

Published by

:orld Scienti¿c Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224

 2� :arren Street, Suite 4�1-4�2, +ackensack, 1- ��6�1
 5� Shelton Street, Covent *arden, London :C2+ 9+E

Library of Congress Cataloging-in-Publication Data
1ames: Lau, K.-K. (Kung-Kiu), 1953± author. _ Di Cola, Simone, author.
Title: An introduction to component-based software development / by Kung-Kiu Lau
 (University of Manchester, UK), Simone di Cola (University of Manchester, UK).
Description: >+ackensack@ 1ew -ersey : :orld Scienti¿c, 2�1�. _ Series: Series on component-based
 software development � volume 3 _ Includes bibliographical references and inde[.
Identi¿ers: LCC1 2�1��143�3 _ ISB1 9��9�13221��1 (hc : alk. paper)
SubMects: LCS+: Component software.
Classi¿cation: LCC 4A�6.�6.C66 L3� 2�1� _ DDC ��5.3--dc23
LC record available at https://lccn.loc.gov/2�1��143�3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright � 2�1� by :orld Scienti¿c Publishing Co. Pte. Ltd.

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

Preface

In terms of documentary evidence, Component-based Software Development can
trace its origin to 1968. In a seminal paper, Doug McIlroy promulgated soft-
ware components as mass produced software units that can be used repeatedly,
i.e. reused, in a family of related software products, e.g. compilers for a language
family. Indeed his idea was components for software product lines.

In the early days, software components were defined in different ways by
different people. McIlroy described components variously as routines, modules,
blackboxes, etc. Cox defined components as software integrated circuits. An at-
tempt to unify the terminology only took place thirty years or so after McIlroy’s
1968 paper. An international group of researchers conducted an extensive exami-
nation and discussion of the desiderata for software components. These desiderata
now form the foundation of component-based software research.

A cornerstone of component-based software development is the notion of
component models. A component model defines components as well as associated
composition mechanisms. As such, it differentiates modern component-based
software research from its earlier counterpart which focused predominantly on
components only. With software becoming all pervasive and ever more complex
and large-scale nowadays, it is increasingly obvious that composition holds the
key to tackling not just scale and complexity in system construction but also safety.
In the Internet of Things, including driverless cars, composition has a crucial role
to play in ensuring tractability and above all safety.

This book provides an introductory account of the basic principles of
component-based software development, and the various approaches that have
emerged over the years. It is suitable as a student text book for an introductory
course on component-based software development. It can also serve as an intro-
duction to the research field in component-based software development.

The book is currently used for a Masters course at Manchester. We would like
to thank all our students over the years for being — hopefully willing — guinea
pigs but also for their feedback and suggestions for improvement.

As researchers, we have gathered and created some of the material of the book
with many of our colleagues, both local and international, over the years. We
would like to thank them all for their cooperation and contributions. We acknowl-
edge our international collaborators in the appropriate chapters in the book. Here
we would like to thank our colleagues at Manchester: Zheng Wang, Perla Ve-
lasco Elizondo, Ling Ling, Vladyslav Ukis, Cuong Tran, Faris Taweel, Yannis
Ntalamagkas, Azlin Nordin, Petr Štěpán, Lily Safie, Keng-Yap Ng, Tauseef Rana,
Rehman Arshad, Damian Arrelanes, Chen Qian and Nasser Al-Housni.

Kung-Kiu Lau and Simone Di Cola
March 2017, Manchester

Contents

Preface vii

About the Authors ix

1. Introduction 1

1.1 An Idealised Component Life Cycle 3
1.1.1 Design Phase . 3
1.1.2 Deployment Phase . 5
1.1.3 Run-time Phase . 6

1.2 Development Processes . 6
1.3 Verification and Validation . 7

1.3.1 The V Model . 7
1.3.2 Adapting the V Model for CBD 9

1.4 The W Model . 10
Discussion and Further Reading . 12
The W Model . 12

2. What are Software Components? 15

2.1 Generic Software Components 16
2.2 Types of Components in Current Practice 18
Discussion and Further Reading . 19

3. What is Software Composition? 21

3.1 Different Views of Software Composition 22
3.1.1 The Programming View 22
3.1.2 The Construction View 23
3.1.3 The CBD View . 23

3.2 Software Composition Mechanisms 24
3.2.1 Containment . 25
3.2.2 Extension . 26
3.2.3 Connection . 28
3.2.4 Coordination . 30
3.2.5 The Complete Survey 32

3.3 Algebraic Composition Mechanisms 35
3.4 Mathematical Composition Operators 38
Discussion and Further Reading . 41
Acknowledgement . 43

4. Software Component Models 45

4.1 Component Models with Objects as Components 46
4.1.1 Semantics of Components 46
4.1.2 Syntax of Components 47
4.1.3 Composition of Components 47

4.2 Component Models with Architectural Units as Components . . 48
4.2.1 Semantics of Components 48
4.2.2 Syntax of Components 49
4.2.3 Composition of Components 49

4.3 Component Models with Encapsulated Components 50
4.3.1 Semantics of Components 50
4.3.2 Syntax of Components 51
4.3.3 Composition of Components 51

Discussion and Further Reading . 52
Acknowledgement . 52

5. Component Models with Objects as Components 53

5.1 POJOs . 54
5.2 JavaBeans . 54
5.3 Object-oriented Frameworks 57

5.3.1 Enterprise JavaBeans 57
5.3.2 OSGi . 59
5.3.3 .NET . 61

Discussion and Further Reading . 64
COM . 65
CCM . 68
KobrA . 69

6. Component Models with Architectural Units as Components 73

6.1 Acme . 73
6.2 ArchJava . 76
6.3 UML . 80
6.4 ProCom . 83
6.5 Koala . 85
6.6 FRACTAL . 89
Discussion and Further Reading . 92

SCA . 92
SOFA . 95
Palladio . 96
Acme . 100
UML . 101

7. Component Models with Encapsulated Components 103

7.1 X-MAN . 104
Discussion and Further Reading . 107

Web Services . 107
Acknowledgement . 110

8. A Taxonomy of Software Component Models 111

8.1 Category 1: Design without Repository 112
8.2 Category 2: Design with Deposit-only Repository 114
8.3 Category 3: Deployment with Repository 117
8.4 Category 4: Design with Repository 119
8.5 Category 5: Design and Deployment with Repository 122
Discussion and Further Reading . 123
Acknowledgement . 125

Bibliography 127

Index 137

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 1

Chapter 1

Introduction

Component-based Software Development (CBD)1 [Bachmann et al. (2000);
(2001); Szyperski et al. (2002)] aims to compose systems from pre-built software
units, or components. A system is developed not as a monolithic entity, but as a
composite of sub-parts that have already been built separately. Such an approach
reduces production cost by composing a system from pre-existing components,
instead of building it from scratch. It also enables software reuse, since compo-
nents can be reused in many systems. Thus CBD promises the benefits of: (i)
reduced production cost; (ii) reduced time-to-market; and (iii) increased software
reuse. These benefits have long been sought after by the software industry.

The basic idea of CBD is illustrated by Fig. 1.1: first, components are (de-
signed and) built and deposited in a repository; then different systems can be
(designed and) built by using components retrieved from the repository. By thus
reusing repository components for multiple systems, we can reap the benefits of
CBD.

Fig. 1.1 Component-based software development.

The use of repository components for building systems suggests that CBD
is essentially bottom-up, starting with pre-defined components, and composing
them into a specific system; rather than top-down, starting with a top-level system

1Various abbreviations have been used, CBD and CBSE being the main ones. We choose CBD.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 2

2 An Introduction to Component-Based Software Development

design, and successively decomposing it until components for this system are
identified and then built just for this system.

In CBD, the life cycle of components [Christiansson et al. (2002)] consists of
three stages: (i) the design phase, when components are designed, defined and
constructed; (ii) the deployment phase, when components are deployed into the
execution environment of the system under construction; and (iii) the run-time
phase, when components are instantiated with data and executed in the running
system.

Precisely what components are, and what desirable properties they should
have in order to provide the requisite support for CBD, has been discussed at
length [Broy et al. (1998); (2001); Szyperski et al. (2002); Meyer (2003)]. The
resulting set of desiderata has been widely disseminated and accepted, and is sum-
marised in the table in Fig. 1.2. The implications of these desiderata for the rele-
vant phases of component life cycle (the design and deployment phases) are also
included in this table.

Desideratum Design Phase Deployment Phase

Components should be Use builder
produced independently

Components should Deposit components Retrieve components

Components should be
deployed independently

Use assembler

It should be possible to copy
and instantiate components

Copies possible Copies and

It should be possible to

It should be possible to

build composites

store composites

Composition Composition possible

Use repository

pre-exist in repository

possible

from repository

instances possible

Fig. 1.2 Desiderata for component-based software development.

Firstly, for the purpose of system development, components should be pre-
existing reusable software units, which system developers can reuse to compose
software for different applications more quickly than writing all the code from
scratch for each application. This necessitates the use of a repository, in which
components can be deposited in the design phase of the component life cycle, and
from which components can be retrieved in the deployment phase.

Secondly, components should be produced and used, or deployed, by inde-
pendent parties. That is, component developers need not be the same people as
component customers such as system developers. This is important for ensuring
that components are truly reusable by third parties. It requires the use of tools
that can interact with a repository: in the design phase, a builder tool is needed

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 3

Introduction 3

for building components and depositing them in the repository; in the deployment
phase, an assembler tool is needed for assembling components (more accurately,
component instances, see below) retrieved from the repository.

Thirdly, it should be possible to copy and instantiate components, so that their
reuse can be maximised, both in terms of code reuse and in terms of components’
scope of deployment. Thus, it should be possible to make distinct copies of com-
ponents, and to distinguish components from their instances; and thus differentiate
the design and deployment phases from the run-time phase of the component life
cycle.

Fourthly, it should be possible to compose components into composite com-
ponents, and then store these composite components. Composite components in
turn can be composed with (composite) components into larger composites (or
subsystems), and so on. This requires that, like their non-composite counterparts,
composites can also be deposited in and retrieved from a repository. Composition
means not only reuse, but also a systematic approach to system construction.

In addition to these desiderata, we have identified another ideal one: the possi-
bility to perform composition in both design and deployment phases. Composition
means component reuse, and therefore composition in both phases will maximise
reuse. It also means design flexibility in the sense that the deployed components,
in particular composite components, can be designed, by composition in either
phase: either entirely in one phase or partially in both phases.

An idealised component life cycle should meet all the aforementioned desider-
ata, and we have defined such a life cycle [Lau and Wang (2005, 2007)].

1.1 An Idealised Component Life Cycle

Our idealised component life cycle is depicted in Fig. 1.3. It is derived from all
the desiderata together with their life cycle implications listed in Fig. 1.2.

Figure 1.4 summarises the characteristics of the actors and artefacts involved
in the idealised component life cycle.

1.1.1 Design Phase

In the design phase, components have to be constructed, catalogued and stored in
a repository in such a way that they can be retrieved later, as and when needed.
Components in the repository are in source code, or they may have been compiled
into binary.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 4

4 An Introduction to Component-Based Software Development

Design Phase Deployment Phase Run-time Phase

A A
A

B
B

B

C
C

D

BC

D

BC

InsA

InsB

InsD

InsBC

Component (source code) Component (binary) Component

Design phase Deployment phase

Builder Repository Assembler Run-time
Environment

composition operator composition operator

instance

Fig. 1.3 An idealised component life cycle.

Design Phase Deployment Phase Run-time Phase

Role

Environment

Component
type

Data in
components

Component
format

Composition
operators

Component designer
(producer/vendor)

System developer System user

System
independent System speci c

System execution
environment

Template +
deployment contracts

Deployed
subsystem

Executable
subsystem

Place-holders
Place-holders +

con guration data All data initialised

Source or binary Binary Binary instance

Pre-de ned Pre-de ned

Fig. 1.4 Characteristics of actors and artefacts in idealised component life cycle.

Components should be composed into well-defined composites using suitable
composition operators, ideally supported by a composition theory. It should be
also possible to store composites in, and retrieve them from the repository, and
use them for further composition, like any components.

A builder tool can be used to (i) construct new components, and then deposit
them in the repository, e.g. in Fig. 1.3, A is a new component constructed in the
builder and deposited in the repository; (ii) retrieve components from the repos-
itory, compose them and deposit them back in the repository, e.g. in Fig. 1.3, B

and C are retrieved from the repository and composed into a composite BC that is
deposited in the repository.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 5

Introduction 5

To promote reuse, components in design phase should be templates that pro-
vide services. They should be identified and designed by domain experts as basic
building blocks for the domain in question. They should be generic, rather than
system-specific so that they could be (re)used to build many different applications.
Similarly, composition operators in design phase should be generic composition
schemes to coordinate components which can be customised for many different
systems.

To support its reuse, any component should have an interface. In particular,
a composite component should expose an interface generated during the compo-
sition process and its content should be determined according to the semantics of
the composition operator involved.

Components in design phase should also include information of the environ-
mental dependencies or resources needed for its deployment. Composition in
design phase should generate such information for composites. For instance, de-
ployment contracts [Lau and Ukis (2006)] could be used to specify this kind of
information.

1.1.2 Deployment Phase

Ideally, composition in deployment-phase should follow on from, and thus exploit
composition in design phase. That is, as far as possible, the composites here
should be built directly from the (composite) components created in design phase.

In the deployment phase, components have to be retrieved from the repository,
and if necessary compiled to binary code and then composed. The result of de-
ployment phase composition is a whole system in binary code, and so this is the
end result of system design and implementation. The completed system should be
then ready for execution.

As in design-phase, composition should be carried out via composition oper-
ators. But in here, they should allow the coordination between components down
to the last detail, as required by the specific application.

An assembler tool can be used to retrieve components from a repository, com-
pile them into binary code, and then assemble them into a system. For example, in
the assembler in Fig. 1.3, binaries of A, B, D and BC are retrieved and composed
into a system.

Composite components in the deployment phase should have interfaces that
allow them to be instantiated and executed at run-time phase. These interfaces
should be generated during the composition process.

Composition in deployment-phase should be supported by suitable deploy-
ment tools to, for example, check the component compatibility with one another

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 6

6 An Introduction to Component-Based Software Development

and with the execution environment, e.g. a tool for checking deployment contracts
would be useful. Also with such tools, it should be possible to deploy a composite
in many different systems.

1.1.3 Run-time Phase

In the run-time phase, the constructed system is instantiated and executed in the
run-time environment, e.g. A, B, D and BC in the run-time environment in Fig. 1.3.
Although this phase does not include further composition, for highly available ap-
plications it should be possible to perform some kind of adaptation on the compo-
nent’s instances in executable system.

1.2 Development Processes

The idealised component life cycle is about the stages of a component’s life, start-
ing from its creation and ending in its execution. These stages provide the basis of
development processes for CBD. The desiderata of independent component pro-
duction and deployment require that there is a separate development process for
components, and hence a separate development process for systems built form
components. We call these processes the component life cycle and the system life
cycle respectively. As is standard practice in the literature, we will use ‘life cycle’
interchangeably with ‘development process’ or simply ‘process’.

A number of development processes for CBD have been proposed, e.g. [Chris-
tiansson et al. (2002); Kotonya et al. (2003); Sommerville (2004a); Capretz
(2005); Crnkovic et al. (2006)], to name but a few. (A survey can be found in
[Kaur and Singh (2010)].) Naturally these processes all reflect the desiderata of
CBD, and converge on the general view depicted in Fig. 1.5.

Fig. 1.5 CBD development processes.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 7

Introduction 7

The generic CBD process in Fig. 1.5 comprises two separate processes: (i)
the component life cycle, for component development; (ii) the system life cycle,
for component-based system development. Component development is also
known as ‘development for reuse’, since it is concerned with developing com-
ponents that can be stored in a repository and (re)used to build different sys-
tems. Component-based system development is also known as ‘development with
reuse’, since it is concerned with developing systems by reusing pre-built compo-
nents (the result of the component development process).

Each process follows the traditional Waterfall Model [Royce (1970); Ben-
ington (1983)] of ‘requirements analysis, design, implementation, testing and
maintenance’. For component development, implementation is a single activity,
whereas for system development, implementation is a sequence of activities based
on pre-built components, namely component selection, adaptation and assembly.

The component life cycle in Fig. 1.5 is not explicitly conformant with the
idealised component life cycle as it does not explicitly specify independent com-
ponent production or deployment, neither does it explicitly specify a repository
of independently produced components. Moreover, it does not explicitly address
V&V, i.e. Verification and Validation.

1.3 Verification and Validation

Verification is the process of evaluating the system under construction to check if
it meets the specified requirements and design specifications. Complementary to
verification, validation is the process of evaluating the system under construction
to check if it meets the customer’s requirements and expectations. Not surpris-
ingly, testing plays a central role in V&V, e.g. system testing for verification, and
acceptance testing for validation (see Fig. 1.6).

1.3.1 The V Model

For general (modular) system development, the standard model for V&V is the V
Model [IABG (2017)], which is depicted in Fig. 1.6. The V Model is an adapta-
tion of the traditional Waterfall Model for modular system development. It defines
a sequential process consisting of phases for requirements, system specification,
system or architectural design, module design, implementation and testing. Im-
plementation consists of coding for the individual modules, and coding for inte-
grating the modules into the entire system using the architectural design for the
system. Testing follows coding. Thus the coding phase divides the whole process
into ‘development’, the left arm of the V, and ‘testing’, the right arm of the V.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 8

8 An Introduction to Component-Based Software Development

Fig. 1.6 The V Model.

During each of the development phases (in the left arm of the V), a test plan
is drawn up for the corresponding testing activity (in the right arm of the V).
For example, an acceptance test plan is drawn up from the requirements, since
acceptance testing will be performed against the requirements. Similarly, unit test
plans are generated from module design, since unit testing will be carried out on
the modules, and so on.

Testing follows a sequential process, in reverse order of the development
phases, as is usual for modular system development. Thus unit testing is per-
formed first, followed by integration testing, system testing and finally acceptance
testing. Each testing activity is carried out according to the test plan generated
during the corresponding development phase.

The key property of the V Model that is pertinent here is that it is a top-down
approach to system design and development, as Fig. 1.6 clearly shows. First, a
top-level design is made of the architecture of the entire system; this identifies
and specifies sub-systems or modules, and their inter-relationships. Then the in-
dividual modules are designed according to their specifications in the top-level
design. In general, this top-down approach may be applied successively, each
time decomposing sub-systems or modules in the current level of design into fur-
ther sub-systems or modules. This decomposition is repeated as many times as is
necessary, until a final design is arrived at in which the design of the system as well
as all the individual modules is deemed complete, i.e. no further decomposition is
necessary or desirable.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 9

Introduction 9

1.3.2 Adapting the V Model for CBD

Compared to the CBD processes in Fig. 1.5, which contain two life cycles, one for
component development and one for system development, the V Model contains
only one life cycle, for system development. So, the question is ‘How can we
adapt the V Model for V&V in CBD?’

The CBD processes in Fig. 1.5 shows CBD as an essentially bottom-up ap-
proach to system design, in the sense that components have to be developed first
(in the component life cycle), and any particular system is constructed from these
components (in the system life cycle). In contrast, as we have explained in the pre-
vious section, the V Model (Fig. 1.6) is essentially a top-down approach to system
design: the system is designed first (thus identifying the requisite components),
and then components are developed.

A straightforward adaptation of the V Model for CBD would be to retain the
top-down approach to system design but use a component as a module, as shown
in Fig. 1.7. For example, the V model adopted by the avionics industry as a CBD
process (e.g. Airbus processes [da Cruz and Raistrick (2007); Gaufillet and Gabel
(2010)]) is such an adaptation.

Fig. 1.7 Adapting the V Model for CBD.

However, such a straightforward adaptation of the V Model is at variance with
the CBD processes in Fig. 1.5, precisely because it does not include a component
life cycle and consequently does not incorporate the bottom-up nature of CBD.

An adaptation of the V Model for CBD that does incorporate the bottom-up
nature of CBD is that of [Crnkovic et al. (2006)]. It does so by containing separate
life cycles for component development and system development, like in Fig. 1.5.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 10

10 An Introduction to Component-Based Software Development

However, this adaptation really applies the V Model only to its system life cycle;
there is no evidence of the V Model in its component life cycle (which is the same
as the one in Fig. 1.5).

In our view, to adapt the V Model properly for CBD, we need not only to
incorporate both the component life cycle and the system life cycle, but also to
apply the V Model to both of these cycles. We have defined such an adaptation,
which we call the W Model,2 for reasons that will become apparent later.

1.4 The W Model

The W Model is based on a bottom-up CBD process based on the idealised com-
ponent life cycle (Section 1.1), as depicted in Fig. 1.8. This process consists of

Fig. 1.8 A bottom-up CBD process based on the idealised component life cycle.

a component life cycle and a system life cycle, in line with the CBD processes
in Fig. 1.5. However, it differs slightly from the latter, in that its component life
cycle is the idealised component life cycle. In the design phase, components are
(identified and) designed and constructed according to the domain requirements
or knowledge [Lau and Taweel (2009)], and deposited into a repository. Compo-
nents in the repository are domain-specific but not system-specific. In the deploy-
ment phase, components are retrieved from the repository and instantiated into
executable component instances which are then deployed into a specific system
under construction.

The system life cycle also differs slightly from that in Fig. 1.5 in that system
design is now replaced by a completely bottom-up process of component selection

2The name W Model has been used by others, see Discussion and Further Reading.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 11

Introduction 11

(from the repository) and adaptation, followed by (component deployment in the
component life cycle followed by) system assembly, which is simply the com-
position of the deployed components. The bottom-up nature of this process is
indicated by an iterative loop in Fig. 1.8. It is worth noting that within this loop,
the component life cycle links up with the system life cycle, since deployed com-
ponents (from the component life cycle) are iteratively assembled into the system
under construction (in the system life cycle). This link is denoted by the arrows
between the two life cycles in Fig. 1.8, via the step of component selection and
adaptation, and the step of component deployment.

Applying the V Model to both the component and system life cycles yields a
CBD process with V&V as shown in Fig. 1.9. Compared to the straightforward

Fig. 1.9 A bottom-up CBD process with V&V.

adaptation of the V Model in Fig. 1.7, component V&V (which corresponds to
component testing in Fig. 1.7) now occurs in the component life cycle, whilst
compositional V&V (which corresponds to integration testing in Fig. 1.7) and sys-
tem V&V (which corresponds to system testing in Fig. 1.7) occur in the system
life cycle.

The bottom-up CBD process with V&V in Fig. 1.9 can be re-cast straight-
forwardly as a process with two conjoined V Models, one for the component life
cycle and one for the system lifecycle. These two V Models are conjoined via
the step of component selection, adaptation, and deployment. This ‘double V’
process is shown in Fig. 1.10. We call it the W Model.3

3In English, W is ‘double u’; there is no letter for ‘double v’.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 12

12 An Introduction to Component-Based Software Development

Domain
knowledge

design
Component Component V&V

& certi cation

Component selection
& adaptation

System
speci cation

System
V&V

System
assembly

Compositional
V&V

System
requirements

Acceptance
testing

Coding Coding

Component System
Life Cycle Life Cycle

Fig. 1.10 The W Model.

Discussion and Further Reading

Much of the CBD literature originates from the International Symposium on
Component-based Software Engineering (http://cbse-conferences.
org/). A survey of the research published at this conference can be
found in [Maras et al. (2012)].

The W Model

In the definition of the W Model, we need to specify a component model (Chap-
ter 4) that defines the components and their composition accordingly. We have
used a component model called X-MAN that we have defined ourselves. The
details of X-MAN can be found in Section 7.1.

The name W Model has been used in software testing [Spillner (2002)] and
product line engineering [Li et al. (2008)] in the context of traditional (i.e. non-
CBD) software engineering. [Spillner (2002)] extends the V Model by adding a
branch that integrates testing with debugging and code changes. [Li et al. (2008)]
applies the V Model to domain engineering and application engineering in soft-
ware product lines. This is similar to our approach, except that they do not use
components and component composition, or the idealised component life cycle.

In the context of CBD, our W Model is similar to standard CBD processes,
e.g. [Christiansson et al. (2002); Kotonya et al. (2003); Sommerville (2004a);
Crnkovic et al. (2006)], in that they both contain separate life cycles for com-
ponents and systems. However, unlike these processes, its component life cycle
is the idealised one, which meets all the CBD desiderata in the literature [Broy
et al. (1998)]. In particular the idealised component life cycle defines compo-
nent composition in both component design and component deployment phases.

http://cbse-conferences.org/
http://cbse-conferences.org/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 13

Introduction 13

This emphasis on composition results in compositionality, which is an important
property that is beneficial for practical system development, since it enables hier-
archical system development and compositional reasoning.

The component life cycle of our W Model is similar to that in the Y Model
[Capretz (2005)], in that they are both based on ideas stemming out from domain
engineering. In the Y Model, components are developed using domain engineer-
ing techniques, and then archived. A framework is then defined for selecting
components from the archive, and for assembling them into systems. The archive
is of course just a repository. The framework is a structure for assembling com-
ponents. Therefore, it is like a system assembler. However, the Y Model does not
apply the V Model in any way to its component life cycle.4 Moreover, it does not
define a component model.

Other proposed processes for CBD, found in [Kotonya et al. (2003)], lack the
separate process of deriving and developing components. Components are iden-
tified along with system development or received from some component space.
Such component identification is not systematic and potentially leads to ad hoc
components with limited reuse. Also, only [Kotonya et al. (2003)] suggests veri-
fication for components (in a system) and systems.

Other software development approaches based on domain engineering, e.g.
product lines [Clements and Northrop (2015); Pohl et al. (2005)] and generative
programming [Czarnecki and Eisenecker (2000)], are similar to the Y Model, in
that they also do not apply the V Model to their component life cycle. Thus despite
their use of domain engineering techniques for developing components, all these
approaches do not follow a development process like the W Model.

On the other hand, the W Model is applicable to the V&V of product lines and
generative programs. Unlike component models based on architecture descrip-
tion languages (see Chapter 6, the X-MAN component model, that underlies the
W Model, defines explicit composition connectors. In the component life cycle
of the W Model, along with components, composition connectors can be iden-
tified from domain requirements. These domain-specific components and com-
position connectors effectively define a domain-specific component model [Lau
and Taweel (2009)]. In general, for a given domain, a domain-specific component
model is the best one to use [Medvidovic et al. (2007)]. Furthermore, in a domain-
specific component model, composition connectors can define product lines. Thus
X-MAN can offer a component-based definition of product lines and generative
programming.

4The same is true of component models that incorporate domain engineering techniques, e.g. EAST-
ADL (2016).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 14

14 An Introduction to Component-Based Software Development

In most of the related work, the process of identifying and constructing
components (if exists) does not necessarily produce components in the compo-
nent repository. Components can be developed by external parties and end up in
some component pool or library. More importantly, components are not suggested
to be derived from domain engineering of a domain. Therefore, components are
not domain specific components. That leads to a major issue in that components
in the pool are not suitable for a new application in the domain. In order to be
reused, components are then required to be adapted or glue code is needed to wire
up components. Even so, it is not feasible every time. In contrast, in our approach,
components and connectors are derived from domain analysis. Components and
connectors in a domain can be exhaustively identified including all possible vari-
ations. Moreover, components in repository are fully implemented and verified.
Hence, the above issue does not arise.

For the purpose of V&V, our W Model is different from other adaptations of
CBD processes based on the V Model for modular system design. The W Model
contains a V model for both component and system life cycles, whereas other
adaptations, e.g. [Crnkovic et al. (2006)], contain only a V model for the system
life cycle. The value of a V Model for the component life cycle is that we can do
component V&V and store pre-verified components in the repository. These com-
ponents could be certified according to certain standards. Then, compositional
V&V of composites can be carried out by re-using component V&V.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 15

Chapter 2

What are Software Components?

What exactly are software components? This question is clearly fundamental to
CBD and has been discussed thoroughly (see e.g. [Broy et al. (1998)]). The most
widely adopted definition of a software component is the following by Szyperski
[Szyperski et al. (2002)]:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composi-
tion by third parties.”

This defines a software component as a unit of composition, with an interface;
this definition has been universally accepted. Independent composition and de-
ployment (by third parties) is in line with the idealised component life cycle (as
discussed in Section 1.1). However, Szyperski’s definition does not say anything
about composition or context dependencies, in particular how they are defined.

Another component definition is due to Meyer [Meyer (2003)]:

“A component is a software element (modular unit) satisfying the fol-
lowing conditions:
1. It can be used by other software elements, its ‘clients’.
2. It possesses an official usage description, which is sufficient for a
client author to use it.
3. It is not tied to any fixed set of clients.”

Here, the notion of a component as a modular unit that can be used by other
modular units harks back to the pre-CBD days of modular software development.
In those days, composition was predominantly viewed as linking software units
that are parametrised structures such as modules (see Chapter 3), and units were
combined via usage links and parameters, the latter constituting their interfaces. In
contrast, in CBD composition is not limited to linking modules (again see Chapter
3), since there are other kinds of components than modules.

15

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 16

16 An Introduction to Component-Based Software Development

Meyer’s definition does not explicitly mention component interfaces. Instead
it stipulates an official page of usage description for a component, which could
serve as its ‘interface’. As for the idealised component life cycle, it is not clear
how well this definition aligns with it, since clients here are software elements
(not third-party developers), referred to here as ‘client authors’.

Yet another component definition is the following by Heineman and Councill
(2001):

“A [component is a] software element that conforms to a component
model and can be independently deployed and composed without mod-
ification according to a composition standard.”

This definition relies on a component model to define both components and com-
position. However, it does not say explicitly what a component model is, but only
hints that it includes a composition standard.

The definition by Heineman and Councill offers the fullest scope for defining
components and composition properly. So we believe components and composi-
tion should be defined in the context of a component model, and we have defined
component models as follows [Lau and Wang (2007)]:

A software component model is a definition of:

• the semantics of components, i.e. what components are meant to
be;

• the syntax of components, i.e. how they are defined, constructed
and represented;

• the composition of components, i.e. how they are composed or
assembled.

We will discuss component models in Chapter 4.

2.1 Generic Software Components

Apart from the aforementioned component definitions, there are many others.
From all these definitions, a generally accepted view of a software component
has emerged: it is a software unit with provided services and required services

Required Service Provided Service

Fig. 2.1 A generic software component.

