes, and
the service level that it requires, overwhelms the lightweight test environment
that is only set up to cope with a few manual exploratory interactions.

Test harnesses can be quite sophisticated, depending, in particular, on whether
the service it doubles up for remembers state or not. If the external system remem-
bers state, your harness will behave differently according to the requests that you
send. The highest-value tests that you can write in this situation are black box
tests, in which you consider all the possible responses your external system can
give and write a test for each of these responses. Your mock external system
needs some way of identifying your request and sending back the appropriate
response, or an exception if it gets a request it’s not expecting.

It is essential that your test harness replicates not only the expected responses
to service calls, but also unexpected ones. In Release It!, Michael Nygard discusses
creating a test harness which simulates the kinds of pernicious behavior you can
expect from remote systems that go wrong or from infrastructural problems.3

3. Section 5.7, pp. 136-140.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

These behaviors could be due to network transport problems, network protocol
problems, application protocol problems, and application logic problems. Exam-
ples include such pathological phenomena as refusing network connections, ac-
cepting them and then dropping them, accepting connections but never replying,
responding extremely slowly to requests, sending back unexpectedly large amounts
of data, replying with garbage, refusing credentials, sending back exceptions, or
replying with a well-formed response that is invalid given the state of the appli-
cation. Your test harness should be able to simulate each of these conditions,
perhaps by listening on several different ports, each of which corresponds to
some failure mode.

You should test your application against as many pathological situations as
you can simulate to make sure it can handle them. That other patterns the Nygard
describes, such as Circuit Breaker and Bulkheads, can then be used to harden
your application against the kinds of unexpected events that are bound to occur
in production.

Automated integration tests can be reused as smoke tests during deployment
of your system into production. They can also be used as diagnostics to monitor
the production system. If you identify integration problems as a risk during de-
velopment, which they almost inevitably are, developing automated integration
tests should be an early priority.

It is essential to incorporate activities concerning integration into your release
plan. Integrating with external services is complex and requires time and planning.
Every time you have to integrate with an external system, you add risks to your
project:

e Will a test service be available, and will it perform well?

* Do the providers of the service have bandwidth to answer questions, fix
bugs, and add custom functionality?

e Will I have access to a production version of the system that I can test
against to diagnose capacity or availability problems?

e s the service API accessible easily using the technology my application is
developed with, or will we need specialist skills on the team?

* Are we going to have to write and maintain our own test service?

* How will my application perform when the external service doesn’t behave
as expected?

In addition, you will have to add scope for building and maintaining the inte-
gration layer and the associated runtime configuration, as well as any test services
required and testing strategies such as capacity testing.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCESS

Process

The production of acceptance tests can be an expensive and even laborious task
if communication between the team members isn’t effective. Many projects rely
on testers examining upcoming requirements in detail, going through all possible
scenarios, and designing complex test scripts they will follow later. The results
of this process might be sent to the customer for approval, following which the
tests are implemented.

There are several points at which this process can be very simply optimized.
We find that the best solution is to have a single meeting with all of the stakehold-
ers at the beginning of each iteration, or about a week before a story will start
development if you’re not using iterations. We get customers, analysts, and testers
in a room together and come up with the highest-priority scenarios to test. Tools
like Cucumber, JBehave, Concordion, and Twist allow you to write acceptance
criteria down in natural language in a text editor and then write code to make
these tests executable. Refactorings to the test code also update the test specifica-
tions. Another approach is to use a domain-specific language (DSL) for testing.
This allows acceptance criteria to be entered in the DSL. As a minimum, we will
ask the customers to write the simplest possible acceptance tests covering the
happy paths of these scenarios there and then. Later, after this meeting, people
will often add more sets of data to use to improve the coverage of the tests.

These acceptance tests, and the short descriptions of their objectives, then be-
come the starting point for developers working on the stories concerned. Testers
and developers should get together as early as possible to discuss the acceptance
tests before starting development. This allows developers to get a good overview
of the story and understand what the most important scenarios are. This reduces
the feedback cycle between developers and testers that can otherwise occur at
the end of development of a story and helps reduce both missed functionality
and the number of bugs.

The handover process between developers and testers at the end of the story
can easily become a bottleneck. In the worst case, developers can finish a story,
begin on another story, and be interrupted halfway through the new story by a
tester who has raised bugs on the previous story (or even a story that was
completed some time ago). This is very inefficient.

Close collaboration between developers and testers throughout the development
of a story is essential to a smooth path to the release. Whenever developers finish
some functionality, they should call over the testers to review it. The testers
should take over the developers’ machine to do this testing. During this time,
developers might continue work on an adjacent terminal or laptop, perhaps fixing
some outstanding regression bugs. This way they’re still occupied (since testing
can take some time), but are easily available in case the tester needs to discuss
anything.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 IMPLEMENTING A TESTING STRATEGY

Managing Defect Backlogs

Ideally, bugs should never be introduced into your application in the first place.
If you are practicing test-driven development and continuous integration and
have a comprehensive set of automated tests including acceptance tests at the
system level as well as unit and component tests, developers should be able to
catch bugs before they are discovered by testers or users. However, exploratory
testing, showcases, and users will inevitably discover bugs in your system. These
bugs will typically end up in a defect backlog.

There are several schools of thought on what constitutes an acceptable defect
backlog and how to address it. James Shore advocates having zero defects
[b3mS55V]. One way to achieve this is to ensure that whenever a bug is found,
it is immediately fixed. This of course requires your team to be structured in such
a way that testers can find bugs early, and developers can fix them straight away.
However, this is not going to help if you already have a defect backlog.

Where a backlog of bugs exists, it is important for the problem to be clearly
visible to everyone, and for members of the development team to be responsible
for facilitating the process of reducing the backlog. In particular, having the status
of your acceptance build displayed as “passed” or “failed” is not good enough
if it is always failing. Instead, display the number of tests passed, the number
failed, and the number ignored, and put up a graph of these numbers over time
somewhere prominent. This focuses the team’s attention on the problem.

The scenarios where you decide to continue with a backlog of defects are risky.
This is a slippery slope. Many development teams and development processes in
the past ignored significant numbers of bugs, deferring the effort to fix them to
some more convenient time in the future. After a few months, this almost in-
evitably leads to a huge list of bugs, of which some will never be fixed, some are
no longer relevant since the functionality of the application has changed, and
some are critical to some user but have been lost in all the noise.

The problem is even worse when there are no acceptance tests or where accep-
tance tests are not effective because features are being developed on branches
that are not merged regularly to trunk. In this case, it is all too common, once
the code is integrated and manual system-level testing starts, for teams to become
completely overwhelmed by defects. Arguments break out between testers, devel-
opers, and management, release dates slip, and users get landed with poor-quality
software. This is a case where many defects could have been prevented by follow-
ing a better process. See Chapter 14, “Advanced Version Control,” for more
details.

Another approach is to treat defects the same way as features. After all,
working on a bug takes time and effort away from working on some other feature,
so it is up to the customer to prioritize the relative importance of a particular
bug against that feature. For example, a rare defect with a known workaround
in an administrative screen with only a couple of users may not be so important
to fix as a new revenue-generating feature for the application as a whole. At the

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY

» «

very least, it makes sense to classify bugs as “critical,” “blockers,” “medium,”
and “low” priority. A more comprehensive approach might take account of how
often the bug occurs, what its effect on the user is, and if there is a workaround.

Given this classification, bugs can be prioritized in your backlog in the same
way as stories, and they can appear together. Apart from immediately removing
arguments about whether a particular piece of work is a defect or a feature, it
means you can see at a glance exactly how much work remains to be done and
prioritize it accordingly. Low-priority bugs will go way back in your backlog,
and you can treat them the same way you would treat a low-priority story. It is
often the case that customers would rather not fix some bugs—so having bugs
in the backlog along with features is a logical way to manage them.

Summary

In many projects, testing is treated as a distinct phase carried out by specialists.
However, high-quality software is only possible if testing becomes the responsi-
bility of everybody involved in delivering software and is practiced right from
the beginning of the project and throughout its life. Testing is primarily concerned
with establishing feedback loops that drive development, design, and release.
Any plan that defers testing to the end of the project is broken because it removes
the feedback loop that generates higher quality, higher productivity, and, most
importantly of all, any measure of how complete the project is.

The shortest feedback loops are created through sets of automated tests that
are run upon every change to the system. Such tests should run at all levels—from
unit tests up to acceptance tests (both functional and nonfunctional). Automated
tests should be supplemented with manual testing such as exploratory testing
and showcases. This chapter aims to give you a good understanding of the various
types of automated and manual tests required to create excellent feedback and
how to implement them on various types of projects.