(Fig. 2.1). The provided services (represented by lollipops) are operations per-
formed by the component. The required services (represented by sockets) are the

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 17

What are Software Components? 17

services needed by the component to produce the provided services. Roughly
speaking, the provided services of a component are its output, while the required
services are its input. Required services are typically input values for parameters
of the provided services.

The provided and required services of a component constitute its interface.
The interface is the only point of access to the component; therefore it should
provide all the information that is necessary to use the component. It should give
the specifications of its provided and required services. It should also specify any
dependencies between its provided and required services. To specify these depen-
dencies precisely, it is necessary to match the required services to the correspond-
ing provided ones. This matching could be expressed by listing corresponding
services as ordered pairs 〈r1, p1〉, . . . , 〈rn, pn〉, where each ri and pi is a set of
services.

Note that according to some definitions in the literature, a component can have
multiple interfaces, with each interface as a different set of services. Here we have
used a single interface as a collective entity for all such interfaces.

Generic components can be composed via their services. A provided service
can be ‘composed’ with a matching required service, and vice versa. Precisely
how services are ‘composed’ depends on how services are defined. The interface
of a composite component, and hence a system, can be derived from the services
of the sub-components. Again, precisely how this interface is derived depends on
how component composition is defined in terms of service ‘composition’.

With generic components and their composition defined above, the basic idea
for CBD (Fig. 1.1) can be depicted as in Fig. 2.2. Composites, and eventually

Fig. 2.2 Component-based software development with generic components.

complete systems, are composed from repository components, and successively
from the resulting intermediate composites.

An example of a system built form generic components is the ATM system in
Fig. 2.3. In this system, the ATM component provides the customers with a card
reader and a keypad to enter their PINs and make requests such as ‘withdraw’

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 18

18 An Introduction to Component-Based Software Development

Fig. 2.3 ATM system using generic components.

and ‘deposit’, and passes the customer request on to the Bank component. The
bank component provides the service (withdraw or deposit) that the customer has
requested, by passing these requests on to the Account component, which provides
these services.

2.2 Types of Components in Current Practice

There are three main types of components that are currently used in practice: (i)
objects (Fig. 2.4(a)), as in object-oriented programming; (ii) architectural units
(Fig. 2.4(b)), as in software architectures [Shaw and Garlan (1996); Bass et al.
(2012)]; and (iii) encapsulated components (Fig. 2.4(c)), as in components with
no external dependencies.

method
Provided

(a) An object

in1

in2 out2

out1

(b) An architectural unit (c) An encapsulated component

Fig. 2.4 The three main types of components that are currently used in practice.

Each of these types is a variation of the generic component. An object’s meth-
ods are its provided services, but an object has no visible required services (hence
the blurring out in Fig. 2.4(a)). An architectural unit has input ports as required
services, and output ports as provided services. An encapsulated component has
only provided services but no required ones.

Objects as components will be discussed in Chapter 5, architectural units as
components in Chapter 6, and encapsulated components in Chapter 7.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 19

What are Software Components? 19

Discussion and Further Reading

Doug McIlroy [McIlroy (1968)] is credited with introducing the notion of software
components. In fact he promulgated mass produced software components, even
product lines (or families of related products). He considered components to be
routines (or procedures) that can be used together in building a system. He also
described components as modules, interchangeable parts and black boxes.

In [Cox (1986)], Cox defined software integrated circuits as components in
object-oriented software development. These software units with pins or plugs as
in silicon chips are of course a form of architectural units.

An extensive discussion about what components are, or should be, can be
found in [Broy et al. (1998)], which lists definitions offered by many contrib-
utors. Definitions include: ‘a group of related classes’, ‘data capsule’, ‘binary
unit’, ‘self-contained entity’. The discussion in this book provides the widely ac-
cepted desiderata for CBD that underpin the idealised component life cycle (see
Section 1.1).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 21

Chapter 3

What is Software Composition?

Composition is of fundamental importance in CBD: it is indeed its essence. A
component is a unit of composition, and therefore the meaning of a component
depends on the meaning of composition. More specifically, components are com-
posed by their services; therefore what these services are and how they are com-
posed lie at the heart of CBD.

Before discussing component composition in particular, it is informative to
first consider software composition in general.

Software composition [Nierstrasz and Meijler (1995)] refers to the composi-
tion of software constructs into larger composite constructs. The primary motiva-
tion for software composition is reuse [Sametinger (1997)], but composition also
provides a means for systematic software construction. Of course, both software
reuse and systematic software construction are also fundamental objectives for
CBD.

In the most general terms, composition can be defined as any possible and
meaningful interaction between the software constructs involved. A composi-
tion mechanism defines such an interaction. Clearly there are many different
possible kinds of software constructs, with corresponding composition mecha-
nisms [Bracha and Cook (1990); Nierstrasz and Tsichritzis (1995); Shaw and
Garlan (1996); Sametinger (1997); Kiczales et al. (1997); Szyperski (2002b);
Szyperski et al. (2002); Alonso et al. (2004); Ducasse et al. (2006); Aßmann
(2003); Prehofer (2002); Ossher et al. (1996)]. Simple type definitions can be
composed into compound types by type composition [Buchi and Weck (1998)];
arbitrary chunks of code can be joined together with glue and scripts [Schneider
and Nierstrasz (1999)]; typed constructs can be linked by message passing, e.g.
direct method calls between objects, or port connections between architectural
units [Shaw and Garlan (1996); Bass et al. (2012)]; and so on.

21

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 22

22 An Introduction to Component-Based Software Development

In CBD it is desirable to have software constructs that make good composition
units [Pfister and Szyperski (1996)], together with suitable composition mecha-
nisms that facilitate both reuse and systematic construction [Achermann and Nier-
strasz (2005)]. In addition, CBD also seeks to automate composition as much as
possible, so as to provide good tool support and to reduce time-to-market as well.

3.1 Different Views of Software Composition

There are different views of software composition in the literature, that is vari-
ous perceptions (and definitions) of what composition means in all the relevant
software communities. In all these views, the baseline is that composition is per-
formed on software entities that are perceived as meaningful units of composition.
We will focus on units of composition that define behaviour, rather than constructs
that define primitive types or pure data structures. Composition mechanisms com-
pose units of composition into larger pieces of software, i.e. they compose pieces
of behaviour into larger pieces of behaviour.

In this section, we outline the different views of composition and briefly dis-
cuss the generic nature of the associated units of composition and composition
mechanisms.

3.1.1 The Programming View

One view of software composition is that it is simply what a programmer does
when putting bits of code together into a program or an application. In this view,
any legitimate programming language construct is a unit of composition; and com-
position is simply joining these constructs together using some other construct
(e.g. sequencing) defined in the programming language. We call this the ‘pro-
gramming view’ of composition.

Meaningful units of composition in the programming view include functions
in functional languages, procedures in imperative languages, classes [Szyper-
ski (2002b)] and aspects [Kiczales et al. (1997)] in object-oriented and aspect-
oriented languages respectively.

Clearly the ‘programming view’ represents programming-in-the-small. To
equate composition with this view, however, is to overlook many issues that are
significant for software engineering, such as reuse and systematic or automated
construction.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 23

What is Software Composition? 23

3.1.2 The Construction View

A higher-level view of composition is the view that software composition is
“the process of constructing applications by interconnecting software components
through their plugs” [Nierstrasz and Dami (1995)]. The primary motivation here
is systematic construction.

We call this view the ‘construction view’ of composition. It is at a higher level
of abstraction than the ‘programming view’: it typically uses scripting languages
[Ousterhout (1998)] to connect pre-existing program units together. The ‘con-
struction view’ thus represents programming-in-the-large [DeRemer and Kron
(1976)], as opposed to programming-in-the-small.

In the ‘construction view’, the units of composition are referred to as com-
ponents, but these are only loosely defined as software units with plugs, which
are interaction or connection points. Consequently, components may be any soft-
ware units that can be scripted together by glue. For example, components may
be modules glued by module interaction languages [Prieto-Diaz (1991)], or Java
Beans composed by Piccola [Achermann et al. (2001)], and so on.

System designs in the ‘construction view’ are represented by software archi-
tectures [Shaw and Garlan (1996); Bass et al. (2012)]. A software architecture
contains components and their inter-connections.

Although the ‘construction view’ hints at software reuse (via components)
[Nierstrasz (1995); Nierstrasz and Meijler (1995); Sametinger (1997)], it does not
explicitly show how reuse occurs. In particular, it does not assume that com-
ponents are supplied by third parties (and pre-exist in a repository). Software
architectures similarly do not make any assumptions about component reuse.

3.1.3 The CBD View

To define components precisely, we should define them in the context of a com-
ponent model [(2001); Lau and Wang (2007)]. A component model defines what
components are (their syntax and semantics) and what composition operators can
be used to compose them (Chapter 4). Thus in [(2001)] a software component is
defined as “a software element that conforms to a component model and can be
independently deployed and composed without modification according to a com-
position standard”.

The advent of CBD [Broy et al. (1998); (2001); Szyperski et al. (2002)]
brought about a sharper focus on not only component models (different kinds of
components and composition mechanisms), but also repositories of (pre-existing)
components and component reuse from such repositories. Thus CBD is motivated

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 24

24 An Introduction to Component-Based Software Development

by systematic construction as well as reuse of (pre-existing) third-party compo-
nents. We call this the ‘CBD view’; it extends the ‘construction view’, by the
additional emphasis on component models as well as reuse of third-party compo-
nents.

Software architectures also subscribe to the ‘CBD view’, in addition to the
‘construction view’, in the sense that an architecture description language (ADL)
[Clements (1996); Medvidovic and Taylor (2000)] could be considered to be a
component model, with architectural units as components, and port connection
as a composition mechanism for such components. However, in contrast to the
‘CBD view’, software architectures do not always assume or make use of third-
party components or repositories of such components, as we remarked earlier.

In the ‘CBD view’, units of composition are components as defined in the
chosen component model.

Generic components (Fig. 2.1) are composed by matching their required and
provided services. Objects (Fig. 2.4(a)) cannot be ‘composed’ this way, since they
do not specify their required services; rather, they ‘compose’ by direct method
calls. Architectural units (Fig. 2.4(b)) compose by connecting their (compatible)
ports. Encapsulated components Encapsulated component (Fig. 2.4(c)) cannot
connect directly; rather they need to be coordinated by exogenous composition
connectors, see e.g. [Lau and Ornaghi (2009); Velasco Elizondo and Lau (2010)].

Finally, it is worth re-iterating that the boundaries between these views are not
cut and dried. In particular, the construction view and the CBD view overlap, as
already pointed out. This is mainly due to the generic nature of components de-
fined in the construction view, which loosely covers components in all the current
component models.

3.2 Software Composition Mechanisms

Now we survey composition mechanisms that have been defined in all three views.
As already mentioned, we view a unit of composition as a software unit that de-
fines behaviour, and composition mechanisms as ways of building larger units of
behaviour. Since it does not make much sense to consider composition mech-
anisms that are only unary in arity, our normal assumption is that composition
mechanisms are (at least) binary in arity.

Composition mechanisms in all three views fall into four general categories:
(i) containment; (ii) extension; (iii) connection; and (iv) coordination. We now
briefly define and explain each category, using generic units of composition, and,
for elucidation and illustration, we compare and contrast the category with corre-
sponding UML mechanisms.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 25

What is Software Composition? 25

3.2.1 Containment

Containment refers to putting units of behaviour inside the definition of a larger
unit. This is illustrated in Fig. 3.1(a), where U3 contains U1 and U2. Containment
is thus nested definition. The behaviour of the container unit is defined in terms

(a) Generic

(b) UML

Fig. 3.1 Containment.

of that of the contained units, but the precise nature of the containment differs
from mechanism to mechanism. Examples of containment are nested definitions
of functions, procedures, modules and classes, as well as object composition and
object aggregation.

Compared to (standard) UML, our notion of containment covers more com-
position mechanisms. In UML, containment is defined for classes only; object
aggregation and object composition are forms of containment (Fig. 3.1(b)).

3.2.1.1 Example

Object composition and object aggregation in object-oriented programming are
representative examples of containment. In object composition, the container ob-
ject manages the life cycle of the contained objects, i.e. the latter get constructed
and destroyed with the former. In contrast, in object aggregation, the life cycle
of the contained objects is independent of that of the container object. This is
illustrated by the C++ example in Fig. 3.2.

The compose class (Fig. 3.2(a)) composes two objects of the contained

class managing the life cycle of two instances (first, second). Whenever an
instance of compose is created, two instances (first, second) of contained
are created, and their life cycle is managed by compose. In contrast, the
aggregate class (Fig. 3.2(b)) only aggregates two objects of the contained

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 26

26 An Introduction to Component-Based Software Development

class contained
{ }
class compose
{
...
public:...
private:
contained first;
contained second;

};
(a) Object composition

class aggregate
{ public:...
void setContained(contained *,contained *);
private:
contained *first;
contained *second;

};
void aggregate::setContained(contained *c1,contained *c2)
{ first=c1; second=c2; }

(b) Object aggregation

Fig. 3.2 Containment: Composing objects by object composition and object aggregation.

class, because it only contains pointers to them. Class aggregate does not man-
age the life cycle of instances pointed by (first, second). Whenever an in-
stance of aggregate is created, no instances of contained are created. Such
instances have to be created by a class holding a reference to an instance of
aggregate by passing their addresses by invoking the setContained method
in aggregate.

3.2.2 Extension

Extension refers to defining the behaviour of a unit by extending that of at least
two other units of composition. This is illustrated in Fig. 3.3(a). Examples of

(a) Generic (b) UML

Fig. 3.3 Extension.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 27

What is Software Composition? 27

extension include multiple inheritance in object-oriented programming, aspect
weaving [Kiczales et al. (2001)] in aspect-oriented programming, subject com-
position [Ossher et al. (1996)] (or correspondence-combination, or superimposi-
tion [Apel and Lengauer (2008)]) in subject-oriented programming and feature
composition [Prehofer (2002)] in feature-oriented programming (Fig. 3.13).

Multiple inheritance can be defined as a composition mechanism that extends
multiple classes (e.g. U1 and U2 in Fig. 3.3(b)) into another class (U3) that inherits
from these classes.

Aspect weaving can be defined as a (binary) composition mechanism that ex-
tends a class (say U1 in Fig. 3.3(a)) and an aspect (U2) into another class (U3) that
is the result of weaving U2 into U1. (Of course U3 is just the new version of U1.)

Similarly, subject composition and feature composition can be defined as com-
position mechanisms that extend multiple subjects and features respectively (e.g.
U1 and U2 in Fig. 3.3(a)) into another subject or feature (U3) that is the result of
superimposition between these subjects or features.

Compared to UML, our notion of extension covers more composition mech-
anisms. In UML, extension is used to define inheritance for classes only, and
the only composition mechanism based on extension is multiple inheritance
(Fig. 3.3(b)). Other extension mechanisms, namely aspect weaving, subject com-
position and feature composition, can only be represented in UML as multiple in-
heritance if it is acceptable to represent an aspect, a subject or a feature as a class.
However, if aspects, subjects and features are to be distinguished from classes, as
they are intended to be, in aspect-oriented, subject-oriented and feature-oriented
programming, then we cannot define aspect weaving, subject composition and
feature composition as composition mechanisms in UML. In this case, in UML,
aspect weaving can only be defined as single inheritance: an aspect is not a class,
rather it defines what is inherited by the sub-class from a single super-class (the
sub-class is the new version of the super-class).

3.2.2.1 Example

Aspect weaving is a representative example of the extension mechanism. An as-
pect [Kiczales et al. (1997)] defines a crosscutting concern for some base code.
It can be woven with the base code to change the latter’s behaviour by adding
behaviour (advice) at various points (join points) in the base code specified in
a pointcut (that identifies matching join points). Weaving is done by an aspect
weaving mechanism, which is a special language processor that weaves advices1

into a class construct. Figure 3.4 shows a simple aspect in AspectJ [Kiczales et al.
1As well as inter-type declarations.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 28

28 An Introduction to Component-Based Software Development

(2001)] to print out Entering before executing the display method of any class
with any return type, and to print out Exiting after executing the method, that is
woven with a Java class application. The pointcut log specifies the join points

public class application{...
public void display(){
System.out.println("Mode");
}...

}
public aspect trace{
pointcut log():
execution(public **.display());
System.out.println("Entering ---");}
before():log(){//before advice
after()returning:log(){//after advice
System.out.println("Exiting ---");}

Output before weaving: Output after weaving:
Mode

Mode
Entering ---
Exiting ---

}

Fig. 3.4 Extension: Composing an aspect with a class by aspect weaving.

as before and after the execution of any display method. The aspect trace thus
extends the behaviour of the class application class.

3.2.3 Connection

Connection refers to defining a behaviour that is an interaction between the be-
haviours of multiple units. This is illustrated in Fig. 3.5. Such interaction is

(a) Direct message passing (b) Indirect message passing

Fig. 3.5 Connection.

effected by the units either directly or indirectly invoking each other’s behaviour.
Connection is thus message passing, and as such it induces tight coupling between
units that send messages to each other. Examples of connection include object
delegation and port connection between architectural units (Fig. 3.13).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 29

What is Software Composition? 29

Direct message passing (Fig. 3.5(a)) is a form of delegation. An example is
object delegation [Ostermann and Mezini (2001)]. Objects directly invoke each
other’s methods, i.e. they connect by direct method calls, or delegation. This is
illustrated for three objects A,B,C in Fig. 3.6. In general, an object could call

A B C

m1(...)
 {
 ...

m2(...) ...
 }

m2(...)m1

m2

control ow

m

Fig. 3.6 Connection by direct method call.

any number of methods in another object. This is true for an arbitrary assembly
of connected objects.

Indirect message passing (Fig. 3.5(b)) is done via plugs in the units. Plugs
provide input/output points via which units can communicate. An example of
indirect message passing is architectural units connected via their ports. An

A

m1(...)
m1

m1(...)

m2
m2(...)

control ow

m2(...)

B C

m1

m2

Fig. 3.7 Connection by indirect message passing.

architectural unit has ports, for input and output, which can be linked to the ports
of other architectural units by connectors. Architectural units invoke each other’s
behaviour by messages passed via their ports. Figure 3.7 shows three units linked
via (some of) their ports. Connected ports have to be compatible of course.

Compared to UML, our notion of connection covers more composition mech-
anisms. In UML, connection is only defined for UML2.0 components, not for
classes. In UML2.0 [OMG (2003)], components are architectural units with input
ports that are required interfaces (for required services) and output ports that are
provided interfaces (for provided services). Figure 3.8 shows a UML2.0 compo-
nent. Port connection is done by using assembly connectors, and port forwarding
or exporting is done by using delegation connectors, illustrated in Fig. 3.9.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 30

30 An Introduction to Component-Based Software Development

ProvidedPort interface
Required
interface

Fig. 3.8 UML2.0 component.

Delegation connector Assembly connector

Fig. 3.9 Connection in UML2.0.

Somewhat ironically, UML has no notation for object delegation. Association
between classes can only express relationships between classes, but not method
calls between objects.

3.2.3.1 Example

We have already explained object delegation and port connection for architec-
tural units (see Figs. 3.6 and 3.7). Here we give a more detailed example of port
connection. Fig. 3.10 shows the composition of two architectural units A and B

in ArchJava (Section 6.2). Fig. 3.10(a) shows the code of the architectural units
while Fig. 3.10(b) shows their composition. Port y of A is connected to port x of
B. Port x of A and ports n,m, y of B are forwarded (by delegation connectors) as
ports n,m, y of the composite AB by gluing the former to the latter. Forwarding
different ports would result in a different composite with different ports. In gen-
eral, a port may have multiple services, which may be either required or provided
services; in this example we have only used ports with a single service.

3.2.4 Coordination

Coordination refers to defining a behaviour that results from coordinating the be-
haviours of multiple units. This is illustrated in Fig. 3.11. The coordination is per-
formed by a coordinator which communicates with the units via a control and/or a
data channel. The units themselves do not communicate directly with one another.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 31

What is Software Composition? 31

component class A{
port x{requires int readNum();}

//implementation of provided methods...

port y{provides int add();}
port n{requires char readTxt();}
port m{provides void printChar();}

}
component class B{
port x{requires int add();}

//implementation of provided methods...

port y{provides int sqr();}
port n{requires char readTxt();}
port m{provides void printChar();}

}
component class AB{
port x{requires int readNum();}
port y{provides int sqr();}
port n{requires char readTxt();}

private final A a=new A();

}

port m{provides void printChar();}

private final B b=new B();
connect a.y,b.x;
glue n to b.n;
glue x to a.x;
glue m to b.m;
glue y to b.y;

(a) Architectural units

AB

BA

n

x

n

x

m

y

n m

yx

m

y

(b) Composition

Fig. 3.10 Connection: Composing architectural units by port connection.

Coordination thus removes all coupling between the units, in contrast to connec-
tion, which induces tight coupling through message passing. Examples of coor-
dination are data coordination using tuple spaces [Gelernter and Carriero (1992)],
data coordination using data connectors [Arbab (2004)] for parallel processes or
active components, control coordination using orchestration [Erl (2005)] for (web)
services, and control coordination using exogenous composition for encapsulated
components (Fig. 3.13).

Tuple spaces are used in coordination languages to coordinate parallel pro-
cesses, by storing and sharing typed data objects (tuples) between the processes.
In contrast to connection mechanisms, these processes communicate only with the
tuple space, but not directly or indirectly with each other.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 32

32 An Introduction to Component-Based Software Development

Fig. 3.11 Coordination.

Data connectors are data channels that coordinate the data flow between the
ports of active components, thus separating the data flow from computation. The
components execute their own threads, consuming data values on their input ports
and putting data values on their output ports. The components do not commu-
nicate directly with each other. The flow of data values is defined by the data
channels between them.

In control coordination, control connectors coordinate the control flow be-
tween passive components. The components do not have their own threads, and
are executed only when control reaches them from the control connectors. Con-
trol coordination thus separates control flow from computation. is a representative
example of coordination. A web service [Erl (2005)] provides a set of operations
that can be invoked by users via its WSDL (web service description language)
[Christensen et al. (2001)] interface (with web enabled protocols). A sequence
of invocations can be defined as a workflow, in a workflow language like BPEL
(business process execution language) [OASIS (2007)], and when the workflow
is executed on a workflow engine, the invocations take place. Such a workflow is
called an orchestration. Thus orchestration is a composition mechanism for web
services.

This is illustrated in Fig. 3.12 for two web services WS1 and WS2. Fig-
ure 3.12(a) shows how a BPEL process orchestrates the two web services, and
Fig. 3.12(b) shows the workflow created by this orchestration. The workflow, de-
picted by an activity diagram, is defined as a BPEL process: it invokes operation
X in WS1, and then invokes either operation Y in WS1 or operation Z in WS2

depending on whether condition c1 or c2 holds, and then terminates. Thus, orches-
tration coordinates the invocation of operations in WS1 and WS2. Figure 3.12(c)
shows the code for this BPEL process.

3.2.5 The Complete Survey

Our complete survey of software composition mechanisms is structured according
to the above four categories (and the three views) and is shown in Fig. 3.13.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 33

What is Software Composition? 33

BPELProcess

WS1 WS2

service request
service response

WS web service

(a) BPEL process

WS1.X
WS1.Y

WS2.Z

[c1]

[c2]

(b) BPEL workflow

<process name="BPELProcess"..>
<!--Participants(WS1 and WS2)-->
<partnerLinks>

</partnerLinks>
<partnerLink name="WS1"../>
<partnerLink name="WS2"../>

<!--Request/response vars of participants-->
<variables>
</variables>
...
<sequence>
<invoke..partnerLink="WS1"..operation="X"../>
<if><condition><!--c1--><condition>
<sequence>
<invoke..partnerLink="WS1"..operation="Y"../>

</sequence>
<else>
<if><condition><!--c2--><condition>
<sequence>
<invoke..partnerLink="WS2"..operation="Y"../>

</sequence>

</sequence>

</if>
</else>
</if>

</process>
(c) BPEL code

Fig. 3.12 Coordination: composing web services by orchestration.

The Containment category contains function nesting, procedure nesting, class
nesting, object composition and object aggregation, and module nesting.

The Extension category contains multiple (class) inheritance, mixin-
inheritance [Bracha and Cook (1990)], mixin-class inheritance, trait composition
[Ducasse et al. (2006)], trait-class composition, subject composition, feature com-
position, (aspect) weaving and invasive composition.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 34

34 An Introduction to Component-Based Software Development

Unit of
Composition

Composition Mechanism

Containment Extension Connection Coordination

Function Function nesting Higher-order function
Function call

Procedure Procedure nesting Procedure call

Class
Class nesting

Object composition
Object aggregation

Multiple Object delegation

Mixin Mixin

Mixin/Class Mixin-class

Trait Trait Trait

Trait/Class Trait-class Trait-class

Subject Subject

Feature Feature

Aspect/Class Weaving

Module Module nesting Module connection

Architectural Port

Fragment

C
on

st
ru

ct
io

n
V
ie

w

Invasive Invasive

Process Channels Data coordination

C
B
D

 V
ie

w

Web service Orchestration
(Control coordination)

(Control coordination)
Encapsulated
component

Exogenous composition

Pr
og

ra
m

m
in

g
V
ie

w

unit

box

connection

compositioncomposition

inheritance

inheritance

inheritance

composition

composition composition

composition

composition

composition

Fig. 3.13 Categories of software composition mechanisms.

The Connection category contains higher-order function, function call, pro-
cedure call, object delegation, trait composition, trait-class composition, module
connection, port connection, invasive composition, and (process [Hoare (2005)])
channels.

The Coordination category includes data coordination, (web service) orches-
tration and exogenous composition (of encapsulated components).

Our survey shows some interesting characteristics of the three views, and the
composition mechanisms therein. Each view is based on a particular kind of unit
of composition. In the programming view, units of composition do not have plugs.
In the construction view, units of composition have plugs: modules have interac-
tion points as plugs; architectural units have ports as plugs; fragment boxes [Aß-
mann (2003)] have hooks as plugs; processes have channels as plugs. In the CBD
view, units of composition have proper interfaces for composition: web services

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 35

What is Software Composition? 35

have WSDL interfaces; encapsulated components have interfaces for exogenous
composition.

The boundaries between views are of course not clear cut. As we pointed
out in Section 3.1, the construction and the CBD views overlap. This is evident
in Fig. 3.13. The construction view also overlaps slightly with the programming
view. A module could be a unit of composition in the programming view. How-
ever, modules with interfaces do have plugs for interacting with other modules; so
a module is also a unit of composition in the construction view. Another example
is a feature. A feature in feature-oriented programming does not have plugs, but
a feature in the Genvoca model [Batory et al. (1994)] does have plugs; such a
feature would be a unit of composition in the construction view.

In each view, there is a predominant kind of composition mechanism, except
the programming view, where all composition mechanisms except coordination
are used. In the construction view, without the assumption of third-party com-
ponents, the predominant composition mechanism is connection. This reflects
the primary concern of constructing larger pieces of software from smaller pieces.
The fact that modules use nesting betrays its programming view roots. In the CBD
view, with the presumption of (pre-existing) third-party components, the predom-
inant composition mechanism is coordination. This is due to the assumption of
third-party components: web services are assumed to be available on web servers,
while encapsulated components are assumed to be in repositories provided by
third parties.

3.3 Algebraic Composition Mechanisms

Our survey is not based on any desiderata for composition mechanisms, but it
does provide a comprehensive source of information for further analysis of the
mechanisms in terms of desirability criteria. In this section we show a taxon-
omy based on a desideratum for CBD, namely systematic construction. We will
show that mechanisms that are algebraic meet this desideratum, and identify such
mechanisms.

When a composition mechanism is applied to units of composition of a given
type, the resulting piece of software may or may not be another unit of com-
position of the same type. If it is, then it can be used in further composition;
composition mechanisms that produce units of composition of the same type as
the composed units of composition are algebraic. Algebraic composition mech-
anisms are good for hierarchical composition (and therefore systematic construc-
tion), since each composition is carried out in the same manner regardless of
the level of the construction hierarchy. Indeed in the ‘construction view’, such

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 36

36 An Introduction to Component-Based Software Development

mechanisms are deemed the most desirable since they can constitute a component
algebra [Achermann and Nierstrasz (2005)].

We only consider one-sorted algebra, not many-sorted algebras, where ‘alge-
braic’ would mean the resulting unit is of the same type as at least one of the
composed units. In practice, in any programming paradigm, there is usually only
one pre-dominant, paradigm-defining sort, e.g. object-oriented programming,
service-oriented programming, etc.

Containment Extension Connection Coordination
Composition Mechanism

Algebraic?

Multiple inheritance
Mixin inheritance
Trait composition

Subject composition
Feature composition
Invasive composition

Higher-order function
Trait composition
Port connection

Invasive composition
Channels

composition
Exogenous

inheritance
Trait-class

Weaving

Function call
Procedure call

Module connection
Object delegation

Trait-class composition

Data
coordination

Orchestration

Function nesting
Procedure nesting

Module nesting
Class nesting

Object composition
Object aggregation

Mixin-class

composition

Fig. 3.14 Algebraic versus non-algebraic composition mechanisms.

Analysing the mechanisms in our survey in Fig 3.13, we arrive at the taxonomy
of algebraic versus non-algebraic mechanisms in Fig. 3.14.

In the Containment category, all the mechanisms are algebraic, since the com-
posite is always the same type as the composed units.

In the Extension category, some mechanisms are algebraic, while some are
not. Multiple inheritance yields a class from two classes and is therefore alge-
braic. Similarly, mixin inheritance, subject composition and feature composition
are algebraic. Trait composition can be done by either extension or connection,
but it is always algebraic since it always yields another trait. Invasive composi-
tion performs both extension (by overwriting) and connection (via hooks), but it
is always algebraic because it always yields another fragment box.

Mixin-class inheritance and weaving yield, respectively a class from a mixin
and a class, and a class from an aspect and a class, and are therefore not algebraic.
Trait-class composition falls into both the Extension and Connection categories,
depending on whether the trait composition involved is done by extension or con-
nection, but trait-class composition is always non-algebraic since it yields a class
from a trait and a class.2

2Our classification of subject composition as algebraic, and aspect weaving as non-algebraic, mirrors

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 37

What is Software Composition? 37

Like the Extension category, in the Connection category, some mechanisms
are algebraic and some are not. A higher-order function composes functions and
yields a function, and is therefore algebraic. So is port connection, which com-
poses architectural units and yields an architectural unit. Channels connecting
processes create new processes, and are therefore algebraic.