In the principles that we described in the “Introduction” section on page 83,
we discuss what defines “done.” Incorporating testing into every part of your
delivery process is vital to getting work done. Since our approach to testing
defines our understanding of “done,” the results of testing are the cornerstone
of project planning.

Testing is fundamentally interconnected with your definition of “done,” and
your testing strategy should be focused on being able to deliver that understanding
feature by feature and ensuring that testing is pervasive throughout your process.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Part II

The Deployment Pipeline

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Anatomy of the Deployment
Pipeline

Introduction

Continuous integration is an enormous step forward in productivity and quality
for most projects that adopt it. It ensures that teams working together to create
large and complex systems can do so with a higher level of confidence and control
than is achievable without it. CI ensures that the code that we create, as a team,
works by providing us with rapid feedback on any problems that we may intro-
duce with the changes we commit. It is primarily focused on asserting that the
code compiles successfully and passes a body of unit and acceptance tests.
However, CI is not enough.

CI mainly focuses on development teams. The output of the CI system normally
forms the input to the manual testing process and thence to the rest of the release
process. Much of the waste in releasing software comes from the progress of
software through testing and operations. For example, it is common to see

® Build and operations teams waiting for documentation or fixes
o Testers waiting for “good” builds of the software

* Development teams receiving bug reports weeks after the team has moved
on to new functionality

® Discovering, towards the end of the development process, that the applica-
tion’s architecture will not support the system’s nonfunctional requirements

This leads to software that is undeployable because it has taken so long to get
it into a production-like environment, and buggy because the feedback cycle
between the development team and the testing and operations team is so long.

There are various incremental improvements to the way software is delivered
which will yield immediate benefits, such as teaching developers to write
production-ready software, running CI on production-like systems, and instituting
cross-functional teams. However, while practices like these will certainly improve

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

matters, they still don’t give you an insight into where the bottlenecks are in the
delivery process or how to optimize for them.

The solution is to adopt a more holistic, end-to-end approach to delivering
software. We have addressed the broader issues of configuration management
and automating large swathes of our build, deploy, test, and release processes.
We have taken this to the point where deploying our applications, even to pro-
duction, is often done by a simple click of a button to select the build that we
wish to deploy. This creates a powerful feedback loop: Since it’s so simple to
deploy your application to testing environments, your team gets rapid feedback
on both the code and the deployment process. Since the deployment process
(whether to a development machine or for final release) is automated, it gets run
and therefore tested regularly, lowering the risk of a release and transferring
knowledge of the deployment process to the development team.

What we end up with is (in lean parlance) a pull system. Testing teams deploy
builds into testing environments themselves, at the push of a button. Operations
can deploy builds into staging and production environments at the push of a
button. Developers can see which builds have been through which stages in the
release process, and what problems were found. Managers can watch such key
metrics as cycle time, throughput, and code quality. As a result, everybody in the
delivery process gets two things: access to the things they need when they need
them, and visibility into the release process to improve feedback so that bottle-
necks can be identified, optimized, and removed. This leads to a delivery process
which is not only faster but also safer.

The implementation of end-to-end automation of our build, deploy, test, and
release processes has had a number of knock-on effects, bringing some unexpected
benefits. One such outcome is that over the course of many projects utilizing such
techniques, we have identified much in common between the deployment pipeline
systems that we have built. We believe that with the abstractions we have iden-
tified, some general patterns have, so far, fit all of the projects in which we have
tried them. This understanding has allowed us to get fairly sophisticated build,
test, and deployment systems up and running very quickly from the start of our
projects. These end-to-end deployment pipeline systems have meant that we have
experienced a degree of freedom and flexibility in our delivery projects that would
have been hard to imagine a few years ago. We are convinced that this approach
has allowed us to create, test, and deploy complex systems of higher quality and
at significantly lower cost and risk than we could otherwise have done.

This is what the deployment pipeline is for.

What Is a Deployment Pipeline?
At an abstract level, a deployment pipeline is an automated manifestation of your

process for getting software from version control into the hands of your users.
Every change to your software goes through a complex process on its way to

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT Is A DEPLOYMENT PIPELINE?

being released. That process involves building the software, followed by the
progress of these builds through multiple stages of testing and deployment. This,
in turn, requires collaboration between many individuals, and perhaps several
teams. The deployment pipeline models this process, and its incarnation in a
continuous integration and release management tool is what allows you to see
and control the progress of each change as it moves from version control through
various sets of tests and deployments to release to users.

Thus the process modeled by the deployment pipeline, the process of getting
software from check-in to release, forms a part of the process of getting a feature
from the mind of a customer or user into their hands. The entire process—from
concept to cash—can be modeled as a value stream map. A high-level value
stream map for the creation of a new product is shown in Figure 5.1.

Product Product Product
opportunity | . B planningand | Development |

discovery -
assessment estimation

3 dayg 1 eewo/ys 7 weeks 1)week | 2

Final testing

and approval ™ IRelEEED

Value-added time

capadine | |_| | L UL

1week 10days 3 days 5days 2days

Figure 5.1 A simple value stream map for a product

This value stream map tells a story. The whole process takes about three and
a half months. About two and a half months of that is actual work being
done—there are waits between the various stages in the process of getting the
software from concept to cash. For example, there is a five-day wait between the
development team completing work on the first release and the start of the testing
process. This might be due to the time it takes to deploy the application to a
production-like environment, for example. As an aside, it has been left deliber-
ately unclear in this diagram whether or not this product is being developed in
an iterative way. In an iterative process, you’d expect to see the development
process itself consist of several iterations which include testing and showcasing.
The whole process from discovery to release would also be repeated many times!

Creating a value stream map can be a low-tech process. In Mary and Tom
Poppendieck’s classic, Lean Software Development: An Agile Toolkit, they
describe it as follows.

1. The importance of iterative discovery based on customer feedback in the product
development process is emphasized in books like Inspired by Marty Cagan and The
Four Steps to the Epiphany by Steven Gary Blank.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

With a pencil and pad in hand, go to the place where a customer request comes into
your organization. You goal is to draw a chart of the average customer request, from
arrival to completion. Working with the people involved in each activity, you sketch
all the process steps necessary to fill the request, as well as the average amount of
time that a request spends in each step. At the bottom of the map, draw a timeline
that shows how much time the request spends in value-adding activities and how
much in waiting states and non-value-adding activities.

If you were interested in doing some organizational transformation work to
improve the process, you would need to go into even more detail and describe
who is responsible for which part of the process, what subprocesses occur in
exceptional conditions, who approves the hand-offs, what resources are required,
what the organizational reporting structures are, and so forth. However, that’s
not necessary for our discussion here. For more details on this, consult Mary and
Tom Poppendieck’s book Implementing Lean Software Development: From
Concept to Cash.

The part of the value stream we discuss in this book is the one that goes from
development through to release. These are the shaded boxes in the value stream
in Figure 5.1. One key difference of this part of the value stream is that builds
pass through it many times on their way to release. In fact, one way to understand
the deployment pipeline and how changes move through it is to visualize it as a
sequence diagram,? as shown in Figure 5.2.

Notice that the input to the pipeline is a particular revision in version control.
Every change creates a build that will, rather like some mythical hero, pass
through a sequence of tests of, and challenges to, its viability as a production
release. This process of a sequence of test stages, each evaluating the build from
a different perspective, is begun with every commit to the version control system,
in the same way as the initiation of a continuous integration process.

As the build passes each test of its fitness, confidence in it increases. Therefore,
the resources that we are willing to expend on it increase, which means that the
environments the build passes through become progressively more production-
like. The objective is to eliminate unfit release candidates as early in the process
as we can and get feedback on the root cause of failure to the team as rapidly as
possible. To this end, any build that fails a stage in the process will not generally
be promoted to the next. These trade-offs are shown in Figure 5.3.

There are some important consequences of applying this pattern. First, you
are effectively prevented from releasing into production builds that are not
thoroughly tested and found to be fit for their intended purpose. Regression bugs
are avoided, especially where urgent fixes need releasing into production (such
fixes go through the same process as any other change). In our experience, it is
also extremely common for newly released software to break down due to some
unforeseen interaction between the components of the system and its environment,
for example due to a new network topology or a slight difference in the

2. Chris Read came up with this idea [9EIHHS)].

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT Is A DEPLOYMENT PIPELINE?