A function call returns a pair of functions rather than a single function, and is
therefore non-algebraic. Similarly, procedure call, module connection, and object
delegation are non-algebraic.

Finally, in the Coordination category, only exogenous composition as in X-
MAN (Section 7.1) is algebraic, since the composition of two encapsulated com-
ponents always yields an encapsulated component. In X-MAN (Fig. 3.15), the

IU

UComputation

IU = Invocation connector
U = Computation unit

(a) Atomic component

(b) Composition connector

IA IB

A B
Atomic

component

Control CC

CC = Composition connector

(c) Composite component

Fig. 3.15 Exogenous composition in X-MAN.

components are encapsulated (Fig. 2.4(c)). There are two basic types of compo-
nents: (i) atomic and (ii) composite. An atomic component (Fig. 3.15(a)) consists
of a computation unit (U) and an invocation connector (IU). A computation unit
contains a set of methods which do not invoke methods in the computation units

the dichotomy between symmetric and asymmetric aspect mechanisms [Harrison et al. (2002);
Kojarski and Lorenz (2006)] in aspect-oriented software development.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 38

38 An Introduction to Component-Based Software Development

of other components; it therefore encapsulates computation. An invocation con-
nector passes control (and input parameters) received from outside the component
to the computation unit to invoke a chosen method, and after the execution of
method passes control (and results) back to whence it came, outside the compo-
nent. It therefore encapsulates control. A composite component (Fig. 3.15(c)) is
built from atomic components by using a composition connector (Fig. 3.15(b)).
Such a connector encapsulates a control structure, e.g. sequencing, branching,
or looping, that connects the sub-components to the interface of the composite
component. Since the atomic components encapsulate computation and control,
so does the composite component. Encapsulated components therefore encapsu-
late control (and computation) at every level of composition. Figure 3.15 clearly
shows that exogenous composition is algebraic: exogenous composition of encap-
sulated components always yields another encapsulated component. The compo-
sition connector provides the interface of the composite, which is derived directly
from the interfaces of the composed components.

Data coordination is not algebraic since it does not yield a single process;
rather it yields the same set of processes (either sharing a tuple space or connected
by data connectors). Orchestration of web services is not algebraic since the result
of an orchestration is a workflow, rather than a web service, as we showed in Sec-
tion 3.2.5. Of course the workflow could be turned into web service, by creating
a WSDL interface for it, but this would require an extra step after orchestration.
Indeed, some BPEL editors force the user to take this extra step in order to make
the orchestration executable as a web service.

3.4 Mathematical Composition Operators

Another desideratum for CBD is that composition mechanisms should be automat-
able. A composition is automatable if it can be explicitly defined as a mathemati-
cal composition operator, i.e. like a mathematical function, that can be defined and
then applied to arbitrary arguments, i.e. units of composition of specified types.
For example, a higher-order function h : X → Z that composes two functions
f : X → Y and g : Y → Z (where X,Y, Z are types) can be defined explicitly
in terms of f and g as h(x) = g(f(x)). The mathematical operator h can be used
to compose any two functions with type signatures X → Y and Y → Z .

Applying a mathematical composition operator does not require any glue that
has to be constructed manually. With mathematical composition operators defined
from algebraic composition mechanisms, we can automate hierarchical composi-
tion. In this section, we show a taxonomy of algebraic composition mechanisms

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 39

What is Software Composition? 39

Containment Extension Connection Coordination

Algebraic Composition Mechanism

Object aggregation

Function nesting
Procedure nesting

Module nesting
Class nesting

Object composition

Mixin inheritance

Subject composition
Higher-order function

Trait compositionMultiple inheritance

Trait composition

Feature composition

Invasive composition

Exogenous
composition

Port connection

Invasive composition

Channels

Composition
operator ?

Fig. 3.16 Algebraic composition mechanisms as mathematical operators.

that can be defined as mathematical operators versus those that cannot. This tax-
onomy is shown in Fig. 3.16.

In the Containment category, no mechanism can be defined as a mathematical
operator, since nesting can be done in arbitrary ways.

In the Extension category, multiple inheritance, trait composition, and feature
composition, all perform extension that may require glue for conflict resolution
and overriding in general, and therefore cannot be defined as mathematical oper-
ators. Invasive composition requires glue for both extension and connection, and
therefore cannot be defined as mathematical operators.

By contrast, mixin inheritance never requires glue, since it performs extension
in a fixed manner. A mixin M is a set of methods, and can be defined as a record
{f1 �→ m1, . . . , fn �→ mn} with fields f1, . . . , fn whose values are the signa-
tures m1, . . . ,mn of M ’s methods. Mixin inheritance can be defined as record
combination, which is a binary operation ⊕ [Bracha and Cook (1990)] such that
M1⊕M2, for any M1 and M2 yields a new mixin M3 which is a new record with
the fields from M1 and M2, where the value for each field is the value from the
left argument M1 (or the right argument M2) in case the same field is present in
both records.

Figure 3.17 shows an example in MixedJava [Flatt et al. (1999)]: mixin A

with methods m1,m2,m5; m5 prints the message ‘Alpha’. Mixin B has methods
m3,m4,m5; m5 prints the message ‘Beta’. The first composition expression
generates a composite mixin AB, in which A’s m5 overrides B’s m5. Similarly,
the second composition expression generates a composite mixin BA, in which
B’s m5 overrides A’s m5.

Similarly, it is possible to define simple correspondence-combination math-
ematical operators for composing arbitrary subjects, e.g. a simple ‘merge-and-
overwrite’ operator. However, it is difficult to define mathematical operators

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 40

40 An Introduction to Component-Based Software Development

mixin A{
m1(){ }... m2(){ }... m5(){//print Alpha}

}
mixin B{
m3(){ }... m4(){ }... m5(){//print Beta}

//two composition expressions
mixin AB = A compose B;
mixin BA = B compose A;
mixin AB{
m1(){ }... m2(){ }...
m5(){//print Alpha}

m3(){ }... m4(){ }...

mixin BA{
m1(){ }... m2(){ }...
m5(){//print Beta}

m3(){ }... m4(){ }...

}

}

}

Fig. 3.17 Mixin!inheritance.

for complex correspondence-combination mechanisms that can compose arbitrary
subjects.

In the Connection category, for any two given traits and two architectural units,
respectively, there are in principle many different possible pairs of matching ser-
vices and compatible ports, and each permutation of possible pairs gives rise to
a composition operator. Thus composing traits and architectural units by connec-
tion is necessarily done in an ad hoc manner, and cannot be defined as mathemat-
ical operators. Similarly, for any two given processes, there are many different
possible channels for connecting them. Thus composing processes by channels
connection cannot be defined as mathematical operators.

In the Coordination category, exogenous composition can be defined as math-
ematical composition operators (connectors), as we have already seen in the pre-
vious section.

Finally, the taxonomy in Fig. 3.16 is a sub-taxonomy of the taxonomy
(Fig. 3.14) presented in the previous section. Together they form the taxonomy
that identifies desirable composition mechanisms for CBD. Figure 3.16 shows
that these mechanisms are mixin-inheritance, subject composition and higher-
order function (from the programming view) and exogenous composition (from
the CBD view). Of these, only exogenous composition is being used in CBD.
Apart from exogenous composition, current component models predominantly
use object delegation and port connection (for architectural units).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 41

What is Software Composition? 41

Discussion and Further Reading

Various categories for software composition mechanisms have been proposed be-
fore. Nierstrasz and Dami [Nierstrasz and Dami (1995)] suggest three differ-
ent types of compositional paradigms for components (static abstractions with
plugs): (i) functional composition, (ii) blackboard composition and (iii) exten-
sibility. Components are seen as (mathematical) functions from input values to
output values. In functional composition, components are composed like (math-
ematical) functions. This corresponds to the higher-order function mechanism
in our Connection category. Blackboard composition is data sharing by compo-
nents, and is therefore data coordination in our Coordination category. Extensi-
bility is not a separate mechanism, but part of functional composition; it allows
individual components to be extended (by single inheritance), and requires any
such extension to be preserved in any functional composition involving extended
components. Nierstrasz and Dami do not have our Containment and Extension
categories.

Sametinger [Sametinger (1997)] categorises software composition mecha-
nisms into two basic forms: (i) internal and (ii) external. In internal composition
mechanisms, composed units become inherent parts of the composite, e.g. when
source code is compiled and linked to an executable file. This corresponds to
our Containment category in a coarse-grained way; it is not clear whether object
aggregation is internal. In external composition mechanisms, composed units ex-
ecute independently and communicate with other composed units by interprocess
communication techniques. This covers our Connection and Coordination cate-
gories, but again in a very coarse-grained manner. It is not clear which of these
forms our Extension category belongs to.

Sommerville (2004b) defines three types of composition mechanisms for ar-
chitectural units: (i) sequential, (ii) hierarchical and (iii) additive. In sequential
composition, the ‘provided’ interfaces of the units are linked by glue code that
executes their services in sequence; what happens to the ‘required’ ports is not
defined. Without ‘required’ ports, this mechanism seems to be a control coordina-
tion mechanism, and seems to be non-algebraic. Hierarchical composition is the
same as port connection in our Connection category. Additive composition simply
yields a composite whose interface is the set of the interfaces of the components.
This is a degenerate form of port connection in which only delegation connectors
are used (to forward ports to the composite). Sommerville does not have the Con-
tainment or Extension categories since he only addresses architectural units. He
also seems not to have the Coordination category.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 42

42 An Introduction to Component-Based Software Development

Szyperski [Szyperski (2002b)] classifies software composition approaches
into two categories: (i) symmetric and (ii) asymmetric. Symmetric means the
definition of composition is located in (one of) the composed components, e.g.
object delegation, while asymmetric means the location of composition defini-
tion is outside in a neutral place, e.g. container-based composition like in EJB.
These are coarse-grained categories, with symmetric covering our Containment,
Extension and Connection categories, while asymmetric corresponds to our Coor-
dination category.

Mehta et al. (2000) define composition mechanisms for components as con-
nectors, and categorise them into connectors for: (i) communication (ii) coordina-
tion (iii) conversion and (iv) facilitation. Communication connectors transfer data,
whilst coordination connectors transfer control, between components. These con-
nectors belong to our Connection category, since they compose components by
message passing. Conversion connectors convert the interaction required by one
component to that provided by another, e.g. conversion of data format; thus they
are adaptors. Our categories do not include adaptors; we do not consider them to
be composition mechanisms since they are unary operators. Facilitation connec-
tors provide mechanisms for facilitating and optimizing component interactions.
They do not feature in our categories.

The only work related to our taxonomy for CBD is that of Chaudron [Chau-
dron (2001)]. He does not propose any taxonomy, but he does define desiderata for
composition mechanisms for CBD. Interestingly, Chaudron’s desiderata support
our taxonomy for CBD. Three of his criteria which are relevant here state that: (i)
composition mechanisms should be exogenous to components, i.e. not built into
the components themselves; (ii) composition mechanisms should provide sepa-
rate mechanisms for dealing with control flow and data flow; (iii) composition
languages should provide means for building higher level, larger-granularity com-
position abstractions. (i) and (ii) support our classification of exogenous compo-
sition (of encapsulated components) as desirable for CBD (Fig. 3.16), while (iii)
supports our choice of algebraic mechanisms as desirable for CBD (Fig. 3.14).

For practical development, we will always need to use a combination of dif-
ferent kinds of components and composition mechanisms. Non-algebraic mech-
anisms or mechanisms that cannot be defined as mathematical operators may be
better for top-level system design. On the other hand, given a top-level architec-
tural design, it may be better to provide all its required services by designing the
desired composites using mathematical composition operators that can be applied
automatically.

We have not addressed run-time or dynamic composition, e.g. proximity-based
composition (objects in a context may be automatically connected) [Szyperski
(2002a)], and data-driven composition [Szyperski (2002a)].

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 43

What is Software Composition? 43

Finally, we agree with Szyperski [Szyperski (2002a,b)] that for CBD the ‘uni-
verse of composition’ is as yet largely unexplored. Our work here is a response to
his ‘call-to-arms’ [Szyperski (2002a)].

Acknowledgement

We thank Uwe Aßmann, Don Batory, David Lorenz, Oscar Nierstrasz, Johannes
Sametinger, Clemens Szyperski and Steffen Zschaler for factual information,
helpful discussions and insightful comments. We also thank Michel Chaudron
for pointing out a mistake in an earlier version of our paper on the survey of com-
position mechanisms [Lau and Rana (2010)].

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 45

Chapter 4

Software Component Models

As we have seen in Chapter 3, there are many different kinds of units of compo-
sition that could be used as components, and each kind of unit has an associated
composition mechanisms. Therefore, to define a CBD method, it is necessary to
specify: (i) what components it adopts; and (ii) what composition mechanisms
it uses to compose the components. The entity that defines both (i) and (ii) is
called a software component model [Lau and Wang (2005); Lau (2006a,b); Lau
and Wang (2007); Crnkovic et al. (2011); Lau (2014); Lau et al. (2014)], which
we have defined as follows [Lau and Wang (2007)]:

A software component model is a definition of:

• the semantics of components;
• the syntax of components;
• the composition of components.

The semantics of components is what components are meant to be, that is, what
kind of unit of composition is chosen as a component. In Section 2.1, we showed
that a generally accepted view of a software component is that it is a software unit
with provided services and required services, as depicted in Fig. 4.1 (which is

Required Service Provided Service

Fig. 4.1 A generic software component.

a copy of Fig. 2.1). Therefore the semantics of any unit of composition chosen
as a component will be a variant of that of a generic component, with its own
specialisation of the provided and required services.

The syntax of components determines how components are constructed and rep-
resented. Once the semantics of components has been fixed in a component model,

45

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 46

46 An Introduction to Component-Based Software Development

components can be defined and constructed. The definition of components requires
a component definition language, which may be distinct from the implementation
language, i.e. programming language, for components. Clearly, for a given com-
ponent definition language, components can be implemented in different program-
ming languages. Therefore, we refer to the syntax of components as the syntax of
the component definition language. In a component model, this language must be
specified, whereas the implementation language(s) may be left open.

The composition of components defines what kinds of composition mecha-
nisms are chosen for the components, that is, how the components are to be as-
sembled and what the semantics of composition is. In order to define composition,
we need a component composition language, e.g. [Lumpe et al. (2000)]. The com-
position language should have suitable semantics and syntax that are compatible
with those of the components in the component model.

Clearly there are many different possible component models. In current prac-
tice, there are three main categories of component models: (i) models where com-
ponents are objects; (ii) models where components are architectural units; and (iii)
models where components are encapsulated components. Representative exam-
ples of these categories are JavaBeans [JavaBeans Specification; Oracle (2017)],
architecture description languages (ADLs) [Clements (1996); Medvidovic and
Taylor (2000)], and X-MAN [Lau and Tran (2012); He et al. (2012); di Cola et al.
(2015)] respectively.

In this chapter, we will give an overview of these three categories of compo-
nent models. In subsequent chapters, we will take a detailed look at these models.

4.1 Component Models with Objects as Components

In component models where components are objects (Fig. 2.4(a)) in the sense
of object-oriented programming, the component definition language is the cho-
sen object-oriented programming language, as is the component composition lan-
guage. Composition is by connection by direct message passing (Fig. 3.5(a)), i.e.
object delegation, in the programming language.

4.1.1 Semantics of Components

The semantics of a component that is an object in an object-oriented programming
language is of course defined by the programming language: an object has a signa-
ture and methods that can call, and can be called by, methods in other objects. As
a component, an object’s methods are its provided services, as shown in Fig. 4.2

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 47

Software Component Models 47

(which is a copy of Fig. 2.4(a)); whilst its required services are not specified, and
hence the blurring out of the sockets in Fig. 4.2.

method
Provided

Fig. 4.2 An object as a component.

4.1.2 Syntax of Components

The syntax of a component, that is an object in an object-oriented programming
language, is also defined by the programming language. For example, in Jav-
aBeans [JavaBeans Specification; Oracle (2017)] a component is called a Java
bean but syntactically it is just a Java class.

4.1.3 Composition of Components

Objects ‘compose’ by connection by direct message passing (Fig. 3.5(a)), i.e. by
direct method call. This is illustrated in Fig. 4.3 (which is a copy of Fig. 3.6).
Object A ‘composes’ with object B by calling the method m1 in B, which in turn

A B C

m1(...)
 {
 ...

m2(...) ...
 }

m2(...)m1

m2

control ow

m

Fig. 4.3 Object composition: Connection by direct method call.

calls the method m2 in object C, and by so doing ‘composes’ objects B and C.
For example, in JavaBeans, Java beans ‘compose’ with one another indirectly

via adapter classes that link beans via event delegation.
Object ‘composition’ is hard-wired in objects’ code. In Fig. 4.3, object A

contains the code that invokes m1 in object B, as indicated by the dotted arrow
from A to (m1 in) B. The fact that A requires m1 is not expressed because A

cannot have any required services. Similarly, (m1 in) object B contains the code
to call m2 in object C, and the fact that B requires m2 is not expressed because
B cannot have any required services.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 48

48 An Introduction to Component-Based Software Development

4.2 Component Models with Architectural Units as Components

In component models where components are architectural units (Fig. 2.4(b)), the
component definition language is an architecture description language (ADL)
[Medvidovic and Taylor (2000)], which also provides the component composition
language. Composition is by connection by indirect message passing (Fig. 3.5(b)).

An ADL may define components as units of design only, or as units of design
and implementation. In the former case, implementation will have to be specified
in some other (programming) language; an example of such an ADL is UML2.0
[OMG (2003)]. In the latter case, the ADL will be a programming language with
special constructs for components and their connections; an example of such an
ADL is ArchJava [Aldrich et al. (2001)].

4.2.1 Semantics of Components

A component that is an architectural unit is a generic component (Fig. 2.1) with
services represented as ports as shown in Fig. 4.4 (which is a copy of Fig. 2.4(b)).
Provided services are input ports (in1 and in2 in Fig. 4.4) and required services

in1

in2 out2

out1

Fig. 4.4 An architectural unit as a component.

are output ports (out1 and out2 in Fig. 4.4) respectively.
Compatible ports on different units can be linked by connectors, and in a con-

nected pair of ports, an output port represents a required service of one unit but
the provided service (and the input port) of the other unit, and vice versa.

For example, in UML2.0 [OMG (2003)], a component is an architectural unit
with input ports that are required services and output ports that are provided ser-
vices, as depicted in Fig. 4.5 (which is a copy of Fig. 3.8).

ProvidedPort interface
Required
interface

Fig. 4.5 UML2.0 component.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 49

Software Component Models 49

4.2.2 Syntax of Components

The syntax of a component that is a architectural unit is defined by the ADL.
For example, in UML2.0, components are defined as UML classes with special
stereotypes. The ATM component in Fig. 4.6(a) (as in Fig. 2.3) can be defined as
a UML2.0 component by the UML class in Fig. 4.6(b).

(a) Generic component (b) UML2.0 component

Fig. 4.6 Syntax of ATM component in UML2.0.

The stereotypes <<component>>, <<provided interfaces>> and
<<required interfaces>> denote a component class, methods of this
class, and methods called by this class, respectively.

Examples of architectural units in ArchJava can be seen in Fig. 3.10(a).

4.2.3 Composition of Components

Architectural units compose by connection by indirect message passing
(Fig. 3.5(b)), via port links. A remote method call is placed on a caller’s out-
put port and passed to a linked input port in the callee. The callee executes the
method and returns results via the port link. This is illustrated in Fig. 4.7 (which is
a copy of Fig. 3.7). Architectural unit A places a call to method m1 (in unit B) on

A

m1(...)
m1

m1(...)

m2
m2(...)

control ow

m2(...)

B C

m1

m2

Fig. 4.7 Architectural unit composition: connection by indirect message passing.

its output port which is linked to an input port in unit B. The call is passed to B via
the linked ports. Whilst executing m1 unit B places a call to m2 (in unit C) on its

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 50

50 An Introduction to Component-Based Software Development

output port that is linked to an input port of unit C. The call is passed to C via the
linked ports and executed by C. Results from call executions are passed via port
links to specified destination units.

For example in UML2.0, port connection is done by using assembly connec-
tors, as illustrated in Fig. 4.8 (which is a copy of Fig. 3.9). UML 2.0 also defines

Delegation connector Assembly connector

Fig. 4.8 Composition in UML2.0.

delegation connectors for port forwarding or exporting between ports of a com-
posite component (outer component in Fig. 4.8) and ports of the sub-components.

An example of architectural unit composition in ArchJava can be seen in
Fig. 3.10.

4.3 Component Models with Encapsulated Components

In component models where components are encapsulated components
(Fig. 2.4(c)), the component definition language could be an ADL (which de-
fines architectural units with only provided services, and no required services),
and the component composition language is either a set of pre-defined coordina-
tors or a coordination language that can be used to define arbitrary coordination.
Composition is by coordination (Fig. 3.11).

4.3.1 Semantics of Components

An encapsulated component is an architectural unit with only provided services,
and no required ones, as illustrated in Fig. 4.9 (which is a copy of Fig. 2.4(c)).

Fig. 4.9 An encapsulated component.

The provided services are methods or operations provided by the component.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 51

Software Component Models 51

Thus an encapsulated component has no external dependencies. Furthermore,
‘encapsulated’ means that when invoked an encapsulated component does not leak
control to any other component during the execution of the invoked method or
operation; i.e. its computation is entirely enclosed within itself as a capsule.

For example, in X-MAN [Lau and Tran (2012); He et al. (2012); di Cola et al.
(2015)], components are all encapsulated, and can be atomic or composite, as
shown in Fig. 4.10. Figures 4.10(a) and 4.10(b) are copies of Figs. 3.15(a) and
3.15(c) respectively.

IU

UComputation

IU = Invocation connector
U = Computation unit

(a) Atomic component

IA IB

A B
Atomic

component

Control CC

CC = Composition connector

(b) Composite component

Fig. 4.10 X-MAN components.

4.3.2 Syntax of Components

The syntax of an encapsulated component is defined by the ADL. For example, in
X-MAN, the syntax of components is defined in a graphical modelling language
(in Eclipse), and captured in a graphical editor derived from this definition [di
Cola et al. (2015)].

4.3.3 Composition of Components

Encapsulated components compose by coordination, as shown in Fig. 4.11, which
is the same as Fig. 3.11, except the units of composition are encapsulated
components.

Coordinator

Fig. 4.11 Encapsulated component composition: coordination.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 52

52 An Introduction to Component-Based Software Development

For example, in X-MAN, coordination is defined by composition connectors,
as shown in Fig. 4.12 (which is a copy of Fig. 7.2(b)). These connectors coordinate

Fig. 4.12 Composition connector in X-MAN.

control flow between the composed components. For example, in Fig. 4.10(b), a
composition connector is used to compose two atomic components into a compos-
ite component. This composition connector coordinates control flow between the
two atomic components. For instance a sequencer composition connector would
invoke (and execute) the first atomic component and then invoke (and execute) the
second atomic component.

Discussion and Further Reading

A tutorial on component models can be found in [Lau (2014); Lau et al. (2014)].
An older tutorial can be found in [Lau (2006a,b)], with further details in [Lau and
Wang (2006)].

Acknowledgement

We wish to thank Ivica Crnkovic, David Garlan, Dirk Muthig, Oscar Nierstrasz,
Bastiaan Schonhage and Kurt Wallnau for information and helpful discussions.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 53

Chapter 5

Component Models with Objects
as Components

In this chapter, we describe component models where components are objects.
These models are basically defined by object-oriented programming languages
in which components are objects and their composition is realised by method or
event delegation. A system built from objects as components is just an object-
oriented program with a main class.

The archetypal example of a component model with objects as components
is JavaBeans (Section 5.2), in which Java objects are components (called beans),
composed by event delegation.

Objects as components in component models often are bounded to some re-
strictions or have to satisfy certain properties. For example, in JavaBeans, a com-
ponent is an object that (among other things) is serializable, and thus it is not a
plain old Java object. Indeed the term POJO [Fowler et al. (2009)] is used to des-
ignate a plain old Java object not bound by any restriction other than those forced
by the Java language specifications.1

Object-oriented programming frameworks, e.g. OSGi (Section 5.3.2), also use
objects as their foundational elements, but they define larger building blocks, e.g.
bundles in OSGi, in terms of objects. These building blocks are not components
as such, since they have no composition mechanisms, but they group together in-
teracting objects that collectively provide more coarse-grained functionality than
individual objects. Therefore they are more wieldy for constructing large and
complex applications in a modular manner.

Frameworks are thus akin to component models with objects as components
that are composed by delegation. However, frameworks are not component mod-
els; rather they contain the latter. In this chapter, we also describe popular

1The equivalent to POJO for .NET (Section 5.3.3) is plain old CLR object (POCO). For PHP, it is
plain old PHP object (POPO).

53

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 54

54 An Introduction to Component-Based Software Development

object-oriented frameworks and show how they are built on top of component
models based on objects.

For each component model we describe, we will also analyse the component
life cycle in that model, and compare it to the idealised component life cycle
(Section 1.1), in order to see how well the component model supports the latter.

5.1 POJOs

If we use POJOs as components composed by method or event delegation, then
POJOs can be considered a component model, completely defined in Java. The
syntax of a POJO is just a Java class; its semantics is as shown in Fig. 4.2 and
POJO composition is as shown in Fig. 4.3.

Thus component-based development using POJOs as a component model
amounts to Java programming. Constructing a system requires defining and com-
posing POJOs, i.e. classes and method calls, including one special POJO that
defines the main class of the system.

In terms of the idealised component life cycle (Fig. 1.3), in the design phase
a Java IDE is used to write all the code for the complete system, i.e. code for all
the POJOs created by the programmer. The component life cycle for POJOs is

Java IDE JVM

Builder

A

B

InsA

InsB

A = POJO
B = POJO

InsA = instance of A
InsB = instance of B

RTE

= method call

Design Phase Run-time Phase

Fig. 5.1 POJOs: component life cycle.

illustrated in Fig. 5.1, which shows POJOs A and B created and composed by the
user in the Java IDE in the design phase.

There is no deployment phase, as all the code has been written in the design
phase, and is ready for execution on a Java virtual machine (JVM), which provides
the run-time environment. The composition (by method calls) between the POJO
instances at run-time is the same as that between POJOs defined in the design
phase.

5.2 JavaBeans

In JavaBeans [Englander (1997); Weerawarana et al. (2001)] a component is a
bean, which is a Java object with some prescribed properties: (i) it implements the

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 55

Component Models with Objects as Components 55

interface Serializable; (ii) it has a 0-argument constructor (also known as a nullary
constructor); and (iii) it allows access to its private attributes only by getter and
setter methods.

Figure 5.2 outlines Java beans for an ATM and a bank. The ATM bean im-
plements Serializable and has a nullary constructor ATM(). It has a setter method
for the attribute CardReader reader. It provides a withdraw method. The Bank

ATM Bean
...

...
...

public class ATM implements Serializable{
private CardReader reader;
public ATM(){

public withdraw(Bank bank, Integer amount){
bank.withdraw(reader.getAccountNo(), amount);

}

this.displayBalance();
}

public void setCardReader(CardReader cr){
reader = cr;

}
}

Bank Bean

...
...

public class Bank implements Serializable{
private List<Account> accounts;
public Bank(){

public void withdraw(String accno, Integer amount){
Account acc = retrieve(accno);

}

acc.withdraw(amount);
}

public List<Account> getAccounts(){

}
}

...

Fig. 5.2 Examples of Java beans.

bean implements Serializable and has a nullary constructor Bank(). It has a get-
ter method for the attribute List〈Accounts〉 accounts. It also provides a withdraw
method.

In JavaBeans, beans are constructed in a visual builder, which provides a con-
tainer that houses and manages the beans. Beans in a container can be composed
by linking an event generated in a source bean to a method in a target bean. The
container automatically creates event adaptor objects that provide the link. This is
depicted in Fig. 5.3.The event adaptor object listens for and handles the specified

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 56

56 An Introduction to Component-Based Software Development

Bean Container

Source Bean

Generate source event
Noti ed event

Invoke target method
Target method

Target Bean
Event Adaptor

Fig. 5.3 JavaBeans: components and composition.

event generated by the source bean. When the event occurs, the event adaptor
object is notified and it invokes the specified method in the target bean.

Figure 5.4 shows examples of Java beans and their composition. It depicts
a simplified ATM system consisting of the composition of two beans: ATM and
Bank. The two beans are composed by the event adaptor on the notification
of a withdraw event. When provided with the account number and the required
amount, the event adaptor invokes the withdraw method exposed by the Bank
bean.

Bean Container

noti cation
Event Target method

invocation

ATM Bean

...
...

...

public class ATM implements Serializable{
private CardReader reader;
public ATM(){

public withdraw(Bank bank, Integer amount){
bank.withdraw(reader.getAccountNo(), amount);

}

this.displayBalance();
}

public void setCardReader(CardReader cr){
reader = cr;

}
}

Bank Bean

...
...

public class Bank implements Serializable{
private List<Account> accounts;
public Bank(){

public void withdraw(String accno, Integer amount){
Account acc = retrieve(accno);

}

acc.withdraw(amount);
}

public List<Account> getAccounts(){

}
}

...

Event

Adapter

Fig. 5.4 JavaBeans: ATM example.

In terms of the idealised component life cycle, in the design phase, beans are
constructed, by writing their Java code, and manipulated in a visual bean builder
tool like NetBeans. Their JAR files are hosted in a repository, such as the Palette in
NetBeans [Lorenz and Petkovic (2000)]. In deployment phase, beans are retrieved
(dragged) from the repository, dropped and composed in a canvas (which serves
as an assembler) such as the Design Form in NetBeans. This is illustrated in
Fig. 5.5. The composition of beans constitutes a complete (executable) system.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 57

Component Models with Objects as Components 57

NetBeans Palette Design Form JVM

Builder

A

B

A

B

InsA

InsB

A = Java bean
B = Java bean

InsA = instance of A
InsB = instance of B

= adaptor object

A

B

Repository Assembler RTE

Design Phase Deployment Phase Run-time Phase

Fig. 5.5 JavaBeans: component life cycle.

Unlike POJOs, now there is no need to have a special bean with the main class;
the container provides this.