Delivery team Version control Build & unit Automated User acceptance Release
tests acceptance tests tests
i i T TS T——— i
Check in ! T 1 1 !
Trigger : | H I
F| Fefa : : i
1 Feedbpck P = pass \ \ 1
| | 1 1 i
1 1 1 1 1 1
Check in ! ' ' 1 !
Trigger ! ! | 1
1 1 !
H Feedback Trigger ! H
i i - | i
| 1] | !
1 1 1 1 '
i i ! F ! i
| 1 | | '
| 1 I | !
H \ Feedback ! ! H
1 1
1 T T 1 '
| 1 | | !
1 1 I 1 1 !
1 . 1 1 1 1 1
Check in ! 1 ' 1 !
H Trigger (! H i
1 1 1
\ P : ' | I
! Feedblack Trigger ! !
i i - ' i
1 1 1 1 1
1 1 1 1 '
i i ! P ! i
1 1 1 1 !
1 1 1
! ! Feedback , Approval H !
| | Feedbacﬁ d i:l Approval !
: ! ! o P
1 1 1 1
I ' | I
1 1 1 1 i
! ! ' ' !

Figure 5.2 Changes moving through the deployment pipeline

configuration of a production server. The discipline of the deployment pipeline
mitigates this.

Second, when deployment and production release themselves are automated,
they are rapid, repeatable, and reliable. It is often so much easier to perform
a release once the process is automated that they become “normal”
events—meaning that, should you choose, you can perform releases more
frequently. This is particularly the case where you are able to step back to an
earlier version as well as move forward. When this capability is available,
releases are essentially without risk. The worst that can happen is that you find
that you have introduced a critical bug—at which point you revert to an earlier
version that doesn’t contain the bug while you fix the new release offline (see
Chapter 10, “Deploying and Releasing Applications”).

To achieve this enviable state, we must automate a suite of tests that prove
that our release candidates are fit for their purpose. We must also automate de-
ployment to testing, staging, and production environments to remove these
manually intensive, error-prone steps. For many systems, other forms of testing
and so other stages in the release process are also needed, but the subset that is
common to all projects is as follows.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

Increasing confidence in build's production readiness

Environments become more production-like

|

User
acceptance

Commit stage | vl testing

Compile A ce N .
Unit test M test stage Production
Analysis

Build installers

te;ti ng’

Faster feedback

!

Figure 5.3 Trade-offs in the deployment pipeline

® The commit stage asserts that the system works at the technical level. It
compiles, passes a suite of (primarily unit-level) automated tests, and runs
code analysis.

* Automated acceptance test stages assert that the system works at the func-
tional and nonfunctional level, that behaviorally it meets the needs of its
users and the specifications of the customer.

® Manual test stages assert that the system is usable and fulfills its require-
ments, detect any defects not caught by automated tests, and verify that it
provides value to its users. These stages might typically include exploratory
testing environments, integration environments, and UAT (user acceptance
testing).

® Release stage delivers the system to users, either as packaged software or
by deploying it into a production or staging environment (a staging envi-
ronment is a testing environment identical to the production environment).

We refer to these stages, and any additional ones that may be required to
model your process for delivering software, as a deployment pipeline. It is also
sometimes referred to as a continuous integration pipeline, a build pipeline, a
deployment production line, or a living build. Whatever it is called, this is, fun-
damentally, an automated software delivery process. This is not intended to imply
that there is no human interaction with the system through this release process;
rather, it ensures that error-prone and complex steps are automated, reliable,
and repeatable in execution. In fact, human interaction is increased: The ability
to deploy the system at all stages of its development by pressing a button
encourages its frequent use by testers, analysts, developers, and (most importantly)
users.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT Is A DEPLOYMENT PIPELINE?

A Basic Deployment Pipeline

Figure 5.4 shows a typical deployment pipeline and captures the essence of the
approach. Of course, a real pipeline will reflect your project’s actual process for
delivering software.

Env & .
Source Version control

code app
config
UAT
Testers Configure environment
Self-service Deploy binaries <
Developers deployments Smoke test
See code metrics
and test failures
Y A
Commit stage Acceptance stage Capacity stage =
Compile Configure environment Configure environment
Commit tests Deploy binaries Deploy binaries <]
Assemble Smoke test Smoke test
Code analysis Acceptance tests Run capacity tests
Production
. —> >
Operations X .
perform Configure environment
Deploy binaries il
push-button eploy
releases Smoke test
reports
binaries reports reports
y metadata binaries | ymetadata binaries| Y metadata

(Artifact repository)

Figure 5.4 Basic deployment pipeline

The process starts with the developers committing changes into their version
control system. At this point, the continuous integration management system
responds to the commit by triggering a new instance of our pipeline. The first
(commit) stage of the pipeline compiles the code, runs unit tests, performs code
analysis, and creates installers. If the unit tests all pass and the code is up to
scratch, we assemble the executable code into binaries and store them in an artifact
repository. Modern CI servers provide a facility to store artifacts like these and
make them easily accessible both to the users and to the later stages in your
pipeline. Alternatively, there are plenty of tools like Nexus and Artifactory which
help you manage artifacts. There are other tasks that you might also run as part
of the commit stage of your pipeline, such as preparing a test database to use for
your acceptance tests. Modern Cl servers will let you execute these jobs in parallel
on a build grid.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

The second stage is typically composed of longer-running automated acceptance
tests. Again, your CI server should let you split these tests into suites which
can be executed in parallel to increase their speed and give you feedback
faster —typically within an hour or two. This stage will be triggered automatically
by the successful completion of the first stage in your pipeline.

At this point, the pipeline branches to enable independent deployment of your
build to various environments—in this case, UAT (user acceptance testing), ca-
pacity testing, and production. Often, you won’t want these stages to be automat-
ically triggered by the successful completion of your acceptance test stage. Instead,
you’ll want your testers or operations team to be able to self-service builds into
their environments manually. To facilitate this, you’ll need an automated script
that performs this deployment. Your testers should be able to see the release
candidates available to them as well as their status—which of the previous two
stages each build has passed, what were the check-in comments, and any other
comments on those builds. They should then be able to press a button to deploy
the selected build by running the deployment script in the relevant environment.

The same principle applies to further stages in the pipeline, except that, typi-
cally, the various environments you want to be able to deploy to will have different
groups of users who “own” these environments and have the ability to self-service
deployments to them. For example, your operations team will likely want to be
the only one who can approve deployments to production.

ann Pipeline Activity - Cruise (=]
& B) [#&) QB huips:/ demo.studios com /eruise/ history/Dems. v E G = Google al
Mast Visited = Gerting Started Latest Headlines B Firebug Line Graffletopia Poha laminayuio?'s faveri.. Wilsan & Alroy’s Fiv.. ADP iPayStatements .. |
Pipeline Activity in Trader @ =
Trader @
P UAT Prod m
1.2.86]
revisian: 88 g] aulo g auln ul manual manual 1
10 minutes sg0 i
oy ifarieny . .
|
1.2.85 1
I hour ago]
by jrumbie |
|
1.2.84 - |
iskan: B4 F P
s 4 gl o) gj maria [rars % |
by Jhumble |
|
5 |
hitpef kit = l manual marual 1
Thumiie 214 Fix pertormange prosiem B4 1
|
1.2.82 1
revisin: 82 g] autes g auln ul manual marual o
1 day 8o
by dfarieny . .
1.2.81
1 day aga
by jrumbie
1.2.80 »
revision: 80 8
i n;; :W g auto m manual manual
oy Jrumble
v
= gltope onolen shens pmentio i ol i

Figure 5.5 Go showing which changes have passed which stages

www.it-ebooks.info

http://www.it-ebooks.info/

DEPLOYMENT PIPELINE PRACTICES

Finally, it’s important to remember that the purpose of all this is to get feedback
as fast as possible. To make the feedback cycle fast, you need to be able to see
which build is deployed into which environment, and which stages in your pipeline
each build has passed. Figure 5.5 is a screenshot from Go showing what this
looks like in practice.

Notice that you can see every check-in down the side of the page, every stage
in the pipeline that each check-in has been through, and whether it passed or
failed that stage. Being able to correlate a particular check-in, and hence build,
to the stages in the pipeline it has passed through is crucial. It means that if you
see a problem in the acceptance tests (for example), you can immediately find
out which changes were checked into version control that resulted in the
acceptance tests failing.

Deployment Pipeline Practices

Shortly, we’ll go into some more detail on the stages in the deployment pipeline.
But before we do so, in order to get the benefits of this approach, there are some
practices you should follow.

Only Build Your Binaries Once

For convenience, we will refer to the collections of executable code as binaries,
although if you don’t need to compile your code these “binaries” may be just
collections of source files. Jars, .NET assemblies, and .so files are all examples
of binaries.

Many build systems use the source code held in the version control system as
the canonical source for many steps. The code will be compiled repeatedly in
different contexts: during the commit process, again at acceptance test time, again
for capacity testing, and often once for each separate deployment target. Every
time you compile the code, you run the risk of introducing some difference. The
version of the compiler installed in the later stages may be different from
the version that you used for your commit tests. You may pick up a different
version of some third-party library that you didn’t intend. Even the configuration
of the compiler may change the behavior of the application. We have seen bugs
from every one of these sources reaching production.