Figure 5.5 shows clearly that in JavaBeans, composition takes place only in
the deployment phase. In the design phase, beans are created individually and
separately.

Finally, the most common use of beans is for graphical user interface com-
ponents [Evans and Flanagan (2014)], such as buttons, boxes, and lists of the
java.awt and javax.swing packages.

5.3 Object-oriented Frameworks

Object-oriented frameworks provide support for object-oriented software devel-
opment. Their foundational elements are objects, and therefore they contain com-
ponent models where objects are components composed by delegation.

5.3.1 Enterprise JavaBeans

Enterprise JavaBeans (EJB) [DeMichiel et al. (2001); Burke and Monson-Haefel
(2006)] is a framework that provides a high-level approach to building distributed
systems, by supporting server-side components that can be accessed remotely over
a network by client applications.

A component in EJB is an enterprise Java bean (also abbreviated as EJB),
which is a Java object hosted and managed by an EJB container on a J2EE server,
such as Glassfish [Heffelfinger (2014)] and JBoss [Jamae and Johnson (2009)].
The EJB container serves as the execution environment for EJB components and
mediates their access from remote clients. This is illustrated in Fig. 5.6.

EJB components in an EJB container are intended for collaborating in per-
forming certain tasks for remote client applications. Their collaboration is defined
by composition by delegation, both event and method delegation. Their compo-
sition does not form a complete system since none of the beans contains a main
class. Rather, remote client applications (with their own main classes) can access
the EJBs in the container in order to use them to perform tasks. Figure 5.6 shows

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 58

58 An Introduction to Component-Based Software Development

...

...

...

...

...

...

...

...

...

...

J2EE Server

EJB Container

MessageBean

SessionBeanA SessionBeanB

method1

methodM

methodN

methodN

methodM

method1

method1

methodM

methodN

method1

methodM

methodN

ClientAppC

method1

methodNDataBase

ClientAppA

method1

methodN

ClientAppB

method1

methodN

EntityBean

...

Fig. 5.6 Enterprise JavaBeans: components and composition.

three remote client applications accessing EJBs in the container to perform tasks,
including accessing and updating a database remotely.

Whilst every EJB is defined by a Java class, EJBs are distinguished by their
purpose. There are 3 types of EJBs: (i) entity beans, which model business data by
providing an object-oriented view of a database’s data; (ii) session beans, which
model business processes by acting as agents performing tasks; (iii) message-
driven beans, which model message-related business processes by acting as mes-
sage listeners. Figure 5.6 shows an EJB container with one message-driven bean,
two session beans and one entity bean; all composed via their methods.

A session bean represents work performed for a single client. It can be stateful
or stateless. A stateful session bean is associated with a specific client, by main-
taining a conversational state during the session; while a stateless session bean is
not associated with any specific client. Figure 5.7 shows a stateless session bean
Bank EJB used by an ATM client.

For every EJB, the EJB container generates a remote interface that exposes
its capabilities, as provided by its methods. This interface provides all the meth-
ods needed for (remote) client applications to access the bean (over a network).
Figure 5.7 also shows the remote interface for the Bank EJB, via which an ATM
Client makes calls to the Bank EJB.

An entity bean models data. In the example in Fig. 5.7, assuming that account
details are stored in a database, we can define an entity bean called Account that

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 59

Component Models with Objects as Components 59

...

...ATM Client
Remote Bank Interface

Bank EJB

@Remote
public interface BankRemote{

Integer balance(String accno);
void deposit(String accno, Integer amount);
void withdraw(String accno, Integer amount);

}

@Stateless
public class Bank implements BankRemote{

@EJB
private AccountFacade accountFacade;

public Integer balance(String accno){
Account acc = accountFacade. nd(accno);
return acc.getBalance();

}

}

Fig. 5.7 EJB: ATM example.

consists of a Java class and a helper class. Each instance of Account represents
the corresponding entry in the database, accessible by the Bank EJB via the
AccountFacade helper.

In terms of the idealised component life cycle, in the design phase, EJBs are
designed, constructed and composed in Java using a J2EE-compliant IDE (e.g.
NetBeans) and the JAR files for the beans are deposited in an EJB container. This
is illustrated in Fig. 5.8. The EJB container serves as a repository. However, EJBs

Builder

A

B

InsA

InsB

RTE

NetBeans

A = EJB
B = EJB

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

EJB
container

EJB
container

Design Phase Run-time Phase

Fig. 5.8 Enterprise JavaBeans: component life cycle.

cannot be retrieved from the container for further composition; i.e. there is no
deployment phase. In the run-time phase, instances of EJBs are invoked (via their
remote interfaces) by client applications and executed in the EJB container, which
also works as the run-time environment. The composition of the EJB instances is
as defined for the EJBs in the design phase.

5.3.2 OSGi

The Open Services Gateway Initiative (OSGi) platform [Hall et al. (2011)] is a
framework that brings modularity to the Java platform by offering modules de-
fined as bundles. Like EJBs, bundles contain objects (POJOs) that interact to
provide services to client applications. Bundles also provide services to one an-
other. A bundle is physically distributed as a JAR file, which contains files for
classes and resources. Moreover, a bundle (like a .NET assembly (Section 5.3.3))

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 60

60 An Introduction to Component-Based Software Development

is described by a manifest file. The latter contains information about the bundle:
its symbolic name, version and imported and exported packages. Figure 5.9 shows
an example of a bundle and the details of its manifest.

Bundle

JAR

Resources

Classes

Manifest

Bundle Manifest Version: 2
Bundle Name: Atm API
Bundle SymbolicName: com.atm.api
Bundle Version: 1.0
Bundle Activator: com.atm.AtmActivator
Export Package: com.atm.api; version ="1.0"
Import Package: com.bank.api; version ="[1.0,2.0]"

Fig. 5.9 An OSGi bundle.

Just as EJBs execute in an EJB container on a J2EE server, bundles execute
within an OSGi compliant framework such as Equinox [McAffer et al. (2010)]
and Felix [Gédéon (2010)].

A bundle is called a ‘component’ in OSGi literature. However, in terms of
component models, there is no composition mechanism for bundles; so bundles
are not components and OSGi is not a component model, according to our def-
inition of component models. Correspondingly, there is no notion of composite
bundles. On the other hand, classes in bundles are linked by method calls, and
therefore they can be regarded as components composed by delegation. For this
reason, we say that OSGi is a framework that contains a component model with
objects (POJOs) as components composed by delegation in design phase. This is
illustrated in Fig. 5.10.

Bundle

JAR

Resources

Classes

Manifest

Bundle

JAR

Resources

Classes

Manifest

Fig. 5.10 OSGi: components and composition.

Although semantically POJO composition occurs in the design phase, an OSGi
framework realises the POJOs’ bindings only at run-time. Figure 5.11 shows PO-
JOs in different bundles interacting with one another. At design time, Bundle
A exports some services through its manifest, whilst Bundle B imports such ser-
vices in order to get access to the exported methods. At run-time, the correct

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 61

Component Models with Objects as Components 61

 Service
 Registry

Publish Find

Interact

Bundle A

Method X
Method Y

Bundle B

Method J
Method K

Fig. 5.11 OSGi: POJO interactions between bundles.

object references are obtained through the OSGi framework: the referring bundle
(Bundle B) can directly call the methods of the referenced bundle (Bundle A).

In order to be able to dynamically locate and link bundles, the OSGi frame-
work offers a service registry (Fig. 5.11) where once a bundle is started, it can
register the services it offers and can also look for services offered by other bun-
dles. The container itself executes inside a Java Virtual Machine (JVM). For this
reason OSGi is sometimes referred to as a service-oriented architecture (SOA)
within a JVM.

In terms of the idealised component life cycle, in the design phase in OSGi,
POJOs in bundles are constructed in any editor, e.g. Eclipse. They are composed
inside a bundle to provide a service exposed by the bundle. Bundles are installed
in an OSGi-compliant framework, e.g. Equinox, which serves as a repository.
This is illustrated in Fig. 5.12. There is no further composition and therefore there

Builder

A

B

InsA

InsB

RTE

Eclipse

A = POJO
B = POJO

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

Equinox Equinox

Design Phase Run-time Phase

Fig. 5.12 OSGi: component life cycle.

is no deployment phase. In the run-time phase, client applications are executed
and use the services provided by the bundles, by making calls to POJO instances
inside the bundles via their published service interface.

5.3.3 .NET

Microsoft .NET [Esposito and Saltarello (2014); Platt (2003)] is a framework that
supports object-oriented software development by providing a modular way of or-
ganising files (containing classes) into logical units. Each unit, called an assembly,
is a binary that aggregates several physical files; in particular an assembly can

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 62

62 An Introduction to Component-Based Software Development

contain many classes. The purpose of an assembly is to provide services (per-
formed by their classes) to client applications, like enterprise Java beans and their
compositions in EJB.

The physical form of an assembly is a collection of DLL (dynamic link li-
brary) or EXE files (Fig. 5.13). These files are called modules, and contain code
in Microsoft Intermediate Language (IL). The IL is a platform-independent set of

Assembly

EXE

Metadata

IL Code

Manifest

Assembly

DLL

Metadata

IL Code

Manifest

Assembly

EXE

Metadata

IL Code

Manifest

DLL

Metadata

IL Code

DLL

Resources

Fig. 5.13 .NET assemblies.

instructions into which all .NET-based languages (e.g. C# and Visual Basic) are
compiled. In order to be executed, IL code is further compiled at run-time into
machine code by the Just-in-Time (JIT) compiler.

An assembly must contain a manifest file and a metadata file for each mod-
ule. It can also optionally contain resources (e.g. images). Specifically, manifest
and metadata are files generated by the .NET-based language specific compiler. A
manifest specifies the assembly’s name, version, unique identifier, location and
dependencies.2 A metadata file lists the IL’s classes, interfaces, methods and
attributes.

Figure 5.14 shows a .NET assembly for ATM containing just one class ATM.
The metadata shows the name of the class it is implementing (ATM), one of its
methods (LocateBank) and the relevant parameters.

Just as a bundle is called a ‘component’ in OSGi literature, an assembly is
called a ‘component’ in .NET literature. However, in terms of component mod-
els, there is no composition mechanism for assemblies; so assemblies are not
components and .NET is not a component model, according to our definition of
component models. Correspondingly, there is no notion of composite assemblies.

2This is similar to an OSGi bundle manifest (Section 5.3.2).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 63

Component Models with Objects as Components 63

Class:
Name: ATM;
Visibility: Public;
Type: Class;

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit (...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code

ATM Assembly

Password CusPass);

Fig. 5.14 ATM assembly.

On the other hand, classes in assemblies are linked by method calls, and therefore
they can be regarded as components composed by delegation. For this reason, we
say that .NET is a framework that contains a component model with objects as
components composed by delegation.

Figure 5.15 shows composition by delegation between objects in different
.NET assemblies. In a banking system, an ATM object in the ATM assembly
composes with a Bank object in the Bank assembly by invoking the latter’s De-
posit method.

Method calls in .NET assemblies are defined at design time. At runtime, the
JIT compiler links the client calls to the required IL entry point. Specifically,
the compilation of high-level code into IL produces machine-code stubs for every
class method. Each stub calls into the JIT compiler, passing its own method ad-
dress as parameter. At run-time, the JIT compiler retrieves the corresponding IL,
compiles it into machine-code and replaces the stub in memory with the newly
generated machine code. Figure 5.16 shows these interactions between .NET as-
semblies.

In terms of the idealised component life cycle, in the design phase, classes
and their compositions are designed and coded (in a .NET language like C# or

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 64

64 An Introduction to Component-Based Software Development

Class:
Name: ATM;
Visibility: Public;
Type: Class;

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit (...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code

ATM Assembly

Password CusPass);

Class:
Name: Bank;
Visibility: Public;
Type: Class;

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code

Bank Assembly

Password CusPass);

...

Fig. 5.15 .NET: objects in assemblies composed by delegation.

Visual Basic) using a suitable editor like Microsoft Visual Studio. These are com-
piled into .NET assemblies, which are deposited in the Microsoft Enterprise Li-
brary (MEL). Classes or assemblies cannot be retrieved from the repository for
further composition; i.e. there is no assembler and hence no deployment phase.
The MEL is thus a deposit-only repository, like an EJB container. This is depicted
in Fig. 5.17. At run-time, client applications that use the assemblies in MEL in-
voke instances of .NET classes in these assemblies. The compositions of objects
in these instances are as defined in the design phase.

Discussion and Further Reading

Confusingly, object-oriented frameworks are often called component models.
This confusion arises partly because the term ‘component model’ is often used
loosely in the sense that components can be any things that can be regarded as
parts of a system, and their composition can be any code that glues them together.

Objects as components are particularly confusing since the only meaningful
composition mechanism, i.e. delegation, is actually hard-coded in objects them-
selves. Objects are definitely not composable by explicit composition operators

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 65

Component Models with Objects as Components 65

Fig. 5.16 .NET: interactions between assemblies.

Builder

A

B

InsA

InsB

RTE

Programming

A = .NET class
B = .NET class

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

MEL Windows
environment

Design Phase Run-time Phase

Fig. 5.17 .NET: component life cycle.

[Szyperski (2002a,b)]. To consider objects as components that are composed
by (their own) code reinforces the confusion caused by loose usage of the term
‘component model’.

Composing objects by delegation is definitely not an algebraic composition
mechanism. Composing an object A with another object B does not yield an-
other object; rather it yields a pair of objects 〈A,B〉. So the composition opera-
tion is a function of type Object×Object→ Object×Object, where Object is the
type of objects. An algebraic composition operation should be a function of type
Object×Object→ Object.

COM

COM (Component Object Model) [Box (1998)] has been superseded by .NET.
We include it here for historical interest and for comparison with .NET and other
object-oriented frameworks.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 66

66 An Introduction to Component-Based Software Development

COM is very similar to a component model (such as POJOs and JavaBeans)
with objects as components composed by delegation. It is also similar to a frame-
work like EJB in that COM components (and their compositions) provide services
that can be used by client applications.

COM components do not have to be objects, and can be defined in any lan-
guage (with any internal state representation). Like an object, a COM component
provides functionalities that can be called, but unlike an object, the functions of
a COM component do not have to be methods of an object; they can be any exe-
cutable binary that can be called via pointers (to the interface of the COM compo-
nent). The interface of a COM component is a logical group of related functions,
that together provide some well-defined capability. In other words, an interface is
the contractual way for a COM component to expose its services.

Intrf1

Intrf2

IUnknown

CompA
IntrfA

IntrfB

IUnknown

CompB

Fig. 5.18 COM: components and composition.

Figure 5.18 shows two COM components CompA and CompB. CompA im-
plements the interfaces Intrf1 and Intrf2, whereas CompB implements IntrfA and
IntrfB.

Every COM component must implement the IUnknown interface, in order to
control their own life cycle and to dynamically determine another component’s ca-
pabilities. In order to ensure a a language-neutral architecture, COM interfaces are
defined in the declarative Microsoft Interface Definition Language (MIDL) [Rus-
sell and Cohn (2012)]. An example is shown in Fig. 5.19, where the definition of
a withdraw interface is illustrated. It is important to note that (i) in order to avoid

import "unknown.idl"

[object, uuid(10000001-0000-0000-0000)]
interface withdraw: IUnkown
{

HRESULT withdraw([in] Bank bank,
[in] Integer amount,
[out, retval] int* balance);

}; . . .

Fig. 5.19 Definition of the withdraw interface in MIDL.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 67

Component Models with Objects as Components 67

naming clashing, each interface has an unique identifier (uuid); (ii) each argument
of the withdraw method is preceded by a directional attribute [in] or [out].

Once defined, an MIDL interface can be compiled into several language source
files. Then, with the help of a programming environment such as Visual Studio, a
developer can implement the interfaces’ behaviour and deposit the resulting com-
ponent in the Windows registry.

COM components are composed by function calls via interface pointers (as
can be seen in Fig. 5.18). In the design phase, a component declares which com-
ponent interfaces it will connect to. The actual interface pointers are bound at
run-time by the COM application server, as long as the referenced components
are registered in the Windows registry.

Thus in terms of the idealised component life cycle, COM components and
their compositions are designed and implemented in the design phase, and de-
posited in Windows Registry. This is illustrated in Fig. 5.20. There is no deploy-
ment phase since there is no further composition. At run-time, client applications
make calls to COM components in the system via interface pointers.

Builder

A

B

InsA

InsB

RTE

Programming

A = COM component
B = COM component

InsA = binary of A
InsB = binary of B

= function call

A

B

Repository

Windows
Registry

Windows
environment

Design Phase Run-time Phase

Fig. 5.20 COM: component life cycle.

It might be argued that in COM, composite components can be defined via
component containment (Fig. 5.21(a)) and component aggregation (Fig. 5.21(b)).
However, both techniques are used to define visibility aspects among COM com-
ponents, not composition, as both outer and inner components can be deployed
and distributed independently.

(a) Containment (b) Aggregation

Fig. 5.21 COM: component containment and aggregation.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 68

68 An Introduction to Component-Based Software Development

CCM

The CORBA Component Model (CCM) [BEA Systems et al. (1999); Siegel
(2000); Marvie and Merle (2001); Bartlett (2001); OMG] is based on CORBA, the
Common Object Request Broker Architecture, a standard defined by the Object
Management Group (OMG), an international, open membership, not-for-profit
technology standards consortium (http://www.omg.org/). CORBA (http
://www.corba.org) is designed to facilitate the communication of systems
that are deployed on diverse platforms.

In CCM a component is a CORBA meta-type that is an extension and special-
isation of a CORBA Object [Natan (1995); Bolton (2001)], which is an object that
can be invoked remotely in an object request broker architecture, via the use of In-
terface Definition Languages. A CCM component is hosted by a CCM container
on a CCM platform such as OpenCCM (http://openccm.ow2.org/).

As shown in Fig. 5.22, a CCM component looks like an architectural unit
which supports four kinds of ports:

• facets, which define the provided operation interfaces of the component;
• receptacles, which specify the required operation interfaces of the com-

ponent;
• event sources, which publish or emit events of a specified type;
• event sinks, which consume events of a specified type.

Event sink

Event source

Facet

Receptacle

Fig. 5.22 CCM: components.

CCM therefore looks like an ADL (see Chapter 6). However, CCM components
are objects composed by method and event delegations in such a way that: (i)
facets match receptacles; (ii) event sources match event sinks (Fig. 5.23). The

... ...

Fig. 5.23 CCM: composition.

composition of CCM components is specified by a Component Assembly De-
scriptor (an XML file).

http://www.omg.org/
http://www.corba.org
http://www.corba.org
http://openccm.ow2.org/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 69

Component Models with Objects as Components 69

In terms of the idealised component life cycle, CCM is similar to EJB, in that
components are designed, composed and deposited in a container. In CCM, in
the design phase, components are built using tools supplied by CCM providers
such as OpenCCM, and deposited into a CCM container (Fig. 5.24). The CCM
container

Builder

A

B

InsA

InsB

RTE

CCM tool

A = CCM component
B = CCM component

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

CCM
container

CCM
serverprovider

Design Phase Run-time Phase

Fig. 5.24 CCM: component life cycle.

is hosted and managed by the chosen CCM platform. A component implementa-
tion (packaged into an assembly file) is deposited in a CCM server, which deploys
and links its instances at run-time when invoked. CCM components are thus only
composed in the design phase. Therefore there is no deployment phase. In the
run-time phase, component instances are executed in the CCM container on the
CCM server, when invoked by client applications.

KobrA

KobrA (Komponenten-basierte Anwendungsentwicklung)3 [Atkinson et al.
(2008, 2001)] is intended for modelling not just a single system but a family of
related systems.4

A KobrA component (Komponent) is a UML component as defined in UML
1.x [Cheesman and Daniels (2001)], not UML 2.x (see Section 6.3). It is described
by a set of textual and UML models at two distinct levels of abstraction referred
to as Komponent specification (top, Fig. 5.25) and Komponent realisation level
(bottom, Fig. 5.25).

At specification level, the external visible proprieties of a component are de-
fined by four categories of models. They are structural model (UML class dia-
gram), behavioural model (UML statechart diagram), functional model (textual
model) and decision model (textual model). The functional model describes in
words the expected behaviour of the component. The decision model describes
the conditions under which the component will be selected to be in a particular
system. It therefore represents variability in the family of systems.
3 Component-based application development.
4Koala (Section 6.5) also models product families.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 70

70 An Introduction to Component-Based Software Development

Realisation Models

Interaction Model
(UML Collaboration Diagram)

Execution Model
(UML Activity Diagram)

Structural Model
(UML Class Diagram)

Decision Model
(Textual)

Speci cation Models

Behavioural Model
(UML Statechart Diagram)

Structural Model
(UML Class Diagram)

Decision Model
(Textual)

Functional Model
(Textual)

Komponent

Fig. 5.25 KobrA component (adapted from [Atkinson et al. (2000)]).

Similarly, at realisation level the private design of a component is described
by four categories of models: interaction model (UML collaboration diagram),
structural model (UML class diagram), execution model (UML activity diagram)
and decision model (textual model).

As UML models are translated and implemented in an object-oriented pro-
gramming language, KobrA components are implemented as objects in an object-
oriented programming language, composed by direct method calls.

In terms of the idealised component life cycle, in the design phase, KobrA
models for components are defined using a UML visual builder tool as the builder,
and stored as files in the tool’s file system (Fig. 5.26). To build a particular system,

Builder

A

B InsAB

RTE A = KobrA component
B = KobrA component

AB = aggregation of A and B
InsAB = implementation of AB

= model aggregation

A

AB

Repository

File
System

UML Visual Implementation
Language RTEBuilder Tool

Design Phase Run-time Phase

Fig. 5.26 KobrA: component life cycle.

these models are aggregated into a model for the system according to the variabil-
ity defined in the decision models. In this process, components are composed by
method calls. There is no deployment phase, since the system has been completely
modelled in the design phase. Then the modelled system has to be implemented
in a chosen object-oriented programming language. It is then executed in the run-
time environment of that language.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 71

Component Models with Objects as Components 71

Enterprise JavaBeans

In EJB, composition of EJBs is realised at run-time by the container, which either
injects the dependencies between beans [Prasanna (2009)], or uses the Java Nam-
ing and Directory Interface (JNDI) [Lee and Seligman (2000)] syntax to find the
bean instances involved.

Although some work has been done, e.g. [Choi et al. (2002); Goebel and
Nestler (2004)], it is not clear how a composite EJB can be defined or used in
further compositions.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 73

Chapter 6

Component Models with Architectural
Units as Components

In this chapter, we describe component models where components are archi-
tectural units. These models are defined by architecture description languages
(ADLs) [Clements (1996); Medvidovic and Taylor (2000); Mishra and Dutt
(2011)]. The archetypal example is Acme (Section 6.1).

As its name suggests, an ADL defines a software architecture [Perry and Wolf
(1992); Shaw and Garlan (1996); Taylor et al. (2009); Bass et al. (2012)], i.e.
the visible parts of a software system and their inter-relationships. Each part of
a software architecture is called an architectural unit; it is a unit of behaviour
and/or data. Architectural units have ports for input and output, and are linked (via
their ports) by connectors that define their inter-relationships. A connector can
convey data as well as control. Architectural units collaborate and communicate
via connectors, by invoking one another’s behaviour through indirect message
passing, and passing data to one another. The behaviour of the whole system
starts with a main method either in one of the architectural units or in a client
application that invokes one of the architectural units.

As in Chapter 5, for each component model we describe, we will also analyse
the component life cycle in that model, and compare it to the idealised component
life cycle (Section 1.1), in order to see how well the component model supports
the latter.

6.1 Acme

Acme [Aldrich et al. (2004); Schmerl and Garlan (2004); Garlan et al. (2000,
2010); Acme] in its entirety is more than an ADL (see Discussion and Further
Reading). It is really a meta model for ADLs, and as such its foundations and
underlying concepts underpin all ADLs. Here we focus on Acme’s core elements
for modelling architectures: components, connectors, ports and systems (Fig. 6.1).

73

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 74

74 An Introduction to Component-Based Software Development

Component

Port

Connector

Role

System

Fig. 6.1 Acme elements.

In Acme, components are the primary units of computation and data of a sys-
tem. A component may have multiple interfaces (ports), which identify the points
of interaction between the component and its environment. An interface can be
as simple as a procedure signature, or as complicated as a collection of procedure
calls that must be invoked in certain specific orders.

Figure 6.2 shows examples of Acme components. The ATM component re-
ceives requests (via its receiveReq port) from the bank customers and pass them
(via its sendReq port) on to the bank consortium component BC (via its receiveOp
port), which in turn will pass on the requests (via its sendOp port) to the cus-
tomers’ bank branches.

Component ATM = { Port receiveReq, Port sendReq }

ATM BC

Component BC = { Port receiveOp, Port sendOp }

receiveReq sendReq receiveOp sendOp

Fig. 6.2 Acme: components.

Components in Acme are composed by connectors between them. Connec-
tors mediate communication and coordination among components. Examples in-
clude simple forms of interaction, such as pipe, procedure call, and event broad-
cast. However, connectors can also represent more complex interactions, such as
a client-server protocol or a SQL link between a database and an application.

Connectors have interfaces defined by a set of roles. Each role defines a par-
ticipant of the interaction. For instance, a simple RPC connector has a caller
and a callee roles, whereas a pipe connector has a writer and a reader roles.
On the other hand, connectors may have more than two roles. For example, an
event-broadcaster connector might have one source role and an arbitrary number
of event-receiver roles.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 75

Component Models with Architectural Units as Components 75

Components are composed by binding their ports to the connectors’ roles.
This binding is specified in attachments. Figure 6.3 shows a connector ConnA
that composes the ATM and BC components (Fig. 6.2). ConnA has two roles:
request

Attachments : { ATM.sendReq to ConnA.request;

ConnA

Component ATM = { Port receiveReq, Port sendReq }

ATM BC

Component BC = { Port receiveOp, Port sendOp }

Connector ConnA = { Roles {request, produce} }

 ConnA.produce to BC.receiveOp;
 }

Fig. 6.3 Acme: composition.

and produce, which are respectively bound to the ATM’s sendReq port and BC’s
receiveOp port, as specified in the attachments.

In Acme, a system represents an application’s architecture as a graph in which
nodes denote components and lines denote connectors attached to components’
ports. Both elements may represent subsystems that have their own internal archi-
tectures.

Figure 6.4 depicts a simple bank system (BankSys) and its architecture in
Acme. The ATM, the bank consortium component (BC) and the connector
(ConnA) are as defined in Fig. 6.3. According to the operation received on the re-
ceiveOp port, the component BC dispatches the task to either the Bank1 or Bank2
component via the connectors ConnB and ConnC respectively. The architecture of
this system is defined by listing a set of attachments that bind components’ ports
to connectors’ roles.

In terms of the idealised component life-cycle, in Acme (and all Acme-like
ADLs), in the design phase the architecture of the system is modelled, in terms
of (models of) components and connectors (Fig. 6.5). This can be done using the
AcmeStudio tool [AcmeStudio]. Since an Acme architecture is only a model, the
components are not coded, so there is no repository, and therefore no deployment
phase. Acme models of components and architectures have to be implemented in
a chosen programming language, e.g. Java. At run-time, the implemented system
is executed in the run-time environment of that programming language.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 76

76 An Introduction to Component-Based Software Development

ATM BC
ConnA

ConnB

ConnC

Bank1

Bank2

System BankSys = {
Component ATM = { Port receiveReq, Port sendReq }
Component BC= { Port receiveOp, Port sendOp}
Component Bank1 { Port receiveOp, Port sendRes, Property bankId: String}
Component Bank2 { Port receiveOp, Port sendRes, Property bankId: String}
Connector ConnA = {Roles {request, produce}}
Connector ConnB = {Roles {request, produce}}
Connector ConnC = {Roles {request, produce}}
Attachments: {

ConnA.produce to BC.receiveOp;
ATM.sendReq to ConnA.request;

BC.sendOp to ConnB.request;
ConnB.produce to Bank1.receiveOp;
BC.sendOp to ConnC.request;
ConnC.produce to Bank2.receiveOp;

}
}

Fig. 6.4 Acme: system.

Builder RTE

DB F

A A
C1

C2 B D F

X=implementation of X
Ci=Acme connector

Design Phase Run-time Phase

AcmeStudio RTE for chosen
implementation language

X=Acme component

Ci=implementation of CiC3
C1

C2 C3

Fig. 6.5 Acme: component life cycle.

6.2 ArchJava

ArchJava [Aldrich et al. (2002, 2004)] is an ADL that is based on the Acme model.
However, unlike Acme, which only defines models, ArchJava is actually a pro-
gramming language for defining components and architectures. In fact, ArchJava
is an extension of Java in which an architectural unit (with ports) can be defined
as a special public class called component class. A component class in ArchJava
is denoted by the component keyword. It can have ports, denoted by the port
keyword, that specify services required and provided by the component. As ar-
chitectural units, ArchJava components can be composed via their ports into an
architecture. Such an architecture, like in Acme, can have multiple subsystems
and hence multiple levels of composition.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 77

Component Models with Architectural Units as Components 77

An ArchJava component is an instance of a component class. It is a special
kind of object that communicates with other components in a structured manner.
A component can only communicate with other components at the same level in
the architecture through its ports. Direct method calls between components are
not allowed. Instead, ports declare methods. These methods are denoted by the
keywords: requires, provides and broadcasts. A provided method is implemented
by the component and can be called by other components connected to this port.
A required method is provided by some other component connected to this port.
A component can invoke a required method by sending a message to the port (of
a provider component) that defines the required method. Broadcast methods are
just like required methods, except that they can be connected to any number of
ports (that define them) and must return void.1

Bank

UI

CardReader

GUI

Fig. 6.6 An architectural unit.

Figure 6.6 shows an architectural unit UI that is a user interface component.
UI provides a bank’s customers with an interface to an ATM. It has a port GUI
which provides a service (graphical user interface) to bank customers, a port
CardReader which requires services (customer inputs) from a card reader, and an-
other port called Bank which requires services (requested by the customer) from
the bank.

This architectural unit can be defined as the ArchJava component in Fig. 6.7.2

The GUI port defines a provided service display for displaying a screen to the
customer. The Bank port requires the usual deposit, withdraw and balance ser-
vices that customers can request. The CardReader port requires a service readAc-
countNo to read the customer’s account number.

ArchJava components can be composed into a composite component by con-
necting (compatible) ports of different components. For example, the UI com-
ponent in Figs. 6.6 and 6.7 can be composed with a CardReader component and
a Bank component into a composite component ATM as shown in Fig. 6.8. The
ArchJava code for ATM is shown in Fig. 6.9. A connection between two ports
is made by using the connect keyword followed by the names of the two ports

1For simplicity we do not consider broadcast methods.
2ArchJava does not formally define a graphical notation, so we give only code for the component.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 78

78 An Introduction to Component-Based Software Development

public component class UI{

public port GUI{

provides void display();
}

public port Bank{

requires void deposit(String accno, Double amount);
requires void withdraw(String accno, Double amount);

requires Double balance(String accno);
}

public port CardReader{

requires String readAccNo();
}

}

Fig. 6.7 ArchJava: component.

Bank

UI

CardReader
CardReader

Bank

ATM

Bank

Reader

GUI

Fig. 6.8 ArchJava: composition.

being connected. In addition, ports of the constituent components of a composite
component can be forwarded to become ports of the composite component. Ports
that are not forwarded to the composite will be hidden inside the composite. Port
forwarding is specified by the keyword glue.

In the example, the composite component ATM is defined as a component
class called ATMSystem. The sub-components UI and CardReader are composed
through a connection between a pair of ports which are CardReader and Reader.
The port GUI of sub-component UI is forwarded to become port ATM of the
composite component.

A system built in ArchJava is a composite component, like ATMSystem in
Fig. 6.9. Such a component is the top-level component of the system and so it has
the main method of the system.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 79

Component Models with Architectural Units as Components 79

public component class ATMSystem{

public port ATM{

provides void start();
}

// De ne sub-components

private UI gui = new UI();

private Bank bank = new Bank();

private CardReader cardReader = new CarReader();

// Compose sub-components

connect gui.CardReader, cardReader.Reader;

connect gui.Bank, bank.Bank;

glue this.ATM, gui.GUI;

}

Fig. 6.9 ArchJava: composite component.

In terms of the idealised component life cycle, ArchJava has the same compo-
nent life cycle as Acme. In ArchJava, in the design phase, the system and all the

RTE
InsA

InsX= instance of X
Ci= connector

Design Phase Run-time Phase

ArchJava JVM

X= ArchJava component

InsFInsB InsD

Builder

DB F

A

C1

C2 C3

C1

C2 C3 =method call

Fig. 6.10 ArchJava: component life cycle.

components are designed, like in Acme. However, unlike Acme, code is written
for all the components and their composition (connections). This is illustrated in
Fig. 6.10, which shows explicitly that there are no direct method calls between
the components, only indirect ones via ports (connections). No components are
deposited in a repository, so there is no repository and therefore there is no de-
ployment phase. The code for the whole system created in the design phase is
compiled and executed in the JVM in the run-time phase, where components are
objects that are instances of ArchJava classes defined in the design phase.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 80

80 An Introduction to Component-Based Software Development

6.3 UML

The definition of components (and architectures) in UML (the Unified Modeling
Language) has changed over time (see Discussion and Further Reading). Initially
UML considered components only as implementation artefacts, so did not define
an ADL for modelling components and architectures like Acme (Section 6.1).
However, starting with UML 2.0, UML 2.x provides such an ADL.

UML 2.0 introduced structured classifiers, which are classifiers that can be
decomposed internally. A component is a structured classifier, and as such is
a structured class which is a containment of its (sub)parts, i.e. it has contain-
ment links to all its (sub)parts. With these components and with connectors for
components and their (sub)parts, UML 2.0 and its successors UML 2.x provide
architecture modelling concepts along the lines of Acme.

A component in a UML 2.x architecture is a modular unit of the system, with
well-defined interfaces, that is replaceable within its environment by an equivalent
unit, in particular one that is a decomposition of the component. A UML 2.x com-
ponent is represented as a rectangle with either the stereotype 〈〈component〉〉, or
with a visual stereotype (defined in UML 1.x) which is a component icon in the
upper right corner of the rectangle, as shown in Fig. 6.11. A UML 2.x component

ProvidedPort interface
Required
interface

Fig. 6.11 UML 2.x: components.

specifies the services that it can provide or require through its interfaces, grouped
into ports. Graphically, a port is represented as a square, a provided interface as a
lollipop, and a required interface as a socket. Semantically, a port defines an inter-
action point between a component and its environment, or between a component
and a particular part of its internal structure (its decomposition) actually providing
or requiring the service exposed by an interface. A port that has both provided and
required interfaces is called bidirectional. Figure 6.11 contains such a port.

Since in UML 2.x a component is a containment of its internal decomposition,
components are always composed inside a higher-level component that is the com-
posite component. They are composed by wiring their compatible required and
provided interfaces together. As depicted in Fig. 6.12, this can be done by means
of two types of UML connectors: assembly connectors and delegation connec-
tors. An assembly connector connects matching ports in terms of their provided

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 81

Component Models with Architectural Units as Components 81

Delegation connector Assembly connector

Fig. 6.12 UML 2.x: composition.

and required services. It also provides a containment link from the higher level
component to its constituent parts. A delegation connector provides the wiring
from higher level provided interfaces to lower level ones, and from lower level
required interfaces to higher level ones.3 Delegation connectors can be used to
model the hierarchical decomposition of behaviour, where services provided by a
component may ultimately be realized by a sub-component that is nested multiple
levels deep within it.

Figure 6.13 shows an example of a bank system with a UML 2.x architec-
ture. The bank system consists of a consortium of banks. The consortium offers
an ATM which allows customers of the banks in the consortium to access their

ATM

BankConsortium

Bank1

Bank2

Fig. 6.13 UML 2.x: a bank system.

accounts at their own banks. The components, along with their required and pro-
vided services, forming the bank system are shown in Fig. 6.14. The component
ATM provides a GetCardNo service, whereas it requires a CheckBankID interface.
The latter is provided by the component BankConsortium, which in turn requires
GetCardNo to identify the customer, along with the operations Withdraw, Deposit
and CheckBalance. The implementation of these operations is provided by the
components Bank1 and Bank2.
3A delegation corresponds to Acme’s rep-map concept.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 82

82 An Introduction to Component-Based Software Development

<<component>>
BankConsortium

<<provided interfaces>>
CheckBankID

<<required interfaces>>
GetCardNo

Withdraw
Deposit

CheckBalance

<<component>>
Bank1

<<provided interfaces>>
Withdraw
Deposit

CheckBalance

<<component>>
ATM

<<provided interfaces>>
GetCardNo

<<required interfaces>>
CheckBankID

<<component>>
Bank2

<<provided interfaces>>
Withdraw
Deposit

CheckBalance

Fig. 6.14 UML 2.x: components of a bank system.

In UML 2.x, parts of a system can be specified directly by behaviour, rather
than classes. For instance, if a class’s behaviour is delegated to its parts, then the
latter can be specified by using UML’s behavioural diagrams such as state charts
and activity charts.

Finally, in terms of the idealised component life cycle, UML 2.x has a similar
component life cycle to Acme and ArchJava. In the design phase, the system and
its components are designed together in a visual builder tool such as Eclipse Pa-
pyrus4 (Fig. 6.15). This design represents a (structured) class diagram in which all

Visual Builder
Tool

=method call

Builder RTE

DB F

A A

C1
C2 B D F

X = implementation of X
Ci =UML connector

Design Phase Run-time Phase

RTE for chosen
implementation language

X =UML component

Ci= implementation of Ci
C3

C1

C2 C3

Fig. 6.15 UML 2.x: component life cycle.

entities are represented as classes. In particular, components are just (structured)
class diagrams. Like in Acme, no components are implemented at this stage,
and therefore there is no repository, and there is no deployment phase. This entire
design has to be implemented (somehow) in a chosen programming language, and
executed in the run-time phase in the run-time environment of that programming
4https://eclipse.org/papyrus/

https://eclipse.org/papyrus/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 83

Component Models with Architectural Units as Components 83

language. As UML is an object-oriented methodology, all the classes in the design
are implemented as objects, like in ArchJava. Therefore all the objects in the
implementation, including components (and their parts, e.g. ports) and connectors
are linked by method calls, again like in ArchJava.

6.4 ProCom

Acme, ArchJava and UML 2.x are generic rather than domain-specific. By con-
trast, ProCom [Sentilles et al. (2008); Vulgarakis et al. (2009)] is an example of
a domain-specific component model: it is intended for the domain of real-time
systems.

ProCom is a two-layered component model: ProSys for the system layer and
ProSave for the subsystem layer. At the system layer, ProSys components are
subsystems, or rather, active, distributed components with typed input and out-
put message ports (Fig. 6.16). They are composed via explicit (asynchronous)

Typed input message port Typed output message port Message channel

System

Subsystem BSubsystem A

Fig. 6.16 ProSys: components and composition.

message channels. The types of messages received and sent by a subsystem are
specified by its message ports.

At the subsystem layer, ProSys components are internally modelled by
ProSave components. A ProSave component is a passive unit of functionality,
designed to encapsulate low-level tasks, e.g. control loops. ProSave distinguishes
between data and control flow. Indeed, it uses a pipe-and-filter architectural
style where data flows to data ports and control to trigger ports. As depicted
in Fig. 6.17, a ProSave component exposes its functionality via services, each
consisting of: (i) an input group of ports, which contains the activation trig-
ger and required data; (ii) an output group of ports, which makes available the
data produced. The behaviour of a primitive ProSave component is realised
by code, whereas the behaviour of a composite ProSave component is realised
by interconnected sub-components. For primitive components, in addition to
an initialiser function, each service is implemented by a single non-suspending
C function. Figure 6.17 shows a primitive ProSave component S1 and the
corresponding C header file.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 84

84 An Introduction to Component-Based Software Development

speed
dist

controlS1

Trigger port
Data port

typedef struct{
int *speed;
float *dist;
} in_S1;

typed struct{
int *control;
} out_S1;

void init();
void entry_S1(in_S1 *in, out_S1 *out);

Service

Fig. 6.17 ProSave: a primitive component and its C header file [Sentilles et al. (2008)].

ProSave components are composed by connections and connectors. A con-
nection is a directed edge which connects two matching ports (output data port to
input data port of compatible types and output trigger port to input trigger port).
Connectors are constructs that provide further regulation over data and control
flow. The set of connectors in ProSave includes connectors for forking and join-
ing data or trigger connections: data fork, data or, control fork, control join,
control or; or selecting dynamically a path of the control flow depending on a con-
dition: control selection. Figure 6.18 shows an example of a Prosave composite
component. Its internal structure is composed of three components (C1, C2, C3)
composed by a control fork and a data fork connectors.

C1

C2

C3

Control fork

Data fork

Fig. 6.18 ProSave: a composite component.

In order to integrate the system and sub-system levels, ProCom includes two
further ProSave connectors: (i) one that maps message-passing to pipe-and-filter
(and vice-versa); (ii) a clock that specifies periodic activation of ProSave compo-
nents.

Finally, in terms of the idealised component life cycle, in the design phase in
ProCom, a complete ProSave system is designed and built in the PRIDE tool,

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 85

Component Models with Architectural Units as Components 85

from ProSave components that have been designed and built for the system, also
using PRIDE, and deposited in the tool’s repository (Fig. 6.19). Thus in design
phase, both ProSave components and the complete ProSys system are fully coded.
There is no deployment phase. At run-time, the binary of the system is executed
using the implementation language run-time environment (C/C++).

Fig. 6.19 ProCom: component life cycle.

6.5 Koala

Like ProCom, Koala (C[K]omponent Organizer And Linking Assistant) [van Om-
mering et al. (2000); van Ommering and Bosch (2002)], developed by Philips, is
another component model designed for a specific domain: consumer electronics.
Unlike ProCom, however, Koala is designed to describe not just a single system
but a family of systems, i.e. a product line [Pohl et al. (2005); Clements and
Northrop (2015)] of consumer electronic products. Components and composition
in Koala are defined accordingly.

A Koala component is a unit of design and implementation which interacts
with its environment (other components) via interfaces. A Koala component im-
plements a function, and calls functions defined in other components. Figure 6.20
shows a Koala component with interfaces represented as squares containing a tri-
angle. In an interface, triangle tip orientation specifies the direction of a function

interface

Fig. 6.20 Koala: components.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 86

86 An Introduction to Component-Based Software Development

call and hence the interface type. A tip pointing inside a component specifies a
provided interface, as the function is implemented within the component; whereas
a tip pointing outside a component identifies a required interface.

Interfaces are described, and stored in a global repository, using a simple In-
terface Description Language (IDL) in which function prototypes are listed in C
syntax. For instance, the following is the implementation of a VolumeControl
interface in IDL.

interface VolumeControl{
void setVolume(int v);
int getVolume(void);
int a_constant = 3;
int a_parameter;

}

Like interfaces, components are described, and stored in a global repository,
using a Component Description Language (CDL), in which provided and required
interfaces are listed. For instance, the following example is an Amplifier compo-
nent.

Component Amplifier{
provides VolumeControl vol;
requires VolumeStabilizer stb;

}

In terms of design at architectural level, a component consists of a set of C
header files5 contained in a single directory. Files within a directory can be freely
imported and used, but they can not have external references. In terms of imple-
mentation, a Koala component also needs C code to be written for the function it
implements.

Koala components are composed by connecting their interfaces. As depicted
in Fig. 6.21, required and provided interfaces are connected following two simple
composition rules: (i) a required interface must be bound to exactly one provided
interface; (ii) a provided interface can be bound with zero or more required inter-
faces.

A direct connection among interfaces is not always sufficient, as it assumes
that components are completely tuned and do not change during their evolution.
For this reason, interfaces are connected through an interface-less component
called module (m in Fig. 6.21). A Koala module represents the connection point
5 Although Koala is not bound to the C programming language, all existing components are written

in C and the tool only works for C files.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 87

Component Models with Architectural Units as Components 87

m s

m module switchs

Fig. 6.21 Koala: composition.

between architectural and realization levels; this implies that Koala component
composition amounts to constructing modules. Indeed, a module implements all
the functions of all the bound provided interfaces, while it has access to any bound
required interfaces.

Figure 6.22 depicts an example of a stabilised amplifier built in Koala. The
system contains two sub-components Amplifier and Volume Stabiliser. Each com-
ponent contains a module which implements the provided interfaces. Therefore
a module a impl implements the interface VolumeControl exposed by Amplifier.
Similarly, the module s impl realises the methods exposed by the interface Vol-
umeStabiliser exposed by the component Volume Stabiliser. Finally, the module
stbAmpVol impl within the component Stabilised Amplifier connects the provided
interface StabilisedAmplifiedVolume with the interface VolumeControl exposed by
the component Amplifier, and realises the connection between the latter with Vol-
ume Stabiliser.

As Koala has been designed as a component model for building families of
related products, a diversity mechanism is needed. A component may change
its internal structure (via cpp directives) according to parameters received from
a special, yet standard, kind of required interface called diversity interface. At
architectural level, switches (s in Fig. 6.21) use parameters to re-route connections
between interfaces. Koala can automatically remove unreachable components and
implementation code therein.

In terms of the idealised component life cycle, in the design phase, Koala
components (definition files) are built in the Koala programming environment and

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 88

88 An Introduction to Component-Based Software Development

mm

Amplifier Volume Stabiliser

Stabilised Amplifier

m

Component Amplifier{
provides VolumeControl vol;
requires VolumeStabiliser stb;
contains module a_impl present;
connects vol = a_impl;

a_impl = stb;

}

Component Volume_Stabiliser{
provides VolumeStabiliser stb;
contains module s_impl present;
connects stb = s_impl;
}

Component Stabilised_Amplifier{
provides StabilisedAmplifiedVolume stbAmpVol;
contains component Amplifier amp;
contains component Volume_Stabiliser stb;
contains module stbAmpVol_impl present;
connects vst = stbAmpVol_impl;
connects amp.stb = stb.stb;
}

Fig. 6.22 Koala: example of a system.

deposited in the file system KoalaModel Workspace (Fig. 6.23). These compo-
nents are retrieved from the repository and composed into a system (a definition
file), and also deposited in the WorkSpace. The definition files for the system and
the components are compiled (by the Koala compiler) into C header files. To fully
implement the components and the system, C files are written for them, and com-
piled into binary C code. The system is fully designed and codes at this stage.
There is therefore no further composition, and no deployment phase. At run-time,
the binary code of the system is executed in the run-time environment of C.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 89

Component Models with Architectural Units as Components 89

Builder

A

B InsAB

RTE A = Koala component
B = Koala component

AB = composite of A and B
InsAB = binary of AB

= function call

A

AB

Repository

WorkSpace Run-time
Environment of C

Programming
Environment

Design Phase Run-time Phase

Fig. 6.23 Koala: component life cycle.

6.6 FRACTAL

As we saw in Section 5.3, there are object-oriented frameworks, e.g. OSGi, that
provide building blocks, e.g. bundles, built from, and therefore larger than, ob-
jects. These building blocks are not always components for lack of composition,
e.g. OSGi bundles do not compose, and as a result, from the point of view of
component models, these frameworks still only contain objects as components.
Another object-oriented framework, called FRACTAL, also has objects as compo-
nents, but in addition it provides an ADL for structuring groups of objects into
architectural units.

The key objective of FRACTAL [Bruneton et al. (2006)] is to support designing
and implementing reconfigurable (distributed) object-oriented systems in a mod-
ular manner. To this end, FRACTAL components support introspection, in order
that its internal features can be identified and reconfigured.

FRACTAL defines components in a similar manner to UML 2.x, i.e. as soft-
ware units that can be decomposed internally. A FRACTAL component (Fig. 6.24)
consists of a membrane, which supports interfaces to introspect and reconfigure its
internal features, and a content, which consists of a finite set of sub-components.

Membrane

Content

Control interfaces
Provided (server) interface
Required (client) interface

Fig. 6.24 FRACTAL: components.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 90

90 An Introduction to Component-Based Software Development

A component has provided and required interfaces (for provided and required ser-
vices), as well as control interfaces in its membrane.

FRACTAL does not enforce a pre-determined set of controllers in components’
membranes. However, it identifies the controllers required for specific levels of
control (or reflection capabilities) a developer may want to achieve for a compo-
nent. At the lowest level of control, a FRACTAL component is comparable to a
POJO with no introspection and interception capabilities.

At the next level of control, a FRACTAL component provides a Component
interface, which is similar to the IUnknown interface in COM (see section 5.3.3),
and enables an elementary means for introspecting the internal structure of a com-
ponent. It is at this level and above that FRACTAL provides an ADL (using XML
for structuring components).

At higher levels of control, a FRACTAL component enables additional intro-
spection and interception capabilities. FRACTAL provides several examples of
controller interfaces, which can be combined and extended to yield components
with different reflective features. They are attribute controller, binding controller,
content controller and life-cycle controller.

In FRACTAL ADL, components can be primitive or composite, and they are
composed by binding their interfaces to one another. A primitive component has
no sub-components, and is implemented by a class. It can be defined by specifying
the interfaces it provides, the interfaces it requires, and the class that implements
it. In the ATM system in Fig. 6.25, the components CardReader, ATMEngine,
BankA and BankB are all primitive components.

A composite component has sub-components, and is defined by specifying
its sub-components, like in UML 2.x, and the interface bindings between these
sub-components. The ATM system in Fig. 6.25 is a composite component, with
sub-components CardReader, ATMEngine, BankA and BankB.

A binding can be either primitive if the bound interfaces are in the same ad-
dress space, or composite if the bound interfaces span different address spaces.
While a primitive binding can be readily implemented via pointer or direct lan-
guage references (i.e. method calls), a composite one is embodied in a binding
object which itself takes the form of a FRACTAL component, whose role is to
mediate communication between the bound components. Moreover, FRACTAL al-
lows a component to be shared among several components; this enables sharing
the state of a component.

Figure 6.25 illustrates component composition in FRACTAL. It shows an ex-
ample of a simplified ATM system realised in FRACTAL as a composite component
with sub-components CardReader, ATMEngine, BankA and BankB. The system
requires two services (CardNo and Operation) in order to submit the required
operation (e.g. show balance) to the right bank component.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 91

Component Models with Architectural Units as Components 91

Bank
A

Card
Reader

ATM
Engine Bank

B

Result

CardNo

Operation

AccNo
Operation

Fig. 6.25 FRACTAL: ATM system.

Finally, in terms of the idealised component lifecycle, one would expect
FRACTAL to have a similar component life cycle to an ADL like ArchJava. How-
ever, this is not the case, because whereas an ADL produces only a design, and no
code, in the design phase, the ADL in FRACTAL is used to structure and compose
(configure) code for the whole system in the design phase. In the design phase,
FRACTAL components are designed and the architecture of the complete system is
constructed by composing components, via their interface bindings. This is illus-
trated in Fig. 6.26. FRACTAL components and the complete system are built in the

RTE

InsA
InsX= instance of X

Bi= binding

Design Phase Run-time Phase

F4E JVM

X = FRACTAL component

InsFInsC InsD

Repository

= method call

F4E

Builder

DC F

A
B1

B2 B3

G
G

Fig. 6.26 FRACTAL: component life cycle.

FRACTAL for Eclipse (F4E) IDE,6 which also serves as a deposit-only repository
for the system. There is no assembler or deployment phase. In the Java implemen-
tation of FRACTAL, called JULIA,7 in the run-time phase, the complete FRACTAL

system built in the design phase is executed as an object-oriented system on a Java
Virtual Machine (JVM).

6http://fractal.ow2.org/f4e/
7http://fractal.ow2.org/java.html For other implementations, see http://
fractal.ow2.org/.

http://fractal.ow2.org/f4e/
http://fractal.ow2.org/java.html
http://fractal.ow2.org/
http://fractal.ow2.org/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 92

92 An Introduction to Component-Based Software Development

Discussion and Further Reading

Component models with architectural units as components are the most widely
used category of component models in practice. Clearly it is not possible to cover
them all here. The ones we have covered provide a good representation of the
category. Many of the ones we have not covered are becoming obsolete. In this
section, we will briefly discuss some of these, for historical interest and for com-
parison with similar models that we have covered in this chapter. We will also
further discuss the latter models, as usual.

Acme, ArchJava and UML 2.x are examples of first-generation ADLs, which
are aimed at designing complete systems from scratch, identifying and creating
components for the system under construction. Typically these ADLs do not con-
sider building components for a repository or retrieving them from a repository.
Rather they are used to construct the complete system, either as a model, as in
Acme and UML 2.x, or in a programming language, as in ArchJava. The system
then has to be either implemented, as in Acme and UML 2.x, or executed as is in
the programming language run-time, as in ArchJava.

ProCom, Koala and FRACTAL are examples of second-generation ADLs.
These make use of a repository, to store components implemented (in a chosen
programming language) for the system and possibly for the domain, and the com-
plete design of the system in the ADL using these components. The design of
the system is then compiled and executed in the run-time of the implementation
language.

SCA

Service Component Architecture (SCA) [SCA-IBM] is a software technology de-
signed to provide a model for composing applications that follow service-oriented
architecture (SOA) [Erl (2005)] principles. The technology, created by major soft-
ware vendors, including IBM, Oracle and TIBCO, encompasses a wide range of
disparate technologies and as such is defined in various independent specifications
in order to maintain programming language and application environment neutral-
ity. Here we give a brief account of the underlying component model, which is an
ADL like Acme.

Whatever technology is used, every component contains a common set of ab-
stractions, including services, references, properties, and bindings, to specify its
behaviour and its interactions with the outside world. Figure 6.27 depicts an SCA
component. A component typically implements some business logic, exposed as
one or more services. How services are described depends on the technology

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 93

Component Models with Architectural Units as Components 93

Component

Properties

Services References

p1 p2
s1

s2

r1

r2

Fig. 6.27 SCA: component.

that is used to implement the component. A Java component, for example, might
describe its services using ordinary Java interfaces, while a component imple-
mented in BPEL [OASIS (2007)] would likely describe its services using the Web
Service Description Language (WSDL) [WSDL]. Along with providing services
to its own clients, a component might also rely on services provided by other
components in its domain or by software outside its domain. To describe this, a
component can use references to indicate the services it relies on.

A composite in SCA is depicted in Fig. 6.28: components are composed by
wiring matching services and references together. Services and references let a

Component
p1

s1 r1
A

Component
p2

s2 r2
Bs1 r2

p3

p1 p2
Composite

Promote Wire Promote

Property settingAB

Fig. 6.28 SCA: composition.

component communicate with other software, including other components. By
design, however, they say nothing about how that communication happens. Spec-
ifying this is the job of bindings. Each binding defines a particular protocol that
can be used to communicate with this service or reference. A single service or
reference can have multiple bindings, allowing different remote software to com-
municate with it in different ways. SCA allows each remotable service and each
reference to specify the protocols it supports using bindings. For example, to be
accessible via SOAP over HTTP, an SCA service uses the Web Services binding,
while to be accessible via a queued messaging protocol it uses the Java Message
Service (JMS) binding. Similarly, the EJB session bean binding allows access to
session beans using the Internet Inter-ORB Protocol (IIOP).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 94

94 An Introduction to Component-Based Software Development

A composite is a logical construct: its components can run in a single pro-
cess on a single computer or be distributed across multiple processes on multiple
computers. The components making up each composite might all use the same
technology, or they might be built using different technologies. An SCA compos-
ite is typically described in an associated configuration file, the name of which
ends in .composite. This file uses an XML-based format called Service Compo-
nent Definition Language to describe components forming the composite and their
relationships.

Components and composites are the fundamental elements of every SCA
application. Both are contained within a larger construct called domain. Do-
mains are an important concept in SCA. Even though SCA allows creating dis-
tributed applications, it does not fully define how components on different ma-
chines should interact. As a result, the communication among these components
will be implemented differently by different products. Therefore, each domain
delimits the area related to each product, or more generally related to a single
vendor (e.g. IBM). A domain can contain one or more composites, each of which
has components implemented in one or more processes running on one or more
machines.

In terms of the idealised component life cycle, in SCA, components, compos-
ites and systems are all designed and implemented in the design phase (Fig. 6.29),
in a chosen programming language (and using a chosen technology), using an

Builder

A

B InsAB

RTE A = SCA component
B = SCA component

AB = composite of A and B
InsAB = implementation of AB

= wire

A

AB

Repository

SCASCA Programming
RepositoryIDE Language RTE

Design Phase Run-time Phase

Fig. 6.29 SCA: component life cycle.

SCA IDE as the builder. Services and references are connected by wire to com-
pose components into composites and systems. Components and composites can
be stored in the repository of the SCA tool, and used to construct systems, also
using the builder of the SCA IDE. There is no deployment phase since systems
are completely designed and implemented in the design phase. In the run-time
phase, a complete system is executed in the run-time environment of the chosen
programming language (using the chosen technology).

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 95

Component Models with Architectural Units as Components 95

SOFA

SOFA (SOFtware Appliances) is similar to FRACTAL in the way it defines com-
ponents and their composition. Like a FRACTAL component, a SOFA component
has a control interface, a provided interface, a required interface, and a content
(sub-components) (Fig. 6.30). In SOFA 2 [Bures et al. (2006)] a component is

Business
Provided
Interface

Business
Required
Interface

Frame
Control Interface

Micro component

Delegation chain Delegation chain

Component

content

Delegation chain

Standalone components

Fig. 6.30 SOFA: component.

described by its frame and architecture. The former provides a black-box view
of the component defining its required and provided interfaces (called business
provided and required interfaces); the latter defines the frame implementation by
specifying the component’s sub-components and their interconnections, i.e. the
component content, at the first level of nesting.

Like in FRACTAL, SOFA components are composed by binding their inter-
faces together. All bindings are provided by connectors, which are first-class enti-
ties. SOFA 2 distinguishes between design and runtime connectors. Design con-
nectors specify the communication style (procedure call, messaging, streaming,
or blackboard), whereas runtime connectors implement them.

Similar to FRACTAL, SOFA 2 facilitates dynamic reconfiguration. However,
in order to prevent uncontrolled modifications of an architecture, SOFA 2 only al-
lows a special case of dynamic reconfiguration called dynamic update [Hnětynka
and Plášil (2006)]: the replacement of a component with another one having
compatible interfaces. A component’s runtime structure is realised by a modu-
lar and extensible control part. The general idea of controller stems from FRAC-
TAL (see Section 6.6). The control part of a component is modelled as a set of

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 96

96 An Introduction to Component-Based Software Development

micro-components composed together. The micro-component model is a very
minimalist one – it is flat (no nested micro-components) featuring no connectors
and no distribution. Additionally, to avoid recursion, a micro-component does not
have any extensible or structured parts. In principle a micro-controller is just a
class implementing a specified interface.

On top of micro-components, SOFA defines aspect-consistent extensions of
the control part. An aspect comprises a definition of micro-components and a
micro-component instantiation patterns. By applying a number of aspects, a con-
trol part with the desired functionality is obtained. The aspects to be applied are
specified at configuration time (called deployment time in SOFA). There is a core
aspect in SOFA 2, which is present in all controllers. This core aspect intro-
duces the control interfaces of a life-cycle controller (starting/stopping/updating)
and a binding controller (adding/removing connections among components) and
provides the basic functionality of these controllers.

The runtime environment of a SOFA 2 system resides on a distributed runtime
environment called SOFAnodes [Sobr and Tuma (2005)]. A SOFAnode contains a
repository of components and a number of deployment docks. A deployment dock
is a component container (JVM + SOFA runtime), which provides runtime func-
tionality for executing components. An application can span several deployment
docks within one SOFAnode.

A SOFAnode can execute component applications by obtaining the compo-
nents from the repository, instantiating and interconnecting them as described in
the system’s architecture. Installing, uninstalling and upgrading a component ap-
plication or its part is done simply by populating the repository of the SOFAnode.
Thus, the repository is used throughout the whole application life-cycle as the
central source of component description as well as a code base.

In terms of the idealised component life cycle, SOFA has the same compo-
nent life cycle as FRACTAL, unsurprisingly. Like in FRACTAL, in the design
phase, components are designed and the architecture of the complete system is
constructed by composing components, via their interface bindings, using a SOFA
IDE, which provides a deposit-only repository for the system. This is illustrated in
Fig. 6.31. There is no assembler or deployment phase (in the sense of the idealised
component life cycle), as the complete system has been designed or re-configured.
In the run-time phase, the system is executed in SOFAnode.