A related antipattern is to promote at the source-code level rather than at the binary
level. For more information on this antipattern, see the “ClearCase and the
Rebuilding-from-Source Antipattern” section on page 403.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

This antipattern violates two important principles. The first is to keep the de-
ployment pipeline efficient, so the team gets feedback as soon as possible. Recom-
piling violates this principle because it takes time, especially in large systems. The
second principle is to always build upon foundations known to be sound. The
binaries that get deployed into production should be exactly the same as those
that went through the acceptance test process—and indeed in many pipeline im-
plementations, this is checked by storing hashes of the binaries at the time they
are created and verifying that the binary is identical at every subsequent stage in
the process.

If we re-create binaries, we run the risk that some change will be introduced
between the creation of the binaries and their release, such as a change in the
toolchain between compilations, and that the binary we release will be different
from the one we tested. For auditing purposes, it is essential to ensure that no
changes have been introduced, either maliciously or by mistake, between creating
the binaries and performing the release. Some organizations insist that compilation
and assembly, or packaging in the case of interpreted languages, occurs in a
special environment that cannot be accessed by anyone except senior personnel.
Once we have created our binaries, we will reuse them without re-creating them
at the point of use.

So, you should only build your binaries once, during the commit stage of the
build. These binaries should be stored on a filesystem somewhere (not in version
control, since they are derivatives of your baseline, not part of its definition)
where it is easy to retrieve them for later stages in the pipeline. Most CI servers
will handle this for you, and will also perform the crucial task of allowing you
to trace back to the version control check-in which was used to create them. It
isn’t worth spending a lot of time and effort ensuring binaries are backed up—it
should be possible to exactly re-create them by running your automated build
process from the correct revision in version control.

If you take our advice, it will initially feel as though you have more work to do. You
will need to establish some way of propagating your binaries to the later stages in
the deployment pipeline, if your Cl tool doesn’t do this for you already. Some of the
simplistic configuration management tools that come with popular development
environments will be doing the wrong thing. A notable example of this is project
templates that directly generate assemblies containing both code and configuration
files, such as ear and war files, as a single step in the build process.

One important corollary of this principle is that it must be possible to deploy
these binaries to every environment. This forces you to separate code, which re-
mains the same between environments, and configuration, which differs between
environments. This, in turn, will lead you to managing your configuration
correctly, applying a gentle pressure towards better-structured build systems.

www.it-ebooks.info

http://www.it-ebooks.info/

DEPLOYMENT PIPELINE PRACTICES v

Why Binaries Should Not Be Environment-Specific

We consider it a very bad practice to create binary files intended to run in a single
environment. This approach, while common, has several serious drawbacks that
compromise the overall ease of deployment, flexibility, and maintainability of the
system. Some tools even encourage this approach.

When build systems are organized in this way, they usually become very complex
very quickly, spawning lots of special-case hacks to cope with the differences
and the vagaries of various deployment environments. On one project that we
worked on, the build system was so complex that it took a full-time team of five
people to maintain it. Eventually, we relieved them of this unpopular job by reorga-
nizing the build and separating the environment-specific configuration from the
environment-agnostic binaries.

Such build systems make unnecessarily complex what should be trivial tasks,
such as adding a new server to a cluster. This, in turn, forces us into fragile,
expensive release processes. If your build creates binaries that only run on specific
machines, start planning how to restructure them now!

This brings us neatly to the next practice.

Deploy the Same Way to Every Environment

It is essential to use the same process to deploy to every environment—whether
a developer or analyst’s workstation, a testing environment, or production—in
order to ensure that the build and deployment process is tested effectively. Devel-
opers deploy all the time; testers and analysts, less often; and usually, you will
deploy to production fairly infrequently. But this frequency of deployment is the
inverse of the risk associated with each environment. The environment you deploy
to least frequently (production) is the most important. Only after you have tested
the deployment process hundreds of times on many environments can you
eliminate the deployment script as a source of error.

Every environment is different in some way. If nothing else, it will have a
unique IP address, but often there are other differences: operating system and
middleware configuration settings, the location of databases and external services,
and other configuration information that needs to be set at deployment time.
This does not mean you should use a different deployment script for every envi-
ronment. Instead, keep the settings that are unique for each environment separate.
One way to do this is to use properties files to hold configuration information.
You can have a separate properties file for each environment. These files should
be checked in to version control, and the correct one selected either by looking
at the hostname of the local server, or (in a multimachine environment) through
the use of an environment variable supplied to the deployment script. Some
other ways to supply deploy-time configuration include keeping it in a directory

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

service (like LDAP or ActiveDirectory) or storing it in a database and accessing
it through an application like ESCAPE [apvrEr]. There is more on managing
software configuration in the “Managing Software Configuration” section on
page 39.

:@3 It's important to use the same deploy-time configuration mechanism for each of

your applications. This is especially true in a large company, or where many hetero-
geneous technologies are in play. Generally, we're against handing down edicts
from on high—but we’ve seen too many organizations where it was impossibly ar-
duous to work out, for a given application in a given environment, what configuration
was actually supplied at deployment time. We know places where you have to email
separate teams on separate continents to piece together this information. This be-
comes an enormous barrier to efficiency when you're trying to work out the root
cause of some bug—and when you add together the delays it introduces into your
value stream, it is incredibly costly.

It should be possible to consult one single source (a version control repository, a
directory service, or a database) to find configuration settings for all your applications
in all of your environments.

If you work in a company where production environments are managed by a
team different from the team responsible for development and testing environ-
ments, both teams will need to work together to make sure the automated deploy-
ment process works effectively across all environments, including development
environments. Using the same script to deploy to production that you use to de-
ploy to development environments is a fantastic way to prevent the “it works on
my machine” syndrome [c29ETR]. It also means that when you come to release,
you will have tested your deployment process hundreds of times by deploying to
all of your other environments. This is one of the best ways we know to mitigate
the risk of releasing software.

We’ve assumed that you have an automated process for deploying your applica-
tion—but, of course, many organizations still deploy manually. If you have a manual
deployment process, you should start by ensuring that the process is the same for
every environment and then begin to automate it bit by bit, with the goal of having
it fully scripted. Ultimately, you should only need to specify the target environment
and the version of the application to initiate a successful deployment. An automated,
standardized deployment process will have a huge positive effect on your ability to
release your application repeatably and reliably, and ensure that the process is
completely documented and audited. We cover automating deployment in detail in
the following chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

DEPLOYMENT PIPELINE PRACTICES

This principle is really another application of the rule that you should separate
what changes from what doesn’t. If your deployment script is different for differ-
ent environments, you have no way of knowing that what you’re testing will
actually work when you go live. Instead, if you use the same process to deploy
everywhere, when a deployment doesn’t work to a particular environment you
can narrow it down to one of three causes:

® A setting in your application’s environment-specific configuration file

e A problem with your infrastructure or one of the services on which your
application depends

e The configuration of your environment

Establishing which of these is the underlying cause is the subject of the next
two practices.

Smoke-Test Your Deployments

When you deploy your application, you should have an automated script that
does a smoke test to make sure that it is up and running. This could be as simple
as launching the application and checking to make sure that the main screen
comes up with the expected content. Your smoke test should also check that any
services your application depends on are up and running—such as a database,
messaging bus, or external service.

The smoke test, or deployment test, is probably the most important test to
write once you have a unit test suite up and running—indeed, it’s arguably even
more important. It gives you the confidence that your application actually runs.
If it doesn’t run, your smoke test should be able to give you some basic diagnostics
as to whether your application is down because something it depends on is not
working.

Deploy into a Copy of Production

The other main problem many teams experience going live is that their production
environment is significantly different from their testing and development environ-
ments. To get a good level of confidence that going live will actually work, you
need to do your testing and continuous integration on environments that are as
similar as possible to your production environment.

Ideally, if your production environment is simple or you have a sufficiently
large budget, you can have exact copies of production to run your manual and
automated tests on. Making sure that your environments are the same requires
a certain amount of discipline to apply good configuration management practices.
You need to ensure that:

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

® Your infrastructure, such as network topology and firewall configuration,
is the same.

® Your operating system configuration, including patches, is the same.
* Your application stack is the same.

* Your application’s data is in a known, valid state. Migrating data when
performing upgrades can be a major source of pain in deployments. We
deal more with this topic in Chapter 12, “Managing Data.”

You can use such practices as disk imaging and virtualization, and tools like
Puppet and InstallShield along with a version control repository, to manage your
environments’ configuration. We discuss this in detail in Chapter 11, “Managing
Infrastructure and Environments.”