Palladio

The Palladio Component Model (PCM) [Becker et al. (2009); Reussner et al.
(2011)] is more than just an ADL. In its entirety it is a meta-model specifically

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 97

Component Models with Architectural Units as Components 97

Builder

A

B InsAB

RTE A = SOFA component
B = SOFA component

AB = composite of A and B
InsAB = binary of AB

= connector

A

AB

Repository

SOFASOFA SOFAnode
RepositoryIDE

Design Phase Run-time Phase

Fig. 6.31 SOFA: component life cycle.

designed to enable quality of service (QoS) prediction, especially performance
and reliability, for component-based architectures described by its ADL.

In the ADL part, PCM defines components and composition like UML
2.x (Fig. 6.32). Components are architectural units with provided and re-
quired interfaces, and are composed by assembly and delegation connectors.

<<ProvidedInteface>> <<RequiredInterface>>

<<DelegationConnector>> <<AssemblyConnector>>

<<Composite
Component>>

B

<<CompositeComponent>>
D

<<Basic
Component>>

C

<<Basic
Component>>

A

Fig. 6.32 Palladio: components and composition.

Components are specified at different levels of concreteness in terms of imple-
mentation, leading to three component types: provided type (with only provided
interface), complete type (with both provided and required interfaces), and imple-
mentation type, in ascending order of concreteness of specification. The behaviour
of a component is specified by a Service Effect Specification (Fig. 6.33), which is
basically a state chart or an activity diagram.

As a meta-model, PCM involves many more roles than component and system
developers, and many more models than models for components and systems, as
well as associated activities. Figure 6.34 shows the roles, models and activities
surrounding a PCM architecture (PCM instance in the picture).

Component developers deposit their components’ specifications and imple-
mentations into a repository, which are accessed by other component developers

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 98

98 An Introduction to Component-Based Software Development

<<BasicComponent>>
E

<<InternalAction>>
doSomething

<<ServiceEffectSpecification>>

<<ExternalCallAction>>
methodX

Fig. 6.33 Palladio: component behaviour specification.

<<Component
Developer>> Component Speci cations

Assembly Model

Allocation Model

Usage Model

<<System
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

<<User>>

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

PCM
Instance

part of

part of

pa
rt

of

part of

M2M

M2M

M2T

M2T

Fig. 6.34 Palladio: roles, models and activities [Becker et al. (2009)].

to create composite components, or by software architects to compose systems.
System deployers model a system’s environment, whereas domain experts supply
a description of the users’ behaviour, which is necessary for QoS predictions.
Specifications from component developers, system architects, system deployers
and domain experts are transformed into analytical, simulation-based models for
quality analysis.

For the purpose of QoS analyses, component specifications must contain in-
formation about system resource usage, i.e. the number of CPU cycles demanded
by a specific operation within a service or the number of bytes read from or written
to an I/O device. Since components are developed without a specific deployment
context, such specifications are made against abstract resource types. Only soft-
ware architects and system deployers know the concrete resources the component
will be used on and can define a specific deployment context.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 99

Component Models with Architectural Units as Components 99

For performance analysis, PCM supports model transformation into a
discrete-event simulation (SimuCom [Becker et al. (2009)]) or layered queuing
networks [Koziolek and Reussner (2008)] to derive response times, throughputs,
and resource utilisations. For reliability analysis, PCM enables a model trans-
formation into absorbing discrete Markov chains [Meyn and Tweedie (2012)] to
calculate the mean time to failure (the expected time to failure for a non-repairable
system) and mean time to repair (the total time required for a device to fail and
that failure to be repaired), and a reliability simulation to derive the probability
of failure on demand (the likelihood that the system will fail when a service re-
quest is made) for a usage scenario. Finally, for cost analysis PCM calculates
and adds the cost for each component and resource based on the PCM architec-
ture’s annotations to derive the overall expected initial and operational cost for the
architecture.

For performance prediction in general, designer friendly performance mod-
elling notations, e.g. UML profile for Schedulability, Performance, and Time
[OMG (2005)], and UML profile for Modelling and Analysis of Real-time Embed-
ded Systems [OMG (2011)] are available. Specifically for component-based per-
formance prediction, several approaches are also available (see [Isa et al. (2013)]
for details and comparisons).

In terms of the idealised component life cycle, in the design phase, (basic and
composite) Palladio components are abstractly or concretely defined, built and
assembled in the PCM tool, and then stored in the repository of the PCM tool
(Fig. 6.35). Complete systems are also assembled in the design phase. For a

Builder

A

B InsAB

RTE A = Palladio component
B = Palladio component

AB = composite of A and B
InsAB = instance of AB

= connector

A

AB

Repository

PalladioPalladio Implementation RTE
Tool

Design Phase Run-time Phase

Tool

Fig. 6.35 Palladio: component life cycle.

system, a system code skeleton is generated and then implemented using imple-
mentation languages such as Java. There is no more composition after the design
phase, and therefore there is no deployment phase (PCM system deployers deploy
components in the design phase of the idealised component life cycle). In the
run-time phase, the complete system implementation is executed in the run-time
environment of the chosen implementation language.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 100

100 An Introduction to Component-Based Software Development

Acme

Historically, due to a proliferation of (first-generation) ADLs (e.g. Adage
[Coglianese and Szymanski (1993)], MetaH [Binns and Vestal (1993)], Aesop
[Garlan et al. (1994)], Rapide [Luckham et al. (1995)], Darwin [Magee et al.
(1995)], UniCon [Shaw et al. (1995)], C2 [Medvidovic et al. (1996)] and Wright
[Allen and Garland (1997)]) and their supporting tool-sets, there was the need to
identify their common foundation of concepts and concerns in a base ADL that
served as an interchange language. Acme was designed for this purpose. In its en-
tirety, Acme is built on a core ontology of seven types of entities for architectural
representation, namely: components, connectors, systems, ports, roles, represen-
tation and rep-maps.

To support hierarchical definition of components and connectors, Acme en-
dows their description by one or more detailed representation. The use of multiple
representations allows Acme to encode multiple views of architectural entities.
However, there is nothing built into Acme that supports the resolution of inter-
view correspondences.

A rep-map, or representation-map, details the relationships between a sys-
tem’s internal representation and the external interfaces of the component or con-
nector being represented. In the simplest case a rep-map details an association
between internal and external ports of a component, or internal and external roles
for a connector.

To document semantic information about a system relevant to its design and
analysis, Acme supports the annotation of architectural elements with arbitrary
lists of properties. For instance, a property can document the protocol of inter-
action used by a connector. Since different ADLs focus on different properties
(e.g. latency, throughput), Acme treats properties as an uninterpreted type, as they
become useful when tools use them for analysis, translation, display and manipu-
lation.

Moreover, in order to determine how a system can evolve over time, Acme
supports design constraints expressed as predicates over architectural elements.
In general a constraint represents a claim about an architectural design that
should remain true as it evolves over time. For instance, the constraint Con-
nected(comp1,comp2) validates that comp1 is connected to comp2 by at least one
connector.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 101

Component Models with Architectural Units as Components 101

UML

UML is defined by the Object Management Group (OMG), an international, open
membership, not-for-profit technology standards consortium. Seehttp://www.
omg.org/. At the timeofwriting, thecurrentversionofUML’sspecificationsis the
2.5. Seehttp://www.omg.org/spec/UML/2.5/PDF.

In UML 1.1 a component is a physical artefact of implementation, e.g. a
library, a package, a file, etc.

In UML 1.5 a component is defined as a modular, deployable, and replaceable
part of a system that encapsulates implementation and exposes a set of interfaces.

In UML 2.0 a component is defined as a modular unit of the system, with
well-defined interfaces, that is replaceable within its environment.

Structured classifiers introduced in UML 2.0 are Class, Collaboration
and Component. From being physical artefacts in UML 1.1, components in
UML 2.x have become logical entities that are structured classes. A compari-
son between UML 1.x components and UML 2.0 components can be found in
[Bruel and Ober (2006)].

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/spec/UML/2.5/PDF

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 103

Chapter 7

Component Models with Encapsulated
Components

In object-oriented programming, a key desideratum when designing classes is en-
capsulation. This means controlling data access and hiding information (in par-
ticular implementation). The motivation for encapsulation is to design good code
that is well-structured, readable, extensible and maintainable. In the context of
component-based software development, composition of components being a key
concern means that controlling data access and information hiding are not the only
aspects of encapsulation that are desirable. An even more crucial aspect of encap-
sulation is its compositionality, i.e. its preservation through composition. In other
words, encapsulation needs to be defined at component level in such a way that
the same definition holds at the level of a composite that results from composition.
This means that encapsulation needs to have the right semantics, over and above
code design guidelines for data access and information hiding.

In this chapter, we describe a component model, called X-MAN, with encap-
sulated components where encapsulation means ‘enclosing behaviour in a cap-
sule’, and composition produces composites that preserve this property. These
encapsulated components have no external dependencies, and do not invoke one
another. They have only provided services and no required services. As a result,
they need to be composed exogenously by coordinators. A complete system is a
set of encapsulated components composed by a set of coordinators, the system’s
behaviour being initiated by the top-level coordinator.

As in Chapter 5 and Chapter 6, we will also analyse the component life cycle
in X-MAN, and compare it to the idealised component life cycle (Section 1.1), in
order to see how well the component model supports the latter.

103

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 104

104 An Introduction to Component-Based Software Development

7.1 X-MAN

X-MAN [Lau et al. (2005, 2006); Velasco Elizondo and Lau (2010); He et al.
(2012); Lau and Tran (2012); di Cola et al. (2015)] is a component model with
encapsulated components. An X-MAN component has only provided services
and no required ones. It provides a set of services through its interface (Fig. 7.1).
These services are implemented by methods defined within the component, and

Service1

Service2. . .

i

i

o

o

i

o
input
output

Fig. 7.1 An X-MAN component provides services.

can be invoked only by (exogenous) composition connectors (see below) but not
by other components.

X-MAN components can be (i) atomic or (ii) composite (Fig. 7.2). An atomic
component (Fig. 7.2(a)) contains a computation unit and an invocation connector.
The computation unit performs computation. It provides methods that implement

IU

UComputation

IU = Invocation connector
U = Computation unit

(a) Atomic component

IA IB

A B
Atomic

component

Control CC

CC = Composition connector

(b) Composite component

Fig. 7.2 X-MAN: components.

the provided services of the component. The invocation connector invokes these
methods in order to yield the provided services. An atomic component is encap-
sulated in the sense that all its computation occurs within its computation unit, i.e.
an atomic component does not invoke the methods of other components. Encap-
sulation thus means ‘enclosure in a capsule’.

Figure 7.3 depicts a Bank atomic component, which provides three services,
namely withdraw, balance and deposit. Each service has input and output data,
depicted as input and output parameters respectively. For instance, the withdraw

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 105

Component Models with Encapsulated Components 105

withdraw

balance

deposit

balance

balance

balance

accNo
amount

accNo

accNo
amount

i
i

i

i
i

o

o

o

Fig. 7.3 A bank atomic component in X-MAN.

service, takes as input an account number (accNo) and the amount to be withdrawn
(withdraw). It provides the updated balance as output.

A composite component (Fig. 7.2(b)) is built from atomic components by
composition connectors (Fig. 7.4). A composition connector coordinates control
(as well as data flow) between components, i.e. it coordinates the invocation of
services between components. Like an atomic component, a composite compo-
nent is also encapsulated, and it also has only provided services; this is a direct
consequence of the encapsulation of an atomic component. Thus in X-MAN en-
capsulation is preserved by composition. Composite components are self-similar,
and indeed composition is algebraic and hierarchical.

A composition connector is a control structure (Fig. 7.4). There are two
composition connectors: (i) sequencer, which provides sequencing; (ii) selector,
which provides branching.

Control

. . .

Composition connector

.

SEQ SEL

Sequencer Selector

CC

Fig. 7.4 X-MAN: composition connectors.

There are other connectors in X-MAN. There is an aggregator connector that
aggregates components into a composite with a façade interface. There are also
adaptors, e.g. guard and loop, that are applied to single components. Indeed,
the set of all X-MAN connectors is Turing-complete since it includes the control
structures for sequencing, branching and looping.

An example of an X-MAN system is shown in Fig. 7.5.1 It realises a simpli-
fied ATM system, which consists of three atomic components (Reader, Bank A
1Data flow between parameters has been omitted for clarity.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 106

106 An Introduction to Component-Based Software Development

withdraw

balance

deposit

balance

balance

balance

accNo
amount

accNo

accNo
amount

readCard accNocardNo

SEQ

withdraw

balance

deposit

balance

balance

balance

accNo
amount

accNo

accNo
amount

Bank BBank A

Reader

SELiaccNooi

o

o

i
i

i

i
i o

i
i

i

i
i

o

o

o

Fig. 7.5 A simplified ATM system in X-MAN.

and Bank B) composed by two connectors (SEQ, SEL). When a request arrives,
SEQ firstly invokes the service readCard to obtain the account number. Secondly,
it delegates control to the selector SEL, which according to the provided accNo in-
vokes the required services from either Bank A or Bank B.

In terms of the idealised component life cycle, X-MAN supports composition
in both the design phase and the deployment phase. In the design phase, in the
X-MAN tool [di Cola et al. (2015)], components (both atomic and composite) are
built in the builder of the tool and deposited in the repository of the tool. This
is illustrated in Fig. 7.6. In the deployment phase, components (both atomic and

Fig. 7.6 X-MAN: component life cycle.

composite) are retrieved from the repository and composed into a system in the
assembler. Since in the tool components are implemented in Java, the resulting
system is executed in the Java virtual machine in the run-time phase.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 107

Component Models with Encapsulated Components 107

Discussion and Further Reading

Composition connectors in X-MAN are an example of exogenous composition
that is algebraic (Fig. 3.14 in Section 3.3). They can also be defined as mathe-
matical operators (Fig. 3.16 in Section 3.4)). This means that in X-MAN, system
construction can be performed by hierarchical composition. Hierarchical compo-
sition can potentially tackle scale and complexity not only in system construction
but also in V&V [He et al. (2012)]. Compositional V&V will be crucial for very
large systems that require safety. A topical example is obviously the Internet of
Things. Other examples are avionic and automotive systems, including driverless
cars.

Web Services

In contrast to X-MAN components, web services are not encapsulated compo-
nents. However, they are composed by coordination (Section 3.2.4), like X-
MAN components. For this reason, we describe them here, even though, un-
like exogenous composition in X-MAN, coordination of web services is not alge-
braic (Fig. 3.14 in Section 3.3), and cannot be defined as mathematical operators
(Fig. 3.16 in Section 3.4).

Web services [Newcomer (2002); Alonso et al. (2004); Barry (2013)] are web
application components designed to support interoperable machine-to-machine
interactions for resource sharing over a network through Internet-based protocols
[Sheng et al. (2014)]. As such, they are fundamental elements of distributed ap-
plications in Service-Oriented Computing [Erl (2005)].

A web service is deployed on a web server and implements functionalities or
operations that can be invoked remotely via its interface. As illustrated in Fig. 7.7,
a web service contains:

• an interface defined by an API description language such as WSDL (Web
Service Description Language), WADL (Web Application Description
Language) or OpenAPI Specification) [Christensen et al. (2001); Chin-
nici et al. (2016b,a)] that describes the functionalities it provides by ex-
posing an arbitrary set of operations;

• a binary implementation (the service code) of its functionalities.

There are two main kinds of web services: the traditional SOAP-based web
services [Scribner et al. (2000)] and the conceptually simpler RESTful web

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 108

108 An Introduction to Component-Based Software Development

API
Description

Service Code

Fig. 7.7 A web service.

services [Dustdar and Schreiner (2005)]. SOAP stands for Simple Object Access
Protocol,2 while REST stands for Representational State Transfer.

SOAP-based web services are typically used to integrate complex enterprise
applications. Such a service is defined by WSDL (Web Service Description Lan-
guage) [Chinnici et al. (2016b,a)]. Service registration, discovery and invocation
are implemented by SOAP calls, via UDDI (Universal Description, Discovery,
and Integration) [Bellwood et al. (2002)]. SOAP-based web services are proto-
col independent and stateful, but demand more computation resources, especially
when handling SOAP messages.

RESTful web services were introduced as an architectural style for building
large-scale distributed hypermedia systems [Fielding (2000)]. They are identified
by URIs, which offer a global addressing space for resource and service discov-
ery. RESTful Web services interact through a uniform interface, which comprises
a fixed set of operations in the context of the Web and the Hypertext Transfer
Protocol (HTTP): GET, PUT, DELETE and POST. Services interact by exchang-
ing request and response messages, each of which includes enough information to
describe how to process the message. In contrast to SOAP-based Web services,
RESTful Web services are lightweight and stateless, which are well suited for tac-
tical, ad hoc integration over the Web. A popular technique is mashup that enables
users to create situational applications based on existing application components
[Ngu et al. (2010)].

In summary, a SOAP-based web service has an interface in WSDL that ex-
poses an arbitrary set of operations; whereas a RESTful web service has an in-
terface in WADL (Web Application Description Language) and/or WSDL that
describes the functionalities it provides using a uniform set of operations in terms
of HTTP verbs, i.e. GET, PUT, DELETE and POST. Figure 7.8 compares the
functionalities provided by a Bank web service in both SOAP and RESTful.

Web services are composed by method calls through SOAP or JSON
(JavaScript Object Notation [Bray (2014)]) messages. The interaction among dif-
ferent services can either be centrally orchestrated by a single end point (Fig. 7.9),
or distributed among participants of a service choreography (Fig. 7.10).

2https://www.w3.org/TR/soap/

https://www.w3.org/TR/soap/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 109

Component Models with Encapsulated Components 109

SOAP web service RESTful web service Service

 Withdraw money withdraw(String accNo, Float amount) www.myBank.uk/account/{id} [PUT]

Show balance balance(String accNo) www.myBank.uk/account/{id} [GET]

Deposit money deposit(String accNo, Float amount) www.myBank.uk/account/{id} [PUT]

Fig. 7.8 An example of SOAP and RESTful based provided services.

Orchestration

(Coordinator)

Invoke

Reply

Invoke

Reply

InvokeInvoke

Reply Reply

WS1

WS4

WS2

WS3

WS = web service

Fig. 7.9 Web service composition: orchestration.

Specifically, web service orchestration is the composition of web services fol-
lowing a defined workflow that is executed on a centralised workflow engine (see
Section 3.2.4 and Fig. 3.12 for details and example). In contrast, web service
choreography is not executed but enacted when its participants execute their roles
[Foster et al. (2006)].

Invoke

Reply

WS1

WS4

WS2

WS3

WS = web service

Invoke

Reply

In
vo

k
e

R
e

p
ly

In
vo

k
e

R
e

p
ly

Fig. 7.10 Web service composition: choreography.

Web service choreography is a less well explored approach to web service
composition. Indeed, the majority of workflow systems tackle the composition of

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 110

110 An Introduction to Component-Based Software Development

web services through orchestration, with Business Process Execution Language
(WS-BPEL) being the de facto standard notation [Jordan et al. (2007)].

In terms of the idealised component life cycle, in the design phase, web ser-
vices are built in a programming environment, e.g. JOpera for Eclipse [Pautasso
(2009)], packaged and subsequently deposited on a web server, e.g. Tomcat; the
latter being the repository. There is no composition in design phase (Fig. 7.11).

Programming Web BPEL BPEL

Builder

A

B

A

B

A

B

A = web service
B = web service

= orchestration

A

B

Repository Assembler RTE

Environment Server Editor Engine

Design Phase Deployment Phase Run-time Phase

Fig. 7.11 Web services (orchestration): component life cycle.

In the deployment phase, web services are retrieved from servers and composed
by orchestration or choreography. In choreography, web services are not assem-
bled. In orchestration, they are composed by a workflow defined in a BPEL editor.
At run-time, the resulting workflow is executed on a BPEL engine. Figure 7.11
shows deployment and run-time phases for web service orchestration.

Acknowledgement

We wish to thank Cesare Pautasso for helpful information and discussions.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 111

Chapter 8

A Taxonomy of Software Component
Models

In the previous chapters we have presented three categories of component mod-
els. These categories are based on the kinds of components defined by the models,
namely objects, architectural units and encapsulated components. This categori-
sation provides a taxonomy of the component models, but a more meaningful and
significant taxonomy would be one based on the idealised component life cycle
(Section 1.1), since the latter embodies the desiderata of CBD. In this chapter we
present such a taxonomy. In the previous chapters we have analysed every model
from the point of view of the idealised component life cycle. In this chapter we
will use this analysis in the taxonomy.

In general terms, to fully realise the benefits of CBD, we need to have method-
ologies with components and composition mechanisms, i.e. component models,
that fully support the idealised component life cycle. The key desideratum that
this life cycle targets is that composition should be possible in both design phase
and deployment phase. Realising this desideratum means maximising reuse since
composition engenders reuse. Furthermore, as we saw in Section 1.4, the ide-
alised component life cycle supports the W model that defines a component life
cycle as well as a system life cycle that together comprise a process for composi-
tional V& V. Compositional V& V is an important desideratum for large complex
systems as it can tackle scale and complexity.

Now we classify the component models presented in the previous chapters
into a taxonomy with five categories. The taxonomy is shown in Fig. 8.1.

In Fig. 8.1, the first four columns of characteristics are design phase character-
istics, while the last one refers to deployment phase characteristics. In the design
phase, ‘Deposit-N’ stands for ‘new components can be deposited in a repository’;
‘Retrieve’ stands for ‘components can be retrieved from the repository; ‘Com-
pose’ stands for ‘composition is possible; and ‘Deposit-C’ stands for ‘composite

111

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 112

112 An Introduction to Component-Based Software Development

Fig. 8.1 Categories based on idealised component life cycle.

components can be deposited in the repository’. In the deployment phase, ‘Com-
pose’ stands for ‘composition is possible’.

8.1 Category 1: Design without Repository

In Category 1 (Fig. 8.2), in the design phase, there is no repository. Therefore
components are all constructed from scratch. Composition is possible, and indeed

Builder

A

B

InsA

InsB

RTE
Design Phase Run-time Phase

Component (source code) Component instance

Design phase
composition operator

Fig. 8.2 Category 1: design without repository (POJOs, Acme, ArchJava, UML 2.0).

the whole system is (designed and) constructed by composing all the components.
There is no deployment phase, i.e. no new composition is possible after the design
phase, and the composition of the component instances in the run-time phase is the
same as that of the components in the design phase. POJOs and all simple Acme-
like ADLs, e.g. ArchJava, belong to this category, as does UML2.0 which is also
based on Acme. This category can be described as Design without Repository.

It is easy to see that the component life cycle in POJOs (Fig. 8.3, which is a
copy of Fig. 5.1) is indeed an instance of the component life cycle in Category 1
(Fig. 8.2), with method call as the design phase composition operator.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 113

A Taxonomy of Software Component Models 113

Java IDE JVM

Builder

A

B

InsA

InsB

A = POJO
B = POJO

InsA = instance of A
InsB = instance of B

RTE

= method call

Design Phase Run-time Phase

Fig. 8.3 POJOs: component life cycle.

Builder RTE

DB F

A A
C1

C2 B D F

X=implementation of X
Ci=Acme connector

Design Phase Run-time Phase

AcmeStudio RTE for chosen
implementation language

X=Acme component

Ci=implementation of CiC3
C1

C2 C3

Fig. 8.4 Acme: component life cycle.

Similarly, the component life cycle in Acme (Fig. 8.4, which is a copy of
Fig. 6.5) can also be seen to be an instance of the component life cycle in
Category 1 (Fig. 8.2), with connector definition as the design phase composi-
tion operator and connector implementation as the run-time phase composition
operator.

The component life cycle in ArchJava (Fig. 8.5, which is a copy of Fig. 6.10)
is the same as that in Acme, except that components and connectors (which are
both Java classes/objects) are composed by method calls, in both the design phase

RTE
InsA

InsX= instance of X
Ci= connector

Design Phase Run-time Phase

ArchJava JVM

X= ArchJava component

InsFInsB InsD

Builder

DB F

A

C1

C2 C3

C1

C2 C3 =method call

Fig. 8.5 ArchJava: component life cycle.

and the run-rime phase. So it is also an instance of the component life cycle in
Category 1 (Fig. 8.2).

In UML 2.x, the component life cycle (Fig. 8.6, which is a copy of Fig. 6.15) is
the same as that in ArchJava, except that in the design phase components and con-
nectors are just designs (UML diagrams) and are therefore not composed by any

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 114

114 An Introduction to Component-Based Software Development

Visual Builder
Tool

=method call

Builder RTE

DB F

A A

C1
C2 B D F

X = implementation of X
Ci =UML connector

Design Phase Run-time Phase

RTE for chosen
implementation language

X =UML component

Ci= implementation of Ci
C3

C1

C2 C3

Fig. 8.6 UML 2.x: component life cycle.

code. In the run-time phase, however, components and connectors are composed
by some object-oriented code for method calls, like in ArchJava. So the com-
ponent life cycle in UML 2.x is also an instance of the component life cycle in
Category 1 (Fig. 8.2).

8.2 Category 2: Design with Deposit-only Repository

In Category 2 (Fig. 8.7), in the design phase, new components can be (built
in a builder and) deposited in a repository, but cannot be retrieved from it.

Fig. 8.7 Category 2: design with deposit-only repository (EJB, OSGi, .NET, COM, CCM,
FRACTAL).

Composition is possible, i.e. composites can be formed, but composites cannot
be retrieved from the repository, because they do not have identities of their own.
No new composition is possible after the design phase, so there is no deployment
phase, and the composition of the component instances in the run-time phase is
the same as that of the components in the design phase. This category includes
EJB, OSGi, .Net, COM, CCM and FRACTAL. It can be described as Design with
Deposit-only Repository.

It is easy to see that the component life cycle in EJB (Fig. 8.8, which is a copy
of Fig. 5.8) is an instance of the component life cycle in Category 2 (Fig. 8.7). In
the design phase, components (EJBs) are designed, implemented, composed (by
method calls) and deposited in an EJB container, which serves as a repository.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 115

A Taxonomy of Software Component Models 115

Builder

A

B

InsA

InsB

RTE

NetBeans

A = EJB
B = EJB

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

EJB
container

EJB
container

Design Phase Run-time Phase

Fig. 8.8 Enterprise JavaBeans: component life cycle.

Components cannot be retrieved from the container, and no more composition is
possible. In the run-time phase, component instances are executed in the con-
tainer, with the same composition defined for the components in the design phase.

The component life cycle in OSGi (Fig. 8.9, which is a copy of Fig. 5.12) is
the same as that in EJB, except that components are POJOs in bundles. In the

Builder

A

B

InsA

InsB

RTE

Eclipse

A = POJO
B = POJO

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

Equinox Equinox

Design Phase Run-time Phase

Fig. 8.9 OSGi: component life cycle.

design phase, POJOs in OSGi bundles are constructed in any editor, e.g. Eclipse.
They are composed (by method calls) inside a bundle to provide a service (ex-
posed by the bundle). Bundles, and hence POJOs therein, are installed in an
OSGi-compliant framework, e.g. Equinox, which is therefore the repository for
POJOs. There is no further composition and therefore POJO instances have the
same composition as POJOs in the design phase, when they are executed in the
run-time phase in the chosen framework.

The component life cycle in .NET (Fig. 8.10, which is a copy of Fig. 5.17)
is also the same. In the design phase, .NET components (classes) are constructed

Builder

A

B

InsA

InsB

RTE

Programming

A = .NET class
B = .NET class

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

MEL Windows
environment

Design Phase Run-time Phase

Fig. 8.10 .NET: component life cycle.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 116

116 An Introduction to Component-Based Software Development

and composed (by method calls) in a programming environment such as Microsoft
Visual Studio .NET, and stored in the Microsoft Enterprise Library (MEL) on a
Windows server. No further composition takes place, and therefore instances of
.NET classes have the same composition as .NET classes in the design phase,
when they are executed in the run-time phase in Windows.

COM has the same component life cycle (Fig. 8.11, which is a copy of
Fig. 5.20). In the design phase, COM components are constructed and composed

Builder

A

B

InsA

InsB

RTE

Programming

A = COM component
B = COM component

InsA = binary of A
InsB = binary of B

= function call

A

B

Repository

Windows
Registry

Windows
environment

Design Phase Run-time Phase

Fig. 8.11 COM: component life cycle.

(by function calls) in a programming environment such as Microsoft Visual Stu-
dio, and stored in the Windows Registry on a Windows server. No further compo-
sition occurs, and therefore in the run-time phase, binaries of COM components
have the same composition as COM components in the design phase, when exe-
cuted in Windows.

CCM also has the same component life cycle (Fig. 8.12, which is a copy of
Fig. 5.24). In the design phase, CCM components are constructed and composed

Builder

A

B

InsA

InsB

RTE

CCM tool

A = CCM component
B = CCM component

InsA = instance of A
InsB = instance of B

= method call

A

B

Repository

CCM
container

CCM
serverprovider

Design Phase Run-time Phase

Fig. 8.12 CCM: component life cycle.

(by method calls) in a CCM tool such as OpenCCM, and deposited into a CCM
container, hosted and managed by a CCM platform such as OpenCCM. No further
composition takes place, and therefore in the run-time phase, instances of CCM
components have the same composition as the CCM components in the design
phase, when executed on a CCM server.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 117

A Taxonomy of Software Component Models 117

RTE

InsA
InsX= instance of X

Bi= binding

Design Phase Run-time Phase

F4E JVM

X = FRACTAL component

InsFInsC InsD

Repository

= method call

F4E

Builder

DC F

A
B1

B2 B3

G
G

Fig. 8.13 FRACTAL: component life cycle.

In FRACTAL, the component life cycle (Fig. 8.13, which is a copy of Fig. 6.26),
in the design phase, FRACTAL components are designed and composed (by inter-
face bindings) into the architecture of the complete system, in the FRACTAL for
Eclipse (F4E) IDE, which also serves as a deposit-only repository for the system.
No more composition takes place after the design phase, and therefore in the run-
time phase, instances of FRACTAL components are composed (by method calls)
in the same way as the FRACTAL components are composed (by interface bind-
ings) in the design phase, when executed on a JVM. The component life cycle
in FRACTAL is therefore an instance of the component life cycle in Category 2
(Fig. 8.7).

8.3 Category 3: Deployment with Repository

In Category 3 (Fig. 8.14), in the design phase, new components can be (built in
a builder and) deposited in a repository, but cannot be retrieved from it. Compo-

Builder

A

B B

A

Repository

InsA

Assembler RTE

InsB

A

B

Design Phase Deployment Phase Run-time Phase

Component (source code) Component (binary) Component

Design phase Deployment phase
composition operator composition operator

instance

Fig. 8.14 Category 3: deployment with repository (JavaBeans, Web Services).

sition is not possible in the design phase, i.e. no composites can be formed, and
so no composites can be deposited in the repository. In the deployment phase,
components can be retrieved from the repository, and their binaries formed and
composed in an assembler. The composition of the component instances in the
run-time phase is that defined for the components (binaries) in the deployment

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 118

118 An Introduction to Component-Based Software Development

phase. The members of this category JavaBeans and Web Services. This category
can be described as Deployment with Repository.

The component life cycle in JavaBeans (Fig. 8.15, which is a copy of Fig. 5.5)
is clearly an instance of the component life cycle in Category 3 (Fig. 8.14). In the

NetBeans Palette Design Form JVM

Builder

A

B

A

B

InsA

InsB

A = Java bean
B = Java bean

InsA = instance of A
InsB = instance of B

= adaptor object

A

B

Repository Assembler RTE

Design Phase Deployment Phase Run-time Phase

Fig. 8.15 JavaBeans: component life cycle.

design phase, beans are constructed in a visual bean builder tool like NetBeans,
and deposited in a repository (as JAR files) such as the Palette in NetBeans, but
they cannot be composed at this stage. They are composed in deployment phase
in a canvas (which serves as an assembler) such as the Design Form in NetBeans,
after being retrieved from the repository. In the run-time phase, the composition
of the bean instances is the same as the composition of beans in the deployment
phase, when executed on a JVM.

The component life cycle in web services using orchestration for composition
(Fig. 8.16, which is a copy of Fig. 7.11) is also an instance of the component life
cycle in Category 3. In the design phase, individual web services are designed and

Programming Web BPEL BPEL

Builder

A

B

A

B

A

B

A = web service
B = web service

= orchestration

A

B

Repository Assembler RTE

Environment Server Editor Engine

Design Phase Deployment Phase Run-time Phase

Fig. 8.16 Web services: component life cycle.

implemented in a programming environment, and then packaged and deposited on
a web server, which serves as a repository. There is no composition in the design
phase. In the deployment phase, web services are identified and retrieved from
their host web servers and composed by orchestration on a BPEL editor into a
workflow. In the run-time phase, this workflow is executed on the BPEL engine.
The composition of the web services is as defined in the deployment phase.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 119

A Taxonomy of Software Component Models 119

8.4 Category 4: Design with Repository

In Category 4 (Fig. 8.17), in the design phase, new components can be (built in a
builder and) deposited in a repository, and components can be retrieved from the
repository. Composition is possible, and composites, including complete systems,
can be deposited in the repository. No further composition takes place, and there-

Fig. 8.17 Category 4: design with repository (ProCom, Koala, SCA, SOFA, KobrA, Palladio).

fore there is no deployment phase. In the run-time phase, the composition of the
component instances is the same as that of the components in the design phase.
ProCom, Koala, SCA, SOFA, KobrA, and Palladio belong to this category. This
category can be described as Design with Repository.

It is easy to see that the component life cycle in ProCom (Fig. 8.18, which
is a copy of Fig. 6.19) is an instance of the component life cycle in Category 4

Fig. 8.18 ProCom: component life cycle.

(Fig. 8.17). In the design phase in ProCom, new ProSave components (A,B,D,E

in Fig. 8.18) can be built in the PRIDE tool and deposited in the repository of
the tool. These ProSave components can be retrieved from the repository and
composed (by connectors) into Prosave composites, which in turn can be com-
posed (by message channels) into a ProSys component or a complete system (F
in Fig. 8.18). No further composition takes place after the design phase, so there

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 120

120 An Introduction to Component-Based Software Development

is no deployment phase. In the run-time phase, the ProSys system has the same
composition as that defined in the design phase.

Builder

A

B InsAB

RTE A = Koala component
B = Koala component

AB = composite of A and B
InsAB = binary of AB

= function call

A

AB

Repository

WorkSpace Run-time
Environment of C

Programming
Environment

Design Phase Run-time Phase

Fig. 8.19 Koala: component life cycle.

The component life cycle in Koala (Fig. 8.19, which is a copy of Fig. 6.23) is
clearly an instance of the component life cycle in Category 4 (Fig. 8.17). In the
design phase, Koala components (definition files) can be created in a Koala pro-
gramming environment and deposited in a file system (KoalaModel Workspace).
These components can be retrieved from Workspace and composed (by function
calls) into composites or complete systems (also definition files). C code for the
components has to be written and added to their definition files, but no further
composition occurs after the design phase, and therefore there is no deployment
phase. In the run-rime phase, the composition of the component instances is as
defined for the components in the design phase, when they are executed in the
run-time environment of C.

The component life cycle in SCA (Fig. 8.20, which is a copy of Fig. 6.29) is
the same as that of Koala. In the design phase, SCA components can be created

Builder

A

B InsAB

RTE A = SCA component
B = SCA component

AB = composite of A and B
InsAB = implementation of AB

= wire

A

AB

Repository

SCASCA Programming
RepositoryIDE Language RTE

Design Phase Run-time Phase

Fig. 8.20 SCA: component life cycle.

in an SCA IDE and deposited in an SCA repository. These components can be re-
trieved from the repository and composed (by wiring matching services together)
into a composite or a complete system. After the design phase, the components
(and their composition) have to be implemented, but no further composition takes
place, and so there is no deployment phase. In the run-time phase the composition

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 121

A Taxonomy of Software Component Models 121

in the implementation is as defined in the design phase, when it is executed in the
run-time environment of the chosen implementation language.

The component life cycle in SOFA (Fig. 8.21, which is a copy of Fig. 6.31)
is the same as that in Koala and SCA. In the design phase, SOFA components

Builder

A

B InsAB

RTE A = SOFA component
B = SOFA component

AB = composite of A and B
InsAB = binary of AB

= connector

A

AB

Repository

SOFASOFA SOFAnode
RepositoryIDE

Design Phase Run-time Phase

Fig. 8.21 SOFA: component life cycle.

are built in a SOFA IDE, and can be deposited into a SOFA repository. These
components can be retrieved from the repository and composed (by connectors
that bind their interfaces together) into a composite or a complete system. There
is no further composition after the design phase, so there is no deployment phase.
In the run-time phase, the composition in the binary of the system is the same
as the composition defined in the design phase, when the system is executed in a
SOFANode.

The component life cycle in KobrA (Fig. 8.22, which is a copy of Fig. 5.26)
is also the same. In the design phase KobrA components are defined (as UML

Builder

A

B InsAB

RTE A = KobrA component
B = KobrA component

AB = aggregation of A and B
InsAB = implementation of AB

= model aggregation

A

AB

Repository

File
System

UML Visual Implementation
Language RTEBuilder Tool

Design Phase Run-time Phase

Fig. 8.22 KobrA: component life cycle.

models) in a UML visual builder tool and can be deposited in a file system. These
components can be retrieved from the file system and composed (by aggregation)
into an aggregate for a system. Object-oriented code has to be written to com-
pletely implement the aggregated models, after the design phase, but no more
composition (aggregation) occurs, and so there is no deployment phase. In the
run-time phase, the composition (by method calls) of objects in the implemented

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 122

122 An Introduction to Component-Based Software Development

system is the same as that of classes in the aggregation in the design phase, when
the implementation is executed in the run-time of the chosen object-oriented lan-
guage.

The component life cycle in Palladio (Fig. 8.23, which is a copy of Fig. 6.35)
is the same again. In the design phase, basic Palladio components are built and

Builder

A

B InsAB

RTE A = Palladio component
B = Palladio component

AB = composite of A and B
InsAB = instance of AB

= connector

A

AB

Repository

PalladioPalladio Implementation RTE
Tool

Design Phase Run-time Phase

Tool

Fig. 8.23 Palladio: component life cycle.

composed (by connectors) in the Palladio, and can be deposited in a repository in
the tool. These components can be retrieved from the repository and composed
further into composites or a complete system. After the design phase, the imple-
mentation of the system has to be completed in a chosen implementation language
such as Java, but there is no more composition and therefore there is no deploy-
ment phase. In the run-time phase, the composition of the component instances is
the same as that of the components in the design phase, when they are executed in
the run-time environment of the chosen implementation language.

8.5 Category 5: Design and Deployment with Repository

In Category 5 (Fig. 8.24), in the design phase, new components can be (built in a
builder and) deposited in a repository, and components can be retrieved from the
repository. Composition is possible, and composites can be built and deposited
in the repository. In the deployment phase, composition is also possible, and as
a result, the composition of the component instances in the run-time phase can
be entirely different from that in the design phase. X-MAN is the sole member
of this category. This category can be described as Design and Deployment with
Repository.

The component life cycle in X-MAN clearly coincides with that that in Cat-
egory 5 (Fig. 8.24). In the design phase, new X-MAN components can be built,
composed and deposited in the repository. Components in the repository can be
retrieved for composition into new composites, which in turn can be deposited in
the repository. In the deployment phase, components can be retrieved from the

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 123

A Taxonomy of Software Component Models 123

Design Phase Deployment Phase Run-time Phase

A A
A

B
B

B

C
C

BC

InsA

InsB

InsBC

Component (source code) Component (binary) Component

Design phase Deployment phase

Builder Repository Assembler Run-time
Environment

composition operator composition operator

instance

Fig. 8.24 Category 5: design and deployment with repository (X-MAN).

Fig. 8.25 X-MAN: component life cycle.

repository and their binaries can be composed in the assembler. In the run-time
phase, the composition of the component instances is the same as that of compo-
nent binaries in the deployment phase, when executed in the run-time environment
(JVM).

Discussion and Further Reading

The basis for the taxonomy in Fig. 8.1 is the idealized component life cycle, as
discussed in Section 1.1, which is in turn based on desiderata for CBD [Broy
et al. (1998); (2001); Szyperski et al. (2002); Meyer (2003)]. These desiderata
are well established and widely accepted. Indeed, the taxonomy in Fig. 8.1 has
been used by other researchers to evaluate and improve their component models,
e.g. [Hnětynka and Plášil (2006)].

Looking at the taxonomy, it is interesting to note that among models in the
Design with Repository category, Koala and KobrA are intended for product line
engineering [Pohl et al. (2005); Clements and Northrop (2015)], which has proved

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 124

124 An Introduction to Component-Based Software Development

to be the most successful approach for software reuse, a key objective and ben-
efit of CBD, in practice. The main reason for its success is precisely its use of
repositories of families of components, i.e. product lines.

At the other end of the scale, models in the Design without Repository cate-
gory are focused on designing (systems and) components from scratch, rather than
reusing existing components from a repository.

Models in the categories Design with Deposit-only Repository and Deploy-
ment with Repository are different from those in the Design with Repository cat-
egory in that the former store binary compiled code whereas the latter store units
of design in the repository, which are more generic and hence more reusable.

The only component model that has composition in both the design and the
deployment phase is X-MAN (Section 7.1). In X-MAN it is possible to retrieve
composites for further composition in the deployment phase, which is not possible
for models in the Design with Repository category.

Looking forward to the future, there are new desiderata for CBD: foremost
among these are scale, complexity and safety. Software is becoming all pervasive,
and will only become even more so in future, as the Internet of Things become
reality. Safety will be critical as humans are enveloped by software. A striking
example is human safety in driverless cars, which are completely controlled by
software.

To tackle scale, complexity and safety we need: (i) components that are easy
to reuse; (ii) composition mechanisms that will enable systematic composition as
well as compositional V&V.

We believe that to achieve these objects, components should have the key
properties of encapsulation and compositionality, like in X-MAN. Encapsulation
makes reuse easier because it removes coupling between components. Composi-
tionality enables hierarchical composition, which can tackle scale and complexity.

Objects and architectural units are both lacking in encapsulation and compo-
sitionality. Objects encapsulate data, but not control or computation. They are not
compositional. Architectural units are compositional and can encapsulate data,
but they do not encapsulate control or computation.

By contrast, in X-MAN, encapsulation occurs at every level of composition,
and it encapsulates every composite into just an interface. This interface is all we
need to know about the composite in order to use it for further composition. This
means that we can encapsulate larger and larger composites at each step, and by so
doing, we are able to subsequently compose larger and larger composites without
any regard for their size or complexity. Consequently, composition is hierarchical
in X-MAN and composites are self-similar.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 125

A Taxonomy of Software Component Models 125

Hierarchical composition in turn enables compositional V&V, following a
process like the W model(Section 1.4), which will be able to tackle the V& V
of large complex systems.

Finally, as mentioned in Discussion and Further Reading in Chapter 4, a tu-
torial on component models can be found in [Lau (2014); Lau et al. (2014)]. An
older tutorial can be found in [Lau (2006a,b)], with further details in [Lau and
Wang (2006)].

Acknowledgement

We wish to thank Ivica Crnkovic, David Garlan, Dirk Muthig, Oscar Nierstrasz,
Bastiaan Schonhage and Kurt Wallnau for information and helpful discussions.

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 127

Bibliography

Achermann, F., Lumpe, M., Schneider, J.-G., and Nierstrasz, O. (2001). Piccola — A
small composition language, in H. Bowman and J. Derrick (eds.), Formal Methods
for Distributed Processing — A Survey of Object-Oriented Approaches (Cambridge
University Press), pp. 403–426.

Achermann, F. and Nierstrasz, O. (2005). A calculus for reasoning about software compo-
sition, Theoretical Computer Science 331, 2-3, pp. 367–396.

Acme (2011). The Acme architectural description language, http://www.cs.cmu.ed
u/˜acme/.

AcmeStudio (2009). AcmeStudio Home Page, Carnegie Mellon University, http://www
.cs.cmu.edu/˜acme/AcmeStudio/.

Aldrich, J., Chambers, C., and Notkin, D. (2001). Component-oriented programming in
ArchJava, in First OOPSLA Workshop on Language Mechanisms for Programming
Software Components, pp. 1–8.

Aldrich, J., Chambers, C., and Notkin, D. (2002). ArchJava: Connecting software archi-
tecture to implementation, in Proceedings of International Conference on Software
Engineering 2002 (IEEE), pp. 187–197.

Aldrich, J., Garlan, D., Schmerl, B., and Tseng, T. (2004). Modeling and implementing
software architecture with Acme and ArchJava, in Proceedings of OOPSLA Com-
panion 2004, pp. 156–157.

Allen, R. and Garland, D. (1997). A formal basis for architectural connection, ACM Trans-
actions on Software Engineering and Methodology 6, 3, pp. 213–248.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services: Concepts,
Architectures and Applications (Springer-Verlag).

Apel, S. and Lengauer, C. (2008). Superimposition: A language-independent approach to
software composition, in C. Pautasso and E. Tanter (eds.), Software Composition,
Lecture Notes in Computer Science, Vol. 4954 (Springer), pp. 20–35.

Arbab, F. (2004). Reo: A channel-based coordination model for component composition,
Mathematical Structures in Computer Science 14, 3, pp. 329–366.

Aßmann, U. (2003). Invasive Software Composition (Springer).
Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,

Paech, B., Wüst, J., and Zettel, J. (2001). Component-Based Product Line Engineer-
ing with UML (Addison-Wesley).

127

http://www.cs.cmu.edu/~acme/
http://www.cs.cmu.edu/~acme/
http://www.cs.cmu.edu/~acme/AcmeStudio/
http://www.cs.cmu.edu/~acme/AcmeStudio/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 128

128 An Introduction to Component-Based Software Development

Atkinson, C., Bayer, J., and Muthig, D. (2000). Component-based product line devel-
opment: The KobrA approach, in Proceedings of the First Software Product Line
Conference (Springer), pp. 289–309.

Atkinson, C., Bostan, P., Brenner, D., Falcone, G., Gutheil, M., Hummel, O., Juhasz,
M., and Stoll, D. (2008). Modeling components and component-based systems
in KobrA, in A. Rausch, R. Reussner, R. Mirandola, and F. Plášil (eds.), The
Common Component Modeling Example: Comparing Software Component Models,
Lecture Notes in Computer Science, Vol. 5153 (Springer), pp. 54–84.

Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
and Wallnau, K. (2000). Volume II: Technical concepts of component-based soft-
ware engineering, 2nd edn., Tech. Rep. CMU/SEI-2000-TR-008, CMU/SEI.

Barry, D. K. (2013). Web Services, Service-Oriented Architectures, and Cloud Computing:
The Savvy Manager’s Guide, 2nd edn. (Morgan Kaufmann).

Bartlett, D. (2001). CORBA Component Model (CCM): Introducing next-generation
CORBA, http://www-106.ibm.com/developerworks/linux/libra
ry/co-cjct6/.

Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice, 3rd edn.,
SEI Series in Software Engineering (Addison-Wesley).

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., and Sirkin, M. (1994). The
GenVoca model of software-system generators, IEEE Software 11, 5, pp. 89–94.

BEA Systems et al. (1999). CORBA Components, Tech. Rep. orbos/99-02-05, Object
Management Group.

Becker, S., Koziolek, H., and Reussner, R. (2009). The Palladio component model for
model-driven performance prediction, Journal of Systems and Software 82, 1,
pp. 3–22.

Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey, M., Feygin, D., Kochman,
A., Macias, P., Novotny, M., and Paolucci, M. et al. (2002). Universal description,
discovery and integration specification (UDDI) 3.0, http://uddi.org/pubs/
uddi-v3.00-published-20020719.htm.

Benington, H. D. (1983). Production of large computer programs, IEEE Annals of the
History of Computing 5, 4, pp. 350–361.

Binns, P. and Vestal, S. (1993). Formal real-time architecture specification and analysis,
IEEE Real-Time Systems Newsletter 9, 1-2, pp. 104–108.

Bolton, F. (2001). Pure Corba (Pearson Education).
Box, D. (1998). Essential COM (Addison-Wesley).
Bracha, G. and Cook, W. (1990). Mixin-based inheritance, ACM Sigplan Notices 25, 10,

pp. 303–311.
Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format, http:

//www.rfc-editor.org/info/rfc7159.
Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F., Pomberger, G., Pree, W.,

Stal, M., and Szyperski, C. (1998). What characterizes a software component?
Software – Concepts and Tools 19, 1, pp. 49–56.

Bruel, J.-M. and Ober, I. (2006). Components modelling in UML 2, Studia Univ. Babeş-
Bolyai, Informatica LI, 1, pp. 79–90.

http://www-106.ibm.com/developerworks/linux/library/co-cjct6/.
http://www-106.ibm.com/developerworks/linux/library/co-cjct6/.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.rfc-editor.org/info/rfc7159
http://www.rfc-editor.org/info/rfc7159

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 129

Bibliography 129

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B. (2006). The FRAC-
TAL component model and its support in Java, Software: Practice and Experience
36, 11-12, pp. 1257–1284.

Buchi, M. and Weck, W. (1998). Compound types for Java, in Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and Applications (ACM
Press), pp. 362–373.

Bures, T., Hnetynka, P., and Plášil, F. (2006). SOFA 2.0: Balancing advanced fea-
tures in a hierarchical component model, in Proceedings of SERA 2006 (IEEE),
pp. 40–48.

Burke, B. and Monson-Haefel, R. (2006). Enterprise JavaBeans 3.0, 5th edn. (O’Reilly &
Associates).

Capretz, L. (2005). Y: A new component-based software life cycle model, Journal of
Computer Science 1, 1, pp. 76–82.

Chaudron, M. (2001). Reflections on the anatomy of software composition languages and
mechanism, in Proceedings of the Workshop on Composition Languages.

Cheesman, J. and Daniels, J. (2001). UML Components: A Simple Process for Specifying
Component-Based Software (Addison-Wesley).

Chinnici, R., Haas, H., Lewis, A., Moreau, J., Orchard, D., and Weerawarana, S. (2016a).
Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts, htt
p://www.w3.org/TR/wsdl20-adjuncts, W3C Recommendation 26 June
2007.

Chinnici, R., Moreau, J., Ryman, A., and Weerawarana, S. (2016b). Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 1: Core Language, http://www.w3.o
rg/TR/wsdl20, W3C Recommendation 26 June 2007.

Choi, Y.-H., Kwon, O.-C., and Shin, G.-S. (2002). An approach to composition of EJB
components using C2 style, in Proceedings of 28th EUROMICRO Conference
(IEEE), pp. 40–46.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web Services
Description Language (WSDL) 1.1, Tech. rep., W3C, http://www.bibsonomy
.org/bibtex/27697fadb78aa757322a25fc6252c7a92/neilernst.

Christiansson, B., Jakobsson, L., and Crnkovic, I. (2002). CBD process, in I. Crnkovic and
M. Larsson (eds.), Building Reliable Component-Based Software Systems (Artech
House), pp. 89–113.

Clements, P. and Northrop, L. (2015). Software Product Lines: Practices and Patterns
(Addison-Wesley).

Clements, P. C. (1996). A survey of architecture description languages, in Proceedings of
8th International Workshop on Software Specification and Design (IEEE Computer
Society), pp. 16–25.

Coglianese, L. and Szymanski, R. (1993). DSSA-ADAGE: An environment for
architecture-based avionics development, in Proceedings of AGARD, Aerospace
Software Engineering for Advanced Systems Architectures.

Cox, B. (1986). Object-Oriented Programming: An Evolutionary Approach (Addison-
Wesley).

Crnkovic, I., Chaudron, M., and Larsson, S. (2006). Component-based development
process and component lifecycle, in Proceedings of International Conference on
Software Engineering Advances, pp. 44–53.

http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.bibsonomy.org/bibtex/27697fadb78aa757322a25fc6252c7a92/neilernst
http://www.bibsonomy.org/bibtex/27697fadb78aa757322a25fc6252c7a92/neilernst

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 130

130 An Introduction to Component-Based Software Development

Crnkovic, I., Sentilles, S., Vulgarakis, A., and Chaudron, M. (2011). A classification frame-
work for software component models, IEEE Transactions on Software Engineering
37, 5, pp. 593–615, doi:10.1109/TSE.2010.83.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications (ACM Press/Addison-Wesley Publishing Co.).

da Cruz, M. F. and Raistrick, P. (2007). AMBERS: Improving requirements specifica-
tion through assertive models and SCADE/DOORS integration, in F. Redmill and
T. Anderson (eds.), The Safety of Systems, Proceedings of 15th Safety-critical
Systems Symposium (Springer London), pp. 217–241.

DeMichiel, L., Yalçinalp, L., and Krishnan, S. (2001). Enterprise JavaBeans Specification
Version 2.0, Sun Microsystems.

DeRemer, F. and Kron, H. (1976). Programming-in-the-large versus programming-in-the-
small, IEEE Transactions on Software Engineering 2, 2, pp. 80–86.

di Cola, S., Tran, C., and Lau, K.-K. (2015). A graphical tool for model-driven development
using components and services, in Proceedings of 41st Euromicro Conference on
Software Engineering and Advanced Applications (SEAA) 2015, pp. 181–182.

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. (2006). Traits: A mech-
anism for fine-grained reuse, ACM Transactions on Programming Languages and
Systems 28, 2, pp. 331–388.

Dustdar, S. and Schreiner, W. (2005). A survey on web services composition, International
Journal of Web and Grid Services 1, 1, pp. 1–30.

EAST-ADL Association (2016). EAST-ADL http://www.east-adl.info/Speci
fication.html.

Englander, R. (1997). Developing Java Beans (O’Reilly & Associates).
Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design (Prentice

Hall).
Esposito, D. and Saltarello, A. (2014). Microsoft .NET: Architecting Applications for the

Enterprise, 2nd edn. (Microsoft Press).
Evans, B. and Flanagan, D. (2014). Java in a Nutshell (O’Reilly Media, Inc.).
Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures, Ph.D. thesis, University of California, Irvine.
Flatt, M., Krishnamurthi, S., and Felleisen, M. (1999). A programmer’s reduction seman-

tics for classes and mixins, in J. Alves-Foss (ed.), Formal Syntax and Semantics of
Java (Springer-Verlag), pp. 241–269.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2006). Model-based analysis of obliga-
tions in web service choreography, in Proceedings of International Conference on
Internet and Web Applications and Services (IEEE), pp. 149–149.

Fowler, M., Parsons, R., and MacKenzie, J. (2009). POJO: An acronym for: Plain Old Java
Object, https://www.martinfowler.com/bliki/POJO.html.

Garlan, D., Allen, R., and Ockerbloom, J. (1994). Exploiting style in architec-
tural design environments, ACM SIGSOFT Software Engineering Notes 19, 5,
pp. 175–188.

Garlan, D., Monroe, R., and Wile, D. (2000). Acme: Architectural description of
component-based systems, in G. Leavens and M. Sitaraman (eds.), Foundations of
Component-Based Systems (Cambridge University Press), pp. 47–68.

http://www.east-adl.info/Specification.html
http://www.east-adl.info/Specification.html
https://www.martinfowler.com/bliki/POJO.html

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 131

Bibliography 131

Garlan, D., Monroe, R., and Wile, D. (2010). Acme: An architecture description
interchange language, in CASCON First Decade High Impact Papers (IBM Corp.),
pp. 159–173.

Gaufillet, A. and Gabel, B. (2010). Avionic software development with TOPCASED SAM,
in Proceedings of Embedded Real Time Software and Systems 2010.

Gédéon, W. (2010). OSGi and Apache Felix 3.0 (Packt Publishing Ltd).
Gelernter, D. and Carriero, N. (1992). Coordination languages and their significance, Com-

munications of ACM 35, 2, pp. 97–107.
Goebel, S. and Nestler, M. (2004). Composite component support for EJB, in Proceedings

of the Winter International Symposium on Information and Communication Tech-
nologies, pp. 1–6.

Hall, R., Pauls, K., McCulloch, S., and Savage, D. (2011). OSGi in Action: Creating
Modular Applications in Java (Manning Publications Co.).

Harrison, W. H., Ossher, H., and Tarr, P. (2002). Asymmetrically vs. symmetrically orga-
nized paradigms for software composition, Research Report RC22685, IBM Thomas
J. Watson Research.

He, N., Kroening, D., Wahl, T., Lau, K.-K., Taweel, F., Tran, C., Rümmer, P., and Sharma,
S. (2012). Component-based design and verification in X-MAN, in Proceedings of
Embedded Real Time Software and Systems.

Heffelfinger, D. R. (2014). Java EE 7 with GlassFish 4 Application Server (Packt Publish-
ing Ltd).

Heineman, G. T. and Councill, W. T. (eds.) (2001). Component-Based Software Engineer-
ing: Putting the Pieces Together (Addison-Wesley).

Hnětynka, P. and Plášil, F. (2006). Dynamic reconfiguration and access to services in hi-
erarchical component models, in I. Gorton, G. T. Heineman, I. Crnkovic, H. W.
Schmidt, J. A. Stafford, C. A. Szyperski, and K. C. Wallnau (eds.), Proceedings of
9th International Symposium on Component-Based Software Engineering, Lecture
Notes in Computer Science, Vol. 4063 (Springer-Verlag), pp. 352–359.

Hoare, T. (2005). Process algebra: A unifying approach, in Proceedings of the 2004 Inter-
national Conference on Communicating Sequential Processes: The First 25 Years,
CSP’04 (Springer-Verlag), pp. 36–60.

IABG (2017). The V-modell. Development standard for IT-systems of the Federal Republic
of Germany, IABG, http://www.v-modell.iabg.de.

Isa, M., Zaki, M. Z., and Jawawi, D. N. (2013). A survey of design model for quality
analysis: From a performance and reliability perspective, Computer and Information
Science 6, 2, p. 55.

Jamae, J. and Johnson, P. (2009). JBoss in Action: Configuring the JBoss Application
Server (Manning Publications Co.).

JavaBeans Specification (1997). Javabeans Specification, http://java.sun.com/pr
oducts/javabeans/docs/spec.html.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera,
F., Ford, M., and Goland, Y., et al. (2007). Web services business process execution
language version 2.0, OASIS Standard 11, 120, p. 5.

Kaur, K. and Singh, H. (2010). Candidate process models for component based software
development, Journal of Software Engineering 4, 1, pp. 16–29.

http://www.v-modell.iabg.de
http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/products/javabeans/docs/spec.html

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 132

132 An Introduction to Component-Based Software Development

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.
(2001). An overview of AspectJ, in Proceedings of ECOOP ’01 (Springer-Verlag),
pp. 327–353.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
and Irwin, J. (1997). Aspect-oriented programming, in Proceedings of ECOOP’97
(Springer), pp. 220–242.

Kojarski, S. and Lorenz, D. (2006). Modeling aspect mechanisms: A top-down approach,
in Proceedings of 28th International Conference on Software Engineering (ACM),
pp. 212–221.

Kotonya, G., Sommerville, I., and Hall, S. (2003). Towards a classification model for
component-based software engineering research, in Proceedings of 29th EUROMI-
CRO Conference 2003, New Waves in System Architecture (IEEE Computer Soci-
ety), pp. 43–52.

Koziolek, H. and Reussner, R. (2008). A model transformation from the Palladio com-
ponent model to layered queueing networks, in Proceedings of SPEC International
Performance Evaluation Workshop (Springer), pp. 58–78.

Lau, K.-K. (2006a). Software component models, in Proceedings of 28th International
Conference on Software Engineering (ACM Press), pp. 1081–1082, Abstract of
tutorial.

Lau, K.-K. (2006b). Software component models, http://www.cs.man.ac.uk/˜k
ung-kiu/pub/icse06tut.pdf, Tutorial at 28th International Conference on
Software Engineering, 2006, Shanghai, China.

Lau, K.-K. (2014). Software component models: Past, present and future, in Proceedings
of the 17th International ACM SIGSOFT Symposium on Component-Based Software
Engineering (ACM), pp. 185–186, Abstract of tutorial.

Lau, K.-K. and Ornaghi, M. (2009). Control encapsulation: A calculus for exogenous com-
position, in G. Lewis, I. Poernomo, and C. Hofmeister (eds.), Proceedings of 12th In-
ternational Symposium on Component-Based Software Engineering, Lecture Notes
in Computer Science, Vol. 5582 (Springer-Verlag), pp. 121–139.

Lau, K.-K., Ornaghi, M., and Wang, Z. (2006). A software component model and its
preliminary formalisation, in F. de Boer et al. (ed.), Proceedings of 4th Interna-
tional Symposium on Formal Methods for Components and Objects, Lecture Notes
in Computer Science, Vol. 4111 (Springer-Verlag), pp. 1–21.