Each Change Should Propagate through the Pipeline Instantly

Before continuous integration was introduced, many projects ran various parts
of their process off a schedule—for example, builds might run hourly, acceptance
tests nightly, and capacity tests over the weekend. The deployment pipeline takes
a different approach: The first stage should be triggered upon every check-in,
and each stage should trigger the next one immediately upon successful comple-
tion. Of course this is not always possible when developers (especially on large
teams) are checking in very frequently, given that the stages in your process can
take a not insignificant amount of time. The problem is shown in Figure 5.6.

In this example, somebody checks a change into version control, creating ver-
sion 1. This, in turn, triggers the first stage in the pipeline (build and unit tests).
This passes, and triggers the second stage: the automated acceptance tests.
Somebody then checks in another change, creating version 2. This triggers the
build and unit tests again. However, even though these have passed, they cannot
trigger a new instance of the automated acceptance tests, since they are already
running. In the meantime, two more check-ins have occurred in quick succession.
However, the CI system should not attempt to build both of them —if it followed
that rule, and developers continued to check in at the same rate, the builds would
get further and further behind what the developers are currently doing.

Instead, once an instance of the build and unit tests has finished, the CI system
checks to see if new changes are available, and if so, builds off the most recent
set available—in this case, version 4. Suppose this breaks the build and unit tests
stage. The build system doesn’t know which commit, 3 or 4, caused the stage to
break, but it is usually simple for the developers to work this out for themselves.
Some CI systems will let you run specified versions out of order, in which case
the developers could trigger the first stage off revision 3 to see if it passes or fails,
and thus whether it was commit 3 or 4 that broke the build. Either way, the
development team checks in version 5, which fixes the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

DEPLOYMENT PIPELINE PRACTICES

Delivery team Version control Build & unit Automated
tests acceptance tests
i i
Check in ! 1 1
1 Trigger L '
i
I T 1 |
1 1 1
! ! P Trigger 2l
1 1
Check in ! . ‘r
- > Trigger e
Check in i
3 2 F = fail
Check in P P = pass
4
- —
L« i
| i i ! c
1 1
F
i i P
i i -
1 1 i
1 1
Check in I i
H' Trigger =L
\ 1 5
i i P
1 1 ~e
i i - .
]]] - e
1 1 1 e
| ; ! Al
1 1 1
i ' ! 5
1 1 il
1 1 1
1 1 il
1 1 1
1 1 1
1 1 1
! ! ! -

Figure 5.6 Scheduling stages in a pipeline

When the acceptance tests finally finish, the CI system’s scheduler notices that
new changes are available, and triggers a new run of the acceptance tests against
version 5.

This intelligent scheduling is crucial to implementing a deployment pipeline.
Make sure your CI server supports this kind of scheduling workflow—many
do—and ensure that changes propagate immediately so that you don’t have to
run stages off a fixed schedule.

This only applies to stages that are fully automated, such as those containing
automated tests. The later stages in the pipeline that perform deployments to
manual testing environments need to be activated on demand, which we describe
in a later section in this chapter.

If Any Part of the Pipeline Fails, Stop the Line

As we said in the “Implementing Continuous Integration™ section on page 56,
the most important step in achieving the goals of this book—rapid, repeatable,
reliable releases—is for your team to accept that every time they check code into
version control, it will successfully build and pass every test. This applies to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

entire deployment pipeline. If a deployment to an environment fails, the whole
team owns that failure. They should stop and fix it before doing anything else.

The Commit Stage

A new instance of your deployment pipeline is created upon every check-in and,
if the first stage passes, results in the creation of a release candidate. The aim of
the first stage in the pipeline is to eliminate builds that are unfit for production
and signal the team that the application is broken as quickly as possible. We
want to expend a minimum of time and effort on a version of the application
that is obviously broken. So, when a developer commits a change to the version
control system, we want to evaluate the latest version of the application quickly.
The developer who checked in then waits for the results before moving on to the
next task.

There are a few things we want to do as part of our commit stage. Typically,
these tasks are run as a set of jobs on a build grid (a facility provided by most
CI servers) so the stage completes in a reasonable length of time. The commit
stage should ideally take less than five minutes to run, and certainly no more
than ten minutes. The commit stage typically includes the following steps:

e Compile the code (if necessary).

* Run a set of commit tests.

e Create binaries for use by later stages.

® Perform analysis of the code to check its health.

® Prepare artifacts, such as test databases, for use by later stages.

The first step is to compile the latest version of the source code and notify the
developers who committed changes since the last successful check-in if there is
an error in compilation. If this step fails, we can fail the commit stage immediately
and eliminate this instance of the pipeline from further consideration.

Next, a suite of tests is run, optimized to execute very quickly. We refer to this
suite of tests as commit stage tests rather than unit tests because, although the
vast majority of them are indeed unit tests, it is useful to include a small selection
of tests of other types at this stage in order to get a higher level of confidence
that the application is really working if the commit stage passes. These are the
same tests that developers run before they check in their code (or, if they have
the facility to do so, through a pretested commit on the build grid).

Begin the design of your commit test suite by running all unit tests. Later, as
you learn more about what types of failure are common in acceptance test runs
and other later stages in the pipeline, you should add specific tests to your commit
test suite to try and find them early on. This is an ongoing process optimization

www.it-ebooks.info

http://www.it-ebooks.info/

THE COMMIT STAGE

that is important if you are to avoid the higher costs of finding and fixing bugs
in later pipeline stages.

Establishing that your code compiles and passes tests is great, but it doesn’t
tell you a lot about the nonfunctional characteristics of your application. Testing
nonfunctional characteristics such as capacity can be hard, but you can run
analysis tools giving you feedback on such characteristics of your code base as
test coverage, maintainability, and security breaches. Failure of your code to meet
preset thresholds for these metrics should fail the commit stage the same way
that a failing test does. Useful metrics include:

e Test coverage (if your commit tests only cover 5% of your codebase, they’re
pretty useless)

® Amount of duplicated code

¢ Cyclomatic complexity

e Afferent and efferent coupling
e Number of warnings

* Code style

The final step in the commit stage, following successful execution of everything
up to this point, is the creation of a deployable assembly of your code ready for
deployment into any subsequent environment. This, too, must succeed for the
commit stage to be considered a success as a whole. Treating the creation of the
executable code as a success criteria in its own right is a simple way of ensuring
that our build process itself is also under constant evaluation and review by our
continuous integration system.

Commit Stage Best Practices

Most of the practices described in Chapter 3, “Continuous Integration,” apply
to the commit stage. Developers are expected to wait until the commit stage of
the deployment pipeline succeeds. If it fails, they should either quickly fix the
problem, or back their changes out from version control. In the ideal world—a
world of infinite processor power and unlimited network bandwidth—we would
like our developers to wait for all tests to pass, even the manual ones, so that
they could fix any problem immediately. In reality, this is not practical, as the
later stages in the deployment pipeline (automated acceptance testing, capacity
testing, and manual acceptance testing) are lengthy activities. This is the reason
for pipelining your test process—it’s important to get feedback as quickly as
possible, when problems are cheap to fix, but not at the expense of getting more
comprehensive feedback when it becomes available.

www.it-ebooks.info

http://www.it-ebooks.info/

v CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

The Origin of the Term “Deployment Pipeline”

When we first used this idea, we named it a pipeline not because it was like a
liquid flowing through a pipe; rather, for the hardcore geeks amongst us, it reminded
us of the way processors “pipeline” their instruction execution in order to get a
degree of parallelism. Processor chips can execute instructions in parallel. But
how do you take a stream of machine instructions intended to be executed
serially and divide them up into parallel streams that make sense? The way pro-
cessors do this is very clever and quite complex, but in essence they often come
to points where they effectively “guess” the result of an operation in a separate
execution pipeline and start executing on the assumption of that guess. If the
guess is later found to be wrong, the results of the stream that was based on it
are simply dumped. There has been no gain—but no loss either. However, if the
guess was good, the processor has just done twice as much work in the time it
would take a single stream of execution—so for that spell, it was running twice
as fast.

Our deployment pipeline concept works in the same way. We design our commit
stage so that it will catch the majority of problems, while running very quickly. As
a result, we make a “guess” that all of our subsequent test stages will pass, so
we resume work on new features, preparing for the next commit and the initiation
of the next release candidate. Meanwhile, our pipeline optimistically works on our
assumption of success, in parallel to our development of new features.

Passing the commit stage is an important milestone in the journey of a release
candidate. It is a gate in our process that, once passed, frees developers to move
on to their next task. However, they retain a responsibility to monitor the progress
of the later stages too. Fixing broken builds remains the top priority for the de-
velopment team even when those breakages occur in the later stages of the
pipeline. We are gambling on success—but are ready to pay our technical debts
should our gamble fail.

If you only implement a commit stage in your development process, it usually
represents an enormous step forward in the reliability and quality of the output
of your teams. However, there are several more stages necessary to complete
what we consider to be a minimal deployment pipeline.

The Automated Acceptance Test Gate

A comprehensive commit test suite is an excellent litmus test for many classes of
errors, but there is much that it won’t catch. Unit tests, which comprise the vast
majority of the commit tests, are so coupled to the low-level API that it is often
hard for the developers to avoid the trap of proving that the solution works in
a particular way, rather than asserting that is solves a particular problem.

www.it-ebooks.info

http://www.it-ebooks.info/

THE AUTOMATED ACCEPTANCE TEST GATE V

We once worked on a large project with around 80 developers. The system was
developed using continuous integration at the heart of our development process.
As a team, our build discipline was pretty good; we needed it to be with a team
of this size.

Why Unit Tests Aren’t Enough

One day we deployed the latest build that had passed our unit tests into a test
environment. This was a lengthy but controlled approach to deployment that
our environment specialists carried out. However, the system didn’t seem to work.
We spent a lot of time trying to find what was wrong with the configuration of the
environment, but we couldn’t find the problem. Then one of our senior developers
tried the application on his development machine. It didn’t work there either.

He stepped back through earlier and earlier versions, until he found that the
system had actually stopped working three weeks earlier. A tiny, obscure bug had
prevented the system from starting correctly.

This project had good unit test coverage, with the average for all modules around
90%. Despite this, 80 developers, who usually only ran the tests rather than the
application itself, did not see the problem for three weeks.

We fixed the bug and introduced a couple of simple, automated smoke tests that
proved that the application ran and could perform its most fundamental function
as part of our continuous integration process.

We learned a lot of lessons from this and many other experiences on this big
complex project. But the most fundamental one was that unit tests only test a
developer’s perspective of the solution to a problem. They have only a limited
ability to prove that the application does what it is supposed to from a users per-
spective. If we want to be sure that the application provides to its users the value
that we hope it will, we will need another form of test. Our developers could have
achieved this by running the application more frequently themselves and interacting
with it. This would have solved the specific problem that we described above, but
it is not a very effective approach for a big complex application.

This story also points to another common failing in the development process that
we were using. Our first assumption was that there was a problem with our
deployment—that we had somehow misconfigured the system when we deployed
it to our test environment. This was a fair assumption, because that sort of failure
was quite common. Deploying the application was a complex, manually intensive
process that was quite prone to error.

So, although we had a sophisticated, well-managed, disciplined continuous in-
tegration process in place, we still could not be confident that we could identify
real functional problems. Nor could we be sure that, when it came time to deploy
the system, further errors would not be introduced. Furthermore, since deployments
took so long, it was often the case that the process for deployment would change
every time the deployment happened. This meant that every attempt at deployment
was a new experiment—a manual, error-prone process. This created a vicious
circle which meant very high-risk releases.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

Commit tests that run against every check-in provide us with timely feedback
on problems with the latest build and on bugs in our application in the small.
But without running acceptance tests in a production-like environment, we know
nothing about whether the application meets the customer’s specifications, nor
whether it can be deployed and survive in the real world. If we want timely
feedback on these topics, we must extend the range of our continuous integration
process to test and rehearse these aspects of our system too.

The relationship of the automated acceptance test stage of our deployment
pipeline to functional acceptance testing is similar to that of the commit stage to
unit testing. The majority of tests running during the acceptance test stage are
functional acceptance tests, but not all.

The goal of the acceptance test stage is to assert that the system delivers the
value the customer is expecting and that it meets the acceptance criteria. The
acceptance test stage also serves as a regression test suite, verifying that no bugs
are introduced into existing behavior by new changes. As we describe in Chap-
ter 8, “Automated Acceptance Testing,” the process of creating and maintaining
automated acceptance tests is not carried out by separate teams but is brought
into the heart of the development process and carried out by cross-functional
delivery teams. Developers, testers, and customers work together to create these
tests alongside the unit tests and the code they write as part of their normal
development process.

Crucially, the development team must respond immediately to acceptance test
breakages that occur as part of the normal development process. They must decide
if the breakage is a result of a regression that has been introduced, an intentional
change in the behavior of the application, or a problem with the test. Then they
must take the appropriate action to get the automated acceptance test suite
passing again.

The automated acceptance test gate is the second significant milestone in the
lifecycle of a release candidate. The deployment pipeline will only allow the later
stages, such as manually requested deployments, to access builds that have suc-
cessfully overcome the hurdle of automated acceptance testing. While it is possible
to try and subvert the system, this is so time-consuming and expensive that the
effort is much better spent on fixing the problem that the deployment pipeline
has identified and deploying in the controlled and repeatable manner it supports.
The deployment pipeline makes it easier to do the right thing than to do the
wrong thing, so teams do the right thing.

Thus a release candidate that does not meet all of its acceptance criteria will
never get released to users.

Automated Acceptance Test Best Practices

It is important to consider the environments that your application will encounter
in production. If you’re only deploying to a single production environment under
your control, you’re lucky. Simply run your acceptance tests on a copy of this

www.it-ebooks.info

http://www.it-ebooks.info/

THE AUTOMATED ACCEPTANCE TEST GATE

environment. If the production environment is complex or expensive, you can
use a scaled-down version of it, perhaps using a couple of middleware servers
while there might be many of them in production. If your application depends
on external services, you can use test doubles for any external infrastructure that
you depend on. We go into more detail on these approaches in Chapter 8,
“Automated Acceptance Testing.”

If you have to target many different environments, for example if you’re devel-
oping software that has to be installed on a user’s computer, you will need to
run acceptance tests on a selection of likely target environments. This is most
easily accomplished with a build grid. Set up a selection of test environments, at
least one for each target test environment, and run acceptance tests in parallel
on all of them.

In many organizations where automated functional testing is done at all, a
common practice is to have a separate team dedicated to the production and
maintenance of the test suite. As described at length in Chapter 4, “Implementing
a Testing Strategy,” this is a bad idea. The most problematic outcome is that the
developers don’t feel as if they own the acceptance tests. As a result, they tend
not to pay attention to the failure of this stage of the deployment pipeline, which
leads to it being broken for long periods of time. Acceptance tests written without
developer involvement also tend to be tightly coupled to the UI and thus brittle
and badly factored, because the testers don’t have any insight into the UI’s under-
lying design and lack the skills to create abstraction layers or run acceptance tests
against a public API.

The reality is that the whole team owns the acceptance tests, in the same way
as the whole team owns every stage of the pipeline. If the acceptance tests fail,
the whole team should stop and fix them immediately.

One important corollary of this practice is that developers must be able to run
automated acceptance tests on their development environments. It should be easy
for a developer who finds an acceptance test failure to fix it easily on their own
machine and verify the fix by running that acceptance test locally. The most
common obstacles to this are insufficient licenses for the testing software being
used and an application architecture that prevents the system from being deployed
on a development environment so that the acceptance tests can be run against
it. If your automated acceptance testing strategy is to succeed in the long term,
these kinds of obstacles need to be removed.

It can be easy for acceptance tests to become too tightly coupled to a particular
solution in the application rather than asserting the business value of the system.
When this happens, more and more time is spent maintaining the acceptance
tests as small changes in the behavior of the system invalidate tests. Acceptance
tests should be expressed in the language of the business (what Eric Evans calls
the “ubiquitous language”3), not in the language of the technology of the appli-
cation. By this we mean that while it is fine to write the acceptance tests in the

3. Evans, 2004.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

same programming language that your team uses for development, the abstraction
should work at the level of business behavior— “place order” rather than “click
order button,” “confirm fund transfer” rather than “check fund_table has results,”
and so on.

While acceptance tests are extremely valuable, they can also be expensive to
create and maintain. It is thus essential to bear in mind that automated acceptance
tests are also regression tests. Don’t follow a naive process of taking your
acceptance criteria and blindly automating every one.

We have worked on several projects that found, as a result of following some
of the bad practices described above, that the automated functional tests were
not delivering enough value. They were costing far too much to maintain, and
so automated functional testing was stopped. This is the right decision if the tests
cost more effort than they save, but changing the way the creation and mainte-
nance of the tests are managed can dramatically reduce the effort expended and
change the cost-benefit equation significantly. Doing acceptance testing right is
the main subject of Chapter 8, “Automated Acceptance Testing.”

Subsequent Test Stages

The acceptance test stage is a significant milestone in the lifecycle of a release
candidate. Once this stage has been completed, a successful release candidate has
moved on from something that is largely the domain of the development team
to something of wider interest and use.