Lau, K.-K. and Rana, T. (2010). A taxonomy of software composition mechanisms, in Pro-
ceedings of 36th EUROMICRO Conference on Software Engineering and Advanced
Applications (IEEE), pp. 102–110.

Lau, K.-K. and Taweel, F. (2009). Domain-specific software component models, in
G. Lewis, I. Poernomo, and C. Hofmeister (eds.), Proceedings of 12th International
Symposium on Component-Based Software Engineering, Lecture Notes in Computer
Science, Vol. 5582 (Springer-Verlag), pp. 19–35.

Lau, K.-K. and Tran, C. (2012). X-MAN: An MDE tool for component-based system
development, in Proceedings of 38th EUROMICRO Conference on Software En-
gineering and Advanced Applications (IEEE), pp. 158–165.

Lau, K.-K. and Ukis, V. (2006). Defining and checking deployment contracts for soft-
ware components, in I. Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt,
J. A. Stafford, C. A. Szyperski, and K. C. Wallnau (eds.), Proceedings of the

http://www.cs.man.ac.uk/~kung-kiu/pub/icse06tut.pdf
http://www.cs.man.ac.uk/~kung-kiu/pub/icse06tut.pdf

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 133

Bibliography 133

9th International Symposium on Component-Based Software Engineering, Lecture
Notes in Computer Science, Vol. 4063 (Springer), pp. 1–16.

Lau, K.-K., Velasco Elizondo, P., and Wang, Z. (2005). Exogenous connectors for software
components, in G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A.
Szyperski, and K. C. Wallnau (eds.), Proceedings of 8th International Symposium
on Component-based Software Engineering, Lecture Notes in Computer Science,
Vol. 3489 (Springer-Verlag), pp. 90–106.

Lau, K.-K. and Wang, Z. (2005). A taxonomy of software component models, in Pro-
ceedings of the 31st Euromicro Conference on Software Engineering and Advanced
Applications (IEEE Computer Society Press), pp. 88–95.

Lau, K.-K. and Wang, Z. (2006). A survey of software component models, http://www
.cs.man.ac.uk/˜kung-kiu/pub/cspp30.pdf, second edition, Pre-print
CSPP-38, School of Computer Science, The University of Manchester, May 2006.

Lau, K.-K. and Wang, Z. (2007). Software component models, IEEE Transactions on
Software Engineering 33, 10, pp. 709–724.

Lau, K.-K., Wang, Z., di Cola, S., Tran, C., and Christou, V. (2014). Software component
models: Past, present and future, http://www.cs.man.ac.uk/˜kung-kiu
/pub/cbse14tut-slides.pdf, Tutorial at COMPARCH 2014 Conference,
30 June 2014, Lille, France.

Lee, R. and Seligman, S. (2000). The JNDI API Tutorial and Reference: Building
Directory-Enabled Java Applications (Addison-Wesley Longman Publishing Co.,
Inc.).

Li, J.-H., Li, Q., and Li, J. (2008). The W-Model for testing software product lines, in
Proceedings of International Symposium on Computer Science and Computational
Technology, pp. 690 –693.

Lorenz, D. H. and Petkovic, P. (2000). Design-time assembly of runtime containment
components, in Proceedings of 34th International Conference on Technology of
Object-Oriented Languages and Systems (IEEE), pp. 195–204.

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., and Mann, W. (1995).
Specification and analysis of system architecture using rapide, IEEE Transactions
on Software Engineering 21, 4, pp. 336–354.

Lumpe, M., Achermann, F., and Nierstrasz, O. (2000). A formal language for composition,
in G. T. Leavens and M. Sitaraman (eds.), Foundations of Component-Based Systems
(Cambridge University Press), pp. 69–90.

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. (1995). Specifying distributed soft-
ware architectures, in Proceedings of European Software Engineering Conference
(Springer), pp. 137–153.

Maras, J., Lednicki, L., and Crnkovic, I. (2012). 15 years of CBSE Symposium —
impact on the research community, in Proceedings of the 15th International
ACM SIGSOFT Symposium on Component-Based Software Engineering (ACM),
pp. 61–70.

Marvie, R. and Merle, P. (2001). CORBA Component Model: Discussion and Use with
OpenCCM, Tech. rep., Laboratoire d’Informatique Fondamentale de Lille.

McAffer, J., VanderLei, P., and Archer, S. (2010). OSGi and Equinox: Creating Highly
Modular Java Systems (Addison-Wesley Professional).

http://www.cs.man.ac.uk/~kung-kiu/pub/cspp30.pdf
http://www.cs.man.ac.uk/~kung-kiu/pub/cspp30.pdf
http://www.cs.man.ac.uk/~kung-kiu/pub/cbse14tut-slides.pdf
http://www.cs.man.ac.uk/~kung-kiu/pub/cbse14tut-slides.pdf

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 134

134 An Introduction to Component-Based Software Development

McIlroy, D. (1968). Mass produced software components, in P. Naur and B. Randell (eds.),
Software Engineering, pp. 138–155.

Medvidovic, N., Dashofy, E. M., and Taylor, R. N. (2007). Moving architectural description
from under the technology lamppost, Information and Software Technology 49, 1,
pp. 12–31.

Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor, R. N. (1996). Using object-oriented
typing to support architectural design in the c2 style, ACM SIGSOFT Software
Engineering Notes 21, 6, pp. 24–32.

Medvidovic, N. and Taylor, R. N. (2000). A classification and comparison framework for
software architecture description languages, IEEE Transactions on Software Engi-
neering 26, 1, pp. 70–93.

Mehta, N. R., Medvidovic, N., and Phadke, S. (2000). Towards a taxonomy of software
connectors, in Proceedings of International Conference on Software Engineering,
pp. 178–187.

Meyer, B. (2003). The grand challenge of trusted components, in Proceedings of Interna-
tional Conference on Software Engineering (IEEE Computer Society), pp. 660–667.

Meyn, S. P. and Tweedie, R. L. (2012). Markov Chains and Stochastic Stability (Springer
Science & Business Media).

Mishra, P. and Dutt, N. (2011). Introduction to architecture description languages, in
Processor Description Languages: Applications and Methodologies (Morgan
Kaufmann), pp. 1–12.

Natan, R. (1995). CORBA: A Guide to Common Object Request Broker Architecture
(McGraw-Hill).

Newcomer, E. (2002). Understanding Web Services: XML, WSDL, SOAP, and UDDI
(Addison-Wesley).

Ngu, A. H., Carlson, M. P., Sheng, Q. Z., and Paik, H.-Y. (2010). Semantic-based
mashup of composite applications, IEEE Transactions on Services Computing 3, 1,
pp. 2–15.

Nierstrasz, O. (1995). Research topics in software composition, in Proceedings of Lan-
guages et Modèles à Objets (Nancy), pp. 193–204.

Nierstrasz, O. and Dami, L. (1995). Component-oriented software technology, in O. Nier-
strasz and D. Tsichritzis (eds.), Object-Oriented Software Composition (Prentice-
Hall), pp. 3–28.

Nierstrasz, O. and Meijler, T. D. (1995). Research directions in software composition, ACM
Computing Surveys 27, 2, pp. 262–264.

Nierstrasz, O. and Tsichritzis, D. (eds.) (1995). Object-Oriented Software Composition
(Prentice-Hall International).

OASIS (2007). Web services business process execution language, http://docs.oas
is-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

OMG (2003). UML 2.0 Infrastructure Final Adopted Specification, http://www.omg.
org/cgi-bin/apps/doc?ptc/03-09-15.pdf.

OMG (2004). Common Object Request Broker Architecture: Core Specification, Ver-
sion 3.0.3, http://www.omg.org/technology/documents/corba_sp
ec_catalog.htm.

OMG (2005). UML Profile for Schedulability, Performance, and Time, version 1.1, http
://www.omg.org/spec/SPTP/1.1/.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/SPTP/1.1/

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 135

Bibliography 135

OMG (2011). UML Profile for MARTE: Modeling and Analysis of Real-time Embedded
Systems, version 1.1, http://www.omg.org/spec/MARTE/1.1.

Oracle (2017). Java web page, http://www.oracle.com/technetwork/java/.
Ossher, H., Kaplan, M., Katz, A., Harrison, W., and Kruskal, V. (1996). Specifying subject-

oriented composition, Theory and Practice of Object Systems 2, 3, pp. 179–202.
Ostermann, K. and Mezini, M. (2001). Object-oriented composition untangled, in Pro-

ceedings of Conference on Object-Oriented Programming, Systems, Languages, and
Applications (ACM), pp. 283–299.

Ousterhout, J. (1998). Scripting: Higher-level programming for the 21st century, Computer
31, 3, pp. 23–30.

Pautasso, C. (2009). Composing RESTful services with JOpera, in Proceedings of Interna-
tional Conference on Software Composition (Springer), pp. 142–159.

Perry, D. and Wolf, A. (1992). Foundations for the study of software architecture, ACM
Software Engineering Notes 17, 4, pp. 40–52.

Pfister, C. and Szyperski, C. (1996). Why objects are not enough, in Proceedings of 1st
International Component Users Conference (SIGS Publishers).

Platt, D. S. (2003). Introducing Microsoft .NET, 3rd edn. (Microsoft Press).
Pohl, K., Böckle, G., and Van Der Linden, F. (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques (Springer).
Prasanna, D. R. (2009). Dependency Injection (Manning Publications Co.).
Prehofer, C. (2002). Feature-oriented programming: A fresh look at objects, in Proceedings

of European Conference on Object Oriented Progtramming (Springer), pp. 419–443.
Prieto-Diaz, R. (1991). Implementing faceted classification for software reuse, Communi-

cations of the ACM 34, 5.
Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A., Koziolek, H.,

Krogmann, K., and Kuperberg, M. (2011). The Palladio component model, Tech.
rep., Karlsruhe Institute of Technology - Faculty of Informatics.

Royce, W. (1970). Managing the development of large software systems: Concepts
and techniques, in Proceedings of IEEE WESCON 26 (IEEE Computer Society),
pp. 1–9.

Russell, J. and Cohn, R. (2012). Microsoft Interface Definition Language (Book on De-
mand).

Sametinger, J. (1997). Software Engineering with Reusable Components (Springer-Verlag).
SCA-IBM (2017). Service Component Architecture (SCA), http://www.ibm.com/

support/knowledgecenter/SSGMCP_5.1.0/com.ibm.cics.ts.ap
plicationprogramming.doc/bundleinterface/sca.html.

Schmerl, B. and Garlan, D. (2004). AcmeStudio: Supporting style-centered architecture
development, in Proceedings of International Conference of Software Engineering,
pp. 704–705.

Schneider, J. and Nierstrasz, O. (1999). Components, scripts and glue, in L. Barroca,
J. Hall, and P. Hall (eds.), Software Architectures – Advances and Applications
(Springer-Verlag), pp. 13–25.

Scribner, K., and Stiver, M. C. (2000). Understanding Soap: Simple Object Access Protocol
(Sams).

Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., and Crnkovic, I. (2008). A component
model for control-intensive distributed embedded systems, in M. R. V. Chaudron,

http://www.omg.org/spec/MARTE/1.1
http://www.oracle.com/technetwork/java/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.1.0/com.ibm.cics.ts.applicationprogramming.doc/bundleinterface/sca.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.1.0/com.ibm.cics.ts.applicationprogramming.doc/bundleinterface/sca.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.1.0/com.ibm.cics.ts.applicationprogramming.doc/bundleinterface/sca.html

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 136

136 An Introduction to Component-Based Software Development

C. Szyperski, and R. H. Reussner (eds.), Proceedings of International Symposium on
Component-Based Software Engineering, Programming and Software Engineering,
Vol. 5282 (Springer), pp. 310–317.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., and Zelesnik, G. (1995).
Abstractions for software architecture and tools to support them, IEEE Transactions
on Software Engineering 21, 4, pp. 314–335.

Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline (Prentice Hall).

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., and Xu, X. (2014). Web
services composition: A decades overview, Information Sciences 280, pp. 218–238.

Siegel, J. (2000). CORBA 3 Fundamentals and Programming (Wiley Computer
Publishing).

Sobr, L. and Tuma, P. (2005). SOFAnet: Middleware for software distribution over inter-
net, in Proceedings of the 2005 International Symposium on Applications and the
Internet, pp. 48–53.

Sommerville, I. (2004a). Software Engineering, 7th edn. (Addison Wesley).
Sommerville, I. (2004b). Software Engineering, chap. 19: Component-based software en-

gineering, 7th edn. (Addison Wesley), pp. 439–461.
Spillner, A. (2002). The W-Model – strengthening the bond between development and

test, in Proceedings of International Conference on Software Testing, Analysis and
Review.

Szyperski, C. (2002a). Back to universe, Software Development (September issue).
Szyperski, C. (2002b). Universe of composition, Software Development (August issue).
Szyperski, C., Gruntz, D., and Murer, S. (2002). Component Software: Beyond Object-

Oriented Programming, 2nd edn. (Addison-Wesley).
Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009). Software Architecture: Founda-

tions, Theory, and Practice (Wiley Publishing).
van Ommering, R. and Bosch, J. (2002). Components in product-line architecture, in

I. Crnkovic and M. Larsson (eds.), Building Reliable Component-Based Software
Systems (Artech House), pp. 207–221.

van Ommering, R., van der Linden, F., Kramer, J., and Magee, J. (2000). The Koala com-
ponent model for consumer electronics software, IEEE Computer 33, 3, pp. 78–85.

Velasco Elizondo, P. and Lau, K.-K. (2010). A catalogue of component connectors to
support development with reuse, The Journal of Systems and Software 83,
pp. 1165–1178.

Vulgarakis, A., Suryadevara, J., Carlson, J., Seceleanu, C., and Pettersson, P. (2009).
Formal semantics of the ProCom real-time component model, in Proceedings of
35th Euromicro Conference on Software Engineering and Advanced Applications
(IEEE), pp. 478–485.

Weerawarana, S., Curbera, F., Duftler, M., Epstein, D., and Kesselman, J. (2001). Bean
markup language: A composition language for JavaBeans components, in Proceed-
ings of the 6th conference on USENIX Conference on Object-Oriented Technologies
and Systems (USENIX Association), pp. 173–188.

WSDL (2001). Web Services Description Language (WSDL) - Version 1.1, Ariba,
Microsoft and IBM, http://www.w3.org/TR/2001/NOTE-wsdl-2001
0315

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 137

Index

Acceptance testing, 7–8
Acme, 73, 76, 80, 82, 92, 100,

112–113
attachments, 75
component, 73
Connector, 73
port, 73
system, 73

Active component, 31
Adaptor, 42
Adaptor object, 55
Aesop, 100
Algebraic composition mechanism, 35,

38, 65, 107
Architectural unit(s), 18–19, 21, 24,

28–30, 34, 37, 40, 46, 48, 50, 68, 73,
76, 89, 92, 97, 111, 124
additive composition, 41
hierarchical composition, 41
sequential composition, 41

Architecture description language (ADL),
13, 24, 46, 48, 68, 73, 76, 80, 89–90,
92, 96, 112
first-generation, 92
second-generation, 92

ArchJava, 48, 50, 76, 78, 82–83, 91–92,
112–114

Aspect, 22, 27
weaving, 27, 33

Assembler, 3, 13

Assembly connector, 29, 50, 80, 97
Atomic component, 37, 51–52

Bean, 53–54
Black box, 19
Blackboard composition, 41
BPEL, 32, 38, 93, 110
Branching, 38
Builder, 3–4
Bundle, 53, 59–61, 89

C, 85–86, 88
C++, 85
C2, 100
C#, 63
categories, 46, 111

domain-specific, 13, 83
taxonomy, 111, 123

CBD, 1, 15, 23
basic idea, 1
benefits, 1
definition, 1
desiderata, 2, 12, 111, 123
event sink, 68
event source, 68
facet, 68
receptacle, 68

Channel, 34, 37, 40
Choreography, 108–109
Class, 22, 25, 59, 90
Class nesting, 33

137

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 138

138 An Introduction to Component-Based Software Development

Component
adaptation, 7, 11
algebra, 36
assembly, 7
binary, 3
copy, 3
definition, 15–16
deployment, 11
instance, 3, 6, 10
selection, 7, 11
semantics, 16, 45
source code, 3
syntax, 16, 45
template, 5

Component composition language, 46, 48,
50

Component definition language, 46, 48, 50
Component life cycle, 2, 6, 7, 10, 13–14,

54
deployment phase, 2, 5, 12, 56, 59, 61,

64, 67, 69–70, 75, 79, 82, 85,
88, 91, 94, 96, 99, 106,
110–111

design phase, 2, 3, 12, 56, 59–61, 63,
67, 69–70, 75, 79, 82, 84, 87,
91, 94, 96, 99, 106, 110–111

idealised, 3, 10, 12, 15, 19, 54, 56, 59,
61, 63, 67, 69–70, 75, 79, 82,
84, 87, 91, 94, 96, 99, 106,
110–111, 123

run-time phase, 2, 59, 61, 64, 67, 69,
75, 82, 85, 88, 91, 94, 96, 99,
106, 110

Component model, 12–13, 16, 23–24,
45–46, 48, 50, 53, 62, 64
categories, 46, 111
Deployment with repository category,

117
Design and deployment with repository

category, 122
Design with deposit-only repository

category, 114
Design with repository category,

119
Design without repository category,

112

Component Object Model (COM) 65, 67,
90, 116

Composite component, 3–5, 14, 17, 37,
50–52, 67, 77–78, 94, 105

Composition, 15–17, 21, 45
CBD view, 23, 34, 40
construction view, 23–24, 34, 35
programming view, 22, 34, 40
survey, 32

Composition connector, 13, 52, 104, 107
Composition mechanism, 21–22, 24, 27,

35
algebraic, 35, 38, 107
categories, 32
taxonomy, 32

Composition operator, 4–5, 23, 64
mathematical, 35, 38, 40, 42,

107
Compositional reasoning, 13
Compositionality, 13, 124
Computation unit, 37
Connection, 24, 28, 34, 37, 40–41
Connector, 74
Container, 55
Containment, 24, 33, 36, 39
Context dependency, 15
Control, 38, 51, 83, 90, 105

connector, 32
coordination, 31–32
flow, 32, 52
structure, 38

Control coordination, 105
Coordination, 24, 30, 33–34, 37, 40–41,

50–51, 107
language, 31, 50

Coordinator, 50, 103
CORBA, 68
CORBA Component Model (CCM), 68,

116
Correspondence-combination, 27, 39
Coupling, 31

Darwin, 100
Data

channel, 32
connector, 31, 38

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 139

Index 139

coordination, 31, 34, 38, 41
flow, 32, 105

Delegation, 29, 53, 60, 63–64
connector, 29, 41, 50

Delegation connector, 80, 97
Dependency, 17
Deployment contract, 6
Development

for reuse, 7
process, 6
with reuse, 7

Direct message passing, 28–29,
46–47

Discrete Markov chains, 99
Discrete-event simulation, 99
Domain requirements, 10, 13
Dynamic link library (DLL), 62
Dynamic reconfiguration, 89, 95

EAST-ADL, 13
Eclipse, 51
EJB, 42, 57, 59, 62, 66, 71, 93, 114

bean, 57
container, 57–59
entity bean, 58
message-driven bean, 58
remote interface, 58
session bean, 58, 93

Encapsulated component, 18, 31, 34–35,
37, 46, 50, 103, 104, 111

Encapsulation, 124
Encapsulation in CBD

compositionality, 103
enclosing behaviour in a capsule,

103
enclosure in a capsule, 104
preservation, 103

Encapsulation in object-oriented
programming
data access, 103
implementation hiding, 103
information hiding, 103

Enterprise JavaBeans (EJB), 42, 57, 62,
71

Entity bean, 58
Equinox, 60

Event
adaptor object, 55
broadcast, 74
delegation, 53, 68

Exogenous composition, 31, 34–35, 37,
40, 103, 107
connector, 24

Extensibility, 41
Extension, 24, 26–27, 33, 36, 39
External dependency, 18, 51, 103

Feature, 35
composition, 27, 33, 36, 39

Feature-oriented programming, 35
Felix, 60
Fractal, 89, 92, 95, 117

attribute controller, 90
binding controller, 90
Component interface, 90
composite binding, 90
composite component, 90
content, 89
content controller, 90
control interface, 90
interface binding, 90–91
life-cycle controller, 90
membrane, 89
primitive binding, 90
primitive component, 90

Fragment box, 34, 36
Framework, 53, 57
Function, 22, 25, 85

call, 34, 37, 67, 86
nesting, 33

Functional composition, 41

Generative programming, 13
Generic component, 16–17, 24, 45, 48
GenVoca, 35
Glue, 21, 23, 38–39, 41

Hierarchical composition, 35, 38, 107
Higher-order function, 34, 37–38, 40–41
Hypertext Transfer Protocol (HTTP), 108

verbs, 108

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 140

140 An Introduction to Component-Based Software Development

Idealised component life cycle, 3, 10, 12,
15, 19, 56, 59, 61, 63, 67, 69–70, 75,
79, 82, 84, 87, 91, 94, 96, 99, 106,
110–111, 123

IL, 62–63
Indirect message passing, 28–29, 48–49
Input port, 32, 48
Integration testing, 8
Interception, 90
Interface, 5, 15–17, 35, 66, 74, 85, 104

definition language, 68
pointer, 67

Internet Inter-ORB Protocol (IIOP), 93
Introspection, 89–90
Invasive composition, 33–34, 36, 39
Invocation connector, 37
IUnknown, 66, 90

Java Message Service (JMS), 93
JavaBeans, 23, 46–47, 53–54, 66, 118
JavaScript Object Notation (JSON), 108
Join points, 27–28
JOpera, 110
Julia, 91

Koala, 85, 87, 92, 120–121, 123
Component Description Language, 86
diversity interface, 87
Interface Description Language, 86
module, 86
switch, 87

KobrA, 69, 121, 123
behavioural model, 69
decision model, 69
execution model, 70
functional model, 69
interaction model, 70
structural model, 69

Layered queuing networks, 99
Looping, 38

Manifest, 60
Mashup, 108
Mathematical composition operator, 35,

38, 40, 42, 107

Mathematical operator, 39, 40
Mean time to

failure, 99
repair, 99

Message passing, 21
Message-driven bean, 58
MetaH, 100
Method call, 21, 24, 29, 60, 90

direct, 70, 77
Method delegation, 53, 68
Microsoft Interface Definition Language

(MIDL), 66
Microsoft Intermediate Language (IL),

62–63
Microsoft Visual Studio, 64
MixedJava, 39
Mixin, 33

inheritance, 33, 36, 39–40
Mixin-class inheritance, 33, 36
Module, 7, 8, 15, 19, 23, 25, 34, 59, 62

connection, 34, 37
nesting, 33

Multiple inheritance, 27, 33, 36, 39

Nested definition, 25
NET, 61, 115

assembly, 59, 61
manifest, 62
metadata, 62

NetBeans, 56

Object, 18, 21, 46, 53, 63, 66, 68, 89, 111,
124
aggregation, 25, 33
composition, 25, 33
delegation, 28–30, 34, 37, 40, 46

Object request broker architecture, 68
Object-oriented framework, 53, 57, 64, 89
OpenAPI Specification, 107
OpenCCM, 68
Orchestration, 31, 34, 38, 108–110, 118
OSGi, 53, 59, 61, 89, 115

bundle, 59
service registry, 61

Output port, 32, 48

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 141

Index 141

Palladio, 96, 122
complete type component, 97
composite component, 98
cost analysis, 99
implementation type component, 97
performance analysis, 99
provided type component, 97
reliability analysis, 99
repository, 97
Service Effect Specification, 97

Papyrus, 82
Parallel process, 31
Passive component, 32
Performance, 97
Piccola, 23
Pins, 19
Pipe, 74
Pipe-and-filter, 83, 84
Plug, 19, 23, 29, 34
Pointcut, 27, 28
POJO(s), 53–54, 59–61, 66, 90, 112, 115

component, 54
composition, 54

Port, 18, 24, 48, 68
connection, 21, 24, 28–30, 34, 37, 40
forwarding, 29, 50, 78

PRIDE, 84
Procedure, 22, 25

call, 34, 37, 74
nesting, 33

Process, 34, 37, 40
ProCom, 83–85, 92, 119
Product line, 12–13, 19, 85, 124
Production cost, 1
Programming-in-the-large, 23
Programming-in-the-small, 22–23
ProSave, 83

composite component, 83
connection, 84
connector, 84
control fork, 84
control join, 84
control or, 84
data fork, 84
data or, 84
data port, 83

primitive component, 83
trigger port, 83

ProSys, 83
message channel, 83
message ports, 83

Provided
interface, 29, 41, 80, 86, 90, 97
service, 16, 29, 45, 90, 103–104

Quality of service (QoS), 97–98

Rapide, 100
Reflection, 90
Reliability, 97
Remote interface, 58
Repository, 1–2, 10, 13–14, 23–24, 35, 56,

59, 64, 75, 79, 82, 85–86, 88, 92, 94,
96–97, 99, 124

Representational State Transfer (REST),
108

Required
interface, 29, 80, 86, 90, 97
service, 16, 29, 45, 90, 103–104

RESTful web service, 108
Role, 74

produce, 75
request, 75

Script, 21
Scripting language, 23
Sequencer, 52

composition connector, 52
Sequencing, 38
Service, 21, 31, 48, 59, 60, 62, 66
Service Component Architecture (SCA),

92, 120–121
binding, 92–93
composite component, 94
domain, 94
property, 92
reference, 92
remotable service, 93
service, 92
Service Component Definition

Language, 94
wire, 94

Service registry, 61

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 142

142 An Introduction to Component-Based Software Development

Service-oriented architecture (SOA), 61,
92, 107

Session bean, 58
Simple Object Access Protocol (SOAP),

93, 108
Single inheritance, 27, 41
SOAP-based web service, 107–108
SOFA, 95, 121

architecture, 95
aspect, 96
binding controller, 96
blackboard, 95
business provided interface, 95
business required interface, 95
content, 95
control interface, 95
deployment dock, 96
design connector, 95
dynamic update, 95
frame, 95
interface binding, 95
life-cycle controller, 96
messaging, 95
micro-components, 96
procedure call, 95
provided interface, 95
repository, 96
required interface, 95
runtime connector, 95
SOFAnodes, 96
streaming, 95

software architecture, 23–24, 73
software component model, 12–13, 16,

23–24, 45–46, 48, 50, 53, 62
categories, 111
Deployment with repository category,

117
Design and deployment with repository

category, 122
Design with deposit-only repository

category, 114
Design with repository category,

119
Design without repository category,

112
taxonomy, 111, 123

Software integrated circuits, 19
Software product line, 12–13, 19, 85

application engineering, 12
domain analysis, 14
domain engineering, 12–14
variability, 69

Software reuse, 1, 21–24, 111
Source bean, 56
Subject, 39

composition, 27, 33, 36, 40
Subsystem, 83
Superimposition, 27
System assembly, 11
System development

bottom-up, 1, 9
hierarchical, 13
modular, 7, 14
top-down, 2, 8

System life cycle, 6–7, 10, 14, 111
System testing, 8
Systematic construction, 22–24, 35

Target bean, 56
Third-party component, 24, 35
Tight coupling, 28, 31
Time-to-market, 1, 22
Trait, 33, 40

composition, 33–34, 36, 39
Trait-class composition, 33–34, 36
Tuple space, 31, 38
Turing-completeness, 105

UML, 24–25, 69–70, 80, 83, 101
1.1, 101
1.5, 101
1.x, 69, 80, 101
2.0, 29, 48, 50, 80, 101, 112
2.x, 69, 80, 82, 89, 90, 92, 97, 113–114
activity diagram, 70, 97
class diagram, 70
collaboration diagram, 70
model, 69–70
state chart, 97
structured classifier, 80, 101

UniCon, 100
Unit of composition, 21–22, 24, 34–35, 45

June 9, 2017 9:44 ws-book9x6 An Introduction to Component-Based. . . b2915 page 143

Index 143

Unit testing, 8
Universal Description, Discovery, and

Integration (UDDI), 108

V model, 7, 9, 12–13
V&V, 7, 107

component, 14
compositional, 11, 14, 107, 111,

124–125
system, 11

Variability, 69
Visual Basic, 64
Visual builder, 55, 82

W model, 10–13, 111, 125
Waterfall model, 7
Weaving, 27, 33, 36
Web Application Description Language

(WADL), 107–108
Web server, 35
Web service, 31–32, 34, 38, 93, 107, 118

choreography, 108–109
interface, 107
orchestration, 108–110, 118
RESTful, 108

service code, 107
SOAP-based, 107–108

Web Service Description Language
(WSDL), 32, 35, 93, 107–108

Windows registry, 67
Workflow, 32, 38, 109
Wright, 100
WS-BPEL, 110

X-MAN, 12–13, 37, 46, 51, 103–104,
107, 122, 124
aggregator, 105
atomic component, 104
composite component, 104
composition connector, 105
computation unit, 104
guard, 105
invocation connector, 104
loop, 105
selector, 105
sequencer, 105

XML, 90

Y model, 13

	Preface
	Contents
	Introduction
	Idealised Component Life Cycle
	Development Processes
	Veriﬁcation and Validation
	The WModel
	Discussion & further Reading

	What are Software Components?
	Generic Software Components
	Types of Components in Current Practice
	Discussion & further Reading

	What is Software Composition?
	Different Views of Software Composition
	Software Composition Mechanisms
	Algebraic Composition Mechanisms
	Mathematical Composition Operators
	Discussion & further Reading

	Software Component Models
	Component Models with Objects as Components
	Component Models with Architectural Units as Components
	Component Models with Encapsulated Components
	Discussion & further Reading

	Component Models with Objects as Components
	POJOs
	JavaBeans
	Object-oriented Frameworks
	Discussion & further Reading

	Component Models with Architectural Units as Components
	Acme
	ArchJava
	UML
	ProCom
	Koala
	FRACTAL
	Discussion & further Reading

	Component Models with Encapsulated Components
	X-MAN
	Discussion & further Reading

	Taxonomy of Software Component Models
	Category 1: Design without Repository
	Category 2: Design with Deposit-only Repository
	Category 3: Deployment with Repository
	Category 4: Design with Repository
	Category 5: Design and Deployment with Repository
	Discussion & further Reading

	Biblio
	Index