For the simplest deployment pipelines, a build that has passed acceptance
testing is ready for release to users, at least as far as the automated testing of the
system is concerned. If the candidate fails this stage, it by definition is not fit to
be released.

The progression of the release candidate to this point has been automatic, with
successful candidates being automatically promoted to the next stage. If you are
delivering software incrementally, it is possible to have an automated deployment
to production, as described in Timothy Fitz’ blog entry, “Continuous Deploy-
ment” [dbnlG8]. But for many systems, some form of manual testing is desirable
before release, even when you have a comprehensive set of automated tests. Many
projects have environments for testing integration with other systems, environ-
ments for testing capacity, exploratory testing environments, and staging
and production environments. Each of these environments can be more or less
production-like and have their own unique configuration.

The deployment pipeline takes care of deployments to testing environments
too. Release management systems such as AntHill Pro and Go provide the ability
to see what is currently deployed into each environment and to perform a push-
button deployment into that environment. Of course behind the scenes, these
simply run the deployment scripts you have written to perform the deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

SUBSEQUENT TEST STAGES

It is also possible to build your own system to do this, based on open source tools
such as Hudson or the CruiseControl family, although commercial tools provide
visualizations, reporting, and fine-grained authorization of deployments out of
the box. If you create your own system, the key requirements are to be able to
see a list of release candidates that have passed the acceptance test stage, have a
button to deploy the version of your choice into the environment of your choice,
see which release candidate is currently deployed in each environment and which
version in version control it came from. Figure 5.7 shows a home-brewed system
that performs these functions.

ene Deployment Page =
a- & 4} @ hap:/fifugant v [(1E]~ Gongh Q) ¢
Deployment Page

) Available Releases

x| 14 4055 build 480 Fri, 02 May 2008 09:09:4] Deploy |

2l 14 4028 build 479 Wed, 30 Apr 2008 15:35:59 Re-Deploy | Stop Release | Browse
X] 13 3972 build 469 Fri, 25 Apr 2008 16:43:30 Deploy [

Ry 12 3775 build 442 Fn. 11 Apr 2008 17:28:35 _!?_ggl“(l\.r_l

Dane (v]

Figure 5.7 Example deployment page

Deployments to these environments may be executed in sequence, each one
depending on the successful outcome of the one before, so that you can only de-
ploy to production once you have deployed to UAT and staging. They could also
occur in parallel, or be offered as optional stages that are manually selected.

Crucially, the deployment pipeline allows testers to deploy any build to their
testing environments on demand. This replaces the concept of the “nightly build.”
In the deployment pipeline, instead of testers being given a build based on an
arbitrary revision (the last change committed before everybody went home),
testers can see which builds passed the automated tests, which changes were
made to the application, and choose the build they want. If the build turns out
to be unsatisfactory in some way —perhaps it does not include the correct change,
or contains some bug which makes it unsuitable for testing—the testers can
redeploy any other build.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

Manual Testing

In iterative processes, acceptance testing is always followed by some manual
testing in the form of exploratory testing, usability testing, and showcases. Before
this point, developers may have demonstrated features of the application to ana-
lysts and testers, but neither of these roles will have wasted time on a build that
is not known to have passed automated acceptance testing. A tester’s role in this
process should not be to regression-test the system, but first of all to ensure that
the acceptance tests genuinely validate the behavior of the system by manually
proving that the acceptance criteria are met.

After that, testers focus on the sort of testing that human beings excel at but
automated tests are poor at. They do exploratory testing, perform user testing
of the application’s usability, check the look and feel on various platforms, and
carry out pathological worst-case tests. Automated acceptance testing is what
frees up time for testers so they can concentrate on these high-value activities,
instead of being human test-script execution machines.

Nonfunctional Testing

Every system has many nonfunctional requirements. For example, almost every
system has some kind of requirements on capacity and security, or the service-
level agreements it must conform to. It usually makes sense to run automated
tests to measure how well the system adheres to these requirements. For more
details on how to achieve this, see Chapter 9, “Testing Nonfunctional
Requirements.” For other systems, testing of nonfunctional requirements need
not be done on a continuous basis. Where it is required, in our experience it is
still valuable to create a stage in your pipeline for running these automated tests.

Whether the results of the capacity test stage form a gate or simply inform
human decision-making is one of the criteria that determine the organization of
the deployment pipeline. For very high-performance applications, it makes sense
to run capacity testing as a wholly automated outcome of a release candidate
successfully passing the acceptance test stage. If the candidate fails capacity testing,
it is not usually deemed to be deployable.

For many applications, though, the judgment of what is deemed acceptable is
more subjective than that. It makes more sense to present the results at the con-
clusion of the capacity test stage and allow a human being to decide whether the
release candidate should be promoted or not.

Preparing to Release
There is a business risk associated with every release of a production system. At

best, if there is a serious problem at the point of release, it may delay the intro-
duction of valuable new capabilities. At worst, if there is no sensible back-out

www.it-ebooks.info

http://www.it-ebooks.info/

PREPARING TO RELEASE

plan in place, it may leave the business without mission-critical resources because
they had to be decommissioned as part of the release of the new system.

The mitigation of these problems is very simple when we view the release step
as a natural outcome of our deployment pipeline. Fundamentally, we want to

* Have a release plan that is created and maintained by everybody involved
in delivering the software, including developers and testers, as well as
operations, infrastructure, and support personnel

* Minimize the effect of people making mistakes by automating as much of
the process as possible, starting with the most error-prone stages

® Rehearse the procedure often in production-like environments, so you can
debug the process and the technology supporting it

® Have the ability to back out a release if things don’t go according to plan

e Have a strategy for migrating configuration and production data as part
of the upgrade and rollback processes

Our goal is a completely automated release process. Releasing should be as
simple as choosing a version of the application to release and pressing a button.
Backing out should be just as simple. There is a great deal more information on
these topics in Chapter 10, “Deploying and Releasing Applications.”

Automating Deployment and Release

The less control we have over the environment in which our code executes, the
more potential there is for unexpected behaviors. Thus, whenever we release a
software system, we want to be in control of every single bit that is deployed.
There are two factors that may work against this ideal. The first is that for many
applications, you simply don’t have full control of the operational environment
of the software that you create. This is especially true of products and applications
that are installed by users, such as games or office applications. This problem is
generally mitigated by selecting a representative sample of target environments
and running your automated acceptance test suite on each of these sample envi-
ronments in parallel. You can then mine the data produced to work out which
tests fail on which platforms.

The second constraint is that the cost of establishing that degree of control is
usually assumed to outweigh the benefits. However, usually the converse is true:
Most problems with production environments are caused by insufficient control.
As we describe in Chapter 11, production environments should be completely
locked down—changes to them should only be made through automated
processes. That includes not only deployment of your application, but also changes
to their configuration, software stack, network topology, and state. Only in this
way is it possible to reliably audit them, diagnose problems, and repair them in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

a predictable time. As the complexity of the system increases, so does the number
of different types of servers, and the higher the level of performance required,
the more vital this level of control becomes.

The process for managing your production environment should be used for
your other testing environments such as staging, integration, and so forth. In this
way you can use your automated change management system to create a perfectly
tuned configuration in your manual testing environments. These can be tuned to
perfection, perhaps using feedback from capacity testing to evaluate the
configuration changes that you make. When you are happy with the result, you
can replicate it to every server that needs that configuration, including production,
in a predictable, reliable way. All aspects of the environment should be managed
in this way, including middleware (databases, web servers, message brokers, and
application servers). Each can be tuned and tweaked, with the optimal settings
added to your configuration baseline.

The costs of automating the provision and maintenance of environments can
be lowered significantly by using automated provisioning and management of
environments, good configuration management practices, and (if appropriate)
virtualization.

Once the environment’s configuration is managed correctly, the application
can be deployed. The details of this vary widely depending on the technologies
employed in the system, but the steps are always very similar. We exploit this
similarity in our approach to the creation of build and deployment scripts, dis-
cussed in Chapter 6, “Build and Deployment Scripting,” and in the way in which
We monitor our process.

With automated deployment and release, the process of delivery becomes de-
mocratized. Developers, testers, and operations teams no longer need to rely on
ticketing systems and email threads to get builds deployed so they can gather
feedback on the production readiness of the system. Testers can decide which
version of the system they want in their test environment without needing to be
technical experts themselves, nor relying on the availability of such expertise to
make the deployment. Since deployment is simple, they can change the build
under test more often, perhaps returning to an earlier version of the system to
compare its behavior with that of the latest version when they find a particularly
interesting bug. Sales people can access the latest version of the application with
the killer feature that will swing the deal with a client. There are more subtle
changes too. In our experience, people begin to relax a little. They perceive the
project as a whole as less risky —mainly because it is less risky.

An important reason for the reduction in risk is the degree to which the process
of release itself is rehearsed, tested, and perfected. Since you use the same
process to deploy your system to each of your environments and to release it,
the deployment process is tested very frequently—perhaps many times a day.
After you have deployed a complex system for the fiftieth or hundredth time
without a hitch, you don’t think about it as a big event any more. Our goal is to
get to that stage as quickly as possible. If we want to be wholly confident in the

www.it-ebooks.info

http://www.it-ebooks.info/

PREPARING TO RELEASE

release process and the technology, we must use it and prove it to be good on a
regular basis, just like any other aspect of our system. It should be possible to
deploy a single change to production through the deployment pipeline with the
minimum possible time and ceremony. The release process should be continuously
evaluated and improved, identifying any problems as close to the point at which
they were introduced as possible.

Many businesses require the ability to release new versions of their software
several times a day. Even product companies often need to make new versions
of their software available to users quickly, in case critical defects or security
holes are found. The deployment pipeline and the associated practices in this
book are what makes it possible to do this safely and reliably. Although many
agile development processes thrive on frequent release into production—a process
we recommend very strongly when it is applicable —it doesn’t always make sense
to do so. Sometimes we have to do a lot of work before we are in a position to
release a set of features that makes sense to our users as a whole, particularly in
the realm of product development. However, even if you don’t need to release
your software several times a day, the process of implementing a deployment
pipeline will still make an enormous positive impact on your organization’s
ability to deliver software rapidly and reliably.

Backing Out Changes

There are two reasons why release days are traditionally feared. The first one is
the fear of introducing a problem because somebody might make a hard-to-detect
mistake while going through the manual steps of a software release, or because
there is a mistake in the instructions. The second fear is that, should the release
fail, either because of a problem in the release process or a defect in the new
version of the software, you are committed. In either case, the only hope is that
you will be clever enough to solve the problem very quickly.

The first problem we mitigate by essentially rehearsing the release many times
a day, proving that our automated deployment system works. The second fear
is mitigated by providing a back-out strategy. In the worst case, you can then get
back to where you were before you began the release, which allows you to take
time to evaluate the problem and find a sensible solution.

In general, the best back-out strategy is to keep the previous version of your
application available while the new version is being released —and for some time
afterwards. This is the basis for some of the deployment patterns we discuss in
Chapter 10, “Deploying and Releasing Applications.” In a very simple application,
this can be achieved (ignoring data and configuration migrations) by having each
release in a directory and using a symlink to point to the current version. Usually,
the most complex problem associated with both deploying and rolling back is
migrating the production data. This is discussed at length in Chapter 12,
“Managing Data.”

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

The next best option is to redeploy the previous good version of your appliation
from scratch. To this end, you should have the ability to click a button to release
any version of your application that has passed all stages of testing, just as you
can with other environments under the control of the deployment pipeline. This
idealistic position is fully achievable for some systems, even for systems with
significant amounts of data associated with them. However, for some systems,
even for individual changes, the cost of providing a full, version-neutral back-
out may be excessive in time, if not money. Nevertheless, the ideal is useful,
because it sets a target which every project should strive to achieve. Even if it
falls somewhat short in some respects, the closer you approach this ideal position
the easier your deployment becomes.

On no account should you have a different process for backing out than you
do for deploying, or perform incremental deployments or rollbacks. These pro-
cesses will be rarely tested and therefore unreliable. They will also not start from
a known-good baseline, and therefore will be brittle. Always roll back either by
keeping an old version of the application deployed or by completely redeploying
a previous known-good version.

Building on Success

By the time a release candidate is available for deployment into production, we
will know with certainty that the following assertions about it are true:

® The code can compile.

e The code does what our developers think it should because it passed its
unit tests.

e The system does what our analysts or users think it should because it passed
all of the acceptance tests.

* Configuration of infrastructure and baseline environments is managed
appropriately, because the application has been tested in an analog of
production.

® The code has all of the right components in place because it was deployable.

e The deployment system works because, at a minimum, it will have been
used on this release candidate at least once in a development environment,
once in the acceptance test stage, and once in a testing environment before
the candidate could have been promoted to this stage.

e The version control system holds everything we need to deploy, without
the need for manual intervention, because we have already deployed the
system several times.

www.it-ebooks.info

http://www.it-ebooks.info/

IMPLEMENTING A DEPLOYMENT PIPELINE

This “building upon success” approach, allied with our mantra of failing the
process or any part of it as quickly as possible, works at every level.

Implementing a Deployment Pipeline

Whether you’re starting a new project from scratch or trying to create an auto-
mated pipeline for an existing system, you should generally take an incremental
approach to implementing a deployment pipeline. In this section we’ll set out a
strategy for going from nothing to a complete pipeline. In general, the steps look
like this:

Model your value stream and create a walking skeleton.

Automate the build and deployment process.

Automate unit tests and code analysis.

Automate acceptance tests.

I

Automate releases.

Modeling Your Value Stream and Creating a Walking Skeleton

As described at the beginning of this chapter, the first step is to map out the part
of your value stream that goes from check-in to release. If your project is already
up and running, you can do this in about half an hour using pencil and paper.
Go and speak to everybody involved in this process, and write down the steps.
Include best guesses for elapsed time and value-added time. If you’re working
on a new project, you will have to come up with an appropriate value stream.
One way to do this is to look at another project within the same organization
that has characteristics similar to yours. Alternatively, you could start with a
bare minimum: a commit stage to build your application and run basic metrics
and unit tests, a stage to run acceptance tests, and a third stage to deploy your
application to a production-like environment so you can demo it.

Once you have a value stream map, you can go ahead and model your process
in your continuous integration and release management tool. If your tool doesn’t
allow you to model your value stream directly, you can simulate it by using de-
pendencies between projects. Each of these projects should do nothing at
first—they are just placeholders that you can trigger in turn. Using our “bare
minimum” example, the commit stage should be run every time somebody checks
in to version control. The stage that runs the acceptance tests should trigger
automatically when the commit stage passes, using the same binary created in
the commit stage. Any stages that deploy the binaries to a production-like envi-
ronment for manual testing or release purposes should require you to press a
button in order to select the version to deploy, and this capability will usually
require authorization.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER § ANATOMY OF THE DEPLOYMENT PIPELINE

You can then make these placeholders actually do something. If your project
is already well under way, that means plugging in your existing build, test, and
deploy scripts. If not, your aim is to create a “walking skeleton” [bEUuac], which
means doing the smallest possible amount of work to get all the key elements in
place. First of all, get the commit stage working. If you don’t have any code or
unit tests yet, just create the simplest possible “Hello world” example or, for a
web application, a single HTML page, and put a single unit test in place that
asserts true. Then you can do the deployment— perhaps setting up a virtual direc-
tory on IIS and putting your web page into it. Finally, you can do the acceptance
test—you need to do this after you’ve done the deployment, since you need your
application deployed in order to run acceptance tests against it. Your acceptance
test can crank up WebDriver or Sahi and verify that the web page contains the
text “Hello world.”

On a new project, all this should be done before work starts on develop-
ment—as part of iteration zero, if you’re using an iterative development process.
Your organization’s system administrators or operations personnel should be
involved in setting up a production-like environment to run demos from and
developing the scripts to deploy your application to it. In the following sections,
there’s more detail on how to create the walking skeleton and develop it as your
project grows.

Automating the Build and Deployment Process

The first step in implementing a pipeline is to automate the build and deployment
process. The build process takes source code as its input and produces binaries
as output. “Binaries” is a deliberately vague word, since what your build process
produces will depend on what technology you’re using. The key characteristic
of binaries is that you should be able to copy them onto a new machine and,
given an appropriately configured environment and the correct configuration for
the application in that environment, start your application—without relying on
any part of your development toolchain being installed on that machine.

The build process should be performed every time someone checks in by your
continuous integration server software. Use one of the many tools listed in the
“Implementing Continuous Integration” section on page 56. Your CI server
should be configured to watch your version control system, check out or update
your source code every time a change is made to it, run the automated build
process, and store the binaries on the filesystem where they are accessible to the
whole team via the CI server’s user interface.

Once you have a continuous build process up and running, the next step is
automating deployment. First of all, you need to get a machine to deploy your
application on. For a new project, this can be the machine your continuous inte-
gration server is on. For a project that is more mature, you may need to find
several machines. Depending on your organization’s conventions, this environment
can be called the staging or user acceptance testing (UAT) environment. Either

www.it-ebooks.info

http://www.it-ebooks.info/

IMPLEMENTING A DEPLOYMEN